
Simultaneous Transmission Opportunities for

LTE-LAA Co-existing with WiFi in Unlicensed

Spectrum from Exploiting Spatial Domain

Long Li

Department of Electronic and Electrical Engineering

University of Sheffield

A thesis submitted for the degree of

Doctor of Philosophy

12/2017

mailto:lli11@sheffield.ac.uk
http://www.shef.ac.uk/eee
http://www.shef.ac.uk


Acknowledgements

And I would like to acknowledge my supervisor Dr. Xiaoli Chu and

my second supervisor Prof. Jie Zhang for tirelessly academic support.

And also my family and friends who support and urge me through

my thesis writting.



Abstract

In this thesis, we first give an intensive review on the background

of LTE-LAA technology, the research status of LTE-LAA and WiFi

co-existence mechanisms and 3GPP Rel. 13 standardization on LTE-

LAA. The existing co-existence designs focus on the time-domain,

frequency-domain and power-domain to achieve fairness between two

systems. Simultaneous transmissions are avoided to reduce collision

probability. However, by exploiting the spatial domain, we discover

the possibility of simultaneous LTE-LAA/WiFi transmission oppor-

tunities as long as the interference received at the WiFi receiver is well

managed. We first show the feasibility of such simultaneous transmis-

sion opportunities considering AP/UE location diversity and various

coverage overlap situations between LTE-LAA small cell and WiFi

AP. Then, by utilizing multi-antenna beamforming capability, we pro-

pose a more practical co-existence scheme combing DoA estimation

and null steering technologies. As the lack of direct communication

link between LTE-LAA and WiFi systems, we also give our design

of information exchange that requires minimal modifications on cur-

rent WiFi standards and with little to none extra overhead. From

the discussions and simulation results, we prove the existence of such

simultaneous transmission opportunities that do not bring extra im-

pact on WiFi networks. The channel occupancy time of LTE-LAA

can be greatly improved. However, problems and challenges are also

identified that require future investigations.
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Chapter 1

Introduction

1.1 Background of LTE in Unlicensed Spectrum

1.1.1 What is LTE in Unlicensed Spectrum?

To accommodate the explosive growth of traffic load and capacity demand, the

severely scarce and expensive license spectrum has shown its limitation of ad-

dressing the 1000X mobile data increment challenge. Starting from 2013, major

companies in the Communications industry started to push forward the idea of ex-

tending LTE/LTE-A technologies into the readily available unlicensed spectrum,

which is currently dominated by WiFi technologies, in order to break through

the limitation. The concept of LTE in the unlicensed spectrum (LTE-U) was

first proposed by Qualcomm [8] based on 3rd Generation Partnership Project

(3GPP) Release 10/11/12, in 2013. In 2014, Verizon created the LTE-U Fo-

rum, together with Qualcomm, Ericsson, Alcatel-Lucent and Samsung. In the

same year, Huawei also declared their move into this area by giving their U-LTE

solutions [9], which is essentially identical to LTE-U. Later in 2015, Ericsson

firstly deployed LTE small cells in the unlicensed spectrum to boost indoor user

experiences[10]. And the term LTE License-Assisted-Access (LTE-LAA) used

by Ericsson to represent the LTE in unlicensed spectrum technology was later

adopted by 3GPP in the standardization of Release 13 [11] and introduced as

part of LTE Advanced Pro [12].

Other than LTE-U and LTE-LAA, which are the two widely known termi-
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1. Introduction

nologies, there are other terms representing certain types of LTE in unlicensed

spectrum technologies. These terminologies are closely related, however inher-

ently differentiated. To avoid confusion, these terms are distinguished below and

illustrated in Figure 1.1. And we refer to a collective term LTE Unlicensed

technologies in the following content to include all these individual terms.

Figure 1.1: Multiple LTE-U technologies.

Figure 1.2: Carrier aggregation for LTE in unlicensed spectrum.
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1. Introduction

• LTE-U: It is defined by LTE-U Forum based on 3GPP Rel. 10/11/12 for

early time deployments in certain markets, such as USA, Korea, India, etc.,

where Listen-Before-Talk regulations are not mandatory. It utilizes a small

fraction of the licensed spectrum as the anchor to convey control signals,

and variable bandwidth of the unlicensed spectrum as the Supplemental

Downlink (SDL) to boost downlink data transmission. The licensed an-

chor and the unlicensed SDL are combined via Carrier Aggregation (CA),

as shown in Figure 1.2. The fairness in coexistence with WiFi is achieved

by Dynamic Channel Selection (DCS) and Carrier-Sensing Adaptive Trans-

mission (CSAT) [8]. It is the initial phase of the evolution of licensed &

unlicensed CA, and provides support for migration towards LTE-LAA.

• LTE-LAA: It is part of 3GPP Rel. 13. It also combines licensed anchor

and unlicensed SDL via CA. DCS is applied for the LTE-LAA smallcell

to monitor the traffic and noise level across the available unlicensed spec-

trum, and select the unoccupied bands to transmit, so that interferences

introduced to the WiFi devices that are currently operating is avoided. To

coexist with WiFi devices on the same band, it includes contention-based

LBT, which is mandated in European countries, to comply with global reg-

ulations [12]. With LBT requirements, LTE-LAA as the second phase of

licensed & unlicensed CA, is ready for global deployments.

• LTE-LWA: LTE-WLAN Aggregation (LWA) is also included as part of

3GPP Rel. 13 specifications. LWA leverages existing carrier WiFi hotspots,

which are deployed by the operators to complement their cellular networks,

and configures multi-homed handsets that support both LTE and WLAN

access to simultaneously utilize both LTE and WiFi links. Unlike LTE-

U/LAA, LTE-LWA does not require hardware changes to the mobile devices

and network infrastructure while still providing similar performance to that

of LTE-U/LAA. The aggregation involved in LWA is referred to PDCP

aggregation [13], which combines LTE and WiFi data packets at the Layer2

Packet Data Convergence Protocol (PDCP). And it requires a standardized

interface XW to connect links from non-collocated LTE and WiFi devices

[14].

3



1. Introduction

• LTE-eLAA/eLWA: The terms eLAA and eLWA stand for enhanced-LAA

and enhanced-LWA, respectively. On the basis of LAA and LWA, uplink

aggregation is added as part of 3GPP Rel. 14 and beyond to boost uplink

capacity and data rates [12]. And the aggregation of unlicensed uplink and

downlink is possible with either licensed TDD or FDD [12]. Additionally,

link aggregation across different non-collocated small cells is also an added

feature, which is referred as Dual Connectivity. The complexity and cost

are expected to be reduced. An demo of eLAA is going to be showed at the

Mobile World Congress (MWC) by Qualcomm in 2017.

• MulteFireTM : Unlike the other LTE in unlicensed technologies, Multe-

Fire is soly operated in the unlicensed spectrum without an licensed spec-

trum anchor. It is proposed by Qualcomm [12] based on 3GPP standards.

New deployment opportunities is opened up by combining WiFi-like de-

ployment simplicity in unlicensed spectrum and LTE-like enhanced perfor-

mance, which broadens the whole LTE ecosystem. Formed in December

2015, MulteFire Alliance is an international association dedicated to de-

veloping global technical specifications, product certifications as well as a

global ecosystem for MulteFire.

1.1.2 Benefits of LTE Unlicensed Technologies

Licensed spectrum is without question scarce and costly, while at the same time

there is a vast amount of free unlicensed spectrum in 5 GHz bands. The “1000X

data increase” goal has been driven by the exponential growth of connected de-

vices and the demand of faster and richer content delivery. As the consumer

hunger for data traffic rapidly outpaces the current utilization of available spec-

trum, on one hand the government and the wireless industry are working together

to facilitate more usable spectrum for mobile communications, on the other hand

leading companies and organizations in the wireless industry are persistently pur-

suing more effective utilization of current available spectrum. Given the fact that

today’s mobile device users rely more and more heavily on WiFi networks for their

communication demands, bringing new innovations into the utilization of unli-

censed spectrum seems to be an effective way to reach this remarkable goal. LTE

4



1. Introduction

Unlicensed technologies take advantages of all kinds of maturely developed 4G

LTE/LTE-A features such as advanced interference mitigation techniques, better

spectral efficiency and more effective resource management and user scheduling

techniques, and for the first time brings these techniques into the unlicensed

spectrum realm.

In cases of LTE-U/(e)LAA/(e)LWA, assisted by the control channels in li-

censed bands, LTE Unlicensed enabled small cells are anticipated to provide

better quality of service (QoS) to end users in unlicensed bands than WiFi ac-

cess points (APs) [15]. While in the case of MulteFire, even though there is no

anchor in licensed bands, the unlicensed bands are still be able to be better uti-

lized with enhanced range and capacity, improved QoS and mobility, and mature

interference mitigation techniques which enable hyper-dense deployments that

are also self-organized. Meanwhile, compared to conventional WiFi utilization

of unlicensed spectrum that consists of separate spectrum sub-bans and user de-

ployments, MulteFire uses common spectrum and deployment to provide neutral

host services [12]. These advantages of MulteFire pave its way to all enterprises,

venues, malls, campus and homes, etc. as a better option.

LTE Unlicensed enabled small cells are controllable by mobile operators, which

means the unlicensed spectrum that they are deployed in is utilized in a more

regulable manner. Thus, time and frequency resources can be more managed and

scheduled towards higher spectrum efficiency and capacity gain.

Unlike 802.11 devices that use Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) techniques, LTE Unlicensed technologies utilize Listen-

Before-Talk (LBT) to access unlicensed channels. CSMA/CA is composed of

Clear Channel Assessment (CCA) which determines whether the medium is idle

or busy for the current frame, and Network Allocation Vector (NAV) which re-

serves the medium as busy for future frames transmitted right after the current

frame. Moreover, upon detecting the medium for current frame is idle, every

802.11 device starts a random back-off before it can actually transmit. On the

other hand, LBT in LTE Unlicensed technologies can be classified into various

categories, wherein Load Based Equipment (LBE) Category 4 defined in [11] is the

most relevant and similar to the random channel access procedure used in WiFi

as it is defined with random back-off procedure and adaptive contention window

5



1. Introduction

size. The significant advantage of implementing LBT-LBE with similar random

channel access procedure to WiFi in acquisition of transmission opportunities in

LTE Unlicensed technologies is that, fair coexistence with WiFi technologies can

be better guaranteed as LTE Unlicensed small cell does not act as a bandit that

forcibly occupy the unlicensed resources. Moreover, coexistence of multiple LTE

Unlicensed networks within the same unlicensed band can also be adjusted in a

more controllable manner.

The benefits of LTE Unlicensed technologies over WiFi do not stay on theo-

retical analysis, but also verified via test trial. Through an outdoor test case con-

ducted by Qualcomm in 2016 [12], LTE-LAA small cells achieve up to 2.5 times

outdoor coverage improvement over to WiFi APs, especially in high downlink

throughput portion of the test results. More importantly, LTE-LAA outperforms

WiFi in challenging radio conditions during mobility, with more challenging radio

conditions LTE-LAA small cells have higher downlink throughput gain over WiFi

APs, and remain consistent over a larger area. From the test, results also show

that LTE-LAA benefits everyone playing in the same 5 GHz channel. Switching

from baseline scenario with 4 pairs of WiFi to 2 pairs of LTE-LAA and 2 pairs of

WiFi, around extra 50% downlink throughput gain is achieved for neighbouring

WiFi APs, which indicates that LTE-LAA is a better neighbour to WiFi than

WiFi itself. Moreover, from the same comparison setup, everyone playing in the

same unlicensed spectrum gains around the same share of channel occupancy,

which indicates LTE-LAA helps to promote fairer sharing of the unlicensed spec-

trum. Last but not least, LTE-LAA also fairly shares the unlicensed channel in

corner cases, which makes LTE-LAA a better neighbour to hidden WiFi nodes

than WiFi itself. Detailed LTE-LAA performance benefits over WiFi are further

explained in the next chapter.

1.1.3 Challenges of LTE in Unlicensed Spectrum Deploy-

ment

According to the estimated wired WiFi and mobile growth by Cisco [1], data

traffic conveyed via WiFi will continue to increase for years. In the foreseeable

future, WiFi will continue to play an important role in providing wireless data

6



1. Introduction

services to end users. However, transmissions of LTE-LAA enabled small cells

in the unlicensed bands may cause problems to the operation and performance

of WiFi systems. WiFi transmitters access the channels in the unlicensed bands

in a contention-based manner, i.e., with CSMA/CA. More specifically, a WiFi

transmitter needs to sense the channels in the unlicensed bands and can only

start a transmission when it finds a free channel. Frequent transmissions from

LAA small cells in the unlicensed bands may dramatically reduce the transmis-

sion opportunities of WiFi APs, thus degrading their performance. But with the

temptation of benefits provided by deploying LTE in unlicensed spectrum, oper-

ators have already and will continue to share the cake of unlicensed spectrum.

This situation highlights the importance of carefully designing fair LTE/WiFi

co-existence mechanisms. The co-existence problem in unlicensed spectrum has

drawn attention from both industry [8, 16] and academia [17, 18, 19, 20].

Figure 1.3: Estimated Wired WiFi and mobile growth from 2015 to 2020 [1].

1.2 Motivation of Our Co-existence Approach

and Contributions

In existing LTE-LAA/WiFi co-channel co-existence mechanism designs, the shared

unlicensed channel is accessed by both technologies in a time sharing manner,

i.e. simultaneous transmissions are avoided for the purpose of collision avoid-
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1. Introduction

ance. This is due to the contending nature of WiFi CSMA/CA medium access

mechanism. However, in future ultra dense deployment scenarios, sharing the

channel access time cannot be regarded as optimum as the spectral efficiency

will soon reach a bottleneck. The main objective of this thesis is to identify the

possibility of simultaneous transmission opportunities by looking at the spatial

domain diversity.

1.3 Contributions of the Thesis

In Chapter 3, we first conduct derivations of the probability of coverage overlap

between LTE-LAA small cells and WiFi APs by modelling the network nodes

with a spatial bivariate Poisson point process. Then we propose a coexistence

scheme for LTE-LAA small cell and WiFi AP in the unlicensed spectrum with

the consideration of various possibilities of coverage overlap between them. The

theoretical analysis is conducted in simple scenario where an LTE-LAA small

cell overlaps with one WiFi AP within a WiFi network. Backoff frozen state of

the WiFi AP due to transmissions from other WiFi APs in the WiFi network is

considered. The analysis can be extended to a more general scenario where an

LTE-LAA small cell overlaps with multiple WiFi APs with little effort.

In Chapter 4, following the first attempt made in Chapter 3, we continue

to exploit such simultaneous transmission opportunities in a more practical way.

This is based on the idea to estimate the Direction of Arrival (DOA) of the WiFi

receiver at the LTE-LAA small cell. The LTE-LAA small cell will then be able to

conduct beamforming to steer one of its null beams towards the WiFi receiver to

mitigate interference. We then propose a new comprehensive coexistence scheme

based on this simultaneous transmission strategy for LTE-LAA small cells and

WiFi networks in unlicensed spectrum. The advantage of such simultaneous LTE-

LAA transmission is that, in a WiFi network, only one WiFi device is transmitting

at any time instance due to the contention-based medium access, so that the rest

WiFi devices stay either in their back-off frozen phase or NAV countdown phase,

and the LTE-LAA transmission within this time period does not affect their

current states. This means the simultaneous LTE transmission does not add

more impact on the WiFi network than that already caused by the transmitting

8



1. Introduction

WiFi device.

1.4 Thesis Outline

The structure of this thesis is organized as follows. Chapter 2 summarizes a

comprehensive review of the background, standardizations of LTE-LAA and the

research status of the co-existence problem. In Chapter 3 and Chapter 4 we make

our attempts to exploit simultaneous transmission opportunities. In Chapter 5,

we state the ongoing works and the future research orientations to modify our

co-existence mechanism design. And Chapter 6 concludes the thesis.

1.5 List of Contributing Publications

1. L. Li, X. Chu, and J. Zhang, “A novel framework for dual-band femtocells

coexisting with wifi in unlicensed spectrum,” in 2015 IEEE Global Com-

munications Conference (GLOBECOM), Dec 2015, pp. 16.

Contributes the main content of Chapter 3.

2. L. Li, A. H. Jafari, X. Chu, and J. Zhang, “Simultaneous transmission

opportunities for lte-laa smallcells coexisting with wifi in unlicensed spec-

trum,” in 2016 IEEE International Conference on Communications (ICC),

May 2016, pp. 17.

Contributes the main content of Chapter 4.
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Chapter 2

Research Status Reviews on

LTE-LAA

LTE in Unlicensed technologies have chosen their playground within the 5 GHz

unlicensed spectrum, where the major resident is WiFi. By introducing a new

competitor for the limited spectrum resources, co-existence between LTE-LAA

and WiFi is inevitably the main issue. For the purpose of better understanding

various existing co-existing mechanisms, in this chapter we first briefly summarize

several key features related to the co-existing issue, and shed some light on the

co-existence challenges. Then, we review representative researches on coexisting

mechanisms between LTE in unlicensed spectrum technologies and WiFi con-

ducted so far. Academical investigations and industrial tests are included. And

as LBT is one of the key technologies to guarantee fair co-existence and has been

standardized in 3GPP Rel. 13, researches on LBT enhancements for LTE-LAA

are also reviewed. Later, with the insights gained from the research status review,

we then give recommendations on future research directions on the co-existence

issue, and emphasis on the novelty of our approach of exploiting simultaneous

transmission opportunities for LTE-LAA small cells.
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2. Research and Standardization on LTE in Unlicensed Spectrum

2.1 Co-existing-related Features and Insights

The mobile networks are now experiencing a blossom of capacity and data de-

mands. Seeking solutions to achieve higher network capacity has always been the

major task throughout the evolution of mobile communications. However, due to

the Shannon capacity limit and the scarcity of the expensive licensed spectrum

resources, gaining more capacity out of the limited licensed bands is like squeez-

ing the last few drops of water from a sponge, which is going to be harder and

harder. According to Cisco’s global mobile data traffic forecast, by 2021, the av-

erage mobile device will generate a fourfold growth in monthly data traffic, from

1.6 GB in 2016 to 6.8 GB per month [21]. Not only that, one noticeable fact of

current mobile communications is that, a great portion of the data traffic occurs

indoor. It is anticipated that, by 2020, the indoor mobile data traffic will grow

by more than 600% worldwide [22]. Most of the indoor data traffic has been han-

dled by low cost WiFi networks and small cells. To better cope with the capacity

demand and the fast increasing indoor data traffic, deploying the mature LTE

technologies into the free unlicensed bands is considered by the industry, and the

benefits from the fair coexistence LTE and WiFi networks in unlicensed spectrum

is promising and have attracted interests industrial and academical communities

[23]. An LTE-LAA small cell has been proved to be a better neighbour to a WiFi

system than another WiFi AP, as the adjacent channel interference caused by

LTE-LAA is less [24], hence better adjacent channel coexistence is achievable.

However, these benefits from co-deployed LTE-LAA and WiFi systems within

the 5 GHZ unlicensed spectrum does not come with no limitations. It is obvious

that, the traffic load on the unlicensed band increases after introducing LTE-LAA

[25]. And if the co-existence between the two contending technologies cannot be

reasonably scheduled, the rat race for spectrum resources contention and yielded

channel congestion not only weaken the benefits of LTE-LAA, but also impact

the performance of WiFi system [26].

On the contrary, with finely tuned co-existence, there can be mutual bene-

fits between LTE-LAA and WiFi networks. For an instance, there is a lack of

central coordination in WiFi networks, which lead to dramatically decreased in-

dividual throughput when a large number of user competing for the same amount
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of resources. While for LTE-LAA networks, co-tier and cross-tier interferences

in high load condition can also degrade the perceived throughput and QoS. In

either cases, offloading a certain amount of traffic to the other network results

in better and even utilization of the spectrum resources, which not only reduce

interferences in LTE-LAA networks but also alleviate congestion in WiFi net-

works [3]. Together, with fairly tuned co-existence and efficient integration, the

capacity and spectral efficiency of the 5 GHz unlicensed bands are envisioned to

be boosted.

2.1.1 Comparison of LTE and WiFi MAC Protocols

LTE and WiFi systems implement different MAC protocols. Understanding

the differences between them is essential for designing fair co-existence schemes.

Hence, we first briefly review the two different MAC layer mechanisms, and then

highlight the co-existence challenges arising from their differences in Section 2.1.5

below.

• Frame-based LTE MAC Protocol: LTE systems are enabled by Orthog-

onal Frequency-Division Multiple Access (OFDMA) technology, in which

multiple access is achieved by subsets of multiple sub-carriers to different

users. In an LTE communication system, time is partitioned into 10 ms

duration units, each unit is referred to a frame, and LTE transmissions are

structured from continuous streams of these frames [27, 28, 29]. An LTE

frame consists of 10 subframes with 1 ms duration, which is further divided

into 2 slots with 0.5 ms duration, as shown in Figure 2.1(a). One can refer

to [30, 31, 32, 33] for detailed LTE frame structure.

There is a certain amount of time-frequency resources associated with each

subframe. Scheduling in LTE systems are carried out by the scheduler

in LTE base station in a centralised manner within each cell. All LTE

transmissions from either the base station or the UEs within one cell are

assigned with some time-frequency resources by the LTE scheduler, and all

UEs must be tightly synchronised with its master base station time and

frequency wise. What’s more, neighbouring cells in LTE systems are also

tightly synchronized in time with each other, for the favour of interference
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management, so that time-frequency reuse is enabled among neighbouring

cells to fully utilize empty subframes without causing severe interferences

to adjacent subframes [34].

The centralized MAC protocol of LTE was originally designed for operat-

ing in licensed bands only. The dynamic scheduler within each cell acts as

the main brain for arranging physical resources, considering the data traffic

load, radio link condition, UE ACK feedback and QoS requirements, etc..

For detailed LTE Radio Resource Management, refer to [35]. Need to men-

tion that, as the licensed spectrum is not free and not shared commonly,

different network operators may use different licensed bands for their net-

work establishment, and there exists inter-network misalignments of frame

boundaries, as shown in Figure 2.1(b). And these misalignments can be an

issue for carrier aggregation, which will be discussed later in detail.

Figure 2.1: Illustration of Frames and Subframes in LTE Scheduling.

• Load-based WiFi MAC Protocol: On the contrary, WiFi systems im-

plement decentralized transmission scheduling protocol. The WiFi MAC

protocol is based on the mechanism called Carrier Sense Multiple Access

with Collision Avoidance (CSAM/CA), with which a WiFi device senses the
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shared transmission medium and only initiate its own transmission upon de-

tecting absence of other ongoing detectable transmissions [36, 37]. To be

more detailed, a WiFi device (an AP or a station), performs idle medium

check referred to as Clear Channel Assessment (CCA) every time it wants

to initiate a transmission. It is when the shared medium is sensed idle for a

certain period of time, namely Distributed Inter-Frame Space (DIFS), the

transmission is ready. Once the shared medium is free, all WiFi devices

within detection range are contending for the transmission opportunity. In

order to avoid collisions among them, a random back-off mechanism is ap-

plied, which is relying on a count down timer in each WiFi device. This

timer is given with a initial number randomly chosen within a range, and

starts to count down after the CCA procedure completes and pauses (frozen

state) when the medium is occupied by other transmissions [36, 37, 38, 39].

Once the timer reaches 0 and the medium is still sensed idle, the transmis-

sion proceeds.

The CSMA/CA mechanism implemented in the WLAN 802.11 MAC layer

is also known as Distributed Coordination Function (DCF), which allows

time-division multiple access from different WiFi devices based on their

channel sensing states [40]. This mechanism is fairly effective when the

shared medium is not heavily loaded, as the CCA procedure within all

WiFi devices generate less delay and the average back-off frozen time is

less. Collision only happens when there are more than one WiFi devices

reaching their transmission starting point simultaneously. To avoid colli-

sions with the maximum effort, there are some other mechanisms besides

setting individual random back-off count down timers. The first one is using

Acknowledgement Packet (ACK) from the receiving WiFi device to check

if the transmission is collided, and if yes, retransmits [36, 37]. Another one

is so called Virtual Carrier Sense (VCS) defined in IEEE 802.11 standards

[36, 38], with which the transmitting WiFi device first send a short Request-

to-Send (RTS) packet. And upon receiving the RTS packet, the receiv-

ing WiFi device will reply with another short packet called Clear-to-Send

(CTS). Both RTS and CTS packets contain indicators of the transmission

duration, and all the other WiFi devices receiving the RTS/CTS message
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will set their VCS counter based on the duration information [36, 37, 39]. As

compared to the VCS mechanism, the channel sensing procedure is called

Physical Carrier Sense (PCS), and they are used together to minimize col-

lisions.

The conflict of centralised and decentralised natures of LTE and WiFi MAC

mechanisms is the main obstacle of their co-existence [41]. And compared to

LTE transmissions, WiFi transmissions are not restricted to deterministic frames,

and not synchronised with LTE transmissions generally. With the fact that LTE

transmissions are more dominant, for the accomplishment of co-existence fairness,

there is a need for extra means to add on conventional LTE channel access mecha-

nism for LTE-LAA to share the unlicensed medium with WiFi, such as LBT. Note

that, the notion of fairness is still discussable. It can be equal throughput, equal

transmission opportunities, equal air-time, or proportional fairness according to

other considerations such as QoS [42].

2.1.2 Co-channel Interference between LTE-LAA and WiFi

Another angle to look at the LTE-LAA and WiFi issue comes down to the in-

terference management problem between them. When an LTE-LAA small cell is

deployed around the interfering range of a WiFi AP, and they are sharing the

same unlicensed spectrum resources, there are two sources of co-channel interfer-

ence caused by the LTE-LAA network to the WiFi network [43], as depicted in

Figure 2.2. One of them is the interference from LTE-LAA small cell downlink to

the WiFi devices, including control signalling and data transmissions. The other

source is from the LTE-LAA UEs to the WiFi devices.
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Figure 2.2: Co-channel Interference between LTE-LAA and WiFi.

The interference management problem of LTE-LAA co-existing with WiFi in-

cludes interference detection, interference measurement, interference mitigation

or avoidance, etc. [3, 24]. One example method for improving interference man-

agement between LTE-LAA and WiFi systems provided in [44] is comparing the

monitored signal energy by WiFi devices to a pre-defined waveform signature

simulating LTE-LAA signals. By comparison, it can be indicated whether there

exists an LTE-LAA interferer on the unlicensed sub-band. The interference pat-

tern matching is carried out periodically for reliable interference identification,

and after the LTE-LAA interference is identified, the WiFi AP is able to perform

further matching process on the signal energy pattern to categorize the type of

the identified interference [43].

2.1.3 LTE Carrier Aggregation Enabling Supplemental Down-

link

LTE carrier aggregation (CA) is the key technology enabling LTE-LAA operating

in 5 GHz unlicensed bands, particularly SDL. CA is a technology that enables the

LTE-LAA small cell to schedule time-frequency spectrum resources from disjoint

bands, such as licensed bands and unlicensed bands [34]. Applying CA in the

LTE-LAA small cell requires the licensed interface to be always available and

ready to be bundled with the selected unlicensed sub-bands [42].
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Figure 2.3: Illustration of Cross-scheduling LTE Carrier Aggregation.

With cross-scheduling depicted in Figure 2.3, the control plane in the licensed

band specifying information regarding assignment of time-frequency resources

for transmissions and Modulation and Coding Scheme (MCS) in each subframe,

while the unlicensed band is combined to simultaneously transmit the user plane

information [42]. In Figure 2.3, the shaded area represents the control plane

in the licensed band, and the arrows pointing at the unlicensed band indicate

a scheduling grant of user plane transmission, i.e. SDL transmission, in the

selected unlicensed sub-band. The availability of 5 GHz unlicensed spectrum and

corresponding regulations differ themselves in different regions, more details on

regional 5 GHz unlicensed spectrum availability refer to Section 2.4.1.

Based on the conventional LTE CA protocol, the CA implemented in LTE-

LAA in unlicensed spectrum is an extension [45, 46, 47, 48]. The conventional

LTE CA protocol allows flexible aggregation of two or more disjoint sub-carriers,

while in LTE-LAA CA, the unlicensed sub-carrier is always combined with li-

censed sub-carrier to convey control signalling and control signalling only. This

is how the terminology “Licensed-Assisted-Access” is given, and what differs the

first stage LTE-U technology which is a natural extension of the conventional

LTE CA using the unlicensed bands as secondary carriers to complement pri-
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mary licensed carriers [49]. For more details on LTE-LAA CA, refer to Section

2.4 summarizing what has been standardized by 3GPP in Rel. 13 [24, 50, 51].

2.1.4 LTE-LAA Performance Differences Compared to WiFi

As briefly stated in the Introduction, there are several LTE-LAA performance

benefits as compared to WiFi. Before giving the comparison of them, we must

give the statement beforehand that, WiFi technology is not going to fade out in

a foreseeable future due to multiple reasons such as massive deployments, easy to

self-install and use, reliable and cheap for data offloading, and wide acceptance

for residential users, etc.. It is rather a matter of choice when it comes to LTE-

LAA or WiFi, and a better choice can be made when the following key differences

between them are clearly considered.

1. Stability: The first obvious benefit of LTE-LAA over WiFi comes from the

integration of licensed carriers and unlicensed carriers for each transmission.

As mentioned in the carrier aggregation discussion, assisted by the licensed

anchor, control messages are reliably exchanged between LTE-LAA base

stations (macrocell base station or small cells depending on the deployment

scenarios detailed in Section 2.4.2) and their users. According to the QoS

class identification in LTE systems, the control signalling carried on the

licensed carrier is granted with the highest priority [30]. Medium accesses in

unlicensed spectrum are opportunistic, the licensed-assisted-access feature

allow LTE-LAA small cells to better facilitate the medium access. On the

other hand in WiFi systems, the randomness in CSMA and the contending

behaviour among all WiFi devices make the medium access not as efficient,

and the connection is highly affected by the system load [52, 29, 53].

2. Spectral Efficiency: The utilization of 5 GHz unlicensed spectrum before

the participant of LTE-LAA was not very effective, due to the contending

medium access nature of WiFi, especially in high load condition, as al-

ready discussed. From the following aspects, LTE-LAA performs better as

compared to WiFi in terms of spectral efficiency.
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(a) Multi-user Diversity Gain: As detailed before, WiFi applies contention-

based random medium access, while LTE-LAA implements scheduling-

based medium access scheme.The robust centralized MAC adopted by

LTE-LAA enables multi-user transmission scheduling based on user

acknowledgement feedback (ACK) information, Channel State Infor-

mation (CSI), etc., which brings frequency-selective multi-user diver-

sity gain [27, 32]. On the other hand , WiFi transmissions are more

often to be assumed one-to-one, that is from the WiFi AP to one

user. Even though with the help of Multiple-Input-Multiple-Output

(MIMO), split transmissions are supported in 802.11 ac which supports

up to four radio links towards more than one user devices[37], it still

does not show multi-user diversity from the coordinated-scheduling

point of view.

(b) Mobility Support: The unified structure in an LTE-LAA system

features a centralized core network, within which there is a mobility

management functionality that is in charge of managing integrated au-

thentication, security control and handover procedure. Also, synchro-

nization in LTE-LAA network makes it easier to handle interference

burst and handover between LTE-LAA small cells. More importantly,

the networks deployed in unlicensed spectrum are usually in conjunc-

tion with the overlaid macrocell cellular network. That reveals the

benefit of LTE-LAA over WiFi, as handover across different Radio Ac-

cess Network (RAN) is classified as Vertical Handover (VHO), while

that between the same RAN is Horizontal Handover (HHO) [54, 55].

Handling VHO is more complicated than HHO, and inevitably causes

longer delay, for more details on VHO and HHO, refer to [56]. Thus,

from one user’s view point, connecting to LTE-LAA network can pro-

vide itself with ubiquitous coverage and better mobility management,

as there is only HHO between LTE-LAA small cell and LTE macro-

cell, which makes the LTE-LAA network an extension of the cellular

network. Thus, the concept of being “Always Best Connected” [57]

is better achieved. And by extending the cellular network into the

resource-rich unlicensed bands, a larger cellular network combining
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both types of spectrum resources with ultimate mobile coverage is

formed [58].

(c) HARQ versus ARQ: When encountering a failed transmission, re-

transmission attempts need to be made in order to eliminate random

channel failures. The retransmission mechanisms adopted in LTE and

WiFi are different, and obviously LTE-LAA inherits the retransmission

mechanism from LTE. LTE implements Hybrid Automatic Repeat Re-

quest (HARQ) while WiFi adopts Automatic Repeat Request (ARQ)

at MAC layer [30, 36]. The detailed differences between them are not

the point here. To be brief, HARQ helps LTE systems make fuller use

of diversity in time-domain, which yields higher time efficiency than

ARQ, which is a single loop mechanism with immediate ACK and has

more overhead [59]. In WiFi systems with ARQ, the received data

packets are discarded once they are detected with an error, and then

a retransmission is requested. And if the retransmission is again de-

tected with error, the received packets are discarded again and another

retransmission is requested. The maximum number of retransmissions

before deciding transmission failure is six in newer WLAN standards,

such as 802.11 ac [37]. However with HARQ in LTE, the receiver

buffers the data packets with detected error and a retransmission re-

quest is made at the same time. Upon receiving the retransmitted

data packets, the receive will compare and cross-check the series of

retransmitted data with the buffered data and try to decode [30]. If

the decoding is still not successful, another retransmission request is

sent out. With cumulated information, the lost packets can be fast

put together like a puzzle, and then an ACK is sent back to the trans-

mitter [29]. Clearly, LTE-LAA inheriting HARQ is more effective in

terms of retransmission mechanism as compared to WiFi with ARQ,

as each retransmission made by the WiFi transmitter may contain dif-

ferent random errors and there is no cumulated information to help

the decoding. This also implies that LTE-LAA has better capability

of handling poor radio link quality situations than WiFi.
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(d) Interference Management: Dealing with interferences since the

beginning, LTE system has developed various interference manage-

ment techniques such as enhanced Inter-cell Interference Coordination

(eICIC) and Coordinated Multi-point (CoMP). These interference mit-

igation techniques help to increase spectral efficiency by reducing or

mitigating interferences. Especially with CoMP, which requires coor-

dination among two or more adjacent site base stations, joint transmis-

sions, scheduling and signal processing are enabled. Cell edge users,

which originally suffer from poor quality connections, can now be

jointly served by two or more adjacent base stations, thus their per-

ceived signal quality and throughput are improved [60, 31, 61]. While

for WiFi coverage edge users, due to authentication procedure they

are tied to the serving WiFi AP and only served by one WiFi AP,

transmission failures are more likely when radio link quality is poor.

Better spectral efficiency of LTE-LAA networks does not just come from

the listed aspects above, but also other ones such as carrier aggregation dis-

cussed before. Without repeating what has been discussed, CA also brings

trunking gains from dynamic traffic scheduling across the whole available

spectrum by aggregating multiple radio carriers [3]. As a result, the network

capacity and efficiency are increased, which bring better user experiences.

More importantly, CA also contributes to optimum spectrum resource uti-

lization for the operators. As for most mobile operators, it is often impos-

sible for them to purchase a big trunk of pricey spectrum resources. Their

fragmented spectrum resources cover different bands with various band-

widths. With CA, traffic load can be well distributed across these bands in

order to make full use of them [35, 33, 62].

3. Link Adaption: The open-loop link adaption adopted by WiFi does not

require feedback of Channel Quality Indicator (CQI), hence the fast var-

ied channel condition is not updated before WiFi transmissions. Differ-

ently, LTE adopts close-loop dynamic link adaption method taking into

account the instantaneous CQI feedback information, based on which the

LTE-LAA small cell is able to determine resource block assignment accord-
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ingly [9]. Additionally, adopting dynamic instantaneous-CQI-based link

adaption also helps LTE-LAA achieve higher Power Spectral Density (PSD)

than WiFi under the same consumed power condition [3]. PSD is an impor-

tant terminology which indicates the distribution of signal power or time

series over frequency [63]. Higher PSD under the same power condition

implies that, to achieve the same level of PSD, the power consumption of a

LTE-LAA small cell is lower than that of a WiFi AP. Thus, LTE-LAA is a

“greener” option than WiFi.

4. Throughput: Unlike the other aspects, the throughput comparison of

LTE-LAA and WiFi is not as clear. It can be affected by many factors in-

cluding the ones we have already discussed. But the importance of through-

put comparison is obvious, as it is a straight forward performance indicator

that everyone is interested in when considering LTE-LAA roll-out. Despite

the MAC difference, LTE-LAA and WiFi adopt mainly the same physical

layer (PHY) technologies, such as OFDM, MIMO and Quadrature Am-

plitude Modulation (QAM), especially in newer IEEE 802.11 standards.

According to [64, 65], with respectively centralized and decentralized ran-

dom access scheduling schemes used in LTE-LAA and WiFi, the achievable

throughput capacities are the same. However, collisions are inevitable in

WiFi systems when there are more than one devices and tend to increase

with the number of active devices due to the contending random access be-

haviour. When the number of collisions increases, the network throughput

decreases. On the other hand, LTE-LAA network throughput also falls as

the number of UEs increases, as with increased transmission scheduling the

overhead in the control plane increases. From the examples in [66, 67], with

increased number of UEs, the quantity of Downlink Control Information

(DCI) signalling increases, which in turn increases the Control Format Indi-

cator (CFI) value. This decrement of network throughput can be lightened

via appropriate scheduling, however cannot be easily quantified. Another

difficulty of quantifying the comparison of LTE-LAA and WiFi throughput

is the flexibility of co-existing mechanisms used by LTE-LAA. Different co-

existing mechanisms result in different LTE-LAA channel idle time, which
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affects overall averaged throughput.

In [42], the authors conducted simulations to compare LTE-LAA and WiFi

throughput under the same conditions, i.e., same bandwidth, Modulation

and Coding Scheme (MCS) for a high SNR channel and MIMO configura-

tion, while ignored co-existing requirement for LTE-LAA channel idle time.

From the simulation results, the peak throughput of the LTE-LAA small

cell has a 27 % increment over the 802.ac WiFi AP when the CFI is set to

1, and the increment drops to 7% when the CFI is 3. With the assistance

of LTE licensed bands to convey downlink control plane, the CFI overhead

in unlicensed bands equals to 0, then the unlicensed band throughput of

LTE-LAA increases and is 57.6% higher than that WiFi offers. Obviously,

the simulation settings are rather idealistic and what have been neglected

in the simulation such as co-existence requirement for LTE-LAA channel

idle time and LTE licensed band control plane overheads, can hold back

the throughput benefits of LTE-LAA over WiFi. Additionally, WiFi al-

lows for a larger amount of channel bandwidths to be aggregated to yield a

higher peak throughput [42]. With all being said, whether the throughput

provided by LTE-LAA is substantially higher than WiFi and is enough to

justify that LTE-LAA is more worth deploying compared to WiFi remain

discussable.

LTE-LAA no doubt offers higher spectral efficiency, better performance sta-

bility and link adaption mechanism than WiFi. It is anticipated that with the

assistance of well-managed control channels in licensed bands, LTE-LAA enabled

small cells would provide better quality of service (QoS) to mobile users than WiFi

in unlicensed bands [15]. However, making the choice of LTE-LAA or WiFi really

need to assess the deployment scenarios and all the aforementioned factors. And

also importantly, the choice can be subjective. The public acceptance of WiFi

is currently a lot higher than LTE-LAA due to cumulated customer loyalty, but

will the situation alter in the near future?
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2.2 Research on LTE-LAA and WiFi Co-existence

Mechanisms

As the newcomer in the 5 GHz unlicensed spectrum, the main challenge identified

for LTE-LAA is how to harmoniously co-exist with native technologies that have

been residing in this spectrum region since their births. And the core challenge

of the co-existence issue occurs in the situation where LTE-LAA and WiFi are

operating on the same unlicensed sub-band. The performance of WiFi can be

easily and significantly impacted while the performance of LTE-LAA is hardly

affected, if there is a lack of proper co-existing protocols. This is due to the

difference of medium access method adopted in their MAC layers, as stated in

previous section. Inheriting from conventional LTE which is designed under the

basic assumption that the operator has full exclusive control of the given spec-

trum, LTE-LAA in nature is nothing less dominant. The almost continuous data

transmission protocol with minimum gap period and the periodical transmission

protocol for control and reference signals fully occupies the channel. As a result,

WiFi perceives the medium to be busy nearly all the time, and will be forced to

remain silence.

In order to achieve a relatively “fair” co-existence between the two technolo-

gies, enhancements must be made. The core design concept of all existing en-

hancements is to put limits to LTE-LAA so that it can behave similarly to WiFi

in unlicensed spectrum by actively giving up some transmission air time to guar-

antee sufficient WiFi transmission opportunities. That is, LTE-LAA holds back

for WiFi to attain a “fair” share of the medium access in time-domain. Represen-

tative mechanisms of such co-existing enhancements are Carrier Sense Adaptive

Transmission (CSAT), Almost Blank Sub-frame (ABS) and Listen-Before-Talk

(LBT). CSAT, also referred as duty cycling, is such a mechanism with which

the LTE-LAA small cell adaptively mutes itself according to the medium ac-

cess frequency, and is the dominant technology in the market where LBT is not

mandatory. ABS is in nature similar to CSAT, which force the LTE-LAA small

cell to mute every n of 5 sub-frames to allow WiFi to access the channel. While

the LBT mechanism, as a simplified version of Distributed Coordination Function

(DCF) [68, 69], is enforced on LTE-LAA transmissions in unlicensed spectrum in
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those regions where LBT is mandatory to enable fair co-existence [41]. In this

section, we first give an overview of recent investigations on LTE in unlicensed

spectrum, and then look into details of the representative works on the LTE-LAA

and WiFi co-existence problem based on the two main categories, i.e., with and

without LBT requirements. At the end of this section, we also give an summary

of recent testing results to complete the review.

2.2.1 Overview of Related Works on LTE in Unlicensed

Spectrum

As the well established WiFi technologies are not going to phase out in the foresee-

able future, LTE-LAA small cells need to coexist with WiFi systems in unlicensed

bands. The problem of co-existence of LTE in unlicensed spectrum and WiFi had

attracted the community’s interest since the very beginning. Several investiga-

tions were conducted and the results of which shows that without well designed

co-existence mechanism applied, the performance of WiFi is severely degraded.

In [70], co-existence of LTE and WiFi in TV white space is investigated, and

the simulation results show that the WiFi throughput is significantly decreased

due to LTE interference when LTE and WiFi nodes are randomly deployed in

a certain region. In [71], performance of LTE and WiFi when co-existing with

each other is evaluated, and the results show that the unlicensed channel sharing

between them is absolutely unfair to WiFi as LTE transmissions dominate the

shared medium and WiFi stays idle during LTE transmissions. It is clear that

without enhancements and limitations applied to LTE for its unlicensed spectrum

deployment, the large number of existing WiFi stations are in vulnerable posi-

tion. Thus, quite a few WiFi operators and the WiFi Alliance community have

approached the regulatory government bodies to express their concern that LTE

in unlicensed spectrum deployments may be a disaster to the existing technologies

in unlicensed spectrum [42].

Then, investigations were conducted around the thought that how to explore

the benefits of LTE in unlicensed spectrum without harming the WiFi perfor-

mance, that is, fair co-existence. As discussed before, the main co-existence issue

comes from the difference of medium access schemes of both technologies. So,
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studies on LTE MAC protocol adjustments to enable fair co-existence of LTE-

LAA and WiFi are proposed. Since WiFi transmitters follow the CSMA/CA

medium access scheme, most existing schemes for coexisting LTE-LAA small cells

and WiFi devices to share the unlicensed bands are based on time division duplex

(TDD) [72]. Authors of [2] filed a patent on mathematically modelling the LTE-

LAA behaviour with added muted period. The probability of WiFi back-off delay

is calculated to be less than the LTE-LAA muted period. However, from the point

of pure statistical analysis, the authors neglect the PHY layer effects and hidden

and exposed node problem. The authors of [73] identify technical and business

challenges regarding expanding LTE into unlicensed spectrum, and suggestions

are given in terms of frequency-domain, time-domain and power-domain adaptive

scheduling. In [68], under the assumption of accurate simulation of interferences

between LTE-LAA and WiFi systems, with the proposed MAC scheme, the au-

thor has drawn the conclusion that LTE-LAA is able to achieve high throughput

without impacting the performance of co-existing WiFi networks. However, the

assumption is rather idealistic. There are methods for simulating LTE interfer-

ences in unlicensed spectrum, as stated in the previous interference management

subsection. That is pre-defining a waveform signature simulating LTE-LAA sig-

nals, and compare it with the monitored signal energy at WiFi devices [44]. The

interference pattern matching is then conducted periodically according to reli-

able interference identification, and the WiFi AP can further match the signal

energy pattern to categorize the type of interference after the LTE-LAA inter-

ference is identified [43]. Besides the precise interference recognition assumption,

there are some other assumptions seem idealistic and challenging to facilitate in

real transmission environment, such as in [74], the authors recommend to divide

the LTE-LAA transmission burst time into segments, which requires the exact

number of LTE-LAA small cells and WiFi nodes to be known.

For the system modelling of co-existing LTE-LAA and WiFi networks, au-

thors of [75, 73] leverage stochastic geometry to analyse the impact of LTE-LAA

on WiFi in unlicensed spectrum. From the simulation results in [73], the LTE-

LAA energy detection threshold plays an important role in altering the balance

of throughputs of LTE-LAA and WiFi. Generally, the LTE-LAA throughput

increases while the WiFi throughput decreases with higher LTE-LAA energy
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detection threshold. That is because with higher threshold setting, the LTE-

LAA small cell is more aggressive when contending for the shared unlicensed

medium. The conclusion drawn from the study is that, in order to achieve a fair

co-existence between LTE-LAA and WiFi in terms of balanced network through-

put, the LTE-LAA energy detection threshold needs to be adjusted so that the

minimum throughputs of both LTE-LAA and WiFi are maximized. And through

the stochastically analysis in [75], it is shown that the Density of Successful Trans-

mission (DST) of LTE-LAA and the rate coverage probability of WiFi can be im-

proved while maintaining reasonable data rate performance for both technologies

when one or more co-existence mechanisms are applied on LTE-LAA, including

lower channel access priority, shorter transmission duty cycle, and more sensitive

CCA thresholds.

Apart from academic investigations on the co-existing problems, the commu-

nity of industrial participants and IEEE standardization bodies also put a lot

of their efforts in to this realm. Companies like Qualcomm, Ericsson, Nokia

and Huawei, etc., have set their feet into this playground, and later become

big participants for commercial and standardization development of LTE-LAA

[76, 10, 12, 9, 16]. Qualcomm proposed Carrier-Sensing Adaptive Transmission

(CSAT) technology [8, 2], where duty cycles are used to adaptively adjust the

LTE-LAA channel access opportunities and LTE-LAA small cells are periodically

switched on and off to guarantee fair channel access of WiFi networks. The propo-

sition of CSAT is also a supplement to the Channel Selection (CHS) mechanism

proposed in [77, 78]. The drawback of CHS is that, when there is no available clear

channel, the LTE-LAA small cell has to hold its transmission till the channel be-

comes unoccupied again. The details of works related to CSAT is reviewed in the

following section together with ABS. On the other hand, co-existence mechanisms

utilizing contention-based LBT-like schemes with additional collision avoidance

algorithms are also introduced by papers like [79, 59, 80, 68]. For regions where

LBT requirements are mandatory, LBT enhancements for LTE-LAA and WiFi

co-existence are studied intensely. These related works are reviewed in the section

below in details. 3GPP has included enhanced LBT in Release 13 and beyond as a

global mandatory requirement, detailed in Section 2.3. CSAT and LBT both have

TDD-like behaviours that force LTE-LAA to mute for WiFi transmission oppor-
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tunities, while CHS explore the FDD possibility for managing the co-existence

problem. As stated in [73], another angle to solve this challenging problem is

looking into the power domain. In [81], a scheme applying power control to the

LTE-LAA uplink is proposed. The simulation results show that for low density

deployment scenario, the proposed power control approach is able to improve the

performance of both LTE-LAA and WiFi networks. However, for high density

deployment scenarios, this approach does not show its advantages.

For realization forms of LTE in unlicensed spectrum, various technologies have

been proposed apart from LTE-LAA small cells, such as dual-band femtocells

(DBFs), which can access both the licensed and unlicensed bands simultaneously

with LTE interface [17], or the Small Cell Forum introduced Integrated Femto-

WiFi (IFW) [82] that is able to simultaneously access the unlicensed band via

WiFi interface and the licensed band via LTE interface. In the framework pro-

posed in [19], DBFs perform channel sensing and can only initiate LTE-LAA

transmissions when the channel is sensed free, leading to a lower collision proba-

bility as compared to CSAT. A few attempts on exploiting simultaneous transmis-

sion opportunities have been made. In [83], WiFi carrier sensing and decoding

procedures are modified to enable WiFi and LTE-LAA to transmit simultane-

ously. However, to ensure smooth coexistence, the impact of LTE-LAA on and

changes made to WiFi systems should be kept minimum [16]. In [84], LTE-LAA

transmissions are allowed when the nearby WiFi AP is transmitting, as long as the

receiving WiFi user is out of the LTE-LAA small cell’s coverage. However, none of

these works has exploited multiple antenna technologies that can be deployed at

both LTE-LAA small cells and WiFi APs. In [85], a co-existence scheme based on

multi-antenna beamforming and Direction of Arrival (DoA) estimation combined

with null steering is proposed to exploit simultaneous transmission opportunities

for LTE-LAA with adjacently WiFi devices without causing significant interfer-

ences. One of the key factor that enables this approach is to capture the LTE-

LAA transmission timing, which avoids collision with WiFi transmissions. From

the simulation results, the channel access opportunities and channel occupancy

time of LTE-LAA small cells are greatly improved, while being “invisible” to co-

existing WiFi networks. The problem of this approach is that, DoA estimation

and null steering operations may cause delay in LTE-LAA transmissions and thus
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affect the captured transmission timing, and also, for indoor environments where

signals are scattered to be multi-path, the precision of DoA estimation really de-

pends on the size of the antenna matrix equipped on the LTE-LAA small cell. In

the following subsections, we give detailed reviews on co-existence mechanisms

designed without LBT and with LBT regulation requirements.

2.2.2 Co-existence Mechanisms without LBT Requirement

For those regions where there is no LBT regulation requirement, first wave of

LTE in unlicensed spectrum is able to be deployed in the form of LTE-U, as

modifications on legacy 3GPP Rel. 10/11 LTE MAC and PHY layers are not

needed for fairly managing the resource sharing between LTE and WiFi systems

in unlicensed bands. In order for WiFi to regain transmission opportunities from

dominating LTE-LAA transmissions, LTE-LAA small cells have to periodically

give up control of the shared medium by actively muting themselves. The period-

ical on-and-off behaviour of LTE-LAA is called duty cycling, and is for releasing

spectrum resources to the WiFi networks in time domain. Carrier-Sensing Adap-

tive Transmission (CSAT) is a typical realization of duty cycling. Co-existence

mechanisms based on CSAT are practical for the purpose of achieving fair co-

existence between LTE-LAA and WiFi networks, related works on CSAT include

[4, 8, 12], etc.. Besides CSAT, another representative category of co-existence

mechanisms are the ones based on the assistance of Almost Blank Subframe

(ABS) [70, 71, 86]. These two main categories are widely studied particularly for

the regions without LBT regulation requirements.

1. CSAT-based Co-existence Mechanisms: Originally proposed by Qual-

comm [8], CSAT is an adjustment put on LTE-LAA MAC layer for config-

ured scheduling. The basic idea of CSAT is to adaptively define a Time-

Division Multiplexing (TDM) cycle that consists of discontinuous short time

windows for LTE-LAA transmissions. During the operation of CSAT, as

long as the traffic level is above a certain threshold, the LTE-LAA small

cell stays in the CSAT-configured mode, and when traffic is light the LTE-

LAA small cell de-configure itself to go back to normal transmission mode

[3]. During the ON periods of CSAT, the LTE-LAA small cell is allowed
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to transmit at the regular power level, while during the OFF periods the

transmit power of the LTE-LAA small cell is tuned to a very low level or

even reduced down to zero to allow the co-existing WiFi nodes to access

the shared medium without being strongly interfered [49].

(a) Duty Cycle Adaptivity

As the name Carrier-Sensing Adaptive Transmission suggests, the ON

and OFF periods of CSAT can be adaptively adjusted according to

the channel utilization condition. The adjustment is done based on

measurements taken by UEs and base stations of both networks, to

which the CSAT ON and OFF related parameters adapt [8, 87]. In

[2], an example of message exchange flow between LTE-LAA and WiFi

systems are given, as depicted in Figure 2.4. As illustrated, there are

three steps that consist the message exchange flow. During the first

step, illustrated in continuous arrows, the LTE-LAA Self-organizing

Network (SON) informs the LTE-LAA stack with a notification mes-

sage stating that there is an upcoming measurement time gap on the

shared unlicensed sub-band. At the same time, the LTE-LAA radio,

which is the engaging LTE-LAA small cell, receives a message com-

manding itself to temporarily its transmission on the shared unlicensed

band, to allow the measurements to be taken without being interfered.

Then continuing to step 2, the LTE-LAA SON send a message to the

WiFi SON to request measurements taken on the shared unlicensed

band regarding the channel utilization condition. Upon receiving the

measurement request, the WiFi SON command its subordinate WiFi

AP or WiFi user device to conduct the measurements. And after that,

in step 3, the WiFi device send the measurement report directly to

the LTE-LAA SON entity, which then analyses the measurement re-

port to make the decision whether to give permission to the LTE-LAA

small cell for turning on its transmission mode, and send a message to

the LTE-LAA stack for communication modification according to the

measured channel occupation status.
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Figure 2.4: Information Communication between Co-existing LTE-LAA and
WiFi Systems [2].

(b) Duration and Ratio of ON/OFF Periods:

The durations of CSAT ON and OFF periods are key parameters in

this adaptive transmission scheme, and vary in different situations.

Note that, during the CSAT OFF period, the LTE-LAA small cell does

not necessarily turns itself off, but rather lowers its transmission power

to keep background communications and control signalling exchange

with its attached UEs. Data transmission is muted during the OFF

period, and the power level is lowered as appropriate. The summation

of one ON and OFF periods is the duration of one CSAT cycle. The

longer the CSAT cycle is, the higher capacity can be achieved by the

LTE-LAA system, as there is less carrier activation overhead [4]. On

the other hand, the shorter the CSAT cycle is, the less impact caused

by LTE-LAA to WiFi delay sensitive traffic in terms of latency [3].

There are inconsistent opinions on the duration of CSAT ON and

OFF periods. As stated in the co-existence specification reports from

LTE-U Forum [88, 89], the duration length of CSAT ON and OFF

periods cannot exceed 50 ms. While in some other papers including
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[2], the overall length of one CSAT cycle is longer than 200 ms in

order to assure the user equipments to get at least one opportunity to

measure the shared channel condition. There is a lack of authoritative

specifications apart from LTE-U Forum that set mandatory limits to

the duration of CSAT ON and OFF periods so far. Hence, there is a

room for design flexibility to deal with various requirements.

Figure 2.5: CSAT On and Off Periods [3].

Within one CSAT cycle, or looking at an observation time window, the

duration ratio of ON and OFF period is an key adjustable parameter

for balancing the medium access resource sharing between LTE-LAA

and WiFi networks. Through solving the optimization of CSAT ON

and OFF duration ratio subjects to the traffic condition on the shared

channel and specific requirements, the medium access resource sharing

between LTE-LAA and WiFi networks can be optimized, which in turn

provides a better co-existence environment for both types of RANs.

Figure 2.5 illustrates a representative CSAT ON and OFF transmission

management [3]. The basic medium access tuning strategy is rather

straightforward. For an instance, as shown in Figure 2.5, when there is
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a need to release some resources to the WiFi networks to increase WiFi

channel utilization, the LTE-LAA channel access is reduced by tuning

down the CSAT ON and OFF ratio. By pulling down the LTE-LAA

small cell transmission power during its CSAT ON period as compared

to its normal transmission power can also reduce the LTE-LAA channel

utilization.

(c) Integration with Other Mechanisms:

CSAT, as a time-domain mechanism, can also be integrated with other

mechanisms such as CHS stated before. Figure 2.6 shows an integrated

co-existence framework consists of three technologies: Channel Selec-

tion (CHS),Opportunistic SDL (OSDL), and CSAT. CHS, as stated be-

fore is a mechanism in frequency-domain that performed by the LTE-

LAA SON entity to scan and classify different available unlicensed

channels in the first stage of the framework flow. Upon identifying

an unoccupied unlicensed channel, a LTE-LAA small cell is allowed

to conduct transmissions on this channel without causing co-channel

interferences to co-located WiFi networks. CHS procedures are origi-

nally defined in 3GPP Rel. 10 to switch the LTE transmission towards

a less interfered cleaner channel if the currently operating channel af-

fected by various sources interferences. For triggering CHS, the inter-

ference level is more of concern than the source and type of it, and it

can be measured via energy detection, which is also being done in [87].

CHS is also a practical method to avoid interfering with radar signals,

as there is a certain amount of unlicensed spectrum reserved for radar

and satellite communications in the 5 GHz band, as shown later in

Section 2.3.1. In low traffic density situations, solely applying CHS is

sufficient for a relatively fair co-existence between LTE-LAA and WiFi

networks [8, 12]. However, as the traffic volume exponentially expands,

it is almost unlikely to identify a clean channel in dense deployment

areas. To complement for this, OSDL is integrated into the framework

to alleviate the impact on co-channel transmissions. According to the

CHS negative output and corresponding measurements, OSDL makes

the decision whether to turn off the LTE-LAA small cell (acting as the
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SDL) based on the traffic scheduling condition. If there is not enough

traffic that demands a secondary SDL carrier, the LTE-LAA small cell

is turned off, i.e., data traffic is conveyed on the licensed band. CSAT,

as the final process in the framework flow, is adopted to improve the

co-existence fairness following the afore-mentioned CSAT principles.

Figure 2.6: Work Flow of CSAT-centralized Co-existence Mechanism [4].

(d) Advantages and Weaknesses of CSAT:
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The advantages of CSAT are not only presented by its effectiveness

in balancing the resource sharing between LTE-LAA and WiFi net-

works, but also compatible with other schemes, as shown in the pre-

vious subsection. And more importantly, CSAT operation does not

require modifications for the underlying LTE Rel. 10/11 MAC proto-

cols, which makes it one of the best tool enabling the first wave of LTE

deployments in unlicensed spectrum in regions without LBT regula-

tory requirements [4, 8, 2]. The weakness of CSAT is that, comparing

to CSMA used in WiFi systems, it has longer latency. To reduce the

latency impact, one method is to prevent primary sub-channel of the

unlicensed channel being occupied by WiFi [8]. And also depicted in

Figure 2.5, the short CSAT ON and short CSAT OFF periods are di-

vided from one regular length CSAT ON period by introducing data

punctured subframes which can help reduce latency.

2. ABS-assisted Co-existence Mechanisms:

Almost Blank Subframe (ABS), is another periodically muting strategy for

that is similar to CSAT for LTE-LAA to actively give up some channel

occupancy time to avoid medium access collisions. To be specific, ABSs

are LTE subframes in LTE-LAA transmissions with reduced transmission

power or activity. Originally proposed as one of the LTE eICIC mecha-

nisms in 3GPP Rel. 10, the concept of ABS is to mute the transmission

of the macrocell eNB during these certain blank subframes to allow the

small cell or picocell edge users that suffer from strong interferences from

the macrocell eNB to be served better [30, 70]. Adopted in LTE-LAA and

WiFi co-existence situation, the LTE-LAA needs to mute its transmissions

for certain amount of subframes, for example every 5 subframes, during

which period WiFi devices take the chance to transmit on the shared un-

licensed channel [49]. Compared to CSAT, which is adaptive to channel

access conditions, ABS is simpler to implement but rather not that adap-

tive. CSAT requires coordination among technologies that facilitate CSAT

adaptivity. This kind of coordination may not always be guaranteed if in-

volved devices belong to different network operators. To achieve different
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types of fairness between LTE-LAA and WiFi networks, such as allocating

equal amount of channel time to each active nodes within the combined co-

existing network, the technology coordination in CSAT is not required and

ABS comes in handy [74, 90]. ABS could also be used to exploit LTE-LAA

transmission opportunities when WiFi devices are in back-off state, which

might be quite long if the channel competition is intense. The probability

of LTE-LAA attaining such transmission opportunities are derived in works

like [19, 91, 92]. Similar to CSAT ON and OFF periods ratio, the num-

ber of blank subframes is the tuning parameter in ABS, which can strike

a balance between the performances of LTE-LAA and WiFi. Additionally,

the ABS positioning also makes an impact. Performance degradation can

be observed if the selected blank subframes are not adjacent [70], as WiFi

transmissions may not be confined within the LTE-LAA blank subframe

boundaries and scattering blank subframes does not have enough trunking

effect thus increases collision probabilities. This issue can be addressed by

reporting the duration and timing of occurring blank subframes to WiFi

at the beginning, and WiFi devices are able to confine their transmissions

within LTE-LAA blank subframe boundaries to avoid collision and inter-

ference with LTE-LAA [3].

2.2.3 Co-existence Mechanisms with LBT Requirement

In those regions where LBT is a mandatory requirement, such as Europe and

Japan, modifications on LBT need to be made to fit the specific goal of harmo-

niously deploying LTE in unlicensed spectrum. The key functionality in LBT

for determining whether a unlicensed channel is feasible for LTE-LAA downlink

data transmissions is called Clear Channel Assessment (CCA). CCA, as one of

the two WLAN carrier sense mechanisms, is originally defined as part of the

Physical Layer Convergence Protocol (PLCP) and Physical Medium Dependant

(PMD) layer in the IEEE 802.11-2007 standards [93]. CCA consists of two main

functions, namely CCA Carrier Sense (CCA-CS) and CCA Energy Detection

(CCA-ED).

• WLAN CCA-CS: For detecting and decoding a WiFi preamble. The de-
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coded information includes but is not limited to the PLCP header, transmis-

sion packet length and duration (in µs ) information, etc.. When success-

fully detecting and decoding the WiFi preamble, CCA indicates the channel

being reserved for data transmission according to the length and duration

information. The CCA-CS detection threshold is set to be the minimum

receiver sensitivity of PHY, which is typically -82 dBm in 20 MHz band

[37, 93].

• WLAN CCA-ED: For detecting a non-WiFi energy. As the non-WiFi signal

cannot be decoded at the WiFi receiver, when the in-band signal energy is

detected across the CCA-ED threshold, which is typically 20 dBm higher

than the CCA-CS threshold, i.e. -62 dBm, the data transmission will back

off, and the operating channel is marked as busy till the medium energy is

detected below the CCA-ED threshold [37, 93]. Higher ED threshold allows

the WiFi system to be more resilient to non-wifi signals. The setting of

ED threshold in LTE-LAA CCA is an important parameter for alternating

co-existence performance in terms of throughput, as discussed in previous

Section 2.2.1.

Before starting a transmission, the LTE-LAA small cell needs to perform CCA

to examine whether the target unlicensed channel is clean. If it is, the CCA pro-

cedure contends for occupying this channel. During Discontinuous Transmission

(DTX) period after the successful CCA, one or more following CCA procedures

will be conducted to keep checking if the operating unlicensed channel is still

available [59, 6]. In Figure 2.7, one example CCA subframe placement within a

downlink frame structure is illustrated [5]. In this figure, Subframe D (Subframe

0 through 8) represents downlink data subframes, and Subframe S (Subframe

9) represents CCA operation subframes. Within the structure of a Subframe S,

there are a Guard Period (GP) to guarantee enough idle time before activating

CCA, several DL CCA (DCCA) slots conducting the CCA operation, and one

slot for the Channel Usage Beacon Signal (CUBS) that reserves the channel after

CCA. Putting the CUBS slot at the end of Subframe S is to notify nearby small

cells which may be also performing CCA that the CCA procedure in this small

cell has already finished and the channel is no longer available. The number of
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DCCA slots plus the CUBS slot is referred to as CCA reuse factor, which varies

from 2 (one DCCA slot plus the CUBS slot) [78] to 3, 4, 7, 9 or 12 [5]. After a

successful CCA, the channel is held by the LTE-LAA small cell till the next CCA

procedure, i.e. the next Subframe S. As the illustrated example in Figure 2.8, if

the first DCCA procedure fails, the LTE-LAA small cell stay silence for the whole

transmission period, i.e. the fixed LBT frame period as shown in Figure 2.7. If

the first DCCA procedure succeeds, there may be one or more following DCCA

procedures in between data transmission subframes to check if the channel is

still available. And once one DCCA after the first successful DCCA reports that

detected signal level in this channel is beyond the threshold, the transmission is

stopped until the next successful DCCA within this transmission period [6].

Figure 2.7: Clear Channel Assessment Subframe Placement [5].

The CCA threshold needs to be set properly to ensure fair medium access op-

portunities for LTE-LAA small cell and WiFi devices. With higher CCA thresh-

old, the effectiveness of LBT for protecting WiFi transmissions are reduced, as

ongoing WiFi transmission with lower detected power (in a relatively far distance

with the LTE-LAA small cell or due to strong fading) will not be sensed by CCA,

thus permitted LTE-LAA transmission will interfere with WiFi transmission and

may cause collision. However, with low CCA threshold, the LTE-LAA LBT may

be too sensitive to attain enough transmission opportunities [59]. The two types

of CCA thresholds, i.e., CCA-CS threshold and CCA-ED threshold designed for

WLAN can both be adopted into the LTE-LAA LBT procedure, and the thresh-
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old values must be carefully set to adapt different deployment scenarios and traffic

offloading requirements [94].

Figure 2.8: Example of DTX Periods with Downlink CCA (DCCA) Intervals [6].

2.2.4 Comparison of Duty Cycling and LBT

Generally speaking, the primary LTE-LAA and WiFi co-existence mechanisms for

markets without LBT requirement can be concluded as ON and OFF duty cycling.

And the primary co-existence mechanisms for markets with LBT requirement, are

obviously LBT-based ones.

The major advantage of duty cycling lies in its easy operability and availabil-

ity. Fewer modifications are needed for LTE to deploy in unlicensed spectrum

with duty cycling-based mechanisms, and there is no need to wait for standard-

ized regulations before deployments. This is particularly attractive for operators

that need to rapidly increase their short-term network capacity with available

unlicensed channels. And in fact, duty cycling method drives the first wave early

commercial LTE-U deployments. However, the convenience comes with some nat-

ural weaknesses. The main one is that, even though the LTE-LAA ON and OFF

periods can be adaptively adjusted to fit various conditions and requirements, the

fairness of LTE-LAA and WiFi networks is still in the hand of LTE-LAA. That is,

the LTE-LAA small cell controls the ON and OFF periods, and the performance

of WiFi networks can be severely degraded if the ON and OFF settings are not

chosen or updated properly [95]. Compared to LBT, duty cycling is generally

more aggressive and relatively less fair, as it does not have the similar channel
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sensing-based opportunistic medium access behaviour as WiFi.

With LBT, WiFi throughput is better protected at the cost of degrading LTE-

LAA performance benefit over WiFi [96]. This intuitively makes sense as duty

cycling and LBT both aim for striking a balance between LTE-LAA and WiFi

networks in terms of medium access opportunities and channel holding time. One

additional advantage brought by LBT is that a distribution of unlicensed spec-

trum resources is allowed considering traffic load condition of each co-existing

network [3]. The weakness of LBT is its complication in terms of implementa-

tion and modifications that need to be made on existing LTE MAC and PHY

layers, as compared to duty cycling. Moreover, according to the 3GPP Rel. 13

standardization which has just been completed in 2016 [24], the impact on WiFi

performance from LTE-LAA depends on the different implementations of LBT,

as will be elaborated in Section 2.3.3 below.

2.3 Lessons Learnt from Literatures and Future

Research Directions

From the intense review of LTE-LAA and WiFi co-existence mechanisms, the

main goal of them and future investigations is to achieve fairness in unlicensed

spectrum sharing among contending nodes and devices. However, the definition of

fairness is not commonly recognizable nor standardized. One commonly accepted

blurry description of fairness, as stated in white papers such as [8, 88, 76, 96, 97],

is that the impact from a newly deployed LTE-LAA small cell should not be

more than that from another WiFi AP in the same location spot. The impact

can be in terms of interference, throughput degradation, collision probability and

caused latency, etc.. Besides the co-existence between LTE-LAA and WiFi net-

works, fairness also refers to, as defined by 3GPP [24], the fair co-existence among

multiple co-located LTE-LAA networks deployed by different operators to allow

comparable performances for all participating players. Establishing common un-

derstanding of fairness is critical for considering feasible co-existence mechanism

designs. What’s more, 3GPP as the regulatory body represents the benefits of

mobile operators and users, which only stands on one side of the LTE-LAA/WiFi
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co-existence scale. Hence, whether the 3GPP-defined fairness can be accepted by

the WiFi Alliance remains to be seen in the future with more and more planned

LTE-LAA deployments. With that being said, to achieve the “true fairness”,

the effort may need to go beyond unilateral regulatory specifications and include

negotiations among all contending players in this 5 GHz unlicensed spectrum

playground. In later Chapter 3 and Chapter 4, we make the efforts to exploit si-

multaneous transmission opportunities for LTE-LAA small cells while co-existing

with nearby WiFi networks. Our proposals are compatible and can be seamlessly

combined with the LBT-based medium access standard defined by 3GPP. That

means, with the same LBT parameter settings, our approach can provide LTE-

LAA small cells with more channel access opportunities without further squeezing

WiFi channel access time. And also importantly, our apporoach creates the pos-

sibility to achieve an “even fairer” co-existence environment for WiFi. To be

specific, in order to get the similar channell access opportunities, our approach

enables LTE-LAA small cells to utilize feasible simultaneous transmission oppor-

tunities to compensate for the concession on cutting down LBT-based channel

access time. As a result, co-existing WiFi networks benefit from less impact

coming from LTE-LAA small cells.

For future investigations on the co-existence problem, a few directions may

be worth the effort. As mentioned in previous sections, optimizations regarding

fair spectrum allocation between LTE-LAA and WiFi networks and among dif-

ferent LTE-LAA networks need more attention. The objective functions for the

fairness optimization in regions with and without LBT requirements need to be

carefully designed, and there is a lack of sufficient works on this. Additionally,

more comprehensive tests in real deployment scenarios need to be carried out.

In simulations done by LTE-U Forum and 3GPP, only limited types of traffic

types are considered, and the co-existence mechanism design may be adjusted

depending on test results for various types of traffic.

Another important aspect that future studies can focus on is to exploit spatial

diversity and spacial duplexing benefiting from MIMO technology when designing

co-existence schemes. Existing co-existence schemes designed for LTE and WiFi

systems operating on the same unlicensed band are based on the guiding idea of

sharing medium access air time. The idea of exploiting simultaneous transmission
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opportunities has rarely been attempted enslaved to the CSMA/CA medium ac-

cess nature of WiFi systems, as discussed in early content . This is appropriate at

the early stage of LTE-LAA deployment. However, with increasing deployment

of LTE-LAA technologies, the availability of unlicensed spectrum will eventu-

ally become insufficient. Following the footprint of licensed spectrum utilization,

sharing the same unlicensed bands simultaneously between LTE-LAA and WiFi

systems with careffully designed interference mitigation techniques is the future

trend, which is the focus point of our approach, as introduced in later chapters.

In Chapter 3 we first exploit such simulataneous transmission opportunities con-

sidering different UE locations. And then in Chapter 4, we refine our approach

by adopting beamforming technologies to further exploit the benefits of spatial

diversity.

2.4 Summary

In this chapter we first introduce several key features related to the co-existing

problem, and highlight the main co-existence challenges between LTE-LAA and

WiFi networks sharing the same unlicensed band. Then, we review representa-

tive studies on LTE in unlicensed spectrum technologies and WiFi co-existence

mechanismsr. Academical investigations and industrial tests are included. Later,

with the insights gained from the research status review, we then give recommen-

dations on future research directions on the co-existence issue, and emphasis on

the novelty of our approach of exploiting simultaneous transmission opportunities

for LTE-LAA small cells.
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Chapter 3

Simultaneous LTE-LAA/WiFi

Transmission Opportunities by

Exploiting AP/UE Location

Diversity

From intense literature reviews in the last chapter, we can see that the mainstream

designs for solving the co-channel co-existence problem between LTE-LAA and

WiFi are based on the concept of sharing the medium in the time domain. This

is mainly because of the WiFi CSMA/CA medium access characteristic which

does not allow simultaneous transmissions on the shared channel to avoid colli-

sions. Countless works have been done based on this mindset. The advantage of

this kind of time sharing co-existence designs is that it is easy to regulate in early

state standardizations, and is able to meet the demand of fast commercial roll-out.

More importantly, as a newly-developed technology, LTE-LAA deployments are

not going to be ultra dense for now, and the 5 GHz unlicensed spectrum “cake”

is big enough for multiple technologies to share for a few years. However, as we

can learn from the communications history, all spectrum resources will eventu-

ally reach their limits for supporting exponentially growing data traffic demand.

Throughout the technology evolutions in the licensed spectrum, enhancements

such as interference management, spatial reuse and MIMO etc. have been made
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to improve the channel utilization. From exclusively conveying one link to si-

multaneously and harmoniously supporting multiple links, the potential of each

licensed carrier has been squeezed out as much as possible.

We believe, with the premise that WiFi technology will not phase out in the

foreseeable future, the increasingly dense deployments of LTE-LAA with time

sharing co-existence mechanisms will eventually leave WiFi networks few leftover

medium access opportunities. Note that, by introducing one LTE-LAA small

cell, not only one WiFi AP but also a WiFi network that can hear this LTE-LAA

small cell is impacted. And with increased overall channel sensing overhead in

LTE-LAA systems and longer average back-off time in WiFi systems in future

dense deployment scenarios, the overall spectral efficiency will stop to increase if

not degraded. Hence, with this concern, we intend to exploit more simultaneous

transmission opportunities for LTE-LAA without causing more impact than the

time sharing methods. This is done by looking at the spatial domain, inspired

by the spatial reuse concept in licensed spectrum cellular networks. The ignition

of our exploitation is that, in both LTE-LAA and WiFi systems, transmission

failure or collisions are determined at the receiver end due to strongly interfered

received signals but not at the channel sensing entities (LTE-LAA small cell or

WiFi transmitter). As long as the received signals at the receiver end are not or

only lightly interfered, even though the channel sensing outcome is negative, the

transmission can still be performed as the received data packets are going to be

successfully decoded.

In this chapter, and as it is in our paper [84], we first state the motivation

of our research, and then we derive the probability of coverage overlap between

LTE-LAA small cell and WiFi APs by modelling the network nodes using a spa-

tial bivariate Poisson point process. After that, we propose a novel framework

for LTE-LAA small cells to effectively coexist with WiFi APs in the unlicensed

spectrum considering the small cell (AP)/UE location diversity and various pos-

sibilities of coverage overlap between them. The theoretical analysis is conducted

in simple scenario where an LTE-LAA small cell overlaps with one WiFi AP

within a WiFi network. Back-off frozen state of the WiFi AP due to transmis-

sions from other WiFi APs in the WiFi network is considered. The analysis can

be extended to a more general scenario where an LTE-LAA small cell overlaps
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with multiple WiFi APs with little effort. The performance of the proposed

framework in terms of LTE-LAA small cell channel occupancy in the unlicensed

band is evaluated through both theoretical analysis and simulations.

3.1 Motivation

For LTE-LAA small cells to more effectively utilize the unlicensed spectrum in

coexistence with WiFi nodes, a question arises: Do LTE-LAA small cells have to

mute during WiFi transmissions? The spectrum reuse efficiency would be much

higher if there are simultaneous transmission opportunities for LTE-LAA small

cells without interfering WiFi transmissions.

To answer this question, we first need to look into the WiFi channel access

method, namely, CSMA/CA. A collision happens when one WiFi transmission

is interrupted by strong interference. The WiFi transmitter detects the collision

if there is no successful acknowledgement from the receiver. To avoid collisions,

WiFi transmitters perform channel sensing and exponential random back-off pro-

cedures. A WiFi node can only proceed with its transmission when the channel is

sensed unoccupied, but has to wait for an exponential back-off period, which con-

sists of a random number of time slots, before starting transmission. Each WiFi

node has a back-off countdown timer, which decreases by 1 with each elapsed

time slot, and is ”frozen” when the channel is sensed busy during the back-off

countdown. Once the back-off counter reaches zero, the transmission may start.

Collisions not only lead to failed transmissions, but also increase the back-off stage

of the WiFi transmitter, which in turn doubles the back-off period next time it

initiates a new back-off counter. Given the contention-based channel access be-

haviour of WiFi systems, the sharing of unlicensed spectrum between coexisting

LTE-LAA and WiFi systems has mainly been considered in a TDD fashion. The

TDD duty cycles can avoid LTE-LAA small cells dominating channel occupancy

wile guaranteeing channel access opportunities for WiFi nodes. The LTE-LAA

channel occupancy time ratio can be tuned by adjusting the duty cycle [8] or the

parameter η in [19].

However, the TDD spectrum sharing by LTE-LAA small cells reduces the total

channel access time and channel access opportunities of the WiFi networks, thus
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decreasing their spectral efficiency. Moreover, the existing TDD based spectrum

sharing schemes cannot completely avoid collisions between LTE-LAA and WiFi

transmissions. For instance, with CSAT [8], if the LTE-LAA small cell is turned

on just when the back-off count down timer of a nearby WiFi node reaches zero,

or with the method in [19] the LTE-LAA small cell has sensed the channel free for

a sensing period and starts to transmit and at the same time the WiFi back-off

timer reaches zero, the LTE transmission will collide with the WiFi transmission.

Wi-Fi
     

A

B

C

D

E

LTE-LAA

Figure 3.1: Deployment example

As shown in Figure 3.1, the positioning of an LTE-LAA small cell and a Wi-

fi AP has several possibilities in terms of their coverage overlap. They can be

absolutely not overlapping with each other (A) so that there is no coexisting

problem, co-located at the same spatial point (B), lightly overlapped (C), heavily

overlapped but not co-located (D), and overlapped with more than one opponent

cells (E). Case B is the scenario modelled in [18, 19, 17], based on which the au-

thors have developed a time-sharing access mechanism based on channel-sensing

for the coexisting problem. However, this case B is an idealized ”worst case” and

somewhat of a limited interest in practical scenarios [98]. We can first discuss
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case A, C, D, and then further extend to case E.

Figure 3.2: LTE-LAA small cell overlapping with its adjacent Wi-fi

Without loss of generality, we show Figure 3.2 to illustrate overlapping sit-

uations of case C and D in Figure 3.1. When a WiFi AP is transmitting to a

user outside of the coverage overlap area (WiFi user D), even though that the

LTE-LAA small cell senses the channel busy it can still transmits since it does not

cause severe interference to the WiFi user. When the WiFi AP is transmitting

to the WiFi UE D, there are two options for the LTE-LAA transmission. The

better option is that the LTE-LAA small cell initiate a DL transmission towards

its user that is outside of the coverage overlap, i.e. the LTE-LAA UE F. The

second option is that the LTE-LAA small cell can try to transmit to the UE G

locating in the coverage overlapping area. But as we assume the WiFi AP is

equipped with omni-directional antenna, UE G suffers from WiFi interference.

So, only if there is UE F type of users available for transmission due to schedul-

ing problems and the interference that UE G is manageable, the transmission is

initiated. Otherwise, the LTE-LAA small cell gives up this simultaneous trans-

mission opportunity. And when WiFi is transmitting to its UE E locating within

the coverage overlapping area, the LTE-LAA can only chose to transmit to UE
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F or give up this opportunity.

Due to the contention-based WiFi CSMA/CA channel access mechanism,

there would be at most one WiFi transmission in an unlicensed channel at any

time instant in a WiFi network in which each WiFi AP can sense the transmis-

sions from the others. Therefore, the complicated scenarios of an LTE-LAA small

cell overlapping with more than one WiFi APs (case E) can always be decom-

posed into a series of events of the LTE-LAA small cell overlapping with each

individual WiFi AP in time domain. That is, the case E overlapping situation

can be decomposed into a series of case C or/and case D situations along the

time line.

3.2 Probability of Overlap

For a network consisting of randomly deployed WiFi APs and LTE-LAA small

cells, there could be various possibilities of coverage overlap between LTE-LAA

small cell and WiFi AP. If an LTE-LAA small cell does not have coverage overlap

with any nearby WiFi APs, then it can fully utilize the unlicensed spectrum

without causing significant interference to WiFi users. Hence, in order to analyse

the spectrum utilization opportunities and performance of LTE-LAA small cells

in the unlicensed bands, it is necessary to first derive the probability of coverage

overlap between LTE-LAA small cell and WiFi AP. Possible overlaps between

LTE-LAA small cells and between WiFi APs are ignored for simplicity.

For analytical tractability, we model the random locations of LTE-LAA small

cells and WiFi APs as a spatial bivariate Poisson point process, defined on the

Euclidean plane, R2. Bivariate Poisson distribution can be used to model het-

erogeneous random networks consisting of two types of nodes, however there has

been limited work applying it [98]. There are two types of nodes in our system

model: type-W nodes representing WiFi APs, and type-L nodes representing

LTE-LAA small cells. There are three possible events:

• Event-L: occurrence of a single type-L (LTE-LAA) node with intensity of

λ.

• Event-W: occurrence of a single type-W (WiFi) node with intensity of µ.
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• Event-LW: occurrence of a pair of type-L and type-W nodes with intensity

of ν.

There might be some confusion about how to define the Event-LW, as the

spatial positions of the LTE-LAA small cell and WiFi AP in any pair are totally

distinguishable independent and identical distributed (i.i.d.) points. Claiming

that Event-LW equals to coverage overlap seems subjective. To explain that, let

us first define a distance threshold term DT . Any two points of each type that

are closer than DT can be treated as a pair. According to [98], the probability

of Event-LW depends only on the relative distance between the two points in a

pair. For example, if we set DT equals to the minimum distance between any

two points from each type in this bivariate point process, then the probability

of Event-LW is zero (ν = 0). So if we set DT = rL + rW , where rL and rW are

the coverage radius of LTE-LAA small cell and WiFi AP, respectively, then an

occurrence of Event-LW means coverage overlap between them.

Given an occurrence of an event of this process at point x, with probability
λ

λ+ µ+ ν
there is a single LTE-LAA small cell without overlapping with any

WiFi AP, with probability
µ

λ+ µ+ ν
there is a single WiFi AP, and with prob-

ability
ν

λ+ µ+ ν
there is a pair of LTE-LAA small cell and WiFi AP with the

LTE-LAA small cell at point x1,the WiFi AP at point x2 , and the distances

‖x1− x‖ and ‖x2− x‖ being independent random variables following probability

density functions f(‖x1 − x‖) and g(‖x2 − x‖), respectively. We can model f(x)

and g(x) as isotropic zero-mean Gaussian distribution with variances σ2
f and σ2

g

, respectively [98].

A point can be classified as a single point (corresponding to Event-L and

Event-W) or paired (corresponding to Event-LW). Considering a differential area

dx at point x, the probability that a type-L (type-W) single node exists at x is

λdx (µdx). Given that a paired points (Event-LW) occurs with its reference point

at x (with probability νdx), the probability that type-L node at dx1 and type-W

node at dx2 is f(‖x1 − x‖)g(‖x2 − x‖)dx1dx2. To find the probability of paired

points with type-L node at dx1 and type-W node at dx2, we integrate over all
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points in the Euclidean plane:

Ppaired = νh(x1, x2)dx1dx2 (3.1)

in which

h(x1, x2) =

∫
x

f(‖x1 − x‖)g(‖x2 − x‖)dx. (3.2)

Let us denote the distance between a type-L (type-W) point to its nth nearest

type-W (type-L) neighbor point as DLW,n ( DWL,n). And then we define the event

that a type-L point at dx1 and a type-W point at dx2 as E1 and E2, repectively.

The occurance of E1 and E2 can be the following situations:

• single type-L and type-W points with probability λdx1µdx2

• together as a pair with probability νh(x1, x2)dx1dx2

• single type-L with paired type-W points with probability λdx1νdx2

• single type-W with paired type-L points with probability νdx1µdx2

Given a type-L node at point x1, the conditional probability of a type-W node

at x2 can be calculated as [98]

PE2|E1 =
λdx1µdx2 + νh(x1, x2)dx1dx2 + λdx1νdx2 + νdx1µdx2

(λ+ ν)dx1

= [µ+
ν

λ+ ν
(λ+ h(x1, x2))]dx2

(3.3)

Hence, given a type-L node at point x1, the conditional intensity of a type-W

node at x2 is given by

Λ(x2) = µ+
ν

λ+ ν
(λ+ h(x1, x2)), (3.4)

Note that the intensity of WiFi APs is non-homogeneous because of h(x1, x2).

Denote the circular area centred at x1 (i.e., the given position of a type-L node)
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with radius r as C. The expected number of type-W nodes in C is given by [98]

χ(r) =

∫
x2∈C

Λ(x2)dx2

= ar2 − be−cr2 + b

(3.5)

where 
a = (µ+

λν

λ+ ν
)π

b =
ν

λ+ ν

c =
1

2(σ2
f + σ2

g)

(3.6)

In a homogeneous Poisson Point Process with intensity λ, the probability of

finding k nodes in a bounded Borel C is given by [99]

P [ k nodes in C ] = e−λµ(C)λµ(C)k

k!
(3.7)

where µ(C) is the standard Lebesgue measure of C, and λµ(C) = χ(r). Then

the Complementary Cumulative Distribution Function (CCDF) of DLW,n can be

interpreted as that there are less than n type-W nodes in C, and can be calculated

as [98]:

FCCD,DLW,n
(r) = P{DLW,n > r}

=
n−1∑
k=0

e−χ(r)
χ(r)k

k!

(3.8)

3.2.1 General Probability of Overlap

Let us denote the distance between a type-L node and its nearest type-W neighbor

as DLW,1. The complementary cumulative distribution function (CCDF) of DLW,1

can be calculated as:

FCCD,DLW,1
(r) = P{DLW,1 > r}

= e−χ(r)
(3.9)

which gives the probability of no type-W node being in C.
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We define the distance threshold as DT = rW + rL, where rW and rL are the

coverage radius of a WiFi AP and an LTE-LAA small cell, respectively. Coverage

overlap occurs when there is at least one WiFi AP within the circle centred at the

LTE-LAA small cell with radius DT . Thus, the probability of coverage overlap

between LTE-LAA small cell and WiFi AP can be expressed as

Poverlap = P{DLW,1 ≤ DT}

= 1− FCCD,DLW,1
(DT )

= 1− e−χ(DT )

(3.10)

An LTE-LAA small cell that is not in coverage overlap with any WiFi AP

can fully utilize the unlicensed spectrum. Using probability 1 − Poverlap, the

corresponding unlicensed spectrum utilization in terms of channel occupancy time

will be calculated for such LTE-LAA small cells in Section IV.

3.2.2 Probability of LTE-LAA Small cell Overlapping with

One WiFi AP

A special case is that an LTE-LAA small cell overlaps with only one WiFi AP.

Specifically, the distance between the LTE-LAA small cell and the nearest WiFi

AP is less than DT , while its distance to the second closest WiFi AP is beyond

DT . The probability of meeting the first condition is Poverlap as given in (3.10).

Denote the distance between a type-L node and its second nearest type-W

neighbor as DLW,2. The probability of meeting the second condition is given by

FCCD,DLW,2
(DT ), where FCCD,DLW,2

(r) is the CCDF of DLW,2 expressed, according

to Lemma 1 in [98], as:

FCCD,DLW,2
(r) = e−χ(r)(1 + χ(r)) (3.11)

From (3.9) and (3.11), we can get the pdf of DLW,1 and DLW,2 respectively as:
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fLW,1(r) = −
dFCCD,DLW,1

(r)

dr

= e−χ(r)
dχ(r)

dr

(3.12)

and

fLW,2(r) = −
dFCCD,DLW,2

(r)

dr

= e−χ(r)χ(r)
dχ(r)

dr

(3.13)

The probability of an LTE-LAA small cell overlapping with only one WiFi

can be interpreted as that the nearest WiFi neighbor is within distance less than

DT while the second nearest neighbor is further than DT . These probabilities are

respectively given as:

Pinside,1 =

∫ DT

0

fLW,1(r)dr

= 1− e−χ(DT )

(3.14)

and

Poutside,2 =

∫ ∞
DT

fLW,2(r)dr

= e−χ(DT )(1 + χ(DT ))

(3.15)

Hence, the probability of an LTE-LAA small cell overlapping with only one WiFi

AP can be calculated as:

Poverlap,1 = Pinside,1 · Poutside,2
= (1− e−χ(DT ))(1 + χ(DT ))e−χ(DT )

= Poverlap · FCCD,DLW,2
(DT )

(3.16)
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3.3 A New Coexisting Framework Scheme

For LTE-LAA small cells, the unlicensed band is only used for data traffic, while

control messages are conveyed in the licensed band. Without loss of generality, we

assume that WiFi APs and LTE-LAA small cells compete for the same unlicensed

band, and once an LTE-LAA small cell or a WiFi AP obtains access to the

unlicensed band it occupies the whole unlicensed band. Additionally, all user

equipments (UEs) in the system are “smart devices” so that they can connect to

both WiFi APs and LTE-LAA small cells.

LTE-LAA transmissions

fixed LTE-LAA 
transmission period

LTE-LAA periodical channel access opportunities

Figure 3.3: Proposed LTE-LAA channel access scheme in the unlicensed band.

We propose a new channel access scheme for LTE-LAA small cells in the

unlicensed band as illustrated in Figure 3.3. The LTE-LAA small cell periodically

attempts to access the channel. The time interval between two successive channel

access attempts is Tattempt. At the beginning of attempt period Tattempt, the LTE-

LAA small cell senses the unlicensed channel for a fixed period of time, Tsensing

(sufficiently smaller than Tattempt). If the channel is sensed to be idle for the

whole duration of Tsensing, then the LTE-LAA small cell starts to transmit in the

channel for a fixed period of time, Ttx,LAA. Otherwise, the LTE-LAA small cell

broadcasts a short message to all UEs within its coverage through the licensed
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band at the end of Tsensing, to ask if any UE is currently being served by a WiFi

AP. If according to feedbacks from all UEs, no UE within its coverage is being

served by WiFi APs, the LTE-LAA small cell starts to transmit in the unlicensed

channel; otherwise, the LTE-LAA small cell waits for the next channel access

attempt. During data transmission in the unlicensed channel, the LTE-LAA

small cell stops attempting the channel.

The frequency of LTE-LAA channel access attempts can be controlled by

adjusting the value of Tattempt. The LTE-LAA data transmission duration Ttx,LAA

cannot be too long so that there would be fair opportunities for WiFi APs to

occupy the unlicensed channel. The UE feedback delay Tdelay is the time period

required for the feedbacks of all associated UEs to be collected by the LTE-LAA

small cell. In order to achieve a high spectral efficiency, both Tsensing and Tdelay

need to be kept much shorter than Tattempt and Ttx,LAA.

3.4 Performance of LTE-LAA Small cell Over-

lapping with One WiFi AP

The special case of an LTE-LAA small cell overlapping with just one WiFi AP is

representative and important, because coverage overlaps between LTE-LAA small

cells (or between WiFi APs) would have been largely avoided in operator deployed

LTE-LAA (or WiFi) networks or become negligible in end-user deployed cases due

to wall/floor penetration losses caused cell isolation. Moreover, the contention-

based channel access mechanism of WiFi APs indicates that there would be at

most one WiFi transmission in an unlicensed channel at any time in a WiFi

network in which each WiFi AP can sense the transmissions from the others.

Therefore, the complicated scenarios of an LTE-LAA small cell overlapping with

multiple WiFi APs can always be decomposed into a series of events of the LTE-

LAA small cell overlapping with each individual WiFi AP in time domain.

In this section, we analyze the performance of our proposed LTE-LAA chan-

nel access scheme for the case of an LTE-LAA small cell overlapping with just

one WiFi AP. We first derive the probability of an LTE-LAA small cell success-

fully obtaining the unlicensed channel, PLAA,succ. Based on this probability we
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then derive the fraction of time that the LTE-LAA small cell occupies the chan-

nel tLAA,frac, which can be used as a criterion to evaluate spectrum utilization

performance of our proposed scheme.

3.4.1 System Model

We consider an LTE-LAA small cell network collocated with a WiFi network,

which consists of N (> 1) WiFi APs defined by the IEEE 802.11 WLAN stan-

dards. It is assumed that all UEs are uniformly distributed over the system

coverage area, and all WiFi APs and LTE-LAA small cells always have data to

transmit. A WiFi AP transmits to at most one UE within its coverage during

each transmission. We consider the downlink of an LTE-LAA small cell, which

overlaps with an arbitrary WiFi AP of the WiFi network. A WiFi transmission

fails when it collides with transmissions from other WiFi APs or from LTE-LAA

small cells. The exponential back-off mechanism [39] is used by WiFi APs to

reduce collisions. We use CWmin and CWmax = 2mCWmin to denote the upper

limits of the minimum and maximum back-off time, respectively, where CWmin is

an integer and m is the maximum back-off stage. The back-off stage is initialized

as i = 0 at each WiFi AP. When i = 0 or after each successful transmission of the

WiFi AP, the back-off counter is set to a initial integer value randomly chosen

from (0, 2iCWmin − 1]. Then at the end of each time slot δ, if the channel has

been sensed busy during that time slot, the back-off counter is “frozen” and will

be resumed when the channel is sensed free. If the back-off counters of two or

more WiFi APs reach zero at the same time, a collision happens which causes

the back-off stage increased by 1 (i = i + 1) at the next reset till the maximum

back-off stage is reached. A WiFi AP transmits when its back-off counter drops

to zero, and its transmission period depends on its payload and the data rate.

3.4.2 Derivation of PLAA,succ

A WiFi AP can switch between the states of idle (continuous back-off), back-

off frozen (due to a transmission from another WiFi AP), and transmission over

time. For the case of an LTE-LAA small cell overlapping with just one WiFi AP

in our proposed coexisting framework, the LTE-LAA small cell can obtain the
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unlicensed channel if it either senses the channel being idle (i.e., the WiFi AP is

in idle or back-off frozen state), or detects from the specific UE feedbacks that

the WiFi AP is transmitting to a UE outside their overlapped coverage area. The

former case becomes true under the following two conditions. First, the start time

of an LTE-LAA channel access attempt is within a channel idle period. Second,

the channel is sensed being continuously idle for the duration of Tsensing.

The analysis of LTE-LAA successful transmission probability in [19] is based

on the probabilities of the WiFi-only network being in the states of idle, collision,

and transmission provided in [38, 39]. While in our scenario, we need to find

the probabilities of each individual WiFi AP being in idle, back-off frozen, and

transmission states. We use a “general slot” to represent three kinds of WiFi time

periods: a back-off slot (with duration δ), a transmission period (with duration

α), and a back-off frozen period (with duration β). A back-off slot δ is the basic

time slot defined in IEEE 802.11 standards. The values of α and β depend on the

transmission rates and average payloads of the WiFi APs, respectively. Depend-

ing on whether or not the request-to-send/clear-to-send (RTS/CTS) handshake

mechanism is used, the time periods such as distributed interframe space (DIFS)

and short interframe space (SIFS) defined in IEEE 802.11 standards can fit into

different kinds of “general slots” according to (14) and (17) in [39].

By modelling the WiFi exponential back-off mechanism using the discrete-

time Markov Chain [39], the probability τ of a WiFi AP transmitting in any

“general slot” can be expressed as:

τ =
2(1− 2p)

(1− 2p)(CWmin + 1) + pCWmin(1− (2p)m)
(3.17)

Where the conditional collision probability p is expressed as:

p = 1− (1− τ)N−1 (3.18)

A conditional collision (back-off frozen or transmission collision) occurs when

at least one of the other N − 1 WiFi APs are transmitting in the same “general

slot”, each with probability τ . We can see that (3.17) and (3.18) form a non-

linear system with respect to τ and p, which can be easily solved within several
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iterations using numerical methods. It has been proven that there exists a unique

pair of solutions to this system [39].

The three kinds of “general slots” have their probability of occurrence calcu-

lated as: 
Pb = (1− τ)(1− p)

Pt = τ

Pbf = (1− τ)p

(3.19)

where Pb, Pt and Pbf are the probabilities of a WiFi AP being in idle back-off,

transmission, and back-off frozen states, respectively. With these probabilities,

the fractions of time that the WiFi AP is in idle back-off and back-off frozen

states are given, respectively by:
Qb =

Pbδ

Pbδ + Ptα + Pbfβ

Qbf =
Pbfβ

Pbδ + Ptα + Pbfβ

(3.20)

Accordingly, the probability of the start time of an LTE-LAA channel access

attempt being within an idle back-off period or a back-off frozen period of the

overlapping WiFi AP is given by Qb and Qbf , respectively. Assume that the idle

back-off period is composed of L (L = 1, 2, 3...) consecutive back-off slots, with

a total duration of Lδ. Given the start time of Tsensing located in a period of

WiFi idle back-off or back-off frozen, the corresponding conditional probability

PQb
or PQbf

, for the LTE-LAA small cell to successfully sense the channel being

idle during the whole Tsensing period can be calculated as:

PQb
=

∞∑
L=dTsensing/δe

Lδ − Tsensing
Lδ

(Pb)
LPt +

∞∑
L=1

(Pb)
LPbf (3.21)
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PQbf
=
β − Tsensing

β
+

∞∑
L=dTsensing/δe

Tsensing
β

(Pb)
L

+

dTsensing/δe−1∑
L=1

β + Lδ − 2Tsensing
β

(Pb)
L (3.22)

where dxe denotes the smallest integer no less than x. The first part on the right-

hand side of (3.21) is the probability that the idle back-off period Lδ is followed

by a WiFi transmission, Lδ is no shorter than Tsensing and the starting time of

Tsensing is in the first (Lδ − Tsensing)/Lδ portion of Lδ. The second part on the

right-hand side of (3.21) is the probability that the idle back-off period Lδ is

followed by a back-off frozen period, in which case the LTE-LAA small cell will

sense the channel being idle during the whole period of Tsensing, since the duration

of a back-off frozen period β is usually larger than Tsensing. The first part on the

right-hand side of (3.22) is the probability that the starting time of Tsensing is

within the first (β−Tsensing)/β portion of the back-off frozen period. The second

part on the right-hand side of (3.22) is the probability that the starting time

of Tsensing is in the last Tsensing/β portion of the back-off frozen period but the

following idle back-off duration is longer than Tsensing. Then the third part on the

right-hand side of (3.22) gives the probability that the starting time of Tsensing is

within the (β + Lδ − 2Tsensing)/β fraction of the back-off frozen period and the

following idle back-off period is shorter than Tsensing.

The LTE-LAA small cell will also transmit in the unlicensed channel when it

detects from the UE feedbacks that the overlapping WiFi AP is transmitting to

a UE outside their coverage overlap area. As we assume uniform UE distribution

and that each WiFi AP transmits to at most one UE at a time, we can calculate

the probability of the WiFi AP transmitting to UE outside the overlap area as:

PWO = 1− Aoverlap(d)

πr2W
(3.23)

where Aoverlap(d) is the area of coverage overlap between the LTE-LAA small cell

and the WiFi AP, which is a function of their relative distance d and coverage

radii rW and rL. Combining (3.20), (3.21), (3.22) and (3.23), we get the prob-

ability PLAA,succ of an LTE-LAA small cell (which overlaps with one WiFi AP)
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successfully obtaining an unlicensed channel as:

PLAA,succ = QbPQb
+QbfPQbf

+ (1−QbPQb
−QbfPQbf

)PWO (3.24)

3.4.3 LTE-LAA fraction of channel occupancy time

The LTE-LAA channel access attempts can be considered as independent if

Tattempt is sufficiently larger than the SIFS and DIFS [19]. With the success prob-

ability PLAA,succ of each attempt, it requires an average of 1/PLAA,succ attempts

for the LTE-LAA small cell to obtain the unlicensed channel. Once the LTE-LAA

small cell successfully obtains the channel, it transmits for a fixed period Ttx,LAA.

Thus, the fraction of channel occupancy time tLAA,frac of the LTE-LAA small cell

can be calculated as:

tLAA,frac =
Ttx,LAA

(1/PLAA,succ)Tattempt + dη − 1eTattempt
=

η

1/PLAA,succ + dηe − 1

(3.25)

where η = Ttx,LAA/Tattempt, which can be used as a tuning factor for the LTE-LAA

small cell to adapt its channel occupancy time. Note that there is a minor error

in the derivation of an LTE-LAA small cell’s fraction of channel occupancy time

in [7, eq. (5)], where the denominator is overestimated by one more Tattempt. This

minor error does not noticeably degrade the accuracy when the channel access

success probability is very small or the value of η is very large.

3.4.4 Probability of Overlap

In this subsection, we evaluate the accuracy of the derived probability of overlap

through simulation. In the simulation, we set σ2
f = σ2

f = 1, i.e., f(x) and g(x)

follow isotropic standard normal distributions. The baseline intensity setting is

equivalent to around 10 single LTE-LAA small cells, 20 single WiFi APs and 1

pair of LTE-LAA small cell and WiFi AP distributed over the area of a 2km×2km

square following a spatial bivariate Poisson point process. We define the intensity

index n (in the range of [1, 20]) to increase the intensities of the three types of
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events (as defined in Section II) by multiplying the three events’ spatial intensities

of the baseline setting by n.
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Figure 3.4: General probability of overlap

Analytical and simulation results of the general probability of coverage overlap

between LTE-LAA small cell and WiFi AP and the probability of LTE-LAA small

cell overlapping with only one WiFi AP are shown in Figure 3.4 and Figure 3.5,

respectively, versus the intensity index n. Figure 3.4 is generated with Equation

(3.10), and Figure 3.5 is generated with Equation (3.16). From the figures, we

can see that our analytical expression slightly overestimate the probabilities but

are reasonably close to the simulation results. The general probability of overlap

monotonically increases with the intensity index, while the probability of LTE-

LAA small cell overlapping with one WiFi AP first increases with the intensity

index and then decreases with it after reaching a maximum value. This is because

the chance of an LTE-LAA small cell having coverage overlap with WiFi APs gets

higher with the increasing intensity index, but as the intensity further increases,

the events of LTE-LAA small cells overlapping with multiple WiFi APs become
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Figure 3.5: Probability of LTE-LAA small cell overlapping with one WiFi AP

dominant and the probability of an LTE-LAA small cell overlaping with only one

WiFi AP drops.

3.4.5 Performance Evaluation

In this subsection, we present simulation results to compare the LTE-LAA small

cell’s fraction of channel occupancy time tLAA,frac of our proposed LTE-LAA

and WiFi coexisting scheme with that of the scheme in [19] (which is denoted

as “benchmark” in the figures), versus the normalized relative distance between

an LTE-LAA small cell and a WiFi AP and for different values of η (as defined

in (3.25)). The values of tLAA,frac calculated using our analytical expression is

also included in the comparison. In the simulation, we consider the downlink of a

WiFi network consisting of 10 WiFi APs, and the downlink of an LTE-LAA small

cell overlapping with one random selected WiFi AP, with the distance between

them given by d ∈ [0, DT ], where DT = rW + rL as defined in Section II-A. All

WiFi APs always have data to transmit with the same payload at the same data
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rate. The values of system parameters used in the simulation are given in Table

(3.1).

Table 3.1: Simulation Settings

Slot Time 9 µs
SIFS 10 µs
DIFS 28 µs

Tsensing 18 µs
Tdelay 27 µs

Tattempt 1 ms
Clear Channel Assignment (CCA) time 4 µs

CWmin 32
CWmax 1024

WiFi Transmission Rate 6.5 Mbps
WiFi Payload 1500 bytes

WiFi Coverage Radius 50 m
LTE-LAA Coverage Radius 50 m
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Figure 3.6: LTE-LAA smallcell’s channel occupancy (tLAA,frac), η = 1
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Figure 3.7: LTE-LAA smallcell’s channel occupancy (tLAA,frac), η = 5
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Figure 3.8: LTE-LAA smallcell’s channel occupancy (tLAA,frac), η = 10
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Figure 3.6, Figure 3.7 and Figure 3.8 show the results for η = 1, η = 5

and η = 10, respectively. In these figures we can see that our proposed LTE-

LAA and WiFi coexisting scheme dramatically increases the unlicensed-channel

utilization for the LTE-LAA smallcell as compared to the scheme in [19]. The per-

formance improvement becomes more evident at larger relative distances between

the LTE-LAA smallcell and WiFi AP. The performance of the scheme in [19] is

independent of the relative distance between an LTE-LAA smallcell and a WiFi

AP. Our analytical calculation of tLAA,frac closely matches the simulation results.

At d/(rWiFi + rLAA) = 0, our proposed scheme offers the same performance as

the scheme in [19], because in this case the coverage areas of LTE-LAA smallcell

and WiFi AP completely overlap and there is no extra transmission opportu-

nity that can be exploited by the LTE-LAA smallcell in the unlicensed band.

At d/(rWiFi + rLAA) = 1, our proposed scheme achieves a fraction of channel

occupancy time close to 1 for the LTE-LAA smallcell. The LTE-LAA smallcell

channel occupancy gain of our proposed scheme over the scheme in [19] mainly

comes from the LTE-LAA smallcell’s additional transmission opportunities when

the WiFi AP transmits to a UE located outside their coverage overlap area.

Comparing Figure 3.6 with Figure 3.7 and Figure 3.8, we can see that the

LTE-LAA smallcell’s channel occupancy increases with η for both schemes. The

advantage of our proposed scheme over the scheme in [19] is more significant for

a lower value of η. LTE-LAA smallcells sharing the unlicensed band with WiFi

APs need to use a relatively low value of η in order to protect the transmission

opportunities of WiFi APs.

3.5 Summary

In this chapter, we have derived the probabilities of LTE-LAA small cells overlap-

ping with WiFi APs when the collocate in an area. Based on the derived probabil-

ity of an LTE-LAA small cell overlapping with one WiFi AP, we proposed a new

scheme for an LTE-LAA small cell to coexist with a WiFi AP considering various

probabilities of coverage overlap between them. The performance in terms of

LTE-LAA small cell’s channel occupancy is analytically evaluated and then ver-

ified through simulation. Simulation and analytical results have shown that our
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proposed scheme outperforms the existing scheme in terms of LTE-LAA small

cell’s channel occupancy time. And the improvement of our proposed scheme is

more significant for a smaller η.

However, as the first attempt to exploit simultaneous LTE-LAA and WiFi

transmission opportunities in the spatial domain, the proposed scheme in this

chapter is rather idealistic with ideal assumptions such as circular LTE-LAA small

cell and WiFi AP coverage areas and perfect knowledge of the locations LTE-

LAA and WiFi receiving UEs. In real deployment scenarios, these assumptions

may cause errors in deciding the cell coverage boundaries and transmission delay

due to asynchronous feedback reports. Even with these potential problems, our

first attempt shows the possibility of simultaneous transmission opportunities by

exploiting the spatial domain, which is novel comparing to existing co-existence

designs. In the next chapter, we manage to relax some of these ideal assumptions

with the assistance of multi-antenna beamforming technology.
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Chapter 4

Simultaneous LTE-LAA/WiFi

Transmission Opportunities

Utilizing Multi-antenna

Beamforming Technology

In this chapter, we continue exploiting the spatial domain using multiple-antenna

technology at LTE-LAA small cells and WiFi APs to create simultaneous trans-

mission opportunities between the two systems in coexistence. We have proved in

the last chapter that there can be extra simultaneous transmission opportunities

for co-channel co-existing LTE-LAA and WiFi networks, instead of dividing chan-

nel access opportunities in the time domain. However, the co-existence scheme

proposed in the last chapter is based on rather idealistic assumptions. The prac-

ticality in terms of implementing the scheme in real life is not very strong. As an

academically attempt, it opens the door for us to see the possibility of more po-

tential simultaneous LTE-LAA and WiFi co-channel transmission opportunities.

So, driven by this possibility, we intend to find a more practical approach that

may be able to be implemented in the future when LTE-LAA small cell deploy-

ment becomes ultra dense. The design concept stays, which is that LTE-LAA

and WiFi transmissions can occur simultaneously in the same unlicensed band as

long as none of the associated receivers detect the resulting mutual interference
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as a collision.

As for the content of this chapter, we propose a co-existence scheme to create

opportunities for LTE-LAA small cells and WiFi devices to transmit simultane-

ously. We combine Multiple Signal Classification (MuSiC) Direction of Arrival

(DOA) estimation with null steering techniques to avoid collisions between LTE-

LAA and WiFi transmissions. We assume that the LTE-LAA small cells are

equipped with the latest 802.11 receivers for monitoring WiFi transmissions and

for capturing simultaneous transmission timing. The performance of the pro-

posed scheme in terms of collision avoidance and channel occupancy time ratio is

evaluated via simulations. The results show that with DOA estimation and null

steering, LTE-LAA small cells can transmit simultaneously with nearby WiFi

devices without causing significant interference to them. As a result, LTE-LAA

small cells can gain much more channel access opportunities and longer channel

occupancy time while being “invisible” to coexisting WiFi networks.

4.1 Proposed Simultaneous Transmission Scheme

We intend to design a co-existence scheme for an LTE-LAA small cell to uti-

lize its beamforming capability (more specifically, through null steering) to avoid

causing noticeable interference to nearby WiFi nodes while seeking opportuni-

ties for transmitting simultaneously with the WiFi nodes in the same unlicensed

band. As illustrated in Figure 4.1, upon sensing a ongoing WiFi transmission,

the LTE-LAA small cell can steer its transmission beam pattern so that one of

the generated nulls is pointing at the WiFi receiver. By doing so, the WiFi re-

ceiver will not be interfered by the simultaneous LTE-LAA transmission. The

key information needs to be captured by the LTE-LAA small cell is the direction

of the WiFi receiver, rather than its actual location.
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Figure 4.1: LTE-LAA small cell null steering for interference mitigation.

The system model is described in Section 4.1.1. There are two main steps

in the proposed scheme: capture of transmission timing and beam steering. For

the capture of transmission timing, the best type of simultaneous transmission

opportunities for LTE-LAA small cell are those in “synchronization” with WiFi

transmissions. This will be explained in details in Section 4.1.2. And for beam

steering, it consists of two sub-steps, namely DoA estimation and null steering,

which are discussed in Section 4.1.4 and Section 4.1.5, respectively.

4.1.1 System Model

We consider one LTE-LAA small cell whose coverage area is overlapped with

that of a WiFi AP as depicted in Figure 4.1. The LTE-LAA small cell and the

WiFi AP are sharing the same 20 MHz unlicensed sub-band within the 5 GHz

band. The coverage area of them can be fully overlapped (co-located) or partially

overlapped (adjacent but not co-located). There are n WiFi UEs associated with

the WiFi AP. We assume the LTE-LAA UEs are uniformly distributed around

the small cell. No handover is considered in this work. We assume that the WiFi

AP is equipped with the latest 802.11ac technology, which uses 5 GHz band, and

the LTE-LAA small cell is equipped with an 802.11ac receiver. There is no direct

communication link for information exchange between the LTE-LAA small cell
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and the WiFi transmitter.

4.1.2 Simultaneous Transmission Timing

The LTE-LAA transmission timing is important since the LTE-LAA small cell

needs to decide when to steer its beams and how long it can transmit. To be

specific, in order to cause no disturbance to the WiFi channel sensing procedure

and avoid potential collisions, the best time window for LTE-LAA simultaneous

transmissions is the period between the starting point of one WiFi transmission

and the starting point of the next WiFi channel sensing period. When one WiFi

node is transmitting, the channel is already sensed busy by the other adjacent

WiFi nodes, hence the simultaneous LTE-LAA transmission will not cause more

impact on the WiFi network and the ongoing WiFi transmission will not be

stopped as the WiFi channel sensing procedure has been completed. After one

successful transmission, the WiFi AP will conduct another channel sensing pro-

cedure. As during the simultaneous LTE-LAA transmission, the beam steering

is focused on creating nulls towards the WiFi receiver, hence the WiFi AP may

still be able to hear it. And more importantly, the next WiFi transmission may

send towards a different WiFi receiver with different direction to the LTE-LAA

small cell, which means the previous null steering outcome may not be suitable

for the new simultaneous transmission opportunity.

The 802.11ac Physical Layer Convergence Protocol (PLCP) defines a PLCP

Protocol Data Unit (PPDU) format, as shown in Figure 4.2. The Legacy Signal

Field (L-SIG) contains the LENGTH field for the current transmission. This

LENGTH value forces legacy devices to wait until the transmission of the packet

is over, and can be read by any devices within range. Note that the LENGTH field

only indicates the transmission length of the current frame. The DURATION field

located in the MAC header of the DATA field indicates the duration to complete

the whole conversation minus the length of current frame, as shown in Figure

4.3. The DURATION filed is also used for other devices to set up their Network

Allocation Vector (NAV) timer. A WiFi node sees the channel being reserved

and remains idle till the current conversation is finished during the countdown of

its NAV timer.
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Figure 4.3: The LENGTH and DURATION fields in legacy 802.11.

The LTE-LAA small cell can also capture the LENGTH and DURATION

information and use it to initiate its simultaneous transmissions. It is worth

mentioning that, in 802.11ac, frame aggregation is mandatory, which means all

frames are transmitted using the aggregate Mac Protocol Data Unit (A-MPDU)

format even for a single frame, as shown in Figure 4.4. In 802.11ac, the LENGTH

indicator is moved from the PLCP header, which is transmitted at the lowest pos-

sible data rate, to the MPDU delimiter as part of the high data-rate payload [37].

In order for the LTE-LAA small cell to successfully decode the LENGTH and

DURATION information, we recommend that it is equipped with an 802.11ac re-

ceiver. Once the presence of WiFi signals are detected, the LTE small cell stays

mute before it captures the LENGTH information of the current WiFi transmis-

sion frame. According to the LENGTH information, it will initiate transmission

after the WiFi DATA field transmission (the interference issue will be tackled in

the following subsections), and stop transmission when the current WiFi trans-
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mission is completed. So that LTE-LAA transmissions will not cause WiFi nodes

to go into their backoff frozen phases. For the reverse transmission from the WiFi

receiver, the LTE-LAA small cell seeks simultaneous transmission opportunities

by using the captured DURATION information.
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MPDU subframe

M
PD

U
 d

el
im

it
er

M
PD

U
 d

el
im

it
er

M
A

C 
he

ad
er

M
A

C 
he

ad
er

MSDU 1 ……MSDU 2

Figure 4.4: 802.11ac A-MPDU aggregation.

4.1.3 WiFi Beamforming

We propose to exploit the combination of Multiple Signal Classification (MuSiC)

based Direction of Arrival (DOA) estimation and null beam steering [100] to

mitigate interference from LTE-LAA small cells to WiFi nodes when they have

captured the simultaneous transmission timing. We first consider the WiFi up-

link, since for WiFi uplink the receiver is the WiFi AP whose location is fixed and

can be easily known or estimated by the LTE-LAA small cell. Figure 4.5 depicts

the 802.11ac VHT-SIG-A1 field which is the first part of the VHT-IG-A field

shown in Figure 4.2. The 6-bits Group ID field enables a receiver to determine

whether the data is for single- or multi-user transmission. More importantly, a

Group ID of 63 indicates that the frames are sent to a WiFi UE (downlink), while

0 indicates that the frames are sent to an AP (uplink) [37]. With the assumption

that the LTE-LAA small cell is equipped with an 802.11ac receiver, this field can

be easily decoded. Thus when the WiFi transmission is uplink, the LTE-LAA

small cell can steer its null beams towards the direction of the WiFi AP to avoid

strong interference.
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Figure 4.5: 802.11ac VHT-SIG-A1 field.

For WiFi downlink transmission, it is more complicated. Although still op-

tional at WiFi APs, beamforming is enhanced in the 802.11ac standard [37].

For beamformed WiFi downlink transmission, we only consider single-user beam-

forming at this stage as the multi-user MIMO will not be introduced until next

wave of deployments. The 802.11ac beamforming process initiates with channel

calibration, as shown in Figure 4.6. To start with, the WiFi AP sends a Null

Data Packet (NDP) Announcement followed by a NDP, which contains frames

with known fixed formats. By analysing the received NDP, only the intended

receiving UE will reply with a compressed beamforming frame. No beamforming

is applied in the channel calibration procedure and hence every node within range

(including the LTE-LAA small cell) can hear it. After channel calibration, the

WiFi AP sends data packets to the UE. The LTE-LAA small cell can utilize the

compressed beamforming reply from the UE to conduct DOA estimation. Once

the DOA of the receiving WiFi UE is estimated, the LTE-LAA small cell can

conduct null steering towards the direction of the receiving WiFi UE.

For non-beamformed WiFi downlink transmissions, there is a lack of instant

signals for the LTE-LAA small cell to conduct DoA estimation. Different from

[100], where DOA estimation is based on the cellular UE uplink signals and is

updated every subframe, WiFi transmissions have more randomness compared to

LTE transmissions. In this case, without instant DOA estimation information,

the LTE-LAA small cell cannot simultaneously transmit with nearby WiFi nodes.
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Figure 4.6: 802.11ac single-user channel calibration procedure.

4.1.4 DOA Estimation

In a linear multiple-antenna system with L elements, the DOA refers to the

angle between the array normal vector and the direction vector of the incident

plane wave. As the signal arrives at different elements of the array, there will

be a wave-way difference which leads to phase difference between array elements.

This phase difference can be exploited to estimate the azimuth and elevation

angles of the signal and hence DOA. The spatial spectrum explains how signals

are distributed in the space from different directions. Considering the Fourier

relationship between the beam pattern and the excitation at the array, the DOA

estimation can be regarded as spectral estimation. Assuming signals are arriving

from M different directions, i.e., characterizing channel response by multipath

propagation with M replicas, we have h vector containing channel coefficients:

h = [α1e
jφ1 , α2e

jφ2 , · · · , αMejφM ]T (4.1)

where αi and φi are independent variables following Rayleigh and uniform distri-

bution, respectively, for i = 1, 2 · · · ,M . Arriving at the antennas, the i-th signal

replica forms the angle θi with array perpendicular. And the delay τ of the i-th

signal replica between two consecutive antenna array elements is

τ =
d sin(θi)

c
=

sin(θi)

2f0
(4.2)
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where c is the speed of light, d is the spacing between any two adjacent antenna

elements and f0 is the operational frequency. Denote Ts as the sampling period,

as τ � Ts, the arriving signal phase is rotated by 2πf0τ . Hence, the n-th signal

sample received at the l-th antenna array element is

rl[n] =
M∑
i=1

x[n− ti]αiej[φi+(l−1)π sin(θi)] + nl[n] (4.3)

where x[n] denotes the nth signal sample transmitted by the UE, ti is the prop-

agation delay of the ith signal, nl[n] represents the additive white Gaussian

noise (AWGN). Denote the L-elements steering vector s(θ) containing sl(θ) =

ejπ(l−1) sin(θ), with l = 1, 2, · · · , L.n The steering vector s(θ) can be used to steer

the antenna radiation pattern on direction θ. We then consider all signal incom-

ing directions and denote with S = [s(θ1), s(θ2), · · · , s(θM)] the steering matrix

containing steering vectors of M incoming signal DoAs. The signals arrived at

the array elements can be alternatively written in a matrix form as

r = Sdiag(h)x + n (4.4)

where x = [x[n− ti]]T , and diag(·) denotes the diagonal matrix.

To conduct DoA estimation, we adopt the Multiple Signal Classification (Mu-

SiC) method, which is based on eigenvalue decomposition of the array output

auto-correlation matrix. The received signal auto-correlation matrix is defined as

Rr , E[rrH ]

= E[S diag(h) xxH diag(h)H SH] + E[nnH]

= S P SH + σn
2IdL = Rs + σn

2IdL

(4.5)

where IdL is an L × L dimension identity matrix, [·]H denotes the hermitian

transformation, P = E[diag(h) xxH diag(h)H], and σn
2 refers to the noise power.
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Note that in practice, the auto-correlation matrix is obtained by

Rr =
1

N

N∑
n=1

rnr
H
n (4.6)

with N being the number of data snapshots.

The MuSiC algorithm estimates the noise subspace and the steering vectors

are made orthogonal to the noise subspace. Note that we use MuSiC algorithm to

only estimate the azimuth angle. The MuSiC algorithm is detailed as following.

First, Eigenvalue decomposition is exploited to determine the eigenvalues of the

array output Rr. Note that Rr is a L × L matrix which has a rank of M and

hence there will be L −M eigenvectors corresponding to zero eigenvalues. This

results in two eigenspaces: i) signal subspace which consists of signal eigenvectors

contaminated by noise and, ii) the noise subspace which only consists of the noise

eigenvectors. Note that the M largest eigenvalues are considered for the signal

eigenvectors and the remaining eigenvalues contribute to the noise eigenvectors.

Having acquired the signal and noise subsapces, the MuSiC algorithm selects from

a range of pre-defined angles to detect the steering vectors that are orthogonal

to the noise subspace. The notches of the MuSiC spectrum in (4.7) give the

estimated DOAs.

PSM(θ) =
1

‖ sH(θ)UN ‖
(4.7)

where sH(θ) is the steering vector, UN denotes noise subspace and is an L× (L−
M) matrix consisting of eigenvectors of correlation matrix corresponding to the

(L −M) smallest eigenvalues and ‖·‖ represents the norm of the vector. Fig. 7

shows an example obtained from simulation, where the “single path” spectrum

corresponds to a Line-of-Sight (LOS) signal with an actual azimuth DOA of 13o

, while the “three paths” spectrum is of a multi-path signal with actual azimuth

DOAs of (17o, 39o and 78o). It is also worth noting that the performance of the

MuSiC algorithm is highly dependent on the level of the noise that overlaps with

the signal as well as the number of paths through which the signal is received. If

the number of paths exceeds the number of array elements, the noise subspace

has to deal with interference caused by the eigenvectors of weak signals and hence

it is impossible to correctly separate the noise subspace.
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Due to very large codomain of (4.7), an alternative approach to estimate the

DOAs is to compute its logarithm as in (4.8). This forms a more compressed

shape and by taking second derivatives, the concavities is confirmed and the

DOAs can be estimated.

PSMMOD
(θ) =

d2(log10PSM(θ))

dθ2
(4.8)
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Figure 4.7: DOA estimation in single and multipath scenarios.

4.1.5 LTE-LAA Small Cell Null Steering

Null steering precoding is a spatial signal processing technique. It modifies the

amplitudes and phases of the outputs of array elements to generate a null in

the array radiation pattern [101]. We use null steering to direct the LTE-LAA

radiation nulls towards the specific directions where potential WiFi victim re-

ceivers are located in order to mitigate interference. Note that the number of

null beams M is restricted by the number of array elements, i.e., up to L − 1

null beams can be generated by an array with L elements (i.e., M ≤ L − 1).

78



4. Simultaneous LTE-LAA/WiFi Transmission Opportunities
Utilizing Multi-antenna Beamforming Technology

To generate a pattern with intended null beams, a main steering direction (look

direction), denoted by φ, is required as input. This look direction is used by the

LTE-LAA small cell to convey data to its scheduled users. In order to produce

the intended antenna pattern, we need to obtain for each antenna element the

weight which is corresponding to the citation and phase shift fed to the antenna

element. The weight vector is obtained by imposing the steering vector of the

main direction s(φ) equal to 1, while the steering vectors of the intended null

directions s(θ1), s(θ2), · · · , s(θM), equal to 0.

Denote the matrix that contains the steering vectors of interest, i.e., main

direction and null directions, as

A , [s(φ), s(θ1), s(θ2)..., s(θM)] (4.9)

The vector e is then defined as e = [1, 0, ..., 0]T that has M + 1 elements. De-

pending on A being an square matrix or not, the null steering precoder weight

vector w is defined as wH = eTA−1 A is square matrix

wH = eTAH(AAH)−1 Otherwise
(4.10)

Upon obtaining the weight vector, given a signal vector X(t) fed to the an-

tenna array, the output signal is generated by multiplying the input signal with

the weight vector:

y(t) = wH ·X(t) (4.11)

The obtained antenna pattern has selective nulls with the shape similar to notch

filter. The number of attainable nulls is related to the number of antenna array

elements. With more antenna elements, it is easier to separate the noise subspace

correctly.
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Figure 4.8: Null steering antenna radiation patterns (azimuth cut).

Figure 4.8 shows the antenna radiation pattern with different settings of null

steering obtained from simulation, where the main steering direction is 45o for all

three cases. As we can see from the figure, null steering all three angles causes the

peak direction to be shifted to 60o. This indicates that for optimum LTE-LAA

scheduling in terms of maximizing DL signal quality, the UE located at or near

the peak radiation direction should be given higher priority. As we assume the

LTE-LAA small cell has UEs awaiting for transmissions at all directions, the deci-

sion of main steering direction considering null steering angles and corresponding

scheduling scheme design are out of the scope of this work.
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4.2 Simulation and Performance Evaluation

In this section, we present simulation results and evaluations for the proposed

scheme. Results are discussed and compared with the benchmark scheme.

4.2.1 Interference Mitigation and Collision Avoidance

In our simulations, we use 4 element Uniform Linear Array (ULA) operating

in the frequency range of 5.1 GHz to 5.2 GHz for the LTE-LAA small cell. The

antenna spacing is half wavelength. Figure 4.9 shows the transmission power level

normalized to that at the peak direction after null steering with the information

from DOA estimation. The DOA settings are the same as those in Figure 4.7.

Figure 4.9(a) shows that for the “single path” case, the null steering technique

can fully reduce the transmission power to zero. Even with DOA estimation

errors, the power level can still be reduced to around 2% of the peak power

level. For the “three paths” case as shown in Figure 4.9(b), not all the power

levels at each direction are reduced to zero. However, even with DOA estimation

errors, the summation of the power levels at each angle does not exceed 4% of the

peak power level. Therefore, during simultaneous transmissions the interference

from the LTE-LAA small cell to the WiFi UE can be well mitigated using the

combination of DOA estimation and null steering procedures.
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Figure 4.9: Normalized power level after null steering for: (a) single path (LOS)
DOA, (b) three paths DOA.
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In addition to interference mitigation, our simultaneous transmission scheme

also aims to avoid triggering collisions so that the LTE-LAA small cell becomes

“invisible” to the WiFi networks in unlicensed spectrum. As discussed in Section

II, collisions are detected by the absence of successful acknowledgement feedback

from the WiFi receiver. The criteria for evaluating collision avoidance capabil-

ity are Packet Reception Rate (PRR) and Signal-to-Interference-plus-Noise-Ratio

(SINR) at the WiFi receiver. From the experimental results in [102], full packet

reception (PRR = 1) is mapped to SINR in the range of 5.87 dB to 9.93 dB

depending on different transmitter power settings. We set the SINR threshold

for collision avoidance to 10 dB, which is also used in [103]. In the simulation,

we set the WiFi transmission power to 1 Watt which is the 5 GHz Band B legal

limit, while the LTE-LAA transmission power is set in the range from 0.2 Watt

to 1.5 Watts. Log-normal shadowing is considered, and the distance between the

WiFi UE and the WiFi AP is the same as the distance between the WiFi UE

and the LTE-LAA small cell for general results. The collision avoidance perfor-

mance of our proposed scheme is compared to that of a LTE-LAA small cell using

omnidirectional antennas for simultaneous transmissions. The results shown in

Figure 4.10 are averaged over 10 sets of random DOAs (single path and three

paths, respectively) and different distance settings. Figure 4.10 shows that with

interference mitigation, collisions can be safely avoided in the “single path” case,

even when the LTE-LAA transmission power is higher than the WiFi transmis-

sion power. While for the “three paths” case, the WiFi UE received SINR drops

below the SINR threshold when the LTE-LAA transmission power increases be-

yond the WiFi transmission power. This implies that LTE-LAA small cell has to

be equipped with power control mechanisms to assure safe simultaneous trans-

missions between LTE-LAA small cells and WiFi nodes, especially in multi-path

propagation environments.
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Figure 4.10: WiFi UE received SINR compared to the SINR threshold.

4.2.2 Channel Occupancy Time Ratio

In this subsection, we use the Channel Occupancy Time Ratio (COTR), which is

also used in [19, 84], as the criterion to evaluate the performance gain of our pro-

posed simultaneous scheme. The time-sharing channel access coexisting scheme

proposed in [19] is considered as the benchmark. The simulation settings are listed

in Table 4.1. Figure 4.11 compares our proposed scheme to the benchmark. The

parameter η of the benchmark scheme is used to tune the transmission duration

once the LTE-LAA small cell senses the free channel and camp on it. Note that

larger η suggests longer transmission duration. Figure 4.11 shows that the WiFi

COTR decreases with increasing LTE-LAA COTR. However, even with η = 10,

the LTE-LAA COTR of the benchmark scheme is still less than half of the one

in our proposed scheme. Further decrease of η to its lowest setting (η = 1), it is

realized that the COTRs of both WiFi DL and UL with the benchmark scheme

is still lower than those of our proposed scheme. This is because in our proposed
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simultaneous transmission scheme, the total channel access time is not divided

between the two systems. Indeed, the COTR of the LTE-LAA small cell increases

with the WiFi COTR and it is only slightly lower than WiFi COTR due to DOA

estimation and null steering delays.

Table 4.1: Simulation Settings

Slot Time 9 µs

SIFS 10 µs

DIFS 28 µs

Clear Channel Assignment (CCA) time 4 µs

CWmin 32

CWmax 1024

NDPA time 9 µs

NDP transmission duration 44 µs

Compressed beamforming transmission duration 9 µs

DOA estimation delay 20 µs

LTE-LAA beamforming delay 10 µs

WiFi DL transmission duration (random each time) 1-10 ms

WiFi UL transmission duration (random each time) 1-5 ms
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Figure 4.11: Comparison of COTR of proposed scheme and benchmark scheme
with different η settings.

Figure 4.11 shows the LTE-LAA COTR which is obtained based on the as-

sumption that all WiFi transmissions are beamformed and the LTE-LAA small

cell can capture the compressed beamforming signal from the WiFi receiver to

conduct DOA estimation every time. We label this as the optimal case with 100%

safe transmission opportunities. However, in practice not all WiFi transmissions

are beamformed and even with beamformed WiFi transmissions, the LTE-LAA

may not always be able to conduct DOA estimation or decode the LENGTH

and DURATION information. In this case, the LTE-LAA small cell is muted

to avoid collisions. Figure 4.12 shows the COTR of our proposed scheme with

different percentages of safe transmission opportunities. It is realized that even

with 30% safe transmission opportunities, the LTE-LAA COTR with our pro-

posed scheme is still higher than that of the benchmark scheme with η = 10.

The WiFi COTR remains the same since the LTE-LAA small cell actions do

not affect the WiFi node. Note that, in the simulations we only consider simul-
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Figure 4.12: Comparison of COTR of proposed scheme with different
percentages of safe transmission opportunities.

taneous LTE-LAA transmissions which are synchronized to WiFi transmissions.

Moreover, when sufficient safe simultaneous transmission opportunities are not

available, the proposed scheme can be combined with existing time division alter-

nate access spectrum sharing schemes to achieve even higher LTE-LAA COTR.

However, this comes at the cost of lowering the WiFi COTR.

4.3 Summary

In this chapter, we proposed a simultaneous transmission scheme for LTE-LAA

small cell to coexist with WiFi networks in unlicensed spectrum. The idea is to

use MuSiC DOA estimation and null steering techniques to mitigate interferences

from the LTE-LAA small cell at the WiFi receiver end to avoid collisions. The

simultaneous transmission timing is also crucial which is decided by decoding the
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LENGTH and DURATION fields information from WiFi signals. Some ideal as-

sumptions in Chapter 2 are relaxed such as circular LTE-LAA small cell and WiFi

AP coverage areas and perfect knowledge of the locations LTE-LAA and WiFi

receiving UEs. And the consideration of transmission timing is proved to be cru-

cial for successful simultaneous transmissions. For better WiFi signal monitoring

capability, we suggest that LTE-LAA small cells to be equipped with the latest

802.11 receivers. Simulation results show that the LTE-LAA interferences can

be reduced to almost zero and the proposed simultaneous transmission scheme

causes no more collisions. We can safely state that with the combination of DOA

estimation and null steering the LTE-LAA small cell is able to simultaneously

transmit in coexistence with WiFi transmissions without causing severe damage

to the WiFi networks. With simultaneous transmissions only, operations of the

LTE-LAA small cell are “invisible” to the WiFi networks.
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Chapter 5

Scheme Improvements

From the previous two chapters, possible LTE-LAA simultaneous transmission

opportunities with ongoing WiFi transmissions are exploited by looking into the

spatial domain. The scheme in Chapter 4 extends our exploitation with the

confidence obtained from the first attempt in Chapter 3. Without considering the

presence of direct information exchange between LTE-LAA and WiFi systems,

the key technologies that enable our co-existence scheme are DoA estimation

and null steering. The null steering method used in Chapter 4 is based on the

beamforming method in [7]. But there are remaining problems we need to solve

in order to create the optimum beam pattern to support LTE-LAA simultaneous

transmissions.

The first problem is that, information obtained from DoA estimation may

contain errors which lead to imperfect null steering outcome. The proposed co-

existence scheme in the last chapter considers no direct communication links be-

tween LTE-LAA and WiFi networks. This consideration is based on our intention

of bringing as less modifications to the existing WiFi infrastructures as possible.

However, we have seen works that suggest direct information exchanges between

LTE-LAA and WiFi Self-organizing Network (SON) entities, such as [2]. With

carefully designed direct information exchange, our simultaneous transmission

scheme can be largely simplified and enhanced.

Another problem is that, as shown in Figure 4.9(a) and Figure 4.9(b), with

multiple paths to null, there is a certain level of residual interference power.

That means there still exists a probability of collision if the residual LTE-LAA
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interference power received by the WiFi receiver is high enough to cause WiFi

transmission failure. And for creating safe simultaneous transmission opportuni-

ties, we try to eliminate such uncontrollable collisions.

In this chapter, we first discuss the simplifications and improvements can

be made to our proposed scheme based on the existence of direct information

exchange links between LTE-LAA and WiFi networks. Then, in order to ob-

tain perfect and precise nulls towards victim WiFi UEs that may suffer from

residual interferences from simultaneous LTE-LAA transmissions, we incorporate

Schelkunoff Polynomial (SP) method for null steering into our scheme. Benefits

and limitations of SP method are also discussed.

5.1 Scheme Simplification and Improvement with

Direct Information Exchange between LTE-

LAA and WiFi Networks

In our proposed co-existence mechanism in Chapter 4, there is no direct commu-

nication for information exchange needed between the LTE-LAA small cell and

the WiFi transmitter, and every operation is done at the LTE-LAA small cell, to

avoid more modification efforts for the WiFi standardization bodies. However,

the lack of direct communications between these two types of nodes does bring

some extent of inconvenience, and gives less of an optimal solution. Also, some of

the assumptions can be relaxed and the procedures of our proposed co-existence

scheme are going to be greatly simplified if direct communication links are allowed

between LTE-LAA and WiFi networks. As reviewed in Chapter 2, information

exchange is possible and is discussed in the patent about CSAT [2], as shown

in Figure 2.4 in Chapter 2/Section 2.2.2. However, the information exchange

process in Figure 2.4 is rather complicated and redundant for the purpose of our

co-existence scheme. The reason being, the request-answer process between LTE-

LAA and WiFi SONs and the transformations within each SON may take a long

time to complete and both the LTE-LAA small cell and the WiFi AP have to al-

locate time slots for this communication during which period the shared channel

needs to be remained idle. This not only causes delay overhead but also reduces
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the channel utilization efficiency. So we design a simple information exchange

process for our co-existence scheme which requires minimal modifications to be

made for current WiFi standards.

5.1.1 Information Exchange Design to Support the Pro-

posed Co-existence Scheme

As discussed in previous sections, the key information to capture for the LTE-

LAA small cell to successfully obtain simultaneous transmission opportunities

with null steering are transmission timing information and direction of the WiFi

receiver. So, these two are the information need to be exchanged, more specifically

sent out by transmitting WiFi AP and received by the LTE-LAA small cell. The

LTE-LAA does not need to send a request for these information, as with the

randomness of WiFi transmissions it is uncertain for the LTE-LAA small cell to

decide when to send out the request. That being said, the information exchange

signal for LTE-LAA null steering is mono-directional which keeps the overhead

minimal. The signal has to be a broadcast so that the LTE-LAA small cell can

hear it.

As for the frame placement for this broadcast signal, it needs to be located

after the successful WiFi CCA procedure and before the WiFi transmission. As

shown in Figure 2.7 in Chapter 2/Section 2.2.3 illustrating WiFi CCA subframe

placement, there is a Channel Usage Beacon Signal (CUBS) slot placed after all

DCCA slots and before data transmission subframes, as shown in Figure 5.1. This

CUBS slot conveys a broadcast beacon signal which indicates the CCA procedure

of the WiFi node is successful and reserves the channel. So, this CUBS slot

is perfect to convey the two aforementioned key information. We can modify

this CUBS slot to also broadcast the transmission LENGTH/DURATION and

transmitter/receiver locations information. As the location LTE-LAA small cell

is stationary, with the captured WiFi transmitter/receiver location information,

it is very easy for the LTE-LAA small cell to deduct the WiFi receiver’s direction.

It necessary for the modified CUBS to also broadcast the location of the WiFi

transmitter, as the transmitter can be either the WiFi AP or a WiFi device. The

location of the WiFi AP is stationary, but the WiFi user device may be mobile.
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This information exchange design requires minimal modifications at the WiFi

side and does not bring extra overhead.

Figure 5.1: Channel Usage Beacon Signal Placement.

5.1.2 Scheme Simplification with Direct Information Ex-

change

The simplifications can be made to the proposed co-existence scheme are obvi-

ous. There is no need for the DoA estimation process with direct information

from the WiFi transmitter, and the deduction of the WiFi receiver’s location

requires almost no effort. And the capture of the transmission timing becomes

less complicated. All required information is captured as a bundle, so that the

operations need to be done at the LTE-LAA small cell are greatly simplified to

reduce computational cost and procedure time consumption.

5.1.3 Scheme Improvement with Direct Information Ex-

change

With direct information sent from WiFi, it actually improves the proposed co-

existence scheme to be more practical to implement. The most obvious one is

that, without the direct information exchange, the WiFi transmission has to

be beamformed so that the LTE-LAA small cell is able to decode transmission

timing and DoA information. With direct WiFi broadcast information, all WiFi
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transmissions, beamformed or non-beamformed, can be utilized by the LTE-LAA

small cell to conduct simultaneous transmission attempts. Hence, the simulta-

neous transmission opportunities for LTE-LAA are increased. Also, as it takes

two steps for the LTE-LAA small cell to capture transmission timing and DoA

information without direct information exchange, due to channel uncertainty the

chance of failure in capturing both information is higher than that with the bun-

dled direct WiFi broadcast information. More importantly, the WiFi receiver

information directly from the WiFi transmitter is more precise than that esti-

mated from the DoA estimation process.

The improvements are not limited with direct LTE-LAA and WiFi informa-

tion exchange. We only state those for the proposed scheme based on the specific

design. We believe, for better co-existence between LTE-LAA and WiFi systems

and inter-RAT scheduling, direct information exchange is necessary and will be

further investigated in the future.

5.2 Schelkunoff Polynomial Method for Null Steer-

ing

The Schelkunoff Polynomial (SP) method was first proposed in [104] for create

beam patterns with intended nulls. The antenna pattern can be expressed with

the array factor, whose absolute value indicates the magnitude at each angle.

With an N -element antenna array, we can place N − 1 independent nulls in

arbitrary directions using the Schelkunoff Polynomial method. The array factor

of a uniform linear array (ULA) can be expressed as:

AF = wH ∗ [s(θ)] (5.1)

s(θ, φ) = [1, ej2πdncosθsinφ, ej2π(2dn)cosθsinφ, · · · , ej2π((N−1)dn)cosθsinφ]T (5.2)

where W is the complex weights’ vector, [·]T is the transpose operator, S(θ, φ)

is the steering vector in the direction of (θ, φ), dn = d/λ is the antenna element

spacing d normalized to the wavalength λ, and and N is the number of antenna
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array elements. For a half-wavelength element-spaced array, its array factor on

the azimuth plane (φ = 0) can be rewritten as:

AF =
N−1∑
n=0

wne
−jnπcosθ (5.3)

If we let z = e−jπcosθ, then the array factor can be rewritten as a function of z:

AF (z) =
N−1∑
n=0

wnz
n (5.4)

The expression (5.4) above is a polynomial of the complex variable z. A polyno-

mial of order N has N zeros (which maybe complex). The polynomial above is

of order N − 1 and has N − 1 zeros corresponding to N − 1 nulls. If the zeros are

numbered starting from zero, the zeros will be 0, 1, · · · , N − 2. Then expression

(5.4) can be rewritten as:

AF (z) = wN−1

N−2∏
n=0

(z − zn) (5.5)

We can choose the zeros zn to represent any null direction we need, and then

figure out the corresponding complex weights’ vector which should give us the

antenna pattern we want. Here is an example for a 4-element array as follows.

As the weights are going to be normalized in the pattern generation process,

for simplicity to start with, we can let wN−1 = w3 = 1. Then (5.5) becomes:

AF (z) = (z − z0)(z − z1)(z − z2)

= z3 + z2(−z0 − z1 − z2) + z(z0z1 + z1z2 + z0z2) + (−z0z1z2)
(5.6)

Comparing (5.4) and (5.6), we can have:

AF (z) = z3 + z2(−z0 − z1 − z2) + z(z0z1 + z1z2 + z0z2) + (−z0z1z2)

=
N−1∑
n=0

wnz
n

= w3z
3 + w2z

2 + w1z + w0

(5.7)
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So the weights can be easily found to be:

w =


w0

w1

w2

w3

 =


−z0z1z2

z0z1 + z1z2 + z0z2

−z0 − z1 − z2
1

 (5.8)

Figure 5.2: Null steering results using the SP method.
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Figure 5.3: Null steering results using method in [7].

Figure 5.2 and Figure 5.3 show the better performance of the Schelkunoff

Polynomial (SP) method over the method in [7] we use in Chapter 4 and our

paper [85]. Note that, for a N -element array, the degree of freedom is N−1, thus

with N − 1 nulls the main direction is fixed. However, with the SP method, we

do not need to input the main direction first, instead, we can calculate the main

direction based on the null directions.

5.3 Incorporating the SP Method into Our Scheme

First we compare the SP method with the method in [7]. The benefit of the

SP method is that it does not require the main direction as input, and the null

steering results are also better. With the method in [7], not only we need to input

the main direction at first, which can be really tough to determine for the best null

steering results especially with N − 1 nulls, but also the null steering results are
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not satisfying. The main direction input (110o)in Figure 5.3 was obtained from

multiple simulation trials. And the following figure shows that, with the same

main direction input (112o) calculated with the SP method, the null steering

results are even worse. So, the SP method is more effective to serve our purpose.

Figure 5.4: Null steering results using method in [7] with the same main
direction input calculated with the SP method (112o).

However, the limitation of the SP method exists. As it does not require the

main direction as the input, we do not have direct control on steering the main

beam towards our desired direction. This is not an issue if we have to place

the maximum N − 1 nulls, as there is only one fixed main direction. In this

case, we just need to check if there exists a LTE-LAA small cell UE within the

coverage of the main beam or side lobes that can receive good quality signal

(SINR ≥ threshold). If not, we can either increase the LTE-LAA small cell

transmission power (theoretically the nulls are zeros, so increase transmission

power will not cause increased power in null directions, but increasing power
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may cause potential problems to nearby LTE-LAA nodes or other RATs, so not

recommended), or we can simply skip this simultaneous transmission opportunity.

However, it might not always be necessary to place the maximum number of

nulls. For less than N − 1 nulls, there are more degrees of freedom to choose the

main direction. And with one less null, the method in [7] performs just fine, as

shown in Figure 5.5. With the method in [7], we can have direction control of

steering the main beam, however, the suitable range is still not determined. In

this case, how can we utilize the SP method to steer the main beam more flexibly

within a determined suitable range, thus creating more simultaneous transmission

opportunities, is the key.

Figure 5.5: Null steering results using method in [7] with 2 intended nulls.

Recall the weights’ vector (5.8), if there are only two nulls required, for ex-

ample only zeros z0 and z1 are determined. We now have W being the function

of the only variable z2:
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w(z2) =


w0

w1

w2

w3

 =


−z0z1 · z2

z0z1 + (z1 + z0) · z2
(−z0 − z1)− z2

1

 (5.9)

where z2 = e−jπcosθ2 , θ2 ∈ (0, π), θ2 6= θ0 and θ2 6= θ1. By choosing different

θ2, we can calculate different W , and with each W we can then determine one

fixed main direction. By doing so, we can get a lookup table of suitable main

direction choices with corresponding z2. The following Figure 5.6 shows the

changing main direction with different null direction settings. For each curve,

only one null direction is changed compared to the original setting (17o, 39o, 78o).

The main direction shift is sensitive to the choice of null direction setting. For

example the red curve, the second null is changed by only one degree, and the

main direction is shifted by one degree correspondingly. Theoretically, this lookup

table is attainable, but the required computational power grows exponentially

with larger antenna array.

We have compared and discussed the advantages and disadvantages of both

null steering method. The better option is to adopt both null steering method

into our simultaneous transmission scheme, as illustrated in Figure 5.7 below.

When the number of required null beams is less than the degree of freedom of the

antenna array, the LTE-LAA small cell uses the null steering method in [7] and

input with the main direction (i.e., the LTE-LAA UE’s direction). If the nulls

can be maintained, LTE-LAA small cell initiate a simultaneous transmission,

otherwise skip this opportunity. And when the number of required nulls is equal

to the degree of freedom, the LTE-LAA small cell uses the SP method to conduct

null steering. In this case, only there is a scheduled LTE-LAA UE at or close to the

determined main direction should the LTE-LAA small cell initiate a simultaneous

transmission, otherwise, skip this opportunity.
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Figure 5.6: Null steering results using the SP method.

5.4 Summary

In this chapter, we give the design of direct information exchange from WiFi

to LTE-LAA with minimal WiFi modifications and no extra overhead to sup-

port the proposed co-existence scheme. Simplifications and improvements to the

scheme based on the designed information exchange are also discussed. With

direct information exchange, the DoA estimation procedures is avoided, and aslo

estimation error that comes with it. More importantly, the WiFi transmission

does not have to be beamformed for the LTE-LAA small cell to capture essential

information. Then, to solve the residual interference problem from imperfect null

steering method, we incorporate the Schelkunoff Polynomial method to generate

null beams towards the intended directions. Benefits and flaws of the SP method

are discussed and compared with the original null steering method adopted in

Chapter 4. Both null steering methods are adopted in our scheme to utilize their

advantages, and the choice of null steering method is according to the number of
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required nulls. When the number of required null beams is less than the degree

of freedom of the antenna array, the LTE-LAA small cell uses the original null

steering method and input with the main direction, and when the number of

required nulls is equal to the degree of freedom, the LTE-LAA small cell uses the

SP method.
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Figure 5.7: Flow chart incorporating both null steering methods.
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Chapter 6

Future Work

To further improve the practicality of our proposed simultaneous transmission

scheme in real deployment scenarios, there is more effort required about find-

ing the optimum beam pattern. The optimum beam pattern created for each

LTE-LAA simultaneous transmission should not only satisfy the null steering re-

quirement, but also be controllable to accommodate the LTE-LAA small cell’s

own scheduling purpose. That means, the main direction of the synthesized

beam pattern considering desired nulls should be able to be controlled to either

point at a scheduled LTE-LAA UE or provide acceptable SINR for it. Based on

these two considerations, in this chapter we first discuss feasible method that can

be adopted into our LTE-LAA simultaneous transmission scheme in the future.

Moreover, for LTE-LAA small cell simultaneous transmissions to be fully “invis-

ible” to nearby WiFi devices, we also discuss the scenario where the LTE-LAA

small cell places a persistent null towards the WiFi AP in this chapter.

6.1 Adaptive Beamforming in Indoor Multi-path

Environment

When LTE-LAA small cells are deployed in indoor environments such as offices,

interference mitigation for the victim WiFi UE can be more complicated due to

unpredictable propagation environment brought by mutli-path effect. Generating

null directions directly pointing at the angle of the victim WiFi UE and look
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direction directly at the intended LTE-LAA UE cannot guarantee the expectation

most of the time, as the signals are bounced and scattered and may arrive at

different angles. Thus, for this scenario, we need a more intelligent and dynamic

approach to solve this issue. Adaptive beamforming is a closed-loop solution

(where channel feedback is required from the receivers), and is able to effectively

counteract multi-path effect. It involves three main steps. The first step is channel

sounding where the transmitter (Tx) sends a pilot packet on the channel. The

second step is channel estimation and feedback where the receiver (Rx) estimates

the channel gain and feeds this information back to the transmitter. The third

step is beam computation where the transmitter adapts the beam pattern based

on the channel feedback from the receiver.

Compared to the outdoor scenario, adaptive beamforming in indoor case re-

quires real-time channel estimations of both the victim WiFi UE link and the

target LTE-LAA UE link (a closed-loop operation compared to the outdoor LoS

case which is an open-loop operation). For the target LTE-LAA UE, the LTE-

LAA small cell either sends a request for aperiodical feedback, or use the channel

information from the latest feedback as indoor environment is low mobility and

relatively slow time-varying[105] (retain for several tens of seconds or packets).

And for the victim WiFi UE, we can reasonably assume symmetric (or reciprocity)

channels between itself and the LTE-LAA small cell within a very short time pe-

riod. With this assumption, the channel coefficient matrix can be estimated from

the WiFi NDP channel calibration response signal (details in the ICC paper).

However this assumption might be questioned, as in reality the channels are not

always symmetrical [106], even though it is commonly assumed.

The modified channel estimation process considering oscillator induced phase

offset for MISO and MIMO channels are given in [107]. Now we do not include

much detail of the channel estimation procedure and start from the step where

the channel coefficient vectors are already obtained, h = [h1, · · · , hL]T for the

target link and g = [g1, · · · , gL]T for the victim link. For MISO channels, the

baseband channel models with beamforming for the target link and the victim

link are respectively given by:

ytarget = hTx+ z (6.1)
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yvictim = gTx+ z (6.2)

where y is the received signal and z is the additive White Gaussian noise. A

beamformer is defined as a weight vector w which translates each transmit symbol

s to the signal vector x = ws to be transmitted from the L antenna elements.

The aim of beamforming in our scheme is to maximize the SINR at the target

LTE-LAA UE while at the same time keep the SINR at the victim WiFi UE

above a certain threshold THSINR. The threshold TSINR can then be translated

into an interference threshold THinterference, and the signal power towards the

victim WiFi UE from the LTE-LAA small cell must be kept below THinterference.

This is equivalent to the following optimization problem:

max‖hTx + z|2

s.t.‖gTx+ z‖2 < THinterference

‖w‖2 = 1

(6.3)

which is then equivalent to

max‖hTw‖2

s.t.‖gTw‖2 < TH ‘
interference

‖w‖2 = 1

(6.4)

By solving the above optimization problem, we can determine the optimum weight

vector for the beamformer. The more antenna elements, the better signal strength

separation between the target link and the victim link. A 12 dB and 22 dB RSSI

separation are achieved through experimentations in [105]. And also, when the

target link and the victim link have less correlated channels, it is easier to suppress

interference to the victim WiFi UE.

The concern now is twofold. The ability of the LTE-LAA smallcell obtaining

channel vector from the victim WiFi UE can be questioned. Without direct com-

munication between the LTE-LAA smallcell and the victim UE, the estimation

of channel vector of the victim link is not very safe to assume. And, the opti-

mization problem may take a noticeable time to solve. In our scenario, it can be
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a concern as the simultaneous transmission opportunity is fleeting.

6.2 LTE-LAA Beamforming with Persistent Null

Steered towards the WiFi AP

As our proposed simultaneous transmission scheme for LTE-LAA can be seam-

lessly combined with conventional time sharing co-existence mechanisms, there

will still be LTE-LAA SDL transmissions happen within the WiFi idle periods.

During these LTE-LAA transmissions, nearby WiFi nodes sense the channel be-

ing occupied and enter their back-off “frozen” state. Their back-off counter will

continue to count down when the shared channel is sensed clear again. What if

we can find a way not to freeze the WiFi back-off counter so that the back-off

frozen caused by LTE-LAA transmission occupying the channel can be avoided?

As the back-off frozen state actually lengthens the back-off period to a great ex-

tent comparing to the “unfrozen” back-off duration depending on the duration of

ongoing LTE-LAA SDL transmission, by reducing the probability of triggering

back-off “frozen” state the WiFi resource utilization efficiency and delay can be

greatly improved.

This objective is not hard to achieve. The concept is that we always place

a null towards the WiFi transmitter during its idle period, so that the WiFi

transmitter will not hear the LTE-LAA small cell any more, thus back-off “frozen”

state triggered by LTE-LAA SDL transmissions can be avoided. By doing so,

the deployed LTE-LAA small cell’s “invisibility” is improved. With the SP null

steering method, it is simple to set the direction of the WiFi transmitter as one

of the null inputs. And with GA method, we can set the null direction towards

the WiFi transmitter as a constant constraint for beam pattern optimization.

There are some problems regarding this persistent null. For practical imple-

mentation, the WiFi transmitter can only be the WiFi AP, as it is stationary.

For mobile WiFi devices, their location may be changed over time, and set a

persistent null towards any mobile WiFi transmitter can be a waste of degree

of freedom when creating the beam pattern. And speak of degree of freedom,

another problem arises. That is, adding one persistent null during WiFi idle
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period decreases the freedom of the LTE-LAA main beam direction, thus limits

the beam pattern variety. So, the higher priority is still placing nulls the WiFi

receiver’s DoA path(s), and if suitable, also place a null towards the WiFi AP.

6.3 Summary

As discussed in this chapter, there are some bottle neck problems need to be

solved and improvements we can make to modify our co-existence scheme. An

optimal beam pattern to support our co-existence scheme needs to strike a SINR

balance between the desired LTE-LAA UE and the victim WiFi receiver. More

simulation works need to be done to fully reveal the performance of our proposed

scheme. And for the persistent null towards the WiFi AP, it also needs to be

verified via simulations.
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Chapter 7

Conclusion

In this thesis, by looking at the possibilities in the spatial domain, two LTE-LAA

and WiFi co-existence schemes exploiting simultaneous LTE-LAA transmission

opportunities with ongoing WiFi transmissions are proposed.

In our first attempt made in Chapter 3, we show the feasibility of such simul-

taneous transmission opportunities considering AP/UE location diversity and

various coverage overlap situations between LTE-LAA small cell and WiFi AP.

We conduct derivations of the probability of coverage overlap between LTE-LAA

small cells and WiFi APs by modelling the network nodes with a spatial bivariate

Poisson point process. Then we propose a coexistence scheme for LTE-LAA small

cell and WiFi AP in the unlicensed spectrum with the consideration of various

possibilities of coverage overlap between them. The theoretical analysis is con-

ducted in simple scenario where an LTE-LAA small cell overlaps with one WiFi

AP within a WiFi network. The analysis can be extended to a more general sce-

nario where an LTE-LAA small cell overlaps with multiple WiFi APs with little

effort. However, as the first attempt to exploit simultaneous LTE-LAA and WiFi

transmission opportunities in the spatial domain, the proposed scheme in Chap-

ter 3 is rather idealistic with ideal assumptions such as circular LTE-LAA small

cell and WiFi AP coverage areas and perfect knowledge of the locations LTE-

LAA and WiFi receiving UEs. In real deployment scenarios, these assumptions

may cause errors in deciding the cell coverage boundaries and transmission delay

due to asynchronous feedback reports. Even with these potential problems, our

first attempt shows the possibility of simultaneous transmission opportunities by
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exploiting the spatial domain, which is novel comparing to existing co-existence

designs.

Following the same motivation and with the purpose of relaxing some of the

idealistic assumptions, we then further exploit simultaneous LTE-LAA and WiFi

transmission opportunities by utilizing multi-antenna beamforming capability in

Chapter 4. We manage to relax some of these ideal assumptions in Chapter 3

with the assistance of multi-antenna beamforming technology. We combine DoA

estimation with null steering technologies to steer the LTE-LAA simultaneous

transmission beam pattern so that nulls are generated towards the victim WiFi

receiver to avoid collisions. The simultaneous transmission timing is also crucial

which is decided by decoding the LENGTH and DURATION fields information

from WiFi signals. For better WiFi signal monitoring capability, we suggest that

LTE-LAA small cells to be equipped with the latest 802.11 receivers. Simulation

results show that the LTE-LAA interferences can be reduced to almost zero and

the proposed simultaneous transmission scheme causes no more collisions. From

the results, we can safely state that with the combination of DOA estimation

and null steering the LTE-LAA small cell is able to simultaneously transmit in

coexistence with WiFi transmissions without causing severe damage to the WiFi

networks. With simultaneous transmissions only, operations of the LTE-LAA

small cell are “invisible” to the WiFi networks.

The co-existence schemes in Chapter 3 and Chapter 4 are proposed based

on the fact that there is no direct communication link between LTE-LAA and

WiFi networks. We also give the design of direct information exchange from

WiFi to LTE-LAA with minimal WiFi modifications and no extra overhead to

support the proposed co-existence scheme. Simplifications and improvements to

the scheme based on the designed information exchange are also discussed. We

believe, for better co-existence between LTE-LAA and WiFi systems and inter-

RAT scheduling, direct information exchange is necessary and will be further

investigated in the future.

We have thoroughly discussed and compared two different null steering meth-

ods. In Chapter 5, we give our proposed procedure to combine the benefits of both

methods. To avoid LTE-LAA transmissions being too aggressive in unlicensed

spectrum, and with the consideration of power efficiency, we force LTE-LAA
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small cell to skip simultaneous transmission opportunities when it fails to meet

certain conditions.

The main challange identified for future works is to find an effective method to

generate the optimal beam pattern that supports our co-existence scheme to strike

a SINR balance between the desired LTE-LAA UE and the victim WiFi receiver.

Moreover, to better enjoy the benefits of simultaneous transmission opportunities,

modified scheduling scheme to support our co-existence mechanism is another

aspect to work on. For example, delay-sensitive traffic is not appropriate to

be scheduled with simultaneous transmissions as the beamforming optimization

process causes delay overhead. And another aspect to consider the priority of UEs

except QoS classifications and CSI reports is the beam pattern outcome, meaning

that the priorities of those UEs located within the main beam lobe range of the

coming simultaneous transmission opportunity are reasonable to be raised higher.

From the discussions and simulation results, we prove that there exist such

simultaneous transmission opportunities which do not cause extra impact on WiFi

networks, and the channel occupancy time of LTE-LAA can be greatly improved.

However, problems and challenges are also identified that require future efforts.
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