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Abstract 

Asthma is the most common chronic disease of childhood. In this thesis, I investigated 

whether there is an association between traffic-related air pollution (TRAP) and the 

development of childhood asthma, quantified the magnitude of this association and 

estimated its public health impact in Bradford, UK. For these purposes, I conducted 

a systematic review and a meta-analysis. I then developed a new vehicle emission 

model to estimate traffic NOx and compared it to the standard European model. 

Subsequently, I set up and validated two full-chain health impact assessment models; 

linking distinct traffic, emissions, atmospheric dispersion and health impact models. 

Each full-chain model was underlined by a different vehicle emission model, the new 

and the standard one, and as such I tested the sensitivity of final air quality and health 

impact estimates to the vehicle emission estimates. I estimated the childhood 

population exposure to NO2 and NOx at the smallest census tract level and quantified 

the annual number of asthma cases associated with these exposures, whilst 

disentangling the impacts of traffic-related NO2 and NOx, and also the impacts of 

traffic-related NO2 and NOx specifically from minor roads and cold starts. I compared 

the full-chain models’ estimates to estimates from commonly used land-use 

regression models which further provided exposure and health impact estimates for 

black carbon, PM2.5 and PM10. I quantified positive and statistically significant 

associations for black carbon, NO2, PM2.5, PM10 and risk of childhood asthma. The 

association with NOx was positive but not statistically significant. I showed that the 

new vehicle emission model, as compared to the standard model, resulted in different 

source apportionment and higher emissions at low average speeds. These 

differences, however, did not translate into meaningful differences in air quality or 

health impacts, partly due to limitations in the traffic data which underestimated 

congestion. The full-chain models estimated NO2 and NOx with satisfactory predictive 

power but resulted in lower exposures and health impacts as compared to land-use 

regression. I estimated that 15% to 38% of all asthma cases in Bradford may be 

attributable to air pollution. Up to 6% and 12% of all cases were specifically 

attributable to TRAP, with and without minor roads and cold starts, respectively, but 

this percentage was underestimated. Full-chain health impact modelling was 

demonstrated as a valuable but underutilized tool to estimate the burden of disease 

associated with TRAP and to test the impacts of specific policy scenarios with a 
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temporal and/or spatial element. There is a further need to improve the feasibility, 

utility, resolution and validity of the supporting data and the full-chain modelling 

approach, especially by addressing its underestimation of TRAP, and consequently, 

the associated health impacts.
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1 Background, Aims and Methodological Framework 

1.1. The Wider Context 

Clean air is a basic physiological necessity for human health and well-being. 

Nonetheless, air pollution is a significant threat to human health, worldwide (World 

Health Organization, 2006), and has been cited as the single biggest environmental 

health risk (Vidal, 2014). Traditionally, air pollution was recognized as an issue 

associated with domestic heating, coal burning and industrial emissions (Vardoulakis 

et al., 2003). In present urban areas, however, outdoor air pollution has become 

dominated by road traffic dust and tailpipe emissions (Anderson et al., 2013, 

European Environment Agency, 2007). Traffic-related emissions and air pollution, 

and subsequent exposures, are highly variable in space and time due to the motor 

vehicles’ mobility; the uncertain and variable estimates of exhaust and non-exhaust 

traffic emissions; complex dispersion factors and the movement of people during 

leisure and daily activities. The cultural and often economic dependence on motor 

vehicles in combination with the increasing proportion of the population living and 

working near busy highways and busy urban roads has resulted in a greater number 

of people exposed to Traffic-Related Air Pollution (TRAP). This exposure puts more 

people at risk of numerous adverse health effects (Health Effects Institute, 2010). 

In recent decades, the number of epidemiological studies showing TRAP as a public 

health problem grew substantially (Health Effects Institute, 2010, Khreis et al., 2016). 

Research studies demonstrates a robust association between TRAP and premature 

mortality (Beelen et al., 2014, Héroux et al., 2015, Hoek et al., 2013, Health Effects 

Institute, 2010). TRAP has also been associated with a wide spectrum of diseases, 

including, but not limited to, cardiovascular disease (Cesaroni et al., 2014); lung 

cancer (Raaschou-Nielsen et al., 2013, Health Effects Institute, 2010); diabetes (Eze 

et al., 2015); adverse birth outcomes such as premature birth, low birth weight, and 

perinatal mortality (Pedersen et al., 2013, Health Effects Institute, 2010, Sapkota et 

al., 2012) and adverse respiratory outcomes, especially in childhood, such as 

respiratory infections, decrements in lung function, chronic obstructive pulmonary 

disease and asthma (Health Effects Institute, 2010, MacIntyre et al., 2014b, Gehring 

et al., 2013, Eeftens et al., 2014, Anderson et al., 2013). 
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Exposure to TRAP in early life is of particular importance to infants and children, who 

are more susceptible to the hazardous effects of air pollution due to various reasons 

including their immature detoxification, immune and respiratory systems; their higher 

respiratory rates and their higher activity levels and time spent outdoors; where 

exposure to TRAP is generally elevated (Braback and Forsberg, 2009, Wright and 

Brunst, 2013). For example, at birth, the human lung and bronchial tree are not well-

formed, and the development of its full functionality does not occur until approximately 

6 years of age (Schwartz, 2004). The lung volume continues to increase through 

adolescents, until 18 years of age (Ritz and Wilhelm, 2008). The respiratory rate of 

infants and children is 3 times faster than that of adults and their ventilation rate is up 

to 66 times greater (Wright and Brunst, 2013). As such, both infancy and childhood, 

from birth to 18 years old, represent exposure windows that are crucial for some 

medical endpoints, including respiratory diseases. Exposure during these critical 

windows of time (or life periods) can result in permanent changes to the body’s 

structure and function and, therefore, have life-long effects (Vrijheid et al., 2014). 

The focus of this research was to assess 1) the risk (by producing meta-analytic risk 

estimates) and 2) the public health burden (by producing burden of disease 

estimates) of childhood asthma (from birth to 18 years old) associated with and 

attributed to TRAP exposures. 

1.2. Background 

Asthma is a chronic inflammatory disease of the air passages leading to and from the 

lungs and is cited as the most common chronic disease of childhood (Gasana et al., 

2012, Fabian et al., 2012, Gaffin and Phipatanakul, 2014). Childhood asthma 

prevalence in the UK is high and ranges between 17% and 23% (National Institute 

for Clinical Excellence, 2007). Amongst other paediatric long term conditions, asthma 

accounts for the highest number of emergency bed-days and emergency hospital 

admissions (Yorkshire and Humber Public Health Observatory, 2012): a child is 

admitted to hospital every 20 minutes because of an asthma attack (Asthma-UK, 

2014). In 2007/2008, for example, there were 32,030 emergency bed-days in England 

for children and young people aged under 19 years old with a primary diagnosis of 

asthma (Yorkshire and Humber Public Health Observatory, 2012). Every year, the 

National Health Service (NHS) spends £1 billion treating and caring for asthmatics 

(Asthma-UK, 2014) 
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Clinically, asthma has heterogeneous phenotypes. Yet, the condition can be 

principally characterized by a reversible airflow limitation, bronchial hyper-

responsiveness1 and airway inflammation (McCunney, 2005, Corren, 2013, Ishmael, 

2011). The dominant process that leads to clinical symptoms is smooth muscle 

contraction and airway inflammation, accompanied by an over production of mucus, 

which result in the airflow limitation and obstruction (Ishmael, 2011). The inflammatory 

process affects the entire tracheobronchial tree and can cause severe episodic airflow 

obstruction (asthma attacks), shortness of breath, coughing and wheezing (Saetta 

and Turato, 2001, Ober and Yao, 2011). These processes and symptoms have a 

significant impact on quality of life of affected children and their caregivers as they 

restrain school and outdoor play; cause absenteeism; night and sleep disturbance 

(National Institute for Clinical Excellence, 2007) and impose a burden on caregivers 

to monitor symptoms and administer medication (Halterman et al., 2004). 

A clinical diagnosis of asthma is based on Forced Expiratory Volume in 1 second 

(FEV1), Peak Expiratory Flow rate (PEF) and reported symptoms including coughing; 

difficulty breathing; chest tightness; shortness of breath and wheezing (Ishmael, 

2011, Yawn, 2008, Weir, 2008); whilst excluding other causes of recurrent respiratory 

symptoms (National Institute for Clinical Excellence, 2007). From this symptoms’ list, 

prospective follow-up studies demonstrate that wheezing is, to some degree, a 

predictive factor of later asthma (Hyvärinen et al., 2005, Piippo‐Savolainen and 

Korppi, 2008, Piippo-Savolainen et al., 2004). 

Due to the transient and reversible nature of asthma and its non-specific symptoms 

which are shared with other disease processes, the condition is generally under-

diagnosed and under-treated (Karadag et al., 2007, Okoromah and Oviawe, 2002, 

Speight, 1978, Weir, 2008, World Health Organization, 2013). This is particularly true 

in children where objective clinical tests are difficult to perform due to compliance 

difficulties (Weir, 2008). Further, the under-representation of patient symptoms to 

clinicians, low parental attention and low access to health centres play an important 

role in under-diagnoses (Zejda et al., 2013, van Schayck and Boudewijns, 2017). 

Over the past three to four decades, the global prevalence of asthma has been on 

the rise (Anandan et al., 2010, Gasana et al., 2012, Pearce et al., 2007, World Health 

Organization, 2013). More than 358 million people have asthma, globally (van 

                                                

1 A state characterized by easily triggered contraction of the bronchioles (small airways). 
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Schayck and Boudewijns, 2017). No explicit explanations of these relatively rapid 

increases exist (Brauer et al., 2002, Clark et al., 2010, World Health Organization, 

ND), but it is unlikely that genes which modify the susceptibility to asthma have 

changed over this relatively short time period (Cookson, 2004). Several plausible 

theories have been put forward to explain these recent increases in the prevalence 

and incidence of the disease (Brunton and Saphir, 1999, Baldi et al., 1999, Brooks et 

al., 2013, Byrd and Joad, 2006, Bernstein, 2012), all of which theorize that the 

observed increases are attributable to recent environmental changes. Amongst the 

suggested theories and explanations is the potential contribution of ambient air 

pollution in promoting the disease, especially when the exposure takes place in the 

early years of childhood (Bernstein, 2012, Baldi et al., 1999, Byrd and Joad, 2006). 

Until relatively recently, the common wisdom about air pollution and asthma was that 

air pollution can exacerbate pre-existing asthma across a variety of outcomes; such 

as increasing rates of asthma hospitalizations, emergency room visits and medication 

used (Schildcrout et al., 2006, Schwartz et al., 1993, Gauderman et al., 2002, Sunyer 

et al., 1997, Lierl and Hornung, 2003, Lipsett et al., 1997, Von Klot et al., 2002, 

Slaughter et al., 2003); but cannot cause the development of the disease (Eder et al., 

2006). This school of thought was affirmed by various studies that showed the 

prevalence and incidence rates of asthma to generally be not greater in communities 

with higher levels of regional air pollution (McConnell, 2013, Heinrich et al., 2002). 

In recent years, however, the research community has produced multiple studies 

which suggested an association between living near busy roads or high levels of 

traffic activity and TRAP and the prevalence or incidence of childhood asthma (see 

Chapter 2). As eloquently phrased by McConnell (2013) at the 2013 Symposium on 

Cumulative Impacts and Children's Environmental Health: 

‘…I think we’ve been looking for the last thirty years at the wrong 

pollutant mixture (referring to regional and not traffic-related air 

pollution) and I also think as you’ll see, I think that that history has 

got in the way of advancing our understanding of the role of air 

pollution in asthma, and has limited our approach to risk 

assessment…' 

The research on TRAP and asthma onset has picked up momentum recently and 

witnessed several advances. First, although several studies investigated the 

associations between air pollution and asthma exacerbations or asthma prevalence 
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at one point in time, the evidence for the effect of exposure to TRAP on asthma onset 

was considerably less developed. This particular research area has seen an epidemic 

recent increase in the number of published studies, with 19 (out of 42 studies) 

published after 2014 (Khreis and Nieuwenhuijsen, 2017). 

Second, to define the exposure and study its effects, earlier studies on the 

associations between TRAP and asthma relied on air pollution data from fixed-site 

monitoring stations and/or proximity analysis and measures such as distance to major 

roads or traffic intensity within buffer zones (English et al., 1999, McConnell et al., 

2006, Zmirou et al., 2004, Shima and Adachi, 2000, Shima et al., 2003, Shima et al., 

2002). With the further development of Geographic Information Systems (GIS) 

applications and other sophisticated modelling packages capable of simulating air 

pollution dispersion in ambient air, exposure assessment methods have undergone 

important changes, leading to a more accurate assessment of TRAP exposures and 

a new capacity to study the effects of actual pollutant and not just surrogates of TRAP 

(e.g. distance to major roads). More and more studies began to report positive 

associations between exposure to TRAP and the development of childhood asthma 

(Khreis and Nieuwenhuijsen, 2017). Yet, this evidence was never deemed sufficient 

(Health Effects Institute, 2010) and a synthesis of this rapidly growing evidence base 

has been missing from the literature since year 2010. 

Since the Health Effects Institute (HEI) seminal Special Report 17 on ‘Traffic-Related 

Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health 

Effects’ (Health Effects Institute, 2010), an updated synthesis focused on TRAP and 

the risk of childhood asthma development has been absent. Further and linked to this 

point, there was a lack of exposure-response functions based on systematic reviews 

and meta-analyses of relevant studies; something which limits the use of the 

relationship between TRAP and asthma onset to evaluate the burden of disease 

and/or the impact of transport policies on childhood asthma (Favarato et al., 2014). 

Until now, it was only possible to generate meta-analytic exposure-response 

functions for commonly used pollutant metrics such as nitrogen dioxide (NO2) but not 

for the plethora of traffic-related air pollutants because of the limited and 

heterogonous evidence base. As such, the very few previous Health Impact 

Assessment (HIA) studies assessing the burden of asthma attributable to TRAP relied 

on exposure-response functions from individual studies (i.e. single rather than a 

pooled meta-analytical estimate). These individual studies’ exposure-response 

functions used proximity to traffic as the underlying exposure metric, lacked statistical 
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precision and led to high statistical uncertainty in the range of the estimated impacts 

(Perez et al., 2009, Perez et al., 2013). 

Moreover, research on TRAP and asthma development, as many other health 

outcomes, has been typically undertaken in at least two separate stages. Air pollution 

or traffic levels are often assessed by GIS, transport and air pollution modellers whilst 

health effects or impacts are often assessed by epidemiologists and health impact 

assessors. The holistic tailpipe-to-lungs spectrum has been rarely modelled and 

assessed in a comprehensive and continuous manner and there is a clear lack of full-

chain HIA models (Nieuwenhuijsen et al., 2017, Texas A&M Transportation Institute, 

2016). 

In a full-chain model, the work considers the full-chain from the exposure source to 

the health endpoint and as such, traces the health impacts under investigation back 

to the responsible air pollution sources. The exposure is assessed starting from the 

source (e.g. traffic activity); to source emissions (e.g. traffic emissions); to resulting 

air quality and exposures (e.g. emissions dispersion and TRAP exposures) and finally 

to the associated health effects or impacts (e.g. new asthma cases) (Nieuwenhuijsen 

et al., 2017). 

In practice, full-chain models could be obtained by coupling existing models of traffic, 

emissions, air pollution dispersion and exposure assignment, to estimate final human 

TRAP exposures and associated health effects or impacts. 

This full-chain model approach has a key practical advantage: it makes an explicit 

link between the source of air pollution (e.g. urban road traffic, diesel versus petrol 

vehicles, heavy duty versus light duty vehicles etc.) and its impacts (e.g. childhood 

asthma cases). As such, the full-chain model approach allows analysing the 

environmental and health impacts of specific policy scenarios that are under or should 

be under consideration (e.g. reducing or spatially/temporally shifting urban road 

traffic, changing proportions and operations of diesel versus petrol vehicles, heavy 

duty versus light duty vehicles etc.). The current wall between the different disciplines 

and the chain’s steps is significant, not only because it impairs explicit and specific 

policy scenario analysis and recommendation, but also because there are many steps 

and decisions to be made along this full-chain, or the parts of it, all of which have 

implications on the results, their validity and their utility. Therefore, the process is 

viewed here as important as the outcome as it can highlight the uncertainties in 

current scientific knowledge and practice and sheds light on open questions and 

potential for relevant advances. 
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Finally, key advantages of the full-chain model approach can be realized in future 

research that assesses the environmental and health impacts of traffic and transport 

policy scenarios that have a clear temporal or spatial element, and/or research that 

requires refined spatial-temporal estimates of TRAP to add them onto time activity 

patterns and belter capture human exposure variability and its health impacts. 

Although these important areas of application were not explored, and were beyond 

the scope of the current study, the methodology presented here paves the way for 

such analyses. 

With childhood asthma reaching epidemic proportions in some regions and with road 

traffic continuing to be the principal source of air pollution in urban areas, a clearer 

understanding of the interactions between TRAP and the onset and burden of the 

disease is a priority. Such an understanding may further our knowledge of the 

potential mechanisms of asthma development and the complex interplay between 

genetic and environmental factors and may offer some explanation of the relatively 

rapid changes in asthma prevalence, in times when TRAP became more dominant. 

The burden of asthma specifically attributable to TRAP has also been rarely quantified 

and although the individual asthma risks associated with TRAP can be relatively 

small, the public health consequences can be significant, but are yet underexplored. 

1.3. Aim and Objectives  

The overarching aim of this research study has been to estimate the impact of 

TRAP exposures on the development of new cases of childhood asthma using 

full-chain health impact assessment models complemented with meta-analytic 

exposure-response functions and a novel vehicle emissions assessment 

methodology. The specific objectives of this research study were six-fold, as outlined 

below. These objectives were met in the respective chapters (in brackets): 

Box 1. Research Objectives and Corresponding Chapters 

 Objective 1  To investigate whether early-life exposure to TRAP can 

drive the subsequent development of asthma in children from birth to 18 

years of age (Chapter 2)  

 Objective 2  To investigate pollutant-specific effects and provide 

appropriate pollutant-specific meta-analytic exposure-response functions 

that can be used in health impact assessment (Chapter 2) 

 Objective 3  To develop a new more reliable vehicle emission model 

and compare it to the standard vehicle emission model used in road 

transport emission inventory estimation (Chapter 4) 
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 Objective 4  To develop a full-chain exposure assessment model linking 

traffic, emissions and atmospheric dispersion models and estimate TRAP 

exposures in a UK case study (Chapters 3, 4 and 5); 

 Objective 5  To estimate the burden of childhood asthma attributable to 

TRAP assessed in the UK case study (Chapter 6); 

 Objective 6  To explore whether different exposure assessment 

methods and different vehicle emission assessment methodologies 

translate into different estimated disease burdens (Chapter 6); 

 Objective 7  To highlight knowledge gaps and systematically outline the 

uncertainties at each step of the full-chain modelling; overview alternatives 

and highlight research and practice needs to advance the current state-of-

art (Chapter 7). 

1.4. Overall Methodology 

The overall methodological framework of this research study is shown in Figure 1. 
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Figure 1 Full-Chain Health Impact Assessment of TRAP, Source: Modified after 

Nieuwenhuijsen et al. (2017) 

To achieve objective 1, a comprehensive and up-to-date systematic review of 

available studies on the associations between TRAP exposures and the subsequent 

development of childhood asthma (birth to 18 years of age) was conducted (Chapter 

2). This work contributed to the literature by providing the first updated synthesis 

focused on TRAP and the risk of childhood asthma development since the HEI report 

in 2010 (Health Effects Institute, 2010). The development of childhood asthma was 

defined as new asthma in previously healthy children when 1) reported between two 

or more follow-ups or 2) reported over the lifetime of the child in birth cohort studies 

or cross-sectional studies. Likewise, the case-control studies included either looked 
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at lifetime asthma as a measure of asthma development (i.e. like birth cohort studies) 

or excluded children with a history of asthma in the control groups (i.e. like cohort 

studies). In all the included studies, the exposure to TRAP had to precede the 

outcome to ensure the correct temporal sequence of events. For example, 

associations between birth year exposure and lifetime asthma prevalence in cross-

sectional studies were considered as associations between TRAP exposure and 

asthma development and hence such studies were included. As such, studies that 

investigate asthma incidence and those that investigate lifetime prevalence were 

included, as long as the exposure to TRAP preceded the outcome detecton in 

previously health children. This formulation is similar to previous methodology 

adopted by the Health Effects Institute (2010). The question of whether the increase 

in asthma incidence and/or lifetime prevalence in association to TRAP might 

represent added cases, an acceleration of the development of asthma or increased 

severity making the disease sufficiently apparent for clinical diagnosis is not 

addressed here and cannot be answered based on the current evidence. 

To achieve objective 2, pollutant-specific meta-analyses were undertaken to explore 

pollutant-specific effects of TRAP on childhood asthma and understand the drivers of 

heterogeneity. The meta-analyses quantified the relationship between TRAP and the 

subsequent development of childhood asthma with increased precision providing 

appropriate exposure-response functions which were used in subsequent health 

impact assessment (Chapter 2 and 6). This work contributed to the literature by 

providing previously missing meta-analytic exposure-response functions for a 

plethora of traffic-related air pollutants in association with childhood asthma 

development. 

To achieve objective 3, real-world driving cycles were directly collected from the study 

area of Bradford, UK, and these were used to model second-by-second vehicle 

emissions for the wide range of vehicles operating in Bradford. This modelled data 

underlined the development of a new emission model (a new set of average-speed-

emission functions) which was compared to the standard approach and used to 

estimate the road transport emission inventory. This work contributed to the literature 

by exploring and developing alternative methods for local vehicle emission modelling 

and providing alternative emission estimates whose impacts on air quality and health 

impact estimates were studied. Across the full-chain, advancing the emission 

modelling stage received the most attention and effort. The key reasons behind this 

decision were: 1) the accumulating knowledge that standard methods to estimate 
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vehicle emission factors, especially in urban settings, are substandard and 

underestimate real-world vehicle emissions, and therefore subsequent TRAP (see full 

literature review in Sections 4.1.2, 4.1.3 and 4.1.4); 2) the initial expectation that the 

underestimation of TRAP will result in significant underestimation of human exposure 

and associated health impacts, and therefore higher vehicle emission factors might 

result in higher and more realistic attributable disease burden and 3) practical 

considerations including the available time and resources such as the technical 

capacity and state-of-the-art equipment that were available at the Institute for 

Transport Studies to measures vehicle driving cycles and model instantaneous 

vehicle emissions. In hindsight, it is now clear that the new emission modelling 

methodology had very little impact on the attributable burden of disease and that 

improvements focused on other stages of the full-chain model might have yielded 

better estimates. However, the new emission modelling methodology, and linking it 

to highly resolved traffic data, can be extremely useful in other applications, which 

were beyond the scope of this research study. These include: 1) the assessment of 

traffic and transport policies that have clear temporal consequences, for example, 

altering the spatial and diurnal profiles of traffic flows, speeds or emissions and 2) 

complementing the more refined spatial-temporal estimates of TRAP with time activity 

patterns to better capture human exposure variability and study exposure 

misclassification that may result from standard assessment methods, for example, 

assigning exposures at the residential address or at the census tract level. 

Unfortunately, these issues could not be addressed within the scope of the current 

study, but the work presented here paves the way for such analyses. 

To achieve objective 4, traffic, emissions and atmospheric dispersion modelling were 

undertaken using the two different emission models (newly developed versus 

standard). Each traffic, emissions and atmospheric dispersion models set were linked 

together in a novel full-chain exposure assessment model (Chapter 3, 4 and 5). This 

work contributed to the literature by developing the full-chain exposure models and 

validating them against multiple data sets. 

To achieve objectives 4 and 5, TRAP in Bradford was estimated using the two full-

chain exposure assessment models (linking a traffic model, with two different 

emission models and an atmospheric dispersion model). Estimated TRAP was 

spatially linked to census population data and new cases of asthma attributable to 

these exposures were estimated using standard health impact assessment 

methodology (Chapter 5 and 6). This work contributed to the literature by estimating 
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the burden of childhood asthma attributable to exposures to air pollution, and 

specifically to its traffic-related component. 

To achieve objective 6, the differences in the health impacts estimated using the two 

full-chain exposure assessment models were explored. Further, a third previously 

developed and commonly used Land-Use Regression (LUR) model was used to 

provide different exposure data and estimate new cases of asthma attributable to 

these exposures. These results were compared to results from the two full-chain 

models (Chapter 6). As asthma is generally under-diagnosed and under-reported, 

using baseline asthma incidence rates only, as has been done in the main HIA, is 

likely to under-report the burden of asthma due to TRAP. As such, another baseline 

wheezing incidence rate was used in sensitivity analysis. The baseline wheezing 

incidence rate related to wheezing disorders based on treatment, identified the 

existence of at least two drug prescriptions indicated for the treatment of asthma a 

minimum of 1 week and a maximum of 12 months apart. This work contributed to the 

literature by providing an indication of the impact of using different exposure models, 

different emission factors and different baseline incidence rates on the estimated 

health impacts. 

At each step of the full-chain modelling (traffic modelling, emissions modelling, 

atmospheric dispersion modelling, exposure and health impact assessment), the 

decisions made, the uncertainties and potential errors were documented, critically 

overviewed and discussed, throughout the thesis. To achieve objective 7, a list of 

these decisions, uncertainties and potential errors, at each step of the modelling, and 

their potential or estimated impact and propagation through the full-chain was 

developed (Chapter 7). Alternative options and research and practice 

recommendations to improve the utility of available datasets and models were 

overviewed (throughout the thesis and Chapter 7).  

1.5. Thesis Structure 

The following paragraphs draw an overview of the contents of the present thesis. Due 

to the multiple and distinct topic areas which this thesis covered, each chapter was 

written to stand-alone as a complete micro-study with its own discrete literature 

review, methods, results and discussion section. The final chapter provided an overall 

and integrated interpretation of the thesis. 
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 Chapter 2 provides a description of the conceptual and methodological 

framework and steps that have been carried out to systematically synthesize 

and meta-analyse the evidence on the association between childhood 

exposure to TRAP and their subsequent risk of asthma. This research was 

published in Khreis et al. (2017d) and a follow-up study focused on exposure 

assessment methods in Khreis and Nieuwenhuijsen (2017). 

 Chapter 3 provides a description of the work undertaken to obtain the Bradford 

traffic network characteristics, including modelling the traffic flows, the 

average traffic speeds and extracting road lengths and geographical locations 

from a previously established and validated traffic model. An independent 

validation exercise and diurnal scaling are further presented. 

 Chapter 4 provides a description of the work undertaken to develop 167 new 

and vehicle specific, average-speed-emission functions (i.e. a new vehicle 

emission model) for Bradford to estimate the nitrogen oxide (NOx) emissions. 

The average-speed-emission functions were developed for the full fleet of 

diesel and petrol passenger cars, diesel and petrol vans, buses, coaches and 

rigid and articulated trucks. The results of the new vehicle emission model 

were compared to the corresponding results of the standard vehicle emission 

model. Part of this research was funded by a Young Researchers' Innovation 

Grant from the World Conference on Transport Research Society and was 

accepted in a peer-reviewed conference paper in Khreis (2016). A fuller 

journal paper has also been submitted and the author is currently revising it in 

light of peer-review comments (Khreis et al., 2017b). 

 Chapter 5 provides a description of the work undertaken to link the estimated 

traffic activity (Chapter 3) with the newly developed and the standard average-

speed-emission functions (Chapter 4), to estimate NOx emission inventories 

from the full fleet in Bradford. The chapter continues to describe the work 

undertaken to set-up and validate two air pollution dispersion models which 

converted the link-based emission rates into ambient air pollution 

concentrations of NOx and NO2. A comparison between these results and 

results from a commonly used LUR model is presented. Part of this research 

has been submitted as a journal paper, revised in light of peer-review 

comments and resubmitted (Khreis et al., 2017a). The other part is currently 

in preparation for another invited journal paper (Khreis et al., 2018). 

 Chapter 6 provides a description of the work undertaken to assign the 

estimated air pollution concentrations to census tracts and population data, 
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and to then estimate the burden of asthma onset in relation to TRAP 

exposures; as assessed by different models (two full-chain exposure 

assessment models and a LUR model). Part of this research has been 

submitted as a journal paper and is currently under peer-review (Khreis et al., 

2017c). The other part is currently in preparation for another invited journal 

paper, as above (Khreis et al., 2018). 

 Finally, Chapter 7 is a qualitative systematic summary of the decisions made 

at each step of the full-chain modelling, the associated uncertainties, potential 

errors and an overview of alternative options. Policy implications of this work 

are also discussed.
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2 Systematic Review and Meta-analysis 

2.1. Background 

Asthma is a complex and heterogeneous chronic inflammatory disease of the airways 

(Wenzel, 2012, Xie and Wenzel, 2013). Numerous studies show that the prevalence 

of childhood asthma has increased dramatically since the 1950s, with some 

suggestion of plateauing in developed regions (Anandan et al., 2010, Braman, 2006, 

Pearce et al., 2007, Anderson et al., 2007, Zhang et al., 2013, Huang et al., 2015, 

Chen et al., 2016). The factors driving these increases are largely unknown, but 

coinciding changes in environmental exposures such as changes in hygiene and air 

pollution are thought to be responsible (Gaffin et al., 2014). 

One putative environmental exposure is humans’ exposure to ambient air pollution. 

Although there is sufficient evidence that ambient air pollution can exacerbate pre-

existing asthma across a variety of outcomes (Gilmour et al., 2006, Guarnieri and 

Balmes, 2014, Braback and Forsberg, 2009), such as increasing daily symptoms, 

rates of hospitalization, emergency room visits and medications used (Schildcrout et 

al., 2006, Schwartz et al., 1993, Sunyer et al., 1997, Lierl and Hornung, 2003, 

Slaughter et al., 2003), the role of air pollution exposure in the initial development of 

asthma is as yet contested (Eder et al., 2006, Gowers et al., 2012, Gehring et al., 

2015b, Deng et al., 2016). This is partly because of the difficulty in conducting 

adequate epidemiological studies required to address this question. 

Earlier reviews have effectively excluded ambient air pollution as a plausible cause 

of the rise in asthma incidence, with one argument being that the available evidence 

was inconsistent (Koenig, 1999). Furthermore, previous studies showed that asthma 

prevalence did not mirror changes in ambient air pollution concentrations: reductions 

in levels of sulphur dioxide (SO2) and total suspended particles (TSP), for example, 

seemed to synchronize with rapid increases of the condition in some areas (Gowers 

et al., 2012, Eder et al., 2006, Heinrich et al., 2002, Anderson, 1997). However, 

positive associations were subsequently shown between incidence and prevalence 

of asthma and wheeze and exposure contrasts at the intra-urban scale, mainly 

dominated by TRAP (Gasana et al., 2012, Anderson et al., 2013, Bowatte et al., 2015, 

Health Effects Institute, 2010, Favarato et al., 2014). Traffic-related air pollutants 
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necessitate specific examination as they are ubiquitous and are of different chemical 

and physical nature compared to the classical air pollution mix associated with 

domestic heating and power plants. 

Early-life and childhood could represent critical exposure windows for asthma 

development due to the plasticity, susceptibility of target organs and systems during 

these developmental periods and the long maturation period of the respiratory, 

immune and detoxification systems (Schwartz, 2004, Wright and Brunst, 2013, Deng 

et al., 2015, Bateson and Schwartz, 2007). Moreover, when compared to adults, 

infants and children exhibit higher ventilation rates (Wright and Brunst, 2013), 

reduced nasal deposition efficiencies for inhaled particles (Bennett et al., 2007), are 

more typically mouth-breathers invalidating the nasal filtering and conditioning of the 

inhaled air in temperature and relative humidity (Bateson and Schwartz, 2007), and 

tend to be more active outdoors where exposure to TRAP is generally higher 

(Braback and Forsberg, 2009, Bateson and Schwartz, 2007). 

Four meta-analyses were previously published on asthma and TRAP (Anderson et 

al., 2013, Bowatte et al., 2015, Gasana et al., 2012, Favarato et al., 2014). None of 

these analyses were specifically focused on TRAP exposures and childhood asthma 

development. For example, Gasana et al. (2012); Anderson et al. (2013) and their 

follow-up synthesis by Favarato et al. (2014), included both studies of TRAP 

exposures and childhood wheeze, and studies of TRAP exposures and asthma 

prevalence. Including both outcomes in the analysis may be misleading as childhood 

wheeze is a non-specific symptom, represents different disease patterns at different 

ages (Gehring et al., 2002, Piippo‐Savolainen and Korppi, 2008, Brunst et al., 2015) 

and can feasibly preclude making a distinction between the onset of asthma and its 

exacerbation (Health Effects Institute, 2010). However, it is worth noting here that due 

to the complexity of asthma and its diagnosis (Section 1.2.), excluding wheeze is likely 

to result in underreporting the burden of asthma due to TRAP in the following 

analyses of this study. 

Further, studies of TRAP exposures and childhood allergies and sensitization, 

included in Bowatte et al. (2015) were excluded from this research study as there is 

emerging evidence that the importance of allergy/atopy has been overemphasized 

and is much less relevant in asthma pathogenesis than previously supposed (Asher, 

2011, Pearce et al., 1999, Douwes et al., 2002). Furthermore, Favarato et al. (2014) 

limited their inclusion criteria to a single traffic-related air pollutant (nitrogen dioxide), 
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which limits the understanding of the potentially different effects of a wider range of 

traffic-related air pollutants. 

This research study, in contrast to previous published meta-analyses, followed the 

state-of-the-art methodology adopted by the Health Effects Institute’s (HEI) in 2010. 

HEI synthesized case-control and cohort studies published before October 2008 and 

specifically focused on TRAP exposures as a potential cause for childhood asthma 

development (Health Effects Institute, 2010). The relevant HEI’s review was reported 

in a sub-section on childhood asthma development in Special Report 17: ‘Traffic-

Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and 

Health Effects’ and this was the only published review specifically focused on TRAP 

exposure as a risk factor for childhood asthma development (Health Effects Institute, 

2010). At the time, this review included 8 studies of exposure to traffic pollution and 

the incidence of doctor-diagnosed asthma in children. An updated evidence base has 

been missing from the literature since, although wider reviews (including other 

sources of air pollution, asthma symptoms, wheeze and allergic outcomes) mainly of 

quantitative nature (i.e. meta-analyses), have been previously published and were 

listed above. The HEI’s review also included no formal meta-analysis as it was 

deemed inappropriate due to lack of equivalence among the exposures measures 

and populations studied. Then, the HEI’s review panel considered the evidence of a 

causal relationship between TRAP and childhood asthma to be in a grey zone 

between ‘sufficient’ and ‘suggestive but not sufficient’; depending on the weight one 

gives to the consistency and precision of results. As such, the question of whether 

exposure to TRAP can cause asthma in children remained open. 

2.2. Chapter Objectives and Contribution to Literature 

The objective of this research phase was to devise and undertake a systematic 

review to identify, appraise and synthesize the available evidence on the 

association between children's exposure to TRAP and their subsequent 

development of asthma and to further demonstrate where knowledge is lacking. 

As such, this research phase contributed to the literature by providing an up-to-date 

evidence base concerned with the association between TRAP exposures (exposure) 

and the subsequent development of childhood asthma (outcome). The work 

highlighted research and knowledge gaps and provided input for a health impact 

assessment study which will be undertaken to estimate the air quality profile and 

annual childhood asthma cases attributable to TRAP in Bradford, UK. 
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2.3. Methods 

This systematic review was conducted in accordance with established guidance on 

Undertaking Reviews in Health Care published by the University of York’s Centre for 

Reviews and Dissemination (Akers et al., 2009). A protocol was registered on the 

International Prospective Register of Systematic Reviews (PROSPERO), 

documenting the methodological approach, a priori (Khreis et al., 2014). The 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

checklist (Stroup et al., 2000) was completed and can be found in the supplementary 

data of Khreis et al. (2017d). The review’s question was: ‘Does children’s exposure 

to TRAP increase their risk of developing childhood asthma?’ 

2.3.1. Search Methods 

Searches were performed on 8 September 2016 via the OvidSP search engine 

(http://ovidsp.ovid.com/). The following databases were selected and searched: 

Embase, Ovid MEDLINE (R) and Transport Database. Potentially relevant studies 

were identified using four sets of keyword combinations which identified the 

population, the exposure and the outcome of interest: 

1. ‘Child*’ AND ‘air pollution’ AND ‘asthma’; 

2. ‘Child*’ AND ‘air quality’ AND ‘asthma’; 

3. ‘Child*’ AND ‘vehicle emissions’ AND ‘asthma’; and 

4. ‘Child*’ AND ‘ultra-fine particles’ AND ‘asthma’. 

Pilot searches and the literature review conducted prior to this study (Chapter 1 and 

previous M.Sc. dissertation) motivated the choice of these search terms. The term 

‘air pollution’ captured the term ‘traffic-related air pollution’ in studies. The specific 

inclusion of the term ‘ultra-fine particles’ was because no observational study 

examining these pollutants’ effects on asthma was encountered although 

toxicological evidence points to the pulmonary toxicity and relevance of ultra-fine 

particles in asthma pathogenesis (Li et al., 2003a, Chan et al., 2013, Oberdörster, 

2000). No limits were applied on the initial publication date or language, in line with 

systematic review guidance (Tacconelli, 2010). 

The reference lists of all included studies and of previous reviews on this topic were 

manually searched to identify any additional relevant studies (Anderson et al., 2013, 

Braback and Forsberg, 2009, Gasana et al., 2012, Gowers et al., 2012, Health Effects 

Institute, 2010, Salam et al., 2008, Sarnat and Holguin, 2007, Wong and Leung, 2005, 

http://ovidsp.ovid.com/
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Bowatte et al., 2015, Favarato et al., 2014). Authors of unpublished studies (abstracts 

only) and authors of the most recurrent studies were contacted to identify any 

additional relevant studies. This resulted in the inclusion of 2 extra studies that were 

not identified through the database searches (Yang et al., 2016, Kim et al., 2016). 

Finally, Google was searched for any other material related to ‘traffic-related air 

pollution and childhood asthma’ and 1 extra study was identified (Hasunuma et al., 

2016). Studies were exported into an Endnote X7.4 library and duplicates 

automatically removed using the ‘Find Duplicates’ function. 

2.3.2. Inclusion and Exclusion Criteria 

The inclusion and exclusion criteria were devised around the review’s question, as 

shown in Figure 2. 

 

Figure 2 Elements of the Systematic Review Question for Inclusion and Exclusion 

Criteria Determination, Source: Own Work 

For inclusion, studies which met all the following criteria were selected: 

 were published epidemiological/observational studies including case-control, 

cohort and cross-sectional studies which can all offer evidence on risk 

factors for disease onset, if designed accordingly; 

 explicitly specified the term ‘asthma’ as one outcome for investigation; 

 examined childhood exposure from birth to 18 years old (World Health 

Organization, 2014) to any designated TRAP metric or established traffic-

related air pollutants including carbon monoxide (CO), elemental carbon 
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(EC), nitrogen oxides (NOx), nitric oxide (NO), nitrogen dioxide (NO2), 

hydrocarbons, Particulate Matter equal or less than 2.5 micrometres in 

diameter (PM2.5), Particulate Matter equal or less than 10 micrometres in 

diameter (PM10), Particulate Matter between 2.5 and 10 micrometres in 

diameter (PMcoarse), ultra-fine particles or PM2.5 absorbance as a marker for 

black carbon (BC) concentrations; referred to as BC thereafter (Vardoulakis 

et al., 2003, Krämer et al., 2009); and 

 examined and reported associations (risk estimates) between preceding 

exposure to TRAP and subsequent risk of asthma, reported as incidence or 

lifetime prevalence from birth until 18 years old. 

Asthma development was considered as new asthma in previously healthy children 

when reported between two or more follow-ups or over the lifetime of the child in birth 

cohort studies or cross-sectional studies. Likewise, the case-control studies included 

either looked at lifetime asthma as a measures of asthma development (i.e. like birth 

cohort studies) or excluded children with a history of asthma in the control groups (i.e. 

like cohort studies). In all instances, the exposure to TRAP had to precede the 

outcome to ensure the correct temporal sequence of events. For example, 

associations between birth year exposure and lifetime asthma prevalence in cross-

sectional studies were considered as associations between TRAP exposure and 

asthma development and hence such studies were included. As such, studies that 

investigate asthma incidence and those that investigate asthma lifetime prevalence 

were included, similarly to previous formulation (Health Effects Institute, 2010). 

Studies reporting pooled or multicentre analyses using standardized methods were 

also included. This decision was made in line with the calls for greater standardization 

of cohort methods (Anderson et al., 2013) and combined analyses of standardized 

data to obtain more accurate exposure-response estimates (Fuertes et al., 2015). 

Furthermore, some cohort- and outcome-specific associations included in these 

pooled or multicentre analyses had not been previously published in individual studies 

(Fuertes et al., 2015) and provided new information to this and previous syntheses. 

Cohort-specific associations were extracted from papers reporting pooled or 

multicentre analyses as if they were reporting on individual studies. Specific attention 

was given to whether these studies should be included in the meta-analysis to avoid 

duplication. All non-English-language papers including a Czech, French and a 

Russian paper were ultimately excluded due to translation difficulties (Vitnerova et 

al., 1999, Salameh et al., 2015, Veremchuk et al., 2014). 
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Studies which met any of the following criteria were excluded:  

 were reviews, commentaries, governmental reports, letters, animal and 

experimental studies; 

 only examined adulthood asthma; 

 only examined non-traffic-related air pollutants or air pollution metrics 

including ozone (O3), SO2, indoor air pollution, proximity to point sources and 

wood smoke; 

 only examined the association between the exposure to TRAP and asthma 

exacerbations, severity, or other allergic or respiratory diseases and 

symptoms; 

 only examined the association between the exposure to any TRAP metric in 

utero and risk of subsequent asthma development. Such effects may be a 

result of the mother’s exposure rather than the foetus (e.g. epigenetic 

changes) and warrant distinction; and 

 only examined associations between concurrent exposure to TRAP and risk 

of asthma incidence or lifetime prevalence from birth until 18 years old. 

2.3.3. Studies Screening and Selection 

Titles and abstracts of all identified records were screened by the author. A random 

20% were independently screened by another researcher (Charlotte Kelly). All 

potentially relevant studies were retrieved, and their full-papers reviewed against the 

inclusion criteria by the author. A random 50% were independently reviewed by 

another researcher (Mark Nieuwenhuijsen). 

2.3.4. Data Extraction 

Data was extracted by the author using a predefined data template which identified 

the key data items to be synthesized and analysed (Khreis et al., 2014). A random 

20% was independently extracted by two other researchers (Charlotte Kelly and 

James Tate). Data was primarily extracted from the main papers of the included 

studies. Where necessary information was missing from the main papers, data was 

extracted from the supplementary materials and/or associated publications. Data 

extraction was undertaken manually. 
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2.3.5. Quality Assessment 

Using the checklists and procedure provided in the Critical Appraisal Skills 

Programme (CASP) (Critical Appraisal Skills Programme, 2014), the validity of each 

included study was evaluated across six key parameters: 

1. potential for selection bias; 

2. outcome measurement or classification bias; 

3. exposure measurement, recall or classification bias; 

4. identification of and adjustment for important confounders; 

5. length and completion of follow-up; and 

6. any special characteristics that might compromise the generalizability of 

findings. 

The CASP checklists are given in the form of 11 and 12 questions for cohort and 

case-control studies, respectively, and are designed to help the assessor think about 

the validity of each study. The questions are answered by a ‘yes’, ‘no’ and ‘can’t tell’. 

The cohort study checklist was used for cross-sectional studies, which did not have 

a specific checklist. All the included studies were independently evaluated by the 

author and another researcher (Mark Nieuwenhuijsen). 

2.3.6. Meta-analysis 

Random-effects meta-analyses were conducted to summarize the risk estimates 

(measures of associations between preceding exposure to TRAP and subsequent 

risk of asthma) across the range of included studies. Random-effects models were 

selected as they account for within study variance caused by chance and sampling 

error, but also for between studies variance caused by heterogeneity (Kirkwood and 

Sterne, 2003), a feature that is likely to exist in studies of TRAP exposures and 

asthma development (Health Effects Institute, 2010). All analyses were also 

performed using fixed-effect models as sensitivity analyses. 

Figure 3 shows how studies and the risk estimates within were selected for inclusion 

in the meta-analysis. Meta-analyses were conducted by pollutant. Only studies that 

specifically measured or modelled the exposure to a traffic-related air pollutant and 

reported adjusted hazard ratios (HR), risk ratios (RR) and/or odds ratios (OR) for the 

risk of asthma per increment change in pollutant concentration were included. HH, 

RR and OR were all included in the same meta-analyses, following previous practice 

(Anderson et al., 2013) and being acceptable in the present situation where the 

outcome of interest is common whilst the effect size is small (Davies et al., 1998). 
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Although no guideline exists for the minimum number of studies needed to conduct a 

meta-analysis (Vrijheid et al., 2011), four risk estimates for a pollutant-outcome pair 

were considered as the minimum to justify running a meta-analysis and to enable 

running subsequent sensitivity analyses: 

 excluding the study that contributed to the largest weight (the smallest 

standard error) to test the robustness of findings; 

 excluding case-control and cross-sectional studies, where the potential for 

selection bias can be higher; and 

 excluding studies with special characteristics that might compromise the 

generalizability of findings (e.g. high-risk birth cohorts). 

Associations with five traffic-related air pollutants were reported in at least four 

studies. The adjusted risk estimates and their 95% CI were standardized into the 

following pollutant concentration increments to enable combining them in the meta-

analyses: 

 0.5 x 10-5 m-1 BC; 

 4 µg/m3 NO2; 

 30 µg/m3 NOx; 

 1 µg/m3 PM2.5; and  

 2 µg/m3 PM10 

The levels of BC and NOx in ambient air are not legally regulated so the above 

increments were selected to approximately equal 10% of the maximum 

concentrations encountered in the included studies (maximum BC ≈ 6 x 10-5 m-1, 

maximum NOx ≈ 300 µg/m3). 

The remaining concentration increments represent 10% increments of the World 

Health Organization (WHO) Air Quality Guideline values (Krzyzanowski and Cohen, 

2008). Where needed, the WHO conversion factor between parts per billion (ppb) and 

µg/m3 for NO2 was used to convert the concentration increments within studies into 

the same metric (1 ppb = 1.88 µg/m3 NO2) (Department for Environment Food and 

Rural Affairs, 2014a). 
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Figure 3 Study Selection Process for Meta-Analysis, Source: Own Work (Word) 
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Exclude (pollutants that have been examined as a 
categorical exposure variable or as a continuous 

exposure variable in < four studies) 
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Consider for inclusion 

Yes? 

Run age-specific random-effects models and 
age-specific fixed-effects models meta-analysis 

for that pollutant 
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Run age-specific random-effects models and 
age-specific fixed-effects models meta-analysis 

for that pollutant 
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Run overall random-effects models and overall 
fixed-effects models meta-analysis for that 

pollutant 

Is there a minimum of four studies reporting 
HRs, ORs or RRs for the risk of asthma per 

increment change in one pollutant 
concentration? 

No? 

Exclude (studies using TRAP exposure surrogates 
including distance to roadways, traffic intensity 
within specified buffers, truck route density etc.) 

Meta-analysis 

Random-effects models (main assumption)  

Fixed-effects models (secondary analysis) 

Did the study measure or model childhood 
exposure to traffic-related air pollutants 

including CO, EC, NOx, NO, NO2, 
hydrocarbons, PM2.5, PM10, PMcoarse, ultra-fine 

particles or PM2.5 absorbance/ BC? 

Is there a minimum of four studies reporting 
HRs, ORs or RRs for the risk of asthma at ≤ 6 

years old per increment change in one pollutant 
concentration? 

Is there a minimum of four studies reporting 
HRs, ORs or RRs for the risk of asthma at > 6 

years old per increment change in one pollutant 
concentration? 

Level 1 

Level 2 

Age-specific meta-analysis  
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Two series of meta-analyses were undertaken. The first series of meta-analyses, 

referred to as ‘overall meta-analysis’, pooled all available risk estimates for the 

associations between traffic-related air pollutants and asthma, without regard to age 

of onset. This approach is limited due to the broad age range at which risk estimates 

have been combined but was used to maximize statistical power to detect 

associations and heterogeneity. To ensure no study is double counted in the meta-

analysis, a few selection criteria were applied to multiple publications using the same 

populations/cohorts, pooled analysis of multiple cohorts and publications with overlap 

between study populations. Where multiple publications used the same population 

(Brauer et al., 2007, Brauer et al., 2002, Fuertes et al., 2013, Gehring et al., 2010, 

Morgenstern et al., 2008, MacIntyre et al., 2014a, Gehring et al., 2015a, Deng et al., 

2015, Deng et al., 2016), only the most recent publication was included (Fuertes et 

al., 2013, Gehring et al., 2010, Gehring et al., 2015a, Deng et al., 2016). In the case 

of studies reporting pooled analysis of multiple cohorts (Gehring et al., 2015b, 

MacIntyre et al., 2014a), when data from the specific cohort SAGE was not included 

in the most recent publication including the other cohorts (Gehring et al., 2015b), only 

that specific cohort’s missing data were pulled out from the older publication 

(MacIntyre et al., 2014a) for inclusion in the meta-analysis. Likewise, in the pooled 

analysis by Mölter et al. (2014b), only data relating to the MAAS cohort were included 

in the meta-analysis, as data relating to the other 5 cohorts were included as extracted 

from a subsequent, more recent, publication by Gehring et al. (2015b). Finally, where 

there was a significant overlap between study populations of the same age range 

(Gehring et al., 2002, Morgenstern et al., 2007), only the largest study population was 

included (Morgenstern et al., 2007). 

The second series of meta-analyses, referred to as ‘age-specific meta-analysis’, 

pooled all available risk estimates for associations between traffic-related air 

pollutants and asthma split into two age groups to examine age differences: 1) asthma 

at ≤ 6 years old (pre-school age) and 2) asthma > 6 years old (school age). 

This cut-off age was used as there is consensus that asthma is more readily 

diagnosed after ‘school age’. Where multiple publications used the same population 

within the same age group (Brauer et al., 2007, Brauer et al., 2002, Gehring et al., 

2002, Morgenstern et al., 2007, Shima and Adachi, 2000, Shima et al., 2002), only 

the most recent publication was included (Brauer et al., 2007, Morgenstern et al., 

2007, Shima et al., 2002). 
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Where more than one risk estimate per pollutant was reported in one study, a few 

selection criteria, as described next, were applied to ensure selecting the risk 

estimates which were most alike; most conservative, most reliable and those which 

related to the period hypothesized to be most relevant for asthma development:  

 selecting the risk estimate which related to the earliest exposure window (e.g. 

birth address exposure versus current/time-varying/later address exposure) 

(Nishimura et al., 2013, Ranzi et al., 2014, Dell et al., 2014, Gruzieva et al., 

2013, Gehring et al., 2015b, Mölter et al., 2014b, Tétreault et al., 2016, Krämer 

et al., 2009); 

 selecting the risk estimate which was most inclusive in capturing asthma over 

the follow-up period (e.g. incidence over 2 years versus 1 year) or that which 

emerged from the most recent follow-up (Brauer et al., 2007, Gruzieva et al., 

2013, Mölter et al., 2014b); 

 selecting the risk estimate which related to the most restrictive asthma 

definition (e.g. ever having been diagnosed with asthma by a doctor 

accompanied with wheeze or use of asthma medication in the last 12 months 

versus ever having been diagnosed with asthma by a doctor) (Dell et al., 

2014); 

 selecting the risk estimate which related to the most restrictive analysis model 

(e.g. including adjustment for indoor environmental factors or indirect 

adjustment for smoking versus not including them) (Deng et al., 2016, 

Tétreault et al., 2016); 

 selecting the risk estimate which related to the total population in the wider 

geographical area (versus smaller/disaggregated geographical areas) 

(Fuertes et al., 2013, Nishimura et al., 2013, Gehring et al., 2002, Morgenstern 

et al., 2008); 

 selecting the risk estimate which related to the annual exposure (versus 

seasonal exposure) (Jerrett et al., 2008); 

 selecting the risk estimate which was estimated using the exposure model 

with the higher spatial resolution (e.g. land-use regression models versus 

inverse-distance weighting) (Clark et al., 2010, Dell et al., 2014); and 

 selecting the risk estimate which related to the total/summed exposures from 

traffic (versus separate freeway, non-freeway, home and school exposures) 

(McConnell et al., 2010). 
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The natural logarithm of each standardized risk estimate and its Standard Error (SE) 

were calculated and entered in RevMan version 5.3. (Copenhagen: The Nordic 

Cochrane Centre, The Cochrane Collaboration, 2014). Using the generic inverse 

variance method, each standardized risk estimate was weighted by the study’s 

inverse variance in the fixed-effects models, whilst adjusting its SE to incorporate a 

measure of the extent of heterogeneity across studies in the random-effects models 

(Deeks et al., 2011).  

For assessing heterogeneity, the I2 statistic (Higgins et al., 2003) and the P-value 

from the Chi-squared test of heterogeneity were used. In line with established 

guidance, an I2 value ≥ 50% was considered to suggest substantial heterogeneity and 

a P-value ≤ 0.1 was considered to suggest the presence of statistically significant 

heterogeneity (Deeks et al., 2011). Publication bias was visually examined with funnel 

plots using SE as the measure of study size (Sterne and Egger, 2001). 

2.4. Results 

2.4.1. Overview 

The database searches yielded 4,276 unique articles and from this, 94 records were 

identified for full-text review (Figure 4). Forty-one studies, published between 1999 

and September 2016, met the inclusion criteria. There was a recent growth in the 

number of studies on the topic with 18 out of the 41 studies (≈ 44%) emerging after 

the year 2014. A summary of each included study is provided in Table 1. 

Ages of participants ranged from 1 to 18 years old, except in Nishimura et al. (2013) 

where 3% of the participants were 19-21 years old. This study was included as the 

substantial majority of participants fell within the pre-specified age range. Sample 

sizes ranged from 184 (Carlsten et al., 2010) to 1,133,938 children (Tétreault et al., 

2016). Follow-up periods ranged from 1 to 16 years (Gehring et al., 2015b). 

Seventeen studies were conducted in Europe, 11 in North America, 5 in Japan, 3 in 

China and 1 in each of Korea and Taiwan. The remaining 3 articles reported on pooled 

analysis from multiple combined cohorts, mainly from Europe (Gehring et al., 2015b, 

MacIntyre et al., 2014a, Mölter et al., 2014b). These pooled studies used harmonized 

outcome definitions, exposure assessments and statistical methods as part of the 

Mechanisms of the Development of Allergy (MeDALL) (Bousquet et al., 2011), the 

Traffic, Asthma and Genetics Study (TAG) (MacIntyre et al., 2013) and the European 
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Study of Cohorts for Air Pollution Effects (ESCAPE) (European Study of Cohorts for 

Air Pollution Effects, 2014) consortiums. 

Thirty-one studies were cohort studies (24 of which were birth cohorts), 6 studies 

were case-control studies (2 of which were nested in a birth cohort) and 4 studies 

were cross-sectional studies. In the 26 studies utilizing birth cohort data; new cases 

of asthma were assumed captured by study design. This assumption is in line with 

one biological paradigm that assumes children to be born asthma-free, and that with 

time, some will develop the condition because of exogenous and endogenous factors 

(Health Effects Institute, 2010). The 7 non-birth cohort studies made a distinction 

between incident asthma arising during the follow-up and latent asthma which might 

have only been triggered by TRAP. As such, studies conducted within the Southern 

California Children's Health Study by Jerrett et al. (2008) and McConnell et al. (2010) 

excluded children with a current, lifetime or missing/unknown history of asthma and 

wheeze at study entry. Children with a current or history of asthma at the baseline 

survey were also excluded from the respective asthma incidence analysis in the 5 

Japanese studies included (Hasunuma et al., 2016, Shima and Adachi, 2000, Shima 

et al., 2003, Shima et al., 2002, Yamazaki et al., 2014). The 4 cross-sectional studies 

(Deng et al., 2015, Kim et al., 2016, Deng et al., 2016, Liu et al., 2016) were included 

as lifetime asthma diagnosis was the outcome measure used, in association with 

TRAP exposures predating the diagnosis. Finally, the 4 case-control studies which 

were not nested in birth cohorts were specifically designed to study incident asthma 

in healthy children at baseline in association with TRAP exposures predating the 

diagnosis (Dell et al., 2014, English et al., 1999, Nishimura et al., 2013, Zmirou et al., 

2004).
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Figure 4 Flow Chart of Study Screening Process, Source: Own Work (NCH Software)



56 
 

56 

 

Table 1 Main Characteristics of Studies Included in the Systematic Review 

Study 
reference 
and setting 

Study design Age group 
(years) 

Participants 
included in 
the 
analysis 

Exposure 
assessment 

Pollutant(s) Traffic-related 
exposures 
distribution 

Asthma assessment and 
phenotypic characterization 

Follow-up Adjustment variables CASP notes 

Brauer et al. 
(2002), The 
Netherlands, 
north, west 
and centre 
communities 

Birth cohort 
(PIAMA) 

Birth-2 2,989 LUR modelling BC, NO2, 
PM2.5 

BC: range (0.77-
3.68); mean (1.72) 
10-5m-1  

 

NO2: range (12.6-
58.4); mean (25.6) 
µg/m3 

 

PM2.5: range (13.5-
25.2); mean (16.9) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma 

@ 3 months, 1 
and 2 y.o. 

Mother smoking during 
pregnancy, smoking in 
home, study arm/mattress 
cover, mother education, 
father education, sex, gas 
stove, unvented gas 
water heater, siblings, 
ethnicity, breastfeeding at 
3 months, any home 
mould, any home pets, 
allergies in mother, 
allergies in father, age of 
mother at child birth, 
region (in sensitivity 
analysis only) 

Very young age for 
accurate diagnosis, 
follow-up duration is 
short, potential for 
recall bias in defining 
the outcome 

Brauer et al. 
(2007), The 
Netherlands, 
north, west 
and centre 
communities 

Follow-up on 
Brauer et al. 
(2002) 

Birth-4 2,826 LUR modelling BC, NO2, 
PM2.5 

BC: range (0.77-
3.68); mean (1.71) 
10-5m-1 

 

NO2: range (12.6-
58.4); mean (25.2) 
µg/m3 

 

PM2.5: range (13.5-
25.2); mean (16.9) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma 

@ 3 months, 
1, 2, 3 and 4 
y.o. 

As in Brauer et al. (2002) Young age for 
accurate diagnosis, 
follow-up duration is 
short, potential for 
recall bias in defining 
the outcome 

Brunst et al. 
(2015), 
USA, 
Cincinnati 

Birth cohort 
(CCAAPS) 

Birth-7 589 LUR modelling EC EC: 75th percentile 
(0.45) µg/m3 at 
birth; 75th 
percentile (0.39) 
µg/m3 at age 7 y.o. 

Asthma defined based on (1) 
asthma symptoms and 
bronchial hyper reactivity 
(>12% increase in FEV1 after 
bronchodilation) or a positive 
methacholine challenge test 
(>20% fall in baseline FEV1 at 
an inhaled methacholine 
concentration of <4 mg/ml) (2) 
parental reporting of doctor-
diagnosis by a physician not 
associated with CCAAPS and, 
if so, at what age 

@ 1, 2, 3, 4, 
and 7 y.o. and 
age of doctor 
diagnosis 
where 
applicable 

Maternal education, 
parental history of 
asthma, day-care 
attendance, presence of a 
cat and/or dog in the 
home (race, sex, 
breastfeeding (< or >4 
months), second-hand 
smoke exposure in 1st 
year of life, daily number 
of cigarettes smoked by 
household member > 0 
were considered but not 
included in the final 
models) 

High risk birth cohortb, 
potential for recall bias 
in defining the 
outcome and selection 
bias, small (non-
representative) sample 
size 

Carlsten et 
al. (2010), 
Canada, 
Vancouver 

Birth cohort 
(CAPPS) 

Birth-7 184 LUR modelling BC, NO, 
NO2, PM2.5 

BC: mean (1.6) 10-

5m-1  

 

NO: mean (35.7) 
µg/m3 

A single blinded paediatric 
allergist diagnosed asthma 
defined as ≥ 2 distinct 
episodes of 2+ weeks of 
cough, ≥ 2 distinct episodes of 
1+ week of wheeze and one 
of the following: 1 weekly non-
cold nocturnal cough, or 

@ 7 y.o. Maternal post-secondary 
education, 
mother/father/sibling 
asthma history, atopic 
status at 1 year, ethnicity, 
sex, intervention status 

High risk birth cohortb, 
no adjustment for 
smoking, small (non-
representative) sample 
size 
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NO2: mean (32.6) 
µg/m3 

 

PM2.5: mean (5.6) 
µg/m3 

hyperpnoea-induced 
cough/wheeze, or response to 
treatment with β-agonist 
and/or anti-inflammatories 

Clark et al. 
(2010), 
Canada, 
south-
western 
British 
Columbia 

Case-control 
nested in the 
British 
Columbia 
birth cohort 

Birth-4 37,401 LUR modelling, 
monitoring data at 
closest three 
monitors weighted 
by inverse distance 
to child’s 
residence, 
proximity to 
highways/ major 
roads 

BC, CO, 
NO, NO2, 
PM10, PM2.5 

BC (LUR): mean 
(0.66 controls; 0.68 
asthma cases) 10-

5m-1 

 

CO: mean (605.0 
controls; 617.5 
asthma cases) 
µg/m3 

 

NO (LUR): mean 
(30.42 controls; 
30.83 asthma 
cases) µg/m3 

 

NO2 (LUR): mean 
(29.50 controls; 
29.82 asthma 
cases) µg/m3 

 

PM10 (IDW): mean 
(12.37 controls; 
12.42 asthma 
cases) µg/m3 

 

PM2.5 (LUR): mean 
(4.50 controls; 4.59 
asthma cases) 
µg/m3 

Asthma diagnosis identified 
from doctor billing records for 
primary care and hospital 
discharge records. Asthma 
defined as ≥ 2 primary care 
doctor diagnoses in a rolling 
12-month period or ≥ 1 
hospital admission for asthma 
using ICD-9 code 493 

Mean age at 
end of follow-
up: 4 years±7 
months 

Multiple births, age, sex, 
native status, 
breastfeeding, income 
quintile, education 
quartile, birth weight, 
gestational length 
(maternal age, maternal 
smoking and native status 
were considered but not 
included in the final 
models) 

Young age for 
accurate diagnosis, 
excluding low birth 
weight /premature birth 
children may bias 
results towards the 
null, socioeconomic 
status variables 
assigned at the 
Census dissemination 
level, no adjustment 
for heredity 

Fuertes et 
al. (2013), 
Germany 

2 birth 
cohorts 
(GINIplus 
and 
LISAplus) 

3-10 4,585 LUR modelling BC, NO2, 
PM2.5 

BC: range (1.0-
3.6); mean (1.5) 
10-5m-1  

 

NO2: range (11.5-
62.8); mean (22.4) 
µg/m3 

 

PM2.5: range (0.4-
21.5); mean (15.3) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma 

GINIplus @ 
birth, 1, 2, 3, 4, 
6 and 10 y.o., 
LISAplus @ 
birth, 0.5, 1, 
1.5, 2, 4, 6 and 
10 y.o. 

Sex, age, older siblings, 
parental history of atopy, 
parental education, 
maternal smoking during 
pregnancy, smoke 
exposure in home, 
contact with furry pets 
during 1st year of life, use 
of gas stove during 1st 
year of life, home 
dampness/indoor moulds 
during 1st year of life, 
intervention participation, 
cohort and geographical 
area. Only children born 

Participants differed 
from initial cohort, 
excluding children 
from the LISA with low 
birth weight /premature 
birth may bias results 
towards the null, 
potential for recall bias 
in defining the 
outcome 
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at full-term and normal 
weight were recruited. 

Gehring et 
al. (2002), 
Germany, 
Munich 

2 birth 
cohorts 
(GINI and 
LISA) 

Birth-2  1,756 LUR modelling BC, NO2, 
PM2.5 

BC: range (1.38- 
4.39); mean (1.77) 
10-5m-1  

 

NO2: range (19.5- 
66.9); mean (27.8) 
µg/m3 

 

PM2.5: range (11.9- 
21.9); mean (13.4) 
µg/m3 

Parental reporting of doctor-
diagnosed asthmoid/ 
spastic/obstructive bronchitis 

GINI @ birth, 
1, and 2 y.o., 
LISA @ birth, 
0.5, 1, 1.5, and 
2 y.o. 

Sex, parental atopy, 
tobacco smoke at home, 
maternal education, 
siblings, use of gas for 
cooking, home 
dampness, indoor mould, 
pets keeping and study 
arm 

Very young age for 
accurate diagnosis, 
follow-up duration is 
short, excluding 
children from the LISA 
with low birth weight 
/premature birth may 
bias results towards 
the null, potential for 
recall bias in defining 
the outcome 

Gehring et 
al. (2010), 
The 
Netherlands, 
north, west 
and centre 
communities 

Follow-up on 
Brauer et al. 
(2007) 

Birth-8 3,143 LUR modelling BC, NO2, 
PM2.5 

BC: range (0.77-
3.68); mean (1.72) 
10-5m-1  

 

NO2: range (12.6-
58.4); mean (25.2) 
µg/m3 

 

PM2.5: range (13.5-
25.2); mean (16.9) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma. Asthma 
categorized in 1,499 children 
at 8 years of age to atopic and 
non-atopic based on blood 
IgE concentrations to inhalant 
or food allergens 

@ birth, 1, 2, 
3, 4, 5, 6, 7 
and 8 y.o. 

As in Brauer et al. (2007) 
plus day-care attendance 

Potential for recall bias 
in defining the 
outcome 

Gehring et 
al. (2015a), 
The 
Netherlands, 
north, west 
and centre 
communities 

Follow-up on 
Gehring et 
al. (2010) 

Birth-12 3,702 LUR modelling BC, NO2, 
PM2.5, 
PM10, 
PMcoarse and 
PM 
composition 
elements: 
copper 
(Cu), iron 
(Fe), zinc 
(Zn), nickel 
(Ni), 
sulphur (S), 
vanadium 
(V) 

BC: range (0.8-
3.0); mean (1.2) 
10-5m-1  

 

NO2: range (9.2- 
59.6); mean (23.1) 
µg/m3 

 

PM2.5: range (15.3- 
21.1); mean (16.4) 
µg/m3 

 

PM10: range (23.7- 
33.2); mean (24.9) 
µg/m3 

 

PMcoarse: range 
(7.6- 14.0); mean 
(8.4) µg/m3 

 

For PM elemental 
composition 

Parental reporting of doctor-
diagnosed asthma 

@ birth, 1, 2, 
3, 4, 5, 6, 7, 8 
and 11-12 y.o. 

As in Gehring et al. 
(2010) plus birth weight in 
sensitivity analysis 

Participants more 
likely to have highly 
educated parents and 
live in non-smoking 
homes 
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elements; see table 
2 in original paper 

 

Gehring et 
al. (2015b), 
Sweden, 
Germany, 
The 
Netherlands 

Pooled data 
from four 
birth cohorts: 
BAMSE; 
GINIplus; 
LISAplus 
and PIAMA  

Birth-16 14,126 LUR modelling BC, NO2, 
PM2.5, 
PM10, 
PMcoarse 

BC at birth: 
BAMSE - range 
(0.4-1.3); mean 
(0.7) 10-5m-1  

GINI/LISA North - 
range (1.0-3.1); 
mean (1.2) 10-5m-1  

GINI/LISA South - 
range (1.3-3.6); 
mean (1.7) 10-5m-1  

PIAMA - range 
(0.8-1.2); mean 
(1.2) 10-5m-1  

 

NO2 at birth: 
BAMSE - range 
(6.0-33.0); mean 
(14.1) µg/m3 

GINI/LISA North - 
range (19.7-62.8); 
mean (23.8) µg/m3 

GINI/LISA South - 
range (11.5-61.1); 
mean (21.8) µg/m3 

PIAMA - range 
(8.7- 59.6); mean 
(23.2) µg/m3 

 

PM2.5 at birth: 
BAMSE - range 
(4.2-11.4); mean 
(7.8) µg/m3 

GINI/LISA North - 
range (15.8-21.5); 
mean (17.4) µg/m3 

GINI/LISA South - 
range (10.6-18.3); 
mean (13.4) µg/m3 

PIAMA - range 
(15.3-21.1); mean 
(16.4) µg/m3 

 

PM10 at birth: 
BAMSE - range 
(6.0-30.9); mean 
(15.7) µg/m3 

Asthma defined as a positive 
answer to at least two of the 
three questions: (1) “Has a 
doctor ever diagnosed asthma 
in your child?” (2) “Has your 
child had wheezing or 
whistling in the chest in the 
last 12 months?” and (3) “Has 
your child been prescribed 
asthma medication during the 
last 12 months?” 

Asthma categorized to allergic 
and non-allergic based on 
blood IgE concentrations 
against common 
aeroallergens 

@ 1, 2, 4, 6–8, 
10–12 and 14–
16 y.o. 

Sex, parental 
socioeconomic status, 
parental education, native 
nationality, maternal and 
paternal asthma or hay 
fever, older siblings, 
breastfeeding for at least 
3 months, maternal 
smoking during 
pregnancy, parental 
smoking at home, mould 
or dampness, and furry 
pets in the child’s home, 
use of natural gas for 
cooking, attendance at 
day-care centres, 
municipality (BAMSE 
only) 

Does not account for 
long-term trends in 
TRAP levels, potential 
for selection bias as 
children of atopic and 
highly educated 
parents were over-
represented, potential 
for recall bias in 
defining the outcome 
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GINI/LISA North - 
range (23.9-33.9); 
mean (25.5) µg/m3 

GINI/LISA South - 
range (14.8-34.4); 
mean (20.4) µg/m3 

GINI/LISA South - 
range (23.7- 33.2); 
mean (25.0) µg/m3 

 

PMcoarse at birth: 
BAMSE - range 
(0.7- 20.2); mean 
(7.9) 
µg/m3GINI/LISA 
North - range (1.9- 
13.9); mean (8·5) 
µg/m3 

GINI/LISA South - 
range (4.1- 16.0); 
mean (6.8) µg/m3 

PIAMA - range 
(7.6- 14.0); mean 
(8.4) µg/m3 

 

Gruzieva et 
al. (2013), 
Sweden, 
Stockholm 

Birth cohort 
(BAMSE) 

Birth-12 3,633 Dispersion 
modelling (Airviro, 
street canyon 
contribution for 160 
houses) 

NOx, PM10 

NOx, PM10 NOx: mean (21.4) 
µg/m3 - above 
regional 
background (= 3 
µg/m3) 

 

PM10: mean (4.2) 
µg/m3 - above 
regional 
background (= 10 
µg/m3) 

At 1 and 2 y.o., asthma 
defined as ≥ 3 episodes of 
wheeze and treatment with 
inhaled corticosteroids or 
signs of bronchial hyper 
reactivity without concomitant 
respiratory infection. At 4, 8 
and 12 y.o., asthma defined 
as ≥ 4 episodes of wheeze in 
last year, ≥ 1 episode and 
prescription of inhaled 
corticosteroids. Asthma was 
categorized at 4 or 8 y.o. to 
atopic and non-atopic based 
on blood IgE concentrations 
to inhalant allergens 

@ 1, 2, 4, 8 
and 12 y.o. 

Municipality, 
socioeconomic status, 
heredity, year the house 
was built 

No adjustment for 
smoking, PM10 model 
calculations 

were performed only 
for year 2004 and 
assumed constant for 
all 

years during the study 
period (1994 to 2008), 
potential for recall bias 
in defining the 
outcome 

Jerrett et al. 
(2008), 
USA, 11 
southern 
Californian 
communities 

Cohort 
(CHS) 

10-18 209 NO2 Palmes tubes 
monitoring for 2 
weeks in 2 
seasons at child’s 
residence 

NO2 NO2: annual mean 
in the 11 
communities 
ranging from 9.6 
ppb (at Lompoc) to 
51.3 ppb (at San 
Dimas) 

Parental and self-reporting of 
doctor-diagnosed asthma 

@ 10, 11, 12, 
13, 14, 15, 16, 
17 and 18 y.o. 

Age, sex, relative 
humidity, ethnicity, 
enrolment group, medical 
insurance coverage, 
enrolment group (body 
mass index, wheeze and 
symptoms of hay fever, 
medical care and 
socioeconomic status, 
parental education, 
mildew in home, carpet in 
bedroom, plants and pets 
in home, gas stove in 

Small sample size, 
potential for recall bias 
in defining the 
outcome 
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home, current daily 
smoker in home, maternal 
smoking during 
pregnancy, parental 
history of asthma 
considered but not 
included in the final 
models) 

Kerkhof et 
al. (2010), 
The 
Netherlands, 
north, west 
and centre 
communities 

Birth cohort 
(PIAMA) 

Birth-8 916 LUR modelling BC, NO2, 
PM2.5 

BC: median (1.77); 
interquartile range 
(1.30-1.91) 10-5m-1 

 

NO2: median 
(25.8); interquartile 
range (17.4-28.6) 
µg/m3 

 

PM2.5: median 
(17.2); interquartile 
range (14.7-18.1) 
µg/m3 

Two definitions: (1) parental 
reporting of doctor-diagnosed 
asthma (2) at least one attack 
of wheeze or dyspnoea and/or 
the prescription of inhaled 
corticosteroids in the last 12 
months from age 2 up to age 
8 

@ birth, 1, 2, 
3, 4, 5, 6, 7 
and 8 y.o. 

Sex, type of intervention 
(mite-impermeable 
mattress covers, placebo 
covers or no intervention), 
allergies of mother and 
father, parental education 
(low, intermediate or 
high), maternal smoking 
during pregnancy, 
exposure to smoke at 
home in the first year of 
life, duration of 
breastfeeding (never, 
1e12 weeks, >12 weeks), 
presence of a gas stove, 
presence of older 
siblings, day-care 
attendance, signs of 
dampness in the house, 
presence of cats and/or 
dogs, type of home 
(single family dwelling 
,apartment/flat) and 
presence of fitted 
carpeting 

Small sample size, 
potential for selection 
bias, potential for 
recall bias in defining 
the outcome 

Krämer et 
al. (2009), 
Germany, 
Wesel 

2 birth 
cohorts 
(GINIplus 
and 
LISAplus) 

4-6 2,059 LUR modelling, 
distance to next 
major road 
traversed by more 
than 10,000 cars/ 
day 

BC, NO2 BC: range (0.8-
2.3); mean (1.6) 
10-5m-1 

 

NO2: range (13.6-
41.4); mean (24.0) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma 

GINI @ birth, 
1, 2, 3, 4 and 6 
y.o.,  

LISA @ birth, 
0.5, 1, 1.5, 2, 4 
and 6 y.o. 

Study arm, sex, years of 
parental schooling, 
maternal smoking in 
pregnancy, tobacco 
smoke, use of gas for 
cooking, contact with dog, 
cat, other furry pets, 
home mould and 
dampness, biological 
siblings, participant of 
intervention, intervention 
formulas, living on a farm, 
parental asthma, hay 
fever or eczema 

Study in rural and 
small-town areas, 
participants differed 
than non-participants, 
potential for recall bias 
in defining the 
outcome 

LeMasters 
et al. (2015), 
USA, 
Cincinnati 

Birth cohort 
(CCAAPS) 

Birth-7 575 LUR modelling EC EC: 75th percentile 
(0.42) µg/m3 

26.4% of normal 
BMI children and 
27.5% of high BMI 
children were at ≥ 
0.42 µg/m3 

 

Children were doctor 
diagnosed as asthmatic with 
symptoms of asthma and 
evidence of bronchial hyper-
reactivity or a positive 
methacholine challenge test 

@ 1, 2, 3, 4 
and 7 y.o. 

Sex, smoking in home, 
ethnicity, mother’s 
education, breastfeeding, 
dog and/or cat in home 
during 1st year of life, 
attendance at day care 
during 1st year of life, 
stratification by BMI 

High risk birth cohortb, 
potential for recall bias 
of residential history 
and household 
smoking history 
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73.7% of normal 
BMI children and 
72.5% of high BMI 
children were at < 
0.42 µg/m3 

Lindgren et 
al. (2013), 
Sweden, 
Scania 

Birth cohort Birth-6 6,007 Dispersion 
modelling 
(AERMOD), traffic 
intensity on road 
with heaviest traffic 
within 100m 
around residence 

NOx NOx: range (6.1-
45.9); mean (17.0) 
µg/m3 

 

73.8% living at ≤ 
100 m from 0–8640 
cars/day and 
26.6% living at ≤ 
100 m from ≥ 8640 
cars/day 

Asthma onset defined as 
incidence of 1st ever and 3rd 
year dispensed inhaled β2-
agonist and corticosteroid 

Children 
followed from 
birth (2005-
2010) until 
2011 
(maximum= 6 
y.o.) 

Sex, tobacco smoke, 
breastfeeding, parental 
allergy, parental origin, 
parental education, birth 
year (birth weight, 
smoking during 
pregnancy, home mould, 
furred pets at home, 
problems to pay bills, type 
of housing considered but 
not included in the final 
models) 

Potential for selection 
bias, crude traffic 
intensity categorization 

MacIntyre et 
al. (2014a), 
Sweden, 
Canada, 
Germany, 
The 
Netherlands 

Pooled data 
from 6 birth 
cohorts: 
BAMSE; 
CAPPS; 
GINI; LISA; 
PIAMA; 
SAGE 

Birth-8 5,115 LUR modelling, 
dispersion 
modelling for 
BAMSE only 

NO2 
(sensitivity 
analyses 
for BC and 
PM2.5) 

NO2: pooled data - 
range (2.2-66.8); 
mean (22.7) µg/m3 

Parental reporting of doctor-
diagnosed asthma. CAPPS 
and SAGE children were also 
evaluated by a paediatric 
allergist to confirm asthma 

Children 
followed at 
different time 
points 
depending on 
the cohort 

Study, city, sex, birth 
weight, parental history of 
allergy, maternal age at 
birth, maternal smoking 
reported anytime during 
pregnancy, environmental 
tobacco smoke reported 
in the home, and 
intervention, stratification 
by genotype 

No adjustment for 
socioeconomic status, 
potential for selection 
bias, potential for 
recall bias in defining 
the outcome 

McConnell 
et al. (2010), 
USA, 13 
southern 
Californian 
communities 

Cohort 
(CHS) 

Kindergarten/1st 
grade - 4th 
grade 

2,497 Dispersion 
modelling for NOx 
(CALINE 4), 
monitoring data for 
NO2, PM2.5, PM10, 
distance to nearest 
freeway or other 
highways or arterial 
roads, traffic 
density within 
150m around 
residence and 
school 

NOx, NO2, 
PM2.5, PM10 

NOx: total at 
residence - range 
(0.23-144.1); mean 
(18.4) ppb 

 

NO2: range (8.7-
32.3); mean (20.4) 
ppb 

 

PM2.5: range (6.3-
23.7); mean (13.9) 
µg/m3 

 

PM10: range (17.6-
61.5); mean (35.5) 
µg/m3 

 

Traffic density: at 
residence - range 
(<0.0001-1,029); 
mean (48.3) 

 

Distance to 
freeway: at 
residence - range 

Self-reporting of doctor-
diagnosed asthma 

Annual 
questionnaires 
during 3 years’ 
follow-up 

Age, sex, ethnicity 
(history of allergy, play 
team sport, parental 
history of asthma, 
maternal smoking during 
pregnancy, second-hand 
smoke, mildew, pets in 
home, indoor NO2 
sources, wildfire 
exposure, health 
insurance, household 
income and parental 
education were 
considered but not 
included in the final 
models) 

Potential for recall bias 
in defining the 
outcome, potential for 
selection bias 
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(24-18,210); mean 
(1,912) m 

 

Distance to major 
road: at residence - 
range (0.02- 
7,516); mean (433) 
m 

Mölter et al. 
(2014a), 
England, 
Greater 
Manchester 

Birth cohort 
(MAAS) 

Birth-11 1,108 Micro 
environmental 
exposure model 
(LUR modelling for 
outdoor and 
INDAIR for indoor 
environments, 
indoor to outdoor 
ratios: journey to 
school and school) 

NO2, PM10 NO2: birth year - 
mean (21.7) µg/m3 

 

PM10: birth year - 
mean (12.8) µg/m3 

Asthma defined as at least 
two positive answers to the 
following three questions: (1) 
doctor-diagnosis of asthma 
ever; (2) child having 
wheezed during the previous 
12 months and (3) child 
having received asthma 
medication during the 
previous 12 months 

@ 3, 5, 8, and 
11 y.o. 

Age, sex, body mass 
index, paternal income at 
birth, sensitization, family 
history of asthma, 
hospitalization during the 
first 2 years of life, 
smoking within the child’s 
home during the first year 
of life, and Tanner stage 
(age 11 only) (ethnicity, 
older siblings, parental 
atopy, day care 
attendance, presence of a 
gas cooker in the home, 
visible signs of dampness 
or mould in the home, 
presence of a dog or a 
cat in the home, birth 
weight, gestational age, 
maternal age at birth, and 
duration of breastfeeding 
were considered but not 
included in the final 
models) 

Limited number of 
children with a full set 
of exposure estimates 
available for follow-up, 
more restrictive 
asthma definition, 
potential for recall bias 
as review of 
microenvironments 
only done at age 11, 
potential for recall bias 
in defining the 
outcome 

Mölter et al. 
(2014b), 
England, 
Sweden, 
Germany, 
The 
Netherlands 

Pooled data 
from 5 birth 
cohorts: 
MAAS, 
BAMSE, 
PIAMA, 
GINI, LISA 
(South and 
North) 

Birth-10 10,377 LUR modelling, 
traffic intensity on 
the nearest street, 
traffic intensity on 
major roads within 
a 100m radius 

BC, NO2, 
NOx, PM2.5, 
PM10, 
PMcoarse 

BC at birth: MAAS 
- range (0.7-2.0); 
mean (1.2) 10-5m-1 

BAMSE - range 
(0.4-1.3); mean 
(0.7) 10-5m-1 

PIAMA - range 
(0.9-3.0); mean 
(1.2) 10-5m-1 

GINI/LISA South - 
range (1.3-3.6); 
mean (1.7) 10-5m-1 

GINI/LISA North - 
range (0.9-3.1); 
mean (1.2) 10-5m-1  

 

NO2 at birth: MAAS 
- range (16.0-30.4); 
mean (22.9) µg/m3 

Asthma defined as at least 
two positive answers to the 
following three questions: (1) 
doctor-diagnosis of asthma 
ever; (2) child having 
wheezed or whistled during 
the previous 12 months and 
(3) child having received 
asthma medication during the 
previous 12 months 

@ 4 (age 5 in 
MAAS), and 8 
y.o. (age 10 in 
GINI/LISA) 

Age, sex, older siblings, 
gas cooking, dampness 
or mould, maternal 
smoking during 
pregnancy, any smoker 
living in the home, >12 
weeks of breastfeeding, 
day-care 

attendance, parental 
atopy, personal 
socioeconomic status, 
maternal age at birth, 
presence of a dog in the 
home, presence of a cat 
in the home, region, area-
level socioeconomic 
status, birth weight, 
moving status (sensitivity 
analysis) 

Potential for 
misclassification of 
personal exposure, 
more restrictive 
asthma definitions, 
potential for recall bias 
in defining the 
outcome 
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BAMSE - range 
(6.0-33.0); mean 
(14.0) µg/m3 

PIAMA - range 
(9.2-55.3); mean 
(23.2) µg/m3 

GINI/LISA South - 
range (11.5-61.1); 
mean (22.0) µg/m3 

GINI/LISA North - 
range (19.6-62.8); 
mean (23.9) µg/m3 

 

PM2.5 at birth: 
MAAS - range (9.4-
11.0); mean (9.4) 
µg/m3 

BAMSE - range 
(4.2-11.4); mean 
(7.8) µg/m3 

PIAMA - range 
(15.3-20.9); mean 
(16.4) µg/m3 

GINI/LISA South - 
range (10.6-18.3); 
mean (13.4) µg/m3 

GINI/LISA North - 
range (15.8-21.5); 
mean (17.4) µg/m3 

 

PM10 at birth: 
MAAS - range 
(12.6-22.7); mean 
(17.2) µg/m3 

BAMSE - range 
(6.0-30.9); mean 
(15.7) µg/m3 

PIAMA - range 
(23.7-32.7); mean 
(25.0) µg/m3 

GINI/LISA South - 
range (14.8-34.3); 
mean (20.4) µg/m3 

GINI/LISA North - 
range (23.9-33.5); 
mean (25.5) µg/m3 

 

PMcoarse at birth: 
MAAS - range (5.0-



65 
 

65 

 

11.5); mean (7.0) 
µg/m3 

BAMSE - range 
(0.7-20.2); mean 
(7.9) µg/m3 

PIAMA - range 
(7.6-11.1); mean 
(8.4) µg/m3 

GINI/LISA South - 
range (4.1-16.0); 
mean (6.8) µg/m3 

GINI/LISA North - 
range (2.0-13.8); 
mean (8.5) µg/m3 

Morgenstern 
et al. (2007), 
Germany, 
Munich 
Metropolitan 
area 

2 birth 
cohorts 
(GINI and 
LISA) – 
extension on 
Gehring et 
al. (2002) 

Birth-2 3,577 LUR modelling, 
living close to 
major road 

BC, NO2, 
PM2.5 

BC: range (1.3-
3.2); mean (1.7) 
10-5m-1 

 

NO2: range (19.4-
71.7); mean (35.3) 
µg/m3 

 

PM2.5: range (6.8-
15.3); mean (12.8) 
µg/m3 

Parental reporting of doctor-
diagnosed asthmoid/ 
spastic/obstructive bronchitis 

GINI @ birth, 
1, and 2 y.o., 
LISA @ birth, 
0.5, 1, 1.5, and 
2 y.o. 

Sex, age, parental atopy, 
tobacco smoke at home, 
maternal education, 
siblings, use of gas for 
cooking, home 
dampness, indoor mould, 
dogs and cats keeping 

Very young age for 
accurate diagnosis, 
follow-up duration is 
short, potential for 
recall bias in defining 
the outcome 

Morgenstern 
et al. (2008), 
Germany, 
Munich 

2 birth 
cohorts 
(GINI and 
LISA) 

4-6 2,436 LUR modelling, 
minimum distance 
to next motorway, 
federal or state 
road 

BC, NO2, 
PM2.5 

BC at 2/3 y.o.: 
range (1.1-3.3); 
mean (1.7) 10-5m-1 

 

NO2 at 2/3 y.o.: 
range (8.0-58.4); 
mean (34.7) µg/m3 

 

PM2.5 at 2/3 y.o.: 
range (1.3-15.0); 
mean (11.1) µg/m3 

Parental reporting of doctor-
diagnosis of 
asthmatic/spastic/obstructive 
bronchitis or asthma 

GINI @ birth, 
1, 2, 3, 4 and 6 
y.o.,  

LISA @ birth, 
0.5, 1, 1.5, 2, 4 
and 6 y.o. 

Sex, age, parental atopy, 
maternal education, 
siblings, tobacco smoke 
at home, use of gas for 
cooking, home 
dampness, indoor 
moulds, dogs and cats 
keeping 

Potential for recall bias 
in defining the 
outcome 

Oftedal et al. 
(2009), 
Norway, 
Oslo 

Oslo birth 
cohort and 
sample from 
simultaneous 
cross-
sectional 
study 

Birth-10 2,329 Dispersion 
modelling 
(EPISODE), 
distance to main 
transport routes 
with any form of 
motor transport 

NO2 NO2 at birth year: 
range (1.5-84.0); 
mean (39.3) µg/m3 

Parental reporting of doctor-
diagnosed asthma 

Questionnaires 
completed at 
baseline and 
at 10 y.o. with 
a question 
about age of 
first diagnosis 

Sex, parental atopy, 
maternal smoking in 
pregnancy, paternal 
education, maternal 
marital status at the 
child’s birth, contextual 
neighbourhood level 
socioeconomic factors 
cohort indicator, keeping 
furry pets now, dampness 
problems now, parental 
ethnicity (age, birth 
weight, furry pets in early 
life, wall to wall carpeting 
in early life, dampness 

Potential for selection 
bias and recall bias in 
defining the outcome 
and diagnosis age, no 
adjustment for second-
hand smoking 
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problems in early life, 
parental ethnicity and 
maternal education 
considered but not 
included in the final 
model) 

Patel et al. 
(2011), 
USA, New 
York 

Birth cohort 
(CCCEH) 

Birth-5 593 Proximity to 
roadways, roadway 
density, truck route 
density, four-way 
street intersection 
density, number of 
bus stops, 
percentage of 
building area 
designated for 
commercial use 

NA At prenatal address 
(following 
addresses only 
reported as change 
in reference to 
prenatal address) 

 

Proximity to 
roadways: range 
(0.01-3.8); median 
(0.44) km 

 

Roadway density: 
range (10.9-45.5); 
median (19.4) km 
roadways/km2 land 

 

Truck route 
density: range (0-
12.6); median (2.5) 
km truck 
routes/km2 land 

 

Four-way street 
intersection 
density: range (0-
107); median 
(45.9) (# 
intersections/km2 
land 

 

Number of bus 
stops: range (0-
17); median (6) 
stops 

 

Percentage of 
commercial 
building area: 
range (0.55-56.8); 
median (6.2) 

Parental reporting of doctor-
diagnosed asthma 

Questionnaires 
completed 
every 3 
months 
between birth 
and 2 y.o. and 
every 6 
months from 2 
y.o. to 5 y.o. 

Sex, age, ethnicity, 
presence of smokers in 
the home, annual 
household income, 
concentrations of German 
cockroach and mouse 
allergen in dust samples 

Study of Dominicans 
and African 
Americans, subjects 
included in analysis 
had lower asthma 
proportions than fully 
enrolled cohort, no 
adjustment for 
heredity, potential for 
recall bias in defining 
the outcome 

Ranzi et al. 
(2014), Italy, 
Rome 

Birth cohort 
(GASPII) 

Birth-7 672 LUR modelling, 
proximity to high 
traffic roads 

NO2 NO2 at birth year: 
range (15.2-59.58); 
mean (37.17) 
µg/m3 

Maternal reporting of doctor-
diagnosed asthma 

@ 6, 15 
months, 4 and 
7 y.o. 

Sex, age, breastfeeding 
at 3 months, day care 
attendance, presence of 
pets in home, siblings, 
maternal and paternal 

Potential for selection 
bias and recall bias in 
defining the outcome  
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Proximity to high 
traffic roads at 
baseline: range 
(1.00- 10054.78); 
mean (395.12) m 

smoking, maternal 
smoking during 
pregnancy, maternal and 
paternal education, 
presence of mould or 
dampness at home, 
familial asthma/allergies 

Shima and 
Adachi 
(2000), 
Japan, 7 
Chiba 
Prefecture 
communities 

Cohort 9/10-12/13 842 Monitoring data NO2 NO2: annual mean 
in the 7 
communities 
ranging from 7.0 
ppb (at Tateyama) 
to 31.3 ppb (at 
Ichikawa) 

Parental reporting of asthma 
defined as ≥ 2 episodes of 
wheezing accompanied by 
dyspnoea that had ever been 
given the diagnosis of asthma 
by a doctor and occurrence of 
attacks or need for medication 
in past 2 years 

Annual 
questionnaires 
during 3 years’ 
follow-up 

Sex, history of allergic 
disease, early-life 
respiratory diseases, 
breastfeeding in infancy, 
parental history of allergic 
disease, parental 
smoking habits, indoor 
NO2, use of unvented 
heater in winter 

Non-participants 
higher in urban 
districts, no adjustment 
for socioeconomic 
status, potential for 
recall bias in defining 
the outcome 

Shima et al. 
(2002), 
Japan, 8 
Chiba 
Prefecture 
communities 

Cohort 6-12 1,910 Monitoring data NO2, PM10 NO2: annual mean 
in the 8 
communities 
ranging from 7.3 
ppb (at Tateyama) 
to 31.4 ppb (at 
Ichikawa) 

 

PM10: annual mean 
in the 8 
communities 
ranging from 27.9 
µg/m3 (at 
Tateyama) to 53.7 
µg/m3 (at Chiba) 

As in Shima and Adachi 
(2000) 

Annual 
questionnaires 
during 6 years’ 
follow-up 

City, sex, history of 
allergic disease, early-life 
respiratory diseases, 
parental history of allergic 
diseases, maternal 
smoking habits, use of 
unvented heater in winter, 
house of steel/reinforced 
concrete 

Non-participants 
higher in urban 
districts, no adjustment 
for socioeconomic 
status, potential for 
recall bias in defining 
the outcome 

Shima et al. 
(2003), 
Japan, 8 
Chiba 
Prefecture 
communities 

Cohort 6/9-10/13 1,858 Distance to trunk 
roads 

NA Traffic density 
range (33,775-
83,097) vehicles/12 
hours 

As in Shima and Adachi 
(2000) 

Annual 
questionnaires 
during 4 years’ 
follow-up 

Sex, school grade, history 
of allergic diseases, early-
life respiratory diseases, 
breastfeeding in infancy, 
parental history of allergic 
diseases, maternal 
smoking, house of 
steel/reinforced concrete, 
use of unvented heater in 
winter 

Non-participants 
higher in urban 
districts, no adjustment 
for socioeconomic 
status, potential for 
recall bias in defining 
the outcome 

Tétreault et 
al. (2016), 
Canada, 
Québec 

Birth cohort Birth-12 1,133,938 LUR modelling for 
NO2, satellite 
imagery for PM2.5 

NO2, PM2.5 NO2 at birth: range 
(4.47, 35.90); 
mean (15.51) ppb 

 

PM2.5 at birth: 
range (2.32, 
14.85); mean 
(9.86) µg/m3 

Any hospital discharge 
showing a diagnosis of 
asthma (in any diagnostic 
field) or two physician claims 
for asthma (visits to the 
emergency room or 
physician’s office) occurring 
within a 2-year period 
(indexing occurred on the 
second visit) 

NA Sex, quintiles of the 
Pampalon deprivation 
index, year of birth in the 
cohort, second-hand 
smoke, region 

Socioeconomic status 
was not available on 
individual base and 
was assessed using 
an area wide variable, 
adjustment for second-
hand smoke was 
indirect, PM2.5 

calculations 

were performed at a 
large scale and only 
for years 2001 to 2006 
and assumed constant 
for all years during the 
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study period (1996 to 
2011), no adjustment 
for heredity 

Wang et al. 
(2016c), 
Taiwan, 11 
communities 
in Taipei 

Cohort 
(CEAS) 

Birth-
kindergarten 
(average age 
5.5 ± 1.1) 

2,661 Monitoring data CO, NO2, 
PM2.5, PM10 

CO: range (0.39, 
0.82); mean (0.63) 
ppb 

 

NO2: range (16.48, 
26.03); mean 
(23.04) ppb 

 

PM2.5: range 
(17.55, 30.45); 
mean (28.81) 
µg/m3 

 

PM10: range 
(27.75, 52.77); 
mean (48.14) 
µg/m3 

Doctor-diagnosed asthma and 
the presence of nocturnal 
cough or exercise wheeze in 
the past 12 months 

At average 
age 5.5 ± 1.1 

Sex, age, body mass 
index, environmental 
tobacco smoke, maternal 
history of atopy, maternal 
education and nationality, 
duration of breastfeeding, 
duration of sleep, number 
of siblings, temperature, 
relative humidity, and 
distance from home to the 
monitoring station (family 
income, dampness in the 
house, fungus on the 
house walls considered 
but not included in the 
final models) 

Excluding premature 
birth children may bias 
results towards the 
null, potential for 
selection bias, 
potential for exposure 
misclassification 
(children’s residences 
within 10 km from the 
air monitoring 
stations), potential for 
recall bias in defining 
the outcome 

Yamazaki et 
al. (2014), 
Japan, 57 
elementary 
schools 

Cohort 
(SORA) 

6-9 10,069 Dispersion 
modelling for 
outdoor and indoor 
concentrations, 
living near heavily 
trafficked roads 

EC, NOx EC: 814 children at 
highest EC level (≤ 
2.2 µg/m3) and 892 
children at lowest 
EC level (≥ 3.3 
µg/m3) 

 

NOx: 997 children 
at highest NOx 
level (≤ 38.9 ppb) 
and 978 children at 
lowest NOx level (≥ 
57.4 ppb) 

 

Living near heavily 
trafficked roads: 
794 children at < 
50 m zone; 7726 
children at ≥ 50 m 
zone; 1549 
children at 
reference area 

Asthma defined based on 
“yes” answers to all of the 
following five questions: “has 
your child ever had an attack 
of wheezing or whistling that 
has caused him/her to be 
short of breath?”, “has he/she 
ever had 2 or more such 
episodes?”, “has a doctor 
ever said that he/she had 
asthma, asthmatic bronchitis, 
or child asthma?”, “on that 
occasion, did his/her chest 
sound wheezy or produce a 
whistling sound?”, and “at that 
time, did he/she have difficulty 
in breathing, accompanied by 
wheezing or whistling?” 

Follow-up 
surveys were 
conducted 
annually for 4 
years after 
baseline 
survey 

Sex, grade as a surrogate 
variable of age, body 
mass index, respiratory 
symptoms, presence of 
allergic disease, feeding 
during the lactation 
period, past history of 
diseases or surgery, 
smoker in the household, 
siblings and first-born 
child, parents’ past history 
of respiratory illnesses, 
housing materials, 
cookware used at home, 
heating system installed, 
humidifier/dehumidifier 
use, presence of mould in 
house, flooring materials 
used, presence of pets, 
use of air cleaners, use of 
clothes dryers, 
background 
concentrations of air 
pollution, and area 

Restrictive asthma 
definition, decreasing 
concentration of air 
pollutants over the 
study period could 
have caused the ORs 
to be overestimated, 
potential for recall bias 
in defining the 
outcome, no 
adjustment for 
socioeconomic status  

Yang et al. 
(2016), The 
Netherlands, 
north, west 
and centre 
communities 

Birth cohort 
(PIAMA) 

Birth-14 3,701 LUR modelling Oxidative 
Potential, 
BC, NO2, 
PM2.5, 
copper 
(Cu), iron 
(Fe), zinc 
(Zn), nickel 
(Ni), 
sulphur (S), 

BC at birth: range 
(0.8-3); mean (1.2) 
10-5m-1 

 

NO2 at birth: range 
(8.7-59.6); mean 
(23.1) µg/m3 

 

Parental reporting of doctor-
diagnosed asthma 

@ birth, 1, 2, 
3, 4, 5, 6, 7, 8, 
11-12 and 14 
y.o. 

Sex, maternal education, 
parental allergies, 

breastfeeding, maternal 
smoking during 
pregnancy, smoking in 
the child’s home, use of 
gas for cooking, mould/ 
dampness in the child’s 

Using LUR models to 
model oxidative 
potential, potential for 
recall bias in defining 
the outcome 
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vanadium 
(V) 

PM2.5 at birth: 
range (15.3-21.1); 
mean (16.4) µg/m3 

 

For oxidative 
potential; see 
figure 1 in original 
paper 

home, pets at home, day-
care attendance 

during first year of life and 
neighbourhood 
percentage of low income 
household 

Dell et al. 
(2014), 
Canada, 
Toronto 

Case-control 5-9 1,497 LUR modelling, 
monitoring data 
weighted by 
inverse distance to 
child’s residence, 
distance to 
highways/ major 
roadways 

NO2 NO2 (LUR): range 
(17.9-47.7); mean 
(28.3) ppb at birth 

 

< 50 m of a major 
roadway (birth) 
(13.5% of children) 

 

Parental reporting of doctor-
diagnosed asthma 

NA Adjustment variables 
selected from potential 
clustering by school, age, 
sex, parental asthma, 
prematurity, 
breastfeeding, low birth 
weight, crowding, lifetime 
day-care attendance, 
income adequacy, 
respondent's education 
level and home 
exposures to tobacco 
smoke, gas stoves, pets, 
cockroaches, damp spots 
and mould. These differ 
by model 

Study participants 
differed in number of 
characteristics to non-
participants, potential 
for recall bias in 
defining the outcome 

English et 
al. (1999), 
USA, San 
Diego 

Case-control ≤ 14 8,280 Average daily 
traffic on streets 
within 168m buffer 
around residence 

NA Traffic volume at all 
streets 

within 550 ft. 
(cars/day): mean 
(41,497 controls; 
42,880 asthma 
cases) 

Asthma diagnosis based on 
data from Medi-Cal paid 
claims database which 
includes diagnosis based on 
ICD-9 code 493 

NA Sex, ethnicity, urban 
status (census block 
characteristics 
representing 
socioeconomic 
considered but not 
included in final models) 

No adjustment for 
smoking and heredity, 
low income population 

Hasunuma 
et al. (2016), 
Japan, 9 
cities and 
wards 

Case-control 
(nested in 
SORA) 

1.5-3 416 Dispersion 
modelling including 
indoor 
concentration 
assuming an 
infiltration rate from 
outdoor 
concentration, 
distance from 
heavily trafficked 
roads 

EC, NOx EC: 6.5% of 
controls and 5.6% 
of cases at highest 
EC level (3.6-7.5 
µg/m3) 

18.1% of controls 
and 17.8% of 
cases at lowest EC 
level (1.3-2.4 
µg/m3) 

 

NOx: 6.0% of 
controls and 4.8% 
of cases at highest 
NOx level (50.9-
136.8 ppb) 

25.3% of controls 
and 25.8% of 
cases at lowest 
NOx level (13.9-
32.5 ppb) 

 

Asthma defined as a history of 
two or more attacks of 
dyspnoea accompanied by 
wheezing 

@ 1.5 and 3 
y.o. 

Sex, districts, birth 
season, years of 
residence, feeding 
method during the first 3 
months of life, familial 
smoking habits, house 
structure, heating system, 
history of 
pneumonia/bronchitis, 
empyema and allergic 
diseases, parental history 
of asthma, atopic 
dermatitis and pollinosis, 
and background air 
pollution concentrations 

Potential for selection 
bias and follow-up rate 
low, case-control 
matching done by 
geographical region/ 
area, incidence of 
asthma identified only 
between 1.5 and 3 y.o. 
which is not sufficiently 
long for effects to 
reveal themselves, 
very young age for 
accurate diagnosis, no 
adjustment for 
socioeconomic status, 
potential for recall bias 
in defining the 
outcome 
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Distance from 
traffic: 4.0% of 
controls and 3.4% 
of cases at <50 m 
from a main road 

91.7% of controls 
and 92.3% of 
cases at ≥ 100 m 
from a main road 

Nishimura et 
al. (2013)c, 
USA, 
Chicago, 
Bronx, 
Houston, 
San 
Francisco, 
Puerto Rico 

2 case-
controls 
(GALA II and 
SAGE II) 

8-21 3,015 Monitoring data at 
closest four 
monitors weighted 
by inverse distance 
squared to child’s 
residence 

NO2, PM2.5, 
PM10 

NO2 at median 
birth year: all 
communities 25th 
and 75th 
percentiles (12.7, 
24.0); mean (19.3) 
ppb 

 

PM2.5 at median 
birth year: all 
communities 25th 
and 75th 
percentiles (8.5, 
14.5); mean (11.8) 
µg/m3 

 

PM10 at median 
birth year: all 
communities 25th 
and 75th 
percentiles (23.6, 
31.4); mean (27.8) 
µg/m3 

Reporting of doctor-diagnosed 
asthma plus ≥ 2 symptoms of 
coughing, wheezing or 
shortness of breath in 2 years 
before recruitment. Cases 
reporting asthma diagnosis in 
the first three years of life 
were excluded. Subgroup 
analysis undertaken stratified 
by high/low IgE as a proxy for 
risk of atopic/non-atopic 
asthma 

NA Sex, age, geographic 
region, ethnicity, 
composite socioeconomic 
status, familial asthma (in 
stratified analysis), 
maternal in utero 
smoking, environmental 
tobacco 

smoke in the household 
between 0 and 2 years 
old, and maternal 

language of preference in 
sensitivity analysis 

Study of Latino 
Americans and African 
Americans, case-
control matching done 
by geographical 
region/ area 

Zmirou et al. 
(2004), 
France, 
Paris, Nice, 
Toulouse, 
Clermont-
Ferrand, 
Grenoble 

Case-control 
(VESTA) 

4-14 390 Traffic density 
within 300m to 
road distance ratio 

NA See figure 1 and 2 
in original paper 

Doctor-diagnosis of asthma 
by a network of private 
paediatricians or general 
practitioners. Cases had not 
to report doctor-diagnosis of 
asthma from ≥ 2 years before 
inclusion 

NA Age, sex, city, smoking 
during pregnancy, 
number of months of 
exposure to maternal 
smoking at home, day 
care attendance, parents’ 
social category, number 
of months of gas usage 
for cooking, number of 
months with pets and 
traces of humidity at 
home (siblings 
considered but not 
included in the final 
model) 

Crude traffic intensity 
categorization, 
potential for selection 
bias, case-control 
matching done by 
geographical region/ 
area, parents of 
control children had 
more often a university 
level education 

Deng et al. 
(2015), 
China, 
Changsha 

Cross-
sectional 
(CCHH) 

3-6 2,490 Monitoring data 
weighted by 
inverse distance to 
child’s kindergarten 

NO2, PM10 

(as a 
mixture 
surrogate) 

NO2: range (31-
62); mean (48) 
µg/m3 

 

Parental reporting of doctor-
diagnosed asthma 

NA Sex, age, breastfeeding, 
living area (downtown, 
suburban), parental atopy 
(birth weight, diagnosis of 
asthma or other allergic 
diseases) (parental 
smoking during 
pregnancy, maternal age, 

Excluding low birth 
weight /premature birth 
children may bias 
results towards the 
null, potential for 
selection bias by 
excluding 
kindergartens with low 
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PM10: range (85-
138); mean (103) 
µg/m3 

socioeconomic status 
(house size and mother 
occupation) and 
gestational age were 
considered but not 
included in the final 
models) 

response rates and 
others with missing 
data, potential for 
recall bias in defining 
the outcome, higher 
likelihood that 
exposures include 
other sources of 
emissions, exposure at 
kindergarten location 
is not necessarily the 
same at home location 

Deng et al. 
(2016), 
China, 
Changsha 

Cross-
sectional 
(CCHH) 

3-6 2.598 Monitoring data 
weighted by 
inverse distance to 
child’s kindergarten 

NO2, PM10 

(as a 
mixture 
surrogate) 

NO2: mean (49) 
µg/m3 

 

PM10: mean (93) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma 

NA Sex, age, breastfeeding, 
environmental tobacco 
smoke at home, furry 
pets, parental atopy, 
indoor mould and 
dampness, indoor 
renovation 

Excluding low birth 
weight /premature birth 
children may bias 
results towards the 
null, no adjustment for 
socioeconomic status, 
potential for selection 
bias by excluding 
kindergartens with low 
response rates and 
others with missing 
data, potential for 
recall bias due to the 
retrospective 
questionnaire study, 
higher likelihood that 
exposures include 
industrial emissions, 
exposure at 
kindergarten location 
is not necessarily the 
same at home location 

Kim et al. 
(2016), 
Korea, 45 
elementary 
schools 

Cross-
sectional 

6-7 1,828 Monitoring data  CO, NO2, 
PM10 

CO: 25th and 75th 
percentiles (570, 
740); mean (650) 
ppb 

 

NO2: 25th and 75th 
percentiles (22.6, 
36.5); mean (29.7) 
ppb 

 

PM10: 25th and 75th 
percentiles (51.5, 
66.8); mean (58.8) 
µg/m3 

Parental reporting of doctor-
diagnosed asthma 

NA Sex, allergic diseases of 
the parents, education 
levels of the parents, 
passive smoking, and 
family income 

Potential for recall bias 
in defining the 
outcome, higher 
likelihood that 
exposures include 
other sources of 
emissions 

Liu et al. 
(2016), 
China, 
Shanghai 

Cross-
sectional 
(CCHH) 

4-6 3,358 Monitoring data NO2, PM10 NO2: birth year - 
range (36.0, 67.1); 
mean (55.4) µg/m3 

 

Parental reporting of doctor-
diagnosed asthma 

NA Age, sex, family history of 
atopy, ownership of the 
current residence, 
breastfeeding, home 
dampness, distance of 
residence from the 
nearest main traffic road, 

Potential for recall and 
reporting bias due to 
the retrospective 
questionnaire study, 
higher likelihood that 
exposures include 
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PM10: birth year - 
range (69.2, 96.6); 
mean (82.9) µg/m3 

use of heating during 
winter, renovating the 

residence or buying new 
furniture during early 
lifetime, and household 
environmental tobacco 
smoke 

other sources of 
emissions 
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2.4.2. Asthma Definitions 

In line with the systematic review’s inclusion criteria, all the included studies, except 

Gehring et al. (2002) and Morgenstern et al. 2007 and 2008 (Morgenstern et al., 2007, 

Morgenstern et al., 2008), explicitly included the term ‘asthma’ as one outcome for 

their investigation. In the studies by Gehring et al. (2002), Morgenstern et al. (2007) 

and Morgenstern et al. (2008), all conducted in Germany, the authors did not examine 

TRAP associations with the outcome ‘asthma’ (doctor-diagnosed asthma) as its 

prevalence was not sufficiently high in their young populations (< 1%). Instead, they 

analysed the outcome ‘doctor-diagnosed asthmatic/spastic/obstructive bronchitis’, 

reflecting the more cautious diagnosis pattern found in German paediatricians who 

are reluctant to label a preschool-aged child as asthmatic (Health Effects Institute, 

2010, Gehring et al., 2015b). As such, these studies were included. 

In the remaining studies, the operational definitions of ‘asthma’ varied reflecting the 

well-known lack of a ‘gold standard’ for the measurement of the condition (Hansen et 

al., 2012). Most studies (17 or 41%) exclusively relied on responses to questionnaires 

using parental-reporting or self-reporting of doctor-diagnosed asthma. 21 studies 

used a variety of definitions for asthma as shown in Table 1. These notably included 

more restrictive definitions e.g. combining doctor-diagnosis with symptoms and/or 

recent asthma medication prescriptions or use, or with symptoms and bronchial hyper 

reactivity or positive methacholine challenge test. Other definitions included 

paediatricians’ diagnosis, combining recurrent symptoms with response to β-agonist 

and/or anti-inflammatories (common asthma medications), using disease codes 

appearing in claim records or doctor billing records from primary care and hospital 

discharges, and using registry data on dispensed asthma medication. 

Five studies classified asthma into its two classical phenotypes: atopic/allergic and 

non-atopic/non-allergic, using asthma diagnosis combined with blood 

Immunoglobulin E (IgE) levels to common aero and food allergens (Gehring et al., 

2010, Gruzieva et al., 2013, Nishimura et al., 2013, Gehring et al., 2015b, Mölter et 

al., 2014b). The remaining studies did not attempt to classify the condition. 

2.4.3. Exposure Assessment Methods and Pollutants Studied 

The exposure to TRAP was assessed using various models, as listed below, but most 

studies (22 or 54%) used Land-Use Regression (LUR) models. One recent study 

employed satellite imagery as a new technique for estimating particles exposure 

(Tétreault et al., 2016). An in-depth review of these models can be found elsewhere 
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(Health Effects Institute, 2010, Jerrett et al., 2005). The key strengths and 

weaknesses of each of the encountered methods are summarized in Table 2 and 

have been described in Khreis and Nieuwenhuijsen (2017). To explore whether the 

consistency of results across the range of studies was related to the methodological 

quality of the exposure assessment (Jerrett, 2007), the TRAP exposure assessment 

methods were categorized into 5 categories listed below. This was to group available 

risk estimates under similar exposure models to give an indication whether part of the 

differences in findings may be attributable to differences in exposure assessments. 

The grouped risk estimates can be found in the supplementary data of Khreis et al. 

(2017d). The exposure assessment categories were: 

1. TRAP surrogates (e.g. proximity to roadways)  16 studies; 

2. traffic-related air pollutant concentrations measured at fixed-site monitoring 

stations  11 studies; 

3. traffic-related air pollutant concentrations estimated by LUR modelling  22 

studies; 

4. traffic-related air pollutant concentrations estimated by dispersion modelling 

 7 studies; 

5. traffic-related air pollutant concentrations measured at the individual 

residential address level  1 study; 

6. traffic-related air pollutant concentrations measured by Satellite Imagery  1 

study. 

In studies using measured or modelled pollutant concentrations to represent TRAP 

exposures in the main analyses: NO2 was the pollutant most studied (31 studies), 

followed by PM2.5 (18 studies), BC/PM2.5 absorbance (15 studies) and PM10 (14 

studies). Less frequently studied pollutants were NOx (6 studies), EC (4 studies), CO 

(3 studies), PMcoarse (3 studies), NO (2 studies) and several particulate matter 

composition elements including copper (Cu), iron (Fe), zinc (Zn), nickel (Ni), sulphur 

(S) and vanadium (V); each of which were investigated in two studies (Gehring et al., 

2015a, Kerkhof et al., 2010). No study was found to examine ultra-fine particles, yet 

one study investigated associations with Oxidative Potential (OP), a measure of the 

inherent capacity of fine particulate matter to oxidize target molecules (Yang et al., 

2016). In studies employing LUR modelling to estimate TRAP, there was evidence 

that the models’ validity differed across pollutants. LUR models captured variability in 

mean BC and NO2 concentrations best and were less adequate in estimating mean 

PM2.5 concentrations (see supplementary data of Khreis et al. (2017d)). 
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TRAP exposures were almost exclusively assigned based on the participants’ 

residential addresses, with a few exceptions where routine measurements from fixed-

site monitoring stations near schools (Shima and Adachi, 2000, Shima et al., 2002) 

and children’s nurseries (Deng et al., 2015, Deng et al., 2016) were used to represent 

exposures. Only 8 studies, 5 of which published after 2014, considered children’s 

mobility at older ages and assigned time-weighted TRAP exposures at day-care-

centres and schools (Gruzieva et al., 2013, McConnell et al., 2010, Zmirou et al., 

2004, Hasunuma et al., 2016, Mölter et al., 2014a, Yamazaki et al., 2014) and other 

locations where the child spent significant time (Brunst et al., 2015, LeMasters et al., 

2015), alongside residence. 

2.4.4. Quality Assessment 

Results from the CASP assessment are shown in the supplementary data of Khreis 

et al. (2017d). Overall, the included studies were considered of a good quality to make 

an appropriate evaluation of the relationship between TRAP and asthma 

development, as mainly reported by questionnaires. Some of the limitations identified 

related to non-representative samples, evaluating asthma by questionnaires only and 

not adjusting for important confounders. Specific issues arising from the assessment 

of the individual studies are also summarized in the last column Table 1. More general 

issues identified across the overall body of evidence are presented next. 

Cohort studies were generally considered to be superior to case-control studies and 

cross-sectional studies as they comprise more extensive follow-up and a lower 

likelihood for certain biases such as selection bias. As all studies met the inclusion 

criteria of this systematic review and examined the relationship between TRAP 

exposures and subsequent development of asthma in children from birth to 18 years 

of age, all studies were considered to address a clearly focused issue. In cohort and 

cross-sectional studies, only three studies were considered to have recruited their 

cohorts in an acceptable manner. Recruiting a representative sample is very hard in 

birth cohorts because of the long-term commitment needed and most, if not all, birth 

cohorts fail to recruit an entirely representative sample of the whole population 

because of low recruitment rates and lower inclusion of certain groups like lower 

socioeconomic status groups and ethnic minorities. It was difficult to make judgment 

about eight studies which reported no information about the general population and 

response rates.
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Table 2 Pros and Cons of Exposure Models used in the Systematic Review Literature, Source: (Own Work) 

Exposure model 
Resolution Specificity 

to traffic 
Pros Cons 

Spatial Temporal 

TRAP surrogates e.g. 

proximity to ‘major 

roads’ or ‘freeways’ 

- - - + 

Intuitive, simple and cost effective, can provide insight on which 

pollutants are more likely to be responsible if proximity assessed for 

smaller length sections, more insightful when complemented with 

vehicles counts and composition, low need for updated data 

Assumes a road of a certain type or size corresponds to a certain 

amount of traffic, sometime uses self-reported traffic intensity (collected 

via questionnaires) which can be subjective, assumes all pollutants 

disperse similarly and provides no information on levels of pollutants, 

cannot consider street canyon effects, generally does not consider 

compounded effects of proximity to multiple roads, disregards exposure 

variability due to mobility/individual activity 

Air pollutants 

measurements from 

fixed-site monitoring 

stations 

- - + + -- 

High and continuous temporal resolution, actual measurements 

rather than estimates, cost effective, can provide large sample sizes, 

medium need for updated data 

Not present at all locations, locations usually based on regulatory (not 

scientific) purposes, cannot consider street canyon effects (unless 

located in a street canyon), conceals persons’ differences because of a 

mismatch between data used to estimate exposure and actual subjects’ 

locations, potential for significant amounts of missing data in practice, 

quality of the data depends on quality of data ratification and 

verification, disregards exposure variability due to mobility/individual 

activity 

Air pollutant 

measurements from 

residential (stationary) 

samplers 

+ + - - 

Provides individualized data, captures spatial variability in exposure 

between study subjects, actual measurements rather than estimates, 

cost effective for select pollutants (e.g. NO2), medium need for 

updated data 

Only practical/ feasible in small timeframes and populations, logistic 

and costs concerns, not available or cost prohibitive (e.g. ultra-fine 

particles) for all pollutants of concern, disregards exposure variability 

due to mobility/individual activity 

Remote sensing + - -- 

Can provide estimates for large areas and in areas where 

measurements or models are not available (e.g. low- and medium-

income countries), relatively standardized method across regions, 

medium need for updated data 

Availability depends on satellite presence (i.e. time resolution is 

limited), crude spatial resolution (10 *10 km), only available for select 

pollutants, challenging to assess errors in estimates, cannot consider 

street canyon effects, disregards exposure variability due to 

mobility/individual activity 

Land-use regression 

models 
+ - - + 

Assume independence between sampled locations, good agreement 

between measured and estimated averages of NO2, less with PM, 

modelling based on measurements and information around 

measurement points, relatively easy to collate input data, practical, 

low costs, medium need for updated data 

Only reflect the predictors used in the model, subject to varying 

uncertainties amongst different pollutants, the true contribution of traffic 

to the regression is not always known or reported, difficult to take into 

account street canyon effects; meteorology and atmospheric chemistry, 

cannot assess episodic short-term exposures, the quality of the data 

representing ‘meaningful’ predictors may be an issue and will affect the 

overall accuracy of the model, the model’s outputs are sensitive to the 

locations and density of the sampling sites, generally disregards 

exposure variability due to mobility/individual activity 

Atmospheric dispersion 

models 
+ + + + ++ 

Continuous exposure metric, traffic-specific i.e. based on traffic flows, 

traffic emissions, meteorology and atmospheric chemistry, covers 

relatively large areas, can assess episodic short-term & long-term 

exposures, can consider street canyon effects through optional built-

in street canyon model in many packages, considers compounded 

effects of proximity to multiple roads, medium need for updated data 

Severe data demands, resource intensive, at the mercy of the emission 

factors inputted in the model (subject to high uncertainty), meteorology 

at the exposure scale is influenced by complex physical features 

including traffic turbulence which is difficult to consider, overestimates 

pollution levels during periods of calm wind, generally disregards 

exposure variability due to mobility/individual activity 
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The potential for selection bias was highlighted in 25 cohort studies. Reasons for 

selection bias included special cohort characteristics (e.g. high-risk populations); very 

small sample size; high non-response and exclusion rates and important differences 

between participants and nonparticipants, mainly reflected in differing socioeconomic 

status. This may not always affect the internal validity of the observations, but it may 

affect the external validity. Most cohort studies reported good rates of retention at 

follow-up and only eight studies reported losing > 30% of the initial eligible cohort. 

Only 6 studies following children below the age of 6 years were considered to not be 

sufficiently long for investigating asthma as it is difficult to assess asthma in children 

below school age. 

In case-control studies, potential for selection bias was highlighted in two studies. 

Reasons for selection bias included high non-response or exclusion rates. No study 

has undertaken power calculations to determine the sufficient sample size. Three of 

the case-control studies (Hasunuma et al., 2016, Zmirou et al., 2004, Nishimura et 

al., 2013) matched cases to controls by geographical area, which may introduce bias 

by reducing exposure contrast between cases and controls (Vrijheid et al., 2011). 

Overall, most studies (28 or 68%) have identified and adequately adjusted for 

important confounders; with heredity, smoking and/or second-hand smoke exposure 

and socioeconomic status being the most reported and the ones considered the most 

important. Ten cohort and cross-sectional studies did not adjust for heredity; smoking 

and/or second-hand smoke exposure or socioeconomic status and 3 case-control 

studies did not adjust for one or more of these variables. Six studies excluded low 

birth weight/premature birth children from the analysis (Clark et al., 2010, Deng et al., 

2015, Gehring et al., 2002, Wang et al., 2016c, Deng et al., 2016, Fuertes et al., 

2013). These exclusion may bias results toward the null because low birth weight and 

gestational period may also act on the causal pathway between air pollution and 

asthma (Clark et al., 2010) and the exclusion of these groups may exclude a more 

sensitive population. Studies using parental reporting of doctor-diagnosed asthma 

(21) were subject to recall bias in defining the outcome, but the lack of a better asthma 

metric to be used in large epidemiological studies limits alternatives. All studies 

adequately measured the exposure by always using objective, rather than subjective, 

measurements and classifying subjects into exposure groups using the same 

procedure. However, there are limitations of each exposure metric used as 

overviewed in Section 2.4.3. and most studies do not incorporate mobility patterns in 

older children which limits capturing the true exposure levels and likely leads to 
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exposure misclassification (Nieuwenhuijsen, 2015). Some of the limitations described 

above were dealt with in sensitivity analyses leaving out certain studies (Section 

2.4.5.), but this did not result in materially different risk estimates than reported in the 

main analyses which included all eligible studies. 

2.4.5. Meta-Analytic Summary Risks Estimates 

Results from the random-effects meta-analysis are shown in Figure 5 to Figure 9. 

Results from the fixed-effects meta-analysis are shown in the supplementary data of 

Khreis et al. (2017d). Both random- and fixed-effects meta-analyses results are 

numerically presented in Table 3, alongside the heterogeneity estimates and the 

number of studies included in each analysis. Results from the sensitivity analyses are 

also given in Table 3. The funnel plots are shown in the supplementary data of Khreis 

et al. (2017d). The results for each pollutant are described in turn, next. 

 Risks in Association with BC Exposures 

In the overall meta-analysis for BC, the random-effects overall risk estimate for 

asthma development was statistically significantly increased (for 0.5 x 10-5 m-1 BC, 

overall risk estimate = 1.08, 95% CI 1.03, 1.14), with 0% estimated heterogeneity 

(Figure 5). Results from the fixed-effects model were comparable (Table 3). The 

overall risk estimate remained increased and statistically significant, with no 

estimated heterogeneity, in all sensitivity analyses. In the age-specific meta-analysis, 

the random-effects overall risk estimate was also statistically significantly increased 

for both age groups, but heterogeneity increased in the ≤ 6 years’ old. The overall risk 

estimate was generally robust in sensitivity analyses, although one cohort (the Dutch 

PIAMA cohort) was driving the positive associations in the older age group (Table 3). 

 

Figure 5 BC Random-Effects Meta-Analysis. Individual and Summary Random-Effects 

Estimates for Associations between BC per 0.5 x 10-5 m-1 and Asthma at Any 

Age, Source: Own Work (RevMan 5) 
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 Risks in Associations with NO2 Exposures 

In the overall meta-analysis for NO2, the random-effects overall risk estimate for 

asthma development was statistically significantly increased (for 4 µg/m3 NO2, overall 

risk estimate = 1.05, 95% CI 1.02, 1.07). Yet, there was substantial and statistically 

significant heterogeneity (Figure 6). Results from the fixed-effects model were 

comparable (Table 3). Random-effects overall risk estimate remained statistically 

significantly increased in all sensitivity analyses. In the age-specific meta-analysis, 

the random-effects overall risk estimate was increased and statistically significant for 

both age groups. Heterogeneity remained high in both analyses (Table 3). 

 

Figure 6 NO2 Random-Effects Meta-Analyses. Individual and Summary Random-

Effects Estimates for Associations between NO2 per 4 µg/m3 and Asthma at Any 

Age, Source: Own Work (RevMan 5) 

 Risks in Association with NOx Exposures 

In the overall meta-analysis for NOx, the random-effects overall risk estimate for 

asthma development was increased but was not statistically significant (for 30 µg/m3 

NOx, overall risk estimate = 1.48, 95% CI 0.89, 2.45). There was substantial and 

statistically significant heterogeneity which was the highest detected across all 

analyses (Figure 7). 

Results from the fixed-effects model, however, showed a statistically significantly 

increased risk, with substantial and statistically significant heterogeneity (Table 3). In 

the age-specific meta-analyses, the random-effects overall risk estimates were 

increased in children diagnosed > 6 years old only, but similarly to the overall analysis, 

these risk estimates were statistically insignificant (Table 3). 
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Figure 7 NOx Random-Effects Meta-Analyses. Individual and Summary Random-

Effects Estimates for Associations between NOx per 30 µg/m3 and Asthma at 

Any Age, Source: Own Work (RevMan 5) 

 Risk in Association with PM2.5 Exposures 

In the overall meta-analysis for PM2.5, the random-effects overall risk estimate for 

asthma development was statistically significantly increased (for 1 µg/m3 PM2.5, 

overall risk estimate = 1.03, 95% CI 1.01, 1.05), with little heterogeneity (Figure 8). 

Results from all sensitivity analysis showed a statistically significantly increased risk 

of asthma with PM2.5 exposures, as did the fixed-effects model (Table 3). Of note was 

the significant reduction in heterogeneity in sensitivity analysis excluding the high risk 

birth cohort (Carlsten et al., 2010). In the age-specific meta-analyses of children ≤ 6 

years old age, the results were positive but not statistically significant, whilst results 

from older children supported a statistically significantly increased risk, with reduced 

heterogeneity (Table 3). 

 

Figure 8 PM2.5 Random-Effects Meta-Analyses. Individual and Summary Random-

Effects Estimates for Associations between PM2.5 per 1 µg/m3 and Asthma at 

Any Age, Source: Own Work (RevMan 5) 

 Risks in Association with PM10 Exposures 

In the overall meta-analysis for PM10, the random-effects overall risk estimates for 

asthma development was statistically significantly increased (for 2 µg/m3 PM10, 

overall risk estimate = 1.05, 95% CI 1.02, 1.08), with little heterogeneity (Figure 9). 
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Results from the fixed-effects model were comparable (Table 3) and sensitivity 

analyses supported these findings. The age specific analysis showed increased risks 

in both age groups. Sensitivity analysis supported these findings in the younger age 

group only, whereas the associations disappeared in the older age group (Table 3). 

 

Figure 9 PM10 Random-Effects Meta-Analyses. Individual and Summary Random-

Effects Estimates for Associations between PM10 per 2 µg/m3 and Asthma at Any 

Age, Source: Own Work (RevMan 5) 

2.4.6. Publication Bias 

The funnel plots are shown in the supplementary data of Khreis et al. (2017d). In 

general, there were not enough studies to comprehensively examine publication bias. 

However, it seemed that there is little indication for publication bias except for the NOx 

analysis where the funnel plot was clearly asymmetrical. 
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Table 3 Overall and Age-Specific Meta-Analyses Results 

O
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Exposure Overall random-effects 
meta-analysis OR 
(95% CI) 

Overall fixed-effects 
meta-analysis OR 
(95% CI) 

Number 
of 
included 
studies 

Sensitivity analysis 1: 
excluding study/ studies 
contributing to largest weight 
in random-effects meta-
analysis OR (95% CI) 

Sensitivity analysis 2: 
excluding case-control 
studies in random-effects 
meta-analysis OR (95% CI) 

Sensitivity analysis 3: 
excluding cross-sectional 
studies in random-effects 
meta-analysis OR (95% CI) 

Sensitivity analysis 4: 
excluding studies with 
special characteristics in 
random-effects meta-
analysis OR (95% CI) 

BC 1.08 (1.03, 1.14), I2 = 
0%, P = 0.87 

1.08 (1.03, 1.14), I2 = 
0%, P = 0.87 

8 Study: Clark et al. 2010 
(Weight = 73.1%) 

1.12 (1.01, 1.24), I2 = 0%, P = 
0.88 

Study: Clark et al. 2010 

1.12 (1.01, 1.24), I2 = 0%, P 
= 0.88 

None included Study: Carlsten et al. 2010 
(reason: high risk birth 
cohort) 

1.09 (1.03, 1.15), I2 = 0%, P 
= 0.81 

NO2 1.05 (1.02, 1.07), I2 = 
65%, P = 0.0001 

1.02 (1.01, 1.03), I2 = 
65%, P = 0.0001 

20 Study: Tétreault et al. 2016 
(Weight = 11.6%) 

1.05 (1.02, 1.08), I2 = 61%, P 
= 0.0003 

Studies: Clark et al. 2010, 
Dell et al. 2014, Nishimura et 
al. 2013 

1.04 (1.02, 1.07), I2 = 67%, P 
= 0.0001 

Studies: Deng et al. 2015, 
Kim et al. 2016, Liu et al. 
2016 

1.04 (1.02, 1.07), I2 = 58%, P 
= 0.001 

Study: Carlsten et al. 2010 
(reason: high risk birth 
cohort) 

1.04 (1.02, 1.07), I2 = 66%, P 
= 0.0001 

NOx 1.48 (0.89, 2.45), I2 = 
87%, P = 0.00001 

1.68 (1.42, 1.99), I2 = 
87%, P = 0.00001 

7 Study: Mölter et al. 2014 b – 
PIAMA component (Weight = 
16.5%) 

1.49 (0.79, 2.82), I2 = 89%, P 
= 0.00001 

None included None included None included 

PM2.5 1.03 (1.01, 1.05), I2 = 
28%, P = 0.18 

1.03 (1.02, 1.04), I2 = 
28%, P = 0.81 

10 Study: Tétreault et al. 2016 
(Weight = 33.1%) 

1.03 (1.00, 1.05), I2 = 20%, P 
= 0.26 

Studies: Clark et al. 2010, 
Nishimura et al. 2013 

1.04 (1.02, 1.06), I2 = 8%, P 
= 0.37 

None included Study: Carlsten et al. 2010 
(reason: high risk birth 
cohort) 

1.03 (1.01, 1.04), I2 = 0%, P 
= 0.51 

PM10 1.05 (1.02, 1.08), I2 = 
29%, P = 0.16 

1.04 (1.02, 1.06), I2 = 
29%, P = 0.16 

12 Study: McConnell et al. 2010 
(Weight = 25.7%) 

1.06 (1.02, 1.10), I2 = 16%, P 
= 0.29 

Studies: Clark et al. 2010, 
Nishimura et al. 2013 

1.03 (1.00, 1.06), I2 = 4%, P 
= 0.40 

Study: Deng et al. 2015, Kim 
et al. 2016, Liu et al. 2016 

1.05 (1.00, 1.10), I2 = 44%, P 
= 0.07 

None included 
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Exposure Age-specific ≤ 6 years 
old random-effects 
meta-analysis OR 
(95% CI) 

Age-specific ≤ 6 years 
old fixed-effects meta-
analysis OR (95% CI) 

Number 
of 
included 
studies 

Sensitivity analysis 1: 
excluding study/ studies 
contributing to largest weight 
in random-effects meta-
analysis OR (95% CI) 

Sensitivity analysis 2: 
excluding case-control 
studies in random-effects 
meta-analysis OR (95% CI) 

Sensitivity analysis 3: 
excluding cross-sectional 
studies in random-effects 
meta-analysis OR (95% CI) 

Sensitivity analysis 3: 
excluding studies with 
special characteristics in 
random-effects meta-
analysis OR (95% CI) 

BC 1.17 (1.01, 1.36), I2 = 
45%, P = 0.12 

1.09 (1.03, 1.16), I2 = 
45%, P = 0.12 

5 Study: Clark et al. 2010 
(Weight = 47.4%) 

1.27 (1.05, 1.54), I2 = 42%, P 
= 0.18 

Study: Clark et al. 2010 

1.27 (1.05, 1.54), I2 = 02%, P 
= 0.29 

None included None included 

NO2 1.08 (1.04, 1.12), I2 = 
26%, P = 0.23 

1.07 (1.05, 1.10), I2 = 
26%, P = 0.23 

7 Study: Clark et al. 2010 
(Weight = 38.6%) 

1.10 (1.06, 1.13), I2 = 0%, P = 
0.42 

Study: Clark et al. 2010 

1.10 (1.06, 1.213), I2 = 0%, P 
= 0.42 

Study: Deng et al. 2015, Liu 
et al. 2016 

1.07 (1.02, 1.36), I2 = 32%, P 
= 0.21 

None included 
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NOx 1.02 (0.69, 1.49), I2 = 
69%, P = 0.007 

1.02 (0.85, 1.24), I2 = 
69%, P = 0.007 

6 Study: Mölter et al. 2014 b – 
PIAMA component (Weight = 
22.9%) 

0.97 (0.59, 1.58), I2 = 70%, P 
= 0.010 

 

Study: Hasunuma et al. 2016 

1.15 (0.80, 1.66), I2 = 52%, P 
= 0.08 

None included None included 

PM2.5 1.04 (0.99, 1.11), I2 = 
41%, P = 0.16 

1.02 (1.00, 1.04), I2 = 
41%, P = 0.16 

4 Study: Clark et al. 2010 
(Weight = 58.8%) 

1.09 (1.02, 1.17), I2 = 0%, P = 
0.94 

Study: Clark et al. 2010 
(Weight = 58.8%) 

1.09 (1.02, 1.17), I2 = 0%, P 
= 0.94 

None included None included 

PM10 1.09 (1.04, 1.15), I2 = 
12%, P = 0.34 

1.09 (1.04, 1.14), I2 = 
12%, P = 0.34 

5 Study: Liu et al. 2016 (Weight 
= 49.2%) 

1.09 (1.02, 1.17), I2 = 34%, P 
= 0.21 

Study: Clark et al. 2010 

1.07 (1.01, 1.12), I2 = 0%, P 
= 0.46 

Study: Deng et al. 2015, Liu 
et al. 2016 

1.12 (1.00, 1.25), I2 = 24%, P 
= 0.27 

None included 
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Exposure Age-specific > 6 years 
old random-effects 
meta-analysis OR 
(95% CI) 

Age-specific > 6 years 
old fixed-effects meta-
analysis OR (95% CI) 

Number 
of 
included 
studies 

Sensitivity analysis 1: 
excluding study/ studies 
contributing to largest weight 
in random-effects meta-
analysis OR (95% CI) 

Sensitivity analysis 2: 
excluding case-control 
studies in random-effects 
meta-analysis OR (95% CI)  

Sensitivity analysis 3: 
excluding cross-sectional 
studies in random-effects 
meta-analysis OR (95% CI) 

Sensitivity analysis 3: 
excluding studies with 
special characteristics in 
random-effects meta-
analysis OR (95% CI) 

BC 1.12 (1.00, 1.24), I2 = 
0%, P = 0.79 

1.12 (1.00, 1.24), I2 = 
0%, P = 0.79 

6 Study: Gehring et al. 2015 b 
– PIAMA component (Weight 
= 46.8%) 

1.06 (0.92, 1.23), I2 = 0%, P = 
0.83 

None included None included Carlsten et al. 2010 (reason: 
high risk birth cohort) 

1.15 (1.01, 1.30), I2 = 0%, P 
= 0.78 

NO2 1.03 (1.00, 1.06), I2 = 
62%, P = 0.001 

1.02 (1.01, 1.03), I2 = 
62%, P = 0.001 

14 Study: Tétreault et al. 2016 
(Weight = 17.6%) 

1.04 (1.00, 1.08), I2 = 65%, P 
= 0.02 

Study: Nishimura et al. 2013 

1.03 (1.00, 1.06), I2 = 62%, P 
= 0.002 

Study: Kim et al. 2016 

1.04 (1.01, 1.07), I2 = 62%, P 
= 0.002 

Carlsten et al. 2010 (reason: 
high risk birth cohort) 

1.03 (1.00, 1.06), I2 = 63%, P 
= 0.001 

NOx 1.46 (0.77, 2.78), I2 = 
89%, P = 0.00001 

1.72 (1.41, 2.09), I2 = 
89%, P = 0.00001 

6 Study: Mölter et al. 2014 b – 
PIAMA component (Weight = 
19.1%) 

1.47 (0.62, 3.52), I2 = 91%, P 
= 0.00001 

None included None included None included 

PM2.5 1.04 (1.02, 1.07), I2 = 
3%, P = 0.41 

1.04 (1.02, 1.06), I2 = 
13%, P = 0.41 

8 Study: Tétreault et al. 2016 
(Weight = 80.3%) 

1.06 (1.00, 1.12), I2 = 12%, P 
= 0.34 

Study: Nishimura et al. 2013 

1.05 (1.01, 1.09), I2 = 16%, P 
= 0.31 

None included Carlsten et al. 2010 (reason: 
high risk birth cohort) 

1.04 (1.02, 1.06), I2 = 0%, P 
= 0.78 

PM10 1.04 (1.00, 1.08), I2 = 
5%, P = 0.39 

1.04 (1.00, 1.08), I2 = 
5%, P = 0.39 

8 Study: Nishimura et al. 2013 
(Weight = 51.0%) 

1.03 (0.96, 1.11), I2 = 14%, P 
= 0.32 

Study: Nishimura et al. 2013  

1.03 (0.96, 1.11), I2 = 14%, P 
= 0.32 

Study: Kim et al. 2016 

1.04 (0.99, 1.09), I2 = 18%, P 
= 0.29 

None included 
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2.4.7. Sexes and Atopic and Non-Atopic Asthma Differences 

There was some suggestion that effects may be different by sex, although this was 

inconsistent. Seven out of 11 studies which examined whether there was a differential 

susceptibility or modification in the effects of TRAP by sex reported such differences. 

The individual study findings from those 7 papers are overviewed next. 

Clark et al. (2010) showed that the risk estimates for all traffic-related pollutants were 

consistently higher for girls than for boys. This was most prominent for BC exposures 

(for 0.5 x 10-5 m-1 BC, adjusted OR = 1.28 (95% CI, 1.05, 1.56) for girls versus 1.07 

(95% CI, 0.92, 1.24) for boys). Nishimura et al. (2013) showed that when compared 

to boys, girls seemed to be less susceptible to NO2, but more susceptible to PM2.5 

and PM10; although these differences were not statistically significant (differences can 

be found in the paper’s associated supplementary material). Oftedal et al. (2009) 

showed that NO2 exposures were associated with a higher but statistically non-

significant risk of asthma in girls only (IQR increase of NO2 exposure before asthma 

onset was associated with adjusted RR = 0.73 (95% CI, 0.56, 0.95) in boys versus 

1.05 (95% CI, 0.74, 1.49) in girls). Shima et al. (2003) showed that the association 

between incidence of asthma and living at 0-49 m from trunk roads is slightly higher 

in girls, although non-significant (adjusted OR = 3.77 (95% CI, 1.00, 14.16) in boys 

and 4.03 (95% CI, 0.90, 17.96) in girls). The three remaining studies (Carlsten et al., 

2010, Deng et al., 2015, Gehring et al., 2015b) indicated an increased risk of TRAP-

associated asthma in boys. Two of these latter studies argued that in infancy, the 

airway size is smaller in boys than in girls, on average (for 10 µg/m3 first year NO2 

adjusted OR = 1.57 (95% CI 1.08, 2.26) in boys and 1.51 (95% CI 0.87, 2.61) in girls) 

(Deng et al., 2015), and that the sex differences detected were neither statistically 

significant nor clinically relevant (differences only shown graphically in the paper’s 

associated supplementary material) (Gehring et al., 2015b). The third which was the 

study by Carlsten et al. (2010) was a high risk cohort where boys are expected to 

have had more respiratory symptoms to start with, something which might have 

obscured air pollution effects (Clougherty, 2010). 

In the 5 studies which phenotyped asthma as atopic/allergic and non-atopic/non-

allergic, ORs were only increased (Gehring et al., 2010, Gehring et al., 2015b, Mölter 

et al., 2014b), or were higher in magnitude (Gruzieva et al., 2013, Nishimura et al., 

2013) for the non-atopic/non-allergic asthma phenotype. The detailed data on the 

associations between TRAP and atopic versus non-atopic asthma can be found in 

the supplementary data of Khreis et al. (2017d).
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2.5. Discussion 

2.5.1. Summary 

In this systematic review and meta-analysis, 41 studies, published between 1999 and 

September 2016 and investigating the association between the exposure to TRAP 

and the subsequent development of childhood asthma, were synthesized. The 

selected studies were assessed for their quality and were considered of a good quality 

to make an appropriate evaluation of the relationship between TRAP and asthma 

development; as mainly reported by questionnaires. The main limitations identified in 

the literature related to non-representative samples, evaluating asthma by 

questionnaires only and in some instances not adjusting for important confounders 

such as heredity and smoke exposure. 

This systematic review and meta-analysis provided evidence for a positive 

association between TRAP exposures and subsequent childhood asthma 

development. These results are concordant with most previous individual studies (see 

supplementary data in Khreis et al. (2017d)). There is also considerable support from 

other syntheses for the hypothesis that childhood exposure to TRAP contributes to 

their development of asthma (Bowatte et al., 2015, Anderson et al., 2013, Health 

Effects Institute, 2010). Discordant findings were reported by a small number of 

studies, but some of these were particularly highlighted at high risk of selection bias 

(Hasunuma et al., 2016, Lindgren et al., 2013). The negative associations reported 

by Gehring et al. (2002) and Mölter et al. (2014b) were not confirmed in their follow-

up studies in the same subjects (Morgenstern et al., 2007, Gehring et al., 2015b). 

Overall, there was significant variability in the definitions of the ‘asthma’ outcome, 

TRAP exposure assessment methods and the selection of and adjustment for 

confounders. TRAP exposure was most commonly assessed by LUR models. NO2 

was the pollutant most studied, followed by PM2.5, BC/PM2.5 absorbance and PM10. In 

studies employing LUR modelling to estimate TRAP, there was evidence that the 

models’ validity differed across pollutants with LUR models capturing variability in 

mean BC and NO2 concentrations best whilst being less adequate in estimating mean 

PM2.5 concentrations. TRAP exposures were almost exclusively assigned to the 

participants’ residential addresses, with a few exceptions. Very little work has been 

done to incorporate exposure differences due to children’s’ mobility, where relevant. 
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Overall and age-specific meta-analyses were conducted by pollutant, pooling the 

most homogenous, conservative and robust risk estimates. In the meta-analyses, 

statistically significant random-effects risk estimates were estimated in association 

with the exposure to BC, NO2, PM2.5 and PM10. Sensitivity analyses excluding the 

study that contributed to the largest weight (the smallest SE); excluding case-control 

and cross-sectional studies and excluding studies with special characteristics that 

might compromise the generalizability of findings supported the key findings and 

conclusions. Across the overall meta-analysis and the age-specific analysis, the least 

heterogeneity was seen for the BC estimates, little heterogeneity for the PM2.5 and 

PM10 estimates and the high heterogeneity for the NO2 and NOx estimates. There was 

some suggestion of sex differences and differential effects of TRAP by the asthma 

phenotype being studied. 

2.5.2. Strengths 

Thus far, this is the largest and most up-to-date review and analysis of current 

evidence of the aetiology of childhood asthma and TRAP. The key strengths of this 

study are its large coverage alongside its in-depth, transparent and reproducible 

evaluation of the evidence from studies particularly focused on TRAP exposures as 

a potential cause of childhood asthma. 

This study is also a timely contribution to a rapidly evolving field which could inform 

the focus and design of future research, to improve its utility. Further, meta-analyses 

were conducted enabling exploring the association with the different pollutants and 

the drivers of heterogeneity. Age-specific meta-analyses were conducted in this study 

for the first time exploring differences in the risk estimates and heterogeneity between 

the different age groups. 

2.5.3. Limitations 

Despite its strengths, the approach also has its limitations. 

In the meta-analysis, results were solely derived from continuous exposure analyses 

in the individual studies. Continuous exposure analysis is based on the notion of a 

natural log linear relationship between the exposure and the outcome, which may not 

be the case in the TRAP-asthma associations, although this was assumed. The main 

reason for using continuous exposure analyses results was that these were largely 

available across the included studies whilst, on the other hand, studies reporting high 

versus low exposure analyses were very few and of limited power restricting their 

usability. In line with the systematic review’s inclusion criteria, all the included studies 
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have specifically investigated ‘traffic-related’ air pollution metrics and/or established 

traffic-related air pollutants, yet only a few (7 or 17%) used air pollution dispersion 

models, starting the analysis from source (vehicle emissions) to the health effects 

(childhood asthma), and hence the specific effects of traffic sources cannot be 

completely distinguished from the effects of other sources, with confidence. An 

assumption underlying this systematic review was that childhood and early-life 

represent the most critical exposure windows for the development of asthma in 

relation to TRAP. As such, precedence in the meta-analysis was always given to the 

risk estimates that related to the earliest exposure window (e.g. birth address 

exposures were selected instead of current/later address exposures). Although there 

is ample evidence to support this assumption (Section 2.2.), it can also be that 

exposures in later life contribute to the development of asthma, but this was not 

investigated. Also, in line with the inclusion criteria, estimates and studies pertaining 

to prenatal exposures were excluded (Clark et al., 2010, Sbihi et al., 2016, Deng et 

al., 2016, Liu et al., 2016), and although this may be an artificial distinction as birth 

year exposure may well be correlated to prenatal exposures, the conceptual 

framework of this systematic review required the child’s own exposure for inclusion. 

In the age-specific meta-analyses, ‘school-age’ (i.e. 6 years old) was used as the cut-

off age to categorize study results. This approach did not allow exploring potential 

differences in the effects of TRAP on asthma between pre-pubescent and pubescent 

children as the range > 6 years old included both groups. In the underlying data 

contributing to the meta-analysis, there was some of lack of equivalence among the 

exposure measures, populations and ‘asthma’ definitions studied. Yet, the steadily 

increasing number of studies within the field, much of which are conducted using LUR 

models and in the same populations at different follow-ups, alongside the recent 

availability of new studies using harmonized methods (Gehring et al., 2015b, Mölter 

et al., 2014b), were considered good reasons to justify a meta-analysis approach. 

Several hypothesis-driven sensitivity analyses, retaining studies that are most alike 

and more robust, were conducted and supported the main findings and conclusions. 

Due to the variability across studies, these findings need to be explored in future 

analyses when more studies become available. Future synthesis would also benefit 

from greater standardization of study methods, although some differences are 

inevitable, especially considering the current indistinct definition of asthma. 
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2.5.4. Meta-Analysis Interpretation, Studies Quality and 

Heterogeneity 

Further points which warrant discussion emerged from this study. There was a focus 

on studying NO2 effects which is likely to be related to the wide availability of this 

pollutant measure and its relative specificity to TRAP (Favarato et al., 2014). There 

also is a focus on NO2 in air quality guidelines, plans and mitigation strategies, whilst 

less attention is generally given to the other pollutants. In recent years, there 

appeared to be a shift from studying standard air pollutants to studying other agents 

including black and elemental carbon, particulate matter composition elements and 

other properties such as oxidative potential. Yet the number of studies on these other 

pollutants is still small. The meta-analyses were only possible to conduct for BC, NO2, 

NOx, PM2.5 and PM10 and there was variability in the numbers of studies contributing 

to the meta-analyses for the different pollutants (Table 3). The results showed that 

the meta-analyses for NO2, which had the highest number of studies, produced the 

highest heterogeneity and a relatively small effect size, which may indicate that NO2 

may not be the putative agent in the TRAP mixture, but may act as a surrogate for 

BC or PM2.5, for example, which showed less heterogeneity, or for other unmeasured 

pollutants. Results from the PM2.5 meta-analyses, where 10 studies were available, 

were also relatively low in magnitude but had less heterogeneity. In particular, when 

excluding the high risk birth cohort by Carlsten et al. (2010), where PM2.5 could act as 

an adjuvant for transporting allergens deep in the lungs of predisposed children, the 

random-effects model estimated no heterogeneity. The results of the meta-analyses 

for BC and PM10, where there were 8 and 12 studies, respectively, produced higher 

effect sizes and minimal heterogeneity, and these findings were robust in sensitivity 

analyses, more so for BC. Finally, only 7 studies were available for NOx, and although 

the overall risk estimate was high in magnitude, it did not reach statistical significance 

and there was suggestion for publication bias as indicated by the funnel plots’ 

asymmetry. Given the smaller number of studies available for pollutants other than 

NO2, the power to detect heterogeneity and associations was limited and further 

analysis is needed to support findings and assertions. 

As there is evidence that the accuracy of asthma diagnosis might differ according to 

the child’s age and that younger children might outgrow their asthma symptoms at 

older ages (Martinez et al., 1995), age-specific meta-analyses were conducted with 

a cut-off age of 6 years when asthma is diagnosed more readily. This reduced the 

number of applicable studies and with such small numbers, interpretation should be 
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cautious. In the age-specific meta-analysis, the overall risk estimate of PM2.5 in the 

younger age group lost its statistical significance, which could be attributable to the 

reduction of power, but all other risk estimates remained significantly increased. 

Generally, the effects seemed to be higher in the younger age group. The 

heterogeneity in both the PM(2.5,10) analyses and the BC analysis was reduced in the 

older children as compared to the overall and to the younger children analyses; a 

trend that was previously suggested to imply differences in susceptibility between 

children at a younger age, which attenuated over time (Gehring et al., 2015b). Future 

meta-analyses, when more studies become available, could explore effects and 

heterogeneity at different age cut-off points. The design of this systematic review (cut-

off age at 18 years old), and the current evidence base, did not allow for further 

exploration regarding whether the detected associations persist at older ages. 

Although the overall meta-analysis showed positive and statistically significant 

associations with the 4 pollutants examined, these pollutants are highly correlated in 

traffic exhaust and the overall risk estimates cannot be conclusively interpreted as a 

certain pollutant’s effect. In fact, as mentioned above, the high heterogeneity 

estimated in the NO2 and NOx analyses, in line with other studies (Mölter et al., 

2014b), may suggest that these pollutants are surrogate for another pollutant or 

mixture responsible for the observed effects such as BC or PM2.5. However, the 

number and quality of studies differ which makes it difficult to draw definitive 

conclusions. Pollutants like BC and PM10 are considered to act as tracers of older 

diesel, particularly heavy-duty traffic emissions which are typically not equipped with 

engine control and exhaust after-treatment systems such as diesel particle filters, so 

their emissions of larger, heavier particulate matter are higher. The morphology of 

these larger particulates can include un-burnt hydrocarbons held hydroscopically 

between carbon/BC. BC has been shown to be highly correlated with EC too (Cyrys 

et al., 2003) but importantly with other species known for their toxicological potency 

(Li et al., 2003a, Li et al., 2003b), like polycyclic aromatic hydrocarbons, benzene and 

volatile organic compounds (Fischer et al., 2000, Karimi et al., 2015). 

Several other possible factors can explain heterogeneity identified between the 

studies. Firstly, there were differences in methods used to identify asthma cases, with 

the most commonly employed method being parental-reporting of doctor-diagnoses. 

Some of the heterogeneity detected therefore might be due to regional differences in 

doctors’ practices. Other methods employed to assess asthma varied across the 

remaining studies making their estimates more difficult to compare. As for the quality 
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of these estimates, recall and reporting bias remains a concern in parental-reporting 

of doctor-diagnoses. The extent by which asthma estimates were captured by these 

different methods was not discussed much in this literature, but there are examples 

of the poor overlap and significantly different estimates one obtains utilizing different 

approaches. For instance, a Danish study of > 50,000 children showed that asthma 

prevalence from parental-reporting of doctor-diagnoses, diagnoses from 

hospitalization registries and medication data from prescription registries, varied 

substantially with poor agreement (Hansen et al., 2012). Further assessment of the 

nature of disease misclassification due to the above factors and its effect on 

exposure-response associations is yet needed. 

Secondly, the different levels of exposure, and constituents of air pollutants in the 

different areas may explain differences between studies. The different models used 

to assess TRAP exposures could also result in further heterogeneity. Most studies 

using LUR models showed consistently increased risk of TRAP-associated asthma. 

Although exposure indices from LUR models were considered relatively robust in 

capturing small-area variations of TRAP in comparison to the other models, it was of 

note that LUR may introduce an exposure misclassification by pollutant. Whilst NO2 

and BC can be truly considered as traffic-related and primarily exhaust pollutants 

(Krämer et al., 2009, Cyrys et al., 2003, Fischer et al., 2000), PM2.5 is primarily a non-

exhaust pollutant and has other important local (traffic and non-traffic), regional 

sources and secondary particle formation mechanisms which are not encompassed 

in the geographic variables founding typical LUR models. The fact that the 

encountered LUR models were not as accurate in capturing PM2.5 concentrations is 

therefore relevant in this debate and potential for more downward bias due to the less 

robust regression models in the case of PM2.5 is expected (Basagaña et al., 2013). 

Studies using monitoring stations data were consistent in demonstrating increased 

risks. However, given that most network monitors are usually located to measure 

urban or regional background air pollution (Yamazaki et al., 2014), these studies are 

less specific to traffic, fail to account for TRAP spatial variability, and by definition, 

introduce an inevitable mismatch between the stations’ and subjects’ locations (Kaur 

et al., 2007). This affects the confidence in the PM10 meta-analyses results where 7 

out of the 12 studies included used fixed-site monitoring stations. Finally, results from 

studies using dispersion models were inconsistent. Studies have suggested that 

dispersion models systematically under estimate TRAP concentrations at the 

roadside and in congested areas, a problem attributable to inputting these models 

with unrealistically low vehicle emission factors, especially for NOx and NO2 (Williams 
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et al., 2011). Furthermore, the unusually high exposure estimates that occur in 

canyonised streets (Longley et al., 2004, Vardoulakis et al., 2003) were only captured 

in one study using a street canyon module (Gruzieva et al., 2013). Unfortunately, due 

to the limited number of studies, it was not meaningful to formally assess whether the 

type of exposure model explains part of the heterogeneity between studies. 

There were numerous positive and near-statistically significant associations 

encountered which may well indicate a lack of power, or a heterogeneous effect 

amongst certain subgroups which was diluted within the aggregated population. In 

this context, an open question is whether the exposure to TRAP is really associated 

with the development of non-atopic asthma only. This study, as well as results from 

studies showing that exposure to traffic pollutants is primarily associated with non-

atopic wheeze (Nordling et al., 2008) and that children with no parental history of 

asthma are at higher risks of TRAP-associated asthma (McConnell et al., 2010, 

Nishimura et al., 2013, Gordian et al., 2006), support this notion, yet more data is 

needed. In the light of the recent scientific consensus that asthma is not a single 

disease entity (Corren, 2013, Wenzel, 2012) and the mounting evidence that atopy is 

much less relevant in asthma pathogenesis than previously believed (Asher, 2011), 

it seems that research within the field is lagging behind in attempting to address this 

detail. If the exposure to TRAP was associated with one asthma phenotype only, then 

syncing the risk estimates for all phenotypes in one value is misguided and would 

distort the detected associations. Heterogeneity could also be driven if there was a 

differential susceptibility to the respiratory effects of TRAP by sex. Separate analyses 

for females and males were again only available for a very limited number of studies. 

Finally, as there is wide inter-individual variability in responses to air pollution 

(Brunekreef and Holgate, 2002), genetic variations could explain some of the 

observed heterogeneity. This was only investigated by Kerkhof et al. (2010) and 

MacIntyre et al. (2014a) who found that toll-like receptor genes responsible for 

activating the innate immune system, and variant GSTP1 genotypes which code for 

an enzyme that metabolizes reactive oxygen species; influence the susceptibility to 

effects of TRAP on asthma (MacIntyre et al., 2014a, Kerkhof et al., 2010). 

2.5.5. Avenues for Future Work and Next Steps 

Based on this updated evidence base, it was concluded that there is now sufficient 

evidence to support an association between the exposure to TRAP and the 

development of childhood asthma. The high degree of consistency in findings and 
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conclusions of the individual studies, the results of the meta-analysis and associated 

sensitivity analyses, and considerable support from the existing literature reinforce 

the hypothesis that childhood exposure to TRAP contributes to their development of 

asthma. Yet, many questions remain open including: which are the putative agents in 

the TRAP mixture? what is the specific contribution of traffic to ambient air pollution 

and the excess risk detected? which vehicle fleets are most worrisome and 

where/how to intervene? what is the accuracy and precision of the health effects 

estimates? is the increase in asthma incidence and/or lifetime prevalence estimated 

represents added cases, an acceleration of the development of asthma or increased 

severity making the disease sufficiently apparent for clinical diagnosis? And what are 

the public health impacts of the detected associations on a population scale? 

Future meta-analyses would benefit from greater standardization of study methods 

including exposure assessment harmonization, outcome harmonization, 

confounders’ harmonization and the inclusion of all important confounders in the 

individual analyses (e.g. socioeconomic status, exposure to environmental tobacco 

smoke and heredity). Future synthesis could also explore different exposure windows 

comparing effects of early life to later childhood exposures and possibly prenatal 

exposures. Other specific recommendations that would help improve the utility of new 

research in this field are summarized in Figure 10. 

Subsequent work of this thesis will be of empirical nature, building on lessons learnt 

from this synthesis and furthering some areas of inquiry in the field including: using 

air pollution dispersion models to estimate the contribution of TRAP to ambient air 

pollution and distinguish effects of TRAP from other sources, including NOx in the 

analysis and estimating the local burden of childhood asthma attributable to TRAP 

using different air pollution assessment methods including full-chain models 

combining traffic, emissions and atmospheric dispersion models and, alternatively, a 

commonly used LUR model. The focus will be on the year 2009 in Bradford, when 

traffic, meteorological data and the LUR model was available. 
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Figure 10 Recommendations for Future Research on TRAP and Childhood Asthma

Systematically reporting categorical exposure analysis, alongside 
continuous exposure analysis

Systematically investigating associations with multiple exposure windows

Using air pollution dispersion models or equivalent methods (e.g. source 
apportionment models) to distinguish effects of TRAP from other sources

Expanding the focus on NO2 to other traffic-related pollutants including BC, 
NOx, PM, ultra-fine particles and particles constituents

Assessing the effects of co-/multi-pollutants

Exploring effects and heterogeneity at different age cut-off points, 
distinguishing between pre-pubescent and pubescent children and 
undertaking follow-up studies in the same populations

Expanding the methods of asthma assessment beyond reporting of doctor-
diagnosis (e.g. using prescribed medication from prescription registry or 
diagnosis codes) and attempting to validate the asthma outcome measures

Assessing the nature of disease misclassification due to different asthma 
definitions and its effect on exposure-response associations

Systematically reporting bias concerns and attributes on study quality and 
performing adjustments where necessary

Formally assessing whether the type of exposure model explains part of 
the heterogeneity in effects (e.g. by meta-regression or meta-analyses 
specific to the exposure models)

Systematically investigating differences in the associations between sexes

Systematically investigating differences in the associations between 
different phenotypes and distinguishing between family history of asthma 
and family history of atopy/allergies
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3 Vehicle Traffic Network Modelling 

3.1. Background 

As it is unfeasible to collect/observe information on traffic activity (e.g. traffic flows 

and average speeds) on all roads in a study area, traffic activity is often estimated by 

modelling the road network and trips occurring on it. Emerging traffic measurement 

techniques such as remote sensing (Toth et al., 2003, Holt et al., 2009), satellite 

imaging and air photos (McCord et al., 2003, Larsen et al., 2009, Wang et al., 2016b), 

and telematics (Pellecuer et al., 2016), can provide observed traffic activity data at a 

finer spatial and/or temporal scale when compared to traffic models, but these 

methods are as yet developing and were not available in Bradford at the time of this 

work. 

In this study, traffic activity, including traffic flows and speeds, was estimated using 

transport modelling which was chosen over using measured traffic flows from traffic 

counters, as was done in a previous relevant study in Bradford (de Hoogh et al., 

2014). This was because traffic counters were limited in number and geographical 

coverage, providing incomplete spatial sampling (Figure 11). In an exposure and 

health impact assessment study, as in the present study, a high spatial coverage of 

roads in the study area, possible to obtain by transport modelling techniques, was 

considered of importance to capture the levels and spatial variability of air pollution 

exposures. Furthermore, traffic counters only record traffic flows (and sometimes 

traffic speeds) at the counters point locations which could be problematic depending 

on the location of the counter in relation to exits and entries of the road link and other 

special characteristics of the link (e.g. the presence of a shop or a facility). When 

traffic speeds are not recorded at the counter locations, speed limits at the 

corresponding roads are sometimes used (de Hoogh et al., 2014) to represent the 

average traffic speeds necessary for subsequent emissions estimation (Chapter 4). 

Assuming speed limits as the average traffic speed is, however, unrealistic and 

disregards effects of congestion and the fact that speed limits are often not achieved 

in urban areas and all driving conditions, which has impacts on the accuracy of 

emission modelling (Chapter 4). Finally, although aggregate traffic counts at regional 

and national levels are considered robust, this is not the case for traffic counts at the 

local level, which are the focus of this study (Department for Transport, 2015a). 
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Aggregate traffic counts at the regional and national levels are dominated by 

motorway and larger roads traffic where traffic flows are often in free flow and 

detectors are reliable. Conversely, in urban settings, stop-start driving is common and 

separation distances between vehicles are small making detectors less reliable.
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Figure 11 Bradford’s Traffic Count Points in 2015 (N=109 count points), Source: Department for Transport (2015a) 
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In transport modelling, a model is a combination of network data, which is a mixture 

of origin (place where the trip started) and destination (place where the trip ended) 

zones, road links connected to each other by nodes and the traffic data included in 

the origin-destination matrices. The traffic data represents the travel demand to and 

from each zone included in the model. An origin zone could be for e.g. a residential 

area producing trips to destination zones for e.g. office developments, a university, 

shopping centre etc., which attracts trips. Conventional transport models run in four 

stages, as shown in Figure 12. 

 

Figure 12 Traditional Four Step Transport Modelling, Source: Own Work (NCH 

Software) 

Trip generation involves the generation of trips from an origin zone and their attraction 

to a destination zone in the network; trip distribution involves distributing where the 

generated trips go and where the attracted trips come from and producing an origin-

destination matrix which is then used in the final traffic assignment model; modal split 

involves splitting the trips by transport mode based on the cost of travel and traffic 

assignment involves choosing the trip routes and loading the origin-destination matrix 

onto the network’s links, producing link flows (Timms et al., 2016). Typically, transport 

models only result in data (traffic flows and average speeds) modelled over peak 

periods e.g. AM peak and/or PM peak hour. In this study, traffic modelling was carried 

out using the Simulation and Assignment of Traffic to Urban Road Networks model 

(SATURN), which is the most common traffic model used by local authorities in the 

UK and the only model available for Bradford. 
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3.2. Chapter Objectives and Contribution to Literature 

The objective of this research phase was to obtain, run and independently validate 

a previously developed SATURN traffic model for the City of Bradford to 

estimate traffic flows and average traffic speeds in the study area and obtain 

the physical characteristics of the road network including the road lengths and 

geographical locations, in preparation for subsequent emissions and air pollution 

dispersion modelling. As will be shown later, the quality of the legacy, (large and 

complex) SATURN traffic model was substandard as the model turned out to be a 

schematic representation of the road network, which was not correctly geo-

referenced (in terms of road positions and road curvatures). An attempt to correct the 

locations of the roads in the geo-coded traffic network was undertaken. Further, an 

independent validation exercise and the scaling of the modelled traffic flows over the 

day period for more accurate daily air pollution dispersion estimation was undertaken. 

This research phase provided traffic flows and average traffic speeds at each hour of 

an average weekday and weekend, which will feed into a newly developed and a 

standard emission model for Bradford (Chapter 4), and subsequently into air pollution 

dispersion modelling (Chapter 5), which will be undertaken to estimate the air quality 

profile, the childhood population exposure to TRAP and the associated burden of 

childhood asthma within Bradford. 

3.3. Methods 

The overall methodology used in this research phase to derive the average traffic 

speeds and traffic flows and classes on the Bradford road network is illustrated in 

Figure 13, and presented in detail next.
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Figure 13 Traffic Activity Estimation Overall Methodology, Source: Own Work (NCH Software) 
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3.3.1. Traffic Modelling using SATURN 

SATURN is a suite of road network analysis programs which have been developed 

through the Institute for Transport Studies at the University of Leeds, and distributed 

by Atkins Limited, since 1982. SATURN has over 300 users worldwide (Namdeo et 

al., 2002), and is perhaps the most commonly used transport modelling software in 

the UK where many local authorities, including the City of Bradford Metropolitan 

District Council (CBMDC), employ it for transport planning purposes. Overall, 

SATURN models across the UK are an important part of the transport decision-

making processes. There are six basic functions of SATURN, as follows (SATURN 

Manual, 2015): 

1. a combined traffic simulation and assignment model for the analysis of road-

investment schemes; 

2. a ‘conventional’ traffic assignment model (with or without simulation) for the 

analysis of large networks; 

3. a simulation model of individual junctions; 

4. a road network editor, data base and analysis system; 

5. a matrix manipulation package to produce, e.g. trip matrices. 

6. a trip matrix demand model covering the basic elements of trip distribution, 

modal split etc 

In this study, the SATURN model is used for its function 2; as a traffic assignment 

model, with simulation, for the analysis of the urban Bradford road network. The 

spatial coverage of the SATURN modelled network was considerably wider (4,500 

links) than the spatial coverage of the traffic count points available in Bradford in the 

year 2009. The traffic counters available were as follows, and most of these had 

significant missing data: 

 109 Department for Transport traffic counters, reporting annual average daily 

traffic flows (Department for Transport, 2015a); and  

 138 local (council operated) automatic traffic counters reporting annual 

average daily traffic flows and hourly traffic flows (Ahmad, 2016). 

3.3.2. SATURN First Principles 

SATURN is a traffic modelling suite that includes two interlinked models: a ‘simulation 

model’ of individual junctions, as well as an ‘assignment model’ for the whole road 

network. These two models interact within the suite to give a more detailed and 

realistic representation of traffic behaviour at junctions and on the overall road 
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network thereafter (SATURN Manual, 2015). The modelling process within the suite 

starts with the assignment model which requires two inputs from the user: 

1. A road network (supply); and 

2. A trip matrix (demand) 

The road network specifies the physical structure of the roads upon which trips occur 

(e.g. the link lengths, link capacities, geographical locations). The trip matrix specifies 

the number of trips from zone i to zone j, for all zones included in the traffic network. 

Both the road network and the trip matrix are the inputs to a route choice model. Trips 

are allocated to routes based on the route choice model, and the total flows along 

road links and the corresponding network costs (e.g. travel times or average 

generalized cost) are calculated. Once the assignment is carried out, the user can 

view and analyse the model’s outputs. The structure of the (SATURN) traffic 

assignment model is illustrated in Figure 14. 

 

Figure 14 General Structure of an Assignment Model, Source: SATURN Manual (2015) 

After the first round of traffic assignment, the simulation model takes the road link 

allocated traffic and creates another more accurate cost-flow relationship by working 

out the delays that will occur at the network’s junctions due to the assigned flows. As 

such, the simulation model provides a more detailed representation of what is 

happening at each junction in the network considering (1) additional delays that road 

users turning on roads may suffer compared to those driving straight ahead and (2) 

the ability of cars to get out at a give-way junction depending on the availability of 
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gaps in traffic going past. The result is a closer estimation of cost-flow relationships, 

which are then passed back to the assignment model, allowing a second set of routes 

to be allocated (SATURN Manual, 2015, Traffic Network Models, 2015). 

This iterative process is referred to as the ‘assignment-simulation loops’ (Figure 15). 

The loops are essential because the simulated turn-based flow-delay curves that are 

initially passed to the assignment model are only approximations, which disregard the 

interactions between the network’s links while determining delays. Several sources 

of interactions exist between links, including shared lanes, signal optimization and co-

ordination, merging and weaving, etc., and these are considered in the subsequent 

assignment and simulation loops. 

The loops between the assignment and simulation are iterative and keep running until 

the model ‘converges’. Model convergence occurs when all the routes stabilize, and 

reasonably steady flows are obtained. This is judged by calculating the changes in 

flow relative to the previous loop; values of which need to be very small (e.g. < 5%). 

When the link flows difference between loop n and loop n-1 is less than e.g. 5% (user 

specified value), the model converges, and the assignment-simulation loops stop. 

The user is provided with output data which can be exported and analysed (SATURN 

Manual, 2015, Traffic Network Models, 2015). 

 

Figure 15 The Simulation-Assignment Loop, Source: SATURN Manual (2015) 

3.3.3. Validation of Traffic Models and the SATURN Model 

A model’s calibration involves any model adjustments carried out to reduce the 

differences between the modelled and observed traffic data. A model’s validation 

involves comparing the modelled traffic data (e.g. traffic flows and traffic average 
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speeds), to the observed traffic data which ideally have not been used in the model’s 

calibration. 

For the validation, the differences between the modelled and observed data should 

be quantified and assessed against some established criteria. The acceptable 

proportions of instances where the assessment criteria are not met are defined in 

traffic modelling guidance and should be assessed as part of the model’s validation. 

In the UK, the validation criteria and acceptability guidelines for a traffic assignment 

model are given in the Department for Transport (DfT) TAG unit M3.1 (Department 

for Transport, 2014). The criteria and guidelines given in this document are similar to 

those in the UK Design Manual for Roads and Bridges (DMRB) (The Design Manual 

for Roads and Bridges, 2012) and are widely used in the practice for the validation of 

traffic models. The traffic model’s validation includes: 

1. a comparison of the modelled (assigned) flows and observed flows (counts) 

(as a check on the quality of the assignment); and 

2. a comparison of the modelled and observed (surveyed) journey times (as a 

check on the quality of the network and the assignment). 

For link flow validation, the following two measures should be used. These measures 

are considered broadly consistent and link flows, which meet either criterion, are 

considered satisfactory: 

1. the absolute and the percentage difference between the modelled and the 

observed flows; and 

2. te Geoffrey E. Havers (GEH) statistic which is a modified Chi-squared statistic 

that considers differences between the modelled and observed traffic flows 

(Lee et al., 2012). The GEH statistic can be calculated as follows: 

GEH =  √
2(M − C)2

M + C
… Equation 3.1. 

Where M is the hourly ‘modelled’ traffic flow and C is the ‘observed’ traffic flow.  

The validation criteria and acceptability guidelines for the link flow validation differ 

depending on which validation measure was used, as follows (Department for 

Transport, 2014, Steer Davies Gleave, 2009): 

 Using criteria/measure 1: For flows < 700 vehicles/hour, >85% of cases 

should have individual flows within 100 vehicles/hour of counts 
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 Using criteria/measure 1: For flows from 700 to 2,700 vehicles/hour, >85% 

of cases should have individual flows within 15% of counts 

 Using criteria/measure 1: For flows > 2,700 vehicles/hour, >85% of cases 

should have individual flows within 400 vehicles/hour of counts 

 Using criteria/measure 2: >85% of cases should have individual flows with 

a GEH < 5.0. For traffic modelling work, a GEH of less than 5.0 is considered 

a good match between the modelled and observed hourly traffic flows. 

For journey time validation, the percentage difference between the modelled and the 

observed journey time is used as the validation measure, and this is subject to an 

absolute acceptable maximum difference. The validation criteria and acceptability 

guidelines in traffic modelling dictates that >85% of cases should have modelled 

journey times that are within 15% of the observed times, or within 1 minute if higher 

than the 15% limit (Department for Transport, 2014). 

in particular, the SATURN model has been extensively validated since its initial 

development in the 1980s (Gulliver and Briggs, 2005). The following paragraphs 

overview numerous studies which validated SATURN.  

In a model validation report produced for Chelmsford, UK (Wiffen, 2009), the 

SATURN model was found to successfully conform to the model validation criteria, 

given in the DMRB. The model had all or almost all of cordons and screenlines with 

GEH< 4, 85% of cordon and screenline counts with a GEH < 5 (AM: 88%, PM: 86%), 

85% of journey time routes < 15% or under the one-minute difference (AM: 81%, PM: 

92%). When the comparisons were presented separately for each modelled period, 

the exception of compliance was in the AM peak journey time validation which only 

had 81% of journey time routes < 15%, but even this was very close to the DMRB 

85% criteria. Other UK cities using the SATURN model have undertaken similar 

validation exercises; the results of which are concordant with the above study 

(AECOM Transportation, 2011, JMP Consultants Ltd, 2008, Cheshire East Council 

Highways, 2013). 

Published studies also support the use of SATURN in traffic modelling. An early 

SATURN validation exercise was described in Matzoros et al. (1987). This was 

conducted in Manchester, UK, to assess SATURN’s capability to predict likely impact 

of a city centre pedestrianization scheme that involved road closures. The tests were 

conducted for the city centre network, with a radius of approximately 3 km. For 73 

links, not used in the calibration of the model, observed-estimated link flows were 

within 7.8% to 16.3%, depending upon flows in the surrounding buffer network, and 
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generalized costs used in the assignment procedure. Following the road closure 

scheme, the modelled link flows were within 12% of the observed flows. These results 

were considered very good, considering that there was a 10% uncertainty in the 

observed vehicle count (Matzoros et al., 1987, Namdeo et al., 2002). On the other 

hand, journey times were estimated within one standard deviation of observed times, 

a less accurate estimate in absolute terms, but acceptable at the aggregate level. 

This lower degree of accuracy in estimating journey times was attributed to the great 

sensitivity of travel times to delays at the junctions when the network is near capacity. 

Another validation exercise from Northampton, UK was described in Gulliver and 

Briggs (2005). In this study, hourly traffic counts made using pneumatic pressure 

loops at one site were compared to SATURN modelled flows over 24 hours at the 

same site. Results showed good agreement but the model overestimated morning 

and night flows (results were only presented graphically as shown in Figure 16). 

 

Figure 16 Monitored and Modelled Traffic Flows (Main Through-Route) and Derived 

Hourly Weighting Factors, Source: Gulliver and Briggs (2005) 

3.3.4. Bradford SATURN Model: Inputs, Outputs and Validation 

A SATURN traffic model covering the Bradford District was initially developed in 2001 

by the consultancy Atkins Transport Planning (http://www.atkinsglobal.co.uk/en-

GB/group/sectors-and-services/services/transport-planning), and was subsequently 

updated and validated against traffic count data in work by Steer Davies Gleave 

(http://www.steerdaviesgleave.com/), at the request of CBMDC in 2009 (Steer Davies 

Gleave, 2009). The input data files for this model were obtained from CBMDC and 

were used to provide traffic activity information in this study, which was focused on 

year 2009. The key input files obtained were the .UFS files which are the unformatted 

http://www.atkinsglobal.co.uk/en-GB/group/sectors-and-services/services/transport-planning
http://www.atkinsglobal.co.uk/en-GB/group/sectors-and-services/services/transport-planning
http://www.steerdaviesgleave.com/
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outputs from the simulation of three periods: AM peak, inter-peak and PM peak hour. 

The model obtained represented a large, city-scale, complex and validated traffic 

network model, which has been developed since 2001 by major transport planning 

consultancies. It was beyond the scope of this study to develop another version of 

this traffic model, and it was accepted as the core to the traffic modelling work. 

In previous work undertaken by Steer Davies Gleave, the outputs of the obtained 

SATURN model were validated against an observed set of traffic counts and journey 

time data (Steer Davies Gleave, 2009), as will be described next. The traffic counts 

data set which was available for model calibration and validation consisted of 275 

individual road links containing data from the AM and PM peaks, and 240 individual 

road links containing data from the inter-peak period. The averaging periods 

underlying this data was unclear and was not reported in the consultancy report (Steer 

Davies Gleave, 2009). As described above, the standard approach within highway 

modelling is to split the traffic counts data set into two distinct parts; one to be used 

in model calibration and an independent one to be used in model validation. 

Calibration links are used within the matrix estimation so that the model can adjust 

the flows in the matrix to the observed values. Validation links are not used in the 

matrix estimation and provide an independent subsequent check that the traffic flows 

estimated from the model are reasonably accurate. In this SATURN model, however, 

restricting the calibration and validation counts to two distinct data sets while 

attempting to limit excessive change to the old trip matrix (as defined by the XAMAX 

user specified value), resulted in the output statistics to fall below those that are set 

out by DfT/DMRB guidelines. Therefore, a series of five tests were devised and 

carried out to improve the model operation and output statistics (Table 4). 

Table 4 Bradford Update Model (2001 to 2009) 

Test XAMAX2 Value Links used in calibration 

1 2.5 All links except Outer Cordon and Screenline 

2 2.5 All links 

3 5.0 All links except Outer Cordon and Screenline 

4 5.0 All links 

5 5.0 All links excluding Screenline 

 

                                                

2 XAMAX is a user-set parameter that represents the maximum balancing factor used to 

limit excessive change to the old trip matrix 
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Table 5 displays the GEH output statistics for the validation links for all the model 

tests trialled and displayed in Table 4. The results for test 4, which included all 

available links data in the calibration of the model, resulted in the best match between 

the modelled and observed traffic counts. Although the PM peak statistic did not 

achieve the 85% DMRB threshold, it was very close in terms of both the GEH (Table 

5), and DMRB criteria for individual link flow statistics (not shown). Ultimately, the 

model of test 4 was adopted, accepting a very good model calibration – as opposed 

to an independent flow validation. 

Table 5 Bradford Highway Model- Output Statistics for GEH <5.0 

Time Test 1 Test 2 Test 3 Test 4 Test 5 

AM 40% 77% 40% 88% 73% 

IP 46% 89% 46% 95% 78% 

PM 42% 73% 42% 82% 63% 

 

As for journey times outputs, the validation was limited to the test of modelled versus 

observed journey times obtained for a total of 52 journey time routes within the area 

of the model. Unlike the traffic counts data, the journey time data available for 

validation were a wholly independent dataset which was not used to calibrate the 

model’s link speeds or traffic behaviour. Table 6 displays a summary of the journey 

time statistics for test 4, which was the final model adopted. In line with DMRB 

guidance, the average difference between modelled and observed journey times was 

within ±15% for all time periods, although the individual modelled journey times 

showed higher variance. Overall, the differences between the modelled and observed 

journey times was that traffic travelled faster in the model, in all time periods. This 

suggested that roads capacity and/or speeds were over-represented in certain areas 

of the model and that it tended to under estimate congestion and/or special traffic-

slowing incidences, particularly in the AM peak hour. The individual link output data 

and validation statistics for both traffic flows and traffic journey times for the AM peak, 

inter-peak and PM peak hour are given in the original validation report by Steer 

Davies Gleave (Steer Davies Gleave, 2009). 

Table 6 Journey Time Route Summary Statistics 

Statistic AM peak  Inter peak  PM peak  

Total modelled versus observed time -15% -8% -7% 

% routes within 5 minutes 88% 100% 88% 
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As there was relatively little detail on the techniques used in the above validation of 

this SATURN model and as the calibration links used so that the model can attempt 

to adjust the flows in the matrix to the observed flows were the same links used for 

validation (i.e. there was no independent validation data set) (Steer Davies Gleave, 

2009), an independent validation exercise was undertaken by the author and is 

described next.  

One neutral traffic week excluding weekends, public holidays and school holidays 

was selected for the validation purposes. This was the week (days) between 5 

October and 9 October 2009. On any of these days, traffic is expected to behave 

similarly to any other weekday between March and October, excluding all public 

holidays and school holidays (Department for Transport, 2016a). There were 588 

automatic traffic counters (ATC) with traffic flow data at some point in time in Bradford 

indexed in the CBMDC online database and traffic analysis software: DRAKEWELL 

(https://drakewell02.drakewell.com/). Access to DRAKEWELL was given by the 

CBMDC personnel and each traffic counter indexed in the database was accessed 

and checked for data availability between 5 October and 9 October 2009. Only 

counters with complete hour-by-hour traffic flows for all days between 5 October and 

9 October 2009, were selected for the validation exercise to enable a consistent 

averaging period for hourly traffic and a meaningful comparison with modelled data. 

Further, the hour-by-hour traffic flows in the weekend of the same week (10 October 

and 11 October 2009) were extracted from the same counters. 

Out of the 588 indexed ATC, only 19 ATC, reporting on 35 directions of traffic in 

Bradford, had complete hour-by-hour data in the selected week and weekend. 

Overall, significant amounts of data were missing. This data was manually extracted 

and tabulated. Each counter’s location was then matched to the corresponding 

SATURN link by visually inspecting the map of the ATC locations and comparing it to 

the SATURN road network plotted in a GIS. At each counter, the AM peak hour 

(08:00-09:00), the first inter-peak hour (10:00-11:00) and the PM peak hour (17:00-

18:00) hour traffic counts, averaged across the investigated week, were compared to 

the SATURN’s output from each corresponding link, at each corresponding hour. The 

GEH statistic (Equation 3.1) was calculated for each link/ time included in the 

validation. The results of this exercise are described in Section 3.4.5. 

The SATURN input files were read into SATURN, version 11.1.09. The model’s 

geographical coverage/simulation extent is illustrated in Figure 17, with the central 

red boxed ring road representing Bradford’s Ring Road (A6177), and the blue boxed 

https://drakewell02.drakewell.com/
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area representing the study area. In this figure, rectangles, circles and squares 

(green, dark cyan, and red) are the simulation junctions; with the different shapes 

denoting the different junction types (priority junctions are represented by rectangles, 

roundabouts by circles, and traffic signals by squares). External nodes are 

represented by pentagons (purple), zones by triangles (turquoise), and all nodes by 

hexagons (grey) (SATURN Manual, 2015). 

As mentioned, the model represented the traffic conditions of year 2009 and was 

based on a previous model established and validated by Atkins in 2001, which served 

as the baseline trip matrix for undertaking the 2009 update. The 2001 matrix was 

updated to 2009 levels by using recent traffic data collected between 2005 and 2009. 

The recent traffic data collected at multiple sites were used to provide localized growth 

factors where possible that were annually averaged when more than one years’ worth 

of data was available at one site. Based on these growth factors, an extrapolation 

was made from the final year of the traffic count to year 2009. Where negative traffic 

growth was observed, the downward trend was assumed not to continue, and the 

traffic was kept static from the final year of observation. There were cases where 

traffic counts were only observed in one year precluding establishing an extrapolation 

growth factor. In these cases, assumptions were made on the level of growth based 

on the average traffic growth on similar road types. 

Compared to the previous matrix of 2001, the updated 2009 matrix resulted in a slight 

increase of +3.1%, +2.6% and +1.0% in the traffic of the AM peak, inter-peak and PM 

peak trips (in vehicles), respectively. In comparison to traffic growth figures over this 

period based on independent data from the DfT, these results are reasonable, as 

Bradford’s counted traffic has undergone positive but small increases between 2000 

and 2009. The total number of vehicles on an average day at 109 traffic counters in 

Bradford increased by 2.12% between 2002 and 2009, as shown in Figure 18 (data 

extracted from Department for Transport (2015b)).
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Figure 17 Bradford’s SATURN Model Simulation Extent, red boxed ring road representing Bradford’s Ring Road and blue boxed area 

representing Study Area, Source: Own Work (SATURN)
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Figure 18 2002 and 2009 Cars, Buses and Coaches, LDVs and HDVs Traffic on Major Roads in Bradford (from 109 Traffic Counters), in 

1000 Vehicles, Source: Own Work (Excel), Data Source: Department for Transport (2015b) 
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The updated SATURN model was used to extract the road’s network physical 

characteristics and estimate the traffic flows and the average traffic speeds for three 

different time periods, on an average weekday: 

 1 x AM peak hour (08:00-09:00) 

 Inter-peak hour (the average inter-peak hour between 10:00-16:00); and 

 1 x PM peak hour (17:00-18:00) 

The author made the following decisions as to which results were extracted from the 

model’s outputs. First, the traffic flows in SATURN were defined in two distinct ways: 

1. The ‘assigned’ or ‘demand’ flow, which is the flow given by the assignment 

stage and corresponds to the total demand independent of when the flow 

arrives at the different consecutive junctions, and therefore double counts the 

queuing delays downstream of the actual queue. 

2. The ‘actual’ or ‘simulated’ flow which corresponds to the actual flow during the 

time simulated considering the different flow arrivals at the different 

consecutive junctions, and therefore different hourly demand at all junctions. 

A decision was made to extract the ‘Actual flow (PCU/h)’ reported in passenger cars 

unit per hour (PCU/h) rather than the ‘Demand flow (PCU/h)’ from the SATURN 

outputs. The actual flow is a more realistic representation of the flow arriving and 

departing from junctions in each simulated hour, which defines delays more 

realistically at over-capacity junctions allowing for long delays where queues form but 

also avoiding the problem of double counting traffic flows at subsequent junctions, 

which receive queued traffic gradually (SATURN Manual, 2015). 

Second, the link speed that was extracted was the ‘Net speed (+ Qs)’ measured in 

kilometres per hour (km/h). This was considered the most relevant as it represented 

the speed based on total simulation link travel time including delay/queuing times. 

Third, the parameter ‘Distance (meters)’ was extracted as the link’s length in meters. 

Fourth, the X (Easting) and Y (Northing) coordinates were extracted for all nodes 

connecting the network links (turning movements and zone connecters were 

excluded). Four columns were created containing the X coordinate of the A node, the 

Y coordinate of the A node, followed by the X and Y coordinates for the B node. The 

A nodes represented the start point of a link, while the B node represented the end of 

a link, which could also be the start point of another link(s). The X and Y coordinates 

were initially included in the model input files as free format restricted to 5 digits (i.e. 
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55555 records). Therefore, as the real X and Y coordinates are 6 digits, a lead number 

(‘4’) was added to all coordinates extracted from the model and this enabled mapping 

them in Bradford on a British National Grid system. The SATURN nodes were 

mapped over an Open Street Map in ArcMap, version 10.4. The Open Street Map 

was used as a reference layer to check for the node locations’ accuracy. The A and 

B nodes were connected to each other by straight lines to represent the road links 

between them, following the model developers’ practice (i.e. representing road links 

by straight lines). As will be shown in more detail later (Section 3.4.4), when mapped 

in ArcMap, the nodes were clearly not accurately geo-located and the SATURN road 

links were not accurately overlaying the roads in the reference Open Street layer.  

To attempt to improve the sensibility of the nodes locations by linking them to specific 

roads in Bradford, the SATURN road links’ X and Y coordinates were automatically 

manipulated in Spatialite, version 4.3.0, using a spatial function (GEOS v. 3.5.0) to 

snap the SATURN nodes onto their nearest roads, as defined by four hierarchal user-

specific conditions. The code used for the snapping was written in Python by Antonia 

Valentin, GIS coordinator at the at the Barcelona Institute for Global Health, at the 

request of and in collaboration with the author. The final code used is available upon 

request. Snapping enables moving a point (the SATURN node in this case) from its 

current location to a new location, which coincides with another feature, as specified 

by the user (the underlying roads in this case) (ESRI, 2016). As such, nodes which 

were not overlaying a road, as they should be, were snapped onto their nearest road, 

as defined using two underlying Ordinance Survey Open Roads Maps (Figure 19), 

and following the user-specific conditions below: 

1. The following input files were read into Spatialite version 4.3.0: the original X 

and Y coordinates of all the SATURN nodes, an underlying major roads map 

in Bradford, an underlying all roads maps in Bradford (Figure 19) 

2. The original A and B nodes were connected by a straight line representing the 

road links and the length of these road links were calculated 

3. Condition #1 was applied: A and B nodes within 5 m of any road, as identified 

from the all roads Open Roads layer, were snapped onto the nearest road 

Nodes A – a total of 1548 have been snapped onto their nearest road ≤ 5 m 

Nodes B – a total of 1541 have been snapped onto their nearest road ≤ 5 m 

4. Condition #2 was applied: The remaining A and B nodes within 200 m of a 

major road, as identified from the major roads Open Roads layer, were 

snapped onto the nearest major road  
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Nodes A – a total of 1940 have been snapped onto their nearest major road 

≤ 200 m 

Nodes B – a total of 1943 have been snapped onto their nearest major road 

≤ 200 m 

5. Condition #3 was applied: The remaining A and B nodes were snapped onto 

their nearest road within a 1 km buffer, as identified from the all roads Open 

Roads layer  

Nodes A – a total of 1012 have been snapped onto their nearest road (average 

distance of 42 m) 

Nodes B – a total of 1016 have been snapped onto their nearest road (average 

distance of 42 m) 

6. Condition #4 was applied: the new length of the road link between all the 

nodes that have been snapped had to remain within ±20% of the old length of 

the road link (see second point above) between the original (unsnapped) 

nodes. In the cases were the new length fell outside the ±20% range, the 

snapping was undone, and the nodes retained their original locations 

7. Finally, 1161 A and B nodes retained their locations, i.e. the road links length 

remained the same as the original network. All other new road links were 

within ±20% of the old road link length 

8.  A new list of geo-locations for the snapped nodes was produced and visually 

examined for its sensibility 

This geo-processing was assumed to improve the accuracy of the links start and end 

locations, and therefore the accuracy of the road link locations. This was visible by 

manual oversight as many of the nodes and links were in more reasonable positions 

compared to the original SATURN node locations. However, as the nodes and links’ 

real locations remained imperfect and the degree of the improvement gained 

remained unknown/unquantified, both the geo-processed and unprocessed (original) 

node locations will be inputted in the dispersion models (Chapter 5), to test the effects 

of this geo-processing on air quality estimates and their validation. 
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Figure 19 Major and All Roads Networks Used in Snapping Commands, Source: Own 

Work (ArcMap 10.4), Data Source: (Ordinance Survey Open Data 2016) 

Finally, all modelled traffic flows in PCU/h were converted to vehicles/h using 

established proportions that were used in the original SATURN model set-up. The 

current SATURN model used the following PCU factors to represent the different 

vehicle classes/types (Moore, 2016): 

 Cars and vans = 1.0 PCU; 

 LDVs (<7.5t) = 1.5 PCU; and 

 HDVs (>7.5t) and Buses/Coaches = 2.0 PCU. 

Using these factors and the link’s simulated flow in PCU/h, the traffic flow in vehicles/h 

can be calculated for each link using the following equation: 

Traffic flow (
vehicles

hour
) =

Traffic flow (
PCU

hour
)

(% vehicle class 1∗PCU factor)+(% vehicle class 2∗PCU factor)+⋯+(% vehicle class N∗PCU factor)
… Equation 3.2

. 
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Subsequently, the resulting traffic flows in vehicles/h were split into the different 

vehicle classes of the fleet by applying vehicle fleet composition proportions given in 

the National Atmospheric Emissions Inventory (NAEI) spreadsheets (National 

Atmospheric Emissions Inventory and Ricardo Energy and Environment, 2014). The 

NAEI spreadsheets are freely available from the Department for Environment Food & 

Rural Affairs website at: http://naei.defra.gov.uk/data/ef-transport and give vehicle 

proportions by vehicle class (e.g. passenger car, LDVs, HDVs, buses, coaches and 

motorcycles), EURO emission standard (pre-EURO to EURO 5/V), catalyst status (for 

petrol vehicles), weight class, and exhaust after-treatment technology where 

applicable. 

3.4. Results 

3.4.1. Traffic Flows and Vehicle Classes Fleet Split 

The traffic flow at each road link was extracted for the three different simulated time 

periods: AM peak hour, inter-peak hour and PM peak hour. The traffic flow summary 

statistics are shown in Table 7. Road links were included in this analysis whilst turning 

movements and zone connecters in the model were excluded. 

Table 7 Links Flows (PCU/h) Summary Statistics (N=4500 simulated links) 

Statistic AM peak Inter-peak PM peak 

Minimum 0.00 0.00 0.00 

1st quartile 51.19 47.66 60.94 

Median 229.70 175.31 233.40 

Mean 414.95 340.57 436.85 

3rd quartile 617.73 505.61 655.26 

Maximum 6017.25 5410.97 5925.03 

 

The traffic flows simulated in SATURN in the AM peak hour, as an example, are 

shown in Figure 20 and Figure 21. As shown in these figures, the traffic flows were 

highest over the long motorway sections; the M62 and the M606 leading in and out 

of Bradford. There were also relatively high traffic flows on the A650 and A629 leading 

to Bingley and Keighley (North-West), and high flows within the Bradford Ring Road 

especially on Wakefield Road continuing the A658 (comparison made against 

underlying base maps, removed for better visuals). 

 

http://naei.defra.gov.uk/data/ef-transport
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Figure 20 Bradford’s SATURN Model Simulated Actual Flows (PCU/h) in AM Peak Hour, Source: Own Work (ArcMap 10.4)
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Figure 21 Bradford’s SATURN Model Simulated Actual Flows (PCU/h) in AM Peak Hour Zoomed at City Centre, Source: Own Work (ArcMap 10.4) 
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The SATURN link traffic flows in PCU/h at each simulated time (AM peak hour, inter-

peak hour, and PM peak hour) were extracted into an excel spreadsheet and these 

were converted into vehicles/h using Equation 3.2. The proportions of vehicle 

kilometre split by vehicle class/type for year 2009 in Urban England were extracted 

from The NAEI spreadsheets. The basic fleet percentages used for the fleet mix split 

are shown in Figure 22. The converted traffic flows in vehicles/h and the NAEI vehicle 

class percentages given in Figure 22 were used to proportion the vehicle flows into 

its different vehicle classes/types. Motorcycles were excluded from the current 

analysis as no emission factors could be established for them using the emission 

modelling methodology of this study (Chapter 4), and as their percentages are low 

(1.51%) and are even likely to be lower in Bradford than nationally reported figures. 

 

Figure 22 Proportion of Vehicle Kilometres by Vehicle Type in Urban England in 2009, 

Source: Own Work (Word), Data Source: National Atmospheric Emissions 

Inventory and Ricardo Energy and Environment (2014) 

The resulting flows of each vehicle class in vehicles/h were further split into EURO 

emission standards, catalyst status (in the case of petrol passenger cars), weight 

categories (in the case of LDVs, HDVs, buses and coaches), and exhaust after-

treatment technology including Exhaust Gas Recirculation (EGR) (Zheng et al., 2004) 

or Selective Catalytic Reduction (SCR) (Blakeman et al., 2007) (in the case of EURO 

V diesel HDVs). These proportions, as extracted from the NAEI spreadsheets, are 

Urban England (outside London) 
Vehicle Fleet Composition - 2009

Passenger cars 
(82.26%)

55.43% petrol

26.83% diesel 

Light Duty 
Vehicles 
(12.54%)

0.73% petrol 

11.81% diesel 

Heavy Duty 
Vehicles (2.13%)

1.70% diesel 
rigid HDVs

0.43% diesel 
artic HDVs

Buses and 
Coaches (1.55%)

1.12% buses

0.43 coaches

Motorcycles 
(1.51%)
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shown in Table 8 and Table 9, and represent year 2009 in Urban England (National 

Atmospheric Emissions Inventory and Ricardo Energy and Environment, 2014). All 

road types were assumed to be Urban. When the catalyst of a petrol vehicle failed, 

the NAEI spreadsheet recommends using pre-EURO emission factors for that 

vehicle, and this recommendation was followed. The proportion of EURO V HDVs 

equipped with a SCR and EGR were 0.75 and 0.25, respectively (National 

Atmospheric Emissions Inventory and Ricardo Energy and Environment, 2014). In 

the public service vehicle category, the proportion of buses and coaches were 0.72 

and 0.28, respectively (National Atmospheric Emissions Inventory and Ricardo 

Energy and Environment, 2014). 

Table 8 UK Traffic Fleet Composition – Proportion of Vehicle Kilometres by EURO 

Emission Standard and Catalyst Status, in Urban England in 2009, Source: 

National Atmospheric Emissions Inventory and Ricardo Energy and 

Environment (2014) 

EURO 
standard 

Petrol cars Diesel 
cars 

Petrol 
LDVs 

Diesel 
LDVs 

Rigid 
HDVs 

Artic 
HDVs 

Buses and 
Coaches 

Pre-
EURO 

0.01 0.00 0.06 0.00 0.00 0.00 0.01 

EURO 1 0.04 
catalyst OK 

0.02 0.06 
catalyst OK 

0.01 0.01 0.00 0.02 

0.01 
catalyst 
FAILS 

0.01 
catalyst 
FAILS 

EURO 2 0.15 
catalyst OK 

0.07 0.30 
catalyst OK 

0.10 0.13 0.04 0.21 

0.03 
catalyst 
FAILS 

0.06 
catalyst 
FAILS 

EURO 3 0.42 
catalyst OK 

0.37 0.25 
catalyst OK 

0.33 0.47 0.42 0.45 

0.01 
catalyst 
FAILS 

0.04 
catalyst 
FAILS 

EURO 4 0.34 
catalyst OK 

0.53 0.19 
catalyst OK 

0.56 0.26 0.35 0.21 

0.00 
catalyst 
FAILS 

0.01 
catalyst 
FAILS 

EURO 5 None 
available 

None 
available 

None 
available 

None 
available 

0.13 0.19 0.11 
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Table 9 Vehicle Class Specific Weight Fraction of Fleet, Source: National Atmospheric 

Emissions Inventory and Ricardo Energy and Environment (2014) 

Weight class Petrol 
LDVs 

Diesel 
LDVs 

Rigid 
HDVs 

Weight class Artic 
HDVs 

Buses 
and 
Coaches 

N1 (I)/ Class I 0.06 0.06 NA 14-20 tonnes 0.027 NA 

N1 (II)/ Class II 0.26 0.26 NA 20-28 tonnes 0.036 NA 

N1 (III)/ Class III 0.68 0.68 NA 28-34 tonnes 0.027 NA 

3.5-7.5 tonnes NA NA 0.348 34-40 tonnes 0.189 NA 

7.5-12 tonnes NA NA 0.063 40-50 tonnes 0.720 NA 

12-14 tonnes NA NA 0.025 Urban Buses Midi <=15 
tonnes (Single-Decker) 

NA 0.314 

14-20 tonnes NA NA 0.118 Urban Buses Standard 
15 – 18 tonnes 
(Double-Decker) 

NA 0.686 

20-26 tonnes NA NA 0.161 Urban Buses 
Articulated > 18 tonnes 
(Bendy Buses) 

NA 0.00 

26-28 tonnes NA NA 0.082 Coaches Standard 
<=18 tonnes (Small) 

NA 0.50 

28-32 tonnes NA NA 0.163 Coaches Articulated 
>18 tonnes (Large) 

NA 0.50 

>32 tonnes NA NA 0.041    

3.4.2. Traffic Speeds 

The traffic speed at each road link was extracted for the three different simulated time 

periods: AM peak hour, inter-peak hour and PM peak hour. The average link speeds 

simulated in SATURN in the AM peak hour, as an example, are shown in Figure 23 

and Figure 24. As shown in these figure, the traffic is fastest on the motorway sections 

and larger roads outside the city while speeds are reduced around the city’s Ring 

Road and within it.  

The traffic speed summary statistics are shown in Table 10. Road links were included 

in this analysis whilst turning movements and zone connecters were excluded. The 

average speed across the three periods was around 33 km/h and was lowest in the 

PM peak than the AM peak and was slightly higher in the inter-peak period. The 

maximum speed simulated was 80 km/h across all three periods. The frequency of 

the average link speeds in the three periods simulated in the study area is shown in 

Figure 25. Each histogram bin is equal to 5 km/h. 

Over half of all links had an average speed less than or equal to 40 km/h, reflecting 

the urban nature of most links in this road network. A very low percentage of links (≈ 



122 
 

122 

 

1.6%) had average speeds exceeding 60 km/h, and as shown in Figure 23, these are 

most likely to be the roads outside the city including motorways. 

Table 10 Links Speeds (km/h) Summary Statistics (4500 simulated links) 

Statistic AM peak Inter-peak PM peak 

Minimum 0.04 0.04 0.05 

1st quartile 26.22 27.48 25.45 

Median 40.00 40.00 40.00 

Mean 33.51 33.97 33.22 

3rd quartile 41.00 41.00 41.00 

Maximum 80.00 80.00 80.00 

% links with ≤ 10 km/h 11.04 9.89 11.67 

% links with 0-40 km/h 55.44 55.02 55.71 

% links with >40-60 km/h 40.58 43.31 42.73 

% links with > 60 km/h 1.62 1.67 1.56 

 

3.4.3. Link Lengths 

The link lengths summary statistics are shown in Table 11 and Figure 26. Only road 

links were included in this analysis whilst turning movements and zone connecters 

were excluded. 38% of all links were ≤ 100 m in length and 50% were <172 m. The 

distribution of the link lengths across the road network is shown Figure 26. Each 

histogram bin is equal to 50 m. 

Table 11 Link Lengths (meters) Summary Statistics (4500 simulated links) 

Statistic Link length (m) 

Minimum 1.0 

1st quartile 50.0 

Median 172.0 

Mean 302.1 

3rd quartile 327.2 

Maximum 6000.0 
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Figure 23 Bradford’s SATURN Model Simulated Net Speed (km/h) in AM Peak Hour, Source: Own Work (ArcMap 10.4) 
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Figure 24 Bradford’s SATURN Model Simulated Net Speed (km/h) in AM Peak Hour Zoomed at City Centre, Source: Own Work (ArcMap 10.4) 
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Figure 25 Histogram of Link Speeds from Bradford AM Peak Hour (top), Inter-peak Hour (middle), and PM Peak Hour (bottom) SATURN Model, Source: Own Work (R) 
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Figure 26 Histogram of Link Lengths in Bradford’s SATURN Model, Source: Own Work (R)
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3.4.4. Geographical Locations 

The X and Y coordinates as originally inputted in the SATURN model were extracted 

for all nodes connecting the network links. Only road links were included in this 

analysis whilst turning movements and zone connecters were excluded. Plotting the 

SATURN nodes in ArcMap showed that there is a topographic correspondence 

between the nodes and major roads and junctions, as shown in Figure 27. 

 

Figure 27 SATURN Nodes plotted in ArcMap (Green Circles) and connected by 

Straight Lines (Red) to represent the Road Links, Underlying Base Map is Open 

Street Map, Source: Own Work (ArcMap 10.4) 

There were numerous places, however, where the SATURN nodes/links were offset 

topographically from the actual junction locations/roads. This was identified from 

manual oversight by comparing the plotted SATURN network to an underlying Open 

Street map. The SATURN nodes layer also illustrated that it seems to be common 

practice that minor roads e.g. cul-de sacs feeding into a more major road were often 

agglomerated into a single link. A closer investigation of the node locations also 

revealed that some of the nodes were apparently not correctly geo-referenced, as 

some nodes were not placed on roads or did not follow the expected/reasonable link 

path. Overall, the SATURN network was a considerable simplification of the road 

network and the nodes were not accurately geo-referenced. 

Figure 28 is a snapshot of part of the Bradford SATURN network (south-west of the 

ring road) which illustrates the above points – the remainder of the network looks 

similar. To attempt to overcome some of the inaccuracies in the road links’ geo-

locations, the node locations were reprocessed as described in Section 3.3.4. Manual 

vector editing, manually moving nodes into their expected correct locations, was 
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excluded as an option for geo-processing in this research study as it was considered 

highly time consuming and error prone due to the complexity of the network. GIS 

experts were consulted regarding how to best geo-process the network and two 

independent opinions advised that manual vector editing should be ruled out as the 

road network is large and complex and there is a lack of understanding of how it was 

initially built and geo-coded in the original transport model (e.g. whether it has used 

local rather than national coordinates, whether lower-level streets were agglomerated 

into single links and under which circumstances, differentiating between the two 

direction of traffic and whether the model has used the shortest path) (Namdeo, 2016, 

Valentin, 2016). Figure 29 illustrates the differences between the locations of the 

original (red) and snapped (green) nodes. It was assumed that the geographical 

locations of the snapped nodes were more accurate, but both the processed and the 

unprocessed road network (original) were further investigated in subsequent work to 

explore the effect of the snapping on the final air quality estimates and their validation. 
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Figure 28 Snapshot of the Original SATURN Network, Red Circles Represent Original Node Locations Connected by Straight Lines 

Representing Road Links, Source: Own Work (ArcMap 10.4) 
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Figure 29 Snapshot of the Original SATURN Node Locations (in Red) versus Snapped Nodes Locations (in Green) Connected by Straight 

Lines Representing Road Links, Source: Own Work (ArcMap 10.4) 
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3.4.5. Traffic Flows Validation and Diurnal Scaling 

As there was relatively little detail on the techniques used in the validation of the 

Bardford’s SATURN model and as the calibration links used so that the model can 

attempt to adjust the flows in the matrix to the observed flows were the same links 

used for validation (i.e. there was no independent validation data set) (Steer Davies 

Gleave, 2009), an independent validation exercise was undertaken. 

The results of this validation are illustrated in Figure 30 and are numerically presented 

in the supplementary data of Khreis et al. (2017b). The results showed that this 

model’s validation, in contrast to the validation reported by the developers (Section 

3.3.4.), does not achieve the 85% DMRB threshold, where 85% of cases should have 

individual flows with a GEH < 5.0 (Section 3.3.3.). Specifically: 

 AM Peak: 66% of cases had GEH < 5 (12/35 points or 34% had a GEH > 5) 

 Inter-peak: 77% of cases had GEH < 5 (8/35 points or 23% had a GEH > 5) 

 PM Peak: 65% of cases had GEH < 5 (13/35 points or 35% had a GEH > 5) 

 

Figure 30 Measured Traffic Flows versus Modelled Traffic Flows (SATURN) in 

vehicles/h across all time periods (AM peak: green; Inter-peak: blue; PM peak: 

yellow) at 19 Traffic Counter Locations, representing 35 Directions of Travel, 

Source: Own Work (Excel) 

The individual links comparison is shown in the supplementary data of Khreis et al. 

(2017b). This validation exercise, however, needs to be viewed as limited to a select 
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number of links and a select ‘neutral’ week with full hour-by-hour traffic flow data, 

although this is standard practice. As shown inFigure 30, there was generally good 

agreement between measured and modelled traffic flows to support the use of this 

SATURN model. The 10 data points that are most deviating are where measured 

flows are > 500 and < 1200; and modelled flows <500 vehicles/h. The sources of 

these data points were double checked and found to be coming from 3 streets, which 

are generally smaller/ lower-level road than other major roads included in the 

validation, namely: B6381 Barkerend Road, A6181 Hamm Strasse and Cleckheaton 

Rd Oakenshaw. Overall, the SATURN model seems to be less valid for these smaller 

road links and tended to under estimate traffic levels. 

To undertake the traffic scaling over the 24 hours of the average weekday, the 

procedure shown in Figure 31 was followed and is described next.  

Hour-by-hour traffic flows were extracted from the 19 ATC (reporting on 35 directions 

of travel) at which the validation was undertaken (see above). The hourly traffic flows 

were averaged across all the counters to obtain one average traffic flow at each hour 

of the day (00:00 to 23:00). The result was a diurnal traffic flow profile in Bradford for 

year 2009, as shown in Figure 32. The diurnal traffic profile showed that the average 

traffic flows were highest at 07:00-09:00 AM, during morning rush hour, with another 

peak around 15:00-17:00 PM, which is likely to be representing the afternoon rush 

hour. The average traffic flows were lowest between 00:00-5:00 AM. 

These hourly average traffic flows were used to scale the modelled traffic flows from 

SATURN (only simulated for the AM peak, inter-peak and PM peak hours) across the 

other missing hours of the day. To carry out the scaling, the observed/modelled ratios 

were calculated using the data shown in Figure 32, by dividing the average observed 

traffic flows (averaged across the 19 ATC) by the average SATURN traffic flows 

(averaged across the corresponding links), for the AM peak, the first inter-peak and 

PM peak hours. The observed/modelled ratios calculated were relatively consistent 

over the three modelled periods and were 1.08, 0.98, and 1.07 for the AM peak, inter-

peak and PM peak hours, respectively (Table 12). These results suggest that the 

model is well predictive at the aggregate level, but less so at the link level where the 

variation between observed and modelled traffic flows becomes higher (Khreis et al., 

2017b). No adjustment was attempted to match the modelled and the observed traffic 

flows, due to the very limited (in space and time) validation data set available. 
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Figure 31 Traffic Flow Scaling Procedure, Source: Own Work (NCH Software) 

 

 



134 
 

134 

 

Table 12 Average Traffic Flows Observed/Modelled Ratios (Weekdays) 

Statistic 
AM peak 

(08:00-09:00) 
Inter-peak 

(10:00-11:00) 
PM peak 

(17:00-18:00) 

ATC flow average (19 points) 896.03 667 904.09 

SATURN average (corresponding links) 830.94 682.03 841.94 

Observed/modelled ratio (ATC 
average/SATURN average) 

1.08 0.98 1.07 

For all hours outside the model’s simulation periods (00:00-08:00, 09:00-10:00, 

11:00-12:00, 12:00-13:00, 13:00-14:00, 14:00-15:00, 15:00-16:00, 16:00-17:00, and 

18:00-00:00), these ratios (Table 12) were used to scale the average observed traffic 

flows at the counter locations to an assumed/estimated modelled flow, as follows: 

 AM peak shoulder 1 (07:00-08:00 AM) = Observed traffic flows at 07:00-08:00 / 

1.08 

 AM peak shoulder 2 (09:00-10:00 AM) = Observed traffic flows at 09:00-10:00 / 

1.08 

 Inter-peak hours (11:00 AM-15:00 PM) = Observed traffic flow at that hour / 0.98 

 PM peak shoulder 1 (16:00-17:00 PM) = Observed traffic flows at 16:00-17:00 / 

1.07 

 PM peak shoulder 2 (18:00-19:00 PM) = Observed traffic flows at 18:00-19:00 / 

1.07 

 Off-peak hours (hours between 19:00 PM-7:00 AM) = Observed traffic flow at that 

hour / 0.98 

The inter-peak period flows were altered (i.e. not assumed constant between 10:00-

16:00) as the observed traffic flows in this period were varying in contrast to the 

SATURN model’s assumption/estimates. This was done by choosing the first inter-

peak hour (which was validated, see above) and using its observed/modelled ratio to 

factor the flows at other inter-peak hours. The resulting derived/estimated modelled 

average traffic flows are shown in Figure 33 for all hours outside the simulation period.  

Next, this scaling needed to be undertaken at each of the 4500 modelled road links 

in SATURN. For this, the derived/estimated hourly modelled traffic flow (Figure 33) 

was divided by the modelled AM peak, inter-peak, and PM peak hour SATURN 

modelled traffic flow (which is the only available information for all 4500 links) to obtain 

an average factor to scale the traffic flows at each link for each hour outside the 

simulation. The rules given in the bullet points above were followed. At each link, this 

factor was multiplied by the AM peak, inter-peak, and PM peak hour SATURN 
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modelled traffic flow at that link, to obtain a traffic flow for all hours outside the 

simulation, following the rules given in the bullet points above. Finally, for each hour, 

the traffic flows estimated were split into the fleet’s vehicle classes/types as discussed 

in 3.5.1. The result was an hourly (00:00-23:00) traffic flow (vehicles/h) and a fleet 

mix matrix (split by vehicle type, EURO emission standard, catalyst status, weight 

category and exhaust after-treatment technology) for 4500 road links in Bradford, on 

an average weekday in year 2009. For weekend traffic flows, the hour-by-hour traffic 

flows on Saturday and Sunday were extracted at the 19 ATC and averaged across 

all counters. The traffic averages are shown in Figure 34 and show the different traffic 

patterns of the weekends. The ratio between these average hourly flows and the 

average AM SATURN traffic flow (from the validated links) was used to scale the 

individual links’ traffic across all weekend hours. These ratios are shown in Table 13. 

Table 13 Average Traffic Flows Observed/AM Modelled Ratios (Weekends) 

Hour ATC flow average (19 points) SATURN AM average ATC/SATURN AM 

00:00 170.94 830.94 0.21 

01:00 127.49 830.94 0.15 

02:00 91.91 830.94 0.11 

03:00 69.66 830.94 0.08 

04:00 56.17 830.94 0.07 

05:00 68.80 830.94 0.08 

06:00 105.71 830.94 0.13 

07:00 171.09 830.94 0.21 

08:00 265.14 830.94 0.32 

09:00 405.57 830.94 0.49 

10:00 568.60 830.94 0.68 

11:00 650.03 830.94 0.78 

12:00 727.60 830.94 0.88 

13:00 770.40 830.94 0.93 

14:00 766.49 830.94 0.92 

15:00 732.03 830.94 0.88 

16:00 710.40 830.94 0.85 

17:00 651.49 830.94 0.78 

18:00 553.17 830.94 0.67 

19:00 466.49 830.94 0.56 

20:00 358.11 830.94 0.43 

21:00 307.63 830.94 0.37 

22:00 245.97 830.94 0.30 

23:00 192.43 830.94 0.23 
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Figure 32 Average Hourly Traffic Flows in Bradford across 19 Automatic Traffic Counter (ATC) Locations (reporting on 35 directions) 

(blue) and Average Hourly Traffic Flows from SATURN across the Corresponding Road Links (AM peak, inter-peak and PM peak 

hours) (green), Source: Own Work (Excel) 
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Figure 33 Weekday Link Average Diurnal Traffic Flows Modelled in SATURN (green) and complemented by Estimates Derived from 

Observed/Modelled Ratios and Observed Traffic Flows (blue), Source: Own Work (Excel) 
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Figure 34 Weekend Link Average Diurnal Traffic Flows from Observed Traffic Flows (ATC Traffic), Source: Own Work (Excel) 
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3.5. Discussion 

3.5.1. Summary 

In this study, a previously developed and validated SATURN traffic model was 

obtained and run for year 2009 in Bradford (Steer Davies Gleave, 2009). The 

simulated road network covered a total of 4,500 road links and 696,880 vehicle 

kilometres (∑vehicles/h * link length in km). Traffic flows (PCU/h), and average traffic 

speeds (km/h) were estimated by the model and extracted at the road link level, for 

three simulated time periods: AM peak hour (08:00-09:00), inter-peak hour (the 

average inter-peak hour, 10:00-16:00); and PM peak hour (17:00-18:00). The link 

length (m) and the geographical locations of the SATURN nodes (X, Y coordinates) 

were also extracted for all links and plotted in ArcMap. 

The SATURN model did not include separate vehicle user classes for passenger cars, 

LDVs, HDVs, buses or coaches and therefore these needed to be estimated. Traffic 

flows estimated in PCU/h were converted to traffic flows in vehicles/h, using PCU 

conversion factors originally used in the model’s development. Flows in vehicles/h 

were then split into the different vehicle classes (e.g. diesel and petrol passenger 

cars, diesel and petrol vans (LDVs, three weight categories), diesel buses (single-

decker and double-decker), diesel coaches (standard and articulated), and diesel 

rigid and articulated trucks (HDVs, various weight categories). Subsequently, the 

traffic flow of each vehicle class was split into the vehicles’ EURO emission standards, 

catalyst status and after-treatment technology. The traffic split was done using 

standard published fleet proportions in England (National Atmospheric Emissions 

Inventory and Ricardo Energy and Environment, 2014). Previous traffic flow validation 

of this SATURN model was not independent i.e. the links used for the validation were 

used in the model’s calibration as well, and therefore an independent validation 

exercise was undertaken. The validation results showed that the model performed 

reasonably well in estimating traffic flows, especially at the aggregate level, although 

the links variation was substantial in a select number of smaller/lower level roads, 

where the model tended to under estimate observed traffic flows. 

As the SATURN model only simulated three time periods, traffic flows outside these 

simulation periods were estimated using available traffic count data and modelled 

flows. Using the traffic diurnal trends constructed from traffic counts at 19 ATC points 
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in year 2009, modelled traffic flows in vehicles/h were scaled to obtain a diurnal hour-

by-hour traffic flow profile, on an average weekday and weekend in 2009. 

The results showed that the highest traffic flows were estimated in the AM peak, 

followed by the PM peak then the inter-peak period. Average traffic flows were highest 

in the PM peak, followed by the AM peak then the inter-peak period. Traffic speed 

results showed that the average link speed across the three simulated time periods 

was around 33 km/h, conveying the urban nature of the SATURN road network. Over 

50% of all links in all time periods had speeds lower than 40 km/h. Conversely, less 

than 2% of all roads had speeds higher than 60 km/h. The link length statistics showed 

that a high proportion of the links were short. For example, 50% of all links were <172 

m. These shorter links imply traffic and driving conditions that may be characterized 

by low average speeds and frequent stop-start driving typical on shorter sections of 

roads between junctions and crossing in urban areas, as opposed to free flow as 

would be expected on longer e.g. motorway road sections. The X and Y geographical 

coordinates extracted from the SATURN network and plotted in ArcMap revealed that 

although there was a topographical correspondence between the nodes in SATURN 

and the actual road locations in an underlying base map, these two did not accurately 

match and the SATURN nodes were not correctly spatially referenced. Overall, the 

SATURN network was a caricature and a simplification of the real road network. To 

improve the accuracy of the nodes and road links locations, all node coordinates 

which did not coincide with a road in ArcMap were snapped onto the nearest road 

using a snapping procedure developed in this study.  

3.5.2. Strengths 

The key strength of the current approach used to obtain traffic flow and average 

speeds is in its comprehensive and wide spatial coverage. The SATURN model used 

in this study covered 4,500 road links, which in turn covered a large extent of the 

Bradford metropolitan area (Figure 17). This extent of spatial coverage is not possible 

to achieve using observed traffic counts or speeds, as measurement points cover a 

limited geographical scale (Figure 11), often focused on major and strategic roads 

monitored for transport planning purposes, rather than environmental and exposure 

assessment purposes. A wide and comprehensive spatial coverage is particularly 

important in an exposure or health impact assessment study where the aim is to 

capture the spatial distribution and variability of exposures across the study 

population (Nieuwenhuijsen, 2015). The use of the counters can feasibly mask the 

variability in traffic levels and associated TRAP levels and therefore mask differences 
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in exposures and associated health effects or impacts. There is also a compounded 

influence of air pollution originating from multiple, smaller and lower level roads 

combined. These exposures can have a different and additional effects on human 

health outcomes, when, for example, compared to exposures originating from major 

roads only (English et al., 1999, Perez et al., 2013). 

A second strength of the current approach is that it allows estimating the specific 

contribution of the different vehicles to the overall TRAP exposures. As the vehicle 

classes in the traffic fleet were explicitly estimated, vehicle emissions can be assigned 

to each class’s flow. This may help advance the understandings of the most polluting 

vehicle fleets and patterns of exposure and therefore add value to the efforts 

undertaken to identify the “right” sources to target. Currently, there is a widespread 

lack of full-chain health impact assessment characterizing the whole chain from 

emissions sources, to exposures, and finally to health effects and/or impacts; 

something which limits disentangling the health effects of TRAP from the health 

effects of other emission sources, and vice versa (Nieuwenhuijsen et al., 2017). This 

also limits the comprehensibility of, and confidence in recommending fleet specific 

and traffic planning or management specific interventions which would be valuable 

and desirable for policy makers (Nieuwenhuijsen et al., 2017). 

In own work, the SATURN traffic flows were scaled across the full day to cover the 

remaining hours outside the model’s simulation times (AM peak hour, inter-peak hour 

and PM peak hour). The use of the ATC traffic data for this purpose provided a 

realistic and an area-specific scaling factor to develop the traffic diurnal profile. 

Previous work in Bradford using SATURN model outputs in subsequent atmospheric 

dispersion modelling and health impact assessment only relied on the SATURN 

modelled traffic flows to represent a traffic and an emission diurnal profile (City of 

Bradford Metropolitan District Council, 2013); i.e. the SATURN modelled inter-peak 

hour traffic was allocated to all periods outside the simulation times (Crowther, 2016). 

As demonstrated from traffic flow observations shown in Figure 32, this assumption 

is not realistic, and this works contributes to a more realistic estimation of hour-by-

hour daily traffic flows and emissions. 

Further, the use of traffic speeds estimated from the model instead of using link speed 

limits/free flow speeds as was done previously in a dispersion modelling study in 

Bradford (de Hoogh et al., 2014), is considered an advantage as speed limits/ free 

flow speeds are usually not achieved in urban settings and congested times. Vehicle 

emissions are highest at lower average speeds, which incorporate frequent stop-start 
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driving and high emitting events such as accelerations, and as such this work further 

contributes to a more accurate and realistic representation of vehicle activity and 

associated emissions in the study area. 

Finally, the NAEI vehicle classes fleet split used in this work was compared to vehicle 

class proportions calculated from two other independent datasets collated over the 

same year: 2009 (CBMDC traffic counts at 98 locations and DfT traffic counts at 109 

locations). The NAEI vehicle class proportions were considered satisfactorily similar 

and robust. The most uncertain estimates were buses and coaches and HDVs 

proportions, which were around 60% higher and 40% lower in the NAEI than in the 

other datasets, respectively (Table 14). These differences may be because the DfT 

and CBMDC would have undertaken their traffic counts on major and strategic roads 

and motorways only; likely to be carrying higher truck volumes and fewer buses than 

urban roads represented in the NAEI spreadsheets. 

Table 14 Vehicle Class Proportions from Three Different Datasets 

Vehicle 
classification 

NAEI for 
Urbana 
roads 

(2009)b 

CBMDC local 
classification 

between 0700-1900 
(year 2009)c 

Percentage 
difference 

DfTd traffic 
counts 
(2009)e 

Percentage 
difference 

Cars and 
Taxis 

82.6% 81.72% + 1.08% 81.77% + 1.02% 

Buses and 
Coaches 

1.55% 1.03% + 50.49% 0.91% + 70.33% 

Light Duty 
Vehicles 

12.54% 12.65% - 0.87% 13.08% + 4.13% 

Other Duty 
Vehicles 

2.13% 3.79% - 43.80% 3.57% - 40.34% 

a Assuming that urban roads are the most common in Bradford’s simulated road network 

b Proportions given by vehicle kilometres 

c Counts made at 98 locations across Bradford 

d Counts made at 109 locations across Bradford 

e Proportions given in thousand vehicle miles 

3.5.3. Limitations 

Despite its strengths, the approach also has its limitations. First, the journey time 

validation of the model revealed that although the overall modelled journey times were 

within 15% of observed values, in line with established traffic modelling guidelines, 

modelled journey times were consistently faster than observed journey times, in all 

time periods. This suggested that congestion was underrepresented in the model, 

particularly in the morning peak hour (Steer Davies Gleave, 2009). These differences 

may be in part due to road capacity being over-represented in certain areas of the 
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model and/or certain conditions that are inherently included in the average observed 

journey times, such as adverse weather conditions, road works and closures and 

motor vehicle crashes slowing down traffic, but not included in the model. The 

underrepresentation of congestion and lower average speeds in the network can be 

particularly problematic when estimating associated emissions; which tend to be 

higher at the lower average speeds with frequent stop-start driving (Chapter 4). 

Further, the SATURN model was found to under estimate traffic flows in the 

independent validation exercise, especially at the smaller road links. 

Second, although there generally was good topographical correspondence between 

the nodes in SATURN and the actual road locations as identified from an underlying 

base map, these two did not accurately match and the SATURN nodes were not 

correctly spatially referenced. Contact with the CBMDC indicated that this SATURN 

model was developed prior to GIS use and application in the city council (the original 

network back in 2002), and the model was therefore intended to be a schematic 

representation of the network which was not correctly spatially referenced. The 

council is currently in the process of developing a new geo-referenced SATURN 

model, but this was not available during the period of this study. The geo-processing 

of the traffic network using snapping methods in this study is not ideal but was found 

to have slightly improved the layout/expected locations of the nodes, as identified by 

manual oversight. Both the geo-processed and the original SATURN network will be 

taken further in subsequent atmospheric dispersion modelling to explore the 

associated differences in the air quality estimates and their validation metrics. 

Third, SATURN results in traffic flow and average speed data on a link basis, 

regardless of the link’s length or characteristics i.e. any link has one average speed 

which applies over the whole link and one traffic flow based on the AM peak hour, 

inter-peak and PM peak hour. This assumes that traffic flows and speeds are 

homogenous over the entirety of the links. The averaging of the speeds over a whole 

link is problematic, especially over longer links. Real-world traffic flows and 

particularly speeds are heterogeneous instead and the accuracy of emission models 

which utilize this data highly depends on the traffic model’s ability to capture speed 

fluctuations (Amirjamshidi et al., 2013). Furthermore, the average speeds obtained 

from the model were assumed to apply/be constant for all vehicle classes on the 

roads. In real-world driving, average speeds for different vehicle classes is not 

constant over the same route and can be highly variable (Mehar et al., 2013); for 

example consider buses or HDVs movement compared to passenger cars movement 
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over the same routes. This assumption is a limitation in all current approaches, 

whether one uses data from mesoscopic traffic models such as SATURN or data from 

traffic counters and can mask a highly variable vehicle-class-specific traffic activity 

and associated emissions levels. It was not possible with current data and tools to 

account for the unusual driving patterns of some vehicle classes such as buses and 

taxis where stops and starts more frequent making their stop-start emissions higher 

not only because of the higher absolute magnitude of emissions during those events 

but also because of their higher occurrence frequency. 

Further, other work has found that the Bradford fleet was markedly older than national 

averages; for e.g. in 2012, 49% of buses in Bradford were Euro III or older compared 

with 32% in Leeds (City of Bradford Metropolitan District Council, 2013). This latter 

difference, however, was unaccounted for in this study as the NAEI national average 

were the ones adopted to proportion the vehicle fleet mix.  

Finally, although this approach incorporated many more roads than e.g. using traffic 

counters, it did not cover all streets on the urban network. The most minor roads e.g. 

cul-de sacs feeding into a more major road were often agglomerated into a single link 

and not represented individually, possibly leading to some exposure misclassification 

and a further under estimation in overall traffic levels and subsequently associated 

emissions. 

3.5.4. Avenues for Future Work and Next Step 

To estimate the air quality profile and the childhood population exposures to TRAP in 

the study area, it is possible to link the hour-by-hour traffic flows and average speeds 

estimated in this research phase to average-speed-emission functions/models, 

introduced in the next chapter (Chapter 4) and subsequently to air pollution dispersion 

models (Chapter 5), creating a full-chain exposure model. The next steps of this study 

will aim at developing a set of more reliable and Bradford-tailored average-speed 

emission functions and then knitting together these multiple data sources and models 

for later full-chain health impact assessment. Specifically, the traffic flows and 

average speeds estimated in this research phase will be used as inputs to the newly 

developed and the standard (sourced from COPERT 4 v 10) average-speed emission 

functions to estimate a Bradford road vehicle emission inventory for year 2009. Both 

the original and the geo-processed traffic networks will be used in the final dispersion 

modelling to explore the impact of the spatial network editing on the air quality 

estimates and their validity. 
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Future work could usefully focus on using different traffic activity data sources for the 

compilation of emission inventories and later exposure assessment exercises. For 

example, GPS fleet tracking datasets such as Teletrac can be used. Such datasets 

are expected to provide a higher temporal resolution and a more realistically variable 

speed profiles over smaller pieces of the links/roads in Bradford and one that is 

specific for the different vehicle classes. Future work can also explore the effects of 

a differential fleet mix on the different road types (e.g. urban versus motorways) to 

test the sensitivity of the exposure estimates to the fleet mix proportions. 

Further, continuous communication with the CBMDC revealed that transport 

planning, environment and health departments at the city council level are poorly 

coordinated and integrated. The transport planning unit in CBMDC developing and 

updating traffic models for Bradford appear to work in isolation and not to consider 

how their work can be integrated in wider environmental and health impact 

assessments for proposed transport planning schemes. For example, the nodes in 

the SATURN model were not correctly geo-referenced and this is thought to be due 

to its aims and key applications as a transport planning tool that analyses and 

evaluates traffic management scheme and (changes in) traffic flows and not 

exposures, environmental or health impacts. This issue was found to limit the 

SATURN usability for environmental, epidemiological or health impact assessment 

applications. Better coordination between these departments would improve the utility 

of their datasets and models for future applications of this nature.



146 
 

146 

 

4 Vehicle Exhaust Emission Modelling 

4.1. Background 

4.1.1. Vehicle Emission Factors 

To evaluate the health and environmental impacts of traffic activity, vehicle emissions 

need to be quantified. In this study, the focus was exhaust gas emissions of Nitrogen 

Oxides (NOx). NOx is a specific marker for TRAP, especially diesel vehicles exhaust, 

and can be readily converted to Nitrogen Dioxide (NO2) using published conversion 

factors. Vehicle particle emissions were not considered in this study, due to multiple 

reasons. First, Particulate Matter (PM) exhaust measurements are inaccurate as they 

are performed by trapping exhaust particle emissions over a test using particles filters 

which are imprecise (DieselNet Technology Guide, 2012), partly due to the (semi) 

volatile PM fraction present in the exhaust gas. The mass trapped on the particles 

filters is then factored by the second-by-second Particle Numbers (PN) exhaust 

measurements made over the same test. These factored values are used in 

constructing vehicle emission maps for emission modelling software such as PHEM, 

the results of which have showed that PM estimates are unreliable and are 

significantly worse than gaseous emission estimates such as NOx (Section 4.3.5). 

Second, there are issues with modelling PM at the air quality estimation stage as 

current dispersion models are an oversimplification of the processes particles 

undergo in the atmosphere including accumulation, deposition and atmospheric 

chemistry reactions, partly because exhaust PM is not well-defined. Other significant 

sources of traffic-related PM including brake and tire wear, road abrasion and 

resuspension, which are problematic to quantify (Thorpe and Harrison, 2008), cannot 

be taken into account in the modelling practice of this study. 

Typically, vehicle exhaust emissions are expressed as mass emissions per unit 

distance (Equation 4.1.); mass emissions per unit time (Equation 4.2.) or mass 

emissions per unit fuel consumed (Equation 4.3.) (Tate, 2014b). 

Emission per Unit Distance =  
Amout Emitted (g)

Distance Travelled (e. g. km)
… (Equation 4.1. ) 

Emission per Unit Time =  
Amount Emitted (g)

Time Taken (e. g. seconds)
… (Equation 4.2. ) 
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Emission per Unit Fuel Consumed

=  
Amount Emitted (g)

Fuel Consumed (e. g. litres of fuel burnt) 
… (Equation 4.3. ) 

These three expressions are referred to as vehicle emission factors. Vehicle 

emission factors are the data underlying national emission inventories and 

subsequent dispersion modelling. In practice (when performing analytics of 

commonly available traffic data), the most commonly used and referred to vehicle 

emission factor is that per unit distance (Equation 4.1.) (i.e. g/km). Whenever the term 

emission factor (EF) is used in this work it will refer to a distance based vehicle 

emission factor in g/km, unless otherwise stated. 

4.1.2. Review of Vehicle Emissions Measurement and Modelling 

Exhaust gases are comprised of a complex mixture of combustion products, un-burnt 

fuel and water vapour, produced as by-products when engines are in operation. There 

are three types of emission sampling and measurement techniques which are 

commonly used: engine dynamometer testing, chassis dynamometer testing and on-

road measurements (Tate, 2014a). Each method has strengths and limitations. 

Both dynamometer tests, chassis and engine, are laboratory-based, with strict 

operating conditions, defined equipment and highly controlled environments. These 

tests are therefore highly replicable and well suited for regulatory certification, type 

approval and comparative testing (Pelkmans and Debal, 2006). In an engine 

dynamometer test, a vehicle engine and associated components are connected to a 

dynamometer, which imposes a load on the engine. Commonly, the dynamometer 

runs the engine at steady state speed. Transient dynamometers, which can run the 

engine through a series of varying driving events including acceleration, deceleration, 

idling and cruising are more complex and costly and therefore are scarce. As the cost 

of acquiring and installing engines is high, engine dynamometer testing is primarily 

used for research and development purposes (Tate, 2014a). In a chassis 

dynamometer testing, a whole test vehicle is connected to a dynamometer which 

imposes loads on the rolling road the vehicle rests on and runs the engine through a 

series of varying driving events including acceleration, deceleration, idling and 

cruising. Unlike engine dynamometer, chassis dynamometers are set up for testing 

multiple vehicles, but are more complex and costlier to operate (Tate, 2014a). Overall, 

the main criticism of dynamometer testing lies in the fact that laboratory testing 

procedure and environments do not adequately represent real-world driving 

conditions and environments, which vehicles perform in daily. Driving cycles used in 
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emission measurements and testing such as the New European Driving Cycle 

(NEDC) and the Common Artemis Drive Cycle (CADC) have been repeatedly 

criticized because of their significantly different vehicle dynamics when compared to 

real-world driving (Ropkins et al., 2009, Barlow et al., 2009). These differences 

include differences in acceleration, deceleration and speed which are less transient 

in these cycles when compared to real-world driving (Barlow et al., 2009, Chen and 

Borken-Kleefeld, 2014, Pelkmans and Debal, 2006). Vehicle specific power is lower 

in these cycles compared to real-world driving (Chen and Borken-Kleefeld, 2014). 

Laboratory environment conditions such as the absence of road gradient, wind 

(Transport and Environment, 2013) extra vehicle weight (The International Council on 

Clean Transportation, 2015), and the controlled temperature and humidity (Martini et 

al., 2012, Department for Transport, 2016b, Pelkmans and Debal, 2006), also mean 

that these real-world driving factors are not being accounted for, despite their 

important impacts on engine load and associated emissions. For example, CO and 

NOx real-world emissions from a EURO 4 compliant vehicle model year 2000, may 

be up to 10 times higher in real traffic compared to the NEDC cycle (Pelkmans and 

Debal, 2006). 

The third type of emission measurement techniques are on-road measurements. As 

the name suggests, on-road emission measurements are made in real-world driving 

conditions when the vehicle is in operation and include ‘in traffic’ or ‘in situ’ methods 

(Ropkins et al., 2009). ‘In traffic’ methods include using Portable Emission 

Measurement Systems (PEMS) mounted onto the back of the vehicle and directly 

measuring its exhaust emissions (Weiss et al., 2012, Liu et al., 2009, Kousoulidou et 

al., 2013), or equipping another vehicle with emission measurement devices (mobile 

laboratory) and having it follow the vehicle under investigation; sampling emissions 

from a chased vehicle (Zavala et al., 2006, Shorter et al., 2005, Saari et al., 2016). ‘In 

situ’ methods include using road tunnel or road side monitoring equipment such as 

Remote Sensing Device (RSD) to measure emissions (Ropkins et al., 2009, Carslaw 

et al., 2011a). The key strength of all these methods lies in the actual measurement 

of vehicle emissions under real-world driving conditions and in real-world 

environments. The key limitation is that real-world driving is non-standardized and it 

is often not possible to perform multiple standardized tests using these techniques, 

increasing uncertainty compared to laboratory-based measurements. Furthermore, 

there are practical limitations in setting up the equipment, power sources and in the 

high costs associated with these equipment and measurement campaigns, which 

often leads to small sample sizes (Tate, 2014a). 
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As vehicle emission monitoring is very limited in space and time, modelling 

approaches are used to fill the gaps where monitoring is unfeasible and provide 

information used for compiling national and regional emission inventories. The main 

practiced methodology used for estimating vehicle EFs, for a certain pollutant and a 

given vehicle class/technology, is based on the notion that vehicle EFs are functions 

of the average vehicle speed over ‘a trip’ (Equation 4.4). As such, if the average speed 

of a vehicle over a trip is known (e.g. through traffic models or measured data), this 

value can be plugged in a corresponding average-speed-emission function, specific 

to a pollutant and a vehicle class/technology, to obtain an EF for that vehicle; pollutant 

and at that average speed for the trip. 

Emission per Unit Distance (
g

km
) =  𝑓 (v̅) … (Equation 4.4. ) 

Where v̅ is the vehicle’s average speed. 

This is currently the standard approach adopted in vehicle emission modelling 

(Barlow and Boulter, 2009). In the UK, EFs for road transport are defined as functions 

of the average vehicle speed, over ‘a trip’ (Barlow and Boulter, 2009). Initially, NOx 

average-speed-emission functions were developed by Transport Research 

Laboratory (TRL limited) at the request of the UK Department for Transport (DfT) 

(Boulter et al., 2009), using a large database of emission and speed measurements 

conducted in the laboratory (these functions are referred to as TRL/DfT functions). 

Subsequent updates to these functions were undertaken and reported in Li et al. 

(2009c). 

After 2011, new functions replaced the TRL/DfT functions when the UK emission 

factor toolkit switched to using average-speed-emission functions sourced from a 

regional European emission model referred to as COPERT: COmputer Programme 

to calculate Emissions from Road Transport (Department for Environment Food and 

Rural Affairs, 2016b, Department for Environment Food and Rural Affairs, 2014c). 

The reason behind this switch/ revision was emerging evidence that there is lack of 

consistency between the trends of road transport NOx emissions estimated by current 

functions and the trends in ambient roadside NOx concentrations measured in the UK 

(Carslaw et al., 2011a). Additionally, NOx emissions for some modern vehicle classes 

obtained from the previous average-speed-emission functions, especially diesel 

fuelled ones, did not reflect higher real-world emissions as recorded by on-road 

emission measurements (Passant et al., 2012, Carslaw et al., 2011a). The UK’s 

switch to using COPERT was also perceived as an advantage as it is the standard 
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methodology used by EU member states, making UK emission estimates more 

comparable and consistent with other countries. The COPERT model also assumes 

the average-speed-emission functions methodology accepting that vehicle EFs are 

functions of the vehicle’s average speed, over a trip. The model’s development is 

coordinated by the European Environment Agency’s and the European Commission’s 

Joint Research Centre (European Research on Mobile Emission Sources Group, 

2016). COPERT contains some of the most widely used average-speed-emission 

functions, worldwide (Barlow and Boulter, 2009) (Figure 35) and is used by most 

European countries in official reporting of national emission inventories for road 

transport (Kousoulidou et al., 2010). A small number of European countries use EFs 

from the Handbook of Emission Factors for Road Transport (HBEFA), which was 

developed on behalf of the Environmental Protection Agencies of Germany, 

Switzerland and Austria (HBEFA, 2016). Emission models estimating EFs as 

functions of average speed over a trip are also used worldwide e.g. in the USA 

(Koupal et al., 2010) and New Zealand (Sridhar et al., 2014). 

 

Figure 35 Leading Road Vehicle Emission Models Used in Europe, Source: European 

Research on Mobile Emission Sources Group (2016), Source: http://www.ermes-

group.eu/web/leading_EU_models 

EFs and emission estimates derived from this methodology are widely accepted and 

used in numerous databases and important policy making tools such as the NAEI, 

the London Atmospheric Emission Inventory (LAEI), the UK DfT Local Authority 

Carbon Tool (Barlow and Boulter, 2009, Williams et al., 2011, Transport for London, 

2015), and the National Transport Model (NTM) which is the UK DfT’s main strategic 

policy testing and forecasting tool (Li et al., 2009a). Importantly, average-speed-

http://www.ermes-group.eu/web/leading_EU_models
http://www.ermes-group.eu/web/leading_EU_models
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emission functions are also incorporated in many local air pollution dispersion models, 

which combine the EFs functions and the dispersion modelling software into a single 

package (e.g. ADMS-Urban) (Barlow and Boulter, 2009). 

Although there are intrinsic limitations that come with ‘simply’ modelling vehicle 

emissions based on average speeds (Barlow and Boulter, 2009), traffic data and 

models typically only provide average speeds for road links. Air pollution dispersion 

models can only take average speeds at the link level as inputs for calculating link-

based emission rates using built-in EFs. Therefore, both systems are configured to fit 

this modelling approach and hence it was followed. Modelling vehicle emissions 

based on more meaningful predictors, such as vehicle specific power (Jimenez-

Palacios, 1998, Carslaw et al., 2013), is currently unfeasible, if the outputs are to be 

linked to macro or meso scale traffic network data and subsequent dispersion 

modelling, as in this study. There are, however, numerous limitations associated with 

the standard average-speed-emission functions, especially in how these were 

developed (Section 4.1.3). This work will fill some of these gaps while retaining the 

premise and practicality of vehicle emission modelling based on average speeds. 

4.1.3. Underlying Data and Limitations in Current Average-Speed-

Emission Functions 

Despite being widely used in numerous applications, the COPERT model has 

important limitations that arguably make its emission estimates unreliable, especially 

at lower average speeds which are frequent in urban driving (Tate, 2015a). Average-

speed-emission functions given in COPERT are based on a wide range of national 

and regional average-speed-emissions data collected from laboratory vehicle tests 

(Kay, 2013, Li et al., 2009b). This data is based on the results of thousands of 

empirical tests which have been conducted through several projects and initiatives 

across Europe, over many years (Ntziachristos, 2016a). Perhaps because of this, 

there is lack of clarity about the exact data underlying, and the methods used to 

establish, COPERT’s average-speed-emission functions (Tate et al., 2016). 

The average-speed-emission functions given in the COPERT model are developed 

by corroborating average speed and emission factors functions. Functions are 

developed by calculating the average EF over a trip from a drive-cycle (transient test) 

and relating this to the average speed of the trip. The general premise of this method 

is as follows: a vehicle of a certain type/technology is driven over a driving cycle (or 

a speed profile) in the laboratory. In theory, the driving cycle is selected to represent 
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real-world driving conditions (e.g. CADC) rather than cycles used for regulatory 

compliance (e.g. NEDC). However, the choice of driving cycles remains unclear, and 

these do not reflect local driving conditions in study areas where functions will be 

used. As the vehicle drives over a specified cycle, its exhaust emissions are being 

measured in the laboratory. The driving cycle is then split into trips (i.e. sub-cycles), 

and the average emission level recorded at each trip is associated with the average 

speed recorded for each trip. Each average speed and average EF are paired and 

constitute one data point. Multiple tests are undertaken for each vehicle 

type/technology such as diesel and petrol passenger cars, vans, trucks, buses and 

coaches to produce more data points. These data points are then plotted and serve 

as the underlying data to construct a function relating the recorded vehicle’s average 

speed (x; predictor variable) to the recorded average EF (y; response variable), at the 

trip level (Ntziachristos, 2016b). The definition of a trip in this context, however, 

remains unclear and is not standardized. For example, a trip can be the whole driving 

cycle, or can be the time being driven in a certain driving condition such as urban, 

rural or motorway driving. This process is illustrated in Figure 36. 

This approach has intrinsic limitations. First, there is no conceptual rationale for the 

averaging periods at which a ‘trip’ is defined. As vehicle emissions are episodic in 

nature and significantly fluctuate over very short time periods (i.e. seconds) (Frey et 

al., 2003, Ropkins et al., 2007), averaging speeds and corresponding EFs over long 

‘trip’ intervals can be problematic as the longer duration trips averages will mask 

small-scale variations in real-world driving emissions. Peak emission rates occur 

during short-term, high-power acceleration events (Frey et al., 2003); for example 

after junctions (Daham et al., 2009) or traffic lights, and are typically associated with 

lower average speeds (O'Driscoll et al., 2016). Previous research showed that 

average emissions of several exhaust pollutants during acceleration are an order of 

magnitude larger than during cruising (Ritner et al., 2013); and that low average 

speeds are associated with the worst emitting NOx sub-trips (O'Driscoll et al., 2016). 

If such polluting short events and sharp peaks are not adequately incorporated and 

represented in the average-speed over a trip, then average emissions calculated for 

this trip are expected to be lower than in real driving, particularly in the context of 

urban driving where stop-starts are frequent and road link are short with higher speed 

fluctuations. 
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Figure 36 COPERT Average-Speed-Emissions Functions Derivation, Source: Own 

Work (NCH Software)
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Second, using laboratory emissions measurements to accurately estimate real-world 

vehicle emissions has proved problematic, as driving and testing conditions in 

numerous laboratories do not represent real-world vehicle use. Emission models 

solely based on laboratory emission measurements can significantly under estimate 

vehicle emissions as car manufacturers optimize (Boulter et al., 2007), and 

manipulate (e.g. dieselgate emission scandal) (Schiermeier, 2015) fuel consumption 

and exhaust emissions control based on testing conditions. If the measurements 

underpinning the models are flawed, then the output of the modelling is expected to 

be inaccurate. Example of important flaws in laboratory testing conditions include the 

fact that driving cycles are effectively performed over a flat road, in the absence of 

wind (Transport and Environment, 2013) and extra vehicle weight (The International 

Council on Clean Transportation, 2015), and in controlled indoor environments of 

certain temperature and humidity (Martini et al., 2012, Department for Transport, 

2016b). These parameters vary and fluctuate in the real-world and have a significant 

influence on engine power and real-world exhaust emission (Barlow and Boulter, 

2009, Boriboonsomsin and Barth, 2009, Boroujeni and Frey, 2014, Westcott, 2016, 

Sayegh et al., 2016). For example, Zhang and Frey (2006) recorded an increase in 

CO2 emission of 40-90% for three light duty gasoline vehicles over road sections with 

grade ⩾ 5% when compared to road sections with grade ⩽ 0%; Frey et al. (2008) 

recorded a 20% increase in localized NO emission rates with positive road gradients. 

Weilenmann et al. (2009) observed an evident increase in NOx for diesel EURO 4 

passenger cars as the air temperature decreased; Dardiotis et al. (2012) observed 

higher NOx emissions at -7 °C compared to at 22 °C for most of their laboratory tested 

petrol vehicles with EURO 5 emission standards; and a new study by Emission 

Analytics tested 213 models across 31 manufacturers and measured a significant rise 

in NOx emissions as temperature dropped below 18 °C (Westcott, 2016). 

As such, vehicle emissions data obtained from laboratory measurements will result in 

an under estimation of real-world on-road emissions. As these factors (stop-start 

driving and frequent acceleration events, real-world driving conditions including road 

grade, extra load, temperature, humidity, wind etc.) do not adequately underpin 

laboratory emission testing procedure and therefore any vehicle emission model 

established on their data, the validity of the COPERT and similar models is 

questionable. In part, this may explain some of the inaccuracies associated with these 

models, especially in urban driving and at lower average speeds (Tate et al., 2016); 

a state typical in congested traffic and incorporates high proportions of idling, stop-

start driving and cold starts. 
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Third, the statistical construction of the functions relating vehicle average speed to 

the average EF recorded can be based on a limited number of observations and 

insufficient sample sizes that differ depending on the number of measurements 

available for specific vehicle classes. For example, older vehicles with e.g. pre-EURO 

emission standards and newer vehicles with e.g. EURO 6/VI emission standards were 

either operating before comprehensive emission measurement campaigns were 

underway (pre-EURO, before July 1992) or just penetrated the market (EURO 6/VI, 

after September 2014), and therefore do not have comprehensive sample sizes. 

Further, functions are being fitted, even when there is high variability in the 

experimental data (Figure 37). No goodness of fit or error statistics are being reported 

alongside these functions and as the underlying data is largely unknown, it is difficult 

to judge the goodness of fit for a given function. 

 

Figure 37 Example of Variability of Individual Measurements for the Derivation of 

Emission Factors (averaging approach unclear). Gasoline EURO 3 Passenger 

Cars, Source: ARTEMIS database reported in Kouridis et al. (2010) 

Finally, there is evidence that COPERT becomes unreliable when moving to high 

saturation and short road sections. As a general guidance, COPERT’s reliability is 

considered to increase as the link length increases to above 400 m (Samaras et al., 

2014). As the link length increases, the likelihood that the data is dominated by a 

particular driving phase i.e. acceleration, cruise, deceleration decreases. Emission 

rates clearly vary substantially between these phases, with fuel burnt and associated 

air quality pollutant emissions highest during more power demanding acceleration 

phases. During deceleration phases emissions can for example fall to zero in modern 

vehicles with full cut-off strategies (Tate, 2015a). Therefore, the scatter in the 

average-speed and emissions data increases as links shorten and the predictive 

performance of a fitted function becomes substantially weaker. This is significant as 
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for e.g. over 80% of all simulated links in Bradford are less than 400 m in length, whilst 

less than 20% are greater than or equal to 400 m in length (Chapter 3). 

4.1.4. COPERT Validation 

Although there is limited and partial literature relating to the validation of road vehicle 

emission models (Smit et al., 2010), a few studies investigating COPERT indicate 

important and systematic inaccuracies in its NOx emission estimates. For example, a 

validation of COPERT with real-use on-road data showed that NOx emission levels of 

a EURO 5 compliant diesel passenger car measured by PEMS were almost 60% 

higher than COPERT values (Kousoulidou et al., 2010). For a EURO 5 diesel 

passenger car, the mean values for the EFs calculated from the PEMS data and those 

estimated by COPERT for corresponding average speeds were found to deviate by 

80%, 73% and 61% for a 10-km, 5-km and 1-km distance split, respectively, with the 

trend of COPERT under estimating NOx (Dilara et al., 2010). For EURO 2, 3 and 4 

diesel passenger cars, the ratio between the modelled and the observed NOx 

emissions were found to be 61%, 71% and 77%, respectively in an on-road remote 

sensing measurement campaign in Sweden (Sjödin and Jerksjö, 2008). Another 

similar study found that COPERT was systematically underestimating NOx emissions 

generated by EURO 3 petrol vehicles and pre-EURO to EURO 3 HDVs, where the 

remote sensing measurements consistently yielded higher emissions (Ekström et al., 

2004). For diesel cars, the authors found that the remote sensing measurements were 

generally lower than COPERT III predictions for the older technology classes (pre-

EURO and EURO 1), but higher for the newer technology classes (EURO 2 and 

EURO 3). In an on-road emission measurement study which analysed emission data 

collected from ≈72,000 individual vehicles using a vehicle emission remote sensing 

detector technique; the trend visible was that remote sensing measurements of NOx 

were almost consistently higher than emissions estimates obtained from the models, 

across most vehicle categories including diesel and petrol passenger cars, the new 

generations of diesel LDVs and diesel rigid HDVs (Carslaw et al., 2011a). 

These findings can, in part, explain the difficulty in matching real-world measured 

ambient air pollution concentrations with modelled ambient air pollution 

concentrations when COPERT emission estimates are utilized as inputs to air 

pollution dispersion models (Williams et al., 2011). The lack of decrease in ambient 

concentration of NOx and NO2, in clear disagreement with emission inventory 

projections, can in part also be attributed to these inaccuracies (Carslaw et al., 2011b, 

Beevers et al., 2012, Ekström et al., 2004). Some of these drawbacks have been 
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identified by the COPERT developers and the model has recently undergone updates 

increasing some of HGVs NOx EFs (European Environment Agency and EMISA S.A., 

2011), and suggestions to uplift EFs for the newer generations of LDVs by up to 50% 

(EMISA S.A., 2015). As such, there is a need for new methods to estimate road 

transport emission inventories more accurately, particularly in urban driving. 

4.2. Chapter Objectives and Contribution to Literature 

The objective of this research phase was to develop a set of new average-speed-

emission functions which are transparent, replicable and underlined by known 

data of better capability to capture real-world, local driving patterns and the 

high level of emissions associated with low average speeds (resulting from stop-

start driving, shorter links and congested traffic states). As such, this research phase 

contributed to overcoming some of the limitations associated with the standard 

vehicle emission modelling approach and is expected to improve the accuracy of 

subsequent air pollution dispersion modelling, which will be undertaken to estimate 

the air quality profile and the childhood population exposure to TRAP within Bradford 

for a health impact assessment. 

4.3. Methods 

The overall methodology used in this work to derive new average-speed-emission 

function is illustrated in Figure 38 and overviewed next. In summary, 30.5 hours of 

real-world driving over Bradford, UK, were undertaken in an instrumented vehicle, 

which logged its instantaneous speeds over the tracked journeys. The collected 

instantaneous speeds were fed into the instantaneous emission model PHEM which 

estimated the second-by-second emissions of NOx for 167 vehicle types and EURO 

emission standards. Using these outputs and following a novel micro-trip approach 

which splits the driving cycles into driving events between adjacent stationary periods 

(stop-start), new vehicle average-speed-emissions functions were developed.  
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Figure 38 Average-Speed-Emissions Functions Derivation, Source: Own Work (NCH Software) 
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Collection of Real-World Driving Cycles 

4.3.1. Test Vehicle and Instrumentation 

The instrumented vehicle that was used to log second-by-second (instantaneous) 

speed profile over test routes was a 2009, EURO 5 emission compliant hybrid petrol 

Toyota Prius with a 1.8 Litres (1798 cc) engine and a 1370 kg kerb weight. The vehicle 

is shown in Figure 39. The instrumented vehicle was purchased and developed by 

Riley (2016) and more detail on its specifications is in Riley and Tate (2016). 

 

Figure 39 The Instrumented Vehicle Surveying Tong Street, Bradford (12th October 

2015), Source: Own Work (Camera picture) 

The vehicle was fitted with a portable activity monitoring system, which contained two 

data loggers, one from RaceLogic (https://www.vboxautomotive.co.uk/index.php/en/) 

and a second from HEM Data Corporation (http://www.hemdata.com/): 

1. The RaceLogic VBOX II Lite GPS data logger (Version 2.3a) (VBOX 

Automotive, 2016) (Figure 40 a) was connected to the vehicle’s 12V power 

socket in the vehicle’s central compartment between the two front seats. The 

logged data was stored onto a 2GB compact flash memory card and was 

downloaded and backed up after each survey day. 

2. The HEM Data DAWN On-Board Diagnostics (OBD) Mini logger (HEM Data, 

2016) (Figure 41) was plugged directly into the vehicle’s OBDII port under the 

steering wheel to the right. This data logger did not require a separate power 

https://www.vboxautomotive.co.uk/index.php/en/
http://www.hemdata.com/
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source. The logged data was stored onto a 32GB microSD memory card and 

was downloaded and backed up after each survey day. 

At 2 Hz, the RaceLogic system measured and recorded the vehicle’s speed based on 

satellite position data. In addition, it recorded speed measured by the wheel sensors 

on the vehicle’s four wheels (referred to as ‘wheel speed’ data), and by acquiring 

Controller Area Network (CAN) bus data (referred to as ‘vehicle speed’ data). The 

CAN module was connected to the vehicle’s CAN via a CAN GO Click connector that 

was clipped to the two CAN wires behind the vehicle’s dashboard. The RaceLogic 

setup is shown in Figure 40 b. Similarly, at 2 Hz, the OBD acquired CAN bus data 

and recorded the vehicle’s speed. 

 

a) RaceLogic VBOX II Lite GPS Data Logger, Source: RaceLogic (2013) 

 

b) RaceLogic Module Setup, Source: Riley and Tate (2016) 

Figure 40 RaceLogic System

GPS Aerial 

12V Power 

CAN 02 
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Memory Card 
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Vehicle CAN 
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Figure 41 The HEM Data DAWN OBD Mini Data Logger, Source: HEM Data (2016) 

4.3.2. Test Routes and Study Area Coverage 

To collect a real-world representative second-by-second vehicle speed profile, 

multiple roads on Bradford’s road network were used as test routes. A Fieldwork Risk 

Assessment (Low Risk Activities) was completed and submitted to the author’s 

department. Test routes were driven on by the instrumented vehicle described above, 

which logged its second-by-second speeds over the driving course. The author 

initially selected test routes by inspecting a map of Bradford’s road network and 

selecting apparent major/main roads (e.g. Bradford’s Ring Road). Routes selections 

were finalized after the author consulted with the City of Bradford Metropolitan District 

Council (Jones, 2015). 

The selected routes are shown in Figure 42 and encompass different road types 

including arterial roads into and out of Bradford including the A650 and Tong street 

(south-east); Bradford Road and Leeds Road (east-north); Keighley Road; Bradford 

Road and Bingley Road (north-west), Bradford’s Ring Road, in addition to areas 

surrounding and within the inner ring road; the area around the M606 and the area 

surrounding Shipley and Saltaire and Keighley which suffer from the highest NOx 

concentrations (Fielding, 2012). 

Test routes were driven by three commissioned drivers with different driving styles 

and no driving instructions except location directions when necessary. The author 

secured financial resources for the commissioned drivers through a young 

researcher’s innovation grant given by the World Conference on Transport Research 

Society (https://www.wctrs-society.com/wctrs-y-initiative/). The author sat in the back 

of the vehicle,oversaw the instruments, the coverage of the routes and recorded the 

start and end times and road sections covered. 

https://www.wctrs-society.com/wctrs-y-initiative/
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Figure 42 Test Routes surveyed in Bradford 

Test routes were covered during 38 runs, which were undertaken between 24th-29th 

of June and 1st-28th October 2015. Over 30 hours of driving were completed covering 

a total distance of 650 km between the hours of 7:30 AM and 21:30 PM to account 

for the full range of driving and traffic conditions on the road network including AM 

peak, inter-peak, PM peak and off-peak conditions. The 38 runs conducted 

represented different roads but also the same roads in the two possible directions of 

travel (i.e. each direction counted as a separate run), and in different survey times 

(each AM peak, inter-peak, PM peak and off-peak period counted as a separate run). 

It was assumed that the speed profiles collected on these roads were broadly 

representative of driving patterns in Bradford and it is unlikely that the roads which 

were not surveyed differ substantially. However, some potentially important areas that 

were not included in the test routes due to time and resources restrictions include 

Halifax Road (south-west) and Great Horton Road (west-south). Further details on 

the vehicle tracking survey can be found in the supplementary data of Khreis et al. 

(2017b). 
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4.3.3. Data Handling and Quality Assessment 

The VBOX and OBD data were time aligned manually, by matching the vehicle speed 

data recorded by each logger. For 11 random runs (50% of all sections with complete 

speed data from both loggers), speed from both loggers were compared to each other 

to verify them. The results of this comparison exercise demonstrated that: (a) the 

vehicle speed data logged by the VBOX and (b) the averaged four wheels’ speed 

data calculated from the VBOX data matched (c) the vehicle speed data logged by 

the OBD, with negligible, if any, differences. For example, as shown in Figure 43, the 

speed data recorded by each logger had a very good level of agreement with the 

other and followed the same trends. This data correlated well linearly with a Pearson’s 

correlation coefficient3 of 0.9995. 

As the measurements logged by both devices were almost identical (as shown in 

Figure 43), and as the RaceLogic failed in logging more often than the OBD (in 16/38 

runs as compared to 4/38 runs in the final dataset), a decision was made to rely on 

the OBD logged data for speed values needed in the next step of instantaneous 

emission modelling (Section 4.3.4.). There were 4 runs where the OBD failed to log 

(≈ 3 hours on 29th June 2015 and ≈ 3 hours on 16th October 2015). At these incidents, 

the RaceLogic logged the speed data correctly and the time aligned RaceLogic speed 

data were used to complement missing speed data from the OBD so as not to lose 

this data (≈ 6 hours) from the driving cycle and subsequent emission modelling. 

 

                                                

3 A Pearson correlation coefficient is a measure of the linear dependence between two 

variables X and Y. A value of 1 implies that a linear equation describes the relationship 

between X and Y perfectly, with all data points lying on a line for which Y increases as 

X increases. 
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Simulation of Real-World Driving Cycles Emissions 

4.3.4. Instantaneous Emission Modelling using PHEM 

It is not feasible to comprehensively measure exhaust emissions from all vehicle 

classes operating in Bradford under real-world driving conditions (e.g. due to high 
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costs and durations associated with emission measurement equipment and 

campaigns and the practical impossibility of recording emission levels from all current 

and previous vehicle classes and models on the roads). Instead, vehicle emissions 

were modelled using the real-world and local driving cycle trace collected in Bradford 

and described above. 

Vehicle emissions throughout the driving trace were modelled using the power-

instantaneous vehicle emission model PHEM, version 11.7.2 (Hausberger et al., 

2009). PHEM is a vehicle emission model that has been recently developed by Graz 

University of Technology (TUG), and is one of the latest generations of vehicle 

emission models which exploits the relationship between engine power and exhaust 

emission using established engine emission maps to model second-by-second fuel 

consumption and exhaust emissions (Wyatt et al., 2014). The PHEM model (Figure 

44) requires the following inputs: a 1 Hz vehicle speed profile (i.e. the driving cycle), 

road gradient (optional, alternatively road gradient can be set to zero throughout the 

driving cycle), and vehicle specifications data describing an average vehicle of 

interest including its EURO emission standard, exhaust after-treatment systems, 

engine size, fuel type, cross-sectional frontal area, weight, drag coefficients and 

transmission ratios. Once this input data is supplied, the model, based on the driving 

resistances and losses in the transmission systems, calculates the effective engine 

power and engine speed, at each second of the driving cycle, and references these 

values to an established average engine emission map, specific to the vehicle 

specification and pollutant being modelled (Boulter et al., 2007). As such, the PHEM 

model specifically attempts to represent the ‘average’ vehicle specification in a vehicle 

class, and not the variability of the different vehicles belonging to the same vehicle 

class. The key outputs of the modelling process are second-by-second estimates of 

fuel consumption and second-by-second emission species including carbon 

monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), nitrogen oxide (NO), 

particles mass (PM) and particles number (PN) (Hausberger et al., 2009). The 

performance and accuracy of PHEM differs across these species as overviewed in 

Section 4.3.5. The present work used PHEM only to model NOx emissions as these 

were the most valid air quality pollutant estimates the model offers (e.g. unlike PM – 

Section 4.3.5.), and are emissions that could be transformed into air quality 

concentrations using dispersion models (e.g. unlike PN). BC, which was positively 

and significantly associated with asthma development (Section 2.4.5), was also not 

possible to model in PHEM or the dispersion model used in the next stage, and hence 

was excluded from this analysis. 
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The key difference between the PHEM and the COPERT emission models is that the 

former represents a complex instantaneous emission model relying on engine power 

and engine speed calculated from a second-by-second driving cycle to estimate EFs 

at a highest resolution (i.e. second-by-second). The COPERT model, on the other 

hand, is a simplistic average-speed-emission model assuming that EFs are a function 

of a vehicle’s average speed, only, and providing an average-speed-emission 

function for each average vehicle class (Smit et al., 2010). As with the COPERT (-

based) model(s), laboratory emission measurements (i.e. engine and chassis 

dynamometer) constitute the emission measurements database underlying the 

PHEM’s engine emission maps. Unlike the COPERT model (Ntziachristos, 2016b), 

on-board real-world driving emission measurements from PEMS also constitute part 

of the database underlying the PHEM model (Hausberger, 2008), allowing to 

incorporate ‘outside-of-the-laboratory’ and ‘off-cycle’ emission measurements in the 

data underlying the model. PHEM also models vehicle emissions directly based on 

the driving cycles fed into the model. It is therefore possible, as has been done in the 

present work, to feed real-world and local driving cycles into the model. 

 

Figure 44 Scheme of the Emission Model PHEM for the Modelling of Bradford’s 

Emission Factors, Source: Hausberger et al. (2009) 

4.3.5. PHEM Validation 

Testing the overall accuracy of any vehicle emission model is challenging as true 

vehicle emissions are unknown and are practically impossible to measure for all 

vehicle classes and models operating in the area and time period concerned (Smit et 



167 
 

167 

 

al., 2010). Consequently, all emission models’ validation exercises, including those 

which will be overviewed next, are considered partial validations. 

The PHEM model was validated in several studies of various vehicle samples 

(Hausberger et al., 2009). Boulter et al. (2007) reported that for individual HDVs, 

validation against measurements made on a chassis dynamometer showed that NOx 

emissions estimated by PHEM were within ± 25% of the chassis dynamometer 

measurements. A more detailed validation exercise conducted on one articulated 

HDV with a kerb weight of 40 tonnes in Switzerland was described in Rexeis et al. 

(2005). In this study, an on-road measurement campaign was conducted measuring 

the vehicle’s emissions and logging its driving cycle and road gradient on its travel 

route. For the PHEM simulations, the vehicle specifications were inputted into PHEM, 

alongside the logged on-road speeds and route gradients. The measured and 

modelled fuel consumption agreed within ± 2%, while modelled NOx emissions were 

under estimated by 0%-4% (Rexeis et al., 2005). Clearly, this very replicable 

modelling procedure is not usually possible when deriving EFs for a larger vehicle 

fleet of unknown specifications and travel routes, as in the case of the present work. 

In another exercise undertaken to validate the average PHEM predications for 

passenger cars, the average emissions measured from 5 EURO 2 diesel cars 

operated over 12 real-world driving cycles were compared to the average emissions 

estimated by PHEM using specification data for an average car of the same type. The 

results showed a high level of accuracy for the average diesel car and the single 

diesel cars tested, both for fuel consumption and NOx emissions (results only reported 

visually, Figure 45). The results were less accurate for other emission species 

including HC and PM (Boulter et al., 2007). 
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Figure 45 Simulation Quality for the Emission Factors of the Average EURO II Diesel 

Car in PHEM, Source: Boulter et al. (2007) 

The same validation method was applied to petrol cars by testing the average EFs of 

6 EURO 3 cars and comparing them with PHEM estimates of an average car of the 

same type. NOx was systematically over estimated by the model (Figure 46), with the 

reason for this overestimation remaining unclear (Boulter et al., 2007). It is worth 

noting, however, that petrol passenger cars have very low absolute NOx emissions 

(an order of magnitude less than the average diesel car in this example), which makes 

them difficult to measure and model accurately, and arguably less significant to 

overall emission inventories. 

 

Figure 46 Simulation Quality for the Emission Factors of the Average EURO III Petrol 

Car in PHEM, Source: Boulter et al. (2007)
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In a validation report for assessing the model, results for fuel consumption and NOx 

were described to be accurate while results for PM had high uncertainty margins 

(Rexeis et al., 2013, Hausberger, 2008). In general, PHEM under estimated NOx 

emissions at average speeds lower than 40 km/h. As for PM, modelled versus 

measured emissions for 10 diesel EURO 4 cars correlated poorly (results only 

reported visually) (Hausberger, 2008). A more recent and detailed validation 

exercise compared second-by-second vehicle emission measurements from a 

chassis dynamometer and PEMS measurements to PHEM estimates over a real-

world London driving cycle developed by Transport for London (TfL) (Tate, 2015b). 

It was concluded that PHEM can robustly replicate the emission performance of 

typical vehicles but not high powered and heavier vehicles where the model’s 

estimates were less accurate. PHEM estimates were also found more accurate for 

diesel vehicles than for petrol vehicles which were again emitting little NOx making 

it challenging to accurately measure and model emissions. One bus was also 

assessed in this exercise and excellent agreement was found between measured 

and modelled NOx. The differences between modelled and measured average NOx 

emissions ranged from -653% to +75.5% for petrol cars; -6.5% to +36.7 for diesel 

cars; -42.9% to +40.2% for fully loaded HDVs and -21.2% for a Double-Decker bus 

(Tate, 2015b). This validation data for two diesel cars is shown next. One can, 

therefore, conclude that the PHEM model performs well in the estimation of NOx 

emissions from typical diesel cars; HDVs and buses, although the degree of the 

model’s accuracy depended on the vehicle being modelled and the accuracy and 

completion of the input data (e.g. vehicle specification data, gradient effects, engine 

data). 
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Figure 47 Second-by-Second PHEM Modelled against Measured NOx emissions (g/s), 

Mini/small Diesel Car, Source: Own Work (R), Data from Tate (2015b) 
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Figure 48 Second-by-Second PHEM Modelled against Measured NOx emissions (g/s), 

MPV/large Diesel Car, Source: Own Work (R), Data from Tate (2015b) 

4.3.6. PHEM Inputs 1: Driving Cycle and Trips Definition 

To meet PHEM’s input requirement, the driving cycle trace collected over Bradford’s 

test routes was converted from 2 Hz (i.e. 2 readings per second) to 1 Hz (i.e. 1 reading 

per second) by sampling the data and taking every other speed value recorded. This 

approach was preferred over averaging the two measurements made each second 

as averaging can smooth the transient nature of this data. The output was a second-
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by-second speed profile over the 30 hours of driving completed over Bradford’s test 

routes. The second-by-second speed profile from the one tracked vehicle (see 

Section 4.3.1.) was assumed to apply to all other vehicles modelled. The reason was 

that this was the Toyota Prius was the only vehicle available for equipping and 

tracking at the time of the study. Further, tracking different vehicle types across the 

same study area’s routes would have required significant time, human and monetary 

resources. Obviously, the tracked vehicle has different driving patterns and 

capabilities when compared to other vehicle classes including HDVs, buses and 

coaches. Nevertheless, the PHEM model ensures that the driving cycle used for a 

specific modelled vehicle matches the physics and capabilities of that vehicle. For 

example, if a HDV was being modelled using a passenger car’s driving cycle (as was 

done in the present study), then some of the acceleration events of the passenger 

car would be truncated in PHEM as the HDV being modelled would not be able to 

achieve these levels due to its weight, air resistance etc. This is a default option within 

the PHEM model. In the future, it is recommended that driving cycles of different 

vehicle types i.e. LDVs, HGVs and Buses are surveyed, across a pool of drivers This, 

however, was outside the scope of this current study. 

The second-by-second driving cycle trace was split into trips at which averaging the 

vehicle’s speed and the corresponding PHEM estimated EF was undertaken. These 

trips were selected in a more refined and transparent manner than standard practice 

(Section 4.1.3.), following a ‘micro-trip’ approach adopted from Tate et al. (2016). A 

micro-trip was defined as a driving event that starts with the vehicle being stationary 

i.e. stop (instantaneous speed = 0 km/h) and ends with the vehicle being stationary 

again (instantaneous speed = 0 km/h) before it proceeds to movement in the next two 

seconds i.e. start (instantaneous speed = x km/h). As such, each micro-trip 

represented driving between adjacent stationary periods. To avoid a proliferation of 

very short, low-speed trip segments, the instantaneous speeds (1Hz) in all micro-trips 

had to equal or exceed 5 km/h. At the end of each micro-trip, the very last second of 

idling time (stationary) was attributed to the next micro-trip (Figure 49). A MATLAB 

code developed by Riley (2016) was used for splitting the driving cycle. 

Splitting the driving cycle into trips between stationary periods ensures that each 

micro-trip includes different phases of driving including idling; acceleration; 

deceleration and potentially cruising. This means that no trip would be dominated by 

one driving phase and that emissions from the acceleration and deceleration phases 

can be balanced thereby reducing the scatter of the average-speed-emissions data 
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and making subsequent function fitting more reasonable than is being done for the 

COPERT model (e.g. Figure 37). Finally, using this approach means that averaging 

EFs is undertaken at the longer links for higher average speeds and vice versa. This 

naturally matches the nature of the traffic network data where longer links are usually 

motorway links with higher speeds and cruising proportions while shorter links are 

usually urban links and road sections between junctions, crossings and turns in urban 

areas with lower speeds and higher stop-start driving proportions. 

The Bradford driving cycle was split into 1390 micro-trips. The micro-trips were given 

separate IDs and the splitting was undertaken separately at each day so as not to 

mix the idling duration at the end of one day with the idling duration at the start of 

another. The shortest micro-trip recorded in time was 3 seconds, which related to 3 

seconds of zero, 5 and 0 km/h instantaneous speeds before the vehicle cruised again. 

The longest micro-trip recorded in time was 919 seconds (≈ 15 minutes), which 

related to continuous driving over a stretch of ≈ 3.6 km and at an average speed of ≈ 

14.1 km/h. In distance, the recorded micro-trips covered a distance ranging from 

1.389 m to 12694 m and had an average speed ranging from 0.2857 km/h to 78.9278 

km/h, as shown in Table 15. 

 

Figure 49 Illustrative Time Series with Micro-Trip (MT) Start Points Annotated in Red 

Dashed Lines, Source: Own Work (R) 

Table 15 Micro-trip Summary Statistics (N=1390 micro-trips) 
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Statistic 
Micro-trip distance 

(km) 
Micro-trip time 

(s) 
Micro-trip average speed 

(km/h) 

Minimum 0.001389 3.00 0.2857 

1st quartile 0.034583 29.00 4.3604 

Median 0.157222 59.00 11.7600 

Mean 0.467699 77.95 15.0534 

3rd 
quartile 

0.590556 98.00 24.6097 

Maximum 12.694220 919.00 78.9278 

4.3.7. PHEM Inputs 2: Vehicle Specifications 

In addition to the second-by-second driving cycle trace, PHEM requires specifications 

data for the vehicles whose emissions will be modelled. To enable a meaningful 

comparison with the standard average-speed-emission functions used in the UK, the 

COPERT 4 v10.0 average-speed-emission functions given in the UK emission factor 

toolkit v6.0 were visited and the same vehicle classes that were considered in this 

toolkit were selected for the PHEM modelling. Traffic data splits in the UK are also 

given based on these vehicle classes, which reinforces this selection and makes it 

consistent with the latest fleet composition projections and methods used in the NAEI. 

The vehicles types and specifications that have average-speed-emission functions in 

the UK emission factor toolkit can be found in the COPERT 4 v10.0 spreadsheet, 

which at the time of this work was the final version published in November 2012. This 

is freely available from http://naei.defra.gov.uk/data/ef-transport and includes the 

vehicles classes/specifications listed in Table 16. Bendy buses > 18 tonnes were 

excluded from this list, as they do not operate in Bradford. LDVs were also modelled 

in 3 separate weight categories instead of 1 as practiced in COPERT, to better 

represent the effect of weight on these vehicles’ emissions. 

In total, 167 individual vehicles were modelled in PHEM and this data was 

subsequently used to derive average-speed-emission functions for each vehicle 

class, technology and fuel. The exact vehicle specifications used for each vehicle 

modelled including its kerb weight, load, frontal area and engine power are given in 

supplementary data of Khreis et al. (2017b). These specifications were based on 

vehicle specifications observed in an automatic number plate recognition survey in 

Leeds, UK, which covered 14,574 passenger cars and light duty vehicles (Wyatt et 

al., 2016) and in London, UK, for heavy duty vehicles, buses and coaches where 

there was a bigger sample (4,852 compared to 1,263 observed in Leeds) that was 

considered more appropriate for averaging specifications across the numerous HDV, 

http://naei.defra.gov.uk/data/ef-transport
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buses and coaches categories modelled (Tate et al., 2016). No equivalent data was 

available for Bradford. 

Table 16 Vehicle Classes Modelled in PHEM (N=167) 

Vehicle class Weight class EURO emission standard 

Diesel passenger cars NA (6 EURO standards) Pre-EURO – EURO 5 

Petrol passenger cars NA (6 EURO standards) Pre-EURO – EURO 5 

Diesel light duty 
vehicles 

Class I (6 EURO standards) Pre-EURO – EURO 5 

Diesel light duty 
vehicles 

Class II (6 EURO standards) Pre-EURO – EURO 5 

Diesel light duty 
vehicles 

Class III (6 EURO standards) Pre-EURO – EURO 5 

Petrol light duty vehicles  Class I (6 EURO standards) Pre-EURO – EURO 5 

Petrol light duty vehicles  Class II (6 EURO standards) Pre-EURO – EURO 5 

Petrol light duty vehicles  Class III (6 EURO standards) Pre-EURO – EURO 5 

Diesel buses ≤ 15 tonnes 
(single-decker) 

(7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel buses 15-18 tonnes 
(double-decker) 

(7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel coaches ≤ 18 tonnes 
(small) 

(7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel coaches > 18 tonnes (large) (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

≤ 7.5 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

7.5-12 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

12-14 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

14-20 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

20-26 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

26-28 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

28-32 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel rigid heavy duty 
vehicles 

> 32 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel articulated heavy 
duty vehicles 

14-20 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel articulated heavy 
duty vehicles 

20-28 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Diesel articulated heavy 
duty vehicles 

28-34 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 
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Diesel articulated heavy 
duty vehicles 

34-40 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

Articulated heavy duty 
vehicles 

40-50 tonnes (7 EURO standards) Pre-EURO – EURO 5 (EURO 
5 split into EGR and SCR technology) 

4.3.8. Average-Speed-Emission Functions Development 

All analysis and average-speed-emission function development/fitting was 

undertaken in the open source software R (R Core Team, 2013), namely Rstudio 

version 3.2.2. For each modelled vehicle class, technology and fuel, the outputs from 

PHEM were second-by-second emission estimates (g/h), averaged over each micro-

trip as defined in Section 4.3.6. Each micro-trip was given a unique ID, and the 

average emission estimate (g/h), and the average speed (km/h) for the micro-trip 

were extracted. To develop average-speed-emission functions from this data, the 

modelled average NOx in g/h (raw PHEM output) was converted to g/km (i.e. distance 

based EF) using the average micro-trip speed. 

At each micro-trip, the average-speed and its corresponding average-emission factor 

calculated from PHEM results as above yielded one data point (x: average micro-trip 

speed (km/h), y: average NOx EF (g/km)). For each modelled vehicle class, 

technology and fuel, all the resulting x-y data points were plotted and used as the 

underlying data to fit a new average-speed-emission function for each vehicle. The 

relation between the average micro-trip speed and the average NOx EF at the micro-

trip level was captured by fitting a linear logarithmic regression function between the 

two using the R-project ‘lm’ function (https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/lm.html). All average-speed-emissions functions were 

developed by the author to a common logarithmic expression of the form: 

Log (NOx (
g

km
))

=  Intercept + Estimate ∗  Log (Average micro

− trip speed (
km

h
)) … (Equation 4.5. ) 

All logs are natural logs of the base e. This process was repeated 167 times to fit 

average-speed-emission functions to all the vehicle classes, technologies and fuels 

modelled in PHEM. For each fitted average-speed-emission function, a summary of 

the ‘lm’ function’s output was produced and saved as a .txt file. In this summary, 

statistics on the following parameters were given: the intercept alongside its standard 

error and significance level; the log (speed_km/h) estimate alongside its standard 

error and significance level; the residual standard error; the multiple and adjusted R 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html
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squared. These are documented in Table 18 to give an indication of the performance 

of the fitted functions. As an example, Figure 50 illustrates the underlying data points 

and the fitted average-speed-emission function for a diesel EURO 4 passenger car, 

the most common passenger car sub-category in 2009. 

 

Figure 50 Underlying Data Points and Fitted Average-Speed-Emission Function for a 

Diesel EURO 4 Passenger Car, Source: Own Work (R) 

4.3.9. Comparison with the COPERT Functions 

All standard average-speed-emission functions were sourced from the COPERT 4 

v10.0 spreadsheet, which at the time of this work was the latest version published in 

November 2012. This is freely available and was accessed from 

http://naei.defra.gov.uk/data/ef-transport. Using this spreadsheet, the average-

speed-emission functions given were extracted onto a new Excel spreadsheet and 

were manually parameterized per the vehicle’s type, technology and fuel. These 

functions offered a reference point for comparing the performance of the new versus 

the standard average-speed-emission functions. 

As the COPERT functions were not designed to be used at very low average speeds 

(<5-12 km/h; depending on the vehicle type), the COPERT spreadsheets provide 

minimum speed limits (km/h) for the functions to be used reasonably. These differ by 

vehicle class and range from 5 km/h (for petrol passenger cars) to 12 km/h (for HDVs, 

buses and coaches). In practice, when the average speed entered/specified is below 

the minimum speed allowed for that vehicle class’s average-speed-emission function, 

the minimum is assumed (Department for Environment Food and Rural Affairs, 

2014b). This standard procedure was followed when applying the COPERT functions 

in this work. 

http://naei.defra.gov.uk/data/ef-transport
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The new PHEM-based average-speed-emission functions were developed for the 

same vehicle classes given in COPERT 4 v10.0 except in the case LDV as mentioned 

in Section 4.3.7. In COPERT, there is only a single given set of LDVs average-speed-

emission functions and it is recommended that this should be used for the two weight 

classes of LDVs (class II and class III). For small LDVs (class I) with car body types, 

the sheet recommends using average-speed-emission functions for medium-sized 

cars. In this work, the 3 weight categories of LDVs were separately modelled in PHEM 

and those were compared to average-speed-emission functions from COPERT 

following its recommendation (i.e. PHEM class I LDVs was compared to COPERT 

medium-sized cars and PHEM class II and III LDVs were compared to COPERT LDVs 

single set of functions). 

Both, new and standard, average-speed-emission functions were coded onto an 

Excel spreadsheet so that the user only needs to enter the average vehicle speed on 

each spreadsheet for the NOx EFs to be calculated. The spreadsheet provides 

separate NOx EFs for EURO V buses, coaches and HDVs with Selective Catalytic 

Reduction (SCR) and Exhaust Gas Recirculation (EGR) systems. Neither standard 

(COPERT) nor new (PHEM-based) functions were corrected for accumulated 

mileage/age, which causes further emission degradation, as this data was not 

available. Neither functions were corrected for fuel quality (applicable in the case of 

petrol only), as this data was not available. 

4.4. Results 

4.4.1. Driving Cycle Summary Statistics 

A total of 30.5 hours of driving (or 109,817 instantaneous speed records) were 

completed over Bradford’s road network, capturing multiple AM peak, inter-peak, PM 

peak and off-peak periods and driving conditions. The average vehicle speed without 

stops was 30.87 km/h. Table 17 is a comparison between the key variables from the 

real-world Bradford’s driving cycle and the two European type approval test cycle: the 

current NEDC and the proposed Worldwide harmonized Light Vehicles Test 

Procedures (WLTP). The table demonstrates that the key differences between the 

real-world driving cycle collated in this study and the two regulatory cycles are the 

percentage of idling, which is higher in real-world driving and the percentage of 

cruising, which is lower in real-world driving when compared to the NEDC. 



179 
 

179 

 

The average speeds, with and without stops, in real-world driving were lower than 

both type approval regulatory cycles. No speed above 110 km/h was recorded in the 

real-world driving cycle in Bradford, partly because of the limited nature of the roads 

surveyed including inner city roads, single and dual carriageways but largely missing 

motorways. The lowest and highest accelerations recorded during the real-world 

driving cycle were significantly higher than both type approval regulatory cycles, 

suggesting that regulatory cycles do not achieve the same levels of abruptness in 

acceleration and deceleration feasible in real-world driving. The percentages of 

acceleration and deceleration time were higher in Bradford when compared to the 

NEDC, while the opposite is true when compared to WLTP. Real-world driving in this 

study spent the clear majority of time at speeds < 40 km/h and only 17% and 2% of 

the time at speeds between 40-60 km/h and higher than 60 km/h, respectively. 

Table 17 Driving Cycle Parameters 

Driving cycle NEDC WLTP class 3* Bradford real-world 

Duration (seconds) 
1220 (≈20.3 

minutes) 
1800 (30 
minutes) 

109817 (1830 minutes 
≈30.5 hours) 

Distance (kilometre) 11.00 23.13 650.76 

% idling** time (%) 26.31 12.61 29.57 

% cruising*** time (%) 40.98 0.84 20.08 

Average speeds with stops 
(km/h) 

32.47 46.26 21.33 

Average speeds without stops 
(km/h) 

44.70 53.20 30.87 

Maximum speed (km/h) 120 131 110 

Average (positive) 
acceleration**** (m/s2) 

0.59 0.41 0.58 

Maximum acceleration (m/s2) 1.06 1.88 4.72 

Average (negative) 
deceleration***** (m/s2) 

-0.75 -0.43 -0.66 

Maximum deceleration (m/s2) -1.39 -1.52 -6.67 

% acceleration time 20.25 44.06 26.78 

% deceleration time 12.46 42.5 23.57 

% time spent at 0-40 km/h 65.41 48.72 80.34 

% time spent at >40-60 km/h 15.57 19.39 17.27 

% time spent at > 60 km/h 19.10 31.94 2.39 

* class 3 cycle total (highest power-to-mass ratio, representative of vehicles driven in Europe and Japan) 

** The idle mode is defined as zero speed and zero acceleration 

*** Cruising defined as all other driving besides idling, accelerating and decelerating 

**** Acceleration > 0 m/s2 
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***** Deceleration < 0 m/s 

4.4.2. New Average-Speed-Emission Functions 

In total, 164 new average-speed-emission functions were developed to a common 

logarithmic expression (Equation 4.5) for the full fleet of diesel and petrol passenger 

cars and LDVs, diesel buses, coaches, rigid and articulated HDVs in Bradford. It was 

not possible to fit an acceptable function to the pre-EURO petrol LDVs PHEM data 

(class I, II and III) due to the high degree of scatter which was not possible to capture 

through an acceptable fitted model (R2 fitted = 0.0002 for petrol LDV class I, 0.0025 

for class II, 0.0002 for class III). The standard COPERT functions will be used for 

these three vehicles in the final analysis. All logarithms were natural logarithms (a 

logarithm to the base e). Each fitted function represents the relation between a 

specific vehicle’s average speed in km/h (the predictor variable), and its NOx EF in 

g/km (the response variable). These functions are given in Table 18, alongside a 

measure of the goodness of fit (adjusted R-squared), the errors associated with each 

coefficient and its significance level. The functions were coded onto an Excel 

spreadsheet as shown in Equation 4.6. 

NOx (
g

km
) =  EXP((Intercept) + (Estimate

∗  LN(Average speed (
km

h
)) … (Equation 4.6. ) 

The Excel spreadsheet is being made open access and the user only needs to enter 

the average vehicle speed (km/h) at each link to calculate the NOx EF (g/km) for each 

vehicle class. The functions were developed and coded for the emission standards 

pre-EURO (EURO 0) to EURO 5/V, which were the vehicle emission standards in 

operation in Bradford in the investigation year: 2009. The following model parameters 

were produced and examined to give an indication of the fitted model/function’s 

quality: the adjusted R-squared, the residual standard error of the model, the standard 

error of the coefficients of the model, and their significance level (Table 18). 

The adjusted R-squared provides a measure of how well the model can explain the 

variance of the response variable, while adjusting for the number of variables 

considered. An R2 value of ≥ 0.7 (70%) was considered a good model fit. The residual 

standard error is the average amount the response variable will deviate from the true 

regression line. The smaller this value is, the better. This value is presented to be 

able to compare it across the different vehicle classes. The coefficient standard error 

is a measure of the average difference the coefficient estimates vary from the average 
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value of the response variable. This needs to be a low number relative to its 

corresponding coefficient. The coefficient standard error is ideally an order of 

magnitude less than the coefficient estimate. The p value (significance level) indicates 

the likelihood to observe a relationship between the predictor and response variables 

due to chance. Typically, a p-value of 5% or less is a good cut-off point. Three stars 

(or asterisks) represent a highly significant p-value, which allows concluding that it's 

unlikely that no relationship exists between the average micro-trip speed and NOx EF. 

The cases where the fitted model/function’s quality was more uncertain were 

underlined in red in Table 18. These cases were very few (9 out of 164) and included: 

petrol passenger cars pre-EURO (R2=0.60), EURO 1 (R2=0.54), EURO 2 (intercept’s 

standard error not less than an order of magnitude than the coefficient estimate), and 

petrol LDVs (class I, II and III) EURO 1 and EURO 2, where R2 was < 0.7. In these 

cases, there was a high degree of scatter in the underlying data.
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Table 18 Newly Developed PHEM-based NOx Average-Speed-Emission Functions for Diesel and Petrol Passenger Cars and Light Duty Vehicles, Diesel Buses, Coaches and Articulated and Rigid Heavy Duty 

Vehicles 

Diesel Passenger Cars  

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 1.804367 - 0.715172 * log (average speed km/h) 0.1399 0.97 1.804367 (0.008434) <2e-16 *** - 0.715172 (0.003363) <2e-16 *** 

EURO 1 Log (NOx g/km) = 1.530742 - 0.616698 * log (average speed km/h) 0.1630 0.95 1.530742 (0.009826) <2e-16 *** - 0.616698 (0.003918) <2e-16 *** 

EURO 2 Log (NOx g/km) = 1.689483 - 0.624366 * log (average speed km/h) 0.1605 0.95 1.689483 (0.009679) <2e-16 *** - 0.624366 (0.003859) <2e-16 *** 

EURO 3 Log (NOx g/km) = 1.342277 - 0.540600 * log (average speed km/h) 0.2165 0.89 1.342277 (0.013054) <2e-16 *** - 0.540600 (0.005205) <2e-16 *** 

EURO 4 Log (NOx g/km) = 1.751140 - 0.705770 * log (average speed km/h) 0.1714 0.96 1.75114 (0.01033) <2e-16 *** - 0.70577 (0.00412) <2e-16 *** 

EURO 5 Log (NOx g/km) = 1.282085 - 0.523087 * log (average speed km/h) 0.1750 0.92 1.282085 (0.010552) <2e-16 *** - 0.523087 (0.004207) <2e-16 *** 

Petrol Passenger Cars  

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 0.323756 - 0.276685 * log (average speed km/h) 0.2538 0.60 0.323756 (0.015301) <2e-16 *** - 0.276685 (0.006101) <2e-16 *** 

EURO 1 Log (NOx g/km) = - 0.198028 - 0.263900 * log (average speed km/h) 0.2744 0.54 - 0.198028 (0.016544) <2e-16 *** - 0.263900 (0.006597) <2e-16 *** 

EURO 2 Log (NOx g/km) = 0.085971 - 0.446916 * log (average speed km/h) 0.1899 0.87 0.085971 (0.011446) <2e-16 *** - 0.446916 (0.004564) <2e-16 *** 

EURO 3 Log (NOx g/km) = - 1.074521 - 0.445470 * log (average speed km/h) 0.1910 0.87 - 1.074521 (0.011517) <2e-16 *** - 0.445470 (0.004592) <2e-16 *** 

EURO 4 Log (NOx g/km) = - 1.442175 - 0.440882 * log (average speed km/h) 0.1999 0.86 - 1.442175 (0.012050) <2e-16 *** - 0.440882 (0.004804) <2e-16 *** 

EURO 5 Log (NOx g/km) = - 2.183611 - 0.352004 * log (average speed km/h) 0.1756 0.83 - 2.183611 (0.010589) <2e-16 *** - 0.352004 (0.004222) <2e-16 *** 

Diesel Light Duty Vehicles – Weight Class I 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 1.892855 - 0.571284 * log (average speed km/h) 0.1817 0.93 1.892855 (0.010953) <2e-16 *** - 0.571284 (0.004367) <2e-16 *** 

EURO 1 Log (NOx g/km) = 1.706481 - 0.566210 * log (average speed km/h) 0.1841 0.92 1.706481 (0.011096) <2e-16 *** - 0.566210 (0.004424) <2e-16 *** 

EURO 2 Log (NOx g/km) = 1.598613 - 0.569017 * log (average speed km/h) 0.1799 0.93 1.598613 (0.010849) <2e-16 *** - 0.569017 (0.004325) <2e-16 *** 

EURO 3 Log (NOx g/km) = 0.955508 - 0.494470 * log (average speed km/h) 0.2121 0.87 0.955508 (0.012786) <2e-16 *** - 0.494470 (0.005098) <2e-16 *** 

EURO 4 Log (NOx g/km) = 1.259996 - 0.568199 * log (average speed km/h) 0.2336 0.88 1.259996 (0.014080) <2e-16 *** - 0.568199 (0.005614) <2e-16 *** 

EURO 5 Log (NOx g/km) = 1.266065 - 0.618294 * log (average speed km/h) 0.2177 0.91 1.266065 (0.013122) <2e-16 *** - 0.618294 (0.005232) <2e-16 *** 

Diesel Light Duty Vehicles – Weight Class II 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 1.946052 - 0.546533 * log (average speed km/h) 0.1916 0.91 1.946052 (0.011552) <2e-16 *** - 0.546533 (0.004606) <2e-16 *** 

EURO 1 Log (NOx g/km) = 1.846413 - 0.560846 * log (average speed km/h) 0.1856 0.92 1.846413 (0.011191) <2e-16 *** - 0.560846 (0.004462) <2e-16 *** 

EURO 2 Log (NOx g/km) = 1.739964 - 0.559784 * log (average speed km/h) 0.1812 0.92 1.739964 (0.010924) <2e-16 *** - 0.559784 (0.004356) <2e-16 *** 

EURO 3 Log (NOx g/km) = 1.262472 - 0.505039 * log (average speed km/h) 0.209 0.88 1.262472 (0.012598) <2e-16 *** - 0.505039 (0.005023) <2e-16 *** 

EURO 4 Log (NOx g/km) = 1.090972 - 0.532336 * log (average speed km/h) 0.244 0.86 1.090972 (0.014731) <2e-16 *** - 0.532336 (0.005873) <2e-16 *** 

EURO 5 Log (NOx g/km) = 1.073345 - 0.556929 * log (average speed km/h) 0.2361 0.87 1.073345 (0.014234) <2e-16 *** - 0.556929 (0.005675) <2e-16 *** 
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Diesel Light Duty Vehicles – Weight Class III 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 1.846234 - 0.496097 * log (average speed km/h) 0.2099 0.87 1.846234 (0.012654) <2e-16 *** - 0.496097 (0.005046) <2e-16 *** 

EURO 1 Log (NOx g/km) = 1.80597 - 0.51088 * log (average speed km/h) 0.2055 0.89 1.80597 (0.01239) <2e-16 *** - 0.51088 (0.00494) <2e-16 *** 

EURO 2 Log (NOx g/km) = 1.772454 - 0.532798 * log (average speed km/h) 0.1939 0.90 1.772454 (0.011689) <2e-16 *** - 0.532798 (0.004661) <2e-16 *** 

EURO 3 Log (NOx g/km) = 1.515181 - 0.473228 * log (average speed km/h) 0.2221 0.85 1.515181 (0.013389) <2e-16 *** - 0.473228 (0.005339) <2e-16 *** 

EURO 4 Log (NOx g/km) = 1.313255 - 0.555176 * log (average speed km/h) 0.2373 0.87 1.313255 (0.014308) <2e-16 *** - 0.555176 (0.005705) <2e-16 *** 

EURO 5 Log (NOx g/km) = 1.305634 - 0.573082 * log (average speed km/h) 0.2299 0.89 1.305634 (0.013857) <2e-16 *** - 0.573082 (0.005525) <2e-16 *** 

Petrol Light Duty Vehicles – Weight Class I 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Underlying data did not allow a new function fitting – standard COPRT 
function will be used in the final analysis 

      

EURO 1 Log (NOx g/km) = 0.784251 - 0.333349 * log (average speed km/h) 0.3036 0.60 0.784251 (0.018304) <2e-16 *** - 0.333349 (0.007299) <2e-16 *** 

EURO 2 Log (NOx g/km) = - 0.229573 - 0.332977 * log (average speed km/h) 0.3026 0.60 - 0.229573 (0.018244) <2e-16 *** - 0.332977 (0.007275) <2e-16 *** 

EURO 3 Log (NOx g/km) = - 0.826689 - 0.460544 * log (average speed km/h) 0.2396 0.82 - 0.826689 (0.014447) <2e-16 *** - 0.460544 (0.005761) <2e-16 *** 

EURO 4 Log (NOx g/km) = - 1.845076 - 0.323903 * log (average speed km/h) 0.2338 0.71 - 1.845076 (0.014093) <2e-16 *** - 0.323903 (0.005619) <2e-16 *** 

EURO 5 Log (NOx g/km) = - 2.864948 - 0.325814 * log (average speed km/h) 0.2338 0.71 - 2.864948 (0.014097) <2e-16 *** - 0.325814 (0.005621) <2e-16 *** 

Petrol Light Duty Vehicles – Weight Class II 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Underlying data did not allow a function fitting – standard COPRT 
function will be used in the final analysis 

      

EURO 1 Log (NOx g/km) = 1.116269 - 0.335839 * log (average speed km/h) 0.3027 0.61 1.116269 (0.018249) <2e-16 *** - 0.335839 (0.007277) <2e-16 *** 

EURO 2 Log (NOx g/km) = 0.054921 - 0.340592 * log (average speed km/h) 0.3023 0.61 0.054921 (0.018222) 0.00262 ** - 0.340592 (0.007266) < 2e-16 *** 

EURO 3 Log (NOx g/km) = - 0.502884 - 0.468269 * log (average speed km/h) 0.2349 0.83 - 0.502884 (0.014163) <2e-16 *** - 0.468269 (0.005647) <2e-16 *** 

EURO 4 Log (NOx g/km) = - 1.679280 - 0.331347 * log (average speed km/h) 0.2339 0.71 - 1.679280 (0.014099) <2e-16 *** - 0.331347 (0.005622) <2e-16 *** 

EURO 5 Log (NOx g/km) = - 2.699937 - 0.332527 * log (average speed km/h) 0.2338 0.72 - 2.699937 (0.014093) <2e-16 *** - 0.332527 (0.005619) <2e-16 *** 

Petrol Light Duty Vehicles – Weight Class III 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Underlying data did not allow a function fitting – standard COPRT 
function will be used in the final analysis 

      

EURO 1 Log (NOx g/km) = 1.316897 - 0.334037 * log (average speed km/h) 0.3043 0.60 1.316897(0.018344) <2e-16 *** - 0.334037 (0.007315) <2e-16 *** 

EURO 2 Log (NOx g/km) = 0.306263 - 0.333924 * log (average speed km/h) 0.2989 0.61 0.306263 (0.018019) <2e-16 *** - 0.333924 (0.007185) <2e-16 *** 

EURO 3 Log (NOx g/km) = - 0.488252 - 0.465874 * log (average speed km/h) 0.2377 0.83 - 0.488252 (0.014330) <2e-16 *** - 0.465874 (0.005714) <2e-16 *** 

EURO 4 Log (NOx g/km) = - 1.302957 - 0.329555 * log (average speed km/h) 0.2326 0.71 - 1.302957 (0.014026) <2e-16 *** - 0.329555 (0.005592) <2e-16 *** 

EURO 5 Log (NOx g/km) = - 2.322750 - 0.331683 * log (average speed km/h) 0.2330 0.72 - 2.322750 (0.014048) <2e-16 *** - 0.331683 (0.005601) <2e-16 *** 

Diesel City Buses – Single-Decker 
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EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.676692 - 0.700805 * log (average speed km/h) 0.1639 0.96 4.676692 (0.009879) <2e-16 *** - 0.700805 (0.003941) <2e-16 *** 

EURO I Log (NOx g/km) = 4.492894 - 0.743899 * log (average speed km/h) 0.1417 0.97 4.492894 (0.008540) <2e-16 *** - 0.743899 (0.003407) <2e-16 *** 

EURO II Log (NOx g/km) = 4.672739 - 0.760159 * log (average speed km/h) 0.1246 0.98 4.672739 (0.007512) <2e-16 *** - 0.760159 (0.002996) <2e-16 *** 

EURO III Log (NOx g/km) = 4.840677 - 0.873602 * log (average speed km/h) 0.1048 0.99 4.840677 (0.006321) <2e-16 *** - 0.873602 (0.002522) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.572350 - 0.607050 * log (average speed km/h) 0.1604 0.95 3.572350 (0.009669) <2e-16 *** - 0.607050 (0.003858) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 3.799527 - 0.736110 * log (average speed km/h) 0.1580 0.96 3.799527 (0.009525) <2e-16 *** - 0.736110 (0.003801) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.25045 - 0.92618 * log (average speed km/h) 0.2565 0.94 4.25045 (0.01546) <2e-16 *** - 0.92618 (0.00617) <2e-16 *** 

Diesel City Buses – Double-Decker 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.864863 - 0.678139 * log (average speed km/h) 0.1740 0.95 4.864863 (0.010492) <2e-16 *** - 0.678139 (0.004187) <2e-16 *** 

EURO I Log (NOx g/km) = 4.680974 - 0.723172 * log (average speed km/h) 0.1508 0.97 4.680974 (0.009091) <2e-16 *** - 0.723172 (0.003628) <2e-16 *** 

EURO II Log (NOx g/km) = 4.689974 - 0.717973 * log (average speed km/h) 0.1431 0.97 4.689974 (0.008625) <2e-16 *** - 0.717973 (0.003442) <2e-16 *** 

EURO III Log (NOx g/km) = 5.031918 - 0.855972 * log (average speed km/h) 0.1115 0.99 5.031918 (0.006722) <2e-16 *** - 0.855972 (0.002683) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.769395 - 0.583561 * log (average speed km/h) 0.1627 0.94 3.769395 (0.009807) <2e-16 *** - 0.583561 (0.003915) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.000345 - 0.718881 * log (average speed km/h) 0.1596 0.96 4.000345 (0.009621) <2e-16 *** - 0.718881 (0.003841) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.502763 - 0.977618 * log (average speed km/h) 0.2887 0.93 4.502763 (0.017399) <2e-16 *** - 0.977618 (0.006948) <2e-16 *** 

Diesel Coaches – Small (≤ 18 tonnes) 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 5.359587 - 0.762523 * log (average speed km/h) 0.1555 0.97 5.359587 (0.009375) <2e-16 *** - 0.762523 (0.003739) <2e-16 *** 

EURO I Log (NOx g/km) = 5.117792 - 0.805469 * log (average speed km/h) 0.1454 0.98 5.117792 (0.008767) <2e-16 *** - 0.805469 (0.003496) <2e-16 *** 

EURO II Log (NOx g/km) = 5.131610 - 0.799404 * log (average speed km/h) 0.1333 0.98 5.131610 (0.008035) <2e-16 *** - 0.799404 (0.003205) <2e-16 *** 

EURO III Log (NOx g/km) = 5.282824 - 0.894602 * log (average speed km/h) 0.1249 0.99 5.282824 (0.007512) <2e-16 *** - 0.894602 (0.002996) <2e-16 *** 

EURO IV Log (NOx g/km) = 4.520104 - 0.782564 * log (average speed km/h) 0.1595 0.97 4.520104 (0.009574) <2e-16 *** - 0.782564 (0.003820) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.708945 - 0.888890 * log (average speed km/h) 0.1305 0.98 4.708945 (0.007816) <2e-16 *** - 0.888890 (0.003120) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 5.194908 - 1.091808 * log (average speed km/h) 0.2242 0.97 5.194908 (0.013406) <2e-16 *** - 1.091808 (0.005351) <2e-16 *** 

Diesel Coaches – Large (> 18 tonnes) 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 5.528112 - 0.749336 * log (average speed km/h) 0.1582 0.97 5.528112 (0.009540) <2e-16 *** - 0.749336 (0.003805) <2e-16 *** 

EURO I Log (NOx g/km) = 5.308916 - 0.797025 * log (average speed km/h) 0.1465 0.97 5.308916 (0.008834) <2e-16 *** - 0.797025 (0.003523) <2e-16 *** 

EURO II Log (NOx g/km) = 5.391377 - 0.801935 * log (average speed km/h) 0.1295 0.98 5.391377 (0.007809) <2e-16 *** - 0.801935 (0.003114) <2e-16 *** 

EURO III Log (NOx g/km) = 5.592120 - 0.907643 * log (average speed km/h) 0.1217 0.99 5.592120 (0.007338) <2e-16 *** - 0.907643 (0.002926) <2e-16 *** 

EURO IV Log (NOx g/km) = 4.800981 - 0.787978 * log (average speed km/h) 0.1467 0.97 4.800981 (0.008842) <2e-16 *** - 0.787978 (0.003526) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 5.037819 - 0.899207 * log (average speed km/h) 0.1193 0.99 5.037819 (0.007195) <2e-16 *** - 0.899207 (0.002869) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 5.474739 - 1.048355 * log (average speed km/h) 0.1864 0.98 5.474739 (0.011238) <2e-16 *** - 1.048355 (0.004482) <2e-16 *** 
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Diesel Rigid Heavy Duty Vehicles – 0-7.5 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.247470 - 0.616907 * log (average speed km/h) 0.1767 0.94 4.247470 (0.010641) <2e-16 *** - 0.616907 (0.004246) <2e-16 *** 

EURO I Log (NOx g/km) = 3.858387 - 0.668880 * log (average speed km/h) 0.1775 0.95 3.858387 (0.010693) <2e-16 *** - 0.668880 (0.004267) <2e-16 *** 

EURO II Log (NOx g/km) = 3.871804 - 0.659312 * log (average speed km/h) 0.1640 0.95 3.871804 (0.009876) <2e-16 *** - 0.659312 (0.003941) <2e-16 *** 

EURO III Log (NOx g/km) = 4.057017 - 0.768027 * log (average speed km/h) 0.1704 0.96 4.057017 (0.010261) <2e-16 *** - 0.768027 (0.004094) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.281848 - 0.643211 * log (average speed km/h) 0.1952 0.93 3.281848 (0.011746) <2e-16 *** - 0.643211 (0.004688) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 3.488096 - 0.752954 * log (average speed km/h) 0.1731 0.96 3.488096 (0.010414) <2e-16 *** - 0.752954 (0.004157) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.017415 - 0.934690 * log (average speed km/h) 0.2115 0.96 4.017415 (0.012719) <2e-16 *** - 0.934690 (0.005077) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – 7.5-12 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.35013 - 0.58253 * log (average speed km/h) 0.1797 0.93 4.35013 (0.01082) <2e-16 *** - 0.58253 (0.00432) <2e-16 *** 

EURO I Log (NOx g/km) = 3.95086 - 0.63131 * log (average speed km/h) 0.1818 0.94 3.95086 (0.01095) <2e-16 *** - 0.63131 (0.00437) <2e-16 *** 

EURO II Log (NOx g/km) = 3.970967 - 0.627020 * log (average speed km/h) 0.1658 0.95 3.970967 (0.009986) <2e-16 *** - 0.627020 (0.003985) <2e-16 *** 

EURO III Log (NOx g/km) = 4.154033 - 0.734781 * log (average speed km/h) 0.1740 0.96 4.154033 (0.010480) <2e-16 *** - 0.734781 (0.004183) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.38612 - 0.60716 * log (average speed km/h) 0.1953 0.92 3.38612 (0.01175) <2e-16 *** - 0.60716 (0.00469) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 3.593042 - 0.726982 * log (average speed km/h) 0.1722 0.96 3.593042 (0.010361) <2e-16 *** - 0.726982 (0.004136) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.202341 - 0.997859 * log (average speed km/h) 0.2555 0.95 4.202341 (0.015364) <2e-16 *** - 0.997859 (0.006134) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – 12-14 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.377455 - 0.572182 * log (average speed km/h) 0.181 0.93 4.377455 (0.010905) <2e-16 *** - 0.572182 (0.004353) <2e-16 *** 

EURO I Log (NOx g/km) = 3.975865 - 0.620161 * log (average speed km/h) 0.1833 0.93 3.975865 (0.011041) <2e-16 *** - 0.620161 (0.004407) <2e-16 *** 

EURO II Log (NOx g/km) = 3.997376 - 0.617059 * log (average speed km/h) 0.167 0.94 3.997376 (0.010059) <2e-16 *** - 0.617059 (0.004015) <2e-16 *** 

EURO III Log (NOx g/km) = 4.180340 - 0.725159* log (average speed km/h) 0.1754 0.96 4.180340 (0.010566) <2e-16 *** - 0.725159 (0.004217) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.41743 - 0.59710 * log (average speed km/h) 0.1956 0.92 3.41743 (0.01177) <2e-16 *** - 0.59710 (0.00470) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 3.622997 - 0.718972 * log (average speed km/h) 0.1725 0.96 3.622997 (0.010379) <2e-16 *** - 0.718972 (0.004144) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.256352 - 1.019481 * log (average speed km/h) 0.2721 0.95 4.256352 (0.016362) <2e-16 *** - 1.019481 (0.006533) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – 14-20 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.627393 - 0.587858 * log (average speed km/h) 0.174 0.93 4.627393 (0.010492) <2e-16 *** - 0.587858 (0.004185) <2e-16 *** 

EURO I Log (NOx g/km) = 4.227274 - 0.636060 * log (average speed km/h) 0.1756 0.94 4.227274 (0.010589) <2e-16 *** - 0.636060 (0.004224) <2e-16 *** 

EURO II Log (NOx g/km) = 4.248947 - 0.630082 * log (average speed km/h) 0.1614 0.95 4.248947 (0.009734) <2e-16 *** - 0.630082 (0.003883) <2e-16 *** 

EURO III Log (NOx g/km) = 4.435325 - 0.739722* log (average speed km/h) 0.1694 0.96 4.435325 (0.010210) <2e-16 *** - 0.739722 (0.004073) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.627890 - 0.602790 * log (average speed km/h) 0.1889 0.93 3.627890 (0.011377) <2e-16 *** - 0.602790 (0.004541) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 3.854184 - 0.725849* log (average speed km/h) 0.165 0.96 3.854184 (0.009937) <2e-16 *** - 0.725849 (0.003966) <2e-16 *** 
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EURO V SCR Log (NOx g/km) = 4.451131 - 0.963657* log (average speed km/h) 0.2312 0.96 4.451131 (0.013922) <2e-16 *** - 0.963657 (0.005556) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – 20-26 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.66896 - 0.55725 * log (average speed km/h) 0.1974 0.91 4.66896 (0.01191) <2e-16 *** - 0.55725 (0.00475) <2e-16 *** 

EURO I Log (NOx g/km) = 4.450260 - 0.610717 * log (average speed km/h) 0.1831 0.93 4.450260 (0.011042) <2e-16 *** - 0.610717 (0.004405) <2e-16 *** 

EURO II Log (NOx g/km) = 4.470563 - 0.611105 * log (average speed km/h) 0.1703 0.94 4.470563 (0.010270) <2e-16 *** - 0.611105 (0.004097) <2e-16 *** 

EURO III Log (NOx g/km) = 4.585696 - 0.703057* log (average speed km/h) 0.1781 0.95 4.585696 (0.010739) <2e-16 *** - 0.703057 (0.004284) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.874854 - 0.596535 * log (average speed km/h) 0.2010 0.92 3.874854 (0.012089) <2e-16 *** - 0.596535 (0.004825) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.123483 - 0.737964* log (average speed km/h) 0.1685 0.96 4.123483 (0.010133) <2e-16 *** - 0.737964 (0.004046) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.724692 - 1.016208* log (average speed km/h) 0.263 0.95 4.724692 (0.015810) <2e-16 *** - 1.016208 (0.006313) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – 26-28 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.729494 - 0.533261 * log (average speed km/h) 0.2022 0.90 4.729494 (0.012198) <2e-16 *** - 0.533261 (0.004868) <2e-16 *** 

EURO I Log (NOx g/km) = 4.509132 - 0.588109 * log (average speed km/h) 0.1878 0.92 4.509132 (0.011325) <2e-16 *** - 0.588109 (0.004519) <2e-16 *** 

EURO II Log (NOx g/km) = 4.531899 - 0.591304 * log (average speed km/h) 0.1733 0.94 4.531899 (0.010451) <2e-16 *** - 0.591304 (0.004171) <2e-16 *** 

EURO III Log (NOx g/km) = 4.645106 - 0.681778 * log (average speed km/h) 0.1824 0.95 4.645106 (0.010995) <2e-16 *** - 0.681778 (0.004388) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.943759 - 0.576985 * log (average speed km/h) 0.2026 0.91 3.943759 (0.012188) <2e-16 *** - 0.576985 (0.004866) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.190391 - 0.723581* log (average speed km/h) 0.1696 0.96 4.190391 (0.010198) <2e-16 *** - 0.723581 (0.004074) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.83229 - 1.05597* log (average speed km/h) 0.2816 0.95 4.83229 (0.01692) <2e-16 *** - 1.05597 (0.00676) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – 28-32 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.902552 - 0.542198 * log (average speed km/h) 0.1988 0.90 4.902552 (0.011986) <2e-16 *** - 0.542198 (0.004782) <2e-16 *** 

EURO I Log (NOx g/km) = 4.681982 - 0.596487 * log (average speed km/h) 0.1845 0.93 4.681982 (0.011125) <2e-16 *** - 0.596487 (0.004439) <2e-16 *** 

EURO II Log (NOx g/km) = 4.706210 - 0.598926 * log (average speed km/h) 0.1706 0.94 4.706210 (0.010290) <2e-16 *** - 0.598926 (0.004106) <2e-16 *** 

EURO III Log (NOx g/km) = 4.818953 - 0.689773 * log (average speed km/h) 0.1799 0.95 4.818953 (0.010847) <2e-16 *** - 0.689773 (0.004328) <2e-16 *** 

EURO IV Log (NOx g/km) = 4.098997 - 0.580529 * log (average speed km/h) 0.1984 0.91 4.098997 (0.011965) <2e-16 *** - 0.580529 (0.004774) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.351699 - 0.724230* log (average speed km/h) 0.1694 0.96 4.351699 (0.010213) <2e-16 *** - 0.724230 (0.004075) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.974251 - 1.028398 * log (average speed km/h) 0.2683 0.95 4.974251 (0.016158) <2e-16 *** - 1.028398 (0.006449) <2e-16 *** 

Diesel Rigid Heavy Duty Vehicles – > 32 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.949774 - 0.495273 * log (average speed km/h) 0.2095 0.87 4.949774 (0.012635) <2e-16 *** - 0.495273 (0.005046) <2e-16 *** 

EURO I Log (NOx g/km) = 4.726877 - 0.552286 * log (average speed km/h) 0.1957 0.91 4.726877 (0.011804) <2e-16 *** - 0.552286 (0.004714) <2e-16 *** 

EURO II Log (NOx g/km) = 4.755083 - 0.560964 * log (average speed km/h) 0.1788 0.92 4.755083 (0.010785) <2e-16 *** - 0.560964 (0.004307) <2e-16 *** 

EURO III Log (NOx g/km) = 4.86492 - 0.64768 * log (average speed km/h) 0.1889 0.94 4.86492 (0.01139) <2e-16 *** - 0.64768 (0.00455) <2e-16 *** 

EURO IV Log (NOx g/km) = 4.170436 - 0.545215 * log (average speed km/h) 0.2036 0.90 4.170436 (0.012251) <2e-16 *** - 0.545215 (0.004895) <2e-16 *** 
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EURO V EGR Log (NOx g/km) = 4.414476 - 0.699178 * log (average speed km/h) 0.1708 0.95 4.414476 (0.010278) <2e-16 *** - 0.699178 (0.004108) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 5.103652 - 1.101341 * log (average speed km/h) 0.3109 0.94 5.103652 (0.018697) <2e-16 *** - 1.101341 (0.007474) <2e-16 *** 

Diesel Articulated Heavy Duty Vehicles – 14-20 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.606537 - 0.616872 * log (average speed km/h) 0.1668 0.95 4.606537 (0.010058) <2e-16 *** - 0.616872 (0.004011) <2e-16 *** 

EURO I Log (NOx g/km) = 4.213917 - 0.667917 * log (average speed km/h) 0.1681 0.95 4.213917 (0.010134) <2e-16 *** - 0.667917 (0.004041) <2e-16 *** 

EURO II Log (NOx g/km) = 4.228455 - 0.655676 * log (average speed km/h) 0.1561 0.96 4.228455 (0.009413) <2e-16 *** - 0.655676 (0.003754) <2e-16 *** 

EURO III Log (NOx g/km) = 4.418745 - 0.767759 * log (average speed km/h) 0.1616 0.97 4.418745 (0.009745) <2e-16 *** - 0.767759 (0.003886) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.597919 - 0.630018 * log (average speed km/h) 0.1851 0.94 3.597919 (0.011147) <2e-16 *** - 0.630018 (0.004447) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 3.829788 - 0.746201 * log (average speed km/h) 0.1616 0.96 3.829788 (0.009737) <2e-16 *** - 0.746201 (0.003885) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.35345 - 0.90410 * log (average speed km/h) 0.1910 0.97 4.35345 (0.01150) <2e-16 *** - 0.90410 (0.00459) <2e-16 *** 

Diesel Articulated Heavy Duty Vehicles – 20-28 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.729403 - 0.567596 * log (average speed km/h) 0.1945 0.91 4.729403 (0.011728) <2e-16 *** - 0.567596 (0.004678) <2e-16 *** 

EURO I Log (NOx g/km) = 4.510232 - 0.620151 * log (average speed km/h) 0.1803 0.94 4.510232 (0.010871) <2e-16 *** - 0.620151 (0.004336) <2e-16 *** 

EURO II Log (NOx g/km) = 4.530409 - 0.619166 * log (average speed km/h) 0.1686 0.94 4.530409 (0.010169) <2e-16 *** - 0.619166 (0.004056) <2e-16 *** 

EURO III Log (NOx g/km) = 4.646895 - 0.712503 * log (average speed km/h) 0.1757 0.95 4.646895 (0.010597) <2e-16 *** - 0.712503 (0.004227) <2e-16 *** 

EURO IV Log (NOx g/km) = 3.928445 - 0.604350 * log (average speed km/h) 0.1989 0.92 3.928445 (0.011992) <2e-16 *** - 0.604350 (0.004783) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.180084 - 0.741855 * log (average speed km/h) 0.1704 0.96 4.180084 (0.010276) <2e-16 *** - 0.741855 (0.004099) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.757762 - 0.993963 * log (average speed km/h) 0.2523 0.95 4.757762 (0.015179) <2e-16 *** - 0.993963 (0.006058) <2e-16 *** 

Diesel Articulated Heavy Duty Vehicles – 28-34 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 4.914491 - 0.588409 * log (average speed km/h) 0.1939 0.92 4.914491 (0.011690) <2e-16 *** - 0.588409 (0.004663) <2e-16 *** 

EURO I Log (NOx g/km) = 4.697038 - 0.644878 * log (average speed km/h) 0.1836 0.94 4.697038 (0.011068) <2e-16 *** - 0.644878 (0.004415) <2e-16 *** 

EURO II Log (NOx g/km) = 4.710468 - 0.631827 * log (average speed km/h) 0.1619 0.95 4.710468 (0.009760) <2e-16 *** - 0.631827 (0.003893) <2e-16 *** 

EURO III Log (NOx g/km) = 4.796667 - 0.687514 * log (average speed km/h) 0.1614 0.96 4.796667 (0.009732) <2e-16 *** - 0.687514 (0.003881) <2e-16 *** 

EURO IV Log (NOx g/km) = 4.07393 - 0.58793 * log (average speed km/h) 0.1962 0.92 4.07393 (0.01183) <2e-16 *** - 0.58793 (0.00472) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.332277- 0.708734 * log (average speed km/h) 0.1737 0.95 4.332277 (0.010475) <2e-16 *** - 0.708734 (0.004179) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 4.916851- 1.000390 * log (average speed km/h) 0.2209 0.96 4.916851 (0.013320) <2e-16 *** - 1.000390 (0.005313) <2e-16 *** 

Diesel Articulated Heavy Duty Vehicles – 34-40 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 5.016284 - 0.546429 * log (average speed km/h) 0.2030 0.90 5.016284 (0.012241) <2e-16 *** - 0.546429 (0.004885) <2e-16 *** 

EURO I Log (NOx g/km) = 4.794115 - 0.604173 * log (average speed km/h) 0.1921 0.93 4.794115 (0.011584) <2e-16 *** - 0.604173 (0.004623) <2e-16 *** 

EURO II Log (NOx g/km) = 4.814710 - 0.599787 * log (average speed km/h) 0.1672 0.94 4.814710 (0.010086) <2e-16 *** - 0.599787 (0.004025) <2e-16 *** 

EURO III Log (NOx g/km) = 4.90247 - 0.65643 * log (average speed km/h) 0.1679 0.95 4.90247 (0.01013) <2e-16 *** - 0.65643 (0.00404) <2e-16 *** 
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EURO IV Log (NOx g/km) = 4.187311 - 0.553426 * log (average speed km/h) 0.1987 0.91 4.187311 (0.011985) <2e-16 *** - 0.553426 (0.004783) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.441064 - 0.682704 * log (average speed km/h) 0.1757 0.95 4.441064 (0.010594) <2e-16 *** - 0.682704 (0.004228) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 5.093639 - 1.060296 * log (average speed km/h) 0.2528 0.96 5.093639 (0.015245) <2e-16 *** - 1.060296 (0.006084) <2e-16 *** 

Diesel Articulated Heavy Duty Vehicles – 40-50 tonnes 

EURO 
emission 
standard 

Average-speed-emission function (PHEM-based) Residual standard 
error 

Adjusted R-
squared (R2) 

Intercept (standard error) Intercept variable p-value Log average speed 
coefficient (standard 
error) 

Log average speed 
variable p-value 

EURO 0 Log (NOx g/km) = 5.05108 - 0.52184 * log (average speed km/h) 0.2089 0.89 5.05108 (0.01260) <2e-16 *** - 0.52184 (0.00503) <2e-16 *** 

EURO I Log (NOx g/km) = 4.825463 - 0.580106 * log (average speed km/h) 0.1978 0.91 4.825463 (0.011934) <2e-16 *** - 0.580106 (0.004765) <2e-16 *** 

EURO II Log (NOx g/km) = 4.849699 - 0.580706 * log (average speed km/h) 0.171 0.93 4.849699 (0.010314) <2e-16 *** - 0.580706 (0.004118) <2e-16 *** 

EURO III Log (NOx g/km) = 4.938108 - 0.637497 * log (average speed km/h) 0.1716 0.95 4.938108 (0.010352) <2e-16 *** - 0.637497 (0.004132) <2e-16 *** 

EURO IV Log (NOx g/km) = 4.229131 - 0.533282 * log (average speed km/h) 0.2003 0.90 4.229131 (0.012081) <2e-16 *** - 0.533282 (0.004824) <2e-16 *** 

EURO V EGR Log (NOx g/km) = 4.479732 - 0.668162 * log (average speed km/h) 0.1778 0.95 4.479732 (0.010727) <2e-16 *** - 0.668162 (0.004283) <2e-16 *** 

EURO V SCR Log (NOx g/km) = 5.161479 - 1.090896 * log (average speed km/h) 0.2726 0.95 5.161479 (0.016445) <2e-16 *** - 1.090896 (0.006566) <2e-16 *** 

All logs are natural logs of the base e; ‘***’ significant at the 0.001 level. 
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4.4.3. Comparison with COPERT’s Average-Speed-Emission 

Functions 

The 164 newly developed average-speed-emission functions (Table 18) were 

compared to their corresponding functions sourced from COPERT 4 v10.0, as 

described in Section 4.3.9. COPERT functions were also coded onto the Excel 

spreadsheet containing the newly developed functions. The Excel spreadsheet 

(which is being made open access) allows the user to enter the average link-based 

vehicle speed (km/h) to calculate, from both methods, the NOx EF (g/km) for each 

164 vehicle classes. To compare both methods, hypothetical speeds ranging from 1 

km/h to 80 km/h were entered in the Excel spreadsheet in 1 km/h increments (i.e. 

1,2,3,4, 5…,80 km/h). The range (1-80 km/h) was chosen as it reflects the modelled 

traffic speed range on the Bradford road network (Chapter 3). The spreadsheet 

calculated, from both methods, the NOx EFs at each of the input speeds. The results 

of this exercise for passenger cars, as an example, are presented in Table 19 and 

Figure 51. The key results for the remaining vehicle classes are overviewed next. 

1. Diesel and Petrol Passenger Cars 

For diesel passenger cars, emissions calculated from the newly developed average-

speed-emission functions differed than those calculated from COPERT as follows: 

the minimum EFs were lower, and the maximum EFs were higher, than COPERT, 

widening the range (Table 19). The differences in emissions were generally observed 

at speeds lower than 10 km/h, where the newly developed functions produced higher 

EFs than COPERT. However, this trend was reversed with increasing speeds (Figure 

51); where COPERT produced higher EFs. In the case of EURO 3 and EURO 4 diesel 

vehicles, both models estimated EFs higher than European vehicle emission 

standards. 

For petrol passenger cars, the minimum EFs from the newly developed average-

speed-emission functions were higher (except for EURO 0 and EURO 3), than 

COPERT, narrowing the lower end of the range, and the maximum EFs were higher 

(expect for EURO 0), than COPERT, widening the upper end of the range. The 

differences in emissions factors were generally observed at speeds lower than 10 

km/h, where the newly developed functions estimated higher EFs than the COPERT 

functions, and the differences were smaller with increasing speeds (Figure 51). 

Estimated EFs for petrol vehicles were closer to the European vehicle emission 

standards, when compared to diesel, and were significantly lower than diesel 
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passenger cars EFs, for example by up to an order of magnitude. The reason behind 

the large discrepancy between petrol pre-EURO cars is unknown but estimates of 

these older vehicles are uncertain due to the limited underlying model data and the 

difficulty in measuring/modelling very low petrol NOx emissions. 

2. Diesel and Petrol Light Duty Vehicles 

For diesel LDVs, across all weight classes (class I, II and III), emissions calculated 

from the newly developed average-speed-emission functions differed than those 

calculated from COPERT as follows: the minimum EFs were lower, and the maximum 

EFs were higher, than COPERT, widening the range. The differences in emissions 

were generally observed at speeds lower than 10 km/h, where the newly developed 

functions estimated higher EFs than COPERT, but this difference was reversed with 

increasing speeds. For the higher weight classes, there was evidence that COPERT 

estimated higher EFs especially for the older vehicle emission standards e.g. EURO 

0 and EURO 1. In the case of the older emission standards EURO 0 and EURO 1, 

the COPERT EFs were higher than the PHEM-based ones, but these values are 

considered more uncertain due to the limited data available for older vehicle 

categories. For EURO 4 and EURO 5 LDVs, both models consistently estimated EFs 

higher than European vehicle emission standards. 

For petrol LDVs, it was not possible to fit new PHEM-based average-speed-emission 

functions to the EURO 0 vehicles, across all weight classes. For the other vehicle 

emission standards, across all weight classes, emissions calculated from the newly 

developed average-speed-emission functions differed than those calculated from 

COPERT as follows: the minimum EFs were higher (except for EURO 3 and EURO 

5), than COPERT, narrowing the lower end of the range, and the maximum EFs were 

higher (expect for EURO 5 class I), than COPERT, widening the upper end of the 

range. The key differences in emissions were generally observed at speeds lower 

than 10 km/h, where the newly developed functions estimated higher EFs than 

COPERT, and the differences were smaller with increasing speeds. Estimated EFs 

for petrol LDVs were closer to the European vehicle emission standards, when 

compared to diesel, and were significantly lower than diesel LDVs, for example by up 

to an order of magnitude. 

3. Diesel City Buses 

For Single-Decker buses, emissions calculated from the newly developed average-

speed-emission functions differed than those calculated from COPERT as follows: 
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the minimum EFs were lower than COPERT (except for EURO 4 and EURO 5 EGR), 

widening the range from the lower end. The trends in the maximum EFs were mixed. 

The differences in emissions were generally observed at speeds lower than 30 km/h, 

where the newly developed functions produced slightly higher EFs than COPERT, 

but this difference was reversed with increasing speeds. Overall, estimates from both 

models were remarkably similar. 

For Double-Decker buses, the minimum EFs were lower than COPERT (except for 

EURO 4 and EURO 5 EGR), widening the range from the lower end. The trends in 

the maximum EFs were mixed. The differences in emissions were generally observed 

at speeds lower than 20 km/h, where the newly developed functions produced slightly 

higher EFs than COPERT, but this difference was smaller and reversed with 

increasing speeds. Overall, estimates from both models were remarkably similar. 

4. Diesel Coaches 

For small coaches, emissions calculated from the newly developed average-speed-

emission functions differed than those calculated from COPERT as follows: the 

minimum EFs were lower and the maximum EFs were higher (except for EURO 2 

and EURO 3) than COPERT, widening the range. The differences in emissions were 

generally observed at speeds lower than 30 km/h, where the newly developed 

functions produced slightly higher EFs than COPERT, but estimates were remarkably 

similar with increasing speeds. For large coaches, the minimum EFs estimated from 

the newly developed average-speed-emission functions were lower (expect for 

EURO 5 EGR), and the maximum EFs were higher than COPERT, widening the 

range. The differences in emissions were generally observed at speeds lower than 

30 km/h, where the newly developed functions produced slightly higher EFs than 

COPERT, but the estimates were more similar with increasing speeds. 

5. Diesel Rigid and Articulated Heavy Duty Vehicles 

For Rigid HDVs, trends in the minimum EFs estimated by the newly developed 

average-speed-emission functions were mixed while the maximum EFs were 

generally higher than COPERT, widening the range from the upper end. The 

differences in EFs were generally observed at speeds lower than 40 km/h, where the 

newly developed functions produced higher EFs than COPERT, but the estimates 

were more similar with increasing speeds. The differences were most apparent for 

the highest weight category (e.g. > 32 tonnes). Similar trends were observed in the 

case of Articulated HDVs. 
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Table 19 COPERT and PHEM-based NOx Emission Estimates (g/km) Summary Statistics (Speed Range 1-80 km/h) – Passenger Cars 

Diesel Passenger Cars EURO 1 (E1) to EURO 4 (E4) 

Statistic   
COPERT 

E1 
PHEM 

E1 
COPERT 

E2 
PHEM 

E2 
COPERT 

E3 
PHEM 

E3 
COPERT 

E4 
PHEM 

E4 

Minimum   0.5540 0.3099 0.5544 0.3512 0.6642 0.3582 0.4233 0.2614 

1st 
quartile 

  0.5633 0.3691 0.5650 0.4192 0.6708 0.4175 0.4383 0.3194 

Median   0.6003 0.4715 0.6467 0.5372 0.7135 0.5176 0.5350 0.4227 

Mean   0.7486 0.6913 0.7831 0.7940 0.8122 0.7038 0.6039 0.6854 

3rd 
quartile 

  0.8483 0.7123 0.9298 0.8157 0.8908 0.7431 0.7536 0.6778 

Maximum   1.3025 4.6216 1.3361 5.4167 1.2114 3.8277 0.9212 5.7612 

Petrol Passenger Cars pre-EURO (E0) to EURO 4 (E4) 

Statistic 
COPERT 

E0 
PHEM 

E0 
COPERT 

E1 
PHEM 

E1 
COPERT 

E2 
PHEM 

E2 
COPERT 

E3 
PHEM 

E3 
COPERT 

E4 
PHEM 

E4 

Minimum 2.243 0.4112 0.2577 0.2581 0.1426 0.1538 0.05589 0.04848 0.02536 0.03425 

1st 
quartile 

2.270 0.4448 0.2674 0.2781 0.1475 0.1745 0.06571 0.05501 0.03689 0.03881 

Median 2.314 0.4964 0.2951 0.3089 0.1593 0.2084 0.07586 0.06566 0.05397 0.04624 

Mean 2.432 0.5562 0.3220 0.3436 0.1827 0.2616 0.07515 0.08232 0.05757 0.05776 

3rd 
quartile 

2.549 0.5974 0.3576 0.3685 0.2160 0.2811 0.08488 0.08845 0.07659 0.06210 

Maximum 3.009 1.3823 0.4771 0.8203 0.2717 1.0898 0.09113 0.34146 0.09859 0.23641 
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Figure 51 Bradford Average-Speed-Emission functions (blue lines) developed from analysis of micro-trips for Passenger cars sub-categories EURO 0 to EURO 4 compared with (raw) COPERT Average-Speed-

Emission functions (red lines, no deterioration or fuel quality factor). [NOTE: European vehicle emission standards annotated as black straight line; note the different Y-axes scales for diesel and petrol 

cars], Source: Own Work (R) 
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4.5. Discussion 

4.5.1. Summary 

In this work, the instantaneous NOx emissions from 167 vehicle classes were 

modelled in PHEM, using real-world and local instantaneous vehicle speed profiles, 

collected over 30 hours of driving in Bradford. Using the instantaneous NOx emission 

estimates modelled in PHEM and a novel micro-trip analysis approach, 164 new NOx 

average-speed-emission functions were developed for the full fleet of diesel and 

petrol Passenger cars, diesel and petrol LDVs, Buses, Coaches and Rigid and 

Articulated HDVs. The new NOx average-speed-emission functions were developed 

for vehicles with emission standards pre-EURO to EURO 5/V, which were the 

emission standards operating in Bradford in year 2009, the main year of investigation. 

It was not possible to fit an acceptable function to 3 modelled pre-EURO petrol LDV 

classes (weight class I, II and III), and the standard functions sourced from COPERT 

were adopted for these vehicles. The limited underlying data for these older vehicle 

categories and the uncertainty associated with their low emissions are likely behind 

the high scatter precluding fitting an acceptable average-speed-emission function.  

Unlike traditional methods, pairing the average speed and the corresponding average 

EF was undertaken at a micro-trip level (Figure 38), rather than at a ‘trip’ level (Figure 

36). The newly developed functions fitted their underlying data well, and multiple 

parameters demonstrated only a few incidents (9 out of 164) where the new functions 

fitted the data poorly (R2 value of < 0.7). This was in the case of older emission 

standards of petrol passenger cars and LDVs. 

The newly developed functions were compared to the standard average-speed-

emission functions used in the UK and sourced from the emission model COPERT. 

The key differences were observed at the low average speed segments (0-40 km/h, 

with the range depending on the vehicle type and exhaust after-treatment 

technology), where the newly developed functions generally estimated higher EFs 

than COPERT. This was a consistent observation in the case of HDVs, coaches and 

buses, but not passenger cars and LDVs where, in some instances, COPERT 

produced higher EFs at all speeds. 

The range of the emission estimates from the newly developed functions differed from 

the range of emission estimates from COPERT, as the latter generally yielded smaller 

ranges as indicated by the minimum and maximum EF values. This indicates that the 
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newly developed functions may result in more emissions variability over the road 

network, though further work is required to confirm this. The overall impact that the 

newly developed functions will have on Bradford’s road transport emission inventories 

and air quality estimates is yet unclear and is explored in Chapter 5. The strengths 

and limitations of this approach, the potential for its future development and 

application and the planned next steps are overviewed next. 

4.5.2. Strengths 

The methodology underlying the development of the new NOx average-speed-

emission functions has several strengths. First, the driving cycles/vehicle speed 

profiles, which underlined the PHEM emission estimates, were real-world and local 

driving cycles, directly sourced from the study area where the new functions will be 

applied. The driving cycles collected covered a total distance of 650 km on multiple 

road types between the hours of 7:30 AM and 21:30 PM to account, as much as 

possible, for the full range of driving and traffic conditions. Therefore, the driving 

cycles underlying the PHEM estimates are thought to be broadly representative of, 

and tailored to, driving patterns in the study area. 

The driving cycles obtained from the real-world diving in Bradford showed that idling 

time, acceleration and deceleration time are generally higher than accounted for in 

the current test type approval cycle. Furthermore, the maximum acceleration that was 

achieved in real-world driving was higher than its corresponding testing values and is 

very likely to be higher than acceleration values achieved in smoother laboratory 

testing and hence data underlying the development of laboratory-based emission 

models such as COPERT. As high acceleration events are associated with the 

highest sub-trip emissions, capturing these conditions is considered a step forward 

towards more accurate emission estimation. 

The use of the micro-trip as the unit to average speed and EFs over is also a 

conceptual advancement of current practice as this approach naturally matches traffic 

network data which yields low average speeds for short road segments as opposed 

to high average speeds on longer segments where start stop driving is less frequent. 

Unlike traditional methods which tend to average EFs over longer and theoretically 

undefined trips, the use of the micro-trip approach significantly reduces the scatter in 

the underlying data (data underlying the current approach is highly scattered e.g. 

Figure 37), making the whole premise of fitting a function to this data more sensible 

as a relation between speed and EFs becomes apparent. Also, considering that 38% 
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of all simulated road links in Bradford were ≤ 100 m (Chapter 3), the micro-trip 

approach is a better representation of this urban road network’s characteristics. 

Another strength of the current approach is its transparency and transferability to 

other contexts and cities, given that the testing kit and emission modelling software 

PHEM can be made available. In contrast, there is lack of clarity about how COPERT 

average-speed-emission functions are developed including an unclear definition of 

‘trips’ and driving cycles used to generate the model’s underlying data, and no 

reporting of goodness of fit or errors in the fitted functions. 

Finally, the collection of real-world speed profile data by tracking vehicles as was 

done in this work, is significantly cheaper and quicker than measuring vehicle 

emission measurements either in the laboratory or with PEMS and remote sensing 

instruments in the real-world, making this approach a relatively practical method for 

deriving EFs for a wide range of vehicle types and classes in a specific study area. 

4.5.3. Limitations 

Despite its strengths, the approach also has its limitations. The key limitation is that 

the new average-speed-emission functions are based on model estimates, partly 

derived from the observed instantaneous speeds, rather than independent exhaust 

emission measurements. Although this is a key limitation as the new emission 

model/average-speed-emission functions are based on another model’s (PHEM) 

estimates, this is currently the only feasible way to derive new average-speed-

emission functions for the wide range of vehicle classes operating on the Bradford 

network. It is practically impossible to comprehensively measure exhaust emissions 

from all vehicle classes operating in Bradford under real-world driving conditions, due 

to high costs associated with emission measurement equipment and campaigns, the 

long durations needed to comprehensively capture a representative traffic fleet and 

the impracticality of recording emission levels from current and previous vehicle 

classes/models on the roads for the years concerned. There is also a lack of observed 

vehicle emission datasets that could arguably be used to develop models tailored to 

the study area, e.g. a synthesized set of emission measurements for all vehicle types 

over the Bradford speed profile is lacking. However, given that the main aim was to 

develop useful average-speed-emission functions which can capture the under 

estimated emissions in urban driving, the current approach is an effective and a 

practical approach and the issues above are beyond the direct scope of this study. 
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Further, the PHEM model has been validated, specifically in work undertaken within 

the author’s research group (Tate, 2015b, Wyatt et al., 2014), and this allows to 

confidently estimate the second-by-second emissions of all vehicle types and 

subcategories for a real-world driving cycle. In fact, the COPERT model blends 

instantaneous measurements and PHEM modelled data in its’ underlying database, 

from which it derives average-speed-emission functions. Emission estimates from the 

new functions, however, need to be validated against real-world data, when available.  

PHEM estimates, as with any other emission model’s estimates, have only been 

partially validated, as true vehicle emissions are unknown and are practically 

impossible to measure for all vehicle classes operating in the area and time period 

concerned (Smit et al., 2010). Overall, this partial validation supports the use of PHEM 

for certain vehicle classes such as diesel passenger cars, buses and HDVs. It was, 

however, shown that PHEM may under estimate NOx emissions at speeds lower than 

40km/h and that its estimates are less reliable for higher powered and heavier vehicle 

(e.g. SUV BMW X5, BMW M3), but this latter point is less relevant for the present 

research study as ‘average’ vehicle specifications were used for the modelling. As 

mentioned before, PHEM attempts to replicate the emission performance of an 

average vehicle in a sub-category, rather than representing one specific model or the 

variability in performance of vehicles under a sub-category. In the case of petrol 

vehicles, the model’s estimates were shown to be least accurate, and PHEM can 

over- or under estimate instantaneous vehicle emissions. The reasons behind these 

inaccuracies are uncertain, but the very low absolute values of NOx emissions from 

petrol vehicles make it hard to accurately measure and model and causes an 

increased uncertainty in these emission estimates. This should be taken into 

consideration when contrasting measured and modelled values from petrol vehicles. 

Compared to diesel vehicles, petrol vehicles’ NOx (e.g. passenger cars and LDVs) 

can be an order of magnitude lower, making the contribution of petrol NOx to the 

overall emission inventories less significant. 

Other limitations include that the data available for curve fitting was substantial in the 

cases of speeds less than 50 km/h but very limited for speeds above 50 km/h (8 

points, see Figure 50). This was because the focus of this study was on the urban 

road network in Bradford and therefore most roads surveyed were not motorways 

where average vehicle speeds are expected to be higher. The limited number of 

average speed and EF pairs at speeds above 50 km/h may have caused the curves 

to under estimate EFs at the higher speeds as there were no data points to leverage 
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the curves at those ends, as would be expected (O'Driscoll et al., 2016). The driving 

cycles used in this work were assumed to have captured the representative 

distribution of vehicles speeds, acceleration and engine power demand over the road 

network in Bradford. There are, however, certain roads in Bradford which have not 

been surveyed and the survey time was limited (30.5 hours). Although it is unlikely 

that the speed profile on roads which were not surveyed significantly differs from the 

ones surveyed in this study, this may be the case and warrants further exploration. 

Also, ‘average’ vehicle parameters, which were used for modelling the different 

vehicle classes in this study, can conceal the high level of variability in real-world 

fleets and do not reflect operational conditions of the vehicles including effects of the 

vehicle’s age, malfunctions, deterioration, maintenance conditions, tampering and 

fuel quality or use of alternative fuels (Rhys-Tyler, 2017, Chen and Borken-Kleefeld, 

2016). As there was no information available for the vehicle specifications in Bradford, 

average vehicle specifications were sourced from available Automatic Number Plate 

Recognition surveys in Leeds (for passenger cars and LDVs), and London (for buses, 

coaches and HDVs), and this approach is not ideal as the traffic fleet in those areas 

might differ from Bradford. 

The impact of road gradient on emissions was not considered in the present work, 

due to time and resources constraints and the fact that the geometry of the traffic road 

network was of insufficient detail i.e. nodes were not correctly geo-referenced and 

road links were represented as straight lines. However, in previous work of the author 

(Khreis, 2016), NOx emissions were modelled in PHEM in two scenarios: the first 

assuming that the Bradford test area is flat and the second incorporating road grade 

data as measured at 1 Hz by the instrumented survey vehicle (using a 

accelerometer). The new average-speed-emission functions fitted to the data were of 

high goodness of fit in most cases but the key trend apparent was that including road 

grade in the model estimates highly increased the scatter in the EFs data and 

therefore decreased the goodness of fit for the fitted functions. This result is 

reasonable as road grade adds another dimension of variability to the EF estimates, 

which is not being initially accounted for by the fitted functions that only rely on 

average speed as the sole explanatory variable of emissions. The inclusion of road 

gradient also increased the average EFs across all passenger car classes by up to 

3.8% and substantially widened the range of the emissions. These findings highlight 

the potential errors in emission estimation when road grade is not considered. 
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Finally, although the micro-trip analysis approach has the potential to be more 

informative and naturally matches the characteristics of the urban road network, the 

analysis is more labour intensive and the reduction of uncertainties in model 

estimates remain unknown as there have been no studies adopting this approach in 

emission modelling before and validating it. More work needs to be done to elaborate 

the potential advantages of this approach. 

4.5.4. Avenues for Future Work and Next Step 

The spatial and temporal coverage of the vehicle tracking surveys can be expanded 

in future work and some of the potentially important routes that can be covered 

include Halifax Road (south-west) and Great Horton Road (west-south). The surveys 

should cover more road sections with higher average speeds (>50 km/h) to contribute 

to more data points at those segments. Future work would benefit from validating EFs 

derived from the new average-speed-emission functions, using PEMS or remote 

sensing data. The impact the age of the fleet and quality of fuel used could be further 

explored when more data on the fleet characteristics become available. Future 

applications of PHEM would benefit from improvements in petrol emissions 

measurement and modelling. The impact of road gradient on emissions was not 

accounted for in this study and new average-speed-emission functions could be 

developed for specific gradient increments, which would be useful with the 

development of correctly geo-referenced traffic models. The use of traffic microscopic 

model packages such as AIMSUN or VISSIM which can output second-by-second 

vehicle traces can be used as inputs to new micro-trip-based average-speed-

emission functions and can provide emissions information like that achieved using 

PEMS methodologies. Finally, as true big data collection methodologies including 

vehicle telematics are rapidly gaining traction, it will soon be possible to apply the new 

average-speed-emission functions to a larger and more detailed traffic network and 

fleet data, potentially at the street and the minute level. 

Currently, it is possible to link the new average-speed-emission functions to 

mesoscopic traffic models such as SATURN (Chapter 3), and subsequently to 

dispersion models. The next steps of this thesis will knit together these multiple and 

novel data sources and models for health impact assessment. The SATURN traffic 

flows and average traffic speeds will be used as inputs to the newly developed 

functions to estimate a Bradford road transport NOx emission inventory for 2009. The 

same will be repeated using standard average-speed-emission functions sourced 

from COPERT and differences will be explored in Chapter 5.
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5 Vehicle Exhaust Emission and Traffic Linkage and 

Dispersion Modelling 

5.1. Background 

5.1.1. Dispersion Modelling 

Air pollutant concentrations, and therefore human exposure to air pollution, can be 

assessed using several methods/models; one of which is dispersion modelling 

(Chapter 2). Dispersion modelling is the mathematical simulation of the dispersion of 

selected air pollutants in ambient air. The simulation involves the construction of a 

dynamic model (i.e. changes over time), which uses information on traffic flows and 

other emission sources, emission rates, meteorology, atmospheric boundary layer 

conditions and atmospheric chemistry to simulate atmospheric dispersion processes 

(Briggs et al., 1997, Health Effects Institute, 2010). The results are estimates of 

ambient concentrations of selected air pollutants. 

Dispersion models can estimate air pollution concentrations for different scales 

ranging from regional (100-1000 km) to micro (10-100 m) (Health Effects Institute, 

2010). The model outputs can be in the form of episodic short-term and/or long-term 

exposures at receptor points and/or grids of interest (Carruthers et al., 1994). Most 

dispersion models/packages rely on Gaussian plume equations to estimate ambient 

pollution concentrations (Holmes and Morawska, 2006). Gaussian plume models are 

often used as they offer an efficient compromise between reasonable accuracy and 

manageable computational time (Briant et al., 2013). Gaussian plume models are 

based on vertical and horizontal Gaussian plume distributions (Figure 52). The air 

pollution concentration at any given position (c) is calculated as in Equation 5.1 which 

describes a mixing process that results in a Gaussian concentration distribution: 

c(x, y, z) =  
Q

2πσyσzu
exp (

−y2

2σy
2)(ex p (

−(z − h)2

2σz
2

)

+ exp (
−(z + h)2

2σz
2

)) … (Equation 5.1. ) 
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Where 𝑄 is the source term; 𝑥 is the downwind; 𝑦 is the crosswind; 𝑧 is the vertical 

direction; 𝑢 is the wind speed at the ℎ height of the release; 𝜎𝑦, 𝜎𝑧 deviations which 

describe the crosswind and vertical mixing of the pollutant and are determined by 

stability class or travel time from the source. 

 

Figure 52 Schematic of the Gaussian Plume from a Point Source, Source: Schultz 

(1991) 

Gaussian plume models assume steady-state conditions; that there are no chemical 

or removal processes taking place and that there are no interactions between the 

plumes which can be significant within urban environments (Vardoulakis et al., 2003, 

Holmes and Morawska, 2006). They further have limited capacity to take into account 

recirculation effects caused by multiple buildings or at intersections (Holmes and 

Morawska, 2006). In the case of line sources, e.g. roads, the source is divided into 

elementary/smaller line sources, each of which is treated as a point source. The point 

sources solution over the line are integrated so as to sum the contributions of each 

elementary source forming the contribution of a finite line source (Briant et al., 2013). 

In comparison to the other air pollution/exposure models used in asthma and TRAP 

research (Chapter 2), dispersion models were considered superior as they can offer 

the highest temporal and spatial resolution possible; take into account the 

compounded effects of proximity to multiple roads on exposures; give information on 
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specific pollutants and are most specific to traffic sources as the contribution of TRAP 

to the overall exposures can be explicitly quantified (Khreis and Nieuwenhuijsen, 

2017). Their key disadvantages are in their severe data, software and expertise 

demands and the uncertainties associated with their assumptions (e.g. Gaussian 

plume models: see above) and their emission inputs including 1) vehicle emission 

estimates and 2) emission estimates of other sources such as domestic heating, 

factories and regional air pollution; all of which lead to uncertainties in resulting air 

pollution estimates (Barrat, 2013, Jerrett et al., 2005, Sayegh et al., 2016). As 

demonstrated in Chapter 4, vehicle emission factors and, consequently, vehicle 

emission estimates are a particular source of uncertainty in air pollution modelling. A 

formal quantification of the impacts that vehicle emission factors have on dispersion 

models’ estimates is largely missing. 

In TRAP-associated health effects and impacts assessment studies, dispersion 

models have not been used often (e.g. see Chapter 2 and Nieuwenhuijsen et al. 

(2017)), partly due to the substantial amount of data required (e.g. traffic, emissions 

and meteorology); the need for specialized software (e.g. GIS, dispersion software, 

and integrated software); hardware capable of processing these data and trained 

personnel (Health Effects Institute, 2010). Further and to the best of the author’s 

knowledge, there have not been any previous attempts to alter emission factor inputs 

and assess the air quality and health impacts associated with dispersion model 

estimates based on different emission inputs. This is a significant knowledge gap as 

errors in the emission assessment stage can propagate through the whole chain of 

modelling and impact trends, results and subsequent policy advice (Figure 1). 

This work will contribute to improved understanding of the effects of emission factors 

on 1) dispersion modelling results (their validity) and 2) quantified health impacts 

(their magnitude). Further, this work adds to the literature by exploring agreement and 

differences between dispersion modelling results and results from commonly used 

exposure assessment models, namely the LUR models (Dijkema et al., 2011). 

5.1.2. Dispersion Modelling using ADMS-Urban 

One of the most commonly used dispersion modelling packages in the UK is the 

Atmospheric Dispersion Modelling System; referred to as ADMS, with ADMS-Urban 

being its most comprehensive and up-to-date version (Cambridge Environmental 

Research Consultants Ltd, 2013). ADMS-Urban is a PC-based model, which 

simulates the atmospheric dispersion of pollutant emissions from traffic, industrial and 
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domestic sources, within urban areas. Cambridge Environmental Research 

Consultants first developed the system in the UK in 1990. Currently over eighty local 

authorities, including Bradford Metropolitan District Council, use ADMS-Urban for 

their Review and Assessment of air quality and to develop air pollution action plans 

and corrective strategies when needed (Cambridge Environmental Research 

Consultants Ltd, 2013). ADMS-Urban is also a recognized tool under the UK National 

Air Quality Strategy process; which further supports its use. 

The ADMS-Urban model uses a Gaussian plume distribution to calculate pollutant 

concentrations except in the case of vertical distribution under convective/unstable 

atmosphere conditions where the model employs a skewed Gaussian distribution 

(Cambridge Environmental Research Consultants Ltd, 2014). The framework of the 

ADMS-Urban model including its key inputs, processes/modelling options and 

outputs is shown in Figure 53 and described in full in the software’s manual 

(Cambridge Environmental Research Consultants Ltd, 2014). Briefly, the inputs 

required are 1) source parameters of the included sources (e.g. road, industrial and 

grid sources); 2) time varying emissions to account for e.g. diurnal changes in traffic 

flows and, consequently, emissions; 3) meteorological data including site data 

(surface roughness and latitude), wind speed, wind direction, cloud cover; 4) 

background concentrations of the modelled pollutants and 5) locations of receptor 

points or grids. The outputs generated could be 1) short-term air pollution 

concentrations (over an hour or 15 minutes) and 2) long-term air pollution 

concentrations represented as annual averages, percentiles or exceedances. 

 

Figure 53 Inputs and outputs of ADMS-Urban, Source: Modified after Cambridge 

Environmental Research Consultants Ltd (2014) 
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5.1.3. ADMS-Urban Validation 

Previous validation of the ADMS-Urban model showed good agreement with 

measured data (Department for Environmental Food and Rural Affairs, 2010). 

However, at the roadside, ADMS-Urban generally tends to under estimate TRAP 

concentrations; a problem that was ‘undoubtedly’ attributed to the unrealistically low 

vehicle emission factors (Williams et al., 2011). Indeed, a literature review conducted 

here identified a few studies that validated the ADMS-Urban model and, overall, 

showed that the model tends to under estimate pollution levels, as compared to 

measurements. This literature is summarized in Table 20; discussed next and overall 

highlights the need for improved vehicle emission estimates that can reflect the higher 

emission levels measured in real-world conditions (Chapter 4). 

In a summer campaign of 62 sites in Paris, Briant et al. (2013) measured a monthly 

mean value of 22.5 µg/m3 NO2 compared to a 9.6 µg/m3 NO2 as modelled by ADMS-

Urban. In the winter campaign, at the same sites, the authors measured a monthly 

mean value of 35.15 µg/m3 NO2 compared to a 19.4 µg/m3 NO2 as modelled by 

ADMS-Urban, showing that the model tends to under estimate air pollution 

concentrations, as measured by passive diffusion tubes. Emission factors used in the 

model were sourced from COPERT 3. In another exercise, Peace et al. (2004), using 

the latest UK emission factors at the time (sourced from TRL/DfT functions), set up 

and validated an ADMS-Urban model for Greater Manchester. The validation was 

undertaken at 12 continuous fixed-site monitoring stations available. Ten of these 

stations were classified as urban background, 1 as roadside and 1 as sub-urban 

station. The results of the validation showed that the model under estimated NOx and 

NO2 concentrations, at all sites but the sub-urban site. The R2 of the model was not 

reported in the paper but was calculated and equalled 88%. Dėdelė and Miškinytė 

(2015a) used ADMS-Urban to model NO2 concentrations in Kaunas city and validated 

the modelled concentrations against measurements from 41 Ogawa passives 

samplers operated as part of the ESCAPE project. Emission factors used were 

sourced from the DMRB emission factor dataset, built in the dispersion model, but 

the vehicle fleet was assigned an average age of 14 years and a large number of cars 

on the road were selected to not be equipped with a catalytic converter. Overall, the 

ADMS-Urban estimates were higher than the average measured NO2. However, the 

model tended to under estimate the maximum concentrations and overestimate the 

minimum concentrations. In their follow-up study, Dėdelė and Miškinytė (2015b) 

compared modelled NO2 concentrations with four continuous air quality monitoring 
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stations in Kaunas city. At the two traffic stations and the background station, 

modelled average concentration of NO2 was lower than the observed, whilst the 

opposite trend was seen at the residential site. In an air quality assessment exercise 

for London, Carruthers et al. (2003) set up and validated ADMS-Urban against 

measurements of NOx and NO2 from 24 fixed-site monitoring stations. The authors 

showed that the model generally tends to under estimate annual average NOx and to 

a lesser extent NO2 concentrations, especially at the roadside. For example, 

measured versus modelled annual average NOx at the 10 roadside stations was 115 

ppb and 99 ppb, respectively. Measured versus modelled annual average NO2 at the 

10 roadside stations was 35 ppb and 33 ppb, respectively. The variation at the 

individual sites was greater. Finally, in a wider validation study, de Hoogh et al. (2014) 

used and validated 13 dispersion models for 13 European study areas. At 3 of these 

areas; Bradford, London and Barcelona, an ADMS-Urban model was used and was 

validated against 40, 27 and 40 ESCAPE monitoring sites for NO2, respectively. de 

Hoogh et al. (2014) found that the median concentrations were under estimated. On 

average, the measured and modelled NO2 concentrations correlated well with a 

median Pearson correlation coefficient of 0.74, 0.85 and 0.75, for Bradford, London 

and Barcelona, respectively (de Hoogh et al., 2014). 

5.2. Chapter Objectives and Contribution to Literature 

The first objective of this research phase was to link the traffic activity estimates 

(Chapter 3) to the standard and the newly developed average-speed-emission 

functions (Chapter 4) and calculate the Bradford road transport NOx emission 

inventory for year 2009; using the two different emission models and exploring 

the differences. The second objective of this research phase was to set up, run and 

validate two ADMS-Urban dispersion models using emission rates as 

calculated from the two different emission models and explore the differences. 

The third objective of this research phase was to compare the outputs and 

validation metrics of the dispersion models to the performance of the ESCAPE 

LUR models in Bradford. As such, this research phase contributed to the absent 

knowledge available on the impact of emission factors on local emission inventories, 

TRAP and subsequent childhood population exposure and associated health 

outcomes. It also tested and validated two-novel full-chain exposure assessment 

models developed in this research study and compared them to a commonly used 

method in exposure assessment. 
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Table 20 ADMS-Urban Validation Studies 

Study Setting 
Vehicle 
emission 
factors used 

Validation 
dataset 

R2 
Validation 
conclusion 

Briant et al. 
(2013) 

Paris region, 
France 

COPERT 3 

62 NO2 
passive 
diffusion 
tubes  

73% 
Model under 
estimates 

Peace et 
al. (2004) 

Greater 
Manchester, 
UK 

TRL/DfT 
functions 

NOx and NO2 
at 12 
continuous 
fixed-site 
monitoring 
stations 

88% 

Model under 
estimates, 
particularly 
at the 
roadside site 

Dėdelė and 
Miškinytė 
(2015a) 

Kaunas city, 
Lithuania 

Design 
Manual for 
Roads and 
Bridges 
(DMRB 
1999) 

 

40 NO2 
Ogawa 
passives 
samplers 

73% - 79% 
(depending 
on season) 

Model over 
estimates 

Dėdelė and 
Miškinytė 
(2015b) 

Kaunas city, 
Lithuania 

Design 
Manual for 
Roads and 
Bridges 
(DMRB 
1999) 

NO2 at 4 
continuous 
fixed-site 
monitoring 
stations 

56% -91% 
(depending 
on site type) 

Model under 
estimates, 
except at the 
residential 
site 

Carruthers 
et al. 
(2003) 

London, UK 
NA (likely 
COPERT) 

NOx and NO2 
at 24 
continuous 
fixed-site 
monitoring 
stations 

67% 

Model under 
estimates, 
particularly 
at the 
roadside site 

de Hoogh 
et al. 
(2014) 

Bradford, UK; 
London, UK; 
Barcelona, 
Spain 

DMRB 1999 
for Bradford, 
NA for 
others 
(likely 
COPERT) 

40, 27 and 
40 NO2 
Ogawa 
passives 
samplers 

55%, 72% 
and 57% 

Model under 
estimates 

5.3. Methods 

5.3.1. Linkage of Traffic and Average-Speed-Emission Functions 

All standard average-speed-emission functions sourced from the COPERT 4 v10.0 

spreadsheets and all newly developed PHEM-based average-speed-emission 



207 
 

207 

 

functions were coded onto an Excel spreadsheet. In this spreadsheet, the user needs 

to enter the average traffic speed (km/h) for the NOx emission factors (g/km) to be 

calculated using the two emission models (see Section 4.3.9). The user also needs 

to specify the overall traffic flow (vehicles/h) at the link level; for the traffic fleet-mix to 

be calculated (vehicle classes, EURO emission standards, after-treatment 

technologies and weight categories where applicable) (see Section 3.4.1). 

For each vehicle type in the traffic fleet, the calculated NOx emission factor (g/km), 

from the two emission models, is then multiplied by the link’s length in km and the 

number of vehicles for that vehicle type. The result is NOx emissions in g, at each 

road link, for each vehicle type; using the two different emission models. The sum of 

the NOx emissions across all vehicle types over each link is the total link-based NOx 

in g. The sum of the NOx emissions across all the links is the total road network NOx 

in g; attributable to road traffic. 

This process is illustrated in Figure 54 and was undertaken 48 times corresponding 

to the 24 hours in an average weekday and the 24 hours in an average weekend; 

using the weekday and weekend hourly traffic flows previously estimated in Chapter 

3 (see Section 3.4.5). The scaling of the traffic flows across the 24 hours (described 

in detail in Chapter 3) is an addition to common practice which either assumes that 

the traffic is constant (de Hoogh et al., 2014); or uses inter-peak traffic flows to fill all 

hours outside the simulation period (City of Bradford Metropolitan District Council, 

2013). The AM, inter-peak and PM peak speeds, as estimated by the SATURN model 

(Chapter 3), were directly used to calculate emissions at those hours. For all other 

hours (for which no speeds existed), the inter-peak speed was used. 

5.3.2. Compilation and Comparison of Emission Inventories 

For each vehicle class/EURO emission standard/after-treatment technologies/weight 

category (e.g. for a rigid HDV, EURO 5 SCR, 7.5 tonnes), total NOx emissions were 

calculated by summing NOx emissions across all links constituting the road network. 

The calculations were undertaken twice using the standard COPERT and the new 

PHEM-based average-speed-emission functions. The results from the two emission 

models were compared, both in terms of 1) absolute magnitude and 2) percentage of 

the total road network NOx attributable to each vehicle type (i.e. source 

apportionment). The results for an average weekday are presented in Section 5.4.1. 
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Figure 54 Traffic and Average-Speed-Emission Functions Linkage and Road Network 

NOx Emissions Estimation Methodology, Source: Own Work (NCH Software) 

5.3.3. Compilation of Input Data for of ADMS-Urban 

A. Site and Meteorological Data 

The ADMS-Urban model requires input data about the modelling site and 

meteorological conditions. The data entered is documented in Table 21 and 

compared to the default values of the model; which were sometimes altered 

(Cambridge Environmental Research Consultants Ltd, 2010). The meteorological 

data was entered through a prepared meteorological data file including the following 

parameters in a series of hourly sequential data covering year 2009: 

 ‘YEAR’: the year 

 ‘TDAY’: the Julian day number 
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 ‘THOUR’: time of data 

 ‘T0C’: temperature in Cº 

 ‘U’: wind speed in m/s 

 ‘PHI’: wind direction in degreesº 

 ‘P’: precipitation rate in mm/h 

 ‘CL’: cloud cover in oktas 

 ‘RHUM’: relative humidity in percent 

This data is used in the model to calculate the boundary layer height and other 

parameters used in the dispersion simulations (Cambridge Environmental Research 

Consultants Ltd, 2010). The meteorological data was obtained from the Bingley 

Samos weather station (metoffice.gov.uk, ND) which was 9.7 km of the city centre 

(Bradford’s City Hall) and had the following coordinates: 53°48'39.6"N 1°51'54.0"W. 

To verify this weather station’s readings, this data was aggregated and compared to 

annual data published on-line by the commercial company Weather Underground 

(https://www.wunderground.com/). No anomalies were detected. A further inspection 

of the location of the meteorological site revealed that the site was in an open and a 

less built-up area than the dispersion site (i.e. the Bradford metropolitan area). 

Therefore, the meteorological site was considered ‘Parkland, open suburbia’, rather 

than the (default) ‘Large urban area’ categorization selected for the dispersion site. 

Due to the presence of buildings, the wind speed is expected to decrease in large 

urban areas when compared to parkland or open suburbia (e.g. rural locations). This 

effect was, therefore, taken into account by using different categorizations and 

surface roughnesses for the dispersion versus the meteorological site (Stocker, 

2015). 

 

 

 

 

 

 Table 21 Site and Meteorological Conditions entered in ADMS-Urban 

Site data Input (default value)  Rationale and description, where applicable 

Latitude 53.8º (52º) Latitude and longitude coordinates for Bradford, 
United Kingdom in Decimal are 53.79391, -
1.75206 

https://www.wunderground.com/
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Dispersion site 
– surface 
roughness (m) 

1.5 (0.5, ‘Parkland, 
open suburbia) 

Surface roughness at the dispersion site (in 
meters) is based on land use and 
corresponding values for different land use 
types are given in the model. The value 1.5 
corresponds to ‘Large urban areas’, which was 
considered most appropriate 

Dispersion site 
– use 
advanced 
option? 

Checked and 
following data 
entered – surface 
albedo = 0.23 
(0.23), Priestley-
Taylor parameter = 
1 (1), minimum 
Monin-Obukhov 
length (m) = 30 (30) 
were defined 

Surface albedo = 0.23 (the ground is not snow 
covered), Priestley-Taylor parameter = 1 (moist 
grassland), Minimum Monin-Obukhov length 
(m) = 30 (cities and large towns), Precipitation = 
Same as met. Site 

Met. 
measurement 
site – surface 
roughness (m) 

0.5 (Use dispersion 
site value) 

The meteorological measurement site 
characteristics were considered different from 
those at the dispersion site as the 
meteorological measurement site was in the 
urban area of Bradford but in an open and less 
built-up area. The value 0.5 corresponds to 
‘Parkland, open suburbia’, which was 
considered most appropriate 

Meteorological 
data 

Input (default value) Rationale and description, where applicable 

Met. Data From file A comma-separated file with a. met extension 
containing a series of hourly sequential data 
covering year 2009. Missing data were 
identified using the value ‘-999’. A total of 779 
hours was the maximum missing number of 
hours (for the CL parameter) in the year 2009 
(9% of the data) 

Height of 
recorded wind 
(m) 

10 (10) Default value selected, no other specific data 
was available 

Met. data in 
sectors of 
(degrees) 

Checked – 10 (10) Wind direction measurements were reported to 
the nearest 10 degrees (i.e. wind data are in 10-
degree sectors) 

Met. Data are 
hourly 
sequential 

Checked The meteorological data was a series of hourly 
sequential data covering year 2009 

B. Background Air Quality Data 

NOx air pollution background data was also needed in the dispersion modelling to 

account for the NOx contirbution of air pollution sources other than traffic. Multiple 

sources of background air pollution data were considered, including:  

 A site in Bingley, which was classified by CBMDC as a background station 

(City of Bradford Metropolitan District Council, 2010), but had a high 

annual NOx mean of 81 µg/m3 and hence was excluded; 
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 24 urban background ESCAPE sites which had an average annual NOx of 

38.4 µg/m3 (Table 23); and 

 Background air pollution maps from DEFRA which give spatially varying 

annual NOx concentrations at 1km x 1km grids covering sources like 

industry, rail, domestic, aircraft emissions, regional rural concentrations 

(Department for Environment Food and Rural Affairs, 2016a).  

Model’s validation indicated that using the spatially varying background 

concentrations from DEFRA’s map rather the constant concentration from the 

ESCAPE’s diffusion tubes resulted in better model performance (Table 28). As such, 

and because spatially varying background concentrations were considered more 

realistic, the DEFRA background map was used in final analyses.  

 

 Figure 55 Annual (2010) NOx Background Map, Source: Own Work (Arc Map 10.4), 

Data Source: Department for Environment Food and Rural Affairs (2016a) 

 

The varying NOx background concentrations ranged from about 8.5 to 71 (mean = 

14.73) µg/m3, based on the grid’s location. The underlying modelling suite meets the 

requirements for uncertainty specified in the European Air Quality Directives 

(Department for Environment Food and Rural Affairs, N.D.). The background 

concentrations originated from the following sources: industry, domestic, aircraft, rail, 

point sources, rural sources and “others”, as decribed in more detail in Department 

for Environment Food and Rural Affairs (2016a) and as summarized in Table 44, 

Annex 5.1. 
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In the main analysis, all the traffic sources were excluded from the final NOx 

background concentrations used, to avoid any double counting of TRAP. The only 

TRAP component that was included on top of the NOx background concentrations 

was that estimated by ADMS-Urban. The traffic sources excluded are shown in Table 

44 and are motorways, trunk A roads, primary A roads and minor roads and cold 

starts. The exclusion of minor roads and cold starts, however, may result in a worse 

performance of the ADMS-Urban model as these sources were not explicitly included 

in the SATURN traffic network, which was focused on main and strategic roads. As 

such, an additional sensitivity analysis explored the impact of adding minor road and 

cold start concentrations to the ADMS-Urban models’ estimates (Table 44). 

C. Road Emission Sources Data 

4,500 road sources and their NOx emission rates defined in g/km/s were used in the 

dispersion modelling. Road source emission rates were entered directly into the 

model and were not calculated from traffic flow data and the model’s in-built database 

of traffic emission factors; as regularly practiced (de Hoogh et al., 2014, City of 

Bradford Metropolitan District Council, 2013). This bypassed the in-built emission 

models/average-speed-emission functions and was done to enable a full and 

exhaustive comparison of the impact of emission factors on the final modelling 

outputs (air quality and subsequently health impacts). Also, the traffic flow 

categorization permitted within ADMS-Urban was restricted to a maximum of 6 

vehicle categories: passenger car < 3.5 t; London taxi/Hackney carriage < 3.5 t; LDVs 

< 3.5 t; motorcycles/moped < 3.5 t; HDVs ≥ 3.5 t; and buses/coaches ≥ 3.5 t. This 

was a much less detailed description of the traffic fleet than constructed in the present 

study which modelled 167 vehicles classes instead (Section 3.4.1.). The emission 

rate in g/km/s from each road/link was calculated as the product of the emission factor 

in g/km for each vehicle class on the link (at that specific link’s speed), the number of 

vehicles/hour for each vehicle class on the link, summed across all vehicle classes 

on each link and multiplied by a time conversion factor (Equation 5.2): 

Road link emission rate (

g
km

s
)

= ∑(vehicle class specific emission factor at link speed (g/km)

∗ number of vehicles in each class) ∗  (
1 hour

3600 seconds
) … (Equation 5.2. ) 
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This process was undertaken twice using emission factors from COPERT and from 

the newly developed PHEM-based average-speed-emission functions. It was also 

undertaken for the 24 daily hours in both the weekdays and the weekend (this data 

was used to develop time varying emission factors; described next). Thus, at each 

road link, and in each hour of the day, an emission rate was calculated. 

As only 1 dataset of road sources emissions can be entered in ADMS-Urban (i.e. it is 

not possible to enter the 24-hour emissions datasets to be modelled), the AM peak 

hour was the one selected to be directly used in the model’s run. A Microsoft Access 

database, in ADMS-Urban Emission Inventory format (Cambridge Environmental 

Research Consultants Ltd, 2010), was prepared as an input file. The Emission 

Inventory contained the AM emission rates; other road characteristics including 

source names; road widths (an average of 17 m (de Hoogh et al., 2014)) and 

geographical locations of the start and end of each road link. 

The maximum number of road sources possible to model in one ADMS-Urban 

(version 3.0.0.) run was 3000 (Cambridge Environmental Research Consultants Ltd, 

2010). Therefore, road links and their emissions had to be split in smaller input files 

and runs (as described in 5.4.4.); the concentration results of which at the same set 

of output points were summed up at the end of the modelling. This was considered 

an acceptable practice in this study where chemistry was not modelled and the same 

set of output points were used in every run. Further, this was checked by running 

1500 roads at once and then splitting them into 3 input files of 500 roads each, the 

NOx sum of which was equal to the results of the bigger run. 

D. Time Varying Emission Factors 

Unless otherwise specified, the emissions rates in ADMS-Urban are assumed to be 

constant across all hours of the day; based on the hour that has been input in the 

model. As such the effect of the traffic, and therefore the emissions, diurnal variations 

are disregarded. This is likely to impact the final estimated air pollution and exposure 

levels and therefore the associated health impacts. To compensate for this, an 

additional modelling option specifying time varying emission factors was used to 

enable modelling NOx concentrations from vehicle emissions that vary by hour of the 

day. The ‘time varying emission factors’ option within the model was checked and a 

single set of hourly time varying emission factors, for each hour in a weekday and a 

weekend, were specified. The hourly time varying emission factors also (slightly) 

differed based on the emission model used: COPERT or the newly developed PHEM-
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based average-speed-emission functions (Figure 56). These factors needed to be 

entered manually, for each model run, as no automatic import option existed. 

The time varying emission factors were calculated as follows. At each individual link, 

traffic flows across all weekday and weekend hours were estimated either using the 

SATURN outputs, or, where not modelled, using the ATC data as detailed in Section 

3.4.5. At each hour of the weekday and the weekend and at each link, the link’s 

emission rates (g/km/s) were calculated by linking the hour’s traffic flow at that link 

with the COPERT and the PHEM-based average-speed-emission functions (Section 

5.3.1.) and then applying Equation 5.2. At each hour, a ratio between each link’s 

emission rate and that link’s emission rate in the AM peak hour was calculated and 

considered as the time varying emission factor for that specific link. The median value 

of the time varying emission factors across all links, at each hour, was selected as 

the time varying emission factor of that hour (Figure 56). The median value was 

selected instead of the average value as the distribution of time varying emission 

factors was skewed to the right and an average value, being highly susceptible to the 

influence of high outliers, did not result in standard reasonable traffic trends (e.g. 

Figure 33 and Figure 34). Conversely, the use of the median value allowed replicating 

standard traffic diurnal profiles (Figure 33 and Figure 34). During the simulation, the 

ADMS-Urban model used the time varying emission factors shown in Figure 56 to 

multiply the AM hour emission rates for each road (the only input) by the appropriate 

factor specified for each hour. 

 

Figure 56 COPERT and PHEM-based Time Varying Emission Factors for Average 

Weekdays and Weekends used in ADMS-Urban, Source: Own Work (Excel) 
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E. Output Points (Grids Data) 

The grids data screen within the model allows the user to define the points at which 

the air pollution concentrations, of NOx in this case, will be output by the model 

(Cambridge Environmental Research Consultants Ltd, 2010). 46,452 specified output 

points within Bradford were selected at which the NOx concentrations will be output 

by the model. The specified output points covered a box of ≈ 40 * 33 km and were 

exactly the same points used to construct another LUR air pollution model in Bradford, 

which estimated NOx concentrations at a spatial resolution of 100 * 100 m grids (de 

Hoogh et al., 2014). Each of the 46,452 specified output points represented the 

middle point of a 100 * 100 m grid. Although TRAP can vary within these 100 * 100 

m grids, a finer grid was not considered feasible in this study due to the impracticality 

of running the ADMS-Urban model multiple separate times to allow for a higher 

number of output points (the maximum total number of output points possible to enter 

in one run is 51,005) and as the model run times was very long (see Section 5.3.4.) 

and partly depended on the number of specified output points (Cambridge 

Environmental Research Consultants Ltd, 2014). A finer grid was also not expected 

to have a crucial impact on the final results, due to the nature of this study where air 

pollution concentrations are finally averaged over census tracts for the health impact 

assessment (Chapter 6). Finally, the 100 * 100 m grids enabled a meaningful 

comparison with the results of the widely used LUR TRAP models (Khreis and 

Nieuwenhuijsen, 2017). Another 126 points representing the locations of 118 diffusion 

tubes and 8 fixed-site monitoring stations in Bradford were added and their data was 

used for validation. These points differed in locations, coverage, site selection and 

purpose (Table 22), and therefore, allowed to explore the impact of different validation 

datasets on air quality modelling performance (Khreis et al., 2017a). 

Table 22 NOx and NO2 Measurements Sites in Bradford used for Models’ Validation 

Measurement 
campaign 
and dataset 

Pollutants 
measured 

Measurement device Year and 
time interval 
for final 
dataset 

Locations and 
purpose of 
measurements 

Reference 
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ESCAPE 
diffusion 
tubes (n=41) 

NO2 and 
NOx 

Ogawa badges 2009 
(annualized) 

At the façade of 
homes of study 
subjects as the 
primary 
objective of the 
ESCAPE 
project was to 
characterize 
residential 
exposures and 
associated 
health 

Cyrys et al. 
(2012) 

CBMDC 
diffusion 
tubes (n=29) 

NO2 “Diffusion tubes” 2009 
(annualized) 

Three sites 
were not close 
to main road 
whilst the rest 
were kerbside 
sites at 0.5-5m 
from the nearest 
road, monitoring 
undertaken to 
review and 
assess air 
quality progress 

City of 
Bradford 
Metropolitan 
District 
Council 
(2010) 
(internal 
document) 

De Hoogh 
diffusion 
tubes (n=48) 

NO2 Palmes tubes Four 2-
week 
periods 
during 
2007-2008 

Close to the 
front door of 48 
homes of study 
subjects from 
the BiB cohort 
to characterize 
their residential 
exposures 

Smith 
(2011) 

CBMDC 
fixed-site 
monitoring 
(n=8) 

NO2 Automatic urban 
network 
(chemiluminescence) 

2009 
(annualized) 

Two sites were 
classified as 
urban 
background 
whilst the rest 
were kerbside 
sites at 1.5-2 m 
from the nearest 
road, monitoring 
undertaken to 
review and 
assess air 
quality progress 

City of 
Bradford 
Metropolitan 
District 
Council 
(2010) 
(internal 
document) 

 

F. Outputs Format Data 

NOx was selected as the output pollutant to be modelled over the “long term”. The 

averaging time selected was 1 hour (which matches the hourly time step used in the 

meteorological data). The unit for outputs was selected as µg/m3. The output file 

(filename.plt) contained a single set of NOx concentration data averaged across all 

lines of meteorological data for each specified output point. 
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5.3.4. Set-Up of ADMS-Urban 

ADMS-Urban version 3.0.0. was used in this study. A temporary license for the study 

was loaned by CBMDC. The only additional (advanced) model option which was used 

in the runs was the time varying emission factors (see above), and this is considered 

as a theoretical advancement to standard practice (de Hoogh et al., 2014, City of 

Bradford Metropolitan District Council, 2013). The other additional (advanced) model 

options were not considered relevant and, therefore, were not selected. 

The input data described above was entered in the correct ADMS-Urban format. 

Excluding multiple trial and verification runs, the model was run 36 times, splitting the 

4500 road lines into smaller groups of 500 roads for each run: 

 COPERT emission model, 9 runs, each with 500 roads – original locations 

 COPERT emission model, 9 runs, each with 500 roads – snapped 
locations 

 PHEM-based emission model, 9 runs, each with 500 roads – original 
locations 

 PHEM-based emission model, 9 runs, each with 500 roads – snapped 
locations 

On average, each run took 5 days (run time only), adding up to over 6 months of 

model runs only, which the author undertook in parallel on 4 (onsite and remote) 

computers, to minimize the run times. 

5.3.5. NOx to NO2 Conversion Data 

The proportion of NOx that is NO2 in exhaust emissions (termed primary NO2) is highly 

uncertain and variable, with wide ranges documented in the literature e.g. between 

5% to 60%, across different vehicle classes, fuels, EURO emission standards, and 

exhaust after-treatment technologies (Carslaw et al., 2011a, Cambridge 

Environmental Research Consultants Ltd, 2010, Mavroidis and Chaloulakou, 2011, 

Rhys-Tyler, 2017, Sjödin and Jerksjö, 2008). Further, secondary NO2, produced in 

the atmosphere by complex photochemical processes e.g. depending on O3 

concentrations, contributes significantly to final ambient NO2 concentrations 

(Mavroidis and Chaloulakou, 2011). Thus, converting NOx to NO2, especially at the 

emission estimation stage, is an uncertain process. In this study, the conversion was 

undertaken for the final dispersion modelling output of NOx concentrations. To convert 

these NOx concentrations to NO2 concentrations, an average ambient NO2/NOx ratio 

was used. This was derived from the ESCAPE diffusion tubes administered in 

Bradford between 1 June 2009 and 15 December 2009. The diffusion tubes 

measured both NO2 and NOx concentrations using Ogawa passive samplers at 41 
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sites across Bradford (Cyrys et al., 2012). These measurements were used to 

develop two LUR models in Bradford for NO2 and NOx. The measurement sites were 

classified as regional background (n=2), urban background (n=24) and traffic sites 

(n=15). The samplers contained two collection filters which were coated with a 

reactive chemical, one for sampling NO2 and the other for NOx (Cyrys et al., 2012). 

 

Figure 57 Locations of the ESCAPE’s NO2 and NOx Ogawa Passive Samplers in 

Bradford annotated by Site Type, Source: Own Work (Arc Map 10.4) 

Measurements were typically made at the façade of homes as the primary objective 

of the ESCAPE project was to characterize residential exposures and associated 

health outcomes (Cyrys et al., 2012). Therefore, the air pollution levels measured 

were generally representative of residential exposures and not e.g. roadside levels. 

At each site, measurements were made for three 14-day periods, with each period 

representing a different season namely the warm, cold and intermediate seasons. 

The measurements were adjusted for temporal variations using measurements 

obtained from a reference fixed-site monitoring station which was operated all year 

around (Cyrys et al., 2012, Beelen et al., 2013). The correlation between the adjusted 

and unadjusted concentrations was high (R2 > 0.95), indicating that temporal 

adjustment only had a small effect on the calculated average concentrations (Cyrys 

et al., 2012). The summary statistics of the adjusted measurements made at these 

41 sites are shown in Table 23. The NO2/NOx ratio ranged from 0.39 to 0.75 with a 

calculated average of 0.60; which was used for NOx to NO2 conversion in this study. 

This average ratio was consistent with the average ratio of 0.59 calculated for 36 
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study areas across Europe and with ratios calculated for English cities like 

Manchester (0.58) and London/Oxford (0.58) (Cyrys et al., 2012). 

Table 23 Summary Statistics of Adjusted Measured NO2 and NOx Concentrations at 41 

ESCAPE Sites 

ESCAPE site type Rural background Urban background Traffic 

Definition 
Measurements in the 
smaller towns and 
villages of the cohort 

A site with fewer than 
3000 vehicles per day 
passing within a 50 
meters radius 

A site in a major road 
carrying at least 
10,000 vehicles per 
day 

Number 2 24 15 

Average adjusted NO2 
(µg/m3) 

16.9 24.1 29.7 

Average adjusted NOx 

(µg/m3) 
23.6 38.4 59.4 

Average NO2/NOx 
ratio (µg/m3) 

0.72 0.63 0.50 

Minimum adjusted 
NO2 (µg/m3) 

16.7 17.2 19.4 

Maximum adjusted 
NO2 (µg/m3) 

17.0 34.1 44.9 

Minimum adjusted 
NOx (µg/m3) 

22.4 25.1 33.6 

Maximum adjusted 
NOx (µg/m3) 

24.7 59.1 110.5 

 

5.3.6. Outputs Validation 

The NOx concentrations output by the dispersion models were validated against 

measurements from the 126 measurement sites described in Table 22. Differences 

between the snapped and the original models were explored. Differences between 

the models with and without minor road and cold start concentrations were also 

explored. Further, results from the two dispersion models were compared to each 

other and to the Bradford’s ESCAPE LUR model results at the same 46,452 specified 

output points. 
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5.4. Results 

5.4.1. NOx Inventories from Traffic and Emissions Linkage 

Results from the 24 hours’ (average weekday) traffic and average-speed-emission 

functions linkage are shown in Figure 58 and Table 24. The results broken into the 

specific modelled vehicle classes are shown in the supplementary data of Khreis et 

al. (2017b). Figure 58 shows that, when linked with the SATURN outputs, the total 

NOx emission inventory estimated with the PHEM-based emission model was 17% 

lower than COPERT. Further, the two emission models estimated different NOx 

emission contributions (in percentage) from the different vehicle classes. The key 

differences were in the: 1) petrol passenger cars fleet; 2) diesel LDVs; 3) HDVs and 

4) buses and coaches. The diesel passenger cars and petrol LDVs source 

apportionments from the two models were very similar (Figure 58). 

 

Figure 58 Total NOx Emissions over the Bradford Road Network on an average 

weekday as estimated using COPERT and PHEM-based Average-Speed 

Emission Functions. Vehicle Class Contribution are indicated in white (rounded 

the nearest tenth of percent), Source: Own Work (R) 

The PHEM-based emission model estimated that petrol cars contribute almost 13% 

of all NOx compared to 21% estimated from COPERT. Another key difference was in 

the contribution of HDVs and buses and coaches to total NOx, where apportionment 

using the PHEM-based model estimated that these vehicle classes are the most 

polluting; accounting for 48% of all traffic-related NOx in Bradford, when combined; 

as compared to 35% of all traffic-related NOx as estimated by COPERT. Across the 
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different vehicle classes, the differences between the two models, applied to 

Bradford’s traffic mix and average speeds (Chapter 3) ranged from around -51% to 

39% (Table 24). As shown in Table 24, the NOx COPERT estimates were noticeably 

higher for passenger cars and for diesel LDVs. On the other hand, the PHEM-based 

NOx estimates were higher than the COPERT estimates for petrol LDVs across the 

three weight categories and for almost all the HDVs, buses and coaches. 

Table 24 Vehicle Class Contribution (magnitude in kg and %) to Total NOx Emissions 

over the Bradford Road Network on an Average Weekday (24-hour totals) as 

estimated using: 1) COPERT and 2) PHEM-based Emission Factors 

Vehicle 
class/weight 
category 

NOx (kg) using 
COPERT 

% of 
total 
NOx 

NOx (kg) using 
PHEM 

% of 
total 
NOx 

% difference 
between PHEM 
and COPERT NOx  

Petrol cars 1212.85 20.97 598.62 12.52 -50.64 

Diesel cars 1534.98 26.54 1188.58 24.85 -22.57 

Petrol LDVs Class I 2.14 0.04 2.31 0.05 7.91 

Petrol LDVs Class 
II 

11.02 0.19 12.36 0.26 12.16 

Petrol LDVs Class 
III 

28.82 0.50 34.44 0.72 19.51 

Diesel LDVs Class I 40.55 0.70 29.64 0.62 -26.91 

Diesel LDVs Class 
II 

250.40 4.33 141.34 2.96 -43.55 

Diesel LDVs Class 
III 

654.88 11.32 464.18 9.71 -29.12 

HDV Rigid 0-7.5t 129.74 2.24 178.33 3.73 37.44 

HDV Rigid 7.5-12t 36.18 0.63 39.43 0.82 9.01 

HDV Rigid 12-14t 16.19 0.28 16.57 0.35 2.34 

HDV Rigid 14-20t 98.58 1.70 96.54 2.02 -2.07 

HDV Rigid 20-26t 165.17 2.86 171.95 3.60 4.10 

HDV Rigid 26-28t 85.61 1.48 99.37 2.08 16.08 

HDV Rigid 28-32t 193.00 3.34 229.31 4.79 18.82 

HDV Rigid ≥ 33t 49.93 0.86 68.98 1.44 38.16 

HDV Articulated 0-
20t 

4.96 0.09 4.66 0.10 -5.99 

HDV Articulated 20-
28t 

8.41 0.15 9.16 0.19 8.92 

HDV Articulated 28-
34t 

6.55 0.11 8.49 0.18 29.71 

HDV Articulated 34-
40t 

53.31 0.92 72.99 1.53 36.91 

HDV Articulated 40-
50t 

221.21 3.83 306.60 6.41 38.60 

Buses Single-
Decker 

170.58 2.95 173.76 3.63 1.86 

Buses Double-
Decker 

478.01 8.27 474.11 9.91 -0.82 

Coaches Small 155.09 2.68 156.31 3.27 0.78 

Coaches Large 174.55 3.02 204.51 4.28 17.16 

ALL VEHICLES 5782.71 100 4782.54 100 -17.30 
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A closer look at the results broken into the unique 167 vehicle classes within the fleet 

revealed that the major differences between the two emission models were largely 

explained by particular classes (supplementary data of Khreis et al. (2017b)). For 

example, differences between the petrol passenger car inventories were driven by 

differences in estimates for the EURO 0 vehicles, where COPERT estimates were 

81% higher than the PHEM-based one. 

COPERT is expected to be less reliable for short road segment lengths and for traffic 

conditions characterised by high degree of saturation, implying stop-start driving and 

low average speeds (Chapter 4). The impact of this limited reliability in the 

comparison of NOx emissions estimated by the PHEM-based and COPERT emission 

models was examined through an analysis of the ratio of the estimates from the 

PHEM-based and COPERT models. Figure 59 shows that, for average speeds 

between 0 and 10 km/h, this emission ratio is higher than 1 across almost all vehicle 

classes (from 1.21 to 4.04), meaning that NOx emissions estimated with the PHEM-

based model are higher than those estimated with COPERT. For speeds above 10 

km/h, the emission ratio is consistently lower across all vehicle classes and speed 

values, except for HDV and sometimes buses and coaches. More specifically, the 

ratio values remain below 1 for passenger cars and LDVs, above 1 for HDVs, and 

range from 1.09 to 0.81 for buses and coaches. This sudden drop in the ratio, which 

is inconsistent with the smooth decrease at higher speeds, is likely due to the way 

COPERT emissions at the lowest speeds are estimated, i.e. applying a constant 

emission factor for speeds below a threshold of 10 or 12 km/h (Section 4.3.9.). 

 

Figure 59 Influence of average speed on difference in NOx emission of PHEM-based 

and COPERT models, Source: Own Work (R) 
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The spatial distribution of the emission rates (g/km/s) as estimated from the two 

emission models differed slightly (e.g. see Figure 60 which shows the spatial 

distribution of the emission rates, focused on the Ring Road). The differences were 

subtle and were mainly that emissions from the roads radiating from the Ring Road 

were smaller when using the PHEM-based model whilst the emissions within the Ring 

Road were higher using the PHEM-based emission model, something which has to 

do with the lower average speeds on inner-city road links. 

 

 

Figure 60 Bradford Spatial Distributions of Traffic-Related NOx from COPERT (above) 

and PHEM-based (below) Emission Model, Source: Own Work (Arc Map 10.4)
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5.4.2. Meteorological Data 

In 2009, prevailing wind in Bradford was from the West, particularly the South West. 

The average temperature was 9 Cº and the average wind speed and relative humidity 

were 4 m/s and 86%, respectively. 

5.4.3. Dispersion Modelling NOx Concentrations 

The results of the dispersion models’ NOx at the 46,452 specified output points 

(Section 5.3.3) were considered as the traffic (contribution to the total) NOx at these 

locations. These are shown in Table 25. For the COPERT-based dispersion model, 

these ranged between 0.20 to 93.14 µg/m3 with a mean of 2.45 µg/m3. For the PHEM-

based dispersion model, the range was wider between 0.18 to 368.45 µg/m3 with a 

lower mean of 2.21 µg/m3. The distributions of these values were skewed to the right 

as the levels at most of the specified output points were low, as shown in Figure 61. 

Table 25 Summary Statistics of Traffic-related NOx (µg/m3) Estimated by COPERT and 

PHEM-based Dispersion Models at the 46,452 Specified Output Points 

Statistic 
COPERT-based dispersion 

model 
PHEM-based dispersion 

model 

Minimum 0.20 0.18 

1st quartile 0.67 0.61 

Median 1.33 1.17 

Mean 2.45 2.21 

3rd quartile 2.58 2.24 

Maximum 93.14 368.45 

 

The addition of the varying background NOx from DEFRA’s map to the traffic NOx at 

the 46,452 specified output points was considered to account for all other sources of 

air pollution. The NOx background map was intersected with the 46,452 output points 

and the values of the map layer at those points were extracted. There were 21,914 

points (47%) where there was no intersection between the output points and the 

underlying NOx background map. At those points, the average background NOx level 

from the other valid points (equal to 17 µg/m3) was added to the traffic NOx, instead. 

Most of these non-intersecting points fell outside the Bradford’s area designated 

census tracts and were, therefore, not expected to impact the following health impact 

assessment; conducted at census tract level (Chapter 6). 
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Figure 61 Histogram of Traffic-Related NOx Estimated by COPERT and PHEM-based 

Dispersion Models, note the X and Y Axes are different, Source: Own Work (R) 
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Figure 62 shows the relation between the total NOx estimates from the COPERT-

based and the PHEM-based dispersion models, at the 46,452 specified output points, 

with background NOx added. Overall, there was a high correlation between the two 

models’ estimates as reflected in the fitted linear model (with a forced intercept of 0, 

as the two methods are similar) and it’s R2 value of almost 90%. At 95% of the 

specified output points, the PHEM-based model estimated less NOx than the 

COPERT-based model (ranging from - 0.0006% to - 43.73%, on average by - 1.6%). 

Conversely, at 2318 (5% of the) specified output points, the PHEM-based model 

estimated more NOx than the COPERT-based model’s estimates with a difference 

ranging from + 0.0004% to + 88.10% (on average by + 4.4%). 

 

Figure 62 COPERT-based versus PHEM-based Dispersion Modelling NOx Estimates 

(µg/m3) at the 46,452 Specified Output Points, Source: Own Work (Excel) 

Figure 63 shows the Bland-Altman agreement plots (Bland and Altman, 2007) for NOx 

estimates/results from the COPERT-based versus the PHEM-based dispersion 

models. At panels a, b and c, different y-axes scales have been used for easier 

comparison and visualization. On the y axis is the absolute difference between the 

COPERT-based and PHEM-based dispersion modelling results whilst on the x axis 

is their mean. The upper and lower dashed lines represent the 95% CI whilst the 

middle-dashed line is the mean difference. 
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As shown in panel a (top), the large differences in the two models estimates were 

most apparent with 4 points where the PHEM-based dispersion model estimated NOx 

levels higher than the COPERT-based model’s estimates by > 100 µg/m3. The 

difference between the two models seemed to increase with the increasing means 

(moving to the right). This is likely to be due to the high and increasing PHEM-based 

estimates which bring both the mean (x axis) and the difference between the two 

models (y axis), up. A further look at these points showed that they were far at the 

edges of the simulated network and were adjacent to road links with 0.33 (link ID 

3065_3052) and 0.1 km/h (link ID 1257_1255) traffic speeds and 1275 and 1946 

PCU/h AM, one-way, traffic flows, respectively. Two of the four points were also in 

proximity of a major roundabout (the Chain Bar roundabout/interchange). No other 

specific explanation for the differences here was ascertained. 

Zooming in, panel b (middle) shows a similar trend: the PHEM-based dispersion 

model estimates higher NOx at a few points only and the difference seems to increase 

with the increasing mean, likely due to the high and increasing PHEM-based 

estimates. However, on the top part of the graph, it is clear that the COPERT-based 

model estimates higher NOx at a much larger number of receptor points, but that the 

differences in the two models estimates at these points are not as stark (i.e. the top 

part of the funnel is not so wide as the lower part). 

Finally, zooming in further as shown in panel c, confirms the above point showing that 

the COPERT-based model estimates higher NOx at most of the receptor points and 

that the difference between the two models’ estimates is not as stark in this case 

(maximum difference between the COPERT-based and the PHEM-based models’ 

estimates is just above 30 µg/m3). These trends are likely to be due to the combination 

of differences in the emission functions (Chapter 4) and speeds data available from 

the SATURN model (Chapter 3). The PHEM-based emission functions estimate very 

high NOx at the lower speeds (lower than 10 km/h) with stark differences to the 

COPERT functions (Figure 51 and Figure 59); yet only a small proportion of the 

SATURN links (< 12%) have speeds less than 10 km/h and as such the density of 

these points, with such stark differences, is low. On the other hand, the COPERT-

based functions estimate higher NOx at the middle and higher speeds (> 10 to 80 

km/h); speeds which most of the SATURN road links have, yet at these points the 

differences between the two methods is not so stark (Figure 51 and Figure 59). The 

importance and relevance of these observations is further discussed in Section 5.5.2. 
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a) All 46,452 specified output points 

 

b) 4 data points, where COPERT-PHEM < -100 (-167, -339, -210, -119), removed from (a) to enable better visualization 

 

c) 13 data points, where COPERT-PHEM < -35 (maximum difference between COPERT and PHEM = 35), removed from (b) to enable better 
visualization 

Figure 63 Bland−Altman Agreement Plots for COPERT-based versus PHEM-based Dispersion Modelling, Upper and lower dashed lines: 

95% CI, Middle dashed line: mean difference, Source: Own Work (R) 
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5.4.4. Dispersion Modelling Comparison to LUR 

Figure 64 shows the relation between NOx estimates from the COPERT-based 

dispersion model and the LUR model. Figure 65 shows the relation between NOx 

estimates from the PHEM-based dispersion model and the LUR model, both at the 

46,452 specified output points. As shown in Figure 64, a linear model between NOx 

estimates from the two methods only captured 25% of the variability (r = 0.50), 

indicating that there is not a good correlation between the estimates from the two 

models. At 37,548 (81% of the) specified output points, the COPERT-based model 

estimated NOx levels that are lower than the LUR model (ranging from - 0.0007% to 

- 296.33%, on average by - 57.5%). At the remaining 8,904 specified output points, 

the COPERT-based model estimated NOx levels that are higher than the LUR’s by + 

0.0109% to + 100% (on average by + 76.86%). 

 

Figure 64 COPERT-based Dispersion Modelling versus LUR Model NOx Estimates 

(µg/m3) at the 46,452 Specified Output Points, Source: Own Work (Excel) 

As shown on the bottom left side of Figure 64, the COPERT-based dispersion model 

estimated NOx between about 10 and 50 µg/m3 when the LUR estimated almost 0 

µg/m3 NOx. This had to do with the fact that LUR equations resulted in negative values 

at some specified output points e.g. in rural areas (places out of the range in terms of 

predictor variables where traffic is very low and green space is high). These negative 

values were set to the minimum NOx estimated by the LUR; equal to 0.0006 µg/m3. 

The removal of these points (6101 with negative NOx) improved the correlation, 

bringing R2 up by almost 10% to 34% (r = 0.60). 
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Similarly, Figure 65 shows that a linear model between NOx estimates from the 

PHEM-based dispersion model and the LUR model only captured 22% of the 

variability (r = 0.47), indicating that there is not a good correlation between the 

estimates from the two models. At 37,796 (81% of the) specified output points, the 

PHEM-based model estimated NOx levels that are lower than the LUR model’s 

estimates (ranging from - 0.035% to - 299.64%, on average by - 59.1%). At the 

remaining 8,656 specified output points, the PHEM-based model estimated NOx 

levels that are higher than the LUR’s by + 0.0057% to + 100% (on average by + 

78.59%). The PHEM-based dispersion model also estimated NOx values between 

about 10 and 50 µg/m3 when the LUR estimated almost 0 µg/m3 NOx and this had to 

do with replacing all the LUR negative values with the minimum NOx estimated by the 

LUR (see above). The removal of these points improved the correlation between the 

two methods, bringing the R2 up by almost 10% to 31%. 

 

Figure 65 PHEM-based Dispersion Modelling versus LUR Model NOx Estimates 

(µg/m3) at the 46,452 Specified Output Points, Source: Own Work (Excel) 

Table 26 shows the summary statistics of the NOx estimates at the 46,452 specified 

outputs points from the two dispersion models and the LUR model, alongside the 

traffic levels in brackets to give an indication of the traffic contribution to the total NOx; 

as estimated from the two dispersion models. The range for the PHEM-based 

dispersion model estimates was wider than that of the COPERT-based model, as 

reflected by the minimum and specially the maximum values. The PHEM-based 

model, however, resulted in slightly less NOx, on average, in line with Figure 62 and 

Figure 63. In both dispersion models, the contribution of traffic to the total NOx was 
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modest equalling 2.45 (COPERT-based) and 2.21 (PHEM-based) µg/m3, on average, 

and ranging from 0.36 to 313.86 µg/m3. On the other hand, the LUR estimates had a 

narrower range and the average NOx value estimated by the LUR was almost 30% 

higher than the corresponding values from both dispersion models (Table 26). 

Table 26 Summary Statistics of COPERT-based and PHEM-based Dispersion 

Modelling NOx Estimates and LUR Modelling NOx Estimates at the 46,452 

Specified Output Points (µg/m3) 

Model and 
statistic 

COPERT-based dispersion 
model (traffic) 

PHEM-based dispersion 
model (traffic) 

LUR 
model 

Minimum 10.03 (0.40) 9.99 (0.36) 0.00064 

1st quartile 15.93 15.79 22.00 

Median 17.80 (0.78) 17.72 (0.70) 24.93 

Mean 19.47 (2.45) 19.23 (2.21) 24.91 

3rd quartile 20.34 19.95 32.10 

Maximum 110.15 (93.14) 384.94 (368.45) 95.18 

Table 27 shows the summary statistics of the NO2 estimates at the 46,452 specified 

outputs points from the two dispersion models and the LUR model. For the two 

dispersion models, NO2 was generated by conversion (see Section 5.3.5). The range 

for the PHEM-based dispersion model estimates was wider than the COPERT-based 

model. The LUR estimates had a narrower range and on average, NO2 estimated by 

the LUR was 55% higher than both dispersion models. In both dispersion models, the 

contribution of traffic to total NO2 was modest equalling 1.47 (COPERT-based) and 

1.33 (PHEM-based) µg/m3, on average, and ranging from 0.22 to 221.07 µg/m3. 

Table 27 Summary Statistics of COPERT-based and PHEM-based Dispersion 

Modelling NO2 Estimates and LUR Modelling NO2 Estimates at the 46,452 

Specified Output Points (µg/m3) 

Model and 
statistic 

COPERT-based dispersion 
model (traffic) 

PHEM-based dispersion 
model (traffic) 

LUR 
model 

Minimum 6.02 (0.24) 5.99 (0.22) 11.36 

1st quartile 9.56 9.47 16.91 

Median 10.68 (0.47) 10.63 (0.42) 17.87 

Mean 11.68 (1.47) 11.54 (1.33) 18.12 

3rd quartile 12.20 11.97 20.13 

Maximum 66.09 (55.88) 230.96 (221.07) 44.13 

 

Finally, Figure 66 shows the NOx spatial distribution from the COPERT and PHEM-

based dispersion models and from the LUR model. Note that the legend and scale 

have been unified across the three maps to enable direct visual comparison. 
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Figure 66 Spatial Distribution of NOx (µg/m3) across Bradford across the Three Exposure Models, Source: Own Work (ArcMap 10.4)
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5.4.5. Models Validation 

Table 28 shows results of the different models’ validation against the 4 available 

validation datasets previously described in Table 22. Estimates from the COPERT-

based, PHEM-based dispersion models and the LUR model were validated. Each 

model was used to estimate annual NOx (directly) or annual NO2 (by conversion in 

the case of the dispersion models, see Section 5.3.5.), at the exact locations of the 

validation points and these estimates were compared to measurements. The 

dispersion models were complemented with constant or varying background NOx (see 

Background Air Quality Data in Section 5.3.3.), to test the impacts of background data 

on the validation and select the better performing method (Khreis et al., 2017a). 

A. Performance of the LUR Models 

Table 28 shows that the LUR models have a good performance against the data 

measured at the 41 ESCAPE sites (which were the measurements used to develop 

the model), with an R2 of 0.58 and 0.54 for NOx and NO2, respectively. The model 

performs similarly well at the 48 NO2 diffusion tubes from the ‘De Hoogh’ data set (R2 

= 0.61) but this validation is considered less comparable as this dataset comes from 

a different period (2007/2008). When the LUR model estimates are compared with 

the CBMDC measurements, the model performs worse with an R2 of 0.21 and 0.38 

in comparison with NO2 diffusion tubes and fixed-site monitoring data, respectively. 

Overall, the model under estimated NOx and NO2 levels (data not shown). 

B. Performance of the Dispersion Models 

In comparison to the LUR models, both the COPERT and PHEM-based dispersion 

models performed worse, and there were no major differences in their performance, 

indicating that the emission factors were not influential in the models’ validity. Using 

varying background levels, the R2 of the COPERT-based model at the 41 ESCAPE 

sites was 0.23 and 0.30 for NOx and NO2, respectively. The use of constant 

background levels resulted in worse performance. At the CBMDC diffusion tubes and 

continuous fixed-site measurements sites and using varying background levels, the 

COPERT-based model had an R2 of 0.23 and 0.28, respectively, compared to 0.24 

and 0.16 for the PHEM-based model. The models performed better at the 48 NO2 

diffusion tubes from the ‘De Hoogh’ data set (R2 = 0.50 and 0.39). Overall, the 

dispersion models with the varying background NOx performed better than those with 

the constant background NOx. Because of this and the fact that it is unrealistic to 

assume that background levels are constant across the whole city, the varying 
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background models were adopted in final analyses (Chapter 6). Overall, both models 

underestimated NOx and NO2 levels (data not shown). For ease of comparison, the 

R2 of the models with varying backgrounds are highlighted in light green in Table 28. 

Table 28 COPERT and PHEM-based Dispersion Models and LUR Model Validation 

(rows) against Different Datasets (columns) 

Models combination 

Validation dataset 

ESCAPE 
NOx 

diffusion 
tubes 
(n=41) 

ESCAPE 
NO2 

diffusion 
tubes 
(n=41) 

CBMDC 
NO2 

diffusion 
tubes 
(n=29) 

De Hoogh 
NO2 

diffusion 
tubes 
(n=48) 

CBMDC NO2 

fixed-site 
monitoring 

(n=8) 

L
U

R
 m

o
d

e
ls

 NOx LUR 
estimates at 

points 
R2= 0.58     

NO2 LUR 
estimates at 

points 
 R2= 0.54 R2= 0.21 R2= 0.61 R2= 0.38 

C
O

P
E

R
T

-b
a

s
e

d
 d

is
p

e
rs

io
n

 m
o

d
e

l 

COPERT 
dispersion model 

NOx at points 

(constant 
background) 

R2= 0.13     

COPERT 
dispersion model 

NOx at points 

(varying 
background) 

R2= 0.23     

COPERT 
dispersion model 

NO2 at points 

(constant 
background) 

 R2= 0.17 R2= 0.27 R2= 0.34 R2= 0.56 

COPERT 
dispersion model 

NO2 at points 

(varying 
background) 

 R2= 0.30 R2= 0.23 R2= 0.50 R2= 0.28 

P
H

E
M

-b
a

s
e
d

 

d
is

p
e

rs
io

n
 m

o
d

e
l 

PHEM dispersion 
model NOx at 

points (constant 
background) 

R2= 0.13     

PHEM dispersion 
model NOx at 
points (varying 
background) 

R2= 0.22     
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PHEM dispersion 
model NO2 at 

points (constant 

background) 

 R2 = 0.17 R2 = 0.28 R2 = 0.24 R2 = 0.32 

PHEM dispersion 
model NO2 at 
points (varying 
background) 

 R2 = 0.29 R2 = 0.24 R2 = 0.39 R2 = 0.16 

C. Performance of the Dispersion Models without Influential Points 

To further investigate the impact of the COPERT-based versus the PHEM-based 

emission factors on the validity of the full-chain exposure model developed in this 

study, additional analysis, focused on the 41 ESCAPE validation data points, was 

performed. The 41 ESCAPE validation data points were selected for the further 

analysis as these were the only direct source of NOx levels, making a direct 

comparison with the dispersion models’ NOx estimates possible (Khreis et al., 2017a). 

Figure 67 shows the relation between the COPERT-based and the PHEM-based 

dispersion models’ NOx estimates at the 41 ESCAPE site locations (only the traffic-

related component, no background levels added). The two models’ estimates 

correlated well and on average, the PHEM-based model tended to estimate lower 

NOx than the COPERT-based model, in line with findings of Section 5.4.3. 

 

Figure 67 COPERT-based and the PHEM-based dispersion models’ NOx estimates at 

the 41 ESCAPE site locations, Source: Own Work (Excel) 
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The Bland-Altman agreement plots for estimates from the COPERT-based and the 

PHEM-based dispersion models (varying background levels added) versus the NOx 

measurements at the 41 ESCAPE sites showed no detectable difference in the 

performance of the two emission estimation methods (Figure 68). There was 

evidence that the measured NOx at the 41 ESCAPE sites was generally higher than 

both the COPERT-based and the PHEM-based dispersion modelling results, as the 

clear majority of the points in Figure 68 fell above the 0 line (where the ESCAPE 

measurement – the dispersion model’s estimate > 0). 

 

Figure 68 Bland−Altman Agreement Plots for ESCAPE Measurements versus 

COPERT-based (left) and PHEM-based (right) Dispersion Modelling NOx 

estimates, Source: Own Work (R) 

Looking at the individual sites, the dispersion models (with varying background 

added) under estimated NOx at 35 out of the 41 validation sites by 1.5% to 74.1%; or 

on average by 15 µg/m3 NOx (32%). 14 of these sites were traffic, 20 were urban 

background sites and one was a regional background site (Table 29). The range and 

percentage of under estimation from the COPERT-based model, by validation site, 

are shown in Table 29. These results suggested that TRAP was under estimated at 

these sites, e.g. due to low emission factors (and overestimated traffic speeds) and 



237 
 

237 

 

the exclusion of some roads and/or that background NOx levels were not sufficiently 

captured/were under estimated. 

Table 29 ESCAPE Sites Where NOx was Under Estimated from the COPERT-based 

model (N = 35/41) 

ESCAPE site type Number Range of under 

estimation in µg/m3 

Mean of under estimation in µg/m3 

(percentage) 

Traffic 14 0.65 – 79.66 23.16 (34%) 

Urban background 20 1.68 – 26.93 9.36 (24%) 

Regional 

background 

1 NA 2.35 (10%) 

 

There were two traffic ESCAPE sites (circled in red in Figure 68) where the difference 

between the measurements and the dispersion models’ estimates were highest and 

where there was reason to consider these points as outliers (Khreis et al., 2017a, 

Beelen et al., 2013). These two points were highly influential on the models’ validation 

statistics as their removal increased R2 from 0.23 (Table 28) to 0.49 for the COPERT-

based dispersion model (Table 30) and from 0.22 (Table 28) to 0.50 for the PHEM-

based dispersion model (Table 30). Similarly, the removal of these two points 

increased the LUR’s R2 from 0.58 to 0.73 (NOx validation). 

Table 30 COPERT and PHEM-based Dispersion Models Validation against the 

ESCAPE NOx Dataset, without 2 influential sites 

Dispersion model combination 
ESCAPE NOx diffusion tubes 

(n=39) 

COPERT dispersion model NOx at points (varying 

background) 
r= 0.70 R2= 0.49 

PHEM dispersion model NOx at points (varying background) r= 0.71 R2= 0.50 
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5.4.6. Snapped Dispersion Modelling Validation 

A. Snapped Dispersion Modelling Validation without Minor Road 

and Cold Start Concentrations  

A concern was that the performance of the dispersion models was related to the 

inaccurate links geo-locations in the original SATURN network and the fact that road 

links were represented as straight lines (see Section 3.4.4 and additional analyses in 

Khreis et al. (2017a)). The snapped SATURN network attempted to increase the 

accuracy of the links geo-locations (despite not dealing with the issue that the links 

are represented as straight lines) and was therefore run again in ADMS-Urban. The 

validation of the snapped models indicated an improvement in the models’ 

performance by up to 12% as shown in Table 31 (comparable to Table 30) and in 

Table in Annex 5.2. (comparable to Table 28). Therefore, the snapped models were 

the ones adopted in following health impact assessment analyses (Chapter 6). 

Table 31 Snapped COPERT and PHEM-based Dispersion Models Validation against 

the ESCAPE NOx Dataset, without 2 influential sites 

Dispersion model combination 
ESCAPE NOx diffusion tubes 

(n=39) 

Snapped COPERT dispersion model NOx at points (varying 

background) 
r= 0.78 R2= 0.60 

Snapped PHEM dispersion model NOx at points (varying 

background) 
r= 0.79 R2= 0.62 

 

B. Snapped Dispersion Modelling Validation with Minor Road and 

Cold Start Concentrations  

The exclusion of minor roads (and cold starts) from the adopted SATURN traffic 

network was believed to be one reason behind the under estimation of NOx 

documented above and this was investigated further in this analysis. 

Adding minor roads and cold start concentrations to the snapped COPERT-based 

model estimates did not improve the validation metric (R2) and left it almost 

unchanged as compared to the main analysis (data not shown). However, the under 

estimation at the ESCAPE validation sites, as recorded in Table 29, was notably 

lessened (Table 32), suggesting that the addition of minor roads and colds starts to 

the SATURN network may improve the model’s performance, whilst their exclusion 

may be one important reason behind the model’s under estimation. 
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Table 32 shows that when minor road and cold start concentrations were added to 

the snapped COPERT-based model estimates, only 21, instead of 35 sites (Table 

29), had a NOx under estimation. Of those, 10 sites (instead of 14 sites as in the main 

analysis) were traffic sites where NOx was underestimated by about 31%, on average, 

and 11 sites (instead of 20 sites as in the main analysis) were urban background 

sites, where NOx was underestimated by almost 12%, on average. Across all the 

ESCAPE sites combined, NOx estimates from the ADMS-Urban model with minor 

road and cold start concentrations were underestimated by 4.9% or 4.7 µg/m3, on 

average, as compared to 32% or 15 µg/m3, on average, in the main analysis (the 

unsnapped COPERT-based model, without minor road and cold start 

concentrations). 

Table 32 ESCAPE Sites Where NOx was Under Estimated from the Snapped COPERT-

based model when complemented by minor road and cold start concentrations 

(sensitivity analysis) (N = 21/41) 

ESCAPE 

site type 
Number 

Range of under 

estimation in 

µg/m3 

Mean of under 

estimation in µg/m3 

(percentage) 

Median of under 

estimation in µg/m3 

(percentage) 

Traffic 10 2.9 – 72.3 22.7 (31.3%) 16.9 (27.8%) 

Urban 

background 
11 0.6 – 17.5 4.9 (11.8%) 2.7 (7.9%) 

5.5. Discussion 

5.5.1. Summary 

In this work, a full-chain exposure assessment model linking traffic, emissions and 

atmospheric dispersion models was developed utilizing two different sets of vehicle 

emission factors (COPERT and PHEM-based). The dispersion models were set-up 

and run estimating traffic-related NOx at 46,452 receptor output points in Bradford. 

These output points covered an area of approximately 40 * 33 km and were identical 

to those used to establish a LUR model in Bradford (Beelen et al., 2013). The traffic-

related NOx estimates at the output points were added to the background NOx levels 

as estimated from DEFRA’s background maps (Department for Environment Food 

and Rural Affairs, 2016a), once excluding minor road and cold start concentrations 

and once including them. NO2 was generated by conversion. The dispersion models’ 
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estimates were validated, compared to each other and to results from the NOx and 

NO2 LUR models in Bradford. The dispersion models were set-up again with the 

snapped road network, to attempt to improve the models’ performance. 

The key results of this work can be summarized as follows. Overall, the total NOx 

emission inventory estimated with the PHEM-based emission model was 17% lower 

than the COPERT’s estimate; a finding that was unexpected and is considered to 

further under estimate already low vehicle emissions and TRAP. The two emission 

models also resulted in notably different source apportionment; shifting the focus from 

passenger cars to HDVs (Figure 58) when using the PHEM-based model. In line with 

findings in Chapter 4, the results showed that the PHEM-based model estimated 

higher NOx at speeds below 10 km/h (Figure 59). Results from the dispersion models 

estimated the traffic-related NOx which ranged from 0.20 to 93 (mean = 2.45) µg/m3 

for the COPERT-based model and from 0.18 to 368 (mean = 2.21) µg/m3 for the 

PHEM-based model. This traffic contribution, on average, was considered low and 

likely to be under estimated. Indeed, comparison with measurements suggested that 

these levels, and/or the background levels, were under estimated (Figure 68). The 

underestimation was lowered, however, when minor road and cold start 

concentrations from the DEFRA NOx background maps were added to the estimates 

(Table 32).  Results from the COPERT-based and PHEM-based dispersion models 

correlated well with each other (R2 = 0.90; Figure 62). On the other hand, the 

correlations between the two dispersion models and the LUR model were moderate 

(Figure 64 and Figure 65). The range of NOx from the dispersion models was wider 

than that from the LUR, whilst average NOx and NO2 from the LUR was 30% and 55% 

higher than estimated by the two dispersion models (Table 26). Validation of the 

models showed that overall the LUR models performed better than the dispersion 

models, but that the performance was contingent on the validation dataset used; see 

Table 28 and Khreis et al. (2017a). All models under estimated measured pollution 

levels. The snapping of the SATURN road network improved the models’ R2. 

Obtaining, generating and verifying the required input and validation data, converting 

it to ADMS-Urban compatible format and setting up and running the ADMS-Urban 

models proved difficult and highly time consuming and four onsite and remote 

computers were used to complete the model runs. In terms of practice implications, 

the main conclusion of this study was that it is no surprise that comprehensive full-

chain exposure assessment models are lacking in the literature. Both researchers 

and local authorities trying to undertake such modelling can benefit from readily 
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available and verified quality input data. Programs that can automate the laborious 

process of running and linking the different models and datasets e.g. the Traffic 

Emission Modelling and Mapping Suite; TEMMS (Namdeo et al., 2002) can go a long 

way in speeding up similar work in the future and making it more feasible. 

Furthermore, many practical difficulties were faced during this work. The key ones 

are summarized in Figure 69, alongside general recommendations of who and how 

to deal with them. 
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Figure 69 Key Practical Difficulties in Setting Up Full-Chain Exposure Models
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5.5.2. Strengths and Comparison to other Studies 

This work is one of few attempts to model the full-chain of TRAP linking a suite of 

traffic assignment, emissions, and dispersion models and characterizing the full-chain 

from exposure source (traffic activity), to source emissions (traffic emissions), to 

resulting air quality and exposures (emissions dispersion and air pollution levels) 

(Namdeo et al., 2002, Hatzopoulou and Miller, 2010, Wang et al., 2016a, Mitchell et 

al., 2005). The scarcity of full-chain exposure modelling is commonly attributed to the 

severity of data demands, the unavailability of required software/expertise and the 

complexity of linking various (incompatible) models which were originally developed 

independently (de Nazelle et al., 2011, Jerrett et al., 2005). 

Despite these practical hurdles, which were indeed faced in this research study, full-

chain exposure modelling is theoretically the most formal and detailed approach to 

predict air pollution levels and (changes in) exposures due to specific sources 

(Nieuwenhuijsen et al., 2017, de Nazelle et al., 2011). The traffic assignment, 

emissions and dispersion models used in this study are all well-established and have 

been validated in several studies, showing good agreement with real-world measured 

data which supports their use (see Section 3.3.3. for SATURN validation; 4.1.4. and 

4.3.5. for COPERT and PHEM validation and 5.1.3. for ADMS-Urban validation). In 

this research study, the final outputs of the dispersion model were validated against 

the ESCAPE’s 39 NOx diffusion tube measurements (the only direct source of NOx 

data) and the snapped models achieved an R2 of 0.60 and 0.62 (Table 31). This was 

considered as good performance for the full-chain model and was comparable to 

validation in previous work e.g. R2 of ADMS-Urban models ranging from 55%-91%; 

R2 of a full range of dispersion models used in TRAP and asthma research ranging 

from 34%-88% (Khreis and Nieuwenhuijsen, 2017). This work added to the literature 

showing that different emission factors did not result in different model performance. 

In line with the premise of the full-chain exposure modelling (Section 1.2.), this study 

has the key practical advantage of linking the estimated air pollution levels back to 

their specific sources giving a clearer idea of the contribution of different sources to 

overall air pollution levels. For example, the contribution of the different vehicle 

classes to the total transport NOx emission inventories was estimated (Figure 58). 

These results highlight an important and a previously established sensitivity in 

emissions models’ source apportionment with implications for air quality and health 
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improvement policies. The standard COPERT functions suggested that diesel 

passenger cars, petrol passenger cars and HDVs, respectively, were the worst 

polluters whilst the new functions suggested that these were HDVs, diesel passenger 

cars and buses and coaches, respectively; shifting the emphasis from cars to HDVs. 

Only one similar study was found in the literature (Peace et al., 2004) which showed 

that between three different and successive sets of road traffic emission factors 

released by the UK government, the latest, and theoretically more accurate set (due 

to the larger database of emission measurements that it has been based on), 

estimated emissions for heavy and light good vehicles which were considerably 

higher than calculated using older sets. Linked to this point, a key addition to the 

literature was the development of new average-speed-emission functions and 

exploring their effects on total NOx and source apportionment. Previous full-chain 

modelling only utilized existing emission models (Namdeo et al., 2002, Hatzopoulou 

and Miller, 2010, Wang et al., 2016a, Mitchell et al., 2005). The new average-speed-

emission functions suggested that COPERT under estimates emissions at the lower 

speed ends and resulted in different source apportionment as shown in Figure 58 and 

Figure 59. The results at the lower speed ends, although eventually not influential on 

the models’ results and performance, are relevant in populated urban areas where 

short links are abundant and stop-start driving is common. The fact that the final 

estimates and validation metrics did not notably differ based on the emission factors 

used is discussed below. 

The comparison between the COPERT-based and the PHEM-based dispersion 

models, provided new insights that the difference in the final performance of these 

two methods is impacted by the SATURN speeds data (Figure 59 and Figure 63). At 

the lower average speeds, the differences between the COPERT-based and the 

PHEM-based emission functions were stark (Figure 59), yet when the dispersion 

modelling was undertaken, the impact of these differences was limited to a select 

number of receptor output points (Figure 63), and overall, the final results, and the 

subsequent burden of disease estimates (Section 6.4.1), were not impacted. This 

may be explained by the lack of road links with low average speeds. On the other 

hand, most road links had average speeds that would results in higher COPERT-

based emission estimates (between 12 and 80 km/h), adding up and resulting in 

higher NOx levels from the COPERT-based dispersion model, overall. These results 

would have been reversed, if more links were at the lower speed ends and/or the 

vehicle tracking survey (Chapter 4) was extended and leveraged PHEM-based 

emission functions at the higher speed ends (see Section 4.5.3.). This insight 
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pinpoints a previously unrecognized point at the outset of this study: the (theoretical) 

improvements in the emission modelling stage do not result in overall improvements 

in air quality or burden of disease estimates. Overall improvements in air quality and 

burden of disease estimates are only likely when improvements in the emission 

modelling stage are coupled with improvements in the traffic modelling stage to better 

capture the roads with lower average speeds (and higher start-stop driving). 

Further strengths were related to the use of theoretically more realistic site and 

meteorological parameters, which were not the default values in ADMS-urban (Table 

21), to account for the effect the presence of buildings has on wind speeds (Stocker, 

2015). The use of the varying background levels was also considered as an 

advantage in comparison to using constant background levels, which were unrealistic 

and resulted in worse model performance. Similarly, the use of the time varying 

emission factors based on hourly varying traffic levels and associated emissions 

(Figure 56) was considered as an advancement of previous practice (de Hoogh et al., 

2014). Both COPERT and the newly developed average-speed-emission functions 

were applied in a very detailed manner considering 167 vehicles (sub-) classes. This 

is a much more detailed categorization than that (2 or 6 vehicle categories) built in 

ADMS-Urban (Cambridge Environmental Research Consultants Ltd, 2010) and is a 

more realistic representation of the vehicles variation within the Bradford’s fleet. 

Another addition to the literature was in the comparison of the LUR versus the 

dispersion models and the comparison of all the models’ validation metrics against 

different validation datasets (Khreis et al., 2017a). Recent literature pertaining to 

these two points is limited (de Hoogh et al., 2014, de Nazelle et al., 2013, Beelen et 

al., 2010, Dijkema et al., 2011). Beelen et al. (2010) compared the performance of a 

100 x 100 m grids LUR and dispersion model used to estimate NO2 levels at 69,975 

receptor output points in a large urban area in the Netherlands. Similarly to this study, 

Beelen et al. (2010) showed moderate correlations between NO2 levels estimated 

from the LUR and the dispersion models (r = 0.55, compared to r = 0.47 with the 

PHEM-based model and 0.50 with the COPERT-based model in this study) and a 

large scatter in the relationship between the two models at the individual receptor 

output points. Unlike this study, the LUR model predicted higher concentrations at 

both the lower and higher end of the concentration range, and similar concentrations 

in the mid-range. Beelen et al. (2010) also showed that when the modelled 

concentrations were compared with measured concentrations at 18 independent 

validation sites, the dispersion model performed better than the LUR model with r = 



246 
 

246 

 

0.77 compared to 0.47 for the LUR model. This observation was not confirmed in the 

current study where the validation performance was contingent on the validation 

dataset used and likely distorted by the SATURN links misplacement/ inaccurate geo-

locations and the roads representation as straight lines (see Section 3.4.4.). In a 

similar exercise, de Hoogh et al. (2014) estimated NO2 concentrations from a LUR 

and an ADMS-Urban dispersion model at 20,919 residential addresses in Bradford 

and found a better correlation between the two models’ estimates (r = 0.67). The 

validation of the dispersion model against 40 ESCAPE tubes (1 influential site 

removed) resulted in a similar performance (r = 0.74) (de Hoogh et al., 2014) to that 

documented in this study (r= 0.78) (Table 31). 

Linked to the relevance of the validation dataset selection demonstrated in Table 28, 

de Nazelle et al. (2013) showed that the performance of the ESCAPE LUR model is 

better when validated against (internal) measurements from the ESCAPE sites whilst 

the R2 dropped by 17%-18% when the model was validated against external, 

independent measurements. A similar pattern was seen for LUR models developed 

in particular projects and applied to different external validation datasets. The 

worsening of performance was suggested to be due to a combination of over-fitting 

and differences in sampling protocols, specifically the sampling years and selection 

of monitoring sites (de Nazelle et al., 2013). Similarly, Dijkema et al. (2011) validated 

two NO2 LUR models once against their internal datasets and once against the NO2 

dataset used to develop the other LUR model. The authors showed that both LUR 

models performed less well in predicting NO2 concentrations at the external sites as 

the R2 dropped by 22% and 24%. The results of this study are in line with these 

observations and also show that, similarly to the LUR models (Dijkema et al., 2011, 

Khreis et al., 2017a), the validation datasets selection impacts the validity parameters 

of the dispersion models too (Table 28). 

5.5.3. Limitations 

This study also has its limitations. The key limitations are those related to the use of 

the SATURN traffic model, namely due to its road links misplacement/ inaccurate geo-

coding, the representations of roads as straight lines (Section 3.4.4.), the lack of 

speeds variability between the different simulation periods (Figure 25) and the 

congestion under estimation (Section 3.3.3.). These issues are discussed in turn. 

First, the unrealistic lack of temporal variability of the speeds and lack of low speed 

driving data from the SATURN model (Steer Davies Gleave, 2009), was an issue of 



247 
 

247 

 

important relevance. For example, in the AM peak hour, only about 11% of all 

modelled links (497/4500) had an average speed ≤ 10 km/h; compared to about 10% 

(445/4500) in the inter-peak and about 12% (525/4500) in the PM peak hour (link-

based speed). On the other hand, the real-world driving cycles were driven at speeds 

≤ 10 km/h 41% of the time (instantaneous speed). This traffic modelling limitation 

inhibited the application of the new average-speed-emission functions in a meaningful 

manner (see Figure 63 and associated discussion). However, outlook is changing 

with emerging real-time telematics data which can be used in the future instead of 

coarsely resolved SATURN traffic information (Nyhan et al., 2016). 

Second, the analyses and validation of the SATURN model data was only undertaken 

for traffic flows and the issue of the geo-locations inaccuracy was not fully appreciated 

until the dispersion modelling work started. The snapping method developed in this 

work (Section 3.4.4.) attempted to overcome some of these inaccuracies but was 

laborious, required multiple iterations until the final user-specific conditions were 

agreed on and selected. Due to the time restrictions of this study and the fact the 

SATURN model used was obsolete and was being updated by CBMDC, the snapping 

method was the best attempt for dealing with these issues. The snapped network 

improved the model’s validity bringing its R2 up by up to 12% (Table 30 and Table 

31). However, the snapping method did not deal with the road links being represented 

as straight lines in the SATURN model. This issue is expected to have resulted in 

poorer validation as the distance between the roads (and their emissions and 

subsequent air pollution) and the validation sites where real-world NOx was measured 

was inaccurate. Therefore, improvements in the SATURN network links’ geolocations 

may further improve the dispersion models’ validation performance. 

Further limitations relate to the emission modelling stage. As shown in Table 24, for 

petrol passenger cars, COPERT estimated NOx emissions that are > 50 % higher 

than the PHEM-based estimates. This difference was predominantly driven by the 

petrol EURO 0 passenger cars, whose data may be questionable due to the limited 

sample size available for older vehicle categories at the time of COPERT 

development and the possibility that vehicles tested under this category were of poor 

maintenance and/or failed catalysts. Furthermore, both COPERT and PHEM are 

emission models that are underlined by data collected from emission tests typically 

undertaken at temperatures between 20-30 °C (Keller et al., 2017). Emissions outside 

these temperature windows, specifically at low temperatures, are higher as NOx 

controls are less effective (Weilenmann et al., 2009, Dardiotis et al., 2012, Westcott, 
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2016, Department for Transport, 2016b). This issue has not been controlled for and 

is likely to be part of the models under estimation (Figure 68) as temperatures in 

Bradford are clearly lower than the 20-30 °C window (9 °C on average). 

Linked to both the traffic and the emission modelling stages, another limitation related 

to the use of constant vehicle proportions across all road links and all hours. In reality, 

the fleet composition differs on different streets types, e.g. rural, urban and highways, 

but also differs significantly within urban roads based on the locations and use of the 

roads and time of the day (Wyatt et al., 2016, AECOM Transportation, 2014). These 

differences can impact both vehicle emissions and TRAP levels estimated as different 

roads and time periods have different speeds (impacting emissions) and different 

meteorology (impacting TRAP). 

There are further limitations which are inherent in the dispersion modelling itself. For 

example, meteorology at the exposure scale (100 x 100 m grid) is influenced by 

complex physical features including traffic turbulence which is difficult to consider. 

The models also tend to overestimate pollution levels during periods of calm wind 

(Khreis and Nieuwenhuijsen, 2017). Further, and due to the unavailability of more 

detailed data, the effects of buildings adjacent to roads (street canyons) were not 

considered and therefore the additional turbulent flow patterns occurring inside a 

street canyon and their effects on air quality were not take into account (Vardoulakis 

et al., 2003). However, as this option only affects results at output points inside the 

street canyons (and at heights below the height of the canyon) (Cambridge 

Environmental Research Consultants Ltd, 2010), it was not considered significant in 

the current study being a health impact assessment study where air pollution levels 

will be finally averaged at the census tract level (Chapter 6). The estimation of TRAP 

at a 100 * 100 m grid scales is also a limitation as TRAP can significantly vary at the 

scale of 10s of meters (Beevers et al., 2013). 

Due to the absence of multiple background monitoring stations in Bradford which can 

provide variable NOx background levels, the DEFRA background air pollution maps 

were used. These maps have low spatial and temporal resolution but were the only 

available option in this study and are the typical source of background data used in 

local air quality review and assessment (Sayegh et al., 2016), including by CBMDC. 

Overall, these background levels improved the performance of the dispersion models 

(Table 28), but they still may under estimate or not incorporate all sources of 

emissions as the NOx measurements at the validation sites were generally higher 
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than modelled NOx (Figure 68). Higher resolved spatially varying background levels 

are currently lacking (Sayegh et al., 2016) but may improve the models’ performance. 

Another note should be made regarding the uncertainties associated with the 

validation data used in this study, especially in the diffusion tubes measurements 

(Table 22). When compared to continuous monitoring stations, NOx diffusion tubes 

were previously shown to statistically significantly under estimate NOx by 39.9% to 

68.4%, and this was attributed to ineffective conversion of NO into NO2 by the NOx 

sampler, especially at high ambient concentrations (Vardoulakis et al., 2009). 

Therefore, the models under estimation may even be higher. 

Finally, exhaust NOx was the only pollutant modelled in this study and NO2 

concentrations were derived by conversion, using one average Bradford-specific 

NO2/NOx ratio (Section 5.3.5). A preferable alternative, which would have also 

impacted the TRAP variability and R2, would have been to use spatially varying 

NO2/NOx ratios, depending on the location of the receptor data point in relation to the 

roads, e.g. using NO2/NOx ratios specifically for roads within 300 m buffers from roads 

and different ratios for urban background and rural areas. However, due to the issue 

with the SATURN links misplacement and their representation as straight lines, this 

option was ruled out as it was not possible to define meaningful and accurate buffers 

around roads, where e.g. road specific NO2/NOx can be applied. 

5.5.4. Avenues for Future Work and Next Steps 

Future work can explore the impacts of using different fleet mix (e.g. by road type, 

area, time of the day) on the modelling results and validation. The under estimation 

of congestion is a relevant issue and future work can benefit from improved traffic 

modelling or further calibration using comprehensive speed measurements. SATURN 

can be used to model traffic flows and speed values for hours outside the 3 typical 

simulation periods (AM, inter-peak and PM peaks) (Gulliver and Briggs, 2005). 

Beyond improving modelling, traffic flows and speeds may be obtained from observed 

data e.g. telematics (Pellecuer et al., 2016, Nyhan et al., 2016). The impact of cold 

start emissions on air pollution concentrations and different NO2/NOX ratios based on 

distance from the road and location should be further explored. The reasons behind 

the dispersion models under estimation warrants further in-depth research which for 

e.g. can focus on smaller parts of the road network and iteratively model and validate 

air pollution levels using differing traffic flows and fleet mixes (e.g. using local fleet 

mix), emission rates (e.g. lifted emission rates), speeds (higher congestion) and roads 
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with more accurate locations and curvatures. The next steps of this study will assign 

exposures from the LUR and the two dispersion models to the census tract area level 

and estimate the associated burden of onset childhood asthma in Bradford. 
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6 Health Impact Assessment 

6.1. Background 

6.1.1. Burden of Disease and Health Impact Assessment 

It has been long recognized that public health is influenced by actions and policies 

outside the healthcare sector including land-use, transport, housing, and industry 

(Mindell et al., 2003). In recent years, the impacts of the transport sector on public 

health have been gaining increasing attention in academic and policy circles (Khreis 

et al., 2016, Mindell, 2017, World Health Organization, 2011). To systematically 

assess and quantify these impacts, many countries and cities are increasingly using 

Burden of Disease (BoD) and Health Impact Assessment (HIA) methods (Herriott and 

Williams, 2010, Dannenberg et al., 2008). BoD and HIA studies can identify public 

health impacts including the health risks and benefits of current and proposed 

transport plans or policies (Nieuwenhuijsen et al., 2017). The results of BoD and HIA 

are easy to grasp and therefore relevant for public health professionals, policy makers 

and the public. They are often presented to policy makers to aid their decision making 

and/or to the public to catalyse their understanding of health determinants (Bhatia, 

2010, Birley, 1995, Lock, 2000, Douglas et al., 2001, Mindell et al., 2003, Künzli et 

al., 2008). 

BoD and HIA are terms which have been used interchangeably, but there are subtle 

differences between these two methods. BoD studies asses the contribution of a risk 

factor e.g. levels of air pollution to the burden of disease in a specific context/study 

area. This is done by calculating the fraction of disease or death in the population, 

attributable to the risk factor under investigation (Vander Hoorn et al., 2004). On the 

other hand, HIA is described as ‘a combination of procedures, methods and tools by 

which a policy, program or project may be judged as to its potential impacts on the 

health of a population, and the distribution of those impacts within the population’ 

(World Health Organization, 1999). HIA is a method for assessing the changes in 

health risks or benefits i.e. health impacts attributable to a plan (project, program) or 

policy in the non-health sector. In brief, the difference between a BoD and a HIA is in 

whether scenarios comparing different exposures are investigated: HIA includes a 

scenario that results in changes in health risks or benefits whilst BoD only quantifies 
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the burden of disease attributable to a risk factor (or an implicit scenario of eliminating 

the risk factor, e.g. reducing air pollution exposure levels to zero or a ‘safe threshold’). 

Whilst BoD studies are, in nature, quantitative, HIA studies can be quantitative and/or 

qualitative. The most common HIA studies, especially in policy and practice circles, 

are qualitative, relying on qualitative evidence, social sciences, expert opinion and 

stakeholder knowledge to only identify the range of the health determinants 

associated with a plan or policy and the direction of the health impacts (i.e. whether 

these are risks or benefits) (Mindell et al., 2003, Nieuwenhuijsen et al., 2017, Khreis 

et al., 2017e, Herriott and Williams, 2010). 

HIAs can also include a quantitative assessment adopting a comparative risk 

assessment approach, by investigating the health impacts of different (positive and 

negative) exposures, across different scenarios (Briggs, 2008). Both BoD and HIA, 

when quantitative, can provide numeric indices of health risk factors, inform the health 

benefit/risk trade-off of public policies (Mueller, 2017), and provide the basis for other 

economic evaluations such as cost-benefit analyses (World Health Organization, 

2015, Mueller, 2017). This facilitates and adds defensibility to the inclusion of health 

in public policy. Undertaking a quantitative HIA combines several steps including: 

1) defining the exposure(s) of interest, exposure(s) measures and ranges; 

2) defining the health outcome(s) of interest associated with the exposure(s) and 

their frequency (incidence) amongst the exposed population; 

3) selecting exposure-response functions (risk estimates) to quantify the strength 

of association between selected exposure(s) and selected health outcome(s); 

4) combining exposure(s) data with population data and exposure-response 

functions to quantify the attributable proportional health burden of the health 

outcome of interest and;  

5) quantifying the uncertainty in the estimated health burden (range of potential 

effects) (Perez et al., 2009, World Health Organization, 2015). 

Often and preferably, the exposure-response functions are sourced from systematic 

reviews and meta-analyses, as these are considered as the best available and 

generalizable evidence; in the common absence of exposure-response functions 

specific to the local populations of interest (Nieuwenhuijsen et al., 2017). 

6.1.2. Literature Review and Research Gaps 

The number of BoD and quantitative HIA studies of transport related risk factors has 

been increasing and many of which estimate the impacts of air pollution 
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(Nieuwenhuijsen et al., 2017). The largest BoD study to date is the Global Burden of 

Disease (GBD) study which contains health impact estimates, in terms of attributable 

deaths, years of life lost (YLLs), years lived with disability (YLDs) and disability-

adjusted life year (DALYs), of 79 behavioural, environmental and occupational, and 

metabolic risks, produced at national or regional levels in 188 countries (Forouzanfar 

et al., 2015). The GBD study estimated that physical inactivity and ambient air 

pollution, combined, cause > 5 million annual premature deaths. The contribution of 

transport to this burden was not specified. In another BoD study by Lelieveld et al. 

(2015), the contribution of transport to premature mortality was defined as land 

transport emissions were estimated to cause 1/5 of all deaths attributable to PM2.5 

and O3 in Germany, the UK and USA whilst globally, they were estimated to cause 

5% of premature deaths (Lelieveld et al., 2015). 

Until now, estimates of BoD have been mainly produced on a national or regional 

scale (Mueller et al., 2017). Although insightful, air pollution BoD estimates at a global, 

regional and national level, as above, are less useful for local authorities. At a local 

scale, averaged impacts over larger populations are not adequate to evaluate health 

impacts from local risk factors and the impacts of local interventions (Perez et al., 

2009, Nieuwenhuijsen et al., 2017). With cities moving to the forefront of providing 

solutions for environmental and health issues (Gouldson et al., 2015), BoD/HIA 

estimates at a local level are valuable to demonstrate health impacts of current and 

proposed policies. Local BoD/HIA also offer the potential to engage with the affected 

communities, catalyse their understandings of health determinates and provide them 

with information to help them better evaluate current and proposed policies (Van 

Brusselen et al., 2016, Nieuwenhuijsen et al., 2017, Ringland, 2017). BoD and HIA 

studies for cities are relatively new and lack full-chain models (Nieuwenhuijsen et al., 

2017). These studies, as in traditional HIA, have generally been focused on 

premature mortality and the quantification of TRAP’s impact on morbidity is less 

developed (Künzli, 2002, Künzli et al., 2008). 

Of relevance is the impact of TRAP on the development of childhood asthma. Little 

work has been undertaken to estimate the burden of childhood asthma attributable to 

TRAP. Only four relevant studies, coming from the same group, were identified in the 

literature (Perez et al., 2009, Perez et al., 2013, Künzli et al., 2008, Perez et al., 2012). 

The key elements of these studies are summarized in Table 33 and overviewed next. 

Three of these studies were conducted in California, Long Beach, Riverside and Los 

Angeles county (Künzli et al., 2008, Perez et al., 2009, Perez et al., 2012). The fourth 
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study was conducted in 10 European cities (Perez et al., 2013) (Table 33). All four 

studies estimated the impacts of exposure to TRAP, characterized by proximity to 

major roadways, on asthma prevalence in children between birth and 18 years old. 

Baseline childhood asthma prevalence rates in the four studies was similar at around 

12% in most areas, but different in the Perez et al. (2013) study in the cities of Bilbao 

and Ljubljana (21.3% and 29.2%); Brussels (7.3%); Stockholm (9.3%) and Vienna 

(5.8%). In all four studies, the asthma prevalence exposure-response function was 

sourced from an individual estimate in a Southern Californian population-based study 

by McConnell et al. (2006) who estimated that the risk of prevalent asthma associated 

with long term residence of < 75 m from a busy road is 1.64 (1.10, 2.44), in children 

aged 5-7 years. Overall, these studies suggested that 6% to 14% of childhood asthma 

cases were attributable to TRAP exposure; as characterized by traffic proximity. 

These studies, despite pioneering in studying asthma as a morbidity outcome in 

TRAP-HIA, have important limitations which are summarized in Table 33 and which 

will be addressed in the present work. First, these studies are relying on residential 

proximity to major roadways as the TRAP exposure metric. Proximity to major 

roadways is a crude exposure measure which is sensitive to confounding by 

socioeconomic factors, cannot provide information on the impacts of specific sources 

and actual pollutants and lacks consideration of significant local emissions and 

dispersion processes (Beevers et al., 2013, Khreis and Nieuwenhuijsen, 2017). 

Second, the exposure-response function used in these studies was sourced from an 

individual study rather than a meta-analysis. This can be argued as preferable in the 

Southern Californian HIA studies (Künzli et al., 2008, Perez et al., 2009, Perez et al., 

2012), where the exposure-response function come from, but not in the European 

study (Perez et al., 2013). The use of the point exposure-response estimate resulted 

in large statistical uncertainty around the estimated burden but at the time, there were 

no meta-analytical exposure-response functions available which could be used. 

Third, the age range for which the exposure-response function related to and the age 

range of the population under study did not match, something which could impact 

final estimates (Table 3). Uncertainties in health impact estimates due to uncertainties 

in the exposure assessments and the underlying health outcome estimates have not 

been examined and are issues which are generally underexplored in the literature. 

Finally, these studies examined prevalent asthma, rather than incident asthma, 

defined as ‘the reported use of controller medications for asthma in the previous year 

or (physician) lifetime asthma with any wheeze in the previous year. In addition, 
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children without a physician’s diagnosis who had severe wheeze in the previous 12 

months were included as prevalent asthmatics to identify asthma undiagnosed 

because of poor access to medical care” (McConnell et al., 2006). Therefore, these 

studies do not give indication of how many asthma cases could be avoided.
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Table 33 Main Characteristics of HIA Studies on TRAP and Childhood Asthma 

Study Künzli et al. (2008) Perez et al. (2009) 

Setting California, Long Beach Southern California, Long Beach and Riverside 

Age group (years) Children aged 0-17 years Children aged 0-17 years 

Exposure assessment Distance to the nearest major road defined as an interstate 
freeway, US highway or limited access highway, or other 
highway or arterial roads, monitoring data for NO2 

Proximity to major roadways (distance from major 
roads to households assigned to grids), monitoring 
data for NO2 and O3 

Pollutant(s) Living near a busy road, NO2 Living near a busy road, NO2, O3 

Outcome(s) Episodes of bronchitis symptoms, asthma prevalence Bronchitis episodes among those with asthma, 
clinic visits for asthma, emergency department 
visits for asthma, hospital admissions for asthma, 
asthma prevalence (attributable to living < 75 m 
from a busy road) 

Source of exposure-
response functions 

Individual local study: McConnell et al. (2006) (asthma 
prevalence associated with living < 75 m from a busy road) 

Individual local study: McConnell et al. (2006) 
(asthma prevalence associated with living < 75 m 
from a busy road) 

Exposure-response 
function (95% CI) 

1.64 (1.10, 2.44) – for age 5-7 years 1.64 (1.10, 2.44) – for age 5-7 years 

Baseline childhood 
asthma rates 

Asthma prevalence: 12.8% Asthma prevalence in Long Beach: 12.8% 

Asthma prevalence in Riverside: 14.9% 

Tested scenarios Numbers of children living in the first 75 m of busy roads is 
reduced to zero or high TRAP along busy roads would fall to 
levels in areas > 75 m of busy road 

 No ship emissions 

 NO2 levels reduced to levels in the cleaner 
coastal southern Californian communities 
(11 and 18 ppb reductions) 

 Numbers of children living in the first 75 m 
of busy roads is reduced to zero or high 
TRAP along busy roads would fall to levels 
in areas > 75 m of busy road 

Limitations as reported 
by the authors 

 Assuming that TRAP develops asthma (at the time only 
emerging evidence) 

 The use of an exposure-response function from a 
single rather than a pooled estimate which caused 
large statistical uncertainty (at the time enough studies 
for the derivation of a meta-analytical estimate were 
unavailable) 

 Using traffic proximity as a proxy for exposure to TRAP 
and the attribution of uniform risk to children at all 
residential distances within 75 meters of a major 
roadway (a simplification of the continuous decline to 
approximately 200 meters) 

 Age range for exposure-response function and the 
population under study did not match 

 Population attributable fraction considers one risk 
factor at a time (not a multi-causal model) 

 Assuming that TRAP develops asthma (at 
the time only emerging evidence) 

 The use of an exposure-response function 
from a single rather than a pooled estimate 
which caused large statistical uncertainty 
(at the time enough studies for the 
derivation of a meta-analytical estimate 
were unavailable) 

 Using traffic proximity as a proxy for 
exposure to TRAP and the attribution of 
uniform risk to children at all residential 
distances within 75 meters of a major 
roadway (a simplification of the continuous 
decline to approximately 200 meters) 

 Age range for exposure-response function 
and the population under study did not 
match 

 Population attributable fraction considers 
one risk factor at a time (not a multi-causal 
model) 

Relevant findings 1626 cases of childhood asthma in Long Beach (9.3% of all 
cases) were attributable to traffic proximity. Substantial impact 
of traffic proximity on asthma exacerbation (up to 39.8% of all 
exacerbations) 

1600 cases of childhood asthma in Long Beach 
(9% of all cases) and 690 in Riverside (6% of all 
cases) were attributable to traffic proximity. 
Substantial impact of traffic proximity on asthma 
exacerbation e.g. up to 55% of all bronchitis 
episodes 

 

Study Perez et al. (2012) Perez et al. (2013) 

Setting California, Los Angeles County 10 European cities, Barcelona, Bilbao, Brussels, 
Granada, Ljubljana, Rome, Sevilla, Stockholm, 
Valencia, Vienna 

Age group (years) Children < 18 years old Children aged 0-17 years 

Exposure assessment Proximity to busy roads, monitoring data for NO2 and O3 Proximity to busy roads, defined as roads with 
>10,000 vehicles / day (distance from major roads 
to households assigned to grids), monitoring data 
for NO2 and PM10 

Pollutant(s) Living near a busy road, urban NO2 and O3 Living near a busy road, urban NO2 and PM10 

Outcome(s) Asthma prevalence (attributable to living < 75 m from a busy 
road), asthma exacerbations including bronchitis episodes, 
doctor visits, emergency department visits, hospital 
admissions, school absence for respiratory illness 

Asthma prevalence (attributable to living < 75 m 
from a busy road), asthma exacerbations, 
symptoms, hospital admissions 

Source of exposure-
response functions 

Individual local study: McConnell et al. (2006) (asthma 
prevalence associated with living < 75 m from a busy road) 

Individual study: McConnell et al. (2006) (asthma 
prevalence associated with living < 75 m from a 
busy road) 

Exposure-response 
function (95% CI) 

1.64 (1.10, 2.44) – for age 5-7 years 1.64 (1.10, 2.44) – for age 5-7 years 
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Baseline childhood 
asthma rates 

Asthma prevalence: 12.6% Asthma prevalence in Barcelona: 11.8% 

Asthma prevalence in Bilbao: 21.3%; Brussels: 
7.3%; Granada: 12.6%; Ljubljana: 29.2%; Rome: 
12.6%; Seville: 13.0%; Stockholm: 9.3%; Valencia: 
11.0%; Vienna: 5.8% 

Average in 10 cities: 12.8% 

Tested scenarios  A reduction in annual concentrations of regional 
pollutants for each census block group to levels found 
in clean communities (from 23.3 ppb to 4 ppb for NO2 
and 39.3 ppb to 36.3 ppb for O3) in combination with a 
reduction in the proportion of children in the county 
living within 75 m of a major road from 17.8% (current) 
to 0% 

 A 20% reduction in the annual concentrations of 
regional pollutants for each census block group (from 
23.3 ppb to 19.4 ppb for NO2 and 39.3 ppb to 38.7 ppb 
for O3) in combination with a 3.6% reduction in the 
proportion of all children in the county living within 75 m 
of a major road (from 17.8% to 14.2%, corresponding 
to a 20% decrease in the proportion of children 
currently living within 75 m) 

 A 20% reduction in regional pollutant concentrations in 
combination with a 3.6% increase in the proportion of 
children living within 75 m of a major road (from 17.8% 
to 21.2%). 

 Numbers of children living in the first 75 m 
of busy roads is reduced to zero 

Limitations as reported 
by the authors 

 Using traffic proximity as a proxy for exposure to TRAP 

 Assuming that TRAP develops asthma (at the time only 
emerging and uncertain evidence) 

 Population attributable fraction considers one risk 
factor at a time (not a multi-causal model) 

 The time lag that might be required for health benefits 
to be achieved was not addressed 

 Not accounting for additive effects of different 
pollutants 

 The use of an exposure-response function from a 
single rather than a pooled estimate (at the time 
enough studies for the derivation of a meta-analytical 
estimate were unavailable) 

 Only accounting for exposures at the home address 
and not at the school addresses 

 Under-diagnosis of asthma may mean that prevalence 
used to derive attributable cases was too low 

 Exposure to TRAP along smaller streets has been 
ignored 

 Other health outcomes associated with air pollution 
were not investigated 

 Assuming that TRAP develops asthma (at 
the time only emerging evidence) 

 Population attributable fraction considers 
one risk factor at a time (not a multi-causal 
model) 

 The use of an exposure-response function 
from a single rather than a pooled estimate 
(at the time enough studies for the 
derivation of a meta-analytical estimate 
were unavailable) 

 Under-diagnosis of asthma may mean that 
prevalence used to derive attributable 
cases was too low 

 Population exposure to TRAP along 
smaller streets have been ignored 

 Using traffic proximity as a proxy for 
exposure to TRAP 

Relevant findings 2% (5,9000) to 12% (39,800) of all cases of childhood asthma 
could be prevented, depending on the scenario tested. One 
scenario could increase asthma cases by 2% (reduction in 
regional pollutant concentrations in combination with an 
increase in the proportion of children living within 75 m of a 
major road) 

33200 cases of childhood asthma across the 10 
cities (14% of all cases) were attributable to traffic 
proximity. Substantial impact of traffic proximity on 
asthma exacerbation e.g. up to 15% of all acute 
events 
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6.2. Chapter Objectives and Contribution to Literature 

The objective of this research phase was to link TRAP exposure data to childhood 

population data and estimate the annual number of childhood asthma cases 

(from birth to 18 years old) attributable to TRAP exposures in Bradford, UK. 

Another objective of this research phase was to explore the impact of using 

different exposure assessment methods on the estimated number of childhood 

asthma cases attributable to TRAP and the sensitivity of the results to the 

underlying health outcome frequency estimates. As such, this research phase 

filled some of the literature gaps by moving beyond HIA and BoD studies mainly 

focused on premature mortality; estimating the morbidity burden of an outcome with 

significant healthcare and quality of life consequences. This research phase also 

contributed to overcoming some of the gaps associated with the current evidence 

base namely, the scarcity of city-level and full-chain BoD and HIA and the under-

exploration of uncertainties associated with exposure assessments. 

6.3. Methods  

6.3.1. Exposure Modelling and Exposure Reduction Scenarios 

Three exposure assessment models were used in this research study including 2 full-

chain exposure assessment models covering the whole chain of traffic activity 

(Chapter 3), traffic emissions (Chapter 4) and air pollution dispersion (Chapter 5) and 

employing two distinct emission models. The third exposure model was a LUR model 

developed in the ESCAPE project and described in full in Beelen et al. (2013) (for 

NO2 and NOx) and Eeftens et al. (2012) (for BC, PM2.5 and PM10). In brief, the LUR 

method is a commonly used empirical method in air pollution epidemiology that uses 

least squares regression to combine measured pollutant concentrations with GIS-

based predictor data reflecting pollutant sources and surrounding land use 

characteristics to build a prediction model applicable to non-measured locations 

(Khreis and Nieuwenhuijsen, 2017). NO2 and NOx LUR models were developed for 

Bradford from measurements overviewed in Section 5.3.5. and validated in 2012 as 

part of the ESCAPE project (Beelen et al., 2013). BC, PM10, and PM2.5 models were 

developed for London/Oxford and validated in 2012 as part of the ESCAPE project 

(Eeftens et al., 2012). These models were assumed to apply to Bradford and the LUR 

equations developed for London/Oxford were used in this research study. Similarly, 
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they have been used to estimate air pollution levels in Bradford in previous 

publications (Pedersen et al., 2013, Schembari et al., 2015). 

To construct air pollution maps, all three models were used to generate exposure 

estimates at 46,452 specified output points; each of which represented the centroid 

of a 100*100 m grid (as detailed in ‘Output Points (Grids Data)’, Section 5.3.3.). The 

exposure estimate at each of these points was held constant for all other points within 

(the whole of) each 100*100 m grid. 

As an exposure reduction scenario to compare the estimated BoD to, air pollution 

was assumed to be reduced to zero. This, of course, is an unrealistic scenario, the 

aim of which was not to assess the impact of a plausible policy per se but rather to 

estimate the overall number of asthma cases attributable to TRAP and generate a 

BoD estimate (Section 6.1.1.). As another more plausible exposure reduction 

scenario, air pollutants at each census tract which was exceeding the WHO Air 

Quality Guideline values (Krzyzanowski and Cohen, 2008), were reduced to comply 

with the guidelines. This scenario was applicable to three pollutants: 

 NO2 reduced to 40 µg/m3 (annual average) 

 PM10 reduced to 20 µg/m3 (annual average) 

 PM2.5 reduced to 10 µg/m3 (annual average) 

The reduction in new asthma cases attributable to these scenarios was calculated, 

although these estimates are only indicative as there is no evidence that health effects 

do not occur under these thresholds (Health Effects Institute, 2010). 

6.3.2. Population Exposure Distribution 

The ‘output area’ was the lowest geographical level at which census population data 

were available (Office for National Statistics, 2016). This was the geographical level 

used to assign childhood population data, exposure data, attributable fraction and 

attributable cases. The characteristics of Bradford’s output areas are in Table 34. 

Table 34 Characteristics of Bradford’s Census Output Areas 

Number of output areas 1,528 output areas 

Total number of children in all output areas (birth – 18 y.o.) 143,472 children 

Average number of children in all output areas (birth – 18 y.o.)  94 children 

Minimum number of children in an output area (birth – 18 y.o.) 3 children 

Maximum number of children in an output area (birth – 18 y.o.) 468 children 

Percentage of children ≤ 6 years old (pre-school age) in all output areas 44.7% 

Percentage of children > 6 years old (school age) in all output areas 55.3% 
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Average area of all output areas (m2) 239,802 

Minimum area of an output area (m2) 3,817 

Maximum area of an output area (m2) 15,395,650 

 

There were 1,528 output areas in which a total of 143,472 children lived (year 2011). 

The digital boundaries of the output areas were extracted from the UK Data Service: 

‘Boundary Data Selector’ (https://borders.ukdataservice.ac.uk/). The childhood 

population and age data were extracted from the UK Data Service: ‘InFuse’ 

(http://infuse.ukdataservice.ac.uk/). The 2011 census data were used as these were 

considered more compatible with the 2009 exposure estimates than the 2001 census 

data; the only other dataset available. The childhood population data within the output 

areas’ digital boundaries is shown in Figure 70. Most children lived in the areas within 

and around the Ring Road; in the South East of Bradford. 

 

Figure 70 Output Areas Digital Boundaries and Childhood Population (Birth to 18 

Years Old), Source: Own Work (Arc Map 10.4), Data Source: Office for National 

Statistics (2011) 

The census tracts’ average annual exposure levels for the different pollutants studied 

and from the 3 different exposure assessment models were obtained by intersecting 

the air pollution maps with the underlying census maps and summarizing the raster 

https://borders.ukdataservice.ac.uk/
http://infuse.ukdataservice.ac.uk/
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cell values (from the air pollution maps) contained within each underlying census 

tract/polygon (using the ‘isectpolyrst’ tool in the Geospatial Modelling Environment 

suite version 0.7.4.0.). 

Where there was no intersection between the raster air pollution layers and the 

polygon boundaries (i.e. no underlying air pollution estimate because the census 

coverage was larger), these polygons were excluded from the analysis. The number 

of such polygon were 156(/1,528). In these areas, 10,089(/143,472) children, or ≈ 7%, 

of all children between birth and the age of 18 years lived. Therefore, this exclusion 

is expected to under estimate the burden of childhood asthma attributed to air 

pollution in Bradford. 

6.3.3. Baseline Childhood Asthma Incidence Rates 

The incidence rate of asthma in children from birth to 18 years old in Bradford was 

not found in the peer reviewed or the grey literature. Instead, the national incidence 

rate of childhood asthma (birth to 18 years old) in the UK was used. This was 

extracted from Punekar and Sheikh (2009) who reported 137 clinician-diagnosed 

asthma cases per 10,000 person-years, by the age of 18 years, as identified for 

43,473 children indexed in the General Practice Research Database (GPRD). 

In another Bradford specific publication, Mebrahtu et al. (2015) identified asthma, 

based on diagnostic and prescription codes in the primary care database, in 13,734 

children aged 0 to 7 years, participating in the Born in Bradford cohort (Wright et al., 

2013). Using the data reported in this paper, an asthma incidence rate of 123 per 

10,000 person-years, by the age of 7 years, was calculated. However, and as the 

authors note, this figure is likely to be conservative due to the asthma diagnosis 

difficulties in this age range (Mebrahtu et al., 2015). Indeed, Bradford is known to 

have childhood asthma rates higher than national and regional averages (Yorkshire 

and Humber Public Health Observatory, 2012). Hence, Mebrahtu et al. (2015) also 

established another outcome termed ‘wheezing disorders based on treatment’ which 

identifies the existence of at least two drug prescriptions indicated for the treatment 

of asthma a minimum of 1 week and a maximum of 12 months apart. Based on this 

outcome, an asthma incidence rate (‘based on treatment’) of 442 per 10,000 person-

years, by the age of 7 years, was calculated. Both incidence rates calculated from 

Mebrahtu et al. (2015) were used in sensitivity analyses to explore the influence of 

the background incidence rates in the impact assessment (Künzli, 2002). 
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6.3.4. Exposure-Response Functions 

Exposure-response functions were extracted from the meta-analyses undertaken in 

this research study (Chapter 2). The ‘overall’ (birth to 18 years old) exposure-

response functions for each pollutant were used (Table 3). The risk estimates for 

asthma development from these exposure-response functions had to be scaled to the 

difference in exposure between the reference (2009) average exposure level at each 

census tract and the two investigated exposure reduction scenarios (Section 6.3.1.): 

 Scenario #1: air pollution reduced to zero; and 

 Scenario #2: where exceeding the guidelines, air pollution reduced to the 

WHO Air Quality Guideline value (applicable to NO2, PM10 and PM2.5 only). 

To scale a risk estimate to the exposure difference between the reference and the 

counterfactual scenarios, standard methods were used (Mueller et al., 2016), where: 

𝑅𝑅𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑒
((

ln 𝑅𝑅
𝐸𝑅𝑅_𝑢𝑛𝑖𝑡

)×𝐸𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
 … (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.1. ) 

Where RR is the relative risk obtained from the exposure-response function; 

𝐸𝑅𝑅_𝑢𝑛𝑖𝑡 is the exposure unit that corresponds to the RR obtained from the 

exposure response function; 

𝐸𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the difference in the exposure level between the 

counterfactual scenario and the reference scenario; 

𝑅𝑅𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the scaled relative risk that corresponds to the 

difference in exposure level between the counterfactual (no exposure) and 

reference (2009 exposure) scenario 

6.3.5. Population Attributable Fraction and Number of Cases 

The population attributable fraction (PAF) is the proportional health burden of the 

health outcome of interest that is attributable to the difference in exposure level 

between the exposure reduction and the reference scenario (Murray et al. 2004; 

Vander Hoorn et al. 2004). PAF is a standard metric used in BoD and HIA studies 

and can be calculated as follows (World Health Organization, 2015): 

𝑃𝐴𝐹 =
∑ 𝑃𝑛

𝑖=1 (𝑅𝑅𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 1)

∑ 𝑃𝑛
𝑖=1 (𝑅𝑅𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 1) + 1

 … (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.2. ) 

Where P is the proportion of the exposed population; 
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𝑅𝑅𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the previously scaled RR that corresponds to the 

difference in exposure level between the counterfactual (no exposure) and 

reference (current exposure) scenario 

n is the number of exposure levels 

Finally, the number of childhood asthma cases attributable to the excess exposure: 

Attributable number of cases

= PAF ∗ expected cases due to all causes … (Equation 6.3. ) 

 Where Expected cases due to all causes = childhood population ∗

childhood incidence rate … (Equation 6.4. ) 

An example for the BC calculations at census tract #E00053577 is given below (Table 

35). These calculations were undertaken for each census tract, and each pollutant, 

separately. These results in Table 35 mean that in census tract # E00053577, 0.40 

childhood asthma cases were estimated to be attributable to the BC annual mean 

exposure in that census tract. 

Table 35 Calculation Example at one Census Tract for Black Carbon 

Overall risk estimate per 0.5 x 10-5 m-1 BC = 1.08 (95% CI; 1.03, 1.14) (Table 3) 

Census tract ID # E00053577 

Current annual average BC * 10-5 m-1 (from LUR model) 1.81 

Counterfactual annual average BC * 10-5 m-1 – scenario #1 0 

Exposure difference in 10-5 m-1 – scenario #1 1.81* 10-5 m-1 – 0 * 10-5 
m-1 = 1.81 10-5 m-1 

Risk estimate exposure difference – scenario #1 (Equation 6.1.) 1.32 

PAF – scenario #1 (Equation 6.2.) 0.24 

Population (birth to 18 years old) 119 

All-cause expected childhood asthma cases (incidence rate 
137 per 10,000 person-years) (Equation 6.4) 

119* 137/10,000 = 1.63 

Attributable number of childhood asthma cases (Equation 6.3) 0.24*1.63 = 0.40 

Counterfactual annual average BC * 10-5 m-1 – scenario #2 NA, no air quality 
guideline 

6.4. Results 

The annual average census tract pollutant levels, as estimated from the three 

exposure assessment models (Section 6.3.1.), are shown in Table 36. On average, 

these levels were low and the LUR model estimated higher NO2 and NOx than the full-

chain exposure models. The annual average census tract pollutant levels were highly 
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correlated with each other, with correlation coefficients ranging between 0.94 (for NO2 

(LUR) and NOx (LUR)) to 0.40 (for NO2 (snapped COPERT) and BC (LUR)). The 

correlation matrix showing the relationships between the different pollutant and model 

combinations can be found in Annex 6.1, Figure 72.  

Table 36 Annual Average Census Tract Pollutant Levels (µg/m3 for all pollutants 

except BC 10-5 m-1) 

Statistic Minimum 1stquartile Median Mean 3rd quartile Maximum 

NO2 (snapped COPERT) 6.45 11.34 14.72 15.41 17.98 45.62 

NO2 (snapped PHEM) 6.40 11.23 14.41 15.21 17.65 55.19 

NO2 (LUR) 12.42 20.15 21.63 21.93 23.7 37.09 

NOx (snapped COPERT) 10.75 18.90 24.53 25.68 29.97 76.03 

NOx (snapped PHEM) 10.67 18.71 24.02 25.35 29.41 91.99 

NOx (LUR) 0.00 31.29 35.22 35.60 40.28 73.32 

PM2.5 (LUR) 7.67 9.62 10.31 10.40 10.97 26.13 

PM10 (LUR) 12.17 15.54 16.53 16.63 17.65 27.94 

BC (LUR) 0.85 0.90 0.99 1.07 1.16 3.60 

6.4.1. The Impact of the Vehicle Emission Factors 

The asthma cases attributable to NO2 and NOx as estimated from the two full-chain 

exposure models: the COPERT-based and the PHEM-based dispersion models are 

shown in Table 37. The use of the different emission factors in the two dispersion 

models (COPERT- and PHEM-based), differently from what was hypothesized at the 

outset of this study, did not have a significant impact on the final health burden 

estimated (Table 37). Using the COPERT-based dispersion model, the results 

suggested that, per year, 321 (range = 139, 428) asthma cases, or 18% of asthma 

cases attributable to all causes, were attributable to NO2 in Bradford whilst 530 (range 

= -201, 976) annual cases, or 29% of all cases, were attributable to NOx, the latter 

was not statistically significant. The estimates were similar to the PHEM-based 

dispersion model estimates (Table 37). There were no differences between the health 

impacts estimated using the original (unsnapped) (Annex 6.2.) and the processed 

(snapped) SATURN traffic network (Table 37). 

In line with the premise of the full-chain exposure models developed in this work 

(Section 1.2.), additional analysis was undertaken to detangle the impact of TRAP 

from the impact of other air pollution sources. The results are shown in the last column 

of Table 37 (highlighted in light green) and suggest that the TRAP component of the 

overall air pollution models, as estimated using the two dispersion models, is only 
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responsible for a small percentage of the air pollution attributable asthma cases; 3% 

for traffic-NO2 and 5%-6% for traffic-NOx. These estimates are likely to be an under 

estimation as discussed and demonstrated in Section 6.5.3. 

Table 37 Estimated Annual Attributable Asthma Cases in Bradford using the Snapped 

COPERT- and PHEM-based Dispersion Models (baseline asthma incidence = 137 

per 10,000 person-year, baseline asthma incident cases = 1827) 

Model Pollutant Attributable 
cases 

Attributable 
cases lower 

CI 

Attributable 
cases upper 

CI 

Percentage 
of all cases 

Attributable 
cases to 
traffic  

Snapped 
COPERT 

NO
2
 321 139 428 18% 62 (3%) 

Snapped 
COPERT 

NO
x
 530 -201 976 29% 109 (6%) 

Snapped 
PHEM  

NO
2
 317 137 423 17% 57 (3%) 

Snapped 
PHEM  

NO
x
 523 -198 966 29% 100 (5%) 

 

6.4.2. The Impact of the Exposure Assessment Method and the 

Pollutant Selection 

The asthma cases attributable to NO2 and NOx as estimated from the third exposure 

model, the LUR model, are shown in Table 38. Also in the table are the asthma cases 

attributable to the LUR’s estimates of the other pollutants: PM2.5, PM10 and BC. The 

use of the LUR models, instead of the full-chain exposure models, had a significant 

impact on the health burden estimated, as did the selection of different pollutants.  

Table 38 Estimated Annual Attributable Asthma Cases in Bradford using the LUR 

Models (baseline asthma incidence = 137 per 10,000 person-year, baseline 

asthma incident cases = 1827) 

Pollutant Attributable cases Attributable cases 
lower CI 

Attributable cases 
upper CI 

Percentage of all 
cases 

NO
2
 435 191 573 24% 

NO
x
 687 -279 1196 38% 

PM
2.5

 488 182 732 27% 

PM
10

 612 279 866 33% 

BC 279 113 447 15% 
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Using the LUR model, the results suggested that, per year, 435 (range = 191, 573) 

asthma cases, or 24% of all asthma cases, were attributable to NO2 whilst 687 (range 

= -279, 1196) annual cases, or 38% of all cases, were attributable to NOx, although 

the latter was not statistically significant (Table 38). As such, compared to the full-

chain exposure models (Table 37), the LUR models resulted in 6%-9% higher 

attributable asthma cases. The LUR results also differed noticeably depending on 

which pollutant was used in the analysis with the highest asthma attributable cases 

related to NOx (38%; although this was not statistically significant), followed by PM10 

(33%), PM2.5 (27%), NO2 (24%) and finally BC (15%) (Table 38). 

6.4.3. The Impact of the Exposure Reduction Scenario 

Table 36 shows that average air pollution levels estimated from the three exposure 

models were low. There were 6 of 1,528 census tracts which exceeded the annual 

WHO air quality guideline of 40 µg/m3 for NO2 (from the dispersion models; the LUR 

estimated no exceedances), 878 which exceeded the PM2.5 guideline (10 µg/m3) and 

64 which exceeded the PM10 guideline (20 µg/m3) (Section 6.3.1.). The air pollution 

level at these census tracts was brought down to the air quality guideline and the HIA 

repeated. Compliance with the NO2 guideline did not reduce the attributable number 

of asthma cases by even one full case; compliance with the PM2.5 guideline reduced 

the attributable number of asthma cases by 29 cases whilst compliance with the PM10 

guideline reduced the attributable number of asthma cases by 2 cases. 

6.4.4. The Impact of the Baseline Asthma Incidence Rates 

Table 39 shows the asthma cases attributable to all pollutants, from all the available 

exposure models, as estimated using differing baseline asthma incidence rates 

calculated from Mebrahtu et al. (2015). Compared to the main analyses (Table 37 

and Table 38), the number of the estimated attributable asthma cases drops when 

using the first lower asthma incidence rate (123 per 10,000 person-year) whilst it 

significantly rises when using the second higher asthma incidence rate (442 per 

10,000 person-year), based on treatment (Section 6.3.3.). 

As the percentage of air pollution attributable asthma cases from the all-cause asthma 

cases does not change with changing baseline asthma incidence rates, the relevance 

of the different estimates shown in Table 39 is demonstrated in monetary values. The 

aim of this exercise is not to cost the health impacts per se but to simply demonstrate 

the impact which baseline asthma incidence rates have from a policy perspective. 

According to Nunes et al. (2017), the annual average cost of an asthma case in 
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Europe was estimated at $USD 1,900 (£1,264 using 2013 average exchange rate 

which corresponded to the underlying data). Using the first baseline asthma incidence 

rate of 123 per 10,000 person-year, the annual cost of asthma attributable to air 

pollution in Bradford ranged from £315,875 to £779,580. However, using the second 

baseline incidence rate of 442 per 10,000 person-year, the annual cost of asthma 

was 3.6 times as much; ranging from £1,135,887 to £2,801,180, depending on the 

exposure model and the pollutant investigated (Table 39). 

Table 39 Estimated Annual Attributable Asthma Cases in Bradford All Available 

Exposure Models and Differing Baseline Asthma Incidence Rates 

Baseline asthma incidence = 123 per 10,000 person-year 
Baseline asthma incident cases = 1641 

Model Pollutant Attributable 
cases 

Attributable 
cases lower 

CI 

Attributable 
cases upper 

CI 

Percentage 
of all cases 

Estimated 
cost/year 

Snapped 
COPERT 

NO
2
 288 125 384 18% £363,888 

Snapped 
COPERT 

NO
x
 476 -181 876 29% £601,426 

Snapped 
PHEM 

NO
2
 285 123 379 17% £360,098 

Snapped 
PHEM 

NO
x
 470 -178 868 29% £593,845 

LUR NO
2
 391 172 515 24% £494,029 

LUR NO
x
 617 -251 1073 38% £779,580 

LUR PM
2.5

 438 163 657 27% £553,413 

LUR PM
10

 549 250 778 33% £693,662 

LUR BC 250 101 402 15% £315,875 

Baseline asthma incidence = 442 per 10,000 person-year 
Baseline asthma incident cases = 5896 

Snapped 
COPERT 

NO
2
 1,036 448 1381 18% £1,308,986 

Snapped 
COPERT 

NO
x
 1,709 -649 3150 29% £2,159,322 

Snapped 
PHEM 

NO
2
 1,022 441 1363 17% £1,291,297 

Snapped 
PHEM 

NO
x
 1,687 -639 3118 29% £2,131,525 

LUR NO
2
 1,403 617 1850 24% £1,772,691 

LUR NO
x
 2,217 -902 3857 38% £2,801,180 

LUR PM
2.5

 1,574 586 2363 27% £1,988,749 
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LUR PM
10

 1,974 900 2794 33% £2,494,149 

LUR BC 899 364 1443 15% £1,135,887 

 

6.4.5. The Impact of adding Minor Road and Cold Start 

Concentrations to the Background NOx Levels 

As adding minor road and cold start concentrations to the snapped COPERT-based 

model estimates improved the performance of the model (Table 32), the HIA 

calculations were repeated using the snapped COPERT-based model estimates + 

minor roads and cold starts concentrations, and the new results were compred to 

the main analysis (Table 37). Table 40 shows that the addition of minor road and 

cold start concentrations almost doubled the asthma cases attributable to traffic, 

bringing the percentage of the air pollution attributable asthma cases from 3% up to 

7% for traffic-NO2 and from 6% up to 12% for traffic-NOx. Interestingly, the inclusion 

of minor roads and cold starts also brought the estimates of the two exposure 

models, the dispersion and LUR models, closer (Table 38 and Table 40). 

Table 40 Estimated Annual Attributable Asthma Cases in Bradford using the Snapped 

COPERT Dispersion Models complemented by minor road and cold start 

concentrations (baseline asthma incidence = 137 per 10,000 person-year, 

baseline asthma incident cases = 1827) 

Model Pollutant Attributable 
cases 

Attributable 
cases lower 

CI 

Attributable 
cases upper 

CI 

Percentage 
of all cases 

Attributable 
cases to 
traffic  

Snapped 
COPERT 
+ minor 
roads 

and cold 
starts 

NO
2
 394 173 520 22% 128 (7%) 

Snapped 
COPERT 
+ minor 
roads 

and cold 
starts 

NO
x
 638 -256 1125 35% 219 (12%) 
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6.5. Discussion 

6.5.1. Summary 

In summary, this work used two full-chain exposure assessment models, to estimate 

the exposure to NOx and NO2 at the census tract level and estimate the childhood 

asthma cases attributable to these exposures. The contribution of TRAP to the 

exposures was specifically quantified, once excluding minor road and cold start 

concentrations and once including them. To compare the attributable childhood 

asthma cases estimated using the full-chain exposure assessment models to those 

attributable using commonly used exposure assessment models, the census tracts 

NO2 and NOx exposures were also derived using the Bradford’s ESCAPE LUR 

models (Beelen et al., 2013). Moreover, the ESCAPE’s LUR models provided 

exposure estimates for other pollutants: PM10, PM2.5 and BC and these were also used 

in the analysis. In sensitivity analyses, different (higher and lower) baseline asthma 

incidence rates were used. 

Depending on which pollutant is considered to be the putative agent, the results 

indicated that 15%-38% of new childhood asthma cases in Bradford are attributable 

to the exposure to air pollution. The health impacts estimated were sensitive to the 

exposure assessment model used, the pollutant selected in the analysis but, 

differently from the initial hypothesis, not the vehicle emission factors used in the full-

chain models. Using the full-chain models, the contribution of TRAP to the air pollution 

attributable asthma burden was specifically quantified and was smaller than 

expected; ranging between 3%-6%. When minor road and cold start concentrations 

were included, this contribution almost doubled bringing the burden of disease from 

3% to 7% for traffic-NO2 and from 6% to 12% for traffic-NOx. This contribution, 

however, is still likely to be higher in reality as all models tended to under estimate 

TRAP. Within the LUR models’ analyses, the pollutant selection resulted in different 

attributable asthma burden ranging from 15% (for BC) to 38% (for NOx). A very small 

number of census tracts was estimated to exceed air quality guidelines for applicable 

pollutants. As such, compliance with air quality guidelines did not result in large 

reductions in the attributable asthma burden. However, these findings may also relate 

to the models’ overall air pollution under estimation. The use of the different baseline 

asthma incidence rates resulted in large differences in the estimated attributable 

number of cases which would translate into highly variable monetary burdens and are 

particularly relevant in the context of asthma. 
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6.5.2. Strengths 

This study is one of the very few studies undertaking full-chain burden of disease 

assessment that considers the full-chain from exposure source, through pathways to 

health outcomes (Nieuwenhuijsen et al., 2017) and is the first study to apply this 

assessment in the context of childhood asthma (Table 33). Further and to the best of 

the author’s knowledge, there have not been any previous attempts to estimate the 

air quality and associated health impacts using dispersion models with different 

vehicle emission factors (Chapter 5). This work has therefore contributed to filling this 

knowledge gap and advancing our understanding of the vehicle emission factors’ 

effect on dispersion modelling results and associated health impacts. This effect was 

minimal as the differing vehicle emission factors (COPERT or PHEM-based) did not 

make a difference to the validation parameters (see Sections 5.4.4. and 5.4.5.) or to 

the health impacts subsequently estimated (Table 37). This is a new finding and can 

be viewed as either 1) supporting the use of standard vehicle emission models such 

as COPERT or perhaps more reasonably as 2) pointing to the need for and potential 

of further work to improve accuracy of the full-chain modelling right at the first stages 

of traffic modelling (e.g. see Section 5.5.2. and 5.5.3.). 

This work adds to the literature by exploring the differences between the estimated 

health impacts associated with dispersion models’ and LUR models’ NO2 and NOx 

exposure estimates. The attributable burden resulting from the use of these models 

differed by 6% to 9%, which, considering the fundamental differences between the 

models (Khreis and Nieuwenhuijsen, 2017), was considered as good agreement. The 

agreement between the LUR and the full-chain exposure model estimates’ may be 

further improved by addressing the overall NOx under estimation in the dispersion 

models. Indeed, when minor road and cold start concentrations were included in the 

dispersion models, the attributable burden resulting from the use of the LUR versus 

the dispersion model differed by only 2% and 3%. This relatively good agreement 

between health impacts estimated using LUR and dispersion models is in line with 

scarce literature which shows similar HIA estimates using LUR and dispersion models 

exposures (Rojas-Rueda et al., 2012). 

Another strength of the current study is the generation and use of meta-analytical 

exposure-response functions to estimate the attributable asthma cases (Khreis et al., 

2017d). Meta-analytical exposure-response functions are recommended in HIA 

(Nieuwenhuijsen et al., 2017), are more precise than point estimates (Perez et al., 

2009) and are considered more generalizable and arguably preferable in this study 
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as no local exposure-response functions for Bradford’s population were available. 

Further, the use of the meta-analytical exposure-response functions derived in this 

study allowed exploring specific impacts of 5 different pollutants (Khreis et al., 2017d), 

something which was restricted by the lack of pollutant-specific exposure-response 

functions in the past (Table 33). It, however, is important that the different pollutants’ 

impacts are not added but are treated as independent estimates of exposures that 

are highly correlated (Khreis et al., 2017c). 

Finally, sensitivity analyses were conducted to demonstrate the impact that different 

baseline asthma incidence rates have on the burden of disease assessed. The 

relevance of this to policy decision making was demonstrated in monetary terms. This 

issue has not been explored in previous literature (Table 33). As shown here, the 

impacts of baseline asthma incidence rates were considerable and are particularly 

relevant as underlying asthma incidence rates are uncertain, due to the complexity of 

asthma, the difficulties in its diagnosis and assessment (see Section 1.2.), and the 

poor consensus on the definition of the condition (Khreis et al., 2017d, van Schayck 

and Boudewijns, 2017). 

6.5.3. Limitations 

Despite its strengths, the approach also has its limitations. The key limitation of this 

work is that TRAP was likely to have been under estimated and therefore the 

contribution of TRAP to the attributable asthma cases is likely under estimated as well 

(see Figure 68 and associated discussion). On average and when compared to the 

ESCAPE measurements, NOx estimates from the full-chain exposure models were 

under estimated by 15 µg/m3 (see Section 5.4.5.). This under estimation is thought to 

be in large part due to under estimation in TRAP which on average accounted for 2.5 

µg/m3 or 13% of all estimated ambient NOx (Table 25). In fact, the literature 

documents that traffic contributes to 48% (Nieuwenhuijsen and Khreis, 2016) and 

67% (Beevers et al., 2013) NOx in urban areas, a percentage that is well above the 

13% estimated by this study’s models. Further, when adding minor road and cold start 

concentrations to the dispersion models, this under estimation persisted, but to a 

lesser extent. There was also evidence that the LUR models under estimated NOx 

and NO2. 

The background NOx maps were also poorly resolved and may be an under 

estimation of NOx in some areas. The sites where NOx was under estimated were 14 

(out of 15) traffic sites, 20 (out of 24) urban background sites and one (out of 2) 
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regional background site (Table 29). At the 14 traffic sites, NOx was under estimated 

by 34%, on average; at the 20 urban background sites, NOx was under estimated by 

24%, on average whilst at the regional background site NOx was under estimated by 

10%, on average (Table 29).  

To further illustrate these points and their potential influence on the asthma 

attributable cases estimated in this study, the reader is referred to scenarios 

presented in Table 41, which will be now discussed in turn. Row 1 in Table 41 shows 

that based on the average NOx levels recorded at urban background and traffic sites 

in the ESCAPE campaign (originally from Table 23), traffic is estimated to contribute 

to 35% (or 21 µg/m3) NOx, extra to the urban background NOx levels. Based on this 

percentage contribution, and assuming a linear relation between the percentage of 

traffic NOx and the asthma cases attributable to traffic NOx 
4

, then 240 (i.e. 35% * 687) 

out of the 687 asthma cases attributable to all NOx, are due to traffic NOx. This would 

represent 13% of asthma cases attributable to all causes (Row 1, orange cell). 

However, and as realized from Row 3 where the traffic-related NOx and associated 

asthma cases were quantified explicitly using the COPERT-based dispersion model, 

the relation between the percentage of traffic NOx and the asthma cases attributable 

to traffic NOx is not simply linear (otherwise 69 (Row 3, orange cell) instead of 109 

(Row 3, green cell) asthma cases should be attributable to traffic NOx). Instead, in 

the case of the dispersion model, the relation is not linear but is governed by a scaling 

factor of 1.59 (69/109 (Row 3, orange cell) / (Row 3, green cell)), which may represent 

the unequal distribution of population-weighted traffic NOx exposures. Using this 

scaling factor and assuming that the LUR’s traffic NOx is distributed similarly to the 

dispersion model’s traffic NOx, asthma cases attributable to traffic NOx using the LUR 

model are estimated at 21% or 383 childhood cases (Row 1, green cell). 

Another plausible scenario is presented. As the ESCAPE design allowed urban 

background sites to be within 50 m of roads with < 3000 vehicles/day (Table 23), the 

ESCAPE average NOx at the urban background sites was assumed to include some 

traffic-related component and therefore its use may under estimate the traffic 

percentage contribution calculated in Row 1. In Row 2 and based on the DEFRA 

background’s map average NOx and the average NOx at the ESCAPE’s traffic and 

background sites together, it is estimated that traffic contributes to 63% (or 29.4 

                                                

4 Meaning that if X µg/m3 NOx is responsible for Y childhood asthma cases, then 
0.35 X µg/m3 NOx is responsible for 0.35 Y childhood asthma cases, and so on. 
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µg/m3) NOx, extra to the urban background NOx levels. Again, assuming a linear 

relation between the percentage of traffic NOx and the asthma cases attributable to 

traffic NOx, 433 (24%) out of the 687 asthma cases attributable to overall NOx, are 

due to traffic NOx (Row 2, orange cell). This goes up to 38% if the scaling factor of 

1.59, as discussed above, is used. However, 38% is equivalent to 689 cases, which 

is higher than the total NOx attributable cases (687) and therefore this suggest that 

the 1.59 scaling factor is likely unrealistic and overestimating the number of children 

exposed to traffic NOx from the LUR. This may indicate that the spatial distribution of 

the LUR’s traffic NOx is different than that of the dispersion model’s traffic NOx, which 

is plausible (Figure 66). 

This is a simplistic and hypothetical exercise; the aim of which is to demonstrate 1) 

why the author believes that a big part of the full-chain exposure models’ NOx under 

estimation is due to TRAP under estimation and 2) the relevance of the traffic NOx 

component for the traffic NOx attributable asthma cases. Therefore, the percentages 

of traffic-related NOx attributable asthma cases presented in Rows 1 and 2 are likely 

to be more realistic than those estimated from the full-chain exposure models and 

presented in Row 3 e.g. the 6% attributable asthma cases estimated using the 

COPERT-based dispersion model. The same arguments are applicable when using 

the PHEM-based dispersion model and when investigating NO2, instead. 

Other limitations are considered less influential. Another limitation relates to the use 

of exposure estimates averaged at the census tract level. Similarly to other HIA 

studies, this work draws on exposure proxies (outdoor census tracts average 

exposure) that cannot fully capture actual exposure variability in the population 

(Mueller, 2017). Exposure variability may be due to 1) the population mobility as it is 

unknown whether the population studied spend most of their time in their residential 

census tracts, indoors or outdoors or due to 2) the high variability in air pollution levels 

within the same census tracts themselves. This may lead to exposure 

misclassification (Nieuwenhuijsen, 2015, Ashmore and Dimitroulopoulou, 2009) and 

potentially distort the health impacts estimated. 

Further, NO2 was generated by conversion of the NOx levels estimated from the 

dispersion models (see Section 5.5.3). This is a simplistic procedure that conceals 

spatial variability of NO2 levels due to the spatial variability of primary NO2 sources 

and therefore may result in exposure misclassification. Further, this study used 

modelled, rather than measured, air pollution data; being the only feasible way to 
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assign exposure at the scale of Bradford’s childhood population. This is considered 

as a limitation, yet validation of the modelled data was considered satisfactory. 

There are further uncertainties related to the underlying asthma incidence rates, 

which were scaled down from national estimates (Punekar and Sheikh, 2009) and 

may differ than the rates of the population under study. Partly for this reason, two 

sensitivity analyses, using different and Bradford-specific underlying asthma 

incidence rates, were conducted and a possible range of impacts was documented 

(Table 39). Further, the attribution of a uniform incidence rate to children across 

Bradford is a limitation and a spatially variable baseline rate would have been 

preferable but is not available (Lomas et al., 2016). The uniform incidence rate 

simplifies a particularly ethnic population in Bradford, where > 50% are South Asian 

(Wright et al., 2013) and those may have (slightly) varying asthma incidence rates 

(Mebrahtu et al., 2016, Netuveli et al., 2005), but also possibly varying exposure-

response functions e.g. due to differing genetic predispositions (Kerkhof et al., 2010, 

Gilliland, 2009, Castro-Giner et al., 2009), diet (Gilliland, 2009, Khreis et al., 2017e), 

stress (Shankardass et al., 2009), violence (Clougherty et al., 2007), social 

disadvantage or other factors. Sex was also not considered due to the absence of 1) 

sex-specific incidence rates and 2) sex-specific exposure-response functions, even 

though sex was shown to have an impact on both asthma incidence rates in the 

Bradford’s childhood population (Mebrahtu et al., 2016) and the exposure-response 

functions in other studies (Khreis et al., 2017d, Clougherty, 2010). All the above 

factors were not considered due to the unavailability of more specific exposure-

response functions and asthma incidence rates that may better reflect true variability 

in the parameters and/or susceptibility of the underlying childhood population. 

6.5.4. Conclusions 

This study provides the first full-chain HIA of TRAP and childhood asthma; using 

pollutant-specific meta-analytic exposure-response functions (Khreis et al., 2017d) 

and considering the full-chain from exposure source, through pathways to health 

outcomes. The burden of childhood asthma attributable to air pollution is poorly 

documented and this study adds to the scarce literature estimating that 15% to 38% 

of all childhood asthma cases in Bradford are attributable to air pollution. The choice 

of the pollutant and the exposure model made a difference to quantified impacts, but 

the choice of the vehicle emission factors did not. The results presented here are 

likely to be an under estimation of the impact of air pollution, particularly that due to 
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traffic (TRAP). TRAP might have been significantly under estimated, mainly due to 

the combination of low vehicle emission factors and overestimated speeds. 
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Table 41 Average Urban Background and Average Traffic NOx Concentrations (µg/m3) from the Different Datasets/Models and TRAP 

Attributable Asthma Cases 

Row number  

----------------------------- 

Scenario description 

Urban background 
dataset  

Average NOx at 
urban 
background 
sites (µg/m3)  

Average NOx at 
traffic sites 
(µg/m3) 

Average traffic 
contribution 
(µg/m3) 

(=Traffic NOx - 
Urban 
background 
NOx) 

Average 
percentage of 
traffic 
contribution  

(Traffic 
contribution/ 
Traffic NOx) 

Overall NOx attributable 
asthma cases 

Scaled traffic-
related NOx 
attributable 
asthma cases 

Traffic dataset 

Assumed traffic-related 
NOx attributable asthma 
cases, based on linear 
relations 

(% traffic contribution * 
overall attributable cases)  

Row 1 

----------------------------- 

Using only ESCAPE 
measurements 

ESCAPE 
measurements 

38.4 59.4 21 35% 

687 (38%) using LUR 
(Table 38) 

383 (21%) 
(=240*1.59) 

ESCAPE 
measurements 

240 (13%) (= 35% * 687) 

Row 2 

----------------------------- 

Using ESCAPE 
measurements at 
traffic and urban 
background sites and 
DEFRA background 
map 

DEFRA map 

17 46.4 29.4 63% 

687 (38%) using LUR 
(Table 38) 689 (38%) 

 (=433*1.59) 

ESCAPE 
measurements 

433 (24%) (= 63% * 687)  

Row 3 

----------------------------- 

Using COPERT-
based dispersion 
modelling including 
DEFRA background 
map 

DEFRA map 

17 19.5 2.5 13% 

530 (29%) using COPERT-
based dispersion model 

(Table 37) 
109 (6%) 

 (=69*1.59) 

COPERT-based 
dispersion model 
(snapped) 

 

69 (4%) (= 13% * 530) 
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7 Discussion, Future Work and Conclusions 

7.1. Summary and Conclusions 

The present thesis presents the estimation of the impact of TRAP exposures on the 

development of new cases of childhood asthma. This was done using quantitative 

methods to assess the risk (by producing meta-analytic risk estimates) and the 

burden (by producing burden of disease estimates) of childhood asthma associated 

with and attributed to TRAP exposures. In the first chapter, several issues in past 

research were outlined. Of importance were 1) the inconsistent and outdated 

evidence base linking TRAP and the development of childhood asthma, 2) the poor 

documentation of the impact of exposure to TRAP on the burden of childhood asthma, 

3) the lack of full-chain HIA models tracking the exposure source, through pathways 

to health outcomes and 4) the uncertain and unreliable vehicle emission factors. 

These issues highlighted a need for a new synthesis of a rapidly growing evidence 

base concerned with TRAP and childhood asthma, and the development of improved 

full-chain HIA models which provide more realistic estimates of vehicle emissions and 

quantify the burden of asthma due to TRAP exposures. The work reported in this 

thesis addressed these issues and added to the literature as follows: 

 Chapter 2 explored the associations between early-life exposure to TRAP and 

the subsequent development of asthma in children. It undertook a 

comprehensive and up-to-date meta-analysis and produced pollutant-specific 

exposure-response functions (Chapter 2). The novelty of this work was in the 

synthesis of the evidence base concerned with TRAP as a risk factor of 

asthma development and the generation of new exposure-response functions 

for 5 traffic-related air pollutants. The only comparable study focused on TRAP 

as a risk factor for childhood asthma onset can be found in the HEI Special 

Report 17: ‘Traffic-Related Air Pollution: A Critical Review of the Literature on 

Emissions, Exposure, and Health Effects’, yet, at that time, a meta-analysis 

was not possible (Health Effects Institute, 2010). 

 In Chapter 4, a new set of average-speed-emission functions (i.e. a new 

emission model) was developed and compared to the standard average-

speed-emission functions sourced from the widely used European model: 
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COPERT. The new emission model was underlined by real-world and local 

driving cycles, PHEM-based instantaneous NOx emission estimates and a 

novel micro-trip averaging approach which split the driving cycles and 

associated emissions into driving events between consecutive stationary 

periods. There were no comparable studies in the literature and this study 

proposed a new practical approach for the derivation of new average-speed-

emission functions, which can be adopted in the future in full, or partially, and 

can be very valuable for the the assessment of local traffic and transport 

policies. 

 Following work linked traffic, emissions and atmospheric dispersion models 

and developed two novel full-chain exposure models of TRAP (Chapter 3, 4 

and 5), each populated with a different set of average-speed-emission 

functions: the standard and the newly developed one (Chapter 4). Air pollution 

levels estimated from the full-chain exposure models were validated against 

4 available data sets and compared to a third LUR model; an exposure model 

commonly used in air pollution epidemiological and HIA studies (Chapter 5). 

The novelty of this work was in the development of the full-chain exposure 

models, their validation against multiple data sets and exploring the 

differences in the air pollution estimates based on the exposure model (LUR 

or full-chain) and the emission model (COPERT or PHEM-based) used. The 

literature pertaining to these points was shown as either scarce or absent. 

 Chapter 6 linked the full-chain exposure estimates with baseline health data 

and the newly generated exposure-response functions to produce a full-chain 

HIA model which estimated the impact of exposure to air pollution, and 

particularly TRAP, on the burden of childhood asthma in Bradford (Chapter 

6). The novelty of this final work was in its cross-disciplinarity, combining all 

previous elements developed in this thesis in one newly developed full-chain 

HIA model which quantified the asthma BoD related to air pollution, and to 

TRAP, specifically. This study provided the first full-chain HIA of air pollution 

and childhood asthma with specific estimates for the contribution of traffic. 

Beyond these specific contributions, this work presents a complete interdisciplinary 

piece of research, mapping the whole spectrum from vehicle emissions to their health 

impacts, in a multi-ethnic deprived city suffering from childhood asthma rates higher 

than national and regional averages. 
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An important strength of this interdisciplinary inquiry was to demonstrate the process 

of developing the full-chain HIA models whilst highlighting the potential uncertainties 

of full-chain quantitative HIA and presenting an outlook into how modelling of this sort 

may be improved and better utilized. 

7.2. Discussion 

Going back to the specific research objectives laid out at the outset of this study (Box 

1, Section 1.3.), this research achieved its objectives and arrived at the following 

conclusions. 

7.2.1. Research Objectives 

 Question 1 – Can early-life exposure to TRAP drive the subsequent 

development of asthma in children (from birth to 18 years of age)? 

The first study in this thesis provided sufficient evidence to support an association 

between the exposure to TRAP and the development of childhood asthma, from birth 

to 18 years of age. The study was a systematic review and a meta-analysis to analyse 

the association between TRAP and asthma development in childhood, with a focus 

on early-life exposures (Khreis et al., 2017d). The study was followed up with a 

qualitative analysis which reviewed and appraised the exposure assessment 

methods, highlighted recent advances, remaining research gaps and made 

suggestions for further research (Khreis and Nieuwenhuijsen, 2017). The study filled 

a gap in the existing literature by qualitatively and quantitavely synthesizing and 

appraising a rapidly developing evidence base specifically focused on TRAP 

exposure as a risk factor for childhood asthma. The findings demonstrated that there 

was a recent rapid growth in the number of eligible articles with 44% published after 

2014 and that there was significant heterogeneity across the studies in terms of 

outcome definitions, exposure assessments, pollutants studied and statistical 

methods, but some move towards harmonization (e.g. ESCAPE and MeDALL 

projects). The findings also showed that there were no studies which explicitly 

attempted to distinguish the effects of TRAP from the effects of other air pollution 

sources e.g. using full-chain exposure assessment models or equivalent methods. 

There was some suggestion that the associations might differ based on age, sex and 

asthma phenotype. However, there was no systematic evaluation in these subgroups, 

despite previous calls, and these issues still need further assessment and 

ascertainment (Health Effects Institute, 2010, McConnell et al., 2006). The strengths 
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of this study were fully discussed in the corresponding chapter and mainly included 

its large and up-to-date coverage, its novel focus, its in-depth meta-analyses and its 

generation of new pollutant and age-specific exposure-response functions for a range 

of pollutants wider than previously reported (Anderson et al., 2013, Bowatte et al., 

2015, Gasana et al., 2012, Favarato et al., 2014). These exposure-response functions 

are currently being used in a European-wide and a US-wide HIA conducted by the 

author. The limitations of this study were also discussed and mainly included its 

underlying assumption that early-life represents the most critical exposure window for 

the development of asthma, the low number of studies included in some of the meta-

analyses (e.g. BC and NOx), the lack of equivalence among some of the exposure 

measures, populations studied and ‘asthma’ definitions and the assumption that the 

relationship between the exposure and the outcome was log linear. Overall, this study 

supported the hypothesis that TRAP exposures drive the subsequent development of 

childhood asthma. It further suggested that future studies could usefully focus on a 

number of more advanced aspects and questions, beyond trying to demonstrate the 

association between TRAP and the onset of childhood asthma. These mainly 

included using full-chain exposure models to distinguish effects of TRAP from other 

sources; systematically investigating associations with multiple windows of exposure; 

expanding the focus on NO2 to other pollutants and using multiple pollutant models; 

exploring whether threshold effects exist; expanding the methods of asthma 

assessment beyond reporting of doctor-diagnosis; assessing the effect of disease 

misclassification on the exposure-response functions; formally assessing the drivers 

of heterogeneity and systematically investigating potential susceptible subgroups. 

 Question 2 – Were there pollutant-specific effects and what is the 

magnitude of the exposure-response functions? 

The first study also showed that there were statistically significant and positive 

associations between BC, NO2, PM2.5, PM10 exposures and risk of asthma 

development in children but no way to disentangle the effects of one pollutant from 

another. The association with NOx was also positive but not statistically significant. 

The magnitude of the exposure-response functions for the 5 investigated pollutants 

was estimated and was a key output of the first study which provided previously 

missing exposure-response functions which can now be readily used in HIA and BoD 

studies. 

There were two key points emerging while exploring the differences in the effects of 

different pollutants. The first was that the positive and statistically significant 
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associations between TRAP exposures and childhood asthma development were 

observed for 4 out of the 5 investigated pollutants and that the statistically insignificant 

association with the fifth pollutant: NOx were may be due to the lower number of 

studies available. As such, further research is needed to confirm the magnitude and 

direction of the NOx risk estimate; bearing in mind that it could be acting as a surrogate 

of exposure to ultra-fine particles as levels of these two pollutants near roadways are 

highly correlated (Kwasny et al., 2010, Yahaya et al., 2012, Health Effects Institute, 

2013). Further, while the studies included in the systematic review controlled for key 

potential confounders, an important limitation was the lack of data on co-pollutants 

which made a distinction of pollutant-specific effects not possible. These findings are 

somewhat comparable to the literature. The latest relevant meta-analysis also 

documented positive and statistically significant associations for 2 (BC, PM2.5) out of 

3 (BC, PM2.5, NO2) investigated pollutants (Bowatte et al., 2015), whilst a previous 

one documented a positive and statistically significant association between NOx and 

NO2 exposures and prevalence of asthma symptoms (Favarato et al., 2014). 

Therefore, the results of the first study, in the context of current knowledge, precluded 

interpreting the observed effects as a certain pollutant’s effect. This is thought to be 

due to the high correlations amongst these pollutants in traffic exhaust and ambient 

air (Beckerman et al., 2008, Sarnat and Holguin, 2007). 

The second point emerging here was that the heterogeneity detected in the different 

pollutants’ meta-analyses varied significantly, ranging between no estimated 

heterogeneity for BC (0%), minimal for PM10 (29%) and PM2.5 (28%) and high for NO2 

(65%) and NOx (87%). Although interpretation should be cautious due to underlying 

limitations (e.g. the smaller number of studies available for pollutants other than NO2; 

see Table 3), these statistics indicate that NO2, although commonly studied, may not 

be the putative agent in the TRAP mixture, but instead act as a surrogate for traffic-

related BC, PM2.5 or other unmeasured traffic-related pollutants. This question 

remains open and warrants more attention in future studies. 

In line with this recommendation, a recent HEI expert workshop on traffic and health 

concluded that the question of whether NO2 is a causal agent (for numerous health 

outcomes) or an indicator of TRAP was important, but still largely unresolved (Health 

Effects Institute, 2016). Linked to this point is also the lack of data on the effects of 

non-exhaust pollutants dominated by tire wear, brake wear, road surface wear, 

engine wear and re-suspended crustal and street dust particles. With the expected 

wide-spread introduction of electric vehicles, especially in cities, and the continuing 
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efforts of emission reductions from combustion engines, the relative importance of 

non-regulated, non-exhaust emissions is large but largely unknown (Khreis and 

Nieuwenhuijsen, 2017, Timmers and Achten, 2016). 

 Question 3 – Has a new more reliable vehicle emissions model been 

developed and how does it compare to the standard vehicle emission 

model? 

In the second study, a new vehicle emission model (PHEM-based) was developed 

and compared to the standard COPERT vehicle emission model (Khreis et al., 

2017b). The new emission model did not make a difference to subsequent air 

pollution and health impact estimates, nor did it make a difference to the validation of 

the full-chain exposure models, differently from the initial hypothesis. As such, there 

was no solid evidence of improvements due to the use of the new vehicle emission 

model. 

However, the new model is likely to exhibit some ‘theoretical’ improvements, as 

compared to the standard COPERT model. These theoretical improvements were 

related to the more realistic varying and higher NOx emission estimates at the lower 

average-speeds in the average-speed-emission functions (mainly observed at < 20 

km/h but varied depending on the vehicle type, for example, see Figure 51). The 

standard average-speed-emission functions as widely used in the COPERT model 

were repeatedly shown to under estimate vehicle emissions, especially at low 

average speed segments characterized by shorter road sections, higher speed (and 

acceleration) fluctuations and more frequent stop-start driving (Health Effects 

Institute, 2010, Khreis, 2016, Tate, 2015a) (Section 4.1.4.). These conditions are very 

relevant and common in urban road networks. For example, in the Bradford SATURN 

network, 38% of all road links in were ≤ 100 m (Chapter 3). The real-world driving 

cycles undertaken were driven at speeds ≤ 10 km/h 41% of the time. The standard 

vehicle emission model under estimation, in part, has to do with the theoretical 

underpinnings of the COPERT model importantly including 1) its underlying driving 

cycles which are not realistically transient and only cover limited engine speed and 

power ranges (Kousoulidou et al., 2010, Khreis, 2016), 2) the inadequate definition of 

the ‘trip’ interval at which vehicle speeds and emissions are averaged and paired and 

3) the mixing of results from thousands of laboratory empirical emission tests, right 

across Europe, yielding average-speed-emission functions with low predictive power 

(Section 4.1.3.). The new vehicle emission model, was underpinned by real-world 

observed driving cycles, directly sourced from the study area, and model (PHEM)-
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based instantaneous emission estimates which were averaged over ‘micro-trip’ 

intervals. At speeds < 10 km/h, the new PHEM-based model resulted in significantly 

higher emission estimates than the COPERT model; which for some vehicle types 

were up to 4 times higher (Figure 59). 

In the context of the current knowledge, these estimates are considered more realistic 

and theoretically more correct. However, the newly developed vehicle emission 

model generally estimated less emissions at the higher speed ends, something which 

is not necessarily accurate (Hausberger, 2002, O'Driscoll et al., 2016), but may be 

explained by the lack of data points at those ends. There were two key points which 

emerged from this work and that warrant further reiteration. 

The first was that the new vehicle emission model, although theoretically more 

realistic where COPERT’s reliability was limited (i.e. at low average speeds), did not 

make a worthwhile impact on improving the dispersion model’s accuracy and still 

resulted in overall air pollution under estimations. These under estimations were very 

similar in magnitude to the under estimation documented when using the COPERT-

based dispersion mode. This result was rather unexpected at first, but further 

exploration revealed that the lack of low speed traffic from the traffic model probably 

had to do with this under estimation. This insight pinpointed a previously 

unrecognized point at the outset of this study: improvements in the emission 

modelling will not result in overall improvements in air pollution estimates. These are 

only likely when improvements in emission modelling are coupled with improvements 

in traffic modelling; to better capture the temporal variation and the lower average 

speeds across the urban road network. In particular, the overall underestimation of 

vehicle emissions may be traced back to the lack of low average speed segments in 

the SATURN traffic network. Whether more realistic, slower, average speed links will 

result in better estimates of vehicle emissions and associated TRAP is a matter that 

is unknown and that warrants further analysis. Further, the author also believes that 

both the PHEM and COPERT emission models under estimate real-world driving 

emissions, due to disregarding temperature and gradient effects (Dardiotis et al., 

2012, Frey et al., 2008, Sayegh et al., 2016, Weilenmann et al., 2009, Westcott, 

2016), and not accounting for the underperformance of NOx emission controls in real-

world urban driving (Tate and Connors, 2014, Carslaw et al., 2011a), amongst others. 

The theoretical improvements in the new emission model, however, may be utilized 

in other applications and investigations that were outside the scope of this study. For 

example, and of particular policy relevance, traffic calming measures, mainly 
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designed and implemented to improve safety of road users, might increase start-stop 

driving and therefore vehicle emissions. The average-speed-emission functions 

developed in this work can aid in estimating the impact of such measure on local 

exhaust emissions and associated TRAP.  

The second point emerging from this work was the notably different source 

apportionment resulting from using the two emission models. When using the PHEM-

based model, the focus was shifted from passenger cars to HDVs, buses and 

coaches. This trend is in line with the very scarce literature and shows how sensitive 

source apportionment is to the underlying emission modelling approach (Peace et al., 

2004). The strengths of this study were fully discussed in the corresponding chapter 

and mainly included the development of new average-speed-emission functions 

underlined by real-world and local driving cycles, the use of the micro-trip as the unit 

over which instantaneous vehicle speeds and emissions were averaged and paired 

and the relative practicality, transparency and transferability of the emission model 

development approach, either in full or in parts. The limitations of this study were also 

discussed and mainly included the lack of vehicle emission measurements and the 

over-reliance on modelling approaches, the incomplete validation of the PHEM and 

COPERT emission models, the lack of data at the higher speed ends and not taking 

vehicles’ age and maintenance parameters into account. Overall, in the second study, 

a new vehicle emission model was developed and compared to the standard 

COPERT model. However, and despite the assumed improvements in emissions 

estimation at the lower average speed segments, the new model did not make a 

difference to the overall accuracy of the air quality estimates nor to the magnitude of 

subsequent BoD estimates. The over-reliance on emission modelling, rather than the 

combination of emission measurements and modelling, and the lack of 

comprehensive emission data which could be used for the calibration and validation 

of models, are key and persistent challenges that future research and practice are yet 

to address. 

 Question 4 – Has a full-chain exposure assessment model linking 

traffic, emissions and atmospheric dispersion models been 

developed? 

In the third study, two full-chain exposure models of TRAP, each populated with a 

different set of average-speed-emission functions, were developed by running and 

linking the following independent models: SATURN (traffic model), COPERT and 

PHEM (emission models) and ADMS-Urban (atmospheric dispersion model) (Khreis 
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et al., 2018, Khreis et al., 2017c). The linkage of these models is what the author 

refers to as the full-chain exposure assessment model. Full-chain exposure 

assessment models are missing in HIA studies of TRAP and asthma (Table 33) whilst 

they are very few in epidemiological studies of TRAP and asthma (Table 1). This 

study, therefore, fills this gap and articulates a methodology for the linkage and 

verification of the chain’s models. The key advantages of the full-chain exposure 

model are twofold. First, the models enable the explicit quantification of the 

contribution of traffic to levels of ambient air pollution and subsequently to the asthma 

BoD associated with these levels. From a policy perspective, this is valuable as it 

enables specific and explicit quantification of the health impacts of TRAP 

(Nieuwenhuijsen et al., 2017), and can provide valuable feedback for improving 

regulatory or other action (Samet, 2003). From a scientific perspective, this was also 

valuable as this full-chain assessment approach provided further insight into the 

dispersion models under estimation and the potential reasons behind this, mainly 

including the low vehicle emission factors and the under estimation of congestion 

within the traffic network. The second advantage of the full-chain exposure modelling 

is perhaps more relevant for applied science and tools and models’ development. The 

modelling of the holistic chain of traffic, emissions and air pollution, by one individual 

(the author), clearly highlighted the uncertainties, data, expertise, technology and 

model feature gaps in current knowledge and practice. These were outlined in their 

relevant chapters but are also synthesized in one place in the next section. Overall, 

the development of the full-chain exposure assessment models was laborious and 

highly time-consuming. The better provision and documentation of input and 

validation data, technological and model features improvements (see Figure 69) 

including a higher flexibility in dispersion model inputs and the development of 

programs which can automatically integrate the different models (Namdeo et al., 

2002), would greatly help the process and facilitate its wider adaptation. Further and 

because the datasets underlying this research study were burdensome to collate 

and/or generate but can be utilized in other applications, these are being made open 

access alongside their meta-data, to maximize their utility for the research, practice 

and policy-making communities. 

 Question 5 – What is the burden of childhood asthma attributable to 

TRAP? 

In the fourth study, the burden of childhood asthma attributable to air pollution in 

general, and to TRAP in particular, was estimated (Khreis et al., 2018, Khreis et al., 
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2017c). In Bradford, the annual childhood asthma cases attributable to air pollution 

ranged from 279 (113, 447) to 687 (-279, 1196) cases or from 15% to 38% of all 

asthma cases, depending on the pollutant studied and the exposure assessment 

method used. Using the full-chain exposure assessment models, the childhood 

asthma cases attributable to the traffic component of air pollution was possible to 

estimate and equalled 3% for NO2 and 5% to 6% for NOx, depending on the vehicle 

emission modelling method used. However, and as discussed in more depth in the 

relevant section, there was reason to believe that these figures are significantly under 

estimated as the dispersion models under estimated NOx by 15 µg/m3 or 32%, on 

average. This under estimation is well documented in the literature and is likely to be, 

in big part, due to under estimation in the traffic-related component of air pollution, 

which only accounted for 13% of the overall average NOx, a ratio that is well below 

the ratios often cited in the literature (e.g. 48% to 67%) (Nieuwenhuijsen and Khreis, 

2016, Beevers et al., 2013). Indeed, when minor road and cold start concentrations 

were included, this contribution almost doubled bringing the burden of disease from 

3% to 7% for traffic-NO2 and from 5-6% to 12% for traffic-NOx. This contribution, 

however, is still likely to be higher as all models tended to under estimate TRAP 

If the traffic-related component was not under estimated, the attributable asthma 

cases could have accounted to a significantly larger percentage of asthma cases 

which the author tried to quantify indirectly e.g. 24% (Table 41). Overall, these 

findings suggest that full-chain exposure assessment models, despite their key 

advantage of tracing the health impacts back to the exact sources of the risk factor, 

can significantly underestimate TRAP exposures and the associated BoD. Again, and 

linked to Question 3 above, there is a clear need to improve the full-chain exposure 

modelling approach, most notably by improving the traffic speeds data, which were 

overestimated, and the vehicle emissions data, which were under estimated. 

 Question 6 – Do the different exposure assessment methods and 

different vehicle emissions assessment methodologies translate into 

different estimated disease burdens? 

Also, in the fourth study, health impact estimates from the full-chain exposure models 

were compared to estimates from LUR models developed for Bradford as part of the 

ESCAPE project. As discussed above, changes in the vehicle emission assessment 

methodologies did not make a noticeable difference to the BoD estimated. However, 

the choice of the exposure assessment model did, as the LUR models estimated a 

higher BoD than the full-chain exposure models, by up to 9%. This difference was 
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reduced significantly, however, when minor road and cold start concentartions were 

included in the models. Then, the attributable burden resulting from the use of the 

LUR versus the dispersion model differed by only 2% and 3%. 

LUR models have recently become the chosen exposure assessment method to 

capture small-scale differences in air pollution levels, particularly those originating 

from traffic sources (de Nazelle et al., 2013). Numerous epidemiological and HIA 

studies use LUR models to investigate health effects and impacts of exposures to air 

pollution (Khreis and Nieuwenhuijsen, 2017, Hoek et al., 2008, Jerrett et al., 2005, 

Mueller, 2017). This study’s findings showed that the correlations between air 

pollution estimates from the full-chain versus the LUR models were moderate (R2 

between 22% and 34%), and that the LUR model, on average, predicted higher NOx 

(by up to 30%) and NO2 (by up to 55%). In terms of the estimated BoD, the use of the 

LUR model therefore resulted in higher estimated asthma attributable cases showing 

that the exposure assessment method selected makes a difference to the final results. 

In the literature, there is only little research on the impacts of the exposure 

assessments on estimated health effects or impacts (Khreis and Nieuwenhuijsen, 

2017, Rojas-Rueda et al., 2012), and this study further adds to this limited evidence 

base. Within the LUR models themselves, this study also showed that the choice of 

the pollutant makes an important difference to the BoD estimated with ranges 

between 15% for BC and 38% for NOx. These differences had to do with the clearly 

different exposure-response functions and the different spatial distribution of the 5 

pollutants studied. The preferred pollutant to be studied, however, is not so obvious 

since co-pollutant data was limited, and the distinction of pollutant-specific effects was 

not possible (Question 2). The preferred method for exposure assessment is also not 

so obvious and depends on available resources, the quality of the input data, 

expertise, place of study and transferability considerations. As it stands, the full-chain 

exposure models still need refinement, especially regarding their traffic and emission 

inputs and the LUR models perhaps offer a more realistic and higher air pollution and 

BoD estimates, at a lower implementation cost. 

 Question 7 – What are the remaining knowledge gaps and the 

uncertainties at each step of the full-chain modelling; what are the 

alternative options and the research and practice needs to advance the 

current state-of-art? 

Finally, the following section provides an overall and integrated synthesis of the 

documented (Table 42) and potential (Table 43) uncertainties of full-chain quantitative 
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HIA and presents an outlook into how modelling of this sort may be improved in the 

future. Currently, there is a wall between the different disciplines, and the steps of the 

full-chain quantitative HIA model developed in this work are distinct and often 

undertaken by different research and practice communities (Figure 1). This is 

significant, as there are different (alternative) data sources and decisions to be made 

along the full-chain, or the parts of it. These selections will have impacts on the final 

results, their validity and their utility. Therefore, the process of the full-chain modelling 

presented in this thesis including obtaining, verifying and selecting data and linking 

together the different models and datasets is considered important as it highlighted 

the uncertainties in current knowledge and practice and shed light potential for 

improvements. 

7.2.2. Uncertainties and Avenues for Future Work 

Table 42 is an overall and integrated synthesis of the documented uncertainties or 

errors at each stage of the full-chain quantitative HIA model. Table 43, on the other 

hand, is an overall and integrated synthesis of the potential uncertainties or errors at 

each stage of the full-chain quantitative HIA model. 

For each uncertainty or error item, a fuller description is provided alongside an 

indication of the documented/estimated or likely effect(s) including the stage at which 

the effect occurs, the likely direction of the effect (i.e. under estimation, over 

estimation, inaccuracy/unknown) and the relative impact of the effect (high, moderate 

or low), as assessed by the author, based on results from, and professional 

judgement and experience gained during, this study. The last column is a description 

and/or proposition of alternative data sources, methods and tools which can improve 

the practice of this study. A description and discussion of this study’s practice and the 

motivation behind all selections have been presented in the relevant chapters and are 

not repeated here. A precise quantification of each uncertainty’s impact on final 

estimates is a matter worthy of another research study and can be explored in depth 

by rerunning the full-chain models with varying inputs. 

The key observation the reader can gauge from Table 42 is that the uncertainties or 

potential errors occurring at the first stages of the modelling including the traffic then 

the emission modelling stages are more influential and impactful than errors which 

occur in later stages of the chain. The reason is simply that these errors can 

propagate through the whole chain and theoretically influence all following items. 
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The key uncertainties in the traffic modelling stage are in the 1) traffic speeds and 

flows estimations, 2) the exclusion of motorcycles traffic (and emissions), 3) the use 

of national traffic fleet compositions, 4) the exclusion or agglomeration of numerous 

minor roads in the traffic model, 5) the definition and inaccurate geocoding of road 

links and 6) the treatment of diurnal and seasonal effects. The first four items are 

expected to lead to an under estimation in vehicle emissions, air pollution and 

exposure levels, and health impacts whilst the last two items will distort the accuracy 

of following estimates, in a direction that is unknown. 

The key uncertainties in the emissions modelling stage are in the 1) the use of 

laboratory-based emission models, 2) not accounting for age and maintenance 

conditions of the vehicle fleet, 3) the limited (in space and time) driving cycles 

underlying the PHEM-based model development, 4) the selection of NOx as the 

primary pollutant to model and 5) the average vehicle specifications used to 

parametrize the PHEM model. The first two items are expected to lead to an under 

estimation in vehicle emissions, air pollution and exposure levels, and health impacts 

whilst the last three items will distort the accuracy of the following estimates, in a 

direction that is unknown. 

The key uncertainties in the air pollution dispersion modelling and exposure 

assignment stage are in the 1) the use of coarsely resolved background NOx maps, 

2) the reliance on meteorological data from one station with 9% missing records, 3) 

not accounting for built and natural environment features and their impacts on air 

pollution and exposures, 4) the assignment of exposures at the census tract level, 5) 

the resolution of the air pollution estimates and the TRAP maps and 6) the NOx to 

NO2 conversion method. Whether these items result in an under or an over estimation 

is unclear and warrants further investigation. 

The key uncertainties in the exposure-response functions assessment stage are 

in the 1) high heterogeneity in the underlying data, 2) the assumption that the 

relationship between air pollution and asthma development is log-linear, with no 

threshold, 3) the possibility of publication, reporting and confirmation bias and 4) the 

lack of ethnicity, age and sex-specific exposure-response functions and data. 

Whether these items result in an under or an over estimation is unclear and warrants 

further investigation. 

Finally, the key uncertainties in the health impacts modelling stage are in the 1) 

baseline incidence asthma rates and the outcome definition and 2) other competing 

risk or protective factors that were not accounted for in the exposure-response 
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functions. These uncertainties will distort the final health impacts modelled in a 

direction that is more difficult to assess. In the case of the baseline asthma incidence 

rates, an under estimation is possible as asthma is generally under-diagnosed.  

This final qualitative analysis reiterates a point that is persistent throughout this thesis. 

The utility of the full-chain quantitative HIA models is contingent upon improvements 

in the chain’s stages, particularly in the traffic and emission modelling stages, which 

are thought to be highly influential due to the magnitude of errors at these stages and 

their early propagation throughout the model. Future studies can focus on these 

stages and formally test the impacts of changing traffic activity and emission 

estimates on the final BoD estimates. Overviewing existing and potential alternatives 

which can improve future full-chain assessments (last column of Table 42), it is likely 

that the way forward lies in 1) the provision of more complete, accurate and readily 

available data sets and 2) the use of existing and the development of new affordable 

technologies that can facilitate the monitoring of wide-scale traffic activity, emission, 

air pollution, exposure, and mobility patterns which can be used to calibrate, 

complement and validate models. 
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Table 42 Full-Chain Quantitative Health Impacts Modelling Documented Uncertainties, Likely or Documented Effects and Alternatives 

Legend/ colour code 

Traffic modelling stage 

Emissions modelling stage 

Air pollution dispersion modelling and exposure assignment 

Health impacts modelling stage 

Exposure-response functions assessment stage 

 

Modelling 
stage 

Uncertainty 
or error 

Likely effect Relative impact 

Alternative(s) 
Description 

Stage(s) 
of effect 

Likely 
direction 
of effect 

High Moderate Low 

T
ra

ff
ic

 m
o

d
e

ll
in

g
 

Average 
traffic speed 

- Overestimation of 
average traffic speeds 
(under estimation of 
congestion in the 
SATURN model) 

- The under estimation of 
congestion is likely 
behind a big part of the 
under estimation in 
emissions especially 
when the new PHEM-
based model was used, 
see Section 5.4.3 

- Assignment of uniform 
speed on each road link 
(disregarding variations 
over the same road link 
e.g. due to idling, stop-
start driving and different 
driving patterns) 

- Assignment of uniform 
speed for all vehicle 
classes (disregarding 
differences in speeds 
between different vehicle 
classes on the same road 
link) 

Emissions 
modelling 

Under 
estimation 

of 
emissions 

✗   

Wide-scale direct observations of 
traffic speeds (and flows) by e.g. 
videos, GPS tracking (e.g. Tom-
Tom or Teletrac), satellite imaging 
or air photos, repeated monitoring 
campaigns and remote sensing 
and/or traffic surveys/diaries. 
These estimates are likely to be 
highly resolved in space and time 
and can give speeds based on 
vehicle type e.g. average speed 
for a bus versus another average 
speed for a car on the same road 
link. Considering modelling vehicle 
emissions based on parameters 
other than average speed e.g. 
vehicle specific power, 
acceleration, idling etc. 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Under 
estimation 

of air 
pollution 

and 
exposure 

✗   

Health 
impacts 

modelling 

Under 
estimation 
of health 
impacts 

 ✗  

Traffic fleet 
composition 

- Vehicle fleet composition 
proportions given in the 
NAEI were applied. 
These were averages 
over Urban England road 
networks and not specific 
to Bradford 

- Bradford fleet is different 
than national averages 
e.g. buses are older and 
fewer and HDVs are 
more, see Table 14 

- For example, buses and 
coaches and HDVs 
proportions, were around 
60% higher and 40% 
lower in the NAEI than in 
the other fleet 
composition datasets, 
respectively 

- Differential fleet 
composition may be 
observed on different 
road types (e.g. urban 
versus rural roads versus 
motorways) and in 
different time periods 

Emissions 
modelling 

Under 
estimation 

of 
emissions 

 ✗  
The full-chain models could be run 
again using different vehicle fleet 
composition figures, directly 
observed in the study area, and 
the impact assessed. Different 
fleet compositions can come from 
e.g. CBMDC counts or Automatic 
Number Plate Recognition data, 
ad-hoc remote sensing campaigns 
and DfT local traffic counts and 
classifications (i.e. published and 
unpublished data). Specific 
attention should be paid to the 
collection of information on vehicle 
emission standards, weight 
categories etc. or the integration of 
different datasets. Differential fleet 
mix for different road types (e.g. 
urban vs motorways) can be 
applied but first require the 
classifications of the roads and 
then differential fleet compositions. 
Fleet mix also differs by time of 
the day but the only possible 
source of this data is likely 
observation  

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Under 
estimation 

of air 
pollution 

and 
exposure 

 ✗  

Health 
impacts 

modelling 

Under 
estimation 
of health 
impacts 

  ✗ 

Smaller 
streets traffic 

- Traffic data on minor 
roads e.g. smallest roads, 
residential streets, cul-de-
sacs, were not included 
in the SATURN model or 
these roads were 
agglomerated into a 
single link and not 
represented individually 

- These streets are likely to 
contribute to cold-start 
and idling emissions. 

Emissions 
modelling 

Under 
estimation 

of 
emissions 

✗   The development of future traffic 
models should be based on 
underlying road or street maps 
and attempt to model all/most 
existing streets in the network. If 
traffic monitoring is used instead, 
specific attention must be paid to 
the inclusion of these smaller 
streets and their traffic 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Under 
estimation 

of air 
pollution 

and 
exposure 

✗   
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Their addition to the full-
chain exposure model 
doubled the TRAP 
associated burden of 
disease as compared to 
the full-chain models 
without minor roads and 
cold starts, see Table 37 
and Table 40 

Health 
impacts 

modelling 

Under 
estimation 
of health 
impacts 

✗   

Road links 
definition and 
geocoding 

- SATURN road links were 
defined as straight lines 
between nodes and road 
curvatures were not 
captured 

- The geolocations of the 
nodes and links were 
inaccurate and therefore 
the link lengths as well 

- There were multiple links 
that were too long where 
the assignment of one 
speed and flow over 
becomes more unrealistic 
and higher variation is 
expected 

- The impacts of 
attempting to correct the 
geocoding of the traffic 
network was minimal in 
this study and changed 
the burden of disease 
estimates by only 2 
cases, see Table 37and 
Table 46 

- However, this impact can 
be more significant and 
influential if the exposure 
was assigned at the 
individual (rather than 
census population) level 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

 ✗  

A better integration between traffic 
modelling and GIS data is needed. 
Linked to the above, traffic 
modelling can be based on 
underlying road or street maps 
where road geometry can be 
accurately identified (e.g. road 
gradient, curvature, location, etc.). 
Long links should be cut down to 
smaller links before modelling 
traffic and speeds on them. 
CBMDC are in the process of 
updating their traffic model 
accordingly 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

E
m

is
s
io

n
s

 m
o

d
e

ll
in

g
 

Vehicle 
exhaust 
emissions 
modelling 

- Both COPERT and 
PHEM are emission 
models primarily built on 
laboratory emission 
testing data 

- This data is unrealistic 
due to the underlying 
driving cycles and 
laboratory conditions e.g. 
temperature, road 
gradient, humidity, wind, 
extra loading, age and 
maintenance of tested 
vehicles etc.  

- Real-world emissions are 
often higher 

- Using such emission 
models in full-chain 
exposure models can 
under estimate TRAP 
levels by up to 74% at the 
individual validation 
locations, see Section 
5.4.5. 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Under 
estimation 

of air 
pollution 

and 
exposure 

✗   
Average-speed emission models 
need fundamental improvement or 
scrappage. Emission 
measurements could provide 
emission estimates instead e.g. 
using Portable Emission 
Measurement Systems and 
remote sensing. These systems, 
however, will continue to have 
limited coverage and utility unless 
cost, practical and privacy 
challenges are minimized and/or 
vehicles become regularly 
equipped with similar monitors e.g. 
required by policy. Considering 
vehicle emission modelling based 
on parameters other than average 
speed e.g. vehicle specific power, 
acceleration, idling etc. is also 
recommended 

Health 
impacts 

modelling 

Under 
estimation 
of health 
impacts 

✗   

Pollutant 
selection 

- Only NOx was possible to 
model with COPERT and 
PHEM in this study 

- Estimates of other 
pollutants especially PM 
are less reliable and were 
therefore excluded but 
would result in different 
estimated health impacts 
if included 

- As shown in this study, 
the selection of the 
pollutant in the HIA 
makes a noticeable 
dfferent on the burden of 
disease estimated. For 
example, BC was 
associated with 15% of 
childhood asthma cases 
in Bardford whilst PM10 

was associated with over 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

✗   
Modelling and validating estimates 
of other pollutants should be 
attempted in the future 
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double that percentage or 
33%, see Table 38 
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Background 
air pollution 
maps 

- Background NOx maps 
from DEFRA may have 
some inaccuracy  

- They were also poorly 
resolved at the 1 km x 
1km grid level 

- Validation of the air 
pollution estimates 
showed that at urban 
background locations, air 
pollution is being under 
estimated by 24% on 
average (see Table 29), 
and although a big part of 
this percentage may be 
traced back to vehicle 
emissions, a 7.9% 
remains unaccounted for 
and may be due to under 
estimation of background 
NOx levels from the 
DEFRA maps (Table 32) 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 
(likely 
under 

estimation) 

 ✗  
Monitoring background data at 
numerous places of the city may 
offer more reliable measured data 
or a valuable dataset for the 
validation of models. However, to 
be feasible new air pollution 
monitoring technologies and/or the 
deployment of old cheaper ones 
e.g. diffusion tubes are needed at 
a large scale. Background air 
pollution modelling can further be 
improved e.g. undertaken at 
higher spatial resolution  

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 
(likely 
under 

estimation) 

 ✗  

TRAP maps 
resolution  

- TRAP was estimated at a 
spatial resolution of 100 * 
100 m grids 

- Levels of TRAP can vary 
significantly within tens of 
meters 

- An extension of this study 
showed that R2 can drop 
by up to 29% when 
exposure estimates are 
made at the centroid of 
the 100x100m grid in 
which the validation point 
fell versus when the 
exposure estimates were 
made at the exact 
location of the validation 
points, see Khreis et al. 
(2017a) 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

 ✗  

Resolution of the maps or the air 
pollution estimates can be 
improved using actual addresses if 
known or estimating TRAP at finer 
grids for e.g. 10 m x 10 m. This 
would be feasible if coupled with 
improvements in the speed of 
calculations/processing of 
dispersion models such as ADMS-
Urban 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

 ✗  
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Heterogeneity 
in underlying 
data 

- There was significant 
heterogeneity in the 
underlying studies/data in 
terms of their quality, 
outcome definitions and 
phenotyping, age of 
participants, exposure 
assessments, pollutant 
studied and statistical 
methods 

- Heterogeneity in the 
meta-analysis differed 
depending on the 
pollutant studied  

- These factors all impact 
the strength and direction 
of the effect estimate 

- There was indication that 
part oof the heterogeneity 
may be explained by age 
of the child, see Table 3 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

 ✗  

Heterogeneity should be further 
explored when more studies are 
available to pinpoint factors 
influencing exposure-response 
functions and effect sizes e.g. by 
sensitivity analysis or undertaking 
meta-regression grouping studies 
in similar groups based on their 
quality, outcome definitions and 
asthma phenotyping, age and sex 
of participants, exposure 
assessment methods etc. More 
standardization across study 
methods in the future can also 
provide insight into heterogeneity 
e.g. standard asthma definitions or 
exposure assessments  
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Baseline 
incidence 
rates and 
outcome 
definition 

- Baseline childhood 
asthma incidence rates 
were either scaled down 
to the population under 
study from national 
estimates or were 
obtained for the 
population under study 
but did not exactly match 
the explored age group 

- Further, definition of 
asthma differed and is 
expected to differ more 
with different datasets 
with the poor consensus 
on the definition of 
asthma 

- Using different definitions 
of asthma changed the 
burden of disease 
estimates considerably 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

 ✗  

Other sources of baseline data 
can be consulted and compared to 
current estimates. Reporting at the 
local e.g. city and micro level e.g. 
neighbourhood or census tract is 
poor/missing and needs 
improvement by for e.g. using new 
technologies, integrated datasets, 
big data, encouraging or 
mandating reporting, working with 
health care providers to catalogue 
and report data. Some relevant 
initiatives are ongoing as part of 
the Born in Bradford cohort. 
Definition of asthma continues to 
be wide and more standard 
diagnosis practices are perhaps 
preferable 
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as the number of the 
estimated attributable 
asthma cases drops by 
approximately 10% when 
using the first lower 
asthma incidence rate 
(123 per 10,000 person-
year) whilst it increases 
by up to 223% when 
using the second higher 
asthma incidence rate 
(442 per 10,000 person-
year) 
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Table 43 Full-Chain Quantitative Health Impacts Modelling Potential Uncertainties, Likely Effects and Alternatives 

Legend/ colour code 

Traffic modelling stage 

Emissions modelling stage 

Air pollution dispersion modelling and exposure assignment 

Health impacts modelling stage 

Exposure-response functions assessment stage 

 

Modelling 
stage 

Uncertainty 
or error 

Likely effect Relative impact 

Alternative(s) 
Description 

Stage(s) 
of effect 

Likely 
direction 
of effect 

High Moderate Low 

T
ra

ff
ic

 m
o

d
e

ll
in

g
 

Motorcycles 
- Exclusion of 

motorcycles traffic (and 
emissions) 

Emissions 
modelling 

Under 
estimation 

of 
emissions 

  ✗ 

Including motorcycles 
percentages, models and 
emissions as specified in 
the NAEI and possibility of 
developing average-
speed-emission functions 
for motorcycles in 
alternative versions of 
PHEM e.g. PHEMlight 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Under 
estimation 

of air 
pollution 

and 
exposure 

  ✗ 

Health 
impacts 

modelling 

Under 
estimation 
of health 
impacts 

  ✗ 

Diurnal and 
seasonal 
effects (on 
traffic flows 
and speeds) 

 

 

- The Bradford SATURN 
model only simulated 
traffic and speed data 
at 3 periods on an 
average weekday 

- Variations between the 
modelled periods was 
low and unrealistic 

- There are well known 
diurnal variations in 
traffic and speeds, as 
well as seasonal (e.g. 
weather) and ad-hoc 
(e.g. motor vehicle 
crashes) effects which 
are often not 
considered in traffic 
models 

- Traffic scaling was 
attempted but was 
limited as the Automatic 
Traffic Counters with 
full traffic data were few 
and no speed data was 
available 

Emissions 
modelling 

Inaccuracy 
of 

emission 
estimates 

 ✗  

Continuous modelling or 
monitoring of traffic data 
to provide estimates that 
capture seasonal, diurnal 
and ad-hoc variations 
more accurately. If not 
possible, scaling 
procedure used in this 
study can be improved 
with more data sub-
sampling at representative 
streets and at different 
times within a day and 
repeated over different 
days and seasons 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

 ✗  

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 
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Age and 
maintenance 
of vehicles 

- Vehicles age and 
maintenance including 
malfunctions, 
deterioration and 
tampering increase 
exhaust emissions 

- No such data was 
available for Bradford to 
account for vehicle age 
or maintenance 
conditions 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Under 
estimation 

of air 
pollution 

and 
exposure 

 ✗  

Data on vehicles’ age and 
maintenance is not readily 
available and could be 
collected more 
systematically e.g. mean 
fleet mileage for different 
vehicle classes or 
prevalence of poorly 
maintained vehicles. 
Emissions degradation 
corrections are often 
applied to petrol and LDVs 
only although there is 
emerging evidence these 
are applicable to other 
fuels and classes. Traffic 
monitoring alternatives 
proposed above can also 
provide this data if 
designed accordingly 

Health 
impacts 

modelling 

Under 
estimation 
of health 
impacts 

  ✗ 

Driving cycles 
underlying 
PHEM-based 
model 

- The PHEM-based 
average-speed-
emission functions were 

Emission 
modelling 

Inaccuracy 
of 

emission 
estimates 

  ✗ 

The driving cycles can be 
further expanded to cover 
more roads especially 
motorways and rural 
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developed based on ≈ 
30 hours of driving 

- This is perhaps not fully 
representative of driving 
conditions in the study 
area and did not cover 
enough motorway and 
rural roads (only 8 
points with speeds > 50 
km/h) 

- Further, the driving 
cycle was performed in 
one vehicle type (petrol 
Toyota Prius) which has 
different driving 
patterns and 
capabilities when 
compared to other 
vehicle classes 
including HDVs, buses 
and coaches 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

  ✗ 

roads. The driving cycles 
can be undertaken using 
different vehicle types e.g. 
LDVs, undertaken by 
different drivers with 
different driving styles or 
can be collated indirectly 
by tracking different 
vehicle types e.g. buses 
or HDVs 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

Vehicle 
specifications 
underlying 
PHEM-based 
model 

- Average vehicle 
specifications were 
used to parametrize the 
PHEM model 

- These came from 
London and Leeds data 
as no Bradford specific 
dataset was available  

Emissions 
modelling 

Inaccuracy 
of 

emission 
estimates 

  ✗ 
Average vehicle 
specifications, directly 
observed in the study 
area, can be used in the 
future when data becomes 
available. Traffic 
monitoring alternatives 
proposed above can also 
provide this data if 
designed accordingly 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

  ✗ 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 
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Meteorological 
data 

- Only one 
meteorological station 
was used 

- 9% of meteorological 
data was missing 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

 ✗  

Ensuring better data 
capture can improve the 
dispersion and 
subsequent HIA 
estimates, especially if the 
missing data represent 
weather conditions 
dissimilar to the average. 
The full-chain models 
could be run again using 
data from different 
meteorological stations to 
test the sensitivity to 
meteorological data 
choice e.g. Leeds weather 
station 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

Built and 
natural 
environment 
features 

- An average road width 
for all road links was 
assigned 

- The impact of street 
canyons, buildings, 
complex terrain and 
natural environment on 
the dispersion of air 
pollution and 
subsequent exposures 
was not considered 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

  ✗ 

Integration with land-use 
and terrain data from 
Google Earth, GIS etc. 
can supply real-world data 
on the width of road links, 
street canyons heights 
and widths, surroundings 
building and natural 
environment and spatial 
changes in surface 
roughness. This data can 
be incorporated in more 
complex dispersion 
models’ set-ups 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

Averaged 
exposures at 
the census 
tract level 

- Exposure was 
averaged at the census 
tract level, regardless of 
size or population etc. 

- With this averaging, 
children mobility where 
relevant (i.e. at older 
ages), any effect of 
gender, ethnicity, 
socioeconomic 
differences on 
exposure, living in front 
or in the back of a 
building adjacent to 
roads, specific activity 
patterns e.g. time spent 
in census tract versus 
in other locations are 
not considered 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of air 

pollution 
and 

exposure 

 ✗  

The population mobility 
patterns can be obtained 
using travel surveys, 
diaries or personal 
tracking devices like GPS 
monitors. The activity 
patterns can be studied in 
relation to other 
influencing factors e.g. 
age, gender, etc. and 
averages derived. The 
activity patterns can be 
overlaid by air pollution 
maps and spatially varying 
exposure levels derived. 
Alternatively, different 
census tracts exposures 
can be used to account for 
durations spent in different 
areas and provide a 
composite exposure 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

 ✗  
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estimate. The literature 
from other fields can be 
consulted 

NOx to NO2 
conversion 

- Dispersion model NOx 
outputs were converted 
to NO2 using one 
spatially constant factor 

- NO2 varies spatially 
depending on proximity 
to source, vehicle fleet 
mix and ratio of primary 
NO2, concentrations of 
O3 and VOCs 

Air 
pollution 

dispersion 
modelling 

and 
exposure 

assignment 

Inaccuracy 
of health 
impacts 

✗   

More reliable vehicle 
specific ratios of primary 
NO2 are needed and can 
be developed by collating 
measured emissions data 
e.g. remote sensing from 
the study area. These 
ratios can be used in the 
dispersion models using 
the chemistry option which 
further requires O3 
concentrations which were 
missing in the study area. 
Systematic collection of 
O3 data is needed. 
Spatially varying NOx to 
NO2 conversion factors 
can be developed based 
on proximity to roads and 
possibly vehicle fleet mix 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

✗   
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Assuming a 
log-linear, no-
threshold 
association 
between 
TRAP and 
asthma 

- A (natural) log-linear 
association between 
exposure to TRAP and 
development of asthma 
was assumed in 
individual studies and 
subsequently in the 
meta-analysis which 
was conducted based 
on a continuous 
increase in the unit of 
exposure with no 
specified threshold 
under which no effect 
occurs 

- Studies reporting high 
versus low exposure 
analyses were very few 
and of limited power 
restricting their usability 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

 ✗  

Future studies are 
recommended to 
systematically report 
categorical exposure 
analysis, alongside 
continuous exposure 
analysis. New methods 
capable of estimating the 
shape of the (potentially 
non-linear) exposure-
response function can be 
explored and used in the 
individual studies  

Publication, 
reporting and 
status quo/ 
confirmation 
bias 

- Studies with positive 
findings are more likely 
to be published and 
reported than studies 
with negative findings. 
The meta-analysis only 
included published 
studies 

- The included studies 
also overwhelmingly 
focused on certain well-
studied pollutants e.g. 
NO2 and less so or not 
at all on others e.g. BC 
and non-exhaust 
pollutants. This meant 
that some exposure-
response functions 
were underlined with a 
sufficient number of 
studies (e.g. NO2) whilst 
others were not (e.g. 
BC) 

- The literature was not 
evenly distributed 
geographically and was 
not globally 
representative with 
some regions being left 
out e.g. many 
developing countries 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

Future meta-analysis 
could benefit from 
including unpublished 
studies or studies in other 
languages. Future 
research could focus on 
areas where the evidence 
is missing or not reported 
in English e.g. Africa and 
Asia notably including 
Middle East, Russia, 
Pakistan etc. and 
differences explored and 
highlighted. The focus on 
particular pollutants e.g. 
NO2 should be expanded 
to other traffic-related 
pollutants including BC, 
NOx, PM, UFPs, particles 
constituents and non-
exhaust pollutants. Co-
pollutant/multi-pollutant 
models can be useful in 
this context. Overview 
reviews of the global 
evidence are needed 

Effect of 
ethnicity, age 
and sex 

- Ethnicity, age, and sex-
specific exposure-
response functions 
were not possible to 
generate due to lack of 
data and pooling the 
risk estimates for 
diverse subgroups in 
one value may distort 
the exposure-response 
functions and conceal 
true variability in 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

More data on different 
responses between 
different ethnic groups, 
ages and genders is 
needed and the 
development of new 
specific exposure-
response functions could 
follow. Stratifying analysis 
by these different factors 
may provide new insight 
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responses and 
subsequent health 
impacts 

- Overall, there was no 
systematic evaluation of 
(susceptible) subgroups 
in the literature 
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 -        

Competing 
risk factors 

- This is a generic 
limitation/uncertainty in 
HIAs. Asthma (disease) 
cases attributable to air 
pollution may well 
develop because of 
other competing risk 
factors e.g. genetic 
susceptibility, 
respiratory tract 
infections, exposure to 
allergens, chronic social 
and physiological 
stress, chemicals, 
unbalanced diet, co-
morbidities, etc. 

- Typically, these factors 
are adjusted for in the 
underlying data from 
which the exposure-
response functions 
were derived but some 
are not. On the other 
hand, protective factors 
may reduce the risk of 
disease with the 
exposure e.g. genetics, 
antioxidant intake etc. 
These factors are often 
not considered in the 
underlying data 

Health 
impacts 

modelling 

Inaccuracy 
of health 
impacts 

  ✗ 

These relationships are 
not well understood and 
further research is needed 
for the development of 
more comprehensive and 
more realistic HIA models 
and methods. The 
adjustment for other 
competing factors in the 
underlying models is 
assumed to control this 
issue but protective 
factors are not well-
studied 
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7.2.3. Implications for Policy and Practice 

There are several policy implications of this work. First, this work provides 

comprehensive and robust evidence that (traffic-related) air pollution contributes to 

the development of asthma in children. The results indicate that the elimination or the 

reduction of traffic levels, TRAP and exposures can potentially prevent a considerable 

number of asthma cases from developing. The positive and statistically significant 

associations detected with the exposure to BC suggest a value of using this pollutant 

as an additional indicator in air quality monitoring and management. The attribution 

of incident asthma cases to TRAP has substantial implications for the burden of 

asthma-related exacerbations as well. As air pollution increases the risk of developing 

new asthma cases, then all future acute exacerbations of these cases, regardless of 

subsequent (immediate) causes of the exacerbations, should be again attributed to 

air pollution. This conceptual model has been previously followed in the literature 

where BoD estimates associated with air pollution were revised to account not only 

for asthma symptoms that are directly triggered by air pollution; but also for asthma 

symptoms triggered by other causes in children who developed asthma because of 

air pollution (Figure 71). The result was a significantly higher BoD estimate and 

perhaps a more realistic picture of the societal and economic impacts of air pollution 

(Künzli et al., 2008, Brandt et al., 2012). Largely, these impacts are preventable and 

there are numerous transport and land-use policy measures at the city level which 

can reduce the levels of and exposures to TRAP (Khreis et al., 2017e). 

 

Figure 71 The burden of asthma exacerbations in children attributable to “exposure 

X,” assuming a causal role of X in both disease onset and exacerbation. 

Sizes of the boxes do not reflect the burden. The model starts with healthy children where some develop asthma due to X (A) or due 
to other causes (B). If X was the cause of asthma onset (A), all exacerbations among group A could be attributed to this factor X (C 
+ D). Ambient air pollution is an example for “exposure X”, Source: Künzli et al. (2008) 
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Second, this work demonstrated the discrepancy between real-world driving cycles 

as recorded in the Bradford’s vehicle tracking survey and driving cycles as used in 

current and proposed type approval testing. This discrepancy echoes previous calls 

to adopt more realistic and more transient driving cycles for emission measurements 

and modelling (The International Council on Clean Transportation, 2015, Samuel et 

al., 2002, Barlow et al., 2009, Williams and Carslaw, 2011). Furthermore, as it stands 

the testing procedure and the emissions data underlying the development of widely 

used emission models do not account for road gradient, thermal windows’ effects, air 

resistance etc. (Transport and Environment, 2013). Disregarding these factors, again, 

questions the reliability of current testing and modelling systems. Instead, vehicle 

emission testing could be undertaken on real roads to better account for real-world 

driving conditions such as road gradients, temperature, air resistance, etc. 

Third, and linked to the optimistic and unrealistic laboratory testing procedures, is the 

emission under estimation of laboratory-based emission models such as COPERT, 

and PHEM. Currently, very few studies use full-chain exposure modelling to estimate 

the exposure to TRAP, but more of these models are needed to distinguish the effects 

of air pollution from traffic sources from the effects of air pollution from other sources. 

Nonetheless, estimates from full-chain exposure models are at the mercy of the 

emission factors inputted into these models (Barrat, 2013), and as shown, current 

emission factors are derived from laboratory-based emission models and are under 

estimated. The result is that dispersion models tend to systematically under estimate 

TRAP levels (Department for Environmental Food and Rural Affairs, 2010, Williams 

et al., 2011). Emission reduction projections based on these models also give an 

overly optimistic view of the likely future of road transport emission reductions 

(Carslaw et al., 2011b). When these estimates are used in subsequent health effects 

or health impacts analysis, errors are expected and associated health impacts are 

likely under estimated (Basagaña et al., 2013). This is significant as findings from 

epidemiological and health impact assessment studies can drive air quality and 

transport policies in the UK and elsewhere. On the shorter term, some correction or 

uplifting of the estimated air pollution and health impacts is needed; e.g. Peace et al. 

(2004). On the longer term, improvements in traffic modelling, emissions modelling 

(Table 42), and in background air pollution modelling and monitoring (Sayegh et al., 

2016), are needed. 

Fourth, vehicle emissions are often considered to be well understood and financial 

resources available for monitoring real-world emissions has been significantly 
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reduced over the last years (European Research Group on Mobile Emission Sources, 

2015). Going through the process of the present thesis, one can conclude that this is 

a short-sighted trend as there are numerous uncertainties associated with vehicle 

emission measurements and models. There is also a lack of real-world data that could 

potentially be used to validate, calibrate, enhance and develop existing and new 

vehicle emission models. 

Finally, a policy relevant finding of this work was that the use of different average-

speed-emission functions results in markedly different source apportionment. This 

finding demonstrates that source apportionment is sensitive to the emission modelling 

methodology adopted. In other words, different vehicle fleets are identified as the 

most polluting and contributing to TRAP, depending on how vehicle emissions are 

estimated. Therefore, the selected average-speed-emission functions affect which 

sources of road traffic emissions are targeted, with consequences for air quality and 

health, if the wrong source is targeted (Peace et al., 2004). These findings have 

particularly caught the eyes of CBMDC, who have recently obtained funding for 

upgrading their HGV and bus fleets (Khreis et al., 2016). 

7.3. Final Thoughts 

Air pollution contributes to the development of childhood asthma and is responsible 

for a substantial but preventable BoD. Full-chain quantitative HIA models provide 

valuable but underutilised tools to estimate the BoD associated with air pollution, 

whilst specifically disentangling the contribution of traffic to this burden. Such BoD 

estimates are relevant for numerous stakeholders as they provide defensible numeric 

indices of health risk factors, inform the health benefit-risk trade-off of public policies 

and provide the basis for mainstream economic evaluations such as cost-benefit 

analyses. As it stands, full-chain quantitative HIA modelling is in its early development 

and is a laborious and highly time-consuming process which carries numerous 

uncertainties, especially at the initial stages of traffic and emission modelling. The 

earlier the errors occur on the full-chain, the more influence they are likely to have on 

the final results. The feasibility, utility, validity and resolution of the full-chain 

quantitative HIA models and their supporting data need to be improved in the future. 

This can be done through the systematic collation, provision and verification of input 

data, the further validation of and improvements in the chain’s whole and distinct 

steps and the application of the modelling to real-life questions and scenario analysis, 

ideally with the participation of different disciplines and stakeholders.
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Annex 5.1. UK Department for Environment Food and 

Rural Affairs NOx Background Maps 

Table 44 UK Department for Environment Food and Rural Affairs Background Maps 

Headers and Sectors – NOx (Note that all traffic sources were excluded in the 

main analyses whilst minor roads and cold starts were included in one 

sensitivity analysis) 

Headers included in main 

analysis 
Description 

Industry_in 

Industry area in square sources (combustion in 

industry, energy production, extraction of fossil 

fuel and waste) 

Industry_out 

Industry area out square sources (combustion 

in industry, energy production, extraction of 

fossil fuel and waste) 

Domestic_in 

Domestic, institutional and commercial space 

heating in square sources 

Domestic_out 

Domestic, institutional and commercial space 

heating out square sources 

Aircraft_in Aircraft in square sources 

Aircraft_out Aircraft out square sources 

Rail_in Rail in square sources 

Rail_out Rail out square sources 

Other_in 

Other in square sources (ships, off-road and 

other emissions) 

Other_out 

Other out square sources (ships, off-road and 

other emissions) 

Point_Sources Point sources 

Rural Regional rural concentration 
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Headers excluded in main 

analysis 
Description 

Motorway_in Motorway in square sources 

Motorway_out Motorways out square sources 

Trunk_A_Rd_in Trunk A roads in square sources 

Trunk_A_Rd_out Trunk A roads out square sources 

Primary_A_Rd_in Primary A roads in square sources 

Primary_A_Rd_out Primary A roads out square sources 

Minor_Rd+Cold_Start_in Minor roads and cold start in square sources 

Minor_Rd+Cold_Start_out Minor roads and cold start out square sources 

Headers included in 

sensitivity analysis  
Description 

Minor_Rd+Cold_Start_in Minor roads and cold start in square sources 

Minor_Rd+Cold_Start_out Minor roads and cold start out square sources 
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Annex 5.2. Snapped COPERT and PHEM-based 

Dispersion Models Validation 

Table 45 Snapped COPERT and PHEM-based Dispersion Models Validation (rows) 

against Different Datasets (columns) 

Models combination 

Validation dataset 

ESCAPE 
NOx 

diffusion 
tubes 
(n=41) 

ESCAPE 
NO2 

diffusion 
tubes 
(n=41) 

CBMDC 
NO2 

diffusion 
tubes 
(n=29) 

De Hoogh 
NO2 

diffusion 
tubes 
(n=48) 

CBMDC NO2 
fixed-site 

monitoring 
(n=8) 
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COPERT dispersion 
model NOx at points 
(varying background) 

R2= 0.30     

COPERT dispersion 
model NO2 at points 
(varying background) 

 R2= 0.33 R2= 0.20 R2= 0.59 R2= 0.24 
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PHEM dispersion 
model NOx at points 
(varying background) 

R2= 0.29     

PHEM dispersion 
model NO2 at points 
(varying background) 

 R2 = 0.32 R2 = 0.10 R2 = 0.52 R2 = 0.003 
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Annex 6.1. Annual Average Census Tract Pollutant 

Levels Correlation Matrix 

 

Figure 72 Matrix Showing Relationships (r) Between Different Pollutant and Model 

Combinations at Census Tract Level (µg/m3 for all Pollutants Except BC 10-5 M-1) 

The ellipses can be thought of as visual representations of the scatter plots: a perfect positive correlation is drawn as a line at 45 

degrees’ positive slope. For zero correlation, the shape becomes a circle. The numbers in the ellipses are the correlation 

coefficients. The darker the colour; the higher the correlation. 
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Annex 6.2. TRAP-attributable Asthma Cases with 

Original (Unsnapped) SATURN Network 

Table 46 Estimated Annual Attributable Asthma Cases in Bradford using the Original 

(Unsnapped) COPERT- and PHEM-based Dispersion Models (baseline asthma 

incidence = 137 per 10,000 person-year, baseline asthma incident cases = 1827) 

Model Attributable cases Attributable cases 
lower CI 

Attributable cases 
upper CI 

Percentage of all 
cases 

Original 
COPERT 

NO
2
 

322 139 428 18% 

Original 
COPERT 

NO
x
 

530 -201 977 29% 

Original 
PHEM 
NO

2
 

318 137 423 17% 

Original 
PHEM 

NO
x
 

524 -198 968 29% 
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