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Abstract

A binomial ring is a Z-torsion free commutative ring R , in which all the binomial

operations

(
r

n

)
=
r(r − 1)(r − 2) · · · (r − (n− 1))

n!
∈ R⊗Q, actually lie in R, for all r

in R and n ≥ 0. It is a special type of λ-ring in which the Adams operations on it all
are the identity and the λ-operations are given by the binomial operations. This thesis
studies the algebraic properties of binomial rings, considers examples from topology
and begins a study of their cohomology. The first two chapters give an introduction
and some background material.

In Chapter 3 and Chapter 4 we study the algebraic structure and properties of binomial
rings, focusing on the notion of a binomial ideal in a binomial ring. We study some
classes of binomial rings. We show that the ring of integers Z is a binomially simple ring.
We give a characterisation of binomial ideals in the ring of integer valued-polynomials
Int(Z{x}). We apply this to prove that Int(Z{x}) is a binomially principal ring and rings
of polynomials that are integer valued on a subset of the integers are also binomially
principal rings. Also, we prove that the ring Int(Z{x,y}) of integer-valued polynomials
on two variables is a binomially Noetherian ring.

The ring Int(Z{x}) and its dual appear as certain rings of operations and cooperations
in topological K -theory. We give some non-trivial examples of binomial rings that come
from topology such as stably integer-valued Laurent polynomials SLInt(Z{x}) on one
variable and stably integer-valued polynomials SInt(Z{x}) on one variable. We study
generalisations of these rings to a set X of variables. We show that in the one variable
case both rings are binomially principal rings and in the case of finitely many variables
both are binomially Noetherian rings. As a main result we give new descriptions of
these examples.

In Chapter 5 and Chapter 6 we define cohomology of binomial rings as an example of
a cotriple cohomology theory on the category of binomial rings. To do so, we study
binomial modules and binomial derivations. Our cohomology has coefficients given by
the contravariant functor DerBin(−,M), of binomial derivations to a binomial module
M. We give some examples of binomial module structures and calculate derivations
for these examples. We define homomorphisms connecting the cohomology of bino-
mial rings to the cohomology of λ-rings and to the André-Quillen cohomology of the
underlying commutative rings.
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Chapter 1

Introduction

The notion of a binomial ring was originally introduced by Hall [29] in connection with
his work in the theory of nilpotent groups. A binomial ring is a commutative ring R
with unit whose additive group is Z-torsion free such that all the binomial operations(

r

n

)
=
r(r − 1)(r − 2) · · · (r − (n− 1))

n!
∈ R⊗Q

actually in R, for all r in R and n ≥ 0. There is another important type of ring
called a λ-ring which is a commutative ring R with unit equipped with a sequence of
functions

λn : R −→ R,

for all n ≥ 0, called λ-operations, which satisfy certain relations that are satisfied by
the binomial operations. These rings were originally introduced in algebraic geometry
by Grothendieck [28] in his work in Riemann-Roch theory. The λ-operations are not
group homomorphisms. Their action on sums is given by

λn(x+ y) =
∑
i+j=n

λi(x)λj(y),

for all x, y in a λ-ring. Adams [2] introduced other operations on commutative rings
to study vector fields on spheres, ψn : R −→ R, for n ≥ 1, which are called Adams
operations. The Adams operations also exist on a λ-ring R.

Binomial rings have several applications. For example Hall [29] uses a member of a
binomial ring to determine a type of generalised exponentiation of an element of any
nilpotent group. Wilkerson [55] shows that a binomial ring is a special type of λ-ring
in which all Adams operations are equal to the identity. The λ-operations are then
given by the binomial operations

λn(r) =

(
r

n

)
,

for r in the ring and n ≥ 1. Yau [57] consider filtered λ-ring, which is a λ-ring together
with a decreasing sequence of λ-ideals. He shows that for a binomial ring R, the set
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2

λ(R[x]/(x2)) of isomorphism classes of filtered λ-ring structures on the ring (R[x]/(x2))
is uncountable. The ring of integer-valued polynomials on a set X of variables, is the
set of polynomials with coefficients in Q that are integer-valued over integers. This is
denoted by

Int(ZX) = {f ∈ Q[X] : f(ZX) ⊂ Z},

where ZX = Hom(X,Z) see [15]. It is an example of a binomial ring. This plays an
important role in our thesis. We show that the ring of integer-valued polynomials over
a subset K ⊆ Z, which is denoted by

Int(KX ,Z) = {f ∈ Q[X] : f(KX) ⊂ Z},

where KX = Hom(X,K) is also a binomial ring. Elliott [25] shows that Int(ZX) is
the free binomial ring on the set X . He also defines a right adjoint to the inclusion
functor from the category of binomial rings to the category of λ-rings. Using Adams
operations on λ-rings we define a left adjoint Qλ to this inclusion functor.

Indeed, Adams operations give another type of ring closely related to λ-rings. This is
a commutative ring R with unit equipped with a sequence of ring homomorphisms

ψn : R −→ R,

for all n ≥ 1. They are required to satisfy ψ1(r) = r and ψi(ψj(r)) = ψij(r). Such a
ring is called a ψ -ring. Wilkerson in [55] shows that there exists a λ-ring structure on
a Z-torsion free ψ -ring R satisfying the condition

ψp(r) ≡ rp (mod pR),

for r in R and prime p, whose Adams operations are given by the ψ -ring structure
on R . Our results by applying Wilkerson’s theorem and Theorem 2.7.1 we show that
binomial rings are preserved under localization and completion.

Theorem 2.9.5 Let S be a multiplicative closed subset of the binomial ring R . Then
the localization S−1R is a binomial ring.

Theorem 2.9.19 Let d be a metric on a binomial ring R . Then the ring R̂d is a
binomial ring.

We study the algebraic structure of binomial rings. We start with the notion of a
binomial ideal of a binomial ring. An ideal I of a binomial ring R is called a binomial
ideal if it is closed under the binomial operations; that is(

a

n

)
∈ I,

for a in I and n ≥ 1. There is not much work on binomial ideals. Xantcha [56]
gives a short survey on binomial ideals in his work on binomial rings: axiomatisation,
transfer and classification. This encouraged us to investigate classes of binomial rings
by properties of their binomial ideals. At the beginning, we show that the quotient
ring of a binomial ring by a binomial ideal is also a binomial ring. This will be a very
useful tool in our work. A well-known example of a non-Noetherian commutative ring
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is Int(ZX). We introduce the notion of a binomially principal ring and a binomially
Noetherian ring. We show the followings.

Theorem 3.6.13 The binomial ring Int(Z{x}) is a binomially principal ring.

Theorem 3.7.7 The ring Int(Z{x,y}) on two variables x and y is a binomially Noethe-
rian ring.

The complex topological K -theory built out from vector bundle of a space X by apply
the Grothendieck construction to the semi-ring Vect(X) with addition operation the
direct sum ⊕ and multiplication the tenser product ⊗ on the equivalence classes of
vector bundles over X. The origin of K -theory goes back to Grothendieck in algebraic
geometry in his first work on the Riemann-Roch theorem [28]. Atiyah and Hirzebruch in
[7] published the first work on K -theory in algebraic topology which is called topological
K -theory. This is an extraordinary cohomology theory. For a good space X, (for
example para-compact Hausdorff space) K0(X) is a λ-ring with λ-operations given
by exterior powers on vector bundles E over X,

λn(E) = ΛnE.

Knutson in [38] shows that for a binomial ring R which comes with a particular type
of generating subset, there is an isomorphism

R ∼= Z.

He applies this result to K -theory. It shows that if K0(X) for a good space X is a
binomial ring, then

K0(X) ∼= Z.

However non-trivial examples of binomial rings do arise in relation to topological K -
theory. The ring Int(Z{x}) and its dual appear as various types of operations and
cooperations in topological K -theory. Some nice works in this direction can be found
in [4, 17, 18, 20]. Bases of this kind of ring of cooperations in K -theory are given in [19].
Bases of the dual of this ring, related to operations in K -theory, can be found in [50].
We use K0(X) as a dual to K0(X) for a good space X and the properties of the ring
Int (Z{x}), to give some non-trivial examples of binomial rings arising from topology.
Our main results give new descriptions of these examples. The most important one is

Theorem 4.6.9 Let Int(Z{x,y}) be the ring of integer-valued polynomials over two x, y
variables and let Int((Z{x})[x−1] be the localization of the ring Int(Z{x}) with respect
to the multiplicatively closed set {xn : n ∈ N} . Then we have an isomorphism of
binomials rings,

Int(Z{x,y})
((xy − 1))

∼= Int(Z{x})[x−1].

Simplicial methods were introduced by Dold and Kan around 1950. They played an im-
portant part in the development of homological algebra and led to non-abelian derived
functors. The simplicial method provides a way to define cohomology in a categorical
setting. The concept of a triple on a category traces back to Godement [26] and cotriple
to Huber [35] as a dual of triples. It is well known that a cotriple C = (C, ε, δ) in a
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category yields a simplicial object in this category, built out of iterating C, with face
and degeneracy maps determined by ε and δ. Cohomology theories have been defined
in different areas of abstract algebra. For example for associative algebras a cohomol-
ogy theory is defined via the theory of Hochschild [33], for groups via the theories of
Eilenberg and Mac Lane [23] and for Lie algebras via the theories of Chevalley and
Eilenberg [16].

Barr and Beck [22] use a cotriple that comes from an adjoint pair of functors, to
introduce a cohomology theory which is called the cotriple cohomology theory. André
[6] and Quillen [46] separately introduced a cohomology theory on the category of
commutative algebras using a cotriple on the category of commutative algebras that
comes from the composite of a free functor and a forgetful functor. This is now called
André-Quillen cohomology theory.

Robinson in [48] introduced the cohomology of λ-rings with coefficients in the con-
travariant functor Derλ(−,M), which is the set of all λ-derivations with values in a
λ-module M over the λ-ring. This is an example of a cotriple cohomology theory on
the category of λ-rings. We apply Robinson’s notions of λ-module and λ-derivation
to binomial rings to introduce the cohomology of binomial rings as another example
of a cotriple cohomology theory on the category of binomial rings, with values in the
contravariant functor DerBin(−,M), which is the set of all λ-derivations with values
in a λ-module M over the λ-ring. our main result

Theorem 6.3.16 Let R be a binomial ring and let M be a binomial module over R

with module structure given by ϕMn = (−1)n−1

n IdM . Then

Der(R,M) = DerBin(R,M).

Theorem 6.4.8 Let R be a binomial ring and let M be a binomial module over R .
Then there exists an R-module homomorphism, for each n ≥ 0

%n : Hn
Bin(R,M) −→ Hn

λ (IBinR, IBinM).

This thesis is organized as follows. In chapter 2 we provide an overview about special
classes of commutative rings which are called binomial rings and λ-rings. In general
we show that for K ⊆ Z, Int(KX ,Z) is a binomial ring. Then we introduce the notion
of Adams operation on a λ-ring. It is shown that a binomial ring is a special type of
λ-ring in which all Adams operations are the identity and the λ-operations are given
by the binomial operations.

In §2.8, we introduce the functor Qλ from the category of λ-rings to the category of
binomial rings. We show that it is left adjoint to the inclusion functor IBin from the
category of binomial rings to the category of λ-rings. At the end of this chapter we
show that binomial rings are preserved by localization and completion.
In chapter 3 we focus on the notion of a binomial ideal of a binomial ring. We start
with the definition alongside some examples and properties. The proof that the quotient
ring of a binomial ring by a binomial ideal is a binomial ring is given in §3.3. Then we
introduce the notion of a principal binomial ideal. We use this to give some examples
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of quotients of Int(Z{x}), (Theorem 3.4.14 and Theorem 3.6.21). The relation with
usual principal ideals is given.

As a main aim of this chapter we introduce some classes of binomial rings by properties
of their binomial ideals. First, we introduce the notion of binomially simple ring. We
show that the ring of integers Z is a binomially simple ring. Then we introduce the
notion of binomially principal ring. As the first step we give the characterisation of
binomial ideals in Int(Z{x}). We use it and the fact that Q[x] is a principal integral
domain to show that Int(Z{x}) is a binomially principal ring. Finally, we define the
notion of binomially Noetherian ring. We use a characterisation of binomial ideals in
Int(ZX) on a set X of variables and the fact that Q[x, y] is a Noetherian ring to show
that Int(Z{x,y}) is a binomially Noetherian ring. In the last section of this chapter we
define the notion of binomially filtered rings. We show that the power series ring

ZJ
(
x

1

)
,

(
x

2

)
,

(
x

3

)
, · · ·K

is a binomial ring. Bhargava [12], for S ⊆ Z, gives a regular basis of the ring
Int(S{x},Z). We use this in the case where S has a p-ordering simultaneously for
all primes p to give a description of a particular completion of this ring.

Chapter 4 is devoted to giving some non-trivial examples of binomial rings arising
from topology. We start with the construction of K -theory geometrically in terms of
classes of vector bundles over the space X, Vect(X) and some basic results on it. Then
we introduce the spectrum K associated with the spaces BU ×Z and U, which defines
a cohomology theory called complex K -theory. The various types of cohomology op-
erations and related cooperations are given. We also give all the necessary background
on Hopf algebras. In §4.5, we start with discussion of stably integer-valued Laurent
polynomials. We show that the ring

SLInt(Z{x}) = {f(x) ∈ Q[x, x−1] : zmf(z) ∈ Z for all z ∈ Z and some m ≥ 0}

is a binomial ring. Also, we introduce the ring of stably integer-valued polynomials

SInt(Z{x}) = {f(x) ∈ Q[x] : zmf(z) ∈ Z for all z ∈ Z and some m ≥ 0}.

We show that it is a binomial ring. At the end of this chapter, we explain how these
examples of binomial rings come from topology. The main new results in this chapter
are Theorem 4.6.4 and Theorem 4.6.9, giving new descriptions of these examples.

In chapter 5 we provide background material on cotriple cohomology theory. Also
we give an overview of André-Quillen cohomology theory for commutative algebras as
an example of cotriple cohomology. At the end of this chapter, we give a summary of
cohomology of λ-rings. There is no original work in this chapter.

Chapter 6 is devoted to introducing the cohomology of binomial rings as another ex-
ample of a cotriple cohomology theory, on the category of binomial rings. We introduce
the notion of a binomial module over a binomial ring by applying the notion of a λ-
module to the special case of a binomial ring. We give examples of different binomial
module structures. In the same way we apply the notion of a λ-derivation of a λ-ring
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with values in a λ-module to introduce the notion of a binomial derivation of a bino-
mial ring with values in a binomial module M. We look at derivations of the binomial
polynomials. We use this to understand derivations of the integer-valued polynomial
ring. We investigate binomial derivations on a binomial ring with different binomial
module structures. At the end of this chapter we define the cohomology of binomial
rings using cotriple cohomology with values in the contravariant functor DerBin(−,M).
We show that for a binomial ring R and binomial modules M over R, with a particular
binomial module structure, given by ϕMn = (−1)n−1IdM , we have

DerBin(R,M) = 0.

As a consequence for this kind of module structure, we get

Hn
Bin(R,M) = 0,

for all n ≥ 0. However, other binomial module structures give non-zero cohomology
at lest in degree zero see Proposition 6.4.2. We define homomorphisms connecting the
cohomology of binomial rings to the cohomology of λ-rings and to the André-Quillen
cohomology of the underlying commutative rings.



Chapter 2

Binomial rings

§ 2.1 Introduction

The main purposes of this chapter are as follows.

1. To give the definitions and review some basic properties and well known results
about special classes of rings which are called binomial rings and λ-rings.

2. To investigate the relationship between them using Adams operations on λ-rings.

Our main result is to construct the functor denoted by Qλ from the category of λ-
rings to the category of binomial rings. We show that this functor is left adjoint to
the inclusion functor from the category of binomial rings to the category of λ-rings
(Theorem 2.8.12). We extend well known results about λ-rings to binomial rings. It is
shown that binomial rings are closed under localization (Theorem 2.9.5) and completion
(Theorem 2.9.20).

In §2.2 we give a short introduction to binomial rings. The definition and some basic
properties of binomial rings used throughout the whole thesis alongside some examples
are given in §2.3. In §2.4 we discuss the ring of integer-valued polynomials on a set
X of variables, Int(ZX). We show that the ring Int(ZX) is a binomial ring. We use
the ring Int(ZX) to give another description of binomial rings: a Z-torsion free ring
which is the homomorphic image of the ring Int(ZX) is a binomial ring and all binomial
rings are of this form. In §2.5 the definition of λ-rings is presented along with some
examples that will be referred to later in this thesis. The notion of Adams operations
on λ-rings given in §2.6.

The proof that the binomial ring is special type of λ-rings in which all Adams oper-
ations are the identity maps as binomial rings (Theorem 2.7.1) given in §2.7. In §2.8
we introduce the category of binomial rings whose objects are binomial rings and mor-
phisms are ring homomorphisms. We construct the left adjoint functor to the inclusion
functor from the category of binomial rings to the category of λ-rings. We use The-
orem 2.7.1 to show that binomial rings are closed under localisation and completion.

7
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In particular the facts that p-local integer ring Z(p) and p-adic integers Ẑp both are
binomial rings is the subject of §2.9.

§ 2.2 Introduction to binomial rings

The concept of binomial ring was originally introduced by Hall [29] in connection with
his groundbreaking work in the theory of nilpotent groups. His original definition is
as follows. Let R be a commutative ring with unity. It is a binomial ring if it is
Z-torsion-free and closed under the binomial operations(

r

n

)
=
r(r − 1)(r − 2) · · · (r − (n− 1))

n!
∈ R

for every r ∈ R and n ≥ 1.

Alongside the original reference today there are three other basic references for binomial
rings.

The most recent one is the book [57] by Donald Yau. In Chapter 5 of this book he gives
an elementary introduction to binomial rings with a few examples, basic properties and
theorems. He explains that the universal λ-ring on a binomial ring R is isomorphic
to the necklace ring Nr(R) of R, where Nr(R) of R is the ring with underlying set
Nr(R) =

∏∞
n=1R. Finally he introduces the concept of a filtered λ-ring. He shows that

for a binomial ring R the set λ(R[x]/(x2)) of isomorphism classes of filtered λ-ring
structures on the ring (R[x]/(x2)) with the x-adic filtration is uncountable.

The second basic reference is the paper [25] by Elliott. The main theme of this paper
is to elucidate the connection between binomial rings and λ-rings. He defines the free
binomial ring on the set X via the integer-valued polynomial ring Int(ZX) on the set
X . He applies this to give another characterisation of binomial rings, that they are
homomorphic images of the rings of integer-valued polynomials that are Z-torsion free
rings.

More generally he introduce the notion of “quasi binomial” as a homomorphic image of
a binomial ring to describe another characterisation of a binomial ring. Furthermore, he
constructs both left and right adjoint functors to the inclusion functor from binomial
rings to rings and from the point of view of Adams operations, he describes a right
adjoint for the inclusion functor from binomial rings to λ-rings.

The third basic reference is the paper [55] by Wilkerson. In this paper from the point
of view of Adams operations he shows that a binomial ring is equivalent to a λ-ring in
which all Adams operations are the identity.

There is also a nice paper [38] by Knutson, which applies the Adams operations to show
that the triviality of Adams operations in group representation rings and topological
K -theory of spaces lead to triviality of the whole ring. It shows that if the ring R(G)
of a finite group is a binomial ring then necessarily G = {e} . On the other hand, later
in other chapters we will see some examples of non-trivial binomial rings arising from
topology.



CHAPTER 2. BINOMIAL RINGS 9

§ 2.3 Binomial rings

Since this thesis deals with binomial rings a lot, we begin with a section on them
including the definition, some basic properties and examples. Let us begin with the
Z-torsion free property.

One of the conditions for any ring to be a binomial ring is that it should be Z-torsion
free as a Z-module. Thus first we give the definition and some examples of Z-torsion
free rings.

Definition 2.3.1. An element r in a ring R is called a Z-torsion element, if nr = 0
for some n ∈ Z+.

Example 2.3.2. The ring Z3 = {0, 1, 2} of integers modulo 3 has three Z-torsion
elements.

Definition 2.3.3. A ring R is called a Z-torsion free ring, if 0 is the only Z-torsion
element in R .

Some examples of Z-torsion free rings include binomial rings, polynomial rings over Z
and any subring of the rationals Q.

Let R be a ring. Consider the ring homomorphism

R −→ R⊗Q

given by
r 7→ r ⊗ 1.

The property of R be Z-torsion free means exactly that this ring homomorphism is
injective.

Definition 2.3.4. A binomial ring is a commutative ring R with unit whose additive
group is Z-torsion free and that contains all the binomial operations(

r

n

)
=
r(r − 1)(r − 2) · · · (r − (n− 1))

n!
∈ R⊗Q

actually in R for every r ∈ R and n ≥ 0, where

(
r

0

)
= 1.

In other words, a Z-torsion free commutative ring R is a binomial ring if and only if
it is closed under taking binomial operations.

Note that the binomial ring structure on a Z-torsion free commutative ring R is unique
(if it exists). But later we will see when we define the notion of binomial module over
binomial ring the structure of binomial module is not unique.

Example 2.3.5. Some examples of binomial rings are the following.

1. The simplest binomial ring is the ring of integers Z . It is clear Z is a Z-torsion
free ring. Since the binomial operations are integers this implies that the ring Z
is preserved by binomial operations.
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2. Any field R of characteristic 0. Since R has no zero-divisors and its characteristic
is 0 this implies R is a Z-torsion free ring. Since R is a field, every non-zero
element in R is invertible. This implies that the binomial operations lie in R for
every element in R .

3. Any Q-algebra is a binomial ring.

Other examples of binomial rings will appear in the following sections when we intro-
duce the ring of integer-valued polynomials and consider Adams operations on λ-rings
and in following chapters when we define the concept of binomial ideal in a binomial
ring. Here is a preview of some of them.

Example 2.3.6. Every ring of integer-valued polynomials Int(ZX) on a set X of
variables is a binomial ring (Theorem 2.4.7).

Example 2.3.7. Every ring of stable integer-valued Laurent polynomials SLInt(ZX)
on a set X of variables is a binomial ring (Theorem 4.5.6).

Example 2.3.8. In general every ring of stable integer-valued polynomials SInt(ZX)
on a set X of variables is a binomial ring (Theorem 4.5.20).

Example 2.3.9. The ring Z(p) of p-local integers (Corollary 2.9.6) and the ring Ẑp of
p-adic integers (Corollary 2.9.21) both are binomial rings.

Example 2.3.10. In general every ring of the integer-valued polynomial rings over a
subset K ⊆ Z , Int(KX ,Z) on a set X of variables is a binomial ring (Theorem 2.4.11)
and the generalization of an integer-valued polynomial ring on a binomial domain R
with quotient field F , Int(R) is a binomial ring (Proposition 2.9.13).

Example 2.3.11. Any λ-ring whose Adams operations all are the identity is a binomial
ring (Theorem 2.7.1).

Example 2.3.12. The quotient ring R/I of a binomial ring R by a binomial ideal I
is a binomial ring (Theorem 3.3.1).

Example 2.3.13. The power series ring ZJ
(
x
1

)
,
(
x
2

)
,
(
x
3

)
, · · ·K is a binomial ring (Propo-

sition 3.8.9).

We now state without proof some basic properties of binomial operations, which follow
from standard facts about binomial coefficients.

Theorem 2.3.14. [56] Let R be a binomial ring. For all a, b ∈ R and m,n, k ∈ N
the following hold.

1.

(
a+ b

n

)
=
∑
n=p+q

(
a

p

)(
b

q

)
.

2.

(
ab

n

)
=

n∑
m=0

(
a

m

) ∑
q1+q2+···+qm=n

(
b

q1

)
· · ·
(
b

qm

)
.
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3.

(
a

m

)(
a

n

)
=

n∑
k=0

(
a

m+ k

)(
m+ k

n

)(
n

k

)
.

4.

(
1

n

)
= 0 when n ≥ 2.

5.

(
a

1

)
= a.

Next here are some good properties of binomial rings.

Proposition 2.3.15. Let R and K be binomial rings.

1. The direct product ring R×K is a binomial ring with binomial operations given
by (

(r, k)

n

)
=

((
r

n

)
,

(
k

n

))
,

for r ∈ R, k ∈ K and n ≥ 0. So, if R1, . . . , Rm are binomial rings, the product

ring
m∏
i=1

Ri is a binomial ring.

2. The tensor product ring R ⊗K is a binomial ring with binomial operations de-
termined by (

r ⊗ 1

n

)
=

(
r

n

)
⊗ 1,(

1⊗ k
n

)
= 1⊗

(
k

n

)
,

for r ∈ R, k ∈ Kand n ≥ 0.

3. The intersection R∩K is a binomial ring. More generally, if {Ri}i∈I is a family
of binomial rings then the ring ∩iRi is a binomial ring.

Proof. Property 1 is clear. We are going to prove property 2. We can write(
r ⊗ k
n

)
=

(
(r ⊗ 1)(1⊗ k)

n

)
.

Since R and K both are binomial rings, by Theorem 2.3.14(2) and above formula this
implies that (

r ⊗ k
n

)
∈ R⊗K.

For Property 3 see [25].

Definition 2.3.16. The Stirling number of the first kind, denoted by

[
n

i

]
for n ≥ 0

and i ∈ N , is defined as the number of ways to permute n elements into exactly i
cycles.
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Proposition 2.3.17. The Stirling number of the first kind

[
n

i

]
for n ≥ 0 and i ∈ N,

satisfy the linear recurrence,[
n

i

]
= (n− 1)

[
n− 1

i

]
+

[
n− 1

i− 1

]
, (2.1)

with initial conditions

[
0

0

]
= 1 and for i < 0,

[
n

i

]
= 0.

Proof. For proof see [27, p. 247].

We let

xn = x(x− 1)(x− 2) . . . .(x− (n− 1)), (2.2)

for n ≥ 0, be the n-th falling power of x and

xn = x(x+ 1)(x+ 2) . . . .(x+ (n− 1)), (2.3)

be the nth rising powers of x.

Actually, the Stirling number of the first kind

[
n

i

]
can be expressed in many equivalent

different ways.

They appear as the coefficients in xn .

Proposition 2.3.18. [27, p. 249] For n ≥ 0 we have

xn =
n∑
i=0

(−1)n−i
[
n

i

]
xi. (2.4)

Proof. We will prove this by induction on n . Suppose that n = 0. Then both sides
are equal 1. Assume that the result holds for n− 1. Then we have

xn−1 =
n−1∑
i=0

(−1)(n−1)−i
[
n− 1

i

]
xi. (2.5)

We will prove it for n . We have

xn = xn−1(x− (n− 1)) = xxn−1 − (n− 1)xn−1.

Then by our assumption we obtain
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xn = x

n−1∑
i=1

(−1)(n−1)−i
[
n− 1

i

]
xi − (n− 1)

n−1∑
i=1

(−1)(n−1)−i
[
n− 1

i

]
xi, by (2.5)

=

n−1∑
i=1

(−1)(n−1)−i
[
n− 1

i

]
xi+1 − (n− 1)

n−1∑
i=1

(−1)(n−1)−i
[
n− 1

i

]
xi,

=
n∑
i=2

(−1)(n−i)
[
n− 1

i− 1

]
xi − (n− 1)

n−1∑
i=1

(−1)(n−1)−i
[
n− 1

i

]
xi,

=

n∑
i=0

(−1)(n−i)
[
n

i

]
xi by (2.1).

Proposition 2.3.19. For n ≥ 0 we have

xn =

n∑
i=0

[
n

i

]
xi.

Proof. The proof similar to the proof of Proposition 2.5.

We use the expression of Stirling numbers of the first kind

[
n

i

]
in (2.4) to expand

(
x

n

)
.

This implies that (
x

n

)
=

1

n!

( n∑
i=0

(−1)n−i
[
n

i

]
xi
)
. (2.6)

In combinatorics see [40, p. 56], the Stirling number of the first kind can be expressed
as the sum over (c1, . . . , cn) of the number of permutations of type [c1, c2, · · · , cn][

n

i

]
= (−1)n+i

∑
i=c1+c2+···+cn

n=c1+2c2+....+ncn

n!

1c12c2 . . . .ncnc1!c2! . . . cn!
. (2.7)

Lemma 2.3.20. For a prime p, the Stirling number of the first kind

[
p

i

]
is divisible

by p for 1 < i < p.

Proof. From (2.7) we have,[
p

i

]
= (−1)n+i

∑
i=c1+c2+···+cp
p=c1+2c2+···+pcp

p!

1c12c2 . . . pcpc1!c2! . . . cp!
.

The numerator is divisible by p . Since 1 < i < p and we have cp = 0 each factor in
the denominator is less than p and so the prime p is not canceled in the numerator.

Therefore

[
p

i

]
is divisible by p .
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Proposition 2.3.21. In a commutative ring R we have,

rp − r ≡ r(r − 1)(r − 2) . . . (r − (p− 1)) (mod pR), (2.8)

for r ∈ R and a prime p.

Proof. From (2.4) we have

r(r − 1)(r − 2) · · · .(r − (p− 1)) =

p∑
i=1

(−1)n−i
[
p

i

]
ri.

And by Lemma 2.3.20,

[
p

i

]
is divisible by p for 1 < i < p . We obtain

[
p

i

]
≡ 0 (mod pR).

Also by Wilson’s theorem see ([30, p. 85]) we have[
p

1

]
= (p− 1)! ≡ −1 (mod p),

and

[
p

p

]
= 1.

Proposition 2.3.22. [57, Lemma 5.5]In a binomial ring R the congruence condition

rp ≡ r (mod pR) (2.9)

holds for all r ∈ R and p prime.

Proof. By (2.8) we have

rp − r ≡ r(r − 1)(r − 2) · · · .(r − (p− 1)) (mod pR)

= p!

(
r

p

)
by (2.6)

≡ 0 (mod pR)

Therefore

rp ≡ r (mod pR).
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§ 2.4 Integer-valued polynomials

Most of the examples in this thesis are related to rings of integer-valued polynomials
on a set X of variables. So we will begin with a section on rings of integer-valued
polynomials. This means rings of polynomials with rational coefficients that are integer-
valued on integers. We prove that the ring Int(ZX) on a set X of variables is a binomial
ring (Theorem 2.4.7). Precisely later in §2.8 we will show that the ring Int(ZX) on a
set X of variables is the free binomial ring on the set X . The result is given in [25].
Later we introduce the notion of integer-valued polynomials Int(K{x},Z) over a subset
K ⊆ Z. As a result we show that Int(KX ,Z), is a binomial ring (Theorem 2.4.11). For
a more thorough description of integer-valued polynomials we refer to [15]. We begin
with the definition of the ring of integer-valued polynomials on a set X of variables.

Definition 2.4.1. Let Q[X] be the ring of polynomials on a set X of variables with
rational coefficients. We define the set of integer-valued polynomials on X by

Int(ZX) = {f ∈ Q[X] : f(ZX) ⊂ Z}.

This is a subring of Q[X] and it is called the ring of integer-valued polynomials on X,
where ZX = Hom(X,Z), which is the set of functions n(x). We computing f at any
n by replacing each x ∈ X with integer n(x) in f. Then the condition f(ZX) ⊂ Z
means that f(n) ∈ Z. In particular we have

Int(Z{x}) = {f ∈ Q[x] : f(Z) ⊂ Z}, (2.10)

the ring of integer-valued polynomials in one variable x .

Definition 2.4.2. The binomial polynomial in one variable x is defined by(
x

n

)
=
x(x− 1)(x− 2) · · · (x− (n− 1))

n!
∈ Q[x].

for all n ≥ 0, where
(
x
0

)
= 1.

Notation 2.4.3. For some non-empty set X of variables, we define a multi-index to
be

J = (jx)x∈X ∈
⊕
x∈X

Z≥0. (2.11)

With this multi-index J we define the generalized binomial polynomial to be(
X

J

)
=
∏
x∈X

(
x

jx

)
. (2.12)

Note that for another multi-index J = (jx) the binomial operation define by,

(
J

I

)
=
∏
x∈X

(
jx
ix

)
∈ Z. (2.13)



16

Notation 2.4.4. Let I = (j1, . . . , in) ∈
n⊕
k=1

Z≥0. and let J = (j1, . . . , jn) be another

multi-index. Then we mean by I > J if and only if i1 = j1, . . . , ik = jk and ik+1 > jk+1

for some k with 0 ≤ k ≤ n− 1.

In particular, for any multi-indexes J1 < J2 < J3 < · · · < Jn , we have(
Jt
Jk

)
=

{
1 if t = k,

0 if t < k.
(2.14)

Lemma 2.4.5. For n ≥ 0 the binomial polynomial

(
x

n

)
is an integer-valued polyno-

mial in one variable x.

In general the product of binomial polynomials each in one variable(
x1

n1

)(
x2

n2

)
· · ·
(
xi
ni

)
, (2.15)

in the polynomial ring Q[x1, x2, . . . , xi] in i variables for n1, n2, . . . , ni ≥ 0 is an
integer-valued polynomial in i variables.

Theorem 2.4.6. [57]The generalized binomial polynomials in a set of variables X{(X
J

)
: J = (jx) ∈

⊕
x∈X

Z≥0

}
, (2.16)

is a Z-basis of the ring Int(ZX). In particular, the polynomials

(
x

n

)
, for n ≥ 0, form

a Z-module basis of the ring Int(Z{x}) in one variable, and the set{(x1

n1

)
· · ·
(
xi
ni

)
: n1, . . . , ni ≥ 0

}
(2.17)

is a Z-module basis of the ring Int(Z{x1,··· ,xi}) in i variables.

Proof. First the set {(
X

J

)
: J = (jx) ∈

⊕
x∈X

Z≥0

}
,

is a Q-vector space basis of the polynomial ring Q[X] by [57, Proposition 5.31]. Then
for f ∈ Int(ZX), with f 6= 0, we can write

f =

n∑
t=1

at

(
X

Jt

)
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for some n ≥ 1 with at ∈ Q and some multi-indexes {Jt}t∈T . We obtain

f(J) =

n∑
t=1

at

(
J

Jt

)
.

In the same way in (2.14) when we compute f for ordering the indexes J1 < J2 <
· · · < Jk at X = J1 , we obtain f(J1) = a1 ∈ Z . So by induction on k assume that
a1, a2 · · · , ak ∈ Z . Now we are going to show that ak+1 ∈ Z , to see that we calculate
f at X = Jk+1 , also by (2.14) we have

f(Jk+1) =
k+1∑
t=1

at

(
Jk+1

Jt

)
= a1

(
Jk+1

J1

)
+ · · ·+ ak

(
Jk+1

Jk

)
+ ak+1.

We know that f(Jk+1) is an integer. So by the induction we conclude that ak+1 is
also an integer. This shows that the generalized binomial polynomials in a set X of
variables spans Int(ZX) over Z . Also we know from [57, Proposition 5.31] that the
generalized binomial polynomials in the set of variables X are a Q-vector space basis
of the polynomial ring Q[X] . So they are linearly independent over Q . Hence they are
also linearly independent over Z.

Here is the main purpose of this section, which shows that the ring Int(ZX) on a set
X of variables is a binomial ring.

Theorem 2.4.7. [57] The ring Int(ZX) on a set X of variables is a binomial ring.

Proof. First we need to show that Int(ZX) is Z-torsion free, which is clear since
Int(ZX) is a subring of Q[X] . To see the other condition of a binomial ring, con-
sider f ∈ Int(ZX). We have (

f

n

)
∈ Q[X].

Then for an m ∈ ZX , we have f(m) ∈ Z . Notice(
f

n

)
(m) =

(
f(m)

n

)
.

Then by Lemma 2.4.5, (
f(m)

n

)
∈ Z.

So (
f

n

)
∈ Int(ZX).

Now we turn attention to a ring of integer-valued polynomials over a subset.
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Definition 2.4.8. For a subset K ⊆ Z , we say that a polynomial f ∈ Q[X] on a set
X of variables which satisfies that f(KX) ∈ Z is an integer-valued polynomial over
subset K , where KX = Hom(X,K), which is the set of functions n as in Definition
2.4.1. We computing f at any n by replacing each x ∈ X with k ∈ K, n(x) in f.
Then the condition f(KX) ⊂ Z means that f(n) ∈ Z.

Int(KX ,Z) = {f ∈ Q[X] : f(KX) ⊆ Z}. (2.18)

This is a subring of Q[X] and it is called the ring of integer-valued polynomials over
K on set X. In particular we have

Int(K{x},Z) = {f(x) ∈ Q[x] : f(K) ⊂ Z}, (2.19)

called the ring of integer-valued polynomials over subset K in one variable x .

Note that the integer-valued polynomial ring Int(Z{x}) is integer-valued over Z , that
is

Int(Z{x}) = Int(Z{x},Z).

So we have inclusion

Z[x] ⊂ Int(Z{x}) ⊆ Int(K{x},Z) ⊆ Q[x]. (2.20)

Example 2.4.9. In particular from the ring of integer-valued polynomials over {0} on
one variable x we have

Int({0}{x},Z) = {f(x) ∈ Q[x] : f(0) ∈ Z}.

In other words, the ring Int({0}{x},Z) is the set of all polynomials in Q[x] with constant
term is an integer.

In example 2.4.9 for each non-zero subset K ⊂ Z we have

Z[x] ⊂ Int(Z{x}) ⊆ Int(K{x},Z) ⊂ Int({0}{x}) ⊂ Q[x]. (2.21)

Here is our main result of this section.

Theorem 2.4.10. For K ⊆ Z, the ring Int(K{x},Z) is a binomial ring.

Proof. We know from (2.20) that Int(K{x},Z) is a subring of Q[x] , so it is clearly a
Z-torsion free ring. To see the other condition of a binomial ring, pick an element
g(x) ∈ Int(K{x},Z). We have(

g(x)

n

)
=
g(x)(g(x)− 1)(g(x)− 2) · · · (g(x)− (n− 1))

n!
∈ Q[x],

for n ≥ 0. Then
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(
g(x)

n

)
(k) =

g(k)(g(k)− 1)(g(k)− 2) · · · (g(k)− (n− 1))

n!

=

(
g(k)

n

)
∈ Z by Lemma 2.4.5,

for k ∈ K . Therefore

(
g(x)

n

)
∈ Int(K{x},Z) as desired.

Theorem 2.4.11. For a subset K ⊆ Z the ring of integer-valued polynomials over
subset K , Int(KX ,Z) on a set X of variables is a binomial ring.

Proof. The proof is analogues to the proof of Theorem 2.4.10.

§ 2.5 λ-rings

In this section we discuss λ-rings, we give some well known results on them and some
of their properties. A λ-ring is a commutative ring R with identity equipped with a
sequence of functions λi : R → R for i ≥ 0 which are called λ-operations, satisfying
certain relations that are satisfied by the binomial operations. The λ-rings were first
introduced in algebraic geometry by Grothendieck [28] under the name special λ-ring.
They have been shown to play important roles in various field of mathematics.

For example in group theory, the paper [7] used λ-rings to study group representations.
In algebraic topology, the K -theory of a good space is a λ-ring. In both cases the
λ-operations are induced by exterior powers of vector spaces. Knutson in [37] used
λ-rings to study representations of the symmetric group. In pure algebra, Donald Yau
published a book under the name λ-rings [57]. The main aim of this is to study λ-rings
purely algebraically. For example if R is a commutative ring with unit, Then the ring
W (R) of big witt vectors on R has canonical λ-ring structure.

Also the notion of λ-ring R uses the classical essential theorem of symmetric functions
to describe the action of λ-operations on a product λn(r1r2) and the composition of
λ-operations λnλm(r1) for r1, r2 ∈ R .

We begin with the definition of λ-rings.

Definition 2.5.1. A λ-ring is a commutative with unit ring R together with a se-
quence of functions λn : R → R (called λ-operations) for each n ≥ 0 such that the
following axioms are satisfied.

1. λ0(x) = 1,

2. λ1(x) = x ,

3. λn(1) = 0 for n ≥ 2,

4. λn(x+ y) =
∑
i+j=n

λi(x)λj(y),
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5. λn(xy) = Pn(λ1(x), · · · , λn(x);λ1(y), · · · , λn(y)),

6. λn(λm(x)) = Pi,j(λ
1(x), · · · , λnm(x)),

for all x, y ∈ R and n,m ≥ 0.

The polynomials Pn and Pn,m which describe the action of λ-operations on products
and the composition of λ-operations are described below.

Definition 2.5.2. For a ring R , we consider the ring R[x1, x2, · · · , xn] of polynomials
in n independent variables x1, x2, · · · , xn . The polynomial f ∈ R[x1, x2, · · · , xn] is
called a symmetric function if it is unaltered under every permutation of the variables.
That is, we have

f(x1, x2, · · · , xn) = f(xπ(1), xπ(2), · · · , xπ(n)),

for every permutation π on the set {1, 2, · · · , n} . We say that the polynomial g ∈
R[x1, x2, . . . , xn; y1, y2, . . . , yn] in x1, x2, . . . , xn and y1, y2, . . . , yn independent vari-
ables is a symmetric function if it is unaltered under every permutation of variables.
That is, we have

f(x1, x2, . . . , xn; y1, y2, . . . , yn) = f(xπ(1), xπ(2), . . . , xπ(n); yτ(1), yτ(2), · · · , yτ(n)),

for every part of permutations π and τ on the set {1, 2, · · · , n} .

Example 2.5.3. For each 1 ≤ k ≤ n , an important symmetric function is the k th sym-
metric polynomial sk ∈ R[x1, x2, · · · , xn] which is the sum of all products of monomial
of length k . That is we have

sk =
∑

1<i1<···<ik≤n
xi1xi2 · · ·xik .

In particular, we have

s1 = x1 + x2 + · · ·+ xn,

s2 = x1x2 + x1x3 + · · ·+ xn−1xn,

sn = x1x2 · · ·xn.

Another way to obtain the k th elementary symmetric function sk(x1, x2, · · · , xn) in n
variables is by considering the formula, where t is an extra variable,

f(t) =

n∑
k=0

skt
k =

n∏
i=1

(1 + txi), (2.22)

Theorem 2.5.4. [57, p. 3]Any symmetric function f in R[x1, x2, · · · , xn] can be
written as a polynomial in the elementary symmetric functions s1, s2, · · · , sn with co-
efficients in R and it is unique.
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The polynomials Pn,m and Pn that appeared in the definition of λ-ring are called uni-
versal polynomials. The polynomial Pn(s1, s2, · · · , sn;α1, α2, · · · , αn) is the coefficient
of tn in the polynomial

f(t) =
n∏

i,j=1

(1 + xiyjt),

where each of si and αi are ith elementary symmetric functions in x1, · · · , xn and in
y1, · · · , yn respectively.
The polynomialPn,m(s1, s2, · · · , snm) is the coefficient of tn in the polynomial

f(t) =
∏

1≤i1<···<im≤nm
(1 + xi1xi2 · · ·ximt).

Example 2.5.5. Pn,1(s1, s2, · · · , sn) is the coefficient of tn in the polynomial

f(t) =
∏

1≤i≤n
(1 + xit) = 1 + s1t · · ·+ snt

n,

so

Pn,1(s1, s2, · · · , sn) = sn

and P1,m(s1, s2, · · · , sm) is coefficient of t in the polynomial

f(t) =
∏

1≤i1<···<im≤m
(1 + xi1xi2 · · ·ximt) = 1 + x1x2 · · ·xmt

so

P1,m(s1, s2, · · · , sm) = sm.

For more detail on symmetric functions see [37, chapter 1] and for the universal poly-
nomials see [57, chapter 1]. In general Pn,m 6= Pm,n as λ-operations do not commute.
For more detail and calculation see [34]. There the author gives several forms for Pn,m
and calculates Pn up to n = 10.
Here are some small values of both universal polynomials.

1. P0 = 1.

2. P1(s1, α1) = s1α1 .

3. P2(s1, s2;α1, α2) = s2
1α2 − 2s2α2 + s2α

2
1 .

4. P3(s1, s2, s3;α1, α2, α3) = s3
1α3 − 3s1s2α3 + s1s2α1α2 − 3s3α1α2 + s3α

3
1 + 3s3α3.

5. P0,m = 1, for all m ∈ N .

6. P1,0 = 1.

7. Pn,0 = 0, for all n ≥ 2.

8. P1,1(s1) = s1.
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9. P2,2(s1, s2, s3, s4) = s1s3 − s4.

10. P2,3(s1, s2, s3, s4, s5, s6) = s6 + s2s4 − s1s5.

11. P3,2(s1, s2, s3, s4, s5, s6) = s6 − 2s2s4 − s1s5 + s2
1s4 + s2

3 − s1s5.

12. P3,3(s1, s2, s3, s4, s5, s6, s7, s8, s9) = s9− s1s8− s4s5− s2s7 + s2
1s7 + s2

1s4 + 3s3s6−
2s1s3s5 − s1s2s6.

Definition 2.5.6. Let R1 and R2 be λ-rings. A ring homomorphism f : R1 −→ R2

is called a λ-homomorphism if it commutes with the λ-operations that is

λn(f(r)) = f(λn(r)),

for all r ∈ R and n ≥ 0. We write Ringλ for the category of λ-rings, whose objects
are λ-rings and morphisms are λ-homomorphisms.

Definition 2.5.7. We call R a pre λ-ring if only the first four axioms of Definition
2.5.1 are satisfied.

Consider a (pre) λ-ring R together with the homomorphism λt from the additive group
of R into the multiplicative group of power series in t with constant term 1, defined
by

λt(r) =
∞∑
n=0

λn(r)tn ∈ R[[t]]. (2.23)

Now we can use (2.23) to write addition of λ-operations as

λt(r1 + r2) = λt(r1).λt(r2) (2.24)

Example 2.5.8. The ring Z of integers is a pre λ-ring with

λt(r) = (1 + t)r =

r∑
n=0

(
r

n

)
tn. (2.25)

So

λn(r) =

(
r

n

)
.

It is clear by Theorem 2.3.14

(
r

n

)
. is satisfy all axioms.

Definition 2.5.9. If λt(x) is a polynomial of degree n, then we say that x has di-
mension n. If each r ∈ R is difference of finite dimension elements, then we say that
R is finite dimensional.

Example 2.5.10. [57, p. 9]Some examples of λ-rings are the following.
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1. The simplest finite dimensional λ-ring is the ring of integers Z with the λ-
operations defined by the binomial operations λn(r) =

(
r
n

)
. that is

λt(n) = coefficientsoftiin(1 + t)n =
n∑
i=0

(
r

i

)
ti.

So

λn(r) =

(
r

n

)
.

These are also the coefficients of tn in above power series.

2. One can get a λ-ring structure on the representation ring for a group G , in which
λn is induced from the nth exterior power on representations of the group G ,
λn(V ) = Λn(V ) for V in rep(G).

3. The topological K-theory K(X) of any good space X ( para-compact Hausdorff
space). This is a λ-ring, in which λn is induced from the nth exterior power,

λn(B) = Λn(B),

for a vector bundle B over X. In particular the K -theory of a point is K(pt) ∼= Z
with the structure of λ-operations given in example 1.

§ 2.6 Adams operations

The aim of this section is to introduce the notion of Adams operations on λ-ring.
The λ-operations have complicated axioms. It can be difficult to construct a λ-ring
structure on some kinds of commutative ring and λ-operations are not group homo-
morphisms. So in [2] Adams introduced the ψn -operations to study vector fields on
spheres from the λ-operations on a ring R . We will use it in the next section.

In fact, ψn -operations give us another type of ring, which is a commutative ring R ,
equipped with a sequence of functions

ψn : R→ R,

for all n ≥ 1, satisfying certain properties. These are called ψ -rings.

The ψ -rings are much easier to deal with and sometimes we will need to pass to them
to execute some calculations for λ-rings and to construct λ-ring structures on some
particular types of rings. For example Wilkerson in [55] explains that constructing
ψ -operations on a Z-torsion free ring R that satisfy the axiom

ψp(r) ≡ rp (mod pR)

for every r ∈ R and every prime p , is sufficient to construct a λ-ring structure on R
(Theorem 2.6.10). He also considers the Adams operations to show that a λ-ring whose
ψn -operations all are the identity for all n ≥ 0 is a binomial ring (Theorem 2.7.1).
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The Adams operations on a λ-ring R , ψn : R −→ R for n ≥ 1, are defined by using
the λ-operations on R . We construct the group homomorphism

λt : R −→ R[[t]].

We know from (2.24) that the addition formula is given by

λt(r1 + r2) = λt(r1).λt(r2),

for r1, r2 ∈ R . In order to obtain an additive homomorphism ψt : R −→ R a natural
idea is to apply the logarithm to (2.24). Precisely, Since λt(r) has constant equal to 1,
we apply the power series formula

log(1 + x) =

∞∑
i=1

(−1)i+1x

i
,

to log(λt(r)) which is means we add denominators into R , say by tensoring with Q.
We obtain group homomorphism with coefficients of power series of t of log(λt(r))
which take value in R⊗Q . Now by applying the operator d

dr to this we eliminate Q .
Therefore we obtain from the above information this generating function,

ψ−t(r) = −t d
dt

(log λt(r)) =
−tλt(r)′

λt(r)
. (2.26)

Definition 2.6.1. Let R be a λ-ring. We define the nth Adams operations on R
ψn : R → R by considering the generating function (2.26) for all n ≥ 1 and r ∈ R ,
where

ψt(r) =
∑
i≥1

ψi(r)ti. (2.27)

On other words,ψi(r) is the coefficient of (−t)i in ψ−t .

Example 2.6.2. We know from the previous section that the ring Z of integers is
a λ-ring with λ-operations given by λt(a) = (1 + t)a for a ∈ Z . Then the Adams
operations in the ring Z are given by

ψ−t(a) = −t d
dt

(log(1 + t)a) =
−at
1 + t

.

This implies that

ψt(a) =
at

1− t
= a(t+ t2 + · · · ).

So for all i ≥ 1, ψi(a) = a .

Later we will show that the same thing holds in all binomial rings.

The Adams operations satisfy the following properties.

Proposition 2.6.3. [2]Let R be a λ-ring. For fixed i, j ≥ 1 and r1, r2 ∈ R , the
following properties hold in R .
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1. ψi : R −→ R is a ring homomorphism.

2. ψ1 =Id.

3. ψiψj = ψij = ψjψi .

4. ψp(r) ≡ rp (mod pR) for all prime numbers p.

The Adams operations are connected to the λ-operations by the following formula,
which is known as Newton’s Formula ( which is quite closely related to Newton’s formula
for symmetric functions see [57, Theorem 3.9], but recursive rather that closed formula
relating Adams operations and λ-operations).

Theorem 2.6.4. [57, Theorem 3.10]The following equality holds in a λ-ring R .

ψn(r) = λ1(r)ψn−1(r)− λ2(r)ψn−2(r) + · · ·+ (−1)nλn−1(r)ψ1(r) + (−1)n+1nλn(r),
(2.28)

for r ∈ R and n ≥ 1.

Proof. For a proof see [57, Theorem 3.10].

In other words, Newton’s Formula gives a recursive formula for the Adams operations
in terms of λ-operations. So we can calculate Adams operations recursively in terms
of λ-operations.
Here are the values of Adams operations for some small values of n , in terms of λ-
operations.

1. ψ1(r) = λ1(r) = r .

2. ψ2(r) = r2 − 2λ2(r).

3. ψ3(r) = r3 − 3rλ2(r) + 3λ3(r).

4. ψ4(r) = r4 − 4r2λ2(r) + 4rλ3(r)− 4rλ4(r) + 2(λ2(r))2 .

5. ψ5(r) = r5 − 5r3λ2(r) + 5r2λ3(r)− 5rλ4(r) + 5λ5(r) + 5(λ2(r))2 − 5λ2(r)λ3(r).

Theorem 2.6.5. Let R be a λ-ring, then every Adams operation on R , ψn : R → R
for n ≥ 1, is a λ-homomorphism.

Proof. For a proof see [57, Theorem 3.6].

Next we introduce another type of ring closely related to λ-rings, which is known as a
ψ -ring.

Definition 2.6.6. A ψ -ring is a commutative ring R with unit, together with a
sequence of ring homomorphisms ψn : R → R , for all n ≥ 1, which are called ψ -
operations such that the following axioms are satisfied.

1. ψ1 =Id,
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2. ψiψj = ψij = ψiψj , for all r ∈ R and i, j ≥ 1.

We say that a ψ -ring R is special if it also satisfies the axiom

ψp(r) ≡ rp (mod pR) (2.29)

for each prime p .

Example 2.6.7. The ring of integers Z is a ψ -ring with ψ -operations given by ψi(n) =
n for all n ∈ Z and i ≥ 0.

Example 2.6.8. In general every commutative ring R with unit is a ψ -ring with
ψ -operations given by ψi(r) = r for all r ∈ R and i ≥ 0.

Definition 2.6.9. Let R1 and R2 be ψ -rings, then a ring homomorphism f : R1 → R2

is called ψ -homomorphism if it commutes with the ψ -operations that is

ψn(f(r)) = f(ψn(r)),

for all r ∈ R1 and n ≥ 0. We write the set of all ψ -homomorphisms by Homψ(R1, R2).
We write Ringψ for the category of ψ -rings whose objects are ψ -rings and morphisms
are ψ -homomorphisms.

We know from the previous section that the λ-operations are neither additive nor
multiplicative and a λ-ring R has some complicated axioms. Thus it can be hard to
construct a λ-ring structure on some types of rings.

However the ψ -ring axioms are easier to deal with. So Wilkerson in [55] showed that
to construct a special ψ -ring structure on a Z-torsion free ring R , it is enough to
construct a λ-ring structure on R from it is Adams operation the ones that given the
ψ -ring structure. We will use it in the coming section when we show that binomial
rings are preserved by localization and completion.

Theorem 2.6.10. Let R be a Z-torsion free special ψ -ring. Then the Adams opera-
tions on R which give the ψ -ring structure on R determine a λ-ring structure on R,
related λ-operation to Adams operation by Newton’s Formula as in Theorem 2.6.4.

Proof. For a proof see [57, Theorem 3.54].

§ 2.7 Binomial rings as λ-ring structure

The purpose of this section is to introduce a special class of λ-ring structures from
the point of view of Adams operations. The result is due to Wilkerson [55] who shows
that a λ-ring R whose Adams operations all are the identity on R is a binomial ring
(Theorem 2.7.1). Later in this section we use this result to give another description of
binomial rings (Proposition 2.7.4).

Here is the main aim of this subsection. This will be a very useful tool in the next
section and coming chapters in this thesis.
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Theorem 2.7.1. A λ-ring R whose Adams operations all are the identity map on R ,
is a binomial ring, in which the λ-operations are given by the binomial operations

λn(r) =

(
r

n

)
,

for all r ∈ R and n ≥ 1.

To prove theorem 2.7.1 we require the following.

Lemma 2.7.2. [57, Lemma 5.6]For a λ-ring R whose Adams operations are the iden-
tity map the following equality holds in R

r(r − 1) · · · (r − (n− 1)) = n!λn(r),

for all r ∈ R and n ≥ 1.

Proposition 2.7.3. [57, Propostion 5.10]Let R be a λ-ring whose Adams operations
all are the identity map on R . Then R is a Z-torsion free ring.

Proof. of Theorem 2.7.1 First by Proposition 2.7.3 R is a Z-torsion free ring. To see
the second condition of a binomial ring, pick an element r ∈ R . Then by Lemma 2.7.2
we have

r(r − 1) · · · (r − (n− 1)) = n!λn(r).

So by the Z-torsion free property of R we obtain

R 3 λn(r) =

(
r

n

)
,

for n ≥ 1.

Here is an application of Theorem 2.7.1, which gives another description of binomial
rings.

Proposition 2.7.4. Let R be a Z-torsion free ring. Then R is a binomial ring if and
only if the congruence condition

rp ≡ r (mod pR), (2.30)

for any prime p and all r ∈ R .

Proof. For if part, first for n ≥ 1, we define the Adams operation on R , ψn : R −→ R ,
by ψn(r) = r . Consequently R is a Z-torsion free ψ -ring and by hypothesis satisfies
the axiom (2.30). So R is special ψ -ring. Now by Theorem 2.6.10 R is a λ-ring in
which all the Adams operations are the identity map on R . Therefore by Theorem
2.7.1 R is a binomial ring. The only if part follows by Proposition 2.3.22.

Next we will see that actually the converse of Theorem 2.7.1 is also true.
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Proposition 2.7.5. [57] Let R be a binomial ring. Then R has a unique λ-ring
structure whose Adams operations all are the identity on R . The λ-operations are
given by the binomial operations,

λn(r) =

(
r

n

)
for all r ∈ R and n ≥ 1.

Proof. The first part is the analogue of the proof of Proposition 2.7.4 and the second
part follows by Lemma 2.7.2.

We know from Theorem 2.4.11 that for K ⊆ Z every ring Int(KX ,Z) on a set X of
variables is a binomial ring.

Corollary 2.7.6. Every ring of Int(KX ,Z) is a λ-ring in which all the Adams oper-
ations are the identity and with λ-operations given by the binomial operations.

From the point of view of Adams operations, we know that the binomial rings are a
special class of λ-rings (Theorem 2.7.1).

Proposition 2.7.7. Every λ-ring R contains a λ-subring S defined by

S = {r ∈ R : ψn(r) = r for all n ≥ 1},

which is a binomial ring.

Proof. First it is clear by Proposition 2.6.3(1) S is subring of R . We know from
Theorem 2.6.5 that the Adams operations are λ-homomorphisms. This implies that

λk(ψn(x)) = ψn(λk(x)).

Therefore S is λ-subring of R . Finally by Theorem 2.7.1 it is clear S is a binomial
ring.

Proposition 2.7.8. Let R be a binomial ring. Then R satisfies the following condition
for all n,m ∈ N and r, s ∈ R .

1.

(( r
m

)
n

)
= Pn,m

((
r

1

)
,

(
r

2

)
, · · · ,

(
r

mn

))
.

2.

(
rs

n

)
= Pn

((
r

1

)
,

(
r

2

)
, · · · ,

(
r

n

)
;

(
s

1

)
,

(
s

2

)
· · ·
(
s

m

))
where Pn, Pm,n are the universal polynomials, in Definition 2.5.1.
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Proof. We know from Proposition 2.7.5 the binomial ring R has a unique λ-ring struc-
ture given by

λn(r) =

(
r

n

)
for all r ∈ R and n ≥ 1. Then the coefficients

(
r

n

)
satisfy all axioms in Definition

2.5.1.

§ 2.8 Category of binomial rings

From the previous section we know that binomial rings are a special class of λ-ring, in
which all the Adams operations are the identity. So in this section we use this result
and Proposition 2.7.7, first to define a functor Qλ from the category of the λ-rings
to the category of binomial rings. We show that the functor Qλ is left adjoint to the
inclusion functor IBin from the category of binomial rings to the category of λ-rings
(Theorem 2.8.12).

First we introduce the category of binomial rings BinRing whose objects are binomial
rings and morphisms are ring homomorphisms. We show that the binomial ring Int(ZX)
on a set X of variables is the free binomial ring on the set X (Proposition 2.8.13).
The result is due to Elliott [25]. We use the ring Int(ZX) to give another description
of binomial rings (Theorem 2.8.14).

Let R and K be binomial rings and let f be a ring homomorphism f : R −→ K .
Then, as K is a Z-torsion free ring, we have

n!f

(
r

n

)
= f((r(r − 1) · · · (r − (n− 1)))

= f(r)(f(r)− 1) · · · (f(r)− (n− 1)))

= n!

(
f(r)

n

)
,

for all r ∈ R and n ≥ 1. This implies that the ring homomorphism preserves binomial
operations. Thus we mean by binomial homomorphism a ring homomorphism between
binomial rings.

Now we give characterizations of binomial rings in terms of homomorphic images.

Proposition 2.8.1. Let R be a binomial ring. Any Z-torsion free homomorphic image
ring K of R is a binomial ring.

Proof. Let ϕ be a ring homomorphism from the binomial ring R onto a Z-torsion free
ring K . To show that K is a binomial ring we need to show that K is closed under
the binomial operations. To see that, pick an element k ∈ K . Since ϕ is onto, we have

ϕ(r) = k for some r ∈ R . By Definition 2.3.4 we have

(
r

n

)
∈ R . Therefore

ϕ

(
r

n

)
=

(
ϕ(r)

n

)
=

(
k

n

)
∈ K
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as desired.

Proposition 2.8.2. Let X be a non-empty set, let R be a ring and let K = map(X,R)
be the set of all maps from X to R . In symbols,

K = map(X,R) = {f |f : X → R}.

Then

1. K is a ring with the usual operations on functions, that is point-wise addition
and multiplication.

2. If R is a binomial ring then K is a binomial ring.

Proof. The first part is obvious. We are going to prove second part. To see that K is
closed under taking binomial operations, let f ∈ K. Since f(x) ∈ R for x ∈ X and R
is a binomial ring, (

f

n

)
(x) =

(
f(x)

n

)
∈ R

for n ≥ 0. This implies that (
f

n

)
∈ K.

On the other hand to show that K is Z-torsion free, suppose that nf = 0 for n ∈ Z
and f ∈ K , f 6= 0. Then nf(x) = 0 for all x ∈ X . Since R is a binomial ring, it is
Z-torsion free. This implies that n = 0 as desired.

Definition 2.8.3. The category of binomial rings is the category whose objects are
binomial rings and morphisms are binomial homomorphisms (ring homomorphism be-
tween binomial rings). We denote it by BinRing and morphisms by HomBin .

Thus, the category of binomial rings BinRing is a full subcategory of the category of
commutative rings CRing.
We know from Definition 2.5.6 that λ-rings form a category Ringλ with λ-homomorphisms
as morphisms.

There is a functor IBin : BinRing→ Ringλ, which assigns to a binomial ring the λ-ring
with λ-operations given by

λn(x) =

(
x

n

)
and IBin sends a ring homomorphism to the same map viewed as a λ-homomorphism.

In fact, it is an inclusion functor.

The notion of adjoint functors was first introduced by Kan [36] to compare categories.
He studied the adjunction between the Hom functor and the tensor product functor.
The functor F is called left adjoint to the functor G and G right adjoint to F if there
exists a natural bijection

β : Hom(F (−),−) −→ Hom(−, G(−)).



CHAPTER 2. BINOMIAL RINGS 31

In mathematics we usually use isomorphisms as a way to compare objects with each
other. In category theory we use the notion of adjunction between two functors to say
two categories are related.

Definition 2.8.4. An adjunction between categories A and B consists of the following.

1. Functors F : A→ B and G : B→ A.

2. A natural transformation ε : IA → GF.

These satisfy the following property. For any A ∈ A and B ∈ B and f : A → G(B)
in A there exists a unique g : F (A)→ B in B , such that the diagram

GF (A) G(B)

A

f

G(g)

εA

is commutative. Then we call F the left adjoint of G and G the right adjoint of F
and ε the unit of the adjunction.

Example 2.8.5. (In the category of the topological spaces). There is a functor G :
Top→ Set taking a topological space to the set of its elements forgetting the topology
and taking a continuous function to the corresponding function between sets. Such a
functor is called a forgetful functor. This is a right adjoint functor to the free functor
F : Set→ Top which is the functor giving each set the discrete topology.

Example 2.8.6. Here is a more important example for the work in this thesis (in
the category of commutative rings). There is a forgetful functor G : CRing → Set ,
which takes a commutative ring to the set of its elements forgetting the ring structure
and takes a ring homomorphism to the corresponding function between sets. This is a
right adjoint functor to the free functor F : Set → CRing taking each set to the free
commutative ring (polynomial ring) generated by this set.

The definition of adjoint functor is useful for getting an axiomatic understanding of
adjunction. But it is useful to consider the adjunction as a natural isomorphism be-
tween Hom-sets. The following is equivalent to Definition 2.8.4. Let A and B be two
categories. An adjunction from A to B is a triple (G,F, ρ) such that

1. F : A→ B and G : B→ A are functors.

2. There is a bijection ρ for each pair of objects A ∈ A and B ∈ B

ρ = ρA,B : HomB(F (A), B) ∼= HomA(A,G(B))

which is natural in both A and B.



32

Have adjunction means that for all f : A→ C in A and g : B → D in B the following
diagram is commutative

HomB(F (C), B) HomB(F (A), B) HomB(F (A), D)

HomA(C,G(B)) HomA(A,G(B)) HomA(A,G(D))

Ff∗ g∗

∼= ∼= ∼=

f∗ Gg∗

Then F is a left adjoint functor of G and G is a right adjoint functor of F.

Elliott in [25] defined a right adjoint to inclusion functor IBin. The main result of this
section, is to defined a left adjoint Qλ to the functor IBin.

Before we give the construction of the functor Qλ, we will require the following from
[57].

Definition 2.8.7. Let R be a λ-ring. An ideal I in R is called a λ-ideal if

λn(a) ∈ I,

for all a ∈ I, and n ≥ 1.

Proposition 2.8.8. [57, Proposition 1.28]Let R be a λ-ring. Then the usual ideal J
in R generated by the set A = {st}t∈T , is a λ-ideal if and only if λn(st) ∈ J for n ≥ 1
and t ∈ T.

Proposition 2.8.9. [57, Proposition 1.27]Let R be a λ-ring, and let I be a λ-ideal
of R . Then the quotient ring R/I is a λ-ring, with λ-operations given by

λn(r + I) = λn(r) + I,

for all n ≥ 1 and r ∈ R .

Let us record the following results before we give the construction of the functor Qλ

from the category of λ-rings to the category of binomial rings.

Proposition 2.8.10. Let R be a λ-ring and let

SR = {ψk(r)− r : r ∈ R and k ≥ 1}.

Then the ideal I generated by SR is a λ-ideal in R .

Proof. By Proposition 2.8.8 we need to show that if s ∈ SR then λn(s) ∈ I for n ≥ 1.
Now let s = ψk(r)− r for some r ∈ R and some k ≥ 1. Then by Definition 2.5.1 (4),
we have

0 = λn(r − r) =
∑
n=i+j

λi(r)λj(−r). (2.31)
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Also

λn(s) = λn(ψk(r)− r) =
∑
n=i+j

λi
(
ψk(r)

)
λj(−r). (2.32)

Then from (2.32)-(2.31) we obtain that

λn(s) =

n∑
j=0

(
λn−j(ψk(r))− λn−j(r)

)
λj(−r),

=
n∑
j=0

(
ψk(λn−j(r))− λn−j(r)

)
λj(−r) by Theorem 2.6.5.

This implies that λn(s) ∈ I , as desired.

We recall from Theorem 2.7.1 that a λ-ring whose Adams operations all are the iden-
tity is a binomial ring.

Theorem 2.8.11. Let R be a λ-ring, let SR = {ψk(r)− r : for r ∈ R and k ≥ 1} and
let I be the ideal in R generated by SR . Then the quotient ring R/I is a binomial
ring.

Proof. First by Proposition 2.8.10, I is a λ-ideal of R . By Proposition 2.8.9 the
quotient ring R/I is a λ-ring.
Finally, by Theorem 2.7.1 need to show that all the Adams operations in R/I are the
identity. To see that, pick an element r+ I of R/I for r ∈ R , then ψk(r)− r ∈ I and
this implies that

ψk(r) + I = r + I.

Therefore

ψk(r + I) = r + I,

as desired.

We are now in the right position to construct the left adjoint functor to the functor
IBin , which we denote by

Qλ : Ringλ → BinRing.

It will be described as follows. For any λ-ring R let

Qλ(R) = R/I,

where

SR = {ψk(r)− r : for r ∈ R and k ≥ 1}

and I is the ideal of R generated by SR . We know from Proposition 2.8.9 that I
is a λ-ideal of R and by Theorem 2.8.11, R/I is a binomial ring. Then Qλ defines
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a functor from the category of λ-rings to the category of binomial rings by taking a
λ-homomorphism

f : R→ K

to the induced binomial homomorphism

f̃ : R/I → K/J,

where J is ideal generated by SK . We get such an induced map since every λ-
homomorphism is a ring homomorphism and

f(I) ⊆ J.

Now we can give the main result of this section, which shows that the functor Qλ is
left adjoint to the inclusion functor IBin .

Theorem 2.8.12. Let R be a λ-ring and let SR = {ψk(r) − r : r ∈ R and k ≥ 1}.
Then the functor Qλ from λ-rings to binomial rings is left adjoint to the functor IBin
from binomial rings to λ-rings: in other words there is a natural bijection,

HomBin(QλR,K) ∼= Homλ(R, IBinK),

for all R ∈ Ringλ and K ∈ BinRing.

Proof. First we define the map

θ : Homλ(R, IBinK)→ HomBin(QλR,K)

by (θ(g))[r] = g(r) for g ∈ Homλ(R, IBinK) and r ∈ R . Then to show that θ(g) is well
defined it is sufficient to show that for the ideal I of R generated by SR , g(I) = 0.
To see this, let a ∈ I . By construction of SR ,

a =
∑
i,k

si,k(ψ
k(ri,k)− ri,k)

for some si,k, ri,k ∈ R . This implies that,

g(a) =
∑
i,k

g(si,k)g(ψk(ri,k)− ri,k)

=
∑
i,k

g(si,k)(ψ
kg(ri,k)− g(ri,k)) = 0,

as K is a binomial ring. Now to see that θ is injective, suppose that θ(g) = θ(h) for
g ,h ∈ Homλ(R, IBinK). This implies that (θ(g))[r] = (θ(h))[r] for all r ∈ R , therefore
g(r) = h(r). Finally we show that θ is surjective. Let

h ∈ HomBin(QλR,K).
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We want to show that h = θ(g) for some g ∈ Homλ(R, IBinK). Consider the following
commutative diagram

R/I K

R

g

h

π

Using this we can define the free functor . This is left adjoint to the forgetful functor

Here h is a λ-ring homomorphism and we define g = h ◦ π . As π is a λ-ring homo-
morphism so is g and θ(g) = h .

We recall from Theorem 2.4.7 that the ring Int(ZX) on a set X of variables is a
binomial ring. Next we show that the ring Int(ZX) is the free binomial ring on the set
X .

Proposition 2.8.13. [25] Let X be a non-empty set of variables and R be a binomial
ring. The free functor FBin : Set→ BinRing, which takes a set X to the free binomial
ring generated by this set and takes functions between sets to the corresponding ring
homomorphisms is left adjoint to the forgetful functor GBin : BinRing → Set which
sends a binomial ring to its underlying set and takes a ring homomorphism to the
underlying function between sets. This means that there is a natural bijection

HomBin(Int(ZX), R) ∼= Hom(X,R).

In other words, the ring Int(ZX) is the free binomial ring on a set X of variables.

Proof. First we define a map

θ : HomBin(Int(ZX), R) −→ Hom(X,R),

by θ(γ)(x) = γ(x) for γ ∈ HomBin(Int(ZX), R) and x ∈ X , that is by restriction.
Then for any g ∈ Hom(X,R), by Definition 2.3.4 and Theorem 2.4.6 it follows that
the ring homomorphism

ξ : Q[X] −→ R⊗Z Q

determined by ξ(x) = g(x) for each x ∈ X , restricts to a ring homomorphism

ξ̄ : Int(ZX) −→ R

determined by
x 7−→ g(x).

This proves that θ is surjective. Again because ring homomorphisms respect binomial
operations, we have

γ

(
X

I

)
=
∏
x∈X

(
γ(x)

ix

)
,

for I a multi-index. Therefore the value on any polynomial in the variables in X is
totally determined by γ. Therefore θ is injective.
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Now we use Proposition 2.8.13 to describe general binomial rings in relation to the
rings Int(ZX) as homomorphic images.

Theorem 2.8.14. [57] A Z-torsion free ring R is a binomial ring if and only if R is
the homomorphic image of a binomial ring Int(ZX) on a set X of variables.

Proof. First suppose that R is Z-torsion free and there exists a surjective ring homo-
morphism

ϕ : Int(ZX) −→ R.

We know from Theorem 2.4.7 that the ring Int(ZX) is a binomial ring. Then by
Proposition 2.8.1, R is a binomial ring.

Conversely suppose that R is a binomial ring. We need to see that there exists a
surjective ring homomorphism

ϕ : Int(ZX) −→ R.

Consider X = {xr : r ∈ R} and the function

f : X −→ R,

given by

xr 7−→ r.

Then by Proposition 2.8.13 we can extend f to the surjective ring homomorphism

ϕ : Int(ZX) −→ R,

determined by ϕ(xr) = f(xr) = r .

§ 2.9 Localization and completion of binomial rings

The goal of this section is to show that binomial rings are preserved under localization
(Theorem 2.9.5) and completion (Theorem 2.9.20). We use fact that λ-rings are closed
under localization and completion and the point of view of Adams operations on λ-rings
Theorem 2.7.1.

Applying this result to the binomial ring Z of integers, it will follow that the p-local
integers Z(p) is a binomial ring and the p-adic integers Ẑp is also a binomial ring.
Finally more generally we turn our attention to generalizations of the notion of integer-
valued polynomials. In particular the ring of integer-valued polynomials on an integral
domain D with its quotient field F, Int(D). We also show that the ring Int(D) over
a binomial domain D is a binomial ring (Proposition 2.9.13). For more detail on
localization and completion see [51] and [24].
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2.9.1 Localization of binomial rings

First we started by describing localization of commutative rings which is a generalisation
of the idea of constructing a fraction field from an integral domain. We also give some
examples of it.

A multiplicatively closed subset of commutative ring R with unit is a subset S ⊂
R\{0} , which is closed under multiplication and such that 1 ∈ S . We define a relation
on R× S by

r/s ∼ k/t if and only if x(rt− ks) = 0,

for some x ∈ S. This is an equivalence relation. Then the localization of R at S is
defined to be the set of equivalence classes of symbols r/s with r ∈ R and s ∈ S. It is
denoted by S−1R and it has a ring structure corresponding to the usual addition and
multiplication laws of fractions,[

r

s

]
+

[
k

t

]
=

[
rt+ ks

st

]
, (2.33)

[
r

s

]
.

[
k

t

]
=

[
rk

st

]
. (2.34)

There is a canonical ring homomorphism θS : R → S−1R defined by θ(r) = r/1
for all r ∈ R with

Ker(θS) = {r ∈ R : tr = 0 for some t ∈ S}.

Example 2.9.1. Let S = Z\{0} which is a multiplicatively closed subset of the integer
ring Z . Then S−1Z = Q.

Example 2.9.2. Let p be prime. Then S(p) = Z\pZ is a multiplicative closed subset
of the integer ring Z . Then the localization Z(p) = S−1Z is a ring which is called the
p− local integer ring. This is given by,

Z(p) =

{
a

b
: a, b ∈ Z, p - b

}
,

which is a subring of the ring Q .

Before we give the main result of this subsection we will require the following from [57].

Theorem 2.9.3. Let S be a multiplicatively closed subset of a λ-ring R without zero-
divisors, and such that ψn(S) ⊆ S for all n ≥ 1. Then the localization S−1R has a
λ-ring structure from the ψ -ring structure on S−1R given by

ψn
(r
s

)
=
ψn(r)

ψn(s)

for all r ∈ R , s ∈ S and n ≥ 1.

Proof. For a proof see [57, p. 74].
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We need the following preliminary result for the construction of S−1R as a binomial
ring where R is a binomial ring.

Lemma 2.9.4. Let S be a multiplicative closed subset of the Z-torsion free ring R .
Then the localization S−1R is a Z-torsion free ring.

Proof. Pick an element r
s ∈ S

−1R for r ∈ R and s ∈ S . Suppose that n. rs = 0 for
n ∈ Z . Then there exists t ∈ S such that tnr = 0. So either n = 0 or tr = 0 but if
tr = 0 this implies that

r

s
=
tr

ts
=

0

ts
= 0

as desired.

Here is our main result of this subsection, by applying Theorem 2.9.3 to spacial case
shows that the binomial property is preserved by localization.

Theorem 2.9.5. Let S be a multiplicative closed subset of the binomial ring R . Then
the localization S−1R is a binomial ring.

Proof. We know from Proposition 2.7.5 that the binomial ring R is a λ-ring, whose
Adams operations all are the identity on R . This implies that ψn(S) ⊆ S . Also
by Lemma 2.9.4 the ring S−1R is Z-torsion free. Therefore by Theorem 2.9.3 the
localization S−1R is a λ-ring.
Now to show that S−1R is a binomial ring it is sufficient to show that all Adams
operations on S−1R are the identity. To see this, pick an element a ∈ S−1R such that
a = r

s for r ∈ R and s ∈ S . Then

ψn
(
r

s

)
=
ψn(r)

ψn(s)
=
r

s

as desired.

Corollary 2.9.6. The localization of the integers Z at a set of primes is a binomial
ring. In particular, the p-local integer ring Z(p) is a binomial ring.

Proposition 2.9.7. Let R be a binomial ring and let S be a multiplicatively closed
subset of R. Then

f : R −→ S−1R

is binomial homomorphism.

The following results are consequences of Theorem 2.9.5. First for a prime p , we define
the p-localized integer-valued polynomials by

Int(ZX)(p) = Int(ZX)⊗Z Z(p).

Proposition 2.9.8. For a prime p, we have

Int(ZX)(p) = {f ∈ Q[X] | f(Z(p))
X ⊆ Z(p)},

where (Z(p))
X = Hom(X,Z(p)).
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Proof. First we need to show that the binomial operations take (Z(p))
X to Z(p) . This

is clear by Corollary 2.9.6.

Conversely, suppose f ∈ Q[X] of degree n satisfies f(Z(p))
X ⊆ Z(p) . Then by [57,

Proposition 5.31], f can be written by

f =
n∑
j=0

rj

(
X

Ji

)
,

for rj ∈ Q and J multi-index as in (2.16). To show that rj ∈ Z(p) , the proof is
analogous to the proof of Theorem 2.4.6.

Corollary 2.9.9. The ring Int(ZX)(p) is a binomial ring.

Now we turn attention to rings of integer-valued polynomials over a subset of Z(p).

Definition 2.9.10. For K ⊆ Z(p) , we say that a polynomial f ∈ Q[X] which satisfies

f(KX) ∈ Z(p) for all k ∈ K is an integer-valued polynomial on Z(p) over the subset

K , where KX = Hom(X,K), which is the set of functions n as in Definition 2.4.1.
We computing f at any n by replacing each x ∈ X with k ∈ K. Then the condi-
tion f((KX) ⊆ (Z(p) means that f(n) ∈ Z(p). We define the set of all integer-valued
polynomials on Z(p) over the subset K as,

Int(KX ,Z(p)) = {f ∈ Q[X] | f(KX) ⊆ Z(p)}. (2.35)

This is a subring of Q[X] and it is called the ring of integer-valued polynomials on Z(p)

over K on a set X of variables. In particular we have

Int(K{x},Z(p)) = {f(x) ∈ Q[x] : f(K) ⊂ Z(p)}, (2.36)

called the ring of integer-valued polynomials of Z(p) over the subset K in one variable
x .

Note that the ring Int(ZX(p)) is integer-valued on Z(p) over Z(p) , that is

Int(ZX(p)) = Int(ZX(p),Z(p)).

So for K ⊆ Z(p), we have inclusion

Z(p)[X] ⊂ Int(ZX(p)) ⊆ Int(KX ,Z(p)) ⊆ Q[X]. (2.37)

Corollary 2.9.11. For K ⊆ Z(p) the ring Int(KX ,Z(p)) is a binomial ring.

Next we focus on the generalisation of integer-valued polynomials on an integral domain.
In [15] the authors consider an ring of integral domain D with quotient field F . Let

Int(DX) = {f ∈ F [X] : f(DX) ⊆ D},

where DX = Hom(X,D). It can easily be seen that the ring Int(DX) is a D -module, it
contains D[X] and it is a subring of F [X] . Therefore we have the following inclusions,

D[X] ⊆ Int(DX) ⊆ F [X]. (2.38)
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Definition 2.9.12. A binomial domain is a Z-torsion free commutative integral do-
main D with unit, which is closed under the binomial operations(

d

n

)
=
d(d− 1)(d− 2) · · · (d− (n− 1))

n!
,

for every d ∈ D and n ≥ 0, where

(
d

0

)
= 1.

We will use Theorem 2.9.5 to show that the ring Int(DX) for a binomial domain D is
a binomial ring.

Proposition 2.9.13. Let D be a binomial domain with quotient field F . Then the
ring Int(DX) is a binomial ring.

Proof. First by Theorem 2.9.5 F is a binomial ring. It is clear by (2.38), that Int(DX)
is Z-torsion free. The proof of the other condition of a binomial ring is analogous to
the proof of Theorem 2.4.7.

Corollary 2.9.14. Let S be a multiplicative closed subset of the binomial domain D .
Then the ring S−1Int(DX) is a binomial ring.

2.9.2 Completion of binomial rings

First we start with some background on completion of rings. We say that a topological
space (X, τ) is induced by a metric space (X, d) if the open balls in (X, d) form a basis
of the topology τ .

By topological ring we mean a commutative ring R with unit equipped with metric d
on R such that the ring operations on R are continuous regarding the metric topology.

Let R be a ring equipped with a filtration

R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·

by ideals In in R with
∞⋂
i=1

Ii = {0}.

Then for fixed e ∈ R , e > 1, we define a metric on R using these ideals by

d(x, y) =


e−k for x 6= y,

0 for x = y.

where

x− y ∈ Ik but x− y /∈ Ik+1.
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Example 2.9.15. Fix a prime p , the ring of integers Z with

(p) ⊃ (p2) ⊃ · · · (2.39)

is a topological ring with respect to the metric d : Z×Z→ R defined by d(x, y) = 2−k

if and only if
x− y ≡ 0 (mod pk) but x− y 6≡ 0 (mod pk+1)

for a p prime.

Let
R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·

be a decreasing sequence of ideals in R . A sequence {xi} = {x1, x2, · · · } of elements
in R converges to x ∈ R with respect to the metric d on R if for all n there exists N
such that xi − x ∈ In for all i ≥ N . A sequence {xi} is called a Cauchy sequence if
for all n there exists N such that xi − xj ∈ In for all i, j ≥ N .

Note that in general not every Cauchy sequence converges. We say that the metric d
on R is complete if every Cauchy sequence {xi} converges with respect to the metric
d on R .

Definition 2.9.16. For a ring R with metric d , we define the completion of R with
respect to d denoted by R̂d . The elements in R̂d are represented by the Cauchy
sequences in R . The Cauchy sequence {xn} is equivalent to {xm} if

d({xn}, {xm}) = lim
n,m→∞

d(xn, xm) = 0.

Then the d-completion R̂d becomes a topological ring with respect to the ring opera-
tions on equivalence classes in R̂d defined by

[{xn}] + [{yn}] = [{xn + yn}]

[{xn}].[{yn}] = [{xn.yn}].

There is a ring homomorphism
ϕ : R −→ R̂d

given by
r −→ [{r, r, r, · · · }].

Example 2.9.17. The completion of the ring of integers Z with respect to the descend-
ing ideals (2.39) and metric in Example 2.9.15 is the ring called the p-adic integers,
denoted by Ẑp .

Proposition 2.9.18. [5, p. 498] Let R be a ring with a descending sequence

R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·

of ideals in R . Then there is a ring isomorphism

R̂I ∼= lim←−R/In.
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Before we give the main result of this subsection we require the following from [57].

Theorem 2.9.19. [57, p. 77]Let d be a metric on a Z-torsion free λ-ring R and let
Adams operations ψk : R̂d → R̂d be defined by ψk({Xn}) = {ψk(Xn)}. Then the ring
R̂d is a λ-ring, where the λ-ring structure is induced from the Adams operation on
R̂d .

Here is our main result of this subsection, by applying Theorem 2.9.19 to spacial case
shows that the binomial property is preserved by completion.

Theorem 2.9.20. Let d be a metric on a binomial ring R . Then the ring R̂d is a
binomial ring.

Proof. First by definition of binomial ring R is Z-torsion free. This implies that the
ring R̂d is also Z-torsion free. We know from Proposition 2.7.5, that a binomial ring
R is a λ-ring in which all Adams operations are the identity on R . Then by Theorem
2.9.19, R̂d is a λ-ring. Now to show that R̂d is a binomial ring it is sufficient to show
that all Adams operations on it are the identity. To see this let {xn} ∈ R̂d . Then

ψn({xn}) = {ψn(xn)} = {xn},

as desired.

Corollary 2.9.21. The ring Ẑp of p-adic integers is a binomial ring.



Chapter 3

Binomial ideals of binomial rings

§ 3.1 Introduction

The main purpose of this chapter is to study some classes of a binomial rings by using
properties of their binomial ideals. We define a binomial ideal to be an ideal of a
binomial ring preserved by binomial operations. In §3.2 we give the definition of a
binomial ideal alongside some examples and proving some properties. The proof that
the quotient ring of a binomial ring by a binomial ideal is also a binomial ring (Theorem
3.3.1) is given in §3.3. By example we show that an ideal generated by a set is not a
binomial ideal in general. In §3.4 we introduce the notion of a binomial ideal generated
by a set.

In the following sections we study some classes of a binomial rings. In §3.5 we start
with the notion of a binomially simple ring. We show that the ring of integers is a
binomially simple ring (Proposition 3.5.2). We know from Theorem 2.4.7, that Int(ZX)
is a binomial ring and we will see in Example 3.7.13 that the ring Int(Z{x}) is non-
Noetherian ring. In §3.6 we introduce the notion of a binomially principal ring. We
give the characterization of a binomial ideal in Int(ZX) on set X of variables, we use
it to show that Int(Z{x}) is a binomially principal ring (Theorem 3.6.13). In §3.7
we introduce the notion of a binomially Noetherian ring. In the same way we use
the characterization of the binomial ideals in Int(ZX) to show that Int(Z{x,y}) is a
binomially Noetherian ring (Theorem 3.7.7). The notion of a binomially filtered ring,
which is a binomial ring equipped with descending sequence of binomial ideals given in
§3.8. We show that the power series ring

ZJ
(
x

1

)
,

(
x

2

)
,

(
x

3

)
, · · ·K

is a binomial ring (Proposition 3.8.9).

43
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§ 3.2 Binomial ideals

In this section we introduce the concept of a binomial ideal for a binomial ring, with
some examples and prove some basic properties. In the same way that as Lie algebras
have Lie ideals and λ-rings have λ-ideals, similarly Xantcha gives a short survey of
binomial ideals in [56]. We start with the definition of a binomial ideal of a binomial
ring.

Definition 3.2.1. Let R be a binomial ring. An ideal I of R is called a binomial ideal
if (

a

n

)
∈ I

for all a ∈ I, n ≥ 1.

Before we look at some theory of binomial ideals, we will examine this concept by
means of several specific examples, which illustrate the definition.

Example 3.2.2. In Int(Z{x}), we define the set

I = {f(x) ∈ Int(Z{x}) : f(x) = xg(x) for some g(x) ∈ Q[x]}.

First it is clear I is a usual ideal in Int(Z{x}). To see that I is closed under taking
binomial operations, pick an element f(x) ∈ I and an integer n ≥ 1. Then

(
f

n

)
(x) =

(
f(x)

n

)
=

f(x)(f(x)− 1) · · · (f(x)− (n− 1))

n!

=
xg(x)(xg(x)− 1) · · · (xg(x)− (n− 1))

n!
∈ xQ[X].

Thus

(
f

n

)
(x) ∈ I as desired.

A generalisation of the previous example is the following.

Example 3.2.3. Let h(x) ∈ Int(Z{x}), we define the set

Ih(x) = {f(x) ∈ Int(Z{x}) : f(x) = h(x)g(x) for some g(x) ∈ Q[x]}.

Then Ih(x) is a binomial ideal in Int(Z{x}).

Example 3.2.4. Let K ⊆ Z . Then for a fixed integer k ∈ K , let

Ik = {f(x) ∈ Int(K{x},Z) : f(k) = 0}.

Then Ik is a binomial ideal in Int(K{x},Z).
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In the same way we give examples of binomial ideals in the binomial ring Int(ZX) on
a set X of variables.

Example 3.2.5. Let x ∈ X . In Int(ZX) we define the set

Ix = {f ∈ Int(ZX) : f = xg for g ∈ Q[X]}.

Then Ix is a binomial ideal in Int(ZX).

Here are some properties of binomial ideals.

Proposition 3.2.6. Let I and J be binomial ideals of a binomial ring R . Then the
product of binomial ideals IJ is also a binomial ideal of R . In particular In is a
binomial ideal of R for n ≥ 1.

Proof. First consider an element in IJ of the form ab for a ∈ I and b ∈ J . We must

show that

(
ab

n

)
∈ IJ for n ≥ 1. This follows by applying Theorem 2.3.14(2). Now

the general element of IJ is a finite-linear combination of the form

Y = {
m∑
t=1

atbt : at ∈ I, bt ∈ J and m ∈ N}.

Then by applying Theorem 2.3.14(1), we get that

(
Y

n

)
is a finite sum of products of

the form (
a1b1
p1

)(
a2b2
p2

)
. . .

(
ambm
pm

)
,

where p1 + p2 + · · ·+ pm = n . This implies that

(
Y

n

)
∈ IJ as desired.

Proposition 3.2.7. Let I and J be binomial ideals of a binomial ring R . Then the
sum of binomial ideals I+J is also a binomial ideal of R . For a collection of binomial
ideals {Iα}α∈Λ , the sum is a binomial ideal of R .

Proof. Consider an element in I + J of the form a + b for a ∈ I and b ∈ J . Then

we must show that

(
a+ b

n

)
∈ I + J for n ≥ 1. This follows by applying Theorem

2.3.14(1).

Proposition 3.2.8. Let I and J be binomial ideals of a binomial ring R . Then the
intersection of binomial ideals I ∩ J is also a binomial ideal of R . For a collection of
binomial ideals ∩nIn , is a binomial ideal of R .

Proposition 3.2.9. Let R and K be binomial rings and let f : R→ K be a binomial
homomorphism. Then the kernel of f is a binomial ideal in R .
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Proof. Let I = Ker(f). First it is clear that I is an ideal in R . To see that I is
closed under taking binomial operations, pick an element a ∈ I. Since f is a binomial
homomorphism, we have

f(

(
a

n

)
) =

(
f(a)

n

)
=

(
0

n

)
= 0,

for all n ≥ 1. This implies that (
a

n

)
∈ I,

as desired.

Next will study the relation between the binomial ideals of a binomial ring R and the
binomial ideals of its localization S−1R where S is a multiplicative closed subset of R .
We will follow the same argument as shows that the localization S−1R is a binomial
ring (Theorem 2.9.5), to see that S−1I is a binomial ideal of S−1R for a binomial ideal
I of R .

Proposition 3.2.10. Let I be a binomial ideal of a binomial ring R and let S be a
multiplicative closed subset of R . Then S−1I is a binomial ideal of the binomial ring
S−1R . Actually every binomial ideal of S−1R is the extension of a binomial ideal of
R.

Proof. Our proof is an adaptation of Theorem 2.9.5 with modification done for satis-
fying the condition of Theorem 2.9.3. First by Lemma 2.9.4, S−1I is Z-torsion free.
To see that S−1I is closed under taking binomial operations, we will show that S−1I
satisfies the condition of Theorem 2.6.10. Now

a

s
−
(
a

s

)p
=

a

s
− ap

sp

=
sp(a− ap) + ap(sp − s)

sp+1
,

for a ∈ I , s ∈ S and p prime. Since ap − a and sp − s ∈ pR , it follows that

ap(sp − s) ∈ pI and sp(a− ap) ∈ pI.

Therefore
a

s
−
(
a

s

)p
lies in pS−1I.

Now by applying Theorem 2.9.3, we obtain a λ-structure on S−1I induced from that
on R . Finally by Theorem 2.7.1, it is sufficient to show that all Adams operations on
S−1I are the identity. This is clear because I is a binomial ideal of R .

For the proof of the extension property, let J be a binomial ideal of S−1R and let
I = J ∩ R . Then by Proposition 3.2.8 I is a binomial ideal of R. And as for usual
ideals, we have J = S−1I.
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§ 3.3 Quotient binomial rings

In the same way that a ring R can be factored by an ideal I to build a new ring R/I
which is known as the quotient ring, we consider binomial ideals of binomial rings and
their corresponding quotient rings to build new binomial rings R/I (Theorem 3.3.1).
This will lead us to some interesting theoretical results in this chapter and the next
chapters.

We begin with the main result of this section, which says that the quotient ring R/I
of a binomial ring R by a binomial ideal I of R is a binomial ring.

Theorem 3.3.1. If I is a binomial ideal of the binomial ring R , then the quotient
ring R/I is a binomial ring.

To give the proof of Theorem 3.3.1, we need the following useful results. We begin with
the Z-torsion free property in the quotient ring R/I .

Proposition 3.3.2. Let R be a binomial ring, and let I be a binomial ideal of R .
Then the quotient ring R/I is Z-torsion free.

Proof. Consider an element r + I in R/I for r ∈ R . If m(r + I) = 0 + I for some
m ∈ Z , m 6= 0, it follows that mr ∈ I. We choose n = |m| with n ∈ Z such that
n! = m.m̄ with m̄ ∈ Z , m̄ 6= 0. Then n!r ∈ I . We want to show that

r + I = I,

equivalently r ∈ I. Since n!r ∈ I and I is a binomial ideal of R , by Definition 3.2.1,(
n!r

n

)
∈ I.

Now (
n!r

n

)
=

n!r(n!r − 1)(n!r − 2) · · · (n!r − (n− 1))

n!

= r(n!r − 1)(n!r − 2) · · · (n!r − (n− 1)).

Thus

(−1)n−1(n− 1)!r =

(
n!r

n

)
− n!r · x,

for some x ∈ R. Since n!r.x ∈ I, it follows that

(n− 1)!r ∈ I.

Then from (n − 1)!r ∈ I in the same way as above by takeing n > |m|, we obtain
(n− 2)!r ∈ I and so on. This implies that r ∈ I as desired.

Next we will show that the binomial operations on the quotient ring R/I are well
defined.
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Remark 3.3.3. For a binomial ring R and a binomial ideal I of R , the binomial oper-
ations on the quotient ring R/I by multiplication operation structure on the quotient
ring are given by

(
r + I

n

)
=

(
r

n

)
+ I, (3.1)

for r ∈ R and n ≥ 1.

Theorem 3.3.4. Let R be a binomial ring and let I be a binomial ideal of R . Then
the binomial structure on the quotient ring R/I given in (3.1) is well defined.

Proof. Let r + I and k + I be two elements of R/I for r, k ∈ R such that

r + I = k + I.

We need to show that (
r + I

n

)
=

(
k + I

n

)
,

equivalently (
r

n

)
+ I =

(
k

n

)
+ I.

This is equivalent to proving (
r

n

)
−
(
k

n

)
∈ I.

In Theorem 2.3.14(1), let a = r − k and b = k. We have(
(r − k) + k

n

)
=

∑
n=p+q

(
r − k
p

)(
k

q

)

=

(
k

n

)
+

n∑
p=1

(
r − k
p

)(
k

n− p

)
.

Thus (
r

n

)
−
(
k

n

)
=

n∑
p=1

(
r − k
p

)(
k

n− p

)
. (3.2)

Since r − k ∈ I and I is a binomial ideal, by Definition 3.2.1(
r − k
p

)
∈ I

for all p ≥ 1. Then the right hand side of (3.2) is in I. So the left hand side is too.
Therefore (

r

n

)
−
(
k

n

)
∈ I

as desired.
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If R is a binomial ring and I is an ideal of R , then the quotient ring R/I is not a
binomial ring in general. The example below illustrates that.

Example 3.3.5. The ring of integers Z is a binomial ring, and 2Z is an ideal in Z
generated by 2 but not a binomial ideal of Z. Let n ∈ Z and assume n is odd. Then
2n ∈ 2Z, but, for example(

2n

2

)
=

2n(2n− 1)

2
= n(2n− 1) /∈ 2Z.

So 2Z is not a binomial ideal. Also, the quotient ring Z/2Z is not a binomial ring
because it is not Z-torsion free.It is true for all ideals mZ of Z by(

mZ
mZ

)
= 1.

We are now in the right position to give the proof of Theorem 3.3.1.

Proof. {Theorem 3.3.1} First by Proposition 3.3.2, R/I is Z-torsion free.
In Theorem 3.3.4 we checked that R/I is closed under taking binomial operations.
This implies that R/I is a binomial ring.

Proposition 3.3.6. Let I be a binomial ideal in a binomial ring R . Then for any
binomial ideal J of R the quotient J/I is a binomial ideal of the binomial ring R/I .

Proof. First by Proposition 3.3.2, J/I is Z-torsion free. To see that J/I is closed
under taking binomial operations, pick an element a + I ∈ J/I for a ∈ J and let
n ≥ 1. We want to show that (

a+ I

n

)
∈ J/I.

Since J is binomial ideal, (
a+ I

n

)
=

(
a

n

)
+ I ∈ J/I,

as desired.

Proposition 3.3.7. Let I be an ideal in the ring R . If I and the quotient ring R/I
are both Z-torsion free, then R is also Z-torsion free.

Proof. Consider r ∈ R with r 6= 0 and suppose that nr = 0 for some n ∈ Z. So

n(r + I) = I,

that is n[r] = 0 in R/I. Since by hypothesis R/I is Z-torsion free, if [r] 6= 0, this
implies n = 0.
On the other hand, if [r] = 0, we have r ∈ I and nr = 0. But, since also by hypothesis
I is Z-torsion free this also implies n = 0 as required.
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Proposition 3.3.8. Let I be an ideal in the commutative ring R . If I and the quotient
ring R/I are both closed under binomial operation, then R is also closed under binomial
operation.

Proof. Let r ∈ R . Then r + I ∈ R/I . By our hypothesis that I is closed under
binomial operations, by (3.1), (

r + I

n

)
=

(
r

n

)
+ I.

Holds in R/I. This implies that

(
r

n

)
∈ R .

Proposition 3.3.9. If I is a binomial ideal of the binomial ring R , then the quotient
map

ϕ : R→ R/I

is a binomial homomorphism.

§ 3.4 Principal binomial ideals

We know by Example 3.3.5 that in a binomial ring the (usual) ideal generated by a set
is not a binomial ideal in general. The aim of this section is to introduce the notion
of the binomial ideal generated by a set X . We employ the symbol ((X)) to denote
the binomial ideal generated by a set X . In addition we employ the symbol ((a)) to
denote the principal binomial ideal generated by an element a . This will be used in
the coming sections when some classes of binomial rings are presented.

Later the relation between ((X)), where X is a finite set and a usual ideal is described
(Proposition 3.4.6). At the end of the section, some examples of binomial rings arising
from such binomial ideals in Int(Z{x}) are given (Theorem 3.4.14).

A usual ideal in a ring R is often characterized by a set of generators. To examine
whether an ideal J is a binomial ideal in the binomial ring R , we should check whether
the ideal J is closed under the binomial operations for an element in the generator set.

Proposition 3.4.1. Let R be a binomial ring. Then the usual ideal J in R generated

by the set A = {ai}i∈I is a binomial ideal if and only if

(
ai
n

)
∈ J for all i ∈ I and

n ≥ 1.

Proof. The only if part follows from Definition 3.2.1. For the other direction, consider
an element of J of the form rai for r ∈ R , ai ∈ A and i ∈ I . We must show that(

rai
n

)
∈ J,
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for n ≥ 1. This holds by applying Theorem 2.3.14(2). Now a general element of J is
of the form

y =
m∑
t=1

rtait .

We need to show that

(
y

n

)
∈ J for n ≥ 1. By applying Theorem 2.3.14(1), we get

that

(
y

n

)
is a finite sum of products of the form

(
r1ai1
p1

)(
r2ai2
p2

)
· · ·
(
rmaim
pm

)
,

where p1 + p2 + · · ·+ pm = n . This implies that

(
y

n

)
∈ J as required.

Next we will give a description of a binomial ideal of a binomial ring in terms of a gen-
erator set. Later we apply this result to present a characterization of binomial ideals
of binomial rings on a set of generators.

Proposition 3.4.2. Let R be a binomial ring and let xi ∈ R for i = 1, 2, . . . , k.

Consider the set A =

{(
xi
m

)
: m ≥ 1 and i = 1, 2, . . . , k

}
. Then the ideal I

generated by A is a binomial ideal in R .

Proof. First a general element in I is a linear combination

Y =
k∑
i=1

Mi∑
m=1

ri,m

(
xi
m

)
,

with coefficients ri,m in R . To show that I is a binomial ideal, by Proposition 3.4.1 it

is sufficient to show that

(
Y

n

)
∈ I for n ≥ 1. By applying Theorem 2.3.14(1) we get

that

(
Y

n

)
is a finite sum of products of the form

(
r1

(
xi1
m1

)
p1

)(
r2

(
xi2
m2

)
p2

)
· · ·
(
rm
(
xit
mt

)
pt

)
,

where p1 + p2 + · · ·+ pt = n . By Proposition 2.7.8((xis
ms

)
ps

)
= Pns,ms(

(
xis
1

)
,

(
xis
2

)
, · · · ,

(
xis
psms

)
),

where the constant term of Pps,ms is zero, so this is a finite sum of terms, each one
containing a factor (

xis
k

)
∈ I,
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for various s and k . So

((xis
ms

)
ps

)
lies in I as well. Therefore by Theorem 2.3.14(2),(

rs
(
xis
ms

)
ps

)
∈ I. Consequently

(
Y

n

)
∈ I as desired.

A usual ideal in a ring R often comes with a set of generators. We denoted by (X)
the ideal generated by X for X ⊂ R .

Example 3.4.3. In Int(Z{w}), let I = (w). So w ∈ I , but(
w

2

)
=
w(w − 1)

2!
=

1

2
w(w − 1) /∈ I,

because (w−1)
2 is not an element of Int(Z{w}). So I is not a binomial ideal in Int(Z{w}).

We have seen in Example 3.4.3 that a principal ideal I in a binomial ring is not a
binomial ideal in general. Hence, we introduce the notion of a binomial ideal generated
by a set.

Definition 3.4.4. Let R be a binomial ring. We mean by the binomial ideal in R
generated by the set X for X ⊆ R , the intersection of all binomial ideals in R containing
X . We denote it by ((X)).

Definition 3.4.5. Let R be a binomial ring. We mean by principal binomial ideal in
R , a binomial ideal I = ((a)) generated by a for some element a ∈ R .

Here is the main result of this section, which is partially motivated by our main result
in the next sections, when we show that the binomial ring Int(Z{x}) is a binomially
principal ring (Theorem 3.6.13).

Proposition 3.4.6. Let R be a binomial ring and let

I =

({(
xi
m

)
: m ≥ 1 and i = 1, 2, . . . , n

})
,

for xi ∈ R . Then I is the binomial ideal of R generated by {x1, x2, . . . , xn}.

Proof. First by Proposition 3.4.2, I is a binomial ideal. Since x1, x2, · · · , xn ∈ I, by
Definition 3.4.4, this implies that

((x1, x2, . . . , xn)) ⊆ I.

On the other hand, by Definition 3.2.1, we have(
xi
m

)
∈ ((x1, x2, . . . , xn)),

for all m ≥ 1, i = 1, 2, . . . , n. Since ((x1, x2, . . . , xn)) is also an ideal in R, this implies
that

I ⊆ ((x1, x2, . . . , xn)).
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Proposition 3.4.7. Let R and K be binomial rings and let ϕ be a binomial homo-
morphism from R onto K . Then

ϕ((r1, r2, · · · , rn)) = ((ϕ(r1), ϕ(r2), · · · , ϕ(rn))).

for r1, r2, · · · , rn ∈ R .

Proof. By Proposition 3.4.6, we have

((r1, r2, . . . , rn)) =

({(
ri
m

)
: i = 1, · · · , n andm ≥ 1

})
.

Then

ϕ

(
((r1, r2, . . . , rn))

)
= ϕ

({(
ri
m

)
: i = 1, . . . , n and m ∈ N

})

=

({
ϕ

(
ri
m

)
: i = 1, . . . , n and m ∈ N

})
since ϕ is onto

=

({(
ϕ(ri)

m

)
: i = 1, . . . , n and m ∈ N

})
since ϕ is a binomial homomorphism

= ((ϕ(r1), ϕ(r2), . . . , ϕ(rn))) by Proposition 3.4.6.

Proposition 3.4.8. Let R and K be binomial rings, let ϕ be a binomial homomor-
phism from R onto K and let I be a binomial ideal in K . Then ϕ−1(I) is a binomial
ideal in R .

Proof. First it is standard that ϕ−1(I) is an ideal in R . Now to see that ϕ−1(I) is a
binomial ideal in R , we need to show that ϕ−1(I) is closed under binomial operations.
To see that, pick an element a ∈ ϕ−1(I). Then ϕ(a) ∈ I . By our hypothesis it follows

that

(
ϕ(a)

n

)
∈ I for n ≥ 1. Since

(
ϕ(a)

n

)
= ϕ

((
a

n

))
,

this implies that

(
a

n

)
∈ ϕ−1(I).

Next we present examples of the integer-valued polynomial ring Int(Z{x}) quotiented
by various binomial ideals. First we recall from Theorem 3.3.1 that the quotient ring
R/I of the binomial ring R , factored by a binomial ideal I in R is a binomial ring.
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Example 3.4.9. In Int(Z{x}) we have a binomial isomorphism

Int(Z{x})
((n))

∼= 0

for each n ≥ 1, since (
n

n

)
= 1 ∈ ((n)).

We recall a Z-module basis of the ring Int(Z{x}) from Theorem 2.4.6. We can write
Int(Z{x}) in the form

Int(Z{x}) =


finite∑
i≥0

ai

(
x

i

)
: ai ∈ Z

 .

In order to prove the main result of this section, the following needs to presented.

We begin with a formula for the multiplication of elements in Int(Z{x}).

Proposition 3.4.10. [47, p. 15]The multiplication of general elements in Int(Z{x}) is
given by (

n∑
i=0

ai

(
x

i

))( m∑
j=0

bj

(
x

j

))
=

n+m∑
t=0

( ∑
0≤i≤n
0≤j≤m

aibj

(
t

j

)(
j

t− i

))(
x

t

)

for ai, bj ∈ Z and i, j ≥ 0.

Proof. First we have(
n∑
i≥0

ai

(
x

i

))( m∑
j≥0

bj

(
x

j

))
=

∑
0≤i≤n
0≤j≤m

aibj

(
x

i

)(
x

j

)

by Proposition 2.3.14(3)

=
∑

0≤i≤n
0≤j≤m

aibj

(
j∑

k=0

(
x

i+ k

)(
i+ k

j

)(
j

k

))

=
n+m∑
t=0

( ∑
0≤i≤n
0≤j≤m

aibj

(
t

j

)(
j

t− i

))(
x

t

)
.

For example, the coefficient of

(
x

2

)
is

a0b2 + a2b0 + 2a1b1 + 2a1b2 + 2a2b1 + a2b2.

Also we need to define a non-standard multiplication operation on the abelian group
Z⊕n for n ≥ 2, in order to identify certain quotient binomial rings of Int(Z{x}).
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Definition 3.4.11. We define the operation ∗ on the abelian group Z⊕n for n ≥ 2,
by

(a0, a1, . . . , an−1) ∗ (b0, b1, . . . , bn−1) = (k0, k1, . . . , kn−1),

where

km =

( ∑
0≤i≤n
0≤j≤n

aibj

(
m

j

)(
j

m− i

))
. (3.3)

=

( ∑
0≤i≤n
0≤j≤n

aibj

(
m

i

)(
i

m− j

))
. (3.4)

for 0 ≤ m ≤ n− 1.

Proposition 3.4.12. The set (Z⊕n,+, ∗) is a commutative ring with multiplicative
identity (1, 0, 0, · · · ).

To prove Proposition 3.4.12 we need to present the following result.

Lemma 3.4.13. For i, j, k, t, l ≥ 0, we have the following equality of binomial coeffi-
cients. ∑

t

(
t

j

)(
j

t− i

)(
l

k

)(
k

l − t

)
=
∑
t

(
t

j

)(
j

t− k

)(
l

i

)(
i

l − t

)
.

Proof.((
x

i

)(
x

j

))(
x

k

)
=

j∑
m=0

(
i+m

j

)(
j

m

)(
x

i+m

)(
x

k

)
by Theorem 2.3.14(3)

=

i+j∑
t=0

(
t

j

)(
j

t− i

)((
x

t

)(
x

k

))

=

i+j∑
t=0

(
t

j

)(
j

t− i

) t+k∑
s=0

(
s

k

)(
k

s− t

)(
x

s

))

=
∑
t

∑
s

(
t

j

)(
j

t− i

)(
s

k

)(
k

s− t

)(
x

s

)
.

On the other hand:

(
x

i

)((
x

j

)(
x

k

))
=
∑
t

∑
s

(
t

j

)(
j

t− i

)(
s

i

)(
i

s− t

)(
x

s

)
. Since

polynomial multiplication is associative, this implies by equating coefficients of

(
x

s

)
on the bases, we obtain∑

t

(
t

j

)(
j

t− i

)(
s

k

)(
k

s− t

)
=
∑
t

(
t

j

)(
j

t− k

)(
s

i

)(
i

s− t

)
.
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Proof. {Proposition 3.4.12} Clearly Z⊕n is an abelian group under usual addition with
additive zero (0, 0, . . . , 0). It is easy to check that multiplication distributes over ad-
dition and that multiplication is commutative. So the only property of a ring we need to
prove is the associativity of ∗ . To see this, pick elements (a0, a1, · · · , an−1),(b0, b1, · · · , bn−1)
and (c0, c1, · · · , cn−1) in Z⊕n for ai ,bi and ci ∈ Z. Then(

(a0, a1, . . . , an−1)∗(b0, b1, . . . , bn−1)
)
∗(c0, c1, . . . , cn−1) = (s0, s1, . . . , sn−1)∗(c0, c1, . . . , cn−1)

where sm is as in (3.4). Then let

An = (s0, s1, . . . , sn−1) ∗ (c0, c1, . . . , cn−1)

=
∑

0≤m≤n
0≤k≤n

smck

(
n

m

)(
m

n− k

)
, by (3.4)

=
∑

0≤m≤n
0≤k≤n

( ∑
0≤i≤n
0≤j≤n

aibj

(
m

i

)(
i

m− j

))
ck

(
n

m

)(
m

n− k

)

=
∑

0≤i≤n
0≤j≤n
0≤k≤n

aibjck
∑

n−k≤m≤i+j
i,j≤m≤n

(
m

i

)(
i

m− j

)(
n

m

)(
m

n− k

)
.

On the other hand:

(a0, a1, · · · , an−1)∗
(

(b0, b1, . . . , bn−1)∗(c0, c1, · · · , cn−1)
)

= (a0, a1, . . . , an−1)∗(l0, l1, . . . , ln−1)

where lm is as in (3.3). Then let

Bn = (a0, a1, . . . , an−1) ∗ (l0, l1, . . . , ln−1)

=
∑

0≤i≤n
0≤m≤n

ailm

(
n

m

)(
m

n− i

)
, by (3.3)

=
∑

0≤i≤n
0≤m≤n

ai

( ∑
0≤j≤n
0≤k≤n

bjck

(
m

k

)(
k

m− j

))(
n

m

)(
m

n− i

)

=
∑

0≤i≤n
0≤j≤n
0≤k≤n

aibjck
∑

n−i≤m≤j+k
j,k≤m≤n

(
m

k

)(
k

m− j

)(
n

m

)(
m

n− i

)
.

Then by Lemma 3.4.13 we obtain An = Bn.

Now we fix n ≥ 1. In Int(Z{x}), let I=((
(
x
n

)
)). So I is the binomial ideal in Int(Z{x})

generated by

(
x

n

)
and the quotient ring

Int(Z{x})
((
(
x
n

)
))

is a binomial ring by Theorem 3.3.1.
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Theorem 3.4.14. Fix n ≥ 1. In Int(Z{x}), let I = ((

(
x

n

)
)). Then we have an

isomorphism of binomial rings

Int(Z{x})
((
(
x
n

)
))
∼= (Z⊕n,+, ∗)

which comes from a surjective binomial homomorphism

ε : Int(Z{x})→ Z⊕n,

given by
finite∑
i≥0

ai

(
x

i

)
7→ (a0, a1, · · · , an−1)

for ai ∈ Z.

Before we give the proof of Theorem 3.4.14, the following preliminary result is needed.

Lemma 3.4.15. Fix m ≥ 1. In Int(Z{x}) the binomial ideal I = ((

(
x

m

)
)) contains

all binomial operations

(
x

n

)
for n ≥ m.

Proof. Let n ≥ m . Then

(
x

n

)
=

x(x− 1)(x− 2) · · · (x− (n− 1))

n!

=
x(x− 1)(x− 2) · · · (x− (m− 1))

m!
.
(x−m)(x− (m+ 1)) · · · (x− (n− 1))

n!
m!

=

(
x

m

)
.
f(x)
n!
m!

.

Since f(x) ∈ Z[x] ⊆ Int(Z{x}) and

n!

m!

(
x

n

)
=

(
x

m

)
.f(x) ∈ I,

by Proposition 3.3.2, this implies that(
x

n

)
∈ I.
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Proof. {Proof of Theorem 3.4.14} First it is clear ε is additive and preserves the addi-
tive zero (0, 0, · · · , 0). To show that ε is multiplicative observe that,

ε

(
finite∑
i≥0

ai

(
x

i

) finite∑
i≥0

bi

(
x

i

))
= ε

(
k0 + k1x+ k2

(
x

2

)
+ · · ·+ kn−1

(
x

n− 1

))
=

(
k0, k1, k2, . . . , kn−1

)
ki as in Definition 3.4.11

= (a0, a1, a2, · · ·, an−1) ∗ (b0, b1, b2, · · · , bn−1)

= ε

(
finite∑
i≥0

ai

(
x

i

))
∗ ε

(
finite∑
i≥0

bi

(
x

i

))
.

It is clear that ε preserves the multiplicative identity.
Next to see that ε is surjective, let (a0, a1, a2, · · · , an−1) ∈ Z⊕n for ai ∈ Z .
Then

(a0, a1, a2, · · · , an−1) = ε

(
a0 + a1

(
x

1

)
+ a2

(
x

2

)
+ · · ·+ an−1

(
x

n− 1

))
.

So ε is surjective. Finally with reference to the first isomorphism theorem, we need to
show that

Ker(ε) = ((

(
x

n

)
)).

We have

Ker(ε) =

{
finite∑
i≥0

ai

(
x

i

)
: a0 = a1 = · · · = an−1 = 0 , ai ∈ Z

}

=

{
finite∑
i≥n

ai

(
x

i

)
: ai ∈ Z

}
.

By Lemma 3.4.15, {
finite∑
i≥n

ai

(
x

i

)}
⊆ ((

(
x

n

)
)),

so

Ker(ε) ⊆ ((

(
x

n

)
)).

In the other direction, by Proposition 3.2.9, Ker(ε) is a binomial ideal and Ker(ε)

contains

(
x

n

)
. Therefore

((

(
x

n

)
)) ⊆ Ker(ε),

as desired.
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§ 3.5 Binomially simple rings

The main purpose of this section and coming sections is to characterize binomial rings
by the properties of their binomial ideals. We begin with a section on the notion of
binomially simple ring, which is a binomial ring which has no non-trivial binomial ideal.

We show that the ring Z of integers is a binomially simple ring (Proposition 3.5.2)
In the same way we show that the p-local ring Z(p) is also a binomially simple ring
(Proposition 3.5.3).

Definition 3.5.1. A non-trivial binomial ring R is called a binomially simple ring if
R and 0 are the only binomial ideals in R .

Proposition 3.5.2. The binomial ring Z of integers is a binomially simple ring.

Proof. All usual ideals in the ring Z are principal ideals of the form I = (n) for n ∈ Z.

Since,

(
n

n

)
= 1 and for n ≥ 1,

(
n

n

)
= 1. Then I is a binomial ideal only for n = 0

and n = 1. This implies that Z has only trivial binomial ideals of the form 0 = ((0))
and Z = ((1)).

Proposition 3.5.3. The ring Z(p) of p-local integers is a binomially simple ring.

Proof. All non-zero usual ideals in the ring Z(p) are principal ideals of the form I = (pn)
for n ∈ Z. In the same way as the previous example we have,(

pn

pn

)
= 1.

So (pn) is a binomial ideal only for n = 0. This implies that Z(p) has only trivial
binomial ideals of the form 0 = ((0)) and Z(p) = ((1)).

Proposition 3.5.4. Let R be a binomially simple ring. Then any Z-torsion free
homomorphic image ring K of R is a binomially simple ring.

Proof. Let ϕ : R → K be a ring homomorphism of a binomially simple ring R onto
a Z-torsion free ring K . Then by Proposition 2.8.1 K is a binomial ring. Now to
see K is a binomially simple ring, consider a binomial ideal I of K . Then ϕ−1(I) by
Proposition 3.4.8 is a binomial ideal of R . So by our hypothesis ϕ−1(I) = ((0)) or
ϕ−1(I) = R . Thus ϕ((0)) = I or ϕ((R)) = I. Consequently

I = ((0)) or I = K,

as desired.

Proposition 3.5.5. If R is a binomially simple ring and S is any multiplicatively
closed subset of R then the localization S−1R is a binomially simple ring.



60

Proof. By Theorem 2.9.5 S−1R is a binomial ring and we know from Proposition 3.2.10
that every binomial ideal in S−1R is an extended binomial ideal in R . Then let I be
a binomial ideal in S−1R and let

J = {a ∈ R :
a

s
∈ I for s ∈ S}. (3.5)

Then J is a binomial ideal in R. Thus by our hypothesis J = ((0)) or J = R .
Consequently

I = ((0)) or I = S−1R.

§ 3.6 Binomially principal rings

The aim of this section is to introduce another class of binomial rings characterized
by properties of their binomial ideals which is called the class of binomially principal
rings. For the first step to the main result of this section, a characterization of the
binomial ideals in Int(Z{x}) is given (Theorem 3.6.9). As a main result of this section
we use this and the fact that the ring Q[x] is a principal ideal domain to show that the
binomial ring Int(Z{x}) is a binomially principal ring (Theorem 3.6.13). By the same
argument we show that for K ⊆ Z the ring Int(K{x},Z) is also a binomially principal
ring (Theorem 3.6.15). We end this section by giving a bijection between the set of all
binomial ideals in Int(Z{x}) and usual ideals in the ring Q[x] (Theorem 3.6.22).

An important type of ring is a principal ideal domain in which all ideals are principal
ideals. Similarly here we shall introduce the notion of a binomially principal ring in
which all binomial ideals are binomially principal ideals.

Definition 3.6.1. A binomial ring R is said to be a binomially principal ring if every
binomial ideal I in R is a principal binomial ideal (see Definition 3.4.5).

Obviously, every binomially simple ring is a binomially principal ring. So the ring of
integers Z and the p-local integers ring Z(p) are both binomially principal rings.

The following properties hold in any binomially principal ring.

Proposition 3.6.2. Let R be a binomially principal ring. Then any Z-torsion free
homomorphic image ring K of R is a binomially principal ring.

Proof. Let ϕ : R→ K be a ring homomorphism of a binomially principal ring R onto
a Z-torsion free ring K . Then by Proposition 2.8.1 K is a binomial ring. Now to
see K is a binomially principal ring, we consider a binomial ideal I of K . Then by
Proposition 3.4.8 ϕ−1(I) is a binomial ideal of R and by hypothesis ϕ−1(I) = ((a))
for some a ∈ R . Thus ϕ((a)) = I . By Proposition 3.4.7, ((ϕ(a))) = ϕ((a)). So this
implies that

((ϕ(a))) = I,

as desired.
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Corollary 3.6.3. Let R be a binomially principal ring. If I is a binomial ideal of R ,
then the quotient ring R/I is a binomially principal ring.

Proposition 3.6.4. If R is a binomially principal ring and S is any multiplicatively
closed subset of R then the localization S−1R is a binomially principal ring.

Proof. By Theorem 2.9.5 S−1R is a binomial ring and we know from Proposition 3.2.10
that every binomial ideal in S−1R is an extended binomial ideal in R . Then let I be
a binomial ideal in S−1R and let

J = {a ∈ R :
a

s
∈ I for s ∈ S}.

Then J is a binomial ideal in R and I = S−1J . Thus by hypothesis J = ((r)) for
r ∈ R . We claim that I = (( r1)). First the inclusion (( r1)) ⊆ I is clear. Now to

establish the inclusion I ⊆ (( r1)), pick an element k
s ∈ I for k ∈ J and s ∈ S . By

hypothesis

k =

finite∑
i=0

ri

(
r

i

)
for ri ∈ R . So

k

s
=

finite∑
i=0

ri
s

( r
1

i

)
.

This implies that
k

s
∈ ((

r

1
)).

From Proposition 2.9.13, we know that the ring Int(D{x}) for D a binomial integral
domain is a binomial ring. One way to study usual ideals in the ring Int(D{x}) is by
taking the set

I(a) = {f(a) : f(x) ∈ I}, (3.6)

where a ∈ D and I is an ideal in Int(D{x}), this is an ideal in D . We call it the value
ideal of I at a , see [13].

Next we will discuss the value ideals of a binomial domain D in terms of binomial
ideals in Int(D{x}). We call it the binomial value ideal of J at a .

Proposition 3.6.5. Let D be a binomial domain with quotient field F and let J be a
binomial ideal in Int(D{x}). Then the set

J(a) = {f(a) : f(x) ∈ J},

for a ∈ D is a binomial ideal in D.
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Proof. First it is clear J(a) is an ideal in D . To see that J(a) is a binomial ideal in
D , consider f(a) ∈ J(a). So f(x) ∈ J. By hypothesis J is a binomial ideal. So we
have (

f(x)

n

)
∈ J

for n ≥ 1. Therefore(
f(x)

n

)
(a) =

f(a)(f(a)− 1) . . . (f(a)− (n− 1))

n!

=

(
f(a)

n

)
∈ J(a).

It well known that every ideal in Int(D{x}) cannot be characterized by using value
ideals in D. For example every ideal in Int(Z{x}) cannot characterized by using value
ideals in Z, see [39].

There is one question arising, is it possible to characterize all binomial ideals in Int(D{x})
in terms of their binomial value ideals in D. The answer is no. Later we will explain
that by Example 3.6.10.

To answer the above question and as a first step to give the main result of this section
Theorem 3.6.13, we will give a characterization of binomial ideals of Int(Z{x}) in terms
of polynomials in Q[x] . Consider,

I = J ∩ Int(Z{x}), (3.7)

where J is an ideal in Q[x] . In Theorem 3.6.9, we will show that all binomial ideals
in Int(Z{x}) are of this form and by Example 3.6.7, we see that all usual ideals in
Int(Z{x}) are not of this form.

Proposition 3.6.6. Let J be an ideal in Q[x] and let I = J ∩ Int(Z{x}). Then I is
a binomial ideal in Int(Z{x}).

Proof. First it is easy to see that I is a usual ideal in Int(Z{x}). To see that I is a
binomial ideal in Int(Z{x}), we need to show that I is closed under binomial operations.
To see that, let f(x) ∈ I and n ≥ 1. Then(

f(x)

n

)
=

f(x)(f(x)− 1) · · · (f(x)− (n− 1))

n!

= f(x).
((f(x)− 1) · · · (f(x)− (n− 1))

n!

)
∈ J

because
(f(x)− 1) · · · (f(x)− (n− 1))

n!
∈ Q[x],

and J is an ideal in Q[x] . Clearly,(
f(x)

n

)
∈ Int(Z{x}).
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Thus (
f(x)

n

)
∈ I,

as desired.

Example 3.6.7. This example is given to show that every ideal in Int(Z{x}) is not of
the form in (3.7). Let

I =

(
x(x− 1)(x− 2)

2

)
,

an ideal in Int(Z{x}).
Suppose that

I = J ∩ Int(Z{x}),

for some ideal J in Q[x] .
Since

x(x− 1)(x− 2)

2
.
1

3
∈ J,

we have
x(x− 1)(x− 2)

6
=

(
x

3

)
∈ J ∩ Int(Z{x}).

But
x(x− 1)(x− 2)

6
/∈ I.

Example 3.6.8. This example is given to illustrate that if I = ((df(x))) a binomial
ideal in Int(Z{x}) for d ∈ Z, then f(x) ∈ I. So I = ((f(x))), which is a particular
case of the our result already proved in Proposition 3.3.2. Here we give a particular
calculation to illustrate this.

Let I = ((3
(
x
3

)
)) in Int(Z{x}). We will show that

(
x
3

)
∈ I .

Now

2.3

(
x

3

)
= x(x− 1)(x− 2) ∈ I.

Since I is a binomial ideal, by Definition 3.2.1(
x(x− 1)(x− 2)

3

)
∈ I.

Now (
x(x− 1)(x− 2)

3

)
=

(
x

3

)(
x(x− 1)(x− 2)− 1

)(
x(x− 1)(x− 2)− 2

)
, (3.8)

and on the other hand(
x(x− 1)(x− 2)

)(
x(x− 1)(x− 2)− 3

)(x
3

)
∈ I. (3.9)
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Then from (3.8)−(3.9) we get

2

(
x

3

)
∈ I.

So

3

(
x

3

)
+ (−2)

(
x

3

)
=

(
x

3

)
∈ I.

Next we are going to show that actually all binomial ideals in Int(Z{x}) can be char-
acterized by usual ideals in Q[x] in the form (3.7).

Theorem 3.6.9. If I is a binomial ideal of Int(Z{x}), then I = J ∩ Int(Z{x}), for the
ideal J = I ⊗Q in Q[x].

Proof. The plan to prove the theorem is to start by letting J = I ⊗ Q . Then we are
going to show that J is an ideal in Q[x] . To see that, let f(x) ∈ J and g(x) ∈ Q[x] .
We need to show that f(x)g(x) ∈ J . We can write f(x) as

f(x) =
f̄(x)

d
for f̄(x) ∈ I and d ∈ Z\{0}.

Also,

g(x) =
ḡ(x)

d̄
,

for some ḡ(x) ∈ Z[x] and d̄ ∈ Z\{0}. Then

f(x)g(x) =
f̄ ḡ

dd̄

= f̄(x)ḡ(x)⊗ 1

dd̄
∈ I ⊗Q = J.

Thus J is an ideal in Q[x] . Next we are going to show that

I = J ∩ Int(Z{x}).

The inclusion

I ⊆ J ∩ Int(Z{x})

is clear. To establish the inclusion

J ∩ Int(Z{x}) ⊆ I,

let f(x) ∈ J ∩ Int(Z{x}). Then,

f(x) =
f̄(x)

d

for f̄(x) ∈ I and some d ∈ Z\{0}. But I is a binomial ideal, and we know that
df(x) ∈ I with f(x) ∈ Int(Z{x}). Since by Proposition 3.3.2 the binomial quotient ring
is Z-torsion free as in Example 3.6.8, this implies that f(x) ∈ I .
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Example 3.6.10. We give this example to show that binomial ideals in Int(D{x})
cannot be characterized using binomial value ideals in D . For this purpose we consider
the ring Int(Z{x}). We know from Proposition 3.5.2 that the ring Z of integers is a
binomially simple ring. Therefore all binomial ideals in Int(Z{x}) characterized in the
form (3.7) it cannot be characterized by using binomial value ideals.

Theorem 3.6.11. If I is a binomial ideal of Int(ZX), for a set X of variables, then

I = J ∩ Int(ZX)

for the ideal J = I ⊗Q in Q[X].

Proof. The proof is analogous to the proof of Theorem 3.6.9.

We know from Theorem 2.4.11, that for K ⊆ Z the ring Int(KX ,Z) on a set X of
variables is a binomial ring.

Theorem 3.6.12. If I is a binomial ideal in Int(KX ,Z), for a finite set X of variables,
then

I = J ∩ Int(KX ,Z)

for the ideal J = I ⊗Q in Q[X].

Proof. The proof is analogous to the proof of Theorem 3.6.9.

Now we are in the right position to state the main result of this section, which shows
that the binomial ring Int(Z{x}) is a binomially principal ring.

Theorem 3.6.13. The binomial ring Int(Z{x}) is a binomially principal ring.

Proof. Let I be a binomial ideal in Int(Z{x}). We need to show that I is a principal
binomial ideal. Since Q[x] is a principal ideal domain, any ideal J in Q[x] is of the
form

J = (f(x)) for some f(x) ∈ Q[x].

Hence, by Theorem 3.6.9, we can write I in the form

I = J ∩ Int(Z{x}) = (f(x)) ∩ Int(Z{x}).

Now choose minimal n ∈ N such that

nf(x) ∈ Int(Z{x}).

Let g(x) = nf(x). So

J = (g(x)) and I = (g(x)) ∩ Int(Z{x}).

Finally we claim that I = ((g(x))). First by hypothesis I is a binomial ideal of
Int(Z{x}) and I contains g(x). So by Definition 3.4.4

((g(x))) ⊆ I.
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To establish the inclusion I ⊆ ((g(x))), suppose that

I 6⊆ ((g(x))).

So, there exists another generator polynomial h(x) ∈ Int(Z{x}) such that

((g(x), h(x))) ⊆ I and ((g(x), h(x))) 6⊆ ((g(x))).

This implies that g(x), h(x) ∈ J. So

h(x) = f(x)a(x) = g(x)
a(x)

n
,

for a(x) ∈ Q[x]. There exist ā(x) ∈ Z[x] and d ∈ Z \ {0} such that

a(x) =
ā(x)

d
.

So,

h(x) = g(x)
ā(x)

nd
∈ Int(Z{x}),

(nd)h(x) = g(x).ā(x) ∈ Int(Z{x}).

Then (nd)h(x) is in the usual ideal in Int(Z{x}) generated by g(x). Therefore by
Definition 3.2.1

(nd)h(x) ∈ ((g(x))).

Consequently by Proposition 3.3.2

h(x) ∈ ((g(x))).

So we have a contradiction and thus I = ((g(x))).

Remark 3.6.14. The proof of Theorem 3.6.13 shows that if J is an ideal in Q[x]
generated by f(x), for some f(x) ∈ Q[x], where g(x) = nf(x) for minimal n ∈ N such
that nf(x) ∈ Int(Z{x}), then the principal binomial ideal ((g(x))) in Int(Z{x}), can be
written in the form

((g(x))) = (f(x)) ∩ Int(Z{x}),

Since Int(Z{x}) is integer-valued over Z , we obtain the following for K ⊆ Z :

Z[x] ⊂ Int(Z,Z{x}) = Int(Z{x}) ⊂ Int(K{x},Z) ⊆ Q[x]. (3.10)

This leads to the generalization of Theorem 3.6.13.

Theorem 3.6.15. For every K ⊆ Z, the binomial ring Int(K{x},Z) is a binomially
principal ring.

Proof. First by Theorem 3.6.12 we can write every binomial ideal I in Int(K{x},Z) as

I = J ∩ Int(K{x},Z),

for some ideal J in Q[x]. The rest of the proof is analogous to the proof of Theorem
3.6.13.
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Proposition 3.6.16. Every binomial principal ideal domain R is a binomially prin-
cipal ring.

Proof. It is clear since every binomial ideal in R is an ideal in R .

The converse of Proposition 3.6.16 is not true in general.

Example 3.6.17. The ring Int(Z{x}) is an example of a binomially principal ring
which is not a principal ideal domain. By Theorem 3.6.13 it is binomially principal
ring. To see that Int(Z{x}) is not a principal ideal domain, we will see that Int(Z{x})

contains an ideal which is not principal. First we recall from Theorem 2.4.6 that

(
x

n

)
for all n ≥ 0 is a Z-module basis of Int(Z{x}). So we can write Int(Z{x}) in the form

Int(Z{x}) =
{ n∑
i=0

ai

(
x

i

)
: ai ∈ Z and n ∈ N

}
.

Let p be a prime. Then the ideal

({(
x

m

)
: for 1 ≤ m < p

})
does not contain

(
x

p

)
.

This can be seen from the formula for

(
x

m

)
(

n∑
i=0

ai

(
x

i

)
), (3.11)

when written in the term of the basis given in Proposition 3.4.10. The coefficient of(
x

p

)
is given by

n∑
i=0

ai

(
p

m

)(
m

p− i

)
. (3.12)

Then

(
p

m

)
is divisible by p for 1 ≤ m < p. So the coefficient of

(
x

p

)
is a multiple of

p . This implies that

(
x

p

)
is not in the ideal

({(
x

m

)
: for 1 ≤ m < p

})
. Now to

show that Int(Z{x}) is not a principal ideal domain, we consider the ideal (

(
x

2

)
,

(
x

3

)
).

Let f(x) ∈ Int(Z{x}) such that

(

(
x

2

)
,

(
x

3

)
) = (f(x)).

Since

(
x

2

)
∈ (f(x)), there exist g(x) ∈ Int(Z{x}) such that f(x)g(x) =

(
x

2

)
. So

deg(f) ≤ 2. Also, f(x), g(x) have not constant term because

(
x

2

)
does not. So
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f(x) = a1

(
x

1

)
+ a2

(
x

2

)
, for some a1, a2 ∈ Z. Then

f(x) =

({(
x

m

)
) : for 1 ≤ m < 3

})
.

So by above

(
x

3

)
/∈ (f(x)). So the ideal (

(
x

2

)
,

(
x

3

)
) is not principal in Int(Z{x}).

Therefore Int(Z{x}) is not a principal ideal domain.

In the next section the ring Int(Z{x,y}) on two variables x ,y will be our object of study
when we introduce the notion of binomially Noetherian ring. First recall from Theorem
2.4.7, that the ring Int(ZX) on a set X of variables is a binomial ring.

Example 3.6.18. The ring Int(Z{x,y}) on two variables is not a binomially principal
ring. Consider the binomial ideal ((x, y)) in Int(Z{x,y}). Since (x, y) is not a principal
ideal of Z[x, y], it is clear ((x, y)) is not a principal binomial ideal of Int(Z{x,y}) also.

We give another example of integer-valued polynomials quotiented by the principal
binomial ideal ((x2)). We need to give another non-standard multiplication operation
on the abelian group Z⊕Q.

Definition 3.6.19. We define the operation ~ on the abelian group Z⊕Q, by

(a0, a1)~ (b0, b1) = (l0, l1),

where

lm =

m∑
i=0

aibm−i, (3.13)

for 0 ≤ m ≤ 1.

Proposition 3.6.20. The set (Z⊕Q,+,~) is a commutative ring with multiplicative
identity (1, 0).

Proof. Since ~ is induced from multiplication of polynomials, it is clear that (Z ⊕
Q,+,~) is a commutative ring.

Theorem 3.6.21. In Int(Z{x}), let I = ((x2)). Then there is a surjective ring homo-
morphism

ϕ : Int(Z{x})→ Z⊕Q,

given by
finite∑
i≥0

aix
i 7→ (a0, a1)

for a0 ∈ Z and a1 ∈ Q. This has kernel ((x2)) and thus there is an isomorphism of
binomial rings

Int(Z{x})
((x2))

∼= (Z⊕Q,+,~).
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Proof. First it is clear ϕ is additive. Also it is clear that ϕ preserves the multiplica-
tive identity. Thus it remains to show that ϕ is multiplicative. To see that ϕ is
multiplicative observe that,

ϕ

(
finite∑
i≥0

aix
i

finite∑
i≥0

bix
i

)
= ϕ

(
finite∑
i≥0

lix
i

)
by (3.13)

= (l0, l1)

= (a0, a1)~ (b0, b1)

= ϕ

(
finite∑
i≥0

aix
i
)
~ ϕ

( finite∑
i≥0

bix
i

)
.

Next to see that ϕ is surjective, let (a0, a1) ∈ Z ⊕ Q for a0 ∈ Z and a1 ∈ Q . We

consider a0 + (−1)q−1p

(
x

q

)
∈ Int(Z{x}) for q, p ∈ Z and p 6 |q . Then

ϕ(a0 + (−1)q−1p

(
x

q

)
) = (a0,

p

q
)

(
because the coefficient of x in

(
x

q

)
is (

(−1)q−1

q
)

)
= (a0, a1),

This proves that ϕ is surjective.

Finally with reference to the first isomorphism theorem, we need to show that Ker(ϕ)=((x2)).
Since

Ker(ϕ) =

{
finite∑
i≥0

aix
i : a0 = a1 = 0

}

=

{
finite∑
i≥2

aix
i

}
= x2Q[x] ∩ Int(Z{x})
= ((x2)) by Remark 3.6.14.

We close this section by giving a bijection between the set of all binomial ideals in
Int(Z{x}) and the set of usual ideals in the ring Q[x] . First we denote by BinIds(Int(Z{x}))
the set of all binomial ideals in Int(Z{x}) and by Ids(Q[x]) the set of all usual ideals
in Q[x] .

Theorem 3.6.22. There is a bijection

θ : (I, Int(Z{x}))Bin → (J,Q[x])

defined by
θ(I) = I ⊗Q

that sends a binomial ideal I in Int(Z{x}) to the ideal I ⊗Q in Q[x].
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Proof. To see that θ is a bijection, we define the map

α : (J,Q[x])→ (I, Int(Z{x}))Bin,

by

α(J) = J ∩ Int(Z{x}).

We will show that α is the inverse of θ . By Theorem 3.6.9 it is clear that αθ = Id .

So we need to verify θα = Id . We start with an ideal J in Q[x] .

Consider K := J∩Int(Z{x}). Clearly K⊗Q ⊆ J . To establish the inclusion J ⊆ K⊗Q,
if f(x) ∈ J , there exists n ∈ Z such that

nf(x) ∈ J ∩ Int(Z{x}).

But

f(x) = nf(x)⊗ 1

n
∈ K ⊗Q,

as desired.

§ 3.7 Binomially Noetherian rings

The aim of this section is to present the notion of binomially Noetherian ring. These
satisfy a certain finiteness condition, namely, that every binomial ideal of the binomial
ring should be finitely generated as a binomial ideal. As a main result of this sec-
tion we show that the binomial ring Int(Z{x,y}) on two variables x ,y is a binomially
Noetherian ring (Theorem 3.7.7). In general in the same way for finitely many variables
x1, x2, . . . , xi the binomial ring Int(Z{x1,x2,...,xi}) and the ring Int(K{x1,x2,...,xi},Z) for
K ⊆ Z both are also binomially Noetherian rings (Theorem 3.7.8 and Theorem 3.7.11
respectively).

Definition 3.7.1. By a binomially Noetherian ring we mean a binomial ring R such
that every binomial ideal I in R is finitely generated as a binomial ideal.

Obviously, every binomially principal ring is a binomially Noetherian ring. So the
ring Z of integers, the ring Z(p) of p-local integers, the ring Int(Z{x}) and the ring

Int(K{x},Z) for K ⊆ Z all are binomially Noetherian rings.

Theorem 3.7.2. Let R be a binomial ring. Then R is a binomially Noetherian ring
if and only if every ascending sequence of binomial ideals in R stabilizes.

Proof. The proof is the same as the usual case, for example see [14, Theorem 11.1].

The following properties hold in any binomially Noetherian ring.

Proposition 3.7.3. Let R be a binomially Noetherian ring. Then any Z-torsion free
homomorphic image ring K of R is a binomially Noetherian ring.
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Proof. The proof is analogous to the proof of Proposition 3.6.2.

Corollary 3.7.4. Let R be a binomially Noetherian ring. If I is a binomial ideal of
R , then the quotient ring R/I is a binomially Noetherian ring.

Proposition 3.7.5. If R is binomially Noetherian ring and S is any multiplicatively
closed subset of R , then the localization S−1R is a binomially Noetherian ring.

Proof. From Proposition 2.9.7 we have the binomial homomorphism

θ : R→ S−1R.

Suppose I is a binomial ideal in S−1R . By Proposition 3.4.8 θ−1(I) is a binomial ideal
in R . Therefore by hypothesis θ−1(I) is finitely generated. It follows that

θ−1(I)(S−1R)

is finitely generated as a binomial ideal in S−1R, where by Proposition 3.4.7 the gen-
erators are the images of the generators of θ−1(I). We claim that

θ−1(I)(S−1R) = I.

First the inclusion
θ−1(I)(S−1R) ⊆ I.

is clear. To establish the inclusion

I ⊆ θ−1(I)(S−1R),

let r
s ∈ I , then r ∈ θ−1(I). So

r

s
= r(

1

s
) ∈ θ−1(I)(S−1R).

Thus I is finitely generated.

Proposition 3.7.6. Let I be a binomial ideal in a binomial ring R . If I and the
quotient ring R/I both are binomially Noetherian, R is also a binomially Noetherian
ring.

Proof. To show that R is binomially Noetherian, by Theorem 3.7.2, we need to show
that every ascending sequence of binomial ideals in R stabilizes. To see that, let

J1 ⊆ J2 ⊆ · · · ⊆ Jn ⊆ . . . ,

be any ascending sequence of binomial ideals in R . Then by Proposition 3.2.8 it follows
that

J1 ∩ I ⊆ J2 ∩ I ⊆ · · · ⊆ Jn ∩ I ⊆ . . . ,

is an ascending sequence of binomial ideals in I and by Proposition 3.3.6 also

J1/I ⊆ J2/I ⊆ · · · ⊆ Jn/I ⊆ · · · ,
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is an ascending sequence of binomial ideals in R/I . Since by hypothesis I and R/I
are both binomially Noetherian. There exist N1 such that for all n,m ≥ N1

Jm ∩ I = Jn ∩ I

and N2 such that for all n,m ≥ N2

Jm/I = Jn/I.

Consequently by [14, Lemma p. 225], for N = max{N1, N2} Jm = Jn for all n,m ≥
N .

The proof of Theorem 3.6.13 is based on the fact that the ring Q[x] is a principal ideal
domain. The ring Q[x, y] is a Noetherian ring. This will be our motivation when we
present the main result of this section. This says that the integer-valued polynomial
ring on two variables Int(Z{x,y}) is a binomially Noetherian ring.

Theorem 3.7.7. The ring Int(Z{x,y}) is a binomially Noetherian ring.

Proof. First by Theorem 2.4.7, Int(Z{x,y}) is a binomial ring. Let I be a binomial ideal
in Int(Z{x,y}). We are going to show that I is finitely generated as a binomial ideal.
By Theorem 3.6.11 we can write I in the form

I = J ∩ Int(Z{x,y})

for an ideal J in Q[x, y] . Since Q[x, y] is a Noetherian ring, every ideal in Q[x, y] is
finitely generated. So suppose that J = (f1, f2, . . . , fn) for fi ∈ Q[x, y] . This implies
that

I = (f1, f2, . . . , fn) ∩ Int(Z{x,y}).

Now choose bi ∈ N minimal such that

bifi ∈ Int(Z{x,y}).

Let gi = bifi . So
J = (g1, g2, . . . , gn)

and
I = (g1, g2, . . . , gn) ∩ Int(Z{x,y}).

We claim that
I = ((g1, g2, . . . , gn)).

By hypothesis I is a binomial ideal and contains each gi . Then by Definition 3.4.4,

((g1, g2, . . . , gn)) ⊆ I.

Now to establish the inclusion

I ⊆ ((g1, g2, · · · .gn)),
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by contradiction we suppose

I 6⊆ ((g1, g2, . . . .gn)).

So there exists another generator h ∈ Int(Z{x,y}) such that ((g1, g2, . . . , gn, h)) ⊆ I and

((g1, g2, . . . , gn, h)) 6⊆ ((g1, g2, . . . , gn)).

This implies that g1, g2, . . . , gn and h ∈ J. It follows that

h =

n∑
i=0

fipi =

n∑
i=0

gi
pi
bi
,

for some pi ∈ Q[x, y]. There exists p̄i ∈ Z[x, y] and di ∈ Z \ {0} such that

pi =
p̄i
di
.

Then

h =

n∑
i=0

gi
p̄i
bidi
∈ Int(Z{x,y}).

So we obtain

Nh =

n∑
i=0

αigip̄i ∈ Int(Z{x,y}) for αi ∈ Z,

for N the least common multiple of {b1d1, . . . , bndn}. Then Nh is in the usual ideal
in Int(Z{x,y}) generated by {g1, g2, . . . , gn}. Therefore by Definition 3.2.1

Nh ∈ ((g1, g2, . . . , gn)).

Consequently by Proposition 3.3.2

h ∈ ((g1, g2, . . . , gn)).

So we have a contradiction and we conclude that I = ((g1, g2, . . . , gn)).

Theorem 3.7.8. The binomial ring Int(Z{x1,x2,...,xi}) on finitely many variables x1, x2, . . . , xi
is a binomially Noetherian ring.

Proof. First it is a fact that the ring Q[x1, x2, . . . , xi] on finitely many variables x1, x2, . . . , xi
is a Noetherian ring and by Theorem 3.6.11 we can write every binomial ideal I in
Int(Z{x1,x2,...,xi}) by

I = J ∩ Int(Z{x1,x2,...,xi}),

for some ideal J in Q[x1, x2, . . . , xi] . So the rest of the proof is analogous to the proof
of Theorem 3.7.7.
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Remark 3.7.9. The proof of Theorem 3.7.8, shows that if J an ideal in Q[x1, x2, . . . , xi]
generated by f1, f2, . . . , fn for some fi ∈ Q[x1, x2, . . . , xi], then the binomial ideal
((g1, g2, . . . , gn)) in Int(Z{x1,x2,...,xi}), can be written in a form

((g1, g2, . . . , gn)) = (f1, f2, . . . , fn) ∩ Int(Z{x1,x2,...,xi}),

for minimal bi ∈ N such that bifi ∈ Int(Z{x1,x2,...,xi}).

Example 3.7.10. This example is given to show that the ring Int(ZX) on an infinite
set X of variables is not binomially Noetherian. To see that, we consider the binomial
ideal

((x1, x2 . . . , xi−1, xi, . . . ))

of Int(ZX), for x1, x2, · · · ∈ X. It is clear that xi /∈ ((x1, x2, . . . , xi−1)), so this is not
finitely generated as a binomial ideal. Thus Int(ZX) is not a binomially Noetherian
ring.

The following result is a generalisation of Theorem 3.7.7.

Theorem 3.7.11. For K ⊆ Z, the binomial ring Int(K{x1,x2,...,xi},Z) on finitely many
variables x1, x2, . . . , xi is a binomially Noetherian ring.

Proof. First by Theorem 3.6.12 we can write every binomial ideal I in Int(K{x1,x2,...,xi},Z)
in the form

I = J ∩ Int(K{x1,x2,...,xi},Z),

for some ideal J in Q[x1, x2, . . . , xi] . The rest of the proof is analogous to the proof of
Theorem 3.7.7.

Proposition 3.7.12. Every Noetherian binomial ring is a binomially Noetherian ring.

Proof. This is clear since every binomial ideal is a usual ideal.

The converse of Proposition 3.7.12 is not true in general.

Example 3.7.13. We give an example of a binomially Noetherian ring which is non-
Noetherian ring. For this purpose we consider the ring Int(Z{x}). First Int(Z{x}) is a
binomially Noetherian ring. To see that Int(Z{x}) is non-Noetherian ring, we will see
that Int(Z{x}) contains an ideal which is not finitely generated. Consider the ideal

I =
({(x

p

)
: for all primes p

})
, (3.14)

in Int(Z{x}). We know from (3.11) that the polynomial

(
x

p

)
is not in the ideal J =

(

(
x

r

)
) for 0 ≤ r < p. There are infinitely many primes. So I is not finitely generated

in Int(Z{x}). This implies that Int(Z{x}) is not a Noetherian ring.
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Example 3.7.14. Consider the subset {0} of Z. Then by Theorem 3.7.11, Int({0}{x},Z)
is a binomially Noetherian ring. To show that Int({0}{x},Z) is a non-Noetherian ring,
Strickland in a commutative algebra course [45, Exsample 18.3], claims that the ideal
I = xQ[x] is not finitely generated in Int({0}{x},Z). To see that, set

f : I −→ Q,

given by ∑
i>0

dix
i 7−→ d1.

Let J be an ideal in Int({0}{x},Z), generated by finitely many elements h0, h1, . . . , hk−1 ∈
I. There exists n > 0 such that nf(hi) ∈ Z for all i. Let b ∈ J, then b =

∑
i higi, for

gi ∈ Int({0}{x},Z). Therefore nf(b) =
∑

i gi(0).nf(hi) ∈ Z. So we obtain x/2n ∈ I \J.
This implies that J 6= I.

§ 3.8 Binomially filtered rings

The aim of this section is to present the notion of a binomially filtered ring. We show
that the power series ring ZJ

(
x
1

)
,
(
x
2

)
,
(
x
3

)
, · · ·K is a binomial ring (Proposition 3.8.9).

Recall from Theorem 2.4.11 that for a subset S ⊆ Z, Int(SX ,Z) is a binomial ring.
We give a description of a particular completion of the ring Int(SX ,Z), when S has a
p-ordering {ai}∞i=0 of elements of S for all primes p .

First we start with the concept of a filtered ring. Later we will introduce the concept
of a binomially filtered ring with a filtration by binomial ideals.

Definition 3.8.1. Let R be a commutative ring with unit. We call R a filtered ring
if it is equipped with a decreasing sequence of ideals In in R . The ideals are called
filtration ideals. A ring homomorphism θ : R→ K between two filtered rings is called
a filtered ring homomorphism if it preserves the filtration ideals. We denote the filtered
ring by (R, In).

Example 3.8.2. The ring of integers Z is a filtered ring together with filtration ideals
In = pnZ for n ≥ 0 and p prime. This is called the p-adic filtration.

We define the concept of binomially filtered ring with filtration by binomial ideals.

Definition 3.8.3. Let R be a binomial ring. We call R a binomially filtered ring if
it is equipped with a decreasing sequence of binomial ideals In in R . The binomial
ideals are called binomial filtration ideals. A ring homomorphism θ : R→ K between
two binomially filtered rings is called a binomially filtered ring homomorphism, if it
preserves the binomial filtration ideals. We denote the binomially filtered ring by
(R, In)Bin.

Example 3.8.4. The ring Int(Z{x}) is a binomially filtered ring which is equipped
with the binomial filtration ideals

((

(
x

1

)
)) ⊃ ((

(
x

2

)
)) ⊃ ((

(
x

3

)
)) · · · . (3.15)
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Now we turn our attention to special kind of rings over binomial polynomials.

Proposition 3.8.5. Let R be a commutative ring with unit. The set of all linear
combinations of the binomial polynomials

a0

(
x

1

)
+ a1

(
x

2

)
+ · · ·+ an

(
x

n

)
,

for n ≥ 0 with coefficients ai in R , which is denoted by

R[

(
x

1

)
,

(
x

2

)
,

(
x

3

)
, . . . ]

is a ring with usual addition and multiplication of binomial operations as in Proposition
3.4.10.

Proposition 3.8.6. If R is a binomial ring, then the ring R[

(
x

1

)
,

(
x

2

)
,

(
x

3

)
, . . . ] is

a binomial ring.

Proof. The ring R[

(
x

1

)
,

(
x

2

)
,

(
x

n

)
, · · · ] is isomorphic to R⊗ Int(Z{x}). Since by The-

orem 2.4.7 the ring Int(Z{x}) is a binomial ring, by Proposition 2.3.15(3), the ring
R⊗ Int(Z) is also a binomial ring.

In particular, consider the ring

Z[

(
x

1

)
,

(
x

2

)
,

(
x

3

)
, . . . ],

which contains the set of all polynomials a0 + a1

(
x

1

)
+ a2

(
x

2

)
+ a3

(
x

3

)
, · · ·+ an

(
x

n

)
,

for a0, a1, a2, · · · , an ∈ Z, for any n ≥ 0

On the other hand, we know from Theorem 2.4.6 that the binomial polynomials

(
x

n

)
for n ≥ 0, form a Z-module basis for Int(Z{x}). Therefore, we have

Z[

(
x

1

)
,

(
x

2

)
,

(
x

3

)
, · · · ] = Int(Z{x}).

To give the main result of this section we record the following from [44].

Proposition 3.8.7. For m,n ≥ 2, we have((x
n

)
m

)
=

mn∑
k=n+1

ak

(
x

k

)
,

where ak = k!
m!

∑m
j=1

1
(n!)j

[
m
j

]∑
1≤lj≤n

[
n
l1

][
n
l2

]
. . .
[
n
lj

]{
l1+l1+···+lj

m

}
,
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where
{
k
m

}
is a Stirling number of the second kind.

Theorem 3.8.8. Let R be a commutative ring with unit. The set of all power series
in the binomial polynomials

a0

(
x

1

)
+ a1

(
x

2

)
+ a3

(
x

3

)
+ . . .

with coefficients ai in R , which is denoted by

RJ
(
x

1

)
,

(
x

2

)
,

(
x

3

)
, · · ·K

is a ring with usual addition and multiplication of binomial operations as in Proposition
3.4.10.

Proof. For a proof see [44].

The main result of this section is that this ring is a binomial ring. First we know from
Example 3.8.4 that Int(Z{x}) is a binomially filtered ring with binomial filtration ideals
(3.15). We recall from Theorem 2.9.20 that binomial rings are preserved by completion.

Proposition 3.8.9. For n ≥ 0, we have an isomorphism.

ZJ
(
x

1

)
,

(
x

2

)
,

(
x

3

)
, . . .K ∼= lim←−

Int(Z{x})
((
(
x
n

)
))
∼= Int(Z{x})(((xn))).

given by
∞∑
i=0

ai

(
x

i

)
7−→

( n−1∑
i=0

ai

(
x

i

)
+ ((

(
x

n

)
))
)
n≥1

.

Proof. First part is easy to show the given map is surjective and its Ker = 0. Then, by
Theorem 2.9.18

ZJ
(
x

1

)
,

(
x

2

)
,

(
x

3

)
, . . .K,

is a binomial ring.

Remark 3.8.10. Similarly, for any binomial ring R

RJ
(
x

1

)
,

(
x

2

)
,

(
x

3

)
, · · ·K,

is a binomial ring.

We know from Theorem 2.4.10 that the ring Int(S{x},Z), for S ⊆ Z is a binomial ring.
In the same way we will give the structure of a binomial filtration on Int(S{x},Z). First
recall the following information from [12].

Definition 3.8.11. Consider a non-empty subset S ⊆ Z , and a prime p . We mean by
p-ordering of S , a sequence {ai}∞i=0 of elements of S , which are selected as follows.
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1. Select any number a0 ∈ S.

2. Select any number a1 ∈ S, such that the highest power of p that divides (a1−a0),
is minimum.

3. Select any number a2 ∈ S, such that the highest power of p that divides (a2 −
a0)(a2 − a1) is minimum.

4. The procedure is continued.

From the above construction for k ∈ N , we get an increasing sequence {Vk(S, p)}∞k=0 ,
of powers of p , where Vk(S, p) is the highest power of p that divides

(ak − a0)(ak − a1) · · · (ak − ak−1).

This is called the associated p-sequence of S.

Now we can define the generalized factorial of k ∈ Z , associated to S as follows.

Definition 3.8.12. Let S ⊆ Z. For k ∈ Z , we define the generalized factorial of k
associated to S as follows.

k!S =
∏
p

Vk(S, p). (3.16)

In particular if for all primes p , {ai}∞i=0 is a p-ordering of S, then we have

k!S =| (ak − a0)(ak − a1) · · · (ak − ak−1) | . (3.17)

Example 3.8.13. If S = Z , then k!S = k! .

Example 3.8.14. Let S = 2Z . For all primes p, the sequence 0, 2, 4, 6, 8. . . . in 2Z≥0

is a p-ordering of 2Z . Then by (3.17) we have

k!S = (2k − 0)(2k − 2) · · · (2k − (2k − 2)) = 2kk!. (3.18)

For S ⊆ Z, we define the polynomial

Ak,S(x) = (x− a0,k)(x− a1,k) . . . (x− ak−1,k), (3.19)

where for each k, {ai,k}∞i=0 is a sequence in Z and is termwise congruent modulo
Vk(S, p) to some p-ordering of S , for each prime p dividing k!S . We call it the global
falling factorial. In particular, if S has a p-ordering {ai}∞i=0 for all primes p , then a
global falling factorial is given by

Bk,S(x) = (x− a0)(x− a1) . . . (x− ak−1), (3.20)

Bhargava in [12] gives a Z-basis of the ring Int(S{x},Z), for S ⊆ Z .
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Theorem 3.8.15. Let S ⊆ Z. Then the polynomials

Pk,S =
Ak,S(x)

k!S
=

(x− a0,k)(x− a1,k) · · · (x− ak−1,k)

k!S
, (3.21)

form a Z-basis of the ring Int(S{x},Z), where Ak,S(x) is as in (3.19).

In particular, if S has a p-ordering for all primes p, then the polynomials

Pk,S =
Bk,S(x)

k!S
=

(x− a0)(x− a1) · · · (x− ak−1)

k!S
, (3.22)

is a Z-basis of the ring Int(S{x},Z), where Bk,S(x) is as in (3.20).

If S has a p-ordering for all primes p , by Theorem 3.6.12, we have the binomial
filtration ideals,

((P0,S)) ⊇ ((P1,S)) ⊇ ((P2,S)) ⊇ . . . , (3.23)

in Int(S{x},Z).

Example 3.8.16. For S ⊆ Z, Int(S{x},Z), is a binomially filtered ring with binomial
filtration ideals (3.23).

So for S ⊆ Z, if S has a p-ordering for all primes p, we have

Int(S{x},Z)((Pn,S))
∼= lim←−

Int(S{x},Z)

((Pn,S))
=: ZJ((P0,S)), ((P1,S)), ((P2,S)), . . .K.

By Theorem 2.9.20 this is a binomial ring.



Chapter 4

Binomial rings arising in
topology

§ 4.1 Introduction

The ring Int(Z{x}) is interesting in topological complex K -theory. Roughly speaking,
in topological complex K -theory the ring Int(Z{x}) and its dual appear as various
types of operations and cooperations. Knutson in [38] shows that any binomial ring
with a particular type of generator subset is isomorphic to Z . Applying this result to
the ring K0(X), if the ring K0(X) for a good space X is a binomial ring, then it leads
to

K0(X) ∼= Z. (4.1)

We know from Theorem 2.4.7 that the ring Int(Z{x}) is a binomial ring. In contrast
the purpose of this chapter is using K0(X) for some good spaces X and the properties
of the ring Int(Z{x}) to give some non-trivial examples of binomial rings coming from
topology.

In §4.2 The ring K0(X) is described in terms of classes of vector bundles using the
Grothendieck construction. Later the spectrum K associated with the spaces BU ×Z
and U is introduced. The basic definition and necessary background on coalgebras,
bialgebras, comodules and Hopf algebras which will be needed later in this chapter is
given in § 4.3

Let E be a spectrum which has a ring structure (Definition 4.2.22). The functors
E∗(−) and E∗(−) take spaces to graded π∗E -modules, where E∗(−) is a generalized
cohomology theory defined by E∗(−) = [−, E]. The homology theory E∗(−) dual to
E∗(−) is defined by E∗(−) = π∗(E∧−) see [54]. In §4.4 the various types of operations
defined on E∗(−) and corresponding cooperations on E∗(−). For a ring spectrum E ,
E∗(E) is a π∗(E)-coalgebra (Theorem 4.4.8) and for every spaces X , E∗(X) is an
E∗(E)-comodule ( Proposition 4.4.9).

§4.5 begins with the discussion of certain kinds of rings of polynomials closely related
to the ring Int(Z{x}). These are called the ring of stably integer-valued Laurent poly-

80
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nomials and the ring of stably integer-valued polynomials. We show that both rings
are binomial rings (Theorem 4.5.2 and Theorem 4.5.13). Therefore both rings are λ-
rings in which all Adams operations are the identity. Some known results on the ring
Int(Z{x}) extend to both rings. Precisely, we show that both rings are binomially
principal rings (Theorem 4.5.5 and Theorem 4.5.19).

In §4.6 we explain how these examples of binomial rings coming from topology using
property of Int(Z{x}) and spectrum K in K -theory, starting with the well known
Int(Z{x}) ∼= K0(CP∞), (Theorem 4.6.3). The main results give new descriptions of
those examples (Theorem 4.6.4 and Theorem 4.6.9). For this chapter we mean by good
space a para compact Hausdorff apace.

§ 4.2 K-Theory

The material of this section is well known. The main purpose of this section is to
recollect the necessary background for K -theory. We begin by describing geometrically
the construction of K -theory in terms of the semigroup Vect(X) of equivalence classes
of complex vector bundles over X by applying the Grothendieck construction. In the
second place the construction of K -theory is explained in terms of the spectrum K
associated with the spaces BU × Z and U . Some general references for K -theory are
[7] and [31].

First we discuss the structure of topological K -theory. We begin this section by defining
the notion of a vector bundle over a space X, which is a family of finite dimensional
vector spaces formed by attaching them to each point of X and linking them together
in an appropriate way.

Definition 4.2.1. Let X be a topological space. An n-dimensional complex vector
bundle over X is a topological space B with the following.

1. A continuous surjective map π : E → X.

2. For each x ∈ X , the space Bx = π−1(x), has a complex vector space structure
of dimension n such that the following local triviality condition is satisfied. For
all b ∈ B , there exists an open neighborhood Uβ of b and a homeomorphism

f(Uβ) : π−1(Uβ)→ Uβ × Cn

which takes π−1(b) into {b}×Cn by a linear map of vector spaces for each b ∈ Uβ .

We call X the base space, B the total space and Bx the fibre over x ∈ X.

Here we give a list of some important examples of vector bundles needed later in this
chapter.

Example 4.2.2. The trivial complex vector bundle of dimension n over space X,
B = X × Cn is defined by the projection on the first factor.
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Example 4.2.3. Let CPn be the base space, thought of as the space of lines through
the origin in Cn+1. We define

B = {(L, v) ∈ CPn × Cn+1 : v ∈ L}.

Then B is the line bundle defined by the projection

π : B → CPn,

given by
(L, v) 7−→ L.

Example 4.2.4. Let Gn(Ck) be the complex Grassmannian space of n-planes in Ck
through the origin. We define

εn,k = {(T, v) ∈ Gn(Ck)× Ck : v ∈ T}.

Thus εn,k is the universal n-dimensional bundle defined by the projection

π : εn,k → Gn(Ck)

given by
(T, v) 7−→ T.

Next the construction of new vector bundles built from old ones is considered.

Example 4.2.5. 1. The direct sum of two vector bundles B1 and B2 over the same
space X , has total space

B1 ⊕B2 = {(b1, b2) ∈ B1 ×B2 : π1(b1) = π2(b2)}

and projection map
π : B1 ⊕B2 −→ X

given by
(b1, b2) 7−→ π1(b1) = π2(b2).

2. The tensor product of two vector bundles E1 and E2 over the same space X has
total space

B1 ⊗B2 =
⋃
x∈X

π−1
1 (x)⊗ π−1

2 (x)

and
π : B1 ⊗B2 −→ X,

sending an element in π−1
1 (x)⊗ π−1

2 (x) to x ∈ X.
The topology of the two original vector bundles can be combined to give a coherent
topology in B1 ⊗B2 see [31, p. 13].

Note that to give the local triviality homeomorphism on B1 ⊗ B2, we choose
triviality homeomorphisms

fi : π−1
i (Uβ) −→ Uβ × Cni ,
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for an open neighborhood Uβ ⊆ X , and use

f1 ⊗ f2 : π−1
1 (Uβ)⊗ π−1

2 (Uβ) 7−→ Uβ × (Cn1 ⊗ Cn2).

The topology of the two original vector bundles can be combined to give a coherent
topology in B1 ⊗B2.

3. Let f : X → Y be a continuous map and let B be a vector bundle over Y . Then
the pullback vector bundle of B by f defined over X has total space

f∗B = {(x, b) ∈ X × E : f(x) = π(b)},

with the projection

π̃ : f∗B → X,

given by

(x, b) 7−→ x.

Definition 4.2.6. A morphism of vector bundles B1 and B2 over base spaces X1 and
X2 respectively consists of a pair of continuous maps θ : B1 → B2 and g : X1 → X2 ,
such that the diagram

B1 B2

X1 X2

θ

π1 π2

g

is commutative and the restriction

θ : π−1
1 (x)→ π−1

2 (g(x))

is linear for each x ∈ X .

Definition 4.2.7. An isomorphism between two vector bundles B1 and B2 over the
same base X is a homeomorphism f : B1 → B2, such that the restriction

f : π−1
1 (x)→ π−1

2 (x)

is a linear isomorphism on each fibre for all x ∈ X .

At this point, we can talk about the set of all isomorphism classes of vector bundles
E over a base space X . We denote by Vect(X) the set of all isomorphism classes of
vector bundles over the space X . The set Vect(X) forms an abelian semigroup with
addition given by direct sum (Whitney sum) of vector bundles as in Example 4.2.5 (1)
and with identity given by the class of the trivial 0-dimension bundle on X .



84

There is a classical construction of an abelian group K(H) associated with a semigroup
H called the Grothendieck group (completion group), with a homomorphism of the
underlying semigroup

θ : H → K(H),

having the following universal properties.

For any abelian group G and homomorphism of the underlying semigroup H ,

ϕ : H → G,

there is a unique group homomorphism

ϕ̃ : K(H)→ G,

such that the diagram

H K(H)

G

ϕ

θ

∃! ϕ̃

is commutative. There are several possible ways to construct K(H). We define K(H)
as the quotient of H ×H by the equivalence relation

(a, b) ∼ (c, d)⇔ there exists h ∈ H such that

a+ d+ h = b+ c+ h

and the map from H to K(H) is given by

h 7−→ (h, 0).

The lift of a map ϕ : H −→ G to a map from K(H) to G is given by

[(a, b)] 7−→ ϕ(a)− ϕ(b).

Also
[(h1, h2)] = [(h1, 0) + (0, h2)] = [(h1, 0)]− [(h2, 0)] = [h1]− [h2],

for h1, h2 ∈ H.

Thus, we represent the elements in K(H) by [h1]− [h2]

Example 4.2.8. A standard example of the Grothendieck construction is the con-
struction of the group Z from the semigroup N .

The construction of the Grothendieck group leads to the idea of K -theory, by applying
these ideas to the abelian semigroup Vect(X) over X .
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Definition 4.2.9. Let X be a good space (compact Hausdorff space). Then K0(X) is
the Grothendieck group of the semigroup Vect(X). An element of K0(X) is represented
by [B] − [D] , where [B] and [D] are isomorphism classes of vector bundles over the
base space X . The addition operation is defined by

([B1]− [D1])⊕ ([B2]− [D2]) = [B1 ⊕B2]− [D1 ⊕D2]. (4.2)

The class [B]− [B] is the zero element of this group and [D]− [B] represents the inverse
of the element [B]− [D].

The tensor product operation on vector bundles passes to isomorphism classes, so
Vect(X) has the multiplication operation given by the tensor product as in Example
4.2.5 (2). This makes Vect(X) into a semiring with the trivial line bundle as multi-
plicative identity. Then by extending the Grothendieck construction to the semiring
Vect(X), we obtain a ring K0(X) under the multiplication defined by

([B1]− [D1])([B2]− [D2]) = [B1 ⊗B2]− [B1 ⊗D2]− [D1 ⊗B2] + [D1 ⊗D2]. (4.3)

Example 4.2.10. A complex vector bundle over a point is determined up to isomor-
phism by its dimension. So the dimension map gives an isomorphism Vect(pt) ∼= N .
By Example 4.2.8 the Grothendieck group of N is Z and it induces an isomorphism
K(pt) ∼= Z .

Now for any base point x0 ∈ X , consider the inclusion map

f : {x0} → X,

which induces a surjective ring homomorphism

f∗ : K0(X)→ K0(x0),

by pullback properties on vector bundles as in Example 4.2.5 (3). This leads to the
reduced K-theory ring.

Definition 4.2.11. For any base point x0 ∈ X , the reduced K-theory K̃0(X) of a
based space X is defined to be the kernel of f∗ .

Remark 4.2.12. Let x0 ∈ X . For the collapsing map f : X → {x0}. Since the map
f∗ is surjective, the inclusion induces a splitting.

0 −→ K̃0(X) −→ K0(X)� K0(X) −→ 0.

Then by Example 4.2.10 and basic homological algebra we obtain

K0(X) ∼= K̃0(X)⊕K0(x0) ∼= K̃0(X)⊕ Z.

So the element of K̃0(X) can be written in the form [E] − n, where E is a vector
bundle over X of dimension n, for n ∈ N.

At this stage the construction of topological K -theory in terms of the semigroup
Vect(X) of vector bundles over a space X described only geometrically. Next we
will give another construction of topological K -theory in terms of the space BU .
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Definition 4.2.13. The unitary group of order n , U(n), is the topological group of
n× n unitary matrices where the group operation is the usual matrix multiplication.

Remark 4.2.14. For each n ≥ 1 we have an inclusion

ιn : U(n) ↪→ U(n+ 1)

defined by

A 7→
(
A 0
0 1

)
.

We mean by S1 the circle taken as follows

S1 = {z ∈ C : |z| = 1} ⊂ C ∼= R2,

which is given the subspace topology and is a subgroup of C.

Example 4.2.15.

U(1) = {z ∈ C : zz̄ = 1}
= {z ∈ C : |z| = 1}
= S1.

Note that from [41, p. 197] the classifying space of U(n) can be written as

BU(n) = Gn(C∞) =
⋃
k≥1

Gn(Ck).

From the bundles εn,k as in Example 4.2.4, we obtain the tautological vector bundle
εn over BU(n)

Example 4.2.16. BU(1) = CP∞ .

The pullback preserve the isomorphism classes. So that given a continuous map

f : X → Y

we define
f∗ : Vect(Y )→ Vect(X)

by sending [B] to [f∗B] . We have the following commutative diagram

f∗B B

X Y

f∗

π̃ π

f
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Indeed the pullback construction with vector bundles B1 and B2 over a space X
induces a ring homomorphism

f∗ : K0(Y )→ K0(X)

given by
[B1]− [B2]→ [f∗(B1)]− [f∗(B2)].

This implies that K0(−) is a contravariant functor from the category of topological
spaces to the category of commutative rings.

Proposition 4.2.17. For each n ≥ 0 and good space X, we have an isomorphism

[X,BU(n)] ∼= Vectn(X),

given by
[f ] 7−→ [f∗(εn)].

On the other hand, there is a map

Bιn : BU(n)→ BU(n+ 1)

for n ≥ 1, and we let

BU = lim
n→∞

BU(n),

with the topology of the limit.

Actually from the construction of the space BU one can show that the functor K0(−)
is a representable functor.

Proposition 4.2.18. [41, chapter 24] For a compact and connected based space X, we
have an isomorphism of rings

K̃0(X)
∼=−→ [X,BU ]

given by
[E]− n 7→ [inf ],

where E is a vector bundle of dimenstion n over X, defined by the map f : X −→
BU(n) and in : BU(n) ↪→ BU is the inclusion.

If the space X is not necessarily connected, a vector bundle over X may have a different
dimension over each connected component. Such a bundle corresponds to the homotopy
class of map X −→ Z×BU, where Z is given the discrete topology.

Then for a general based space X we define K0(X) to be

K0(X) := [X,Z×BU ]. (4.4)
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Definition 4.2.19. An Ω-spectrum E = {Ei for i ∈ Z} is a sequence of based spaces
En together with structure maps

ηi : Ei → ΩEi+1,

that are homotopy equivalences. If the homotopy groups πi(E) = 0 for all negative i ,
then we call E a connective spectrum.

Next we will give the structure of addition and product in the space BU . First recall
that BU(n) = Gn(C∞). So BU(n + m) = Gn+m(C∞) and from an isomorphism
(C∞⊕C∞) ∼= C∞, we obtain a homotopy equivalence Gn+m(C∞) ' Gn+m(C∞⊕C∞).
There is an induced classifying map

ρn.m : BU(n)×BU(m) −→ BU(n+m).

given by
(x, y) 7−→ x⊕ y,

for an n-plane x and an m-plane y in C∞ .

Also consider the map
⊕ : BU ×BU → BU

induced from the map ρn.m by passage to colimit over n and m . This leads to an
additive H -space structure on the space Z×BU .

Next in the same way we consider the tensor product map

Pn,m : BU(n)×BU(m) −→ BU(nm)

given by
(x, y) 7−→ x⊗ y.

We need to consider the bilinearity of ⊗. By an elaborate argument one can pass to
the colimit over n and m to have a product map on the space BU,

∧ : BU ∧BU → BU.

These two constructions correspond to the direct sum and tensor product of vector
bundles. These maps ⊕ and ∧ give the additive and multiplicative H -space structure
on the space Z×BU .

There is a homotopy equivalence,

Ω(Z×BU) ' U, (4.5)

as additive H -spaces. On the other hand we have Bott periodicity.

Theorem 4.2.20. [Bott periodicity] There is a homotopy equivalence

Z×BU ' ΩU.
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Now one can construct the Ω-spectrum K , in which for all i ∈ Z the spaces are
Ki = Z×BU for i even, and Ki = U for i odd.

If i is even the structure map
Ki → ΩKi+1,

is given by the Bott map
Z×BU 7−→ Ω2(Z×BU),

and if i is odd the structure is given by composing the identity with the above homotopy
equivalence

U → U ' Ω(Z×BU).

Next we want to extend K -theory into a cohomology theory. To do this we use sus-
pension to define

K̃−n(X) ∼= K̃0(ΣnX)

for n ∈ N and by Bott periodicity there are isomorphisms of groups

Kn(X) ∼= Kn−2(X) for all n ∈ Z.

Thus we have construction of Kn(X) for n ∈ Z .
In fact K∗(−) is a contravariant functor from a spaces to graded commutative rings.

Remark 4.2.21. [31, 2.2] All the properties of a generalised cohomology theory are
satisfied by the functor K∗(−).

The information on the space BU mostly came from [41, Chapter 23,24].

Definition 4.2.22. A ring spectrum is a spectrum E together with a product map

µ : E ∧ E −→ E (4.6)

and identity
ι : S0 −→ E (4.7)

such that the following diagrams

E ∧ E ∧ E E ∧ E

E ∧ E E

µ ∧ IdE

IdE ∧ µ

µ

µ

S0 ∧ E E ∧ E E ∧ S0

E

ι ∧ IdE IdE ∧ ι

' µ '
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commute up to homotopy.
The spectrum K defines the K -cohomology K∗(X) of a space X by

K∗(X) = [X,K]. (4.8)

We also obtain a K -homology theory K∗(X), where is define by

K∗(X) = π∗(X ∧K). (4.9)

The coefficient ring is given by

π∗(K) ∼= Z[u, u−1], (4.10)

where u ∈ π2(K).

§ 4.3 Hopf algebras

A Hopf algebra is a well known object in algebraic topology and can be found in many
text books such as [1] and [43]. The examples we will give in §4.6, have a Hopf algebra
structure and K∗(X) for a good space X will be a comodule over the coalgebra which
will construct in §4.5. The main aim of this section is to communicate the necessary
background on Hopf algebras. All the tensor products in the chapter will be taken over
R, ⊗ = ⊗R, unless otherwise stated.

Definition 4.3.1. Let R be a commutative ring with unit. An R-algebra is an R-
module A together with R-linear maps,

1. µA : A⊗A −→ A (product)

2. υA : R −→ A (unit)

such that

1. µA ◦ (µA ⊗ IdA) = µA ◦ (IdA ⊗ µA), (associativity law)

2. µA ◦ (υA ⊗ IdA) = µA ◦ (IdA ⊗ υA) = IdA. (unit property)

In the language of diagrams it means that the following diagrams

A⊗A⊗A A⊗A

A⊗A A

µA ⊗ IdA

IdA ⊗ µA

µA

µA
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R⊗A A A⊗R

A⊗A

t t

υA ⊗ IdA µA IdA ⊗ υA

are commutative, where t is the isomorphism given by scalar multiplication.

For an R-module C the R-linear maps given by

c 7→ c⊗ 1 and c 7→ 1⊗ c,

for c ∈ C lead to R-isomorphisms

C ∼= C ⊗R and C ∼= R⊗ C

respectively. These isomorphisms are inverse to the t once above. So by identifying
C ⊗ R and R ⊗ C with C and dualizing Definition 4.3.1 we obtain the notion of
R-coalgebra.

Definition 4.3.2. Let R be a commutative ring with unit. An R-coalgebra is an
R-module C together with R-linear maps,

1. ∆C : C −→ C ⊗ C , (coproduct)

2. εC : C −→ R , (counit)

such that

1. (∆C ⊗ IdC) ◦∆C = (IdC ⊗∆C) ◦∆C , (coassociativity law)

2. (εC ⊗ IdC) ◦∆C = (IdC ⊗ εC) ◦∆C = IdC . (counit property)

In the language of diagrams it means that the following diagrams

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆C ⊗ IdC

IdC ⊗∆C

∆C

∆C

R⊗ C C C ⊗R

C ⊗ C

∼= ∼=

εC ⊗ IdC ∆C IdC ⊗ εC
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are commutive.

Example 4.3.3. Let S be any set and let KS be the free K -module on the set S .
Then KS is a K -coalgebra with coproduct map

∆ : KS −→ KS ⊗KS

determined by

s 7−→ s⊗ s

and counit map

ε : KS −→ K

determined by

s 7−→ 1,

for s ∈ S and extending linearly.

Definition 4.3.4. Let C1 and C2 be two R-coalgebras. An R-linear map ϕ : C1 −→
C2 satisfying the following condition

∆C2 ◦ ϕ = (ϕ⊗ ϕ) ◦∆C1 and εC1 = εC2 ◦ ϕ,

is called an R-coalgebra morphism. In the language of diagrams it means that the
following diagram

C1 C2

C1 ⊗ C1 C2 ⊗ C2

ϕ

∆C1 ∆C2

ϕ⊗ ϕ

C1 C2

R

ϕ

εC1 εC2

are commutive.

Definition 4.3.5. Let R be a commutative ring. An R-bialgebra is an R-module B
such that

1. (B,µB, υB) is an R-algebra structure,

2. (B,∆B, εB) is an R-coalgebra structure,
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and one of the following (equivalent) conditions holds

1. µB and υB are R-coalgebra morphisms,

2. ∆B and εB are R-algebra morphisms.

Example 4.3.6. The rational polynomial algebra Q[w] is a Q-bialgebra with the
following structure. The coproduct is given by the algebra map

∆w : Q[w] −→ Q[w]⊗Q[w]

determined by
wn 7→ wn ⊗ wn,

with counit by
εw : Q[w] −→ Q

determined by
wn 7→ 1,

for n ≥ 0. Since this gives a coalgebra structure and ∆w and εw are algebra maps,
Q[w] is a Q-bialgebra.

Proposition 4.3.7. [32, Proposition 3.1.7]Int(Z{w}) is a Z-subbialgebra of Q[w] with
coproduct inherited from Q[w], given in terms of basis elements by

∆

((
w

n

))
=
∑
i,j≤n

i∑
k=0

j∑
t=0

(−1)(i+j)−(k+t)

(
i

k

)(
j

t

)(
kt

n

)(
w

i

)
⊗
(
w

j

)
for n ≥ 0.

Definition 4.3.8. Let B1 and B2 be two R-bialgebras. An R-linear map ϕ : B1 −→
B2 is called an R-bialgebra morphism if it is both an R-algebra and an R-coalgebra
morphism. We denote by Bia(R) the category of R-bialgebras whose objects are
R-bialgebras and whose morphisms are R-bialgebras morphisms.

Let B1 and B2 be two R-bialgebras. Then recall that B1 ⊗ B2 has an R-algebra
structure. The product is given by the composite R-linear map

µB1⊗B2 : B1 ⊗B2 ⊗B1 ⊗B2

IdB1
⊗τ⊗IdB2−−−−−−−−−→ B1 ⊗B1 ⊗B2 ⊗B2

µB1
⊗µB2−−−−−−→ B1 ⊗B2,

where τ : B2 ⊗ B1 −→ B1 ⊗ B2 is the twist R-linear map and unit is given by the
composite R-linear map

υB1⊗B2 : R ∼= R⊗R
υB1
⊗υB2−−−−−−→ B1 ⊗B2.

Similarly, B1 ⊗B2 has an R-coalgebra structure with coproduct is given by the com-
posite R-linear map

∆B1⊗B2 : B1 ⊗B2

∆B1
⊗∆B2−−−−−−−→ B1 ⊗B1 ⊗B2 ⊗B2

IdB1
⊗τ⊗IdB2−−−−−−−−−→ B1 ⊗B2 ⊗B1 ⊗B2,
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and counit is given by the composite R-linear map

υB1⊗B2 : B1 ⊗B2

εB1
⊗εB2−−−−−→ R⊗R ∼= R.

For R-modules C and A, ModR(C,A) is an abelian group under addition of maps and
it has R-linear structure

R×ModR(C,A) −→ modR(C,A),

given by

(rf)(c) = rf(c)

for r ∈ R , c ∈ C and f ∈ ModR(C,A).

Next, if C is an R-coalgebra and A is an R-algebra we define a special product on
ModR(C,A) and we show that ModR(C,A) becomes an R-algebra with this product.

Definition 4.3.9. Let C be an R-coalgebra and let A be an R-algebra, then we define
a product on ModR(C,A) by

f ∗ g : C
∆C−−→ C ⊗ C f⊗g−−→ A⊗A µA−−→ A

for f and g ∈ ModR(C,A). This is called the convolution of f and g . Also we define
the unit of ∗ by the composite of R-linear maps

υAεC : C
εC−→ R

υA−−→ A.

Proposition 4.3.10. Let C be an R-coalgebra and let A be an R-algebra, then
ModR(C,A) is an R-algebra with convolution product ∗.

Proof. Let f, g andh ∈ ModR(C,A), then (f ∗ g) ∗ h is defined by the R-linear map

C
∆C−−→ C ⊗ C ∆C⊗IdC−−−−−−→ C ⊗ C ⊗ C f⊗g⊗h−−−−→ A⊗A⊗A µA⊗1−−−→ A⊗A µA−−→ A.

Then by coassociativity and associativity of C and A respectively we have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

This implies that ∗ is associative. To show that υAεC is a left identity element, let
c ∈ C then

υAεC ∗ f(c) = µA ◦ (υAεC ⊗ f) ◦∆C

= µA ◦ (υA ⊗ IdA)(f ⊗ IdR)(εC ⊗ IdC) ◦∆C

= f(c).

Similarly it is a right identity. So ∗ has two sided unit υAεC .
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Notation 4.3.11. Let C be an R-coalgebra. Then for any c ∈ C we write

∆C(c) =
∑

c
(1)
i ⊗ c

(2)
i .

Then we can write the convolution product for f, g ∈ModR(C,A) by

(f ∗ g)(c) =
∑
i

f(c
(1)
i )g(c

(2)
i ).

When the identity R-linear map IdH of an R-bialgebra H has an inverse χ ∈
HomR(H,H) under convolution product, then χ is called the antipode of H .

In other words, the antipode χ is an element which satisfies the following

µH ◦ (χ⊗ IdH) ◦∆H = µH ◦ (IdH ⊗ χ) ◦∆H = υHεH .

Definition 4.3.12. By Hopf algebra we mean an R-bialgebra H together with an
antipode χ .

Example 4.3.13. The rational Laurent polynomial algebra Q[w,w−1] is a Q-Hopf
algebra by extending the coproduct of Q[w] , for n ≥ 0 such that

w−n 7→ w−n ⊗ w−n

and with counit determined by
w−n 7→ 1.

The antipode is determined by
χ(wn) = w−n,

for n ∈ Z .

Definition 4.3.14. An R-linear map ψ : H1 −→ H2 between R-Hopf algebras is
called an R-Hopf algebra morphism, if it is an R-bialgebra morphism and commutes
with the antipodes

ψ ◦ χH1 = χH2 ◦ ψ,

for χH1 and χH2 the antipodes of H1 and H2 respectively.

Also we use ModR(C,R) to define the dual of an R-coalgebra.

For any R-coalgebra C , set C∗ = ModR(C,R), the R-linear dual of C . Define a
bilinear form

〈−,−〉 : C∗ ⊗ C −→ R

by
〈f, c〉 7−→ f(c)

for f ∈ C∗ and c ∈ C . If ψ : M −→ N is an R-linear map, then the induced R-linear
map ψ∗ : N∗ −→M∗ is defined by

ψ∗(f)(c) := f(ψ(c)).
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for f ∈ N∗ and c ∈M. For any R-module M we have an R-linear map

ϕM : M∗ ⊗M∗ −→ (M ⊗M)∗

defined by

〈ϕM (g1 ⊗ g2),m1 ⊗m2〉 = 〈g1,m1〉〈g2,m2〉 = g1(m1)g2(m2).

For an R-coalgebra C, we use ϕM to define a product on C∗ as the composite R-linear
map

µ∗ : C∗ ⊗ C∗ ϕC−−→ (C ⊗ C)∗
∆∗
−−→ C∗.

In a similar way we use the isomorphism R ∼= R∗ to define a unit on C∗ as the
composite R-linear map

υ∗ : R
∼=−→ R∗

ε∗−→ C∗.

As a result we have the following.

Proposition 4.3.15. Let C be an R-coalgebra, then C∗ is an R-algebra with product
map ∆∗C∗ and unit map υ∗C∗ .

Next in the same way that for an R-algebra A, we have A-modules, we define for an
R-coalgebra C the notion of C -comodule.

Definition 4.3.16. For an R-coalgebra C , a left C -comodule is an R-module with
an R-linear map ϕM : M −→ C ⊗M , satisfying the following conditions,

1. (∆C ⊗ IdM ) ◦ ϕM = (IdM ⊗∆C) ◦ ϕM ,

2. (εC ⊗ IdM ) ◦ ϕM = IdM .

In the language of diagrams this means that the following diagrams

M C ⊗M

C ⊗M C ⊗ C ⊗M

∆C ⊗ IdM

ϕM

ϕM

IdM ⊗∆C

M R⊗M

C ⊗M

∼=

ϕM εC ⊗ idM

commute. Then we call ϕM a left C -coaction on M .
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Also there is a notion of right C -comodule defined by a coaction ψM : M −→M ⊗C.

Definition 4.3.17. Let M and N be left C -comodules together with coactions ψM
and ψN of M and N respectively. An R-linear map g : M −→ N is called a comodule
morphism if it commutes with ψM and ψN . In the language of diagrams this means
the following diagram

M N

C ⊗M C ⊗N

ψN

g

ψM

IdC ⊗ g

commutes. We denote by CComod the category of left C -comodules whose objects
are left C -comodules and whose morphisms are C -comodule morphisms.

Recall from Notation 4.3.9 that for c ∈ C ,

∆(c) =
∑
i

c
(1)
i ⊗ c

(2)
i .

Similarly for a left C -comodule M we can write the coaction as

ψM (m) =
∑
i

ci ⊗mi

for m,mi ∈M and ci ∈ C.

Lemma 4.3.18. Let M be a left C -comodule, then M is an right C∗ -module with
action m.f =

∑
ci〈f,mi〉, for m,mi ∈M, ci ∈ C and f ∈ C∗.

Lemma 4.3.19. Let M be an R-module, then C ⊗ M is a left C -comodule with
coaction ψC⊗M = ∆C ⊗ IdM .

If M and N are R-modules, then C ⊗M and C ⊗ N are C -comodules by Lemma
4.3.19. For any R-linear map g : M −→ N we have a C -comodule map

IdC ⊗ g : C ⊗M −→ C ⊗N.

§ 4.4 Cohomology operations and homology cooperations

For a cohomology theory it is not adequate to study only cohomology groups. Also
we should look at the natural operations on the cohomology groups. Recall that a
ring spectrum E yields E -cohomology theory given by E∗ = [−, E]. For a space
X, [X,E] is a graded group of maps. The spectrum also determines E -homology
theory given by E∗ = π∗(E ∧−). In this section the various types of operations on the
general cohomology theory E∗(−) and the corresponding cooperations on the general
homology theory E∗(−) are given. For a nice introduction to E∗(−) operations and
E∗(−) cooperations I refer to [26, ch. 14 and 15].
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Definition 4.4.1. A cohomology operation θ of type (n,m) on the cohomology theory
E∗(−) for fixed n,m is a natural transformation β : En(−) → Em(−) between the
functors from spaces to sets. Thus such an unstable operation, for each space X ,
consists of a family of a maps of sets

βX : En(X)→ Em(X).

This is natural in X, meaning that for every continuous map g : X → Y the diagram

En(Y ) En(X)

Em(Y ) Em(X)

g∗n

βXβY

g∗m

commutes.

Definition 4.4.2. A cohomology operation θ of type (n,m) on the cohomology theory
E∗(−) for fixed n,m is an additive unstable operation, if it is an unstable operation
and βX : En(X) → Em(X) is a group homomorphism such that for any continuous
map g : X → Y the following diagram of abelian groups

En(Y ) En(X)

Em(Y ) Em(X)

g∗n

βXβY

g∗m

commutes. In other words the functor En(−) is viewed as from spaces to abelian
groups.

Definition 4.4.3. A stable operation of degree r is a collection of operations, which
for each space X

βX : En(X) −→ En+r(X),

is natural in X and which commutes with suspension. In the language of diagrams
this means that for each space X and each n ∈ Z the following diagram,

En(X) En+r(X)

En+1(ΣX) En+r+1(ΣX)

βnX

∼=∼=
βn+1

ΣX

commute.
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Remark 4.4.4. By the Yoneda lemma, all stable operations from E∗(−) to E∗(−)
can identified with E∗(E) = [E,E] .

Example 4.4.5. An important example of unstable cohomology operations are λ-
operations on K -theory. For n ≥ 0, is the type (0, 0) operation, λn : K0(X)→ K0(X),
is induced from the nth exterior power on vector bundles B over X, λn(B) = ΛnB .
This leads K0(X) to be a λ-ring as in Example 2.5.10(3).

We also considered λ-ring B over X as a formal power series on variable t , that is
λn(B) is the coefficient of tn in the power series

λt(B) =

∞∑
i=0

(λiB)ti = 1 + [B]t+ [λ2B]t2 + · · · ∈ K0[[t]].

The λ-operations are not group homomorphisms. On sums we have

λn(B1 +B2) =
∑
i+j=n

λi(B1)λj(B2).

As a formal power series in t with coefficients in R , we can rewrite this as

λt(B1 +B2) = λt(B1)λt(B2).

For more detail on λ-operations see Section 2.5.

Example 4.4.6. Important examples of additive unstable cohomology operations are
the Adams operations on K -theory, ψn : K0(X) → K0(X). These are defined using
the λ-operations of K -theory. They are constructed from the group homomorphism

ψt : K0(X)→ K0(X)[[t]],

where ψ−t is defined by

ψ−t(x) = −t d
dt

(log λt(x)) =

∞∑
i=0

(−1)iψi(x)ti,

for x ∈ K0(x). So ψn(x) is the coefficient of tn in ψt(x).

For more detail on Adams operations see Section 2.6.

Next we are going to give construction of coalgebra built out from cohomology op-
erations. Precisely we show that E∗(E) with suitable ring spectrum E is a π∗(E)-
coalgebra. All information in this section is mostly are based on [3, part III 12] and
[52, Chapter 13].

Given maps S
g−→ E and S

h−→ E ∧ E , where S is the sphere spectrum the class
([g ∧ h]) ∈ π∗(E ∧ E) is represented by the map

S ' S ∧ S g∧h−−→ E ∧ E ∧ E IdE⊗µ−−−−→ E ∧ E.
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This induces a map

π∗(S)
π∗(g∧h)−−−−−→ π∗(E ∧ E ∧ E)

π∗(IdE⊗µ)−−−−−−−→ π∗(E ∧ E).

We also get a right action on E∗(E),

ϕE : E∗(E)⊗ π∗(E) −→ E∗(E). (4.11)

This action can be described as follows. Given maps S
g−→ E ∧E and S

h−→ S ∧E , the
class ([g ∧ h]) ∈ π∗(E ∧ E) is represented by the map

S ' S ∧ S g∧h−−→ E ∧ E ∧ E IdE⊗µ−−−−→ E ∧ E.

In the same way from the map

S ' S ∧ S g∧h−−→ E ∧ E ∧ E µ⊗IdE−−−−→ E ∧ E,

we induce a left action on E∗(E)

ϑE : π∗(E)⊗ E∗(E) −→ E∗(E). (4.12)

Proposition 4.4.7. For a ring spectrum E , E∗(E) is a π∗(E)-module with ϕE as
action map.

Theorem 4.4.8. [3, p. 281]Suppose E is a ring spectrum such that E∗(E) is flat as
π∗(E)-module. Then E∗(E) is a π∗(E)-coalgebra.

Proof. First by Proposition 4.4.7, E∗(E) is a π∗(E)-module. For a spectrum X we
have the product map

∧E,X : E∗(E)⊗π∗(E) E∗(X) −→ E∗(X ∧ E), (4.13)

induced by the composite of maps

π∗(E ∧ E)⊗π∗(E) π∗(E ∧X) −→ π∗(E ∧ E ∧ E ∧X)
IdE⊗µ⊗IdX−−−−−−−−→ π∗(E ∧ E ∧X).

On the other hand, we have

X ' X ∧ S0 IdX⊗ε−−−−→ X ∧ E,

inducing a map

ηX : E∗(X)→ E∗(E ∧X). (4.14)

By a assumption E∗(E) is flat, then the map ∧E,X is an isomorphism by [52, Theorem
13.75] Therefore by composing ηX with ∧−1

E,X we get a map

θX : E∗(X)→ E∗(X ∧ E)
∧−1
E,X−−−→ E∗(X)⊗π∗(E) E∗(E). (4.15)
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Now by taking X = E we obtain the coproduct map of E∗(E)

∆E : E∗(E)→ E∗(E)⊗π∗(E) E∗(E), (4.16)

where the associativity property of µ leads to the coassociativity of ∆E . Finally we
define a counit map of E∗(E)

ε : E∗(E)→ π∗(E), (4.17)

which induced by the product map on a spectrum (4.6) as in Definition 4.2.22.

Proposition 4.4.9. For a spectrum E and spectrum X , E∗(X) is an E∗(E)-comodule
with θX : E∗(X)→ E∗(X)⊗π∗(E) E∗(E) as coaction map.

§ 4.5 Special kinds of rings of polynomials

We will give constructions of some examples of binomial rings coming from topology in
§4.6. For the first step in that section we begin our discussion of special kind of rings
of polynomials closely related to the ring Int(Z{x}). We describe their relation with
the ring Int(Z{x}). Our results use this relation to show that the rings considered are
binomial rings (Theorem 4.5.2 and Theorem 4.5.13). Therefore their localization rings
are also binomial rings. For more detail on both rings see [20].

4.5.1 Rings of stably integer-valued Laurent polynomials

The main aim of this subsection is to introduce the ring of stably integer-valued Laurent
polynomials. First we start our discussion of stably integer-valued polynomials. We
show that the ring SLInt(Z{x}) is a binomial ring (Theorem 4.5.2). More precisely
we use the result in Theorem 3.6.13 to show that it is a binomially principal ring.
We show that also the ring of stably integer-valued Laurent polynomials over a subset
SLInt(K{x},Z) for K ⊆ Z is a binomial ring (Theorem 4.5.9). At the end of this
chapter we will use this result to give some examples of binomial rings coming from
topology.

Definition 4.5.1. For f(x) ∈ Q[x] , f(x) is a stably integer-valued polynomial if for
some m ≥ 0

xmf(x) ∈ Int(Z{x}). (4.18)

Let Q[x, x−1] denote the ring of Laurent polynomials in one variable x with rational
coefficients. Define the set of stably integer-valued polynomials in Q[x, x−1] as

SLInt(Z{x}) = {f(x) ∈ Q[x, x−1] : zmf(z) ∈ Z for some m ≥ 0 and all z ∈ Z}.

It is a subring of Q[x, x−1] and is called the ring of stably integer-valued Laurent
polynomials on one variable x .

Now we give new example of a binomial ring.
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Theorem 4.5.2. The ring SLInt(Z{x}) is a binomial ring.

Proof. Note that any polynomial f(x) ∈ SLInt(Z{x}) can be written as

f(x) = x−Mg(x) for g(x) ∈ Int(Z{x}) and some M ∈ N0.

This lies in the localization of Int(Z{x}) at the multiplicatively closed subset S =
{x, x2, · · · , xi, · · · }.

Conversely, consider an element h(x) ∈ Int(Z{x})[x−1] . Then there exists g(x) ∈
Int(Z{x}) and i ∈ N, such that

h(x) = x−ig(x).

So
xih(x) = g(x) ∈ Int(Z{x}).

This implies that h(x) ∈ SLInt(Z{x}). So we have

SLInt(Z{x}) = Int(Z{x})[x−1]. (4.19)

We know from Theorem 2.4.7 that Int(Z{x}) is a binomial ring. Therefore by Theorem
2.9.5, SLInt(Z{x}) is a binomial ring.

Clarke and Whitehouse in [20] give another characterization of the ring SLInt(Z{x})
by an integrality condition.

Proposition 4.5.3. SLInt(Z{x}) = {f(x) ∈ Q[x, x−1] | f(k) ∈ Z[ 1
k ] for all k ∈

Z\{0}}.

Proof. It is clear by Theorem 4.5.2 SLInt(Z{x}) satisfies the given condition. Conversely
let f(x) ∈ Q[x, x−1] satisfy the given condition. Take j > 0 and m > 0, setting

g(x) = mxjf(x),

such that g(x) ∈ Z[x] . Now we set θ(x) = xj+if(x) for i the maximum exponent of
any prime that divides m . Now we are going to show that θ(x) ∈ Int(Z{x}). To see
this first note that θ(0) = 0. Now pick k ∈ Z/{0} . If p does not divide k then by
hypothesis

θ(k) ∈ Z[
1

k
] ⊂ Z(p)

and if p divided k then

θ(k) =
ki

n
g(k),

this implies that θ(k) ∈ Z(p) . So θ(k)Z(p) for all primes p . Therefore θ(k) ∈ Z. So

f(x) ∈ SLInt(Z{x}).

Proposition 4.5.4. Let T be a multiplicatively closed subset of the ring SLInt(Z{x}).
Then the localization T−1SLInt(Z{x}) is a binomial ring.
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Proof. It is follows by Theorem 2.9.5.

We know from Proposition 2.9.8 that

Int(Z{x}(p) ) = {f(x) ∈ Q[x] : f(Z(p)) ⊆ Z(p)}. (4.20)

Then we obtain
SLInt(Z{x}(p) ) = Int(Z{x}(p) )[x−1]. (4.21)

Using Proposition 4.5.3 we have

SLInt(Z{x}(p) ) = {f(x) ∈ Q[x, x−1] : f(Z×(p)) ⊆ Z(p)}, (4.22)

where Z×(p) = {ab ∈ Z(p) : p - a} is the group of units of Z(p).

For f(x) ∈ SLInt(Z{x}), pick m such that h(x) = xmf(x) is integer-valued and set

∆(h(x)) =
∑

h
(1)
i (x)⊗ h(2)

i (x),

then
∆(f(x)) =

∑
x−mh

(1)
i (x)⊗ x−mh(2)

i (x). (4.23)

The ring SLInt(Z{x}) is then a Z-coalgebra. In fact, the ring SLInt(Z{x}) is a Z-sub
Hopf algebra of Q[x, x−1].

We know from Theorem 3.6.13 that the ring Int(Z{x}) is a binomially principal ring.
Next we will use this result to show that the ring SLInt(Z{x}) is also a binomially
principal ring.

Note that, the ring SLInt(Z{x}) is not a principal ideal domain or even a Noetherian
ring. Clarke and Whitehouse in [20] show that the ideal of SLInt(Z{x}),

µp,a = {h(x) ∈ SLInt(Z{x}) : h(a) ∈ pZp}

for a ∈ Z×p is not finitely generated. Here we are viewing polynomials as uniformly
continuous functions on the completion Z(p). (See [15, Subsection III. 2]).

Theorem 4.5.5. The ring SLInt(Z{x}) is a binomially principal ring.

Proof. By Theorem 4.5.2 SLInt(Z{x}) is a localization of the binomial ring Int(Z{x})
and by Theorem 3.6.13 Int(Z{x}) is a binomially principal ring. Therefore by Proposi-
tion 3.6.4, SLInt(Z{x}) is a binomially principal ring.

We could also consider stably integer-valued polynomials over a set X of variables. For
f ∈ Q[X] , f is a stably integer-valued polynomial if

xm1
1 .xm2

2 . . . xmii . . . f ∈ Int(ZX), (4.24)
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for some mi ≥ 0 and xi ∈ X. Let SLInt(ZX) be the set of stably integer-valued Laurent
polynomials. It is a subring of Q[X,X−1] and is called the ring of stably integer-valued
Laurent polynomials on a set X of variables.

By the same argument as for Theorem 4.5.2 we have

SLInt(ZX) = Int(ZX)[X−1]. (4.25)

Theorem 4.5.6. The ring SLInt(ZX) is a binomial ring.

Proof. This follows from Theorem 2.9.5.

Theorem 4.5.7. SLInt(Z{x1,x2,...,xn}), on finitely many variables x1, x2, . . . xi is a bi-
nomially Noetherian ring..

Proof. This follows from Theorem 3.7.8.

Now we consider the notion of stably integer-valued polynomials over a subset as follows.

Definition 4.5.8. Consider K ⊆ Z . Let f ∈ Q[X] for a set X of variables. Then f
is called a stably integer-valued polynomial over the subset K if

xm1
1 .xm2

2 . . . xmii . . . f ∈ Int(KX ,Z), (4.26)

for some mi ≥ 0 and xi ∈ X . Let SLInt(KX ,Z) be the set of stably integer-valued
Laurent polynomials over the subset K. It is a subring of Q[X,X−1] and is called the
ring of stably integer-valued Laurent polynomials over the subset K on the set X of
variables.

In particular, we have

SLInt(K{x},Z) = {f(x) ∈ Q[x, x−1] : there is some m ≥ 0, kmf(k) ∈ Z for all k ∈ K}.

This is called the ring of stably integer-valued Laurent polynomials on one variable x
over the subset K.

Note that the ring SLInt(ZX) is the ring of stably integer-valued Laurent polynomials
over Z, that is

SLInt(ZX) = SLInt(ZX ,Z). (4.27)

So we have
Z[X,X−1] ⊂ SLInt(ZX) ⊆ SLInt(KX ,Z) ⊆ Q[X,X−1]. (4.28)

Theorem 4.5.9. For K ⊆ Z, SLInt(KX ,Z) is a binomial ring.

Proof. As in Theorem 4.5.2, we have

SLInt(KX ,Z) = Int(KX ,Z)[X−1]. (4.29)

So by Theorem 2.4.11, SLInt(KX ,Z) is a binomial ring.
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Finally we are going to extend some properties of the ring Int(K{x},Z) to the ring
SLInt(K{x},Z).

Theorem 4.5.10. For K ⊆ Z, the ring SLInt(K{x},Z) is a binomially principal ring.

Proof. This follows from Theorem 3.6.15.

Theorem 4.5.11. For K ⊆ Z, the ring SLInt(K{x1,x2,...,xi},Z) on finitely many vari-
ables x1, x2, . . . , xi is a binomially Noetherian ring.

Proof. This follows from Theorem 3.7.11.

4.5.2 Rings of stably integer-valued polynomials

The main aim of this subsection is to introduce another kind of ring of polynomials
closely related to the ring Int(Z{x}), which is called the stably integer-valued poly-
nomial ring SInt(Z{x}). We show that it is a binomial ring (Theorem 4.5.13). We
show that also the ring of stably integer-valued polynomials over a subset K ⊆ Z of
SInt(K{x},Z) is a binomial ring (Theorem 4.5.23). We will use rings of stably integer-
valued polynomials to give some examples of binomial rings that come from topology
in §4.6.

Definition 4.5.12. Define the set of stably integer-valued polynomials on one variable
x as a subring of the ring Q[x] by

SInt(Z{x}) = {f(x) ∈ Q[x] : there is some m ≥ 0 such that zmf(z) ∈ Z for all z ∈ Z}.

It is a subring of Q[x] and is called the ring of stably integer-valued polynomials in one
variable x .

In other words, we can express SInt(Z{x}) by,

SInt(Z{x}) = SLInt(Z{x}) ∩Q[x]. (4.30)

Theorem 4.5.13. The ring SInt(Z{x}) is a binomial ring.

Proof. We know from Theorem 4.5.2 that SLInt(Z{x}) is a binomial ring. Then by
(4.30) SInt(Z{x}) is the intersection of two binomial subrings of the binomial ring
Q[x, x−1]. Therefore by Proposition 2.3.15(4), SInt(Z{x}) is a binomial ring.

Proposition 4.5.14. Let T be a multiplicatively closed subset of SInt(Z{x}). Then
any localization T−1SInt(Z{x}) is a binomial ring.

Also, we have

SInt(Z{x}(p) ) = {f(x) ∈ Q[x] : f(Z×(p)) ⊆ Z(p)}. (4.31)

It is easy to verify that SLInt(Z{x}) is a localization of SInt(Z{x}).
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Proposition 4.5.15. SLInt(Z{x}) = SInt(Z{x})[x−1].

Corollary 4.5.16. Let J be a binomial ideal in SLInt(Z{x}). Then J [x−1] is a bino-
mial ideal in SLInt(Z{x}).

Corollary 4.5.17. Let I be a binomial ideal in SLInt(Z{x}). Then I ∩ Q[x] is a
binomial ideal in SInt(Z{x}).

For f(x) ∈ SInt(Z{x}), pick m such that h(x) = xmf(x) is integer-valued. If we write,

∆(h(x)) =
∑

h
(1)
i (x)⊗ h(2)

i (x),

then, let

∆(f(x)) =
∑

x−mh
(1)
i (x)⊗ x−mh(2)

i (x). (4.32)

This makes the ring SInt(Z{x}) into a Z-coalgebra. Actually, the ring SInt(Z{x}) is
Z-subbialgebra of Q[x]. We have,

Int(Z{x}) ⊆ SInt(Z{x}) ⊂ Q[x]. (4.33)

In the same way as in Int(Z{x}), we can give a characterization of all binomial ideals
in SInt(Z{x}) by usual ideals in Q[x].

Theorem 4.5.18. If I is a binomial ideal of SInt(Z{x}), then I = J ∩SInt(Z{x}), for
the ideal J = I ⊗Q in Q[x].

Proof. The proof is analogous to the proof of Theorem 3.6.9.

Now we can state the main result of this subsection, which says that SInt(Z{x}) is a
binomially principal ring.

Theorem 4.5.19. The ring SInt(Z{x}) of stably integer-valued polynomials is a bino-
mially principal ring.

Proof. First by Theorem 4.5.18, we can write every binomial ideal I in SInt(Z{x}) in
the form I = J ∩ SInt(Z{x}), where J is an ideal in Q[x]. Then the rest of the proof
is analogous to the proof of Theorem 3.6.13.

Let SInt(ZX) be the set of stably integer-valued polynomials (4.24) over a set X
of variables. It is a subring of Q[X] and is called the ring of stably integer-valued
polynomials on the set X of variables.

In other words, we can express SInt(ZX) by

SInt(ZX) = SLInt(ZX) ∩Q[X]. (4.34)

Theorem 4.5.20. The ring SInt(ZX) is a binomial ring.
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Proof. The proof is clear by Theorem 4.5.6.

By the same argument as in Theorem 4.5.18, we can write all binomial ideals I in
SInt(ZX) by the form

I = J ∩ SInt(ZX), (4.35)

for the ideal J = I ⊗Q in Q[X].

Theorem 4.5.21. The ring SInt(Z{x1,x2...xi}) on finitely many variables x1, x2, . . . xi
is a binomially Noetherian ring.

Proof. First by (4.35), we can write every binomial ideal I in SInt(Z{x}) in the form
I = J ∩ SInt(Z{x1,x2...,xi}), where J is an ideal in Q[X]. Then the rest of the proof is
analogous to the proof of Theorem 3.7.7.

Definition 4.5.22. Let SInt(KX ,Z) be the set of stably integer-valued polynomials
over a subset K ⊆ Z on a set X of variables in Q[X], it is a subring of Q[X] and is
called the ring of stably integer-valued polynomials over the subset K, on the set X of
variables.

In particular, we have

SInt(K{x},Z) = {f(x) ∈ Q[x] : there is some m ≥ 0 such that kmf(k) ∈ Z for all k ∈ K}.

This is called the ring of stably integer-valued polynomials on one variable x over the
subset K.

In other words, we can express the ring SInt(KX ,Z) by

SInt(KX ,Z) = SLInt(KX ,Z) ∩Q[X]. (4.36)

Note that the ring SInt(ZX) is stably integer-valued polynomial over Z, that is

SInt(ZX) = SInt(ZX ,Z). (4.37)

We have
Z[X] ⊂ SInt(ZX) ⊆ SInt(KX ,Z) ⊆ Q[X]. (4.38)

Theorem 4.5.23. For K ⊆ Z the ring SInt(KX ,Z) is a binomial ring.

Proof. The proof is clear by (4.36).

For K ⊆ Z , We have inclusions of binomial rings

Int(KX ,Z) ⊆ SInt(KX ,Z) ⊂ Q[X]. (4.39)

Also, we can give a characterization of all binomial ideals in SInt(KX ,Z) by usual
ideals in Q[X]. Let I be a binomial ideal in SInt(KX ,Z). Then

I = J ∩ SInt(KX ,Z), (4.40)

for the ideal J = I ⊗Q in Q[X].
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Theorem 4.5.24. For K ⊆ Z, the ring SInt(K{x},Z) is a binomially principal ring.

Proof. First by (4.40), we can write every binomial ideal I in SInt(K{x},Z) in the
form I = J ∩ SInt(K{x},Z), where J is an ideal in Q[x]. Then the rest of the proof is
analogous to the proof of Theorem 3.6.13.

Theorem 4.5.25. For K ⊆ Z, the ring SInt(K{x1,x2,...,xi},Z) on finitely many vari-
ables x1, x2, . . . , xi is a binomially Noetherian ring.

Proof. First by (4.40), we can write every binomial ideal I in SInt(K{x1,x2,...,xi},Z) in
the form I = J ∩ SInt(K{x1,x2,...,xi},Z), where J is an ideal in Q[x1, x2, . . . , xi]. Then
the rest of the proof is analogous to the proof of Theorem 3.7.7.

§ 4.6 Some topologically derived binomial rings

Knutson in [38] proves that a binomial ring R with a particular type of generating
subset leads to an isomorphism R ∼= Z . One application of this result is to topological
K -theory. Actually, it means that if K0(X) for a good space X is a binomial ring
then it is isomorphic to the ring of integers Z. In contrast the purpose of this section
is to use K0(X) to give some non-trivial examples of binomial rings which come from
topology. The main results give new descriptions of these examples (Theorem 4.6.4
and Theorem 4.6.9).

Theorem 4.6.1. [Knutson] [57, p. 126] Let R be a binomial ring with a subset S
which satisfies the following.

1. S generates R as an abelian group.

2. Each s in S has finite dimension (where λt(s) is a polynomial whose degree is
called the dimension of s Definition 2.5.9).

3. λn(s) ∈ S for each s in S and n ≥ 1.

4. If s is one dimension it is insertable in R.

Then R ∼= Z.

We recall from Theorem 2.7.1 that a binomial ring is a special type of λ-ring whose
Adams operations all are identity.

Also, K0(X) for a good space X is a λ-ring with λ operations defined by the exterior
powers on vector bundles B over X, λn(B) = Λn(B) (See Example 2.5.10(3)).

Here is a consequence of Knutson’s Theorem 4.6.1 in K0(X).

Corollary 4.6.2. suppose K0(X) for a good space X is a binomial ring. Then

K0(X) ∼= Z.
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In contrast, next we use K0(−) for good spaces and spectra to construct some non-
trivial examples of binomial rings derived from topology. We will start with a well-
known one.

Before giving the construction of the first example of a binomial ring arising in topology,
the following preliminary information is needed.

First recall from Theorem 2.4.7 that the ring Int(Z{x}) is a binomial ring. We know

from Theorem 2.4.6 that the polynomials

(
x

n

)
, for n ≥ 0, form a Z-module basis of

Int(Z{x}).

On the other hand it is well known that K0(CP∞) = Z[[T ]] for T = L− 1̃ where L is
the universal line bundle and, 1̃ is the trivial line bundle. The K -cohomology of CP∞
is Z-linear dual to the K -homology see [17], that is we have an isomorphism,

K0(CP∞) ∼= Hom(K0(CP∞),Z), (4.41)

As a free abelian group K0(CP∞) has a basis {αn} such that {Tn} is dual to {αn} .

Now this brings us to the right position to give the first example. Clarke in [17] defines
a ring isomorphism using the above basis as follows.

Theorem 4.6.3. [17] From the map

ϕ : Int(Z{x})→ K0(CP∞), (4.42)

determined by (
x

n

)
7→ αn

on the basis elements, we obtain a ring isomorphism,

Int(Z{x}) ∼= K0(CP∞). (4.43)

Proof. It is clear ϕ is additive by extending it linearly.

Thus, it remains to show that ϕ preserves multiplication. First we know from Propo-

sition 3.4.10 that

(
x

i

)(
x

j

)
in Int(Z{x}) is given in terms of the basis by

(
x

i

)(
x

j

)
=
∑
n≥0

(
n

j

)(
j

n− i

)(
x

n

)
.

On the other hand, K0(CP∞) = Z[[T ]], with the coproduct determined by

∆T = T ⊗ 1 + 1⊗ T + T ⊗ T. (4.44)

Hence,

∆(Tn) = (T ⊗ 1 + 1⊗ T + T ⊗ T )n,

= ((T + 1)⊗ (T + 1)− 1⊗ 1)n.
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Then by applying the binomial theorem we get

∆(Tn) =
n∑
t=0

t∑
i=0

t∑
j=0

(−1)n+t

(
n

t

)(
t

i

)(
t

j

)
T i ⊗ T j . (4.45)

As T i is dual to αi, we obtain

αiαj =
∑
n≥0

[ ∑
t≥i,j

(−1)n+t

(
n

t

)(
t

i

)(
t

j

)]
αn. (4.46)

From the identity ∑
t≥i,j

(−1)n+t

(
n

t

)(
t

i

)(
t

j

)
=

(
n

j

)(
j

n− i

)
,

given in [47, p. 15] we obtain,

αiαj =
∑
n≥0

(
n

j

)(
j

n− i

)
αn. (4.47)

This implies that ϕ is multiplicative.

Next recall from Theorem 3.3.1 that the quotient ring R/I for a binomial ideal I of a
binomial ring R is also a binomial ring and from Definition 3.4.5 ((x−y)) is a principal
binomial ideal in Int(Z{x,y}) generated by x− y. So now we can state the main result
of this section, which gives a new description of the binomial ring K0(CP∞).

Theorem 4.6.4. Let I = ((x− y)) in the ring Int(Z{x,y}). Then we have an isomor-
phism of binomial rings,

Int(Z{x,y})
((x− y))

∼= Int(Z{t}). (4.48)

Proof. First consider the map

θ : Int(Z{x,y}) −→ Int(Z{t})

given by
f(x, y) 7−→ f(t, t),

for f(x, y) ∈ Int(Z{x,y}). It is easy to see that θ is an onto ring homomorphism. With
reference to the first isomorphism theorem we need to show that

Ker(θ) = ((x− y)).

First pick an element h ∈ ((x− y)). Then by Proposition 3.4.6 rewrite ((x− y)) using,

((x− y)) =

({(
x− y
i

)
, i ≥ 1

})
. (4.49)
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So,

h =

finite∑
i≥1

(
x− y
i

)
gi, for gi ∈ Int(Z{x,y}).

Therefore

θ(h) =

finite∑
i≥1

(
t− t
i

)
gi = 0.

This implies that h ∈ Ker(θ).

Conversely suppose that f(x, y) ∈ Ker(θ). Notice that can rewrite it as

f(x, y) = f1(x) mod (x− y)Q[x, y]

where f1(x) is a polynomial in x. This is because

xnym =

m∑
i−1

(y − x)xn−1+iym−i + xn+m.

Since θ(f(x, y)) = 0, we see that f1(x) is zero. Therefore

f(x, y) = 0 mod (x− y)Q[x, y].

Hence,

f(x, y) ∈ (x− y)Q[x, y] ∩ Int(Z{x,y}).

By Remark 3.6.14, this implies that f(x, y) ∈ ((x− y)).

Corollary 4.6.5. There is an isomorphism of binomial rings,

K0(CP∞) ∼=
Int(Z{x,y})
((x− y))

.

In section 4.2, the spectrum K was described via the spaces U and BU. This spec-
trum yields K -cohomology operations, which are defined by K∗(K) = [K,K] and
K -homology cooperations defined by K∗(K) = π∗(K ∧K). By [52, 16.33] K∗(BU) is
torsion free. So by passing to the limit, K∗(K) is also torsion free. Therefore the map,

ϕ : K∗(K)→ K∗(K)⊗Q, (4.50)

is injective. On the other hand, it is easy to verify that both Q and π∗(K) ⊗ Q are
flat Z-modules. This implies that the functors π∗(K ∧−)⊗Q and π∗(−)⊗π∗(K)⊗Q
are homology theories. Also by [52, 17.19], the map ∧ ⊗ 1 induces an isomorphism

K∗(K)⊗Q ∼= π∗(K)⊗ π∗(K)⊗Q. (4.51)
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We know from (4.10) in Section 4.2 that the coefficient ring π∗(K) of K is isomorphic
to the Laurent polynomial ring Z[u, u−1]. As a result the following isomorphism of
rings is obtained for K,

K∗(K)⊗Q ∼= Q[u, v, u−1, v−1], (4.52)

for u, v ∈ K2(K). Now the description of K∗(K) can be given in terms of its image in
Q[u, v, u−1, v−1] .

Theorem 4.6.6. [4] The map

ϕ : K∗(K)→ Q[u, v, u−1, v−1]

induces an isomorphism,

K∗(K) ∼=
{
g(u, v) ∈ Q[u, v, u−1, v−1] : g(ax, bx) ∈ Z

[
1

ab
, x, x−1

]
for all a, b ∈ Z \ {0}

}
.

(4.53)

We are now in the right position to give the second example of a binomial ring coming
from topology. Let w be the degree zero element in K0(K) given by w = u−1v . As a
result of Theorem 4.6.6, we obtain the following.

Corollary 4.6.7. K0(K) = {g(w) ∈ Q[w,w−1] : g(a) ∈ Z[ 1
a ] for all a ∈ Z \ {0}}.

On the other hand, by Proposition 4.5.3 the ring SLInt(Z{x}) satisfies the integrality
condition.

Corollary 4.6.8. There is an isomorphism of binomial rings,

SLInt(Z{x}) ∼= K0(K).

Here is our main result of this section, which gives another description of the binomial
ring SLInt(Z{x})

Theorem 4.6.9. Let Int(Z{x,y}) be the ring of integer-valued polynomials over two x, y
variables and let Int((Z{x})[x−1] be the localization of the ring Int(Z{x}) with respect to
the multiplicatively closed set {xn : n ∈ N}. Then we have an isomorphism of binomials
rings,

Int(Z{x,y})
((xy − 1))

∼= Int(Z{x})[x−1]. (4.54)

Proof. Define the map

ρ : Int(Z{x,y}) −→ Int(Z{x})[x−1]

given by
f(x, y)→ f(x, x−1),
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for f(x, y) ∈ Int(Z{x,y}). It is easy to see that ρ is a ring homomorphism. Consider a
general element x−nf(x) in Int(Z{x})[x−1] , for n ∈ N and f(x) ∈ Int(Z{x}).

We see that
ρ(ynf(x)) = x−nf(x) and ynf(x) ∈ Int(Z{x,y}),

so ρ is an onto homomorphism. To finish the proof, we need to show that

Ker(ρ) = ((xy − 1)).

As in Theorem 4.6.4 it is clear that ((xy − 1)) ⊆ Ker(ρ). Conversely consider f(x, y)
in Ker(ρ). We claim that f(x, y) = f1(x) + f2(y) mod (xy − 1)Q[x, y].This can be
seen, using

xnym = ym−n +
n−1∑
i=0

(xy − 1)xiym−n+i,

for 0 < n ≤ m. Then, since ρ(f(x, y)) = 0, we see that f1(x) = f2(y) = 0. Therefore

f(x, y) = 0 mod (xy − 1)Q[x, y].

Hence
f(x, y) ∈ (xy − 1)Q[x, y] ∩ Int(Z{x,y}).

So by Remark 3.7.9, f(x, y) ∈ ((xy − 1)).

Corollary 4.6.10. There is an isomorphism of binomial rings.

K0(K) ∼=
Int(Z{x,y})
((xy − 1))

.

In order to give a third example, the following information is needed. First we begin
with the notion of a connective spectrum. A spectrum E is called a connective spectrum
if πn(E) = 0 for all n < 0. A connective spectrum e which has a map e −→ E for a
spectrum E such that it is universal amongst maps ē −→ E in which ē is connective,
is unique up to homotopy equivalence. This is called the connective cover of E .

We let k be the connective cover (connective K -theory spectrum) of K. The coefficient
ring π∗(k) of k is isomorphic to Z[t]. By applying the functors π∗(K ∧ −) ⊗ Q and
π∗(−)⊗ π∗(K)⊗Q to k as in (4.51) we obtain

π∗(k)⊗ π∗(K)⊗Q ∼= K∗(k)⊗Q,
= Q[u, u−1, v].

Proposition 4.6.11. For the connective K -theory spectrum k , we have

K0(k) = K0(K) ∩Q[x].

Proof. Apply Proposition 17.2 (iii) and Theorem 17.4 of [3] to k .

On the other hand, recall from Theorem 4.5.13 that the ring SInt(Z{x}) is a binomial
ring.
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Corollary 4.6.12. There is an isomorphism of binomial rings

SInt(Z{x}) ∼= K0(k).

From Theorem 4.6.9 we can give a new description of K0(k).

Corollary 4.6.13. There is an isomorphism of binomial rings

K0(k) ∼=
Int(Z{x,y})
((xy − 1))

∩Q[x].

Finally. we know from Theorem 2.9.5 that binomial rings are preserved by localization.

From Proposition 2.9.8 and Theorem 4.6.8, we have the following.

Example 4.6.14. There is an isomorphism of binomial rings,

Int(Z{x}(p) ) ∼= (K(p))0(CP∞).

From (4.22) and Corollary 4.6.8, we have the following.

Example 4.6.15. There is an isomorphism of binomial rings,

SLInt(Z{x}(p) ) ∼= (K(p))0(K(p)).

Also from (4.31) and Corollary 4.6.12, we have the following.

Example 4.6.16. There is an isomorphism of binomial rings,

SInt(Z{x}(p) ) ∼= (K(p))0(k(p)).

For more examples in this direction see [50].



Chapter 5

Cotriple Cohomology

§ 5.1 Introduction

Huber [35] realised that a cotriple C = (C, ε, δ) in a category A defined using the
iterates of C, with face operations Cn+1(A) → Cn(A) and degeneracy operations
Cn(A)→ Cn+1(A), constructed by using ε and δ, for A ∈ A yields a simplicial object
in A.

Barr and Beck used a cotriple from an adjoint pair of functors, to introduce a cohomol-
ogy theory, by using the Huber simplicial structure. This is called cotriple cohomology
theory [10]. Furthermore, Beck in his PhD dissertation [11], gave more details of the
cotriple cohomology theory and interpreted the 0-th and first cohomology groups. The
main tools of cotriple cohomology theory and some necessary background on it are
given in §5.2.

André in [6] described a cohomology theory arising from a specific complex and at the
same time Quillen in [46] described a cohomology theory with regards to abelianization.
Both theories turn out to compute the same cohomology theory on the category of
commutative algebras. This is called the André-Quillen cohomology theory. It is an
example of a cotriple cohomology theory in the category of commutative algebras, where
the cotriple comes from the composite of a free functor and a forgetful functor. It will
be discussed in §5.3.

Robinson in his thesis [48], defines the cohomology of λ-rings with coefficients in a
contravariant functor Derλ(−,M). This is the set of all λ-derivations with values in
a λ-module M. In §5.4, a summary of this theory is presented. In the next chapter,
we will apply Robinson’s concepts to binomial rings to define cohomology of binomial
rings as another example of cotriple cohomology.

§ 5.2 Cotriple cohomology

A cotriple yields an augmented simplicial object which can be used to construct a
cochain complex and hence a resolution in the sense of homological algebra. The
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cotriple cohomology was originally defined by Barr and Beck, where they used a cotriple
to construct a cotriple resolution by using simplicial methods. André and Quillen define
a cohomology theory in the category of commutative algebras as an example of cotriple
cohomology theory. Before defining cotriple cohomology, in this section, we present all
necessary background material.

5.2.1 Simplicial objects

Definition 5.2.1. A simplicial object in a category A is given by a system X∗ =
(Xn, d

i
n, t

i
n) consisting of a sequence of objects X0, X1 · · · , Xn, · · · with two families of

arrows of A

din : Xn → Xn−1, for 0 ≤ i ≤ n and 1 ≤ n <∞, (5.1)

tin : Xn → Xn+1, for 0 ≤ i ≤ n and 1 ≤ n <∞, (5.2)

where din is called a face operation and tin is called a degeneracy operation. They
satisfy the following relations (called simplicial identities).

din ◦ d
j
n+1 = dj−1

n ◦ din+1 for 0 ≤ i < j ≤ n+ 1,

tjn ◦ tin−1 = tin ◦ t
j−1
n−1 for 0 ≤ i < j ≤ n.

din+1 ◦ tjn =


tj−1
n−1 ◦ din, for 0 ≤ i < j ≤ n,

1, for 0 ≤ i = j ≤ n or 0 ≤ i− 1 = j ≤ n,
tjn−1 ◦ di−1

n , for 0 ≤ j < i− 1 ≤ n.

We write X∗ for the simplicial object as above.

There is an equivalent description of a simplicial object X∗ in a category A . Let ∆
be the category whose objects are finite totally ordered sets and whose morphisms are
the maps preserving order. Then giving a simplicial object X∗ in A is equivalent to
giving covariant functor

X∗ : ∆op −→ A.

We mean by an augmented simplicial object in a category A a simplicial object X∗ in
A together with an additional object X−1 and a morphism ε : X0 → X−1 such that
ε ◦ d0

1 = ε ◦ d1
1 . We express it by the diagram

. . .

→
...
→
Xn+1

→
...
→
. . .
−→−→−→ X1 ⇒X0

ε−→X−1.
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Suppose that X∗ is a simplicial object in an additive category C . Then we have the
structure of a complex

. . .
d−→ Xn+1

d−→ Xn
d−→ Xn−1

d−→ · · · d−→ X0 → 0, (5.3)

with differential d =
∑n

i=0(−1)idin : Xn −→ Xn−1 .

Proposition 5.2.2. [8, Proposition 4.1]We have d ◦ d = 0.

So the complex in (5.3) is a chain complex associated to X∗ , and we write it as C(X∗).

All information on simplicial objects comes from [8, Chapter 3] and [53, Chapter 8].
For more details about simplicial methods we refer to [42].

5.2.2 Triples and Cotriples

Any endofunctor which is defined on a category A has composites. In particular T 2 =
T ◦ T : A → A is also an endofunctor. So we can consider a natural transformation
β : T 2 → T . On the other hand every category has an identity functor IA : A → A .
Therefore we can consider a natural transformation η : IA → T . From the following
data in any category we can define a triple (it is an alternative name monad). More
detail on this material can be found in [53] and [11].

Definition 5.2.3. Let A be a category, a triple (monad) T = (T, η, β) on A consists
of the following.

1. An endofunctor T : A→ A.

2. A unit natural transformation η : IdA → T.

3. A multiplication natural transformation β : T 2 → T.

These are such that the following diagrams

T 3 T 2

T 2 T

Tβ

βT

β

β

T T 2 T

T

ηT

IdT IdT

Tη

β
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are commutative. These are called the associativity law, left and right unit respectively.

The notion of a cotriple on a category A is defined dually. That is, a cotriple (comonad)
in A is a triple T, on the category Aop.

Definition 5.2.4. A cotriple (comonad) C = (C, ε, δ) on the category A consists of
the following.

1. An endofunctor C : A→ A.

2. A counit natural transformation ε : C → IdA.

3. A natural transformation δ : C → C2.

These are such that the following diagrams

C C2

C2 C3

δ

δ

δC

Cδ

C C2 C

C

Cε

IdC IdC

εC

δ

are commutative.

Proposition 5.2.5. Let F : A → B be a left adjoint functor to the functor G : B →
A between two categories A and B. Let η : IdA → GF be the unit morphism of
the adjunction and ε : FG → IdB be the counit morphism of the adjunction. Then
(FG, ε, FηG) is a cotriple on A.

Proof. First to show the associativity law, we have

FηG ◦ FηGFG = F (ηG ◦ ηGFG) = F (ηG ◦GFηG) = FηG ◦ FGFηG.

In the language of diagrams this means that the diagram
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FG (FG)2

(FG)2 (FG)3

FηG

FηG

FηGFG

FGFηG

is commutative. Second to show the left and right unit laws, we have

FηG ◦ FGε = F (ηG ◦Gε) = F (Id) = Id

and

FηG ◦ εFG = FηG ◦ FGε = F (ηG ◦Gε) = F (Id) = Id.

That is, the diagram,

FG (FG)2 FG

FG

FGε

IdFG IdFG

ε FG

FηG

is commutative.

5.2.3 Cotriple cohomology

Let C = (C, ε, δ) be a cotriple on the category A. For an object A in A we have the
following augmented simplicial object in A.

. . .

→
...
→
Cm+1(A)

→
...
→
. . .
−→−→−→ C2(A)⇒C(A)

ε−→A (5.4)

We denote it by C∗(A) −→ A, with the face and degeneracy operations defined by

din = CiεCn−i : Cn+1(A)→ Cn(A) for 0 ≤ i ≤ n, (5.5)

tin = CiδCn−i : Cn+1(A)→ Cn+2(A) for 0 ≤ i ≤ n. (5.6)

The simplicial identities hold for din and tin see [22, p.187], with augmentation

ε : C(A) −→ A,
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where C∗(A) is the simplicial object with

(C∗(A))n = C ◦ C · · · ◦ C(A) = Cn+1(A),

with C0(A) = A and for any n ≥ −1.

We call C∗(A) the cotriple resolution of A in A .

Definition 5.2.6. Let D : A→ C be a contravariant functor from a category A to an
abelian category C . Then by applying D to C∗(A), we get an augmented cosimplicial
object DA −→ D(C∗(A)) in C . Then we obtain the cotriple cohomology groups of the
object A with coefficients in D. We write this theory as Hn

C(A,D), in which

Hn
C(A,D) =: Hn(D(C∗(A))).

In other words, Hn
C(A,D) is the nth cohomology group of the object A with coefficients

in D with respect to the cotriple C. This is the cohomology associated to the cochain
complex

0→ D(C(A))
σ1−→ D(C2(A))

σ2−→ D(C3(A))
σ3−→ · · ·

where σn =
∑n

i=0(−1)idinD.

Proposition 5.2.7. [10] Suppose D : A→ C transforms

C2(A)⇒C(A)
ε−→A (5.7)

into an equalizer diagram in C and let A ∈ A, then

H0
C(A,D) ∼= D(A).

Proposition 5.2.8. Let X ∈ C and let A = C(X). Then

Hn
C(A,D) ∼= 0.

for all n ≥ 1.

Proof. There exists a contracting homotopy map ςn : Cn+2 −→ Cn+3, for n ≥ −1
given by ςn = Cn+1δ. Since ες−1 = Id , εn+1ςn = Id , ε0ς0 = ς−1ε and εiςn = ςn−1εi,
this implies that Hn

C(A,D) ∼= 0.

Now we will consider the case of cotriple cohomology for the category of commutative
rings CRing. By Proposition 5.2.5, we can consider a cotriple C = (FG, ε, FηG) coming
from the composite of a pair of adjoint functors.

Set
F−→ CRing

G−→ Set,

where F is free functor and G is forgetful functor as in Example 2.8.6. Our coefficients
will we given be a derivation functor.

The product rule for differentiation,

d(fg)

dx
= f

dg

dx
+ g

df

dx
,

leads to the idea of a derivation of a ring.
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Definition 5.2.9. A derivation of a commutative ring R is an additive homomorphism
d : R −→ R satisfying the condition

d(xy) = xd(y) + d(x)y, (5.8)

for all x, y ∈ R .

For an R-module M, an additive homomorphism d : R→M that satisfies the deriva-
tion condition (5.8) is called a derivation of R with values in M . As sets we denote
by Der(R) the set of all derivations of R and by Der(R,M) the set of all derivations
of R with values in M.

Note that the maps (d1 + d2) and (ad) given by

(d1 + d2)(x) = d1(x) + d2(x)

and

(ad)(x) = ad(x),

for d1, d2 and d be derivations of R and x, a ∈ R, are also derivations of R . So Der(R)
is an R-module. Similarly Der(R,M), is also an R-module.

Proposition 5.2.10. Let d : R −→ M be a derivation of a commutative ring R with
unit with values in an R-module M, then

1. d(1) = 0,

2. d(rn) = nrn−1d(r) for r ∈ R and n ≥ 1.

Proof. The first property follows from (5.8) by taking x = y = 1. We are going to
prove property 2 by induction on n. For n = 1 it is clear. Assume the statement is
true for n. For n+ 1 we have

d(rn+1) = rd(rn) + rnd(r)

= rnrn−1d(r) + rnd(r)

= (n+ 1)rnd(r).

For commutative rings R and S, let M be a R-module and let f : S −→ R be a
ring-homomorphism. Then it is clear by the action given by (s,m) 7−→ f(s)m, M is
also an S -module. Thus we define the category of commutative rings over R, whose
objects are ring-homomorphisms fi : Si −→ R , from a commutative ring Si and whose
morphisms are given by the commutative diagrams of ring-homomorphisms,
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S1 R

RS2

f1

g IdR

f2

We denote this category by CRing/R .

Now for a commutative ring R and an R-module M the derivation functor Der(−,M)
give us a contravariant functor

Der(−,M) : CRing/R −→ Ab.

There is a canonical homomorphism from Cn(R) to R given by composite of maps in
(5.4). Therefore M becomes a Cn(R)-module. This leads to the following.

Definition 5.2.11. Let R be a commutative ring and let M be an R-module. Then
we define the cohomology of R with coefficients in M to be the cotriple cohomology of
R with coefficients in Der(−,M), that is

Hn(R,M) = Hn
C(R,M) = Hn

C(R,Der(−,M)).

Proposition 5.2.12. Let M be an R-module. Then

H0
C(R,M) ∼= Der(R,M).

Proposition 5.2.13. Let R be a free commutative ring and let M be an R-module,
then

Hn
C(R,M) ∼= 0.

for all n ≥ 1.

Proof. The proof follow by applying Proposition 5.2.8 with C = FG.

Dually if U : A → C is a functor from a category A to an abelian category C and
T = (T, η, β) is a triple in A, in the same way as above we obtain the triple cohomology
groups of an object A with coefficients in U. We write this theory as Hn

T(A,U), for
n ≥ 0, where

Hn
T(A,U) = Hn(U(T∗(A))).

In other words, Hn
T(A,U) is the nth cohomology group of the object A with coefficients

in U with respect to the triple T. This is the cohomology associated to the cochain
complex

0→ U(T (A))
σ1−→ U(T 2(A))

σ2−→ U(T 3(A))
σ3−→ · · ·

where σn =
∑

(−1)iηiU.

For more details about cotriple cohomology we refer to [9] and [21].
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§ 5.3 André-Quillen cohomology

There is a cohomology theory for commutative algebras, which was independently in-
troduced by André and Quillen. André describes the cohomology theory arising from a
specific complex and Quillen describes the cohomology theory with regard to abelian-
ization. Both theories compute the same cohomology. This theory is now called André-
Quillen cohomology theory of commutative algebras over a commutative ring K . In
this section we will present this theory.

For a fixed commutative ring K, we consider the category Commalg whose objects
are commutative K -algebras and whose morphisms are K -linear algebra maps f :
R −→ S, between two commutative K -algebras R and S . The free functor FK that
sends a set X to the polynomial algebra K[X], is left adjoint to the forgetful functor
GK : Commalg −→ Set [46]. Then by Proposition 5.2.5 from FKGK we obtain a
cotriple CK on Commalg. In an obvious way as a result we obtain a cotriple resolution
(C∗)K(R) for each object R ∈ Commalg.

Definition 5.3.1. Let R be an K -algebra and let M be an R-module, we mean
by K -derivation a K -module map dK : R −→ M, such that satisfying the following
condition

dK(rs) = r(ds) + (dr)s,

for all r, s ∈ R .

Then in the same way of commutative ring all K -derivations DerK(R,M), with value
in M is an R-module.

For K -algebras R and S, let M be a R-module and let f : S −→ R be a K -
homomorphism. Then by the same way of commutative ring it is clear M is also an
S -module. Thus we define the category of K -algebra over R whose objects are K -
homomorphisms fi : Si −→ R , from a K -algebra Si and whose morphisms given by
the following commutative diagrams of K -algebras

S1 R

RS2

f1

g IdR

f2

for a K -homomorphism g. We denote this category by Commalg/R .

Now for a K -algebra R and an R-module M, we define the contravariant functor
DerK(−,M) : Commalg/R −→ Ab.

There is a canonical map from (Cn)K(R) to R. given by εd0
2 . . . d

0
n−2d

0
n−1 (or equiv-

alently any sequence of maps in (5.4), M becomes a module over (Cn)K(R) for all
n ≥ 1.
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Definition 5.3.2. Let R be a K -algebra and let M be a R-module. By applying the
functor DerK(−,M) to the cotriple resolution (C∗)K(R) on Commalg, we define the
André-Quillen cohomology groups of R with coefficients in DerK(−,M), we write this
theory as Hn

AQ(R/K,M) in which

Hn
AQ(R/K,M) = Hn

CK (R/K,M) = Hn
CK (R,DerK(−,M)). (5.9)

In other words, Hn
AQ(R/K,M) is the nth cotriple cohomology group of R with coeffi-

cients in DerK(−,M) with respect the to cotriple CK on Commalg .

Thus André-Quillen cohomology on Commalg is a particular example of cotriple coho-
mology.

Proposition 5.3.3. Let R be an K -algebra and let M be an R-module. Then

H0
AQ(R,M) ∼= DerK(R,M).

Proposition 5.3.4. Let R be a free commutative K -algebra and let M be an R-
module. Then

Hn
AQ(R,M) ∼= 0.

for all n ≥ 1.

Proof. The proof follow from Proposition 5.2.8

§ 5.4 Cohomology of λ-rings

Robinson in [48], gives a cohomology theory for λ-rings, with values in the contravariant
functor Derλ(−,M) which is the set of all λ-derivations with values in a λ-module M
over the λ-ring. This is another example of cotriple cohomology. In this section we
will summarize Robinson Construction of cohomology of λ-rings.

First we start with Robinson’s notion of a λ-module over a λ-ring, which will supply
us with the coefficients of cohomology of λ-rings.

Definition 5.4.1. Let R be a λ-ring. An R-module M is called a λ-module over R,
if there is a sequence of abelian group homomorphisms ΩM

n : M −→M, satisfying the
following conditions.

1. ΩM
1 (a) = a,

2. ΩM
n (ra) = ψn(r)ΩM

n (a),

3. ΩM
nm(a) = (−1)(n+1)(m+1)ΩM

n ΩM
m (a),

for all a ∈M, r ∈ R and n,m ≥ 1.
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Definition 5.4.2. Let (M,ΩM
n ) and (N,ΩN

n ) be two λ-modules over a λ-ring R . An
R-homomorphism f : M −→ N is called a λ-module homomorphism if it preserves
the λ-module structure. That is, the following diagram

M N

NM

f

ΩM
n ΩN

n

f

commutes for n ≥ 1. We denote this category by R-Modλ the category of λ-modules
over the λ-ring R whose objects are λ-modules over the λ-ring R and whose mor-
phisms are λ-module homomorphisms.

Proposition 5.4.3. Every λ-ring R whose Adams operations all are the identity map
on R is a λ-module over itself with module structure given by

ΩM
n = (−1)(n+1)IdM ,

for n ≥ 1.

Example 5.4.4. The ring of integers Z is a λ-module over itself with module structure
given by

ΩZ
n = (−1)(n+1)IdZ,

for n ≥ 1.

Definition 5.4.5. Let R be a λ-ring and M a λ-module over R. Then a derivation of
R with values in M, d : R −→ M, is called a λ-derivation if it satisfies the following
condition,

d(λn(r)) =
n−1∑
i=0

ΩM
n−i(d(r))λi(r), (5.10)

for all r ∈ R and n ≥ 1.

We know from Proposition 5.2.5, that an adjoint pair of functors leads to a cotriple.

We give the construction of the free λ-ring on one generator as a step towards con-
structing a cotriple resolution on Ringλ . Let Λy be a free λ-ring in one generator y .
Then by Definition 2.5.1, Λy should contain all λn(y) for n ≥ 1. This implies that Λy
contains all polynomials in y, λ(y), λ2(y), . . . , λn(y), . . . with integer coefficients.

Proposition 5.4.6. The free λ-ring on one generator y is

Λy = Z[y1, y2, · · · ],

where λn(y1) = yn for all n ≥ 1.

Proof. For a proof see [57, Proposition 1.38].
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Example 5.4.7. Let M be a λ-module over Λx, then we have

Derλ(Λx,M) ∼= M,

for any λ-derivation d ∈ Derλ(Λx,M), determined by

d(x1) = m,

d(xi) =
i∑

j=1

ΩM
j xi−j ,

for m ∈M and x0 = 1.

In the same way we can construct the free λ-ring on a set of generators. Let y1, y2, . . . , yn ∈
Λy1,y2,...,yn such that for any λ-ring R there exists a λ-homomorphism

f : Λy1,y2,...,yn −→ R

determined by
f(yi) = ri,

for 1 ≤ i ≤ n and ri ∈ R . This implies that the ring Λy1,y2,...,yn is the polynomial ring
over Z generated by the λn(yi). So

Λy1,y2,...,yn = Λy1 ⊗ Λy2 ⊗ · · · ⊗ Λyn .

On can also construct the free Λ-ring on an arbitrary set.

So we get

Set
Fλ−→ Ringλ

Gλ−−→ Set,

where Fλ is the free functor taking a set X to the free λ-ring generated by this set
and Gλ is the forgetful functor. As a result we obtain a cotriple Cλ on Ringλ. For
R ∈ Ringλ we have a cotriple resolution (C∗)λ(R) on Ringλ .

For λ-rings R and S, let M be a λ-module over R and let f : S −→ R be a λ-
homomorphism. Then it is clear M is also a λ-module over S . Thus we define the
category of λ-rings over R, whose objects are λ-homomorphisms fi : Si −→ R from a
λ-rings Si and whose morphisms are given by the following commutative diagrams of
λ-rings

S1 R

RS2

f1

g IdR

f2

for a λ-homomorphism g. We denote this category by Ringλ/R .

Let R be a λ-ring and let M be a λ-module over R . Then we define the contravariant
functor Derλ(−,M) : Ringλ/R −→ Ab
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Definition 5.4.8. Let R be a λ-ring and let M be a λ-module over R. By applying
the functor Derλ(−,M) to the cotriple resolution (C∗)λ(R) of R ∈ Ringλ, we define
the cohomology of λ-ring R with coefficients in M by

Hn
λ (R,M) = Hn

Cλ(R,M) = Hn
Cλ(R,Derλ(−,M)). (5.11)

In other words, Hn
λ (R,M) is the nth cotriple cohomology group of R with coefficients

in Derλ(−,M) with respect to the cotriple Cλ on Ringλ.

In the next chapter we will introduce cohomology of binomial rings as another example
of cotriple cohomology.

Proposition 5.4.9. Let R be a λ-ring and let M be a λ-module over R. Then

H0
λ(R,M) ∼= Derλ(R,M).

Proof. For proof see [48, Theorem 7.6].

Proposition 5.4.10. Let R be a free λ ring and let M be a λ-module over R Then

Hn
λ (R,M) = 0,

for all n ≥ 1.

Proof. The proof follow from Proposition 5.2.8.



Chapter 6

Cohomology of binomial rings

We know from Chapter 5 that the concept of a cotriple provides a simplicial method
to define cohomology in a categorical setting. The most familiar example is a cotriple
that comes from a composite of adjoint functors such as a free functor and a forgetful
functor. This section will start with free binomial rings as a step to construct a cotriple
on BinRing .

§ 6.1 Free binomial rings

We know from Proposition 2.8.13 that the integer-valued polynomial ring over a set X
of variables,

Int(ZX) = {f ∈ Q[X] : f(ZX) ⊆ Z}
(Definition 2.4.1) is the free binomial ring on the set X.

Now by taking the composite of this pair of adjoint functors

C = FBinGBin : BinRing→ BinRing,

we obtain the cotriple CBin on BinRing . Thus for any binomial ring R ∈ BinRing
we can take the associated cotriple resolution (C∗)Bin(R), where each component of
(C∗)Bin(R) is a free binomial ring.

To define cohomology of binomial rings by using cotriple cohomology theory, we need
first to define the notion of a binomial module over a binomial ring R, in order have
coefficients for the theory.

§ 6.2 Binomial modules

When we define the cohomology of a usual ring its modules supply us with coefficients.
Quillen in [46], through the concept of modules and derivations on commutative alge-
bras, defined a cohomology theory on commutative algebras. To introduce the concept
of a binomial module over a binomial ring, we apply the construction of Robinson for
λ-modules over λ-rings in Definition 5.4.1 to a binomial ring R. We get the following.

128
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Definition 6.2.1. Let R be a binomial ring. An R-module M is called a binomial
module over R, if there is a sequence of R-homomorphisms, ϕMn : M →M, for n ≥ 1
satisfying the following.

1. ϕM1 (m) = m,

2. ϕMij (m) = (−1)(i+1)(j+1)ϕMi (ϕMj (m)),

for all m ∈M and i, j ≥ 1.

Proposition 6.2.2. Let R be a binomial ring. Then every R-module M is a binomial
module over R, with binomial module structure ϕMn : M →M, for n ≥ 1, given by

ϕMn = (−1)n+1IdM . (6.1)

Proof. 1. ϕM1 (m) = m.

2.

(−1)(i+1)(j+1)ϕMi (ϕMj (m)) = (−1)ij+i+j+1ϕMi ((−1)j+1m)

= (−1)ij+iϕMi (m)

= (−1)ij+i(−1)i+1m

= (−1)ij+1m

= ϕMij (m).

Here are some examples of binomial modules.

Example 6.2.3. Every binomial ring R is a binomial module over itself with binomial
module structure (6.1).

Example 6.2.4. For m ≥ 0, consider the set of stably integer-valued polynomials

SIntm(Z{x}) = {f(x) ∈ Q[x] : xmf(x) ∈ Int(Z{x})}.

Then for fixed m each set SIntm(Z{x}) is a binomial module over the binomial ring
Int(Z{x}) with binomial module structure (6.1).

Indeed we have a filtration on the binomial ring SInt(Z{x}) by binomial modules
SIntm(Z{x}) for m ≥ 0 given by

Int(Z{x}) = SInt0(Z{x}) ⊂ SInt1(Z{x}) ⊂ · · · ⊂ SIntn(Z{x}) ⊂ · · · ⊂ SInt(Z{x}).

Note that each SIntm(Z{x}) is not a ring for m ≥ 1 because it is not closed under
multiplication. But

SInt(Z{x}) =
⋃
m≥0

SIntm(Z{x}).

is a ring (see Definition 4.5.12).



130

Example 6.2.5. Note that ev : Int(Z{x} −→ Z is ring homomorphism. Then Z is a
binomial module over Int(Z{x}) with the action

Int(Z{x})× Z −→ Z,

given by

(f, n) 7−→ nf(0) (6.2)

for f ∈ Int(Z{x}) and n ∈ Z, and with the binomial module structure (6.1).

To give another binomial module structure, recall from Proposition 2.7.5 that Binomial
ring is a spacial; type of λ-ring. We start with Robinson [48] observation for λ-ring
that is in general a λ-ring R is not a λ-module over itself unless the multiplication in
R is trivial.

First we present the following result. We mean by square zero binomial ideal I that
the multiplication in I is trivial.

Lemma 6.2.6. Let R be a binomial ring and suppose that I is a square zero binomial
ideal in R , then I is a rational vector space.

Proof. Let a ∈ I , then by the definition of binomial ideal we have

(
a

n

)
∈ I for all

n ≥ 1. Then by our hypotheses we get,(
a

n

)
=

a(a− 1) · · · (a− (n− 1))

n!

= (−1)n−1 a

n
∈ I.

So, for each n ≥ 1 there exists bn ∈ I , for which bn = (−1)n−1a
n . So I is divisible. Since

I is also Z-torsion free, by [49, Lemma 19.2.1], I is a rational vector space.

Proposition 6.2.7. Let I be a square zero binomial ideal in a binomial ring R. Then
I is a binomial module over R with binomial module structure ϕIn : I → I given by,

ϕIn(a) = (−1)n+1 a

n
, (6.3)

for a ∈ I and n ≥ 1.

Proof. First it is clear I is an R-module. By Lemma 6.2.6, I is a rational vector space,
so ϕn is well-defined. Then we have the following.

1. ϕI1(a) = a.
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2.

(−1)(i+1)(j+1)ϕIi (ϕ
I
j (a)) = (−1)ij+i+j+1ϕIi ((−1)j+1a

j
)

= (−1)ij+iϕIi (
a

j
)

= (−1)ij+i(−1)i+1 a

ij

= (−1)ij+1 a

ij

= ϕIij(a).

Example 6.2.8. The ring of rationals Q is a binomial module over Int(Z{x}) with the
action given in Example 6.2.5 with binomial module structure (6.3).

Note that in Example 6.2.8, Q is also a binomial module over Int(Z{x}) with binomial
module structure (6.1). So we can have different binomial module structures on the
same underlying R-module.

Proposition 6.2.9. Let R be a binomial ring. Let r1 = 1 in R and for each prime
p, pick an element rp in R . If n = p1.p2. . . . .pm, a product of primes, let rn =
rp1rp2 . . . .rpm . Define

ϕRn : R −→ R,

by
ϕRn (r) = (−1)n+1rn.r.

Then R is a binomial module over itself with module structure given by ϕRn for n ≥ 1.

Proof. 1. ϕR1 (r) = r1.r = r.

2.

(−1)(i+1)(j+1)ϕRi (ϕRj (r)) = (−1)ij+i+j+1(−1)i+1riϕ
R
j (r)

= (−1)ij+i(−1)i+1ri.rj .r

= (−1)ij+1rij .r

= ϕRij(r).

Example 6.2.10. Similarly for any R-module M over a binomial ring R , M is a
binomial module over R with module structure

ϕMn : M →M

determined by
m 7→ (−1)n+1rn.m,

for a sequence of elements rn ∈ R as in Proposition 6.2.9.
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Definition 6.2.11. Let (M,ϕMn ) and (N,ϕNn ) be two binomial modules over a bino-
mial ring R . An R-homomorphism f : M → N is called a binomial R-homomorphism
if it preserves the binomial module structure, that is for n ≥ 1 and m ∈M we have

ϕNn (f(m)) = f(ϕMn (m)).

We denote by R−ModBin the category of binomial modules over R whose objects are
binomial modules over R and whose morphisms are binomial R-homomorphisms.

§ 6.3 Binomial derivations

In this section we will introduce the notion of a binomial derivation of a binomial ring
R with values in a binomial module M over R. For this purpose in the same way as
for binomial modules we apply the Robinson notion of λ-derivation of λ-rings with
values in a λ-modules as in Definition 5.4.5, to the special case of binomial modules
over binomial rings.

Notation 6.3.1. We will use the binomial symbols
(
x
i

)
and their derivatives frequently

in this section. For convenience in formulas now we introduce the notational device
bi(x) for

(
x
i

)
and dj(x) for d

dx

(
x
j

)
, for i ≥ 0 and j ≥ 1.

Definition 6.3.2. Let R be a binomial ring and let M be a binomial module over R,
with binomial module structure ϕn, n ≥ 1. Then a derivation of R with values in M,
d : R −→M, is called a binomial derivation if it satisfies the following condition,

d(bn(r)) =
n−1∑
i=0

ϕMn−i(d(r))bi(r), (6.4)

for all r ∈ R and n ≥ 1.

We denote by DerBin(R,M) the set of all binomial derivations of the binomial ring R
with values in the binomial module M over R .

For a binomial ring R and r ∈ R by (2.6) we have

bn(r) =
1

n!

( n∑
i=1

(−1)n−i
[
n

i

]
ri
)
.

Thus by Proposition 5.2.10(2) for a usual derivation d of R we obtain

d(bn(r)) =
1

n!

( n∑
i=1

(−1)n−i
[
n

i

]
iri−1d(r)

)
. (6.5)

On the other hand also by applying (2.6) to (6.4), we obtain,

d(bn(r)) =

n−1∑
i=0

ϕMn−i(d(r))

(
1

i!

( i∑
k=1

(−1)i−k
[
i

k

]
rk
)
. (6.6)
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We are going to explore how Robinson’s λ-derivations behave in the special case of
binomial rings and binomial modules.

First we give differentiation of polynomials as an example of a derivation. We will
explain what happens for derivations of integer-valued polynomial rings. We start by
exploring differentiation.

Definition 6.3.3. Let D := Im(d : Int(Z{x}) → Q[x]) where d is differentiation on
Int(Z{x}).

Example 6.3.4. This example is given to show that D is not an Int(Z{x})-module.
Consider the elements d2(x) = x− 1

2 ∈ D and x ∈ Int(Z{x}). Suppose

xd2(x) = x

(
x− 1

2

)
=

N∑
i=1

ai di(x) with ai ∈ Z.

Then for degree reasons ai = 0 for i > 3 and

a1d1(x) + a2d2(x) + a3d3(x) = x(x− 1

2
).

where d1(x) = 1 and d3(x) = (3x2−6x+2
6 ). So by the equality of the coefficients we get

a3 = 2 and then a2 = 3
2 /∈ Z . Therefore D is not an Int(Z{x})-module.

Next we are going to find the smallest Int(Z{x})-module M such that

D ⊂M ⊆ Q[x].

Definition 6.3.5. Let M be the smallest Int(Z{x})-module such that D ⊂M ⊆ Q[x] .

Then

M = {
finite∑
ij

aij bi(x) dj(x) : for aij ∈ Z}. (6.7)

The product rule for differentiation gives the following.

Lemma 6.3.6. For n ≥ 1, we have,

dn(x) =
1

n!

n−1∑
i=0

n∏
j=0,j 6=i

(x− j).

Next we need to present the following result.

Proposition 6.3.7. For all non-negative integers n, we have the equality

dn(x) =

n∑
j=1

(−1)j−1 1

j
bn−j(x). (6.8)
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Proof. We use induction on n . The statement is true for n = 1, since d1(x) = 1 =
b0(x). We assume it is true for n. Then

dn(x) =
n∑
j=1

(−1)j−1 1

j
bn−j(x).

To prove it for n+ 1, we start with

bn+1(x) =
bn(x).(x− n)

n+ 1
.

Then by taking the derivative of both sides we get,

dn+1(x) =
1

n+ 1
(dn(x)(x− n) + bn(x)).

So

dn+1(x) =
1

n+ 1

(( n∑
j=1

(−1)j−1 1

j
bn−j(x)

)
(x− n) + bn(x)

)

=
1

n+ 1

( n∑
j=1

(−1)j−1 1

j
bn−j(x)(x− n− j + j)

)
+ bn(x)


=

1

n+ 1

( n∑
j=1

(−1)j−1 1

j
(n− j + 1)bn+1−j(x) + (−1)jbn−j(x)

)
+ bn(x)


=

n∑
j=1

(−1)j−1 1

j
bn+1−j(x) +

1

n+ 1

n∑
j=1

(−1)jbn+1−j(x)

+
1

n+ 1

n+1∑
k=2

(−1)k−1bn+1−k(x) +
bn(x)

n+ 1

=
n∑
j=1

(−1)j−1 1

j
bn+1−j(x)− 1

n+ 1
bn(x) +

1

n+ 1
(−1)nb0(x) +

bn(x)

n+ 1

=

n+1∑
j=1

(−1)j−1 1

j
bn+1−j(x).

In the same way the following proposition provides an equality regarding derivative of
rising power of x see equation (2.3) in §2.4.

Proposition 6.3.8. For all n ≥ 1, we have equality of rational polynomials of degree
n− 1,

n−1∑
i=0

xi

(n− i)i!
=
d
(xn
n!

)
dx

. (6.9)
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Proof. This can be proved by induction on n, in the same way as Proposition 6.3.7,
using

xn

n!
=
xn−1(x+ n− 1)

n(n− 1)!
.

Corollary 6.3.9. For all n ≥ 1 and 0 ≤ j ≤ n− 1, we have

n−1∑
i=j

[
i
j

]
(n− i)i!

=
(j + 1)

n!

[
n

j + 1

]
. (6.10)

Proof. For fixed j, the statement follows by taking the coefficient of xj in (6.9), using
Proposition 2.3.19.

Recall from Definition 6.3.5 that we mean by M a smallest Int(Z{x})-module such that
D ⊂M ⊆ Q[x].

Theorem 6.3.10. For all non-negative integers n, we have 1
n ∈M.

Proof. We use induction on n ≥ 1. Certainly 1 = d1 = b0 ∈ M . For the induction
assumption we suppose 1

j ∈M for 1 ≤ j ≤ n− 1. Then by Definition 6.3.5,

1

j
=

j∑
l,k

ajlk bl(x) dk(x) for some ajlk ∈ Z.

We need to show that 1
n ∈M. From Proposition 6.3.7 we have the equality

dn(x) =
n∑
j=1

(−1)j−1 1

j
bn−j(x)

for all n ≥ 1. Then by rearranging we get

(−1)n

n
= dn(x) +

n−1∑
j=1

(−1)j
1

j
bn−j(x)

= dn(x) +

n−1∑
j=1

(−1)j
(∑

lk

ajlkbldk

)
bn−j(x).

Since by Theorem 2.4.6, the product of bk(x) and bl(x) is a Z-linear combination of
the bl(x), this implies that 1

n ∈M .

To illustrate Theorem 6.3.10 we present the special case for n = 3.
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Example 6.3.11. For n = 3 by Proposition 6.3.7 we get

d3(x) = b2(x)− 1

2
b1(x) +

1

3
b0(x).

This implies that
1

3
= d3(x)− b2(x) +

1

2
b1(x).

Again by Proposition 6.3.7 we have

1

2
= −d2(x) + b1(x).

By Theorem 2.4.6, we can write b1(x)b1(x) as a linear combination of basis elements

b1(x)b1(x) = 2b2(x) + b1(x).

Then
1

3
= d3(x)b0(x) + d1(x)b2(x)− d2(x)b1(x)− d0(x)b1(x).

Therefore 1
3 ∈M .

Corollary 6.3.12. We have M = Q[x].

Proof. Let f(x) ∈ Q[x]. We write f(x) = g(x)
n , where g(x) ∈ Z[x] and n ≥ 1. Then

g(x) ∈ Int(Z{x}). Since M is an Int(Z{x})-module and by Theorem 6.3.10, 1
n ∈ M,

this implies that g(x)
n ∈M.

Proposition 6.3.13. There is an isomorphism of Int(Z{x})-modules

Der(Int(Z{x}),Q) ∼= Q.

Proof. First we define the map

ϕ : Der(Int(Z{x}),Q)→ Q

given by

d 7−→ d(x),

for d ∈ Der(Int(Z{x}),Q).

It is clear ϕ is an Int(Z{x})-module map. Next, if ϕ(d) = 0, then d(x) = 0, therefore
d = 0. This shows that ϕ is injective.

Finally to show that ϕ is surjective, let a ∈ Q. We want to show that a = d(x) = ϕ(d)
for some d ∈ Der(Int(Z{x}),Q). This is true by letting d be the derivation determined
by d(x) = a .

It is well known that the binomial symbols are integer-valued but their derivatives are
not.
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Example 6.3.14. Let f(x) = d3x , then
df(x)

dx
=

3x2 − 6x+ 2

6
. So

df(1)

dx
/∈ Z .

We know from Example 6.2.5 that Z is an Int(Z{x})-module.

Proposition 6.3.15. We have

Der(Int(Z{x}),Z) ∼= 0.

Proof. Let f ∈ Der(Int(Z{x}),Z) and consider bn(x) ∈ Int(Z{x}), for n ≥ 0. Then
since

n!bn(x) = x(x− 1) . . . (x− (n− 1)),

we have

n!f(bn(x)) =

n∑
i=1

(−1)n−i
[
n

i

]
ixi−1f(x) by (6.5)

= (−1)n−1(n− 1)!f(x) by (6.2).

So f(x) = (−1)n−1nf(bn(x)) ∈ nZ. Since this holds for all n, this implies that f(x) =
0. So f = 0.

Here is the main result of this section.

Theorem 6.3.16. Let R be a binomial ring and let M be a binomial module over R

with module structure given by ϕMn = (−1)n−1

n IdM . Then

Der(R,M) = DerBin(R,M).

Proof. To prove the equality we need to show that the condition (6.4) of compatibility
with the binomial module structure follows from the usual derivation condition (5.8).
In other words, we need to show for each n ≥ 1

n−1∑
i=0

(−1)(n−i)−1 d(r)

(n− i)i!

( i∑
k=1

(−1)i−k
[
i

k

]
rk
)

=
1

n!

( n∑
i=1

(−1)n−i
[
n

i

]
iri−1d(r)

)
.

(6.11)
Since both sides of (6.11) are polynomials in r, we compare coefficients. For fixed j
the coefficient of rj on the right hand side is

(−1)n−j+1d(r)

n!
(j + 1)

[
n

j + 1

]
,

and on the left hand side it is

n−1∑
i=j

(−1)n−j+1 d(r)

(n− i)i!

[
i

j

]
.

By Corollary 6.3.9 both sides are equal.



138

Proposition 6.3.17. Let R be a binomial ring and let M be a binomial module over
R with module structure given by ϕMn = (−1)n−1IdM . Then we have

DerBin(R,M) = 0.

Proof. For ϕMn = (−1)n−1IdM in (6.11), we have

n−1∑
i=0

(−1)(n−i)−1d(r)

i!

( i∑
k=1

(−1)i−k
[
i

k

]
rk
)

=
1

n!

( n∑
i=1

(−1)n−i
[
n

i

]
iri−1d(r)

)
. (6.12)

Then the coefficient of r on the right hand side of (6.12) is

(−1)n
d(r)

n!
(2)

[
n

2

]
,

and on the left hand side it is

n−1∑
i=1

(−1)n
d(r)

(n− i)i!

[
i

1

]
.

By Corollary 6.3.9 both sides are equal, for all n ≥ 1. Then for n = 3, we have

−d(r)
2 − d(r)2

2! = −d(r)(2)(3)
3!

−3d(r)
2 = −d(r).

Then we get d(r) = 0.

Proposition 6.3.18. Let M be a binomial module over Int(Z{x}) with module struc-

ture given by ϕMn = (−1)n−1

n IdM . Then we have an isomorphism of Int(Z{x})-modules

DerBin(Int(Z{x}),M) ∼= M.

Proof. For any binomial derivation d ∈ DerBin(Int(Z{x}),M), suppose that d(x) = m,
for m ∈M. We define the map

θ : DerBin(Int(Z{x}),M) −→M,

given by
d 7−→ d(x) = m.

First to show that θ is an injection, we know from Theorem 2.4.6 that a general element
in Int(Z{x}) is of the form

∑m
i=1 aibi(x) for ai ∈ Z. Then

d(
m∑
i=1

aibi(x))
m∑
i=1

aid(bi(x))

=

m∑
i=1

ai

(
1

i!

( i∑
j=1

(−1)i−j
[
i

j

]
jxj−1d(x)

)
by (6.5),

=

m∑
i=1

ai

(
1

i!

( i∑
j=1

(−1)i−j
[
i

j

]
jxj−1m

)
∈M.
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Thus θ is totally determined by m. This implies that θ is injective. Since setting
d(x) = m determines a derivation, it is clear that θ is surjective.

By Theorem 6.3.16 for a binomial module M over R with module structure ϕMn =
(−1)n−1

n IdM as in Proposition 6.3.18, Der(R,M) = DerBin(R,M). Note that an ordi-
nary derivation d is determined by d(x) and the divisibility property of such an M
means that any choice of d(x) ∈M extends to a derivation.

Proposition 6.3.19. Let M be a binomial module over Int(Z{x,y}) with module struc-

ture given by ϕMn = (−1)n−1

n IdM . Then we have an isomorphism of Int(Z{x,y})-modules

DerBin(Int(Z{x,y}),M) ∼= M ⊕M.

Proof. For any binomial derivation d ∈ DerBin(Int(Z{x,y}),M), suppose that d(x, y) =
(m1,m2) for m1,m2 ∈M. Then the rest of the proof is analogs to the proof of Propo-
sition 6.3.18

Recall from Theorem 4.6.9 that

Int(Z{x,y})
((xy − 1))

∼= Int(Z{x})[x−1].

Next similarly as in Proposition 6.3.19 we compute the DerBin on non free binomial
ring.

Example 6.3.20. Let Q be a binomial module over SLInt(Z{x}) with module structure

given by ϕQ
n = (−1)n−1

n IdQ . Then we have an isomorphism of SLInt(Z{x})-modules

DerBin(SLInt(Z{x}),Q) ∼= Q⊕Q,

with derivation given by
d(x, y) = (q1, q2)

for q1, q2 ∈ Q and y = x−1.

We know from section 5.3 that the set Der(R,M) for an R-module M is an R-module.
Similarly we are going to show that the set DerBin(R,M) is a binomial module over
R .

Proposition 6.3.21. Let R be a binomial ring and let M be a binomial module over
R with structure maps ϕMn . Then the set D = DerBin(R,M) is also a binomial module
over R with module structure ϕDn : D −→ D, defined by setting

ϕDn (d)(r) = ϕMn (d(r)),

for d ∈ D , r ∈ R and n ≥ 1.

Proof. First we are going to show that ϕDn (d) : R −→ M is a binomial derivation for
d ∈ D. To see that for r, s ∈ R we have,
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1.

(ϕDn (d))(rs) = ϕMn (d(rs))

= ϕMn (rd(s) + sd(r))

= r.ϕMn (d(s)) + s.ϕMn (d(r))

= r.ϕDn (d)(s) + s.ϕDn (d)(r)

= r.(ϕDn (d))(s) + s.(ϕDn (d))(r).

2.

(ϕDn (d(bm(r))) = ϕMn (d(bm(r)))

= ϕMn (

m−1∑
i=0

ϕMm−i(d(r))bi(r))

=
m−1∑
i=0

ϕMn (ϕMm−i(d(r))bi(r))

=
m−1∑
i=0

ϕMm−i(ϕ
M
n (d(r))bi(r))

=

m−1∑
i=0

ϕMm−i(ϕ
D
n (d(r)))bi(r)).

Next we need to show that D is a binomial module over R .

1. (ϕD1 (d))(r) = ϕM1 (d(r)) = d(r).

2.

(ϕDij (d))(r) = ϕMij (d(r))

= (−1)(i+1)(j+1)ϕMi (ϕMj (d(r)))

= (−1)(i+1)(j+1)ϕMi ((ϕDj d)(r))

= (−1)(i+1)(j+1)(ϕDi ϕ
D
j (d))(r).

for all i, j ≥ 1.

§ 6.4 Cohomology of binomial rings

The main aim of this section is to introduce the cohomology of binomial rings as
another example of cotriple cohomology theory, on BinRing with coefficients in the
contravariant functor DerBin(−,M) for a binomial module M.
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First, for binomial rings R and S, let M be a binomial module over R and let f : S −→
R be a ring homomorphism. Then it is clear M is also a binomial module over S . We
define the category of binomial rings over R, whose objects are ring homomorphisms
f : S −→ R from a binomial ring S and whose morphisms are given by the following
commutative diagrams

S1 R

RS2

f1

g IdR

f2

for a ring homomorphism g. We denote this category by BinRing/R .

Then for a binomial module M over R, we define the contravariant functor

DerBin(−,M) : BinRing/R −→ Ab.

Recall from Subsection 5.2.2 the simplicial object Cn(R) that came from an adjoint
pair of functors. The binomial module M over binomial ring R becomes a binomial
module over (Cn(R))Bin for all n ≥ 1 by the canonical map from (Cn(R))Bin to R.

Definition 6.4.1. Let R be a binomial ring and let M be a binomial module over
R. By applying the functor DerBin(−,M) to the cotriple resolution (C∗)Bin(R) of an
object R in BinRing, we define the cohomology of the binomial ring R with coefficients
in M by

Hn
Bin(R,M) = Hn

CBin
(R,M) := Hn

CBin
(R,DerBin(−,M)). (6.13)

In other words, Hn
Bin(R,M) is the nth cotriple cohomology group of R with coefficients

in DerBin(−,M) with respect to the cotriple CBin on BinRing.

Proposition 6.4.2. Let R be a binomial ring and let M be a binomial module over
R. Then

H0
Bin(R,M) ∼= DerBin(R,M).

Proof. Applying DerBin(−,M) to the bottom of the augmented simplicial object (5.4),
we obtain the following diagram

DerBin(R,M)
ε∗−→ DerBin(CR,M)

(ε01)∗

−→
(ε11)∗

−→
DerBin(C2R,M).

It is clear that ε∗ is injective and since εε0
1 = εε1

1,

Imε∗ ⊆ Ker((ε1
1)∗ − (ε0

1)∗).

Now let f ∈ Ker((ε1
1)∗ − (ε0

1)∗). Then, we writing ? for the product in CR, it follows
that f(a ? b) = f(ab). Thus we can define g : R −→ M by g(a) = f(a). Then g is a
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derivative because f is and g is compatible with the module structure of M as f is.
So f = gε = ε∗(g) ∈ Imε∗. Thus

DerBin(R,M) ∼= Imε∗ = Ker((ε1
1)∗ − (ε0

1)∗) = H0
Bin(R,M).

Proposition 6.4.3. Let R be a free binomial ring and let M be a binomial module
over R. Then

Hn
Bin(R,M) = 0,

for all n ≥ 1.

Proof. The Proposition follows from Proposition 5.2.8.

Proposition 6.4.4. Let R be a binomial ring and let M be a binomial module over
R with module structure given by ϕMn = (−1)n−1IdM . Then we have

Hn
Bin(R,M) = 0,

for all n ≥ 1.

Proof. The proof is clear by Proposition 6.3.17.

We end this thesis by defining homomorphisms between binomial cohomology, λ-
cohomology and André-Quillen cohomology of the underlying commutative ring.

We know from Proposition 2.7.5 that a binomial ring has a unique λ-ring structure
given by binomial operations on R, λn(r) =

(
r
n

)
and whose Adams operations all

are the identity on R. We are going to show that there exist homomorphisms from
cohomology of λ-rings to cohomology of binomial rings for all n. In order to define
these homomorphisms, first we present the following results.

Proposition 6.4.5. In the free λ-ring, Λy, let

SΛy = {ψn(h)− h : h ∈ Λy and n ≥ 1}.

Then we have an isomorphism of binomial rings,

Λy
I
∼= Int(Z{x}),

where I = (SΛy).

Proof. First we know from Proposition 2.8.10 that the ideal I is a λ-ideal of Λy . So by

Proposition 2.8.9,
Λy
I is a Λ-ring. Since Λy is a free λ-ring and by Proposition 2.7.5,

Int(Z{x}) is a λ-ring, by the universal property we can define a λ-homomorphism

θ : Λy −→ Int(Z{x}),
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determined by
y 7−→ x.

Also by Proposition 2.7.5, we have

θ(λn(y)) = λn(x) =

(
x

n

)
.

Since
(
x
n

)
∈ Im(θ) for all n and by Theorem 2.4.6 these span Int(Z{x}), θ is surjective.

Now pick an element p ∈ I , then

p =

r∑
i=1

(ψni(hi)− hi)gi,

for some hi, gi ∈ Λy and some ni ≥ 1. Then

θ(p) =
r∑
i=1

θ((ψni(hi)− hi)gi)

=
r∑
i=1

(
ψni(θ(hi))− θ(hi)

)
θ(gi) by Proposition 2.6.5

= 0 by Proposition 2.7.5.

Therefore I ⊆ Ker θ and θ induces a ring homomorphism

θ̄ :
Λy
I
−→ Int(Z{x}).

On the other hand we define the Z-linear map

α : Int(Z{x}) −→ Λy
I

determined on basis elements by

α(

(
x

n

)
) = λn(y + I)

= λn(y) + I

=

(
y

n

)
+ I by Theorem 2.7.5.

Then α is a ring homomorphism.

Then

θ̄α(

(
x

n

)
) = θ̄(λn(y) + I) = θ(λn(y)) =

(
x

n

)
and

αθ̄(λn(y) + I) = α(

(
x

n

)
) = λn(y) + I.

This implies that α is an inverse to θ̄ .
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Recall from §2.8 that the functor Qλ from the category of λ-rings to the category
of binomial rings is left adjoint to the inclusion functor IBin from the category of
binomial rings to the category of λ-rings (Theorem 2.8.12), from §5.4 that Cλ = FλGλ
is a cotriple on Ringλ where Fλ is the free functor taking a set X to the free λ-ring
generated by this set and Gλ is the forgetful functor and from §6.1 that Cλ = FBinGBin
is a cotriple on BinRing where FBin is the free functor taking a set X to the free
Binomial ring generated by this set and GBin is the forgetful functor.

Remark 6.4.6. From Proposition 6.4.5 we have isomorphism of binomial ring

QλFλ({y}) ∼= FBin({y}).

Similarly, we have
QλFλ(X) ∼= FBin(X),

for any set X.

Proposition 6.4.7. Let R be a binomial ring. For n ≥ 0 there exists a binomial ring
homomorphism,

ηRn : QλCnλIBinR −→ CnBinR.

Proof. We will prove it by induction on n . For n = 1. Since GλIBin = GBin, by
Remark 6.4.6 and Proposition 6.4.5, we obtain

QλCλIBinR ∼= CBinR

which is clear that is natural in R.

For n = 2, for a λ-ring A and a binomial ring QλA in Theorem 2.8.12, we have

HomBin(QλA,QλA) ∼= Homλ(A, IBinQλA).

So from the identity map on QλA we obtain a λ-homomorphism

ζ : A −→ IBinQλA, (6.14)

which is natural in A. Then we obtain the homomorphism

QλC2
λIBinR = QλCλIdCλIBinR

ζ−→ QλCλIBinQλCλIBinR ∼= C2
BinR. (6.15)

Assume that for n = k we have a binomial ring homomorphism

QλCkλIBinR
ηRk−−→ CkBinR. (6.16)

Then for n = k + 1, by (6.16), we define ηk+1 by the composite

QλCk+1
λ IBinR = QλCkλIdRCλIλR

ηRk+1−−−→ QλCkλIBinRQλCλIBinR ∼= Ck+1
Bin R. (6.17)
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Theorem 6.4.8. Let R be a binomial ring and let M be a binomial module over R .
Then there exists an R-module homomorphism, for each n ≥ 0

%n : Hn
Bin(R,M) −→ Hn

λ (IBinR, IBinM).

Proof. Consider the cotriple resolution (C∗)Bin(R) of R. We know IBinR is a λ-ring.
Then consider the cotriple resolution (C∗)λ of IBinR. Then by Proposition 6.4.7, we
have the ring homomorphism

QλC∗λIBinR
ηR−−→ C∗BinR.

By applying the functor DerBin(−,M), we obtain an R-module homomorphism

DerBin(C∗BinR,M)
(ηR)∗−−−→ DerBin(QλC∗λIBinR,M). (6.18)

And by Definition 6.3.2 and Definition 6.2.1, we have an isomorphism of R-modules

DerBin(QλC∗λIBinR,M) ∼= Derλ(IBinQλC∗λIBinR, IBinM). (6.19)

On the other hand, also by applying IBinQλ we obtain the λ-homomorphism,

C∗λIBinR
γ−→ IBinQλC∗λIBinR. (6.20)

Now by applying the functor Derλ(−, IBinM), we get an R-module homomorphism

Derλ(IBinQλC∗λIBinR, IBinM)
γ∗−→ Derλ(C∗λIBinR, IBinM). (6.21)

Finally this gives us

%n : Hn
Bin(R,M)

(γ∗(ηR)∗)∗−−−−−−−→ Hn
λ (IBinR, IBinM). (6.22)

Example 6.4.9. This example is given to show that the above homomorphism is non-
trivial. We consider binomial ring Int(Z{x}) and let M be a binomial module over

Int(Z{x}) with module structure given by ϕMn = (−1)n−1IdM
n .

Then for zero degree n = 0 we have H0
Bin(Int(Z{x}),M) ∼= DerBin(Z{x}),M) by Propo-

sition 6.4.2 and DerBin(Z{x}),M) ∼= M by Proposition 6.3.18, with derivation d given
by d 7−→ d(x) = m, for m ∈M.

Similarly H0
λ(Int(Z{x}), IBinM) ∼= Derλ(Z{x}), IBinM) ∼= IBinM [48]. Therefor %0 is

identity map on M.
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From the construction of the free λ-ring (Proposition 5.4.6) it is clear that the forgetful
functor from the category of λ-rings to the category of commutative rings takes a free
λ-ring to a free commutative ring. For a λ-ring R and a λ-module M over R, Robinson
[48, Lemma 7.7] defines the homomorphism

γn : Hn
λ (R,M) −→ Hn

AQ(R,M).

Then for a binomial ring R and a binomial module M over R we have

ξn : Hn
Bin(R,M) −→ Hn

AQ(IBinR, IBinM),

where
ξn = γn ◦ %n.

Thus we have composition maps between the cohomology of binomial rings, the coho-
mology of λ-rings and the André-Quillen cohomology of the underlying commutative
rings.

Next steps to complete this work. We will investigate degree one cohomology of bi-
nomial ring H1

Bin(R,M) and degree two cohomology of binomial ring H2
Bin(R,M)

for a binomial ring R and a binomial module M over R with module structure

ϕMn = (−1)n−1

n IdM . we expect to be equivalence classes of binomial extensions of R
by M and connected components of the category of crossed binomial extension of R
by M respectively (with suitable definition of binomial extensions and crossed binomial
extension) similar to Robinson’s [48] definitions for λ-rings.
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