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Abstract 

The performance of total hip replacement (THR) devices can be affected by various 

factors such as quality of the tissues surrounding the joint, mismatch of the 

component centres or the cup positioning during hip replacement surgery. 

Experimental studies have shown that these factors can cause the separation of the 

two components during the walking cycle (dynamic separation) and the contact of 

the femoral head with the rim of the acetabular liner (edge loading), which can lead 

to increased wear and shortened implant lifespan. 

There is a need for flexible pre-clinical testing tools which allow THR devices to be 

assessed under these adverse conditions. In this work, a novel dynamic finite 

element model was developed that is able to generate dynamic separation as it 

occurs during the gait cycle. In addition, the ability to interrogate contact mechanics 

and material strain under separation conditions provides a unique means of 

assessing the severity of edge loading. This study demonstrates these model 

capabilities for a range of simulated surgical translational mismatch values, cup 

inclination angles and swing phase loads for ceramic-on-polyethylene implants. 

The computational model was developed to replicate one station of the Leeds II hip 

simulator that mimic in vitro adverse conditions. Firstly, a computational sensitivity 

model was developed under standard conditions for a stable computational contact. 

The mechanism of separation was also added. The finite element model was able to 

predict medial-lateral separation as it occurred dynamically in the gait cycle, 

including cases where the femoral head was in contact with the rim of the cup. The 

increase in medial-lateral separation with increased translational mismatch, cup 

inclination angle and decreased swing phase load were in broad agreement with 

existing experimental data.  
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The factors that increased the separation level, also increased the permeant 

deformation on the cup. However, steep cup inclination angle resulted in a higher 

number of conditions with permanent deformation than the standard cup 

inclination angle. Moreover, despite the low axial load during swing phase, under 

some separation conditions, reduced contact area created stress value higher than 

those at the peak axial load.  

The developed computational tool can be used to understand the effect of various 

factors on the separation and contact mechanics simultaneously. As separation is a 

multi-factorial phenomenon, this model can assist to focus on the selected factors 

that affect the separation experimentally. Moreover, the effect of components 

specifications such as materials, geometry, and the cup thickness can be investigated 

with this model. 
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Chapter 1 Introduction and Literature review 

1.1 Introduction 

Total hip replacement (THR) is considered to be the most successful treatment for 

hip diseases such as osteoarthritis. Over 101,000 THRs were implanted in England 

and Wales in 2015 (National Joint Registry, 2016). Artificial hip joints have 

developed significantly over time and their developments were mostly due to the 

initial inappropriate design and/or material used in the prosthesis (Buechel and 

Pappas, 2012). The increasing demand of younger patients for artificial hip joints 

has resulted in the need for increased longevity and functionality of THRs, especially 

for hard-on-soft THR bearings due to their high popularity (National Joint Registry, 

2016).  One of the reasons for the failure of THR is the wear of the bearings. There 

have been a great number of studies of the performance of artificial hip joint in vitro  

(e.g. Nevelos et al., 2000; Williams et al., 2008; Al-Hajjar et al., 2010). 

In vitro testing has been accomplished by the development of computational models 

to predict the performance of implanted hip joint (e.g. Gao et al. 2015; Hua et al. 

2012; Liu et al. 2013; Mak and Jin 2002). Such studies have predicted the wear of 

the bearings under idealised implantation conditions (Al-Hajjar et al., 2010; Gao et 

al., 2015), and also under adverse conditions when the wear of the THR is affected 

significantly (Al-Hajjar et al., 2010; Sariali et al., 2012; Ali et al., 2016).  The 

conventional method of testing the THR has been under idealised conditions and it 

is only recently that adverse conditions have been introduced  (Williams et al., 2007; 

Al-Hajjar et al., 2010). In this chapter, previous studies on the effects of factors such 

as surgical procedure, biotribological parameters, and implant designs are 

reviewed. This chapter is organised into three main sections: 
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 THR design and performance: this section includes the performance of 

natural and artificial hip joints. Also, the factors that affect the performance 

of the hip are described. 

 Tribological aspects: this section covers the effects of biotribological factors 

such as wear, friction, lubrication, and contact mechanics of the bearings on 

the performance of artificial hip joints under different conditions. 

 Computational aspects: this section covers previous studies of the contact 

mechanics and dynamic analyses of artificial hip joints using computational 

modelling.    

1.2 THR design and performance 

The hip joint (Figure 1.1) is a ball and socket joint which is surrounded by articular 

capsule containing synovial fluid. The synovial fluid allows the presence of synovial 

cavity between two articulating bones of the hip (femur and acetabulum) which 

allows the free movement of the joint. The articulating bone surfaces are covered by 

a layer of articular cartilage (hyaline cartilage) to produce a smooth and slippery 

surface, reducing friction, and aiding shock absorption during articulating bones 

movement (Tortora and Derrickson, 2009).   



3 
 

 
Figure 1.1 Hip joint: the bones associated with hip joint and the surrounding ligaments and 

cartilages (Tank and Gest, 2008) 

The head of the femur and acetabulum are attached to each other by iliofemoral, 

pubofemoral, and ischiofemoral ligaments and they are surrounded by rectus 

femoris muscles for better stability (Tortora and Derrickson, 2009). The hip joint 

movements (Figure 1.2) is flexion/extension (F/E), abduction/ adduction (A/A), 

and medial/lateral rotation of thigh (internal/external rotation) and the degree of 

the movement depends on the activity. 

 
Figure 1.2 Rotational motions of the hip (Buechel and Pappas, 2012) 
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1.2.1 Gait Cycle 

The gait cycle is a series of hip movements that occur during walking and is based 

on two major phases: 1) the stance phase and 2) the swing phase (Baker, 2013). As 

Figure 1.3 shows, the stance phase starts when the (right) leg heel contacts the 

ground and finishes with toe off of the same leg.  There are two main tasks during 

stance phase to be accomplished: 1) weight acceptance and 2) single limb support. 

When the right leg heel strikes the ground (initial contact), both limbs are in contact 

with the ground (double support).  Then, when the right leg foot is flattened, the 

double support finishes and all the weight is shifted to the supporting leg (left leg) 

until heel strike of the left foot. The swing phase is the period from when the right 

foot leaves the ground to the next heel contact of the same leg. The stance phase is 

about 60% of one gait cycle and swing phase 40%. 

 
Figure 1.3 Gait cycle (Iosa et al., 2013) 

1.2.2 Hip disorders 

There are several disorders that could have a major effect on the natural hip  

(Kennon, 2008): 

 Osteoarthritis: the layer of cartilage between femur and acetabulum bone is 

worn away. 



5 
 

  Rheumatoid arthritisː the body’s immune system attacks the joint and leads to 

painful and swollen joints and finally the destruction of the cartilage in the joint. 

 Avascular necrosis (Osteonecrosis) ː the death of femoral head if the femoral 

head of the joint does not receive enough blood supply in cases such as trauma 

and clotting diseases. 

 Septic arthritisː infection of the joint is the main cause of septic arthritis. 

 Facture and traumaː Fracture of hip and pelvis usually require surgery to fix and 

stabilise the bone by utilising different methods such as pinning, plates and 

screws. 

 Tumoursː there are two different cancers that can affect hip function: 1) bone 

tumour which is very rare and 2) metastatic cancer which spreads to the hip 

from other locations.   

1.2.3 Total hip replacement (THR) 

Treatment of hip disorders depends on the severity of the injury or damage to the 

hip. If the medical and physiological treatments on the hip joint are not successful, 

then hip replacement is recommended to the patient. Hip replacement is a surgical 

procedure in which the natural hip joint is replaced by a synthetic hip joint with an 

artificial load bearing material. The predominant diagnosis for hip replacement, 

accounting for 92% of cases was reported to be osteoarthritis in England and Wales 

in 2016 (National Joint Registry, 2016).  

There are two types of hip replacement:  

1. Hemi replacement: in this surgery the femoral head of the hip is removed 

and an artificial one is implanted.  

2. Total replacement (total hip arthroplasty): in which both the acetabular cup 

and the femoral head are replaced. It usually consists of stem and femoral 
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head that are placed in the femur and a liner and acetabular shell that are 

placed in the pelvis. 

THRs have been developed and gradually have become more reliable over time due 

to better understanding of the appropriate design, materials, biomechanics, and 

fixation to the natural bone. For example, THRs have had extensive development 

based on the material combinations and their biocompatibility with the human 

body. The earliest attempts at hip joint replacement started in the 1860s with 

materials such as wood (Carnochan, 1860), ivory (Gluck, 1890), and rubber 

(Delbert, 1919) which failed due to the inappropriate biocompatibility and 

durability of materials used. Up to the 1950s, Vitallium was the most successful 

material used in hip replacements because of its inert property within the human 

body. However, vitallium was not universally accepted (Coombs et al. 1990). Later 

on, the use of stainless steel and then improving to a cobalt-chromium-molybdenum 

(CoCrMo) alloy in hip replacement was introduced by McKee (McKee and Watson-

Farrar, 1966) as the bearing surfaces by the exact fit of the two components 

(Figure 1.4).  

 

Figure 1.4 The McKee-Farrar Total Hip Replacement (Buechel and Pappas, 2012) 

John Charnley initiated a successful development of the hip replacement. He 

coordinated with engineers to achieve wear resistant components combined with 
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the application of a biocompatible grouting agent of adequate strength (Buechel and 

Pappas, 2012). Charnley introduced metallic femoral head with high molecular 

weight polyethylene acetabular cup. In the early 1970s, the use of ceramics in hip 

replacements was introduced by Boutin (Boutin, 1972). Ceramic surfaces have 

better hardness and better wear resistance than metals or polyethylene. However,  

the main reason for using ceramics in hip replacements was the lower toxicity of the 

wear products than other bearing materials (Granchi et al., 2003). 

1.2.4 Types of hip replacements  

During total hip arthroplasty, the femoral head is usually replaced with ceramic or 

metallic components and the acetabular cup can be replaced with ceramic, metallic, 

or polymeric components. If one of the bearing surfaces is polymer, the bearing is 

called ‘hard-on-soft’ and if both the components are made of metal or ceramic, it is 

called ‘hard-on-hard’.  

1.2.4.1 Hard-on-soft bearings 

Hard-on-soft bearings (Figure 1.5) namely Metal-on-polyethylene (MoP) and 

ceramic-on-polyethylene (CoP) acetabular cups  are the most popular bearings in 

England and Wales (National Joint Registry, 2016). Acetabular bearings are made of 

ultra-high molecular weight polyethylene (UHMWPE) or modified UHMWPE and 

the femoral head composed of metal alloys, stainless steel, cobalt-chromium, and 

titanium alloy as well as ceramic materials, aluminium oxide, and zirconia oxide. In 

ceramic-on-polyethylene bearing surfaces, alumina and zirconia are the main 

ceramics which are used (Buechel and Pappas, 2012).   
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Figure 1.5 Hard-on-soft THR bearings, The Charnley Total Hip Replacement (Buechel and 

Pappas, 2012) 

Despite all the success of total hip arthroplasty, polyethylene wear is considered to 

be the primary cause of failure of THR (Bono et al., 1994). The wear characteristics 

of UHMWPE reduce its longevity, and has been the major issue limiting its use in 

prostheses.  Clinical studies have shown that the wear debris associated with the 

component results in osteolysis and aseptic loosening over the long term, and 

consequently a revision surgery may be required (Dattani, 2007; Kurtz and Patel, 

2016). Polyethylene bearings are favoured among surgeons due to their tolerance 

to malalignment and the ability of the material to act as a shock absorber. Due to this 

popularity, there is a drive to improve the UHMWPE wear performance (García-Rey 

and García-Cimbrelo, 2010). Therefore, it is a major concern to decrease the wear of 

the polyethylene bearings for a longer durability. 

Various methods have been used to improve polyethylene wear properties by cross 

linking, heat treatments and sterilisation methods. However, it is a challenging task 

to decrease the wear rate of polyethylene and retain the similar fatigue resistance 

simultaneously (Bracco et al., 2017). The initial step in the modification of 
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polyethylene was a sterilisation step by gamma irradiation. During this irradiation, 

the molecular cross linking of the polyethylene occurs. Cross linking that has been 

shown to reduce the occurrence of osteolysis and revision surgery (Ries and Link, 

2012; Hanna et al., 2016). However, oxidation of the polyethylene can also take place 

which can result in degradation and higher brittleness. The modern cross-linking 

procedure was improved to eliminate the contact of free radicals with air (McKellop 

et al., 1999; García-Rey and García-Cimbrelo, 2010). One of the methods that reduces 

the free radicals is heat treatment (melting or annealing) after the irradiation that 

produces highly crosslinked UHMWPE. However, this method affects the fatigue 

strength and fracture of the malpositioned liner due to the lower crystallinity of the 

polyethylene (Halley et al, 2004; Oral et al., 2006). Therefore, it is important to use 

a crosslinking balance that maintain optimum long term physical and wear 

properties (McKellop et al., 1999).  

1.2.4.2 Hard-on-hard bearing 

Hard-on-hard surface bearings consist of ceramic-on-ceramic, metal-on-metal or 

ceramic-on-metal. Although the first generation of metal on metal THR failed, the 

long-term survivorship of these bearings has been comparable to Charnley’s metal 

polyethylene coupled bearing design which could make them a suitable choice for 

young patients. The low steady wear rate of metal-on-metal bearings is the best 

feature of this type of bearing. However, high metal ion level or high particle 

concentration of metallic bearings can cause cell death and tissue necrosis (Germain 

et al., 2003). The higher coefficient of friction of metallic coupled bearings compare 

to other types is another disadvantage of them (Brockett et al., 2006). Ceramic-on-

ceramic bearings (Figure 1.6) represent the lowest friction in articulating surfaces 

of all, they also have the lowest wear rate under standard walking conditions 

(Nevelos et al., 2000). Furthermore, the toxicity of ceramic materials has been 
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reported to be less than metallic bearings (Germain et al., 2003). Recently, a ceramic 

matrix composite bearing (Biolox Delta) has been introduced with increased 

toughness and decreased risk of fracture properties (Al-Hajjar et al., 2010). 

 

Figure 1.6 Ceramic-on-ceramic THR implanted in the body  

Ceramic-on-metal bearings with different hardness values have been utilised to be 

able to decrease the wear rate and friction of metal-on-metal bearings and to 

eliminate ceramic insert chipping (Williams et al., 2007). Since there is a size 

limitation of ceramics bearing due to modular insert of them, ceramic against metal 

bearing also provided design flexibility to be able to use metal insert acetabular cup 

with different ceramic femoral head size. It is reported that ceramic-on-metal 

coupled bearings have less metal ion release than metal-on-metal bearings and 

same wear rates as ceramic-on-ceramic bearings (Isaac et al., 2009). 

1.2.5 Gait cycle of THRs 

The range of motion during a gait cycle has been studied previously (Johnston and 

Smidt, 1969). It was demonstrated that the degree of flexion/extension varies 
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between -25o and 15o, abduction/adduction between -3.75o and 4.6o and external, 

internal rotation between -7.5o and 6o (Figure 1.7). However, the motion of a hip 

joint is patient specific and it differs between patients.  

 
Figure 1.7 Kinematic analysis of hip joint during a gait cycle, FE denotes flexion-extension; 

AA, adduction-abduction; IER, internal-external rotation (Johnston and Smidt, 1969) 

The load on the hip joint during a gait cycle can be up to two and a half times of the 

person’s body weight (Bergmann et al., 2001) at the maximum (Fp). A contact force 

curve with a double peak during walking is usually regarded as ‘normal’. The 

resultant force on a hip joint in a normal walking cycle is shown in Figure 1.8 which 

demonstrates that the load largely occurs from the heel strike in the stance phase 

up to the toe off. In a single leg stance, the abductors muscles are closer to hip joint 

rather than centre of patient’s gravity. In consequence, forces of three times body 

weight could be supported by the abductors (Dandy and Edwards, 2009). 
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Figure 1.8 Kinetic analysis of gait cycle (Bergmann et al., 2001) 

Kinetic analyses of the hip joint during walking have been studied previously by 

using different methodologies such as implanted instruments or analytical methods. 

An analytical method was the base of Paul (1976) and Hashimoto and colleagues 

(2005) studies to predict the force transmitted at the joint by using a cine camera 

and force platform or a multi body dynamic system. Bergmann and colleagues 

(Bergmann et al., 2001) monitored hip joint forces using instrumented implants in 

four patients for different activities. According to this study, the force that hip joint 

undergoes depends on the walking speed considerably. The maximum resultant 

force were reported to be 279% body weight for fast walking, 248% body weight 

for normal walking and 239% body weight for slow walking. These results can vary 

between studies due to study subjects and analysis methods. 

1.2.6 Failure of hip replacements  

During the early years of total hip arthroplasty, there were several reasons for the 

failure of the joint such as infection, dislocation, component malfunction secondary 

to fracture, component migration, femoral stem loosening, acetabular component 
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loosening, and polyethylene wear (Lombardi. et al., 2000). However, currently the 

main concerns with hip replacements are osteolysis and long term hip stability 

(Lombardi. et al., 2000). 

Most of total hip replacements have excellent 10 years term results. However, the 

probability of THR failure is reported to have an inverse relationship with the age of 

the patients regardless of the material bearings (National Joint Registry, 2016). 

National joint registry reports 5% ten-year revision risk for woman under 55 years 

old whereas it is 2% for women over 75. Therefore, the main task for contemporary 

THR is to reduce the damage in the articulating surfaces to lengthen their lifetime.  

Revision surgery is sometimes required due to failure of the original implant. Labek 

et al revealed that the rate of revision of THR from several registries around the 

world has been recorded to be 5% at 5 years post-surgery and 12% at 10 years post-

surgery. The main cause of revision surgery was noted to be aseptic loosening 

(Labek et al., 2011). Jassim et al discovered that of almost 12,500 revision surgery 

procedures which were performed in England and Wales in 2010, aseptic loosening 

(45%), pain (26%), dislocation/subluxation (15%), lysis (14%), infection (13%), 

perioprosthetic fracture (9%) and component mal-alignment (6%) were the main 

reasons for the revision (Jassim, Vanhegan and Haddad, 2012).  

The failure of the THRs are triggered by the following factors:  

1. Poor implant design and material: this was an issue historically, where it was 

widely described how unsuitable shape and non-biocompatible material used 

within the body such as various types of metals caused undesirable reactions 

including corrosion and abnormal implant motion (Jassim et al, 2012). 

2. Biological factors: in vivo degradation of prosthesis occurs by means of wear 

processing which generates particulate debris (wear debris). Wear debris 
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stimulate an adverse biological reaction called osteolysis (bone loss) which is a 

significant thread for consideration of implant longevity (Jacobs et al., 1994) 

because it can compromise the prosthesis fixation and bone stock. Osteolysis is 

widely dependant on bearing surfaces and wear debris of components (Dattani, 

2007).  

3. Poor surgical techniques: correct positioning of the hip replacement 

components decreases the instability and dislocation rate of THR. However, if 

the acetabular cup is implanted outside the patient’s “safe zone”, the dislocation 

rate is observed to be four times higher than implantation of the acetabular cup 

within the safe mode (Lewinnek et al., 1978). 

1.2.7 Dynamic separation 

There are previous studies that have focused on the difference in the performance 

of THRs and natural hip joints. Previous fluoroscopic studies indicate the kinematics 

of hip replacements would differ from the natural joint as the soft tissue supports 

around the hip joint are disrupted. During THR surgery, part of the supporting 

structure is resected or transected to facilitate surgical exposure (Dennis et al., 

2001). In these fluoroscopic studies, a medial/lateral separation of the THRs 

bearings was observed during activities such as the walking, hip abduction and 

adduction and pivoting activities (Lombardi. et al., 2000; Komistek et al., 2002). In 

the walking cycle, this separation (also known as microseparation or dynamic 

separation) is the result of sliding of the cup bearing medially/laterally during swing 

phase (Figure 1.9) and resulting in a smaller regional contact between the THRs 

bearings (Mak and Jin, 2002).   
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Figure 1.9 Schematic of separation and sliding during the swing phase  

Dynamic separation is assumed to have a great effect on the kinetic and kinematic 

behaviour of the THRs. When the forces during gait cycle in proximal femoral 

replacement were analysed, it was determined that the force after heel-strike was 

much greater than the force just before toe-off (Taylor et al., 1997). Generation of 

this large force between the femoral head and acetabular cup could be attributed to 

the dynamic separation which causes an impulse loading condition. The separation 

is also suspected to cause extra shear stresses on the femoral head and acetabulum 

cup which could cause increased wear.  

As the dynamic separation occurs, contact between the rim of the cup and femoral 

head happens (edge loading) which generates high stresses. It has been determined 

that high stresses due to edge loading produce surface damage in the form of stripe 

wear on the components in ceramic-on-ceramic hip replacements in vivo and in vitro 

studies (Nevelos et al., 2000). Figure 1.10 represents the stripe wear that was 

observed from clinical and experimental studies. On the other hand, no indication of 

stripe wear was observed in metal-on-metal THRs (Komistek et al., 2002). However, 
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metal-on-metal bearings polish the surfaces themselves by wearing down the 

surrounding area which can remove and distinctive stripe on the head (Walter et al., 

2004). It is not possible to observe stripe wear on hard-on-soft bearings because of 

inability of polyethylene cup to damage the hard femoral head due to its softness. 

 

Figure 1.10 The wear stripes on the ball in in vitro and retrieval components (Manaka et al., 
2004) 

Lombardi and colleagues detected the separation in the THRs to be between 0.8mm 

to 2.8mm during gait cycle and 1.7mm to 3mm during leg lift (Lombardi. et al., 

2000). Previous studies (Komistek et al., 1998) discovered the maximum separation 

during leg lift to be 5.4mm. Komistek et al (2002) determined no significant sliding 

of the femoral head in metal-on-metal hip replacements. Furthermore, no significant 

separation was observed in other common activities namely shoe tie, sit down and 

stand up (Blumenfeld et al., 2011). 
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Dynamic separation was assumed to have a great detrimental effect on the wear of 

THRs due to the contact and loading changes. However, this idea is not well 

supported by in vivo studies as in vivo studies are limited to small number of patients 

and also there is no possible method for a comparison between the wear rate with 

and without separation in vivo. Therefore, the effect of separation and edge loading 

on the wear of the THRs are mainly studied in vitro. In vitro studies agreed that the 

wear of the THRs bearings are significantly affected by the separation (e.g. Williams 

et al., 2008; Al-Hajjar et al., 2010).  

The increased wear in artificial joints has potentially two main disadvantages:  

1) Changes in bearing geometry which decrease efficiency of tribological and 

kinematic functions.  

2) Adverse biological reaction such as tissue reaction, osteolysis and loosening 

of the joint due to wear debris (Fisher, 2011). 

Increased wear can lead to the requirement for revision surgery which is 

complicated, expensive, and involves risk to the patient. Also, currently hip 

replacements have been implanted in younger and more active patients and current 

limitations are due to rapid wear of the components (Wright and Goodman, 1995). 

Therefore, the need to identify the factors which increase the wear rate and 

approaches to minimise this wear are of primary importance.   

1.2.8 Positioning of THR 

Miki and colleagues demonstrated that the important factors for dislocation are 

instability and impingement, which typically is caused by component positioning 

during primary THR (Miki et al., 2013) or by abductor insufficiency (Dorr and Wan, 

1998). In one of the studies of the factors that caused instability, it was determined 



18 
 

that 35.5% of the patients suffered from a malpositioned acetabular cup (Parvizi et 

al., 2006).  

The size of the THR components can be determined by using computer aided 

programmes. The programmes visualise the patients hip by CT scan images of 

patient’s hip and then different sizes of components is applied to the hip to check 

which one is the most suitable one (Bargar et al, 1998). The positioning of the 

components of THR can be determined by preoperative planning, sometimes using 

via computer aided techniques. It is recommended that the acetabular cup should 

be implanted in the ‘safe zone’ which was defined by Lewinnek et al (1978). Based 

on his definition, the safe zone for acetabular cup allows 15o+10o anteversion and 

30o to 50o abduction. To prevent dislocation, McCollum and Gray proposed 30o to 

50o abduction angle and 20o to 40o flexion angle (Mccollum and Gray, 1990). Despite 

all this precision, it is yet not fully possible to achieve the implantation of the 

acetabular cup within the safe mode neither by conventional method (even by 

experienced surgeon) nor by computer aid navigation system as the functional 

positioning of the components cannot be guaranteed due to the preoperative and 

postoperative changes such as in pelvic tilt. (Parratte et al., 2009). 

In a hip replacement, the centre of the implanted femoral head and acetabular cup 

should be concentric. As described previously, if the acetabular cup is not correctly 

positioned with respect to biomechanical loading axis and contact patch and wear 

does not occur within the articulating surfaces, it results in contact of the femoral 

head and rim of the cup (known as edge loading), and adverse tribological condition 

(Knahr, 2011).  
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Since both acetabular cup and femoral head have six independent degrees of 

freedom, there are different types of conditions that produce edge loading 

(Figure 1.11): 

 Translational variation of components: which includes medial or superior 

translation of the centre of the cup (failure to restore cup centre), offset 

deficiency (failure to restore head centre), and head neck impingement.  

 Rotational variation of the components: includes the inclination angle of the 

cup which causes intersection of rim of the cup and tribological contact 

patch (Fisher, 2011).  

 
Figure 1.11 Schematic of translational and rotational variation. Concentric bearings (A), a 

mismatch between the centres of the head and the cup (B), the schematic of standard (C), 

steep and low inclination angle (D) 

Despite the influence of material and diameter of the components used in THR, the 

position of the acetabular cup affects the forces on the hip joint, the range of motion, 

stability and wear of components (Schmalzried, 2009). Therefore, studying the 

effect of THR components positioning on the THR behaviour can benefit the long 

term performance of the device. 



20 
 

1.3 Tribology of artificial hip joint 

The critical issues of artificial joints especially hip joint failure involve the wear of 

the articulating surfaces (Mattei et al., 2011).  It is difficult to understand the effect 

of factors such as positioning, surrounding tissues, design, size and the load on the 

wear of the THRs from in vivo studies because each patient’s artificial hip has a 

specific condition. Therefore, to be able to distinguish the effect of each factor, in 

vitro studies have been undertaken, based on an international standard ISO 14242 

(Kaddick and Wimmer, 2001; Stewart et al., 2003; Galanis and Manolakos, 2011) to 

test the variety of the factors with the same condition for each testing.  

Biotribology is the tribological study of the human joint (Dowson and Wright, 1973). 

The study of interacting surfaces in relative motion between them defines tribology 

as being concerned with study of the friction, wear and lubrication (Jin et al., 2006). 

Improved tribological performance can lead to greater articulating surfaces 

efficiency, better performance, and thereby reducing failures, number of surgeries 

and the lifetime costs of a THR. Research in tribology aids the product development 

process by informing where to modify the design. THR designers can use this data 

to reduce losses caused by wear where the articulation of surfaces is involved 

(Affatato et al., 2008). 

1.3.1 Wear 

When there is relative motion between two surfaces, the progressive loss of the 

material of the surfaces is the result of this motion which is defined as wear (Jin et 

al., 2006). Wear can be categorised as: single phase or multiple phase wear 

(Peterson, 1980). In single-phase wear a solid, liquid or gas causes removal of 

material from wearing surfaces by moving relative to a sliding surface (Affatato et 

al., 2008). Multiple phase wear includes a carrier that produces the wear in addition 

to the single phase. During the wear process, worn material is expelled from the 



21 
 

contact between the surfaces in the form of debris which causes a biological reaction 

in the human body. The strategy to minimise wear rate depends on the type of wear 

which is presented in the surfaces (Dowson et al, 2000).  

There are two methods of wear measurement. Volumetric wear is the volume of 

detached material from the bearing surfaces and linear wear (penetration) is the 

displacement of one bearing surface relative to another (Hall et al, 2001). In the 

laboratory, gravimetric techniques are used to measure the wear of the material 

before and after testing and converting the values to volume loss. In simulator 

studies, volumetric techniques are used as well as gravimetric techniques for wear 

determination. Volumetric values include changes in dimensions due to creep as 

well as wear (Hall et al, 2001). 

The amount of volumetric wear (V) can be calculated from following equation (Hall 

et al., 2001): 

𝑽 = 𝒌 × 𝑳 × 𝒔       

Where k is the wear factor, L is the load, and s is the sliding distance. The wear factor 

is a proportional constant which is dependent on the exact condition of the bearing 

contact including surface roughness of the materials and the material used in the 

bearings. As above equation indicates, greater sliding distance leads to a greater 

wear volume.   

1.3.1.1 Wear studies 

Recently there have been many in vitro THR studies to understand the tribological 

performance of the surfaces under different conditions. These studies have focused 

on the wear of the articulating surfaces in different conditions to investigate the 

factors that could potentially increase the wear rate.  In vitro studies were initiated 

from simple wear testing, such as a pin on disk machine, to the most advanced 
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simulators that replicate THR during different activities. Various in vitro testing of 

THR mechanisms by using different laboratory equipment, test methods, and 

measuring systems are explained below (Jin et al, 2006):  

1) Pin-on disc machine: to evaluate the wear and friction of material 

combination under well- controlled, steady-state load conditions.  

2) Pin-on-plate machine: to reciprocate action associated with hip joint during 

walking and simulates the steady sliding speed between specimens. 

3) Joint simulator: developed according to ISO standards (14242-1:2000 to 

14242-1:2014) to study different designs, bearing couples, size and volume 

of wear debris of the bearings in conditions similar to in vivo. 

4) Joint simulator studying adverse conditions: to study effects such as 

separation and edge loading on the wear behaviour of THR. The most 

advanced versions can also feed back the effect of initial parameters that 

could affect the separation and edge loading as well. 

The pin-on disc and pin-on-plate machines are simple screening tests which are 

used to rank the wear of different bearing materials (Revell, 2008). The available 

hip simulators consist of stations which replicate the loading and movements of an 

artificial hip. Namely, flexion-extension (FE), adduction-abduction (AA), and 

internal-external rotation (IE). Table 1.1 represents the available hip simulators and 

range of their motions. As Table 1.1 states, all the simulators replicate 

flexion/extension of the hips however, both internal/external rotation and 

abduction/adduction are not simulated in all the simulators. The only simulators 

which replicate all three degree of freedoms are multi axis testing machines (AMTI) 

and Electromechanical hip simulator EM13. Furthermore, the other difference 

between the simulators are the way that the bearings are positioned. If the bearings 
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are assembled with respect to the in vivo conditions, the cup is positioned on top of 

the head which is called anatomical loading. In anatomical loading simulators, the 

bearings are loaded through the cup. On the other hand, in non-anatomical 

simulators, the head is mounted on top of the cup and the loading occurs through 

the head. 

Table 1.1 Overview of available hip simulators The positive value in the F/E, I/E rotation and 

A/A represents Flexion, internal rotation and abduction and the negative value represents 

extension, external rotation and adduction, respectively (modified from Affatatto et al, 

2006)  

Author Simulator FE 
I/E 

rotation 
A/A Loading 

Bragdon et al., 
2003 

AMTI ✓ ✓ 
✓ 

Anatomical 

Saikko, 2005 HUT-4 ✓ 
- ✓ 

Anatomical 

Smith and 
Unsworth, 2001 

Mark II Durham 
✓ 

✓ - Anatomical 

Nevelos et al., 
2000 

Leeds PA II 
✓ 

✓ - Anatomical 

Barbour et al, 
1999 

PROSIM 
LIMITED 

✓ 
✓ - Anatomical 

Pare et al., 2003 EW08 MMED ✓ - ✓ Non-
anatomical 

Affatato et al., 
2006 

SW 
✓ 

- 
✓ Non-

anatomical 

Ali et al., 2016 EM13 ✓ ✓ ✓ Anatomical 

Although the hip simulators are built to replicate the in vivo scenario, the relevance 

of the experimental studies to the in vivo conditions could be limited. This is due to 

the many differences, both between the simulators and in vivo conditions and 

between the simulators themselves that could potentially affect the wear 

predictions. The major difference between in vivo and in vitro studies are the testing 

environments that cannot be simulated in the experimental simulators, such as in 

vivo bearing positioning, synovial fluid, the surrounding tissue and ligaments. 

Moreover, the simulators are set to repeat millions of walking cycles to achieve a 
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long-term wear predictions. However, in vivo hip joint clearly experiences various 

loading and range of motions. Also, the loading of the hip joint in vitro usually is an 

axial resultant force whereas there are forces in three directions occurring on the 

hip joint clinically (Bergmann et al., 2001). 

There are hip joint simulators such as Leeds PA II, PROSIM LIMITED, and EM13 that 

apply separation conditions to predict the level of wear rate on the THRs due to the 

separation. The separation that was seen in vivo studies during swing phase was 

initially applied to the hip simulators by attaching a spring to the cup 

medial/laterally (Nevelos et al., 2000; Stewart et al., 2003; Williams et al., 2003). 

Then, the combination of swing phase load and medial force by the spring could 

separate the head and the cup in the swing phase time of the gait cycle when the 

load is minimum. Initial in vitro studies evidenced stripe wear on the cup of hard-

on-hard bearings under the existence of microseparation, which was previously 

observed in retrievals (Nevelos et al., 2000). Observation of in vitro stripe wear 

increased the relevance of clinical and experimental studies. Therefore, a wide range 

of in vitro testing has been carried out to understand the effect of microseparation 

on the wear rate. Table 1.2  summarises the level of wear rate that could be seen in 

different bearing couples by these studies. In the most of the studies under 

separation conditions, the level of separation was applied and the resulted wear was 

reported. However, the wear rate that Ali et al (2016) reported, is the level of 

separation caused by other parameters such as translational mismatch level or cup 

inclination angle. 
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Table 1.2 Wear rate of different bearing materials in standard and microseparation 
condition 

Bearing 

materials 

Head 

size 

Standard condition Adverse condition 

Study 
Wear 

(mm3/mc) 

Separation 

(mm) 
Study 

Wear 

(mm3/mc) 

MoM 36 
Al-Hajjar 

et al., 2013 
0.35 0.5 

Williams et 

al., 2013 
1.3 

CoM 36 
Reinders 

et al., 2013 
0.1 0.5 

Williams et 

al., 2013 
0.36 

CoC 36 
Al-Hajjar 

et al., 2010 
0.05 0.5 

Al-Hajjar et 

al., 2010 
0.125 

CoP 36 
Williams 

et al., 2003 
25 0.7 

Williams et 

al., 2003 
5.6 

MoP 36 
Ali et al., 

2016 
13 0.5 

Ali et al., 

2016 
21 

As the above table shows, separation has a significant effect on the wear rate of hard-

on-hard bearings. The wear rate of the hard-on-hard bearings, especially MoM, 

increases when a level of microseparation is introduced to the test condition. In 

hard-on-soft bearings, there is an obvious increase in wear rate in MoP bearings. 

However, this trend could not be observed in CoP bearings. The separation study on 

CoP bearings resulted in a locally deformed polyethylene acetabular cup on the 

superior edge where the edge loading occurred (Williams et al., 2003). Although no 

significant separation was seen in this bearing couple, the observations from 

retrievals and experimental studies have shown significant deformation and 

damage on the edge of the polyethylene which could potentially result in fatigue of 

the polyethylene cup or fracture of the components due to concentrated stress 

(Williams et al., 2003; Ali et al., 2016; Partridge, 2016).  Although, there are similar 

conditions in the studies stated in Table 1.2 such as microseparation level or head 

size, the direct comparison of wear rate between these studies are challenging as 

there are many differences between the studies such as range of motion, radial 

clearance and simulator set up.  
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Further studies have focused on the effect of various parameters such as 

translational and rotation variation of the bearings, swing phase load, head size and 

joint laxity to understand the effect of various factors first on the level of separation 

and second wear rate of the bearing (Williams et al., 2003; Leslie et al., 2008; Al-

Hajjar et al., 2013; Ali et al., 2016). Another wear testing was on the modifications in 

material properties of the bearings that strengthen the materials against wear. For 

example, experimental studies showed that in polyethylene bearings, the usage of 

highly crosslinked polyethylene assisted the wear rate of them. In a similar manner, 

Biolox delta ceramics bearings generation improved the ceramic bearings 

performance in terms of toughness against alumina bearings (Al-Hajjar et al., 2013).  

The body response to the material wear debris is another factor than can lead to 

aseptic loosening of the device.  When wear particles are produced, the body’s 

immune system reaction to this external particles is resorption of living bone tissue. 

The response of human body cells to wear debris varies due to biocompatibility of 

the bearings material and wear debris characteristics such as size, volume, and 

morphology. The main adverse effect of wear debris especially in MoM and MoP 

bearings is the presence of metal ion level and high particle concentration that lead 

to cell death, osteolysis and tissue necrosis (Ingram et al., 2004; Willert, 2005). 

Osteolysis leads to aseptic loosening of the implant and revision surgery in MoM 

whereas CoC bearing were introduced to prevent osteolysis. CoC bearing were 

shown to have less active debris than UHMWPE (Hatton et al., 2003). The 

accumulation of micron and submicron polyethylene wear debris also leads to 

failure of the THR due to osteolysis (Ingham and Fisher, 2000).  
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1.3.3 Friction and Lubrication 

Friction and lubrication are the two main factors that affect the wear rate of the 

bearing surfaces. In artificial joints, friction plays an important role in the stress 

generated at the bearing surfaces and force transmission from bearing surfaces to 

the fixation interface (Fisher et al., 2006).  

The wear rate of a device could be influenced by the friction and lubrication between 

the bearing surfaces. There are three laws of friction commonly used to model 

friction (Fisher et al., 2006) which state that: 

1. Friction is directly proportional to the applied force normal to the surface 

2. Friction is independent of the apparent area of contact.  

3. Frictional force is independent to sliding surfaces.  

The femur and acetabulum surfaces of a natural human joint are covered by 

articular cartilage that has a very low coefficient of friction. The in vitro studies of 

friction, focuses on the frictional torque that is generated in the pendulum friction 

simulator (Brockett et al., 2006). The measured frictional torque (T) is usually used to 

derive the dimensionless parameter called the friction factor to compare effects such 

as combinations of materials, implant size, implant design, load, lubrication, and 

motion profile (Fisher et al., 2006) 

Table 1.3 represents the friction factor of common hip implant material 

combinations. These friction factors are calculated in simulations in the presence of 

bovine serum as the lubrication. As this table shows, friction between coupled 

metallic bearings is the highest of all the bearing types and ceramic on 

ceramic/metal has the lowest friction factor (Brockett et al., 2006). 
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Table 1.3 Friction factor of typical bearings for artificial hip implants in the presence of 
bovine serum simulator (Jin et al., 2006) 

Bearing type Friction factor 

Metal on UHMWPE 0.06-0.08 

Ceramic on UHMWPE 0.06-0.08 

Metal on metal 0.22-0.27 

Ceramic/metal on Ceramic 0.002-0.07 

Lubrication decreases the friction between the articulating surfaces by creating a 

film between the surfaces. The lubrication of the natural hip joint is the function of 

the natural synovial fluid. There are varieties of lubricants which have been used in 

hip simulators to replicate natural synovial fluid. It has been noted that protein has 

the main role in simulator lubricants because of formation of ‘solid like’ layers which 

protect the surfaces against direct contact and consequently, wear (Scholes and 

Unsworth, 2006) . Therefore, lubricants with no protein such as water and saline 

solutions were not appropriate for simulator lubrication. However, increasing 

protein concentration can cause gradual drop in wear rate due to protein 

degradation and un-physiological protection against wear (Affatato et al., 2008).  

Currently, bovine serum is the most common lubricant that is used in hip simulators. 

It produces the same order of magnitude of wear as clinical data (Brown and Clarke, 

2006). 

There are three main lubrication modes in engineering (Dowson, 2001) based on 

complete separation between the bearing surfaces (fluid-film lubrication), partly 

separated and partly in contact (mixed lubrication), and mostly in contact 

(boundary lubrication). The lubrication mode between the bearing surfaces 

depends on the bearing material. 
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1.3.3 Contact mechanics 

Contact mechanics is the study of the behaviour of bodies when they are brought 

into contact. The result of contact mechanics studies is usually the contact pressure 

(or stress) of the bearing surfaces in contact and the contact area of them. The initial 

contact of two solids is at a point or a line. The contact region increases by gradual 

increase of load and the resultant deformation of the surfaces. The studies of 

tribology parameters such as wear, friction, and lubrication are all related to the 

mechanics of the contact. 

Contact mechanics studies of human joints predict the contact pressure and contact 

area of the articulating surfaces when the load is applied to them. As the load 

increases, the surfaces of the joint start conforming to each other which leads to 

greater contact area and a wider stress distribution. The conformity of the surfaces 

depends on the material utilised in the artificial joint. The contact mechanics of 

artificial hip joints have been studied theoretically and experimentally to predict the 

level of stress, pressure, and deformation of bearings in the joint and wear of the 

surfaces (Mak and Jin, 2002; Williams et al., 2003; Al-Hajjar et al., 2010). 

Hertzian theory is the theoretical method for predicting contact area and pressure 

in solids. In 1881, Hertz studied the stress and contact area in an elastic isotropic 

material with normal loading and small contact area relative to the radii of 

curvatures and dimensions of the surfaces (Johnson, 1985). Hertzian theory has 

been extended progressively to fit the particular application and has been developed 

to study the behaviour of bearing surfaces of artificial joints when the bearings are 

in contact. The geometry of the artificial hip joint has been simplified by the 

assumption of an equivalent ball on a plate model.  To determine the contact 
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pressure, first the radius of the equivalent ball (R) should be calculated using (Meng 

et al., 2013): 

𝑹 =
𝑹𝒄 × 𝑹𝒉

𝒄
 

Where Rc is the radius of the cup, Rh is the radius of the head, and c is the radial 

clearance. Then the radius of the contact (r) can be determined from following 

equation: 

𝒓 = (
𝟑𝒘𝑹

𝑬′
)

𝟏
𝟑        

Where w is the applied load to the bearing and E’ is the equivalent elastic modulus 

of the bearings which can be derived from: 

𝟏

𝑬′
=

𝟏

𝟐
(

𝟏 − 𝒗𝒄
𝟐

𝑬𝒄
+

𝟏 − 𝒗𝒉
𝟐

𝑬𝒉
)     

Where vc is the Poisson’s ratio of the cup, Ec elastic modulus of the cup, vh Poisson’s 

ratio of the head, and Eh is the elastic modulus of the head. Then the contact pressure 

(pmax) of the bearings under a given load can be determined as: 

𝒑𝒎𝒂𝒙 =
𝟑𝑾

𝟐𝝅𝒓𝟐
 

Contact pressure and contact area of bearing surfaces can be measured 

experimentally by using sensors or pressure-sensitive film. The contact area of the 

bearing surfaces can also be measured by using engineering ‘blue’. El-Deen et al 

applied engineering blue on knee replacement to determine the contact patch 

between the two components and the contact patch could then be measured using 

Vernier callipers (El-Deen et al., 2006). 

Thin film transducers such as pressure sensitive film (Fuji prescale film) and 

electrical resistance sensor (TekScan) are used to measure both contact pressure 
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and contact area (Bachus et al., 2006). Fuji prescale film system is based on 

measurement of the contact area of the stain by summing the area of stained pixels 

on the film from the image analysis programme. The average pressure can be 

calculated from the average pixel density of the film. TekScan is a digital pressure 

sensing device which measures the force as a change in electrical resistance at each 

sensel (row column intersection). Then, the contact area and eventually contact 

pressure can be represented on the computer during loading because of electrical 

isolation of each sensel (Bachus et al., 2006). 

The Teksan technique has greater accuracy and reliability, can gauge a wider range 

of load, and produce real-time data (Revell, 2008). However, the major disadvantage 

of all these methods is the thickness of film or sensor which is noted to be of the 

order of 100µm. Therefore, these methods are not suitable for the hip implants with 

close conforming bearing surfaces with a decrease of less than one millimetre.     

Hertzian theory equations can be used for hard-on-hard bearings used in hip 

replacements. However, Hertzian theory does not consider the thickness of the cup 

and also, it is more applicable for the nonconforming contact. Therefore, another 

method called simple elasticity analysis was introduced to determine more valid 

prediction of contact stress of hard-on-soft bearings (Jin et al., 1994). This method 

represents that the contact pressure (p) can be determined by use of parameters 

such as Poisson’s ratio of the polyethylene cup (v), elastic modulus of the cup (E), 

thickness of the cup (d), and radial deformation (ur) which can be calculated by 

using the following equation: 

𝒑

𝒖𝒓
=

𝑬

𝒅

(𝟏 − 𝒗)

(𝟏 − 𝟐𝒗)(𝟏 + 𝒗)
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There have been experimental studies of the contact stress of THR bearings which 

are usually compared with the contact stresses derived from finite element 

modelling of joint. Table 1.4 shows the studies that have been carried out on various 

THR bearing couples. As this table shows, when a UHMWPE bearing is utilised, the 

contact pressure is significantly lower due to larger half contact area of bearing 

surfaces caused by the polyethylene flexibility under the load.  

Table 1.4 Contact stress of different bearing couples 

Bearing 
couples 

Head diameter 
(mm) 

Max. contact 
pressure (MPa) 

Total contact 
angle (o) 

Reference 

MoM 14 50 40 
Jagatia and Jin, 

2001 

MoP 11-16 10-23 80-100 
Jalali-Vahid et al., 

2001 

CoC 14 80 30 
Mak and Jin, 

2002 

The simple equations on the contact mechanics changes are not applicable for 

separation conditions due to higher level of complexity. The complication of the 

separation condition arises from the edge contact where the contact zone is less. 

Moreover, the prediction of contact zone is a challenging concept as only the medial-

lateral separation is identified. Therefore, finite element modelling can be used to 

predict the more complicated contact mechanics scenarios. 

1.4 Computational studies 

Computational modelling along with experimental testing is a useful tool for 

preclinical testing of the prosthesis behaviour. Such models allow the prediction of 

the THR behaviour under the certain conditions that are of interest.  The 

computational predictions are used to understand the effect of a range of 

parameters and their severity when experimental and clinical studies of the same 

conditions can be time consuming, expensive and complicated.  
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Computational modelling allows the examination of the dynamic behaviour and 

contact mechanics of the articulating surfaces of total hip replacements. It also could 

be representative of dynamic motion of the femoral head within the acetabular cup 

and contact pressure distribution during an activity (Gao et al., 2015). A successful 

computer model can either: 

 Predict the outcome of an experimental run, without the expensive and time 

consuming process 

 Direct an experimental run by providing a starting point for areas of interest 

within the parameters 

For better understanding of hip joint tribology, the contact mechanics performance 

of THR such as contact area, contact stress, and pressure distribution in a hip joint 

are required to understand the source of the long term outcome of the device. Most 

of the computational analyses have been carried out using static conditions (Bartel 

et al., 1985; Besong et al., 2001; Hua et al., 2012). Static contact mechanics study on 

its own might not be able to provide realistic data because the contact mechanics is 

studied  based on the single static condition rather than considering the dynamic 

loading during an activity which could affect the contact zone. Therefore, 

biomechanics and tribology characteristics should be integrated to fully simulate 

hip joint behaviour in different positions. Integration of dynamic motion and contact 

mechanic studies of THR would be the best solution for a more realistic 

understanding.  

Expensive computational cost, long computing time and appropriate simplification 

of the models are the challenges which are faced in coupling motion dynamics and 

contact mechanics. Currently, the coupling of biomechanical and biotribological 

analysis of human joints such as knee (Godest et al., 2002; Halloran et al., 2005; 
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Baldwin et al., 2009) have been examined by using finite element methods and rigid 

body dynamics. Finite element method is one of the most advanced simulation 

techniques in solid mechanics which is used as a tool to design and analyse 

orthopaedic prosthesis especially THRs (Kayabasi and Ekici, 2007). However, full 

coupling of biomechanics and biotribology of artificial hip joints under adverse 

conditions has not been achieved yet. In this section, previous computational 

modelling such as finite element and dynamic studies on THR and other prostheses 

are reviewed. 

1.4.1 Finite element modelling of THRs 

The experimental studies and mathematical analysis provide some information on 

the contact mechanics of artificial hip joints such as the maximum pressure applied 

to the components or contact area of the articulating surfaces. However, it is 

necessary to use computational modelling to reproduce a wider range of the 

physiological conditions of daily activities and to analyse kinetic and kinematic 

parameters of the joint components and surrounding material. Kinetic analyses of 

hip replacements have been studied by finite element (FE) method to approach 

design optimisation and pre-clinical safety and reliability testing of artificial joints 

(Plank et al., 2005; Jennings et al., 2012). Table 1.5 represents a summary of studies 

on the contact mechanics analysis of artificial hip joints. 
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Table 1.5 Previous computational studies on contact mechanics of THRs 

 Reference Type of geometry Focus of Study 

Carter, Vasu and 

Harris, 1982 

2D Cement thickness and metal backing 

Bartel et al., 1985 Axisymmetric Conformity and plastic thickness  

Mak and Jin, 2002 Axisymmetric CoC bearings 

Kurtz, Edidin and 

Bartel, 1997 

3D Shell/liner conformity of surfaces 

Korhonen et al., 2005 3D Cemented THR  

Plank et al., 2005 3D Conventional polyethylene and 

UHMWPE on THR 

Besong et al., 2001 Axisymmetric, 3D Cementless MoM 

Sariali et al., 2012 3D Microseparation 

Hua et al., 2012 3D Microseparation in MoP  

Mak et al., 2011 3D Rim design under edge loading  

It can be seen from the table that there are three different geometrical types of 

artificial hip joint FE models: two dimensional (2D), axisymmetric, and three 

dimensional (3D).  

1.4.2 Two-Dimensional hip models 

The early development was carried out on the 2D and axisymmetric models. The 

first 2D model of an artificial hip joint was undertaken (Carter et al., 1982) to study 

the stress analysis in a conventional polyethylene acetabular cup with different 

cement thickness and effect of metal backing on the cup. Figure 1.12 shows the 

loading and material property region of THR model with 1 mm PMMA cement and 

metal backing. Finite element analysis of this model suggested prevention of cup 

loosening by use of metal-backed acetabular component (Carter et al., 1982). A two 

dimensional model may produce a quick analysis. However, 2D models might not be 

reliable if the attention is on the third dimension which is not considered in two 
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dimensional models. For example in this study, stress distribution has been 

considered only on the central plane not on the inner surface of the cup. In two-

dimensional models, plane strain is assumed (i.e. the strain out of the plane is 

assumed to be zero).   

 

Figure 1.12: 2D model of THR with A) 1 mm PMMA and B) with metal backing (Carter et al., 
1982) 

1.4.3 Axisymmetric hip models 

An axisymmetric model is basically suitable for the symmetric configuration about 

an axis and it is usually used for replacing 3D model with simple configuration to 

save computational resources. 2D and axisymmetric models represent high 

computational efficiency and lower computational storage compare to 3D models. 

Therefore, they are developed to establish initial estimation of the problem.  

An axisymmetric contact model of UHMWPE acetabular cups against metallic 

femoral heads (Figure 1.13) was developed to predict the contact area and stresses 

in articulating surfaces under various loads. The result of this configuration was 

compared to the experimental measurements and simple elasticity analysis for data 

validation (Jin et al., 1999).  Another axisymmetric model (Figure 1.13) was 

developed by Bartel et al (1985) to study the effect of conformity and plastic 

thickness on contact stresses in metal backed plastic implants (Bartel et al., 1985). 
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This study was based on linear elastic behaviour; however, polymers display elastic 

and also plastic behaviours when the yield stress is exceeded. 

 

Figure 1.13 The axisymmetric models of THR A) The axisymmetric finite element model of 
Jin et al (1999) B) Axisymmetric THR model of Mak and Jin (Mak and Jin, 2002) C) FE model 

of metal backed plastic cup in Bartel et al (1985) 

An axisymmetric finite model of CoC bearings was developed by Mak and Jin to study 

contact mechanics of this type of bearing (Mak and Jin, 2002). This model included 

ceramic insert and head, metallic stem, and a polyethylene backing secured in 

metallic shell for fixation purposes. Figure 1.13 shows the construction of these 

components. The much higher elastic modulus of the metal than the polyethylene 

meant that its effect was negligible for this model. This study indicated that the 

contact mechanics of the CoC THR largely depends on design parameters such as 

radial clearance and ceramic insert thickness. Furthermore, it was demonstrated 

that Hertz contact theory is an applicable method for validation of CoC 

computational models.  

If the contact analysis is carried out on axisymmetric models, the hip joint has been 

implanted vertically to have XY axis as an axis of symmetry. However, in vivo, the 

cup is implanted with different inclination angles with respect to the femoral 

components. Thus, the actual assembly of the hip replacement in vivo is not 

comparable to the axisymmetric configuration.   
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1.4.4 Three-Dimensional hip models under idealised condition 

Three dimensional models of THR have been widely developed to investigate the 

effect of design parameters and surgical techniques on the contact mechanics of the 

articulating surfaces. The running time of the 3D THR models is longer than 2D and 

axisymmetric models as more calculations are required compared the 2D and static 

models. However, these models are generally more realistic output as three 

dimensional effects of the kinetics and kinematics are taken into consideration in 

contact mechanics studies. In fact, one previous study has showcased the difference 

in the contact output of axisymmetric and 3D models of the THR (Besong et al., 

2001). The model consisted of a titanium shell, cobalt chrome femoral head and 

insert with 30µm radial clearance. The model was designed to be cementless. A 3D 

model was developed to consider the loading of the joint in the anatomical position. 

The comparison of axisymmetric and three dimensional models suggested a 

difference between the peak contact pressure in axisymmetric and 3D model of the 

THR (5MPa difference in the peak value) which is caused by the anatomical loading 

and axial loading in 3D model and axisymmetric model. 

Three dimensional THR FE models are generally carried out on idealised conditions 

and the 3D modelling of separation has only recently been introduced (Sariali et al., 

2012; Hua et al., 2014). In this section, the FE THR models under the idealised 

condition are reviewed. Three dimensional THR replacements mainly focus on the 

interfaces within the THR to predict the risk of fixation or contact failure. In addition, 

the effect of design, positioning and the material properties are studied for 

behaviour prediction. One of the studies that focuses on the interface between the 

polyethylene liner and metal shell due to manufacturing tolerances or locking 

mechanism of liner and shell was by Kurtz et al (1998). In this study, a three-body 

contact (femoral head, polyethylene liner, and the shell) was solved for quasi-static 
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response with four sets of liner boundary conditions: no restraints, rim restraints, 

equatorial restraints, and both rim and equatorial restraints. This study suggested 

that in nonconformities designs, deformation of polyethylene liner within the shell 

occurs to make a solid contact with the shell. This shell/liner interaction leads to 

load transfer and relative motions between the shell and liner (Kurtz et al., 1998). 

Korhonen et al studied the effect of the design and positioning of the THR by 

focusing on how the geometry and abduction angle affected contact pressure and 

area of a cemented THR (Korhonen et al., 2005). In this study, a FE analysis of two 

clinically tested designs (IP and Labinus eccentric shown in Figure 1.14) and two 

additional designs with cement mantle and femoral head were generated to predict 

the effect of cup clearance and thickness on contact mechanics.  

 

Figure 1.14 Clinically tested IP and Labinus (Korhonen et al., 2005) 

A significant change of mechanical stresses on the acetabular cup was observed due 

to geometrical design, thickness, and abduction angle of the acetabular cup in the 

loading cycle. This analysis suggested that increased clearance leads to greater 

contact pressure at interfaces and also that polyethylene layer thickness and contact 

pressure have an inverse effect on cup-cement interface. Figure 1.15 shows 

validation of contact area in the numerical model and experimentally tested IP and 

Labrius cups which represented a fairly consistent result. 
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Figure 1.15 Contact area of the Labinus and IP cup under loading cycle in a) experimentally 
tested and b) numerical models (Korhonen et al., 2005) 

The effect of the material properties and the bearing design were studied by Plank 

et al (2005). The contact stresses in conventional and crosslinked UHMWPE 

acetabular cups, different femoral head sizes and liner thicknesses were analysed. 

This study focused on the contact stress on the acetabular cup. Therefore, the 

femoral head was modelled as an analytical surface. Since the moduli of the femoral 

head and the shell are significantly higher than the liner, these two components 

were treated as rigid bodies. This approach has been taken forward in subsequent 

studies as it saves computational running time due to reduced element numbers 

(Hua et al., 2012). 

Plank et al’s study suggested a lower contact stress occurred for crosslinked 

UHMWPE than the conventional material in all the examined sizes (Figure 1.16). It 

also indicated that the use of larger highly crosslinked UHMWPE head sizes with 

3mm liner thickness resulted in lower stress than conjunction of smaller 

conventional head with 3 mm liner thickness. The FE analysis also represented a 
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consistent result with experimental measurement of contact pressure by use of Fuji 

film.  

 

Figure 1.16  Maximum stress of FE models of THR using conventional and highly cross linked 
ULHMWPE (Plank et al., 2005) 

1.4.5 Three dimensional hip models under microseparation 

condition 

There have been a small number of three-dimensional finite element models of THR 

that studied the effect of microseparation, cup inclination angle, cup abduction 

angle, and radial clearance between the femoral head and the cup on the contact 

mechanics of articulating surfaces of THR (Mak and Jin, 2002; Sariali et al., 2012; 

Hua et al., 2014). Mak et al THR model (Figure 1.17) consisted of alumina femoral 

head and bearing insert, metal stem and shell, and polyethylene backing. An 

assumption was made that fully bonded interfaces occurred between backing and 

insert and also between femoral head and stem, allowing concentration on the 

contact of the femoral head and bearing insert in a range of different 

microseparation conditions. The radial clearance was assumed to be 0.04 mm and 

thickness of the bearing as 5mm. A simple analysis was firstly followed to determine 

when microseparation would lead to edge loading. Frictionless contacts were 

assumed.  
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Figure 1.17 THR modelled by Mak et al with 45o cup inclination angle (Mak and Jin, 2002) 

The result of this study suggested that the microseparation which is required to 

cause edge loading of the THR is inversely proportional to the cup inclination angle 

and proportional to the radial clearance. Furthermore, it was observed that smaller 

microseparation is required in hard-on-hard bearings to cause edge loading due to 

close conformity and small clearances. This study also showed that microseparation 

less than 80µm does not cause edge loading. However, when the microseparation 

was increased to 120µm, the contact pressure was increased significantly due to the 

contact of the head with the edge of the cup. Furthermore, this study suggested that 

when microseparation was increased to 250µm, the cup with the filleted edge had a 

great effect on reduction of the contact pressure compared with the sharp edge. 

Sariali et al (2012) attempted to determine the effect of high cup abduction angle on 

contact mechanics of articulating CoC bearings with different microseparation 

values. A 32mm ball with 30µm radial clearance was modelled in normal conditions 

(45o abduction angle and 0o anteversion angle) and for variations of cup abduction 

angle (45o to 90o). In the normal condition, it was indicated that lateral 

microseparation greater than 30µm caused edge loading. However, smaller values 

of microseparation caused edge loading when a larger cup abduction angle was 

involved. In the condition with no microseparation, the value of contact pressure 
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increased from 66MPa under normal conditions to 137.2 MPa in 90o cup abduction 

angle and up to 200MPa when 240µm lateral microseparation was obtained. 

Figure 1.18 shows the increase in contact pressure in the THR as the cup abduction 

angle increased. This study focused on the effect of microseparation on a specific 

point during the gait cycle (swing phase when the most microseparation occurs).  

However, the loading on the hip is dynamic during the gait cycle and it varies 

significantly with time; the contact mechanics could be affected by this variation in 

the loading.  

 
Figure 1.18 Contact pressure analysis of the CoC THR model under 0-500 µm lateral 

microseparation and 65 to 90 condition (Sariali et al., 2012) 

A study on edge loading of cemented hard-on-soft bearings was carried out recently 

to examine the effect of cup inclination angle on contact mechanics and cup fixation 
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of THR (Hua et al., 2012). An UHMWPE acetabular cup with a 22.2mm diameter 

metallic femoral head and 0.1825mm radial clearance was modelled. Cup inclination 

angles from 45o to 65o were simulated with penetration of femoral head to UHMWPE 

cup ranging from 0 to 4mm. As Figure 1.19 represents, the contact pressure 

increases significantly when no penetration is achieved but the contact pressure 

with different non-zero penetration rates only slightly varied. This study suggested 

the sensitivity of the hard-on-soft bearings to cup inclination angle changes is less 

than hard-on-hard bearings (Liu et al., 2005). Furthermore, the maximum von Mises 

stress in the cement mantle occurred at the cup/cement interface. Comparison of 

different conditions indicated that the highest von Mises stress in the cement mantle 

occurred when there is 65o inclination angle with 4mm penetration due to reduction 

in the cup thickness. 

 
Figure 1.19 Contact mechanics analysis of MoP THR in different penetration rate (Hua et al., 

2012) 

The previous studies that were discussed proved that when microseparation is 

combined with lateral displacement or excessive cup inclination and abduction 

angle, the contact of rim of the cup and head occurs and this leads to increased 
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contact stress. A new FE model of THR was carried out to predict the effect of 

different cup rim geometries on the increased stress (Mak et al., 2011). In this study, 

a 28 mm diameter CoC THR with 40 µm radial clearance was modelled and 

microseparation distance was selected to be between 0 and 250 µm.  As Figure 1.20 

shows, three different edge geometries were investigated: as new, worn, and 

chamfered (rim geometry after 1 million cycle of tested product in hip simulator 

under microseparation conditions). It was interesting to note that different rim 

geometry affected the distance for the onset of rim contact. When edge contact 

initiated, the maximum contact pressure was greater if the contact area was less. 

The maximum von Mises stress (672 MPa) under 250 µm microseparation was the 

greatest in the ‘as new’ geometry. When the contact area becomes greater due to rim 

geometry changes, the contact pressures decrease to 425 MPa and 437 MPa in worn 

and chamfered rims, respectively. 

 
Figure 1.20 Three different geometry of cup rim in Mak et al study (Mak et al., 2011) 

All of the computational studies on the contact mechanics of THR under 

microseparation conditions try to replicate the conditions of a specific time frame in 

a gait cycle using a static calculation at that time, such as the time period when 

maximum load occurs or when the separation is at the maximum level (minimum 
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axial load). However, the gait cycle is a dynamic system and therefore the THR 

experiences a varying load throughout the cycle. A simple static model may not 

report accurate data from its calculations as the location of the contact will vary due 

to the loading changes. Further, in these studies the position of the THR components 

is estimated based on the experimental separation levels or various separation 

levels were tested to the model directly. Then, contact mechanics of the bearings 

were analysed when a load is applied (Sariali et al., 2012). Contact mechanics of 

articulating surfaces in the hip replacement have been analysed statically when a 

single load or series of load is applied to the prostheses. This means in previous 

studies, specific time frames of a gait cycle have been chosen and the loading 

conditions of the step were applied to the model statically. Therefore, the studies 

are controlled by the force rather than the motion which drives the component.  

One of the other limitations of this approach is the inability to analyse the relative 

motions of components of the model during an entire gait cycle, instead using only 

the simplified loading condition. Since the details of the motion between the discrete 

points affect the stress state, the static models are not able to analyse the contact 

mechanics with real conditions especially throughout a gait cycle due to significant 

changes of dynamic load compared to static conditions (Kayabasi and Ekici, 2007). 

Consequently, the conjunction of dynamic and FE model is essential to achieve more 

precise understanding of contact mechanics of THR in vivo and vitro. That means a 

mathematical model needs to be developed to investigate first kinematics such as 

motion and contact forces throughout a gait cycle (dynamics model) and then carry 

out static contact mechanics analysis such as contact pressure, stress, and 

deformation of components on each step (FE model). 
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1.4.6 Coupling of dynamic and contact mechanic analysis   

Development of dynamic models of the prostheses to determine joint and contact 

mechanics during a dynamic loading condition is the best tool to predict the relative 

motion and kinematic analysis accurately. The number of dynamic studies on the 

THR are limited as the hip joint is a ball and socket geometry and the contact is 

usually stable. However, the dynamic studies of THR have been developed when the 

idea of edge loading and increased wear were introduced due to substantial changes 

in the contact condition. The most kinematic and contact mechanic integration 

analyses have been carried out on the total knee replacements (TKR).  Table 1.6 

summarises the number of these dynamic and contact mechanics studies that were 

carried out on knee and hip replacements.  

Table 1.6 previous studies on coupling of kinematic and FE methods of THR 

Number Model 
Finite element 

solver method 
Reference 

1 2D model of TKR Implicit Reeves et al., 1998 

2 
2D model of non-conforming 

TKR 
Implicit 

Estupinan, Bartel 

and Wright, 1998 

3 3D model of TKR Explicit Godest et al., 2002 

4 3D model of TKR Explicit 

Halloran, Petrella 

and Rullkoetter, 

2005 

5 3D model of TKR Explicit Baldwin et al., 2009 

6 THR as a pendulum model Explicit Liu et al., 2010 

7 3D model of THR Explicit Gao et al., 2015 

In order to solve a dynamic finite element problem, the analysis requires 

incremental load or displacement steps (ABAQUS 6.12 documentation, 2012). In 

each step, several linear equations, which are represented as a system called 

‘stiffness matrix’, need to be solved. There are two methods which can to solve these 

and generate dynamic solutions. One of the methods calculates the state of the 

incremented step from the solution of the stiffness matrix from previous step using 
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a forward Euler Method. This method is called an explicit solver. Another way to 

solve the dynamic model requires the stiffness matrix of the current state of the 

system, and the stiffness matrix of the incremental step. This method is called 

backward Euler’s method which is implicit (ABAQUS 6.12 documentation, 2012).  

Reeves et al (1998) and Estupinan et al (1998) studied the cyclic dynamic loading 

effect on UHMWPE behaviour by generating 2D and idealised 2D model of TKR 

implicitly. The disadvantage of using implicit solver for dynamic analysis is the long 

time it takes to solve the equations. Therefore, the models are restricted to two-

dimensions and these 2D models might provide valid information about the central 

plane of contact. However, the stresses and deformation of THRs in the medial-

lateral direction have not yet been investigated using this approach (Estupinan et 

al., 1998; Reeves et al., 1998).  

Explicit models of joint replacements, mainly total knee replacements, have been 

generated to predict the kinematic and contact mechanics under dynamic loading 

and avoid the problems encountered by the Reeves and Estupinan groups (Godest 

et al., 2002; Halloran et al., 2005; Baldwin et al., 2009). These studies used 

mechanical knee simulators for direct experimental validation. Therefore, the 

boundary conditions of the models were adjusted to simulate the mechanical knee 

simulator environment. In these studies, the contact force was defined to be a 

function of penetration distance of master into slave surface (penalty-based 

method). These dynamic studies are difficult to compare directly to previous static 

ones due to different loading, boundary conditions, and different implant 

geometries. 

The explicit models of TKR are able to simulate the soft tissue actions which have 

not been considered in implicit models. The explicit models allow ‘buckling’ of soft 
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tissue whereas implicit models would cause stability problems if buckling occurs. 

Soft tissue behaviour was simulated differently in each study. Godest et al (2002) 

defined two planar joints to simulate the springs in the simulator that perform as 

soft tissues. Halloran et al (2005) used spring elements to constrain any internal-

external and inferior-posterior displacement. In the most recent study, the tendons 

and ligaments around the knee were represented in a more complex but more 

realistic way by fibre-reinforced composite material model that consist non-linear, 

tension only springs embedded in a low-modulus, hyper elastic deformable 2D 

quadrilateral mesh (Baldwin et al., 2009). 

Godest et al (2002) studied the effect of mesh density, time steps, and coefficient 

friction on AP displacement, IE rotation, and internal stresses within a single 

analysis. At first, the axial force, anterior-posterior force, torque, and flexion angles 

a function of gait cycle were represented based on the boundary conditions. In this 

study, minor variation between the theoretical kinematic data and experimental 

value was seen. The exact coefficient of friction between polyethylene and metal was 

unknown. Also, the mass and the inertia of the fixtures of knee simulators were 

ignored (Godest et al., 2002). In engineering, dynamic model usually involves rigid 

body assumptions and rigid body analysis does not calculate internal stress and 

strain of each element. Therefore, a softened contact which does not consider 

internal stress was defined when the interaction occurs (Godest et al., 2002). 

Halloran et al (2005) and Baldwin et al (2009) developed explicit model of Stanmore 

knee simulator, Purdue knee simulator, and Kansas knee simulator to study tibio-

femoral and patella-femoral articulation using two different methods (Halloran, et 

al., 2005): 

1) Fully deformable model  
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2) Rigid body analysis  

The rigid body model was used to analyse the kinematic data with significantly 

shorter computational time. However, a softened contact capability had to be 

defined to be able to study contact mechanics of the model. In both studies the 

kinematic data was determined and the data were experimentally validated. In the 

Halloran group’s study, the kinematic data approached a good agreement although 

the same assumptions of material properties of polyethylene and same coefficient 

of friction as Godest et al study were used. Both rigid body analysis and fully 

deformable models gave reasonably close data (Figure 1.21). However, it should be 

noted that use of softened contact also requires estimation of non-linear pressure-

overclosure relationship by material property data. A limitation of this method is 

the significant central processing unit (CPU) time usage of a fully deformable 

analysis. 

 
Figure 1.21 Contact pressure contour comparison during the gait cycle for both deformable 

(left) and rigid body (with softened contact) (right) analyses  et al., 2005) 

1.4.7 THR dynamic modelling 

Liu et al (2010) tried to simulate MoM, CoC, and MoP resurfacing total hip 

replacement in a simple pendulum model to study THR dynamic and contact 
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mechanics analysis of the component interaction. The THR was simulated as a ball 

in socket geometry of the fulcrum and the ball was connected to a mass ball by a 

massless wire (Figure 1.22). Hence, different motion angles and dynamic loading of 

the mass ball simulated simple kinematic data that a hip joint experiences. This 

study was carried out using coupled (using explicit model) and decoupled (using 

explicit and standard) method (Liu et al., 2010). 

In coupled method, both dynamic and contact mechanic analyses were carried out 

in ABAQUS/explicit. However, in the decoupled method, the dynamic response was 

predicted using ABAQUS/explicit and the corresponding force predicted from 

explicit model was applied to the ABAQUS/standard model at different time steps 

to investigate contact mechanics analysis. In the coupled method, the cup was 

assumed to be a fully deformable model and femoral head was set as analytically 

rigid body whereas in the decoupled method, the cup was set as analytically rigid 

body for dynamic analysis. The same boundary conditions and parameters such as 

elements and mesh were used for both methods.  

In the Liu et al study, the contact pressure of implicit model was compared to 

dynamic transient pressure of explicit model. Although both methods predicted 

adequately the dynamic and contact mechanics under the conditions, the decoupled 

method was more efficient in predicting THR performance. The main limitation of 

this study was the difference in the dynamic response and motion angle of the 

pendulum model (Figure 1.22) to the gait cycle. The pendulum model response force 

and motion angle were similar to sinusoidal and cosinusoidal waveforms, 

respectively. However, the gait cycle consists of various loading conditions including 

swing and stance phase and its motion is more like ‘V’ shape with different 

maximum and minimum values.  Also, this study did not consider the effect of 
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muscle forces on the analysis. It only applied the body weight which is considered 

to the hip joint during a walking cycle. 

 
Figure 1.22 The pendulum model used in Liu et al study (Liu et al., 2010) 

Three dimensional dynamic and contact mechanics modelling of the THR is still 

under development and most of the studies in this area only present the 

development criteria of this type of modelling and do not draw significant 

conclusions. Gao et al, studied the explicit modelling of the THR under normal 

walking cycle (Gao et al., 2015). In this study, the range of motion and anatomical 

loading of the THR (Figure 1.23) was applied to the explicit method model to justify 

the use of explicit method. The study contrasts the explicit method to the implicit 

and analytical methods, and also aims to show the accuracy and efficiency of the 

explicit method. Mesh sensitivity analysis and time steps were examined on the 

contact pressure and sliding distance of the hip with respect to the cup. This study 

shows that explicit method is a useful method to predict and capture the contact 

pressure and accumulated sliding distance for THR in a gait cycle. However, this 

study is limited to one set of normal walking activity and it does not recommend 

that explicit modelling is a convenient method for a range of activities when the 

stability is significantly less. 
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Figure 1.23 a) CAD and b) FE models of an artificial hip joint in Gao et al study (Gao et al., 

2015) 

1.4.8 Wear modelling 

Another type of modelling that is carried out on THRs is wear modelling. Wear 

modelling has focused on wear of hard-on-soft bearings, initially made from 

polyethylene (Maxian et al., 1996; Wang et al., 1998), and more recently has evolved 

with the technology to model hard-on-hard bearings (Liu et al., 2008). In these wear 

models, the formula for wear prediction based on sliding distance, load and the wear 

factor which is assumed to be constant throughout the analysis. Other factors that 

are considered in wear studies are the lubrication form and the thickness which 

affects the wear directly (Mattei et al., 2011).  The wear studies are used to predict 

the wear scar on the bearing surfaces and the film thickness. However, the 

assumption of constant wear factor does not allow a realistic wear prediction 

against the experimental studies as the wear factor varies based on the load, velocity 

and the loss material volume (Mattei et al., 2011).  

1.5 Summary 

The performance of THR devices can be affected by the quality of the tissues 

surrounding the joint or the mismatch of the component centres during hip 

replacement surgery. Experimental studies have shown that these factors can cause 
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the separation of the two components during the walking cycle (dynamic 

separation) followed by contact of the femoral head with the rim of the acetabular 

liner (edge loading), which can lead to stripe wear on the components, increased 

wear and shortened implant lifespan (Nevelos et al., 2000; Williams et al., 2003; Al-

Hajjar et al., 2010). It is therefore important that pre-clinical testing includes the 

assessment of THR devices under adverse conditions and differentiates the factors 

that have the most effect on the THR performance.  

A precise computational model could be a useful tool to: 

1) Provide in depth insights on THR behaviour during activities. 

2) Understand the effects of various clinically-relevant parameters on the 

microseparation and contact mechanics. 

As Table 1.7 represents, 2D and axisymmetric models of THRs are useful tools for 

gaining an initial understanding of the parameters of interest on the contact 

mechanics. However, the conditions of the 2D and axisymmetric models such as no 

consideration of third plane stress and the non-anatomical contact and load inputs 

limit their application for realistic simulation of THR performance.   

Table 1.7 Summary of the advantages and limitations of different FE modelling types 

Modelling type Main advantage Main limitation 

2D Simple and quick solution. 
The stress in the third plane is 

neglected. 

Axisymmetric Simple and quick analysis. 
Central THR contact of the surfaces 

is assumed. 

3D 

More realistic to the 

experimental and clinical 

conditions. 

Separation could only be applied to 

the model rather than a 

measurement. 

The load changes during gait cycle 

is not considered. 
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The THR undergoes a range of loading in an activity. However, previous 

computational studies of the THR have modelled the loading cycles as a series of 

static frames that do not take account of the dynamic conditions. Previous 

computational studies of separation have mostly focused on the effect of 

microseparation on the contact mechanics of the 3D THR at a specific time of 

walking cycle (Hua et al., 2012). There are no computational studies that focus on 

the effect of individual parameters on the separation and contact mechanics of THR 

under dynamic loading.  

The idea of the integrated dynamic and contact mechanic computational model of 

THR has been recently introduced and there have been only limited initial studies 

on this area. However, the previous studies mostly report the sensitivity of the 

models to certain conditions and none of the previous studies incorporating 

dynamics and contact mechanics have focused on the separation effects. 

1.6 Aims and objective 

The ultimate aim of this project was to develop a preclinical computational tool in 

order to examine the effect of clinically-relevant parameters on the separation and 

contact mechanics of hard-on-soft THRs as the recent analysis have shown that 

hard-on-soft bearings are the most common THRs that have been used in England 

(National Joint Registry, 2016).  

This developed model can have variety of applications in industrial, experimental 

and clinical perspectives. As this model studies the direct effect of input parameters 

on the separation and contact mechanics, the source of THR weakness in adverse 

conditions can be detected and consequently, the design, material combinations and 

the positioning of the bearings can be optimized to reach higher tolerance to edge 

loading. Moreover, the durability of THR can be potentially prolonged for more 
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active and young patients when the component is less affected by wear due to the 

separation and edge loading.  Although, in vitro testing has been carried out under 

adverse conditions to study the wear rate of the THR, this is the most applicable 

method to analyse the hip implants in a clinical and experimental environment that 

is cost and time effective. This model could be used as a tool to analyse the effect of 

wide range of parameters on the outcome and the most crucial parameters can be 

tested in vitro. 

To achieve this aim, a finite element model of the THR was developed that could 

simulate the dynamic motion during a gait cycle and predict the THR separation and 

contact mechanics. The developed computational model replicates one station of an 

existing hip simulator so that comparisons could be made for validation purposes. 

The following objectives were set to achieve the aim of the project (Figure 1.24): 

 Develop an explicit dynamic FE model of a simplified THR under concentric 

conditions that replicates one station of Leeds II hip simulator and examine 

the effect of computational modelling choices on the outputs (This work is 

presented in Chapter 2). 

 Develop an explicit dynamic FE model of a Pinnacle ceramic-on-polyethylene 

(DePuy Synthes) THR under adverse conditions including a mechanism for 

separation during swing phase (This work is presented in Chapter 3). 

 Study the effects of varying clinically relevant parameters, namely, the 

translational mismatch level, the rotational variation and the swing phase 

load on the dynamics of the THR. (This parametric sweep is presented in 

Chapter 4). 
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 Validate the computational model output against existing experimental data 

by comparing the in vitro and in silico separation (This work is presented in 

Chapter 4) 

 Examine the effect of translational mismatch level, rotational variation and 

swing phase load on the THR contact mechanics including the contact 

pressure and stress components that cannot be measured experimentally 

(These additional output of the parametric sweep is presented in Chapter 5). 
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Figure 1.24 The flowchart and order of the chapters with a brief description of the chapters 
focus 
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Chapter 2 Development of the explicit model under 

concentric loading conditions 

2.1 Introduction 

The foremost aim of this project was to develop a computational model of a total hip 

replacement (THR) to study the effect of parameters, such as surgical 

malpositioning, on the contact mechanics of THR during walking. Subsequently, 

validation of the model with existing in vivo or in vitro studies is required in order 

to examine its reliability and accuracy. Therefore, for validation purposes, the 

computational model was established to replicate the Leeds II hip simulator. This 

simulator has the capability to test the effect of adverse conditions on the 

biomechanical and wear behaviour of THR.  

To achieve a representative three-dimensional model of the Leeds II hip simulator, 

the features of the experimental set up need to be implemented within the model as 

accurately as possible. If the model is simplified to the most basic conditions, the 

effect of each parameter can be studied separately and gradually increase the 

complexity of the model.  This method would allow the determination of which 

parameters have the most and the least effect on the analysis – i.e. the sensitivity of 

the model. Therefore, more engineering effort can be spent on the factors to which 

the model is most sensitive and less consideration to the factors which have only 

negligible effect on the results. The model was developed gradually by investigating 

a standard (concentric) scenario as well as an adverse condition scenarios. The 

model development under standard conditions provide information on the 

fundamental computing factors and provides a benchmark with which to compare 

results from further analyses. The effect of adverse conditions on the overall 

computational model behaviour can be observed when adverse conditions are 



60 
 

applied in the further steps. These adverse effects can be studied individually, or 

built into a singular model to study their interdependencies. 

This chapter focuses on the initial development of the ceramic-on-polyethylene THR 

model under standard conditions. In this chapter the overall replication of the Leeds 

II experimental set up such as components movement and loading is described. To 

be able to achieve a computational model that produces reliable contact mechanics 

analysis, the components movements and axial loading should be applied to the 

model correctly as the contact mechanics are directly affected by the loading and the 

kinematics. Furthermore, the effect of computational parameters, namely mesh 

sensitivity analysis, contact algorithms, and loading methods, on the model outputs 

are is considered. 

2.2 Experimental setup of Leeds II hip simulator 

The Leeds II simulator is a physiological and anatomical hip joint simulator that has 

been used to test the Pinnacle THR under standard and adverse conditions (Al-

Hajjar et al., 2010), specifically translational mismatch level, cup inclination 

variation and tissue laxity. This simulator consists of six identical stations, in each 

station of which, there is a stem holder that fixes the femoral stem which carries the 

femoral head on top (Figure 2.1). The cup unit is located at a certain inclination angle 

above the head and carries the metal shell and the acetabular cup in such a way that 

the surface of the acetabular cup articulates with the femoral head. There is a 10° 

difference between the clinical and simulator inclinational angle due to the 10° 

difference in the clinical and experimental loading angle (Williams et al., 2003). An 

axial load is applied to the model via a load cell that is located on top of the cup 

holder. There is also a spring attached between the wall of each station and the cup 

unit horizontally to allow different levels of translational force to be applied. Each 
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station is filled with a lubricant (bovine serum) to replicate the lubrication of THR 

in vivo and minimise the coefficient of friction between the components. 

 

Figure 2.1 Schematic of the experimental set up of Leeds II hip simulator with rotation and 
loading locations indications 

In the simulator, the THR components are taken through specific movements to 

simulate the walking pattern of the patient’s right hip. During the gait cycle, the cup 

is driven to move medial-laterally and rotate internal-externally. However, the cup 

is free to translate anterior-posteriorly and superior-inferiorly. Moreover, the 

flexion-extension of the hip is implied through the femoral head. There is an axial 

load applied through the cup to the hip joint on each station. Figure 2.2 represents 

the Paul twin peak cycle load (Paul, 1976) as per ISO 14242-1 (2002) that is a 

representative of the load which the hip undergoes during walking. The load cell is 

located on top of the cup unit and it records the load applied vertically downwards 

on the cup. When no axial load is applied to the model, the horizontal spring 

separates the cup and the head and applies a translational mismatch level. Maximum 
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load in the stance phase causes maximum compression of the spring level, whereas 

low load during swing phase results in partial compression of the spring and contact 

of the head with the lateral edge of the cup.   

 

Figure 2.2 Example of Paul cycle loading in Leeds II hip simulator (Paul, 1976; Al-Hajjar et 
al., 2013) 

2.3 Design of numerical study 

As dynamic modelling of the artificial hip joint is novel, the main aim of this analysis 

was to gain a fundamental understanding of dynamic analysis within the explicit 

ABAQUS software package (Version 6.14, Dassault Systèmes Simulia Corp., 

Providence, United States). The main outcome of this specific study was to 

investigate the level of sensitivity of contact mechanics analyses to the 

computational factors that can directly influence the contact mechanics of the 

model.  

If the initial development includes the full complex geometry, a wide range of 

movements of the components and a holistic loading profile as well as parameters 

within modelling such as mesh density, contact algorithms and loading and 

boundary conditions, the complexity of the model will be increased considerably. 
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Therefore, if all the parameters are analysed at the same time, fault finding and 

diagnostics during the model development would be considerably more challenging. 

The time taken and computational cost to solve the model is increased with model 

complexity, and there is no guarantee at the early stages that the engineering effort 

is directed toward the most significant factors.  

A representative dynamic model of the Leeds II hip simulator was therefore 

analysed for the initial results. This model consisted of simple geometry and loading 

with no motion, thereby eliminating the meshing and movement complexity effect 

for preliminary examination of the model behaviour. The results presented in this 

chapter are for this simple model.  

Incremental development of the model in terms of loading, motion and geometry 

was carried out, verifying the computational results at each stage by comparison 

with the experimental results from the simulator.  

The meshing configuration plays an important role in the reliability and efficiency 

of the contact mechanics output. Therefore, one of the parameters that this study 

focuses on is the mesh sensitivity in terms of mesh density and element ratio of the 

contact surfaces. Another factor that is taken into consideration is the contact 

algorithms between the contact surfaces. There are numbers of numerical contact 

solutions for contact mechanics analysis that are described later in this chapter. 

Also, due to dynamic modelling dependency to the running time, the effects of 

loading and preloading on the contact mechanics analysis are studied. Several 

output parameters, namely contact pressure and contact area, that are good 

representatives of the contact conditions are analysed. Furthermore, to understand 

any difference between the input and output forces, the reaction forces of the 
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analyses are investigated. Finally, a static loading analysis of the model with the 

same configuration was carried out to verify the outcome of the dynamic model.  

2.4 Methods of Numerical Analysis 

This project ultimately focussed on the contact mechanics of the adverse loading 

scenario. The numerical contact calculation is directly affected by the applied 

contact algorithm. Hence, it is important to select a contact algorithm that 

represents the most robust outcome with respect to the model application. The 

finite element analyses were solved using ABAQUS software (Version 6.14, Dassault 

Systèmes Simulia Corp., Providence, United States). In this section the types of 

dynamic solving processors and contact algorithms available in ABAQUS are 

defined. 

2.4.1 Dynamic solving processors  

ABAQUS provides two types of dynamic stress-displacement solving processors; 

Implicit and Explicit (ABAQUS 6.14 documentation version 2014). Figure 2.3 

represents the difference in the explicit and implicit approaches. 

The implicit solver is a direct integration dynamic procedure that integrates the 

equations of the motion. In order to solve the model using the implicit solver, 

inversion of the stiffness matrix (k) and stating a set of nonlinear equilibrium 

equations are required at each time increment. Implicit solver uses equilibrium 

equations to solve for time t+Δt using state data at both t and t+Δt. The size of the 

stiffness matrix which depends on the degrees of freedom of the model, determines 

the computational time and cost of the analysis as it must be inverted at each 

iteration. 
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Figure 2.3 The difference in explicit and implicit approaches of output calculation 

An explicit solver is a central-difference method that calculates the displacements 

and velocities at the beginning of each time increment. The explicit approach 

requires inversion of the lumped mass matrix instead of the stiffness matrix as in 

implicit. The explicit approach solves for time t+ Δt using the state at t only. Since 

the explicit solver does not require to solve a set of equilibrium equations, the 

computations are less expensive than for the implicit solver. However, due to the 

nature of the explicit solver, the stability of the model for an optimum solution is 

strongly dependent on the time increments. Therefore, to achieve the required 

stability in the explicit solver, the time increments are considerably shorter. The 

time increment for stability in the explicit solver is conditional on the time that an 

elastic stress wave takes to cross the smallest element in the model. Hence, if there 

are very small elements in the model, the stable time increments become very short. 

However, there are methods such as mass scaling that artificially increases the mass 



66 
 

of certain elements stability, to reduce the wave speed and as a result, increase the 

overall stable time increments. The advantages and disadvantages of each method 

is presented in Table 2.1. 

The model stability is not a concern in an implicit solver as equilibrium equations 

are an essential calculation of this solver. Moreover, a number of iterations can 

happen within one time step to reach a solution in an implicit solver whereas the 

explicit solver only calculates the solution for each time step once. If the explicit 

solver is suitable for the required application, the explicit solver could provide the 

less expensive and time consuming compared with the implicit method.  

Table 2.1 Comparison of advantages and disadvantages of implicit and explicit approaches 
in ABAQUS 

Method Advantages Disadvantages 

Implicit 

*Equilibrium equations used 

*Stability independent of time 

increment 

*Reconstructing the stiffness matrix 

at each increment 

*Iteration required within time 

increment to reach a solution 

Explicit 

*Updating the stiffness matrix at 

each increment 

*Computationally cheaper 

*Lower running time 

*Less stable 

*Very small time increments 

required for stability 

2.4.2 Contact algorithms 

ABAQUS/Explicit provides two types of algorithm to define contact and interaction 

problems: general contact algorithm and the contact pair algorithm. Contact pair 

defines the possibility of contact between two defined surfaces only whereas the 

general contact introduces the pairing of contact between all of the surfaces.  

The ‘contact pair’ algorithm has more restrictions on the type of surfaces which are 

in contact compared to the ‘general contact’. In the contact pair, the surfaces must 
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be specified between the two surfaces. Therefore, the general contact algorithm is 

more convenient in model with many objects with different undefined contacts. The 

general contact algorithm uses only one method to minimise the overlap of surface 

nodes in contact while the contact pair algorithm provides an extra option to 

prevent the penetration of the contact surface elements. Since only the contact 

between two surfaces, the head and the inner surface of the cup, was of the interest 

in this project, it was logical to use the ‘contact pair’ algorithm. 

2.4.1.1 Contact constraint methods 

When the kinematic state of the model changes where the contact takes place, 

penetration of the nodes lying on the contact surfaces occurs. The contact constraint 

prevents excessive penetration of these contact surface nodes. The contact pair 

algorithm can use one of two contact methods, namely the penalty or kinematic 

methods, to enforce contact constraints between the surfaces. The application of the 

contact constraint depends on the type of contact.  

One of the parameters that affects the calculation of contact constraints is the 

relationship between the two contact surfaces. The contact surfaces in ABAQUS are 

defined based on the stiffness of the surface due to their assigned material 

properties. The stiffer surface - usually based on relative Young’s modulus value - 

defined as the master surface and less stiff surface as the slave surface. If there is a 

pure master-slave surface relationship, then the constraint is always applied to the 

slave surface. This means that the only penetration which is allowed is that of the 

master surface into the slave surface.  No node on the slave surface can penetrate 

the master surface (Figure 2.4). If there is a balanced master-slave relationship, each 

surface would be considered in turn as slave surface and again as master surface. 

Hence, the contact constraint will be the weighted average of both calculations in 
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the form of constraint reaction forces.  Balanced master-slave contact results in 

better contact constraint enforcement because of better performance in minimising 

the penetration between surfaces. Therefore, the balanced master-slave 

relationship was used in this study. 

 

Figure 2.4 Master-slave surfaces contact constraint in ABAQUS that represent the 
penetration and gap between the master and slave surface 

Penalty and kinematic contact constraints are the available algorithms for 

penetration prevention in ABAQUS explicit models. The penalty algorithm considers 

the current configuration of surfaces nodes and behaves like a spring to return the 

penetrated node to the contact surface. In a pure master-slave surface relationship, 

the penalty contact algorithm identifies the slave nodes which penetrate the master 

surface and applies an equal and opposite forces that are functions of penetration 

distance to the penetrated slave nodes and the nodes of the master surface being 

penetrated. The penalty algorithm with a balanced master-slave surface 

relationship determines the contact forces to oppose penetration using the same 

approach. However, one set of contact forces are calculated by assuming one surface 

as a master surface, and the other contact force is calculated using the same surface 
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as the slave surface. The balanced master-slave surface relationship considers the 

weighted average value of these contact forces to be applied to the model. 

The kinematic contact constraint method uses a kinematic predictor to enforce 

contact constraint strictly whereas the penalty method applies weaker enforcement 

of contact constraints. In a kinematic contact algorithm with a pure master-slave 

relationship, the contact conditions are firstly ignored to estimate the predicted 

kinematic state of the model. The level of penetration of the slave nodes into master 

surface, the mass associated with the corresponding node and the time increment 

are then used to calculate the resisting force to minimise penetration. In case of 

element face formation of the master surface, the resisting forces and mass of the 

contact slave nodes are distributed over the master surface nodes to calculate the 

inertial mass of the contact surfaces and acceleration correction of the master 

surface nodes. Then acceleration correction for the master surface nodes is applied 

to determine the acceleration correction of slave surface nodes using the predicted 

penetration of the nodes and the time increment. These corrected accelerations are 

required to achieve a contact configuration that can be used to enforce the 

constraints. The balanced master-slave surface relationship with the kinematic 

contact algorithm also use the same method. However, the procedure is followed 

twice because each surface is considered once as a slave surface and another time 

as a master surface. Hence, the corrected value applied by ABAQUS/Explicit is the 

weighted average of the two cases. 

The ideal contact algorithm to choose depends on the application of the model and 

types of bodies in contact. There are limits to the type of surfaces which can be used 

with the kinematic contact algorithm. For example, rigid surfaces are not allowed to 

be considered as slave surfaces in the kinematic algorithm whereas penalty 
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algorithm does not restrict rigid surfaces to be mated and therefore allows 

modelling of contacts between rigid surfaces. Another difference between two 

algorithms is that the kinematic contact does not affect the critical time increment 

for stability; however the critical time increment could become affected if the 

penalty contact is used. The penalty contact algorithm includes a “spring” stiffness 

which relates the contact forces to the penetration depth. The stiffness of the contact 

can be changed to minimise the effect of this algorithm on the time increment. 

2.5 Development of the Numerical Model 

This section presents the methodology for the first stage of the explicit dynamic 

model development. The analyses that were carried out in this section are separated 

into three different studies.  The common aspects to all models, namely geometry, 

material properties and boundary conditions in this part of the study are defined in 

this section. Also, the specifications of the three preliminary studies, mesh 

sensitivity, contact method effect and loading conditions, on the contact mechanics 

of the model are described.  

2.5.1 Materials  

As mentioned above, the model is intended to be simplified to minimise the effect of 

any geometries complexity on the contact mechanics analysis. Therefore, the 

preliminary model is composed simply of the femoral head, acetabular cup and the 

cup holder. The femoral head and acetabular cup are simplified to a simple ball and 

socket geometry. The details of the real Pinnacle femoral head and cup are not 

considered at this stage of the model development. The cup unit is modelled as a half 

sphere which has the same mass as the actual cup unit. Figure 2.5 presents the head, 

the cup and the cup unit assembled vertically on top of each other. 
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Figure 2.5 Assembly of the simplified model. The crosses locate the boundary conditions on 
the head and the cup holder. 

A ‘tie’ constraint was generated between the inner surface of the cup unit and the 

outer surface of the cup to prevent all relative movement between the surfaces. To 

simulate the experimental movements of the components, the head was fully fixed 

at a point on its lower surface as it is a rigid body.  An additional boundary condition 

preventing rotation in any direction was applied to a point at the top of the rigid cup 

unit. However, the cup was able to translate in any direction. Also, the loading profile 

was applied to the cup unit through the same point which the boundary condition 

of the cup unit was applied.  

The dimensions and representative material properties of the components are 

presented in Table 2.2.  The ball and cup radii were chosen to create a radial 

clearance of 0.25mm. Under the initial conditions, before any load was applied, the 

ball surface was assumed to be coincident with the cup surface at its centre for 

contact simplifications.  However, the ball and the socket were modelled as 

deformable bodies. However, the cup unit was considered to be a rigid body. It 

should be noted that the density of the materials are scaled to lengthen the time 

increment for stability and reduce the running time for these initial studies. The real 

densities that will be applied to the model are described in later chapters. 
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Table 2.2 Geometric and material properties of simplified computational model components 

Part Material 

Young’s 

modulus 

(MPa) 

Poisson’s 

ratio 

Scaled 

Density 

(kg/mm3) 

Outer 

radius 

(mm) 

Inner 

radius 

(mm) 

Ball Ceramic 350,000 0.21 4.37x10-6 18 - 

Cup Polyethylene 1,000 0.46 9.23x10-7 24.25 18.25 

Cup 

unit 
Rigid - - 8.5x10-6 27.25 24.25 

The analyses that were carried out in the first stage of the development are 

presented briefly in Table 2.3. This table shows the parameters that were varied in 

the studies. The inputs which were constant in all cases namely geometry, material 

properties and boundary conditions have been excluded from this table. Detailed 

descriptions of the studies are given in each section that follows. The name of the 

‘case’ of each study refers to the element size in cup divided by the element size in 

head. 

In the analyses that are described in this chapter, several output factors were 

examined: 

1. Contact area: Contact area is a good representative of the contact condition 

in different cases. The contact area can be compared at all the time points 

through simple observation of the predicted contact area plots. Also, the level 

of numerical noise in the contact mechanics can be observed by analysing the 

contact area data. The contact area is expected to follow clearly the loading 

changes. Therefore, the contact area is predicted to increase from zero to the 

peak value and then becomes constant at this peak value. 

2. Contact pressure: The contact pressure plots on the contact surfaces provide 

greater visualisation of the pressure distribution in various meshing 

configurations. Therefore, this shows how the contact conditions can be 

affected by the element size and contact surfaces meshing ratio. As the 
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contact surfaces are symmetrical spheres, the contact pressure distribution 

is predicted to be circular surrounding the centre of the inner cup surface. 

Table 2.3 Full list of modelling cases of stage 1 of development namely, meshing ratio 
between the head and the cup inner surface, loading amplitude and contact constraint 

algorithm 

Study Case 

Mesh Loading 

Contact 

constraint 

algorithm 

Global 

Element 

size (mm) 

Total 

number 

of 

elements 

Pattern Interpolation 

Head Cup 

I Case 2:3 2 3 6,220 Simplified Smooth step Kinematic 

I 
Case 

1.5:1.5 
1.5 1.5 18,997 Simplified Smooth step Kinematic 

I Case 1:2 1 2 43,517 Simplified Smooth step Kinematic 

I Case 1:1.5 1 1.5 47,021 Simplified Smooth step Kinematic 

I Case 1:1 1 1 61,205 Simplified Smooth step Kinematic 

I 
Case 

1:0.75 
1 0.75 96,726 Simplified Smooth step Kinematic 

I 
Case 

0.75:1.5 
0.75 1.5 104,445 Simplified Smooth step Kinematic 

I 
Case 

0.75:0.75 
0.75 0.75 145,101 Simplified Smooth step Kinematic 

II Contact A 1 1 61,205 Simplified Smooth step Penalty 

II Contact B 1 1 61,205 Simplified Smooth step Kinematic 

III 
Preloading 

A 
1 1 61,205 Preloading Tabular Kinematic 

III 
Preloading 

B 
1 1 61,205 Preloading Smooth step Kinematic 

III Paul Cycle 1 1 61,205 Paul cycle Tabular Kinematic 
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2.5.2  Study I: mesh sensitivity analysis 

In this study, mesh sensitivity analysis was carried out on the model to achieve the 

best possible level of precision with respect to computer resources. A simplified 

loading profile was applied vertically downwards to the cup unit to determine the 

right mesh density and meshing ratio between the contact surfaces. The model was 

loaded up to 3kN in 0.1 seconds and the constant load of 3kN was then applied to 

the model for 0.4 seconds (Figure 2.6).  

 

Figure 2.6 Loading condition of the study I versus time 

The load variation from 0 to 3kN was defined to follow an automatic smooth ramp 

up (or down) of load from one amplitude value to another using a smooth step 

function. The amplitude (𝑎) between two consecutive points is derived from the 

equation (ABAQUS 6.12 Documentation, 2012): 

𝑎 =  𝐴𝑖 + (𝐴𝑖+1)𝜉3(10 − 15𝜉 + 6𝜉2)          𝑓𝑜𝑟 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 

Where                          𝜉 =
(𝑡 − 𝑡𝑖)

(𝑡𝑖+1 − 𝑡𝑖)
 

This can be presented graphically as in Figure 2.7. 
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Figure 2.7 The implementation of the variable versus time using smooth step amplitude in 
ABAQUS (ABAQUS 6.12 Documentation, 2012) 

For mesh sensitivity analysis, the contact pair algorithm and kinematic contact 

constraint enforcement was selected. As the cup unit mesh configuration would not 

affect the contact mechanics of the head and the cup, the same number of elements 

and coarse mesh configuration were defined on the cup unit for all the cases. The 

cup unit model consisted of 430 linear R3D4 (4-node 3-D bilinear rigid 

quadrilateral) quadrilateral and 14 linear R3D3 (3-node 3-D bilinear rigid 

quadrilateral) triangular elements. The cup and the head were meshed using linear 

C3D8R (continuum three dimensional 8-node reduced integration) hexahedral 

elements. Table 2.3 represents the different meshing ratios between the cup and the 

head that were assigned to the components. 

2.5.2.1 Static loading analyses specifications 

Static analyses were investigated first and carried out for verification purposes. The 

static model was analysed in an attempt to replicate the dynamic model. Therefore, 

the same geometrical and material properties as the dynamic model were applied 

to the static model. Moreover, a tie constraint was specified between the inner cup 

and head surface. Also, a penalty contact algorithm was defined between the contact 

surfaces. All of the meshing cases that were applied to the dynamic model, were 
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tested on the static model. No translation or rotation of the head was allowed. 

However, movement of the cup unit was restricted to vertical translation only. When 

translation in more axes was applied, the static model did not converge due to 

stability reasons. A static load up to 3kN was applied through the cup unit. 

2.5.3 Study II: Contact methods 

In this study, the effect of different contact constraint algorithms was investigated. 

As described above, there are two types of contact constraint enforcement that are 

available in ABAQUS/explicit. To understand the effect of these contact constraints 

on the contact mechanics and numerical noise, both contact constraints were tested 

on the contact surfaces. 

Similar assumptions of boundary conditions, loading conditions and contact 

methods as in study I are conducted in this analysis. The analysis was carried out on 

the best meshing configuration from the mesh sensitivity analysis (study I). The 

balanced master-slave relationship was chosen for these analyses. The following 

contact algorithms with contact constraint enforcements were applied to the model:  

1. Contact pair algorithm with penalty contact constraint 

2. Contact pair algorithm with kinematic contact constraint 

2.5.4 Study III: Loading 

A study was carried out to determine the effect of preloading on the initial oscillation 

of the contact areas of the analysis. This study also demonstrated how this method 

is applicable for Paul cycle loading. All of these analyses were carried on the same 

meshing configuration and boundary condition as for study II.  The considered 

loading conditions are:  

Preloading (Table 2.4): a magnitude of 1N was applied to the model through the 

cup unit vertically downwards in 0.1 seconds using tabular (linear relationship of 
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amplitude between the consecutive points) and smooth step amplitude. Then, a 

constant load of 1N for 0.2 seconds was applied following increase load of up to 3kN 

in 0.1 seconds. 

Table 2.4 The loading conditions of the preloading study at the specific time points (study 
III) 

Time (s) Load (N) 

0 0 

0.1 1 

0.2 1 

0.3 3000 

Paul Cycle loading: To understand the effect of the Paul walking cycle on numerical 

noise and contact mechanics, the loading data exported from one station of the 

Leeds II hip simulator (Figure 2.8) was applied to the model using tabular amplitude 

data. There were 68 data points that represented the stance phase loading of the 

Paul cycle (Paul, 1976; Al-Hajjar et al., 2013). However, two data points were 

defined for the loading during the swing phase as the load during the swing phase 

was constant at the load level of 300N. Also, a 5ms step was applied at the beginning 

of the loading cycle to increase the load from 0 to the initial point of the Paul cycle.  
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Figure 2.8 Paul cycle loading. The graph represents the twin peak load that is applied to the 
Leeds II hip simulator axially. 

2.6 Results of concentric loading condition 

This section presents all the results from the preliminary analyses defined 

previously. 

2.6.1 Study I: Mesh sensitivity analysis 

ABAQUS Explicit provides two sets of contact area plots which presents the contact 

area on each of the surfaces where the contact occurs. As Figure 2.9 shows, the 

contact area on the head seems to increase in all the plots as the load is increased 

(from 0 up to 0.1s). Furthermore, the contact area on the head undergoes a level of 

oscillation as the load is constant. However, the oscillations are damped as time 

progresses, and eventually the constant contact area reaches a steady state. As the 

number of elements increase, the contact area tends to decrease. However, the 

contact area is more sensitive to changes in the meshing ratio between the surfaces.  

The contact area during the constant load phase varied between approximately 

310mm2 to 360 mm2 when the same element size on the head and cup surfaces was 

used. Figure 2.9 shows that there is only a slight difference in contact area when the 

same meshing ratio on both surfaces was applied (plot 1.5:1.5, 1:1 and 0.75:0.75). 

However, when the meshing ratio on the cup to the head element size has a double 

ratio (plot 2:3, 1:2 and 0.75:1.5), the changes in the contact area are extensive 

ranging from 180 mm2 to 510 mm2. 
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Figure 2.9 Contact area on the head, for different mesh resolution combinations. Each plot 
represents each meshing ratio condition that was carried out 

Figure 2.10 demonstrates that the contact area on the cup follows almost the same 

trend as the contact area on the head. It can be seen that the contact area increases 

to the maximum level when the load is ramped up to the maximum value. Then, a 

constant contact area was achieved when the load is held constant. Throughout the 

analysis there was a constant numerical noise. The level of noise was highest when 

the initial load was applied, and reduces as the model reaches a steady state. Plots 

1:2 and 0.75:1.5 which are when the head that has half the element size of the cup, 

produced the highest values of contact area when the load is constant (ranging from 

410 mm2 to up to 910 mm2). As the difference between the element size on the 

bearings decreases, the difference between the contact areas of the different cases 

decreased as well. The highest number of elements with the same meshing ratio 

(plot 0.75:0.75) resulted in the lowest values of the contact area. A comparison of 

plot 0.75:0.75 with other plots that have the same meshing ratio (1.5:1.5 and 1:1) 

indicates that the contact area of the plots are not affected substantially by using a 
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greater number of elements (contact areas range between 340 mm2 to 400 mm2 

when the load is constant).  

 

Figure 2.10 Contact area on the cup inner surface for different mesh resolution 
combinations under standard condition 

Figure 2.11 illustrates the differences between the contact area generated on the 

head and the cup when various meshing ratios were applied. Different element size 

on the contact surfaces can affect the contact area. For example, mesh configuration 

0.75:1.5 which has 0.75 (head) to 1.5 (cup) element size results in a large difference 

between the contact area produced on the contact surfaces of this mesh 

configuration. However, if the element size on the two surfaces is similar or 

minimally different, the contact area on the two surfaces is also closer to each other. 

Moreover, this comparison indicates that there is a linear contact area change 

during the ramp up load step in the analysis with the same element size on the 

contact surfaces (1.5:1.5, 1:1 and 0.75:0.75). However, a meshing ratio of 0.75:1.5 

affects the contact area variation at the load ramp up step and produces a less 

consistent contact area on the head and the cup.  
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Figure 2.11 Comparison of contact area generated on the contact surfaces using 0.75:0.75 

and 0.75:1.5 cases under standard condition. 

Figure 2.12 compares the contact area for static loading with the mean contact area 

for dynamic loading of the contact surfaces when the load remains constant.  

 

Figure 2.12 Contact area values versus number of elements, across all mesh cases with both 
static and dynamic loading under standard condition 

According to the data presented in Figure 2.12, as the number of elements increases 

the agreement between the contact area using static and dynamic loading becomes 
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better with less than 1% disagreement, except when 104,445 elements were used. 

This meshing configuration consists of the element sizes of 2mm on head and of 

1mm on cup. It was illustrated previously that the 2:1 meshing ratio causes a large 

difference between the contact area on the head and the cup. However, there is still 

a good agreement between the contact area produced on the head using dynamic 

loading and static loading are for this mesh configuration. Although finer meshing 

leads to a better agreement the contact area using static and dynamic analysis, the 

agreement between the contact areas depends mainly on the meshing ratio of the 

contact surfaces as the cases with the same meshing ratio have better agreements.  

One of the other criteria for selecting the best mesh configuration is the distribution 

of the contact pressure on the surfaces. Since the contact is occurring in the centre 

of the cup surface (about which the contact is symmetric), the ideal contact pressure 

should be distributed symmetrically along the surface. The contact pressure is 

expected to be circular due to the shape of the contact faces which are both 

spherical. The pressure distributions of the contact surfaces in the last step of the 

analysis for each meshing configuration are presented in Table 2.5. The contact 

pressure distribution depends on the element size ratio of the contact surfaces. For 

example, the element size ratio of 1.5 (cup) to 1 (head) causes the contact pressure 

distribution on the surface to be more four-sided than circular (Case 2:3 and 1:1.5) 

whereas a circular contact patch is predicted due to the conforming where of the 

spherical contact surfaces. According to this table, a circular pressure distribution is 

achieved on the cup surface when the element size on the head is half the cup 

element size (mesh configuration 1:2 and 0.75:1.5). However, the majority of the 

contact area appears under the maximum pressure (red area of the pressure 

distribution). Furthermore, the contact pressure on the head surface does not seem 
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to be continuous for these cases which could be due to different element sizes on the 

contact surfaces. 

When the same element size is applied to both surfaces (highlighted columns on 

Table 2.5), the contact pressure on the cup surface gradually increases from the 

boundaries to the centre. Although the contact pressure is not as circular as the one 

with different element sizes the contours of contact pressure appeared to be more 

reasonable. The contact pressure on the head in the same meshing ratio cases 

(1.5:1.5, 1:1 and 0.75:0.75) appears to be more distinct than the meshing ratio cases 

1:2 and 0.75:1.5. Nevertheless, the pressure distributions on the head surface is as 

well distributed as on cup surface on no occasion. Therefore, the conclusion was 

drawn that finer mesh on the cup could produce better pressure distribution on the 

head surfaces (1:0.75). As contact pressure analysis of case F shows, this meshing 

configuration resulted in random elements on the head surface to have the 

maximum pressure values. Finer mesh on the cup surface than on the head surface 

also causes the distribution of the pressure on the cup surface to be less concentric 

which is not ideal. 
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Table 2.5 Pressure distributions for different mesh configurations under standard condition. The analyses that were carried out with the same 
element size on the bearing surfaces are highlighted.  

 

Case A B C D E F G H 

Cup mesh 

size (mm) 
3 1.5 2 1.5 1 0.75 1.5 0.75 

Head mesh 

size (mm) 
2 1.5 1 1 1 1 0.75 0.75 

Cup contact 

pressure 

distribution 
        

Head 

contact 

pressure 

distribution          
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To compare the produced contact pressure distributions with different meshing 

ratios, the pressures along the line of the nodes aligned with the z axis through the 

centre of the contact were plotted (Figure 2.13). This procedure was conducted for 

the 0.75:1.5 and 0.75:0.75 mesh configurations because these cases generated the 

most ideal contact pressure distribution out of all the cases. 

 

Figure 2.13 Position of the selected nodes which their nodal pressure was recorded to 
compare the contact pressure distribution of different meshing ratios  

As Figure 2.14 presents, the contact pressure of both these cases is symmetric. 

However, the pressure distribution using same element size on both surfaces 

indicates a smaller area. Although a larger area is covered in the red plot than blue 

plot and wider area for maximum pressure is visualised on the red plot than blue 

one. However, the ratio when the pressure goes from zero to maximum contact 

pressure with when the pressure remains at maximum value seems to be more 

equivalent in the plot with 0.75 element size on both surfaces than other mesh 

configurations. Moreover, it was presented in Figure 2.12 that the ratio of 0.75:0.75 

produced the similar contact area to the static loading.  
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Figure 2.14 The nodal Pressure distribution along the line aligned with z axis for meshing 

ratio of 0.75:0.75 and 1.5:0.75 under standard condition 

2.6.2 Study II: Contact methods 

The main concern of this analysis was to focus on the effect of contact constraint 

enforcement on the contact mechanics and the level of numerical noise generated 

on the contact area. Results from study I indicated that the same element size on 

both contact surfaces produces more reliable outcomes than different element size 

on the contact surfaces. Therefore, the 0.75:0.75 meshing configuration of study I 

which consists of 0.75mm element size on both contact surfaces was chosen to 

investigate the effect of the contact method.  

Figure 2.15 represents the predicted contact area on the two contact surfaces using 

the penalty and kinematic contact constraint methods. As this figure indicates, the 

kinematic contact constraint method predicts lower contact area throughout the 

analysis. Furthermore, even when the load is constant, oscillation in the contact area 

values occurs in all cases. However, the oscillations using the penalty constraint 

enforcement appear to be higher.  These oscillations reduce with time. The final 

contact area value on the cup surface (when the contact area has reached a stable 

value) using the kinematic enforcement is 345.6 mm2 whereas the area using the 
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penalty enforcement is 419.6 mm2. A comparison of the contact area when the 

maximum load is applied with the static loading (Figure 2.12) shows the area values 

determined by the kinematic constraint enforcement are closer to the static values 

than area from the penalty method. 

 

Figure 2.15 Predicted contact area on the head and cup inner surface using different contact 
constraint enforcement methods namely penalty and kinematic contact constraint 

enforcement under standard condition 

The other factor of comparison between the constraint enforcement methods is the 

contact pressure distribution on the surfaces. Figure 2.16 illustrates the contact 

pressure distribution on the cup surface using the two constraint methods. The 

pressure varies from minimum (blue contours) to the maximum (red contours). The 

kinematic contact enforcement method produces a circular pressure distribution 

that gradually reaches the peak contact pressure from zero. A half fraction of the 

pressure distribution consists of the maximum pressure value.  Moreover, the 

penalty contact constraint also generates a circular contact pressure distribution. 
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However, the pressure variation mainly consists of the low contact pressure and the 

maximum pressure patch is not symmetrical.      

 

Figure 2.16 Contact pressure distribution on the cup surface using A) Kinematic and B) 
Penalty contact constraint method under standard condition 

Comparison of pressure distribution on the head surface indicates that better 

pressure distribution is achieved by using the penalty constraint enforcement 

(Figure 2.17). The pressure distribution on the head using penalty contact 

constraint method could be expected to be better distributed if smaller element size 

is used on both surfaces.  

 

Figure 2.17 Contact pressure distribution on the head surface using A) Kinematic and B) 
Penalty contact constraint method under standard condition 
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2.6.3 Study III: Loading condition 

The result of study I analysis shows that there is numerical noise when the load just 

starts to be applied to the model. There is a possibility that this noise is produced as 

the code attempts to maintain the initial contact or increases this due to the rapid 

loading of specific elements. Therefore, preloading of the model is the best way to 

understand if the initial contact is the factor which increases the noise. Figure 2.18 

shows the predicted contact area on the two contact surfaces when preloading of 

the model occurs by either using tabular or smooth step amplitude loading. As this 

figure shows, there is a high level of noise in the preloading steps and as the actual 

load starts increasing, the oscillations are reduced substantially. This supports the 

hypothesis of the effect of preloading on the noise produced. The main difference 

between the behaviour of the contact area on the surfaces is at the end of the second 

step when the load is constant at 1N. A level of contact area difference between the 

head and the cup was also produced in the previous study. 

 

Figure 2.18 Contact area using preloading of the model on the head and the cup inner 
surface using tabular and smooth step loading amplitude under standard condition 
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To understand the contact area behaviour when different pre-loads are applied to 

the model, the predicted contact area from the preloading step is illustrated in 

Figure 2.19. Initially surfaces do not easily maintain contact as can be seen before 

load ramp up as the contact area is very low. However, it is expected that the contact 

area will increase as the load increases. Although the load should be increasing 

gradually, application of the load within a simple step could be another factor to 

affect the contact area.  

 
Figure 2.19 Contact area during preloading step on the head and the cup inner surface based 

on tabular and smooth step loading amplitude under standard condition 

The reaction forces of the analyses at the fixed point of the head were extracted and 

plotted, the reaction force is identical in both cases and since the value of reaction 

force in the preloading step is low (due to the low applied load), the graph is not able 

to illustrate the difference of reaction forces values in preloading steps. Hence, the 

reaction force of the models in preloading step is only shown. Figure 2.20 indicates 

that the both tabular and smooth step load amplitude produce similar initial 

reaction forces. However, the tabular amplitude method increases the load steadier 

in the fixed time length than the smooth step. The smooth step amplitude causes 
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slow increase of load initially for smoother contact and at this point, rapid change of 

the load takes place. The same behaviour of smooth step amplitude occurred in 

Figure 2.20 when the load was overestimated during the actual load step. Then, 

decrease of the load occur which causes final underestimation of the force.  

 

Figure 2.20 Reaction force in preloading step using different load amplitude under standard 
condition 

The Paul cycle loading was applied to this model to examine in the effect of a realistic 

load cycle on the predicted reaction forces. As Figure 2.21 illustrates, the reaction 

force created by the model experiences a level of oscillation mainly between the first 

and second peak load, and during swing phase load. However, the oscillations in 

swing phase appear to improve and become steadier with time. The oscillations in 

reaction forces must be minimised to achieve the most stable outcome. Therefore, 

the factors which eliminate these oscillations such as damping and filtering the 

result should be investigated further.  
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Figure 2.21 Input loading and predicted reaction force (RF) of the analysis using Paul cycle 
loading under standard condition 

Although Figure 2.20 indicated that tabular amplitude resulted in underestimation 

of the load, overestimation of the first peak load occurred when tabular amplitude 

was applied for Paul cycle loading (Figure 2.21). This disagreement could suggest 

that the difference between the input load and reaction force could not be affected 

by the load amplitude for high input loads. 
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2.7 Discussion 

This chapter focuses on the general validation of the computational solutions that 

were chosen for this study. The main aim of this chapter was to confirm the 

suitability and reliability of the parameters that will be implemented in the future 

model developments.  

In the mesh sensitivity study, the contact area changes were expected to follow the 

loading changes as the contact condition remained constant and as predicted, the 

contact area increased generally as the loading magnitude increased. The 

comparison of the contact area on the contact surfaces demonstrated that the area 

generated on the cup is predicted to be slightly larger than the area on the head. 

However, this difference is much less in the analyses with the same meshing ratio 

(1.5:1.5, 1:1 and 0.75:0.75). There was numerical noise in the analysis results which 

were due to the nature of the dynamic modelling.  

The ultimate aim of this project was to focus on ceramic-on-polyethylene THRs. As 

the Young’s modulus of the ceramic head is significantly higher than the cup, the 

severity of the contact predicted to be more severe on the polyethylene contact 

surface, which has a much lower hardness. The main interest was the contact 

mechanics that were generated on the acetabular cup as the head was modelled as 

a rigid body due to its high Young’s modulus. Therefore, it is not a great concern that 

the contact result for the head were different. 

As Figure 2.12 indicated, when a finer element size was used on the head surface 

than on the cup surface, it seems to produce a larger contact area on the cup surface 

than on the head surface. This difference could be due to elements with larger area 

on the cup surface. When the contact occurs, the head which is made of stiffer 

material and has a finer mesh tend to penetrate the cup surface. The penetration of 
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each node of the head surface into the cup surface resulted in the selection of the 

whole element where the penetration occurred as being in contact even if the whole 

element was not in contact. Therefore, more elements appear to be in contact on the 

cup surface. However, if the same meshing ratio was varied on the two contact 

surfaces, the penetration of the head nodes on the cup surface is more accurately 

controlled because of similar node configurations on both the surfaces. 

As expected, the contact area of the surfaces was affected by the element numbers. 

As comparison of static and dynamic maximum contact areas revealed, all of the 

meshing configuration resulted in a reliable maximum contact area because the 

maximum contact area variation between the static and dynamic cases was minimal 

(31 mm2). However, in the dynamic explicit analyses, the maximum contact area 

depends strongly on the meshing ratio between the contact surfaces. The contact 

surfaces with significantly different element sizes predict considerably different 

contact areas. On the other hand, generally, when the element size on both surfaces 

is equal or minimally different, the surfaces contact area is not affected. Moreover, 

when the refinement of the meshes with the same meshing ratio of the surfaces 

occurred, the maximum contact area was slightly affected by the refinement. This 

suggests that if the same meshing ratio is used on the contact surfaces, fewer 

elements can be applied for a reliable contact mechanics results that could save 

substantial computational time and cost. The usual running time of these analyses 

was 150 minutes as significant mass scaling was applied for these initial studies by 

increasing the density of the materials. Therefore, the running time of the future 

models will be significantly higher than for this initial study. Hence, the same 

meshing ratio on both surfaces with the highest element size (1.5mm) is 

recommended to use for future studies. Gao et al. also used the same meshing ratio 
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between the contact surfaces of the hip replacement in his explicit analyses (Gao et 

al., 2015). 

The contact surfaces in this study are conforming due to quite large contact area 

between the surfaces, the simple loading regime and a deformable component 

(polyethylene cup). Therefore, a circular well distributed pressure distribution is 

predicted to occur. The kinematic contact constraint enforcement method produced 

a more distributed pressure on the cup surface than the penalty method. However, 

the penalty enforcement resulted in a better pressure distribution than kinematic 

enforcement on the stiffer surface (head) with a more uniform distributed pressure. 

Increasing the number of the elements in the model could affect the pressure 

distribution on the head positively. However, increasing the element number 

requires more computing source and cost whereas lower number of elements still 

produces reliable results on the cup by using the kinematic enforcement of 

constraint.  

It was demonstrated that the level of numerical noise in the contact area was 

significantly less than that in the preloading step and the output is affected by the 

loading amplitude. As Figure 2.18 showed, the smooth step amplitude caused 40% 

overestimation of the full load at the end of the step. The tabular amplitude step 

does not cause overestimation of the force which increases constantly during the 

step. Moreover, the load is underestimated by a factor of 0.048% which is very low 

compared to the overestimation of by the smooth step amplitude method by a factor 

of 40%. 

2.8 Key points 

 For accuracy at reasonable computational cost, the optimum meshing ratio 

between the head and the cup surfaces should be set to 1.5mm. 
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 The kinematic contact constraint between interacting surfaces provides more 

consistent contact information.  

 As the smooth step amplitude produced substantial overestimation of the load, 

the tabular step amplitude method will be used in the future studies.  

 The next step of this study is to develop the model under adverse conditions to 

replicate separation during the gait cycle. 
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Chapter 3 Model development under adverse conditions 

3.1 Introduction  

The previous chapter illustrated the fundamental development of the model under 

concentric loading conditions. This provided an insight to essential explicit 

modelling techniques, such as meshing configuration and contact algorithms, and 

defined them in terms of an integrated dynamic and contact mechanic model of a 

THR. This chapter focuses on modifying that model to implement the parameters 

that result in adverse loading conditions. 

The technical background is presented to describe the spring representation and 

damping methods in ABAQUS explicit. Also, the meaning of stability in this study is 

discussed in the technical background section. Furthermore, the materials and 

methods used in this study to replicate the experimental events to the 

computational package is explained. There are four separate studies that focus on 

the spring representation, damping methods, mass effect and spring compression 

effect.  Finally, the output of each study and its significance are presented in the 

result and discussion section, respectively.  

A representative geometry of the specific Pinnacle THR hard-on-soft bearing was 

obtained from DePuy Synthes, thereby reducing the number of assumptions and 

allowing for more accurate dynamic and contact mechanics prediction of in vitro 

studies. On wear test simulators, there are a set of parameters that are tested for 

their effect on the THR wear, these are: translational mismatch, rotational 

orientation and swing phase load. Peer reviewed data from a range of studies that 

focused on the effect of specific parameters were implemented into the 

computational model. 
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Prior to implementation of the adverse conditions, it was necessary to implement 

the in vitro separation method in the computational model. Previous in vitro studies 

initially focused on only the effect of separation on the wearing of the THR bearings 

(Williams et al., 2003; Al-Hajjar et al., 2010). The separation of the head and the cup 

was replicated in the early studies by using a pre-defined spring on the cup holder 

which was kept at constant throughout the analyses. The spring maintains the 

separation between the bearing surfaces at a constant load. In these studies, the 

separation level was set by varying the spring compression. Therefore, the next 

development step revolves around the integration of the spring into the present 

computational model. However, implementation of the spring in the model is a 

challenging task as the changes in the spring length can cause instability of the 

explicit model. Furthermore, the spring could potentially be a source of undesired 

oscillations which can make the true dynamic prediction problematic.  

The effect of different spring representation methods, namely the ABAQUS spring 

element and truss element was investigated. Moreover, different methods of 

damping were introduced to the model to control the oscillations caused by the 

spring. This chapter mainly focuses on the dynamic aspects of the model to predict 

a realistic dynamic separation profile during the gait cycle. 

Once the method to implement the spring is finalised and the inclusion of damping 

is defined, the effect of mass on the output result was tested. Whereas in the 

previous chapter, the mass of the components were increased by scaling up the 

material densities (decreasing the run times significantly), in this chapter the effect 

of the mass of components on the separation predictions and the computational 

perspectives is assessed. 
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Various methods are used in an experimental environment to implement adverse 

conditions in vitro. For example, the effect of swing phase load on the THR was 

predicted by varying the swing phase load during the gait cycle from 50N to 300N. 

Different rotational orientation is applied by varying the cup inclination angle with 

respect to the horizontal axis (35 to 65 inclination angle). To apply the 

translational mismatch, a level of medial/lateral mismatch is set between the 

bearings centres and then, the relaxed spring is assembled into the station. The 

experimental studies have shown that the wear rate of the THR bearings is affected 

by changes in the above parameters (Al-Hajjar et al., 2013; Ali et al., 2016). 

Therefore, the computational model was expected to present a level of sensitivity to 

the variation of the parameters. Therefore, within this chapter, the effect of varying 

the translational mismatch is explored to test if the model can distinguish the effect 

of these changes. 

The chapter proceeds to discuss the final developmental stage of the model to assess 

whether the model was sufficiently reliable to perform parametric testing of the 

adverse conditions and to validate the output against the experimental studies.  
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3.2 Technical Background  

The explicit method is suitable for solving dynamic models as the time steps can be 

defined in very small increments. Although the explicit model can solve these with 

relative ease, the large number of time increments causes very long run times. 

Therefore, explicit modelling can achieve a realistic outcome despite the rapid 

changes in the system. In this project, as the loading changes quite rapidly, small 

time increments are required to obtain a stable output. Therefore, the explicit 

approach is the most suitable method for this application. 

The duration of the time increments is a crucial factor in the explicit approach. 

Although small increments can be solved the stability issue in the dynamic analysis, 

there are issues associated with a time increment that is either too high or low. If 

the time increment is longer than a critical value, known as the stability limit, the 

model becomes unstable resulting in assumptions made between calculations 

causes an unrealistic output. Therefore, it is less likely to have an unstable model if 

the time increments are smaller than the stability limit.  The cost for the more 

reliable model is the running time and computational cost. The smaller the time 

increment is, the more equations are required to be solved.  The explicit method is 

restricted to solving the dynamic equations for small time increments, the stability 

limit is the longest the time increment could be to avoid instability.  

In this section, the time incrementation method used in ABAQUS is described. Other 

potential factors for instability such as spring and damper in the model are 

mentioned and reviewed.  
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3.2.1 Stability and time incrementation 

ABAQUS explicit method determines the time increments automatically based on 

the stability limit (Δt stable) that is calculated in ABAQUS. The stability limit of the 

model can be defined in two ways (ABAQUS 6.12 documentation, 2012): 

1. Global stability limit: That is defined as a proportion of the highest natural 

frequency (fmax) in the system. However, the highest frequency is difficult to 

calculate as it is the result of various interrelated factors.  

Δt stable =
2

𝑓𝑚𝑎𝑥
 

2. Element-by-element stability limit: In this method, the stability limit is defined 

by predicting the highest frequency in each element which is directly influenced 

by the element length (Le) and inversely affected by the elastic wave speed of 

the material (cd) of that element. 

Δt stable =
𝐿𝑒

𝑐𝑑
 

 Also, the elastic wave speed of the material is equal to the square root of the 

Young’s modulus of the material (E) and divided by the mass density (ρ) for an 

element with no Poison’s ratio. 

𝑐𝑑 = √
𝐸

𝜌
 

Figure 3.1 depicts a strategy for reducing the size of the time increments of a 

dynamic model. The time increment is mainly affected by the minimum element size 

based on meshing and the material properties of the element namely, density and 

Young’s modulus.  
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Figure 3.1 The effect of meshing and material properties on the stability limit of the 
computational analysis 

 3.2.2 Spring representation 

The mechanical behaviour within the spring is not the primary interest of this study. 

The focus is the effect that the spring can have on the behaviour of the system.  For 

situations, such as this, where the spring is used as a tool to represent a 

phenomenon, using a simplified spring representation is good practice as it avoids 

any unnecessary complexity due to the spring geometry. In ABAQUS explicit, there 

are two techniques to model the spring without spring geometry to use:  

Truss element (TE): In this method, the spring is modelled as one truss element 

and this element is assigned with material properties to replicate the spring 

stiffness. 

Spring element (SE): This is one of ABAQUS explicit built in features to replicate a 

spring by using two nodes that represents the spring ends and the spring stiffness.  
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The main difference between the TE and SE methods are in the nature of the 

elements.  The stability limit behaviour of a system varies if truss or spring element 

is used in the system. TE consists of the mass and stiffness. Since mass and stiffness 

of the elements are the main requirements to calculate the stable time increment, it 

is assured that the time increment for the analysis is within the stable time 

increment by using a truss element. The stability limit of the truss element alters 

during the analysis. As the spring becomes compressed or extended, the length of 

the truss element becomes smaller and longer, respectively. As it was shown in the 

previous section, the stability limit of the element is affected by the element length. 

For example, if the spring is compressed, the stability limit becomes smaller and the 

time increments becomes smaller.  

 In contrast, there is no mass associated with SE so it is not considered by ABAQUS 

during the stable time increment calculation. Therefore, the possibility of instability 

in a model with SE is potentially higher than truss element. The stability limit of a 

SE can be predicted by using the stiffness of the spring and the mass of the element 

that the spring is attached to. When SE is applied, the stability limit of the system is 

constant as the stiffness of the spring and the mass of the element does not alter 

during the analysis. The features of both spring and truss elements are presented in 

Table 3.1. 

Table 3.1 The summary of the truss and spring element features to use as the experimental 
spring 

Element Mass Stiffness Stability limit 

Truss ✔ ✔ Varies 

Spring 

X 

(can be calculated by attaching 

a mass element) 

✔ Constant 
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3.2.2 An oscillatory system  

If an under damped spring is part of the dynamic system, a level of oscillation is 

expected, as there is no energy dissipation inherent to the system. As such, when a 

load is applied the model will overshoot and oscillate with an amplitude 

proportional to the original load. As the loading changes in this model varies rapidly, 

the spring is unable to reach the stable condition which would result in false output. 

The noise due to the oscillations can be reduced by damping the system. Therefore, 

the oscillations in the system must be either prevented, by critically damping the 

system, or otherwise reduced by a damping figure close to the critical. Once the 

system is damped, an accurate value of the output can be recorded with minimum 

noise. As the damping in the experimental set up is unknown, calculations were used 

to obtain a critically damped model for all of the cases.  

𝟏 =
𝒄

𝟐√𝒎𝒌
         

Where c is the dashpot coefficient, m is the mass of the system and k is the spring 

stiffness. The damping equation is used for a spring-mass system which is an 

extreme simplification of the model. However, the equation provides some 

predictions about the level of damping.  

An oscillatory system with no damping oscillates within the natural frequency of the 

system however, in a damped system the amplitude of oscillations decreases 

gradually from the maximum amplitude to a stable constant value to reach the 

equilibrium. The critical damping in a system is for the spring to return to 

equilibrium as quickly as possible and eliminate oscillations without overdamping 

the system. It is crucial to achieve a critically damped system because overdamping 

the spring might cause underestimation of the output. 
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One major problem in any dynamic analysis is the tenancy for the components of 

the model to display oscillatory behaviour due to their inherent dynamic 

characteristics. Such oscillatory behaviour can sometimes obscure the main trend 

in the results. There are two strategies to reduce such effects: 1) addition of damping 

to the FE model and 2) filtering of results in post analysis stage. To damp a model in 

ABAQUS explicit, there are three different approaches described below and 

compared in Table 3.2: 

Bulk viscosity damping: This damping is a purely numerical effect that is 

associated with volumetric straining and affected the whole model. Bulk viscosity 

damping is mainly used for high speed dynamic events. Two different types of bulk 

viscosity damping (linear and quadratic) can be used in analysis based on the nature 

of the elements and the volumetric strain rate. There is a default value of bulk 

viscosity damping in all the explicit analysis carried out by ABAQUS. Increased value 

of bulk viscosity affects the running time of the analysis negatively. 

Material damping: The material damping method in ABAQUS is called Rayleigh 

damping which is also known as, mass and stiffness proportional damping. The 

mass proportional damping consider the mass matrix of the element and applies the 

damping force based on the element velocity. The stiffness proportional damping 

produces damping stress based on the total strain rate calculated by using the elastic 

material stiffness. The value of the mass and stiffness coefficients are challenging to 

choose in the model with many degrees of freedom because of changes in frequency 

and modal mass participation as the mode of vibration changes. These two factors 

directly affect the critical damping and the damping ratio of the analysis. Therefore, 

the damping ratio arising from the Rayleigh damping method potentially varies 

throughout one analysis.  
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Discrete dashpot: The individual dashpot element is available to use in conjunction 

with the spring element. The damping force produced by the dashpot element is 

based on the relative velocity of the nodes at either end of the element. This feature 

allows the damping force to be applied only in the position where it is critical to have 

damping. The dashpot element is usually used in conjunction with a spring element. 

In this model, as the source of the noise oscillation is the SE, the dashpot element 

can be attached in parallel to the spring element to reduce the oscillation.  The 

dashpot element, same as spring element, is not considered for the stability limit 

calculation which could increase the possibility of instability.  

Table 3.2 Summary of the damping methods available in ABAQUS and the advantages and 
disadvantages of each method 

Damping Method Advantage Disadvantage 

Bulk viscosity 

damping 

Based on volumetric 

straining of elements 

General ABAQUS 

damping method 

Doesn’t apply the 

physical damping to 

any specific area. 

Increase the running 

time 

Material 

damping 

Mass and stiffness 

proportional 

damping (Rayleigh 

damping) 

Included in stability 

limit calculation 

Directly applied to 

the source of 

oscillations 

Complicated to use 

The material 

damping parameters 

are generally 

unknown 

Discrete 

dashpot 

Relative velocity of 

the element nodes of 

the spring element 

Simple to use. 

Directly applied to 

the source of 

oscillations 

Excluded in stability 

limit calculation 
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3.3 Materials and methods 

3.3.1 Geometry and alignment 

The components of the THR were aligned as illustrated in Figure 3.2. In this chapter, 

the simplified geometry of the Pinnacle Ceramic-on-polyethylene THR was 

implemented. CAD models of commercially available implant geometries were used 

(Pinnacle® 100 series shell, outer diameter 56mm, Pinnacle® neutral polyethylene 

liner, bearing diameter 36mm, Biolox Delta® femoral head, bearing diameter 

36mm, DePuy Synthes, Leeds, UK) modified for model simplicity by removing anti 

rotation devices on the cup and the shell.  

 

Figure 3.2 Simplified cup holder, Pinnacle® 100 series shell, outer diameter 56mm, 
Pinnacle® neutral polyethylene liner, bearing diameter 36mm, Biolox Delta® femoral head, 

bearing diameter 36mm (DePuy Synthes, Leeds, UK). 

3.3.2 Assembly 

The assembly of the components were designed to replicate the in vitro 

configuration as shown in Figure 3.3. A spring is attached to the cup holder and the 

cup holder, metal shell and the acetabular cup have tie constraint between the 
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interactive surfaces with 45o inclination angle. To simplify the cup holder geometry, 

it was designed as a semi-hemisphere. 

 
Figure 3.3 The assembly in the computational model (A) and schematic of the experimental 

set up (B) 

3.3.3 Material properties 

The material properties of the components are shown in Table 3.3. As the size of the 

cup holder is simplified significantly, the mass point which assigns the total mass of 

the cup holder was defined on the reference point of the cup unit (The centre of the 
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head). In this study, the density was scaled up to increase the time step for 

computational efficiency as the higher density results in a larger time increment for 

stability. 

Table 3.3 Material and geometric properties of the components  

Components Material 
Young’s 
modulus 

(MPa) 

Poisson’s 
ratio 

Density 
(kg/mm3) 

Outer 
radius 
(mm) 

Inner 
radius 
(mm) 

Head Rigid - - 4.37x10-6 18 - 

Cup Polyethylene 670 0.46 9.23x10-7 - 18.524 

Shell Titanium 114,500 0.34 4.43x10-6 56 - 

Cup holder Rigid - - 8.5x10-6 27.25 24.25 

In addition, the UHMWPE cup was assigned with a nonlinear behaviour by using 

elastic-plastic material model in ABAQUS that requires the stress and strain 

behaviour of the model only. This material model was used previously (Hua et al, 

2014) and the elastic-plastic behaviour of the UHMWPE was provided by DePuy 

Synthes in house testing (Figure 3.4). 

 

Figure 3.4 Nonlinear Stress-strain behaviour for UHMWPE (1050 GUR) 
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3.3.4 Finite element mesh 

The meshing configuration of this study was chosen based on the previous analyses 

(presented in chapter 2). In line with the conclusions of chapter 2, a meshing ratio 

of 1.5:1.5 was assigned on the contact surfaces globally (ratio of element size on the 

acetabular cup to that on head). The cup holder and the shell have a slightly coarser 

mesh of 3mm and 2mm, respectively. Table 3.4 represents the details of the 

components elements. All of the elements have explicit, linear and reduced 

integration features.  

Table 3.4 The details of the components elements 

 Part 
Global size 

(mm) 
Element shape ABAQUS Code 

Number of 

elements 

Head 1.5 Hexahedral R3D4 2,228 

Cup 1.5 Hexahedral C3D8R 8,960 

Cup holder 3 
Hexahedral and 

tetrahedral 
R3D4 and R3D3 2,211 

Shell 2 Hexahedral C3D8R 2,820 
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Figure 3.5 Meshing of each component A) Metal shell, B) Polyethylene cup, c) cup unit and D) 
head 

3.3.5 Methods 

In this chapter, four studies are reported:  

1. Spring representation 

2. Inclusion of damping 

3. Mass effect 

4. Model input sensitivity 

The construction of each study is based on the conclusion of the previous study. 

Figure 3.6 represents the flow and the order of the studies. As this figure shows, two 

approaches, spring element and truss element, were used to introduce the spring 
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behaviour into the model. Then, dashpot discrete damping method was applied to 

represent the spring in a more efficient way by achieving critical damping. 

Furthermore, the critically damped spring was taken forward to understand the 

effect of true mass rather than artificially increased mass and gait cycle loading on 

the analysis. Finally, the most reliable model up to this point was chosen for model 

input sensitivity analysis.  

  

Figure 3.6 Flowchart of the chapter 3 studies  

The overall details of the analyses, namely mismatch level, stabilisation time, 

dashpot coefficient and the mass of the system, that are reported in this chapter are 

presented in Table 3.5. 



113 

Table 3.5 The variation and details of the studies that were carried out in chapter 3 based on 
the main variables namely, spring representation method, mismatch level, stabilisation 

time, dashpot coefficient and component mass condition 

Study 
Spring 

representation 

Mismatch 

level (mm) 

Stabilisation 

time (s) 

Dashpot 

coefficient 

(mmN/s) 

Mass state 
Sp

ri
n

g 
re

p
re

se
n

ta
ti

o
n

 

Truss element 3 20 0 Artificial 

Spring element 3 20 0 Artificial 

In
cl

u
si

o
n

 if
 d

am
p

in
g 

Spring element 3 2 0 Artificial 

Spring element 3 2 1 Artificial 

Spring element 3 2 10 Artificial 

Spring element 3 
2 

20 Artificial 

Spring element 3 2 40 Artificial 

Spring element 3 2 60 Artificial 

Spring element 3 2 80 Artificial 

Spring element 3 
2 

90 Artificial 

M
as

s 
ef

fe
ct

 Spring element 3 0.2 1 True 

Spring element 3 0.2 3 True 

Spring element 3 0.2 4 True 

M
o

d
el

 in
p

u
t 

se
n

si
ti

vi
ty

 

Spring element 1 0.2 3 True 

Spring element 4 0.2 1 True 

3.3.6 Spring representation  

As mentioned above, the spring is used in the experimental set up to represent any 

medial-lateral mismatch between the head and the cup of the THR. In this study the 

spring is represented in the model by using two different methods as follows: 
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Truss element: A truss element of 50mm length was attached to the edge of the cup 

unit. The material properties given in Table 3.6 were assigned to the truss element. 

The Young’s modulus of the elements was calculated based on the predicted stress 

and strain level of the spring to produce the same spring stiffness as the in vitro 

studies (100 N/mm). Therefore, the Young’s modulus of the truss element was 

calculated from the predicted from strain and force level based on the fixed stiffness. 

A 2-node linear 3-D truss (two dimensional element in three dimensional space) 

was allocated to this element.  

Spring element: In this method, two ends of the spring were selected by using 

reference points where one end is attached to the cup unit (attached end) and the 

other end is unattached to any entity. The properties that were assigned to the 

spring element are also presented in Table 3.6. 

Table 3.6 Truss and spring element properties to represent the experimental spring 

Property Truss element Spring element 

Young’s modulus 500 MPa N/A 

Cross sectional area 10 mm2 N/A 

Length 50 mm 50 mm 

Density 9x10-6 kg/mm3 N/A 

Stiffness 100 N/mm 100 N/mm 

3.3.7  Boundary conditions, loads and analysis steps  

All of the analyses consisted of four steps:  

1. Pre-contact: The analysis starts with a concentric head and the cup. In this step, 

the head is translated upward for the amount of radial clearance in order to 

establish initial contact (Figure 3.7). 
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Figure 3.7 Illustration of precontact step: vertical movement of the head. 

2. Spring compression: During this step, the spring becomes fully compressed 

(3mm for 3mm translational mismatch) in isolation by translating the lateral end 

(Figure 3.8). At this step, the head and the cup components are held in place by fully 

constraining them. 

 

Figure 3.8 Spring compression step illustration: Compression of the spring medial/laterally 

3. Spring stabilisation: The Fixation of the cup unit is released and the lateral end 

of the spring is fixed. Therefore, the equilibrium position of the cup with respect to 

the head is determined. Also, there is a vertical force applied through the cup unit to 

stabilise the joint (Figure 3.9). 
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Figure 3.9 Spring stabilisation step illustration: Cup moves away from the head and the 
spring extends 

The details of the steps, loading and boundary conditions are shown in Table 3.7. In 

the pre-contact step, only vertical displacement of the head is allowed. As the spring 

compresses in isolation in the spring compression step, the only movement in this 

step is the horizontal translation of the lateral spring end.  

As the stabilisation step starts, the lateral end of the spring becomes fixed. The 

spring attached end, cup unit, metal shell and cup liner are allowed to translate 

horizontally and vertically to determine the equilibrium cup location with respect 

to the head. Moreover, a constant vertical load of 300N is applied during this step. 

300N is the minimum load that is applied during the swing phase of the standard 

gait cycle. 
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Table 3.7 Steps, loading conditions and boundary conditions of the analyses 

Steps 
Duration 

(s) 

Axial 

load 

Boundary conditions 

Head 

movement 

Cup 

movement 

Spring movement 

Medial 

end 
Lateral end 

Pre-contact 0.05 - 
0.54mm 

upward 
Fixed Fixed Fixed 

Spring 

compression 
0.05 - Fixed Fixed Fixed 

3mm 

compression 

Spring 

stabilisation 
2 

Constant 

300N 
Fixed 

Horizontal 

and vertical 

translation 

Horizontal 

and vertical 

translation 

Fixed 

Loading 2 
2 Paul 

cycle 
Fixed 

Horizontal 

and vertical 

translation 

Horizontal 

and vertical 

translation 

Fixed 

In the fixed loading step, the twin peak Paul cycle loading that was applied in the 

experimental set up (shown in chapter 2) is applied in the model with similar 

boundary conditions as in the stabilisation step. The Paul cycle is repeated twice in 

these analyses in order to examine the level of noise in repetitive cycling. 

3.3.8 Inclusion of damping 

A dashpot coefficient was added to the spring element to minimise the dynamic 

oscillations of the spring and study the effect of damping on the dynamic output. 

Various dashpot coefficients were tested to determine the value which would 
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produce a critically damped system. Table 3.8 represents the dashpot coefficients of 

each case. The duration of the stabilisation step is 2s for all the cases.  

Table 3.8 Dashpot coefficient assigned for each case with spring element as the spring 

Case Dashpot coefficient (Ns/mm) 

A 
0 

B 
1 

C 
10 

D 
20 

E 
30 

F 
40 

G 
60 

H 
70 

I 
80 

3.3.9  Mass effect  

The effect of the mass was tested on the dynamics and contact mechanics analysis 

to justify if the model with artificial mass (heavier than true mass values to increase 

the time step) could produce as valid output as the true mass values. The mass of 

the elements is the main parameter to calculate the maximum time increment for 

stability and there is an inverse relationship between the mass and the time 

increments for stability. Therefore, the greater the density is, the longer the time 

increment for stability is and consequently, the shorter the run time of the analysis.  

The material densities shown in Table 3.9 were assigned to the corresponding 

component. Initial studies on the analyses with true mass values indicated that due 

to the mass changes, the time taken for the spring to become stable during 

stabilisation is considerably reduced. Therefore, the stabilisation step time was 

assigned to be 0.2s for true mass value analyses. 
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Table 3.9 True mass values of the components and the material used for each component 

Components Material Density (kg/mm3) 

Head Rigid 4.37x10-9 

Cup Polyethylene 9.23x10-10 

Shell Titanium 4.43x10-9 

Cup holder Rigid 8.5x10-9 

To understand the effect of dashpot coefficient on the output of the model with true 

mass values, variation of dashpot coefficients of 1, 3 and 4 Ns/mm were applied to 

the model. 

3.3.10 Model input sensitivity 

Two cases that represents the extreme best case and worst case input circumstances 

based on the translational mismatch matrix were tested on the model with the 

spring element with different dashpot coefficients. The purpose of this study is to 

determine if the model can differentiate between the input parameters with no 

instability. Furthermore, it would indicate whether the chosen methodology can 

work on a wider parametric range. Table 3.10 represents the differences between 

each case. The mismatch level, cup inclination angle, swing phase load of the gait 

cycle and the dashpot coefficient vary in the cases. In this study, the true mass values 

of the components were applied.  

Table 3.10 Description of the variables namely mismatch level, cup inclination angle, swing 
phase load, stabilisation load and dashpot coefficient on both cases 

Cases 
Mismatch 

level (mm) 

Cup 

inclination 

angle (°) 

Swing 

phase load 

(N) 

Stabilisation 

load (N) 

Dashpot 

coefficient 

(mmN/s) 

A 1 45 300 300 3 

B 4 45 300 300 1 
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3.3.11 Model output measures 

At this stage, the primary factor that was investigated was the dynamic behaviour 

of the system in order to study the methods of mitigating the oscillations. A decision 

was made to determine a suitable response that could be compared to the 

experimental simulation for validation purposes. In the experimental set up, the 

measured separation, i.e. the Medial/Lateral displacement (M/L displacement), 

between the centre of the head and the cup (Williams et al., 2003; Al-Hajjar et al., 

2010; Ali et al., 2016), is exported from the testing. Hence, the M/L displacement of 

the cup throughout the analysis is recorded during the experiment and can be 

compared to the simulation results without any extra engineering effort. In 

experimental and clinical studies, the highest separation occurs during the swing 

phase load when the vertical force is a minimum. Moreover, lower separation was 

recorded during the stance phase causing a more concentric contact between the 

contact surfaces due to the highest vertical loading (Komistek et al., 2002; Al-Hajjar 

et al., 2010). The M/L displacement of the cup represents the separation because 

the head and cup are initially concentric and the head is fully fixed during the 

analysis.  This measure only takes into account the separation in one medial-lateral 

direction and does not include the movement of the cup in the other directions. In 

terms of the contact mechanics analysis, the contact area on the cup surface is also 

studied to understand if there is any contact instability or loss of contact between 

the bearing surfaces during the loading cycle.  
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3.4 Results  

The output of the analyses are presented in the same order as the description of the 

methodology.  

3.4.1 Spring representation 

Two simplified methods were used to represent the experimental spring in the 

computational model.  The predicted M/L displacement of the cup is presented in 

Figure 3.10 and Figure 3.11  with truss and spring elements, respectively. 

 

Figure 3.10 Medial/lateral displacement of the cup using a truss element as the spring with 
3mm translational mismatch level and 300N swing phase load 

At this stage of development, the focus is on the M/L displacement during 

stabilisation because this behaviour indicates the dynamic stability of the system. 

Moreover, the M/L displacement during the gait cycle is monitored to determine 

whether the displacement of the model is practical. The M/L displacement of the 

cup unit indicates a large noise during the spring stabilisation step when a truss 

element was used. The oscillation that was produced by the truss element in this 

step has a large time period of about 8s and the amplitude of the oscillations is 

reduced gradually with time. As expected, the oscillations generated by the truss 
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element seem to lessen with time which suggest that the system naturally becomes 

more stable with time.  

When the Paul cycle is applied, the minimum M/L displacement during stance phase 

is expected especially at the two peak loads because of the high vertical loading. 

Furthermore, the M/L displacement during the swing phase is expected to be the 

maximum as the axial loading is minimum. The minimum axial load should allow the 

cup to move in M/L direction as the M/L force is less in swing phase.  

As gait cycle loading is applied, the M/L displacement follows a similar trend as 

stance loading. However, when the swing phase load was applied (constant 300N 

load), the medial-lateral displacement initially decreases (time 20.6s to 20.8s in 

Figure 3.10) and then increases dramatically (20.8s to 21s) and doesn’t become 

constant. Moreover, the oscillations in the medial-lateral displacement of the cup 

during the second gait cycle loading become more moderate particularly in the 

swing phase load.  

The spring element underwent an oscillations with an amplitude that decreases by 

the time during the spring stabilisation step. The number of the oscillations during 

stabilisation is more for the spring element than for the truss element. Thus, the 

time period of the oscillations for the truss element is substantially longer than for 

the spring element. The Paul cycle undergoes two peak loads for which the M/L 

displacement is expected to be zero. During the swing phase load, the M/L 

displacement of the model increases. However, the M/L displacement during the 

swing phase load of the second Paul cycle is substantially higher than in the first 

Paul cycle loading of the truss element model. 
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Figure 3.11 Medial-lateral behaviour of the model with ABAQUS spring element as the spring 

with 3mm translational mismatch level and 300N swing phase load 

The dynamic output of both the truss and spring element models indicated that the 

M/L displacement could potentially be affected by numerical noise level which 

could make the prediction of the separation unreliable. It is important to be able to 

predict the level of M/L displacement during the swing phase load as the dynamic 

separation that is recorded from the in vitro studies is measured during the swing 

phase. Therefore, additional damping was introduced to the model to understand to 

that extent the numerical noise can be minimised by damping. To implement a level 

of damping in the truss element model, Rayleigh’s damping coefficients need to be 

calculated. However, damping can be applied to the spring element simply by 

attaching a damper in parallel to the spring. Therefore, further analyses are carried 

out on the spring element only.  

3.4.2 Inclusion of damping 

Different dashpot coefficient values were applied to the model with the spring 
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resulted in a large decrease in the amplitude of the oscillations compared to the no 

dashpot case. The consistency in the oscillations is more obvious for the spring 

element model as the wavelength of the oscillations for spring element model is 

shorter than for the truss element model. The underdamped system behaviour is 

more obvious when a level of dashpot coefficient is applied to the spring element. 

Moreover, the dashpot coefficient causes stabilisation of the spring in a shorter time.  

Although the initial results suggest an underdamped system up to the dashpot 

coefficient of 60 Ns/mm, the overall displacement behaviour is considerably 

affected by the value of the dashpot coefficient. It can be seen that various dashpot 

coefficients were applied to the model to achieve a critically damped system. As the 

dashpot coefficient increased up to 70 Ns/mm, the amplitude of oscillations 

decreased during stabilisation time. When a dashpot coefficient of 80 Ns/mm was 

used, the cup unit is moved medial-laterally to the stable point in a shortest time 

(0.5s). Thereafter, no further oscillations are recorded when the cup unit is 

displaced to its maximum level which is an indication of a critically damped spring 

system. A higher dashpot coefficient of 70 Ns/mm caused a different behaviour 

during stabilisation.  The cup unit ultimately attempted to reach the same stable 

point. However, the time taken to reach the point is longer. Although, no noise was 

seen for a dashpot coefficient higher than 70 Ns/mm, the time taken and the shape 

of M/L displacement graph indicate an over damped system which may under 

predict the magnitude of the displacement in the time period.  
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Figure 3.12 The effect of damping on the M/L displacement of the model with specific dashpot coefficient, 3mm translational mismatch level and 
300N swing phase load. Each plot represents the value of dashpot coefficient (Ns/mm). 

-5

-4

-3

-2

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4

M
/L

 d
is

p
la

ce
m

en
t 

(m
m

)

Time (s)

0

1

10

20

40

60

70

80



126 
 

After the damping analysis, the next step is to investigate the effects of gait cycle 

loading on the dynamics and contact mechanics of the explicit model (Figure 3.12). 

The analyses that were carried out in inclusion of damping study underwent gait 

cycle loading to understand the effect of damping condition on the M/L 

displacement during the loading. Therefore, two modified vertical Paul loading cycle 

were applied to the model.  When the Paul cycle loading is applied, the M/L 

displacement initially decreased as the load reached the first peak. Then a moderate 

increase and then decrease of the displacement between the two peak loads were 

observed. After the second peak load, a substantial increase in the M/L displacement 

occured during swing phase load (minimum axial load of the cycle). The major 

differences between different damping conditions caused by increasing the dashpot 

coefficient are: 

 Changing of three zero point to two zero point: The damping resulted in the two 

points during gait cycle in which the separation is minimum as the load is 

maximum (the twin peaks) 

 No overshooting of the M/L displacement in the critically damped model 

 Moderate changes of M/L displacement between the two peak stance phase 

loads 

 Minimisation of oscillations during the swing phase  

 Substantial decrease in the M/L displacement during swing phase.  

Moreover, it was also seen that if a dashpot is added to the model, M/L displacement 

during the first and second Paul cycle is similar and hence greater consistency and 

stability after only one cycle.  

The critically damped system produced the ideal dynamic behaviour 

computationally as no noise and no overshooting were observed in the critically 
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damped model. Moreover, the M/L displacement behaviour in swing phase load was 

clearer which resulted in a clearer displacement prediction. The cases with lower 

dashpot coefficient displayed oscillations during the swing phase whereas the 

displacement decreased and stayed constant during the swing phase in the critically 

damped model.  

The contact area predicted by the model is shown in Figure 3.13. Large oscillations 

could be seen as the spring reached its initial stabilisation point. Later, the amplitude 

of the oscillations was substantially less. However, the mean value of the oscillation 

peak alters during this step. Similar to analyses that were reported in chapter 2, 

oscillation also occurred during Paul cycle loading and the oscillation pattern is 

similar in first and second Paul cycle. As the dynamic and contact mechanics 

behaviour does not vary in the second Paul cycle, future analyses will be carried out 

on only one Paul cycle loading. 

 
Figure 3.13 contact area versus time for the model with 3mm mismatch level, 300N swing 

phase load, 45° inclination angle and 70 Ns/mm 
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3.4.3 Mass effect 

Figure 3.14 represents the M/L displacement of the model with true mass values for 

the 3mm mismatch case. Zero displacement in the pre-contact and spring 

compression steps is expected as no horizontal movement resulted from these 

steps. Dashpot coefficients varying between 1 Ns/mm and 4 Ns/mm were tested on 

this model. The minimum dashpot coefficient that resulted in no oscillation was 3 

Ns/mm. Although the critical value of the dashpot coefficient differed between the 

true and artificial mass models, the same damping behaviour is observed for both 

mass conditions. The spring seems to become stable in a significantly shorter time 

than for the artificial mass values with a minimum level of oscillation. In gait cycle 

loading, the M/L displacement with true mass values, as for the artificial mass 

values, followed the axial loading changes. The displacement at the peak loads are 

the same and no overshooting of the displacement was observed.  

 

Figure 3.14 M/L displacement behaviour for various dashpot coefficient with true mass 
values, 3mm translational mismatch level and 300N swing phase load 
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pattern is similar in both cases, the following differences between the true and 

artificial mass model with respect to the M/L displacement were observed:  

 Time delay in M/L displacement response only in model with artificial mass 

value. 

 Different M/L displacement value for two peaks in the model with artificial mass 

value whereas true mass values resulted in the same M/L displacement for both 

peaks. 

 During the swing phase, the analysis carried out on the model with true mass 

values resulted in constant M/L displacement. However, the artificial mass value 

resulted in gradual decrease in M/L displacement throughout the whole swing 

phase.  

 

Figure 3.15 Critically damped model of artificial and true mass on M/L displacement 
behaviour with sampling frequency of 20 with 300N swing phase load and 3mm 

translational mismatch level 
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analysis with true mass values resulted in a slightly higher contact area as the load 

reached its first peak. Moreover, contact area changes during the swing phase in the 

artificial mass model gradually decreased whereas the contact area in the true mass 

model is constant throughout the swing phase.   

 
Figure 3.16 Contact area comparison using true and artificial mass values for the analyses 

with 3mm translational mismatch level and 300N swing phase load 

3.4.4 Model input sensitivity 

The two cases that could represent the best and the most crucial output conditions 

(1mm and 4mm mismatch) were analysed and the M/L displacement time history 

for each is presented in Figure 3.17. Once more, the expected behaviour was seen 

for each of the pre-contact, spring compression and stabilisation steps and the 

analyses were critically damped so no oscillation or long term gradual stabilisation 

was observed. The general trend of the M/L displacement in all the cases followed 

the axial loading changes and the M/L displacement behaviour seemed to be similar 

to the previous analysis with 3mm mismatch level and critically damped system. 
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Figure 3.17 The M/L displacement of the cases that represent the analyses with 1mm and 

4mm translational mismatch level, 45° inclination angle and 300N swing phase load 

The contact area changes during Paul cycle loading for the 1mm and 4mm mismatch 

level is presented in Figure 3.18. Both analyses resulted in virtually the same 

maximum contact area at the peak loads. However, the contact area derived during 

the swing phase was less for the 4mm mismatch than for the 1mm mismatch. The 

difference in contact area value during the swing phase agreed with the changes in 

M/L displacement. The difference in contact area occurred due to the higher lateral 

separation in 4mm mismatch case resulting in a smaller contact area close to the 

lateral edge of the cup. 

 
Figure 3.18 Contact area derived from analyses versus time with 300N swing phase load, 45o 

inclination angle and translational mismatch variation of 1mm and 4mm 
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3.5 Discussion 

The analyses reported in this chapter focused on the reliability of the chosen 

methods based on the applications. The model is required to predict the level of M/L 

displacement for validation proposes against in vitro testing as described in the next 

chapter. Once the model is validated against in vitro studies, the reliability of the 

model can be assured in order to predict the effect of a wide range of parameters on 

the dynamic and contact mechanics of the THRs. As dynamic separation and edge 

loading are multifactorial scenarios (Fisher, 2011), in vitro studies are expensive 

and it is time consuming to test all the potential factors or combination of the factors 

on THR behaviour due to simulator preparation time, long duration of simulator 

testing, maintenance of the simulators and number of tests required. However, a 

validated computational model can provide a useful insight to the THR performance 

during an activity. A wide range of parametric testing can also be carried out on the 

computational models to estimate which parameters can potentially have the most 

effect on the THR performance under adverse conditions.  Furthermore, those 

parameters can be taken forward in experimental studies.  

The computational model also needs to estimate reliable contact mechanics 

information. The contact mechanics output provides information about which area 

of the bearing undergoes the most severe contact behaviour that could lead to 

permanent damage and potentially failure of the device. The model can be used to 

determine at which stage of the gait cycle the bearing is potentially at the most risk 

of damage. The insight from the contact mechanics information about the bearing 

behaviour during an activity helps to navigate and focus on the damaged zone for 

improvement of future joint designs.  
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In vitro studies cannot provide contact mechanics information for the bearing 

during a gait cycle. The dynamic parameter that is measured in these simulator 

studies is the dynamic separation within the cycle. Therefore, the dynamic 

separation is the only factor that can be readily compared between the in vitro and 

computational studies. In this chapter, the computational model is developed to 

simulate the experimental configuration simply by considering the efficiency of the 

computational method.     

There is an element of damping (energy loss) due to mechanical friction or other 

tribological effects in all real systems. In the simulators, no additional damping is 

attached to the spring and the damping in the experimental studies is provided by 

friction and other aspects of the total components behaviour such as mass. 

Therefore, there is no direct measurement of the damping in the experimental set 

up and it is a very challenging task to quantify the in vitro damping. In computational 

studies, damping is modelled mathematically to align the model more closely to the 

real-world scenario and to reduce the system noise. In this application, as the spring 

is the primary cause of the oscillation in the M/L displacement, the damping is 

directly applied by adding a damper parallel with the spring.    

There are different numerical damping methods that were discussed in the technical 

background section of this chapter. Bulk viscosity applies the damping to the whole 

system regardless of the individual components. ABAQUS applies a small level of 

bulk viscosity by default to decrease the numerical noise of the system. Material 

damping can be applied only when using a truss element as the spring. However, the 

prediction of mass and stiffness proportional Rayleigh damping is very challenging 

for a system with many degrees of freedom. The most ideal option is to add the 
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discrete dashpot to be used in parallel with spring element to add damping in 

addition to the default bulk viscosity damping.  

The spring/dashpot system is the simplest method to implement the experimental 

spring behaviour as it only requires a simple calculation prior to analysis whereas 

the material damping/truss element system requires a complex initial calculation to 

find the Rayleigh damping factors. On the other hand, the spring element is not 

considered in the ABAQUS stability time step calculation due to the lack of spring 

element mass. This could cause a level of instability in the whole system. This effect 

is substantial when considering a damper/spring system because of continuous 

spring movement. However, the spring/dashpot system does not appear to 

experience any dynamic instability throughout the analysis although numerical 

oscillation still occurs for low values of dashpot coefficients 

The damping conditions have a great effect on the M/L displacement of the model. 

Maximum M/L displacement (during the swing phase) varies based on the damping 

factor. The critically damped model predicts the maximum M/L displacement with 

no oscillations present. The results from an over/under damped system are not as 

reliable as from the critically damped model as the dynamic effects could potentially 

be underestimated in the over damped system and overestimated in the 

underdamped system. There is not a specified level of damping that can be extracted 

from the experimental set up. If a fixed dashpot coefficient is assigned for all the 

cases, it could either be an estimation or predicted from the certain conditions based 

on the experimental behaviour. However, this approach is challenging as it 

would involve a whole series of analyses to be carried out at much longer 

computational time and cost.  
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As increased mass has the inverse effect on the time increments for stability, the 

effect of mass scaling was examined to shorten the running time of the analysis. The 

main effect of mass on the dynamics of the model is during the swing phase. The 

M/L displacement during the swing phase seems to be constant in the analysis with 

true mass values as the swing phase load is constant. However, artificial mass values 

resulted in continuous increase in M/L displacement during the swing phase. Higher 

mass values results in longer time to stabilise the output than true mass values. The 

asymptotic behaviour of M/L displacement during the swing phase for the artificial 

mass model could be explained by the lack of sufficient time during the swing phase 

to reach a stable value.  

Artificial mass values also result in substantial changes in the M/L displacement 

between the two peak loads during the stance phase whereas true mass values cause 

only a slight change during that time. This difference in dynamic behaviour is due to 

the inertia in two systems. True mass values results in lower inertia and therefore, 

takes less time to settle to a stable position than higher inertia for the artificial mass 

model. For future analyses, true mass values for all the components are specified as 

the differences between the M/L displacement in the true and artificial mass 

analyses are substantial even though the run time of the true mass analyses are 

much higher. 

In the model input sensitivity study, the analyses positively reacted to the changes 

in the cases. There was a definite differentiation between the attempted cases. As 

expected, the maximum M/L displacement increased as the translational mismatch 

level increased. Moreover, no oscillations or instability of the dynamic and contact 

mechanics data were observed throughout the analyses when critical damping was 

applied. Although no noise in the analysis simplified the output reading, pre-
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damping analysis is required for each case to predict the dashpot coefficient level 

that produce a critically damped system. The output observation indicated an 

acceptable overall dynamic and contact mechanics behaviour. Therefore, the next 

step would be validating the output by comparison with in vitro data followed by 

parametric testing. 

3.6  Key findings 

 ABAQUS built in spring element with dashpot in parallel was found to be the best 

method to represent the in vitro spring.  

 The dynamic and contact mechanic are directly affected by the mass of the 

system. Therefore, true mass values will be applied to the model for all future 

analyses even though the run time was over 20 hours for the analyses with true 

mass values.  

 As determined, the true damping ratio of the simulator is a challenging task, 

critically damping was assigned to the spring to minimise oscillation of the M/L 

displacement. However, damping calibration is required for each individual 

cases to reach critically damped model. 

 The M/L displacement of the model behaved expectedly. Therefore, the next step 

is to perform model validation and parametric testing. 
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Chapter 4 Parametric sweep, validation and sensitivity 

testing 

4.1 Introduction  

In line with the conclusion of Chapter 3, the method of the explicit finite element 

model of THR under adverse condition is mainly developed and finalised. The 

agreed method consisted of a spring element that initially is compressed for the 

desired translational mismatch level and then is released to maintain the stability. 

After the stabilisation of the spring, the model is loaded with the gait cycle axially. 

Implying the dashpot coefficient assisted the model to eliminate the effect of noise 

on the results. The recorded separation had an inverse relationship with the loading 

during the gait cycle which resulted in the highest separation during swing phase 

and consequently, the lowest contact area in the cycle.  

The results that were exported from the chosen method followed the sensible trends 

as the experimental methodologies, and so enabled the next step of the development 

which was applying the parametric sweep of testing and validate the outcome 

against in vitro studies. The aim of testing parametric sweep and validation was to 

test the reliability of the method that leads to confidence in the conclusion resulted 

from the model output.  

The parametric sweep focussed on the following key areas: 

1 Translational mismatch level: A level of mismatch between the centre of the 

head and the cup 

2 Rotational variation: variation in cup inclination angle 

3 Tissue laxity: by varying swing phase load 
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In this chapter, the dynamic effect of the parameters such as dynamic separation 

predicted by the finite element model is compared to separation values measured 

in independent in vitro tests undertaken by another researcher (Ali et al, 2016; 

Appendix).  The results from thirty two independent conditions data points were 

compared to the experimental results for the same set of conditions as part of the 

validation process. 

The validation of the model is discussed based on the in vitro testing carried out on 

an iMBE electromechanical hip simulator (Prosim EM13 hip simulator) which has 

previously been used to test metal on polyethylene hips under standard conditions. 

For the purposes of the validation of this computational model of edge loading, the 

test conditions and study reported in the Appendix was used,  As the model is set to 

replicate a physical hip simulator, the overall assembly of the experimental set up 

was replicated in the computational model to simplify the validation process. 

Furthermore, as friction occurs in the bearing in the experimental simulator and the 

precise value is not known, the model was tested for sensitivity to variation in the 

coefficient of friction on the contact surfaces was carried out on the model to 

understand the effect of friction on the extreme cases in the input parameters. 

Friction and lubrication of the bearing materials have an effect on the contact 

mechanics and wear of the material bearings in vitro studies (Brocket et al, 2007). 

The aim of the sensitivity test is to examine if friction at the bearing surfaces plays 

an important role in this application.  

The layout of this chapter also, consists of the description of the methodology 

(section 4.2), the computational and experimental result presentation (section 4.3), 

discussion of the results (section 4.4) and the key finding of the studies (4.5), 

respectively.  
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4.2 Methodology 

The model specification used in these analyses is fully described in previous 

chapters. The geometry, material properties, assembly, contact conditions, 

boundary conditions and element size are described in Chapter 3 methodology.  To 

summarize the model development, Figure 4.1 represents the assembly of the 

components in the model.  

 

Figure 4.1 The assembly of the components in the computational model for the parametric 
testing purposes 

Furthermore, the material properties of the components and meshing 

configurations are available in Table 4.1 and Table 4.2, respectively. 

Table 4.1 Material properties of the components the computational analyses in the 
parametric sweep of chapter 4 

Components Material 
Young’s 
modulus 

(MPa) 

Poisson’s 
ratio 

Density 
(kg/mm3) 

Outer 
radius 
(mm) 

Inner 
radius 
(mm) 

Head Rigid - - 4.37x10-9 18 - 

Cup Polyethylene 
670 

(Elasticity) 
0.46 9.23x10-10 - 18.524 

Shell Titanium 114,500 0.34 4.43x10-9 56 - 

Cup holder Rigid - - 8.5x10-10 27.25 24.25 
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Table 4.2 The meshing configurations and the element size of the components in the 
computational analyses in the parametric sweep of chapter 4 

Component Global size (mm) Element shape Code 
Number of 

elements 

Head 1.5 Hexahedral R3D4 2,228 

Cup 1.5 Hexahedral C3D8R 8,960 

Cup holder 3 
Hexahedral and 

tetrahedral 

R3D4 and 

R3D3 
2,211 

Shell 2 Hexahedral C3D8R 2,820 

Moreover, the same set of progressive dynamic steps and boundary conditions 

which are presented in chapter 3 is used and presented in Table 4.3. 

Table 4.3 The boundary and loading conditions on each step of the computational analyses 
in the parametric sweep of chapter 4 

Steps Duration 
Axial 
load 

Boundary conditions 

Head 
movement 

Cup 
movement 

Spring movement 

Lateral end Medial  end 

Pre-contact 0.05 - 
0.542mm 

upward 
Fixed Fixed Fixed 

Spring 
compression 

0.05 - Fixed Fixed Fixed 
Spring  

compression 

Spring 
stabilisation 

Alters 
Constant 

300N 
Fixed 

Horizontal 
and vertical 
translation 

Horizontal 
and vertical 
translation 

Fixed 

Loading 2 
2 Paul 
cycle 

Fixed 
Horizontal 

and vertical 
translation 

Horizontal 
and vertical 
translation 

Fixed 
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4.2.1 Input parameters 

For validation purposes, the same input parameters that were tested 

experimentally, surgical translational mismatch, rotational variation and tissue 

laxity, were adjusted to the models as an input (Appendix).  

Table 4.4 is the matrix describing the full set of test cases that were carried out in 

this chapter.  For the parameter sweep study, total of 32 cases with variety in 

translational, rotational variation and swing phase were carried out. Moreover, the 

cases which friction studies were tested on are also shown. The running time taken 

to carry out each of the analysis was approximately 21 hours.  

Table 4.4 The full set of test cases in the parameter sweep based on various translational 
mismatch level, swing phase load and cup inclination angle 

 

The implementations of input parameters that are mentioned in Table 4.4 are 

explained as follows: 

Surgical translational mismatch: The translational mismatch level is presented in 

the model by setting a mismatch between the centre of the head and cup which 

causes the spring to compress. The same translational mismatch level of 1mm, 2mm, 

3mm and 4mm, that were used experimentally, were applied. Surgical translational 
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mismatch represents a level of mismatch between the cup and the head centre. 

Figure 4.2 represents the schematic of translational mismatch level in the 

computational model 

 
Figure 4.2 The difference in assembly of fully concentric (A) where the head and the cup 

have the same centre and THR bearing with translational mismatch level (B) where there is 
a translational distance between the bearing centres 

Surgical rotational variation: Surgical rotational variation effect has been studied 

in vitro by varying the cup inclination angle. Two different cup inclination angles are 

tested in vitro: 1) 45° inclination angle that is assumed to be in the safe zone and 2) 

65° inclination angle which is defined as a steep inclination angle. To apply surgical 

rotational variation, the polyethylene cup, metal shell and the cup holder are 

assembled to have 35° angle with respect to horizontal axis to represent 45° clinical 

inclination angle. To implement a surgical rotational mismatch of 65°, the inclination 

angle of 55° is applied (Figure 4.3). The 10° difference between the cup inclination 

angles clinically and experimentally is due to the difference in loading angle in vitro 

and in vivo (explained in chapter 2). The cup inclination angle reported throughout 

this chapter is referenced to the clinical cup inclination angle. 
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Figure 4.3 Rotational mismatch configuration. A) 45° inclination angle clinically B) 65° 

inclination angle clinically 

Tissue laxity: Tissue and muscle laxity seen in vivo, is represented in vitro and in 

silico by varying the swing phase load of the gait cycle. The swing phase loads of 70N, 

100N, 200N and 300N are tested in vitro which is within the range of patient’s swing 

phase load range in the Bergsmann study (Bergmann et al., 2001). The same 

experimental variation of swing phase loads are applied to the model. The gait cycle 

loading of each case which is extracted from experimental testing is presented in 

Figure 4.4. 

 
Figure 4.4 The input gait cycle loading versus time for each swing phase load of 70N, 100N, 

200N and 300N 
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Case-specific model specifications: The constant force that was applied during 

stabilisation time (to fasten the stabilisation) differs from each condition to match 

the swing phase loads applied throughout the gait cycle of the specific analysis. 

In line with the conclusion of Chapter 3, the choice of dashpot coefficient for critical 

damping of the spring was affected by the mass of the system the translational 

mismatch level (due to the variation in the resultant force and the cup position in 

relation to the head).  In these analyses, although the mass of the system was 

constant, the translational mismatch was varied. It is expected that this will result 

in variation of the coefficient of damping between cases, so an initial dashpot 

coefficient analysis was carried out to achieve critically damped spring in each case. 

The table of dashpot coefficient for analysis carried out with 45° inclination angle is 

presented in Table 4.5 and 65° inclination angle is represented in Table 4.6. Before 

gait cycle loading, a series of analyses were carried out on each condition to achieve 

a critically damped system. 

Table 4.5 Dashpot coefficient of analysis with 45° inclination angle, translational mismatch 
level of 1mm to 4mm and swing phase load of 70N to 300N 

Mismatch (mm) 70N 100N 200N 300N 

1 1.85 1.8 2.1 2.5 

2 1.5 1.8 1.4 2.35 

3 1.2 1.1 2.25 3.1 

4 1.1 1.2 1.2 1.3 

Table 4.6 Dashpot coefficient of analysis with 65° inclination angle, translational mismatch 
level of 1mm to 4mm and swing phase load of 70N to 300N 

Mismatch (mm) 70N 100N 200N 300N 

1 1.25 1.4 1.35 2.5 

2 1.5 1.1 1.4 2.1 

3 1.2 1.2 1.1 1 

4 1 1.1 1 0.8 
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4.2.2 Outputs and experimental comparison 

4.2.2.1 Maximum dynamic separation 

The highest dynamic separation value throughout the gait cycle which occurs during 

the swing phase load was recorded for validation purposes.  

Edge loading definition: If the maximum dynamic separation was greater than the 

radial clearance (0.5mm), the separation is defined to cause head contact with the 

rim of the cup and a level of edge loading. 

Experimental measurement:  The in vitro dynamic separation was recorded from 

the biomechanical testing on Pinnacle metal-on-polyethylene THRs on the 

electromechanical hip simulator (EM13). The experimental maximum separation 

was taken as the mean value of the separation recorded from three samples. For the 

validation and comparison purposes, the maximum dynamic separation was 

exported from the explicit finite element model. The dynamic separation in vitro was 

measured from the point where the cup and the head were in contact with no spring 

compression (Figure 4.5). 

 
Figure 4.5 The schematic of dynamic separation measurement in vitro. A) The point where 
the separation is measured from (concentric cup and head and no spring compression), B) 

Minimum dynamic separation and C) Maximum dynamic separation (edge loading) 

4.2.2.2 Maximum load at the rim 

In the conditions that edge loading occurs, the maximum load that the rim of the cup 

undergoes, is recorded in two different time points: 
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1. When the input load is increasing to the first peak and the head is relocating to 

the concentric condition. 

2. When the input load is decreasing from the second peak to the swing phase load 

and the head is separating from the concentric condition. 

Computational measurement:  to calculate the load at the rim, firstly, the point at 

which the separation is at the minimum level (including 0.5mm) is recorded. 

Secondly, the corresponding time point in which the separation would be 0.5mm is 

calculated by using linear interpolation. Finally, the input load at the time in which 

the recorded separation level occurred is measured. Figure 4.6 illustrates the time 

point at which the separation and the load are measured. 

 
Figure 4.6 The intersection of the load and the separation for maximum load at the rim 
calculations. The corresponding load to the dynamic separation of 0.5mm is recorded as the 
maximum load at the rim 

Experimental measurement: The experimental measurement method used to 

determine maximum load at the rim was similar to the computational measurement. 

The load at the rim was determined as the axial force measured from the load cell at 
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a specified dynamic separation (Appendix). However, the maximum load at the rim 

is only taken when the head is relocating to the concentric condition. 

4.2.3 Friction sensitivity test  

Four cases were selected for a friction sensitivity test, where a friction coefficient of 

0.1 was applied to the contact between the bearings surfaces based on the range of 

friction coefficient of the bearing presented in the study by Jin et al (2006). The 

selected cases are marked in Table 4.4. The difference in the separation data output 

between the computational and experimental results for these cases was the 

highest. Friction testing was carried out specifically on these cases to see if the 

difference between the results could be explained by friction. Based on the dynamic 

separation of the all conditions, the friction analyses were carried out on the chosen 

one due to their dynamic behaviours. The friction testing was carried out on the four 

conditions with: 

 4mm translational mismatch 

 70N and 300N swing phase load 

 45° and 65° cup inclination angles 
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4.3  Results 

This section of chapter is divided into three sections that firstly focus on the dynamic 

results of the computational model. Secondly, the comparison and validation of the 

computational results against the experimental testing is carried out. Finally, the 

effect of friction in the bearing on the selected conditions are described. 

4.3.1 In silico parameter sweep 

The in silico maximum dynamic separation caused by surgical translational 

mismatch level, rotational variation and swing phase load of the THR are all plotted 

and compared. Figure 4.7 represents the maximum dynamic separation resulted 

from various translational mismatch and swing phase loads in 45 cup inclination 

angle. For this cup inclination angle, the combination of 1mm translational 

mismatch level and 300N swing phase load results in a best separation case 

(0.1mm). Moreover, the worst separation case (3.1mm) occurred with the 

combination conditions of 4mm mismatch level and 70N swing phase load.  The 

separation increased as the translational mismatch increased for a fixed swing 

phase load. Also, increase in swing phase load for a specific translational mismatch 

decreased the separation level. Based on the definition of the edge loading that was 

defined in methodology (section 4.2), 7 out of 16 conditions underwent a separation 

of greater than 0.5mm and some degree of edge loading with 45 inclination angle. 
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Figure 4.7 Maximum dynamic separation versus the variation of translational mismatch 
levels (1mm to 4mm) and swing phase loads (70N to 300N) and 45 inclination angle 

Figure 4.8 illustrates the maximum dynamic separation of various translational and 

swing phase loads in 65 cup inclination angle.  The same trend of the lowest and 

highest separation levels were observed in the similar cases as 45 inclination angle.  

However, the range of separation level varies from 0.1mm to 3.5mm. Moreover, 

lower swing phase load and higher translational mismatch level resulted in higher 

separation levels. In 65 inclination angle conditions, a separation of greater than 

0.5mm and some degree of edge loading occurred in 11 out of 16 conditions.   
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Figure 4.8 Maximum dynamic separation versus the variation of translational mismatch 
levels (1mm to 4mm) and swing phase loads (70N to 300N) and 65 inclination angle 

Furthermore, the effect of cup inclination angle on maximum dynamic separation 

was considered. As Figure 4.9 shows, a 70N swing phase load produced dynamic 

separation of 0.4mm to 3.1mm under standard cup inclination angle (45°) and 

0.5mm to 3.6mm for steep inclination angle (65°). The dynamic separation level 

increased as the translational mismatch level increased in both cup inclination 

configurations. Steeper cup inclination angle results in a higher dynamic separation 

than standard cup inclination angle for different translational mismatch level.  
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Figure 4.9 The effect of standard and steep cup inclination and translational mismatch of 
1mm to 4mm on the maximum computational dynamic separation with 70N swing phase 

load 

Figure 4.10 illustrates that the same trend of maximum dynamic separation changes 

occurred for different cup inclination angles when 300N swing phase load was 

applied. Although the dynamic separation increased as the translational mismatch 

level increased for both cup inclination angle, the maximum dynamic separation for 

all translational mismatch level for 45° inclination angle is less than 0.5mm (radial 

clearance). The maximum dynamic separation with 65° inclination angle increased 

substantially as the dynamic separation became greater than radial clearance (up to 

2.45mm separation). Additionally separation of greater than 0.5mm and edge 

loading occurred more frequently with the 65 degree inclination angle. 
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Figure 4.10 The effect of cup inclination and translational mismatch on the maximum 

computational dynamic separation with 300N swing phase load 

4.3.2  Comparison of in vitro and in silico  

Figure 4.11 illustrates the overall comparison of computational and experimental 

maximum dynamic separation value for all the frictionless cases tested.  As 

Figure 4.11 demonstrates, mostly, the model overestimated the separation level 

compared to the experimental values. The results indicated that there is an 

overestimation of the separation by the computational model for high separation 

levels and slight underestimation of the separation by the computational model for 

lower separation level. 

This graph doesn’t present the specific separation level under different translational 

mismatch level which indicates that the overestimation of the separation doesn’t 

seem to be only dependant on the cup inclination angle or swing phase load. 

Figure 4.11 does not represent the variation of the separation level in experimental 

testing and the variation will be demonstrated later in this chapter.  
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Figure 4.11 Comparison of computational dynamic separation and experimental dynamic separation. The legend represents the swing phase load 

and the cup inclination angle.  Standard is referred to 45o inclination angle and steep is referred to 65o inclination angle
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Figure 4.12 and Figure 4.13 illustrate the maximum dynamic separation versus the 

surgical translational mismatch for different swing phase loads under standard cup 

inclination angle and steep inclination angle, respectively. The bars on the 

experimental data represents the variation of maximum separation in in vitro 

testing. 

The comparison of computational and experimental separation for standard cup 

inclination angle indicates that the separation predictions are in a good agreement 

for all the translational mismatch levels in a higher swing phase loads than lower 

swing phase loads. The most overestimation occurs for the cases with low swing 

phase loads especially high translational mismatch levels (70N and 100N). 

In standard cup inclination angle condition, it is difficult to compare the separation 

values under 1mm translational mismatch level because the experimental result 

does not vary considerably due to a low separation level. There is a good agreement 

for all swing phase loads when 2mm translational mismatch was applied except 70N 

swing phase load. The experimental value does not follow the actual theoretical 

trend in this specific case (the experimental separation does not increase as the 

swing phase decreases). In the cases with 3mm and 4mm translational mismatch 

level, good agreement was seen under high swing phase loads (200N and 300N). 

However, the most overestimation was observed under low swing phase loads. 
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Figure 4.12 The effect of translational mismatch and swing phase load on the maximum 

dynamic separation of the THR in vitro and in silica under 45° inclination angle. The letters E 
and C in the legend section represents experimental and computational data, respectively 

(in vitro testing was carried out by Murat Ali, Appendix) 

Figure 4.13 indicates the computational maximum dynamic separation of up to 

0.5mm for 1mm mismatch level, 1.55mm for 2mm, 2.55mm for 3mm and 3.55mm 

for 4mm translational mismatch level in steep cup inclination angle. The inverse 

relationship between swing phase load and maximum dynamic separation is also 

observed for a fixed translational mismatch level.  In contrast to standard cup 

inclination angle, there is a great agreement between the experimental and 

computational separation when lower swing phase loads were applied (70N and 

100N). Furthermore, higher swing phase loads (200N and 300N) resulted in the 

overestimation of the computational separation. Although, there an overestimation 

of the output, the experimental and computational separation follow a similar trend 

between the different conditions. The potential reasons for the differences between 

the computational model and the experimental results are described in the 

discussion 
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Figure 4.13 The effect of translational mismatch and swing phase load on the maximum 
dynamic separation of the THR in vitro and in silica under 65° inclination angle. The letters E 

and C in the legend section represents experimental and computational data, respectively 
(in vitro testing was carried out by Murat Ali, Appendix) 

4.3.3 Friction sensitivity test  

The effect of friction on the maximum dynamic separation is also studied. The 

maximum separation generated by using friction coefficient of 0.1 under the 

specified conditions are presented in Figure 4.14. As the dynamic separation of the 

chosen conditions show, the maximum overestimation of the separation occurred 

under standard cup inclination angle, 4mm translational mismatch level and 70N 

swing phase load. And also under steep cup inclination angle, 4mm translational 

mismatch level and 300N swing phase load. Therefore, primarily these conditions 

were chosen for friction analysis. Moreover, friction analyses were carried out on 

two other conditions (same translational mismatch level with 70N and 300N swing 

phase load under steep and standard cup inclination angle, respectively) to 

understand if friction could affect the level of validation agreement for these cases. 
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Figure 4.14 Comparison of computational and experimental maximum dynamic separation 
under steep inclination angle (friction coefficient of 0.1). Experimental bars represents the 

dynamic separation in vitro, Computational bars represent the maximm dynamic separation 
with friction coefficient of 0.1 between the contact surfaces and computational frictionless 

bars represents the maximum dynamic separation with no friction between the contact 
surfaces 

Slightly reduced maximum dynamic separation was obtained in the both standard 

cup inclination conditions and 70N swing phase load under steep cup inclination 

angle. However, the bearing friction in the model had a great effect on the level of 

dynamic separation for the higher swing phase load under steep cup inclination 

angle (0.8mm reduction). 

As Figure 4.14 demonstrates, although friction coefficient decreased the maximum 

dynamic separation in comparison with frictionless analyses, the underestimation 

of the computational dynamic separation in comparison with experimental results 

is still observed on the same cases as frictionless analyses. 

4.3.4 Maximum load at the rim 

In this section, the comparison of the maximum force on the rim of computational 

and experimental data is shown. Firstly, the computational maximum force on rim 

for 45 and 65 inclination angles are presented in Figure 4.15 and Figure 4.16, 

respectively.  As Figure 4.15 illustrates, the maximum force on the rim under 
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standard cup inclination varies between zero to 1980N. As it was described in 

methodology, no edge loading was assumed for the conditions which had separation 

level of less than 0.5mm. Therefore, the maximum force on the rim for these 

conditions are shown in graph with no load at the rim. However, the maximum force 

on the rim increased by increasing the swing phase load and increasing the 

translational mismatch level.  

 
Figure 4.15 Computational maximum force on the rim with different translational mismatch 

level and swing phase loads under 45 inclination angle 

The range of maximum force on the rim for all the conditions under steep cup 

inclination angle (Figure 4.16) is demonstrated to be between zero to 2020N. The 

similar trend that was found with standard cup inclination angle was also found 

with steep cup inclination angle. Therefore, higher swing phase load and higher 

translational mismatch level increased the value of maximum load at the rim. 

However, the swing phase load did not have a substantial effect when 4mm 

translational mismatch was applied. 
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Figure 4.16 Computational maximum force on the rim versus translational mismatch level  

of 1mm to 4mm and swing phase loads under 65 inclination angle 

In the next step, the maximum load at the rim at the relocation to concentric point 

from the edge and the separation from the concentric point to the edge were 

compared. As Figure 4.17 represents, under standard cup inclination angle, the 

maximum load at the rim at the relocation time is substantially higher than the 

separation time. When the head is relocating into the concentric condition, the 

maximum load at the rim could be five times higher than the load at the rim when 

the head is separating from the cup. The conditions that have the similar relocation 

and separation maximum load at the rim contain high swing phase load (200N with 

3mm mismatch and 300N). 
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Figure 4.17 Comparison of the load the rim when the head is moving to concentric condition 
and when the head is moving to the edge under standard cup inclination angle. At the legend 

of this graph, the word ‘in’ represents the maximum load at the rim when the head was 
relocating into the cup and the word ‘out’ represents the maximum load at the rim when the 

head was separating out of the concentric point 

Similar observation could be seen from the maximum load at the rim comparison 

under steep cup inclination angle. However, all the conditions resulted in a 

substantially higher maximum load at the rim at the relocation point than the 

separation point. The range of maximum load at the rim at the relocation point is 

between zero to 2020 whereas the maximum load at the rim at the separation point 

is between zero to 800N. 
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Figure 4.18 Comparison of the load the rim when the head is moving to concentric condition 
and when the head is moving to the edge under steep cup inclination angle. At the legend of 

this graph, the word ‘in’ represents the maximum load at the rim when the head was 
relocating into the cup and the word ‘out’ represents the maximum load at the rim when the 

head was separating out of the concentric point 

The difference between the computational and experimental maximum load at the 

rim was also studied. The maximum force on the rim is dependent on the occurrence 

of edge loading. If the separation is less than 0.5mm, the maximum force on the rim 

is not calculated in vitro as there is no contact of the head with rim surface. 

Therefore, the computational maximum load at the rim that are presented in the 

following figures are for the available experimental maximum load at the rim 

conditions. No maximum load at the rim was found in in vitro studies for 1mm and 

2mm translational mismatch level. Then, the comparison graphs only illustrate the 

maximum load at the rim for 3mm and 4mm translational mismatch levels. 

Figure 4.19 represents the maximum force on the rim under 70N swing phase load. 

The computational method produce substantially higher maximum load at the rim 

than the experimental load at the rim. However, lower mismatch level and cup 

0

500

1000

1500

2000

2500

1 2 3 4

Lo
ad

 (
N

)

Translational mismatch level (mm)

Out 300N In 300N Out 200N In 200N Out 100N In 100N Out 70N In 70N



162 
 

inclination angle decreased the load at the rim in both computational and 

experimental methods.  

 

Figure 4.19 Experimental and computational maximum force on the rim under 70N swing 
phase load, standard (45o) and steep (65o) cup inclination angle, and 3mm and 4mm 

translational mismatch level (Appendix) 

The same trend of experimental and computational maximum load at the rim for 

70N swing phase load (Figure 4.20) was found for 100N swing phase load. The 

overestimation of the computational load at the rim occurred. However, both 

experimental and computational methods agreed that the load at the rim decreased 

as the translational mismatch level and inclination angle decreased. 
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Figure 4.20 Experimental and computational maximum force on the rim under 100N swing 

phase load, standard (45o) and steep (65o) cup inclination angle, and 3mm and 4mm 
translational mismatch level (Appendix) 

The comparison of the maximum load on the head for 200N swing phase load 

(Figure 4.21) also indicates the same trend as previous analyses between the 

experimental and computational data. However, no load at the rim occurred 

experimentally under standard cup inclination angle. 

 
Figure 4.21 Experimental and computational maximum force on the rim under 200N swing 

phase load, standard (45o) and steep (65o) cup inclination angle, and 3mm and 4mm 
translational mismatch level (Appendix) 
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The rim did not undergo any load under any cup inclination angles when swing 

phase load of 300N was applied. Therefore, no experimental and computational 

comparison of the maximum load at the rim was carried out with 300N swing phase 

load.   
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4.4 Discussion  

The dynamic finite element model has been used to predict medial-lateral 

separation as it occurred during the gait cycle, including cases where the femoral 

head was in contact with the rim of the cup.  The development of such a 

computational model allows the preclinical testing of THR to examine the factors 

that could affect the separation and edge loading the most. Additionally, the validity 

of the model has been tested by comparison with an in vitro experimental 

simulation. The comparison of experimental and computational results could 

indicate if the numerical method is capable of predicting the important dynamics 

and contact mechanics data and also giving an overall indication of the model 

reliability for future parameters. Therefore, the parameters that have been tested in 

vitro experimentally have been applied to the computational model and the effects 

of these factors such as surgical translational mismatch, rotational variation and 

swing phase load on the dynamic separation are studied.  

It has to be recognised both the computational model and the experimental model 

are both representations of more complex and variable conditions which occur 

clinically, their main value is in predicting the effect of detain biomechanical and 

surgical variables on the performance of the hip joint. Direct comparison with the 

clinical results can only be made by comparison or wear rates and wear scars and 

mechanisms between experimental simulation and retrievals.  The development of 

the computational model and comparison of the computational and experimental 

simulations, will enable wider sets of conditions to be investigated computationally 

and more rapidly and most importantly enable the computational models and 

predictions to be run in the design phase (including parametric design studies) of 

new product development before actual prototypes are manufactured for testing.   
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4.4.1 Computational results 

The computational separation results (maximum M/L displacements) indicated the 

primary factors that cause more separation level under the same cup inclination 

angle are low swing phase load and high translational mismatch. The resultant force 

of the medial spring force and the axial force determines the position of the cup with 

respect to the head. The combination of low swing phase load (low axial load) and 

high medial load causes the edge contact as the cup sits more toward horizontal axis 

(Figure 4.22). 

 
Figure 4.22 The cup positioning with respect to the resultant force. A) Resultant force caused 

from high swing phase load and low spring force B) Edge contact due to low swing phase 
load and high spring force 

Moreover, the standard cup inclination angle generally causes lower separation 

level than steep inclination angle under the similar parameters. In standard cup 

inclination angle, the inner curvature of the liner could be acting as a resistance to 

the medial movement in comparison with steep cup inclination angle (Figure 4.23). 

Additionally, the distance that needs to be travelled by the cup from the concentric 

condition to the edge loading condition is longer in standard cup inclination angle 

due to the liner edge location with respect to the centre.  



167 
 

 
Figure 4.23 Horizontal travelling distance by the cup with different cup inclination angle. A) 

Steep cup inclination angle and B) standard cup inclination angle 

It is indicated that the steeper inclination angle and higher spring compression 

resulted in increased dynamic separation with the same axial loading (70N swing 

phase load). The effect of 20o changes of the inclination angle have the maximum 

effect of 0.2mm on the dynamic separation whereas the minimal increase of the 

translational mismatch can increase the dynamic separation up to two times. The 

same pattern was seen in the previous dynamic computational study that was 

carried out on the ceramic-on-ceramic THR (Leng et al., 2017). Therefore, it can be 

concluded that translational mismatch has greater effect than rotational variation 

on the level of dynamic separation under low swing phase load. However, steep 

inclination angle has the greater effect on the dynamic separation if high swing 

phase load is applied. 

Tissue laxity, which is represented by various swing phase loads, is the other 

parameter studied on the computational model. Higher dynamic separation is 

achieved by lower swing phase loads for standard cup inclination angle. When 

minimum axial load (during swing phase) was applied, the direction of the resultant 

force between this force and the medial spring load become closer to the horizontal 

axis than vertical axis. Therefore, the resultant force in lower swing phase loads led 
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to greater movement of the cup medial/laterally and higher separation of the cup 

with respect to the head. 

The maximum load at the rim is affected by the same conditions that affected the 

separation. The maximum load at the rim differed for each conditions and higher 

translational mismatch level and lower swing phase load increased the maximum 

loading at the rim. Also, steeper cup inclination angle affected the load at the rim 

negatively. Moreover, it was indicated that there is a substantially higher load at the 

rim when the head is relocating to the concentric condition as the load is ramping 

up than when the head is separating. Although, the amplitude in load decrease after 

the second peak (separating time) is slightly shallower than ramping up 

(relocating), the magnitude of the load at the rim should potentially be slightly 

affected by it. Such substantially high load at the rim where the contact patch on the 

edge is small, could have a more dramatic effect on the contact mechanics of the 

bearing such as extreme deformation at the edge contact, wear and material 

damage. 

4.4.2 Validation 

The trend in the dynamic separation changes in the computational model, implies 

the overall behaviour of the explicit finite element of THR model under several 

parametric testing is plausible. The reliability of the model can be assured by 

comparison of in vitro and in silico output. The previous in vitro studies focused on 

the wear testing of the THR under only separation (Nevelos et al., 2000, 2001; 

Williams et al., 2003; Al-Hajjar et al., 2013).  In vitro testing on ceramic-on-ceramic 

(O’Dwyer Lancaster-Jones et al., 2017) and metal-on-polyethylene (Appendix) THR 

were done in the recent studies to examine the effect of positioning and tissue laxity 

on the separation and wear of the bearings. The experimental data in this chapter 
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was extracted from Ali et al studies as the computational analyses were also carried 

out on the hard-on-soft bearings. In this comparison, the experimental and 

computational dynamic separation follow the same trend of changes with respect to 

the tested parameters. However, in some cases there is a disagreement in the 

dynamic separation level between the two cases.  

The comparison of the experimental and computational dynamic separation and the 

load at the rim indicated a level of over/underestimation of the computational 

output. However, the difference between the results could be due to various factors. 

There is some additional mechanical displacement experimentally and damping in 

the loading system, associated with rocking of the cup holders in the mechanical 

fixtures and it is not known how this influences the dynamic response in the 

experimental system, and this may influence the measurement of the peak load on 

the cup, which occurs during a rapidly changing phase of the loading, these three 

factors may be expected to realise differences between the experimental and 

computational results and be important to explain the differences seen  between the 

experimental and computational results.  

Although the finite element model is designed to replicate the experimental set up, 

there are several assumptions that were necessary to make the model viable. 

Additionally, hardware tolerances and experimental set up cause variation in the 

results produced by practical experimentation. A combination of these factors could 

potentially be responsible for the difference in the results. 

4.4.2.1 In vitro versus in silico Assumptions 

Angular movement: As it was described in chapter 3, there are no angular 

movements of the hip applied to the FE model. On the other hand, EM13 simulator 

is designed to implement the angular movements on the hip namely 
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flexion/extension, internal/external rotation and abduction/adduction. Because of 

spherical geometry of the head, it is assumed that flexion/extension has minimal 

effect on the separation. However, the internal/external rotation and 

abduction/adduction alter the position of the cup with respect to the head during 

the gait cycle. In the testing that were carried out on the EM13 hip simulator 

(unpublished data), the dynamic separation varied when 2 axes (flexion/extension 

and internal/external rotation) and 3 axes (flexion/extension, internal/external 

rotation and abduction/adduction) of rotations were used. Although the degree of 

abduction/adduction is lower than the other axes of the rotations (+7/-4) based on 

ISO 14242-1:2012 for wear testing on hip simulators, however, the direction of the 

movement can possibly give the cup slightly higher contact zone and lower 

separation.  

Cup translation: the cup can translate in all the directions in the experimental set 

up. However, the cup components are computationally constrained to translate in 

posterior-anterior and medial-lateral direction. This constraint was stated in 

chapter 3. The constraint in transverse plane may slightly affect the edge contact.   

Dashpot effect: Before gait cycle implementation, a level of dashpot analysis was 

carried out to obtain the coefficient that gave a critically damped system on each of 

the conditions. However, the system could yet be slightly 

overdamped/underdamped as the dashpot analysis were carried out for certain 

amount of times due to long running time of the these analyses. If the system was 

not critically damped, the dynamic readings can be slightly affected. However, the 

factor should not affect the dynamic results majorly. 

Damping of the model: The level of damping in the experimental system should be 

the same for all the conditions in experimental testing as the mechanical conditions 
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are the same. However, there is no study so far to understand and predict the level 

of damping in vitro or in vivo which makes it extremely challenging to assign a fixed 

damping condition for all the computational conditions.   

Axial spring: The computational model contains only one spring which is the 

medial spring. The experimental EM13 set up consists of an axial spring on the cup 

holder as well as the medial spring. The function of the axial spring is to smooth out 

the axial load applied to the cup. Therefore, slightly different axial load (load 

magnitude or amplitude) is expected to be applied in experimental and 

computational set up which could affect the separation readings.  

Device geometry: The computational model studied the design of the THR for one 

specific design specifications whereas the experimental components can have 

different dimensions such as tolerances and radial clearances. As the definition of 

edge loading is based on the value of the radial clearance, slightly different radial 

clearance can influence the separation and edge loading occurrence and also, it 

could make the direct comparison of the experimental and computational outputs 

challenging. 

Computational output intervals: The separation data that is recorded at the head 

relocation to measure the load at the rim is presented in two data points and time 

at which 0.5mm separation occurred was calculated by assuming linear 

interpolation between those two data points. The difference between the two data 

points could be large especially in the conditions with higher dynamic separation. 

So, the linear interpolation may not be the best representative of data point in 

between.  
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4.4.2.2 Experimental Variation 

Reliability of experimental data: Three tests were carried out on each parameter 

in vitro. The results obtained had a wide variation in the maximum separation. The 

mean of these values was taken and compared to the values produced by the 

computational model. If the maximum dynamic separation produced by the 

computational model is compared to the range of the separation for each case, the 

computational cases that were underestimating the experimental separation are in 

a good agreement with in vitro output. Higher number of in vitro tests could likely 

improve the reliability of the results. 

Hip simulator station condition variations: The axial load applied to each hip 

simulator station is different to the numerical input loading profile. This is due to 

machine hardware tolerances, particularly those of the motor. The axial load cell 

that measured the applied force recorded a difference between the numerical input 

load of the simulator and the actual applied load in different stations. 

Experimental set up: the number of components used in the experimental set up, 

the geometry of them and the overall assembly can affect the dynamics of the 

experimental set up. On the other hand, the computational set up neglect the effect 

of these factors. 

Output noise: As it was mentioned in previous chapter, there is a level of noise in 

the computational output. Moreover, the dynamic experimental testing also 

underwent the noise issue and particularly in this experimental studies, the level of 

noises is higher in the initial cycles which makes it challenging to export the exact 

value of the separation. 



173 
 

4.4.3 Friction sensitivity analysis  

While friction in the bearing has been simulated computationally, experimentally, 

friction also occurs on other moving parts of the simulation machine, though the 

drive and loading systems, the extent to which these influence the dynamics of the 

experimental system is not known. The contact surfaces are lubricated during the 

experimental testing and the greatest resistance to the cup movement could be 

caused by the system friction than the contact bearings friction. 

The friction coefficient has the most effect when higher swing phase load (300N) 

was applied as the normal force to the surface will be higher than the lower swing 

phase load. Although, friction decreased the maximum dynamic separation, 

however, the dynamic separation is still overestimated by the computational model. 

Moreover, as friction increased the running time of the analysis, the effect of friction 

is not convincing enough to implement friction in all the conditions. 

4.4.4 Summary of the key findings   

 Higher translational mismatch level, steeper cup inclination angle and lower 

swing phase load increased the maximum dynamic separation 

computationally. 

 The computational output is in a broad agreement with in vitro studies and 

the computational model sensitivity to the parameters is in the same trend 

as in vitro studies.   

 The difference between experimental and computational dynamic 

separation could be due to various reasons such as damping in the system, 

angular movements, variation in hip simulator station conditions and output 

noises. 
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 The maximum load at the rim is affected by the same conditions that affects 

the separation. If the separation is lower experimentally than the maximum 

load on the rim would also be expected to be lower experimentally. 

 There is a substantially higher load at the rim when the head is repositioning 

to concentric condition that when it is separating from concentric condition. 

 The friction decreased the maximum dynamic separation in the 

computational model on the chosen conditions. Although bearing friction 

decreased the computational dynamic separation, the effect of friction was 

not substantial enough compare to the result and the computational running 

time. Friction in other moving components in the experimental mechanical 

system may also reduce levels of separation seen experimentally. 

 Experimentally, longer term tests cause greater deformation of the 

polyethylene cup and to date it is not known how this influences the 

dynamics and separation. However, the contact mechanics output could 

potentially produce valuable insight to the long term behaviour of the THR. 
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Chapter 5 Parametric sweep contact mechanics analyses 

5.1 Introduction 

The replication of the in vivo environment in experimental and computational 

studies is challenging to model due to the combination of biomechanical and 

biological parameters that can affect the THR performance. However, in the 

literature, the experimental hip simulators studies were shown to correlate with the 

clinical studies by comparing the wear patches on the THR components (Nevelos et 

al., 2000). Moreover, the higher level of dynamic separation is also proven to 

increase the wear rate of the THR in vitro (Al-Hajjar et al., 2013) in ceramic-on-

ceramic and metal-on-metal bearings. In in vitro studies, the direct correlation 

between adverse conditions and increased wear could not be obtained for CoP 

bearings (Williams et al., 2003). Therefore, it is interesting to understand what could 

potentially trigger the occurrence of damage and wear in hard-on-soft bearings in 

different conditions.   

It was concluded in chapter 4 that at a lower swing phase load, higher translational 

mismatch level and steeper inclination angle increase the level of dynamic 

separation in the model during the swing phase. The computational and 

experimental studies were shown to follow a similar trend of dynamic separation 

changes over the whole gait cycle due to the translational mismatch, rotational 

variation and swing phase loads. 

To understand the potential damage, fatigue and wear of the contact surfaces, the 

contact mechanics of the head and the cup were investigated. Analysing the contact 

behaviour of the THR under various conditions provides an understanding of which 

factors result in an adverse contact behaviour and consequently, in which cases the 

risk of damage to the polyethylene cup is higher. Furthermore, the input factors and 



176 
 

separation correlation with parameters which describe the contact mechanics can 

be investigated. 

In this chapter, contact pressure, stress and strain behaviour and the deformation 

under various translational mismatch level, cup inclination angle and swing phase 

load were studied. Firstly, for comparison purposes, the contact mechanics 

behaviour at the end of the swing phase load, when the maximum separation occurs, 

were analysed. Secondly, the stress and strain behaviour during the gait cycle 

loading was compared between the input conditions. The cases that caused a 

permanent material damage due to plastic deformation are presented and 

discussed. Finally, the correlation between the separation and the contact 

mechanics was studied. The outcome of analyses provides the severity of 

parameters effect on the material behaviour which could be the indication of the 

long term prediction when cyclic loading occur. 

5.2 Methodology 

The output of the analyses that are presented in this chapter are the same analyses 

that were studied in chapter 4. The translational mismatch level of 0mm to 4mm, 

inclination angle of 45° and 65°, and swing phase load of 70N, 100N, 200N and 300N 

were studied. This chapter is made of three studies which focus on the effect of 

different parameters on the contact mechanics. These three studies are fixated on 

the input parameters, separation and bearing friction (Figure 5.1). Furthermore, the 

output measurements are split into two main categories: 

1. Contact output: to study the contact location, distribution of pressure on the 

surface and potential wear zone by exporting contact pressure and contact 

area. 
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2. Material failure risk: to assess the relative material failure risk  using stress 

failure components, namely von Mises stress and Principal stresses 

(compressive stress), and also by using plastic strain values. 

 

Figure 5.1 The studies and outputs measurements of the chapter 5 

Contact pressure distribution as contact indication: To study the effect of 

dynamic separation on the contact mechanics of the model, the contact pressure of 

the nodes on the line of symmetry were recorded at the end of the swing phase load 

(the same time step that the medial-lateral separation in chapter 4 were recorded). 

The nodal contact pressure indicated the contact location when the maximum 

separation occurred. The contact pressure also indicated the level of pressure only 

on the surface of the cup.  

As a baseline, the mismatch level was set to zero and the contact pressure 

distribution of the analysis was recorded to understand the contact pressure 

behaviour under standard conditions. As the pressure distribution is symmetrical 

on the inner surface of the cup, the surface nodes from the centre of the cup to the 

edge on the line of symmetry (where z = 0) were recorded and the contact pressure 

of each node on the line were exported (see Figure 5.2). The same procedure was 
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repeated for all the analyses. The node set was equivalent for all the analyses. The 

behaviour of the contact pressure is compared between the standard conditions (0 

mismatch) and corresponding adverse condition (various mismatches levels). The 

input swing phase loads of the compared cases are equal. As Figure 5.2 indicates, to 

represent the nodal contact pressure, the nodes are represented as an angle 

between the centres of the cup (0°) to the lateral edge where the contact occurs 

(96°). Moreover, the contact pressure behaviour throughout the gait cycle is 

presented to understand the overall contact behaviour. 

 

Figure 5.2 The nodes on the symmetry line of the contact pressure with respect to the angle 
from the centre of the line to the lateral edge 

Contact area: As the contact area and the applied force are the main factors that 

potentially affect the stress and pressure behaviour, it is important to understand 

the contact area feedback from the loading and the geometry. The contact area 

throughout the gait cycle and at the swing phase load were recorded and presented.  

Stress and failure risk analysis: It is important to study the stress behaviour 

throughout the gait cycle as the long-term behaviour of UHMWPE can be predicted 

by observing the stress behaviour on the cup. There is a large amount of literature 

precedent that analyse using a von Mises stresses (e.g. Plank et al., 2005; Hua et al., 

2014). Von Mises stress is used as a representation of the total stress behaviour in 
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all of the directions. It is known as the maximum distortion energy theory of failure, 

as it accounts for hydrostatic conditions by including balanced stresses within the 

calculation. It is represented as: 

𝜎𝑣
2 =

1

2
⌊(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎11 − 𝜎33)2 + 6(𝜎23

2 + 𝜎31
2 + 𝜎12

2 )⌋ 

Where σ11 is stress in x direction, σ22 is stress in y direction, σ33 is stress in z 

direction, σ23 is shear stress in yz plane, σ31 is shear in zx plane and σ12 is shear in xy 

plane. Von mises stress is mostly indication of the shear stress behaviour. If the von 

Mises stress on the cup exceeds the elasticity limit, it results in a permanent 

deformation of the cup. This failure mode is dependent on the yield point of 

UHMWPE and the position and stress level. If a small region on the cup is subject to 

some plastic deformation, it affects the material properties of the effected structure 

negatively by reducing the elastic modulus, making additional progressive failure 

more likely (Hertzberg and Manson, 1980). Such behaviour of plasticity can fatigue 

the cup especially during cyclic loading conditions such as walking. For this purpose, 

the maximum von Mises stress on the polyethylene cup was calculated.  

For each analysis, the maximum von Mises stress at each step during the gait cycle 

loading was exported by using a python script (Appendix). Then, the maximum von 

Mises stress throughout the cycle was compared in all the cases. 

Stress components: The contribution of the maximum principal stress on the stress 

behaviour was studied in standard and adverse condition cases as von Mises stress 

mostly account the shear stresses involved in the element. Principle stresses are 

used to describe phenomena such as the most tensile stress an object experiences 

(maximum) and the most compressive stress an object experiences (minimum). 

During the gait cycle, the cup liner is compressed against the head as the head and 
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the cup unit are fully fixed. Therefore, the compressive stress can potentially have 

an important role in the stress behaviour. As the previous output (von Mises stress 

data) indicates the crucial point during the gait cycle. The stress components i.e., 

maximum von Mises stress and compressive stress (minimum principal stress) at 

the same data point are compared to understand the principal and shear stress 

behaviour on the cup liner.  

Plastic Strain: the maximum plastic strain on the cup was recorded for each case to 

understand in which analysis permanent material damage occurred. The plastic 

strain output is the maximum plastic strain equivalent to the Mises stress. As it was 

mentioned, the plastic deformation is a key indication to understand the long-term 

material behaviour. 

Separation related contact mechanics: The aim of this set of analyses is to 

understand the correlation of the dynamic and contact mechanics behaviour of the 

THR. In the analyses up to this point, the effect of the parametric sweep is directly 

correlated to the contact mechanics output. In this section, the contact mechanics 

output are investigated based on the separation corresponded to the parametric 

sweep.  

Finally, the effect of separation on the contact mechanics was separately 

investigated. The same method was used on the analyses that were carried out with 

0.1 coefficient friction. The nodal contact pressure of the frictional analyses was 

compared to the frictionless analyses. Furthermore, the effect of friction on the 

stress components, contact area, and plastic strain is shown. 
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5.3 Results 

The output discussed in the methodology section is demonstrated and explained in 

this section. The results are presented in the same manner as it was discussed in the 

methodology. 

5.3.1 Input parameters study 

5.3.1.1 Contact output  

The contact pressure output is presented into two sections. In this section, the 

contact pressure behaviour throughout the gait cycle is first presented. Secondly, 

the variation in the contact pressure location and magnitude at the swing phase 

under all conditions is described.  

5.3.1.1.1 Contact pressure behaviour under all condition 

Figure 5.3 represents the nodal contact pressure along the symmetry line in the 

0mm to 4mm mismatch levels for various swing phase loads and inclination angles. 

As this figure shows, for all mismatch levels, the nodal pressure starts from zero 

from the centre to the lateral edge. The nodal pressure increased to the maximum 

value and dropped from the peak to zero pressure between the two ends. However, 

the distribution and magnitude of the pressure varied between the cases.   

In standard conditions, the contact pressure was distributed between 10° to 45° of 

the nodal angle and the nodal pressure reached the peak pressure gradually. 

However, as the translational mismatch level increased, the nodal pressure 

distribution moved towards the lateral edge of the cup more to the point in which 

the contact is only at the lateral edge. Higher translational mismatch also affected 

the nodal pressure variation. As an example, under 300N swing phase load, nodal 

pressure in 4mm mismatch had a substantially higher peak than the rest of the 

translational mismatch levels (up to 16MPa) whereas the peak nodal pressure in 0 
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to 3mm cases varied between 8MPa to 9.8MPa in standard condition. Moreover, 

under steep cup inclination angle, the peak pressure of even substantially higher 

(23.5MPa and 30MPa for 3mm and 4mm, respectively) than the standard cup 

inclination angles under 300N swing phase load was observed. The nodal angle 

distribution of the cases experiencing higher peak values is lower than the cases that 

the pressure variation occurred gradually. Therefore, the maximum pressure 

produced under steep cup inclination angle was substantially higher than the 

maximum pressure under standard cup inclination angle. 

In all the swing phase loads, higher translational mismatch level resulted in a closer 

contact pressure distribution to the lateral edge and also it resulted in a 

substantially higher peak pressure. However, the occurrence of edge contact 

depends on the conditions.  The lower swing phase load increased the possibility of 

edge contact up to the point that in the analyses with 70N swing phase load, 3 out of 

5 cases under standard cup inclination angle and 4 out of 5 cases under steep cup 

inclination angle underwent the edge contact with substantially higher peak than 

the peak pressure under standard conditions. Furthermore, the effect of steep cup 

inclination angle is mostly seen when the edge contact occurred. The steep cup 

inclination angle produced a higher pressure peak in the edge contact cases than the 

standard cup inclination angle. 
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Figure 5.3 Nodal contact pressure along the line of the symmetry recorded at the end of the 
swing phase load. Each graph represent the nodal pressure for each swing phase load under 
standard and steep cup inclination angle. The description of the plots, which is the same for 

all graphs, represents the cup inclination angle and the translational mismatch level.  
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5.3.1.1.2 Contact pressure behaviour throughout gait cycle 

As an example of the contact pressure changes throughout the gait cycle, the contour 

plot of contact pressure throughout gait cycle under 0mm and 4mm translational 

mismatch level under 70N swing phase load are represented in Figure 5.4 and 

Figure 5.5 signify standard and steep cup inclination angle. Previous chapter also 

showed that the separation under 70N swing phase load were higher than any other 

swing phase loads. The contour plot of the contact pressure on the cup represent the 

pressure variation from minimum of 0Pa (blue) to the maximum value (red). The 

conditions with 0mm and 4mm translational mismatch were chosen for 

presentation as these two cases result in the minimum and maximum separation 

levels (demonstrated in the previous chapter).  

It could be seen that under standard cup inclination angle (Figure 5.4), the maximum 

contact pressure throughout gait cycle followed the loading changes for both 0mm 

and 4mm translational mismatch condition. Although translational mismatch level 

increased the maximum contact pressure, the translational mismatch level 

produced the most difference in the contact pressure at the swing phase load where 

over four times higher contact pressure was produced in the condition with 4mm 

translational mismatch level than 0mm translational mismatch level. The contour 

plot of the contact pressure at the swing phase load also indicated the edge contact 

when translational mismatch level was applied.  



185 
 

 
Figure 5.4 Contact pressure contours and the maximum contact pressure on the liner inner 

surface throughout the gait cycle under 45° inclination angle, 70N swing phase load, 
translational mismatch level of 0 and 4mm 

The contact pressure contour plots under steep cup inclination angle produced a 

similar trend of contact pressure changes as the standard cup inclination angle. 

However, the predicted maximum contact pressure at the swing phase was over five 

times higher on the condition with translational mismatch level than the standard 

condition. The maximum contact pressure that is produced at the swing phase under 

4mm translational mismatch level is only slightly less than the contact pressure that 

the cup undergoes at the peak load. 
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Figure 5.5 Contact pressure contours and the maximum contact pressure on the liner inner 

surface throughout the gait cycle under 65° inclination angle, 70N swing phase load and 
translational mismatch level of 0 and 4mm. 

5.3.1.1.3 Contact area changes in input parameters 

The difference in contact area between the peak and the low load was substantial. 

As Table 5.1 represents, the contact area at the peak load varied between 333 mm2 

to 354 mm2 under standard cup inclination angle. Moreover, the peak contact area 

(that occurs at the peak load) in steep cup inclination angle was less than the peak 

contact area under standard cup inclination angle.  The peak contact area was more 

affected by the cup inclination angle than the swing phase load as the peak contact 

area were generally similar in all swing phase loads. The contact area decreased in 

swing phase load substantially. In the most severe scenario, the contact area was 
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reduced to 45 mm2 and 10 mm2 at the swing phase under standard and steep cup 

inclination angle, respectively. 

Table 5.1 The comparison of contact area in the all analyses that were carried out at the 
peak (3KN) and minimum load (swing phase load) under standard and steep cup inclination 

angle. 

The contact area of the analyses at the end of the swing phase (when usually the 

adverse behaviour occurs) under standard and steep cup inclination angle is shown 

Swing phase 
load (N) 

Mismatch 
level (mm) 

Contact area (mm2) 

peak swing 

45° 65° 45° 65° 

70 0 350.4 285.9 72.1 34.7 

70 1 344.7 287.0 71.3 20.5 

70 2 349.9 277.1 40.9 16.8 

70 3 345.2 278.0 46.7 12.6 

70 4 348.6 266.5 45.0 9.7 

100 0 350.4 285.8 75.2 52.6 

100 1 341.1 285.3 78.9 40.8 

100 2 349.9 280.7 67.1 19.3 

100 3 345.2 277.8 51.9 13.4 

100 4 333.8 268.5 47.8 12.7 

200 0 346.8 285.9 96.3 83.2 

200 1 344.7 285.3 123.5 63.6 

200 2 349.9 282.1 108.1 29.7 

200 3 345.2 276.2 96.0 24.8 

200 4 354.2 266.9 77.1 17.1 

300 0 350.4 285.8 133.1 98.4 

300 1 342.8 287.0 132.1 80.7 

300 2 349.9 282.1 134.4 70.6 

300 3 345.2 276.2 127.5 34.9 

300 4 354.2 268.5 118.6 32.4 
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in Figure 5.6. Generally, the contact area decreased as the translational mismatch 

level increased in all the conditions except 70N swing phase load and steep cup 

inclination angle where the contact area slightly increased between 2mm and 3mm 

translational mismatch level. In standard cup inclination angle the contact area 

varied between 135 mm2 to 45 mm2. However, the contact area for all the cases 

dramatically decreases in steep cup inclination angle. The contact area variation 

under steep cup inclination angle is between 80 mm2 to 10mm2. 

 

Figure 5.6 The contact area at the end of the swing phase load for various translational 
mismatch level and swing phase loads. The contact area of the analyses under standard and 

steep cup inclination angle are plotted as 'standard' and 'steep', respectively 

5.3.2 Material failure risk 

5.3.2.1 Von Mises stress throughout the gait cycle 

Figure 5.7 represents the maximum stress behaviour during gait cycle in the 

concentric condition analyses (0 mismatch level) under 45° and 65° inclination 

angle and variation of swing phase loads. The overall stress behaviour follow the 

axial loading behaviour in all of the swing phase loads variations for all the cases. 

The largest difference between the cases occurred during the swing phase. Higher 

swing phase load resulted in a higher stress during the swing phase for both cup 
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inclination angles. Moreover, the steep cup inclination angle resulted in a lower 

stress value throughout the gait cycle in all swing phase loads. 

 

Figure 5.7 Stress distribution of the analysis with 0 mismatch level under 45° inclination 
angle (solid lines) and 65° inclination angle (dotted lines) with swing phase load of 70N to 

300N 

The ‘in cycle’ stress behaviour is observed to either follow the loading trend or 

produce a higher level of stress during swing phase load (adverse stress behaviour). 

However, as the swing phase load decreased the number of the conditions that 

produce adverse stress behaviour during swing phase increased in both standard 

and steep cup inclination angle (Figure 5.8). The cup underwent the adverse stress 

behaviour and the maximum stress value that is produced at the swing phase load 

decreased by decreasing the swing phase load.  Since there is an axial loading 

(equivalent to the swing phase load of the analysis) during stabilisation step which 

occurs before gait cycle loading, the initial stress at the gait cycle is not zero.  

When 300N swing phase load was applied, there is a similar stress behaviour in the 

analyses with 1mm, 2mm and 3mm mismatch level that followed the loading 
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changes under standard cup inclination angle. In the mentioned conditions 

translational mismatch level and the maximum stress was initiated and finished (at 

the swing phase load) at the value of 4.4MPa, 4MPa and 5.2MPa, respectively. Out of 

all of the cases that are demonstrated with 300N swing phase load and standard cup 

inclination angle, the analysis with 4mm mismatch level had a dissimilar behaviour. 

In this analysis, the stress behaviour was initiated with a substantially higher stress 

value of 10MPa. The stress behaviour during the stance phase was similar to the rest 

of the cases. However, during swing phase, the maximum stress initially decreased 

from 12.3MPa (the peak stress) to 6MPa then a moderate increase of maximum 

stress to 10MPa occurred. After the increase in the stress value during the swing 

phase load, the maximum stress becomes constant until the end of the swing phase 

load.  
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Figure 5.8 The maximum von Mises stress throughout the gait cycle for all of the conditions. 
The dashed line plots represent steep cup inclination angle and the solid line plots represent 

standard cup inclination angle at different mismatch level 

A similar trend of stress variation was seen in analyses under steep cup inclination 

angle for 300N swing phase load. However, the only condition that followed the 
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loading changes under steep cup inclination angle was the analysis with 1mm 

translational mismatch level. The rest of the analysis resulted in a higher stress level 

during swing phase load than expected. The conditions that resulted in a higher 

stress value during swing phase load also experienced higher stress value at the 

beginning of the cycle. Moreover, in all of the cases, steeper cup inclination angle 

produced higher stress at the swing phase load than the standard cup inclination 

angle.  

The contour plot of the von Mises stress at the swing phase load under standard cup 

inclination angle is shown in Figure 5.9. The contour plot showed the stress 

distribution on the cross section area where the thickness of the cup is. In all the 

analyses, the same contour limit is used for a simpler comparison. In the same swing 

phase load, the stress distribution moved to the lateral edge of the cup by the 

increase in translational mismatch level. Moreover, higher swing phase load 

increased the stress value in the thickness of the cup.  
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Figure 5.9 The cross sectional contour of von Mises stress at the end of swing phase load 
under standard cup inclination angle for the analyses with swing phase load of 70N to 300N 

and translational mismatch level of 0mm to 4mm. 

Figure 5.10 represents the cross sectional contour of von Mises stress at the end of 

swing phase load under standard cup inclination angle. A similar trend can be seen 

in the steep cup inclination angle. Although, the stress distribution moved towards 

the edge by higher translational mismatch level, the stress distribution in standard 

condition is closer to the edge than the stress distribution in steep cup inclination 

angle which caused higher number of edge contact out of all the analyses. 

Furthermore, higher stress values were recorded for steeper cup inclination angle.   
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Figure 5.10 The cross sectional contour of von Mises stress at the end of swing phase load 
under steep cup inclination angle for the analyses with swing phase load of 70N to 300N and 

translational mismatch level of 0mm to 4mm. 

5.3.2.2 Maximum principal stress at swing phase load 

Figure 5.11 shows the maximum compressive stress and the von Mises stress 

increased as the translational mismatch increases. Also, higher swing phase load 

resulted in higher stress values (both values) in a specific translational mismatch 

level condition.  However, this trend could not be seen in the compressive stress of 

the conditions with 70N swing phase load. Furthermore, the maximum compressive 

stress at the swing phase load is substantially higher than the von Mises stress 
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values in most of the conditions. The only condition that the compressive stress is 

slightly higher than the von Mises stress is the one with 70N swing phase load and 

4mm translational mismatch level. 

 

Figure 5.11 Comparison of the maximum compressive stress and von Mises stress under 
standard cup inclination angle translational mismatch levels of 0mm to 4mm 

Figure 5.12 focuses on the compressive and von Mises stress of the analyses that 

were carried out under steep cup inclination angle. This figure agreed that the both 

stress types increased as the translational mismatch and swing phase load 

increased. The compressive stress that was produced was also notably higher than 

von Mises stress. The only condition that disagreed with the higher compressive 

stress than the von Mises stress outcome is the analysis with 100N swing phase load 

and 4mm translational mismatch level. 
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Figure 5.12 Comparison of maximum compressive stress and von Mises stress under steep 
cup inclination angle and translational mismatch levels of 0mm to 4mm 

5.3.2.3 Plastic strain 

No plastic strain was recorded when 300N swing phase load or 1mm mismatch level 

was applied (Figure 5.13). 200N swing phase load caused a plastic strain only when 

4mm mismatch was applied. A level of plastic strain was recorded in 100N swing 

phase with 3mm and 4mm mismatch. The cases with most plastic strain occurrence 

is 70N swing phase load. 
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Figure 5.13 Maximum plastic strain in the cases with various translational mismatch level 
and swing phase loads under 45° inclination angle 

Figure 5.14 demonstrates the plastic strain data exported under steep cup 

inclination angle. Once more, no plastic strain was recorded in 1mm mismatch level. 

In the cases with 3mm and 4mm mismatch level, occurrence of plastic strain was 

observed for all the swing phase loads and the only case that did not affect the plastic 

strain in 2mm mismatch level was 300N swing phase load. Therefore, the number 

of cases that the plastic strain occurred in, is higher in the cup inclination of 65° than 

45°. 
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Figure 5.14 Maximum plastic strain in the cases with 65° inclination angle and all of the 
swing phase loads and translational mismatch levels 

5.3.2.4 Contact area as driven for stress behaviour 

Furthermore, it was shown in chapter 4 that there is a substantial load at the rim at 

the beginning of the stance phase. The high load at the rim was used as a reason for 

high wear rate when edge loading occurs. However, the stress behaviour indicated 

that the contact area increased substantially in the first 0.5s of the gait cycle which 

did not lead to high stress and potentially the most crucial damage zone 

(Figure 5.15).  Although the load and contact area increased, the stress behaviour 

from the beginning of stance phase to the first peak load showed a decrease in the 

level of stress due to the substantial contact area increase. The contact area at 0.5s 

of the gait cycle was 320 mm2 whereas the contact area at the beginning of the stance 

phase depended on the swing phase load (48mm2 for 70N swing phase load to 

125mm2 for 300N swing phase load). Then, the contact areas changes between the 

0.5s to the peak load is moderate and consequently, the stress increased moderately 

in the same time frame. 
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Figure 5.15 Contact area and von Mises stress versus time in the analyses with 4mm 
translational mismatch level, various swing phase loads and standard cup inclination angle 

The corresponding contact area to the stress initialisation under steep cup 

inclination angle is shown by a black line in Figure 5.16. The value of corresponding 

contact area is less in steep cup inclination angle than the standard cup inclination 

angle. The variation of the contact area is between 55 mm2 and 85 mm2. The point 

in which the adverse stress initiated from is similar in both standard and steep cup 

inclination angle (0.65s). The similar trend between the contact area and the stress 

behaviour was observed under standard cup inclination angle at the beginning of 

stance phase up to the first peak load. However, the changes of contact area in the 

first 0.5s of the gait cycle is greater in steep cup inclination angle than the standard 

cup inclination angle as the contact area at the beginning of stance phase was under 

50 mm2 for all swing phase loads.        
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Figure 5.16 Contact area and von Mises stress versus time in the analyses with 4mm 
translational mismatch level, various swing phase loads and steep cup inclination angle. 

5.3.3 Separation study 

The relationship between the separation and the contact area resulted from the 

separation is shown in Figure 5.17. The contact area derived from the separation 

under 0.5mm varied especially in standard cup inclination angle. As it was defined 

in Chapter 4, the separation under 0.5mm doesn’t result in edge loading. In both cup 

inclination angles, the contact area generally decreased as the separation increased 

(for over 0.5mm separations). However, the pattern of decreasing contact area (for 

separation higher than 0.5mm) can be clearly seen for the analyses under standard 

condition, and not in other conditions. 
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Figure 5.17 Contact area at the maximum separation during the gait cycle under standard 
and steep cup inclination angle with all translational mismatch levels and swing phase loads. 

The other contact mechanics data such as contact pressure, compressive stress and 

von Mises stress cannot directly be compared to the separation value regardless of 

the condition taken as the swing phase load  (Figure 5.18) and the translational 

mismatch level (consequently M/L force) affected these data. However, if the 

conditions are taken into consideration, higher translational mismatch level and 

higher swing phase load (in isolation) increased the maximum Von Mises stress, 

compressive stress and contact pressure. Moreover, it could be seen that the 

separation higher than 0.5mm also affect the mentioned parameters.  
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Figure 5.18 The comparison of separation with von Mises stress, compressive stress and contact pressure. The analyses under standard cup 
inclination angle are presented as Plot A and the analyses under steep cup inclination angle is presented as Plot B
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As Figure 5.19 represent, the plastic strain is initiated when the separation is higher 

than 0.6mm and 0.7mm in standard and steep cup inclination angle, respectively. The 

level of plastic strain increases as the separation level increases. In standard cup 

inclination angle, a linear relationship between separation and plastic was observed. 

However, the similar trend cannot be concluded in the analyses under steep cup 

inclination angle. 

 

Figure 5.19 The comparison of separation with plastic strain for both standard and steep cup 
inclination angles with all translational mismatch levels and swing phase loads. 

5.3.4 Friction 

The effect of friction on contact mechanics was analysed. Figure 5.20 represents the 

nodal pressure along the line of symmetry with 0.1 coefficient of friction and no friction 

under steep cup inclination angle and various swing phase loads.  The comparison of 

the two analyses only indicated a similar nodal pressure distribution position in 70N 

swing phase load and slightly different distribution in 300N swing phase load. However, 
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a difference in the peak nodal pressure was seen (4MPa difference). Moreover, the 

frictional analysis only increased the peak contact pressure in lower swing phase load 

(70N). 

 

Figure 5.20 Effect of friction on the contact pressure along symmetrical line under standard cup 
inclination angle, 300N and 70N swing phase load and 4mm translational mismatch level. 

The frictional analyses that were carried out under steep cup inclination angle resulted 

in the similar outcome in distribution (Figure 5.21). The correlation between the peak 

contact pressure and the swing phase load in the frictional and frictionless analyses was 

similar. In both swing phase loads, the friction between the contact surfaces decreased 

the peak contact pressure under steep cup inclination angle.  
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Figure 5.21 Effect of friction on contact pressure along the symmetrical line under steep cup 
inclination angle, 300N and 70N swing phase load and 4mm translational mismatch level.  

Figure 5.22 represents the changes in the stress behaviour between the frictional and 

frictionless contact against the loading cycle in the analyses under standard cup 

inclination angle. Overall, the friction affected the stress changes during stance phase 

between two peaks for both conditions. However, the effect of friction on the stress 

during swing phase load was dependant on the swing phase load value. Lower stress 

value was found in the frictional analysis than the frictionless one whereas the lower 

swing phase load generated a higher stress during swing phase load than the 

frictionless analysis.  
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Figure 5.22 Effect of friction on the analyses under standard cup inclination angle with the 
lowest (70N) and highest (300N) swing phase load. The figure represents the effect of friction on 

the von Mises stress during a gait cycle. 

The similar trend of the friction effect under standard condition was observed 

(Figure 5.23) in the analyses under steep cup inclination angle. Lower swing phase load 

negatively affected the stress values during the swing phase load under steep cup 

inclination angle.    

 

Figure 5.23 Effect of friction on the analyses under steep cup inclination angle with the lowest 
(70N) and highest (300N) swing phase load. The figure represents the effect of friction on the 

von Mises stress during a gait cycle. 
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The friction had little effect on the compressive stress under steep cup inclination angle 

(Figure 5.24). However, conflicting results on the compressive stress was observed in 

different swing phase loads under standard cup inclination angle. Comparison of the 

frictional and frictionless analysis indicates that friction in low inclination angle 

resulted in a reduction in the compressive stress whereas higher swing phase load 

caused an increase in the compressive stress.   

 

Figure 5.24 The effect of friction on the compressive stress of the analyses. The friction 
coefficient of 0.1 was applied on the lowest (70N) and highest (300N) swing phase load and on 

the standard and steep cup inclination angle. 

Friction affected the contact area at the swing phase load and the magnitude of this 

effect depend on the cup inclination angle. As Figure 5.25 represents, friction decreased 

the contact area slightly in the steep cup inclination angle analyses. Although the 

friction effect on the contact area is not substantial, the reduction in contact area was 

more noticeable in standard cup inclination angle.  
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Figure 5.25 The comparison of the contact area in the frictional and frictionless analyses. The 
friction coefficient of 0.1 was applied on the lowest (70N) and highest (300N) swing phase load 

and on the standard and steep cup inclination angle. 

Although, friction slightly decreased the plastic strain of the conditions that were 

analysed, no substantial difference in plastic strain was observed for any of the cases 

(Figure 5.26). 

 

Figure 5.26 The effect of friction on the plastic strain on the lowest (70N) and the highest (300N) 
swing phase load with 4mm translational mismatch level and on the standard and steep cup 

inclination angle. 
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5.4 Discussion 

Dynamic modelling of a THR under a load cycle provides a unique opportunity to 

predict and analyse the effect of various parameters describing the contact mechanics 

of the joint. These contact mechanics analyses produced a novel insight to understand 

the potential damage, fatigue and wear of the contact surfaces throughout the gait cycle 

under adverse conditions. 

5.4.1 Contact behaviour due to the input parameters 

The pressure distribution in various mismatch levels indicated that the standard 

condition resulted in a concentric head and cup contact. The highest mismatch level 

caused the closest contact to the lateral edge in all the swing phase loads. Deviation 

from contact concentricity caused edge contact and therefore a substantially reduced 

contact area. The result of smaller contact area was a substantially higher localized 

contact pressure towards the edge. The highly localised pressure distribution, which 

could be an indication of the most damaged area, is observed more when the swing 

phase load is 70N, or 100N as compared to the 200N and 300N cases. 

The comparison of the contact pressure behaviour in mismatch level variation for 

standard and steep cup inclination angle indicated that the edge contact pressure 

behaviour was observed in a greater number of cases when the cup inclination angle 

was steeper than standard cup inclination angle. The horizontal distance between the 

centre and the edge of the cup is less in the steep cup inclination angle cases than 

standard inclination angle cases due to lateral cup edge location. Consequently, the 

edge contact is more frequent in the cases with steeper cup inclination angle and the 

edge wear damage could potentially be higher for these cases.  
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5.4.2 Discussion of stress behaviour throughout gait cycle   

Contact mechanics analysis within the gait cycle was also studied based on the level of 

stress that the cup undergoes. In the standard conditions, the stress variation followed 

the loading changes throughout the gait cycle. In the adverse conditions, edge loading 

and permanent deformation are multifactorial scenario occurrences and the effect of 

each input parameter is challenging to identify. Higher translational mismatch, steeper 

cup inclination angle and lower swing phase load all increased the separation level and 

occurrence of edge loading (Figure 5.27). A similar trend was observed in contact 

mechanics output. 

 
Figure 5.27 The correlation between the input parameters and edge loading, adverse stress 

behaviour and plastic strain occurrence. The green, yellow and orange cells represent the edge 
loading, adverse stress and plastic strain occurrence for various swing phase loads, respectively  

The stress behaviour during the stance phase is dictated by the loading however the 

stress behaviour during the swing phase is affected by various factors. During swing 

phase, in some cases, the maximum stress initially decreases, increases and then 

becomes constant. There are two factors that contribute to such stress behaviour:  
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1) The resultant force that is influenced by both the swing phase load (axial load) and 

the translational mismatch level which affects the medial-lateral force (by varying 

the compression of the spring). As the axial load decreased to the swing phase load, 

the contact area moved towards the edge of the cup. However, the contact area is 

still in the ‘safe support zone’ to the point that the stress level is decreased to the 

minimum. This suggests that up to this point of the cycle changes in contact area are 

negligible, so the decrease in stress level corresponded to the decrease in axial 

loading. After this point of the cycle, the contact area started being in the ‘crucial 

region’ where the contact area became significantly smaller. Consequently, the 

stress raised again as the axial loading is constant. The lower swing phase load and 

the higher translational mismatch level drives the cup towards the lateral edge 

where the contact zone was significantly smaller.  

2) The cup inclination angle plays an important role in the contact zone as the location 

of the lateral edge varied by the inclination angle. It was described that the travelling 

distance of the head to the lateral cup edge is less in steeper cup inclination angle 

(Chapter 4). Under steep cup inclination angle, the translational mismatch level of 

3mm and 4mm caused permanent deformation regardless of the swing phase load. 

The permanent deformation for the same translational mismatch levels (3mm and 

4mm) under standard cup inclination angle did not occur under higher swing phase 

load than 200N.  In the standard cup inclination angle case the larger contact area 

associated with the 45 cup inclination angle reduced the severity of the contact 

mechanics, such as stress and permanent deformation, due to the location of the 

lateral edge and the resistance to the lateral movement.  
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Although a high load level was observed on the rim at the beginning of stance phase 

where the separation was greater than 0.5mm, no substantial contact output such as 

stress level was observed during this time duration. The stress level actually decreased 

initially as the contact area increased dramatically from the start of the stance phase to 

the first peak load. Therefore, most of the load is distributed in the higher contact area 

and the higher contact area potentially overcame the high load on the rim.    

The initial and final stress behaviour of each cases in adverse conditions seemed to be 

similar. In fact, in some of the conditions with the 4mm mismatch level, the stress value 

is initiated in a substantially higher value that caused an unexpected stress variation as 

the axial load reached its first peak. In the extreme conditions, the initial stress value is 

higher than the stress generated at the peak load due to the changing contact area. As 

the load increased rapidly to the first peak, it could have a significant impact on the cup 

material behaviour due to the rapid sliding and the high stress values.   

Dynamic modelling enabled the analysis of the time that the THR is under adverse 

loading conditions as a proportion of the total time for one cycle. The maximum von 

Mises stress throughout the gait cycle indicated that the area in which the adverse 

stress level occurred experienced this stress for over 35% of the gait cycle. Moreover, 

the severity of the adverse stress behaviour is affected by the level of input parameters. 

From a failure perspective, it could be concluded that under the cyclic loading, the 

conditions that show a higher severity of the adverse stress behaviour are likely to have 

a greater risk of earlier failure due to the large stress level within the zone.  
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5.4.3 Failure Prediction 

There are a number of failure theories such as shear strain energy theory (von Mises) 

and maximum principal stress theory that are applicable for ductile or brittle materials. 

In FE packages, the input yield stress is based on the von Mises stress value. Therefore 

the von Mises stress failure criterion has been used as the failure prediction in many 

previous studies (Mak and Jin, 2002; Korhonen et al., 2005; Hua et al., 2014). If the von 

Mises stress in the model exceeds the yield stress, permanent deformation of the 

material occurs. When this is applied to THR, after the yield stress is reached the 

material deforms permanently and changes the shape of the edge of the cup. The von 

Mises stress reported by the model after the failure can be unreliable, as the properties 

of the deformed component have changed and Hooks law no longer applies. Von Mises 

stress is predominantly driven by shear stresses, however it still consider the principal 

stress within the calculation. It was shown that the maximum compressive stress is 

substantially higher than the value of the von Mises stress in all the conditions which 

indicates the compressive stress dominated the stress behaviour. There may be an 

argument to consider other failure theories for this reason.  

One of the main reason for UHMWPE failure in THR is reported to be fatigue (Kurtz, 

2004; Partridge, 2016). Fatigue damage is caused by repeated cyclic loading that is not 

fully considered in this study. However, some predictions can be made based on the 

overall stress behaviour. The higher plastic strain was observed more for the conditions 

with higher edge loading and due to the high concentrated stress in the edge area. 

Further cyclic loading is expected to weaken the material properties in this region and 

potentially cause a failure below the yield stress. With a single cycle the type and 
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severity of failure cannot be predicted. However, the model predicts a high stress from 

the centre of the cup to the lateral edge. Therefore, this is assumed to be the main area 

of the damage, and experimental data showed increased wear and deformation in this 

region. The worn and damaged area on the cup that is shown in Figure 5.28 is for the 

experimental testing under 70N swing phase load. Figure 5.28 indicated that the higher 

translational level and steeper cup inclination angle firstly increases the level of 

deformation and wear, and secondly affected the lateral edge of the cup. Although it is 

not possible to distinguish between the level of wear and deformation in the 

experimental study, higher translational mismatch and/or steeper cup inclination 

angles increases the stress on the edge which would be expected to cause more damage 

over time. The direct comparison of the experimental and computational damage for 

this specific swing phase load (70N) is a challenging task as the computational study 

shows higher separation level (Chapter 4) than the experimental study which can 

directly affect the stress concentration and consequently the predicted damaged area. 

 

Figure 5.28 The worn and deformed area of the UHMWPE cup under 0mm, 2mm and 4mm 
translational mismatch level, standard and steep cup inclination angle and 70N swing phase 

load. The worn area indicates the worn and deformation on the inner surface of the liner 
(Appendix) 
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5.4.4 The correlation between separation and contact mechanics 

The analyses all indicated higher level of separation resulted in higher stress, contact 

area and plastic strain values. This conclusion is supported by a previous study on the 

effect of dynamic separation on the contact mechanics of THR statically (Hua et al., 

2014). However, their static FE model studied a lower level of separation than this 

study. The correlation between the separation and contact mechanics was investigated 

and it was indicated that the contact area at the swing phase load decreased 

substantially when the separation level was higher than 0.5mm under standard cup 

inclination angle. However, the border of the separation level for higher contact area 

was slightly less (0.4mm) under steep cup inclination angle. A similar trend was seen 

between the separation level and the stress values. This indicated the dynamic 

separation that is required to noticeably affect the contact mechanics output is less in 

the steep cup inclination angle. The higher occurrence of plastic strain in the 65 cup 

inclination angle supported the conclusion that more cases are potentially damaged 

under comparable conditions. 

5.4.5 Friction effect 

The effect of friction was highest when the contact mechanics of standard cup 

inclination angle and lower swing phase load were observed. The stress level, contact 

pressure and plastic strain all increased when friction was added into the model.  The 

high M/L load in 70N condition drove the contact area towards the edge of the cup, 

where the geometry of the edge under the standard cup inclination angle forms a 

locking mechanism (compared to the steeper cup inclination angle where the lateral 

movement is easier) and a resistance to the movement to the edge. Furthermore, the 
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resistance force formed by the friction affected the stress level on standard cup 

inclination angle with low swing phase load condition more than the other conditions 

tested. Friction did not play an important role in terms of the dynamic output of the 

model (separation). However, the contact mechanics of the model can be altered by the 

friction in the bearing surfaces.  

5.4.6 Model improvements 

It was shown in the previous chapter that the developed model is sensitive to the input 

parameters under dynamic conditions. The contact mechanics studies of the model also 

indicate that the variation in input parameters affects the contact behaviours, as 

hypothesised. However, this developed model could be improved for a more efficient 

and accurate contact output. As an example, no mesh sensitivity analysis was carried 

out when edge loading occurred as the mesh sensitivity was done under standard 

condition during the model development. Therefore, a change of the value of the contact 

mechanics output could be expected if this were implemented. However, the trend of 

the contact changes is not expected to change as the same meshing ratio was configured 

for all the conditions. Moreover, as presented in chapter 2, the output was not affected 

by the refinement when the same meshing ratio on both contact surfaces was created. 

Therefore, as the same meshing ratio is applied to the contact surfaces in all models, 

only slight changes in the magnitude of the outputs is expected.  

In FE modelling, the material model plays a very important role in contact mechanics 

behaviour. In this study the material behaviour is assumed to be elastic-plastic and this 

material behaviour is used in the THR model previously (Hua et al., 2014), however, 

this material model is mostly suitable for metals that have insubstantial plastic strains. 
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There are previous studies investigating the most suitable material for modelling 

UHMWPE and it was concluded that the hybrid material model can predict the 

UHMWPE behaviour more accurately than elastic-plastic model (Bergström, Rimnac 

and Kurtz, 2005). Furthermore, it was shown the hybrid material model can predict 

failure methods by using chain stretch theory, which studies the breakage of the 

polymer chains in the material. Therefore, if a hybrid material model is assigned to the 

UHMWPE, better predictions of the contact mechanics can be made. However, the effect 

of the hybrid material model on the running time and efficiency of the FEA should be 

examined. 

5.5 Key points  

 As the experimental and computational simulations both propose an agreement in 

dynamic and contact mechanics outcomes, it could be concluded that the developed 

methodology could be a great tool to predict the device sensibility under various 

conditions.  

 The contact mechanics behaviour is dependent on the following combination of 

parameters: geometric changes caused by changes in cup inclination angle; and the 

resultant force on the cup, which is affected by the swing phase load and the 

translational mismatch level. 

 Higher translational mismatch level, lower swing phase load and steeper cup 

inclination angle resulted in a reduced contact area, higher adverse stress 

occurrence and higher permanent deformation on the edge of the cup.  
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 The THR is better to be implanted in the standard cup inclination angle as the 

indications of the damage were observed in the steep cup inclination angle 

conditions.  
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Chapter 6 Final discussion and future work 

This chapter focuses on the overall model development, the potential consequences and 

the limitations of the developed method. Furthermore, the possible application of this 

method in the future is described.  

6.1 Model development 

The ultimate aim of this project was to develop a computational model to 

simultaneously compute the dynamic and contact mechanics of the THR under adverse 

conditions. The developed model can analyse dynamic contact mechanics patterns 

throughout the gait cycle, which would be impossible using current static modelling 

techniques. The immediate implication of this is the ability to study how the separation 

is driven dynamically by the effect of external factors. Additionally, the contact 

mechanics can be studied concurrently. This computational model can be used as a tool 

to complement experimental observations and provide data that is unavailable 

experimentally, such as the THR contact mechanics behaviour throughout one loading 

cycle, resulting in analysis through various load and contact conditions. With some 

additional development, this computational model could be modified to suit the 

applications within research, industry or as a preoperative tool.  

The development of explicit THR models is challenging as it has not been explored until 

recently for use in preclinical testing. The integration of the dynamic and contact 

mechanics under adverse conditions can cause model instability as a result of edge 

loading. Therefore, it was important to first build a basic model and then gradually add 

sophistication such as loading profiles and detailed geometry.  
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The model was set to mimic a station of Leeds II hip simulator that has been used to 

examine THR wear characteristics under adverse conditions (Al-Hajjar et al, 2010). The 

development is fully described in Chapters 2 and 3. Not all the experimental aspects of 

this simulator are necessary to replicate the separation or the contact mechanics, so 

some assumptions and simplifications can be made to reduce the time of the analysis, 

increase the model reliability, and aid troubleshooting. The most crucial experimental 

component that was implemented into the computational model was the spring, which 

created the separation between the contact surfaces. The spring has a major effect on 

the outputs and oscillations in the model and one of the challenges was to ensure 

appropriate damping for specific cases, as each of the input factors and their 

interactions affected those damping conditions.   

The next step of the development was the validation of the in silico dynamic outputs 

against the in vitro studies. The comparison demonstrated similar levels of separation 

and contact mechanics changes in both experimental studies and computational 

models. However, future modifications of this model could potentially provide a more 

reliable outcome compared to the experimental studies as will be discussed below. 

Furthermore, the validation of the dynamic data increases the reliability of the contact 

mechanics outputs as the contact mechanics related parameters cannot be measured 

directly from in vitro studies. 

The advanced developments of the model could be dependent on the applications of it. 

The current model mimics the general THR behaviour of the in vitro loading, geometry 

and positioning of the stations of the hip simulators. Therefore, if the outcome of 

interest is the overall THR in vitro performance under numerous conditions, the 

computational model inputs can be based on the experimental set up. If the model is 
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used to study the effect of other factors on the THR performance, then the modifications 

can be done on the model that is already developed. In addition, if the model was used 

to study patient specific outputs, then the patient’s data such as the bone anatomy, axial 

loading and tissue behaviour would also need to be implemented in the model for a 

more realistic output. It should be noted it is currently challenging to discover the 

patient’s specific data as there are not many patient related data sets published due to 

the difficulty in measuring the patient’s data. 

Implementation of an anterior-posterior spring to mimic various hip tissues behaviour 

could be the next step to replicate a more in vivo representative situation in the 

computational model. The hip joint is supported well by iliofemoral, pubofemoral, and 

ischiofemoral ligaments and they are surrounded by rectus femoris muscles for better 

stability (Tortora and Nielsen, 2009). The anterior-posterior spring could be a useful 

tool to implement different soft-tissue scenarios. 

6.2 Discussion of findings  
The dynamic behaviour and contact mechanics of the CoP THR under adverse 

conditions were analysed in Chapters 4 and 5. It was concluded from the analyses that 

a higher translational mismatch level, steeper cup inclination angle and lower swing 

phase load could all increase the dynamic separation. The same trend was seen in 

experimental studies (Ali et al., 2016). However, the magnitude of the dynamic output 

was not always similar which could be due to the various reasons such as damping 

conditions, friction and angular movements. The computational model clearly 

distinguished the effect of each input on the model dynamically. Therefore, the model 

can be used to understand the effect of variety of parameters on the dynamic aspect of 

the model. 
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A similar trend to the separation was seen in stress behaviour on the cup. If the adverse 

conditions caused dynamic separation of more than 0.5mm in the standard cup 

inclination angle condition or 0.4mm in the steep cup inclination angle condition, then 

an adverse ‘in cycle’ stress behaviour was produced on the edge of the cup where the 

contact occurred. As the dynamic separation increased, high stress occurred on the 

edge and consequently the plastic strain increased.  

Such contact behaviour could potentially be an indication of the long-term THR 

performance in vitro and in vivo. In vitro studies previously indicated that the increase 

in dynamic separation primarily affects the wear rate of the device (Al-Hajjar et al, 

2013, Williams et al 2009). However, it is not experimentally possible to know if the 

damage, especially on the edge, is wear or other form of damage. As the in silico analyses 

suggest, plastic deformation occurred at the edge under edge loading conditions. 

Therefore, cyclic loading under these edge loading conditions could even produce a 

higher deformation and more substantial damage such as crack propagation that could 

potentially lead to fatigue of the cup in long term. The lack of lubrication and high 

contact friction in UHMWPE cups that was reported from the explants (Burger et al, 

2007) increase the possibility of the greater damage in these high stress regions. 

In the adverse conditions, edge loading and permanent deformation are multi scenario 

occurrences and the occurrence of them depends on the axial loading, M/L loading and 

the cup positioning. Although all the variation in the input parameters, translational 

mismatch level, cup inclination angle and swing phase load, affected the contact 

mechanics outputs, a safe zone of positioning could be suggested that does not activate 

any adverse behaviour. Translational mismatch of 1mm and 2mm rarely resulted in 

adverse behaviour under any swing phase load. The cup inclination angle of 45° 
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performed as a resistance to M/L movement and edge contact.  Moreover, higher swing 

phase load than 200N reduced the number of cases in which adverse contact behaviour 

was observed.  

6.3 Limitations 
The methodology presented in this study is the first step, further progress will allow a 

more thorough model to be developed. Therefore, assumptions were made with respect 

to the in vitro input during the development that could potentially lead to discrepancies 

between the two responses. As an example of the simplifications, neglecting the 

rotational movement of the device namely flexion/extension, abduction/adduction and 

internal/external rotation of the cup. The experiments that were carried out in house 

indicated that the dynamic separation can be affected by the rotational movement. 

However, the rotational movement i.e. abduction/adduction have no substantial impact 

on the magnitude of the separation. 

Although the model was validated against in vitro data (Chapter 4), the current model 

possesses limitations. The initial limitation is the accuracy of the result as edge loading 

occurs. The mesh sensitivity analysis that were carried out on the model was done 

under standard axial loading with no dynamic separation during the initial model 

development. The mesh sensitivity analyses (Chapter 2) suggested that the equivalent 

meshing ratio on the contact surfaces results in convergence regardless of the element 

size. There is a possibility that the contact mechanics performance of the device could 

not be the most accurate and the magnitude of the contact outputs such as contact area, 

stress and consequently the plastic strain could be varied as the contact zone changes 

from standard condition contact zone. A refined mesh could produce more precise 

contact pressure distribution on the edge. However, the overall contact mechanics 
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behaviour is unlikely to be affected. As an example, the refined mesh analysis will 

produce the adverse stress behaviour that was observed during the swing phase load. 

However, the mesh refinement is expected to maintain the consistency in the stress 

values. 

The contact output is affected by the material model that represents the material 

behaviour of the components. In this study the elastic-plastic material model that has 

been used previously (Lin et al, 2010; Hua et al, 2014) was used for the UHMWPE. 

UHMWPE has complex material properties that the loading and the environmental 

conditions can influence (Sobieraj and Rimnac, 2009).   A study has been carried out to 

examine the most precise material models to represent UHMWPE behaviour including 

the prediction of failure and this has shown that the hybrid material model in 

combination with the chain stretch failure criteria that predicts the critical chain stretch 

in the amorphous polymer chains, could produce the most accurate UHMWPE 

behaviour computationally (Bergstrom et al, 2005).  However, the effect of more 

complicated material models on the running time of the analysis would need to be 

examined.  

6.4 Possible applications and future work 
Despite the simplifications that were assumed in this model, the dynamics and contact 

mechanics outputs were proven to be sensitive to any input parameters that were 

implemented. Consequently, the developed model could potentially be used to estimate 

the overall THR behaviour under various conditions in several fields such as research, 

industry and preoperative planning. The potential applications of the model in the 

mentioned fields are discussed below. 
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Research: Many factors such as head size, soft tissue tension, material, cup version 

angle, design, clearance, medialized cup, stem subsidence, kinetic and kinematics can 

affect the separation. To test the potential factors that cause dynamic separation in 

vitro, the hip simulators need to be prepared and developed for each specific test that 

could potentially be very costly and time consuming. Therefore, a computational tool 

that produces an insight of THR behaviour due to the input parameters can help to: 

1. Specify the severity of the effect of each factor (or the combination of factors) on 

the dynamics and contact mechanics of the THR. 

2. Prioritize the in vitro testing of the factors based on their effects. 

The developed model has the ability to study the effect of input variation on the THR in 

a shorter time and with less cost than in vitro testing. Therefore, this model could be 

used as a pre-testing in vitro device to focus on the most crucial factors that 

detrimentally affect the THR performance. 

Industry: The model can be used as a preclinical testing tool to determine the device 

behaviour from different aspects such as the components behaviour, in vivo 

performance and implant design such under edge loading condition. The potential 

areas to focus on are as follows: 

1. Material properties: If the focus is on ceramic-on-polyethylene, different 

polyethylene specifications that are varied during manufacturing within the same 

bearing and design can be tested to rationalize the most suitable material 

properties. 

2. Bearing materials: this study focuses on the hard-on-soft bearing contacts especially 

ceramics-on-polyethylene bearings. However, hard-on-hard bearing contact 

performs differently because of the reduction in deformation of the bearings due to 
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higher Young’s modulus of the materials. Various bearing materials can be tested in 

the model. 

3. Implant design: Testing a new hip implant design could be very costly for the 

company. Hence, this computed model can be used to study the new implant design 

behaviour under adverse conditions. The potential implant criteria that could 

influence the THR behaviour are the factors that are mostly associated to the edge 

loading such as inner cup radius, radial clearance, head and liner size, coverage 

angle, rim radius and surface roughness. 

4. Locking mechanism: The primary purpose of this model development was to 

determine the separation caused between the head and the cup. The next potential 

criteria could be to determine the effect of separation on the locking mechanism 

between the polyethylene cup and the metal shell. The Pinnacle acetabular cup 

consists of anti-rotational devices (ARDs) on the outer surfaces that fits in the barbs 

designed on the metal shell to prevent rotation of the cup. These ARD features could 

be examined although the features would increase the level of meshing complexity 

and require the definition of another interaction which could substantially increase 

the running time of the analysis and consequently, the cost of the analysis. 

Moreover, the effect of the cup supporting component features (metal shell) such as 

the metal shell edge thickness could be studied to understand if the shell 

specification can influence the occurrence and severity of edge loading. 

Furthermore, an optimum ratio of the shell and liner thickness could be studied to 

prevent severe edge loading. 

5. Dislocation: In the worst case, subluxation of the head can cause spinning out of the 

cup which leads to impingement of the cup inner surface with the stem neck. This 
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event causes deformation of the cup edge surface and has an impact on the ARDs. 

This worst case scenario could be tested on the bearing combination to evaluate the 

likelihood of failure. 

Preoperative planning:  This model could be a helpful preclinical tool to understand 

the effect patient specific factors as much as the components specifications. The model 

could be used to understand the behaviour of the THR based on positioning of it before 

implantation to the patient. As each patient has a specific hip and femur anatomy, the 

model can indicate in which surgical positioning, the dynamics and contact mechanics 

behaviour of the implant is less likely to be affected based on the patient’s anatomy. 

Therefore, variation in components positioning such as inclination angle of the cup, 

version angle of the cup, head/stem ratio and contact bearing sizes could be examined 

before the device is implanted. Although the running time of this analyses are long for 

pre-operative planning, the method could be a helpful tool for the complicated hip 

replacement positioning. 

6.5 Conclusion 

In conclusion, this model provides valuable information on the dynamic and contact 

mechanics of the THRs that could allow understanding the source of THR weaknesses 

under adverse conditions. The developed method is the first computational model 

which can predict the separation and interaction output as a result of input parameters. 

The developed model is fit for the desired application in this study while further 

improvements can be done based on the specific purposes. As coupling of the dynamics 

and contact mechanics of THRs is an innovative and novel approach to understand the 

THR performance in depth, this study effectively proves the concept of the method that 

was applied to the computational model. The model is a functional tool for research in 
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implant designs, implant types, surgical pre-operative positioning and patient specific 

implant performance. This is the most applicable method to analyse the hip implants in 

a clinical and experimental environment that is cost and time effective.  
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Chapter 8 Appendix 

8.1 Experimental studies 

The experimental studies that were shown for validation purposes are not published. 

These experimental biomechanical studies were done on electromechanical hip 

simulator (EM13) by Murat Ali and the dynamic separation output and load at the rim 

is presented in this section.  

The biomechanical testing were done based on the loading and the angular 

displacement that was obtained from ISO 14242-1:2014. The bearing surfaces was 

lubricated with New-born calf serum. The following conditions were tested in the 

biomechanical testing: 

 Translational mismatch of 1mm, 2mm, 3mm and 4mm.  

 Swing phase load of 70N, 100N, 200N and 300N 

 Cup inclination angle of 45° and 65° (clinically) 

The dynamic output of the testing is shown below: 
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8.1.1 Dynamic separation 

 

Figure 8.1 Experimental maximum separation versus swing phase load and translational 
mismatch level under 45° inclination angle. 

 

Figure 8.2 Experimental maximum separation versus swing phase load and translational 
mismatch level under 65° inclination angle. 
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8.1.2 Load at the rim 

 

Figure 8.3 The load at the rim with various translational mismatch level and swing phase loads 
under 45° cup inclination angle 

 

Figure 8.4 The load at the rim with various translational mismatch level and swing phase loads 
under 65° cup inclination angle 
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Figure 8.5 The location of the in vitro wear and deformation under concentric conditions, 2mm 
and 4mm translational mismatch level, standard and steep cup inclination angle and 70N swing 

phase load carried out by Murat Ali (partially shown in Ali et al, 2016) 

8.2 Python script for output processing 

from abaqus import * 

from abaqusConstants import * 

from caeModules import * 

from odbAccess import * 

resultlocation = 'G:/Chapter 4 and 5/Results/65 degree/Final/' 

hiplist = ['hundredonea', 'hundredtwoa', 'hundredthree', 'hundredfour', 'hundredfivea-
1', 'hundredsix','hundredsevena', 'hundredeighta', 'hundredninea', 'hundredtenb', 
'hundredeleven', 'hundredtwelve', 'hundredthirteenb', 'hundredforteen', 
'hundredfifteen', 'hundredsixteen'] 

stepslist = ['Cycle 1'] 

def extracttab(): 

 for hhh in hiplist: 

  # define Hip 

  Hip = hhh 

  # open output database  

  o1 = session.openOdb(name=resultlocation+Hip+'.odb') 

  session.viewports['Viewport: 1'].setValues(displayedObject=o1) 

   

  # set number format for output 

  nf = NumberFormat(numDigits=6, precision=0, format=AUTOMATIC)  
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  # change viewer to poly 

  leaf = dgo.LeafFromPartInstance(partInstanceName=('POLY', )) 

  session.viewports['Viewport: 
1'].odbDisplay.displayGroup.replace(leaf=leaf) 

  for sss in stepslist: 

   

   # get end (index is always -1) frame number for step 

   # try except continue means move on if no endframe exists (i.e. 
that step aborted) 

   try: 

    endframe=o1.steps[sss].frames[-1] 

   except:  

    continue 

   ### CPRESS  

   session.fieldReportOptions.setValues(sort=DESCENDING) 

   session.writeFieldReport(fileName='CC'+Hip+sss+'.rpt', 
append=OFF,  

    sortItem='CPRESS', odb=o1, step=0, frame=endframe,  

    outputPosition=NODAL, variable=(('CPRESS', 
ELEMENT_NODAL), ))  

     

   ### LE  

   session.fieldReportOptions.setValues(sort=DESCENDING) 

   session.writeFieldReport(fileName='LE'+Hip+sss+'.rpt', 
append=OFF,  

    sortItem='LE.Max. Principal', odb=o1, step=0, 
frame=endframe,  

    outputPosition=NODAL, variable=(('LE', 
INTEGRATION_POINT), ))  

 

   ### PE  

   session.fieldReportOptions.setValues(sort=DESCENDING) 

   session.writeFieldReport(fileName='PE'+Hip+sss+'.rpt', 
append=OFF,  
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    sortItem='PE.Max. Principal', odb=o1, step=0, 
frame=endframe,  

    outputPosition=NODAL, variable=(('PE', 
INTEGRATION_POINT), ))      

    ### S  

   session.fieldReportOptions.setValues(sort=DESCENDING) 

   session.writeFieldReport(fileName='S'+Hip+sss+'.rpt', 
append=OFF,  

    sortItem='S.Mises', odb=o1, step=0, frame=endframe,  

    outputPosition=NODAL, variable=(('S', 
INTEGRATION_POINT), )) 

 # now extract desired lines from rpt files 

 # and record to text files 

 for hhh in hiplist: 

  for sss in stepslist: 

   reqline = 20 

   reqlineL = 23 

   

   # end of step 

   fileName='CC'+hhh+sss+'.rpt' 

   # get line 20 

   try: 

    with open(fileName) as f1: 

     i = 0 

     for line in f1: 

      if i == reqline-1: 

       break 

      i += 1 

    # record to file 

    with open("CResultop.txt", mode='a') as file: 

     file.write(line) 

   # if no data for step, record that it aborted   

   except:  

    with open("CResultop.txt", mode='a') as file: 
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     file.write('Aborts \n') 

   # end of step 

   fileName='LE'+hhh+sss+'.rpt' 

   # get line 23 

   try: 

    with open(fileName) as f1: 

     i = 0 

     for line in f1: 

      if i == reqlineL-1: 

       break 

      i += 1 

    # record to file 

    with open("LEResultop.txt", mode='a') as file: 

     file.write(line) 

   # if no data for step, record that it aborted   

   except:  

    with open("LEResultop.txt", mode='a') as file: 

     file.write('Aborts \n')   

 

   # end of step 

   fileName='PE'+hhh+sss+'.rpt' 

   # get line 23 

   try: 

    with open(fileName) as f1: 

     i = 0 

     for line in f1: 

      if i == reqlineL-1: 

       break 

      i += 1 

    # record to file 

    with open("PEResultop.txt", mode='a') as file: 

     file.write(line) 

   # if no data for step, record that it aborted   
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   except:  

    with open("PEResultop.txt", mode='a') as file: 

     file.write('Aborts \n')    

   #end of step 

   fileName='S'+hhh+sss+'.rpt' 

   # get line 23 

   try: 

    with open(fileName) as f1: 

     i = 0 

     for line in f1: 

      if i == reqlineL-1: 

       break 

      i += 1 

    # record to file 

    with open("SResultop.txt", mode='a') as file: 

     file.write(line) 

   # if no data for step, record that it aborted   

   except:  

    with open("SResultop.txt", mode='a') as file: 

     file.write('Aborts \n') 

 f1.close() 

 file.close() 

def getstrains(): 

 stepofint = 'Cycle 1’ 

 # do this for steps of interest 

 # define list of maxU nodes found using previous function... 

 maxulist = [25, 474, 24, 23,473]  

 for Hip, MaxUnode in zip(hiplist,maxulist): 

 

  # opens odb 

  odb=openOdb(path='G:/Chapter 4 and 5/Results/65 
degree/Final/'+Hip+'.odb') 

  # permanantly adds a node set 
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  #odb.rootAssembly.NodeSetFromNodeLabels(name='Nodes1', 
nodeLabels=(('POLY',(MaxUnode, )),)) 

  # get nodal displacements at end of named step  

  displacement = odb.steps[stepofint].frames[-1].fieldOutputs['CPRESS'] 

  # get for the specific set of nodes 

  interestingnodes = odb.rootAssembly.nodeSets['Nodes1'] 

  Displacement = displacement.getSubset(region=interestingnodes) 

  dispValues = Displacement.values 

  # define oc to reduce code length 

  oc = odb.rootAssembly.instances['POLY'].nodes 

  outputFile=open(Hip+'output.m','w')   

  outputFile.write('Nodes = [') 

  for u in dispValues:  

   outputFile.write('%d,' % (u.nodeLabel)) 

  outputFile.write(']; \n')  

  outputFile.write('basex = [') 

  for u in dispValues:  

   outputFile.write('%F,' % (oc[u.nodeLabel-1].coordinates[0])) 

  outputFile.write(']; \n')  

  outputFile.write('basey = [') 

  for u in dispValues:  

   outputFile.write('%F,' % (oc[u.nodeLabel-1].coordinates[1])) 

  outputFile.write(']; \n')  

  outputFile.write('basez = [') 

  for u in dispValues:  

   outputFile.write('%F,' % (oc[u.nodeLabel-1].coordinates[2])) 

  outputFile.write(']; \n')   

  outputFile.close()    

  #outputFile.close()  

# call functions   

#extracttab() 

#getstrains() 


