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Abstract 

 

Models for the evolution of species' traits and speciation rates usually ignore ecology: most 

comparative analyses of evolution are ecologically neutral and ignore ecological mechanisms 

such as competition and limiting similarity. However, such processes can impact profoundly on 

the distribution of traits across a group of species if they are ecologically similar (e.g. as in 

adaptive radiations). Here, two new models are introduced to explicitly include the effects of 

lineage-lineage interactions, one generating trait evolution and the other addressing lineage 

diversification. The new model for trait evolution is fitted to a wide range of existing animal 

datasets, using a simulation approach. Evidence was found of clade-wide character 

displacement patterns in some adaptive radiations, including Darwin’s finches; however, these 

patterns are not prevalent across animal clades as a whole. Three types of diversification model 

are also compared here, including the novel interaction-based diversification model. This new 

model links trait space densities to diversification rates, supressing diversification among 

closely packed species. Although these models have a similar conceptual basis, in terms of the 

accumulation of filled niches, they produce quite different evolutionary histories. The 

implications of ecological interactions between species are discussed, both for data 

interpretation and for future modelling approaches. 
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Chapter 1: Introduction and overview of the literature  

Background 

Evolution describes the change in animal species over time. Ecology describes the relationships 

between these species, and the effects they have on one another. Evolution and ecology are 

known to affect one another, and some progress has been made in understanding the roles of 

ecological processes in shaping trait evolution (Johnson and Stinchcombe 2007, Cavender-Bares 

et al. 2009, Schoener 2011, Pennell and Harmon 2013, Hadfield et al. 2014, Price et al. 2014, 

Pigot and Etienne 2015). The exponential increase in molecular sequencing data in recent years 

means that more detailed pictures of clades’ evolutionary histories are available, and this helps 

to test more sophisticated models of evolution and ecology (e.g. Rabosky and Lovette 2008, 

Harmon et al. 2010). These models link plausible evolutionary processes to their results in 

patterns of diversification or trait values. 

Competition between species is the root of some key ideas at the interface between evolution 

and ecology: character displacement (Grant 1972, Schluter 2000) and limiting similarity 

(MacArthur and Levins 1963). Character displacement is the evolution of species traits to 

become more different, reducing competition for any particular niche. It is most commonly 

detected by observing a given pair of species to be more different in regions where they coexist 

than elsewhere (Pfennig and Pfennig 2010). Similarly, limiting similarity, the idea that species 

cannot coexist if their niches are too similar (Abrams 1973), is often thought to slow the rate of 

accumulation of new species, since empty niches may be needed for new species to fill (e.g. 

Phillimore and Price 2008). 

Project overview 

There are many statistical models of trait evolution and species diversification (reviewed below; 

see also O’Meara 2012 for a technical overview), but these models do not typically include 

ecological mechanisms such as competition and limiting similarity. At the same time, ecological 

effects are often expected across groups of species when they are ecologically similar, for 

example ecological opportunity across adaptive radiations (Yoder et al. 2010). The overall 

purpose of this project was to develop evolutionary models with explicit assumptions about the 

underlying ecology, and to develop tests that allow us to distinguish between these models 

using phylogenies and trait data.  

The ecological focus for the project was on competition between species. Character 

displacement is a familiar and well tested idea, but there are comparatively few studies looking 
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for signs of it on a clade-wide scale (but for an example see Davies et al. 2012). Also, although 

the idea is familiar, it has not traditionally been included in models of trait evolution on 

phylogenies. Instead, trait evolution is assumed to be independent for each lineage. There is a 

good reason for making this assumption: it makes it straightforward to generate expressions for 

model likelihoods. New likelihood methods are just beginning to appear for comparative 

phylogenetic models with lineage-lineage interactions (Drury et al. 2016, Manceau et al. 2017, 

Bartoszek et al. 2017). The approach I took to this problem was to create software for 

simulating data under a novel, more complex model that explicitly includes interactions, and 

then estimating the likelihood by comparing these simulations to observed datasets.  

I also looked at the effects of competition on diversification. Models exist to make diversification 

a function of the total number of species in a group, so that diversification rates can slow down 

as the species count increases and niches are filled up (Walker and Valentine 1984, Etienne et al. 

2012). I compared the predictions of different models of this type, and introduced a new, related 

diversification model. By contrasting these similar models, I show how the details of their 

assumptions manifest in different predictions about phylogeny shape and trait distributions. 

 

Models of continuous evolution 

Data 

Models of continuous trait change on a phylogeny can be used to generate simulated datasets, or 

can be fitted to observed datasets. Fitting these models requires three types of data:  

• Tree topology;  

• Branch lengths;  

• Trait values of tree tips.  

The models give instantaneous rates of evolution as a function of position on the phylogeny 

branch. Then, the difference between two species is predicted from the length of branches 

separating them. The tendency for phylogenetically close species to be phenotypically similar is 

referred to as ‘phylogenetic signal’ (Blomberg et al. 2003). Phylogenetic niche conservatism 

(PNC) is a related concept, with no universal definition (Cooper et al. 2010). Loosely, it is 

phylogenetic signal where the trait is the species’ niche. Phylogenetic signal is often assumed to 

be particularly strong for such traits, but this assumption may be frequently unsatisfied (Losos 

2008).  
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The best data for comparative analyses consists of many closely related pairs of species that 

differ in trait value, with substantial time between speciation events for each lineage (Garland 

et al. 2005). Ancestral trait values can be very useful in fixing non-tip phylogeny nodes, but are 

rare and generally not incorporated into phylogenetic comparative analyses (Harmon et al. 

2010a).  

Evolution on branches 

The need to account for phylogeny in comparative analyses was first made clear by Felsenstein 

(1985). He used a model where the change in trait value in a short period of time is drawn from 

a normal distribution: this is Brownian Motion (BM). Other models of trait evolution along a 

branch are derived from the BM model by adding parameters. Here, the various models are 

listed in time-differential form in table 1.1.  

The BM model has a trait value   evolving at random, at a rate σ: 

             , Equation 1.1 

where      is the integral of the continuous white noise function, such that             . If 

used to predict trait values at a time  , the BM model has two free parameters: the evolutionary 

rate σ and the root trait value     . 

The parameter   (Pagel 1997, 1999) measures the goodness of fit of trait data to those expected 

under a given BM model. A value of 1 indicates a consistent fit to the BM model;     indicates 

less phylogenetic signal and     indicates more signal than expected.   can be represented as 

a transformation of the tree into one with internal branches rescaled relative to tip branches. 

We know that rates of evolution vary. How do we add plausible patterns of rate-change to the 

BM model? Looking at equation 1.1, we seem to have two options: we can elevate the factor   to 

the status of a function, or we can add a separate, deterministic term to the equation. Time-

dependency of   could be linear              , polynomial (        ), or exponential 

(      ). 
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Figure 1.1:  An example of evolution under the BM (black) and OU (red) models.  

Polynomial time dependence κ is first seen in Pagel (1997). Exponential models, meanwhile, are 

termed Accelerating/Decelerating (ACDC) models (Blomberg et al. 2003). Each of these models 

adds one free parameter to the BM model. One more alternative exists and has been 

implemented: the evolutionary rate   may be a step function of time; these steps (i.e. discrete 

rate changes) may represent sudden environmental changes, or transitions into or out of 

ecological niches (Thomas et al. 2006, O’Meara et al. 2006). If some extrinsic event is known 

about, then the positions of the corresponding steps can be built into the model before the 

model is used. Alternatively, maximum likelihood (ML) positions and sizes of discrete rate 

changes can be estimated from the data (Eastman et al. 2011, Thomas and Freckleton 2012, 

Revell et al. 2012, Rabosky et al. 2013).  

The second way to modify the BM model of equation 1.1 is to add an additional term. In the OU 

model (Hansen 1997) the trait X is drawn towards a central value (‘primary optimum’)   with a 

strength proportional to its distance from the optimum: 

                           Equation 1.2 
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Figure 1.2:  Accumulation of difference between two lineages under different models of 

evolution. Branch lengths in units of time. The black line is the BM model; the red line is 

κ<1; the blue line the OU model, with a different optimum for each branch; the green line 

is a NF model.  

For this reason, the simplest implementation of the OU model is sometimes called the ‘single 

stationary peak’ (SSP) model. It is perhaps easier to imagine this as an ecological process of 

avoiding extreme trait values: as a species gets further from the clade mean, it becomes more 

likely to evolve towards the clade mean. The OU model can be extended by adding discrete 

optima shifts based on prior knowledge of extrinsic events, or with methods to estimate ML 

positions of optima shifts (Hansen 1997, Hansen and Orzack 2005). Additionally, the optima 

may themselves evolve according to a BM or OU model (Hansen and Houle 2008, Hansen and 

Bartoszek 2012). An example of the accumulation of difference between two lineages is shown 

for the BM, OU,   and NF models in figure 1.2. 

Evolution on phylogenies 

Most of the BM-like models of evolution can be applied separately to each branch, but we can 

also make evolutionary rates dependent on position in the whole phylogeny. Firstly, we might 

test for a phylogeny-wide change in the rate of evolution, analogous to the within-branch 

parameter   (Pagel 1997). This parameter takes the same form as  , and is referred to as   
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(Pagel 1997, Thomas and Freckleton 2012) (See table 1.1). We can also permit rate parameters 

to be branch-specific. Having an independent σ for each branch is possible (Mooers et al. 1999), 

but will tend to lead to too many free parameters (Thomas and Freckleton 2012). ML estimation 

of a limited number of discrete rate changes, however, can be applied clade-wise as well as 

time-wise, so that a change appears on just one branch in a phylogeny, but is inherited by 

subsequent ‘offspring’. 

Stretching branches 

The evolutionary models in the previous section allow us to calculate the amount of change 

along each tree branch, assuming that the length of the branch corresponds to amount of time 

passed. However, an alternative perspective is to apply only the BM model to the tree, but 

implement alternative models by first transforming the tree’s branch lengths. The evolutionary 

models effectively become maps from time-scaled trees into change-scaled trees. Some models 

were originally presented as such a transformation. An example tree transformed under each of 

several trait models is shown in figure 1.3. 

Multiple traits 

The BM and BM-like models generalise immediately to multiple traits: the trait value X becomes 

a vector of trait values  , and the rate parameter   becomes a covariance matrix  . Nonzero 

nondiagonal elements of   indicate correlation between traits. This is important, since selection 

acts on many traits simultaneously and a particular selective force may act on some 

combination of measured traits. 

One of the main uses for phylogenetic methods is to measure correlations between traits while 

controlling for the phylogeny. OU model variants have been developed to account for 

coadaptation between traits, with trait optima either fixed or evolving by the BM model. With 

multiple traits, α becomes a matrix, and off-diagonal elements can permit one trait’s optimum to 

change according to another trait’s value, even if the second trait is simply evolving according to 

BM (Bartoszek et al. 2012). 

It may be useful to note a potential source of confusion: many methods seek to separate 

phylogenetic and ecological effects. However, ecology may be heritable. If two species are labile 

but have phylogenetic signal due to shared inherited ecology, then they are independent data 

points with respect to the details of that ecology, but non-independent with respect to general 

ecological principles. 
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Figure 1.3 :  An illustration of change-scaled trees. The BM tree is identical to a time-

scaled tree, and different evolutionary models are different transformations into other 

trees. The values of kappa ( ) and delta ( ) are between 0 and 1.  

 

Models of speciation-based evolution 

Evolution on phylogenies 

Branch-evolution parameters such as κ, discussed above, represent one type of test for 

speciational evolution. An alternative is simply to postulate a ‘lump’ of trait change at each 

speciation event, with the lump drawn from         (Bokma et al. 2008, Ingram 2010). If the 

speciation rate is ξ, then we can measure the degree to which rapid evolution is linked to 

speciation events with the value of 

 
ξσ

2
c

σ
2
total

 Equation 1.3  
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This model requires extinction rate estimates, which can be estimated from the phylogeny itself 

(Rabosky 2009, Pybus and Harvey 2000). If the amount of Brownian Motion is set to zero, then 

the Ingram (2010) model simply reduces to random amounts of trait change at speciation 

events and none in between speciation events. This corresponds to a pure ‘punctuated 

equilibrium’ model of evolution. 

Niche-filling (NF) models (Price 1997, Harvey et al. 2000, Freckleton and Harvey 2006) also 

have purely speciational modes of evolution, but have a few differences from the Ingram model. 

In niche-filling models, species’ trait values are constant in time, and the position of each niche 

in niche-space is constant in time. New niches are filled by new species, branching from 

whichever species is closest in niche-space. Freckleton and Harvey (2006) distinguish between 

NF models where every species is equally likely to speciate and form a new and filled niche, and 

NF models where niches appear at a constant rate, randomly positioned in niche-space. The two 

are equivalent when all the species have evenly distributed trait values, but have different 

predictions otherwise; for example, a species particularly distant from all others in trait-space 

will be more likely to speciate under the randomised NF model. 

In the Ingram model speciation is a splitting process, where each of the two species shifts to a 

new trait value. However, in NF models speciation is a branching process, where only the ‘new’ 

species moves to a new trait value. This leads to a difficulty for NF models, however: if a lineage 

splits and the ’original’ lineage subsequently goes extinct, then a phylogeny built from extant 

species will have unexplained mid-branch evolutionary change. 

In NF models, species respond very quickly to environmental changes (via speciation), but 

phylogenetic signal exists and persists, because new niches are filled from nearby niches. Hence, 

sibling species resemble one another. The BM model achieved this signal by the contrary 

postulate that evolution is purely random and unconstrained. 

A further different model combines phylogenetic signal from a BM process with a postulate of 

trait variance increasing linearly with spatial separation between the species (Freckleton and 

Jetz 2009). The relative importance of the two terms of the expression for the variance then 

measures the importance of physical locale in the evolution of the trait. 

Speciation and phylogeny shape 

BM-like models require a phylogeny as input data, and provide no insights on the question of 

when and why speciation should occur. If      is the birth rate and      is the death rate, then a 

‘Yule process’ has     and   constant so that the number of species increases linearly with 
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time. The   statistic tests for deviations from the Yule model; it is a measure of acceleration in 

the rate of speciation, with standard normal distribution under the Yule model (Pybus and 

Harvey 2000).  

A reduction in speciation rate through time is consistent with NF models that accommodate a 

limited number of niches. However, this pattern can be seen even in models which do not have 

such ecological effects; therefore, it is important to compare model predictions and not just test 

a null model of constant speciation rate (Rabosky 2009). One solution is to look for co-occurring 

slowdowns in speciation rate and trait evolution rate (Harmon et al. 2010a).  

 

Diversification rate models 

Molecular phylogenies can also be used to estimate rates of diversification, that is, the rate of 

change of total number of species. Although a molecular phylogeny will usually include only 

extant species, it can in principle be used to infer both speciation and extinction rates (Nee et al. 

1994). The overall diversification rate, equal to the speciation rate b minus the extinction rate d, 

is given by the total accumulation of species and the lifetime of the clade. The extinction rate can 

then be computed from the diversification rate b-d and the ‘relative extinction rate’ d/b. The 

relative extinction rate is essentially the apparent change in diversification rate through time. 

When the extinction rate is small, the diversification rate will approach the speciation rate b. 

But when the relative extinction rate is high, the diversification rate will appear to increase 

through time, meaning that extant species are generally younger. The rate of diversification 

therefore appears to accelerate with time (Rabosky 2006). From this framework, likelihoods for 

speciation and extinction rates can be calculated for phylogenetic data. The reliability of 

extinction rate estimates, however, relies on assumptions, such as equality of diversification 

rates across taxa, which are typically broken in real data (Rabosky 2010). 

There are many models of variation in diversification rates. The effect of binary traits on 

speciation and extinction rates can be estimated using BiSSE (Maddison et al. 2007, Magnuson-

Ford and Otto 2012), a likelihood model. BiSSE has been extended to multiple discrete variables 

in the MuSSE model (Fitzjohn 2012). QuaSSE (Fitzjohn 2010) is a similar approach, estimating 

the effect of continuous traits on rates and generating phylogeny likelihoods. QuaSSE assumes 

no interactions between species and no diversification rate diversity dependence. There are 

methods for detecting discrete rate changes whose time is not known a priori (Rabosky 2014). 
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Table 1.1: Models and parameters for evolution on a known phylogeny. Multi-trait parameter counts are upper limits assuming free 

covariance between all traits.

Model Equation parameters parameter count 

BM              root value,           

              is time from common ancestor  

                       ,   from branch start,    

             
    labels each branch, and    is its length  

                       ,   from tree root    

          (     
 )   is time over tree,    is time of MRCA  

Step                         step function with   steps       

ACDC                         

OU                             is optimum, strength      

 
       

  

  
          

  

stepOU                              is number of fitted optima    

Ingram2010 BM +       
   per speciation     
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A related source of slowdowns is diversity dependence (DD). This is where the diversification 

rate for each lineage depends on the total number of lineages in the clade. A fixed number of 

niches are considered to be available to the whole clade (Walker and Valentine 1984, Etienne et 

al. 2012), and as they get filled up, the speciation rate declines. Diversity dependence has been 

modelled using this number as a hidden Markov variable, with extinction and speciation 

generating continual species turnover (Etienne et al. 2012). The equation for this process is 

        (    (  
 

 
)),     Equation 1.4 

where   is the number of species,    is the initial speciation rate, and   is the maximum number 

of available niches. 

NF models (Price 1997, Harvey and Rambaut 2000, Freckleton et al. 2000, Price et al. 2014) 

were discussed earlier in the context of trait evolution. However, these models integrate 

speciation and trait evolution, so that they produce both the traits and the corresponding 

phylogeny. NF models are conceptually related to density-dependent diversification, since it is 

based on the gradual filling up of available niches; however, the models operate differently, and 

the NF model predicts—by definition—the creation of new species and at regular time intervals, 

and therefore a slowdown in per-lineage diversification rates. Observed slowdowns are 

sometimes, therefore, taken as evidence of niche filling (e.g. Phillimore and Price 2008). 

 

Comparing models 

Relating trait models to data 

Given a tree and an evolutionary model, we want to know the probability of obtaining the 

observed phenotypic tip data. One popular method is independent contrasts, developed by 

Felsenstein (1973, 1985). The difference in trait value between sibling species depends only on 

the branch length (in units of expected evolutionary change) separating them, and is therefore 

independent of shared evolutionary history. Since trees bifurcate, each node has exactly one 

sibling, so there are n-1 independent contrasts in a tree with n tips. The uncertainty in non-tip 

node trait values is accommodated by lengthening their branch by an amount     (     )⁄ , 

where       are the branch lengths of the species descended from that node. Methods exist to 

use trees with unresolved nodes (Pagel 1992). 
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The rate σ
2

 of Brownian evolution can be estimated with a generalised least squares (GLS) 

method (Pagel 1997). This method, equivalent to the independent contrasts method, uses 

regression such that each tip has a trait value  

              , Equation 1.5 

where    is the total branch length separating tip   from tip  , and    is a residual. The 

evolutionary rate can then be estimated as  

    
 

   
      , Equation 1.6 

where   is a vector of the tip trait values, and   is the covariance matrix, i.e. a matrix of the 

branch lengths (or for non-BM models, the transformed branch lengths) shared by each pair of 

tips. Non-phylogenetic methods are the subset of GLS methods with V diagonal. 

The autocorrelation method (Cheverud et al. 1985), like GLS, uses regression, partitioning the 

between-species trait variance into heritable (phylogenetic) and specific components. Then, 

covariance between traits of specific, but not heritable, components is evidence for coadapted 

traits. A covariance matrix is used, but not derived. The autocorrelation method generally 

performs less well than the independent contrasts method (Diaz-Uriarte 1996).  

The animal model, or mixed model, used in quantitative genetics, can be adapted for 

comparative phylogenetic analysis (Lynch et al. 1991). A species’ trait value is multiply 

regressed on phylogenetic effect and the values of other traits, with additional residual terms. 

Efficient calculational methods exist, and within-species variation is readily included (Hadfield 

and Nakagawa 2010). The latter point is important: two identical populations imperfectly 

sampled will look different, causing independent contrasts to be overestimated. Restricted ML 

techniques now exist to correct for this within the independent contrasts method (Ives et al. 

2007, Felsenstein 2008). This will be particularly important when comparing the BM and OU 

models, since the variation around a ‘primary optimum’ present in the OU model will resemble 

this bias (Cooper et al. 2016).  

The independent contrasts method removes phylogenetic effects without estimating them. This 

makes it computationally faster, and generally better performing when assumptions are broken. 

Methods which use the covariance of each tip with every other tip apply the evolutionary model 

to every point in the tree, not just the section containing the taxa under comparison. However, if 

the phylogenetic component of a species’ trait is what we want to know, then regression 

methods are more appropriate. As evolutionary models become more complicated, and rates of 

evolution are modelled as functions of trait values, it seems likely that computer simulation will 
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become preferred to the above methods. The main limitation of simulation is simply 

computational time (Garland 1999).  

When studying correlations between traits, it is not obvious that phylogenetic methods are 

superior to simple analyses of raw data. This is because phylogenetic methods, including 

independent contrasts, make assumptions about the evolutionary process. If these assumptions 

are false, there are conditions under which analyses of raw data can be more accurate than 

those with erroneous phylogenetic corrections (Price 1997, Harvey and Rambaut 2000). This is 

one reason for using tests for phylogenetic signal (Pagel 1997, Bjorklund 1997). However, 

phylogenetic methods in general, and independent contrasts in particular, are usually well 

supported and robust to perturbation away from their assumptions (Harvey and Rambaut 

1998, Martins and Hansen 1997, Diaz-Uriarte 1996). 

One difficulty with most approaches is that they assume perfect knowledge of the phylogeny. 

Methods exist to account for unresolved nodes (Pagel 1992, Slater 2012). However, this does 

not make use of the likelihood data which is usually generated by sequence-data phylogeny 

building. Blackburn et al. (2013) demonstrated the possibility of using a posterior distribution 

of phylogenies to account for phylogenetic uncertainty. 

Model likelihoods 

The likelihood of hypothesis   given data   is    |   
   |      

    
. A ratio of hypothesis 

likelihoods is then 
    |  

    |  
 

   |        

   |        
. With no prior expectations of model likelihoods, the 

ratio becomes 
   |   

   |   
. Models with more free (fitted) parameters should fit the data better. To 

avoid overparameterisation, we therefore have to require a ’significant’ improvement in fit from 

the more complex model than the simpler model. There are various approaches to determining 

this significance, including likelihood ratio tests (LRT), the Akaiki information criterion (AIC) 

and Bayesian methods. 

Using LRTs to compare two models results in a test statistic which is the log of the ratio of their 

likelihoods. When H
0

 is a special case of H
1
, so that the models are ’nested’, then the test 

statistic forms (0.5 times) a    distribution. This distribution, however, also assumes large 

samples, that one of the models is true, and that parameters are normally distributed; these 

assumptions may sometimes be significantly violated by phylogenetic methods (Freckleton 

2009). To avoid these difficulties, we can take the parameter maximum likelihood estimates 

(MLEs) from the null model, and simulate new datasets from those parameters. For each 
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dataset, new MLEs are generated, and the log-likelihood ratio calculated. The distribution of 

LRTs then allows us empirically to map LRT values to P-values. 

The AIC is a number assigned to each model: the difference between the maximised log-

likelihood and the number of free parameters K:  

 AIC=−2l+2K. Equation 1.7 

‘Akaiki weights’ then represent relative likelihoods of models:  

    
    

∑       
   

                  Equation 1.8 

Like the LRT, the AIC assumes a large sample size with parameters that are multivariate normal 

(Posada and Buckley 2004). However, the AIC has a key advantage over LRTs in that non-nested 

models can be tested without the need for simulation and bootstrapping. 

When likelihoods themselves are difficult to calculate, we can estimate them by using the model 

to generate new simulated datasets, and comparing this distribution of datasets with the 

observed data. We can then choose to use the likelihood for the best-fit model parameters, as in 

the LRT, or to integrate over all model parameters according to a prior distribution of 

parameter values, chosen before fitting the model. One implementation of the latter approach is 

approximate Bayesian computation (ABC). In ABC, a set of parameter values is sampled from 

the prior distribution, and some data  ̂ is simulated. For observed data   and tolerance  , we 

accept  ̂ if 

  ( ̂  )   , Equation 1.9 

where   is the discrepancy, or distance in solution space, between  ̂ and  . The set of 

parameter values which produce accepted instances of  ̂ are then taken to be a sample from the 

posterior distribution of parameter values. To compare models, each model’s likelihood is taken 

to be proportional to the fraction of simulations accepted. Then we can use the Bayes factor: 

   
   |   

   |   
 

∫    |      |         

∫    |      |         
, Equation 1.10 

where   is the set of parameter values. 

Fitted-model likelihood ratios and integrated-model likelihood ratios represent two different 

measures of model usefulness, and it is probably advisable to calculate both and compare in 

order to learn more about the truth. By generating data under MLE model parameters, we can 

also visualise the distribution of modelled data alongside the observed data, to gain an idea of 

the model’s adequacy in describing real data.  
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Empirical tests 

Diffusion models of trait evolution have been applied to observational data covering a wide 

range of animal clades. A review of comparative studies found that   is typically high, consistent 

with strong phylogenetic signal (Freckleton et al. 2002). This suggests limited applicability of 

the OU model, which predicts decay of signal. The presence of phylogenetic signal suggests that 

a BM or NF model will typically be best, but does not automatically distinguish between them 

(Cooper et al. 2010). This question depends on evolutionary gradualism; for example, some 

studies have found that two-thirds of variation in body mass is speciational (Mattila and Bokma 

2008, Bokma 2008). However, it is important to make phylogenetic signal estimates jointly with 

ecological models, not prior to fitting the ecological models (Hansen and Orzack 2005). An 

additional source of phylogenetic signal can be spatial effects: if closely related species also tend 

to be geographically closer then they may share adaptations to that local environment (Garland 

et al. 2005). 

BM models have successfully been rejected in favour of NF models for data on warbler birds 

using two tests (Freckleton and Harvey 2006). Firstly, tests for correlation between 

independent contrasts (Felsenstein 1985) and phylogenetic positions of the contrasted species 

reveal links between divergence rates and phenotype (i.e. position in niche-space). Secondly, 

testing for an overall slowdown of evolution across the phylogeny can reveal constraints arising 

from the available niches getting ‘filled up’. Other studies also find speciation rate slowing with 

time, consistent with a limited number of niches being filled, but find that phenotypic evolution 

does not share this slowdown (Burbrink et al. 2012). This pattern might be consistent with a NF 

model with niche positions evolving randomly in trait space. Alternatively, it could be that the 

niche is defined by a complex combination of traits, such that that combination is conserved 

while individual trait values are not (Crisp and Cook 2012). NF models can also be tested from a 

diversification perspective, as a cause of slowdowns in diversification rate (Price et al. 2014, 

Pigot et al. 2016). 

Ecological release (the removal of selective constraints) is sometimes linked to adaptive 

radiations, but frequently is not (Yoder et al. 2010). The chances of adaptive radiations may 

depend on fluctuations in population size and density, in turn dependent on fluctuations in 

selection strength and direction (Siepielski et al. 2009, Futuyma 2010). Since long-term stasis 

can arise from short-term fluctuations, evolution can be the result not of environmental change 

but of environmental stability (Futuyma 2010). Yoder et al. (2010) conclude that many factors 

affect the link between ecological release and speciation, and that further study should assess 

the commonness of these factors, and their ability to reinforce or cancel each other. They 
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recommend that population-genetic parameters such as effective population size and trait 

variance be included in models of long-term evolution. 

Any overall change in diversification rate with time can be quantified by the statistic gamma, 

where     under a Yule prediction, and negative   is indicative of a slowdown. The median   

across 45 bird clades was found to be around     , and 15 of the 45 clades had significantly 

negative gamma (        ) (Phillimore and Price 2008). Diversification rates have also been 

shown to vary by key morphological innovations (Dumont et al. 2012), or more generally by 

species’ trait values (Paradis 2005, Maddison et al. 2007, Freckleton et al. 2008, Fitzjohn 2010) 

or rates of trait evolution (Adams et al. 2009, Rabosky et al. 2013). For example, bird speciation 

rates vary with ecological factors such as annual dispersal and feeding generalisation (Owens et 

al. 1999, Phillimore et al. 2006). These rates are thought to be diversity dependent, i.e. 

dependent on the total number of species (Phillimore and Price 2008, Rabosky and Lovette 

2008), resulting from competition for ecological resources (Price et al. 2014).  

Software 

Software exists to visualise, simulate and fit evolutionary models to phylogenies and tip data. 

Most of this software exists as packages for the R platform (R Team 2015). Trees can be stored 

as Newick files, with all tips extant and nested branch lengths. Nexus files can contain various 

data including Newick trees. The ape format (Paradis et al. 2004) is an alternative which also 

allows nodes to be labelled, and arbitrary tip dates to be set, by labelling each branch by its 

parent and offspring species and specifying branch lengths explicitly.  

GEIGER (Harmon et al. 2008) is used to generate simulated phylogenies and trait data. It can 

randomly ‘prune’ clades to mimic incomplete sampling. The trees are created with birth-death 

models, and the tip data are generated under the BM model, with discrete and continuous traits. 

Multiple continuous traits can be simulated given a covariance matrix. GEIGER can perform AIC 

tests for significantly nonzero rate-change parameters. 

The caper package (Orme 2013) allows model fitting to trees and tip data using the independent 

contrasts and the GLS methods. It uses ape data, and requires the ape package. The 

transformation parameters       can be estimated and tested with ANOVA or AIC. Trees can 

be simulated with birth-death models, and tip data can be simulated with a BM model. 

The ouch package (King et al. 2012) fits an OU model to tree and tip data, with α and σ as free 

parameters. Clades can be chosen to have independent estimations. Multivariate estimates can 

be made with a symmetric α-matrix and a lower-diagonal σ-matrix. Phylogenetic signal can be 
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measured using the function gls in the R package ape, for computing  , and the function Kcalc in 

the R package picante (Kemble et al. 2010) for computing   (Blomberg et al. 2003). 

MOTMOT (Thomas and Freckleton, 2012) is a package used to fit a specified number of discrete 

rate changes in evolutionary rate, and to compare likelihood with the pure BM model. Both the 

size and position of the changes are estimated. This contrasts with the ouch package, where 

clades must be chosen for independent parameter fitting beforehand. MOTMOT can also be used 

for AIC tests of nonzero continuous rate change parameters, and for Ingram’s (2010)   

parameter. MOTMOT calculates the likelihood in closed-form solution for a rate-change at each 

tree node. Another package, phytools (Revell 2012, Revell et al. 2012) fits discrete rate changes 

with an MCMC approach, permitting mid-branch rate changes. 

Similarly, software packages exist for the purpose of measuring phylogeny shape, and fitting 

diversification models. The shape statistic   can be computed using the R package ape (Paradis 

et al. 2004). Discrete diversification rate shifts can be estimated with software such as BAMM 

(Rabosky 2014) and the R package TreePar (Stadler 2011). BAMM, for example, is used to link 

morphological innovations to diversification rate changes in scincids in Rabosky et al. (2014). 

Gradual, rather than discrete, changes in rate can be fitted using the R package LASER (Rabosky 

and Lovette 2008). 

Explicit dependence of diversification rates on traits can be modelled for binary traits with the 

BISSE model (Maddison et al. 2007, Fitzjohn et al. 2009), and for quantitative traits with 

QUASSE (Fitzjohn 2010). Both these models can be fitted using the R package Diversitree 

(Fitzjohn 2012). Traits dependence models are reviewed in Ng and Smith (2014). 

Research questions 

The overall research goal for the project was to investigate how competition between species 

for niches affects the evolution of those species. This relates to both their trait evolution and the 

rates of speciation and extinction. The goal breaks down into a few broad research questions, 

which are discussed in further detail below. Firstly, I ask what patterns can be expected in 

phylogenies and trait data if competition drives trait divergence. Second, I investigate the 

prevalence of character displacement in animals, and its correlation with observed sympatry. 

Finally, I consider the effect that niche competition has on speciation and extinction. 

  



26 

Trait divergence under competition 

In Chapter 2, I introduce a novel phylogenetic comparative model. The main goals here include: 

1. Develop a new phylogenetic comparative model that explicitly includes character 

displacement interactions. 

2. Characterise this model in comparison with other models (such as Brownian and 

Ornstein-Uhlenbeck trait diffusion models), using simulations. 

3. Develop the means for fitting this model to datasets. 

4. Determine the statistical power for detecting  character displacement patterns 

(compared with a Brownian null model). 

This new model is also applied to an example dataset: Darwin’s finches. This is an adaptive 

radiation whose evolution has been well characterised in many previous studies, so this study 

can be placed in the context of past results. The aim was to demonstrate the use of the new 

model with a small, well studied adaptive radiation. 

Character displacement across animal clades 

Chapters 3 and 4 apply the model from chapter 3 to a range of animal datasets. First, I perform a 

broad survey of datasets available from the literature and fit the model to each. Then in chapter 

4, this and other models are used with American hummingbirds: a geographically widely 

distributed group with extensive range overlap among subsets of species. I also fit a range of 

other phylogenetic comparative models to these hummingbird clades, and assess variation in 

evolutionary mode within the hummingbirds. The key research questions for these studies are: 

1. How prevalent is clade-wide character displacement among animal clades? 

2. What relationship is there between sympatry levels across a clade, and evidence of 

character displacement? 

3. How much variation is there in the mode of trait evolution among hummingbird clades? 

(The hummingbirds are often studied as one whole.) 

4. Are the evolutionary processes that have governed each hummingbird clade correlated 

with those clades’ main environment types? 

 

Speciation and extinction 

In Chapter 5, I introduce a new model of diversification. This model has a similar conceptual 

background to other ‘diversity dependence’ models, but with a different implementation. I 
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explore how small differences in approach between these models can produce very different 

results. Tree shape and trait distributions are often used to infer past processes such as 

diversity dependence, so it is important to clarify exactly which assumptions generate what 

patterns in these datasets. The goals for the diversification study include: 

1. Develop a new diversification model, where lineage diversification rates are coupled to 

trait values, and diminish as traits become more tightly packed. 

2. Compare the predictions of this new model with those of other, conceptually related 

models. 

3. Link ecological processes to the particular assumptions of these models, and show how 

they can best be inferred from phylogenies and trait datasets.  

Thesis structure  

There are four main pieces of work in the thesis, contained in the four main chapters (2, 3, 4 and 

5). These are preceded by this introduction and literature review. The literature review is 

included for completeness, but each main chapter is self-contained and has an introduction 

reviewing the appropriate literature. Likewise, each chapter has its own discussion; however, a 

brief conclusion to the whole thesis is given after the main chapters. 

 

Chapter 1: Introduction and literature overview 

 

This chapter sets forth the research questions for the project, and describes the structure of the 

thesis. It also reviews the existing literature review for models of trait evolution and 

diversification using phylogenies. These models are contrasted with one another, and some 

examples are given of their applications. Various software packages are available for fitting 

these models and simulating datasets using them; some of these programs and libraries are also 

discussed, with focus on the tools that are used in later chapters. 

 

Chapter 2: Trait evolution in adaptive radiations: modelling and measuring interspecific 

competition on phylogenies 

 

Chapter 2 presents a new model of trait evolution, with an explicitly parameterised character 

displacement effect. This new model is fitted to a small example dataset: the Darwin’s finches.  

This chapter was published in American Naturalist as: 
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 Clarke, Magnus, Gavin H. Thomas, Robert P. Freckleton. 2017. Trait Evolution in 

Adaptive Radiations: Modeling and Measuring Interspecific Competition on 

Phylogenies. The American Naturalist 189:121-137. 

 

The methods for fitting the new model are found to have good power to detect clade-wide 

character displacement patterns, and evidence of such patterns is found in the beak size of 

Darwin’s finches. 

 

Chapter 3: Testing for clade-wide patterns of character displacement in animals 

 

The trait evolution model that was developed in chapter 2 is applied to a large range of datasets 

sourced from the literature, including various mammal and lizard genera, as well as cichlid fish. 

The goal is to use the new model to characterise the prevalence of clade-wide character 

displacement patterns. Overall, this model is not well supported across animal clades, although 

there is some evidence of competition among cichlids, widely regarded as being composed of 

adaptive radiations. 

 

Chapter 4: Using phylogenetic comparative models to infer differences in trait evolution 

between hummingbird clades 

 

This chapter is a case study of 279 species of American hummingbirds. Their trait distributions 

are compared between several major subclades, and a range of trait evolution models are fitted, 

including the new model introduced in Chapter 2. Different parts of the hummingbird 

phylogeny turn out to have evolved quite differently, in terms of rates, interactions, and 

phylogenetic signal. Environment is shown to affect evolutionary mode; this is consistent with 

previous community based studies. These results are used to make inferences about the 

different processes that shaped the hummingbirds’ evolution, and to demonstrate the 

importance of phylogenetic scale when studying their traits.  

 

Chapter 5: Diversification rates and lineage trait densities 

 

This chapter is an examination of diversification models, focusing on diversity dependence 

models that are premised on the idea of a finite set of available niches being filled up over time. 

A novel ‘trait-density dependence’ model is introduced, where diversification rates are coupled 

to trait evolution, so that lineages with more unusual traits have greater opportunity to 

diversify. Three models, including this new one, are compared. Each model makes subtly 
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different assumptions about how niches are distributed and how they fill up, and I examine the 

differences between the phylogenies and trait distributions that these models generate. 

Although conceptually similar, the three models result in quite different observations.  

 

Conclusion 

 

The results from the four main chapters are brought together, and general conclusions are 

drawn. Limitations of this work are discussed, and directions for future research are suggested. 

 

References 

 

This is the bibliography for the whole thesis. 

 

Appendices 

 

All appendices are provided at the end of the thesis, numbered such that, for example, appendix 

3B is the second appendix relating to chapter 3 of the thesis. Tables and figures are then 

numbered within each appendix as e.g. 3B.1. 
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Chapter 2: Trait evolution in adaptive radiations: modelling and 

measuring interspecific competition on phylogenies 

 

This chapter was published in American Naturalist as: 

Clarke, Magnus, Gavin H. Thomas, Robert P. Freckleton. 2017. Trait Evolution in 
Adaptive Radiations: Modeling and Measuring Interspecific Competition on Phylogenies. 
The American Naturalist 189:121-137. 

 

 

 

Abstract 

The incorporation of ecological processes into models of trait evolution is important for 

understanding past drivers of evolutionary change. Species interactions have long been thought 

to be key drivers of trait evolution. However, models for comparative data that account for 

interactions between species are lacking. One of the challenges is that such models are 

intractable and difficult to express analytically. Here we present phylogenetic models of trait 

evolution that include interspecific competition amongst chosen species. Competition is 

modelled as a tendency of sympatric species to evolve towards difference from one another, 

producing trait overdispersion and high phylogenetic signal. The model predicts elevated trait 

variance across species and a slowdown in evolutionary rate both across the clade and within 

each branch. The model also predicts a reduction in correlation between otherwise correlated 

traits. We use an Approximate Bayesian Computation (ABC) approach to estimate model 

parameters. We find reasonable power to detect competition in sufficiently large (20+ species) 

trees, compared with Brownian trait evolution and with OU and Early-Burst models. We apply 

the model to examine the evolution of bill morphology of Darwin’s finches, and find evidence 

that competition affects the evolution of bill length.  
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Introduction 

There is an increasing drive to combine evolutionary and ecological perspectives in order to 

fully capture the long-term dynamics of ecological communities (Johnson and Stinchcombe 

2007, Cavender-Bares et al. 2009, Schoener 2011, Pennell and Harmon 2013, Hadfield et al. 

2014, Price et al. 2014, Pigot and Etienne 2015). This has led to insights into the roles of 

ecological processes such as competitive exclusion and character displacement in shaping trait 

evolution and today’s distributions of traits (Webb et al. 2002, Kraft et al. 2007, Emerson and 

Gillespie 2008, Vamosi et al. 2009). However, linking such patterns in data to underlying 

processes is difficult, since any given pattern could be the outcome of several processes (Dayan 

and Simberloff 2005, Mayfield and Levine 2010).   

Evidence that competition has shaped trait evolution has been generated using two main 

approaches. The first is the observation of character displacement, i.e. a tendency for species 

with overlapping ranges to exhibit increased phenotypic differences where they coexist 

(Schluter and McPhail 1992, Dayan and Simberloff 2005, Pfennig and Pfennig 2010, Stuart and 

Losos 2013). The second line of evidence for competitive effects makes use of a phylogeny to 

measure the distribution of species trait values relative to a null model (Webb et al. 2002, 

Freckleton and Harvey 2006, Vamosi et al. 2009). This is especially useful for adaptive 

radiations, where typically several similar species are confined to the same geographical area. 

Distributions that are more even than expected by chance (Webb et al. 2002, Dayan and 

Simberloff 2005, Davies et al. 2012) are taken as evidence that past competition caused species 

to seek unique ecological niches. 

Convergent evolution of sets of species in separate clades has also been observed and 

interpreted as evidence of interspecific competition (Moen and Wiens 2009). With close niche 

packing interspecific competition can reduce evolutionary rates, even with a changing 

environment (De Mazencourt et al. 2008). Phylogenetic comparative models of adaptive 

radiations have slowing rates of phenotypic evolution, implicitly assuming that competition for 

finite niche space is an underpinning mechanism (e.g. the ‘early burst’ model, Harmon 2010a). 

Despite much study, however, the importance of competition remains uncertain (Gillespie et al. 

2001, Cavender-Bares et al. 2009) and, importantly, direct tests for evidence of past 

competition in phylogenetic data are lacking. 

One approach could be to explicitly model the evolution of traits in systems of species in which 

competition is occurring. In general, evolutionary models use some combination of continuous 

random change through time (Felsenstein 1973), possibly with changes of rate (Garland et al. 

1992, Pagel 1997, Freckleton et al. 2002, Blomberg et al. 2003, Eastman et al. 2011, Revell et al. 
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2012, Thomas and Freckleton 2012), discrete random changes at speciation events (Ingram 

2010), or shifts in shared adaptive optima (Uyeda and Harmon 2014). However phylogenetic 

models of trait evolution are ecologically neutral, since they are stochastic models that depend 

on the independent evolution of each species to be statistically well behaved (Pennell and 

Harmon 2013). Processes such as competition between species are typically not accounted for. 

In previous models species interactions have been assumed to generate phenomenological 

outcomes. For example models may assume rate slowdowns associated with competition 

among lineages either implicitly by modelling through time (Harmon et al. 2010a) or explicitly 

(Mahler et al. 2010). Several models include clade-wide non-random effects (Hansen 1997, 

Price 1997, Harvey and Rambaut 2000, Freckleton and Harvey 2006, Bartoszek et al. 2012), 

reflecting the interaction of species with their environments, but none of these models permits 

trait values to be influenced by interspecific interactions. 

Phylogenetic datasets have been simulated with competitive interactions (Freckleton et al. 

2003, Nuismer and Harmon 2015). However, direct parameterisation with data is difficult 

because of the complexity of accounting for interspecific interactions. Niche-filling models of 

trait evolution on trees (Price 1997, Harvey and Rambaut 2000, Freckleton and Harvey 2006) 

are models of adaptive radiations where new species move discretely to the nearest of a 

random set of points (niches) in trait-space. Simulations under these models show that such 

ecological processes affect inferences drawn from comparative analyses. The most important 

conclusion from the analysis of such models is that methods based on Brownian motion are 

inappropriate or even misleading, when applied to traits evolving in such systems. However, the 

problem of modelling such data has never been satisfactorily resolved (Freckleton and Harvey 

2006), largely because of the complexity of statistically describing the traits of a set of 

interacting species. 

In terms of fitting complex models to data one potential approach is Approximate Bayesian 

Computation (ABC; see Beaumont 2010). This provides a simple method for generating 

posterior probabilities of models, provided we can simulate them. It is therefore well suited to 

fitting complex models, where it is not possible to compute a likelihood function. In this way 

species interactions could be incorporated into evolutionary models, thus permitting better 

inference of the ecology underlying trait evolution. Processes such as character displacement 

and mutualism affect trait values, and ABC is a means of comparing models that explicitly 

include these processes. ABC has been explored for simple phylogenetic trait evolutionary 

models (Kutsukake and Innan 2013) including birth-death models (Slater et al. 2012), but its 

flexibility has not previously been used for including complex effects like interspecific 

interactions.  
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In this paper we introduce a new model for the evolution of interacting species within 

phylogenetic data.  The objective is to create a model that includes character-displacement 

interactions and makes realistic predictions, but that also may be fitted to real data. We do not 

assume that all species are interacting with each other, but instead allow competitive 

interactions to be turned on and off at different times and for different pairs of species. We use 

this flexibility in two ways. Firstly, interactions can be turned on for sympatric species and 

turned off for allopatric species, so that the model can encompass large groups of species with 

variously overlapping or non-overlapping ranges. Secondly, we can add a delay, after each new 

species arises, before it begins interacting with the other species. This corresponds to a scenario 

where speciation occurs in allopatry and a subsequent range expansion brings the new species 

back into contact after a significant time interval. These two uses for ‘optional sympatry’ can of 

course be combined. 

There are two main diffusion models of trait evolution: Brownian motion (BM, Felsenstein 

1973, 1985) and the Ornstein-Uhlenbeck (OU) model (Hansen 1997). The OU model is based on 

BM, with the addition of an overall ‘optimum’ trait value to which all lineages are attracted. The 

strength of attraction adds a further parameter. However, we chose to build our model on the 

BM model. The BM model is a very simple, neutral model, while the OU model produces, in some 

respects, results that are the opposite of those produced by our competition model. The ability 

to reject BM in favour of either OU or competition may therefore be a useful aid in interpreting 

data.  

The model predictions are compared with those of the Brownian motion and rate-change 

models for sympatric clades. We then outline how ABC methods may be used to detect 

competition effects and we show that the model is readily fitted to data. Finally, we apply these 

methods to a simple case study, the adaptive radiation of Galapagos finches. 
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Methods 

The model 

Under the Brownian motion (BM) model of trait evolution (Felsenstein 1973), for each species i, 

a trait value    evolves according to the differential equation, 

                     Equation 2.1 

where      is the integral of the continuous white noise function, such that over a finite time it 

has a normal probability distribution:                The BM model has two free parameters, 

the evolutionary rate σ and the root trait value         . The expected variance between tips is 

proportional to the branch length separating them. 

Many models for comparative data are based on modifying this model by adding additional 

parameters (Pagel 1997, Blomberg et al. 2003, Eastman et al. 2011, Revell et al. 2012, Thomas 

and Freckleton 2012, Boucher and Démery 2016). For example, exponential rate change models 

replace   with      (Blomberg et al. 2003), so that     corresponds to an increasing rate of 

trait evolution and     means a decreasing rate: an ‘evolutionary slowdown’.  Notably these 

models all assume that the evolutionary trajectories of species traits are independent and 

assume that there are no interactions between different species. 

Our competition model is based on the BM model, with a term added to account for interspecific 

interactions. Competition is modelled such that species with similar trait values tend to evolve 

away from each other, while species with dissimilar trait values have little influence on each 

other. To achieve this we assume a flat fitness surface for trait values in the absence of other 

species. In effect we assume that if the trait in question has a one-to-one correspondence with 

some resource, e.g. body size and prey size, then the distribution of resources is flat. We assume 

that a species with a given trait value has a corresponding ‘ideal’ resource but also uses up other 

resources such that the distribution of resource types used is normal and centred on the ‘ideal’ 

resource type.  Therefore a Gaussian curve is associated with each species along a single trait 

axis representing this resource use and consequently its amount of influence on other species as 

a function of the difference in trait value between the two species (Doebeli and Dieckmann 

2003, Pigolotti et al. 2010, Liemar et al. 2013, Liemar et al. 2008).  

The repulsion between two species in trait space is assumed to be proportional to the overlap of 

each of their associated curves. For the evolution of a single trait x in a species i, we get a 

deterministic term, scaled by a parameter  : 

        ∑              (     )                 Equation 2.2 
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The area of overlap of two normal curves is related to the cumulative normal function   of 

minus the distance (in standard deviations) between them, such that the overlap is equal to 

                   (Inman and Bradley 1989). The overlap of two curves very far from each 

other is           , whereas the overlap of two curves with the same centre is          .  

  is a ‘sympatry matrix’, with elements     each equal to either   or  . If species   and   inhabit 

the same geographical area and have the opportunity to interact then we can set      ; 

otherwise,      . The matrix   can be a function of time, permitting any given pair of species to 

spend time effectively in allopatry and in sympatry. 

The relative intensity of competition is measured by the value of the competition parameter a 

relative to the Brownian rate parameter  . Ideally we would have chosen to make the kernel 

width an additional parameter of the model. However in practical terms it would not have been 

possible to distinguish this effect from that of the competition parameter a. Appendix A shows 

that to a linear approximation the effects of the two are the same, and so they are likely to be 

statistically indistinguishable.   

The instantaneous change of the trait value    of species   is given by Equation 2.3:  

        ∑                |      |                  Equation 2.3 

Each    is a vector in trait space; the index   denotes species. The right-hand-side has two terms: 

the first is a deterministic ‘competition’ term, which pushes apart species that are nearby in 

trait-space.     is the unit vector pointing from species j to species   in trait-space. Thus, 

         |      |  is a vector in trait-space pointing from species   to species  , proportional to 

the model parameter   and depending on the closeness in trait-space of species   and  . What 

distinguishes this model from previous ones is that in the competition term of the equation all 

traits are linked: the evolution of two species away from each other in trait space depends on 

the Euclidian distance between them, as well as their distances to all other species. We largely 

concentrate here on single resources and traits. However, more generally a multivariate normal 

curve in trait-space may be associated with each species in order to model interactions along 

several resource axes.  

In both the BM and competition models, trait variance increases without bound as time 

progresses. In reality there are limits that will be driven by ecology or by developmental and 

physiological constraints. We therefore adapted the model by imposing hard limits on trait-

space, such that species can evolve up to a chosen extreme value but no further. This model was 

simulated alongside the limitless model and hence we obtain a new model with constrained 
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trait/niche space. We assume that the limits are symmetric about the root trait value and equal 

to the most extreme value L. 

Simulation framework 

In diffusion models such as BM or OU, trait evolution may be modelled readily and quickly 

because species are assumed to be independent. However our model requires that we simulate 

evolution over interacting branches, which makes it far more computationally demanding. The 

approach we used was to take a discrete approximation to the continuous differential process in 

Equation 2.3. A large number of time steps were used, and trait values computed sequentially 

for each step using the discrete approximation to Equation 2.3, 

        ∑                |      |              ,   Equation 2.4 

where               , i.e. a normal distribution with mean   and variance   . For every time 

step, pairwise trait value differences must be computed between all species, giving |     | for 

all species   and  . Then the trait values are all updated according to Equation 2.4. For a tree 

with 20 tips, divided into 1000 time steps, a typical modern consumer processor takes about 

0.008 seconds to complete a simulation. The simulation of traits on a single clade is single 

threaded. 

Simulations were performed on random ultrametric trees generated under a Yule process 

(TESS, Hoehna 2013) with between 2 and 100 tips. These tree sizes are large enough to 

demonstrate the effects of competition, and provide a range over which our power to detect 

competition varies from low to high. Because the competition model is designed for sympatric, 

interacting sets of species having undergone adaptive radiation, it is unlikely that numbers of 

species will be very large. For example, the average clade size in Harmon et al.’s (2010a, 2010b) 

survey of adaptive radiations was 30 tips. We first estimated some summary statistics for a 

single 10-tip tree: the fitted Brownian rate  , phylogenetic signal K (Blomberg et al. 2003) and 

the rate change parameters   and   (Pagel 1997). We did this for a range of competition 

strengths from     to    , recording trait values through time to generate figure 2.1. We 

also repeated this with competition and limits, and with the two main subclades set to be 

allopatric (non interacting) with one another.   

To compare tip trait value distributions, we generated a single 40-tip random tree, and collected 

trait data from many simulations under each of three evolutionary regimes: BM, competition 

and competition with limits. The distributions for each regime included all the corresponding 

datasets. To assess the accumulation of trait variance, we did the same again, but with two 

different values of the competition parameter  . 
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Tree size has an effect on the variance of tip trait values in our competition model, unlike BM. 

To assess this we generated trees that had numbers of tips from 5 to 100. For each possible 

number of tips within this interval, we generated 50 random trees. For each tree we then 

simulated a trait dataset under BM, competition and competition with limits. The mean tip trait 

value variance was plotted as a function of the number of tips. 

Competition also affects correlations between pairs of co-evolving traits. We simulated traits 

whose Brownian evolution was strongly correlated (80% weighting for a single Brownian 

process and a 20% weighting for additional independent Brownian processes; under pure BM 

this results in a correlation of tip trait values of approximately       ) under a wide range of 

competition strengths (    to  ). We did this for a single small tree (10 tips) and a single 

larger tree (40 tips). We also repeated these steps for four fixed values of a (0, 1, 4, 8) while 

varying the BM dependence, i.e. the amount of shared change between traits, and observed the 

resultant correlation between tip trait values. 

The sympatry matrix      in Equations 2.2 and 2.3 allows us to control which lineages interact 

and when. This means we can set up simulations where lineages start to have competitive 

interactions a fixed time after they start. This corresponds to the scenario of speciation in 

allopatry and subsequent range expansion so that all lineages eventually come back into 

contact. We simulated data with a range of delay periods: 0.1, 0.2, 0.5 and 1.0 times the mean 

time between speciation events, and generated power estimates for detecting competition in 

these cases. We also generated an example data set with a delay period of 0.5 times the mean 

time between speciation events, on a single 16 tip tree for comparison with other models 

(figure 2.1E). It is important to note that we do not fit our sympatry matrix to data. The 

sympatry or allopatry of any given set of species is assumed to be known from independent 

data on species’ ranges. A delay between speciation and competitive interactions can also be 

added, but again this is pre-set by the user, not fitted.  

The reasons for basing the competition model on BM rather than the OU model are detailed in 

the introduction. However, for the sake of comparison we did run some simulations of an ‘OU + 

competition’ model. The model is detailed in Appendix B, and an example simulation is shown 

in figure 2.1D. 

Finally, we assessed the effect of competition on phylogenetic signal. A single 100-tip tree was 

generated, and trait values simulated for a range of competition parameter strengths (    to 

 ). Blomberg’s   (Blomberg et al. 2003) was then computed using the Kcalc function in the R 

package picante (Kemble et al. 2010). 
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Model comparisons and likelihoods 

We fitted the model to data using Approximate Bayesian Computation (ABC) (reviewed in 

Beaumont 2010, Csilléry et al. 2010, Hartig et al. 2011). ABC can be used for comparing the 

probabilities of datasets under different models when these probabilities are difficult to 

compute directly. This is because the only requirement to perform ABC is that we can simulate 

new datasets using the model. The dataset probabilities are approximated by simulating a large 

number of datasets, and ‘accepting’ only those simulations that are very similar to the observed 

dataset. This similarity can be judged either from the data values themselves, or using summary 

statistics. The proportion of simulations that are accepted is then assumed to be proportional to 

the dataset probability. When the model contains continuous parameters, we sample across 

these parameters and obtain an approximate probability density for the observed data under 

any point in a range of parameter values. This can be used to estimate the likelihood curves of 

fitted models. ABC relies on the likelihood being a fairly smooth function of the model 

parameters (Hartig et al. 2011). Since our model progressively changes the trait distribution 

and phylogenetic signal smoothly (with respect to the competition strength  ), we expect the 

likelihood to be a smooth function. 

To apply ABC to phylogenies (e.g. Beaumont 2010) we sample the parameters of the 

evolutionary model randomly many times from a prior parameter distribution. Here we choose 

the prior distribution to be uniform, with the model necessitating a hard limit at zero for both 

the Brownian rate and the competition strength. For each set of parameters, trait datasets are 

then simulated for the known phylogeny. Summary statistics are generated for the simulated 

data, and only those simulations for which the summary statistics are within a small value   of 

the observed data’s summary statistics are accepted. Thus, for observed data   and tolerance  , 

we accept some simulated data    if  

             ,       Equation 2.5 

where   is the discrepancy, or distance in summary statistic space, between    and  . In 

practice we chose the tolerance   based on the size of posterior sample that we wanted to 

obtain, so we might simulate a million datasets and choose   such that we accept the best 500 

simulations. By plotting acceptance rate against parameter values, we get an estimated 

likelihood surface.  

To compare simulated and observed datasets, it is necessary to compare summary statistics. We 

chose to use three summary statistics: the mean and the variance of the differences between 

each species and its closest neighbour in trait space, and the overall phylogenetic signal as 

measured by Blomberg’s K (Blomberg et al. 2003). The rationale for using these three statistics 
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was to capture the overall amount of evolution, the overdispersion of trait values, and the 

phylogenetic structuring of the trait values. There is no well-established procedure for choosing 

summary statistics for ABC. High sufficiency is needed to compare models, but the ABC method 

quickly loses accuracy and stability with large numbers of summary statistics (Csilléry et al. 

2010). Our summary statistics were chosen on a pragmatic basis, since they capture the 

important aspects of the model’s behaviour, namely increased divergence between sibling 

species, and an even overall distribution of traits across the phylogeny.  

We chose to compare the competition model with the BM model using maximum approximated 

likelihood, because the BM model is embedded in the competition model. The null and 

alternative ABC acceptance rates   give an estimate of the likelihood L(H|D) of the observed 

dataset under the various model parameters. This assumes a smooth probability distribution 

with an overall peak and a separate peak on the     (Brownian motion) plane. Since small 

changes to the model parameters should create small changes in average trait distributions, the 

assumption of smoothness should be met, provided many simulations are used. The two peaks 

define the null and alternative model parameters. The log-likelihood ratio statistic for the 

comparison of two models    and   , when there is no prior difference in model likelihood 

expectation, is then given by: 

        
    |  

    |  
        

  

  
 .     Equation 2.6 

When the models are nested, this test statistic approximates a  -squared distribution given 

certain assumptions: large samples and normally distributed parameters. However, these 

assumptions may be significantly violated by phylogenetic methods (Freckleton 2009). For 

instance, in the BM model   is bounded at zero, and in our competition model   is also bounded 

at zero. To correctly interpret the test statistic, therefore, the null distribution of the log-

likelihood ratio test statistic was assessed with a parametric bootstrap.  

The bootstrap was undertaken by performing the model comparison analysis on datasets 

generated under BM, to create a null distribution of likelihood ratios. Then if, for example, we 

want to know the likelihood ratio corresponding to a p-value of 0.05, we simply look at the 95th 

percentile of the null distribution. The resulting Type I error rate is therefore chosen by design: 

if a significant likelihood ratio is one that corresponds to a p-value of 5%, then the Type I error 

rate is 5%. To estimate typical significance thresholds, we performed this procedure for random 

trees using 1000 random datasets.  

The power to reject BM in favour of the competition model was assessed by using random 

ultrametric Yule trees (20, 40, 60 and 80 tips). The bootstrap process was performed to 
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determine the significance threshold for that tree. Then, for a given value of the competition 

parameter  , we simulated a large number of datasets and determined the likelihood ratio 

(between the BM and competition models) for each one. The proportion of these datasets which 

showed significant support for competition effects defines the power of the model for that value 

of  . We repeated this process for a range of competition strengths from     to    . This 

range covers evolution from a Brownian process with no interspecific interaction (   ) to a 

largely deterministic regime with high phylogenetic structuring of trait values (   ). We also 

assessed power as a function of the delay period before new species start interacting. 

To evaluate the simulated data produced by the competition model, other comparative models 

were fitted to the data: the Brownian model itself, the  -model, which measures temporal 

acceleration and deceleration in rate, the  -model, which measures the degree to which 

evolution is speciational rather than gradual (Pagel 1997), and K, a measure of phylogenetic 

signal (Blomberg et al. 2003). Parameter estimates were generated using the R packages geiger 

(Harmon et al. 2008) and picante (Kembel et al. 2010). 

We compared two further common models to the competition model. Trait distributions and 

phylogenetic signal were computed for a single 25-tip tree, using the competition model as well 

as the OU model (Hansen 1997) and the Early-Burst (EB) model (Blomberg et al. 2003, Harmon 

et al. 2010a). Traits were simulated for the OU and EB models using the function rTraitCont in 

the R package ape (Paradis et al. 2004). For the EB simulations, however, the tree is first time-

transformed according to 

     
     

 
        Equation 2.7 

where t is time, and   parameterises the model. When   is negative, this represents a slowdown 

over time. As   approaches  , the transformation approaches the identity, and we recover the 

Brownian model. We applied this transformation using the function transfBranchLengths in the 

R package phylolm (Ho and Ané 2014). 

The simulations were written in C++. Scripts for using these datasets for likelihood estimation 

were written in R (R Core Team, 2015), using ape (Paradis et al. 2004) and TESS (Hoehna 2013) 

for tree generation (code available at https://github.com/mcshef/treecomp/). 
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Case study: Darwin’s finches 

The phylogeny of Galapagos finches was taken from Lamichhaney et al. (2015). We used a 

dataset from Harmon (2010b), using individual data originally from Lack (1947), with species 

values for five traits: wing length, tarsus length, bill length (culmen), bill depth and bill width 

(gonys). We computed likelihood ratios for each trait individually, as well as for combined pairs 

of beak traits. The final datasets used are deposited in the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.3sk15. 

After simulating data on the phylogeny to determine likelihood cutoffs for rejecting BM, a 

likelihood comparison between the competition model and the nested BM model was run for 

each of the five traits separately. We performed the tests twice, once including and once 

excluding the phylogenetic summary statistic K, to judge the importance of signal in favouring 

the competition model. 

 

Results 

Example of clade evolution under the competition model 

Illustrative examples of evolution under the competition model are shown in figure 2.1. 

Estimates of phylogenetic signal   and phenotypic rate change transformation parameters   

and   (Pagel 1997) are also shown for the simulated data. The evolution of each species is 

tracked through time from left to right. It can be seen that competition increases phylogenetic 

signal while giving the appearance of an overall slowdown in rates of trait evolution. 

Competition tends to increase the overall variance in traits amongst the species in a phylogeny, 

as is clear from the increase in range and variation of traits moving from figure 2.1A to figure 

2.1C. This is because species experiencing competition from other species are more likely to 

evolve extreme trait values to become more different and escape competition.  

As the strength of competition is increased, the differences between species become more 

clearly defined, with them occupying distinct positions in niche space. There are fewer 

intersections of traits’ evolutionary paths over time between species, and the phylogenetic 

signal K exceeds the neutral BM prediction of    . Competition thus increases phylogenetic 

signal above that expected under the BM model, while presenting the appearance of a 

considerable tree-wide evolutionary slowdown. This slowdown can be seen in figure 2.1 where 

the rate change model   is fitted to datasets simulated under competitive effects. This means 

that a species’ trait values map more directly onto its position in the tree. For sympatric clades, 

there is thus a prediction of traits being more phylogenetically conserved than under BM. 
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Figure 2.1. Examples of a single trait evolving under the competition model with different 

strengths of the competition effect parameter a. A single random 16-tip tree is used 

throughout. The BM parameter σ = 1 is used for all the simulations. The parameter values 

listed by each plot are the estimates obtained using the data shown; these are subject to 

substantial stochastic variation between simulations. A, When a = 0 we recover the 

Brownian Motion model. B, Simulated using a = 1. C, Simulated using a = 3. D, 

Competition plus OU model, with the OU parameter α set to 5. Strong competition and OU 

effects cancel each other out in some respects. E, Delayed competition, where each new 

lineage starts to experience competitive interactions a fixed time after it appears. This 

corresponds to a scenario of allopatric speciation and subsequent range expansion. F, 

Here the two main subclades of the tree do not interact with each other, though there is 

strong competition within the subclades. This corresponds to a mixture of sympatric and 

allopatric species, e.g. a radiation on two different islands. 
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Estimates for commonly used branch transformation parameter   from these datasets are also 

shown in figure 2.1.   measures the rate change along branches, and overall measures the 

degree to which change is speciational (Pagel 1997). A transformation parameter   models the 

overall changes in evolutionary rate across the tree, with lower values corresponding to 

evolutionary slowdowns (Pagel 1997). We find that the   parameter diminishes very rapidly as 

competition is increased. It should be noted here that the   parameter is biased such that the 

expectation values for BM are greater than 1 (Freckleton et al. 2002). Nevertheless, this reflects 

an apparent slowdown of evolutionary rate, which becomes more pronounced as the value of a 

increases. Species competing for unoccupied niche-space thus evolve more rapidly early on in 

their development, when they are more similar to one another and the effects of competition 

are stronger, as one would expect in an adaptive radiation (Yoder et al. 2010). 

Figure 2.1D shows a simulation using a combined competition and OU model (see Appendix 2B 

for details). It can be seen that the repulsive effect of competition and the central attraction of 

the OU process have somewhat opposite effects, with competition tending to increase 

phylogenetic signal and rates of trait evolution, while the OU process reduces signal and the 

overall rate of trait change. This is part of the reason why we chose to base the competition 

model on the BM rather than the OU process. Even in real cases where both processes are 

present, the dominant process can likely be judged by the relative support for the competition 

and OU models considered separately. It seems unlikely that both components could be 

accurately fitted simultaneously, since their effects are so confounded. 

Finally, we considered two cases of partial sympatry. In the first (figure 2.1E), new lineages 

come into interaction with pre-existing lineages only after a fixed delay period. This reduces 

phylogenetic signal relative to complete sympatry. The distribution of tip trait values is less 

affected, unless a substantial number of lineages remain in allopatry at the tree tips, i.e. at the 

present time. The second case is analogous to two parallel adaptive radiations on isolated 

islands: all the descendants of one ancestral species interact with each other, but not with the 

descendants of the second ancestral species. This removes the raised phylogenetic signal effect 

and most of the change in trait distribution. However, we can still detect competition provided 

we have a priori knowledge of the sympatry or allopatry of each species pair.  

Trait distributions across tree tips 

The distribution of trait values of the phylogeny tips is flattened in the competition model 

compared with BM models, which predict normal distributions for large trees (figure 2.2A). This 

outcome is expected when competition shapes trait values (Davies et al. 2012). The impact of 



44 

competition on trait distributions is even more pronounced where hard limits are placed on the 

available range of trait values (also figure 2.2A). 

In addition to creating a more even trait distribution, competition increases the overall amount 

of trait divergence, given equal BM rates (figure 2.2B). This is consistent with the expectation 

that equivalent species sets should be more diverged in sympatry than in allopatry when there 

is competition (Schluter 2000). From a biological perspective there is thus a prediction that 

competition leads to a wider range of morphological variation in a clade, reflecting the 

increased tendency towards extreme traits when there is lots of competition. 

Effects of tree size  

We used trees normalised to the same total length, regardless of the number of tips. Given this 

normalisation, under BM and rate-change models, the variance of tip trait values shows no 

change with increasing the number of tips (in agreement with Ricklefs 2004). In the 

competition model larger trees have greater variance, since a greater number of species are 

‘pushing’ each other away; this is shown in figure 2.2C. This relationship seems to be 

approximately linear for the unbounded competition model. When hard limits are imposed, the 

variance reaches a maximum corresponding to the positions of the extremes. 

Effects of competition on correlated traits and phylogenetic signal 

For pairs of traits, in which the evolutionary changes in trait values are correlated, the 

correlation between the traits decays rapidly with increasing competition strength. This is even 

more pronounced when there are limits on extreme trait values. Figure 2.2D and figure 2.2E 

show how the correlation decays. By de-correlating traits, competition forces the trait space to 

be occupied more evenly.  

Phylogenetic signal is increased by competition because species tend to remain adjacent in trait 

space to their close relatives (figure 2.2F), and so their trait values are unlikely to ‘cross over’ 

with time.  Plots of traits through time therefore become more defined and tree-like. This can be 

seen for example in the sample simulations of figure 2.1. Correlation between traits has little 

effect on the phylogenetic signal exhibited by the individual traits under either the BM model or 

the competition model. Limits reduce the phylogenetic signal, since there is less trait-space for 

distantly related species to diverge. Indeed, without competition driving the signal up (i.e. when 

   ), the model with limits predicts reduced signal compared with the BM model, with 

  estimated to be less than 1. 
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Figure 2.2. A and B show effects of interspecific competition on trait value distributions 

across a clade. The BM model results in a normal distribution, whose variance increases 

linearly with time. The competition model predicts a flattened distribution, whose 

variance increases with time, initially faster than for BM, but slowly slowing to the BM 

rate. When hard limits are placed on trait space, the competitive distribution is further 

flattened, with probability peaks at the limits, since competition will tend to push species 

to those limits. C, Effect of tree size on variance of trait values of an evolving clade. Under 

BM the tree size has no effect, but with competition across the clade, a more numerous 

clade results in a greater amount of trait variation in that clade. D, The correlation 

between two traits across the species in a clade, as a function of the strength of 

interspecific competition parameter. The BM rate parameter is set to 1 throughout. E, 

Correlation for the model with limits. F, The signal (Blomberg’s K) as a function of 

competition strength. The traits are evolving with their random (BM) evolution strongly 

correlated; the pressure from competition to be dissimilar acts against this natural 

correlation. 
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Price’s (1997) model of adaptive radiations makes the unique prediction that when two traits 

have correlated evolution, the correlation between phylogenetically independent contrasts is 

potentially different in form than that between the traits themselves (Price 1997, Rambaut and 

Harvey 2000, Freckleton and Harvey 2006). In contrast, a Brownian model predicts equal 

correlation for both traits and contrasts.  

We compared trait and contrast correlations under the competition model presented here. 

Competition tends to reduce correlation between traits, as discussed above, but we set the 

Brownian evolution of the traits to have very high correlation (figure 2.3). We found that 

contrasts had higher correlations than traits. This probably reflects the fact that competition 

tends to have a greater effect earlier in the evolutionary history of any particular species. 

However, the general principle seems to hold, namely that when species interact the 

correlations between traits and trait changes (i.e. contrasts) are not expected to be equal. 

Comparisons with alternative models 

We generated trait distributions and computed phylogenetic signal for a single 25-tip tree, using 

the competition model as well as the OU model (Hansen 1997) and the Early-Burst (EB) model 

(Blomberg et al. 2003, Harmon et al. 2010a). (We in fact simulated on a range of trees, with 

sizes up to 100 tips, but report on a single tree here for the sake of comparison. Tree size makes 

no qualitative difference to the observed patterns.) The expected distributions for OU and EB 

trait values remain normal, although the OU model reduces the variance relative to BM. The 

actual trait distribution for a typically sized tree, however, was often multimodal for the EB 

model. In contrast, the competition model predicts a flattened, regular distribution of trait 

values. In this respect the competition and EB predictions differ. Phylogenetic signal, on the 

other hand, is raised by both the competition model and the EB model, although more strongly 

by competition. The OU model reduces phylogenetic signal to lower values than expected under  

BM, and to very low values when strong. These results are tabulated in Appendix 2C. 
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Figure 2.3. Traits and contrasts for two traits, where one trait has a dependence on the 

other. For each step in time, the dependent trait has an evolutionary change that depends 

on the change to the other trait. If the dependence is 1, then these changes are equal; if 

the dependence is 0.5, then the change in the dependent trait is 0.5 of the change in the 

other trait, and the remaining change is random. A, Trait correlation as a function of the 

intrinsic trait dependence. B, Contrast correlation as a function of the intrinsic trait 

dependence. C, Correlation between contrasts is slightly greater than correlation 

between traits for competitive evolution. D, Contrast and trait correlations for a model of 

competition with traitspace limits. 
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Power 

The power to detect competition effects against a background of BM evolution is shown in 

figure 2.4A-D for trees of various sizes. We define the power as the frequency with which 

simulated datasets show significant support for competition effects as opposed to the (nested) 

BM null model. Power is greatest for large trees with high competition strength relative to BM 

rate. This can be interpreted as the relative contribution to overall evolutionary change of 

competitive effects versus other, effectively random, effects.   

We also computed the power to distinguish data generated under a competition model from OU 

and EB models. This is shown in figure 2.4F. There is excellent power to detect even weak 

competition compared with these other models. This is not surprising, since a large amount of 

variation in trait distributions and phylogenetic signal can be generated under BM, and both the 

EB and OU models represent deviations from BM that differ from the deviations caused by 

competition. Competition raises signal and reduces the variance in differences between 

neighbouring tip trait values, whereas EB increases tip value difference variance, and OU 

reduces signal. 

Figure 2.4E shows power as a function of delay. ‘Delay’ here means the time from a lineage 

originating to the time at which it starts interacting with all the pre-existing lineages, measured 

as a proportion of the mean time between speciation events. While this delay reduces power, 

substantial power to detect strong competition remains even for delay periods of similar length 

to the time between speciation events. 

In this context a significant dataset is one for which the Type I error rate is estimated to be 

     . This is the frequency with which data from null model simulations display model 

likelihood ratios that equal or exceed the ratio for the ‘observed’ dataset. This is determined via 

a parametric bootstrap.  

Case study: Darwin’s finches  

The simulations described above demonstrate two things: first that the model we describe 

successfully captures behaviour that we would expect to be observed in systems of interacting 

species. And second, that it may be applied to data and used to infer the presence of competitive 

interactions. In order to use the model in a real-world example we applied the competition 

model to an example dataset, using trait measurements collected in Harmon et al. (2010a; 

originally Grant and Grant 2002, Lack 1947; repository in Harmon 2010b 

http://dx.doi.org/10.5061/dryad.f660p), and a recent molecular phylogeny (Lamichhaney et al. 

2015). We used the Galapagos finches (Geospiza spp.), because they are a well-studied adaptive 
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radiation, and ecological effects were anticipated to be of importance. The effect of character 

displacement on intraspecific variation among these finches is well documented (e.g. Grant and 

Grant 2006). Here we are looking to see whether evidence for this mechanism can be detected 

in the overall distribution of traits across the clade. 

The parameter estimates and model likelihood ratios are shown in table 2.1. The beak traits 

showed greater support for competition compared with Brownian evolution than the other 

traits. This appears to point to an ecological effect: the competition model implies a tendency 

towards well-differentiated niches that don’t cross, and the beak shape is an ‘ecological’ trait, in 

the sense that it corresponds strongly to feeding habits (Grant and Grant 2011). Multi-trait 

analyses are also shown in table 2.1, for pairs of beak traits. Competition tends to reduce 

correlation between traits in our model, however (see figure 2.1). Since beak measurements are 

likely to be correlated (due to overall size), the model may have a poor fit without adding 

correlated Brownian evolution as a further fitted parameter, which we have not done. The 

model as it stands may be better suited to Principle Component data, where correlations have 

already been accounted for and removed before the analysis. Figure 2.4 shows illustrative plots 

of simulated trait evolution using the model parameters that were estimated for the culmen 

length. Compared with BM, shown in figure 2.4A, the tree becomes very well defined, with 

strong phylogenetic signal. 

One of the beak traits, culmen length, favoured the competition model when signal was not 

used, but less so when it was included. Brownian rate parameter estimates under the model 

with limits are higher than those for the non-limited competition model. This higher rate does 

not result in a greater total amount of evolutionary change, due to the hard limits that are 

reached either way. This result does, however, suggest that the niche landscape may be the 

limiting factor in the finches’ evolution: the finch traits are capable of evolving rapidly, but their 

values are constrained by the combination of interactions between species and environmental 

limits on niche space.  

It is worth noting that none of these results takes into account intraspecific variation or 

uncertainty in the finch phylogeny. Species interactions will be somewhat independent on 

different islands, as illustrated by the character displacement seen in intraspecific trait variation 

(Grant and Grant 2006).  
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Figure 2.4. Power to detect competition versus Brownian Motion as tree size, rate 

parameter (σ) and intensity of competition (a) are varied. A, σ = 1. B, σ = 1.5. C, σ = 2. D, 

power as a function of competition strength a for data simulated under a model with 

imposed limits, effectively restricting trait values to half the range they would otherwise 

have. E, the effect of delayed interactions on power; d is the time delay before a new 

lineage starts interacting with pre-existing lineages, measured as a proportion of the 

mean time between speciation events; tree size is fixed as 60 tips. F, Power to distinguish 

our model from the OU and EB models for a fixed tree size of 60 tips. 
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Table 2.1: Traits and likelihood ratio test statistics for model comparisons for Galapagos 

finches.  

Trait σ a LRTS 

Wing length 1.48 0.28 1.01 

Tarsus length 1.64 0.48 1.04 

Culmen length 1.24 0.96 4.34* 

Beak depth 1.40 1.92 2.73 

Gonys width 1.48 1.32 1.87 

Culmen + beak depth 1.12 3.76 3.11 

Culmen + gonys width 1.12 4.20 3.24 

Note: the finch trait dataset is that given in Harmon et al. (2010b). The competition 

model is compared with the nested BM model. The competition model has one extra 

parameter compared with the BM model. * indicates significance based on simulated 

parameter distributions. 

 

Discussion 

There have been several recent approaches to integrating ecological processes into 

phylogenetic models of evolution (Cavender-Bares et al. 2009, Hadfield et al. 2014, Pennell and 

Harmon 2013). As a step in this direction, we have created a model of interspecific competition 

on phylogenies of coexisting species. The model provides a process-based picture of 

competitive evolution, linking statistical patterns directly to the underlying ecology. It generates 

the patterns we expect to see in situations where interspecific competition is important.  

Competition and niche overlap have a complex relationship. According to one scenario, niches 

form a continuum, with similar fitnesses along a niche axis. Species compete for empty regions 

of the niche axis and evolve minimally-overlapping, evenly-spaced trait values, consistent with 

the ecological idea of character displacement (Grant 1972, Strong Jr et al. 1979, Dayan and 

Simberloff 2005). Our model accommodates this process in a phylogenetic context. However, 

according to a second scenario, there is an optimum position on a niche axis, and species will 

compete with each other to occupy it.  Consequently they will evolve similar trait values tailored 

to that optimum (Colwell and Futuyma 1971), a form of convergent evolution. Traits that have 

evolved like this are likely to be poorly represented by our competition model, and we would be 

unlikely to find evidence supporting the model. Instead, such a process would be better 

modelled by a process such as an OU model (Hansen 1997, Butler and King 2004). The model 

we have introduced here corresponds better to a process of occupancy of distinct niches 

distributed across trait-space.  
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One prediction of the competition model is a flattened distribution of trait values among 

contemporary species of a single sympatric clade. Indeed, competition is often inferred from 

such evenness (Dayan and Simberloff 2005, Davies et al. 2012). The same pattern can however 

be caused by competition at the community assembly level rather than in situ trait evolution 

(Cavender-Bares et al. 2009, Stuart and Losos 2013), or by geographical structure in speciation 

and extinction (Pigot and Etienne 2015). For this reason the model presented here is best 

applied to complete clades, rather than local paraphyletic communities. Since complete clades 

are rarely entirely sympatric, we have included the ability to turn competitive interactions on 

and off on a pairwise basis depending on sympatry. The model can similarly include a delay 

between speciation events and the start of competitive interactions involving the new species, 

corresponding to allopatric speciation and subsequent range expansion. This is important since 

there is a wealth of variation between clades in species’ geographic structure and opportunity 

to interact (Fitzpatrick et al. 2008). Strong niche-conservatism is, nevertheless, predicted for 

largely sympatric clades. Developing summary statistics for testing our model on data with 

substantial allopatry – e.g. multiple island radiations – will be an important future development. 

The pattern of non-Brownian trait distributions and high phylogenetic signal is also generated 

by an alternative, but related, mechanism, where instead of there being a continuum of possible 

niches, instead they are discrete and new species arise by jumping to a nearby niche (Price 

1997,  Harvey and Rambaut 2000, Freckleton and Harvey 2006). In these models, niches appear 

at random, and existing species that are nearby in niche-space can speciate to occupy a new 

niche. Determining a method to distinguish this type of model from diffusion models will be a 

useful future development. Specifically, this approach differs from the other models discussed 

here in that the tree topology is not fixed but interacts with species’ trait values as the clade 

evolves. 

There are numerous speciation/extinction models for phylogenies (Nee et al. 1994, Pybus and 

Harvey 2000, Rabosky 2006, Freckleton et al. 2008, FitzJohn 2010), including some that are 

expected to correspond to clades with interspecific competition (Harmon et al 2010a, Etienne et 

al. 2012). Our model is concerned only with trait evolution. Trait evolution and diversification 

rates may be coupled in nature, however, and both may vary with factors such as interspecific 

competition. Building models of adaptive radiations that simultaneously predict trait evolution 

and diversification will be key in the future.  

 Most phylogenetic models of trait evolution are modifications of the random BM model. As 

noted above, adaptive radiations are generally consistent with a tree-wide gradual slowdown in 

rates of phenotypic evolution (delta-model: Pagel 1997; ACDC model: Blomberg et al. 2003). 
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Speciational evolution can be modelled as a gradual branch-wise slowdown (  model, Pagel 

1997), or by partitioning evolution into gradual and speciational parts (Bokma 2008, Ingram 

2011). Discrete shifts in evolutionary rate can be modelled to detect, for example, adaptive 

radiations embedded in a larger tree (O’Meara et al. 2006, Thomas et al. 2006). Slowdowns in 

evolutionary rate have also been observed as a function not of time but directly of a clade’s size 

(Mahler et al. 2010). The results for our competition model suggest that it reproduces the 

appearance of a strong tree-wide slowdown.  During a radiation, though, competition is 

predicted to cause overall trait variance to increase much more rapidly. Our results for the 

competition model also demonstrate raised phylogenetic signal when most species are 

sympatric and have opportunity to interact, in agreement with similar results in Nuismer and 

Harmon (2015). 

In all analyses we used a fixed competition kernel width. The fact that this width is not 

distinguishable from the competition strength itself suggests that the amount of variation 

possible within a single niche is not readily ascertained from a phylogeny and trait data. 

Measurements of intraspecific variation will be more suited to this question. In fact, the 

competition kernel widths could be set empirically before analysis, if data on intraspecific 

variation were available. 

Our results for the Galapagos finches support the well-known presence of character 

displacement in that clade (Grant and Grant 2006), and further suggest that interspecific 

competition is a significant force comparable with other, effectively random, sources of 

evolutionary change for the Galapagos finches. For some beak measurements, the Galapagos 

finches exhibit the elevated phylogenetic signal predicted by the competition model, and for 

beak length we find strong support for the model.  

As phylogenetic methods continue to be used to infer evolutionary processes, it will be 

important to include specific ecological mechanisms (Vamosi et al. 2009). Competition for 

ecologically distinct roles is often implicitly or explicitly assumed in adaptive radiations, but its 

prevalence and importance remain uncertain (Schluter 2000, Stuart and Losos 2013). We have 

developed an explicit model of competition on phylogenies, to detect competitive effects in 

sympatric adaptive radiations and to enable measurement of competition strength. The 

predictions of this model may help in understanding the roles ecological processes play in 

shaping trait evolution.  
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Chapter 3: Testing for clade-wide patterns of character displacement 

in animal clades 

 

Abstract 

Character displacement is an increase in the difference in trait value between two species in 

order to reduce competition for resources. Evidence for character displacement is usually found 

in sympatric sibling species pairs; however, there is no universal agreement on its prevalence. 

Here, I use a previously introduced model of trait evolution to search for character 

displacement patterns across entire clades. A range of animal phylogenies and trait datasets are 

sourced from the literature, and several evolutionary models, including our character 

displacement model, are fitted to them. Overall, I find that clade-wide character displacement 

patterns are not common. I also used range data to compute a measure of overall sympatry for 

each clade, and found that this was uncorrelated with evidence for character displacement. The 

importance of the geographic and phylogenetic scale of analysis is discussed in this context. 

Introduction 

Stochastic models of trait evolution on a phylogeny were originally proposed with the aim of 

reconstructing the tree from trait values (Felsenstein 1973). Today, the same methods are 

typically used as a way of correcting for phylogenetic correlations between species when 

looking for correlations between traits (Felsenstein 1985, Freckleton et al. 2002). However, 

these models have become useful for inferring the rate and mode of evolution through the 

history of a clade. Phylogenetic methods are often used to test hypotheses such as discrete shifts 

in rates of trait evolution (O’Meara 2006, Thomas and Freckleton 2012, Revell et al. 2012) or 

effects of character states on patterns of speciation and extinction (Maddison et al. 2007, 

Freckleton et al. 2008, Fitzjohn et al. 2010).  

Some of these hypotheses correspond to mechanisms studied in ecology, for example 

evolutionary slowdowns as clades become more diverse (Rabosky and Lovette 2008). However, 

other mechanisms have not been widely incorporated into stochastic models of trait evolution, 

despite being important topics in ecology. One example is character displacement. It has been 

inferred from phylogenetic studies of community structure (Webb et al. 2002, Kraft et al. 2007), 

but not widely included as a mechanism in models of trait evolution (but see Davies et al. 2012 

for a test for it). 
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Character displacement can be defined as the shift in character state, and therefore niche, of two 

sympatric populations to minimise interpopulational competition for resources (Pfennig and 

Pfennig 2010). There is no consensus on the prevalence of character displacement patterns 

arising across clades due to interspecific competition. Competition is expected to generate 

divergence between sibling species (Cavender-Bares et al. 2009, Yoder et al. 2010), and this is 

most commonly observed as character displacement: elevated differences between species 

where they coexist (Schluter and McPhail 1992). Surveys of character displacement disagree 

about the evidence for its importance and frequency, concluding either that mechanisms 

causing character displacement are widespread and important (Schluter 2000, Dayan & 

Simberloff 2005), or that we yet have little evidence for them (Stuart and Losos 2013, Tobias et 

al. 2014). 

Evidence for character displacement is traditionally sought in sibling species pairs, by 

comparing coexisting pairs and geographically separated pairs (Schluter and McPhail 1992, 

Dayan and Simberloff 2005, Pfennig and Pfennig 2010, Stuart & Losos 2013). Tobias et al. 

(2014) found no evidence of raised divergence rates due to sympatry in a study on ovenbirds. 

They instead found that apparent differences were due to the tendency for coexisting lineages 

to be older than noncoexisting lineages. Alternative methods detect character displacement 

across whole clades, using a phylogeny to measure the distribution of species trait values 

relative to a null model (Webb et al. 2002, Freckleton and Harvey 2006, Vamosi et al. 2009). For 

example, Davies et al. (2012) looked at trait distribution evenness across a phylogeny’s tips and 

compared it to a null expectation under Brownian motion, inferring character displacement in a 

small mammal community. This approach makes greater use of the available trait data, by 

examining the allocation of evolutionary change across the tree, as well as overall rates.  

Here I use a method for looking at character displacement patterns in adaptive radiation data, 

using a phylogeny and tip trait data (described in detail in Chapter 2, also Clarke et al. 2017). 

According to this method, this data is used to fit a model of trait evolution where the usual 

assumption of independent evolution in each branch of the phylogeny is relaxed. Through the 

history of a clade, the competition model permits species to interact and repel one another in 

trait-space. In this way, past competition and character displacement may be inferred from a 

tree and contemporary trait data. Approximate Bayesian Computation (ABC) is a simulation-

based method that can be used to generate likelihood estimates when an analytic expression for 

the model likelihood is difficult to obtain. I use ABC to compare the predictions of Brownian 

evolution and evolution with character displacement. I look for effects on phylogenetic signal 

and tip trait value distribution shape, and hence obtain an estimate of the strength of the 

competition effect and a likelihood ratio for the two models.  
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The competition model incorporates interspecific ecological interactions into a stochastic 

evolutionary model, and in doing so makes some strong assumptions. In particular, it assumes 

that the clade has evolved with opportunity for ecological interactions between all the species 

that constitute it. The proxy I use for this is sympatry: the co-occurrence of two species in the 

same geographical area. I compute a measure of mean range overlap for each of the clades 

under study here, for use as an approximation of the degree to which the species exist in 

sympatry. Of the clades under study, some clades fulfil the assumption of sympatry well, while 

others are widely geographically distributed, occupying different environments and having 

many species that have no opportunities to interact.  

Here, I use the methods from Chapters 1 and 2 to search for evidence of character displacement 

across a wide range of animal clades, mostly divided at the genus level. This includes 75 

mammal genera and 17 lizard genera. I also analyse a cichlid clade, both as a whole and by 

looking at its three main subclades. The trait data and phylogenies for these clades were 

sourced from the literature. There were two broad objectives: (1) to assess the overall 

prevalence of clade-wide character displacement patterns in animals; (2) to determine whether 

coexistence makes character displacement more likely among groups of related species. 

 

Methods 

Modelling interspecific competition 

Completely random, gradual evolution is modelled with Brownian motion (BM, Felsenstein 

1985, Freckleton et al. 2003). The differential change in trait   for a given species is given in 

terms of white noise    by equation 3.1 below. The expectation value of the change in a finite 

time   is therefore  , with variance    . 

       .         Equation 3.1 

The competition model is a modification of the BM model, with an additional term representing 

interspecific interactions. Character displacement patterns are generated by the tendency of 

species with similar trait values to evolve away from each other in trait-space. We effectively 

assume that a species with a particular trait value has a corresponding normal distribution of 

resource types, and competition occurs when these distributions overlap.  Therefore a Gaussian 

curve is associated with each species. Along a single trait axis, this normal distribution curve 

represents the species’ resource use and consequently the amount of influence on other species 

with trait values that are similar (Doebeli and Dieckmann 2003, Pigolotti et al. 2010, Leimar et 

al. 2013, Leimar et al. 2008).  
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For the competition model we therefore add a deterministic term to the BM stochastic 

differential equation such that each species   in existence at a given moment in time interacts 

with all the other species present, as per Equation 3.2. This is described in more detail in Clarke 

et al. (2017) (See also chapter 2). 

         ∑          |      |           .    Equation 3.2 

Here   is the cumulative normal function,     is a unit vector in trait-space pointing from 

species   to species  , and   is a parameter corresponding to the strength of interspecific 

competition. In the limit as    , we recover BM. 

I also assess a variant of this model, where hard limits are imposed on the available trait values. 

The evolution of each tree branch follows equation 3.2, but if a trait value reaches a limit at any 

time, then it is prevented from further evolution in that direction, i.e. towards more extreme 

trait values. These limits are not estimated by the model, but are set, fixed assumptions.  

 

To fit the model to datasets, Approximate Bayesian Computation (ABC, reviewed in Beaumont 

2010, Csilléry et al. 2010, Hartig et al. 2011) is used, a method for using simulations to generate 

likelihood estimates when an analytic expression for the model likelihood is difficult to obtain. 

Model parameters are sampled from a prior distribution, and many simulations performed. 

Summary statistics are computed for each simulation, and compared with those for the 

observed data. The model parameters of the simulations whose summary statistics are within a 

small distance of those of the observed data then form the posterior parameter distribution. I 

then obtain a likelihood ratio estimate for the BM and competition models. For this approach I 

use three summary statistics: the mean and the variance of the differences between each 

species and its closest neighbour in trait space, and the overall phylogenetic signal as measured 

by Blomberg’s K (Blomberg et al. 2003). These summary statistics contain information on the 

overall amount of evolution, the overdispersion of trait values, and the phylogenetic covariance 

structure of the trait values.  For each trait in each clade, one million simulations were 

performed to generate the likelihood estimates. 
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Quantifying range overlaps 

To assess the effect of sympatry on the results, I used a measure of overall clade sympatry. This 

was computed as the mean of the range overlaps of each pair of extant species in the clade. The 

measure of range overlap used was the area of overlap divided by the area of the smaller of the 

two ranges (Barraclough & Vogler 2000). Therefore, a sympatry value of 1 indicates that all the 

species have the same range, while a value of 0 indicates no geographical overlap between any 

ranges. To assess the relationship between present day sympatry and evidence of past 

competition, I computed the correlation of sympatry level and the competition strength 

parameter a.  

Mammal and lizard ranges were obtained as polygons from the IUCN Red List of Threatened 

Species online database (IUCN 2014), and analysed using the R packages sp (Pebesma 2015), 

rgdal (Bivand et al. 2014), and maptools (Bivand and Lewin-Koh 2013).  

 

 Data source and preparation 

A wide range of animal clades are considered here, each representing a single genus expanded 

to be monophyletic. Among these are 77 mammal genera and 10 lizard genera, using data from 

Jones et al. (2009), Fritz et al. (2009) and Bergmann and Irschick (2012). For the mammal 

dataset, I also sampled random clades for similar analyses, allowing them to be performed on 

larger clades and on clades with a wider range of mean sympatry than the genera.   

 

Mammal bodysize data was extracted from the PanTHERIA database (Jones et al. 2009). Data 

was available for 5417 species, covering most known mammal species. The phylogeny is from 

Fritz et al. (2009), a modified version of the tree in Bininda-Edmonds et al. (2007). I subdivided 

the tree by genus, in each case taking the most recent common ancestor of that genus and 

expanding the analysis to encompass all of its descendants. I then discarded clades with <15 

species, since I expected to have little power to detect evidence of competition for very small 

clades. This left 77 clades, with a total of 2164 species. The average size of these clades was 28.5 

species; the largest had 73 species. A further test performed using the mammal data was to 

divide the complete clade into random subclades of between 50 and 250 tips, and compute the 

mean sympatry and estimate model parameters for each subclade. These trees were larger than 

typical genera, giving more power to compare models and a greater range of available 

timescales to study. 
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A database of squamate morphometrics and corresponding phylogeny has been collected in 

Bergmann and Irschick (2012). I used this tree and extracted lizard bodysize data from this 

database. Again, I subdivided the tree and data by genera with >15 species, to leave 10 clades 

suitable for analysis. Of the 1375 squamate species in the full tree, this procedure left 455 for 

analysis. 

 

These analyses are also performed on a set of Neotropical cichlids and 3 major clades therein, 

following Lopez-Fernandez et al. (2013), who regard the entire clade as an ancient adaptive 

radiation. A morphometric dataset for Neotropical cichlids is available in Lopez-Fernandez et al. 

(2013), with a corresponding phylogeny in Lopez-Fernandez et al. (2010). I used these 

resources to run the analysis on the complete clade, as well as on three major subclades: 

Cichlasomatini, Geophagini and Heroini, estimated to have around 70, 250 and 150 species 

respectively (Lopez-Fernandez et al. 2010). The phylogeny has 160 tips, thus representing 

around one third of the extant species. I chose not to use African cichlids from e.g. Lake Victoria, 

since they may have considerable geneflow and uncertainty in the molecular phylogenies 

(Wagner et al. 2013), and the character displacement model assumes an accurate phylogeny 

and rapid speciation. 

 

Results 

Mammals 

The complete results for mammal genera are shown in table 3.1. I studied 77 mammal genera. 

Of these, 3 had significantly better support (      ) for competitive effects than for Brownian 

motion; these three genera were Pseudantechinus, Artibeus and Psudomys: marsupials, bats and 

rodents respectively. However, significant results for 3 clades is no more than might be 

expected by chance. The distribution of likelihood ratio statistics for mammal genera is shown 

in figure 3.1A, along with a similar distribution for data simulated under a Brownian motion 

model on the same trees. Both distributions are roughly normal, the mammal data in fact 

showing a slightly lower average likelihood ratio statistic for the presence of character 

displacement effects than expected under a random BM model. Results for the competition 

model with trait-space limits are given in Appendix A; they are similar to the results without 

limits, and there are no clades for which limits are supported over competition with no limits.  

 

The distribution of genus-wide sympatry across mammal genera is approximately normal, with 

few clades having mean sympatry greater than 0.8. There was no discernible relationship 

between overall clade sympatry and competition strength, as seen in figure 3.1B (estimated 
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effect -1.15, P=0.45). The three clades with significant support for competition effects had 

sympatry 0.28, 0.62 and 0.52 respectively.  

 

 

Figure 3.1: A, Distribution of likelihood ratio statistics from each mammal genus. The red 

line shows the corresponding results for BM datasets simulated on the same trees. A 95% 

confidence interval for the simulated results is shaded, based on resampling of the 

density distribution. B, Estimated competition strength and average clade sympatry for 

mammals. 

Table 3.1: Competition model estimates and mean sympatry for mammal genera. Sigma 

and a are the parameters of the model, corresponding to the rate of trait value diffusion 

and the strength of lineage-lineage interactions respectively. The likelihood ratio is for 

this model as compared to a null Brownian motion model. Sympatry is computed as the 

average amount of pairwise range overlap across all the species pairs in each clade. 

Clade  Sigma a Likelihood ratio Sympatry 

Stenella 2.266667 3.833333 2.607327 NA 

Trinomys 0.133333 0.666667 1.153897 0.732139 

Trachypithecus 1.533333 2.5 2.648321 0.266445 

Talpa 2.266667 1.266667 1.444433 0.3163 

Thomasomys 4.6 3.7 1.914608 0.642574 

Sundasciurus 1.866667 3.766667 1.928703 0.974973 

Tupaia 3.233333 1.266667 1.472369 0.742125 

Abrothrix 2.233333 3.6 1.990246 0.460886 
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Acomys 2.033333 2.266667 1.693553 0.333138 

Aotus 2.366667 1.533333 1.421866 0.162371 

Sylvilagus 1.866667 4.166667 2.098439 0.448654 

Akodon 3.466667 1.133333 1.119375 0.401949 

Dipodillus 2.166667 0.766667 1.170109 NA 

Cratogeomys 2.4 4.166667 1.508262 0.151676 

Echimys 2.566667 2.533333 1.425115 NA 

Cercopithecus 1.333333 2.9 1.572199 0.609196 

Chaetodipus 2.466667 1.333333 1.257967 0.317848 

Galago 2.1 3.766667 1.907503 0.414853 

Dipodomys 0.7 4.2 2.848566 0.441388 

Cephalophus 0.6 2.4 2.309238 0.633412 

Genetta 2.933333 3.3 1.59248 0.590515 

Ctenomys 2.533333 0.766667 1.032995 0.363437 

Gerbillus 1.233333 3 1.999667 0.558156 

Cryptotis 1.9 3.133333 1.66393 0.496652 

Chaerephon 2.266667 1.333333 0.930371 0.332483 

Artibeus* 0.4 4 3.150412 0.623748 

Lagenorhynchus 0.4 2 1.342643 NA 

Makalata 2.966667 3.3 1.636448 0.505029 

Lophuromys 2.1 1.1 1.364932 0.717734 

Hylopetes 1.633333 0.8 1.336264 0.628476 

Mogera 1.633333 3.233333 2.310501 0.042962 

Mesoplodon 2.266667 4.1 2.745201 NA 

Marmosa 2.1 0.833333 0.983286 0.54299 

Monodelphis 3.1 3.133333 1.598352 0.411785 

Meriones 1.233333 1.3 1.274966 0.519683 

Mops 2.366667 0.933333 1.698779 0.446762 

Melomys 1.7 0.733333 1.334248 0.557428 

Maxomys 1.766667 0.566667 0.88797 0.933469 

Tamias 2.566667 2.533333 1.438865 0.444142 

Kerivoula 1.233333 1.266667 2.082395 0.641405 

Macaca 2.133333 1.5 1.668266 0.420748 

Lasiurus 0.833333 3.533333 2.11846 0.642597 
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Otomys 2.133333 3.666667 1.537459 0.341533 

Paramelomys 3.066667 3.2 1.448469 0.439175 

Phyllomys 1 3.9 2.666692 0.622628 

Pseudantechinus* 0.933333 4.166667 3.259516 0.282593 

Oecomys 0.8 3.966667 2.984403 0.653803 

Neotoma 2.8 1.233333 1.311317 0.397958 

Ochotona 2.633333 2.033333 1.289976 0.471339 

Oryzomys 4.666667 1.133333 2.290858 0.349467 

Proechimys 4.266667 4.3 1.815649 0.479153 

Phalanger 1.733333 3.733333 2.331557 0.613949 

Murina 1.266667 3.766667 2.321878 0.471471 

Pseudomys* 0.866667 4.266667 3.983908 0.519907 

Niviventer 2.7 2.2 1.474011 0.528945 

Nycteris 1.533333 3.6 1.098765 0.616444 

Reithrodontomys 1.9 2.366667 1.260778 0.553157 

Rhipidomys 3 0.766667 0.907891 0.541145 

Saguinus 3.5 0.933333 1.591801 0.231991 

Sminthopsis 2.566667 1.066667 1.405091 0.476755 

Stenella 1.4 4.033333 2.076977 NA 

Oligoryzomys 2.8 2.9 1.379409 0.432121 

Trinomys 0.133333 0.6 0.811055 0.732139 

Trachypithecus 1.533333 3.166667 1.754339 0.266445 

Sundasciurus 1.5 3.2 1.937148 0.974973 

Thomasomys 4.533333 3.6 2.839939 0.642574 

Talpa 2.233333 1.033333 1.233688 0.3163 

Tupaia 2.966667 1.566667 1.375111 0.742125 

Sylvilagus 1.533333 3.833333 1.747396 0.448654 

Spermophilus 0.9 3.266667 2.471116 0.288026 

Myodes 0.533333 1.866667 2.40561 0.599524 

Rousettus 2.8 4.266667 2.586106 0.848278 

Tamias 2.666667 1.966667 2.0984 0.444142 

Peromyscus 1.133333 2.5 2.554674 0.506081 

Sciurus 1.5 3.033333 2.723497 0.433537 

Note: Star denotes significant support for competition versus Brownian motion. 
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Lizards 

I also considered 10 lizard genera. Of these, only 1 had evidence of competitive effects: Egernia 

skinks. Data was available for 10 species in this clade. However, the appearance of considerable 

character displacement-like patterns in Egernia, which does not consist of species all sympatric 

with one another, may rather be the result of many one-off speciations into new environments 

(Heatwole and Taylor 1987). The distribution of likelihood ratio test statistics for the 

competition model had a slightly lower mean than expected under Brownian motion (see figure 

3.2A). Egernia was a noticeable outlier in this distribution. The average sympatry across the 10 

clades was 0.65. As was the case for mammals, I didn’t find any relationship between 

competition strength a and sympatry, as seen below in figure 3.2B (effect estimate = -1.01, 

      ). The complete results for lizards are tabulated in table 3.2, with additional results for 

the competition+limits model given in Appendix 3A.

 

Figure 3.2: A, Distribution of likelihood ratio statistics from each lizard genus. The red 

line shows the corresponding results for BM datasets simulated on the same trees. A 95% 

confidence interval for the simulated results is shaded, based on resampling of the 

density distribution. B, Estimated competition strength and average clade sympatry for 

lizards. 
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Table 3.2: Competition model estimates and mean sympatry for lizard genera. Sigma and 

a are the parameters of the model, corresponding to the rate of trait value diffusion and 

the strength of lineage-lineage interactions respectively. The likelihood ratio is for this 

model as compared to a null Brownian motion model. Sympatry is computed as the 

average amount of pairwise range overlap across all the species pairs in each clade. 

Clade  Sigma a Likelihood ratio Sympatry 

Amphiglossus 1.72 3.12 1.528665 0.672849 

Acanthodactylus 0.76 0.52 0.713051 0.536915 

Ameiva 1.44 1.24 1.139811 0.715558 

Ctenophorus 0.8 0.68 1.129544 0.883716 

Chalcides 3.28 1.6 1.468827 0.349796 

Egernia* 0.32 5.44 5.13022 NA 

Mabuya 1.24 1.76 1.605079 NA 

Trachylepis 0.24 4.4 2.028256 1.144031 

Lerista 2.48 1.12 1.244732 0.374923 

Liolaemus 0.84 0.56 1.023522 0.531074 

Cnemidophorus 0.12 1.4 2.744123 NA 

Draco 0.28 1.76 2.186701 0.625564 

Varanus 0.72 3.24 2.121207 0.497624 

Sphenomorphus 1.12 0.84 1.46932 0.910035 

Emoia 1.24 0.6 1.029718 0.873417 

Sceloporus 0.72 0.36 0.634488 0.449219 

Anolis 1.36 0.48 0.908225 0.537528 

Note: Star denotes significant support for competition versus Brownian motion. 

 

Cichlids 

Finally, I fitted the competition model to the complete Neotropical cichlid dataset and three 

major clades therein, following the subsets used in Lopez-Fernandez et al. (2013). The results 

are shown in table 3.3. I found significant support for character displacement effects in bodysize 

across the Neotropical cichlids as a whole, and stronger support particularly in the 

Cichlasomatini subclade. In contrast, however, I found no such evidence for character 

displacement in jaw morphology. Results for the competition+limits model are given in 

Appendix 3A. 
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Table 3.3: Results for Neotropical cichlids. Sigma and a are the parameters of the model, 

corresponding to the rate of trait value diffusion and the strength of lineage-lineage 

interactions respectively. The likelihood ratio is for this model as compared to a null 

Brownian motion model.  

Clade Trait Sigma a likelihood ratio 

Cichlid* bodysize 1.07 4.85 3.17 

 gape 3.17 0.70 0.93 

Cichlasomatini* bodysize 0.79 5.55 4.20 

 gape 1.31 3.31 2.75 

Geophagini bodysize 1.68 0.84 1.20 

 gape 1.77 1.07 1.57 

Heroini bodysize 2.71 1.26 1.58 

 gape 1.17 4.06 1.98 

Notes: Star denotes significant support for competition versus Brownian motion (not 

corrected for multiple tests). 

 

Discussion 

 

I fitted a model of clade-wide character displacement to a range of mammal and lizard clades, as 

well as a group of Neotropical cichlids. The results for mammals and lizards showed little sign of 

clade-wide character displacement, and simulations showed that the distribution of competition 

model likelihoods was similar to that expected under a Brownian model. Indeed, the support for 

character displacement was overall slightly lower than expected under a Brownian model, 

perhaps reflecting convergent evolution among species in larger clades, where the same niche is 

occupied by related but distinct species in different environments.  

The results for cichlid fishes showed much greater signs of competition and character 

displacement effects. As well as significant results for the Cichlasomatini subclade, I found 

evidence of interspecific competition in the cichlid clade as a whole, suggesting that they may 

form a single adaptive radiation, and that their trait values may be strongly influenced by 

historical resource competition between species and adaptations to minimise this competition. 

These results were found only for bodysize, however jaw morphology showed no sign of 

character displacement effects for the whole cichlid clade. This is consistent with the findings of 

Lopez-Fernandez et al. (2013), who inferred convergent evolution of head shape in the three 

subclades, with opposite effect to competition as I have modelled it. I did not find similar 

support for the competition model with limits on trait space, suggesting the notion that the 

adaptive radiation has not exhausted the range of viable trait values. 
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Broad searches for character displacement in the literature have focused on individual clades 

where character displacement was claimed. Tests for character displacement therefore tend to 

be performed where it is expected to be found. The evidence is usually judged according to a set 

of 6 criteria first compiled by Schluter and McPhail (1992). These criteria are: (1) differences in 

phenotype are due to genetics rather than, for instance, phenotypic plasticity; (2) apparent 

patterns of character displacement are not due to chance; (3) the species have evolved in situ, 

so that the apparent patterns of character displacement are not due to species sorting; (4) the 

trait under study is linked to resource use; (5) where species in sympatry and allopatry are 

compared, the different environments are similar or can be controlled for; (6) independent 

evidence exists that individuals with similar phenotypes compete for resources. Despite these 

agreed criteria for evidence, different conclusions have been drawn about the amount of 

evidence we have for widespread character displacement, ranging from a lot (Schluter 2000, 

Dayan & Simberloff 2005) to not very much (Stuart & Losos 2013, Tobias et al., 2014). These 

differences rest largely on the interpretation of cases that satisfy most but not all of the six 

criteria, a category that includes most of the individual studies in the literature. In either case, 

however, the evidence under review consists mostly of studies performed on clades that are 

promising a priori candidates for character displacement patterns. 

Individual cases with strong support for character displacement (satisfying all six criteria) 

include, for example, Darwin's finches (Grant and Grant 2006) and 3-spine sticklebacks 

(Schluter 2000). These two examples are quite different: Darwin's finches form a clade of 

around 15 species adapted to different niches on a small set of islands, while the sticklebacks 

have diverged into two ecologically distinct forms repeatedly and separately in several different 

lakes. However, in both cases the species undergoing character displacement are known to be 

largely sympatric and to have evolved in situ with plenty of opportunity for interspecific 

interactions. In this way they meet assumptions of models of evolution with clade-wide 

character displacement in a way that larger-scale datasets cannot. Indeed, I have previously 

found significant support for interspecific competition effects on clade-wide models of beak size 

evolution in Darwin's finches (Chapter 2). 

I also compared model fits with estimates of average levels of range overlap across each clade, 

using range overlap as a proxy for sympatry. There was no evidence of a relationship between 

character displacement and sympatry using this method. One possible explanation for this 

result is that the simple method of using large-scale range overlaps to judge sympatry may not 

capture the actual opportunities species have had for interacting over evolutionary timescales 

(Connell 1980). This is especially likely since species ranges are known to change over time 

(Sexton et al. 2009). A second plausible explanation is that character displacement is simply not 
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common enough in the datasets to establish any relationships with other variables; this would 

be consistent with other studies such as Tobias et al. (2014), who found that sympatric species 

pairs diverge at the same rate as allopatric pairs, for traits such as bird beak shape, across many 

species. Similarly, Monroe (2012) used range overlap as a proxy for the opportunity for 

competition, as I have done here, and found that divergence rates among mammal species were 

unaffected by range overlaps.  

From the lack of evidence for competition effects in mammal and lizard clades, I can infer that 

character displacement is not one of the main mechanisms shaping patterns of character states 

across large clades. Of course, these large clades are not confined to single geographical areas, 

but overall many of them still have extensive sympatry. However, the model of competitive 

evolution has high power to detect competition when it is the predominant force shaping 

species' relative trait values, so if competitive exclusion were widespread among mammals and 

lizards we would expect to detect signs of it in the clades with greater overall sympatry. Further, 

we would expect to see some relationship between sympatry levels and character displacement 

patterns. Mechanisms other than character displacement are therefore likely the main driving 

forces behind evolution in most clades. Competitive exclusion may still affect small subclades of 

a few species, as can be seen in Anolis lizards (Losos et al. 1998, Mahler et al. 2010) where a few 

particular niche forms developed several times over in separate locations; across the whole 

Anolis clade, there is little evidence of character exclusion, and overall sympatry is low. This also 

does not mean that character displacement is not a primary factor in specific cases such as 

adaptive radiations of the Darwin's finches type. 

It will be interesting in further work to contrast the results given here for large clades with 

studies focussed on smaller clades that are promising candidates for character displacement. An 

example, following the Darwin's finches example, would be further study of island adaptive 

radiations with data for all extant species in the clade using the same model I used here. The 

model of clade-wide character displacement would give useful insights into the evolutionary 

mechanisms that shaped such clades, and provide a potential contrast to the types of data 

analysed here. 

Future models will likely benefit from addressing the interactions between geographical 

dynamics (e.g. Losos and Glor 2003, Pearman et al. 2008, Freckleton and Jetz 2009), speciation 

and extinction rates (modelling links to trait values in e.g. Paradis 2005, Freckleton et al. 2008, 

Fitzjohn 2010, Magnuson-Ford and Otto 2012), as well as intra- and inter-specific evolutionary 

interactions like those investigated here. Prior knowledge of the adaptive landscape can also be 

included in future models (Arnold et al. 2001, Aguilée et al. 2013). 
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Chapter 4: Using phylogenetic comparative models to infer 

differences in trait evolution between hummingbird clades 

 

Abstract 

Hummingbirds provide a useful application for evolutionary models, as they have strong 

phylogenetic structure, often with large numbers of species coexisting in sympatry. Here, data 

on 279 species of American hummingbirds is analysed. Their trait distributions are compared 

between seven major subclades, and a range of trait evolution models are fitted, including the 

new model introduced in Chapter 2. I use these results to make inferences about the different 

processes that shaped the hummingbirds’ evolution. Overall, there is strong phylogenetic signal 

across the tree for both body size and beak length, but little evidence of character displacement. 

There is evidence of considerable variation in evolutionary history for different traits and 

clades, and at different geographical and phylogenetic scales. 

 

Introduction 

Phylogenetic trait models 

Phylogenetic comparative models can be used to make inferences about the evolutionary 

history of a group of species (Felsenstein 1985, Freckleton et al. 2002, Pagel and Harvey 2002). 

Natural selection has a directional or stabilising effect on trait values, and in turn has many 

possible sources, many of them stemming from interactions between the animal and its 

environment. By looking at the distribution of trait across today’s species, inferences can be 

made about these evolutionary pressures and processes (Webb et al. 2002, Kraft et al. 2007, 

Emerson and Gillespie 2008, Vamosi et al. 2009).  

 

Adaptive radiations are consistent with a tree-wide gradual slowdown in rates of phenotypic 

evolution (Pagel 1997, Blomberg et al. 2003). Character displacement, on the other hand, is a 

tendency for species with overlapping ranges to exhibit increased phenotypic differences where 

they coexist, due to competition for niches (Schluter and McPhail 1992, Dayan and Simberloff 

2005, Pfennig and Pfennig 2010, Stuart and Losos 2013). For whole clades, this outcome can 

also be inferred from the distribution of species trait values: an observed distribution of traits 

can be compared to that of a null model given a phylogeny for the clade (Webb et al. 2002, 

Freckleton and Harvey 2006, Vamosi et al. 2009). This is especially useful for adaptive 
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radiations, where often a number of similar species are confined to the same geographical area. 

Distributions that are more even than expected by chance (Webb et al. 2002, Dayan and 

Simberloff 2005, Davies et al. 2012) are taken as evidence that past competition caused species 

to seek unique ecological niches.  

 

This chapter uses the trait evolution model developed in chapter 2. This model explicitly 

includes these competitive effects, so that the strength of competitive effects can be quantified 

for a given clade (see chapter 2, also Clarke et al. 2017). To fit this competition model to 

datasets, Approximate Bayesian Computation (ABC, reviewed in Beaumont 2010, Csilléry et al. 

2010, Hartig et al. 2011) is used, a method for using simulations to generate likelihood 

estimates when an analytic expression for the model likelihood is difficult to obtain. Model 

parameters are sampled from a prior distribution, and many simulations performed. Summary 

statistics are computed for each simulation, and compared with those for the observed data.  

 

Hummingbirds 

Hummingbirds provide a useful application for evolutionary models, as they have significant 

phylogenetic structure, often with large numbers of species coexisting in sympatry (Graham et 

al. 2009).  Hummingbirds are a clade of approximately 338 species, composing the family 

Trochilidae. These are distributed across many communities in the Americas, with the greatest 

numbers around the Andes in central and South America. Hummingbirds provide a useful 

application for evolutionary models, as they have significant phylogenetic community structure, 

often with large numbers of species coexisting in sympatry (Graham et al. 2009). Recent 

molecular phylogenies put the clade age at around 22 million years (McGuire et al. 2014). Their 

morphology is thought to be closely shaped by available niches in any given community 

(Feinsinger and Colwell 1978). There are nine main hummingbird clades: topazes, patagona, 

hermits, mangoes, brilliants, coquettes, gems, bees and emeralds. The brilliants and coquettes 

originated in the area where the Andes now stand. The hermits are thought to have originated 

in the lowlands to the east, and most of the other clades in the lowlands to the west. The bees 

and mountain gems are the only clades thought to have radiated in North America. 

 

The different hummingbird clades are thought to have been formed by a combination of 

radiation and colonisation, with emeralds and hermits radiating in the Amazonian lowlands and 

later colonising the Andes, and mangoes, coquettes and brilliants doing the reverse. These 

histories were inferred in Parra et al. (2011), by looking at how under- or over-represented 

each of these clades is, in many communities in and around the Andes. Parra et al. (2011) 
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hypothesise that species from over-represented clades are the products of in situ radiations, 

while species from under-represented clades have colonised from other geographical areas. 

Bees are thought to have radiated in Northern dry lowlands.  

 

The highest diversification rates are seen in the bees. The clade consisting of bees and mountain 

gems is thought to be unique among the hummingbirds in having radiated in North America; 

some emeralds have since colonised North America, but the common ancestor of the bees and 

gems was the first invader, and most of the extant species remain there (McGuire et al. 2014). 

The bees could have acquired their increase in diversification rate from a recent, rapid 

radiation. However, a similar pattern could have arisen from a continuous rapid turnover of 

species throughout the history of the clade, i.e. high and approximately constant speciation and 

extinction rates. Analysis of the phylogenetic structure of the bees’ trait values may provide 

some insight into this question.  

 

The mechanisms shaping hummingbird evolution have previously been studied from a 

community composition perspective (McGuire et al. 2007, Graham et al. 2009, 2012, Parra et al. 

2011, Lessard et al. 2016). Warm, wet lowland communities in Ecuador were found to be 

phylogenetically overdispersed, i.e. composed of more distantly related species than expected 

by chance, whereas the more “challenging” environments of the cooler highlands have 

communities that are phylogenetically clustered (Graham et al. 2012). This suggests that 

environmental filtering is a key mechanism shaping community composition, with competitive 

exclusion playing a greater role in milder environments.  

 

Applying phylogenetic trait models to hummingbird clades 

Here, I take a clade-based rather than community-based approach. The competition model 

described in chapter 2 is used to assess how much evidence there is of character displacement 

among hummingbirds as a whole. I also fit a range of other phylogenetic comparative models, 

and investigate how much variation exists in evolutionary mode among the different 

hummingbird clades. I consider whether evolutionary history differs consistently between 

highland and lowland groups of species. 

 

The analysis is divided between the 7 main hummingbird clades, so that conclusions can be 

drawn about the differences between their evolutionary histories. The idea behind this is to 

distinguish different evolutionary process acting on traits in different clades; since they 

diversify according to different processes, and frequently occupy largely different 
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environments, it makes sense to fit trait evolution models to individual clades rather than the 

whole hummingbird tree. There is an evolutionary mechanism that is related to, but distinct 

from, competitive exclusion: species may evolve to become more distinct via character 

displacement after entering the community. This alternative is not explicitly available to 

community building models, but can be included in phylogenetic trait evolution models.  

 

I fit hummingbird data to a range of stochastic evolutionary models, including random diffusion, 

rate change models, and the character displacement model. Comparing the results of these 7 

main clades with results for the whole of the hummingbirds may also help clarify the levels at 

which processes (such as evolutionary constraints and character displacement) act. Traits such 

as mass, wingspan, beak length have been found to have high phylogenetic signal (Graham et al. 

2012) for the whole hummingbird tree; I investigate how they vary at lower taxonomic levels. I 

compare these results with previous community studies of hummingbirds, and draw 

conclusions about their evolutionary history.  

 

Methods 

The phylogeny and trait data used here were collated by Lessard et al. (2015; 

http://dx.doi.org/10.5061/dryad; phylogeny from McGuire et al. 2014). The phylogeny is 

shown in figure 4.1. This dataset includes 279 extant species, with body mass and culmen length 

values for each. These measurements were averages across all individual measurements 

available in the literature. Both males and females are included in the data. There are 338 

known species of hummingbird, so this dataset is around 80% complete. I fitted evolutionary 

models to each of the 7 main hummingbird clades: hermits, mangoes, brilliants, coquettes, 

gems, bees and emeralds. Five species are omitted from these analyses, as they are members of 

other clades that are too small to be useful with these methods (these species are Topaza pyra, 

Topaza pella, Florisuga fusca, Florisuga mellivora, and Patagona gigas). 

To fit Brownian Motion (BM) models and transformations thereof, I used the R packages ape 

(Paradis 2005), picante (Kemble et al. 2010) and geiger (Harmon et al. 2008). In the BM model, 

the expectation of variance in trait values between tree branches accumulates linearly with time 

at a rate   . This is also the rate at which any given lineage moves in a random direction in trait-

space. This rate can be made a function of time by 'tree transformation' parameters such as   

and   (Pagel 1997) and the early burst (EB) model (Blomberg et al. 2003, Harmon et al. 2010a). 

The kappa model describes gradual changes in rate of an individual branch as it ages, whereas   

models gradual clade-wide changes as the whole clade ages. An alternative, slightly more 
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complex model than BM is the Ornstein-Uhlenbeck (OU) model. In the OU model, species 

undergo random BM evolution but are also drawn towards a central ‘optimum’ value, with a 

strength proportional to the distance from this value (Hansen 1997). In this way, the OU model 

is analogous to the concept of stabilising selection. It is worth noting that maximum likelihood 

fits of the OU model are known to be biased (Cooper et al. 2016). 

 

 

Figure 4.1: hummingbird phylogeny, with seven major clades marked. 

 

The parameters   (Blomberg 2003) and λ (Pagel, 1997, 1999) measure the phylogenetic 

structure of trait data compared with that expected under a given BM model. A value of     

indicates a perfect fit to the BM model;     indicates less phylogenetic signal and     

indicates more signal than expected. In the EB model, the rate of evolution across the whole 

phylogeny undergoes an exponential slowdown. The differential equation for the evolution of a 

branch is  

               .       Equation 4.1 
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This model is fitted to each hummingbird clade and trait, and P-values obtained for the null 

model where   is equal to 1. A value of   significantly greater than 1 implies an early burst of 

trait evolution, and describes an exponential slowdown over time. 

I also applied a previously developed model and simulation method for detecting character-

displacement patterns in phylogenetic data. This model is described by equation 4.2: 

                         ( (     )).    Equation 4.2 

This adds a further term to equation 4.1, representing the effect of species with similar trait 

values on one another.   is the cumulative normal function,     is a unit vector in trait-space 

pointing from species  to species  , and   is a parameter corresponding to the strength of 

interspecific competition. In the limit as    , we recover BM. Species that are nearby in trait-

space “push” each other apart, tending to make their trait values more distinct. Therefore, this 

process predicts an overdispersion of trait values across the clade, and high phylogenetic signal. 

Simulated data sets are generated for this model using a discrete approximation to equation 4.2. 

For each time step, random Brownian motion is assigned to each phylogeny branch, and the 

effect of branches on each other are computed. We are left with a set of trait values for the 

phylogeny tips, i.e. the extant species. The competition interaction between any given pair of 

species can be turned on and off at predetermined times.  

Because this character displacement model has many interacting parts, it is not obvious how to 

calculate a likelihood function for it. An Approximate Bayesian computation (ABC) method is 

therefore used to generate an approximate likelihood distribution for model parameters (rate of 

random change and strength of interactions) via simulation. This statistical approach is 

reviewed in an ecological context in Beaumont (2010) and Csilléry (2010). For a given 

phylogeny, many data sets are simulated, and summary statistics generated for each one. Then, 

for a given trait data set, we accept simulations with summary statistics that are closest to those 

of the true data set. The distribution of summary statistics for this ‘nearby’ set of simulations is 

then considered an approximation to the likelihood distribution. This process can be repeated 

for different models, or the likelihood can be maximised only along given planes in parameter 

space, to fit nested models. Likelihood ratio tests can then be used in the usual way to generate 

a P-value for generating the observed summary statistics under a null model. Here, that null 

model is typically Brownian motion. I chose three summary statistics: the phylogenetic signal K, 

and the mean and standard deviation of the distances in trait space between neighbouring 

species. These summary statistics reflect the intended features of the model. For each 

hummingbird clade, fitted model parameters and P-values were obtained. The P-value here is 
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the likelihood of obtaining the observed summary statistics from data simulated under a BM 

model.  

Blomberg's K (Blomberg et al. 2003) is a measure of phylogenetic signal. It measures whether 

more closely related species have more similar trait values, relative to the predictions of the BM 

model. It is expected to be 1 under BM, and less than 1 for OU processes. Values of K greater 

than 1 imply that trait values are even more phylogenetically structured than in BM. Such an 

excess of signal is predicted by the character displacement model. K was computed using the 

function Kcalc in the R package picante (Kemble et al. 2010), for each hummingbird clade and 

trait. 

 

Results 

Trait distributions 

The body size distributions and beak length distributions for each of the 7 main hummingbird 

clades are shown in figure 4.2. The hermits have the widest range of values for both traits. Both 

the bees and mountain gems have relatively narrow size distributions, but for beak length the 

gems’ distribution is very wide, while the bees remain tightly packed. The overall hummingbird 

trait distributions are approximately normal, but the distributions of individual clades often 

appear multimodal. 

Figure 4.2: body size and culmen length distributions for 7 hummingbird clades. The area 

under each curve is proportional to the number of species in that clade. 
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Trait evolution modelling 

Brownian, Ornstein-Uhlenbeck (OU) and early burst (EB) models were fitted to the seven main 

clades, as well as to the whole hummingbird tree. Maximum likelihood parameter estimates and 

null P-values are shown in table 4.1 for body size and in table 4.2 for beak length. Also shown 

are estimates of the phylogenetic signal K.  

 

For body mass, the OU model is significantly preferred to BM for bees and mangoes. These are 

also the clades with particularly low K. There is no significant evidence for the EB model for any 

clade, although the whole hummingbird tree shows weak signs of a slowdown in trait evolution 

(      ). The whole tree also has high signal, with       , whereas we would have     

for Brownian evolution. 

 

The results for beak (culmen) length are quite different. Here, the early burst model is strongly 

supported for brilliants and for the whole hummingbird tree. This is despite a weaker signal of 

       for the whole tree. The only clade with particularly high signal was the gems, with 

      . The maximum likelihood estimate of slowdown for the gems was also high 

(       ), but not significant (       ).  

 
Table 4.1: evolutionary models fitted to hummingbird body size.   is the Brownian 

motion rate. K is Blomberg’s K, measuring phylogenetic signal.   is the OU model 

parameter representing the strength of attraction towards a central ‘optimum’. The early 

burst model parameter is also given, with negative values corresponding to slowdowns 

in trait change. P-values are shown for the OU model and EB model fits, as compared to 

the null BM model. Significant results are highlighted with a star. 

Clade BM:  𝟐 Signal K OU:   OU: P-value EB EB: P-value 

all 0.383 1.216 0.000 1.000 -0.044 0.238 
emeralds 0.331 0.929 0.000 1.000 -0.046 0.629 
bees 0.404 0.225 2.718* 0.001* 0.000 1.000 
gems 0.232 0.446 0.985 0.067 0.000 1.000 
coquettes 0.305 0.896 0.024 0.743 0.000 1.000 
brilliants 0.289 0.909 0.000 1.000 -0.009 0.933 
mangoes 0.403 0.394 0.238* 0.023* 0.000 1.000 
hermits 0.261 3.433 0.000 1.000 -0.019 0.818 
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Table 4.2: evolutionary models fitted to hummingbird beak (culmen) length.   is the 

Brownian motion rate. K is Blomberg’s K, measuring phylogenetic signal.   is the OU 

model parameter representing the strength of attraction towards a central ‘optimum’. 

The early burst model parameter is also given, with negative values corresponding to 

slowdowns in trait change. P-values are shown for the OU model and EB model fits, as 

compared to the null BM model. Significant results are highlighted with a star. 

Clade BM:  𝟐 Signal K OU:   OU: P-value EB EB: P-value 

all 0.383 0.842 0.000 1.000 -0.100* 0.016* 
emeralds 0.331 0.530 0.072 0.215 0.000 1.000 
bees 0.404 0.476 0.808 0.110 0.000 1.000 
gems 0.232 1.559 0.000 1.000 -0.443 0.132 
coquettes 0.305 0.380 0.285* 0.027* 0.000 1.000 
brilliants 0.289 1.080 0.000 1.000 -0.353* 0.001* 
mangoes 0.403 0.681 0.000 1.000 -0.031 0.847 
hermits 0.261 0.695 0.067 0.314 0.000 1.000 

 

 

Character displacement 

The character displacement model adds a parameter to BM, as per equation 4.2. This additional 

parameter, a, is the strength of character displacement interactions. I fitted this model to each of 

the 7 main clades, as well as to the whole hummingbird tree. Body size in hermits had 

significant evidence of character displacement patterns. Beak length in gems showed some 

weaker support for competition. Overall, competition strength parameter values were slightly 

higher for body size than for beak length. 

 
Table 4.3: character displacement models fitted to hummingbird body size. 

Clade  𝟐 a LRTS 

all 2.60 0.76 1.35 

bees 2.52 1.92 1.34 

brilliants 1.76 0.40 1.27 

coquettes 1.60 1.00 2.53 

emeralds 2.24 1.20 1.51 

gems 1.36 0.28 1.16 

hermits* 1.52 4.04 4.06 

mangoes 1.28 0.24 0.96 

 
Notes: Star denotes significant support for competition versus Brownian motion (not 

corrected for multiple tests). 
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Table 4.4: character displacement models fitted to hummingbird beak length. 

Clade  𝟐 a LRTS 

all 3.63 3.97 1.53 

bees 2.20 0.37 0.98 

brilliants 3.70 3.17 1.45 

coquettes 1.67 0.17 0.70 

emeralds 1.60 0.10 0.67 

gems 1.68 0.53 3.04 

hermits 0.97 0.07 0.91 

mangoes 1.43 0.13 0.95 

 

Discussion 

I divided the hummingbird tree into several main clades. Overall, I found little evidence of 

character displacement patterns, with most clades favouring either a BM or OU model. The 

results indicate that the evolutionary processes shaping any given clade cannot easily be 

inferred from either phylogenetic closeness or historical environment. For example, the 

coquettes and brilliants are sibling clades, both radiating in the Andes, and, while both have 

similar results for body size, they show completely different patterns for beak length. Inference 

of these processes for whole groups of species is likely to be subject to a lot of individual 

variation and exceptions. This is known to be true for geographic scale (González-Caro et al. 

2012), and I found a similar conclusion for phylogenetic scale. This inconsistency of 

phylogenetic signal and evolutionary mode across the whole hummingbird clade makes it 

important that studies of hummingbirds are cautious in their overall assumptions.   

The assemblage composition of South American hummingbirds has previously been studied 

using differences in traits and relatedness between neighbouring communities (𝛽 diversity; 

Anderson et al. 2011, Weinstein et al. 2014). Similar methods have linked composition to 

aspects of environment; for example, there is greater phylogenetic clustering at higher altitudes 

in the Andes, suggestive of greater environmental filtering in harsher conditions (Graham et al. 

2009). These studies use the scheme from Webb et al. (2002), where phylogenetic 

overdispersion implies competition between close relatives (limiting similarity), and 

phylogenetic clustering implies environmental filtering, where close relatives have some key 

trait required for a given environment. Graham et al. (2012) found that the phylogenetically 

clustered communities (the ones living in harsher environments) have the more even trait 

distributions. This may mean that while harsh environments filter for certain key traits, causing 

phylogenetic clustering, while competitive exclusion operates on the other, measured traits 

leaving them overdispersed (i.e. flatter distribution than a normal distribution) in the 
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community. This is supported by the fact that Graham et al. (2012) also found body mass to have 

a reduced variance in harsh environments, but at the same time a more even distribution than 

expected under random null models. Phylogenetic methods have also been used to show that 

mechanisms like limiting similarity and environmental filtering can affect species in the same 

community differently, such that the forces acting on a species differ by its environment and its 

ancestry simultaneously (Parra et al. 2010, Lessard et al. 2016).  

 

The phylogeny and trait data I used (Lessard et al. 2015) includes 279 extant species, with body 

mass and culmen length values for each of them. I found high phylogenetic signal in both traits 

for the whole tree. Signal was slightly higher for body size than for beak length. I also found 

highly varying signal between clades. Overall, the signal for the whole hummingbird clade is, 

particularly for body size, greater than the median of the signal for the individual clades. This 

suggests that there is more phylogenetic structure at large scales—e.g. between genera—than at 

the finer scale of individual species. This could be due to clades living in different places and 

having different mean body sizes according to their general environment, while beak length is 

more affected by local competition. Then, similar beak sizes would be found in distant locations, 

but geographically neighbouring species will compete for different niches and have more 

phylogenetically structured beak lengths. 

 

Our results for phylogenetic signal are broadly consistent with the results of Graham et al. 

(2009, 2012). However, while I found higher signal for body size than beak length, Graham et al. 

(2012) found the opposite to be true for a more localised collection of 126 hummingbird species 

from Ecuador and Columbia. The contrast between these results supports the idea that body 

size may be more phylogenetically structured at larger scales. It is worth noting that Graham et 

al. (2012) go on to do analyses which assume that high phylogenetic signal is present across the 

hummingbird tree; these analyses may be less valid for clades where signal is much lower, such 

as the bees and mangoes. 

 

A mild slowdown was significantly supported (       ) for the whole hummingbird clade. 

Since diversification rate has also slowed across the hummingbirds (McGuire et al. 2014), this 

result is consistent with a gradual filling up of available niches or new environments. The early 

burst model was not significantly supported (relative to BM) for body size in any of the clades. 

Overall, the early burst model is generally better supported for beak length, and the OU model 

for body size. Since body size is associated with warmth retention, and beak length is associated 

with diet and feeding habits, this overall result is consistent with ecological expectations.  
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Brilliants and coquettes 

Brilliants and coquettes together form the ‘Andes clade’. They radiated where the Andes now 

stand, and most of their extant species live there now. Hummingbird body size is positively 

correlated with altitude overall, and the brilliants have the highest mean body size of all the 

main clades (Stiles 2008). They might therefore be expected to have a smaller range of body 

sizes, or to have their sizes constrained to be close to a high optimum for the harsher conditions 

at higher altitudes. If this were so, then the body size of this clade would likely fit an OU model 

best. I did not find that the OU model was a better fit than Brownian motion, however. In fact, 

figure 4.2 shows that these clades don’t have a particularly narraw distribution of size values, 

although the brilliants have the highest mean size of the major clades. Indeed, the coquette 

distribution appears to be multimodal. This may be due to species that have colonised areas 

outside the Andes and then evolved varying sizes. Or, it may be that body size is unconstrained 

by the harsh environment. Subsetting the clade by area or by altitude might help clarify this 

point in future analyses. 

Both clades had high phylogenetic signal (         and 0.91) for body size, but for beak length 

the brilliants had far more phylogenetic structure than the coquettes (        and 0.4). The 

early burst model was not significantly supported (relative to BM) for body size in any of the 

hummingbird clades. For beak length, however, the EB model was strongly supported in the 

brilliants clade, with a large estimated slowdown parameter,         . This suggests a rapid 

divergence of beak lengths early in the brilliants’ evolutionary history. The brilliants also have 

the highest mean beak length. 

Though they are adapted to similar environments, brilliants and coquettes are very divergent 

(Stiles 2008). Both have large wings relative to their mass—an adaptation to a thinner 

atmosphere—but the brilliants are larger than the coquettes, and have longer bills. Coquettes 

have much bigger feet than any clade, suggesting that they do less hovering and more perching 

compared with the brilliants. The differences between these two clades seem to be reflected in 

distinct evolutionary histories, especially for beak length. 

Bees and mountain gems 

The bees and mountain gems are the hummingbird clades thought to have radiated in North 

America. I found that both have low signal for the body size trait. For beak length, the bees also 

have low signal (      ), but signal for the mountain gems is very high (      ). The 

mountain gems are almost entirely larger in size than all of the bees. This could reflect a greater 

generalism, in terms of feeding, among the bees, which are much smaller than the gems. It 
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would be interesting to compare this result with a detailed study of the feeding behaviour of the 

two clades. 

 

The maximum likelihood slowdown estimate (EB model) for the mountain gems is high 

(        ), suggesting an early burst of trait evolution consistent with an adaptive radiation. 

Despite having a stronger estimated slowdown than the brilliants, the mountain gems result is 

not significant; this may reflect the fact that the gems are simply a smaller clade. For the bees, 

however, the OU model is significantly preferred for body size. The bees can be seen in figure 4.2 

to have a much smaller range of body sizes than most clades. Along with the support for the OU 

model, this suggests that the bees’ sizes may be subject to relatively tight evolutionary 

constraints. If so, this shows that such constraints do not necessarily coincide with harsh 

environments: although some bees live in mountainous areas, the clade is not composed 

exclusively of high-altitude species. 

 

The bees have the highest diversification rate of all the main clades, and, along with the rest of 

the hummingbirds, a significant recent slowdown (McGuire et al. 2014). This suggests the 

possibility that the bees may be a recent radiation. However, their trait evolution turns out to be 

OU-like, more so than any other clade. This implies that the bees may not be a recent radiation, 

but rather an older clade with rapid, continual species turnover. 

 

 

Hermits and emeralds 

The hermits are thought to have been the first hummingbirds to have occupied the lowlands 

east of the Andes, and are considered to have radiated there (Parra et al. 2010). This clade had 

very high signal (      ) for body size, but only moderate signal (    7 ) for culmen 

length. The hermits and the emeralds have the two highest measures of signal for body size; 

both are considered lowland species, so this is consistent with increasing evolutionary 

constraints on body size at higher altitudes. The hermits also had significant support for the 

character displacement model. This model predicts a rapid expansion into trait-space, so that 

species’ trait values are well differentiated. Evolutionary constraints, on the other hand, are 

likely to erode phylogenetic signal and produce an OU-like pattern over enough time. 
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Character displacement  

I found little support overall for character displacement patterns in hummingbird clades. This 

does not exclude the possibility that character displacement and niche-packing mechanisms 

have an important role in hummingbird evolution; however, it suggests that they don’t operate 

at the phylogenetic and geographic level of the analysis. It would be interesting to compare 

these results to an application of the model to smaller clades of species that either coexist or 

share geographical borders. 

 

Although the competition model has character displacement interactions, it does not necessarily 

assume sympatric speciation. Similar patterns can arise from adaptation to alternative niches in 

neighbouring environments as well as in the same environment. For example, in North-

American wood warblers, local coexistence has been found to increase with the time since the 

last common ancestor of the species (Lovette and Hochachka 2006). This suggests that 

competitive exclusion acts on new sibling species, but that after time passes, those species 

diverge phenotypically, and become different enough to come back into coexistence. This sort of 

process produces the same patterns we expect to see from sympatric speciation and character 

displacement.  

 

The exception to the results for this model is the body size of hermit species. For this clade, the 

competition model was strongly supported, with a large effect size (      ). This clade was a 

lowland radiation, initially isolated to the east of the Andes. This isolation from the other 

hummingbirds may go some way towards explaining these results; however, it is then not clear 

why beak length has far less phylogenetic structure. A more detailed investigation of this clade, 

combining phylogenetic and geographic data with evolutionary modelling, may help clarify this 

point. With coexistence data, for example, a coexistence matrix could be added to the 

competition model. This could establish whether the phylogenetic structure in hermit body size 

is due to character displacement in sympatry, or, for instance, sequential adaptation to 

environments at distinct altitudes.  

 

Stochastic models of trait evolution have been fitted to the whole hummingbird phylogeny: an 

OU model was preferred for mean temperature, mean precipitation and range size, while a BM 

model was preferred for body mass and beak length (Lessard et al. 2016). These models were 

not fitted to any subdivisions of the hummingbird phylogeny. Diversification models have been 

found to vary greatly among hummingbird clades (Jetz et al. 2012, McGuire et al. 2014), with for 

example high rates in bees and some of the emeralds, and low rates in the mangoes. Since 
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diversification rates vary so much between clades, these different clades may be expected to 

have undergone different regimes of trait evolution also.  

Conclusion 

For the analyses, I divided the hummingbird tree into several main clades. The results indicate 

that the evolutionary processes shaping any given clade cannot easily be inferred from either 

phylogenetic closeness or historical environment. For example, the coquettes and brilliants are 

sibling clades, both radiating in the Andes, and, while both have similar results for body size, I 

find that they show completely different patterns for beak length. Inference of these processes 

for whole groups of species is likely to be subject to a lot of individual variation and exceptions. 

This is known to be true for geographic scale (González-Caro et al. 2012), and I find a similar 

conclusion for phylogenetic scale.  

This high level of variance between subclades means that care must be taken in choosing the 

assumptions that are made in further analysis. For example, a common assumption for the 

whole hummingbird tree is phylogenetic signal consistent with Brownian evolution (e.g. in 

Graham et al. 2012). But signal varies a lot between clades and between scales, becoming much 

more varied at finer scales. Hence, analyses making this assumption for the whole hummingbird 

tree may be valid only for certain portions of the tree.  

I found little evidence of character displacement patterns in hummingbirds. However, this study 

was restricted to body size and beak length. A better place to look for evidence of competition 

may be in beak shape. The character displacement model could be applied, for example, to beak 

length, width and curvature simultaneously. This would provide a characterisation of the beak 

that would be better related to its ecological niche. Using this kind of data would therefore be a 

good next step. 
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Chapter 5: Diversification rates and lineage trait densities 

 

Abstract 

Diversification based on the ‘filling up’ of niches can be modelled in several different ways. I 

introduce a new model that couples diversification rates to trait packing densities, and compare 

the predictions of this model to those of two other, related models. With similar conceptual 

starting points, these three models of diversification leads to very different results in terms of 

tree shapes and trait distributions. I characterise these differences using simulated data from 

each model, and discuss the implications for diversification modelling and the inference of 

ecological effects from phylogenies. 

 

Introduction 

Diversification rates 

A fundamental goal of evolutionary study is to understand when and why species multiply. 

Diversification rates vary between clades (Jetz et al. 2012), between different sizes of clade 

(Phillimore and Price 2008, Etienne et al. 2012), between climates (Kozak and Wiens 2010), 

across geographic domains (Moen and Morlon 2014), through time (Rabosky 2006) and 

between ecological groups (Martin and Wainwright 2011). Rates can also be affected by key 

morphological innovations (Dumont et al. 2012), or more generally by species’ trait values 

(Paradis 2005, Maddison et al. 2007, Freckleton et al. 2008, Fitzjohn 2010) or rates of trait 

evolution (Adams et al. 2009, Rabosky et al. 2013).  

A molecular phylogeny containing only extant species and their history can be used to infer 

speciation and extinction rates (Nee et al. 1994, Paradis 1997). The overall diversification rate, 

equal to the speciation rate b minus the extinction rate d is given by the total accumulation of 

species and the lifetime of the clade. The extinction rate, meanwhile, is computed from the 

diversification rate b-d and the ‘relative extinction rate’ d/b (Nee et al. 1994). The latter ratio is 

obtained via the apparent change in diversification rate through time. When the relative 

extinction rate is low, the diversification rate will simply approximate the speciation rate b. But 

when the relative extinction rate is high,  the diversification rate will appear to increase through 

time, meaning that extant species are generally younger. The rate of diversification therefore 

appears to accelerate with time (Rabosky 2006). From this framework, likelihoods for 

speciation and extinction rates are computed as functions of phylogenetic data.  
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In these simplest cases, rates of extinction and diversification are assumed to be independent of 

ecological or biological factors. However, this ignores a suite of possible processes that shape 

trait evolution and consequently models have been developed for diversification rate change as 

a function of binary traits (Maddison et al. 2007, Magnuson-Ford and Otto 2012, Rabosky and 

Goldberg 2017), quantitative traits (Fitzjohn 2010), or discrete rate changes at unknown times 

(Rabosky 2014).  

 

Diversity dependence 

Another potential source of diversification rate changes is diversity dependence, where the 

diversification rate for each lineage depends on the total number of lineages in the clade. This is 

the focus here. In diversity dependent models, the diversification rate for each lineage depends 

on the total number of lineages in the clade. A fixed number of niches are assumed to be 

available to the whole clade (Walker and Valentine 1984, Etienne et al. 2012), and as they 

become filled, the speciation rate declines. This approach is rooted in the idea of diversification 

as a function of ecological opportunity (Schluter 2000), and is consistent with slowdowns in 

diversification rate through time. Slowdowns are common in studied clades (Phillimore and 

Price 2008), and are often interpreted as evidence of adaptive radiation (e.g. Price 2008). 

 

Diversity dependence has been modelled using the number of niches as a hidden Markov 

variable, with extinction and speciation generating continual species turnover (Etienne et al. 

2012). The equation for this process is 

        (    (  
 

 
)),     Equation 5.1 

where   is the number of species,    is the initial speciation rate, and   is the maximum number 

of available niches. 

 

Under a pure birth Yule model, the expected diversification rate of each lineage is the same, and 

the total number of lineages grows exponentially with time. Any overall change in 

diversification rate with time can be quantified by the statistic  , which has a null expectation 

value   for a pure-birth model. Negative values of   are indicative of a diversification slowdown 

(Pybus and Harvey 2000). The median value of  across 45 bird clades was found to be around 

    , and 15 of the 45 clades had significantly negative gamma (        ) (Phillimore and 

Price 2008), suggesting that diversification slowdowns are fairly common among bird clades. 

Another aspect of phylogeny shape is imbalance: the degree to which historical sibling species 

have differing numbers of descendants. Imbalance is important because it indicates that 
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different lineages have diversified at different rates, and observed trees tend to have substantial 

imbalance (e.g. Purvis et al. 2011). The processes responsible for generating diversification 

rates are therefore likely to leave their mark in the resulting imbalance of the tree. Models that 

generate different diversification rates between lineages may produce more realistically 

imbalanced trees than models where all lineages have an equal rate, even if that rate changes 

through time. However, this will depend on the details of the models.  

 

Diversity dependent models of rate variation are based on the idea that the number of 

ecological niches is finite and that these niches fill up as a clade evolves and diversifies (Walker 

and Valentine 1984, Etienne et al. 2012). If traits are directly linked to niches, this means the 

models are implicitly connected to the species’ trait values, implying a diversification rate that 

slows as trait-space becomes more densely occupied. This effect has been demonstrated 

experimentally with bacteria in a lab experiment (Bailey et al. 2013). However, the diversity 

dependence model does not include any explicit mode of trait evolution.  

 

Trait evolution and diversification 

Methods have been developed to model traits under a variety of different processes. Traits are 

commonly assumed to follow a diffusion process such as Brownian motion (BM, Felsenstein 

1985, Freckleton et al. 2002) or an Ornstein-Uhlenbeck process (OU, Hansen 1997). A BM model 

predicts that traits follow random trajectories, becoming on average ever more different from 

each other. Given enough time, traits of a given set of species become less densely occupied. 

However, the density of traits may increase or decrease depending on the relative rates of 

diversification and trait evolution. The OU model is similar to the BM model, but adds an 

attraction to a central ‘optimum’ value; this means traits are likely to stay more tightly packed 

over time, and increasing numbers of species should increase trait densities. A BM process 

preserves phylogenetic signal, so that species are more similar to their close relatives, whereas 

OU processes tend to erase this signal over time. 

 

Models also exist for the simultaneous, linked effects of trait (or niche) evolution and speciation 

events, where all the evolution occurs at the speciation event and a taxon is more likely to 

speciate if it is close to empty niches (Price 1997, Harvey and Rambaut 2000, Freckleton et al. 

2000, Price et al. 2014). In these ‘niche filling’ (NF) models, species’ trait values are constant in 

time, and the position of each niche in niche-space is constant in time. The available niches are 

randomly positioned in niche-space, typically following a multivariate normal distribution. They 

are then gradually filled by new species, branching from whichever species is closest. The NF 
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model is conceptually related to diversity dependent diversification, since it is based on the 

gradual filling up of available niches; however, the models operate differently, and the NF model 

predicts—by definition—the creation of new species at regular time intervals, and therefore a 

slowdown in per-lineage diversification rates. Like BM evolution, the NF model predicts strong 

phylogenetic signal. 

 

A new model: trait density dependent diversification 

I introduce a new model, where the diversification rate changes with the trait packing density of 

the species. This approach is consistent with the ecological idea of competitive exclusion, 

usually invoked for community assembly studies (e.g. Webb et al. 2002). Because trait evolution 

and trait packing are tracked explicitly, this model generates differences in diversification rate 

between lineages. This is in contrast to the diversity dependence approach, where the 

diversification rate for the whole clade is slowed by the accumulation of new species anywhere 

within the clade. The detailed equations and simulation process for the trait density 

dependence model are explained in the methods section below. 

 

Goals 

In this chapter, I examine the predictions of diversity dependent diversification models, and 

consider their compatibility with common trait evolution models. I simulate data under 

diversity dependence models, as well as the NF model (Price 1997). I also demonstrate a new 

model: density-dependent diversification based on trait-packing, rather than the total number 

of species in the clade. I show how this new model works, how it can be simulated, and 

characterise the datasets it generates. 

 

These three models—diversity dependence, trait density dependence, and niche-filling—all 

have closely related assumptions, and are plausible under similar conditions: adaptive 

radiations where the total number of species is increasing towards an ecologically constrained 

maximum. I compare the predictions of these three models, and discuss their implications for 

the inference of ecological processes from diversification patterns. 
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Methods 

Model for trait density dependent diversification 

The new model treats diversification rate as a linear function of distances between 

neighbouring traits. For each new species, the Euclidian distance to its nearest neighbour in 

trait-space is calculated, and used as a parameter in determining the time until the next 

speciation event on that lineage. If the trait value for species i is denoted   , and the nearest 

species in trait-space is species  , then the speciation rate of lineage i is 

 

       (     
 

|     |
),      Equation 5.2 

 

where   is a parameter representing the strength of the effect of trait values of speciation rate. 

This equation is plotted in figure 5.1, showing the effect of   on the diversification rate. Negative 

values of   cause reduced diversification rates. For trait distances smaller than   , no 

speciation can occur. For distances larger than   , the rate of diversification gradually increases 

up to a limit of    when the distance is very large relative to   . In this sense,   is a 

‘characteristic trait difference’ of the model: the point at which speciation becomes impossible, 

and which suppresses speciation when approached. Positive values of   indicate that common 

trait values promote speciation. If there were also a linear dependence on the trait value    

itself, then we could add a parameter a for the effect of trait value, and write 

 

       (      
 

|     |
)     .     Equation 5.3 

 

To simulate this model, I constructed trees and trait datasets branch by branch, using functions 

in the R package ape (Paradis et al. 2004). The speciation times were generated from the rates 

described above, by sampling randomly from an exponential distribution with rate  , using the 

R function rexp. The trait values on each branch were evolved between speciation events 

according to one of the common diffusion models: Brownian Motion (BM; Felsenstein 1985) or 

the Ornstein-Uhlenbeck (OU) process (Martins 1994, Hansen 1997, Butler and King 2004; but 

see Cooper et al. 2016). These are stochastic functions, where the branches are all independent 

of one another. Therefore, although the diversification rate of a lineage is affected by other 

lineages, its trait evolution is not. 
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Figure 5.1: Trait-diversity dependence (TDD) model illustration.    is the diversification 

rate when it is unaffected by trait packing.   is the strength of the trait packing effect, as 

per Equation 5.2. 

 

The procedure for generating simulations starts with a single root branch and a single root trait 

value. The following steps are then followed: 

1. Take the youngest tip and split it so that at its position we now have two tips with zero 

branch length and equal trait value. 

2. Compute the speciation rate of the splitting tip according to Equation 5.2 or Equation 

5.3. 

3. Set the two new branch lengths    equal to each of two random draws from an 

exponential distribution with rate  . The probability density for any given branch length 

(time to next speciation event)   is 

      λ           Equation 5.4 

4. Compute the trait values of the two new tips. If the model of trait evolution is BM with 

rate parameter  , then the new trait values will be draws from a normal distribution 

with mean equal to the trait value of the start node and variance    
 . If the trait model 

is OU, then in addition to random Brownian diffusion, the lineage is attracted to a 

‘central optimum’ with a strength parameterised by  .  

5. Repeat steps 1 to 4 until the tree has at least the desired number of tips. 
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6. Trim the tree by imposing a time cutoff such that the tree has the desired number of tips 

and is ultrametric. 

 

This implementation was done entirely in R, using the packages ape and mvtnorm. For OU trait 

evolution, I used the function rTraitCont in the R package ape (Paradis et al. 2004). This was 

applied separately for each edge of the phylogeny—that is, for each lineage section, as divided 

by speciation events. 

 

Simulations  

I generated simulated trees and trait datasets using each of the models: diversity dependent 

diversification (DD, Etienne 2012), niche filling (NF, Price 1997), and the new model presented 

here, trait-density dependent diversification (TDD). Using a wide range of model parameters, 

with and without extinction, allows us to compare their behaviour. The trees were largely 100 

tips in size (though I also assessed the effect of tree size; see below), since this is similar to that 

of larger adaptive radiation datasets (e.g. Harmon et al. 2010a). Also, the relative behaviour of 

the models was largely unaffected by total tree size: the effect of larger trees, in the case of the 

diversity dependence model, for example, was equivalent to reducing the total number of 

available niches in the model; both   and    tend to be inflated as trees get larger (see Appendix 

5A). These simulations were done for both a speciation-only scenario and a speciation with 

extinction scenario, with a constant rate of extinction set to 0.3.  

 

For the standard diversity dependence model (DD), as described in Rabosky and Lovette (2008) 

and Etienne et al. (2012), I obtained 100-tip trees from scenarios where the total number of 

available niches,  , was either 120 or 240. In each case, I used extintion ( ) values of 0, 0.1 and 

0.4. For each set of model parameters, 100 simulations were made. 

 

With the trait-density dependence model (TDD), I generated simulations using density effect 

strengths ( ) of 0.0, -0.1, -0.2 and -0.5. I used both BM trait evolution and OU evolution, with 

       and       in the latter case; such small values of the OU and TDD parameters were 

necessary because, when used in combination, they suppress speciation very strongly, and 

larger parameter values result in trees that never reach 100 lineages. Further simulations used 

higher effect strengths (                ) with both BM trait evolution. Most of these 

simulations had no extinction, but I also ran simulations with nonzero extinction rates 

(         ) for       . For each set of model parameters, 100 simulations were made. 
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The niche-filling model of Price (1997) (see also Harvey and Rambaut 2000, Freckleton et al. 

2000) has no parameters to be varied, except for the multivariate normal distribution from 

which niches are drawn. The correlation structure of different traits was not the focus here, so I 

set all the niche-filling simulations to use a 2-dimensional normal niche distribution, with unit 

variance and no covariance.  

 

Finally, I compared results for different tree sizes, to check whether the qualitative outcomes 

were affected by clade size. I simulated trees with 20, 50 and 100 tips. For the diversity 

dependence model, I used a maximum niche count   that was 20% larger than the number of 

tips: 24, 60 and 120 niches respectively. For the trait density depencence model, I used 

       . 

 

 

Summary statistics 

I computed a range of descriptive statistics for simulated trees. First, tree imbalance was 

measured using Colless’ index    (Mooers and Heard 1997), obtained using the function colless 

in the R package apTreeshape (Bortolussi et al. 2006). This statistic is the sum over nodes of the 

differences in the number of tips between the two clades that are descendent from each node. I 

used a Yule-normalisation (Bortolussi et al. 2006) so that the expectation value under a Yule 

process is 0, and positive values indicate greater imbalance than expected. The Colless index    

is computationally simple and has well established statistical properties (Mooers and Heard 

1997), making it well suited to a simulation study like the one presented here. 

 

Bias of internal node positions towards the root or the tips can be measured by the  -statistic 

(Pybus and Harvey 2000), and I obtained it using the function gammaStat in the R package ape 

(Paradis et al. 2004). Extinction can negatively bias the   statistic, i.e. create the appearance of 

diversification slowdowns where they don’t truly exist (Phillimore and Price 2008, Pennell et al. 

2012). However, it is the most commonly used slowdown statistic, so I have chosen to 

categorise the models here using it. Also, I explicitly consider extinction rates in the simulations. 

It is important to remember that significantly negative values of   must be interpreted with 

caution, however. 

 

I also looked at the distribution of traits across the tips. Under a diffusion model, tip trait values 

are expected to be (multivariate) normally distributed. However, the trait-density dependent 
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model has speciation rates that vary with trait values, and this may mean that tip traits are no 

longer normally distributed.  

 

Phylogenetic signal can be measured using Blomberg’s   (Blomberg et al. 2003). Although   is 

perhaps more frequently used for quantifying signal, K was preferable here because it can 

measure both supressed and elevated signal compared with BM. I computed K for each set of 

simulated data and phylogeny using the function Kcalc in the R package picante (Kembel et al. 

2010).  

 

Results 

The model and model parameters for each simulation, along with the mean and standard 

deviation of the various summary statistics, are shown in table 5.1. 

 

Tree imbalance 

Tree imbalance, as measured by the Colless index    (Mooers and Heard 1997), is shown in 

figure 5.1, for each of the three models, as a function of the strength of ecological effects. For the 

DD model, this ‘strength’ is how close the number of tree tips is to the total number of available 

niches. In the NF model, the situation is similar, but the number of niches is shown not explicitly 

but as a proportion of the number of tree tips. In the TDD model, the effect strength is an 

explicit model parameter,  .  

 

I found that trees simulated using DD were slightly more balanced than random trees: they had 

    , corresponding to sibling subclades with more similar numbers of tips than expected by 

random chance. The TDD and NF models had strongly positive   , meaning that they produced 

much more imbalanced trees. The strongest imbalance (        ) was produced by the NF 

model, while the TDD trees were most imbalanced when they had high extinction rates and OU 

trait evolution. 
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Table 5.1: Model simulations and average summary statistics. PB the ‘null’ pure-birth 

diversification model, with Brownian trait evolution.   is the strength of the effect of trait 

packing on diversification rates in the trait-density dependence model.   is the total 

number of niches available in the DD model.   is extinction rate.   is the strength of 

attraction to the global ‘optimum’ trait value in the OU trait evolution process;     

corresponds to BM trait evolution.   is a measure of diversification rate change through 

time.    is the Colless index of tree imbalance.   is a measure of phylogenetic signal in 

trait values. The stated values of these summary statistics are the means across 100 

simulations; the standard deviation is also shown. 

                                  

Pure birth diversification model with Brownian trait evolution: 

0 NA 0 0 0.08 1.06 -0.03 0.77 1.06 0.62 

Diversity dependence: 

NA 120 0 NA -2.30 0.92 -0.18 0.79 NA NA 

NA 120 0.1 NA -2.32 1.03 -0.33 0.66 NA NA 

NA 120 0.4 NA -2.34 1.02 -0.26 0.77 NA NA 

NA 240 0 NA -1.01 0.86 -0.10 0.69 NA NA 

NA 240 0.1 NA -0.93 1.00 -0.04 0.72 NA NA 

NA 240 0.4 NA -0.84 1.02 0.02 0.76 NA NA 

Niche filling: 

NA NA NA NA -5.60 0.00 12.41 3.99 1.50 0.53 

Trait density dependence: 

-0.1 NA 0 0 -2.14 1.05 0.06 0.79 0.16 0.09 

-0.2 NA 0 0 -2.92 1.22 0.40 0.88 0.21 0.11 

-0.5 NA 0 0 -3.48 1.29 1.16 1.24 0.24 0.11 

-0.5 NA 0.1 0 -2.75 1.42 2.23 1.53 0.22 0.11 

-0.2 NA 0.2 0 -2.12 1.54 1.30 1.14 0.21 0.13 

-0.1 NA 0 0.1 -3.77 1.40 0.12 0.81 0.28 0.17 

-0.1 NA 
0 0.1 -4.05 1.31 0.12 0.90 0.29 0.15 

-0.1 NA 
0 0.2 -5.23 2.04 0.43 1.01 0.34 0.17 

-0.1 NA 
0 0.3 -5.05 2.00 0.39 1.01 0.30 0.15 

-0.1 NA 
0 0.4 -6.92 2.29 0.44 0.96 0.37 0.17 

-0.6 NA 0 0 -3.73 1.36 1.47 1.22 0.25 0.12 

-0.7 NA 0 0 -3.34 1.37 1.55 1.32 0.23 0.11 

-0.8 NA 0 0 -3.41 1.28 1.83 1.28 0.23 0.11 

-0.9 NA 0 0 -3.43 1.34 2.04 1.46 0.21 0.11 
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It can be seen that the NF model creates highly imbalanced trees regardless of the number of 

available niches, and that this number has little effect on    (             7 for linear 

correlation). The number of available niches in the DD model also has little or no effect on   , the 

tree imbalance being close to the null (random pure birth) expectation of      in all cases 

(               for linear correlation). In the TDD model, however, the strength of the 

coupling between trait packing and diversification has a large effect on tree imbalance 

(               ).     corresponds to a pure-birth model, and the tree imbalance 

corresponds to the null expectation     . As   becomes more negative, however, close trait 

packing suppresses diversification, and trees become progressively more imbalanced. When 

    , the trees are about as imbalanced as they are under the NF model. When an OU trait 

evolution process is used in the TDD model rather than a BM process, the relationship between 

trait-diversification coupling and tree imbalance is no longer present (              ). 

 

Diversification rate changes 

The overall speedup or slowdown of diversification rate in a phylogeny is measured by  .  I find 

  to be negative for all three models, with moderate effects in DD models and the strongest 

effects in the NF model and TDD models with OU trait evolution (i.e.    ). Extinction rates do 

not appear to affect the  -statistic in the DD and TDD models.  

 

For the NF model,   is a constant, because new species are created at regular intervals, 

unaffected by any other parameters of the model. This can be seen in figure 5.2, where the NF 

slowdown is unaffected by the ratio of available niches to number of tree tips. When the DD 

model is used, trees show a significant slowdown in diversification rate when the number of 

tree tips is close to the total number of available niches,   (          7       ). As   

becomes large relative to the tree size,   approaches  . The TDD model produces trees with 

strong slowdowns when   is strongly negative (               for BM process), especially 

when the trait evolution follows an OU process (               ). As   approaches  , so 

too does  . 
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Figure 5.2: Tree imbalance, as measured by the Colless statistic   , as a function of niche 

packing measures for various models. Each point is an average over 100 simulations. A, 

diversity dependent diversification (Etienne 2012);   measures the total number of 

niches. B, niche-filling model (Price 1997); niche density corresponds to the number of 

niches available relative to the number of tips on the phylogeny. C, trait-density 

dependent diversification with BM trait evolution; b is the trait effect strength 

parameter. D, trait-density dependent diversification with OU trait evolution. 
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Figure 5.3: Diversification speedup / slowdown. The gamma statistic   measures the rate 

of change of diversification rate with time. Negative   corresponds to a diversification 

slowdown. Each point is an average over 100 simulations. A, diversity dependent 

diversification (Etienne 2012);   measures the total number of niches. B, niche-filling 

model (Price 1997); niche density corresponds to the number of niches available relative 

to the number of tips on the phylogeny. C, trait-density dependent diversification with 

BM trait evolution; b is the trait effect strength parameter. D, trait-density dependent 

diversification with OU trait evolution 
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Phylogenetic signal 

Phylogenetic signal in trait values was measured by  . DD is purely a diversification model, so it 

does not generate any trait values, only trees. If trait evolution were simulated on these trees 

using BM, then the expected signal would be    ; if an OU process were used instead, then   

would be lower. The other two models produce trees and trait values together, since they 

couple trait evolution to the diversification process. In the NF model, signal is increased (to 

      ) relative to the null (BM) expectation of    . In the TDD model, however, signal is 

substantially reduced, down to        for Brownian trait evolution and no extinction.  

 
 

Effects of tree size 

I found that tree size did not affect the relative result from the three tested models. Overall, 

however, larger trees resulted in greater values of   and    – that is, greater apparent 

slowdowns and greater imbalance. Representative results for different tree sizes are shown in 

table 5A.1, in appendix 5A. 

 

Table 5.2: Summary statistics for model simulations using different tree sizes.  

Tips                                   

Diversity dependence: 
100 NA 120 0 NA -2.34764 1.19332 -0.26084 0.722059 NA NA 

50 NA 60 0 NA -1.66691 1.081896 -0.12049 0.719663 NA NA 

20 NA 24 0 NA -1.1135 1.148504 -0.1448 0.55432 NA NA 

Niche filling: 

100 NA NA NA NA -5.60341 0 11.51796 3.836061 1.459877 0.39711 

50 NA NA NA NA -3.84615 0 5.869109 2.711725 1.360428 0.407361 

20 NA NA NA NA -2.22681 0 2.713199 1.657943 1.254571 0.418132 

Trait density dependence: 

100 -0.5 NA 0 0 -3.19561 1.332053 1.084761 1.186597 0.230155 0.093587 

50 -0.5 NA 0 0 -2.16324 1.224179 0.422709 0.995987 0.281092 0.173794 

20 -0.5 NA 0 0 -1.01211 1.135204 -0.0168 0.674144 0.468933 0.353014 
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Discussion 

 

I examined three diversification models that all have a conceptual basis in species ‘filling up’  the 

available niches. I show how similar conceptual ideas can lead to very different results, 

depending on the implementation. 

 

Theory and assumptions for the three diversification models 

Diversification rates are known to vary greatly in nature (Phillimore and Price 2008, Kozak and 

Wiens 2010, Jetz et al. 2012, Moen and Morlon 2014). Apparent slowdowns in diversification 

rates are often attributed to diversity dependent diversification, where speciation rates vary 

with the number of extant species present in the clade. The basis for this is the idea that only so 

many niches are available to the clade, and, as they become filled up, lineages become less likely 

to split (Rabosky 2006, Etienne et al. 2012).  

 

The diversity dependence model (DD; Phillimore and Price 2008, Etienne 2012) and the new 

‘trait density dependence’ (TDD) model effectively differ in the way they distribute niches in 

niche-space. The DD model assumes that every new species reduces the ecological 

opportunities available to other species, regardless of which particular niche it occupies. So, for 

example, if the smallest species in a clade diversifies into two species, then the probability of a 

new species splitting from any other lineage in the clade – even the largest – is reduced. Niches 

are thus assumed to all interact equally. 

 

The TDD model, on the other hand, has niches evolving in accordance with a diffusion model, as 

is commonly assumed for traits (e.g. Felsenstein 1985, Pagel et al. 1997). Interactions between 

species occur only when their niches are nearby in niche-space. This approach is perhaps more 

conceptually intuitive, in that new lineages suppress each other’s diversification to a greater 

extent when they are more similar. However, it also implies that niches can be measured, and 

that they evolve in a manner similar to traits. This may be justified by the evidence that 

morphological traits often correspond closely to ecological niches (e.g. Pigot et al 2013). Since 

the TDD model has a diversity dependence that affects different lineages differently, I can 

expect it to generate greater imbalance in diversity between different parts of a clade. 

 

The niche-filling model (NF; Price 1997, Harvey and Rambaut 2000, Freckleton et al. 2000) is 

included in this study because it is conceptually similar to the TDD model, although it does not 

fit a diversification rate to datasets. Rather, the NF model simply assumes that each new lineage 
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arises after a fixed time interval. Contrary to the DD model, the probability of a new species 

arising in a particular niche is not affected by how filled up the surrounding niches are. 

However, the probability of a particular lineage splitting is affected by the surrounding niches, 

since, as they get filled up, the number of available nearby niches diminishes. Therefore, the NF 

model may potentially generate different patterns of both trait distributions across tree tips, 

and tree imbalance (the relative diversity of different parts of the clade).  

 

 

Comparing predictions of the three models: 

The average predictions from simulations of each model are summarised in table 5.3.  

Table 5.3: Matrix of the qualitative predictions of the three diversification models. 

Model Tree imbalance Apparent diversification 

slowdown  

Phylogenetic signal 

DD none slight  NA 

NF strong strong  high 

TDD (BM) moderate moderate  low 

TDD (OU) none strong  low 

 

The summary statistics observed from simulations of the three models—DD, NF and TDD—are 

quite different. Firstly, the DD model produces trees that are slightly more balanced than pure-

birth trees, whereas the TDD and NF models produce significantly imbalanced trees. The latter 

correspond better to observed patterns: real trees tend to be imbalanced (Blum et al. 2006). Of 

course, there are many possible sources of tree imbalance: any source of differences in 

diversification rates is also a source of tree imbalance (Mooers and Heard 1997). A tree may 

also appear to be imbalanced due to nonrandom omission of species, or because of inconsistent 

approaches to defining species. While trees are imbalanced for many different reasons, a 

statistical model should generate realistic imbalance if its fit to diversification rates is in any 

way meaningful. 

 

All three models produced trees with slowdowns in diversification rate through time (negative 

 ). Extinction did not affect the slowdown in the DD model, but greater extinction rates caused 

less pronounced slowdowns in the TDD model. The greatest slowdowns (most negative values 

of  ) were obtained for the NF model. However, this result cannot be considered as an 

ecological effect, since the model simply produces new species at regular intervals. The NF 

model cannot, therefore, be fitted to an observed rate of change in diversification rate. That said, 
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this model could readily be extended by allowing the speciation times of different niches to 

depend on their position in the niche distribution and on the occupancy rates of nearby niches. 

 

The NF and TDD models generate trait data along with each phylogeny. The DD model does not 

generate trait data, since trait values and diversification are completely decoupled; therefore, 

the expected phylogenetic signal for the DD model is simply     under a BM trait evolution 

process, and     under an OU process. Phylogenetic signal is raised in the NF model, to be 

significantly stronger than Brownian evolution. Under the TDD model, on the other hand, signal 

is significantly reduced, with values as low as        when simulated with Brownian trait 

evolution and strong (      ) trait packing effects. 

 

Inferring ecological processes  

Since these three models are all based in the idea of diversity limited by the available niches, 

they all predict diversification slowdowns. Such slowdowns are expected to occur when the 

clade is an adaptive radiation (Harmon et al. 2010a), and this pattern has been found in many 

bird clades that resemble adaptive radiations (Phillimore and Price 2008). However, a study of 

a complete tree of birds found accelerating diversification (Jetz et al. 2012). Care should be 

taken, however, in interpreting significantly negative values of   as a sign of adaptive radiation, 

since the   statistic is sensitive to recent rate changes, and not good at detecting early bursts of 

evolution (Fordyce 2010). 

 

If trait values correspond to niches, then these results suggest that DD models are not consistent 

with Brownian trait evolution, nor with any continuous trait evolution process that preserves 

phylogenetic signal. If we want to generate high phylogenetic signal, as is typically observed in 

adaptive radiations, then we need a different form of trait evolution, such as the non-continuous 

mode found in the NF model. Either way, the DD model does not generate realistic levels of tree 

imbalance, whereas NF and to some extent TDD models do. This suggests that DD models will 

need changes if they are to generate realistically shaped phylogenies. For example, if 

diversification rates are allowed to vary with both time and trait value, then realistic tree 

shapes can be obtained (Purvis et al. 2011). These models could also be extended, for example, 

to make different numbers of niches available to different subclades. Alternatively, NF models 

might be used; however, these models cannot be fitted to observations of changing 

diversification rates, because they simply create new species at regular intervals. Useful 

extensions to the NF model may include diversification rates that change through time, or that 

vary with the distance in trait-space that a new species must breach. We know what the 
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phylogeny and trait distribution of an adaptive radiation look like, but density dependence 

alone is not sufficient to generate similar data. 

 

Conclusion 

The three diversification models studied here all have a similar theoretical justification in niche 

filling, but they produce quite different results. This is on top of the wide variance in tree shape 

for even a single given model, which makes interpretation already difficult (Gascuel et al. 2015).  

 

The only case in which different models produce similarly shaped trees is in the similarity 

between strong diversity dependence and milder trait-density dependence with an OU process. 

This is noteworthy, because OU trait evolution suppresses phylogenetic signal. If DD models are 

justified by the filling up of available niches and, therefore, of trait-space, then they seem to be 

inconsistent with the commonly assumed Brownian mode of trait evolution. Further, if DD 

emerges from the packing of continuously evolving traits, then it requires those traits to evolve 

under a constrained OU-like process. In an OU model, traits are evolving towards a common 

optimum, causing signal to be erased over time (Hansen 1997, Cooper et al. 2016).  

 

Observed phylogenetic signal tends to be quite high, though on average less than the Brownian 

expectation, for traits like body size (Freckleton et al. 2002, Blomberg et al. 2013). If diversity 

dependence models are to represent adaptive radiations, then we must also assume a mode of 

trait evolution that is quite different from the usual continuous Brownian and OU models.  

 

I have shown how the notion of diversification as a ‘filling up’ of the available niches can be 

implemented in a number of different ways. By making subtly different assumptions from the 

same conceptual starting point, three different models of diversification lead to very different 

results in terms of tree shape and trait distributions. The differences between these models 

suggest that observations of diversity dependence in real trees should be interpreted with care. 
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Chapter 6: General conclusion 

This project was concerned with the integration of ecological processes into models of trait 

evolution. Such models are often used to help understand a clade’s evolutionary history using a 

molecular phylogeny. I developed new models to include the effects of interspecific interactions, 

and tested these models using datasets from a range of animal clades. Both the effects on trait 

values and on diversification rates were considered, and I studied and modelled each of these 

effects. Detailed discussions of the results of each chapter are given in each chapter’s discussion 

section, but a brief overview is also provided here. 

Summaries of project work 

For investigating trait values, I developed a model of interspecific competition driving trait 

differences in an evolving phylogeny. This is conceptually based on character displacement, but 

I looked at the whole clade, not just species pairs. This is a complex and nonlinear system, 

making the model difficult to fit using traditional likelihood methods. I therefore used a Monte 

Carlo approach, simulating large numbers of datasets and fitting the model via Approximate 

Bayesian Computation (ABC). Running millions of non-vectorisable simulations required an 

efficient implementation. The simulations were therefore written in C++ and compiled to a 

shared object library so that the simulations could then be run from R. The model fitting was 

then done using custom scripts in R. ABC is reviewed in Beaumont (2010) and Csilléry et al. 

(2010). It is gaining popularity in ecological research (e.g. Hartig 2011), but has not previously 

been applied to this problem.   

Chapters 3 and 4 cover applications of this model. First, I fitted it to a wide range of freely 

available animal datasets and phylogenies. This way, I could assess the overall prevalence of 

clade-wide character displacement patterns, both in clades regarded as adaptive radiations and 

not. Then, in chapter 4, I use the model, along with other trait evolution models, to investigate a 

particular group in detail: American hummingbirds. I compared the results for 7 major 

hummingbird subclades, and interpreted the results in the context of the existing literature 

around the hummingbirds. 

To study the effect of competition on diversification, I contrasted different approaches to the 

idea of density dependence. This is where diversification in a clade slows as its species become 

more numerous, since this is conceptually linked to the filling up of available niches. I also 

created a new density dependence model, this time coupling the differences between species’ 

traits to their speciation rates rather than their trait evolution. I considered the conceptual 

relations between these different models, and compared the differences in the shapes of 
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phylogenetic trees that they produce, along with the corresponding trait distributions. These 

analyses were done in R, using existing phylogenetics packages such as ape (Paradis et al. 

2004). 

Findings 

Predicted phylogenies and trait data where competition drives trait divergence 

Our model of competition-driven trait evolution predicts more even trait distributions across 

the clade than would arise at random, along with high phylogenetic signal. I found that the trait 

evolution approach had good power to detect competition-driven trait divergence across a 

phylogeny, provided the phylogeny had around 12 tips or more. This doesn’t assume universal 

sympatry, but it does assume that the species are actively competing for niches which may 

include a geographic axis. I found that in adaptive radiations where competition is expected to 

be strong—e.g. for Darwin’s finches, where limiting similarity has long been observed between 

species pairs—there is evidence of competition-driven trait divergence.  

Prevalence of clade-wide character displacement patterns across animal clades 

Evidence of clade-wide character displacement in body size does not seem to be prevalent 

across animal genera. In chapter 3, I considered the clades of 75 mammal genera, 17 lizard 

genera and 4 cichlid genera. For mammals and lizards, the competition model was preferred to 

Brownian evolution no more often than would be expected by chance. For cichlids, there was 

greater evidence of competition, and also the model was significantly preferred for the cichlid 

clade as a whole. Cichlids are considered an adaptive radiation (Kocher 2004, Takahashi and 

Koblmüller 2011), so this supports the idea that character displacement plays an important role 

in adaptive radiation but is not prevalent across other clades. Overall, I found no connection 

between competition and sympatry; however, this may be due to the large-scale range-based 

method I used to estimate sympatry. 

I used the previously developed competition model, along with other phylogenetic comparative 

methods, to investigate one clade in greater detail: the American hummingbirds. The results 

were quite different for body size and beak length, with significant support for character 

displacement in body size for hermits, but in beak length for gems. The overall hummingbird 

clade did not have strong evidence of competition, but it did significantly support an early burst 

trait evolution model, where trait evolution slows down through time (Harmon et al. 2010a). I 

found that there was lots of variance in these results between hummingbird sub-clades; looking 
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at trait evolution on a variety of phylogenetic scales should be important in future work (e.g. 

Graham et al. 2012). 

Diversification rates and competition for niches 

I also investigated the effects of niche-packing density dependent diversification on phylogeny 

shape and trait distributions. This involved quantifying phylogeny shape and trait distributions 

for existing models and for a new ‘trait-density dependence’ model. I found that the effects of 

density dependence on phylogeny shape depend very much on the details of the niche-packing 

process. This work shows that care must be taken in interpreting signs of density dependence in 

real phylogenies. I also found that, if traits map directly on to niches, then commonly assumed 

trait evolution models like Brownian Motion (BM) and the Ornstein-Uhlenbeck process (OU) are 

typically inconsistent with density dependence diversification models. 

Limitations and future directions 

The implications and limitations of the modelling approaches I used are considered in detail in 

the discussion sections of chapters 2, 3, 4 and 5. The main points, however, are briefly 

considered here. For example, all the approaches assume that the species in a clade have 

opportunities to interact. They may not be sympatric, but they are in some way competing, even 

if just for geographic space. This means they are not totally isolated. However, the means of 

judging which species do and do not have the opportunity to interact is not obvious. This is even 

more difficult for ancestral species, whose range is unlikely to be known.  

A simple means of avoiding this strong assumption is achieved by using a ‘sympatry matrix’, 

described in Chapter 2 (page 35), where species range data is used to turn interactions on and 

off. However, this method is coarse-grained and necessarily makes assumptions about ancestral 

lineages’ interactions when the likelihood is that these will depend strongly on unknown 

historical details. Also, this approach treats interactions as being either present or absent, 

whereas in fact the strength of interactions is likely to vary greatly between species pairs and 

even through time. The approaches in this thesis can only show whether interactions have had a 

significant overall effect on a clade. Future models will likely benefit from addressing the 

interactions between geographical dynamics (e.g. Losos and Glor 2003, Pearman et al. 2008, 

Freckleton and Jetz 2009) and speciation and extinction rates (modelling links to trait values in 

e.g. Paradis 2005, Freckleton et al. 2008, Fitzjohn 2010, Magnuson-Ford and Otto 2012), as well 

the competitive interactions have studied here.  
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Diversification models face different issues. Essentially these models are about categorising 

differences in diversification rate: differences between lineages result in tree imbalance, while 

differences through time affect rate-change statistics such as   (Pybus and Harvey 2000). But in 

real datasets, lineages are expected to diversify at different rates for many different reasons, 

often depending on the taxon and trait in question (Chira and Thomas 2016). Therefore, fitting 

diversification models may be uninformative in terms of detailed ecological processes, or at 

least difficult to interpret. Also, these analyses are again sensitive to scale (e.g. González-Caro et 

al. 2012), and this should perhaps be incorporated into studies on diversification mechanisms. 

An overall difficulty for any study of competition and character displacement is the mapping of 

niches onto traits or ‘morphospace’. Approaches such as the ‘niche filling’ models (Price 1997) 

and the trait competition model presented in chapter 2 assume that there is a close relationship 

between the two, but actually mapping them onto each other is an important area that has 

received relatively little focus (e.g. Miles and Ricklefs 1984, Pigot et al. 2016). A further 

unknown when fitting these models is the adaptive landscape itself: how the available niches 

are positioned in morphospace. The trait competition model effectively assumes an even 

distribution of niches, while Price’s (1997) niche-filling (NF) model assumes a multivariate 

normal distribution of niches. It might be possible to include prior knowledge of the true 

adaptive landscape for a particular clade in future models (Arnold et al. 2001, Aguilée et al. 

2013).  

Inferring past ecology from present day molecular and trait data is a complex task, with many 

potentially compounded processes. Understanding the details is an ongoing challenge, 

integrating a variety of phylogenetic, geographical and community approaches. Here, new tools 

were developed and novel analyses performed, contributing to the development of this 

knowledge. 
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Appendices 

Appendix 2A: Estimating competition strength and effect width simultaneously 

The overlap between species i and j is proportional to  (      ⁄ ) where   is the cumulative 

normal distribution. Integrating by parts yields the following approximate function for the 

overlap between two species: 
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To get the evolutionary rate I multiply this by a, giving: 
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At first glance it might appear that changing a and   would have different effects because the 

former changes evolutionary rates in a linear manner, whilst the effect of the latter is non-

linear. However, if there are a large number of species within a limited niche space, then 

distances between species will be low, i.e.  |    | is small. Consequently, we can use the 

following approximation by the Maclaurin series expansion of ex: 
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Substituting into equation 2A2 and ignoring higher than squared terms we get: 
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Overall, the rate of evolution is given by the overlap,   (      ⁄ ) multiplied by a, yielding: 
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This equation is linear in both a and   -2. Thus from a statistical perspective a and   will be non-

identifiable if the species are interacting strongly.  If species are not interacting strongly, i.e. 

     is large, then the data will contain no information on interactions between species and 

hence it will not be possible to fit the model and we cannot estimate either a or  . 
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Appendix 2B: Ornstein-Uhlenbeck model with competition 

We based the competition model on BM for reasons detailed in the introduction. However, for 

the sake of comparison we also simulated under a model that included both OU and character 

displacement processes. The result is random diffusion with attraction of all lineages to a 

central ‘optimum’ but repulsion between lineages.  

The instantaneous change in the OU model of the trait value   for any given lineage is given in 

differential form by 

                                   Equation 2B1 

where   represents the optimum trait value to which lineages are attracted. The ‘OU + 

competition’ model combines Equation 3 and Equation 2B1, giving 

                   ∑                |      |                Equation 2B2 

 

Appendix 2C: Comparing models 

 

We simulated datasets for a range of random trees, for Brownian motion (BM), Ornstein-

Uhlenbeck (OU), Early-burst (EB) and the competition model presented here. Two summary 

statistics are shown in table 2C.1: a measure, K, of phylogenetic signal, and the standard 

deviation of differences between ordered tip trait values. These standard deviations are scaled 

by the mean difference between ordered tip trait values, so that they reflect the shape of the 

resultant trait distribution rather than its width, which depends primarily on the overall 

evolutionary rate. Similar results can be obtained for a range of tree sizes; the results given 

below are the average summary statistics obtained for 100 different simulations, each on a 

different 100-tip tree. 

It can be seen in table 2C.1 that the OU parameter   reduces phylogenetic signal without 

significantly affecting the variance of trait values, while EB increases signal and increases the 

trait value variance, and the competition model increases signal and reduces trait value 

variance. 
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Table 2C.1: Parameter values and summary statistics for BM, OU, EB and competition 

models 

 

  a     K 

sd(trait 

difference) 

BM 1 0 0 0 1.025988 1.088189 

 2 0 0 0 1.19753 1.155985 

 3 0 0 0 0.945132 1.13056 

 4 0 0 0 0.989281 1.043405 

 1 0 0 0 1.01629 1.144142 

OU 1 0 0.5 0 0.625919 1.104392 

 1 0 1 0 0.446008 1.14508 

 1 0 1.5 0 0.374059 1.150754 

 1 0 2 0 0.323968 1.132398 

 1 0 2.5 0 0.310235 1.178088 

 1 0 3 0 0.299937 1.072554 

EB 1 0 0 -0.5 1.452419 1.190265 

 1 0 0 -1 2.171459 1.363512 

 1 0 0 -1.5 2.761718 1.569579 

 1 0 0 -2 4.091478 1.760675 

 1 0 0 -2.5 4.143498 2.023122 

 1 0 0 -3 4.570352 2.098729 

Comp. 1 0 0 0 1.024409 1.223923 

 1 0.5 0 0 2.051598 0.801998 

 1 1 0 0 2.255849 0.664316 

 1 1.5 0 0 2.526787 0.602482 

 1 2 0 0 2.597334 0.529352 

 1 2.5 0 0 2.699814 0.493765 

 1 3 0 0 2.525436 0.476312 

 

Note:   is the BM rate parameter;   is the strength of the character displacement process 

in the competition model;   is the strength of attraction to the OU model’s ‘optimum’;   is 

the rate change parameter of the EB model. The two summaries of simulated data are the 

phylogenetic signal K, and the standard deviation of the differences between ordered tip 

trait values, scaled by the mean difference between these ordered values. 
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Appendix 2D: Allopatry in Darwin’s finches 

In the analysis of Darwin’s finches presented in the main text, the competition model used the 

assumption that all species had the opportunity to interact competitively. However, if some 

species pairs are only found on different islands from one another, then they are allopatric and 

may have no opportunities for interaction. We therefore repeated the analysis accounting for 

species pairwise sympatry/allopatry. This information is contained in the ‘sympatry matrix’   in 

the model equation: 

       ∑                |      |                  Equation 2.3 

To construct this matrix, we used a dataset that includes morphological, species and island data 

for 2826 individuals. This dataset was from the BioQuest library (Jungck 2001), and includes 

data from Snodgrass and Heller (1904), Swarth (1931) and Lack (1947).  Each species pair was 

marked as sympatric if individuals of both species were recorded at any one island, and 

allopatric otherwise. The resultant matrix   is given in table 2D.1 below. The final datasets used 

for this analysis, including sympatry matrix, are deposited in the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.3sk15 (for paper Clarke et al. 2017). 

The analysis results are given in table 2D.2. They are broadly similar to the results in table 2.1, 

with a slightly greater difference between a significant culmen length and non-significant 

results for the other traits. 

 

 



 

Table 2D.1: Sympatry matrix for Darwin’s finches 

Note: 1 denotes sympatry, and 0 denotes allopatry.

 

fusca Platyspiza Pinaroloxias difficilis pauper psittacula parvulus pallida fuliginosa fortis scandens magnirostris conirostris 

fusca 1 1 0 0 0 1 0 0 1 1 1 1 0 

Platyspiza 1 1 0 1 1 1 1 1 1 1 1 1 0 

Pinaroloxias 0 0 1 0 0 0 0 0 0 0 0 0 0 

difficilis 0 1 0 1 0 1 1 1 1 1 1 1 1 

pauper 0 1 0 0 1 1 1 1 1 1 1 1 0 

psittacula 1 1 0 1 1 1 1 1 1 1 1 1 0 

parvulus 0 1 0 1 1 1 1 1 1 1 1 1 0 

pallida 0 1 0 1 1 1 1 1 1 1 1 1 0 

fuliginosa 1 1 0 1 1 1 1 1 1 1 1 1 1 

fortis 1 1 0 1 1 1 1 1 1 1 1 1 1 

scandens 1 1 0 1 1 1 1 1 1 1 1 1 0 

magnirostris 1 1 0 1 1 1 1 1 1 1 1 1 1 

conirostris 0 0 0 1 0 0 0 0 1 1 0 1 1 
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Table 2D.2: Results for Darwin’s finches with partial allopatry 

Trait σ a LRTS 

Wing length 1.72 0.64 0.94 

Tarsus length 1.88 0.68 1.05 

Culmen length 1.16 5.12 4.62* 

Beak depth 2.08 3.64 1.46 

Gonys width 1.84 4.96 1.63 

Note: the finch trait dataset is that given in Harmon et al. (2010b). The competition model 

is compared with the nested BM model. The competition model has one extra parameter 

compared with the BM model. 

 

Appendix 3A: results for competition model + limits 

Table 3A.1: Competition model with limits: estimates and mean sympatry for mammal 

genera. 

Clade  Sigma a Likelihood ratio Sympatry 

Stenella 3.6 3.233333 1.766651 NA 
Trinomys 0.1 0.833333 1.271742 0.732139 
Trachypithecus 3.8 4.333333 1.871537 0.266445 
Talpa 3.9 2.866667 1.616459 0.3163 
Thomasomys 2.966667 1.066667 1.454605 0.642574 
Sundasciurus 1.7 4.066667 1.919317 0.974973 
Tupaia 2.366667 4.2 1.357854 0.742125 
Abrothrix 3.266667 4.4 1.550806 0.460886 
Aotus 2.966667 0.966667 1.465372 0.162371 
Sylvilagus 3.766667 1.133333 2.319126 0.448654 
Akodon 3.666667 0.7 0.928456 0.401949 
Dipodillus 4.4 4 1.646361 NA 
Cratogeomys 4.266667 2.2 1.670301 0.151676 
Echimys 3.8 2.866667 1.838684 NA 
Cercopithecus 2.466667 1.066667 1.939631 0.609196 
Chaetodipus 2.266667 1.833333 1.145847 0.317848 
Galago 2.533333 2.866667 1.632804 0.414853 
Dipodomys 2.933333 4.133333 2.894492 0.441388 
Cephalophus 0.666667 2.633333 1.70207 0.633412 
Genetta 3.8 4.066667 2.492198 0.590515 
Ctenomys 3.566667 3.666667 2.179411 0.363437 
Gerbillus 1.5 1.433333 1.27206 0.558156 
Cryptotis 2.433333 1.233333 1.629153 0.496652 
Chaerephon 2.066667 2.333333 1.188823 0.332483 
Artibeus 0.566667 3.733333 2.426456 0.623748 
Lagenorhynchus 0.633333 0.666667 1.056957 NA 
Makalata 2.666667 3.733333 2.08894 0.505029 
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Hylopetes 1.7 4 1.550101 0.628476 
Mogera 0.5 1.7 1.599588 0.042962 
Mesoplodon 4.1 2.033333 2.099837 NA 
Marmosa 3.733333 0.666667 1.106698 0.54299 
Monodelphis 3.933333 3.566667 2.119344 0.411785 
Meriones 4.333333 1.466667 1.415611 0.519683 
Mops 3.733333 1.6 1.570416 0.446762 
Melomys 3.533333 3.366667 1.55891 0.557428 
Maxomys 1.766667 1 1.49568 0.933469 
Tamias 2.866667 2.8 1.686982 0.444142 
Kerivoula 3.2 1.633333 1.316345 0.641405 
Macaca 3.333333 3.1 1.265699 0.420748 
Lasiurus 1.1 3.4 1.361457 0.642597 
Otomys 3.8 4.4 1.618978 0.341533 
Paramelomys 4.333333 1.4 1.46282 0.439175 
Phyllomys 1.5 4.433333 2.309888 0.622628 
Pseudantechinus 0.9 4.166667 2.015085 0.282593 
Oecomys 0.766667 3.366667 2.206531 0.653803 
Neotoma 2.633333 3.6 1.972166 0.397958 
Ochotona 3.4 2.366667 1.570928 0.471339 
Oryzomys 3.466667 0.8 1.091168 0.349467 
Proechimys 2.866667 0.9 1.355575 0.479153 
Phalanger 4.366667 3.766667 2.277605 0.613949 
Murina 4.4 3.033333 1.9557 0.471471 
Pseudomys 1.066667 4 2.096022 0.519907 
Niviventer 4.333333 3.233333 2.158819 0.528945 
Nycteris 4.366667 1.3 1.353137 0.616444 
Reithrodontomys 2.8 1.233333 2.132297 0.553157 
Rhipidomys 2.4 3.433333 1.135112 0.541145 
Saguinus 4.233333 3.633333 0.965606 0.231991 
Sminthopsis 2.266667 2.3 1.665739 0.476755 
Stenella 3.6 3.233333 1.766651 NA 
Oligoryzomys 3.433333 2.833333 2.198648 0.432121 
Trinomys 0.1 0.833333 1.271742 0.732139 
Trachypithecus 3.8 4.333333 1.871537 0.266445 
Sundasciurus 1.7 4.066667 1.919317 0.974973 
Thomasomys 2.966667 1.066667 1.454605 0.642574 
Talpa 3.9 2.866667 1.616459 0.3163 
Tupaia 2.366667 4.2 1.357854 0.742125 
Sylvilagus 3.766667 1.133333 2.319126 0.448654 
Spermophilus 1.333333 1.833333 1.16088 0.288026 
Myodes 0.6 1.5 2.437767 0.599524 
Rousettus 3.5 3.6 1.564568 0.848278 
Tamias 2.866667 2.8 1.686982 0.444142 
Peromyscus 1 3.266667 1.46114 0.506081 
Sciurus 1.6 4.133333 1.694363 0.433537 
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Table 3A.2: Competition model (with limits) estimates and mean sympatry for lizard 

genera. 

Clade  Sigma a Likelihood ratio Sympatry 

Ctenophorus 0.633333 2.733333 1.070521 0.883716 
Ameiva 3.433333 0.666667 1.068647 0.715558 
Egernia 0.666667 4.266667 2.965008 NA 
Cnemidophorus 0.133333 1.466667 1.840725 NA 
Lerista 2.933333 1.566667 1.528421 0.374923 
Liolaemus 2.666667 0.733333 1.346785 0.531074 
Mabuya 2.133333 2.5 1.747425 NA 
Acanthodactylus 0.833333 0.866667 1.233354 0.536915 
Amphiglossus 1.133333 1.9 1.809286 0.672849 
Trachylepis 1 2.4 1.919612 1.144031 
Chalcides 3.3 0.966667 1.384771 0.349796 
Sphenomorphus 1.966667 0.9 1.473225 0.910035 
Anolis 1.333333 0.533333 1.256849 0.537528 
Emoia 1.4 0.6 0.908681 0.873417 
Sceloporus 0.766667 0.5 1.010852 0.449219 
Draco 0.333333 2.2 2.178584 0.625564 
Varanus 0.933333 2.566667 1.835185 0.497624 

 

 

Table 3A.3: Results for neotropical cichlids; model with limits.  

Clade Trait Sigma a likelihood ratio 

cichlid bodysize 1.49 3.45 2.02 
 gape 4.01 2.19 0.83 
cichlasomatini bodysize 5.60 4.15 1.87 
 gape 1.12 4.99 1.98 
geophagini bodysize 1.87 0.65 0.96 
 gape 5.69 1.45 0.90 
heroini bodysize 2.85 1.40 1.20 
 gape 2.05 1.77 1.17 

 

 

Appendix 4A 

I also performed analyses using the character displacment trait evolution model on both traits 

simultaneously. The results are shown in table 4A.1 below. Competition is not supported in any 

of the clades; this is probably due to beak length and body size being correlated, while the 

model suppresses correlation between traits. A more complete dataset of beak shape, using 

(uncorrelated) principle components would be an interesting future analysis. 
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Table 4A.1: character displacement models fitted to hummingbird body size and beak 

length. 

Clade  𝟐 a LRTS 

all 3.68 3.00 1.20 

bees 2.72 1.52 1.49 

brilliants 4.60 1.28 1.57 

coquettes 1.68 0.44 0.87 

emeralds 1.28 0.36 1.24 

gems 1.64 0.68 0.96 

hermits 1.20 0.68 1.68 

mangoes 1.68 1.4 1.12 
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Appendix 5A 

Tree size did not affect the relative result from the three tested models. Overall, however, larger 

trees resulted in greater values of   and    – that is, greater apparent slowdowns and greater 

imbalance. Representative results for different tree sized are shown in table 5A.1. 

Table 5A.1: Summary statistics for model simulations using different tree sizes.  

Tips                                   

Density dependence: 

100 NA 120 0 NA -2.34764 1.19332 -0.26084 0.722059 NA NA 

50 NA 60 0 NA -1.66691 1.081896 -0.12049 0.719663 NA NA 

20 NA 24 0 NA -1.1135 1.148504 -0.1448 0.55432 NA NA 

Niche filling: 

100 NA NA NA NA -5.60341 0 11.51796 3.836061 1.459877 0.39711 

50 NA NA NA NA -3.84615 0 5.869109 2.711725 1.360428 0.407361 

20 NA NA NA NA -2.22681 0 2.713199 1.657943 1.254571 0.418132 

Trait density dependence: 

100 -0.5 NA 0 0 -3.19561 1.332053 1.084761 1.186597 0.230155 0.093587 

50 -0.5 NA 0 0 -2.16324 1.224179 0.422709 0.995987 0.281092 0.173794 

20 -0.5 NA 0 0 -1.01211 1.135204 -0.0168 0.674144 0.468933 0.353014 

 

 

 


