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Abstract 

Concepts allow us to bring meaning to the world; they require the integration of 

information from across multiple episodes and events, and the abstraction of statistical 

patterns and regularities from both new and existing knowledge. Processes during 

consolidation have been shown to benefit the extraction of gist, the detection of hidden 

rules and the integration of memory elements into coherent representations. 

Consolidation may therefore play an important role in the development of conceptual 

memory.  

To explore this, we used a range of consolidation delay manipulations and two 

paradigms that assessed the development of concept-based representations. In Chapter 2 

and 3 we used an abstract cross-modal information-integration categorisation task, which 

allowed us to investigate the integration of information from across modalities (visual 

and auditory) and the extraction of an underlying category structure. In these experiments 

we did not find any immediate consolidation benefits on categorisation performance. 

However, post-consolidation improvements in category learning were observed, if 

participants had a sleep-filled delay; suggesting that processes during sleep may enhance 

the effectiveness of future concept-based learning. In Chapters 4 and 5, we used an 

associative memory task that allowed us to dissociate the impact of consolidation on 

generalised concept-based representations from trained item knowledge. In this task we 

found sleep-associated improvements in memory; however, these were specific to 

trained-item knowledge, with no sleep-associated benefits in measures of memory 

generalisation. An investigation into intrinsic brain connectivity in Chapter 5 suggests 

that general variations in functional connectivity can in part explain individual differences 

in long-term memory performance; with decoupling between heteromodal and sensory-

motor brain regions supporting memory generalisation and the formation of concepts. 

Our results provide new insights into the role of consolidation in the development of 

conceptual memory and highlight important directions for future research.  
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General Introduction: 

Concept Memory & Consolidation 

 

 

1.1 Conceptual Memory  

Concepts give the world stability (Smith & Medin, 1981). We would be 

overwhelmed by the diversity of our environment if we perceived each object and event 

as a unique entity that required a distinct name and memory representation. We would be 

unable to remember more than a fraction of our experiences and language would become 

incredibly complex making communication virtually impossible (Smith & Medin, 1981). 

Fortunately, we perceive, remember and talk about individual objects and events as 

instances of a class or concept, capturing the idea that our current experiences share 

properties with our existing knowledge. Furthermore, concepts allow us to go beyond the 

perceptual information in our environment to make inferences about non-perceptible 

attributes. For example, identifying an object as belonging to the class ‘hammer’ allows 

us to make inferences about its physical properties e.g. made of hard material, its action 

properties e.g. grasped in one hand and used to hit nails, and more abstract properties such 

as that it is a tool used by carpenters (Martin, 2015). Concepts therefore facilitate 

successful interaction with the world, they reduce demands placed on the cognitive 
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system and provide important building blocks for object recognition, action planning, 

language and thought (Goldstone & Kersten, 2003; Kiefer & Pulvermüller, 2012). 

1.2 The Representation of Conceptual Knowledge 

There is general agreement regarding the content of concepts; however, there is a 

large amount of debate surrounding how these concepts are structured and represented in 

the brain. Cognitive theories provide a range of models that focus upon the representation 

of category-based knowledge and the processes that facilitate successful categorisation, 

while more recent neuroimaging work has focused upon the brain basis of semantic 

memory – memory for facts, ideas meaning and concepts. The following sections will 

give a brief overview of these two areas of research.  

1.2.1 Cognitive Models of Categorisation 

Models of categorisation focus upon the cognitive representation of categories and 

the processes that facilitate the successful classification of stimuli. Due to the multifaceted 

nature of categorical memory, there is no formally accepted model of categorisation, 

instead, a number of different models have been proposed, generating a large amount of 

research in this area. Four models that highlight important elements of categorisation, 

which will be briefly discussed below, are: rule-based accounts, exemplar and prototype 

theories and decision boundary models.  

Rule-based accounts of categorisation propose that categories can be defined by a 

necessary and sufficient set of features or properties (Smith & Medin, 1981). This has 

been termed the ‘classical view’ and suggests that concepts are formed by generating 

hypotheses or theories regarding different category features, typically these rules are easy 

to describe verbally and can be multidimensional (Ashby & Waldron, 1999). Generating 

categories and defining items based on a set of rules seems somewhat intuitive and can 

easily explain simple categorisations such as classifying geometric shapes i.e. if an object 

is two-dimensional with four equal straight sides and four right angles then it can be 

labelled as a square. However, these models suffer from a number of criticisms: i) not all 

categories can be easily described by a set of defining features i.e. it is very difficult to 

generate a set of rules to capture more abstract concepts such as ‘brilliance’ or ‘love’ ii) 

category membership is not always clear e.g. whether a starfish is a fish or a mammal iii) 
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not all members of a category are equal e.g. robins are judged as a more typical member 

of the category ‘bird’ and will be categorised as such faster than other birds such as 

chickens (Fujihara et al., 1998), and iv) individuals do not make consistent categorisations 

when asked to make the same category judgement at different times, suggesting category 

membership is changeable (McCloskey & Glucksberg, 1978). Despite these criticisms, 

rule-based accounts offer an intuitive description for how concepts may be represented 

and have been successful for describing simple forms of categorisation (Ashby et al., 

1998; Smith & Medin, 1981).  

In contrast to the classical view, prototype and exemplar theories emphasize the 

importance of similarity in categorisation. These two models are very similar and suggest 

categorisation is driven by a similarity comparison between a novel item and existing 

representations. The prototype theory suggests that this representation is an abstract 

summary – or prototype – of the most common or ideal features of a category (Minda & 

Smith, 2001). While, exemplar theories suggest the categories are represented by all 

previously encountered items – or exemplars – of the category (Medin & Schaffer, 1978; 

Nosofsky, 1986). Similarity judgements lead to a naturally graded representation of 

category membership, these models can therefore account for the typicality effects 

observed in categorisation and for complex categories that appear to have blurred or 

changeable boundaries. These models make successful predictions for categorisation and 

are not considered to be mutually exclusive, but may operate based on the demands of the 

task or category purpose (Pothos & Wills, 2011). 

A further approach to understanding categorisation focuses upon category 

boundaries (Goldstone & Kersten, 2003). These models suggest that people use decision 

boundaries for dividing a multidimensional psychological space into category-response 

regions (Nosofsky & Stanton, 2005). By fitting a novel item within this response space, 

it is possible to then determine the classification and category. Within the literature, there 

is currently debate as to the mechanisms used to generate these decision boundaries, the 

COmpetition between Verbal and Implicit Systems (COVIS) model suggests that there 

are two category learning systems: an explicit system – that uses logical reasoning, 

working memory and executive attention and an implicit system – which draws on 

procedural learning mechanisms (Ashby et al., 1998; Ashby & Maddox, 2005; Ashby & 

O’Brien, 2005). In the COVIS model, the explicit system draws parallels with the rule-
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based approach, using hypothesis testing and rule generation for successful 

categorisation. In contrast the implicit system is described as linking precepts (i.e. 

category exemplars) with actions (i.e. categorisation responses). The COVIS model has 

generated a large amount of behavioural, neuropsychological and neuroimaging support 

in recent decades, yet debate still remains as to their proposed two-system model of 

categorization (Cincotta & Seger, 2007; Filoteo et al., 2005; Maddox et al., 2004; 2008; 

Nomura et al., 2006;Carpenter et al., 2016; Edmunds, Milton & Wills, 2015; Gureckis, 

James & Nosofsky, 2011; Newell, Dunn & Kalish, 2010, 2011; Newell et al., 2013; 

Stanton & Nosofsky, 2013). 

To summarise, a range of approaches to categorisation have gained experimental 

support, however there is no formally agreed model. One possible reason for this is the 

complexity of these representations, with theory-driven research developing paradigms 

and tasks that address a single aspect of the category representation. For instance, rule-

based models have gained support from tasks that experimentally manipulate category 

structure using rules (Goldstone & Kersten, 2003). It remains to be determined whether 

a single framework will successfully account for the range and complexity of real-world 

categorical knowledge. 

1.2.2 Semantic Memory in the Brain 

The study of semantic memory processing has been relatively limited in cognitive 

neuroscience due to a general emphasis upon object knowledge and stimulus-driven brain 

activity (Binder & Desai, 2011). However, together with insights from patients suffering 

from semantic memory loss, functional imaging data has begun to develop an anatomical 

model of semantic memory in the brain. Initial investigations were oriented around the 

idea that semantic memory is multimodal; we are able to determine the meaning of objects 

and events via all our senses, with each sense contributing different elements to our 

understanding (Patterson, Nestor & Rogers, 2007). There is strong neuroimaging 

evidence for the coupling between memory and the senses, with data showing differential 

brain activation in sensory and motor cortices during semantic comprehension tasks 

(Pulvermüller, Shtyrov & Ilmoniemi, 2005; Tettamanti et al., 2005). Furthermore, this 

sensory activation is observed in the absence of sensory input or output, for example, 

Kiefer et al. (2008) report activation in brain areas involved in sound perception (i.e. 
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posterior and middle temporal gyri) following recognition of words with acoustic features 

(e.g. telephone), and similar results have been reported in the visual and olfactory domain 

(Chao et al., 1999; Sim & Kiefer, 2005; González et al., 2006). These findings led to the 

suggestion that semantic knowledge is ‘embodied’ within modality-specific areas of the 

brain (Binder & Desai, 2011; Martin, 2007). 

Neuropsychological evidence supports the role of sensory and motor processing in 

semantics by demonstrating conceptual impairments following localised brain damage. 

Lesions to cortical regions that are involved in object recognition (e.g. the sylvian fissure) 

have been shown to result in difficulties processing category specific concepts (e.g. tool 

knowledge), while damage to the motor cortex can lead to difficulties in processing 

‘action’ related verbs (Cotelli et al., 2006; Warrington & Mccarthy, 1987). 

Neuropsychological data is very revealing; however it is difficult to draw conclusive 

inferences given often widespread damage and large variations in damage across patients. 

Stronger causal evidence for the role of sensory processing in semantics is provided by 

neurostimulation techniques such as transcranial magnetic stimulation (TMS). TMS is a 

technique that involves delivering a painless magnetic pulse to the surface of the scalp, 

which in turn can temporally influence the functional state of small cortical brain areas in 

healthy participants (Hallett, 2000). By applying TMS to the hand or foot area of the 

motor cortex, Pulvermüller et al. (2005) demonstrated improved recognition of arm and 

leg related words – suggesting TMS to the motor cortex had influenced semantic 

processing. There is therefore converging evidence to suggest that conceptual 

representations are ‘embodied’ or grounded within sensory and motor regions of the 

brain.  

However, not all semantic knowledge can be described on the basis of sensory or 

motor features and neuropsychological evidence from patients with Semantic Dementia 

suggests that semantics can also be represented in regions that are functionally and 

anatomically distinct from the sensory and motor cortices (Hodges et al., 1992; Jefferies, 

2013a; Lambon Ralph et al., 2010; Lambon Ralph, Lowe & Rogers, 2007; Patterson et 

al., 2007). Semantic Dementia is a degenerative brain disease characterised by 

progressive degradation of the bilateral anterior temporal lobes (Patterson et al., 2007). 

These patients present deficits in semantic knowledge that generalise across modalities 

and conceptual domains, suggesting an amodal and central representation of knowledge 
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in the temporal lobes (Patterson et al., 2007; Lambon Ralph et al., 2017; Rogers et al., 

2004). TMS applied to the anterior temporal lobes in healthy adults results in deteriorated 

performance in semantic association tasks – providing further evidence for an amodal 

‘hub’ in semantic processing (Jefferies, 2013; Pobric, Jefferies & Lambon Ralph, 2010). 

Given the support for both modality-specific and amodal accounts for semantic 

processing in the brain, most recent theories have integrated these representations into a 

single model (Patterson et al., 2007; Lambon Ralph et al., 2017).  

 

 

Figure 1.1 The Hub-and-Spoke Model. A) Schematic illustration of the 

computational architecture for the hub-and-spoke model. Modality-specific sources 

‘spokes’ have reciprocal connections to the amodal ‘hub’ capturing complex semantic 

representations. B) Neuroanatomical sketch of the location of the hub and spokes – the 

hub is located within the anterior temporal lobes (same colour coding as the schematic) 

and the spokes are distributed across the cortex. Figure adapted from Lambon Ralph et 

al. (2017).  

 

The ‘hub-and-spoke’ theory suggests multi-modal experiences are encoded within 

modality-specific cortices that are distributed across the brain (the ‘spokes’), while cross-

modal interactions between these representations are mediated by an amodal ‘hub’ 

located in the anterior temporal lobes (see Figure 1.1; Binder, 2016; Patterson et al., 2007; 

Lambon Ralph et al., 2016; Rogers et al., 2004). This theory has generated a large amount 

of support, with bilateral amodal anterior temporal lobe activation, along with modality-

specific activation across sensory cortices observed when participants perform semantic 



18 

memory tasks (Binney et al., 2010; Visser et al., 2012). Computationally, the ‘hub-and-

spoke’ theory is able to explain how a given concept can be accessed via different sensory 

modalities at different points in time and is able to account for complex concepts that do 

not have strong sensory or motor representations (Lambon Ralph et al., 2017; Rogers & 

McClelland, 2004). The ‘hub-and-spoke’ theory therefore provides a neuroanatomical 

model that explains the representation of concept memory via the integration of 

multimodal experiences.  

This section gave a brief overview of the literature concerned with the 

representation of conceptual memory. Cognitive models have provided intuitive theories 

for the representation of categories and processes related to categorisation, emphasising 

the wide range of categorical structures in the environment. Advances in understanding 

the brain basis of conceptual knowledge have been driven by neuropsychology, 

neuroimaging and neurostimulation research assessing semantic memory. The ‘hub-and-

spoke’ model has been particularly successful for describing how multimodal experiences 

can be integrated to generate higher-order conceptual representations (Patterson et al., 

2007; Ralph et al., 2017; Rogers & McClelland, 2004). One important aspect of 

conceptual knowledge that has not received attention within the literature however is the 

role of time. Conceptual memory is not fixed, but develops gradually and is updated with 

each new experience across the lifespan. The vast majority of category learning 

experiments focus solely on the initial acquisition and online training of category 

representations. In Chapter 2 and 3 we address this issue and explore the impact of offline 

consolidation on cross-modal category learning. The current literature related to offline 

consolidation, and the relationship with conceptual memory is discussed in the following 

sections.  

1.3 Memory Consolidation 

There is no consensus as to the processes that should be covered by the term 

‘memory consolidation’ (Stickgold, 2005). The term originally referred to a process of 

memory stabilisation, by which memories become resistant to interference (Müller & 

Pilzecker, 1900). However there is now a large amount of literature suggesting a role for 

consolidation mechanisms in memory enhancement and reorganisation, with newly 

formed weak and liable memories being transformed into strong and enduring 
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representations over time (Rasch & Born, 2013). After the initial acquisition of a memory, 

a series of cellular, molecular and systems level modifications take place. At the synaptic 

level, consolidation is accomplished within minutes to hours of learning and results in 

stabilisation at the neuronal level (Born, Rasch & Gais, 2006; Dudai, 2004; Dudai, Karni 

& Born, 2015; McClelland, McNaughton & O’Reilly, 1995). Systems level consolidation 

builds on synaptic consolidation and refers to processes that account for the redistribution 

and reorganisation of the memory representations for long-term storage (Rasch & Born, 

2013). The exact processes and mechanisms responsible for systems level consolidation 

remains a matter of debate; the following sections will discuss the ‘Standard Model of 

Consolidation’ and the ‘Multiple Trace Theory’ to provide an overview of current 

accounts of consolidation.  

1.3.1 The Standard Model of Systems-Level Consolidation 

The standard model of consolidation proposes that memory consolidation processes 

are dependent upon two distinct memory stores; a hippocampal-dependent short-term 

memory store and a long-term store distributed across the neocortex (see Figure 2, 

Frankland & Bontempi, 2005). During learning, it is thought that information is encoded 

within both the short-term hippocampal circuitry and within long-term neocortical 

networks. Due to the distributed nature of the neocortical representations, which 

encompass the various multimodal components of an experience, retrieval of a new 

memory is proposed to require the hippocampus which acts to integrate and ‘bind’ the 

patterns of cortical activation into a coherent memory representation. Over time, and 

following covert reactivation of the hippocampal-neocortical connections, there is a 

progressive strengthening of connectivity between the cortical modules and a concurrent 

reduction in dependence on the hippocampus. As a result, memories become fully 

integrated within long-term memory stores and independent of the hippocampus. This has 

two complementary benefits for memory; the hippocampus maintains its encoding 

capacity ready for future learning, while the gradual integration of knowledge into long-

term stores reduces the risk of catastrophic interference and memory ‘overwriting’ (see 

Figure 1.2; Frankland & Bontempi, 2005; McClelland et al., 1995). 
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Figure 1.2 Standard Consolidation Model. New memories are initially dependent on 

the hippocampus, which integrates distributed neocortical memory modules into 

coherent memory traces. Reactivation within this hippocampal-neocortical network 

leads to a strengthening of cortical connections, allowing memories to become 

independent of the hippocampus over time. Figure adapted from Frankland & 

Bontempi (2005). 

 

Neuropsychological evidence in support of the standard model of consolidation is 

provided by patients who display temporally graded retrograde amnesia following lesions 

in the  medial temporal lobe (MTL) and hippocampus (Ribot, 1882). One of the most 

prominent cases is of patient HM who had surgery to remove large parts of the MTL 

including the bilateral hippocampus. As a result of the surgery HM suffered from severe 

anterograde amnesia and was unable to create new long-term memory representations. 

HM also demonstrated temporally graded retrograde amnesia, whereby he was unable to 

retrieve the recent past i.e. memories that had been encoded shortly before the surgery, 

while older, more distant memories remained intact (Scoville & Milner, 2000). In contrast 

to the temporally graded nature of retrograde amnesia following MTL damage, which has 

been reported consistently in the literature (Bayley, Hopkins & Squire, 2006; Morris, 

2009; Squire, Chace & Slater, 1976; Squire & Alvarez, 1995; Squire, 2004; Squire & 

Zola-morgan, 1991; Zola-Morgan, 1996), flat non-graded retrograde amnesia is also 

associated with neocortical trauma, suggesting that the role of the hippocampus is 
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temporally limited, while the long-term storage of memories is ultimately dependent upon 

the neocortex (Dudai, 2004; Squire, Clark & Knowlton, 2001). 

A hippocampal-neocortical shift in memory retrieval has also been demonstrated in 

neuroimaging studies. Takashima et al. (2009; 2006) report that over time there is a 

differential change in connectivity strength during declarative memory retrieval. Across 

a 24-hour delay they report increased cortical activity and a reduction in overall 

connectivity with the hippocampus. At longer timescales, Sterpenich et al. (2009; 2007) 

has shown that hippocampal responses associated with image recollection after 3 days are 

absent when tested 6 months later – supporting the suggestion that systems level 

consolidation processes operate over timescales that can extend to days, weeks, months 

and even years after initial encoding (Stickgold, 2005). Although this neuroimaging 

evidence is compelling, comparing the neural correlates of a memory representation 

across long timescales (i.e. days, weeks and months) should be interpreted with caution. 

It is possible that the reduced hippocampal response is the consequence of a weaker 

memory trace rather than an active process of memory transfer and reorganisation.  

The standard model of consolidation provides the basis of a core theory that is 

addressed throughout this thesis – the Complementary Learning Systems (CLS) account 

of consolidation. The CLS model provides a computational basis of consolidation and 

suggests that the hippocampus and neocortex may play distinct roles in representing 

memories (McClelland et al., 1995). These separate roles solve a trade-off between 

remembering specific experiences (e.g. where you left your keys), which benefit from 

separate representations for each event, and the extraction of regularities across 

experiences (e.g. where you would typically expect to find your keys), which benefit from 

overlapping memory representations. The CLS proposes that the hippocampus quickly 

stores memory traces for individual experiences by using a high learning rate and sparse, 

non-overlapping (pattern separated) representations. The neocortex, in contrast, has a 

slow learning rate and supports the development of overlapping representations gradually 

over time. These neocortical overlapping representations may therefore support the 

storage of regularities across events, allowing the neocortex to capture similarity 

structures that are not present within individual memory representations, and facilitate the 

development of conceptual memory representations (McClelland et al., 1995; O’Reilly et 
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al., 2014). The CLS model and its relationship with conceptual memory development is 

discussed throughout the Chapters in this thesis.  

1.3.2 The Multiple Trace Theory of Consolidation 

The standard model of consolidation suggests a time-limited role for the 

hippocampus in memory; however this has been disputed within the consolidation 

literature. Nadel & Moscovitch (1997) provide an account which suggests that the 

neocortex stores a ‘semantic’ version of a memory which is decontextualized and can be 

retrieved independently of the hippocampus (Nadel & Moscovitch, 1997). However, if 

the recall of rich contextual or spatial details is required, then the hippocampus becomes 

crucial for successful retrieval. This has been named the Multiple Trace Theory (MTT) 

and suggests that complete hippocampal damage will lead to loss of episodic (contextual) 

memory while semantic memory representations will remain intact (Frankland & 

Bontempi, 2005). Support for the MTT is provided by neuropsychological cases showing 

extensive and ungraded amnesia following hippocampal damage, while semantic 

knowledge remains largely intact (Cipolotti et al., 2001; Rosenbaum et al., 2009; Spiers, 

Maguire & Burgess, 2001).  

Neuroimaging studies provide added support for the MTT when tasks require the 

formation of strong spatial or contextual memory elements. Janzen, Jansen & Turennout 

(2008) used an object recognition and spatial location task to demonstrate greater 

hippocampal activity for consolidated (encoded 12-hour prior to tests) compared to non-

consolidated (encoded immediately before testing) objects, suggesting hippocampal 

activity increases as a function of consolidation for these representations. From the 

alternative perspective, reduced hippocampal activity has been reported following the 

decontextualization of event memories (Talamini & Gorree, 2012; Winocur et al., 2009) 

– these studies therefore highlight the specificity of hippocampal involvement in memory.   

Although the MTT can account for instances of non-graded retrograde amnesia 

following MTL damage, and the specificity of hippocampal involvement following 

consolidation it is not without its drawbacks. As with the standard model of consolidation, 

caution should be taken when interpreting hippocampal activation levels across testing 

sessions. Increases in hippocampal activity could reflect new hippocampal memory 

encoding (related to the experience of retrieval) rather than a consolidation related change 
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in activity. Furthermore, the MTT is unable to account for all patterns of deficits reported 

in the neuropsychological literature; for example Teng & Squire (1999) report a patient 

who has retained spatial episodic information from their youth, despite extensive bilateral 

lesions to the MTL, including the hippocampus. This may suggest that the hippocampus 

is not required for the recall of very remote spatial memories, which contrasts with the 

predictions from the MTT.  

Despite differences in the time-dependent role of the hippocampus, both the 

standard model of consolidation and the MTT agree that there is a qualitative difference 

between hippocampal-dependent and hippocampal-independent memory representations. 

Hippocampal memories are context-rich and ‘episodic’ in nature, while long-term 

neocortical representations integrate information from across multiple experiences to 

generate more ‘semantic’ type representations. From this perspective, there is strong 

support for the role of consolidation in the development of semantic or conceptual 

memory, with neocortical representations requiring time and consolidation for long-term 

stabilisation. Consolidation may however happen in a number of different cognitive states 

and via a wide range of mechanisms and processes. This review will now go on to discuss 

the role of sleep and quiet wakefulness in memory consolidation – providing evidence for 

consolidation specific mechanisms and discussing how they may benefit the development 

of concept memory. 

1.4 The Role of Sleep in Memory Consolidation 

Sleep is defined as the natural and reversible state of reduced responsiveness to 

external stimuli, accompanied by inactivity and loss of consciousness (Rasch & Born, 

2013). The cognitive and physical consequences of sleep deprivation, the evolutionary 

conservation of sleep in mammals and the rebound of sleep following sleep loss suggest 

that sleep serves an important purpose (Durmer & Dinges, 2005), however, a unified 

theory of sleep function remains elusive (Fuller et al., 2006). As well as energy 

conservation, brain thermoregulation, brain detoxification and tissue restoration, sleep 

provides optimal conditions for offline memory consolidation (Maquet, 2001). The 

review will first discuss the physiology of sleep and then provide evidence for an active 

role of sleep in memory consolidation. 
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1.4.1 Sleep Physiology 

Sleep, as a state, is not unitary but is broadly divided into two phases based on 

distinct EEG oscillatory patterns; rapid-eye movement sleep (REM) and non-REM sleep 

(NREM, see Figure 1.3). NREM sleep is further divided into three distinct stages; stage 

I, stage II and stage III (also referred to as slow-wave sleep, SWS), with each stage 

representing a progressively deeper level of sleep (Iber et al., 2007). The three stages of 

NREM alternate throughout the night with REM sleep in ~ 90 minutes cycles. SWS 

dominates the first half of the night, while REM sleep prevails during the latter half (see 

Figure 1.3); this temporal shift in sleep stage across the night, is driven by homeostatic 

and circadian pressures (Borbely & Achermann, 1999; Borbely & Tobler, 1989). 

 

 

Figure 1.3 Stages of sleep. Sleep is characterised by the cyclic occurrence of rapid-

eye-movement (REM) sleep and non-REM (NREM) sleep which includes slow-wave 

sleep (SWS) corresponding to sleep stage N3 (the deepest stage of sleep) and lighter 

sleep stages N2 and N1. Figure adapted from Rasch & Born (2013). 

 

Sleep onset is characterised by Stage I of NREM sleep, a transitional phase between 

wakefulness and sleep, marked by the presence of vertex sharp waves characterised by 

EEG brain oscillations predominating in the 8 – 12 Hz alpha range and the 4 – 7 Hz theta 

range (Fuller et al., 2006). Stage I typically lasts for only a few minutes (~5% of total 

sleep time) before being followed by Stage II sleep which is characterised by EEG activity 
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in the 5 – 8 Hz theta range along with two unique oscillatory events; k-complexes and 

sleep spindles (Alger et al., 2015). K-complexes are brief high amplitude negative voltage 

peaks followed by a slower positive complex generated in the cortex (Alger et al., 2015). 

They are evoked by sensory stimuli and provide isolated down-states which are thought 

to suppress cortical activity and arousal (Cash et al., 2009). Sleep spindles are short bursts 

of alpha range activity; slow spindles (12 – 14 Hz range) are concentrated over frontal 

locations while fast spindles (14 – 16 Hz range) originate in central and parietal regions 

(see Figure 4, Zeitlhofer et al., 1997).  

Stage III of NREM sleep (or SWS) is the deepest level of sleep and is characterised 

by high-amplitude, low-frequency oscillations in the 0.5 – 4 Hz delta range. During SWS, 

slow oscillations (0.5 – 1 Hz range) occur in phase across the whole brain along with 

sharp-wave ripples (SWR) that originate from the hippocampus (see Figure 4, Genzel et 

al., 2014). The SWRs occur during the up-states of slow oscillations and are temporally 

correlated with sleep spindle activity (Alger et al., 2015; Molle, 2006; Siapas & Wilson, 

1998; Steriade, McCormick & Sejnowski, 1993). 

REM sleep is defined by low-amplitude, hippocampal theta activity (4 – 8 Hz) 

along with sharp rapid-eye movements and a global reduction in muscle tone. REM sleep 

is punctuated and preceded by ponto-geniculo-occipital (PGO) waves originating in the 

brain stem (see Figure 1.4). These PGO waves are highest in amplitude in the visual 

cortex and may be responsible for the vivid experience of dreaming during REM sleep 

(Steriade & McCarley, 1990). 
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Figure 1.4 Oscillatory features of sleep. A) The prominent electrical field potential 

oscillations during slow-wave Sleep (SWS) are neocortical slow oscillations, 

thalamocortical spindles and hippocampal sharp wave-ripples. B) Rapid-eye-

movement (REM) sleep is characterised by ponto-geniculo-occipital (PGO) wages and 

hippocampal theta activity. Figure adapted from Rasch & Born (2013). 

 

1.4.2 Models of Sleep-dependent Memory Consolidation 

A growing body of research has focused upon the role of sleep in memory 

consolidation. The benefit of sleep on memory retention can be dated back to Ebbinghaus 

(1885) who noted that declarative memories appear to be sustained more by sleep than an 

equivalent period of wakefulness. Initial experimental work concluded that sleep provides 

passive protection against interference and this theory remained prominent for many 

decades (Jenkins & Dallenbach, 1924). However, more recent empirical work suggests 

that sleep plays a more active role in memory consolidation. Behavioural observations 

include memory strengthening, memory reorganisation and the transformation of 

memories following sleep (Batterink et al., 2014; Born et al., 2006; Diekelmann & Born, 

2010; Dudai et al., 2015a; Ellenbogen et al., 2006; Fischer et al., 2006; Plihal & Born, 

1997; Rasch & Born, 2013b; Wagner et al., 2004).  Two prominent theories of 

consolidation  have emerged from the sleep literature; the active systems consolidation 

model (ASC) (Born et al., 2006; Born & Wilhelm, 2012; Diekelmann & Born, 2010) and 

the synaptic homeostasis model (Tononi & Cirelli, 2003; 2006). Both of these models 

highlight the importance of SWS in memory processing, however they offer very 

different perspectives as to the consolidation mechanisms involved.  An account of these 

two models, along with their supporting literature, is provided.  



27 

1.4.2.1 The Active Systems Consolidation Model 

The Active Systems Consolidation Model (ASC) extends the standard model of 

consolidation to propose that the redistribution of memories in systems level 

consolidation is driven by slow oscillations, SWRs and sleep spindles occurring during 

SWS (Frankland & Bontempi, 2005; Walker, 2009). It is hypothesised that SWRs reflect 

cross-talk between the hippocampus and neocortex, while synchronisation between slow 

oscillations and sleep spindles induces long-term plastic changes within cortical networks 

(Rasch & Born, 2013). Sleep is therefore thought to facilitate a shift in memory 

dependency from the hippocampus to the neocortex, via a process of memory 

reactivation, in line with the standard model of memory consolidation (see  

Figure 1.5). 

1.4.2.2 The Role of SWS: Slow Oscillations, SWRs and Sleep Spindles 

Slow oscillations reflect widespread synchronised down-states of neural 

hyperpolarisation, followed by depolarising up-states of excitation across the neocortex 

(Fuller et al., 2006; Steriade et al., 1993). This slow oscillatory activity also synchronises 

activity from the thalamus and hippocampus, where sleep spindles and SWRs are 

generated respectively (Gennaro & Ferrara, 2003; Purcell et al., 2016; Alger et al., 2015). 

This coordination of activity leads to spindle-ripple events (see  

Figure 1.5) which are believed to mediate the transfer of hippocampal memory 

information to the neocortex (Born & Wilhelm, 2012). The depolarizing up-phase of the 

slow oscillation enables SWRs and accompanying memory information to become nested 

within the oscillatory troughs of spindles (Mölle et al., 2009; Siapas & Wilson, 1998). 

Spindles reaching the neocortex are thought to prime the respective neural networks, 

making them receptive for synaptic adjustments to facilitate long-term storage (Born & 

Wilhelm, 2012). Thus synchronous input to the neocortex, from the thalamus and 

hippocampus, is thought to be critical for the redistribution of declarative memory 

representations.  
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Figure 1.5 The active systems consolidation model. A)  During sleep, newly encoded 

memories stored within the temporary hippocampal store are reactivated, driving a 

gradual redistribution into long-term neocortical stores. B) Systems level consolidation 

during slow-wave sleep (SWS) relies on a dialogue between the neocortex and 

hippocampus which is controlled by neocortical slow-oscillations (red). Depolarising 

up-phases of the slow oscillations drive the repeated reactivation of hippocampal 

memory representations together with sharp wave ripples (green) and thalamo-cortical 

spindles (blue). This allows for the formation of spindle-ripple events with sharp wave 

ripples nested into troughs of spindles.  Figure adapted from Rasch & Born (2013). 

 

There is a large amount of evidence supporting the ASC model and the role of slow 

oscillations and spindle-ripple events. Notably, positive correlations between memory 

performance and the amount of SWS and spindle activity (both spindle quantity and 

density) have been observed following a range of different memory tasks (Clemens, Fabo 

& Halasz, 2005; Durrant, Cairney & Lewis, 2013; Durrant et al., 2011; Gais et al., 2002; 

Gruber et al., 2015; Lau, Alger & Fishbein, 2011; Lustenberger, Murbach & Tüshaus, 

2015; Mölle et al., 2002; Schabus, Dang-Vu & Albouy, 2007; Schabus et al., 2004; 

Wilhelm et al., 2011). More direct evidence is provided by investigations of local brain 

regulation during sleep, whereby increased coherence of slow oscillations can be 

observed in brain regions involved in pre-sleep learning (Huber et al., 2004). Critically, 

the local change in activity was able to predict post-sleep task performance, suggesting 

an active role of slow oscillations in processes of memory consolidation.  
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Support is also provided by electrical stimulation techniques such as transcranial 

direct current stimulation (tDCS), which can induce slow-oscillation field potentials in 

healthy participants during sleep (Marshall et al., 2004). Following tDCS applied during 

SWS-rich sleep, increases in slow oscillations, sleep spindles and behavioural measures 

of memory retention have been reported (Barham et al., 2016; Marshall et al., 2006,  

2011). Similar manipulations to the natural oscillations observed during sleep can be 

obtained using ‘Auditory Closed-Loop Stimulation’. This is a stimulation technique 

whereby auditory pulses, in phase with the rhythmic occurrence of slow oscillation up-

states are presented to participants as they sleep (Ngo et al., 2013). This stimulation 

enhances the slow oscillation rhythms and subsequent memory retrieval (Ngo et al., 2013; 

2015). Taken together, these studies provide strong support for the role of slow-

oscillations in declarative memory consolidation. 

1.4.2.2.1 Spontaneous Memory Reactivation 

The ASC model suggests that memory reactivations drive memory consolidation. 

Evidence of spontaneous memory reactivation during sleep was provided originally by 

studies using rodents and single-cell recordings from hippocampal cells  (Wilson & 

McNaughton, 1994). These studies show that hippocampal-dependent wake activity, 

observed during a spatial navigation task, can also be observed in post-navigation SWS 

(Kudrimoti, Barnes & McNaughton, 1999; Louie & Wilson, 2001; Sutherland & 

McNaughton, 2000; Wilson & McNaughton, 1994). The order of neuronal firing during 

wakefulness appears to be preserved during sleep, but is replayed in a temporally 

compressed manner (Lee & Wilson, 2002). Furthermore, neuronal firings observed 

during sleep are able to successfully predict later memory performance, suggesting a close 

coupling between these replay patterns and memory performance (Dupret et al., 2010). 

In humans, spontaneous memory reactivation during sleep has been observed via 

positron emission tomography (PET) and sophisticated functional magnetic resonance 

imaging (fMRI) techniques. Peigneux et al. (2004) used PET to show that the same 

pattern of hippocampal activity observed during a spatial navigation task could also be 

observed in SWS in human participants. Interestingly, the amount of hippocampal 

activity observed during SWS was positively correlated with improvements in the 

navigation task the following day, highlighting a link between sleep-based reactivation 

and behavioural improvements in memory (Peigneux et al., 2004). Similar findings have 



30 

also been observed in a paired-associate memory task following multivariate pattern 

analysis (MVPA) on fMRI data (Deuker et al., 2013). The results showed the same 

patterns of stimulus-specific activation in both learning and post-learning sleep, where 

the frequency of reactivations predicted subsequent memory at the individual item level 

(Deuker et al., 2013). There is therefore convincing evidence for spontaneous memory 

reactivation during sleep, providing strong support for reactivation as a potential 

mechanism of consolidation. 

1.4.2.2.2 Targeted Memory Reactivation 

A causal role for memory reactivation during sleep has been investigated using 

targeted memory reactivation (TMR), a technique that takes advantage of the brain’s 

ability to process external stimuli during sleep (Oudiette et al., 2013). The seminal study 

on TMR used odours as a contextual cue during a picture-location association task. 

Exposure to the same odour during SWS led to enhanced memory performance in a post-

sleep test of recall (Rasch et al., 2007). To demonstrate the specificity of the technique 

Rudoy et al. (2009) used auditory cures in a similar task, where each trained association 

was paired with a unique sound cue. During a post-training nap containing SWS, half of 

the sounds from learning were replayed to participants as they slept. In a subsequent test 

of memory, participants showed enhanced memory recall, but only for the individual 

items for which the associated sound had been replayed. The benefit of TMR has been 

shown to be sleep specific, as the same cues presented during wakefulness do not lead to 

behavioural improvements in memory (Oudiette & Paller, 2013; Rudoy et al., 2009).  

There is now a growing body of literature supporting these initial TMR findings, 

suggesting that memory reactivation can be induced externally to benefit the strength of 

memory (Batterink & Paller, 2017; Cairney et al., 2014; 2016; Cousins et al., 2014; 

Creery et al., 2015; Fuentemilla et al., 2013; Lehmann et al., 2016; Oyarzún et al., 2017; 

Schouten et al., 2017; Schreiner & Rasch, 2017, 2015; Tamminen, Lambon Ralph & 

Lewis, 2017; van Dongen et al., 2012). The major evidence implicating sleep in memory 

consolidation comes from comparisons between sleep and wake retention intervals, and 

therefore suffers from confounding factors such as circadian rhythms and alertness levels. 

Data from the TMR paradigm, which avoids these confounds, provides very strong 

evidence for a specific role for sleep-associated mechanisms of memory consolidation.  
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1.4.2.3 Synaptic Homeostasis Hypothesis 

An alternative theory to the role of sleep in consolidation has also been proposed, 

the Synaptic Homeostasis Hypothesis, which focuses upon synaptic weights (Tononi & 

Cirelli, 2003). During wakefulness cortical circuits undergo long-lasting changes in 

synaptic strength as a result of experience and learning. Global restoration of synaptic 

strength is therefore required in order to renormalize cortical networks (Tononi & Cirelli, 

2014). According to the synaptic homeostasis hypothesis (see  

Figure 1.6), SWS and slow oscillations actively promote a generalized depression and 

downscaling of synaptic strength, allowing synaptic weights to progressively return to 

baseline level and therefore creating synaptic homeostasis across sleep  (Tononi & Cirelli, 

2003, 2006). Importantly, synaptic strength is hypothesised to reduce proportionally, 

preserving the relative differences within cortical networks (Tononi & Cirelli, 2012). As 

a result the signal-to-noise ratio is increased, with strongly potentiated synapses (signal) 

being preserved (Rasch & Born, 2013; Tononi & Cirelli, 2012). This synaptic weakening 

could lead to enhanced memory and consolidation, if synaptic depression is greatest for 

weak, compared to strongly encoded representations.  

 There is strong evidence for synaptic potentiation during wake along with 

synaptic downscaling during sleep from the animal literature. Increased synaptic density 

and markers of synaptic plasticity have been observed in rodents following exploration 

of enriched environments (Cirelli, Gutierrez & Tononi, 2004; Cirelli & Tononi, 2000). 

Furthermore, Eyre et al. (2003) show that these plasticity levels returned to baseline 

following a 12-hour delay, yet task-based memory remained high. In humans, evidence 

for the model is provided from investigations of homeostatic pressure, with the 

assumption that following learning (and potentiation) there should be localised increases 

in slow-wave activity in the brain as a result of homeostatic pressure (Tononi & Cirelli, 

2003). Support is provided by Huber et al. (2004) who observed increases in slow-wave 

activity in parietal brain regions following a motor adaptation task. Furthermore, the 

amount of slow-wave activity correlated with behavioural task improvements. This 

interpretation of the data fits with the synaptic homeostasis hypothesis, however increases 

in localised slow-wave activity could also reflect neural replay as hypothesised by the 

ACS model. With correlation evidence, it is difficult to determine the underlying 
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processes generating the behavioural response, and therefore caution should be taken 

when making firm interpretations of the data.  

 

 

Figure 1.6 The synaptic homeostasis hypothesis. Synapses are influenced by 

circadian rhythms and homeostatic regulation. The Synaptic Homeostasis Hypothesis 

posits that synapse accumulation during the day drives a need for synaptic downscaling, 

which preferentially occurs during sleep (Tononi & Cirelli, 2003). Figure adapted from 

Wang et al. (2011). 

 

Both the ASC model and the synaptic homeostasis model implicate processes 

during SWS as driving memory consolidation. Although the models have gained support, 

they both struggle to explain critical aspects of sleep-dependent consolidation. The ASC 

model does not provide a strong neurophysiological explanation at the synaptic level to 

explain consolidation (Diekelmann & Born, 2010), while the synaptic homeostasis model 

does not account for the causal evidence showing a role for memory reactivation and 

hippocampal-neocortical cross-talk in the transfer of information over time. Indeed, it is 

not the case that these two theories are mutually exclusive; the two may in fact prove to 

be complementary if combined in a model that includes a role for both systems-level 

reorganisation and the maintenance of synaptic weights though homeostatic regulation 

(Feld & Born, 2017; Rasch & Born, 2013). This review will now go on to consider quiet 

wakefulness as an opportunity for memory consolidation and will then discuss the role of 

offline consolidation mechanisms in the development on conceptual memory 

representations.  
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1.5 Quiet Wakefulness and Memory Consolidation  

Despite the growing body of literature highlighting a specific role for sleep in 

memory consolidation, it is also clear that a full night of sleep is not required to boost 

memory. Partial nights of sleep and short daytime naps (even naps as short as 6-minutes) 

also lead to memory benefits, with comparable effect sizes to overnight sleep (Brokaw et 

al., 2016; Mednick, Nakayama & Stickgold, 2003; Plihal & Born, 1997; Tucker et al., 

2006; Tucker & Fishbein, 2009; Lahl et al., 2008). It has therefore been suggested that 

fast-acting consolidation mechanisms may not be dependent on the state of sleep, but may 

occur during any state (including both sleep and wakefulness) when the encoding of new 

information is sufficiently reduced; this has been referred to as the ‘Opportunistic 

Consolidation Hypothesis’ (Mednick et al., 2011).  

Studies investigating the effects of sleep on memory typically use a wake control 

comparison focused upon ‘active wake’ – where participants are encoding new sensory 

information and engaging in tasks such as watching videos, listening to music or going 

about their usual daily activities (Ellenbogen, Payne & Stickgold, 2006; Lau, Tucker & 

Fishbein, 2010; Tucker et al., 2006). The effect of ‘quiet wake’ – wakefulness in the 

absence of cognitive tasks, activities of sensory encoding, has not been sufficiently 

characterised in the consolidation literature. However, recently evidence has emerged to 

suggest that quiet wake may facilitate processes of memory consolidation (Craig et al., 

2015; Dewar et al., 2012; Dewar et al., 2014; Mercer, 2015; Schlichting & Bäuml, 2016). 

Dewar et al. (2012) showed that the degree of memory retention seven days after encoding 

was significantly altered by the cognitive activity that followed learning, with wakeful 

rest leading to a boost in memory retention in comparison to an active task. Furthermore, 

Dewar et al. (2014) report a wakeful rest benefit for the recognition and recall of 

unpronounceable nonwords, suggesting that the benefit of wakeful rest is not related to 

intentional rehearsal. 

In addition, post-learning rest has also been shown to protect new memories from 

retroactive interference (Mercer, 2015), eliminate effects of directed forgetting 

(Schlichting & Bäuml, 2016) and promote memory integration (Craig et al., 2015; Craig 

et al., 2016). In a spatial learning virtual reality task, Craig et al. (2015) found 10-minutes 

of wakeful rest to boost retention for spatial memory and temporal order for up to seven 
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days after encoding. Moreover, in a similar virtual environment task, a benefit for wakeful 

rest was observed for spatial relations that were never directly experienced by the 

participants i.e. the task required participants to make inferences based on their training 

(Craig et al., 2016). This suggests that the mechanisms in wakeful rest may go beyond 

stabilising memories to actively integrate information to form coherent representations. 

1.5.1 Quiet Rest and Slow-Wave Sleep: Two Similar States 

There has been a large amount of research into the  neurophysiological correlates 

of memory changes across sleep (Holz et al., 2012; Nishida & Walker, 2007; van Dongen 

et al., 2012), however similar investigations into quiet wakefulness are limited (Brokaw 

et al., 2016). Quiet wake does however share a number of properties with SWS and these 

properties may provide a ‘brain state’ than can be readily capitalised on by consolidation 

mechanisms. The review will now discuss four features shared by SWS and quiet wake 

which may act to promote mechanisms of consolidation, these include; 1) the reduction 

in sensory processing, 2) evidence of neural replay, 3) similar neurochemistry and 

analogous oscillatory activity.   

1.5.1.1 Reduction in Sensory Processing  

Both SWS and quiet wake are characterised by a dramatic reduction in sensory 

processing. During quiet rest, without the demands of stimulus processing, mental 

experience is focused inwards, and participants typically engage in ‘mind-wandering’ – 

a shift to self-generated thought such as thinking about the past or imagining the future 

(Smallwood & Schooler, 2015). Recent accounts suggest mind-wandering can be 

understood as a combination of different processes, including the decoupling of attention, 

which allows cognition to become independent of the external environment (Baird et al., 

2014; Sneve et al., 2017), and the retrieval of semantic knowledge  (Poerio et al., 2017). 

Indeed, increased hippocampal activity (related to episodic memory processing) is 

observed during states of mind-wandering (Ellamil et al., 2016) and evidence suggests 

that mental time-travel is linked to interactions between the hippocampus and cortical 

brain regions (Karapanagiotidis et al., 2017).  

Mind-wandering is associated with a large scale neural network – the Default Mode 

Network (DMN) – which consists of a range of cortical regions (Raichle et al., 2001). 
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Notably these regions do not include any sensory or motor cortices, supporting the idea 

of stimulus-independent driven thought. In line with the idea that quiet rest may facilitate 

memory consolidation, the DMN has been shown to contain subsystems that relate to two 

different amodal memory stores, the first includes the anterior temporal cortex – 

implicated in the representation of concept knowledge (Lambon Ralph et al., 2017) and 

the second includes medial temporal lobe structures including the hippocampus – related 

to episodic memory processing (Moscovitch et al., 2016). Given that these regions are 

strongly implicated in memory and theories of consolidation, along with the reduction of 

external interference, quiet rest appears to provide optimal conditions for consolidation 

mechanisms to progress.  

1.5.1.2 Neural Replay 

Neural replay has been well documented during SWS and it has been suggested that 

consolidation may progress via the reactivation of recently encoded memory traces 

(Rasch & Born, 2013). Animal studies however, also reported neural replay during quiet 

wake (Carr, Jadhav & Frank, 2011; Dupret et al., 2010; Karlsson & Frank, 2009). Foster 

& Wilson (2006) report sequential replay in the rat hippocampus during wake periods 

that immediately follow spatial experiences. This observed replay is in a temporally 

reversed order, which may be particularly useful for the consolidation of functionally 

useful or important events. Recent evidence of neural replay in humans is provided by 

Deuker et al. (2013), who show spontaneous patterns of task-related replay during both 

sleep and quiet wake. Furthermore, the frequency of reactivations predicted subsequent 

memory performance, suggesting a functional benefit from this reactivation. Further 

evidence for neural replay during rest in humans is beginning to emerge, however  direct 

causal evidence has yet to be established (Deuker et al., 2013; Tambini & Davachi, 2013; 

Tambini, Ketz & Davachi, 2010).  

1.5.1.3 Neurochemistry: Acetylcholine 

An important mechanism supporting the switch between encoding and 

consolidation may involve the neuromodulator Acetylcholine (ACh). Physiological 

research has demonstrated a number of effects of ACh within the hippocampus, neocortex 

and thalamus (Hasselmo, 1995). Importantly, high ACh levels, as seen in active wake and 

REM sleep, have been shown to promote attention and encoding, with the hippocampal 
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dynamics set for the inflow of information. In contrast, low ACh levels have been shown 

to facilitate the outflow of information by reducing hippocampal plasticity and promoting 

communication from the hippocampus to the neocortex (Hasselmo & McGaughy, 2004). 

Low ACh levels are therefore considered to shift the hippocampus into a ‘consolidation’ 

state (Mednick et al., 2011). Critically, low ACh levels are observed in both quiet wake 

and in SWS, suggesting that both states may provide the optimal conditions for processes 

of memory consolidation to occur (Mednick et al., 2011). 

1.5.1.4 Brain Oscillatory Activity 

Both sleep and quiet rest are associated with an overall slowing of 

electroencephalogram (EEG) oscillatory activity. Alpha is the signature of eyes-closed 

waking rest and is the main EEG correlate of the DMN. In line with the previous 

discussion of the DMN, alpha is associated with decreased focus on the external 

environment and increased attention to internal states (Foulkes & Fleisher, 1975). Alpha 

rhythms have been shown to be correlated with memory performance, suggesting they 

sub-serve memory processes and therefore strong alpha activity in waking rest may 

facilitate memory related processes of consolidation (Williams, Ramaswamy & Oulhaj, 

2006). Slower EEG frequencies (~1Hz) most commonly described as signatures of SWS 

and described as being major contributors to systems-level consolidation, can also be 

observed during quiet rest (Demanuele & Sonuga-Barke, 2010). Brokaw et al. (2016) 

show enhanced memory recall following quiet rest along with an increase in slow 

oscillatory activity (<1Hz), suggesting that given the right conditions, non-sleep resting 

states may facilitate memory consolidation and this may be driven by similar oscillatory 

activity as in sleep.  

 This section has provided a discussion of the current literature related to the role 

of quiet wakefulness in memory consolidation. This area of research is very 

underdeveloped, however there is evidence to suggest that mechanisms of memory 

consolidation may not be sleep specific, but may operate in wakefulness given the right 

conditions. Quiet wake and SWS share a number of properties, however the role they play 

in the mechanism of consolidation has yet to be determined. Chapter 5 of this thesis 

investigates the neural correlates of quiet wake; determining whether brain connectivity 

during rest can predict behavioural measures of memory across consolidation. This 
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review will now go onto to discuss the current evidence for a role of consolidation beyond 

memory strengthening.   

1.6 Consolidation: Beyond Stabilisation and Enhancement 

Within the consolidation literature there has been a large focus upon item memory 

and the role of offline processing in the stabilisation and enhancement of individual 

memory representations. However, this is just one possible form of offline memory 

processing. Beyond memory strengthening, consolidation processes have also been found 

to lead to qualitative changes in the way a memory is represented, resulting in the 

generation of new knowledge that was not present during individual item encoding 

(Stickgold & Walker, 2013). This section of the review will discuss four areas of research 

that provide evidence for offline consolidation processes as driving these qualitative 

changes in memory, focusing upon; the extraction of gist, insight into hidden rules, 

memory integration and detecting regularities via statistical learning. The way in which 

these areas of research inform our understanding of concept memory will be highlighted 

throughout.   

1.6.1 Extraction of Gist 

Gist refers to the essence of an experience or memory, representing an abstraction 

of essential features that excludes idiosyncratic details (Lewis & Durrant, 2011). Gist 

extraction may therefore be particularly beneficial for the development of concept 

memory, where the general ‘meaning’ from a set of similar events or objects is more 

important than individual elements themselves. One, sometimes problematic 

consequence of gist extraction (e.g. eye witness testimony) is the generation of false 

memories – the recollection of events or stimuli that never took place, or which are 

remembered in a distorted way (Roediger & McDermott, 1995). The generation of false 

memories has been documented for some time in the literature (Bartlett, 1932; Loftus & 

Bernstein, 2005; Loftus & Palmer, 1974; Brewer, 1977) however it is only more recently 

that the relationship between false memories and processes during offline consolidation 

has been studied (Darsaud et al., 2011; Diekelmann, Born & Wagner, 2010; McKeon, 

Pace-Schott & Spencer, 2012a; Payne et al., 2009; Fenn et al., 2009; Lo, Sim & Chee, 

2014; Cox, Carter & Willner, 2016; Lutz et al., 2017).  
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These studies typically used a simple word-list memorisation task, known as the 

Deese-Roediger-McDermott (DRM) paradigm (Deese, 1959; Roediger & McDermott, 

1995). In these tasks, participants are presented with a list of semantically related words 

to memorize (e.g. bed, rest, awake, tired, dream, etc.). When asked to recall the list, 

participants often falsely remember an unpresented, but semantically related critical ‘lure’ 

word (e.g. sleep) with the same level of confidence as the correctly remembered studied 

words (Roediger & McDermott, 1995). Although a range of studies have investigated the 

role of offline consolidation in the DRM task, the results are very mixed. Studies have 

reported increases in false memories following sleep (Darsaud et al., 2011; Diekelmann 

et al., 2010; McKeon et al., 2012a; Payne et al., 2009) and following sleep deprivation 

(Diekelmann et al., 2010; 2008; Frenda et al., 2014; Lo et al., 2016), while others report 

reduced rates of false memories after sleep (Fenn et al., 2009; Lo, Sim & Chee, 2014) or 

no overall effects  of sleep (Cox, Carter & Willner, 2016; Lutz et al., 2017). 

Although there is a large amount of inconsistency in the literature, themes do 

emerge from the data. Notably, enhanced recall of false memories appears to be greatest 

for participants who perform poorly on the DRM task (Diekelmann et al., 2010; McKeon, 

Pace-Schott & Spencer, 2012; Pardilla-Delgado & Payne, 2017). More generally within 

the consolidation literature, evidence suggests that offline memory consolidation may be 

greater for weak compared to strongly encoded representations (Diekelmann, Wilhelm & 

Born, 2009). This has been interpreted as the result of a preferential consolidation 

mechanism, which prioritises the consolidation of weaker memory traces in an attempt to 

protect them from forgetting (Diekelmann, Wilhelm & Born, 2009; Drosopoulos, Schulze 

& Fischer, 2007; Kuriyama, Stickgold & Walker, 2004). A gist extraction consolidation 

mechanism may therefore operate preferentially on the weakly encoded memories, 

explaining the increased rates of false memories for these lists. However, these weakly 

encoded lists may also be more susceptible to generating false memories as they lack 

strong individuating memory features. Teasing apart the impact of encoding strength from 

offline memory processing will be important for determining whether gist extraction is 

the result of offline consolidation.  

A second theme to emerge from the data is that impact of sleep on false memory 

generation differs depending upon the type of memory being tested. Test of recall 

typically produces sleep-associated increases in false memory, while recognition tasks 
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have not shown wake- or sleep-associated differences (Diekelmann et al., 2008; Fenn et 

al., 2009; Darsaud et al., 2011). One possible explanation for these findings relates to the 

fact that the processes of retrieval fundamentally differ between free recall and 

recognition tasks (Tulving & Madigan, 1970). The direct presentation of items in 

recognition tasks can act to reinstate the context of encoding and associated 

contextual/sensory details of the studied word lists (Cabeza et al., 2001). Sleep has been 

shown to be particularly beneficial for strengthening contextual elements of a 

representation and this may therefore increase participants’ ability to discriminate 

between studied and non-studied words, leading to reduced rates of false recognition 

(Curran et al., 1997). In contrast, free recall does not benefit from the presentation of 

sensory or contextual memory cues. Access to these memories may rely more heavily 

upon consolidated and ‘gist’ memory representations, which may lead to increased rates 

of recall for both true and false memories. These results are in line with the broader 

consolidation literature, where sleep benefits are stronger and more reliable in recall 

compared to recognition tasks (Diekelmann et al., 2009).  

The literature from the DRM paradigm produces a very complex picture that lacks 

clarity, making it difficult to characterise the specific mechanisms and processes involved 

in gist extraction. Further research is required to determine the driving processes in gist 

extraction, along with further replication of the current results. Although the role of 

consolidation in the extraction of gist and generation of false memories remains to be 

established, the data does suggest a possible role for offline consolidation mechanisms 

during sleep.  

1.6.2 Insight into Hidden Rules 

One of the first studies to show a role for consolidation, and specifically sleep-based 

consolidation, beyond the stabilisation or enhancement of declarative memory was 

carried out by Wagner et al. (2004) using a number reduction task (NRT). In this task, 

participants are presented with a string of eight digits and are required to transform them 

into a new string through a stepwise digit-by-digit application of two simple rules. With 

increased practise, participants become faster at performing the transformation, however 

participants can show abrupt increases in speed by gaining insight into a hidden rule that 

provides a short-cut to the final digit. By measuring the speed at which participants 
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complete the task across a number of trials, it is possible to determine if, and when, the 

participant gained insight to the hidden rule. Wagner et al. (2004) found that more than 

twice as many participants gained insight into the hidden rule following an 8-hour delay 

containing sleep compared to wakefulness. Furthermore, Yordanova et al. (2008) showed 

that explicit knowledge of the hidden rule was significantly more likely following SWS-

rich early-night sleep compared to REM-rich late-night sleep, suggesting a role for SWS 

in the development of insight in this task.  

Tasks that assess motor skill performance also provide evidence for a role of 

consolidation in developing insight into hidden rules. The serial reaction time task 

(SRTT) is a choice reaction time task in which participants are required to respond as 

quickly and as accurately as possible (using a key press) following the appearance of 

target stimuli at one of several locations on a screen (Fischer et al., 2006). Unknown to 

the participant, the sequence of target locations follows a set of rules that can be acquired 

with repeated exposures during the task. Knowledge of this underlying sequence can be 

assessed implicitly, by measuring the difference in reaction time between trials that follow 

the trained sequence and probe trials that violate the sequence (Fischer et al., 2006). With 

practice, participants demonstrate evidence of implicit sequence knowledge (Fischer et 

al., 2006; Fischer, Wilhelm & Born, 2007), however performance on this measure does 

not change with a consolidation delay (Drosopoulos, Harrer & Born, 2011; Fischer et al., 

2006; Fischer, Wilhelm & Born, 2007; Song, Howard & Howard, 2007; Spencer, Sunm 

& Ivry, 2006). 

In contrast, when explicit sequence knowledge is tested, by asking participants to 

try to generate the underlying sequence, sleep-associated benefits in performance are 

observed (Drosopoulos, Harrer & Born, 2011; Fischer et al., 2006). A role for sleep is 

also supported by more recent attempts to manipulate performance in SRTTs using TMR. 

Following external reactivation during sleep, improved procedural skill and importantly 

increases in explicit sequence knowledge has been observed (Cousins et al., 2014; 2016; 

Diekelmann, Born & Rasch, 2016). This provides strong evidence for a role of sleep, and 

the mechanism of reactivation, in supporting the emergence of explicit knowledge of 

hidden rules.  

The SRTT provides an interesting series of results, whereby knowledge of hidden 

rules is observed immediately following training when tested implicitly, but a period of 
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offline consolidation is required for this knowledge to be expressed explicitly. This may 

have an important impact when considering the development of concept memory, which 

may draw upon similar mechanisms to extract the shared and systematic features from 

experiences. As a result, throughout this thesis, an attempt has been made to test concept-

based memory representations using tasks that target both implicit and explicit memory 

representations.  

1.6.3 Detecting Regularities 

Detecting statistical regularities is typically an implicit memory process, that 

involves discovering and extracting recurrent patterns and interrelationships from stimuli 

in the environment (Gilboa & Marlatte, 2017). Most statistical learning studies focus on 

repetition within a limited perceptual dimension and require passive observation or a 

simple motor response. However, enriching the learning context by varying stimulus 

characteristics and their associated motor responses can result in the extraction of 

dynamic knowledge structures. Statistical learning mechanisms may therefore prove to 

be particularly valuable when considering the development of conceptual memory.  

Two experimental paradigms have proven useful for gaining insights into processes 

of statistical learning and offline consolidation: artificial grammar learning tasks and 

probability learning tasks. Though there are differences between these paradigms, they 

both require the acquisition of knowledge using stimuli that do not relate to existing long-

term memory representations and therefore participants are unable to learn using 

conscious mnemonic strategies (Reber, 1989). As a result, these tasks provide an 

authentic example of real-world learning in which complex knowledge structures need to 

be acquired. In artificial grammar learning tasks, a complex set of rules are derived that 

defines the order of letters in a sequence. Participants typically complete a short exposure 

phase to the novel letter strings, and are then asked to make grammatical/non-grammatical 

classification judgements for novel strings that follow the trained grammar (grammatical) 

or random sequences (non-grammatical). In these classification tasks, participants 

typically perform above chance level, suggesting that they had gained knowledge about 

the underlying grammar. Typically however, participants are unable to provide sufficient 

reasons to explain their classification decisions – suggesting the acquired knowledge is 

implicit (Knowlton & Squire, 1996; Shanks, Johnstone & Le Staggs, 1997).   
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Nieuwenhuis et al. (2013) compared classification performance in an artificial 

grammar task following a 15-minute, 12-hour (containing sleep or wakefulness) or 24-

hour delay. They found a specific improvement in classification accuracy following 

delays containing sleep and this benefit was specific to rule extraction. The results could 

not be explained by an increased ability to recognise sequences based on frequency of 

appearance in the training stream. These findings suggest that offline processes during 

sleep play a critical role in the extraction of statistical regularities.  

Similar findings are reported by Batterink et al. (2014) who showed increased 

sensitivity to grammatical rules following an afternoon nap. Furthermore, they show this 

sensitivity to be correlated with both the amount of SWS and REM sleep obtained during 

the nap. They suggest that reactivation of the learning material during sleep facilitated the 

stabilisation of memory and the abstraction of complex patterns. They later provide 

supporting evidence for this interpretation using TMR to manipulate consolidation 

mechanisms during sleep (Batterink & Paller, 2017). By re-presenting phrases from an 

artificial language to participants during an afternoon nap, they were able to increase the 

number of grammatical generalisations – suggesting a causal role for sleep in grammar 

learning. 

Detecting grammatical regularities has also been demonstrated outside statistical 

learning paradigms. Mirkovic & Gaskell (2016) created an artificial language learning 

task designed to incorporate both arbitrary and systematic stimuli mappings and which 

participants were trained in using a word-picture matching task. In this task, the pictures 

represented individual characters (e.g. ‘queen’, ‘pirate’) with each picture having an 

arbitrary matching novel word. However, each novel word also had determiner and suffix 

referents which reflected the natural gender of the picture (e.g. tibscoiffesh + ballerina, 

kedjorool + cowboy), creating a systematic grammar that could be extracted across items. 

Mirkovic & Gaskell (2016) report a sleep associated benefit in memory recall for the 

arbitrary aspects of the new language (word-picture mappings) but found no wake or sleep 

differences in tests targeting the systematic aspects of the new language (knowledge of 

grammatical regularities).  

This result is surprising given that previous data suggests a causal role for sleep in 

the development of grammatical knowledge. However, there are large differences 

between this task and statistical learning paradigms. This was an associative memory task 
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that required participants to make explicit associations between novel words and known 

pictures. This provides participants with a large amount of semantic information 

regarding each novel word, allowing participants to integrate this new knowledge within 

existing networks. Generalisation in this test required participants to extract the 

regularities from across the novel words and apply these to new novel forms that they had 

no existing representations for.  

In contrast, statistical learning paradigms present participants with only the novel 

phrases, with no attached semantic information. Participants are not required to make any 

explicit associations and instead either carry out a simple short-term memory task (e.g. 

recalling word order) or a phase of passive observation – regularities are therefore 

acquired in a much more implicit way. Grammatical generalisations in these tasks 

typically refer to the serial order of word chunks which requires participants to extract 

statistical regularities. However, in tests of generalisation the novel phrases often contain 

the same trained words (but presented in a novel order). These two tasks therefore draw 

upon different learning mechanisms and take different measures of generalisation. 

Consistent with previously discussed data, implicit learning appears to be most sensitive 

to sleep-associated consolidation mechanisms.  

The role of consolidation in the detection of statistical regularities has also been 

demonstrated in probability sequence learning tasks. Durrant et al. (2011) used a 

paradigm that involved auditory tone sequences that had an underlying probability 

structure. They showed a strong sleep-associated consolidation effect, with participants 

better able to recognise sequences that conformed to the learned statistical pattern 

following sleep (both overnight sleep and following a daytime nap) compared to 

wakefulness. Using the same paradigm, Durrant et al. (2013) showed a consolidation 

benefit over a 24-hour delay, with the change in performance (from immediate to delayed 

tests) positively correlated with the percentage of time spent in SWS during the night 

between sessions.  

In the study by Durrant et al. (2013) participants completed the tests at the same 

time as brain activity was being measured using fMRI. This allowed changes in brain 

activation across the 24-hour delay to be measured, and was compared with changes 

following a shorter 30-minute delay in a separate group. With consolidation, they report 

a shift from hippocampal to striatal memory systems – in line with the suggestion that 
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consolidation leads to the reorganisation of memory representations (Born et al., 2006). 

Like the behavioural response, they also found that differences in this functional response 

were predicted by the amount of SWS obtained between the testing sessions, suggesting 

that SWS may mediate memory reorganisation. This study therefore not only provides 

evidence for a role of sleep in the learning of probabilistic statistical structures, but also 

suggests that sleep may be actively involved in the neural reorganisation of statistical 

sequences. Given that conceptual memories represent statistical patterns in the 

environment; these studies provide strong evidence for a role of sleep in the development 

of conceptual memory representations.  

As with grammar learning, the detection of regularities has also been demonstrated 

using associative memory tasks. Sweegers et al. (2014) developed an associative memory 

paradigm that required the learning of face-location associations and later retrieval of 

locations based on face cues. However, their task also allowed them to study the 

development of concept-based representations by manipulating the type of face that 

belonged to each location. Half of the material responded to complex associative 

regularities regarding the combination of facial features and locations. The other half of 

the faces were randomly assigned to one of the remaining locations. This created a set of 

‘rule-locations’: locations that have a specific type of face associated with it, and a set of 

‘no-rule locations’: locations that can be paired with any type of face.  

In a series of studies, Sweegers et al. demonstrated that participants are able to 

extract the complex associative regularities and show enhanced learning and retention of 

the rule compared to no-rule associations. Importantly, they also demonstrated that 

participants are able to apply the extracted rules to novel stimuli at above chance levels, 

providing evidence of generalisation and suggesting that the extraction of regularities 

across multiple associative memories can lead to shared concept based memory 

representations (Sweegers et al., 2015; 2014; Sweegers & Talamini, 2014). When they 

assessed the impact of sleep and wake on memory for the individual face-location 

associations in this task they found no evidence for sleep-associated benefits. This is 

somewhat intriguing given that associative memory tasks are typically sensitive to sleep 

based consolidation, however they do report near ceiling level accuracy rates following 

learning which may minimize the impact of offline consolidation mechanisms in their 

task (Diekelmann, Wilhelm & Born, 2009). 
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By testing memory for novel items that have not been trained, but which follow the 

same regularities, Sweegers et al., (2014) are able to obtain a very clear test of category-

based knowledge. This is particularly useful as it dissociates the effect of sleep on 

episodic based representations (which typically show strong benefits of sleep) from purer 

category-based representations that are independent from the individual category 

exemplars. The experiments presented in this thesis also aim to make a clear dissociation 

between category- and exemplar-based knowledge. Chapter 4 of the thesis uses an 

adapted version of the same face-location associated memory paradigm as Sweegers et 

al. to contrast memory for item versus category-based knowledge.  

1.6.4 Memory Integration 

Further evidence for a role of consolidation beyond memory stabilisation is data 

suggesting that consolidation can lead to the integration of distinct memories into 

coherent representations (Ellenbogen et al., 2007; Werchan & Gómez, 2013; 2014). 

Ellenbogen et al. (2007) used a transitive inference paradigm in which participants were 

required to learn the relationship between five pairs of arbitrary elements (e.g. A>B, B>C, 

C>D, D>E, E>F) which had an embedded hierarchical structure (e.g. A>B>C>D>E>F). 

Knowledge of both the trained pairs and the underlying structure was tested following an 

offline delay of either 20-minutes, 12-hours (either over a night of sleep, or across the day 

without sleep) or 24-hours. All groups showed very good retention of the arbitrary 

pairings following the delay, however only participants in the 12- and 24-hour delay 

conditions were able to make successful relational judgements, suggesting that relational 

memory develops during offline consolidation delays. A sleep-associated boost in 

relational memory was also observed, but only for the most distant judgements (e.g. B>E) 

suggesting that sleep may facilitate the binding of more distantly related information into 

coherent structures (Ellenbogen et al., 2007).  

 Lau, Tucker & Fishbein, (2010) also show an active role for sleep in the binding 

of memory representations using a relational memory paradigm. In this task participants 

learned two lists of direct associations between faces and objects, the objects however 

were common to both lists such that following learning each object was associated with 

two different faces. Following a 90-minute delay period, which either contained wake or 

sleep, the participant’s memory was tested for both the trained associations and the 
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untrained relationship between the two faces that shared the same object. Sleep-associated 

benefits were observed for both trained and non-trained memories; furthermore the 

duration of SWS obtained during the nap was able to predict relational memory 

performance, suggesting a specific role for SWS in the development of these relational 

representations (Lau et al., 2010). 

A second example of sleep-associated memory integration is the incorporation of 

novel words into the mental lexicon. When a newly learned word (e.g. cathedruke) is 

added to the mental lexicon, it competes during recognition with similar sounding 

existing words (e.g. cathedral), resulting in lexical competition. Importantly, the 

integration of novel words into the mental lexicon is an extended process that occurs over 

time and sleep has been shown to facilitate this process (Gaskell & Dumay, 2003; Dumay 

& Gaskell, 2007). Furthermore, the level of lexical competition has been shown to 

correlate with the number of sleep spindles observed in the post-training night of sleep 

(Tamminen, Lambon Ralph & Lewis, 2013) – suggesting that spindle activity during 

SWS plays an important role in the integration of new memories with existing knowledge. 

This type of memory integration goes beyond the transitive inference tasks described 

above (e.g. Ellenbogen et al., 2007) as it requires the integration of newly learned material 

with existing knowledge stores. This may be more representative of the mechanisms 

operating in the development of conceptual memory, as concepts need to be maintained 

and updated across multiple events spread across time.   

These studies provide strong evidence for the role of offline consolidation, and 

specifically sleep, in the integration of memory representations. However, it should be 

noted that lexical competition can emerge without sleep given the right circumstances 

during learning (Lindsay & Gaskell, 2013; Szmalec, Page & Duyck, 2012). Lindsay and 

Gaskell (2013) suggest that online processes of integration across wake may happen when 

participants are aware of the relationship between novel and existing knowledge, and 

when these two types of representation are interleaved during learning (for instance in 

their study, presentation of both novel words e.g. biscal and known existing base words 

e.g. biscuit). This suggests that processes of memory integration may be strongly 

influenced by the conditions surrounding learning and similar factors may therefore play 

a role in the development of concept memory.    
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This section provides support for the role of offline consolidation processes in 

developing memory beyond the individual representations. These processes do not 

however appear to be universal or uniform across memories. The data reviewed highlights 

important factors that play a role in whether consolidation benefits across sleep and/or 

wake are observed, these include; the type of memory being assessed (e.g. implicit or 

explicit), the type of test (e.g. recognition or recall), explicit awareness of hidden 

rules/structures and the nature of the learning environment. The underlying 

neurophysiological mechanisms governing these processes are only beginning to be 

uncovered; however, the limited evidence to date supports a role for SWS and 

mechanisms such as neural reactivation. Despite inconsistences within the current 

literature, it is clear that memory consolidation processes do go beyond memory 

stabilisation and enhancement and therefore consolidation processes may play a key role 

in the development of conceptual representations. The final section of this review will 

focus upon the narrow range of studies that have considered the role of consolidation in 

concept memory.  

1.7   Consolidation and Multidimensional Concept Learning  

Category learning paradigms have been used to bridge the literature between 

concept memory and mechanisms of consolidation. Category learning requires 

participants to learn the attributes that distinguish items as belonging to a category, on the 

understanding that each category has a set of common and relevant features. Importantly 

for learning, participants need to identify multidimensional features and derive a rule that 

best describes their combination. For example, the concept “birds” requires the learning 

of multiple features, such as having: wings, beaks, feathers and two legs. For something 

to qualify as a bird, these features need to co-occur, generating a defining rule (Rogers & 

McClelland, 2004). This type of approach to concept learning is somewhat simplified, 

however it captures the basic nature of concepts and provides the basis for a range of 

paradigms and studies that have studied the initial formation of categorical 

representations (Ashby et al., 1998; Ashby & Maddox, 2005; Ashby & Valentin, 2005; 

Kumaran et al., 2009; Maddox & Ashby, 2004; Smith et al., 2012). Only a handful of 

studies, however, have assessed the development of these categorical representations over 

time (Djonlagic et al., 2009; Graveline & Wamsley, 2017; Hennies, Lewis et al., 2014; 

Maddox et al., 2009). These studies use three types of classification task: the Weather 
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Prediction Task (WPT), the Dot Pattern Classification Task (DPC) and the Information-

Integration category learning task. These tasks all assess the acquisition of 

multidimensional concepts and train participants to classify objects by presenting a set of 

examples along with their category labels, either via feedback-driven or observational 

learning. The impact of consolidation in these will be discussed in turn.   

1.7.1 The Weather Prediction Task 

The WPT is a probability learning task which requires participants to make a 

weather prediction (sunshine or rain) based on the presence and/or absence of a set of 

four unique cards. Each card has a geometric pattern that partially predicts the weather, 

therefore the overall weather outcome is determined by evaluating the presented cards as 

a set (Gluck, 2002). Djonlagic et al. (2009) compared performance in the WPT across a 

12-hour consolidation delay that contained either wakefulness or sleep. They report an 

overall role for time, as accuracy in this task increased over the 12-hour delay and these 

improvements were greatest for participants who had the opportunity to sleep between 

training and testing. However, this was only observed when participants completed the 

WPT under observational learning procedures (i.e. passive viewing of the cards and their 

associated outcomes); the same sleep benefit was not observed following feed-back 

driven training.   

The authors suggest that this interaction between training method and benefit of 

offline consolidation in sleep may be a consequence of the underlying neural mechanisms 

during learning with observational learning recruiting MTL structures, which are 

implicated in sleep-based consolidation mechanisms, while feedback-driven training may 

recruit more striatal regions involved in reward learning (Djonlagic et al., 2009; Marshall 

& Born, 2007). Although this explanation may account for the differences in results, there 

is more recent evidence of sleep-associated consolidation benefits in other tasks that 

utilise striatal memory systems. For instance, Durrant et al. (2013) show sleep-based 

consolidation benefits in statistical learning of probabilistic sequences, with a shift 

between hippocampal and striatal memory stores across consolidation. To date, this is the 

only study to investigate the impact of consolidation on the WPT, replication of these 

effects is vital in order to truly appreciate and understand the interaction between learning 

strategy and sleep-associated consolidation. Despite these differences related to the role 
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of sleep, this study does provide evidence for a role of offline consolidation more 

generally in improving performance in this task, suggesting that time (both awake and 

asleep) may be beneficial for the development of category knowledge.   

1.7.2 Information-Integration Category Learning 

A similar improvement in performance as a result of time and offline consolidation 

has also been seen in information-integration category learning tasks (Hennies et al., 

2014; Maddox et al., 2009). These are perceptual categorisation tasks in which 

participants are presented with simple two-dimensional stimuli that can be categorised 

into two categories. Importantly, a simple one-dimensional rule cannot describe the 

boundary between two categories; instead participants are required to integrate 

information from across the dimensions to make their category responses. An example of 

an information-integration category structure is presented in Figure 1.7 where the stimuli 

dimensions represented are the Orientation and Bar Width of Gabor patch stimuli. The 

bold line shows the category boundary, demonstrating the need to integrate both 

dimensions in order to make optimal category decisions. Following feedback-driven 

training, participants show good evidence of category learning suggesting they are able 

to learn these information-integration category structures (Ashby & Ell, 2001; Ashby, Ell 

& Waldron, 2003; Ashby & Gott, 1988; Ashby & Valentin, 2005; Maddox, Bohil & Ing, 

2004).  

 



50 

 

Figure 1.7 An information integration category structure. The 

open and shaded circles indicate two different categories of stimuli. 

The stimuli are depicted within an abstract stimulus space where 

the axes represent Gabor patch dimensions of Bar Width and 

Orientation. Both dimensions carry useful but insufficient category 

information and therefore both dimensions should be integrated for 

successful categorisation of stimuli. 

 

Maddox et al. (2009) investigated the impact of sleep deprivation on information-

integration category knowledge by measuring category accuracy after a 24-hour delay 

containing total sleep deprivation. They reported an overall performance deficit in 

accuracy following sleep deprivation, however when they controlled for the type of 

strategy used to complete the task, they found that participants using the optimal 

information-integration boundary did not show a decline in performance – instead 

accuracy remained stable. Performance in their control group, where participants were 

able to sleep during the 24-hour delay, showed a significant performance increase across 

the 24-hours. Although this study lacks a control group with short delay, which would 

provide a comparison in which there was a limited opportunity for offline consolidation, 
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this data does suggest that consolidation mechanisms may play a role in the development 

of category representations in this task.  

Further support for a role of offline consolidation in the information-integration 

task is provided by Hennies et al. (2014) who used a modified version of the category 

learning task. In this modified paradigm, the information-integration category structure 

was secondary to a simple one-dimensional rule. Critically, the information-integration 

stimuli preceded each trial and as a result, participants could increase the speed of their 

responses. Hennies et al. (2014) measured performance on the task across two sessions; 

to assess the role of time, experiment one compared a delay period of 15-minutes with 

24-hours, while experiment two went on to investigate the separate contributions of wake 

and sleep across 12-hours. Participants did not show any evidence of utilising the 

information-integration category following initial training on this task. However, 

following the 24-hour delay in experiment one, and with further training on the task, 

participants showed evidence of using the information-integration stimuli with 

significantly faster response times than the control condition (in which no predictive 

information was presented). Planned comparisons show that this difference was only 

significant in the 24-hour condition, suggesting a benefit of offline consolidation, in line 

with the previous data from Maddox et al. (2009).  

A similar result is also observed in experiment two, with increased reaction times 

compared to baseline following the delay; however, this was observed in the delay 

containing 12-hours of wakefulness, and not in the delay containing sleep (Hennies et al., 

2014). The authors suggest that an important element of learning the shared properties of 

a category is the ‘forgetting’ of non-shared irrelevant features, a process that may happen 

preferentially during wakefulness, or be inhibited during sleep as a result of consolidation 

that strengthens whole representations, including both the shared and non-shared 

elements (Hennies et al., 2014). This is supported by similar results in a study 

investigating generalisation of memory in young children, where time awake (and not 

sleep) was beneficial for generalisation (Werchan & Gómez, 2014). This highlights a very 

important point when considering concept-based memory as consolidation may require 

successful forgetting as well as remembering. Processes in both wake and sleep may 

therefore have important roles to play.  
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1.7.3 The Dot Pattern Classification Task 

The final classification paradigm used is the DPC task, in which participants are 

required to classify abstract dot patterns into novel categories. The patterns in each 

category are statistically derived by distorting a single prototype pattern (Posner, 

Goldsmith & Welton, 1967). As a result, you can measure category knowledge for trained 

stimuli, as well as concept knowledge more generally by presenting novel items that are 

derived from the same prototype, but have not been previously trained. Performance on 

these novel items is particularly interesting as participants cannot draw upon individual 

associations between episodic memory for the exemplar and the category label. To assess 

the impact of sleep- and wake-based consolidation in this task, Graveline & Wamsley 

(2017) trained participants before a 12-hour delay that contained either wakefulness or 

sleep. They found sleep to lead to superior classification of the trained items, novel items 

and the original exemplars; suggesting sleep plays a role in the development of these 

category-based representations.  

 The categorisation tasks discussed in this section provide valuable paradigms for 

assessing the acquisition and development of concept knowledge. The majority of the 

evidence shows that conceptual representations remain relatively stable, or improve 

across time, suggesting concept memory is less vulnerable to decay. However, the 

evidence for a specific role of wake- or sleep-based consolidation is inconsistent; there is 

a very limited amount of research and with numerous paradigms and tasks that take 

different measurements of category knowledge. It is therefore difficult to integrate and 

interpret the current literature to generate informative conclusions as to the role of sleep- 

or wake-associated consolidation mechanisms on the development of concept-based 

representations.  

1.8 Summary 

Concepts allow us to bring meaning to the world based on shared properties 

between our current experiences and existing knowledge. The formation of coherent 

conceptual representations requires the integration of information across multiple 

episodes and events that are spaced across time and requires the abstraction of statistical 

patterns and regularities from both new and existing knowledge. Systems consolidation 
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is thought to drive the gradual redistribution of memories into long-term memory stores, 

leading not only to memory stabilisation and enhancement but to a qualitative change in 

the representation. This qualitative change has been shown to lead to the extraction of 

gist, the detection of hidden rules and regularities and the integration of memory elements 

into coherent representations. Offline consolidation mechanisms, during both wake and 

sleep, have been shown to facilitate this qualitative change in memory and therefore 

offline consolidation is identified as potentially playing an important role in the 

development of concept memory. The relationship been the development of concept-

based representations and offline consolidation has however received very little attention 

in the current literature and there are many questions that have yet to be addressed. 

1.9 Research Objectives 

The overarching aim of this thesis was to investigate the role of offline 

consolidation on the development of concept-based representations. Several processes 

that may contribute to the development of concept-based representations have been 

shown to benefit from offline consolidation during sleep, but other important aspects of 

concept development have yet to be investigated. The integration of information from 

multiple modalities is a key aspect of real-world concept knowledge and this has received 

very little attention in the consolidation literature. In Chapter 2 and Chapter 3 of this thesis 

we therefore aimed to examine the formation of abstract cross-modal conceptual 

representations using the information-integration categorisation paradigm. This task 

required the integration of information from across modalities (visual and auditory) and 

the extraction of an underlying category structure. In Chapter 2 we examined the overall 

benefit of time on the development of these cross-modal integrative representations and 

in Chapter 3 we explored the separate contribution of wake and sleep. In both of these 

chapters, we compared the impact of offline consolidation on concept knowledge with a 

declarative paired-associate memory task. This task has consistently been shown to 

benefit from offline consolidation during sleep, allowing us to assess the impact of 

consolidation on these two types of memory representation.  

Building upon these results, in Chapter 4 we integrated the development of 

conceptual and declarative associative memories into a single paradigm, allowing us to 

investigate how these memories may differentially develop over time and the relationship 
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between them. In this study we investigated the impact of both sleep and wakefulness on 

memory performance, and extended the study to investigate how post-consolidation 

learning may impact the integration of new information into these consolidated 

knowledge structures. In Chapter 5 we examined how these memories may be represented 

in the brain by investigating whether intrinsic functional connectivity measured at rest 

could predict behavioural measures of item and concept-based memory.  
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Cross-Modal Categorisation: A Role for Time? 

 

Jennifer E. Ashton, Elizabeth Jefferies, M. Gareth Gaskell 

 

2.1 Abstract  

The ability to categorise objects and events depends upon the representation of 

multimodal conceptual representations. This study investigated the impact of an offline 

consolidation delay on the development of cross-modal (visual-auditory) category 

knowledge. Participants performed an information-integration categorisation task twice, 

with each session separated by either a 15-minute or a 24-hour delay, followed by a set 

of follow-up tasks to assess category knowledge. Participants showed evidence of cross-

modal integration, with high categorisation accuracy rates and use of optimal integration 

strategies as demonstrated by modelling individual response patterns. There were no 

differences in performance between the two delay groups when accuracy was measured 

during category training, however when performance was measured in a speeded version 

of the task there was significantly higher accuracy in the 24-hour delay condition – 

suggesting a possible role for offline consolidation in the development of categorical 

memory representations. These results complement previous research investigating cross-
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modal category learning and extend this research by examining the role of offline 

consolidation in the development of cross-modal category knowledge. 

2.2 Introduction 

Memory consolidation describes a post-encoding process of stabilisation where 

new information is integrated into long-term memory stores (Born et al., 2006). There is 

now a large amount of research that suggests that offline consolidation mechanisms 

during periods of waking rest and sleep, act to stabilise and strengthen individual memory 

representations (Mednick et al., 2011; Rasch & Born, 2013; Stickgold & Walker, 2007). 

Furthermore, this benefit is now believed to extend beyond enhanced memory retention, 

by actively promoting a process of memory reorganisation, which facilitates the 

extraction of patterns and regularities from the environment (Wagner et al., 2004; 

Djonlagic et al., 2009; Durrant et al., 2011; Graveline & Wamsley, 2017; Lewis & 

Durrant, 2011). Offline consolidation mechanisms may therefore play an important role 

in the formation of ‘concepts’, which require the extraction of regularities from a set of 

related stimuli to generate generalized concept or category knowledge (Smith & Medin, 

1981). 

Concepts allow us to adaptively respond to novel situations, objects and events and 

require the integration of information from across multiple modalities and episodes to 

form complex similarity structures of the environment (Lambon Ralph et al., 2017). 

Demonstrations of perceptual integration have been shown in categorisation paradigms. 

These require participants to form categorical representations by integrating information 

from multiple stimuli dimensions (Ashby & Ell, 2001; Ashby, Ell, & Waldron, 2003; 

Ashby & Gott, 1988). Typically, these categorisation tasks have used very simple stimuli 

such as sine-wave gratings with the two dimensions e.g. bar width and orientation (see  

Figure 2.1 for an example of the stimuli). To visualise the category structures, each 

stimulus can be represented graphically in a two-dimensional space, where each axis 

represents one stimulus dimension as is shown in Figure 2.1. Stimuli can then be grouped 

together and categorised based on their position within this space. The overall category 

structure can be manipulated by changing the boundary between different categories 

(bold lines in Figure 2.1) and this in turn changes the level of dimension integration 

required for optimal categorisation.  
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Figure 2.1 Rule-based and information-integration category structures. A) A rule-

based category structure, the open and shaded circles, respectively, indicates Category 

A and Category B stimuli. The stimuli are depicted within an abstract space where the 

axes represent the Gabor patch dimensions of Bar Width and Orientation. In this rule-

based structure, only variation in Orientation carries category information, the optimal 

decision boundary is shown in bold. B) An information-integration category structure, 

depicted in the same way. Both dimensions carry useful, but insufficient (when 

evaluated alone) category information and therefore both dimensions should be 

integrated for successful categorisation of the stimuli. 

 

Two different category structures are presented in Figure 2.1; the first is referred to 

as ‘rule-based’, with only variation along one stimulus dimension (i.e. ‘orientation’) 

carrying useful category information (Figure 2.1A). Category knowledge is easily 

acquired from these structures and following training participants are able to generate 

simple one-dimensional rules to describe their categorisation strategies e.g. “respond A 

if the bars are oriented to the left and respond B if they are oriented to the right” (Ashby 

& Gott, 1988). The second category structure (Figure 2.1B) is referred to as ‘information-

integration’ and in this case both stimulus dimensions provide useful category 

information. Optimal categorisation therefore requires this information to be integrated 

before a category decision can be made. The Competition between Verbal and Implicit 

Systems (COVIS) model suggests that the acquisition of information-integration category 
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structures draws upon implicit procedural-learning mechanisms, rather than explicit rule-

based processes (Ashby & Gott, 1988). Like the rule-based structures, participants can 

reach high levels of categorisation accuracy following training on these information-

integration structures and in line with the multi-modal nature of conceptual memory, 

previous research provides evidence for cross-modal (i.e. visual-auditory) integration 

(Maddox, Ing & Lauritzen, 2006; Smith et al., 2014). In line with these findings, this 

study used the information-integration categorisation structure with cross-modal (visual-

auditory) dimensions to study the development of multi-modal categorical 

representations across time. 

A large amount of research has been generated investigating the initial acquisition 

of these category representations (Ashby & Ell, 2001; Ashby, Ell & Waldron, 2003; 

Ashby & Gott, 1988; Ashby & Valentin, 2005; Maddox, Bohil & Ing, 2004). However, 

only two previous studies have investigated the impact of offline consolidation on the 

development of these representations (Hennies et al., 2014; Maddox et al., 2009). The 

first of these was carried out by Maddox et al. (2009) who investigated the impact of a 

24-hour delay on category learning. Between two category learning sessions, they 

manipulated whether participants maintained their usual sleep-wake cycle or completed 

24-hours of total sleep-deprivation. For those who maintained their usual cycle, 

significant gains in performance were observed across the delay, suggesting a possible 

role for offline consolidation in the enhancement of category knowledge. Unfortunately, 

Maddox et al. (2009) did not include a shorter delay period (e.g. 15-minutes) and therefore 

it is not possible to determine whether the gain in performance was the result of offline 

consolidation mechanisms, or a more general improvement as a consequence of re-

exposure to the task in session two of their study. Improvements in performance were not 

observed following total sleep-deprivation, although again it is difficult to dissociate the 

impact of sleep loss from general fatigue as a result of deprivation in their paradigm. 

Although much more support is required, Maddox et al. (2009) provided the first evidence 

to suggest a possible role for offline consolidation in the maintenance and enhancement 

of category knowledge.  

The second study to investigate the role of offline consolidation in category learning 

was presented by Hennies et al. (2014) who carried out two experiments using a modified 

version of the categorisation paradigm. In their study, participants made distinctions 
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between two abstract categories using a one-dimensional visual rule. However, successful 

and faster categorisation could be achieved by using cross-modal information, which 

followed an information-integration category structure (an aurally presented tone and 

visual spatial location), that was presented before the onset of each visual stimulus. In 

their first experiment, Hennies et al. (2014) compared performance in this task across two 

sessions that were separated by a delay of either 24-hours or 15-minutes. After initial 

training, they found no evidence to suggest participants were sensitive to the predictive 

nature of the cross-modal cues. However, following a delay of 24-hours and with further 

training, participants showed significant speed increases in categorisation, indicating they 

were able to utilise the cross-modal information to make their responses. This increase in 

speed was not observed following the shorter 15-minute delay, suggesting a specific 

benefit from time for offline consolidation.  

In their second experiment, Hennies et al. (2014) investigated the specific role of 

sleep and wake on categorisation. Unlike much of the previous consolidation literature, 

which report selective benefits of sleep, they found only wakefulness to provide an offline 

consolidation benefit. This result is similar to that of Werchan & Gómez (2014) who also 

showed a wake-associated consolidation benefit in young children, in a task that required 

the abstraction of shared features from across a set of related items. They argue that 

forgetting idiosyncratic memory features during wakefulness may promote the 

generalisation and abstraction of information by emphasising the elements across 

memories which are shared (Werchan & Gómez, 2014). It may therefore be the case that 

offline consolidation during wake provides optimal conditions for the development of 

conceptual memories, which rely upon shared features from the environment.  

However, Hennies et al. (2014) made a number of important modifications to the 

original categorisation paradigm and these may have impacted upon their findings. 

Notably, they changed the focus of the task, with the information-integration structure 

predictive of category membership, but secondary to categorisation – which was based 

on a one-dimensional visual rule. This is likely to have had a large impact on learning 

given that the participants were not required to use the category structure to achieve 

accurate categorisation. A second modification, which makes it difficult to integrate their 

results with the existing categorisation literature, is their measurement of integration. 

They focus upon differences in reaction time by comparing the speed of categorisation 
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across trials with and without the predictive cues. This contrasts with measurements of 

accuracy which are typically reported in categorisation tasks. In the current literature 

therefore, there has been no direct investigation into the role of offline consolidation using 

the traditional information-integration categorisation paradigm using cross-modal 

stimuli. The current study aimed to address this by investigating the impact of a 24-hour 

offline consolidation delay using an unmodified information-integration categorisation 

paradigm with cross-modal (visual-auditory) stimuli (Ashby & Gott, 1988). A 15-minute 

delay condition was also included to dissociate the impact of offline consolidation from 

potential benefits related to re-exposure to the task following the offline delay.  

This study also aimed to compare the impact of offline consolidation on category 

knowledge, with the typical consolidation benefits observed within the declarative 

memory domain. Declarative memory has received a great deal of attention from the 

consolidation literature, with an increasing amount of studies highlighting a role for 

offline consolidation, and specifically sleep, in the stabilisation and enhancement of 

memory (Born et al., 2006; Diekelmann et al., 2009; Steffen Gais & Born, 2004; Björn 

Rasch & Born, 2013; Stickgold, 2009; Stickgold & Walker, 2007). If categorical 

representations draw upon these same consolidation mechanisms, then similar 

consolidation related changes in performance are hypothesised to be observed. To test 

this, a paired-associate memory task, which shows robust consolidation benefits, was 

included in this study – allowing direct comparisons between tasks to be made 

(Diekelmann et al., 2009; Jenkins & Dallenbach, 1924; Plihal & Born, 1997; Tucker et 

al., 2006). 

To summarise, the current study aimed to investigate the role of offline 

consolidation on the development of cross-modal categorical representations and used a 

traditional information-integration category structure and paradigm (Ashby & Gott, 

1988). Basic two-dimensional cross-modal (auditory-visual) stimuli were created and 

participants were expected to demonstrate sensory integration in order to form category 

representations. By comparing performance following a 15-minute and 24-hour delay, 

this study was able to assess the contribution of offline consolidation on category 

knowledge. As previous research shows robust consolidation benefits within the 

declarative memory domain, a paired-associate task was included to compare the impact 

of offline consolidation on declarative and categorical memory.  
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2.3 Methods 

2.3.1 Participants 

Participants were 44 undergraduate students recruited from the University of York 

in fulfilment of course credit or payment. Participants reported normal/corrected vision 

and hearing and were randomly allocated to one of two groups; a 15-minute delay group 

(N = 22, mean age: 19.86, S.D. ± 1.28, 19 female) or a 24-hour delay group (N = 22, 

mean age: 21.41, S.D. ± 5.58, 19 female). 

2.3.2 Procedure 

 The study comprised of two sessions, separated by a delay; 15-minutes or 24-

hours (see Figure 2.2). At the beginning of each session participants completed the 

Stanford Sleepiness Scale (SSS, Hoddes et al., 1973) to measure general ratings of 

sleepiness. In Session 1, participants then completed the paired-associate encoding and 

immediate cued-recall task, followed by categorisation training (~45 min). In Session 2, 

participants completed the category training for a second time, along with three 

categorisation follow-up tasks; i) a speeded categorisation task – this task allowed a 

measure of category knowledge to be taken in the absence of further training and included 

stimuli from both the trained category distribution, along with items that were from 

outside this distribution, but which could still be categorised using the same category 

decision boundary. It was therefore possible to determine if participants could apply the 

extracted category structure to non-trained stimulus space. ii) A two-alternative forced 

choice task – to assess whether category knowledge acquired in the training could be 

utilized in a new task with a different response structure. And iii) a category recall task – 

to test whether participants could explicitly generate category exemplars. Participants 

finished the session by completing the paired-associate delayed recall task (~60 min).  
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Figure 2.2 Experimental procedure. Participants completed both 

sessions and were randomly allocated to either the 15-minute or 24-

hour delay group. 

 

2.3.3 Tasks 

2.3.3.1 Categorisation Task 

2.3.3.1.1 Stimuli 

 Category exemplars were conjoint visual-auditory stimuli that replicated the 

stimuli described in Smith et al., (2014). The visual dimension was a 142 x 142 pixel 

unframed box containing randomly placed yellow pixels, presented on a black 

background. There were one hundred-and-one levels of pixel density with the number of 

yellow pixels at each level defined by pixels = round (850 × 1.0181level). Pixel density 

therefore varied from 850 lit pixels (level 0), to 5,061 lit pixels (level 100) out of a total 

of 20,164. The auditory dimension was a pure tone that varied in frequency (Hz), defined 

by frequency = 220 × 2(level/120). For levels 0 and 100 the pitches were 220 Hz and 392 

Hz respectively. All stimuli were generated using the open-source package PsychoPy 

(Pierce, 2007) with sounds presented through headphones. 
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2.3.3.1.2 Category Structure 

Table 2.1 provides the population distribution that governed the selection of 

Category A and Category B stimuli. Throughout the course of the experiment each 

participant received his or her own sample of 320 category exemplars and therefore 

individuals experienced their own unique statistical samples of a category’s probability 

distribution. Category exemplars were created using Ashby and Gott’s (1988) 

randomisation technique. Categories were defined by a bivariate distribution along the 

two stimulus dimensions (normalised to a 0-100 scale) and each conjoint stimulus was 

created by drawing a random sample (x, y) from each category distribution (see  

Figure 2.3). As the structures are created using an arbitrary 0-100 scale, each (x, y) 

coordinate pair were then transformed into concrete conjoint visual and auditory stimuli 

using the formulae described above. 

 

Table 2.1 Category distribution parameters (mean (µ), variance (σ2) and covariance 

(Cov(x, y)) for the pixel density (x) and tone frequency (y) dimensions in the information 

integration category structure.   

 Category Distribution Parameters 

Category µx µy σ2
x σ2

y Cov (x,y) 

A 40.00 40.00 185.94 185.94 -169.61 

B 60.00 60.00 185.94 185.94 -169.61 
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Figure 2.3 Graphical representation of the information-integration category 

structure. The open and shaded circles indicate Category A and Category B stimuli 

respectively. The stimuli are depicted within an abstract space with the axes 

representing Pixel Density (visual dimension) and Tone Frequency (auditory 

dimension). The optimal decision boundary is shown in bold. Examples of the stimuli 

and trials from the categorisation task are presented. 

 

2.3.3.1.3 Categorisation Trials 

 Each trial consisted of the presentation of one conjoint visual-auditory category 

exemplar, taken from either category A or B. The response icons ‘A’ and ‘B’ were 

presented on the lower left and right hand of the screen respectively, and participants were 

asked to categorise each stimulus by pressing the ‘A’ or ‘B’ keyboard keys, spatially 

positioned to correspond to the A and B on the screen (see Figure 2.3). The stimuli were 

presented until the participant made a response, or for a maximum of 10 seconds. If the 

participant failed to make a response in this time the trial was scored as incorrect. If 

participants correctly categorised the stimulus they were presented with the word 

“Correct!” on the screen and received a ‘point’ (presented as a running point total in the 

centre of the screen). When participants made an incorrect response, they were presented 

with the word “Incorrect!” and a point was deducted from their current total. This 
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feedback immediately followed their response and remained on the screen for 1000ms. 

Participants completed a total of 160 trials in each session of the category training (80 

trials in one block of learning, 320 trials across the entire experiment). 

2.3.3.1.4 Instructions 

Participants were told that each trial of the categorisation task contained a pixel box 

and an auditory tone and their task was to learn to accurately categorise each stimulus as 

belonging to Category A or B. They were instructed to guess to begin with, but to use the 

corrective feedback throughout the training to help them learn to accurately categorise 

the trials. They were told that they would receive points for correct answers and lose 

points for incorrect responses. A monetary prize for the highest overall points total was 

offered to encourage high performance, with the focus on accuracy rather than reaction 

times. 

2.3.3.2 Categorisation Follow-Up Tasks 

 Follow-up tasks aimed to assess participants’ knowledge of the category structure, 

and to apply their knowledge in more flexible ways. The stimuli used in these tasks were 

generated as described above.  

2.3.3.2.1 Speeded Categorisation 

 The speeded categorisation task followed the same procedure as category training, 

however participants did not receive feedback on their performance and were asked to 

make their category decisions as accurate and as fast as possible. Participants completed 

two variations of the task; a version in which the stimuli were sampled from the same 

distribution as learning (Trained) and one in which the stimuli were sampled from beyond 

the trained distribution (Non-Trained). In both versions, perfect accuracy could be 

achieved by using the category knowledge gained during training. By testing category 

accuracy for non-trained category exemplars, this test assessed whether participants could 

apply their category knowledge to new and untrained stimuli. Participants completed 80 

trials in each speeded task. 
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2.3.3.2.2 Two-Alternative Forced Choice (2AFC) 

 Participants completed a two-alternative forced choice (2AFC) task to assess their 

ability combine the stimulus dimensions to make a category exemplar. On each trial 

participants were presented with a target category in the centre of the screen (Category A 

or Category B). On 24 of the trials, they were also presented with a single auditory tone, 

along with two pixel boxes. Each pixel box when combined with the auditory tone made 

a legitimate Category A or Category B stimulus. The participant’s task was to select the 

pixel box (using a mouse click) that combined with the tone to match the target category. 

On a further remaining 24 trials, participants were presented with a target category along 

with a single pixel box. Two different auditory tones could be heard by hovering (with 

the mouse) over two different red boxes presented on the screen. After listening to the 

tones, participants were instructed to select the tone that combined with the pixel box to 

create a category exemplar matching the target category. Participants completed 6 

practise trials to familiarise themselves with the task procedure (3 trials of each type) and 

completed a total of 48 test trials. Participants were given 10 seconds to make their 

response and were instructed to respond as accurately as possible. 

2.3.3.2.3 Category Recall 

 Participants completed a recall task to assess their ability to generate category 

exemplars. Like in the 2AFC task, participants were presented with a target category 

(either Category A or B) in the centre of the screen and a fixed visual or auditory stimulus. 

They were also presented with a non-fixed stimulus from the opposite dimension, along 

with a 150-point scale. Participants were instructed to alter the non-fixed stimulus (using 

plus and minus buttons placed at either end of the scale, and controlled using mouse 

clicks) to combine with the fixed stimulus in order to match the target category. 

Participants completed a total of 40 trials; on 20 trials the fixed stimulus was a pixel box 

and they had to manipulate the frequency of the auditory tone, and in 20 trials the fixed 

stimulus was the auditory tone and they were required to manipulate the density of the 

pixel box presented. Participants were instructed to respond as accurately as possible and 

were given an unlimited amount of time to make their responses. 
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2.3.3.3 Paired-Associate Task 

2.3.3.3.1 Stimuli  

 100 words were selected from an adapted version of The University of South 

Florida (USF) word association, rhyme, and word fragment norms (Nelson et al., 2004) 

to create 50 semantically unrelated cue and target word pairs (e.g. owl – frame). Both the 

cue and target words were singular, had high USF concreteness ratings (mean ± standard 

deviation; cues = 5.81 ± 0.73; targets = 5.81 ± 0.43, t (98) = 0.01, p = .996) and were 

matched for frequency (cues = 38.74 ± 58.93; targets = 36.62 ± 50.36, t (98) = 1.93, p = 

.847), word length (cues = 5.12 ± 1.35; targets = 5.02 ± 1.02, t (98) = .418, p = .677) and 

number of syllables (cues = 1.42 ± 0.64; targets = 1.50 ± 0.58, t (98) = -0.65, p = .515). 

There were no pre-existing forward- or backward-association relationships between any 

of the words, reducing the likelihood of erroneous associations between words in separate 

pairs. 

2.3.3.3.2 Encoding 

 Participants were presented with each word pair for 5000 ms and were instructed 

to memorize the two words as a pair for a future memory test. To help memorize the word 

pairs participants were instructed to use visual imagery. 

2.3.3.3.3 Immediate Recall 

 To test their memory immediately after encoding, participants were presented 

with the cue from each pair (i.e. the first word of the pair) and given 10 s to recall the 

target word (i.e. the second word of the pair). Participants made their responses by typing 

the target word into the computer, they were instructed to use the backspace if they made 

a mistake and pressed the enter key to submit their response. Participants received 

immediate feedback following each response (3500 ms), and on incorrect trials the correct 

cue and target were re-presented and participants were instructed to try to re-learn that 

word-pair. This immediate recall procedure was repeated until participants correctly 

recalled a minimum of 60% of the word pairs, or until they had completed the recall 

procedure a maximum of three times. This criterion was set to try to maintain a similar 

level of performance across participants, without large differences in the number 

exposures to the stimuli.  



68 

2.3.3.3.4 Delayed Recall 

 Delayed recall followed the same procedure as immediate recall; however 

participants did not receive feedback on their performance and completed the task just 

once. 

2.4 Results 

2.4.1 Sleepiness  

Measures of sleepiness were taken using the SSS at the beginning of each session 

(four participants did not complete the SSS, 2 participants from each group). Scores (see 

Table 2.2) were analysed using an analysis of variance (ANOVA) with the factors Group 

(15-minute delay, 24-hour delay) and Session (Session 1, Session 2). This analysis 

revealed no main effects (Group; F(1, 38) = 1.84, p = .183, Session; F(1, 38) = 1.00, p = 

.324) or interactions (F(1, 38) = 1.00, p = .324), suggesting that ratings of sleepiness were 

comparable across groups and sessions in this study. 

 

Table 2.2 Stanford Sleepiness Scale (SSS) scores for each group in Session 1 and Session 

2. SSS ratings are marked on a 7-point scale with a score of 1 representing most alert; 

mean scores are presented with standard error of the mean in brackets. 

 

 

 

 

Stanford Sleepiness Scale 

 Session 1 Session 2 

15-minute Delay 2.30 (± 0.16) 2.05 (± 0.18) 

24-hour Delay 2.45 (± 0.15) 2.45 (± 0.18) 

 

2.4.2 Categorisation Task 

2.4.2.1 Accuracy-based Analysis 

Each session of the categorisation task was analysed separately. The average 

proportion of correctly categorised items in each condition was calculated for each block 

of training in Session 1 (see Table 2.3). The data was analysed using an ANOVA with 

the between-subjects factor Group (15-minute, 24-hour) and the within subjects factor 
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Block (Block 1, Block 2). There was no main effect of Group in the analysis (F (1, 42) = 

1.54, p = .221). As expected, there was a main effect of Block (F (1, 42) = 47.70, p < 

.001, η2 = 0.53) providing evidence to suggest that participants became more proficient 

in their categorisation as a result of the feedback provided during training. The interaction 

between these factors was non-significant (F (1, 42) = 3.55, p = .067). 

Participants completed a further two blocks of category training in Session 2 of the 

study (see Table 2.3). To assess whether Session 2 performance was influenced by the 

type of delay provided between sessions, performance was analysed using an analysis of 

covariance (ANCOVA) with the factors Group (15-minutes, 24-hours) and Block (Block 

1, Block 2) with average Session 1 accuracy included as a covariate to account for 

individual learning levels. This analysis did not reveal a main effect of Group, suggesting 

that participants’ performance on the task did not differ as a consequence of the delay 

type (F (1, 41) = 0.33, p = .571). There was no main effect of Block (F(1, 41) = 0.96, p = 

.333) and no interaction between these factors (F(1, 41) = 0.10, p = .757).  

 

Table 2.3 The proportion of correctly categorised trials in the categorisation task. Mean 

scores are presented with Session 2 scores showing covariate adjusted means, as 

evaluated with average Session 1 performance as the covariate. The retention score is 

defined as the % change in accuracy from the second block in Session 1 to the first block 

of Session 2 (Session 2 block 1 – Session 1 block 2). Standard error of the mean is 

presented in brackets.  

 Categorisation Task Performance 

 Session 1  Session 2 

 Block 1 Block 2  Block 1 Block 2 

15-minute Delay .63 (± .02) .70 (± .03) 
 

.77 (± .02) .78 (± .02) 

24-hour Delay .65 (± .02) .75 (± .02)  .79 (± .02) .80 (± .02) 

 

2.4.2.2 Model-Based Analysis 

General Recognition Theory (GRT) based analysis determines which of a 

predefined set of decision–boundary models best describes the classification strategy 
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adopted by each participant (Ashby & Gott, 1988). This analysis assesses whether 

participants were truly adopting an information-integration decision boundary to separate 

Category A from Category B exemplars. Four models were considered in this analysis: 

one-dimensional, conjunction, general linear classifier and random.  

The one-dimensional models assume that participants use a single dimension in 

order to classify stimuli by comparing each stimulus with a determined criterion value. 

An example using the tone frequency dimension in the current study would be “Respond 

Category A for high tones and Category B for low tones”. These models have two 

parameters: the criterion value and the variance of internal noise. The conjunction model 

suggests that participants hold a criterion value along both dimensions and combine the 

judgements to determine category membership. An example of a conjunction model 

would be “If the tone frequency is high and the pixel density is low assign Category A 

otherwise, assign Category B”. This model has three parameters: the two criterion values 

and internal noise.  The general linear classifier (GLC) model assumes a straight-line 

decision boundary can describe classification. The model can vary in gradient and 

intercept but suggests that participants are integrating across both dimensions to 

determine category membership. The GLC model has three parameters: the intercept, 

gradient and noise. The random model assumes that participants are responding randomly 

and this model has no parameters.  

For each participant, and in each session of category training, the best fit of each of 

these models was calculated and the best fitting model was selected using Akaike’s 

information criterion (Akaike, 1974). These analyses were performed using the grt 

package in R environment (Matsuki, 2017) and are reported in Table 2.4. A mixed-effects 

model was fitted with the likelihood of GLC classification as the dependent measure. The 

model included Group (15-minute and 24-hour), Session (Session 1, Session 2) and their 

interaction as fixed effects. Both fixed effects were coded with Helmert contrasts, with 

the 15-minute delay and Session 1 conditions acting as the reference levels. This meant 

that there was one Group contrast, with the 15-minute delay group compared with the 24-

hour delay group, and there was one Session contrast, comparing Session 1 with Session 

2. Random effects included by-subject intercepts only, which was the maximal random 

effect structure justified by the data (Baayen, Davidson & Bates, 2008). The lme4 

package in R, with the logit link function (Bates et al., 2015; Jaeger, 2008) was used to 
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conduct the analysis. There was a significant effect for the Session contrast, with both 

groups showing an increase in GLC classification in Session 2 compared to Session 1 (β 

= 2.53, standard error (SE) = 0.90, z = 2.81, p = .005, see Figure 2.4). The Group contrast 

was non-significant (β = -0.43, SE = 0.48, z = -0.91, p = .364) as was the interaction (β = 

-0.18, SE = 0.61, z = -0.29, p = 0.77).  

 

Table 2.4 Proportion of participants best described by each model according to the 

model-based analyses for each Session of the Categorisation Task. (1D = one-

dimensional, GLC = general linear classifier, CJ = conjunction, RDN = random). 

 Categorisation Strategies 

  1D GLC CJ RND 

15-minute Delay Session 1 .36 .36 .23 .05 

 Session 2 .18 .73 .09 .00 

24-hour Delay Session 1 .18 .50 .32 .00 

 Session 2 .00 .86 .14 .00 
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Figure 2.4 Optimal categorisation likelihood. The likelihood of participants 

in each Group being classified as using the optimal GLC decision boundary in 

the Session 1 and Session 2 of category training. Error bars represent standard 

error of the mean. 

 

2.4.3 Categorisation Follow-Up Tasks 

2.4.3.1 Speeded Categorisation 

Participants completed two speeded categorisation tasks, one with stimuli from the 

trained distribution (Trained) and a second with stimuli taken from outside the trained 

stimulus space which therefore had not been trained but could be categorised using the 

same category structure (Non-Trained). Accuracy is presented in Table 2.5. One-sampled 

t-tests confirmed that both groups were able to categorise both the Trained and the Non-

Trained stimuli at above chance (0.5) level (all p’s < .001). To assess differences between 

the groups, performance was analysed using an ANOVA with the between-subject 

variable Group (15-minute, 24-hour) and within-subject variable Training (Trained, Non-

Trained). This analysis revealed a main effect of Group, with greater accuracy in the 24-

hour compared to the 15-minute delay group (F (1, 42) = 4.92, p = .032, η2 = 0.12), 

suggesting an offline consolidation benefit in this speeded version of the categorisation 
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task. There was no main effect of Training (F (1, 42) = 0.00, p = .983) and no interaction 

between the variables Training and Group (F (1, 42) = 0.07, p = .788). 

2.4.3.2 Two-Alternative Forced Choice (2AFC) 

 The 2AFC task aimed to assess knowledge of category membership by asking 

participants to combine the two stimulus dimensions in order to create a specific category 

exemplar. Due to missing data, two participants were not included in this analysis (one 

participant from each delay condition). Accuracy is calculated as the proportion of correct 

responses and is presented in Table 2.5. One sampled t-tests confirmed participants were 

performing above the level of chance (0.5) in both groups (p’s < .001). The groups did 

not show any differences in performance in this task (t (40) = -1.32, p = .196). 

2.4.3.3 Category Recall 

 Participants in the recall task were given a 150-point scale to select the optimal 

category dimension to create an authentic category exemplar. An error score was 

calculated by measuring the difference between the level chosen by the participant and 

the mean level described by the line of best fit for each category distribution. Due to the 

nature of the stimuli, a varied number of responses would create valid category 

representations; participants were therefore scored correct if their error score fell within 

10% of the calculated level. Accuracy data is presented in Table 2.5, an independent 

samples t-test showed no significant differences in accuracy between the groups (t (42) = 

-1.00, p = .322).  
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Table 2.5 Performance in the three Categorisation follow-up tasks. Speeded 

Categorisation shows the mean accuracy for trials from the trained distribution and trials 

from outside the trained distribution (non-trained). Mean accuracy in each group is 

presented for the two-alternative forced choice (2AFC) and Recall Task. Standard error 

of the mean is presented in brackets. 

 Categorisation Follow-Up Tasks 

 Speeded Categorisation 
2AFC Recall 

 Trained Non-Trained 

15-minute 

Delay 

.72 (± .02) .72 (± .03) .60 (± .03) .35 (± .03) 

24-hour Delay .79 (± .02) .79 (± .03) .64 (± .02) .38 (± .03) 

 

2.4.4 Paired-Associate Task 

 Performance in the paired-associate task was calculated as the number of correctly 

recalled word pairs, measured after learning in Session 1 (immediate) and at the end of 

testing in Session 2 (delayed). Accuracy in the immediate and delayed tests is presented 

in Table 2.6. To assess the impact of the consolidation delay, the delayed recall accuracy 

was analysed using an ANCOVA with the factor Group (15-minute, 24-hour) and with 

the covariate of immediate recall to control for individual differences in memory 

performance. This analysis revealed a significant main effect of Group (F(1, 41) = 21.23, 

p < .001, η2 = 0.34), with the 15-minute group showing higher accuracy compared to the 

24-hour group, suggesting a general effect of memory decay in the 24-hour group.    

 

Table 2.6 Proportion of correctly recalled items in the paired associate recall task. 

Delayed recall shows covariate adjusted means (as evaluated with the covariate 

immediate recall). Standard error of the mean is presented in brackets.  

 Paired-Associate Task Performance 

 Immediate Recall Delayed Recall 

15-minute Delay .75 (± .02) .89 (± .02) 

24-hour Delay .74 (± .02) .77 (± .02) 
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2.4.5 Categorisation and Paired-Associate Learning  

 It is not known whether the paired-associate and category learning task assessed 

in this study show similar changes in performance as a result of offline consolidation. To 

assess whether consolidation impacted performance in similar ways, a difference score 

was calculated for each measure to capture the change in performance across the delay 

(paired-associated task; delayed recall – immediate recall and categorisation task; Session 

2 Block 1 accuracy – Session 1 Block 2 accuracy). For each group, a correlation between 

these two difference scores was calculated (15-minute; r = -0.34, p = .123, 24-hour; r = 

0.23, p = .300). These correlations were non-significant suggesting that offline 

consolidation did not have a similar behavioural impact on performance in these two 

tasks.  

2.5 Discussion 

This study investigated the role of offline consolidation on the development of 

cross-modal category representations using a traditional information-integration 

categorisation task (Ashby & Gott, 1988). This task required participants to integrate 

visual and auditory information from abstract stimuli in order to make successful category 

judgements. Participants showed clear evidence of cross-modal integration with high 

levels of categorisation accuracy. This was further supported by modelling individual 

response strategies – with participants showing a significant shift to two-dimensional 

linear integration strategies from the first to the second session of training. In the category 

training task, there were no differences in performance between groups that had a 24-hour 

or 15-minute delay between the testing sessions, suggesting that offline consolidation did 

not impact upon the development of these categorical representations during training. 

However, when category knowledge was tested with an emphasis on speed, a benefit in 

the 24-hour delay group was observed, suggesting a possible role of consolidation in 

facilitating speeded category decisions. There was no correlation between the offline 

consolidation benefit in this categorisation task and the declarative memory measure of 

paired-associate recall, suggesting that offline consolidation may have a differential 

impact upon these two types of memory representation. 
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This study was able to capture the multi-modal nature of real-world concepts by 

utilising a categorisation paradigm that required participants to integrate information from 

visual and auditory dimensions to generate categorical representations. Only two previous 

studies have examined cross-modal category learning and the results of this study 

complement this previous research by showing high levels of categorisation following 

training with visual-auditory stimuli (Maddox et al., 2006; Smith et al., 2014). Similarly, 

there has been little research investigating the role of time in the development of 

categorical representations, however in line with Maddox et al. (2009) this study found 

improvements in category knowledge following a delay of 24-hours. To assess whether 

these improvements were due to mechanisms of offline consolidation, a shorter 15-minute 

delay group was included in the current study – this group showed similar improvements 

in performance suggesting that improvement in performance may be due to re-exposure 

to the task rather than the result of offline consolidation.  

However, differences between the 24-hour and 15-minute delay groups were 

observed when performance was assessed in a speeded version of the categorisation task, 

with greater accuracy for participants who had a 24-hour delay between the two training 

sessions. This is interesting given that the only change to the task was the shift in focus 

to speed and the removal of feedback following each response. The COVIS model of 

categorisation emphasises the role of procedural and implicit learning mechanisms in 

successful categorisation using information-integration category structures. By changing 

the focus of the task to speed, it may be the case that participants allowed their responses 

to be driven by more automatic or procedural response systems (Ashby & Valentin, 2005; 

Maddox & Ashby, 2004). Within the consolidation literature, robust consolidation related 

enhancements in procedural memory have been observed following both time awake 

(Diekelmann et al., 2009; Fischer, Hallschmid, Elsner & Born, 2002; Robertson, Pascual-

Leone & Miall, 2004) and time asleep (Fischer et al., 2002; Gais et al., 2000; Plihal & 

Born, 1997; Stickgold et al., 2000; Walker et al., 2003). Speeded tasks may therefore 

provide a more sensitive measure for assessing the impact of consolidation on category 

knowledge. It should however be noted that the size of the observed effect in the speeded 

task is relatively small and numerical benefits in the other follow up tasks (i.e. the 2AFC 

and recall task) are also observed for the 24-hour delay group.  
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Nevertheless, these results are in line with the those from Hennies et al. (2014), 

who also report a performance benefit following a 24-hour delay when using an 

information-integration category structure to increase the speed of categorisation 

judgements. Like in the current experiment, this benefit was not observed following a 

shorter 15-minute delay, suggesting a possible role for offline consolidation. Hennies et 

al. (2014) modified the traditional categorisation paradigm by making the information-

integration category structure secondary to a one-dimensional visual rule that could be 

used for categorisation; as a result, they describe their information-integration category 

structure as implicit. Interestingly, when they tested explicit knowledge of the underlying 

category structure, they found no differences between their 15-minute and 24-hour delay 

groups. This pattern of results supports the current data by showing differential impacts 

of offline consolidation on explicit and implicit measurements of category knowledge, 

where more explicit measurements appear to be less sensitive to the effects of offline 

consolidation.  

A further interesting finding from this study is that the 24-hour benefit for speeded 

categorisation was observed for both items that were sampled within the trained 

distribution and from beyond the trained stimulus space. This suggests that the benefit of 

time may extend to the overall category structure, allowing the categorisation of novel 

stimuli to benefit from the consolidation delay. The flexible use of a category structure is 

critical when considering broader conceptual memory which facilitates memory 

generalisations based on shared properties between novel objects/events and existing 

knowledge. Although the stimuli are very simplistic in the current study, the data suggests 

that the flexible use of broader knowledge structures (and not just trained knowledge) 

may benefit from mechanisms operating during offline consolidation. Chapter 4 of this 

thesis aims to address this idea using an associative memory paradigm which allows a 

clear dissociation to be made between the categorisation of trained items and the 

categorisation of novel items which requires the use of a developed category structure. 

 Due to the nature of the traditional categorisation paradigm, in which participants 

are continually presented with feedback following each response, it is difficult to 

dissociate the impact of consolidation from the effects of feedback (and as a result post-

consolidation learning) in this and previous studies (Hennies et al., 2014; Maddox et al., 

2009). It is not clear whether the 24-hour benefit in speeded categorisation reflects 
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memory enhancement (and would therefore be present prior to any further category 

training), or whether it is due to a combination of consolidation and further exposure to 

category training. Data from the consolidation literature does provide evidence of 

memory enhancements following offline consolidation delays (Fischer et al., 2002; Gais 

et al., 2000; Steffen Gais & Born, 2004; Plihal & Born, 1997; Tucker et al., 2006). 

However, the Complementary Learning Systems (CLS) model of consolidation suggests 

that offline consolidation may also lead to the improved learning of new information 

when it is consistent with existing knowledge (McClelland, 2013; McClelland et al., 

1995). By this account, processes of offline consolidation during the 24-hour delay may 

have stabilised the previously trained categorical representations, which then acts to 

support swifter and more effective learning in the second session of training. Determining 

the exact contribution of offline consolidation on these representations is addressed in 

Chapter 3 of this thesis, where measurements of category knowledge (without feedback) 

were taken both at the end of the initial training period and prior to any further training 

following a number of consolidation delays. This allowed memory enhancement to be 

dissociated from improved category knowledge as a result of increased post-consolidation 

learning.  

 ‘Offline consolidation’ encompasses a wide range of processes that may operate to 

benefit memory.  The consolidation literature to date has placed a large focus upon sleep, 

with a growing amount of research highlighting an active role for sleep in the stabilisation, 

enhancement and reorganisation of long-term memory representations (Born et al., 2006; 

Ellenbogen et al., 2006; Rasch & Born, 2013). However, there is also emerging evidence 

to suggest that quiet wakefulness may also provide benefits for memory (Craig et al., 

2015; Craig et al., 2016; Dewar et al., 2012; Mednick et al., 2011) and Hennies et al. 

(2014) provide the first evidence to suggest that wakefulness may play a role in the offline 

consolidation of categorical representations. The specific role of wake- and sleep-

associated consolidation on the development of category knowledge, using this traditional 

information-integration categorisation task, is assessed in Chapter 3 of this thesis.  

Participants were able to integrate cross-modal (visual-auditory) information to 

generate categorical representations. The role of offline consolidation was assessed in this 

study by comparing performance following a 24-hour delay with a shorter 15-minute 

delay. In category training, there were no changes in accuracy across the delay groups, 
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however in a speeded follow-up task a significant increase in accuracy following a delay 

of 24-hours was observed, suggesting offline consolidation may benefit the development 

of categorical memory representations. Our results are consistent with, and extend the 

two previous studies that have aimed to assess the development of categorical 

representations across time. We however used an unmodified version of the 

categorisation paradigm and included a shorter 15-minute delay to control for changes in 

performance as a result of post-consolidation exposure to the task. Although the results 

of this study offer evidence to suggest a role for offline consolidation in the development 

of category knowledge, they also highlight two important factors that have yet to be 

addressed; i) whether category learning benefits from consolidation alone, or if the benefit 

emerges only in combination with post-consolidation exposure to the task, and ii) if there 

is a specific contribution from sleep and/or wake related mechanisms in the development 

of categorical representation across time. 
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3.1 Abstract  

The ability to categorise objects and events is a fundamental human skill that depends 

upon the representation of multimodal conceptual knowledge. This study investigated the 

acquisition and consolidation of categorical information that required participants to 

integrate information across visual and auditory dimensions. The impact of wake- and 

sleep-dependent consolidation was investigated using a paradigm in which training and 

testing were separated by a delay spanning either an evening of sleep or daytime 

wakefulness, with a paired-associate episodic memory task used as a measure of classic 

sleep-dependent consolidation. Participants displayed good evidence of category 

learning, but did not show any wake- or sleep-dependent changes in memory for category 

information immediately following the delay. This is in contrast to paired-associate 

learning, where a sleep-dependent benefit was observed in memory recall. To replicate 

real-world concept learning, in which knowledge is acquired across multiple distinct 

episodes, participants were given a second opportunity for category learning following 

the consolidation delay. Here we found an interaction between consolidation and 

learning; with greater improvements in category knowledge as a result of the second 

learning session for those participants who had a sleep filled delay. These results suggest 

a role for sleep in the consolidation of recently acquired categorical knowledge; however 

this benefit does not emerge as an immediate benefit in memory recall, but by enhancing 

the effectiveness of future learning. This study therefore provides insights into the 

processes responsible for the formation and development of conceptual representations. 

3.2 Introduction 

Conceptual knowledge refers to the information we possess that enables us to bring 

meaning to the words, objects and events we encounter daily (Lambon Ralph et al., 2010; 

2016). This information is essential for communication and cognition and draws on 

abstract representations that describe the categorical and functional relationships between 

items (Kintsch & Walter, 1988). The development of conceptual knowledge is thought to 

require the integration of information across different sensory modalities (e.g. vision and 

sound) and multiple learning episodes, giving rise to higher-order similarity structures 

that take into account all available sources of information (Lambon Ralph et al., 2016; 

Patterson et al., 2007). For any given concept, cross-modality integration is important, as 
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similarity in one modality may not be sufficient to extract appropriate conceptual 

relationships. For example; pears and light bulbs are similar in shape but are not related 

in meaning. Studies investigating perceptual category learning provide successful 

demonstrations of feature integration in order to develop conceptual representations 

(Ashby & Ell, 2001; Ashby et al., 2003; Ashby & Valentin, 2005; Ashby & Casale, 2003). 

However, little research has focused upon the acquisition of cross-modal representations 

and in particular their development across time (Maddox et al., 2006; 2009; Hennies et 

al., 2014). 

 

 

 

 

Figure 3.1 An information-integration category structure. The 

stimuli are depicted within an abstract space, with each dimension 

having 100 levels. Both dimensions carry useful category 

information; but successful (optimal) categorisation requires 

integration. 



83 

To study the acquisition of cross-modal category representations, it is necessary to 

create arbitrary ‘artificial’ categories. The categorisation literature provides a useful 

paradigm for creating such stimuli and allows the underlying structure of the categories 

to be experimentally manipulated in order to promote integration across multiple features 

or dimensions. Categories that require the integration of two (or more) stimulus 

dimensions are referred to as information-integration category structures (an example is 

presented in Figure 3.1). When presented with stimuli from this type of structure, 

information about category identity is available in both dimensions; however, neither 

dimension alone is sufficient to make precise categorisations. For optimal categorisation, 

information from both dimensions needs to be integrated in order to determine the 

category boundary (the bold line in Figure 3.1 shows the optimal category boundary). 

Through feedback-driven exposure to category exemplars, participants are able to acquire 

knowledge of information-integration category structures and show high levels of 

categorisation accuracy (Ashby & Maddox 2005; 2011).  

Most studies within the categorisation literature have focused on two-dimensional 

category structures within a single (visual) domain (e.g. Gabor patches – sinusoidal 

gratings that vary on the dimensions of orientation and frequency) overlooking the cross-

modal nature of much conceptual knowledge. However, information-integration category 

structures can be created using cross-modal stimuli; Maddox et al. (2006) used visual-

auditory stimuli dimensions, and subsequent work has shown high levels of categorisation 

when the category structure is manipulated such that the categories overlap (Smith et al., 

2014). In accordance with these findings and to capture the cross-modal nature of 

conceptual knowledge, the current study utilised a cross-modal (visual-auditory) 

information-integration categorisation paradigm to study the development of category 

knowledge across time.  

Research investigating the development of memory across time has typically 

focused upon episodic declarative memory, which requires rapid learning at a specific 

point in time. However, conceptual information is extracted from features present across 

multiple spatially and temporally distinct episodes (Rogers & McClelland, 2004). Given 

the gradual emergence of conceptual knowledge, it is therefore important to consider (i) 

the influence of consolidation processes that may occur in between learning episodes and 
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(ii) the effects of prior learning on the information that can be extracted from new 

experiences. 

There has been a large amount of research into memory consolidation; the 

processes that serve to maintain, strengthen and modify memories. These processes may 

occur across both wake and sleep; however tasks that assess episodic declarative memory 

suggest a specific role for sleep in memory consolidation (Diekelmann et al., 2009). One 

task that reliably demonstrates sleep-dependent consolidation benefits is paired-associate 

learning, in which participants are required to learn lists of associated word-pairs. 

Memory for the learned pairs is usually assessed using cued-recall procedures, which 

follows a post-learning delay that is manipulated to contain either sleep or wakefulness. 

Consistently, studies report better memory retention after a delay containing sleep 

(compared to wake) suggesting a role for sleep-dependent consolidation in long-term 

memory retention (Jenkins & Dallenback, 1924; Plihal & Born, 1997; Tucker et al., 2006; 

Diekelmann et al., 2009).  

It was originally hypothesised that sleep benefits memory by offering passive 

protection from interference and forgetting (Ellenbogen et al., 2006). However, there is 

now strong evidence to suggest that sleep plays an active role in consolidation by 

promoting systems-level memory transfer (Diekelmann & Born, 2010). The active 

systems consolidation hypothesis suggests that during sleep, newly encoded information 

is integrated within long-term memory networks and is reorganised to enable the 

extraction of invariant features (Born & Wilhelm, 2012). Strong support for the specific 

role of sleep has been provided by numerous studies which show a correlation between 

the change across a sleep delay and sleep physiology, specifically slow-wave sleep (SWS) 

(for a review see Rasch & Born, 2013). Causal evidence is provided by studies which 

have re-exposed participants to encoding associated cues (e.g. odours or auditory cues) 

during SWS – which leads to enhanced memory performance, highlighting a role for 

memory reactivation as a possible mechanism of sleep-associated consolidation (Rasch 

et al., 2007; Rudoy et al., 2009; Rasch & Born, 2013). Consolidation during sleep is 

therefore thought to not only strengthen individual representations, but also to facilitate 

the extraction of shared and systematic features from the environment – a potentially 

critical mechanism for the development of concept or categorical memory 

representations. 
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 Sleep-dependent consolidation beyond isolated episodic memories has received 

much less attention; however there is evidence to suggest that sleep plays a role in the 

extraction of regularities (Lau et al., 2011). Ellenbogen et al. (2007) used a transitive 

inference paradigm to examine the role of wake- and sleep-dependent consolidation on 

the extraction of an implicit hierarchical structure. Participants learned arbitrary “premise 

pairs” (e.g. A > B, B > C, C > D etc.) followed by a wake- or sleep-filled post-learning 

delay. Participants were then tested on their memory for the trained pairs (e.g. A > B) and 

their knowledge of the untrained hierarchy (e.g. B > D). The two groups showed 

comparable memory for trained items; however the sleep group outperformed the wake 

participants when knowledge of the more distant untrained hierarchy was assessed, 

suggesting sleep had facilitated extraction of the underlying hierarchical information 

(Ellenbogen et al., 2007).   

A sleep-dependent benefit for the extraction of regularities is not however 

consistently reported. In a declarative language learning task, Mirkovic & Gaskell (2016) 

report sleep-dependent benefits for arbitrary vocabulary knowledge, but fail to find 

differences between wake and sleep groups when assessing knowledge for systematic 

aspects of the trained language (i.e. grammatical regularities). It is these systematic 

aspects of learning that are thought to contribute to conceptual memory; however few 

studies take into account the real-world nature of conceptual learning which develops 

across distinct episodes. Evidence from animals (Tse et al., 2007), humans (van Kesteren 

et al., 2013) and computational models (McClelland et al., 2013) suggests that new 

learning is facilitated by prior schematic knowledge, with accelerated integration when 

new and existing information are consistent (McClelland et al., 2013). The acquisition of 

conceptual information across time may therefore rely heavily on an interaction between 

consolidation processes and subsequent learning episodes. A single post-delay test, the 

typical procedure used in consolidation research, may therefore fail to capture the true 

impact of consolidation on the development of conceptual knowledge across time. In an 

attempt to replicate realistic category learning, and to capture potential interactions 

between consolidation and learning mechanisms, this study included a second learning 

opportunity following the consolidation delay.  

To our knowledge, two studies have used the information-integration 

categorisation task described above to study the development of category knowledge 
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across time. Maddox et al. (2009) examined the influence of sleep deprivation on 

information-integration category learning. They provided category training in two 

sessions separated by 24-hours during which participants were kept awake or were able 

to maintain their usual wake-sleep cycle. Maddox et al. reported poorer performance for 

participants who remained awake between sessions, however, due to the sleep deprivation 

paradigm, this study cannot separate the effects of sleep-based consolidation from those 

of fatigue.  

A second study reports an offline consolidation benefit in category learning when 

comparing a delay of 24-hours with 15-minutes (Hennies et al., 2014). Unlike immediate 

post-delay consolidation effects which are reported in studies assessing episodic 

declarative memory, the benefit in this study emerged only after further training following 

the delay; suggesting a subtle benefit of consolidation which increased the effectiveness 

of post-delay learning. Hennies et al. (2014) went on to compare the effects of sleep and 

wake separately by using a 12-hour delay that spanned either a night of sleep or a day of 

wakefulness; they found a specific consolidation benefit for the wake, but not the sleep, 

delay condition. This result contrasts with those typically observed within the 

consolidation literature and suggests that categorisation may not benefit from sleep-based 

consolidation in the same way as declarative memory. However, Hennies et al. (2014) 

made a number of modifications to the categorisation paradigm. These changes made the 

information-integration structure predictive of category membership, but secondary to 

categorisation – which was based on a one-dimensional visual rule that was provided to 

participants. This is likely to have had a large impact on learning in the task, given that 

participants were not required to use the category structure to achieve accurate 

categorisation. Furthermore, in contrast to the typical measurement of accuracy that is 

used in categorisation studies, their measurement of integration was based upon changes 

in reaction time, making it difficult to compare their results with the existing 

categorisation literature. In the current study, we wanted to assess the role of wake and 

sleep based consolidation using the traditional, and unmodified, information-integration 

category learning structure.  

Thus, while the role of sleep-dependent consolidation in the development of 

episodic declarative memory is relatively well-established, the contribution of 

consolidation in the development of conceptual memory has not been widely investigated. 
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It is unknown whether the behavioural consequence of sleep-dependent consolidation is 

consistent across memory types, or indeed whether sleep- or wake-dependent 

mechanisms have a specific role to play in the consolidation of conceptual memory. The 

potential influence of such a mechanism on the stabilisation of previously encoded 

information and the impact on subsequent learning has yet to be established.  

Accordingly, the current study investigated the role of consolidation on both 

traditional paired-associate declarative memory and conceptual categorisation in a cross-

modal information-integration paradigm (Ashby & Gott, 1988). Basic two-dimensional 

cross-modal (auditory-visual) stimuli were created and participants were expected to 

demonstrate sensory integration in order to form cross-modal categorical representations. 

By employing a 15-minute and 12-hour sleep or wake delay between two sessions of 

learning, we assessed independent contributions of time and of wake- and sleep-

dependent consolidation on (i) the retention of previously-encoded episodic and 

categorical representations, and (ii) the capacity to further develop category knowledge 

after consolidation. The effects of sleep were then replicated in a second sample with 

concurrent polysomnography recordings although for ease of exposition all groups are 

presented in the same analysis. 

3.3 Methods 

3.3.1 Participants 

Participants were 95 undergraduate students recruited from the University of York 

in fulfilment of course credit or for payment. Participants reported normal or corrected-

to-normal vision and hearing and were randomly assigned to one of four experimental 

conditions: a 12-hour wake group (n = 23, mean age: 20.52, S.D. ± 3.54, 17 female), a 

12-hour sleep group (n = 22, mean age: 20.05, S.D. ± 1.32, 19 female), a PSG-monitored 

overnight sleep group (n = 23, mean age: 20.87, S.D. ± 2.49, 16 female) or a 15-minute 

delay group (n = 27, mean age: 20.67, S.D. ± 3.54, 21 female). Participants in the 

overnight PSG-monitored sleep group were required to be free from psychoactive drugs, 

including alcohol and caffeine, and to refrain from daytime napping for 24 hours 

preceding and throughout the study period.  
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3.3.2 Study overview 

All participants were tested on a measure of declarative episodic memory (paired-

associate learning) and a conceptual category learning task. Participants completed two 

sessions of the study; to assess paired-associate memory a typical consolidation paradigm 

was utilised where participants completed encoding and immediate cued-recall in session 

1, followed by a delayed cued-recall test in session 2. Category training followed a similar 

procedure, however following the delayed test in session 2, participants completed a 

second round of training and a final test before completing a number of categorisation 

follow-up tasks.  The two sessions were separated by a delay of varying lengths (15-

minutes vs. 12-hours) that were manipulated to separately assess the contribution of 

wake- and sleep-dependent consolidation. 

3.3.3 Experimental Tasks 

3.3.3.1 Paired-Associate Learning 

3.3.3.1.1 Paired-Associate Stimuli  

80 words were selected from an adapted version of The University of South 

Florida (USF) word association, rhyme, and word fragment norms (Nelson et al., 2004) 

to create 40 semantically unrelated cue and target word pairs (e.g. owl – frame). Both the 

cue and target words were singular, had high USF concreteness ratings (cues = 5.90 ± 

0.61; targets = 5.85 ± 0.41,t(39) = 0.39; p = .696) and were matched for frequency (cues 

= 35.10 ± 41.09; targets = 40.73 ± 55.26, t(39) = -4.71; p =.640), word length (cues = 

5.18 ± 1.34; targets = 5.15 ± 1.05, t(39) = 0.09; p =.933) and number of syllables (cues = 

1.45 ± 0.68; targets = 1.55 ± 0.60, t(39) = -0.73; p = .472). There were no pre-existing 

forward- or backward-association relationships between any of the words, reducing the 

likelihood of erroneous associations between words in separate pairs.  

3.3.3.1.2 Paired-Associate Encoding 

Participants were presented with each word pair for 5000 ms and were instructed 

to memorize the two words as a pair for a future memory test. To help memorize the word 

pairs participants were instructed to use visual imagery. 
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3.3.3.1.3 Paired-Associate Immediate Recall 

To test their memory immediately after encoding, participants were presented 

with the cue from each pair (i.e. the first word of the pair) and given 10 s to recall the 

target word (i.e. the second word of the pair). Participants made their responses by typing 

the target word into the computer; they were instructed to use the backspace if they made 

a mistake and pressed the enter key to submit their response. Participants received 

immediate feedback following each response (3500 ms), and on incorrect trials the correct 

cue and target was re-presented and participants were instructed to try to re-learn that 

word-pair. Cued-recall with feedback offers the opportunity for extra learning for 

incorrectly recalled pairs. As a result, it is expected that memory accuracy will increase 

between this and future memory tests. This immediate recall procedure was repeated until 

participants correctly recalled a minimum of 60% of the word pairs, or until they had 

completed the recall procedure a maximum of three times. This criterion was set to try 

and maintain a similar level of performance across participants, without large differences 

in the number exposures to the stimuli.  

3.3.3.1.4 Paired-Associate Delayed Recall  

Delayed recall followed the same procedure as immediate recall; however 

participants did not receive feedback on their performance and completed the task just 

once.  

3.3.3.2 Categorisation Task 

3.3.3.2.1 Category Stimuli  

All stimuli were generated using MATLAB (PsychToolBox). Category exemplars 

were two-dimensional conjoint visual-auditory stimuli based on Smith et al. (2014). The 

visual dimension was a 150 x 150 pixel unframed box containing randomly placed yellow 

pixels, presented on a black background. There were one hundred-and-one levels of pixel 

density with the number of yellow pixels at each level defined by pixels = round(850 × 

1.0181level). Pixel density therefore varied from 850 lit pixels (level 0), to 5,061 lit pixels 

(level 100) out of a total of 22,500. The auditory dimension was a pure tone that varied 

in frequency (Hz), defined by frequency = 220 × 2(level/120). For levels 0 and 100 the pitches 

were 220 Hz and 392 Hz respectively. Stimuli were presented on the right- or left-hand 
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side of the screen. The placement of each stimulus was determined by its position within 

the stimulus space (see Figure 3.2); a boundary line orthogonal to the category boundary 

separated the stimuli, with trials on one side of the boundary presented on the left hand 

side of the screen during training (the shaded area in Figure 3.2) and trials on the other 

side presented on the right hand side of the screen (the non-shaded area in Figure 3.2). 

Although systematic, screen location did not provide any information about category 

identity and was therefore considered task-irrelevant. 

 

 

Figure 3.2 The information-integration category structure. The points 

are normalised to a 100-point scale. The sold line denotes the optimal linear 

decision boundary; the corsairs and squares represent Category A and 

Category B respectively. Items that fall within the shaded region were 

presented on the left-hand side of the screen and those in the non-shaded 

region presented on the right-hand side of the screen.   
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3.3.3.2.1 Category Structure  

Category exemplars were created using Ashby and Gott’s (1988) randomisation 

technique. Categories were defined by bivariate distributions along the two stimulus 

dimensions following the information-integration condition of Filoteo et al. (2010) (see 

Table 3.1). Each stimulus was created by drawing a random sample (x, y) from the 

stimulus space. Stimuli sets were created for each individual, with each set normalised to 

match the overall category distribution before being transformed into concrete visual and 

auditory stimuli using the formulae above. This normalisation ensured that each 

participant had the same statistical information, despite receiving their own unique set of 

individual exemplars. Maximum accuracy using the optimal linear boundary as shown in 

Figure 3.2 would be 95% as there is a 5% category overlap.  

 

Table 3.1 Category distribution parameters (mean (µ) and standard deviation (σ)) for the 

pixel density (x) and tone frequency (y) dimensions in the information integration 

category structure.   

 Category Distribution Parameters 

Category µx µy σx σy 

A 26.67 50.00 10 10 

A 50.00 73.33 10 10 

B 50.00 26.67 10 10 

B 73.33 50.00 10 10 
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3.3.3.2.2 Category learning trials  

Participants completed two blocks of sixty trials in each learning session, (with 

60 Category A and 60 Category B trials presented in a randomised order). On each trial, 

one conjoint visual-auditory category exemplar was presented.  The response icons ‘A’ 

and ‘B’ were presented in the lower left- and right- hand side of the screen, and 

participants were asked to categorise each stimulus by pressing the ‘A’ or ‘B’ keyboard 

keys. The stimuli were presented for a maximum of 8 s and terminated immediately 

following a response, if no response was given with the 8 s the trial ended and this was 

scored as incorrect. Participants received immediate feedback following each response, 

with the word “Correct!” or “Incorrect!” presented in the centre of the screen. To 

encourage good performance and to engage participants throughout the task a points 

system was used such that points were added or deducted from a running total following 

each response. A monetary reward was offered for the highest performing participant. A 

detailed example of two trials from the category learning task is presented in  

Figure 3.3.  

 

 

Figure 3.3 Sequence of events for two example trials in the 

categorisation task. 
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3.3.3.3 Instructions 

Participants were told that each trial of the categorisation task contained a pixel 

box and an auditory tone, with the chance of each trial belonging to category A or B being 

equal. They were instructed to categorise each trial by pressing the “A” or “B” keyboard 

key and that they would need to guess at first, but with practise they would be able to 

categorise the stimuli accurately. Participants were instructed to focus on the density of 

the pixels and the pitch of the tone to make their decisions; they were informed that the 

pixel box would be located on the left or right-hand side of the screen, but that this was 

not important for making their categorisation decisions. Participants were encouraged to 

focus on being as accurate as possible during learning. 

3.3.3.4 Categorisation Follow-Up Tasks 

Follow-up tasks aimed to assess participants’ knowledge of the category structure, 

as learned in the categorisation task. The stimuli used in these tasks were the same as 

described above. 

3.3.3.4.1 Categorisation Test  

The categorisation test included 60 trials which followed a similar procedure to 

categorisation learning; however, participants did not receive feedback on their 

performance. A fixation-cross of 1500 ms was presented before the onset of each trial and 

participants were instructed to respond both as accurately and as quickly as possible, 

using the knowledge they had gained during learning to guide their decisions. Participants 

performed the categorisation test three times; immediately following learning in session 

one, straight after the delay in session two and finally after the second round of category 

training in session two (see Figure 3.4). 

3.3.3.4.2 Two-Alternative Forced Choice (2AFC) Task 

Participants completed a 2AFC task to assess their ability to identify category 

exemplars. On each trial participants were presented with a ‘target Category’ (either A or 

B) in the centre of the screen. The task was divided such that in half of the trials they were 

presented with a single auditory tone, and two pixel boxes (pixel trials) while in the other 

half of trials they were presented with one pixel box and two auditory tones (tone trials). 
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In both trial types, stimuli could be combined to make legitimate category A or B items. 

The participants’ task was to select the stimuli they thought combined to create an 

exemplar of the target category. For example, on ‘pixel trials’ participants had to select 

(from the two pixel boxes) the one they thought combined with the auditory tone to match 

the target category. Participants completed 80 trials in total (40 pixel trials, 40 tone trials) 

and were instructed to respond as accurately as possible; a fixation cross (1000 ms) 

preceded the onset of each trial. 

3.3.3.4.3 Recall Task  

Participants completed a recall task to assess their ability to generate category 

exemplars. On each trial participants were presented with a scale which represented the 

normalised level of either the density of a pixel box or the frequency of a tone (ranging 

from level -25 to 125). They were also presented with a ‘target category’ (either A or B) 

in the centre of the screen, along with a fixed stimulus from one dimension (e.g. a pixel 

box). Their task was to change the scale representing the non-presented dimension (e.g. 

the frequency of the tone) to match the target category. Participants used the mouse to 

click their chosen position on the scale and were able to change position an unlimited 

amount of times. In half of the trials the fixed dimension was the pixel box, while in the 

other half of trials the tone was fixed. Participants were instructed to be as accurate as 

possible. Each trial was preceded by a fixation cross presented for 2000 ms and 

participants completed 60 trials in total (30 of each type). 

3.3.3.4.4 Location Task  

The location task was used to assess participants’ knowledge of the task-irrelevant 

location dimension. This was considered to be task irrelevant as screen location did not 

provide any cues to category membership. We included this manipulation to assess 

whether participants were sensitive to information that was not relevant for successful 

categorisation and if knowledge of this information developed differently across delays 

containing sleep or wake. On each trial they were provided with a conjoint visual-auditory 

stimulus and its category in the centre of the screen. They had to indicate whether they 

believed the stimulus belonged on the left or right-hand side of the screen. Each trial was 

preceded by a fixation cross for 1000 ms and participants were instructed to respond as 

accurately and as quickly as possible. They completed 60 trials in total. 
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3.3.3.5 Psychomotor Vigilance Task (PVT) 

The PVT is a sustained-attention, reaction-timed task that measures the speed with 

which participants respond to visual stimuli. The PVT task was obtained from 

http://bhsai.org/downloads/pc-pvt/ (Khitrov et al., 2014). During the task, participants 

were presented with a blank black screen, at random intervals, a millisecond counter 

began to scroll, and participants had to left click the mouse to stop the counter as quickly 

as possible. After clicking, the counter displayed the achieved reaction time for 1000 ms, 

providing the subject with feedback on performance. Inter-stimulus intervals were 

distributed randomly from 2 to 10 seconds, and the task lasted for a total of 3 minutes.  

3.3.4 Sleep Recording with Polysomnography (PSG) 

For participants in the overnight PSG group, an Embla N7000 PSG system with 

RemLogic version 3.4 software was used to monitor sleep. After the scalp was cleaned 

with NuPrep exfoliating agent (Weave and Company), gold plated electrodes were 

attached using EC2 electrode cream (Grass Technologies). EEG scalp electrodes were 

attached according to the international 10-20 system at six standardised locations: central 

(C3 and C4), occipital (O1 and O2) and frontal (F3 and F4), and each was referenced to 

an electrode on the contralateral mastoid (A1 or A2). Left and right electrooculography 

electrodes were attached, as were electromyography electrodes at the mentalis and 

submentalis bilaterally, with a ground electrode attached to the forehead. Each electrode 

had a connection impedance of < 5 kΩ and all signals were digitally sampled at 200 Hz.  

3.3.5 Procedure 

The experiment consisted of two experimental sessions separated by a delay of 

varying lengths across the four conditions. The two 12-hour delay groups spanned either 

daytime wakefulness, in which participants continued with their usual daytime activities, 

or an evening of sleep, where participants returned home to sleep. For these two groups 

Session 1 began at 8.30am and 8.30pm respectively with Session 2 being completed 

exactly 12-hours later. Participants in the overnight PSG group were required to arrive at 

the lab at 8.30 pm and completed the experimental tasks after PSG set-up (9.45 pm ± 30 

minutes). These participants remained in the lab to sleep and were awoken from sleep at 

approximately 7.30 am; they completed Session 2 tasks at 8.30 am. Participants in the 15-
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minute delay group completed Session 1 between 9.00 am and 12.00 pm. These 

participants were instructed to take a 15-minute break and were encouraged to leave the 

testing lab in order to avoid fatigue before completing Session 2.   

A schematic illustration of the experimental procedure is shown in 

Figure 3.4. Both sessions began with completion of the Stanford Sleepiness Scale (SSS) 

(Hoddes et al., 1973) followed by the PVT to obtain measures of sleepiness, alertness and 

vigilance. In Session 1, participants completed paired-associate encoding and immediate 

cued-recall, followed by category learning and the first categorisation test (Session 1 ~45 

minutes). Session 2 tasks involved a second categorisation test, a further session of 

category learning and a final categorisation test. Participants then completed the 

categorisation follow-up tasks and finally paired-associate delayed recall (Session 2 ~1 

hour). 

 

 

Figure 3.4 Experimental procedure.  
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3.4 Results 

Data were analysed in SPSS 23. All effects that reached a significance level of  

p < .1 are reported, with effects where p < .05 considered significant. Bonferroni-

corrected t-tests were used to evaluate main effects for factors with more than two levels. 

3.4.1 Stanford Sleepiness Scale and Psychomotor Vigilance Task 

 Alertness measures were taken using the SSS (ratings of sleepiness) and 

performance on the PVT, focusing upon measures of reaction time (RT) and attentional 

lapses (RT > 500ms, data is presented in Table 3.2).  Each measure was analysed using 

an analysis of variance (ANOVA) with the between-subjects variable Group (15-minute, 

PSG, 12-hour wake, 12-hour sleep) and repeated-measures variable Session (Session 1, 

Session 2). There were no differences in the levels of rated sleepiness across groups (F(3, 

90) = 2.36, p = .077), however there was a main effect of session, with participants rating 

themselves as sleepier in session one when compared to session two (F(1, 90) = 9.25, p = 

.003); there was no interaction between these factors (p > .69). No differences were 

observed when measuring alertness by mean RT (Group; F(1, 89) = 0.90, p = .443, 

Session; F(1, 89) = 0.001, p = .980) or the number of lapses in the PVT (Group; F(1, 89) 

= 0.39, p = .758, Session; F(1, 89) = 0.25, p = .620).  This suggests that general levels of 

alertness cannot account for any effects of Group in the experimental tasks. 
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Table 3.2 Stanford Sleepiness Scale (SSS) and Psychomotor Vigilance Task (PVT) 

scores for each group in Session 1 and Session 2. SSS ratings are marked on a 7-point 

scale with a score of 1 representing most alert; mean scores are presented. PVT scores 

represent mean reaction time (RT) in ms and the mean number of lapses in attention (RT 

> 500ms). Standard error of the mean is presented in brackets. 

 Sleepiness & Vigilance 

 Session 1 Session 2 

 SSS 
PVT 

RT (ms) 

PVT 

Lapse 
SSS 

PVT 

RT (ms) 

PVT 

Lapse 

15-minute 
2.73 

(.16) 

254  

(4.91) 

.08 

(.05) 

2.23 

(.14) 

272 

(9.05) 

.65 

(.36) 

PSG 
3.17 

(.17) 

279  

(6.18) 

.17 

(.08) 

2.52 

(.15) 

275 

(6.71) 

.52 

(.23) 

12h – Sleep 
3.18 

(.20) 

278  

(9.83) 

.48 

(.19) 

2.81 

(.23) 

268  

(6.16) 

.24 

(.10) 

12h – Wake 
2.70 

(.23) 

274  

(7.42) 

.74 

(.27) 

2.47 

(.21) 

270  

(5.77) 

.35 

(.12) 

 

 

3.4.2 Paired-Associate Learning 

 Analysis of paired-associate memory focused upon accuracy in the final recall 

attempt from the immediate test (if participants were required to repeat the test to meet 

the 60% recall criterion) and delayed cued-recall. Two participants were removed from 

the analysis due to computer failures during delayed recall (both from the 15-minute delay 

condition). To examine changes in performance across the delay, an analysis of 

covariance (ANCOVA) was performed on delayed recall with the variable Group (15-

minute, PSG, 12-hour wake, 12-hour sleep) and covariate immediate cued recall (see 

Table 3.3). The ANCOVA revealed a significant effect of Group (F(3, 93) = 10.02, p 

<.001, η2 = 0.26). Post-hoc Bonferroni-corrected pairwise comparisons showed that this 

effect was driven by a smaller proportion of correctly recalled items in the 12-hour wake 

group compared to all other conditions (15-minute delay p = .001, 12-hour sleep p < .001, 

PSG overnight group p < .001). Therefore, in this assessment of episodic declarative 

memory, we observe a sleep-associated benefit for delayed cued-recall.  
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Table 3.3 Accuracy in the immediate paired associated cued-recall test (data taken from 

the final recall attempt, mean proportion correct presented) and delayed cued-recall 

(covariate adjusted means are presented with the covariate immediate recall). Standard 

error of the mean is presented in brackets. 

 Paired-Associate Recall 

 Immediate Test Delayed Test 

15-minute .73 (.03) .84 (.16) 

PSG .71 (.03) .86 (.16) 

12h – Sleep .71 (.02) .86 (.17) 

12h – Wake .78 (.03) .75 (.16) 

 

3.4.3 Category Learning 

3.4.3.1 Categorisation - Session 1 

The rate of category learning in Session 1 was assessed by comparing the number 

of correctly categorised trials in the two blocks of training. Performance is presented in 

Table 3.4 and was analysed using an ANOVA with the within-subjects variable Block 

(Block 1, Block 2) and between-subjects variable Group (15-minute, PSG, 12-hour wake, 

12-hour sleep). A main effect of Block was observed (F(1, 91) = 20.93, p < .001, η2 = 

0.19), demonstrating improvements in categorisation across training. There were no 

Group differences (F(3, 91), 0.44, p = .727) and no interaction between the variables (F(3, 

91) = 0.96, p = .418). 

The first categorisation test provides a measure of Session 1 category learning. 

All groups performed above chance level, as determined by one-sample t-tests with 

chance level performance as 0.5 (p < .001 for all groups). Data is presented in Table 3.4 

(Test1), a between-subjects ANOVA with the variable Group was non-significant (F (3, 

91) = 1.85, p = .143). There was however some variation in condition means and so 

performance at this time-point was used as a covariate in subsequent analyses.  
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Table 3.4 Performance in the categorisation learning task and tests. Session 1 scores 

represent the mean proportion of correctly categorised trials. Session 2 scores show 

covariate adjusted means (as evaluated with the covariate Test 1). Standard error of the 

mean is presented in brackets.  

 Categorisation Task Performance 

 Session 1  Session 2 

 Learning 

Test 1 

 

Test 2 

Learning 

Test 3  Block 1 Block 2  Block 1 Block 2 

15-minute 
.66 

(.02) 

.70 

(.02) 

.71 

(.02) 

 .73 

(.01) 

.73 

(.02) 

.77 

(.02) 

.74 

(.02) 

    
 

    

PSG 
.64 

(.02) 

.69 

(.02) 

.68 

(.03) 

 .74 

(.02) 

.76 

(.02) 

.77 

(.02) 

.77 

(.02) 

    
 

    

12h – Sleep 
.65 

(.02) 

.72 

(.02) 

.76 

(.02) 

 .71 

(.02) 

.74 

(.02) 

.80 

(.02) 

.77 

(.02) 

    
 

    

12h – Wake 
.66 

(.02) 

.69 

(.02) 

.75 

(.02) 

 .71 

(.02) 

.73 

(.02) 

.73 

(.02) 

.69 

(.02) 

 

3.4.3.2 Categorisation – Session 2 

 Category knowledge was re-assessed with a test at the beginning of Session 2 to 

measure the retention of category knowledge across the delay. Again, all groups 

performed above chance level (0.5) when tested with one-sample t-tests (p < .001 for all 

groups). Performance in this test (see Figure 3.5A) was assessed using an ANCOVA with 

the variable Group (15-min, PSG, 12-hour wake, 12-hour sleep) and covariate Test 1. A 

non-significant effect of Group suggests that all groups were performing at a similar level 

(F(3, 90) = 1.00, p = .397). There was no evidence for immediate consolidation effects 

on the retention and retrieval of categorical knowledge acquired in Session 1; this is in 

contrast to the declarative paired associate task where we observed a sleep-associated 

benefit.  

Participants then went on to complete two further blocks of category training; 

performance was assessed by comparing the number of correctly categorised trials across 
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each block (see Table 3.4). An ANCOVA with the within-subject variable Block (Block 

1, Block 2), between-subjects variable Group (15-min, PSG, 12-hour wake, 12-hour 

sleep) and covariate Test 1 revealed a main effect of Block, suggesting that participants 

were able to use the extra learning in session 2 to boost their category knowledge (F(1, 

90) = 5.53, p = .021, η2 = 0.06). A main effect of Group was not observed (F(3, 90) = 

1.88, p = .138) and there was no interaction with the factor Block (F(3, 90) = 2.61, p = 

.056, η2 = 0.08). 

The third and final categorisation test assessed category knowledge following 

both the consolidation delay and Session 2 training. Performance is shown in Figure 3.5B. 

An ANCOVA with the factors Group (15-min, PSG, 12-hour wake, 12-hour sleep) and 

covariate Test 1 revealed a main effect of Group; F(3, 89) = 4.89, p = .003, η2 = 0.14. 

Bonferroni-corrected pairwise comparisons suggest that this main effect was driven by 

superior performance in the 12-hour sleep (p = .009) and PSG (p = .008) groups in 

comparison to the 12-hour wake condition. Participants who had sleep-filled 

consolidation delays, followed by further category training, showed higher rates of 

categorisation compared to participants who stayed awake during the delay. 

 

 

Figure 3.5 Test 2 and Test 3 performance. The proportion of correctly categorised 

trials during Test 2 (A) and Test 3 (B). Covariate adjusted means are presented as 

evaluated with the covariate Test 1. Error bars represent SEM. (** represents p < .01). 
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3.4.3.3 Category Learning – Follow-up Tasks 

ANCOVAs with the variable Group (15-min, PSG, 12-hour wake, 12-hour sleep) 

and covariate Test 1 were performed separately for each follow-up task. Accuracy in the 

2AFC and location task was calculated as the proportion of correct responses. Accuracy 

in the recall task was calculated as an error score, i.e. the difference between the 

participants response and the target response (the point of best fit based on the category 

distribution); a small error score is indicative of accurate performance in this task. All 

task scores are presented in Table 3.5; in the 2AFC and Location Task all groups 

performed above change level (chance = 0.5, p’s < .05). Group differences were not 

observed in the 2AFC task (F(3, 89) = 1.75, p = .163), the recall task (F(3, 89) = 2.25, p 

= .089) or the location task (F(3, 89) = 0.35, p = .788). 

In Session 2 of this study participants completed multiple tests to assess the role 

of consolidation on memory. Across these tests we find a significant effect of group in 

paired associate recall (p < .001) and in the third categorisation task (p = .003). Given that 

we take multiple measures of performance across Session 2 (a total of 7 different 

measures) a more careful correction for multiple comparisons, including all post-

consolidation tests, would be a Bonferroni corrected alpha level of p = .007 (0.05/7). The 

significant effects of Group observed in this study survive this more conservative 

correction for multiple comparisons. 

 

Table 3.5 Accuracy scores in the category follow-up tasks. Covariate adjusted means are 

presented (as evaluated with the covariate Test 1 accuracy). Standard error of the mean is 

presented in brackets.  

 Categorisation Follow-Up Tasks 

 
2AFC 

(proportion correct) 

Recall 

(error score) 

Location Task 

(proportion correct) 

15-minute .62 (.02) 39.17 (2.66) .57 (.03) 

PSG .61 (.02) 37.95 (2.86) .57 (.03) 

12h – Sleep .62 (.02) 33.90 (2.92) .56 (.03) 

12h – Wake .56 (.02) 43.70 (2.84) .55 (.03) 
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3.4.4 Sleep Stage Analysis 

 One participant was excluded from sleep analyses due to PSG equipment failure 

(N = 22). PSG recordings were scored in accordance with the criteria of the American 

Academy of Sleep Medicine (Iber et al. 2007). Sleep data was partitioned according to 

the proportion of total sleep time spent in stage I, stage II, slow-wave sleep (SWS) and 

rapid-eye-movement (REM) sleep. Sleep stage data is presented in Table 3.6. To establish 

whether the sleep related behavioural effects were driven by specific architectures of 

sleep, improvement scores were calculated between (i) delayed and immediate paired-

associate recall, (ii) categorisation accuracy in Test 2 and Test 1 and (iii) categorisation 

accuracy in Test 3 and Test 1. Bivariate correlations were then performed between these 

behavioural measures and the proportion of time spent in (i) non-rapid-eye-movement 

(NREM) sleep (combined time in stage I, stage II and SWS), (ii) stage II sleep and (iii) 

and SWS. Correlations for each behavioural measure were tested against a Bonferroni-

corrected alpha level of p ≤ .006. 

 A positive correlation was observed between the proportion of time spent in 

NREM sleep and paired-associate learning (r = .514, p = .014) however this did not 

survive the Bonferroni corrected alpha level. Correlations with the proportion of time in 

stage II sleep (r = .317, p = .150) and SWS (r = .038, p = .868) were non-significant. No 

correlations were observed between improvement scores in the categorisation task and 

each of the stages of sleep (all p > .5). 

 

Table 3.6 Percentage of time spent in each sleep stage. (NREM – non-rapid eye 

movement sleep, SWS – slow-wave sleep, REM – rapid eye movement sleep, TST – total 

sleep time). Standard error of the mean is presented in brackets.  

Sleep Stage Data 

NREM Stage 1 Stage 2 SWS REM TST  (min) 

80.28 

(0.74) 

8.45 

(0.66) 

43.85 

(1.32) 

27.98 

(1.43) 

19.72 

(0.74) 

441.38 

(11.10) 
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3.4.5 Model-based Analyses 

 General Recognition Theory (GRT)-based analysis determines which of a 

predefined set of decision–boundary models best describes the classification adopted by 

each participant (Ashby & Gott, 1988). This analysis allows us to assess whether 

participants were truly adopting an information-integration decision boundary to separate 

Category A from Category B exemplars. Four models were considered in this analysis: 

one-dimensional, conjunction, general linear classifier and random.  

 The one-dimensional models assume that participants use a single dimension in 

order to classify stimuli by comparing each stimulus with a determined criterion value. 

An example using the tone frequency dimension in the current study would be “Respond 

Category A for high tones and Category B for low tones”. These models have two 

parameters: the criterion value and the variance of internal noise. The conjunction model 

suggests that participants hold a criterion value along both dimensions and combine the 

judgements to determine category membership. An example of a conjunction model 

would be “If the tone frequency is high and the pixel density is low assign Category A, 

otherwise assign Category B”. This model has three parameters: the two criterion values 

and internal noise.  The general linear classifier (GLC) model assumes that a straight 

diagonal decision boundary can describe classification. The model can vary in gradient 

and intercept but suggests that participants are integrating across both dimensions to 

determine category membership. The GLC model has three parameters: the intercept, 

gradient and noise. The random model assumes that participants are responding randomly 

and this model has no parameters.  

 For each participant, and in each of the three categorisation tests, the best fit of 

each of these models was calculated and the best fitting model was selected using 

Akaike’s information criterion (Akaike, 1974). These analyses were performed using 

the grt package in R environment (Matsuki, 2017) and are reported in Table 3.7. A 

mixed-effects model was fitted with the likelihood of a GLC classification as the 

dependent measure. The model included Group (15-minute, PSG, 12-hour sleep and 12-

hour wake), Test (Test 1, Test 2 and Test 3) and their interactions as fixed effects. Both 

fixed effects were coded with Helmert contrasts, with Test 1 and 15-minute delay 

conditions acting as the reference levels. This meant that for Test a first contrast 
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compared Test 1 with Tests 2 and 3, and a second contrast compared Test 2 with Test 3. 

For Group, a first test compared the three long delay groups (12-hour wake, 12-hour 

sleep and PSG) with the 15-minute delay group, a second contrast compared the PSG 

and 12-hour Sleep groups to the 12-hour Wake group, and a third contrast compared the 

PSG and 12-hout Sleep conditions. Random effects included by-subject intercepts only, 

which was the maximal random effect structure justified by the data (Baayen, Davidson 

& Bates, 2008). We used the lme4 package in R with the logit link function (Bates et 

al., 2015; Jaeger, 2008) to conduct the analysis. There was a significant interaction 

between the second Group contrast (comparing the PSG and 12-hour Sleep groups to 

the 12-hour Wake group) and first Test contrast (comparing Test 1 with Tests 2 and 3), 

β = -0.24, standard error = 0.09, z = -2.83, p = .005. GLC classification in the PSG and 

12-hour sleep groups tended to increase between Test 1 and the two subsequent Tests, 

while there was a decrease in GLC classification in the 12-hour Wake Group (see 

Figure 3.6). There was also a significant effect for the second Test contrast (comparing 

Test 2 with Test 3), with all groups showing an increase in GLC classification across 

these two testing points (β = 0.53, standard error = 0.18, z = 2.95, p = .003). All other 

contrasts and interactions were non-significant (p’s > .062). Although modelling 

categorisation data is typical in this area of research, the modelling results should be 

interpreted with caution given the restricted set of models tested and the small number 

of trials used for each test in the current study (Donkin et al., 2014).  
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Table 3.7 Proportion of participants best described by each model according to the 

model-based analyses for each categorisation test. (1D = one-dimensional, GLC = general 

linear classifier, CJ = conjunction, RND = random, T1 = Test 1, T2 = Test 2, T3 = Test 

3).  

 Categorisation Strategies 

 1D  GLC  CJ  RND 

 T1 T2 T3  T1 T2 T3  T1 T2 T3  T1 T2 T3 

15-minute 48 52 31  44 30 58  04 18 08  04 00 04 

  

PSG 48 39 22  26 39 52  22 22 22  04 00 04 

  

12-hour Sleep 32 41 14  50 45 77  14 09 09  05 05 00 

  

12-hour Wake 39 39 35  61 35 39  00 26 26  00 00 00 
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Figure 3.6 Optimal categorisation likelihood. The likelihood of 

participants in each Group being classified as using the optimal GLC 

decisions boundary in the three categorisation tests. Error bars represent 

standard error of the mean.  

 

3.5 Discussion 

This study investigated the role of consolidation in both a declarative paired-

associate memory task, and on the emergence of cross-modal conceptual representations 

using an information-integration categorisation paradigm. In line with previous literature, 

we observed a clear sleep-associated consolidation benefit for paired-associate memory, 

with participants showing better retention following a consolidation delay that contained 

sleep compared to wakefulness. This result is consistent with the view that processes 

during sleep act to promote the consolidation of declarative memory (Diekelmann et al., 

2009; Rasch & Born, 2013). Our assessments of category knowledge provide good 

evidence for sensory-integration, with participants successfully acquiring the cross-modal 

(auditory – visual) category structure. As real-world conceptual knowledge comprises 

information across multiple modality dimensions (Patterson et al., 2007) this task, albeit 

in a very simplistic form, resonates with natural concept learning. However, in contrast 
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to paired-associate memory, we did not observe any immediate post-delay wake- or sleep-

associated changes in categorisation accuracy. Instead, we found a facilitative effect of 

sleep-associated consolidation on subsequent learning, with participants showing greater 

category knowledge and shifts towards more optimal decision strategies after training in 

session two, if they had a delay filled with sleep.  

These results suggest that the behavioural benefits of sleep-associated 

consolidation are dependent upon the type of memory being assessed. Episodic memory, 

as assessed by the paired-associate task, produces immediate sleep benefits in memory 

recall, whereas the advantages for conceptual memory emerge only after an opportunity 

for further learning. This result draws attention to the relationship between sleep-

associated consolidation and the effectiveness of post-consolidation learning; an 

important finding when considering the development of conceptual memory which 

develops across temporally distinct episodes interleaved with consolidation opportunities.  

These results are in agreement with theories of consolidation which suggest that 

sleep facilitates systems-level memory reorganisation, allowing new and consistent 

information to be assimilated into long-term memory networks at a quicker rate 

(McClelland et al., 1995; McClelland, 2013; Kumaran et al., 2016; Tse et al., 2007; van 

Kesteren et al., 2013). Sleep-dependent training benefits in this study may therefore be 

the consequence of subtle sleep-dependent mechanisms which facilitated the storage of 

category knowledge acquired in session one; thus providing the architecture required for 

enhanced assimilation of new and consistent information the following day. This 

interpretation is also supported by modelling the decision strategies of participants; those 

who had the opportunity to sleep between sessions showed a shift to the optimal linear 

decision strategy following the delay and session two training. Memory reorganisation 

during sleep, which may promote the development of category structure, along with 

further task training, may have allowed participants to align their response strategies with 

the optimal linear decision boundary in this task. This same shift in response strategy was 

not observed following 12 hours of wakefulness, supporting the suggestion of a sleep-

associated mechanism in the consolidation of category knowledge. 

Significant differences were observed between the 12-hour wake group and both 

of the groups that contained sleep in the final test of category knowledge. However, it 

should be noted that the 15-minute delay group showed similar numerical performance 
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to the sleep group (and not the wake group) in the categorization task. Unfortunately, 

direct correlations between features of sleep (as studied using PSG) and behavioural 

measures of category knowledge were not observed in this study. It is therefore difficult 

to determine whether the ‘sleep-associated’ benefit is specific to sleep, or whether other 

factors (e.g. the level of interference between sessions) may also play a role in the 

behavioural effects observed. 

These results do however highlight the importance of assessing consolidation 

across multiple learning episodes when studying the development of categorical memory 

representations. An interesting question that remains is whether the benefits of sleep on 

second session learning are specific to the trained categorisation structure, or whether 

these benefits extend to perceptually and/or structurally similar categorisation tasks. 

Understanding the flexibility of consolidated categorical representations will be 

important for determining the role of consolidation in broader conceptual memory. 

We observed differences in the sleep-associated benefit observed across the two 

tasks in this study. One possible reason for this is due to the nature of encoding. Paired-

associate learning requires participants to make associations between two previously 

unrelated items, creating very strong episodic memory representations which place high 

demands on the medial temporal lobe system in the brain, in particular the hippocampus 

(Cameron et al., 2001). The hippocampus plays a pivotal role in theories of memory 

consolidation, with the suggestion that it is responsible for both the rapid encoding of 

information during wake and then the redistribution of encoded material to the neocortex 

during sleep (McClelland et al., 1995; Diekelmann & Born, 2010). In contrast to paired-

associate learning, the categorisation task considerably reduces the value of episodic 

encoding by using a continuous category structure without a definitive category boundary 

(i.e. there was a degree of category overlap). This results in each trial being perceptually 

very similar, without any discriminative or arbitrary features to allow trial-by-trial 

individuation. 

The immediate sleep-dependent benefit for paired-associates may therefore reflect 

a component of the consolidation mechanism which is strongly linked to episodic 

memory. We were not able to compare episodic and conceptual memory within the same 

paradigm in the current study, however Graveline & Wamsley (2017) were able to do this 

using a classification task in which participants were trained to discriminate between dot 
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patterns that were derived from category prototypes. Importantly, participants were 

trained on individual category exemplars, that although they were perceptually very 

similar, were repeatedly presented during training, allowing participants to develop strong 

representations for individual items. In line with our paired-associate data, they show 

sleep-dependent benefits in memory for these trained items. However, they also show 

sleep benefits for the categorisation of novel and untrained category patterns, suggesting 

that sleep also benefitted the extraction of shared category knowledge. This highlights a 

complex interplay between episodic and conceptual memory, where sleep may benefit 

concept-based representations when strong individual episodic representations are held 

in memory.  

 The sleep-dependent benefit in post-consolidation learning in this study is in 

contrast to the wake-dependent consolidation benefit observed in the category learning 

study by Hennies et al. (2014). In a similar categorisation task, they found that wake, 

rather than sleep, facilitated the development of category knowledge. Two factors may 

account for these contradictory results; the first is the selectivity of sleep-dependent 

consolidation (Rasch & Born, 2013). Sleep-dependent consolidation effects are more 

robust under explicit learning conditions and are improved by motivational factors such 

as relevance for future goals (Robertson et al., 2004; Fischer et al., 2006; Walker et al., 

2003; Cohen et al., 2005; Diekelmann et al., 2008; Wilhelm et al., 2011). In the current 

study, participants were explicitly aware of the relevant information needed for 

determining category membership (i.e. the visual and auditory dimensions) despite the 

nature of the category structure itself being initially unknown. In contrast, the underlying 

category structure was truly implicit in Hennies et al., (2014). They manipulated the 

traditional categorisation paradigm such that the information-integration category 

structure was hidden within a pre-stimulus event, which if utilised would increase 

reaction time, but was not necessary for accurate categorisation. Explicit appreciation for 

the relevant integrative dimensions may therefore make the stimulus in this experiment 

more susceptible to sleep-dependent consolidation mechanisms. 

A second factor that may explain the differences observed between these studies 

relates to the level of initial learning. Stickgold (2009) proposed that sleep mainly benefits 

memories encoded at intermediate memory strengths, such that there is an inverted-U 

shaped curve to the sleep benefit. As a result, both very weak and very strong memories 
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would fail to benefit from sleep-based consolidation mechanisms. In the current study 

participants were able to categorise stimuli above chance level after training in session 

one, but did not reach ceiling levels. According to the theory proposed by Stickgold 

(2009), learning was therefore within the optimal range to benefit from sleep-dependent 

consolidation. In contrast, Hennies et al. (2014) found no evidence of implicit category 

learning before the consolidation delay; participants may have been insensitive to sleep-

dependent consolidation mechanisms in their study. 

Given that the results of the current study contrast with those from Hennies et al. 

(2014) it is important to note that we did provide a direct replication of our sleep effect 

by using two sleep group comparisons. This study was initially run as a comparison 

between two groups with a 12-hour delay containing wake or sleep. Following data 

collection and preliminary analyses, the 15-minute and PSG monitored group were added 

to i) provide a short delay comparison and ii) to replicate the sleep effect observed in the 

initial 12-hour sleep group with concurrent PSG recordings. We successfully replicated 

the initial sleep-associated benefit but present all groups within a single comparison in 

the current paper to streamline the analysis. Replication of the sleep benefit observed in 

this study, as well as further investigation more generally within the domain of 

consolidation and categorisation is certainly required to fully understand the development 

of category knowledge across time. The design we used in this experiment, which 

compares nocturnal sleep with daytime wakefulness, like many others in the 

consolidation literature, does not control for circadian effects on memory that may 

influence performance (Rasch & Born, 2013). Although ratings of sleepiness and 

vigilance suggest that participants’ general alertness levels were comparable in the 

current study, a replication of the sleep-based effects using a nap design would remove 

potential ‘circadian’ and ‘time-of-day’ confounds. 

This study compared the role of consolidation in a declarative paired-associate 

task, and on the emergence of cross-modal categorical memory representations. We 

provide good evidence for a role of sleep-dependent consolidation in paired-associate 

learning, with participants showing post-sleep benefits in memory recall that correlate 

with signatures of sleep. This finding is in line with a growing body of research suggesting 

that processes during sleep play an active role in the consolidation of declarative memory 

(Rasch & Born, 2013). Using a perceptual categorisation task, we were able to 
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demonstrate cross-modal category learning, a key feature of real-world conceptual 

memory for which information is drawn from multiple sensory dimensions. We also 

observe a sleep-dependent consolidation benefit in category learning; however, unlike 

paired-associate memory, this benefit emerges only when sleep-based consolidation is 

paired with further category training. This result highlights an important interaction 

between those mechanisms responsible for consolidation and those responsible for 

learning. Establishing the exact nature of this relationship will be important for (i) 

understanding how we develop, update and maintain conceptual memory representations 

and (ii) understanding why we observe different behavioural consequences of sleep-

dependent consolidation across episodic declarative and conceptual memory 

representations.  
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4.1 Abstract 

 There is strong evidence for a role of sleep in the consolidation of individual 

associative memory representations; however, sleep’s role in the extraction of associative 

regularities occurring across memories remains to be determined. The current study 

assessed participants’ ability to extract complex regularities and to generalise this 

knowledge following a 12-hour consolidation delay containing wakefulness or sleep. A 

task in which participants were required to learn face-location associations was used and 

to facilitate generalisation, the stimuli were manipulated such that combinations of crucial 

facial features predicted screen location. This provided a set of ‘rules’ that could be 
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extracted across multiple memory representations. A contextual background image was 

also presented with each associative pairing; this provided a further cue for learning and 

was predictive for some face-location associations. Sleep-associated consolidation 

benefits were observed; however, these were specific for trained associations and not seen 

in measurements of generalisation. The results highlight a possible dissociation between 

the benefits of sleep-associated consolidation on individual memory representations and 

memory generalisation that requires regularity extraction. The results also showed that 

the predictive context cue supported learning and appeared to protect memory against 

wake-based forgetting. 

4.2 Introduction 

 Conceptual knowledge is fundamental for human cognition, it refers to a portion 

of long-term memory that stores general knowledge for facts, objects, people and 

relations that are acquired across the lifetime (Kiefer & Pulvermüller, 2012; Tulving, 

1972). Though there may be multiple routes to generating conceptual representations, one 

may involve the extraction of regularities from across multiple associative memories 

through a process of systems level consolidation (Battaglia & Pennartz, 2011; 

McClelland, McNaughton & O’Reilly, 1995; Winocur & Moscovitch, 2011). Such 

processes may allow knowledge acquired across multiple episodes to be integrated into a 

single and coherent conceptual representation. These representations provide a crucial 

advantage for successful interaction in the world, allowing flexible access to stored 

information in order to make generalisations and predictions in novel situations. 

Understanding their development is therefore important to appreciate real-world memory 

processing.  

 Systems level consolidation involves the gradual reorganisation of memory 

representations in the brain, it is a prolonged and dynamic process that occurs over days, 

weeks, months and years (Frankland & Bontempi, 2005). The ‘Standard Model’ of 

consolidation proposes that information is initially stored within both neocortical and 

hippocampal memory networks (Squire & Alvarez, 1995; Squire et al., 1992; Alvarez & 

Squire, 1994). The neocortical representation is highly distributed, with different memory 

elements stored within modality-specific (e.g. vision, sound etc.) regions of cortex. This 

physical separation creates a ‘binding’ problem for memory retrieval, and therefore the 
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hippocampal system plays a critical role by binding the physically separated neocortical 

elements into a single memory representation. Through processes of offline 

consolidation, the neocortical elements of a memory develop greater coherence by 

strengthening existing, and creating new, cortical-cortical connections. Over time, this 

allows new memories to become independent of the hippocampus and fully integrated 

with pre-existing knowledge. This consolidation process is hypothesized to occur 

predominantly during sleep and is thought to be driven by coordinated memory 

reactivation or replay across the hippocampal and neocortical networks (Alvarez & 

Squire, 1994; Frankland & Bontempi, 2005; Squire & Alvarez, 1995; Squire et al., 1992).  

 The Complementary Learning Systems (CLS) theory extends the standard model 

by providing a computational basis of consolidation and suggests that the hippocampus 

and neocortex may play distinct roles in representing memories (McClelland et al., 1995). 

These separate roles solve a trade-off between remembering specific experiences (e.g. 

where you left your keys), which benefit from separate representations for each event, 

and the extraction of regularities across experiences (e.g. where you would typically 

expect to find your keys), which benefit from overlapping memory representations. The 

CLS proposes that the hippocampus quickly stores memory traces for individual 

experiences by using a high learning rate and sparse, non-overlapping (pattern separated) 

representations. The neocortex, in contrast, has a slow learning rate and supports the 

development of overlapping representations gradually over time. These neocortical 

overlapping representations may therefore support the storage of regularities across 

events, allowing the neocortex to capture similarity structures that are not present within 

individual memory representations (McClelland et al., 1995; O’Reilly et al., 2014). 

The CLS does not make specific predictions related to sleep-associated 

consolidation; however it does suggest that consolidation is mediated initially by memory 

reinstatement within the hippocampal system (McClelland et al., 1995). This suggestion 

is now consistent with a growing body of literature that suggests consolidation during 

sleep is driven by hippocampally mediated memory reactivation (Kumaran, Hassabis & 

McClelland, 2016; O’Neil et al., 2010; Rudoy et al., 2009; Wilson & McNaughton, 1994). 

At the mechanistic level, this reactivation is considered to occur through a network of 

communication between the hippocampus and neocortex which facilitates long-term 

memory integration and storage (Rasch & Born, 2013). Given the memory system 
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distinction proposed by the CLS and the sleep-associated mechanism of hippocampal 

replay, Mirkovic & Gaskell (2016) proposed that representations that are strongly reliant 

on the hippocampal system, i.e. the specific details of events, may show greater benefits 

from offline consolidation during sleep. In contrast, consolidation processes during sleep 

may play little or no role in the development of shared memory features, which may to 

some extent be learned by the neocortical system without hippocampal involvement via 

the gradual extraction of regularities.  

 Mirkovic & Gaskell (2016) tested this hypothesis using an artificial language task 

that was designed to incorporate both arbitrary and systematic stimuli mappings with the 

same stimulus set. Participants were exposed to a new language using a word-picture 

matching task in which the pictures represented individual known characters (e.g. 

‘queen’, ‘cowboy). In this task, arbitrary mappings refer to each word-picture association, 

while a systematic grammar could be extracted across the novel words as determiner and 

suffix referents reflected the natural gender of the pictured characters (e.g. tibscoiffesh + 

queen, kedjorool + cowboy). The arbitrary aspects were therefore expected to place 

greater demands on the hippocampal system, requiring pattern separation for storing the 

unique memory mappings, while the overlapping systematic mappings may be extracted 

and stored neocortically, and so be less reliant on the hippocampus. Following training, 

memory was assessed after a two-hour delay which contained sleep or wakefulness. 

Mirkovic & Gaskell (2016) reported a sleep-associated benefit in memory recall for the 

arbitrary aspects of the new language (word-picture mappings) but found no wake or sleep 

differences in tests targeting the systematic aspects of the stimuli (knowledge of 

grammatical regularities).  

The pattern of data from Mirkovic & Gaskell (2016) is consistent with the 

predictions of the CLS and a sleep-associated benefit for memory representations that 

place high storage demands on the hippocampus (Kumaran, Hassabis & McClelland, 

2016; McClelland et al., 1995; Mirkovic & Gaskell, 2016). Their results also suggest that 

systematic elements across memories, which may be processed using overlapping 

representations in the neocortex, may be less sensitive to mechanisms of sleep-associated 

consolidation. Importantly, Mirkovic & Gaskell (2016) do not argue that sleep cannot 

facilitate the storage of shared memory representations in the neocortex, but that there 

may be a prioritisation process during sleep. This prioritisation is hypothesised to be for 
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the most hippocampally reliant components of memory that are not supported by 

neocortical representations (Mirkovic & Gaskell, 2016; Stickgold & Walker, 2013). 

Indeed, beyond the language domain, there is support for a role of offline 

consolidation during sleep in the development of knowledge regarding underlying 

regularities and structure (Durrant, Cairney & Lewis, 2013, 2016; Durrant et al., 2015; 

2011; Ellenbogen et al., 2007; Lau, Tucker & Fishbein, 2010). For instance, Durrant et 

al. (2011) showed a sleep-associated consolidation benefit when participants were 

required to identify novel sequences that followed a previously trained probabilistic 

structure. These previous studies however typically used paradigms from which item-

based memory could not be clearly dissociated from knowledge of regularity structure. 

Consequently, it is difficult to determine whether sleep-associated consolidation 

differentially influenced item- and concept-based knowledge in these tasks. In an attempt 

to address this, the current study used an associative spatial memory task that allowed 

regularity knowledge to be extracted from individual associative representations, 

allowing the impact of consolidation on these two types of memory to be separately 

assessed.  

 Associative memory requires the ability to learn and remember arbitrary 

relationships between initially unrelated items. It is widely accepted that these 

representations draw strongly upon hippocampal learning systems and they show strong 

benefits of sleep-associated consolidation (Diekelmann, Wilhelm & Born, 2009; Plihal & 

Born, 1997; Talamini et al., 2008; Tucker et al., 2006). The paradigm used in this study 

is adapted from a task developed by Sweegers et al. (2014) in which participants were 

required to learn face-location associations, then later retrieve the locations based on face 

cues. Importantly, this task could assess the development of concept-based 

representations by manipulating the type of face that belonged to each location. In 

Sweegers et al. (2014), half of the associations followed complex associative regularities 

regarding the combination of facial features and locations, while the other half of the faces 

were randomly assigned to the remaining locations. This created a set of ‘rule-locations’: 

locations that have a specific type of face associated with them, and a set of ‘no-rule 

locations’: locations that can be paired with any type of face. In a series of studies, 

Sweegers et al. showed that participants were able to extract the complex associative 
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regularities along with enhanced learning and retention of the rule compared to no-rule 

associations (Sweegers et al., 2015; 2014; Sweegers & Talamini, 2014).  

Importantly, Sweegers et al. (2014) also demonstrate that participants are able to 

successfully apply the rules to novel faces that have not been trained but can be located 

based on the extracted regularities (Sweegers & Talamini, 2014). They therefore provide 

evidence of memory generalisation, which suggests that the extraction of regularities 

across multiple associative memories can lead to shared concept-based memory 

representations. When they assessed memory across delays containing sleep and 

wakefulness in this task they found no evidence for a sleep-associated benefit in 

generalisation performance (Sweegers et al., 2015; Sweegers & Talamini, 2014). 

However, they also failed to observe a sleep benefit for the trained associations, which is 

somewhat intriguing given that associative memory tasks are typically sensitive to sleep-

associated consolidation (Diekelmann, Wilhelm & Born, 2009; Plihal & Born, 1997). A 

possible reason for this is their very high, near ceiling level, accuracy rates following 

encoding. There is currently debate in the literature as to whether sleep has differential 

impacts on memory as a function of memory strength and it is suggested that the benefit 

of sleep may be weak for memories trained to a high degree of accuracy (Cairney et al., 

2016; Creery et al., 2015; Stickgold, 2009). 

Given that the face-location associative memory paradigm allows item-based 

memory to be clearly dissociated from knowledge of underlying regularity structure, it 

provides a clear basis from which to determine whether sleep-associated consolidation 

has differential effects on these two types of memory. In the current study, the original 

face-location task was modified to include only ‘rule-locations’ in an attempt to maximise 

regularity extraction. Similarly, overall encoding levels were reduced to avoid ceiling 

effects which may mask sleep-associated benefits in performance. By testing 

performance across delays manipulated to contain sleep or wakefulness, the current study 

aimed to assess the impact of sleep- and wake-based consolidation on trained item 

knowledge and concept-based knowledge measured by generalisation. In line with the 

CLS and predictions from Mirkovic & Gaskell (2016) we hypothesised to find greater 

sleep-associated consolidation benefits for the individual item-level representations, 

when compared to memory generalisation.  
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 A second element of real-world concept learning addressed in the current study 

was the idea that learning does not happen in isolation but occurs in complex 

environments. Furthermore, co-occurring environmental information may be predictive 

of concept-based knowledge, even if it is not directly tied to main content of the concept. 

For instance, a child may learn about different types of birds while playing in the garden. 

Contextual information relating to the garden does not contribute to the distinguishing 

features of birds (animals with feathers and two legs etc.) however it may become 

predictive of the ‘bird’ category and facilitate later identification. In this way, co-

occurring information can be considered as part of the broader memory schema, and may 

help to organise knowledge by contributing to the framework accessed to determining 

meaning (Rumelhart, 1980). Schemas have been shown to be highly beneficial for 

memory processing and understanding, for example, memory for semantically unusual 

sentences can be substantially increased by providing a mental framework in which to 

integrate the sentences with (Bransford & Johnson, 1972; Tse et al., 2007).  

Moreover, following offline consolidation during sleep, new information that is 

consistent with an existing schema shows enhanced assimilation into long-term memory 

networks (Durrant et al., 2015; Gilboa & Marlatte, 2017; McClelland, 2013; Tse et al., 

2007). For example in rats, it has been shown that training various flavour-place 

associations requires multiple sessions and time, however after this initial acquisition 

phase, new associations can be learnt in just a single trial (Tse et al., 2007). Similarly, in 

humans, schema knowledge regarding the types of fabric generally used to make 

particular products was shown to aid memory for congruent product-fabric pairs (van 

Kesteren et al., 2010). In line with the idea of a schema-related benefit for memory 

processing, memory encoding that is accompanied by a wider predictive context in this 

study, may lead to the development of a broader memory network, or schema. Following 

sleep-associated consolidation, new learning of schema-congruent information may then 

show enhanced assimilation and integration into long-term memory. To test this 

prediction, the current study included a contextual image with each of the trained face-

location pairings. These context images were manipulated to be predictive or non-

predictive of screen location, i.e. some locations were strongly associated with one 

context type, while other locations were associated with different contexts. This 

manipulation allowed us to assess whether having predictive co-occurring information 
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during encoding, can lead to boosts in memory performance following offline 

consolidation.  

To align the current study with the findings from Chapter 3 of this thesis, and to 

assess the impact of offline consolidation on schema integration, we incorporated a 

second round of post-consolidation training into the experimental paradigm. This allowed 

us to assess whether wake- and sleep-associated consolidation influenced the integration 

of new information into existing knowledge structures. Previous tasks that have assessed 

differences in associative and concept-based representations within a single experimental 

paradigm have not assessed memory representations further than an initial post-

consolidation test (Mirkovic & Gaskell, 2016; Sweegers & Talamini, 2014). The current 

study therefore offers an important extension to the literature and contributes to our 

understanding of how sleep- and wake-based consolidation may impact upon these two 

types of memory representation across a longer time-scale.  

 To summarise, the current study investigated the impact of sleep and wake 

associated consolidation on trained item-based memory and the generalisation of concept-

based regularities using an associative memory task. This allowed the influence of sleep-

associated consolidation on these two memory types to be separately determined. This 

study also included a contextual image cue that was either predictive or non-predictive of 

screen location, allowing the impact of co-occurring predictive information on memory, 

and the interaction with sleep-associated consolidation, to be assessed. To our knowledge, 

these research questions have not been previously addressed within a single study. 

4.3 Methods 

4.3.1 Participants  

 Participants were 87 undergraduate students recruited from the University of York 

in fulfilment of course credit or payment. 7 participants were excluded from the analysis 

either due to not completing both sessions of the study (3 participants) or showing very 

poor levels of initial learning (4 participants). This was determined by calculating an 

efficiency score (mean reaction time/mean accuracy) in Test 1 for each participant (mean 

score = 5.60, SD = 3.329); participants were excluded if their score was above 2.5 

standard deviations from the mean (excluded participants; mean = 17.64, SD = 2.02). 
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Prior to completing the experiment, participants were randomly assigned to one of two 

conditions; a 12-hour wake group (N = 40, mean age: 20.83, S.D. ± 3.47, 31 female) or a 

12-hour sleep group (N = 40, mean age: 20.48, S.D. ± 1.54, 27 female). 

4.3.2 Procedure 

 The experiment consisted of two experimental sessions separated by a delay of 

12-hours (see Figure 4.1) This delay contained either daytime wakefulness, in which 

participants continued with their usual daytime activities (but were told not to sleep or 

take naps) or an evening of sleep, in which participants returned home to sleep overnight 

between the two sessions. Participants were randomly allocated to the wake or sleep 

group and completed the sessions of the study at 8.30 am or 8.30pm. Both sessions of the 

study began with completion of the Stanford Sleepiness Scale (SSS, Hoddes et al., 1973) 

and a psychomotor vigilance task (PVT, Khitrov et al., 2014) in order to obtain a measure 

of sleepiness, alertness and vigilance. In Session 1, participants completed the face-

location association training followed by a test of trained items (Session 1 ~ 50minutes). 

In Session 2, participants completed a second test for the trained association, a second 

round of training, and a final test. They then went on to complete two follow-up tasks to 

assess their memory for task stimuli (Session 2 ~ 90 minutes). Details of the tasks are 

described in the following sections.  
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Figure 4.1 Experimental procedure. An example of the training sets used in the 

training and tests to separately measure trained items-based memory and memory 

generalisation (italicised sets).  

 

4.3.3 Stimuli 

4.3.3.1 Faces 

 Stimuli were taken from Sweegers & Talamini (2014) and consisted of one 

hundred and forty-four greyscale pictures of emotionally neutral faces (created using TM 

Software, IQ Biometrix, 2003). The faces contained a range of non-critical elements (e.g. 

gender, the presence of glasses, moles and dark/light hair colour) as well as three critical 

features that were used to generate face categories; these features were: age – young adult 
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or aged, face shape – slender or stout and headwear – with headwear (caps, hats or 

headbands) or without headwear (see Figure 4.2). To maintain perceptual distinctiveness 

in the stimuli the features were perceptually distinct across the faces (e.g. different 

headwear, wrinkle patterns, etc.). Six out of eight possible three-way combinations of 

critical features were selected for the experiment; creating six face categories that could 

be characterised by a unique combination of three features. However, for each face 

category just two (out of the three) critical features sufficed to distinguish that category; 

this 2-feature combination did not occur in any other category. Twenty-four faces were 

created for each of the six categories. Each face was allocated to one of four experimental 

sets (containing 6 faces from each category).    

4.3.3.2 Context Images 

 Twenty images were selected from the internet to represent contextual scenes. 

These chosen images were of street scenes with buildings (see Figure 4.2). Half of the 

images were taken from a city location (10 images) to generate an ‘urban’ context set, 

and the other half were taken from a village location to generate a ‘rural’ context set. 

Twenty-seven participants (independent to the main study) classified each image as 

belonging to the intended context, confirming the urban/rural manipulation. Similarity 

ratings, between every image within each context type were collected using a 7-point 

scale (1- very different, 7 – very similar). All images were rated as being similar (urban 

images; (mean ± standard deviation) 5.26 ± 0.12, rural images; 5.22 ± 0.15) with 

equivalent levels of similarity between the two context types (t (18) = 0.58, p = .568). 

4.3.3.3 Stimuli Set-Up 

 Each face was coupled to one of six screen locations in order to create face-

location associations. The faces assigned to a single location all belonged to the same 

category (determined by the combination of critical facial features described above). Thus 

the associations to be learned adhered to regularities between location and facial features. 

Each face was also presented with a context image (either rural or urban). The type of 

image presented with each face was determined by whether the category that face 

belonged to was allocated to a predictive-high, predictive-low or non-predictive condition 

(2 locations were assigned to each type). The faces from each category were presented 

with one type of context (urban or rural) 83% of the time in the predictive-high condition, 



124 

67% of the time in the predictive-low condition and 50% of the time in the non-predictive 

condition. The type of context (urban or rural) was counterbalanced across the two 

locations assigned to each condition. Due to similar performance in the two predictive 

conditions, in the results we combine predictive-high and predictive-low into a single 

predictive condition. 

 

 

Figure 4.2 Details of the experimental design and task. A) Example of task set-up 

and face stimuli, B) examples of urban and rural context images, C) sequence of events 

for a single trial from the training phase. 
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4.3.4 Tasks 

4.3.4.1 Face-Location Association Training 

In Session 1, two sets of faces were selected to be trained (72 faces in total). In 

Session 2, one set of already trained items were selected, along with a non-trained set (72 

faces in total). This resulted in participants learning a total of 108 face-location 

associations across the experiment (the selected sets were counterbalanced across 

participants and sessions). Participants were instructed to try to learn the individual face-

location associations; to begin with they were told to guess, but to use the feedback 

provided with each trial to help make the correct associations. Participants were told that 

they could learn regularities to help them place the faces in the correct location, however 

they were not informed as to what elements of the stimuli contributed to this regularity 

information.  

Each trial began with a fixation cross in the centre of the screen with the six screen 

locations depicted by grey circles, which were arranged hexagonally around the centre. 

For each trial, a context image (randomly selected from the assigned context set for that 

Trial) was presented in the centre of the screen for 500ms; a single face was then presented 

in front of this context image. The face covered only the central 20% of the context image 

ensuring that strong contextual information provided from buildings etc. remained clearly 

visible throughout the trial. Participants were instructed to use the mouse to select the 

screen location they believed that face to belong to. Participants were given up to 8000ms 

to make their responses with the selected location changing from grey to orange after 

being selected (300ms). If the participant made a correct response, this location changed 

to green (1000ms) and the face and context image moved to this location, remaining on 

the screen for a further 2000ms. If the participant made an incorrect response, the selected 

location changed to red (1000ms) and the correct location changed to green (1000ms), 

the face and context image then moved to the correct location and remained on the screen 

for 2000ms. A fixation cross presented in the centre of the screen separated each trial 

(1000ms) and short breaks were provided throughout. In each session, participants 

completed three blocks of training, with each face presented once in each block. 
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4.3.4.2 Face-Location Association Test 

 Participants completed a test phase to assess their memory for the trained 

associations; this was completed three times, immediately following learning in Session 

1, following the consolidation delay in Session 2, and after the second session of training. 

In all three tests, all items that had been trained to that point in the experiment were tested. 

In the second and third test, a set of untrained items, that followed the same regularity 

structure were included to assess regularity generalisation (see Figure 4.1 for an example 

of the testing set-up). 

 The test followed the same procedures as learning; on each trial a context image 

(500ms) followed by a face was presented in the centre of the screen along with the six 

hexagonally arranged screen locations. Participants were instructed to use the mouse to 

select the location they believed that face to belong to (presented for up to 8000ms), and 

the selected location changed from grey to orange after being selected (300ms). 

Participants did not receive feedback during the test, and were instead asked to provide a 

confidence judgement for each response. They were presented with a 5-point scale (1 – 

low confidence, 5 – high confidence) and were asked to click using the mouse on the 

scale to rate each response, an unlimited amount of time was given to make this 

confidence judgement. A fixation cross in the centre of the screen separated each trial 

(1000ms) and short breaks were provided throughout. 

4.3.4.3 Follow-up Tasks 

 After the final test in Session 2, participants were asked to complete two follow-

up tasks that aimed to assess their memory for different aspects of the stimuli. In these 

tasks all faces from the experiment were presented (144 stimuli) and they were presented 

without a context image.  

4.3.4.3.1 Features Task 

 This task aimed to assess memory for individual face and context pairings, as well 

as for individual facial features that were either critical to the category membership 

(presence/absence headwear) or non-critical (presence/absence glasses). In order to test 

memory for facial features, half of the faces from each category were presented with a 
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red box that covered the forehead and top of the head (to test memory for headwear) while 

the other half were presented with a red box that covered the eyes (to test memory for 

glasses). On each trial participants made two judgements; a two-alternative forced choice 

(2AFC) regarding whether they believed that face was paired with an urban or rural 

context image, followed by a 2AFC judgment regarding the presence of absence of the 

facial feature that was covered (headwear or glasses). 

On each trial the face was presented in the centre of the screen. Participants made 

their responses using a key press which was aligned with the alternative responses 

presented on the screen. The context decision “Urban” was presented on the left and 

associated with a ‘Z’ key press, while “Rural” was presented in the right and associated 

with an ‘M’ key press. This set-up was also used for the feature decision with the ‘Z’ key 

aligned with the response “Glasses” and “Hats” and the ‘M’ key aligned with the response 

“No Glasses” and “No Hats”. Participants were instructed to be as accurate as possible in 

this task and were given an unlimited amount of time to make their responses. A fixation 

cross, presented in the centre of the screen separated each trial (100ms) and breaks were 

provided throughout.  

4.3.4.3.2 Speeded Judgement Task 

This was a speeded 2AFC task which asked participants to distinguish between 

correct and incorrect face-location associations. On each Trial a face was presented in 

one of the six screen locations, 60% of the faces were presented in the correct location 

and 40% of the faces in the incorrect location (each face was presented twice in the task 

with the allocation to the correct or incorrect location randomised). The faces were 

presented for a maximum of 3000ms and participants were instructed to respond as 

accurately and as quickly as possible. Participants made a match (correct face-location 

pair) or a mismatch (incorrect face-location pair) judgement and made their response 

using a key press which was aligned with the two alternative responses presented in the 

screen. “Match” was presented on the left and associated with a “Z” key press, while 

“Mismatch” was presented on the right and associated with an “M” key press. A fixation 

cross, presented in the centre of the screen separated each trial (1000ms) and breaks were 

provided throughout. 
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4.3.4.4 Psychomotor Vigilance Task (PVT) 

The PVT is a sustained-attention, reaction-timed task that measures the speed with 

which participants respond to visual stimulus. The PVT task was obtained from 

http://bhsai.org/downloads/pc-pvt/ (Khitrov et al., 2014). During the task, participants 

were presented with a blank black screen; at random intervals, a millisecond counter 

began to scroll, and participants had to left click the mouse to stop the counter as quickly 

as possible. After clicking, the counter displayed the achieved reaction time for 1000 ms, 

providing the subject with feedback on performance. Inter-stimulus intervals were 

distributed randomly from 2 to 10 seconds, and the task lasted for a total of 3 minutes.  

4.3.5 Questionnaire  

At the end of the experiment participants were asked to complete a questionnaire 

to assess their explicit understanding of the regularities associated with each location. For 

each location they were asked to indicate whether they thought the presence or absence 

of any of the following features contributed to the location regularities: age (critical 

feature), face shape (critical feature), headwear (critical feature), glasses, mole, hair 

colour and gender (male/female judgment). Points were given for each correctly chosen 

critical feature that was part of the rule for each location (a maximum of 3 per location). 

A total maximum score, summed over the six locations, was 18 points.  

 

4.4 Results 

Data were analysed in SPSS 23. All effects that reached a significance level of  

p < .1 are reported, with effects where p < .05 considered significant. Bonferroni-

corrected alpha levels are presented to evaluate the direction of significant interactions.  

4.4.1 Sleepiness and Vigilance 

Alertness measures were taken using the SSS (ratings of sleepiness) and 

performance on the PVT (3 participants did not complete the PVT due to task failure). 

Analysis of PVT performance is focused upon measures of reaction time (RT) and 

attentional lapses (RT > 500ms, data is presented in Table 4.1). Each measure was 
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analysed using an analysis of variance (ANOVA) with the between-subjects factor Group 

(wake, sleep) and repeated measure Session (session 1, session 2). There were no 

differences in the levels of rated sleepiness between the two groups (F(1, 78) = 2.16, p = 

.145) or between sessions (F(1, 78) = 0.25, p = .622), and no Group x Session interaction 

(F(1, 78) = 1.34, p = .251). Similarly, there were no main effects or interactions when 

analysing mean RT or number of attentional lapses on the PVT (RT; Group F(1, 75) = 

0.88, p = .350, Session F(1, 75) = 0.71, p = .402, Group x Session F(1, 75) = 0.63, p = 

.429. Lapses; Group F(1, 75) = 1.60, p = .210, Session F(1, 75) = 2.78, p = .100, Group x 

Session F(1, 75) =1.75, p = .190). The data therefore suggests that there were no general 

group differences in sleepiness or vigilance.  

 

Table 4.1 Stanford Sleepiness Scale and Psychomotor Vigilance Task scores for each 

group in Session 1 and Session 2. SSS ratings are marked on a 7-point scale (1 – most 

alert); mean scores are presented. PVT scores represent mean reaction time (RT) and 

mean number of attentional lapses (RT > 500ms). Standard error of the mean is presented 

in brackets. 

  Psychomotor Vigilance Task 

 
Stanford Sleepiness 

Scale 
Mean RT (ms) Attentional Lapses 

 Session 1 Session 2 Session 1 Session 2 Session 1 Session 2 

Wake Group 
2.48 2.38 267.99 261.73 0.71 0.26 

(± .13) (± .15) (± 4.87) (± 5.01) (± .22) (± .09) 

       

Sleep Group 
2.55 2.80 270.79 270.61 0.74 0.69 

(± .13) (± .21) (± 5.04) (± 5.66) (± .15) (± .18) 

 

4.4.2 Session 1 – Face-Location Association Task 

4.4.2.1 Training Performance 

Performance was measured by the number of correctly located faces across the 

three training blocks in Session 1. Items were separated into predictive and non-predictive 

associations to assess the impact of context on learning (see 

Figure 4.3). An ANOVA with the factors Block (block 1, block 2, block 3), Predictability 

(predictive, non-predictive) and Group (wake, sleep) was performed. The analysis 
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revealed a main effect of Block (F(2, 156) = 124.92, p <.001, η2 = 0.62), with participants 

showing a significant improvement across training (all pairwise comparisons between 

successive blocks were significant, p < .001). There were no differences in performance 

between the predictive and non-predictive items (F(1, 78) = 2.74, p = .102) or between 

the two groups (F(1, 78) = .01, p = .937). No significant interactions were observed (all 

p > .422). The two groups therefore showed equivalent levels of learning during the first 

session.  

 

 

Figure 4.3 Category Learning. The proportion of correct trials during learning in 

Session 1 (block 1 – 3, mean values presented) and Session 2 (block 4 – 5, residual 

proportions are presented as evaluated with the covariate Test 1). Error bars represent 

standard error of the mean (SEM). 

 

4.4.2.2 Test Performance 

The test provided a measure of performance in the absence of feedback, requiring 

participants to make a face-location judgement followed by a confidence score. The 

proportion of correct responses is presented in Figure 4.4. Data were analysed using a 2 
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x 2 ANOVA with the factors Predictability (predictive, non-predictive) and Group (wake, 

sleep). This analysis revealed a main effect of Predictability (F(1, 78) = 4.01, p =.049, η2 

= 0.05) and a significant interaction between Predictability and Group (F(1, 78) = 5.55, p 

= .021, η2 = 0.07). Paired-samples t-tests (with a Bonferroni corrected alpha level of .025) 

revealed that this interaction was driven by higher accuracy for the predictive compared 

to non-predictive items in the wake group (t(39) = -3.12, p = .003). No differences were 

observed in the sleep group (t(39) = 0.25, p = .806) and there was no overall main effect 

of Group in the analysis (F(1, 78) = 0.13, p = .725). Group differences at this stage of the 

study were not expected given that participants had not yet completed the consolidation 

delay. Sleepiness and vigilance scores did not suggest differences in general alertness and 

therefore it is not clear what was driving this interaction. To account for these differences, 

performance in Test 1 was used as a covariate in Session 2 analyses.  

 

 

Figure 4.4 Test 1 accuracy. The proportion of correctly located predictive 

and non-predictive items, error bars represent SEM. 

 

A similar 2 x 2 ANOVA was performed on confidence scores, focusing upon mean 

confidence rating for correctly recalled associations (mean confidence score ± SEM; 

wake: predictive = 3.40 ± 0.15, non-predictive = 3.18 ±0.15, sleep: predictive = 3.32 ± 

0.14, non-predictive = 3.31, 0.12). This analysis did not reveal a main effect of Group 

(F(1,78) = 0.02, p = .897) or Predictability (F(1,78) = 2.52, p = .116) and there was no 
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interaction between these factors (F(1, 78) = 2.39, p = .126). Despite differences in 

accuracy, confidence was comparable across groups. 

4.4.3 Session 2 – Face-Location Association Task 

To take into account individual differences in Session 1, mean accuracy from Test 

1 was used as a covariate in Session 2 analyses. In Session 2, participants completed two 

tests (before and following Session 2 training). These are analysed within the same 

analysis of covariance (ANCOVA) to capture the impact of second session training on 

performance. The analysis will first focus on performance in these tests; it will then 

present analyses from training to give a full account of performance in the experiment.  

4.4.3.1 Test Performance  

In the two Session 2 tests participants were presented with trained items and new 

items that had not been trained which we refer to as Generalisation trials. Test 

performance was analysed using a 2 x 2 x 2 x 2 ANCOVA with the factors Group (wake, 

sleep), Test (test 2, test 3), Trial Type (trained, generalisation) and Predictability 

(predictive, non-predictive). Accuracy scores are presented in Table 4.2. This analysis 

revealed a main effect of Test (F(1, 77) = 6.03, p = .016, ɳ2 = .073) and a main effect of 

Training (F(1,77) = 4.86, p = .031, ɳ2 = .059). As would be expected, participants were 

more accurate in Test 3 compared to Test 2, and were more accurate for trained compared 

to new items.  
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Table 4.2 The proportion of correctly recalled face-location associations in the tests 

completed in Session 2. Data is split to show trained and generalisation trials with 

predictive and non-predicative contextual information. Estimated marginal means are 

presented as evaluated with the covariate Test 1; standard error of the mean is presented 

in brackets.   

  Test Performance in Session 2 

  Test 2 Test 3 

  Trained 

Items 
Generalisation 

Trained 

Items 
Generalisation 

Wake 

Group 

Predictive .53 (± .01) .47 (± .01) .65 (± .03) .55 (± .03) 

Non-

Predictive 
.41 (± .02) .38 (± .02) .63 (± .03) .54 (± .03) 

      

Sleep 

Group 

Predictive .54 (± .02) .44 (± .01) .70 (± .03) .55 (± .03) 

Non-

Predictive 
.53 (± .03) .45 (± .03) .71 (± .04) .58 (± .04) 

 

There was no main effect of Group (F(1, 77) = 3.54, p = .064) or of Predictability 

(F(1, 77) = 2.01, p = .161) in the analyses however there were significant interactions 

between Group and Trial Type (F(1, 77) = 4.11, p = .046, ɳ2 = .059, see Figure 4.5) as 

well as Group and Predictability (F(1, 77) = 6.96, p = .010, ɳ2 = .083, see  

Figure 4.6). To assess the interaction between Group and Trial Type, t-tests assessing 

differences between the wake and sleep groups for trained and generalisation items were 

carried out using the covariate-adjusted means (tested against the Bonferroni corrected 

alpha level of .013). These t-tests reveal a significant difference between the two groups 

for trained items, with the sleep group (mean ± SEM; 0.62 ± 0.02) outperforming the 

wake group (mean ± SEM; 0.55 ± 0.02, t(78) = 3.35, p = .001). There were no group 

differences for the generalisation trials (mean ± SEM, sleep group = 0.51 ± 0.02, wake 

group = 0.48 ± 0.02, t(78) = 0.74, p = .461, see Figure 4.5). 
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Figure 4.5 Generalisation and trained item memory performance. 

The proportion of correctly located trials in Session 2. Covariate 

adjusted means are presented; data is collapsed across Tests (Test 2 and 

Test 3) and Predictability type (predictive, non-predictive). Error bars 

represent SEM. (** p < .01, NS – non-significant). 

 

 Similar t-tests were performed to assess the interaction between Group and 

Predictability (Bonferroni corrected alpha level .013). These t-tests revealed a significant 

difference between the sleep and wake group for non-predictive items (mean ± SEM; 

sleep group 0.57 ± 0.02, wake group 0.49 ± 0.02, t(78) = 2.79, p = .007). There were no 

group differences for the predictive items (mean ± SEM, sleep group = 0.56 ± 0.02, wake 

group = 0.51 ± 0.02, t(78) = 2.16, p = .034, see Figure 4.6). 
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Figure 4.6 Non-predictive and predictive item performance. The 

proportion of correctly recalled predictive and non-predictive items in 

Session 2 tests. Covariate adjusted means are presented; data is collapsed 

across Tests (test 2 and test 3) and Trial Type (trained, generalisation). 

Error bars represent SEM. (** p < .01, NS – non-significant). 

 

4.4.3.2 Training Performance 

Performance between the tests in Session 2 improved significantly due to the 

second session of training that participants completed. Training data is presented in  

Figure 4.3. This data was analysed using an ANCOVA with the factors Block (block 4, 

block 5, block 6), Predictability (predictive, non-predictive) and Group (wake, sleep). 

Test 1 performance was used as covariate. This analysis revealed a main effect of Block 

(F(2, 154) = 8.50, p < .001, η2 = 0.10) with participants showing a significant 

improvement across training (all pairwise comparisons between successive blocks were 

significant, p < .001). This analysis also revealed a main effect of Group (F(1, 77) = 9.76, 

p = .003, η2 = 0.11) and a significant interaction between Group and Predictability (F(1, 

77) = 9.50, p = .003, η2 = 0.11). Overall, participants in the sleep group outperformed 

those from the wake group, however this was greatest for the non-predictive items (mean 

± SEM; sleep 0.63 ± 0.02, wake 0.51 ± 0.02, t(78) = 3.86, p < .001). Performance for the 

predictive items did not significantly differ between groups (mean ± SEM; 12-hour sleep 
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group = 0.61 ± 0.02, 12-hour wake group = 0.57 ± 0.02, t(78) = 1.65, p = .103). There 

was no main effect of predictability in this analysis (F(1, 77) = 9.50, p = .003, η2 = 0.11) 

and all other interactions were non-significant (p > .806).   

4.4.3.3 Follow-Up Tasks 

Participants completed two follow-up tasks, one that aimed to assess memory for 

individual stimuli features, and one that asked participants to make speeded judgements 

regarding the face-location associations. As participants had now been presented with all 

the faces in the stimuli set, both trained and generalisation trials were combined in all 

subsequent analyses. 

4.4.3.3.1 Features Task 

The first judgement participants needed to make in the Features task was regarding 

the type of context image (urban or rural) that was presented with each face. Throughout 

the experiment, each face was only ever presented with one type of context and therefore 

it was possible to achieve 100% accuracy in this task; chance performance is 50%. Data 

is presented in Table 4.3. T-tests against chance level show that only items that belonged 

to locations with a predictive context were above chance level (wake; t(39) = 5.39, p < 

.001, sleep; t(39) = 3.82, p <.001). Items from locations with non-predictive contextual 

information remained at chance level (wake; t(39) = 1.55, p = .128, sleep; t(39) = 0.09, p 

= .929). To compare performance across groups an ANOVA with the factors 

Predictability (predictive, non-predictive) and Group (wake, sleep) was performed. This 

supported the t-test results showing a main effect of predictability (F(1,78) = 12.02, p = 

.001, η2 = 0.13), however there were no Group (F(1, 78) = 1.80, p =.183) differences and 

no interaction effects (F(1, 78) = 0.02, p =.881).  

The second part of the Features Task assessed knowledge of individual facial 

features that were either critical (i.e. headwear) or non-critical (i.e. eyewear) to category 

membership. Data is presented in Table 4.3; t-tests against chance level (0.5) reveal that 

groups performed significantly above chance for all trial types in this task. An ANOVA 

with the factors Group (wake, sleep), Predictability (predictive, non-predictive) and 

Feature Type (critical, non-critical) revealed only a main effect of Feature Type, with 

memory for critical features higher than memory for non-critical features (F(1, 78) = 
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53.34, p < .001, η2 = 0.41). There was no main effect of Predictability (F(1, 78) = 0.64, p 

= .427) and no main effect of Group (F(1, 78) = 0.91, p = .342. All interactions between 

the three factors were non-significant (p ≥ .376). 

 

Table 4.3 Proportion of correct responses in the Feature Task assessing knowledge of 

individual face-context pairings and individual feature knowledge. SEM is presented in 

brackets.  

  Feature Task Performance 

  Context 

Knowledge 

Feature Knowledge 

  Critical Non-Critical 

Wake 

Group 

Predictive .55 (± .01) .63 (± .02) .56 (± .01) 

Non-Predictive .52 (± .01) .64 (± .02) .57 (± .02) 

     

Sleep 

Group 

Predictive .54 (± .01) .63 (± .02) .53 (± .01) 

    

Non-Predictive .50 (± .01) .61 (± .02) .56 (± .02) 

 

4.4.3.3.2 Speeded Judgment Task 

Data was cleaned to remove any trials that had a reaction time (RT) larger than two 

standard deviations above or below the mean for each individual. For five participants 

this resulted in over 20% of their data being rejected and therefore they were removed 

from the analysis. A further participant was not included in the analyses as they did not 

complete this task; in total 4 participants were removed from the wake group, and 2 

participants from the sleep group. Measures of accuracy focused upon the proportion of 

correct responses; data is presented in Table 4.4. A 2 x 2 ANOVA with the factors Group 

(wake, sleep) and Predictability (predictive, non-predictive) revealed no main effects of 

interactions (Group; F(1, 72) = 0.005, p =.943, Predictability; F(1, 72) = 1.57, p = .214, 

Group x Predictability F(1, 72) = 0.99, p = .214).  

A similar ANOVA was performed analysing RT data, focusing upon correct trials 

only. The ANOVA revealed a main effect of Predictability (F(1, 72) = 4.87, p = .031) and 

a significant interaction between Predictability and Group (F(1, 72) = 4.05, p = .048, see 
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Table 4.4). This interaction is driven by faster reaction times for predictive compared to 

non-predictive items in the wake group; however, there were no overall Group differences 

for the predictive or non-predictive items (p > .704). 

 

Table 4.4 Speeded judgment task; the proportion of correct responses (accuracy) and 

mean reaction time (ms). SEM is presented in brackets.   

 Speeded Judgment Task Performance 

 Accuracy Response Time (ms) 

 Predictive Non-Predictive Predictive Non-Predictive 

Wake Group .75 (± .02) .73 (± .02) 954 (± 66) 979 (± 64) 

     

Sleep Group .74 (± .02) .74 (± .02) 970 (± 73) 968 (± 75) 

 

4.4.4 Questionnaire  

Participants could achieve a maximum of 18 points by correctly identifying the 

presence or absence of the three critical features for each of the six locations. Participants 

were able to identify ~50% of the correct features relevant for the rules (proportion correct 

± SEM; wake group – 0.55 ± 0.05, sleep group – 0.52 ± SEM = 0.05). A between-subjects 

t-test showed there were no differences in explicit rule knowledge between the sleep and 

wake groups (t(78) = 0.51, p = .610).  

To determine if explicit rule knowledge was related to item-knowledge and 

generalisation, we carried out correlations between accuracy on the questionnaire and 

performance at each test for trained and novel (Test 2 and Test 3 only) items. There was 

a strong correlation between explicit rule knowledge and both item-level knowledge and 

generalisation performance (see Table 4.5) at all three Tests in both the wake and the 

sleep group, suggesting that both item knowledge and generalisation performance are 

strongly influenced by explicit knowledge of the underlying regularity structure (Test 1 

performance did not however survive a Bonferroni corrected alpha level of p < .005). The 

size of the correlation did not significantly differ between the wake and the sleep groups 

at any test point (all p’s > .246).  
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Table 4.5 Correlations between explicit rule knowledge, measured with the post-study 

questionnaire, and behavioural performance in the three categorisation tests are presented. 

Significance is evaluated with a Bonferroni corrected alpha level of p = .005 (** p < .005, 

*** p < .001). 

  Explicit Knowledge and Test Performance 

  Test 1  Test 2  Test 3 

  Trained  Trained Generalisation  Trained Generalisation 

Wake 

Group 

r 0.35  0.51** 0.46**  0.71*** 0.63*** 

p .029  .001 .003  <.001 <.001 

         

Sleep 

Group 

r 0.37  0.48** 0.42**  0.55*** 0.54*** 

p .016  .002 .007  <.001 <.001 

 

4.5 Discussion 

This study explored the role of consolidation on conceptual knowledge using a task 

that required the extraction of regularities from multiple associative representations. We 

found sleep-associated benefits for memory of trained face-location pairings, with 

enhanced performance in the sleep, compared to wake, group in the two post-

consolidation tests. These sleep-associated benefits were not observed for novel trials that 

required the generalisation of shared features that occurred across the training set, 

suggesting a differential impact of sleep-associated consolidation on these two types of 

memory. Predictive information that co-occurred with learning had a protective influence 

on memory, which was marked by reduced wake associated forgetting, suggesting it 

supported processes of offline consolidation.   

4.5.1 The Impact of Offline Consolidation on Memory 

Memory for individual events requires the storage of specific memory details and 

the CLS suggests that these can be rapidly acquired by the hippocampal memory system 

that promotes pattern separation (McClelland et al., 1995). Over time and with 

consolidation, these aspects of memory are thought to be transferred to long-term 
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neocortical stores through a process of hippocampal-neocortical cross-talk which may 

happen preferentially during sleep (McClelland et al., 1995; Rasch & Born, 2013; Squire 

& Alvarez, 1995; Mirkovic & Gaskell, 2016). Neuroimaging studies confirm the 

involvement of the hippocampus in face-location associative memory paradigms 

(Sweegers et al., 2014; Takashima et al., 2009), we therefore expected to find sleep-

associated consolidation benefits for trained associations and our results are in line with 

this prediction. A previous study using the same experimental task did not observe any 

differences in performance over sleep and wake intervals, however this may be due to 

ceiling effects in their study and the nature of sleep-associated consolidation, which may 

be less effective for very highly encoded material (Sweegers et al., 2014; Cairney et al., 

2016; Creery et al., 2015; Stickgold, 2009). By reducing the level of encoding and pre-

consolidation performance in the current study we observed the typical benefits of sleep 

on associative memory (Diekelmann et al., 2009). 

 Knowledge of shared features across memories, in contrast to the item-level 

representations, requires the extraction of regularities from across events and experiences; 

the CLS suggests that these elements of memory may be supported by slow learning 

neocortical networks (McClelland et al., 1995). Mirkovic & Gaskell (2016) argue that 

due to this systems level distinction, there may be a prioritisation process during sleep, 

with a preferential benefit of sleep-associated consolidation for hippocampal-reliant 

aspects of memory (i.e. individual item-level specifics). Elements of the representations 

that can be learnt by the neocortex (i.e. overlapping shared representations) may however 

be less sensitive and show smaller behavioural benefits of sleep. The results of the current 

study support this suggestion by showing comparable performance in memory 

generalisation, which required knowledge of the shared regularities, after wake and sleep-

filled consolidation delays, despite the observed sleep-associated benefit for item-level 

knowledge.  

Similar support is provided by Frost & Monaghan (2017) who investigated speech 

segmentation and grammatical rule abstraction in an artificial language task. This task 

provided a similar distinction as in the current study, whereby speech segmentation 

required knowledge of the individual lexical items, while rule abstraction required 

knowledge of the shared grammatical regularities. In line with the current results, Frost 

& Monaghan (2017) observed greater sleep-associated benefits for speech segmentation 
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when compared to grammatical generalisation. Interestingly, although smaller when 

compared to the effect for speech segmentation, they do observe a sleep-associated 

benefit in their measurement of generalisation, suggesting a graded benefit of sleep across 

the two types of representation. This result supports the argument from Mirkovic & 

Gaskell (2016) and suggests a sleep-associated prioritisation process, whereby aspects of 

memory that are likely to be encoded within the hippocampal memory system may benefit 

most, but not exclusively, from sleep-associated consolidation.  

 This graded benefit of sleep on memory can be integrated with other models of 

consolidation, if a distinction is made between hippocampal and neocortical memory 

systems. For example, the information overlap to extract (iOTA) hypothesis proposed by 

Lewis & Durrant (2011) suggests that reactivation of experience specific memories 

during sleep can result in a selective strengthening of the shared elements across 

representations. They suggest that this happens in combination with synaptic 

downscaling, in which there is a global restoration of synaptic strength (Tononi & Cirelli, 

2003; 2006) resulting in the development of memory schemas (Lewis & Durrant, 2011). 

This type of mechanism may describe a process of memory refinement within the 

neocortical system, which happens separately but in coordination with processes of 

hippocampal memory transfer. As individual memory representations become integrated 

into the neocortex, a result of sleep-associated consolidation via mechanisms such as 

memory reactivation, greater representational overlap in the cortex, along with synaptic 

downscaling, may emphasise shared memory regularities and promote generalisation. 

Enhancements in memory generalisations following sleep may therefore be observed, 

given successful and ‘sufficient’ memory integration in the neocortex. This would support 

the graded view of sleep-associated benefits as proposed by Mirkovic & Gaskell (2016) 

and predict an initial boost following sleep in item-level memory, followed by a later 

benefit for generalised representations.  

Although this pattern of results was not observed in the current data, it is difficult 

to determine, from a single study, whether the level of encoding and opportunity for 

consolidation was optimal for such effects to emerge. To explore the graded nature of 

sleep-associated consolidation, further investigation into the effect size of the difference 

reported in Frost & Monaghan (2017) and the consequence of multiple wake-sleep 

consolidation cycles (to account for the slower learning rate in the neocortex) is required. 



142 

Increasing the opportunity for consolidation in the current paradigm would offer insight 

into the time-course of potential sleep-associated consolidation benefits on memory 

generalisation.  

Furthermore, to determine whether generalisation performance is sensitive to 

mechanisms related to sleep-associated memory reactivation, it will be important to 

assess the relationship between memory replay and the emergence of generalisation in 

future studies. This study used a 12-hour consolidation delay that spanned an evening of 

sleep, however sleep was not measured using polysomnography (PSG) and therefore 

investigations into relationships between behaviour and features of sleep were not 

possible. In line with previous literature, it would be predicted that behavioural changes 

in item-level memory would be positively correlated with the amount of time spent in 

slow-wave sleep (SWS) and sleep signatures such as spindles, as these have been shown 

to be closely linked to processes of memory reactivation (Clemens, Fabo & Halasz, 2005; 

Gais et al., 2002; Gruber et al., 2015; Lau, Alger & Fishbein, 2011; Lustenberger, 

Murbach & Tüshaus, 2015; Mölle et al., 2002; Schabus, Dang-Vu & Albouy, 2007; 

Schabus et al., 2004; Wilhelm et al., 2011; Kudrimoti, Barnes & McNaughton, 1999; 

Louie & Wilson, 2001; Sutherland & McNaughton, 2000; Wilson & McNaughton, 1994; 

Peigneux et al., 2004; Deuker et al., 2013). If behavioural measures of generalisation also 

correlated with these features of sleep, even in the absence of a behavioural sleep-

associated benefit, it would implicate sleep-associated consolidation processes in the 

development of these shared concept-based representations.  

More causal evidence could be obtained by manipulating memory replay or 

measuring replay more directly. For instance, the technique of targeted memory 

reactivation (TMR) allows individual memories to be reactivated in sleep using learning 

associated cues (Oudiette & Paller, 2013; Rasch et al., 2007; Rudoy et al., 2009). 

Employing a TMR paradigm in the current study, by introducing an auditory component 

to the task for example, would allow the interaction between item-level memory, 

generalisation and the mechanism of replay to be more closely assessed. Moreover, this 

task is particularly well suited to neuroimaging given that associative memory 

representations are strongly represented within the hippocampus (Sweegers et al., 2014; 

Takashima et al., 2009; Talamini et al., 2008) and a region of cortex in the fusiform gyrus 

i.e. the fusiform face area (FFA), which is particularly active during face processing 
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(Gauthier et al., 2000; Kanwisher & Yovel, 2006; Kanwisher, McDermott & Chun, 1997). 

By using neuroimaging techniques such as multivariate pattern analysis (MVPA) during 

encoding (Haxby, 2012), it would be possible to identify patterns of task related brain 

activity. By identifying similar patterns of activity during subsequent offline 

consolidation, in either quiet rest or sleep, it would possible to quantify memory replay. 

Investigating the relationship between patterns of memory replay and behavioural 

performance offers an exciting avenue for future investigations assessing the relationship 

between memory reactivation and the development of concept-based representations.   

4.5.2 Comparing Memory Generalisation across Studies 

Within the consolidation literature, there is no ‘typical’ measure of generalisation. 

This reflects the broad range of instances in which generalisation is required in the real-

word; however, it also contributes to the differing results regarding the impact of offline 

consolidation on behavioural performance. There are striking differences between the 

testing paradigm used in this study, and those that report sleep-associated benefits in 

generalisation. Typically, such studies used statistical learning paradigms, which unlike 

associative memory, draws upon procedural memory systems that recruit striatal learning 

networks in the brain (Durrant, Cairney & Lewis, 2013, 2016; Durrant et al., 2015; 2011; 

Frost & Monaghan, 2017; Diekelmann et al., 2009). These processes may draw upon 

similar processes of consolidation as declarative memory, however evidence from the 

broader consolidation literature suggests that procedural memory is more susceptible to 

sleep-associated consolidation (Diekelmann et al., 2009; Durrant et al., 2013; Rieckmann, 

Fischer & Bäckman, 2010). Greater susceptibility to consolidation mechanisms during 

sleep may therefore facilitate generalisation at a faster rate, allowing benefits to emerge 

after a single episode of offline sleep. Investigating the impact of longer, or multiple, 

consolidation periods would help to determine if these sleep-associated benefits also 

emerge following training in declarative memory tasks. Factors relating to the opportunity 

for consolidation may be able to account for the discrepancies that are observed between 

procedural and declarative memory tasks measuring generalisation. 

To dissociate the impact of consolidation on generalisation performance from 

individual item representations, the current study took care to ensure that generalisation 

was dependent upon the extracted shared and systematic features of the stimuli by 
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presenting novel untrained faces. The results suggest that sleep does not provide a benefit 

over wakefulness for generalisation; this is however in contrast to previous reports of 

sleep-associated benefits for generalisation using relational memory paradigms 

(Ellenbogen et al., 2007; Lau et al., 2010; Lau et al., 2011). Tests of relational memory 

methodologically draw parallels with the current study as participants are trained on 

declarative paired-associates. However, these previous studies have not assessed the 

impact of offline consolidation on item memory and generalisation separately, making it 

difficult to determine the true nature of the reported generalisation benefit. 

For example, Ellenbogen et al. (2007) used a relational memory paradigm in which 

participants learnt premise pairs (e.g. A>B, B>C, C>D, D>E, D>F) that had an underlying 

hierarchical structure (i.e. A>B>C>D>E>F). Generalisation required participants to make 

use of the underlying hierarchical information in order to make inferential judgements for 

non-trained pairs (e.g. C>E, B>E). They found sleep specific benefits in knowledge of 

the most distant elements of the hierarchy (e.g. B > E) suggesting that sleep played a role 

in binding the individual memory representations into a single hierarchical structure. 

Their measurement of generalisation however utilized the same stimuli from training 

making it difficult to determine whether these effects were driven by benefits to individual 

items rather than generalisation. Interestingly, Ellenbogen et al. (2007) do not report 

significant differences between their sleep and wake groups in memory retention for the 

trained premise pairs (possibly due to very high pre-consolidation accuracy), however the 

sleep group does show numerically higher performance. It could therefore be the case that 

small increments in trained item knowledge enhanced performance for the inferential 

pairs. When evaluating generalisation performance, it is important to consider the 

measures of generalisation that are taken, and the extent to which they are comparable 

across tasks and paradigms.  

A related point to consider is that generalisation may in fact be achieved in multiple 

ways, utilising different memory representations and systems. There is no formal model 

of how the brain achieves generalisation – although we have assumed that generalisation 

will require processing of the shared and systematic features across memory 

representations. Models from the categorisation literature highlight other possible routes 

towards generalisation, for example exemplar theory suggests that a generalised meaning 

can be assigned to novel items by making comparisons with all existing representations 
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or ‘exemplars’ that are stored from previous experiences (Medin & Schaffer, 1978; Smith 

& Medin, 1981). If a novel stimulus is similar enough to an existing representation then 

it can be assigned the same label, allowing inferences to be made about its traits and 

features based on the existing knowledge (Murphy, 2016).  

In line with an exemplar approach to generalisation, the correct location for a novel 

face in the current task could be determined by comparing it with all known faces-location 

associations. By this account, generalisation depends upon the strength of the trained 

representations and should therefore show the same benefits from offline consolidation. 

The results from the current experiment are not in line with this prediction, as specific 

sleep-associated benefits were observed only for the trained representations, suggesting 

an exemplar approach to generalisation may not have been used by participants in this 

particular paradigm. This does however highlight the importance of understanding how 

generalisation is achieved. Developing a greater understanding of generalisation as a 

cognitive process, or number of processes (for example, via neuroimaging techniques 

and/or computationally modelling behaviour) will be invaluable for truly characterising 

and understanding generalisation and the differences in consolidation related changes 

observed across behavioural tasks.  

4.5.3 The Impact of Predictive Context Cues on Performance 

A contextual image was presented with each face-location pairing and was 

manipulated to be predictive or non-predictive of screen location. This was included in 

the study to assess whether information that coincides with encoding, but is incidental to 

the main content of learning, would benefit post-consolidation memory performance. We 

expected the predictive information to support the development of memory schemas or 

frameworks, and in line with previous evidence (McClelland, 2013; Tse et al., 2007) that 

schema-congruent information would show greater assimilation and integration into long-

term memory networks following offline consolidation during sleep. Interestingly, 

greater memory for schema-congruent information is observed in the study following 

consolidation; however, this is seen in the wake group and not the sleep group as 

predicted.  

This result mirrors a benefit that was also observed in the wake group at encoding, 

where greater memory was observed for the associations with predictive context cues 
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after training. One possible interpretation of this observed benefit is that the predictive 

information may act as a simpler ‘rule’ for determining the location that is paired with 

each face. Although this would be sub-optimal as an overall strategy, it may provide a 

point from which predictions about category membership can be made. For example, 

learning that faces presented with an urban context cue are often located in the bottom 

left location may bias participants to select this location the next time an urban context is 

presented. Such a strategy would then highlight that this in fact is only true if the face has 

a hat, and by a process of elimination the combination of facial features could be 

determined. Recent evidence suggests that prediction error i.e. the degree of conflict 

between predictions and feedback, can drive declarative learning (Greve et al., 2017). A 

similar prediction-based benefit may therefore also explain the current pattern of results 

in the wake group at encoding.  

It is not however clear why this same benefit at encoding was not observed in the 

sleep group. At this point in testing all procedures were comparable across groups, except 

for the time of day at which the test took place. In the wake group Session 1 was 

completed at 8.30 am, while session 1 was completed at 8.30 pm in the sleep group. In 

order to account for potential time-of-day effects in the experiment, measurements of 

sleepiness and vigilance were taken at the beginning of each session of the study and 

these measures did not highlight any general group differences. Other factors that may 

influence learning at different times of day (e.g. motivation) cannot however be avoided 

with this type of paradigm. This design  is commonly employed in sleep research (Dumay 

& Gaskell, 2007; Ellenbogen et al., 2006; Fenn & Hambrick, 2015; Kurdziel & Spencer, 

2016; Payne et al., 2012; Payne & Kensinger, 2011; Sonni & Spencer, 2015; Tham, 

Lindsay, & Gaskell, 2015; van Dongen et al., 2012) and previous studies have replicated 

sleep-associated benefits observed from this design using nap paradigms, where time-of-

day effects can be controlled (Diekelmann & Born, 2010; Lau et al., 2011; S. Mednick et 

al., 2003). Although this design offers a suitable sleep and wake comparison, with 

maximal opportunity for sleep-associated consolidation benefits to emerge across a full 

night of sleep, the difference between groups at encoding does require further 

investigation. To determine whether the effect observed in the wake group is a genuine 

benefit from providing predictive contextual information, replication of this study would 

be required. Replication using a nap design may be optimal, given that it would allow 
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time-of-day effects to be controlled. Including PSG recordings of sleep would also 

strengthen the interpretation of results from this paradigm.  

Given that there are differences at encoding in the wake group, it is difficult to 

determine the nature of the post-consolidation change across the predictive and non-

predictive items. One clear interpretation is that better learning will lead to increased 

subsequent memory. An attempt to control for initial learning performance was made in 

the current study by using pre-consolidation performance as a covariate in the analysis, 

however this cannot entirely rule out the above explanation. Further investigation into the 

impact of the predictive and non-predictive context cues, at both encoding and 

consolidation is required. Although the impact of including these cues is currently 

unclear, this manipulation highlights how learning in the real-world may be influenced 

by factors that are not necessarily or directly related to the content of learning. 

Furthermore, factors that impact learning are likely to have consequences on subsequent 

memory processes, including both offline consolidation and later memory retrieval.  

In the sleep group, predictive information did not appear to influence performance 

at encoding or following consolidation. It was predicted that sleep would facilitate second 

session learning for the predictive items, in line with evidence that suggests schemas 

facilitate quicker  assimilation and integration of new information into long-term memory 

networks (McClelland, 2013; McClelland et al., 1995; Tse et al., 2007). There was not 

support for this in the data, however this type of manipulation has not been previously 

studied and therefore it is unclear whether the manipulation was strong enough to induce 

behavioural consolidation effects. Previous studies have used paired-associate type 

paradigms to train memory schemas (Bransford & Johnson, 1972; Tse et al., 2007), 

however these associations were arbitrary and did not have an underlying regularity 

structure. In the current study, it was possible to develop a schema representation for 

every location (i.e. based on the facial regularities) and therefore this may have facilitated 

post-consolidation learning in all conditions, masking any further benefits provided by 

the added predictive information. Characterising the impact of predictive information 

upon associative representations that do not have an underlying structure would help to 

determine whether this manipulation is able to induce schema type effects. Creating a 

stronger manipulation of predictability may be useful in future studies to determine any 

interaction it may have with the development of concept-based representations. 



148 

Understanding the impact of the wider learning environment is likely to play a key role 

for integrating theoretical models with real-world observations of conceptual memory 

development.   

4.5.4 Conclusions 

 To conclude, we aimed to investigate the development of conceptual memory 

representations using a declarative associative memory paradigm. Our findings 

demonstrate that people are able to acquire multiple associative memory representations, 

and use these to make successful generalisations to novel stimuli. There is also evidence 

for a role of sleep-associated consolidation; however, this is preferential for the long-term 

retention of trained associative representations. As we did not observe sleep-associated 

benefits in measurements of generalisation, these results suggest a memory prioritisation 

process in sleep-associated consolidation, in line with the suggestion from Mirkovic & 

Gaskell (2016). The exact role of sleep in regularity extraction remains to be fully 

determined, however the current experiment provides data to suggest that generalisation 

may not always be a direct consequence of sleep-associated consolidation.  
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5.1 Abstract 

There is growing evidence for offline memory consolidation; however, the nature 

of this processing and its contribution to individual differences in long-term memory are 

not well understood. Using an associative memory task, in which participants were 

required to learn individual face-location representations, this study investigated whether 

intrinsic functional connectivity measured at rest could predict behavioural measures of 

learning, post-consolidation item memory and memory generalisation, which required 

participants to extract regularity knowledge from across the individual associative 
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representations. Participants completed a 9-minute resting state fMRI scan and then, at a 

separate point in time, two behavioural testing sessions separated by a 12-hour overnight 

consolidation delay. The results show a relationship between post-consolidation memory 

generalisation and two patterns of functional connectivity. Better generalisation was 

associated with decoupling between: i) the anterior hippocampus and a region of motor 

cortex, and ii) the right fusiform face area and angular gyrus. These results suggest that 

decoupling between sensory-motor regions and heteromodal regions implicated in 

memory (i.e. anterior hippocampus and angular gyrus) may support efficient category 

learning, due to the represented information being abstracted away from current sensory-

motor states. 

5.2 Introduction 

Predicting and understanding the world around us relies upon the ability to 

remember specific events from the past and the extraction of structure based on 

similarities between these experiences (Kumaran & McClelland, 2012; McClelland, 

McNaughton & O’Reilly, 1995). Individual episodic memories encompass associations 

between different elements of experiences, which may include contextual information 

related to the time and place an event occurred, the people encountered and associated 

internal attributes such as emotional feelings. As well as these individual event 

representations, associations can also be formed across episodes, by linking overlapping 

memory features or contextual elements together (Backus et al., 2016). It is these 

interlinked representations that may ultimately generalize to provide concept-based 

memory representations, capturing the broader relationships between people, places, 

objects and experiences (Kumaran & McClelland, 2012; Preston & Eichenbaum, 2013).  

Computational models of memory suggest there are specialised ‘convergence 

zones’ in the brain which act to integrate separate memory elements into coherent 

representations (Damasio, 1989; Eichenbaum, 2000; Marr, 1971; McClelland, 1994). The 

hippocampus is a key candidate for supporting information convergence and there is a 

growing amount of experimental evidence to suggest it is able to acquire and maintain 

associative information by integrating distinct perceptual, spatial and emotional inputs 

into holistic memory representations (Horner et al., 2015; Azab, Stark & Stark, 2014; 

Chadwick et al., 2010; LaRocque et al., 2013; Moita et al., 2003; Shohamy & Wagner, 
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2008; Wood, Dudchenko & Eichenbaum, 1999). The hippocampus is particularly well 

suited to perform this function given its connectivity to modality-specific sensory-motor 

cortices and other higher-order heteromodal regions in the brain (Moscovitch et al., 2016).  

However, differences in patterns of functional connectivity along the posterior-

anterior axis of the hippocampus, may give rise to functional specialisations related to the 

development of item-based associations and conceptual representations respectively 

(Poppenk et al., 2013; Sheldon et al., 2016; Sormaz et al., 2017; Strange et al., 2014). 

Neuroanatomical and functional connectivity analyses have shown that posterior regions 

of the hippocampus are preferentially connected to perceptual regions of the posterior 

neocortex (Aggleton, 2012; Ranganath & Ritchey, 2012), including occipital and parietal 

cortices which provide visual and perceptual information for object and spatial processing 

(Bird & Burgess, 2008; Hüfner et al., 2011; Shipman & Astur, 2008). In contrast, anterior 

regions of the hippocampus show preferential connectivity to anterior heteromodal 

regions of the brain, including the ventromedial prefrontal cortex (vmPFC) and lateral 

temporal cortex extending into the temporal pole and amygdala. These regions have been 

associated with the processing of schemas, semantic information and social and emotional 

cues respectively (Moscovitch et al., 2016; Ranganath & Ritchey, 2012; Jefferies, 2013; 

Patterson, Nestor & Rogers, 2007; Sheldon et al., 2016; Sormaz et al., 2017; Lambon 

Ralph., 2017).  

These connectivity patterns suggest a local-to-global framework of hippocampal 

function, with the posterior hippocampus preferentially processing information related to 

local perceptual input which is important for integrating disparate memory elements into 

single associative representations. The anterior hippocampus, in contrast, processes 

broader relations among items and links these representations to other heteromodal 

regions of cortex such as the anterior temporal lobes which support semantic and 

conceptual memory processing (Poppenk et al., 2013; Sheldon et al., 2016; Sormaz et al., 

2017; Strange et al., 2014). To our knowledge, the relationship between this functional 

specialisation and individual differences in memory for specific events versus generalised 

concept-based structures has not been previously assessed. We therefore aimed to address 

this in the current study by assessing differential functional connectivity patterns between 

the anterior and posterior hippocampus during rest, and relating these patterns of 
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connectivity to behavioural measures of learning, post-consolidation item memory and 

memory generalisation. 

There is growing evidence to suggest that memories are processed during offline 

periods, e.g. during sleep and quiet wake (Diekelmann & Born, 2010; Ellenbogen, Payne 

& Stickgold, 2006; Mednick et al., 2011; Stickgold, 2013; Dudai et al., 2015; Rasch & 

Born, 2013). A neocortical candidate for long-term memory retrieval is the Default Mode 

Network (DMN), which is a network of highly correlated and interacting brain regions 

that includes the posterior cingulate cortex, inferior parietal lobule and  medial prefrontal 

cortex (Buckner, Andrews-Hanna & Schacter, 2008; Raichle & Snyder, 2007). The DMN 

may be particularly relevant for memory based experiences as it is closely connected to 

two memory related sub-systems in the brain: i) a dorsal-medial system, including regions 

of the medial prefrontal cortex and anterior temporal lobes – implicated in the 

representation of semantic knowledge (Lambon Ralph et al., 2017) and ii) a medial-

temporal system, involving regions of the medial temporal lobes – important for episodic 

memory (Andrews-Hanna, Saxe & Yarkoni, 2014; Moscovitch et al., 2016; Moscovitch 

et al., 2016).  

In addition to internally driven memory retrieval, the DMN is also associated with 

the decoupling of attention from perceptual input, with attention focused on internally 

driven and directed thought (Baird et al., 2014; Poerio et al., 2017; Schooler et al., 2011; 

Smallwood & Schooler, 2015). For example, DMN activity is observed strongly during 

mind-wandering, in which thoughts and feelings are generated independently of 

perceptual input, facilitating the retrieval of internally stored representations that capture 

memories of past episodes and conceptual knowledge (Smallwood & Schooler, 2015; 

Spreng et al., 2014; Spreng, Mar & Kim, 2009). The DMN is commonly found to be 

decoupled from sensory and perceptual brain regions (Smallwood et al., 2013) and this 

decoupling along with internally-driven memory retrieval may place the DMN in an ideal 

position for offline memory processing.  

Specific evidence for a role of the DMN in offline memory processing is provided 

by Sneve et al. (2017) who investigated whether task-independent DMN connectivity was 

related to long-term memory retrieval. They measured resting state functional 

connectivity before participants performed an associative memory task. They then related 

these connectivity patterns to behavioural memory performance following either a short 
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(hours) or long (several weeks) consolidation interval. After several weeks (but not after 

the short delay) they found superior memory recall to be characterised by high synchrony 

within the DMN, with this activity anti-correlated with that observed within perceptual 

networks. Their data therefore suggest that long-term memory may benefit from 

processing within the DMN and perceptual decoupling during rest. As they measured 

resting state activity before memory encoding, their data suggests that general variations 

in DMN connectivity can in part explain individual differences in associative memory 

performance across long retention intervals. 

The current study built on the findings from Sneve et al. (2017) by examining the 

relationship between individual differences in intrinsic connectivity measured at rest and 

memory generalisation (i.e., the extraction of conceptual representations) for the first 

time. As in Chapter 4 of this thesis, participants completed an associative memory task 

that required the learning of face-location associations and the retrieval of locations based 

on facial cues (task adapted from Sweegers et al. 2014). The faces trained in the study 

followed complex associative regularities such that all faces belonging to a particular 

location had a shared set of facial features. As a result, this paradigm allowed concept-

based knowledge to be assessed by presenting novel faces that had not previously been 

trained, but could be accurately located by generalising the extracted regularities. 

Behavioural measurements of memory were taken immediately following training and 

again following a 12-hour consolidation delay that spanned an evening of sleep.  

Given the local-to-global framework of memory processing in the hippocampus, 

we measured differential posterior and anterior hippocampal connectivity and assessed 

whether this could explain individual variation in performance. We expected anterior 

(over posterior) hippocampal connectivity to be related to abstract and heteromodal 

aspects of memory (i.e. generalisation), while posterior (over anterior) connectivity was 

expected to relate to item-level perceptual knowledge. As the behavioural task was reliant 

upon facial processing, we also examined individual differences in connectivity with the 

right fusiform face area (rFFA), a region of visual cortex that shows strong activity during 

facial processing (Gauthier et al., 2000; Kanwisher & Yovel, 2006; Kanwisher, 

McDermott & Chun, 1997).  Sweegers & Talamini (2014) used the same face-location 

paradigm as the current study and found this region of cortex to be active during both 

memory encoding and retrieval. The rFFA therefore acts as a perceptual and task-positive 
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region of cortex, allowing us to assess how its intrinsic connectivity with the DMN relates 

to individual variation in memory.  

To summarise, in this study we collected resting-state fMRI data from individuals 

who subsequently performed a face-location associative memory task. Behavioural 

performance was assessed immediately after training, and again following a 12-hour 

consolidation delay that spanned an evening of sleep. We assessed knowledge of the 

trained items, as well as the capacity to generalise concept-based regularity knowledge to 

novel faces. We measured differential functional connectivity from the anterior and 

posterior hippocampus along with connectivity with the rFFA, examining whether these 

connectivity patterns were able to predict individual differences in item level and concept-

based associative representations.  

5.3 Methods 

5.3.1 Participants 

This study used behavioural data from 40 participants presented in Chapter 4 (the 

12-hour sleep group). A further 17 participants were recruited for the purposes of this 

study, resulting in a total sample size of 57 (40 female; mean ± SD age = 20.18 ± 1.43 

years). All participants were recruited from the University of York in fulfilment of course 

credit or payment. They were right handed, native English speakers, had normal/corrected 

vision and no history of psychiatric or neurological illness. All volunteers provided 

informed written consent. This study was approved by the University of York 

Neuroimaging Centre and by the University of York Department of Psychology ethics 

committees.  

5.3.2 Procedure 

The experiment consisted of two phases; the first involved acquisition of resting 

state fMRI data and the second included a set of behavioural tasks to assess the 

development of associative and concept-based memory representations. The two phases 

of the study were carried out at independent time points and are described below. 
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5.3.2.1 Phase 1 

This first phase of the experiment required participants to undergo MRI scanning 

at the York Neuroimaging Centre. This was completed as part of a larger cohort study 

which included an hour-long MRI session that involved a number of structural scans and 

a 9-minute fMRI resting state scan where participants simply viewed a central fixation 

cross presented on a grey screen.  

5.3.2.2 Phase 2 

This part of the experiment was carried out in the Department of Psychology, 

University of York. There were two experimental sessions separated by a delay of 12-

hours. Session 1 was completed at 8.30 pm, participants then slept overnight at home and 

returned to the university to take part in Session 2 at 8.30 am the following morning (see 

Figure 5.1).  

In Session 1, participants completed face-location association training, followed by 

an immediate test (Test 1) which provided a measure of initial learning (Session 1 took ~ 

50 minutes to complete). In Session 2, participants completed a second test (Test 2) which 

assessed memory for the previously trained stimuli and a set of novel stimuli which had 

not been trained and therefore acted as ‘generalisation’ trials. This was followed by a 

second round of training and a third test (Test 3) including trained and untrained stimuli. 

At the end of the experiment, we included a two-alternate-forced-choice features task and 

speeded judgement task (Session 2 took ~ 90 minutes to complete). Of these measures, 

we concentrate on performance in the first test which measured initial learning (Test 1) 

and performance immediately following the consolidation delay (Test 2), focusing on 

memory for trained items following overnight consolidation, plus novel trials 

(generalisation trials). These measures were chosen as they provide a clear measure of 

long-term memory, without further exposure to the stimuli and task which may have 

influenced behavioural measures of performance. 
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Figure 5.1 Experimental procedure. The experiment consisted of two 

phases: a 9-minutes resting state fMRI scan and a behavioural phase in 

which face-location associate memory was trained and assessed in two 

sessions separated by an evening of overnight sleep. 

 

5.3.3 Behavioural Measures  

5.3.3.1 Stimuli 

5.3.3.1.1 Faces 

Stimuli were taken from Sweegers & Talamini (2014) and comprised of 144 

greyscale pictures of emotionally neutral faces (created using TM Software, IQ 

Biometrix, 2003). The faces contained a range of non-critical elements (e.g. gender, the 

presence of glasses, moles and dark/light hair colour) as well as three critical features that 

were used to generate face categories; these features were: age – young adult or aged, 

face shape – slender or stout and headwear – with headwear (caps, hats or headbands) or 

without headwear (see Figure 5.2A). To maintain perceptual distinctiveness in the stimuli 

the individual features were perceptually distinct across the faces (e.g. different headwear, 

wrinkle patterns, etc.). Six out of eight possible three-way combinations of critical 
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features were selected for the experiment, creating six face categories that could be 

characterised by a unique combination of three features. For each face category just two 

(out of the three) critical features sufficed to distinguish that category and this 2-feature 

combination did not occur in any other category. Twenty-four faces were created for each 

of the six categories. Each face was allocated to one of four experimental sets (containing 

6 faces from each category).    

5.3.3.1.2 Context Images 

Twenty images were selected from the internet to represent contextual scenes. The 

chosen images were of street scenes with buildings (see Figure 5.2B). Half of the images 

were taken from a city location (10 images) to generate an ‘urban’ context set, and the 

other half were taken from a village location to generate a ‘rural’ context set. Twenty-

seven participants (independent to the main study) classified each image as belonging to 

the intended context, confirming the urban/rural manipulation. Similarity ratings, 

between every image within each context type were collected using a 7-point scale (1- 

very different, 7 – very similar). All images were rated as being similar (urban images; 

(mean ± standard deviation) 5.26 ± 0.12, rural images; 5.22 ± 0.15) with equivalent levels 

of similarity between the two context types (t (18) = 0.58, p = .568). The context images 

were used in the experiment to mimic real-world learning which happens in rich 

contextual environments. As in Chapter 4 of this thesis, context cues were set up to be 

predictive or non-predictive of screen location. 

5.3.3.2 Stimuli Set-Up 

Each face was coupled to one of six screen locations in order to create face-location 

associations. The faces assigned to a single location all belonged to the same category 

(determined by the combination of critical facial features described above). The 

associations to be learned therefore adhered to deterministic regularities between screen 

location and facial features. Each category was also assigned to a predictive or non-

predictive context condition. In the predictive condition (four categories), 87% or 67% of 

the faces were presented with a single type of context (e.g. urban) and the remaining faces 

presented with the other context type (e.g. rural). This provided a predictive, but non-

deterministic, cue to the face-location regularities. In the non-predictive condition (two 

categories), 50% of the faces from each category were presented with each context type, 
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making context cues completely non-predictive of the face-location regularities. The 

assignment of context predictability was counterbalanced such that both urban and rural 

contexts acted as the predictive context type, and the allocations were randomised across 

the six categories.   

 

Figure 5.2 Details of the experimental design and task. Examples of face stimuli are 

given, with their possible location on the screen. Both critical and non-critical features 

could come in various shapes and sizes. All six locations had their own unique 

combination of critical features. Examples of the context images are given. 
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5.3.3.3 Tasks 

5.3.3.3.1 Face-Location Association Training 

In Session 1, two sets of faces were selected to be trained (72 faces in total). 

Participants were instructed to try to learn the individual face-location associations; to 

begin with they were told to guess, but to use the feedback provided with each trial to 

help make the correct associations. Participants were told that they could learn regularities 

to help them allocate the faces to the correct location, however they were not informed as 

to what elements of the stimuli contributed to these regularities.  

 Each trial began with a fixation cross in the centre of the screen with the six screen 

locations depicted by grey circles, which were arranged hexagonally around the centre. 

For each trial, a context image (randomly selected from the assigned context set for that 

trial) was presented in the centre of the screen for 500ms; a single face was then presented 

in front of this context image. The face covered only the central 20% of the context image 

ensuring that strong contextual information provided from buildings etc. remained clearly 

visible throughout the trial. Participants were instructed to use the mouse to select the 

screen location they believed that face to belong to. Participants were given up to 8000ms 

to make their responses with the selected location changing from grey to orange after 

being selected (300ms). If the participant made a correct response, this location changed 

to green (1000ms) and the face and context image moved to this location, remaining on 

the screen for a further 2000ms. If the participant made an incorrect response, the selected 

location changed to red (1000ms) and the correct location changed to green (1000ms), 

the face and context image then moved to the correct location and remained on the screen 

for 2000ms. A fixation cross presented in the centre of the screen separated each trial 

(1000ms) and short breaks were provided throughout (see Figure 5.2C). In each session, 

participants completed three blocks of training, with each face presented once in each 

block. 

5.3.3.3.2 Face-Location Association Test 

Participants completed tests to assess their memory of the trained associations (see 

Figure 5.1) The analysis in this chapter focuses upon performance following learning in 

Session 1 (Test 1) and following the consolidation delay in Session 2 (Test 2). Both tests 
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assess memory of trained items; with Test 2 also including a set of non-trained items to 

measure generalisation. 

The test followed the same procedures as learning; on each trial a context image 

(500ms) followed by a face was presented in the centre of the screen along with the six 

hexagonally arranged screen locations. Participants were instructed to use the mouse to 

select the location they believed that face to belong to (presented for up to 8000ms) and 

the chosen location changed from grey to orange after being selected (300ms). 

Participants did not receive feedback during the test, and were instead asked to provide a 

confidence judgement for each response. They were presented with a 5-point scale (1 – 

low confidence, 5 – high confidence) and were asked, using the mouse, to click on the 

scale to rate each response; an unlimited amount of time was given to make this 

confidence judgement. A fixation cross in the centre of the screen separated each trial 

(1000ms) and short breaks were provided throughout. 

5.3.4 Functional Connectivity 

5.3.4.1 MRI Image Acquisition  

Structural and functional data were acquired using a 3T GE HDx Excite MRI 

scanner utilising an eight-channel phased array head coil (GE) tuned to 127.4 MHz, at the 

York Neuroimaging Centre, University of York. Structural MRI acquisition in all 

participants was based on a T1-weighted 3D fast spoiled gradient echo sequence (TR=7.8 

s, TE=minimum full, flip angle=20°, matrix size=256×256, 176 slices, voxel 

size=1.13×1.13×1 mm). Resting-state activity was recorded from the whole brain using 

single-shot 2D gradient-echo-planar imaging (TR=3 s, TE=minimum full, flip angle=90°, 

matrix size=64×64, 60 slices, voxel size=3×3×3mm3, 180 volumes). A FLAIR scan with 

the same orientation as the functional scans was collected to improve co- registration 

between subject-specific structural and functional scans. 

5.3.4.2 Region of Interest and Mask Creation 

Figure 5.3 illustrates the masks that we used to describe the regions of interest 

(ROIs) in this study. We selected anterior and posterior regions of the hippocampus based 

on statistical probabilistic anatomic maps in MNI space following a previously 

established protocol (Bernasconi et al., 2003) using anatomical landmarks described by 
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Duvernoy (1988). Hippocampal probabilistic maps were thresholded at a relatively 

conservative threshold of 60% to ensure the seed regions contained only core 

hippocampal voxels. To ensure perfect symmetry across hemispheres for anterior and 

posterior sections for the hippocampus, we first performed a binarisation of the 60% 

thresholded left and right anterior and posterior hippocampal masks. Following this these 

masks were mirrored across hemispheres using the dimswap command in FLS (http:// 

fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils). Finally, we multiplied the mirrored hippocampal 

masks together with the original hippocampal masks leaving us with equally sized, 

symmetrical anterior and posterior hippocampal masks across hemispheres. The rFFA 

mask was taken from a previous study in which face-responsive regions of interest were 

defined by comparing faces to scrambled faces, with peak voxels determined from group-

level statistical maps (Flack et al., 2014).   

 

 

Figure 5.3 Regions of interest. The anterior hippocampus (red), the posterior 

hippocampus (green) and right fusiform face area (blue). 

 

5.3.4.3 Data Pre-Processing and Analysis 

Resting-state fMRI: Functional and structural data were pre-processed and analysed 

using FMRIB's Software Library (FSL version 4.1, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/). Individual FLAIR and T1 weighted 
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structural brain images were extracted using BET (Brain Extraction Tool). Structural 

images were linearly registered to the MNI-152 template using FMRIB's Linear Image 

Registration Tool (FLIRT). The resting state functional data were pre-processed and 

analysed using the FMRI Expert Analysis Tool (FEAT). The individual subject analysis 

involved: motion correction using MCFLIRT; slice- timing correction using Fourier 

space time-series phase-shifting; spatial smoothing using a Gaussian kernel of FWHM 

6mm; grand-mean intensity normalisation of the entire 4D dataset by a single 

multiplicative factor; highpass temporal filtering (Gaussian-weighted least-squares 

straight line fitting, with sigma = 100 s); Gaussian lowpass temporal filtering, with sigma 

= 2.8 s. 

We extracted the time series from the hippocampal (bilateral anterior and posterior) 

and rFFA ROI masks and used these as explanatory variables in connectivity analyses at 

the single subject level. In each analysis, we entered 11 nuisance regressors; the top five 

principal components extracted from white matter (WM) and cerebrospinal fluid (CSF) 

masks based on the CompCor method (Behzadi et al., 2007) and six head motion 

parameters. Spatial smoothing (Gaussian) was applied at 6mm (FWHM). WM and CSF 

masks were generated from each individual's structural image (Zhang, Brady, & Smith, 

2001). No global signal regression was performed, following the method implemented in 

Murphy et al. (2009). The nature and interpretation of correlation in resting state analysis 

is a matter of a debate that is focused on a lack of clarity regarding what constitutes a 

correlation of zero (see Murphy et al., 2009). We therefore use the terms ‘relatively 

strongly correlated’ and ‘relatively weakly correlated’ to describe regions whose 

correlation with the seed region is increased or decreased relative to the average. 

5.3.4.4 Analysis of Individual Differences in Functional Connectivity 

The hippocampal masks were used to calculate differential connectivity along the 

anterior-posterior axis at the individual level. This map described relative differences in 

functional connectivity between bilateral anterior and posterior regions of the 

hippocampus in each voxel. This measure (i.e. ‘differential’ connectivity) is sensitive to 

regions of cortex that show strong connectivity to either the anterior or the posterior 

hippocampus (areas that share strong connectivity with both the anterior and posterior 

hippocampus would not be identified as ‘significant’ regions of connectivity in this 
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analysis). These connectivity maps therefore highlight regions of cortex that have the 

greatest difference in connectivity along the anterior-posterior axis of the hippocampus.  

The spatial and functional characteristics of this map, along with the rFFA group 

map, were quantified by comparing the unthresholded functional connectivity activation 

profiles to previous studies using the Neurosynth decoder 

(http://www.neurosynth.org/decode/). This quantifies the functional terms most 

commonly associated with each spatial map, performing a quantitative reverse inference 

regarding the most likely associated functions (see Yarkoni et al. (2011) for further 

details). To produce our word clouds, we manually extracted the top ten task descriptions 

(based on frequency) for each unthresholded z map, manually excluding the names of 

brain regions or MRI methods. 

Connectivity patterns were then related to individual variations in behaviour using 

two multiple regression models in which the hippocampal differential connectivity and 

rFFA connectivity were the dependent variables, and z-scored accuracy on the three 

memory measures (learning, post-consolidation item memory and generalisation) were 

the explanatory variables. To ensure that general individual differences in learning and/or 

consolidation did not drive performance in our three measures, we used covariate adjusted 

means. Our post-consolidation item measure included initial learning performance as a 

covariate and the generalisation measure included both leaning and post-consolidation 

item memory as covariates. We also included mean frame displacement (Power et al., 

2014) in our group level regressions to rule out spurious effects related to motion 

artefacts. These analyses were carried out using FMRIB's Local Analysis of Mixed 

Effects (FLAME1). For all significant effects, we then computed the correlation between 

the connectivity measure and performance across individuals. To control for multiple 

comparisons, we used a cluster-forming threshold of Z = 2.6 and controlled our Type I 

error rate at an alpha value of p < .025 in order to take account of the number of voxels 

in the brain as well as the two different regression models we conducted (Eklund, Nichols 

& Knutsson, 2016). 
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5.4 Results 

5.4.1 Behavioural Results 

5.4.1.1 Face-Location Training  

Performance was measured as the number of correctly located faces across the 

three training blocks and distinguished between items presented with predictive and non-

predictive contexts (see Table 5.1). An ANOVA with the factors Block (block 1, block 2, 

block 3) and Predictability (predictive context, non-predictive context) was performed 

and revealed a main effect of Block (F(2, 112) = 85.61, p <.001, η2 = 0.61), with 

participants showing a significant improvement across training (all pairwise comparisons 

between successive blocks were significant, p < .001). There were no differences in 

performance between the predictive and non-predictive items (F(1, 56) = 2.41, p = .126) 

and no interaction between these factors (F(2, 122) = 0.40, p = .671). Consequently, the 

two Predictability conditions were collapsed in all subsequent analyses.  

 

Table 5.1 The proportion of correctly located faces during learning in Session 1. Standard 

error of the mean (SEM) is presented in brackets.  

 Face-Location Training Performance 

 Block 1 Block 2 Block 3 

Predictive .24 (± .01) .35 (± .02) .44 (± .02) 

Non-Predictive .22 (± .02) .31 (± .02) .47 (± .03) 

 

5.4.1.2 Post-Training Performance 

Accuracy rates from Test 1 (measured immediately following initial training) and 

Test 2 (immediately following the consolidation delay) are presented in Table 5.2. Test 2 

assessed knowledge of trained items and new items that we refer to as Generalisation 

trials. A paired-samples t-test showed accuracy to be significantly greater for trained 

compared to generalisation trials in this test (t(59) = -7.06, p < .001). 
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Table 5.2 The proportion of correctly recalled face-location associations Test 1 and Test 

2. For Test 2 data is shown separately for trained items and novel generalisation trials. 

Standard error of the mean is presented in brackets. 

Face-Location Test Performance 

Trained Items  Generalisation 

Test 1 Test 2  Test 2 

.50 (± .02) .49 (± .02)  .40 (± .02) 

 

5.4.2 Functional Connectivity 

5.4.2.1 ROI: Hippocampus 

5.4.2.1.1 Differential Connectivity and Meta-Analytic Decoding 

Figure 5.4 presents differential connectivity maps comparing the anterior and 

posterior hippocampus. Posterior regions showed relatively stronger connectivity to 

dorsolateral prefrontal cortex, fusiform gyrus and medial occipital cortices (indicated by 

warm colours). Neurosynth decoding of the spatial posterior > anterior hippocampal map 

produced terms related to vision and spatial processing in memory, e.g. visual, sighted, 

working memory and navigation. A number of these regions (28% of voxels) fall within 

the visual cortical network described by Yeo et al. (2011; see Figure 5.5A), supporting a 

relationship between posterior regions of the hippocampus and visual processing. 

Anterior regions showed relatively stronger functional connectivity to medial prefrontal 

cortex, lateral temporal regions, posterior lateral prefrontal cortex and regions of the mid-

cingulate cortex (cool colours). Terms related to emotion, fear, faces and expressions 

were produced by Neurosynth decoding of the anterior > posterior hippocampal map, and 

these regions (46% of voxels) largely fell within the limbic cortical network described by 

Yeo et al. (2011; see Figure 5.5B). These differential connectivity patterns therefore 

support the suggestion that the anterior and posterior hippocampus have functional 

specialisations. 
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Figure 5.4 Differential anterior-posterior connectivity of the hippocampus. 

Differential anterior and posterior hippocampal connectivity. Regions that show greater 

connectivity to the posterior hippocampus are shown in warm colours, while regions 

showing greater connectivity to the anterior hippocampus are shown in cool colours. 

The word clouds reflect the results of Neurosynth decoding using the unthresholded 

connectivity maps. The spatial maps were generated using a cluster forming threshold 

of Z = 2.6 and corrected for family wise error rates at p < .05. 

 

 

Figure 5.5 Hippocampal differential connectivity maps and network overlap with 

Yeo et al. (2011). A) Posterior > Anterior connectivity and Yeo et al. (2011) Visual 

network (28% of voxel overlap), B) Anterior > Posterior and Yeo et al. (2011) Limbic 

Network (46% of voxel overlap). 
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5.4.2.1.2 Hippocampal Variation in Connectivity and Task Performance 

Having characterised the differences in functional connectivity between the anterior 

and posterior hippocampus, we then assessed how individual differences in this pattern 

of differential connectivity related to behavioural measures of learning, post-

consolidation item memory and generalisation. The accuracy of each participant, from 

each measure, was included as an explanatory variable in a multiple regression analysis, 

with differential hippocampal connectivity as the dependent variable. This analysis 

produced a significant result related to our behavioural measure of generalisation and a 

cluster in the bilateral paracentral and supplementary motor cortices (see Figure 5.6 and 

Table 5.3). Neurosynth decoding of this cluster showed a role in motor processing, and 

produced terms such as foot, mouth and coordination (see Figure 5.6). Connectivity with 

this motor cluster correlated positively with individual differences in posterior > anterior 

hippocampal activity. When connectivity was related to behavioural performance, better 

generalisation was observed when there was stronger posterior over anterior hippocampal 

connectivity (see Figure 5.6). 

 

Table 5.3 Cluster of activity that has a differential correlation with posterior > anterior 

hippocampus and the behavioural measure of Generalisation. 

ROI: Hippocampus  

Hem Connectivity Z X Y Z 
Total 

Voxels 
p 

 Anterior > Posterior 

& Generalisation 

Score  

    545 .009 

L Cingulum 4.49 -4 -18 42   

L Paracentral Lobule 4 -4 -30 60   

R Supplementary Motor 

Area 
3.58 2 -20 50   

R Paracentral Lobule 3.17 6 -26 60   
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Figure 5.6 Cortical region showing differential connectivity with anterior and 

posterior hippocampal regions. The figure illustrates the region of cortex 

(supplementary motor cortex) where the pattern of differential hippocampal 

connectivity hippocampus correlated with the behavioural measure generalisation. 

Spatial maps were threshold at Z = 2.6 and corrected for family wise error rates at p < 

.05. The word cloud reflects the results of Neurosynth decoding using the thresholded 

connectivity map.  

 

To facilitate the interpretation of this connectivity pattern, and to establish the 

contribution of anterior and posterior hippocampal connectivity to this effect, the β 

connectivity values from the separate anterior and posterior hippocampal connectivity 

maps were extracted and correlated with generalisation performance (see Figure 5.7). 

This showed a strong negative correlation between generalisation performance and 

connectivity of the medial motor cluster and the anterior hippocampus (r = -.47, p < .001, 

adjusted alpha level of p = .025). This pattern of data suggests that the posterior > anterior 

hippocampal effect described above, was driven by strong decoupling between the 

anterior hippocampus and this region of motor cortex, supporting the view that 

decoupling between heteromodal memory regions and sensory-motor networks may 

support memory processing. There was also a weaker positive correlation between 

behavioural generalisation performance and posterior hippocampal connectivity (see 

Figure 5.7C; r = .32, p = .014, adjusted alpha level of p = .025), which may relate to the 

perceptual processing of features that contribute to regularity knowledge. No significant 
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effects were observed related to the behavioural measures of learning or post-

consolidation item memory. 

 

 

Figure 5.7 Correlations between the Generalisation Score and connectivity 

strength. Correlations are between the supplementary motor cluster (A) identified in 

the regression analyses and the anterior hippocampus (B) and the posterior 

hippocampus(C), (adjusted alpha level of p = .025).  

 

5.4.2.2 ROI: Right Fusiform Face Area (rFFA) 

5.4.2.2.1 Connectivity and Meta-Analytic Decoding 

Figure 5.8 presents maps showing functional connectivity patterns with the rFFA 

seed. The rFFA was strongly connected to medial occipital cortex and inferior and medial 

temporal regions (indicated by warm colours). Neurosynth decoding of the unthresholded 

map produced terms related to vision, faces, objects and recognition. The rFFA showed 

relatively weaker connectivity with the left cingulum, superior temporal cortices, medial 

frontal regions, the right angular gyrus and bilateral thalamus (cool colours). Terms 

related to sound perception and pain were produced by Neurosynth decoding of the 

unthresholded connectivity map (see Figure 5.8). 
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Figure 5.8 Connectivity of the rFFA. Strong connectivity is indicated by warm 

colours and weak connectivity by cool colours. The word clouds reflect the results of 

Neurosynth decoding of the unthresholded maps using Neurosynth. The spatial maps 

were generated using cluster forming thresholding of Z = 2.6 and corrected for family 

wise error rates at p < .05.   

 

5.4.2.2.2 rFFA Variation in Connectivity and Task Performance 

To investigate individual differences in memory and rFFA connectivity, scores of 

learning, item memory and generalisation performance were included as explanatory 

variables in a regression analysis, with rFFA connectivity as the dependent variable. This 

regression model produced a significant result that also related to our behavioural 

measure of generalisation, and highlights a cluster in the right angular gyrus (see Figure 

5.9 and Table 5.4). Neurosynth decoding of this cluster produced terms such as 

autobiographical, default network and episodic, emphasising its role in memory 

processing (see Figure 5.9). Relatively weaker connectivity between the rFFA and this 

region of angular gyrus was associated with greater generalisation performance. Like the 

previous result, this finding suggests that behavioural generalisation performance 

benefitted from greater decoupling between heteromodal regions linked to memory (i.e. 

the angular gyrus) and activity in sensory-motor regions (e.g. visual cortex). No 

significant effects were observed related to the behavioural measures of learning or post-

consolidation item memory. 
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Figure 5.9 Cortical region where connectivity with the rFFA has a relationship 

with the behavioural measure of Generalisation. Spatial maps were threshold at Z = 

2.6 and corrected for family wise error rates at p < .05. The word cloud reflects the 

results of Neurosynth decoding using the thresholded connectivity map.  

 

 

Table 5.4 Cluster of activity that showed connectivity to the rFFA and a relationship 

with the behavioural measure of Generalisation.  

ROI: rFFA 

Hem Connectivity Z X Y Z 
Total 

Voxels 
p 

 rFFA &  

Generalisation Score 

   
 426 .025 

R Angular Gyrus 4.05 52 -60 46   

R Angular Gyrus 3.91 54 -66 36   

R Angular Gyrus 3.80 52 -70 34   

R Inferior Parietal Lobule 3.72 58 -56 42   

R Angular Gyrus 3.69 54 -64 40   

R Inferior Parietal Lobule 3.08 58 -48 46   

 

5.5 Discussion 

This study characterised individual differences in the intrinsic connectivity of the 

hippocampus and fusiform cortex and linked these patterns to behavioural measures of 
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learning, post-consolidation item memory and generalisation. Our results are consistent 

with the view that decoupling between heteromodal and sensory-motor regions of cortex 

is implicated in long-term memory processing. More specifically, we found this pattern 

of intrinsic connectivity to predict better memory generalisation, a measure that required 

the extraction of shared structure from across multiple associative representations and 

was therefore related to the development of concept-based representations. Both of the 

significant clusters identified in our analysis fit this pattern: generalisation was better in 

participants who showed weaker connectivity between a region of medial motor cortex 

and anterior relative to posterior hippocampus, and when there was weaker connectivity 

between the rFFA and angular gyrus. These results therefore highlight patterns of 

connectivity during rest, which may facilitate the capacity to extract concept-based 

memory representations from individual learning episodes.  

Both the hippocampus and angular gyrus have been shown to support memory 

processing  and are believed to integrate different elements of experience into holistic 

memory representations (Horner et al., 2015; Margulies et al., 2016; Seghier, 2013). The 

hippocampus is a key candidate for associative learning (Backus et al., 2016; Horner et 

al., 2015; Staresina et al., 2016) and previous studies have suggested a functional 

specialisation along the anterior-posterior axis (Poppenk et al., 2013; Sheldon et al., 2016; 

Sormaz et al., 2017; Strange et al., 2014). Posterior regions have been implicated in fine-

grained ‘local’ and perceptual processing (Doeller, King & Burgess, 2008; Hassabis et 

al., 2009; Poppenk et al., 2013; Bird & Burgess, 2008; Hüfner et al., 2011; Shipman & 

Astur, 2008), while anterior regions have previously shown strong connectivity to 

ventromedial prefrontal cortex and anterior temporal lobe regions involved in semantic 

memory and ‘global’ or gist processing (Jefferies, 2013; Patterson, Nestor, & Rogers, 

2007; Sheldon et al., 2016; Sormaz et al., 2017; Poppenk et al., 2013). The relationship 

between anterior hippocampal connectivity, and the behavioural measure specifically of 

generalisation in this study, fits well with the suggestion of gist-based regularity 

processing in the anterior hippocampus. 

The angular gyrus is also a multimodal association area or ‘convergence zone’, and 

has been implicated in a wide range of higher-order cognitive functions, e.g. numerical 

cognition, theory of mind, conflict resolution, autobiographical memory retrieval and 

semantic processing (for a review see Humphreys & Lambon Ralph, 2015 and Seghier, 
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2013). It is located at the junction between occipital, temporal and parietal lobes and is 

therefore well-suited for memory integration (Tomasi & Volkow, 2011). In terms of 

conceptual memory processing, the angular gyrus has been linked to the online retrieval 

of semantic information across modalities (Binder & Desai, 2011; Binder et al., 2009; 

Davey et al., 2015; Fernandino et al., 2016; van der Linden et al., 2017), with 

neuroimaging evidence showing greater activity during the retrieval of multimodal versus 

unimodal experiences (Bonnici et al., 2016; Yazar, Bergström & Simons, 2017). The 

convergence of task-related activity in the angular gyrus has also been observed in the 

weather prediction task, in which participants were required to make predictions about 

novel stimuli on the basis of  feature combinations (Wagner et al., 2015). Interestingly, 

Wagner et al. (2015) only found significant angular gyrus activity after a 24-hour delay 

(and not when tested immediately); suggesting that feature integration in this region may 

be supported by offline memory consolidation. 

An integrative role for the angular gyrus was also observed during online memory 

retrieval in a variation of the face-location paradigm used in the current study (Sweegers 

et al., 2014). Greater connectivity between the FFA and angular gyrus was observed 

specifically for the retrieval of trials in which screen location was predicted by regularities 

related to facial features (when compared to non-regularity trials). Like the result reported 

by Wagner et al. (2015), this effect was only observed for items trained 24-hours before 

testing. In conjunction with the current data, this pattern of angular gyrus activity 

therefore suggests that conceptual memory performance may be related to: i) the ability 

to decouple connectivity between heteromodal and perceptual regions of cortex during 

offline memory processing, and ii) the ability to re-couple these regions when perceptual 

details are task-relevant. Assessing online and offline connectivity in the same 

participants within a single study would be a natural extension to the current study, and 

add strength to this suggestion. 

Both the hippocampus and angular gyrus share strong links with the DMN 

(Margulies et al., 2016). This network is thought to support memory retrieval and 

cognitive states which are largely independent of the current environment, and therefore 

requires attention to be directed away from the external world, i.e. perceptual decoupling 

during mind-wandering (Smallwood et al., 2013; Binder et al., 2009; Spreng et al., 2014; 

Spreng, Mar & Kim, 2009; Engen, Kanske & Singer, 2016; Rugg & Vilberg, 2013). 
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Heteromodal regions of the DMN show maximal distance from sensory and motor 

cortices in the brain, both in terms of their patterns of connectivity and in their position 

along the cortical surface (Margulies et al., 2016), suggesting that they are ideal 

candidates for perceptually-decoupled and internally-driven cognition. This suggestion is 

consistent with our findings, in which long-term memory generalisation can be predicted 

from the level of decoupling between heteromodal regions of the DMN (i.e. the 

hippocampus and angular gyrus) and sensory-motor regions during rest.  

Similar results are reported by Sneve et al. (2017), who provide evidence to suggest 

that long-term memory performance is related to processing within the DMN and 

perceptual decoupling during rest. Sneve et al. (2017) found perceptual decoupling to be 

related to individual differences in paired-associate item memory. This contrasts with the 

findings from the current study somewhat, as we did not observe a relationship between 

perceptual decoupling and our measure of post-consolidation item-memory, instead we 

found a specific relationship with memory generalisation. Although these results appear 

inconsistent, Sneve et al. (2017) did not use a typical paired-associate memory paradigm; 

instead participants were asked to make semantic judgements regarding everyday objects, 

such as “Can you eat it?”. In the later test of memory, participants were required to 

remember the associated question for a given object and were therefore retrieving an 

association that related to pre-existing semantic knowledge. As a result, in their task it is 

therefore difficult to dissociate arbitrary object-question associations from the influence 

of semantics. The current study separated these effects and found perceptual decoupling 

to specifically benefit the conceptual components of memory. Conceptual representations 

require information integration across multiple features and episodes (Patterson, Nestor, 

& Rogers, 2007; Lambon Ralph et al., 2017). Reducing the level of perceptual input may 

limit the level of item-specific detail in each memory representation, which in turn may 

facilitate the extraction of shared regularities across experiences. Future research 

investigating the relationship between memory integration and perceptual decoupling is 

required to explore this idea.  

In this study, we did not observe a significant relationship between intrinsic 

connectivity during rest and our behavioural measure of learning. This is somewhat 

intriguing given that previous studies have shown hippocampal connectivity patterns to 

predict memory performance in other memory tasks (e.g. topographical memory and 
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semantic memory; Sheldon et al., 2016; Sormaz et al., 2017). However, it should be noted 

that Sormaz et al. (2017) did not observe a relationship between differential hippocampal 

connectivity and performance using a word paired-associate paradigm, which arguably 

draws the closest parallels to the task used in the current study. One possible explanation 

may relate to the overall sensitivity of the measure, with paired-associate recall offering 

a relatively coarse measure of memory performance in comparison to ‘relatedness 

judgement’ and ‘category fluency’ tasks (Sheldon et al., 2016; Sormaz et al., 2017). 

Further investigation into factors such as memory sensitivity will be important to clearly 

determine the relationship between intrinsic connectivity and individual differences in 

behaviour.  

The primary advantage of seed-based correlational analyses is that it is a direct 

approach, which shows the network regions that are most strongly connected with a seed 

region or ROI, providing a relatively straightforward and interpretable result (Cole et al., 

2010). This technique does however impose anatomical restrictions on the measurement 

of network connectivity and may under-represent the data. Fundamentally, there are as 

many possible ‘networks’ to be derived as there are possible seeds and therefore 

interpreting any single connectivity pattern as distinct may be over-simplistic (Cole et al., 

2010). It will be important in future work to complement the findings from this study with 

larger samples which would allow whole-brain connectivity patterns and their 

relationship with behaviour to be assessed. Furthermore, supporting these connectivity-

based analyses with task-based fMRI data would reinforce the relationship between brain 

connectivity and behaviour. A possible extension of the current study would be to include 

task-based fMRI before and following opportunities for consolidation, allowing patterns 

of brain connectivity to be related to changes in task-relevant brain activity over time. 

Such an approach would allow firmer conclusions to be made regarding the relationship 

between network connectivity in the brain and behaviour. 

This study used seed-based analyses to investigate individual differences in the 

functional connectivity of the hippocampus and rFFA (Buckner et al., 2013; Cole, 

Stephen, & Christian, 2010); consequently, we cannot exclude the possibility that 

differences in other brain regions would also be related to memory performance in our 

task. Nevertheless, the two significant results that we observed are consistent and fit a 

general pattern in which decoupling of heteromodal regions allied to the DMN, with 
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sensory/motor cortex, supports the generalisation of experience and the formation of 

concepts.  
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GENERAL DISCUSSION 

 

 

 This thesis investigated the impact of offline consolidation on conceptual memory 

representations. Research has shown that memories benefit from periods of offline 

consolidation, with mechanisms during sleep driving consolidation-related improvements 

in memory performance (Rasch & Born, 2013). However, in this thesis we provide 

evidence to suggest that not all memory representations benefit equally from these offline 

processes, with concept-based representations showing no immediate benefit following 

time for consolidation (Chapter 2 and Chapter 4) or a delayed benefit from offline 

consolidation during sleep which occurred only in conjunction with further post-

consolidation training (Chapter 3). Using dual-session behavioural memory paradigms 

across a number of delay conditions, polysomnography (PSG) and resting state functional 

connectivity analyses, the work in this thesis has extended current understanding for the 

role of offline consolidation in the development of conceptual memory representations 

and raised important questions for future work. This discussion considers the 

representation of concept-based memories and integrates the work from this thesis with 

current models of semantic memory. It then goes on to examine the role of offline 

consolidation in the development of these conceptual memory representations and the 

extent to which the findings from this thesis fit with current models of memory 

consolidation, highlighting key issues that have yet to be addressed by the literature. 
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Finally, methodological considerations for further investigation into conceptual memory 

and consolidation are discussed along with directions for future research in this area.  

6.1 Summary of Findings  

In Chapter 2 of this thesis we aimed to investigate the formation of abstract cross-

modal conceptual memory representations using an information-integration 

categorisation task (Ashby & Gott, 1988; Ashby & Valentin, 2005). This task required 

participants to integrate auditory and visual information into category exemplars and 

abstract statistical regularities regarding the underlying category structure. To assess the 

impact of offline consolidation on the development of these representations we compared 

memory performance across a short 15-minute and a long 24-hour consolidation delay. 

The results from Chapter 2 showed that participants were able to successfully integrate 

cross-modal perceptual information into coherent representations and acquire knowledge 

of the abstract cross-modal category structure. Unlike previous studies (Djonlagic et al., 

2009; Hennies et al., 2014), we did not observe a 24-hour consolidation benefit on 

memory when performance was measured using the category training task. However, 

when memory was assessed in a speeded variation of the categorisation paradigm, a 24-

hour benefit was observed. The speeded categorisation paradigm arguably placed greater 

demands on automatic implicit memory mechanisms, and therefore the results support 

previous studies that also report consolidation-related benefits for memory integration in 

more ‘implicit’ paradigms (Durrant et al., 2011; Ellenbogen et al., 2007; Hennies et al., 

2014). The results from Chapter 2 support the suggestion that offline consolidation may 

play a role in processes of cross-modal integration and regularity extraction.  

In Chapter 3 we explored the different contributions from periods of sleep and 

wakefulness in the development of these abstract cross-modal category representations. 

Initially we carried out two 12-hour delay comparisons that spanned either an evening of 

sleep or daytime wakefulness. We then went on to run a 15-minute control comparison 

and a 12-hour sleep group in which sleep was measured using PSG. This allowed us to 

investigate the relationship between sleep-associated behavioural benefits in memory and 

specific features of sleep. We developed the testing paradigm used in Chapter 2 in order 

to dissociate the impact of offline consolidation from post-consolidation learning and any 

effects that may be related to re-exposure to task stimuli. To do this, we introduced a test 
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of category knowledge that was carried out in the absence of feedback immediately before 

and after the consolidation delay. Participants were then provided with further category 

training and a final categorisation test at the end of the second session.  

The results from Chapter 3 show sleep-associated consolidation benefits in cross-

modal category knowledge; this was not however observed immediately following the 

consolidation delay, but seen after post-consolidation learning in session two. The results 

therefore suggest that processes of consolidation during sleep facilitated the integration 

of new information into memory stores. This finding is in line with the CLS account of 

consolidation (McClelland et al., 1995), which suggests that new information will be 

assimilated into memory at a quicker rate if it is consistent with pre-existing knowledge. 

Paired-associate memory was also assessed in this study and in line with previous 

literature, sleep-associated benefits were observed. In addition, this memory benefit 

correlated with the percentage of time spent in NREM sleep, suggesting a role for sleep 

in the memory effect (although it should be noted that this correlation did not survive 

stringent Bonferroni correction rates). We did not observe any correlations between 

behavioural performance in the categorisation task and features of sleep; the specificity 

of the observed behavioural benefit from sleep is therefore unclear. The findings in 

Chapter 3 suggest that the benefit of sleep on memory is not unitary when individual 

declarative item-based memories and concept-based memories are assessed. In line with 

previous literature (Diekelmann, Wilhelm & Born, 2009; Plihal & Born, 1997; Rasch & 

Born, 2013; Tucker et al., 2006) we observed sleep-associated benefits in associative 

declarative memory; however the benefit of sleep on the cross-modal concept-based 

representations emerged only following further training on the categorisation task.  

To further investigate the differing impact of sleep on item-level associative 

memories and concept-based representations, in Chapter 4 of this thesis we introduced a 

face-location associative memory task (adapted from Sweegers et al., 2014), in which 

regularity structures could be extracted from individual associative representations. This 

allowed item- and concept-based knowledge to be measured within the same testing 

paradigm. The separate contribution of sleep and wake on memory was assessed, as well 

as the impact of post-consolidation learning. As real-world conceptual representations do 

not develop in isolation, but across many memory episodes and in different contextual 

situations, we also introduced a predictive context manipulation in this task. This was 
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included to capture co-occurring features of the environment that are typically present 

during memory encoding, and to assess how these influence both learning and processes 

of consolidation.   

As in previous chapters, in Chapter 4 we found a differential effect of sleep on item- 

and concept-based representations. We found sleep-associated benefits for individual 

associative representations; however in tests of concept-based knowledge, which required 

the classification of novel stimuli that had not been trained but followed the same 

underlying category structure, we did not observe any sleep-associated changes in 

performance. For these concept-based representations, sleep benefits were also not 

observed following further training on the task, suggesting that the sleep-associated post-

consolidation training benefits observed in Chapter 3 did not extend to this associative 

memory paradigm. The differential impact of sleep-associated consolidation on item- and 

concept-based memory representations fits with predictions set out by Mirkovic & 

Gaskell (2016), who extended the CLS account of consolidation to suggest that the benefit 

of sleep may be related to the dependence of memory representations on hippocampal 

and neocortical memory systems. Our results are in line with their suggestion of a 

prioritisation process during sleep, whereby elements of a memory that depend strongly 

upon the hippocampus (i.e. item-level specifics) are preferentially consolidated and show 

stronger benefits from sleep in comparison to the shared structure extracted from across 

memory representations (i.e. shared regularities). 

The aim of Chapter 5 was to investigate intrinsic brain connectivity during rest and 

assess its relationship to individual differences in item- and concept-based behavioural 

performance in the memory paradigm used in Chapter 4. In this analysis, we focused upon 

differential connectivity between the anterior and posterior hippocampus and 

connectivity with the right fusiform face area (rFFA). The hippocampus is strongly 

implicated in the processing of associative representations; however, functional 

specialisations along the posterior-anterior axis of the hippocampus suggest that the 

anterior regions may be particularly well suited for processing gist-like memory 

representations, important for conceptual memory processing, while posterior regions 

may be better suited to finer grained associations at the item-level (Poppenk et al., 2013; 

Sheldon et al., 2016; Sormaz et al., 2017). The rFFA is strongly implicated in face 

processing and was therefore behaviourally relevant as a task-specific region of interest.  
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The findings from Chapter 5 suggest that the processing of concept-based 

representations is facilitated by perceptual decoupling during rest between heteromodal 

regions of cortex related to the default mode network (DMN; i.e. anterior hippocampus 

and angular gyrus) and sensory-motor regions of cortex. These results are in line with the 

suggestion that concept-based memories are processed within modality convergence 

zones, with the anterior hippocampus and angular gyrus highlighted as important regions 

for memory integration and generalisation. Furthermore, these results highlight a 

functional role for the DMN in conceptual memory development, which may have 

important implications for future investigations into the role of quiet wake in memory 

processing. 

6.2 Processing Conceptual Representations in the Brain 

Real-world conceptual and semantic memories are incredibly complex and require 

the integration of information from across all modalities to provide knowledge structures 

that represent our experiences (Patterson, Nestor & Rogers, 2007). The information-

integration categorisation task used in Chapters 2 and 3 of this thesis allowed two 

important aspects of conceptual memories to be assessed; i) the integration of cross-modal 

representations and ii) the abstraction of statistical regularities to form category 

structures. The demands of this task closely align with the hub-and-spoke framework of 

semantic memory, which suggests that the formation of modality-invariant multi-

dimensional representations results from interactions between a transmodal hub located 

in the anterior temporal lobes (ATLs) and modality-specific spokes (Lambon Ralph, 

2013; Pobric, Jefferies & Lambon Ralph, 2010; Lambon Ralph et al., 2017). The hub is 

thought to integrate information from the modality-specific representations in order to 

extract statistical relationships between and across memories (Lambon Ralph et al., 

2017). As such, the transmodal hub may play an important role in the integration of visual 

and auditory dimensions used in the categorisation task. We do not have data to directly 

support the link between our categorisation task and the hub-and-spoke model (e.g. 

neuropsychological or neuroimaging evidence); however the task draws parallels with a 

similar conceptual memory task that does implicate the ATLs in conceptual memory 

processing (Hoffman, Evans & Lambon Ralph, 2014).  



182 

Hoffman, Evans & Lambon Ralph (2014) studied the acquisition of new concepts 

in semantic dementia patients who have cortical damage centered on the ATLs. Their task 

involved the assignment of abstract visual stimuli to one of two categories, where the 

stimuli conformed to a family resemblance structure. Like in our categorisation task, this 

underlying structure was not present in any individual stimulus and therefore knowledge 

of it required the extraction of features from across multiple category exemplars. Hoffman 

et al. (2014) found that semantic dementia patients were unable to integrate information 

from across exemplars and instead relied heavily upon individual features to make their 

category judgements. Their data therefore suggests that the integration of distinct memory 

features into coherent concepts requires input from the ATLs, highlighting a central role 

for this region in the development of conceptual memory representations and supporting 

the hub-and spoke model of semantic memory. 

 The cross-modal categorisation task used in this thesis would provide an 

opportunity to extend the finding from Hoffman et al. (2014) to investigate the interaction 

between cross-modal memory integration and modality-specific representations in the 

brain. In particular, this task would allow the hub-and-spoke model (Patterson et al., 2007; 

Lambon Ralph et al., 2017) to be assessed and contrasted with ‘embodied’ accounts of 

semantics, which suggest that knowledge is grounded within sensory and motor regions 

of the brain (Binder & Desai, 2011; Martin, 2007; Pulvermüller, Shtyrov & Ilmoniemi, 

2005). Advances in neuroimaging, e.g. distortion corrected functional magnetic imaging 

(Binney et al., 2010) and analysis techniques, e.g. multivariate pattern analysis (MVPA, 

Haxby, 2012), would allow the emergence of integrated representations to be measured, 

and the dependency between the integrated and modality-specific representations to be 

assessed. The categorisation paradigm, although very abstract and simplistic, provides a 

unique opportunity to study the development of conceptual representations over time, 

where initial memory encoding and subsequent memory exposure can be experimentally 

manipulated and controlled. In combination with neuroimaging techniques, these tasks 

have the potential to offer a great deal of insight into the processes responsible for the 

development of integrated concept-based representations in the brain. 

The hub-and-spoke model places a strong emphasis upon the ATLs as a transmodal 

‘hub’ of semantics, however other regions of cortex show similar heteromodal processing 

capacities and these regions may also play a role in processing conceptual knowledge 
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(Binder & Desai, 2011; Lambon Ralph et al., 2017). In Chapter 5 of this thesis we found 

evidence to suggest a role for the anterior hippocampus and angular gyrus in the 

generalisation of associative regularities. Both of these regions have been implicated in 

memory integration (Backus et al., 2016; Horner et al., 2015; Staresina et al., 2016; 

Binder & Desai, 2011; Binder et al., 2009; Fernandino et al., 2016; van der Linden et al., 

2017) and the associative memory task used in this thesis may play to their processing 

strengths. The hippocampus is a key candidate for processing associative information, 

with evidence to suggest that it is able to acquire and maintain associative memories by 

integrating distinct perceptual inputs into holistic representations (Horner et al., 2015; 

Azab, Stark & Stark, 2014; Chadwick et al., 2010; LaRocque et al., 2013; Moita et al., 

2003; Shohamy & Wagner, 2008; Wood, Dudchenko & Eichenbaum, 1999). Similarly, 

neuroimaging data from healthy adults and data from patients with neurodegenerative 

disease implicate the angular gyrus in the combinatorial aspects of semantics (Price et al., 

2016; Lambon Ralph et al., 2017; Binder & Desai, 2011). In line with this previous 

literature, the results from Chapter 5 suggest that the anterior hippocampus and angular 

gyrus may play a key role in the integrative and combinatorial aspect of conceptual 

memory processing. Our data therefore provides support for ‘convergence zones’ in the 

brain and a role for these regions in conceptual memory processing. 

By having a set of rigid category rules, however, the associative memory task may 

not have captured the more flexible nature of real-world concepts. For example, the 

concept of ‘birds’ needs to be particularly flexible for successful integration of knowledge 

about ‘penguins’ which do not fly or have typical bird-like features such as feathers. The 

associative memory task could be easily adapted to study this more flexible nature of real-

world conceptual knowledge by including irregular instances of category membership, 

i.e. presenting face-location associations that do not conform to the ‘rule’ structure. It 

would then be possible to obtain a measure of concept flexibility by assessing over- and 

under-generalisations, allowing the impact of this irregular category information to be 

assessed. Understanding the interplay between feature integration, regularity extraction 

and concept flexibility will be extremely important for understanding the representation 

of complex conceptual knowledge and the processes that contribute to their development.   
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6.3 The Role of Memory Consolidation in Conceptual Memory 

 Development 

The main aim of this thesis was to assess the role of offline consolidation on the 

development of conceptual memory representations. We have presented findings from 

three studies that directly address this question, and provide consistent results showing 

that, unlike associative representations, concept-based memories do not show immediate 

behavioural sleep-associated consolidation benefits. In the following sections we discuss 

the role sleep may play in memory processing. We then discuss how individual 

associative memories and concept-based representations may be differentially influenced 

by offline consolidation. We use the CLS model to highlight key issues that have yet to 

be addressed in order to provide a full explanation for the role of consolidation in the 

development of both item and concept-based long-term memory representations.  

6.3.1 Sleep-Associated Consolidation 

The standard model of systems-level consolidation proposes that new memories 

depend upon the hippocampus to bind individual modality-specific memory features 

across the neocortex into an integrated and coherent memory representation. Over time 

and with covert reactivation of hippocampal-neocortical connections, there is believed to 

be a progressive strengthening of connectivity between the cortical modules and a 

concurrent reduction in dependence on the hippocampus. As a result, memories become 

integrated within long-term memory stores and this has two complementary benefits for 

memory; the hippocampus maintains its encoding capacity ready for future learning, 

while the gradual integration of knowledge into long-term stores reduces the risk of 

catastrophic interference and memory ‘overwriting’ (Frankland & Bontempi, 2005). The 

Active Systems Consolidation (ASC) model extends this view to propose that the 

redistribution of memories is driven specifically by slow oscillations, sharp-wave ripples 

and sleep spindles occurring during NREM sleep (Frankland & Bontempi, 2005; Walker, 

2009).  

In this thesis, we provide two examples of sleep-associated consolidation benefits 

on memory; these were demonstrated in the paired-associate task in Chapter 3 and for 

individual trained associative representations in Chapter 4. In line with a specific role for 



185 

processes during NREM sleep, in Chapter 3 we found the paired-associate memory 

benefit to correlate with the amount of time participants spent in NREM sleep (although 

this correlation did not survive stringent Bonferroni correction rates). We were therefore 

able to replicate the typical sleep-associated benefits that have been previously reported 

within the consolidation literature, which allowed us to make comparisons between these 

typical effects, and the impact of offline consolidation during sleep on the development 

of conceptual memory representations. 

Unlike these declarative item-level associative representations, we did not find any 

post-consolidation benefits of sleep on concept-based knowledge immediately after the 

delay in the experiments presented in this thesis. This pattern of results suggests that the 

impact of sleep on memory is not unitary across all memory types, but may be selective. 

Indeed, the idea of selective sleep-associated consolidation mechanisms is not new, for 

instance sleep-associated consolidation has shown to be greater for: explicit compared to 

implicit trained skills (Fischer et al., 2006; 2002; Song, Howard & Howard, 2007; Walker 

et al., 2003), emotional compared to neutral material (Bennion, Payne & Kensinger, 2015; 

Cairney et al., 2014; Hu, Stylos-Allan & Walker, 2006; Payne et al., 2009); memories 

that have relevance for the future (Baran, Daniels & Spencer, 2013; van Dongen et al., 

2012; Wilhelm et al., 2011) and memories that fall within an optimal level of encoding 

strength i.e. when encoding strength is neither too high nor too low (Stickgold, 2009). 

The finding that sleep does not show a behavioural benefit for concept-based 

representations is however particularly intriguing, given that concept-based 

representations are derived from individual experiences. 

6.3.2 The CLS Model of Consolidation 

The CLS theory extends the standard model of consolidation and suggests that the 

hippocampus and neocortex play distinct roles in representing memories (McClelland et 

al., 1995). These separate roles solve a trade-off between remembering specific 

experiences (e.g. where you left your keys), which benefit from separate representations 

for each event, and the extraction of regularities across experiences (e.g. where you would 

typically expect to find your keys), which benefit from overlapping memory 

representations. It is the cross-talk between these two systems during offline periods that 

is hypothesised to facilitate consolidation (McClelland et al., 1995). Importantly, the CLS 
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proposes that the two systems interact through ‘interleaved memory reactivation’, and 

this may facilitate both the consolidation of specific events and the abstraction of shared 

structure from across experiences. In the following sections we will discuss the extent to 

which our findings support the CLS model and highlight existing questions that remain 

to be addressed.  

6.3.2.1 When Does Interleaved Memory Reactivation Happen? 

The CLS model suggests that new knowledge is gradually integrated into 

neocortical memory systems during offline periods and that this is initiated by memory 

reactivation in the hippocampus (Kumaran et al., 2016). Hippocampal replay is thought 

to be an important process of offline consolidation during sleep, with evidence to suggest 

that specific features of sleep play an active role in instigating reactivation events e.g. 

sharp-wave ripples (Molle, 2006; Ramadan, Eschenko & Sara, 2009; Rasch & Born, 

2013; Roux et al., 2017). Memory replay during sleep has been closely tied to behavioural 

memory benefits within the declarative domain and causal evidence for the role of replay 

in consolidation has been provided by techniques such as targeted memory reactivation 

(TMR), whereby auditory induced reactivations have been shown to selectively benefit 

individual memory representations (Rasch et al., 2007; Rudoy et al., 2009; Oudiette & 

Paller, 2013; Batterink & Paller, 2017; Cairney et al., 2014; 2016; Cousins et al., 2014; 

Creery et al., 2015; Fuentemilla et al., 2013; Lehmann et al., 2016; Oyarzún et al., 2017; 

Schouten et al., 2017; Schreiner & Rasch, 2017, 2015; Tamminen, Lambon Ralph & 

Lewis, 2017; van Dongen et al., 2012). 

However, the CLS does not suggest that consolidation-related replay is specific to 

sleep, and therefore replay events during other offline periods, for instance during quiet 

wake, may also contribute to the consolidation of new memories (Mednick et al., 2011). 

The results from Chapter 5 of this thesis suggest that quiet wake may provide conditions 

suitable for consolidation by decoupling attention from perceptual input and allowing 

processing to be driven internally within the Default Mode Network (DMN). During this 

state, spontaneous and internally driven memory retrieval may act to replay new and 

existing memories, facilitating the process of interleaved memory replay as proposed by 

the CLS. We did not behaviourally examine the impact of quiet wake on memory 

performance in the experiments carried out in this thesis, however previous literature does 

suggest that quiet wake, in comparison to active wake, facilitates long-term memory 
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stabilisation (Craig et al., 2015; 2016; Dewar et al., 2012; 2014). A causal role for 

memory replay in wake has been provided by Oudiette et al. (2013) who were able to 

selectively improve memory performance by cueing memories using TMR during wake. 

Interestingly, in their paradigm, cueing was not carried out during quiet wake, as they did 

not want participants to be explicitly aware of the cued material which may lead to active 

memory rehearsal. Instead they replayed the cues while participants completed a 

challenging working memory task. Their findings therefore support the suggestion that 

diverting perceptual encoding demands away from long-term memory systems during 

wake, may allow processes of consolidation to take place. 

The CLS model also suggests that for consolidation to happen without causing 

interference with pre-existing knowledge, new material should be replayed and 

interleaved with existing known representations, allowing new memories to gradually 

influence neocortical connection weights (Kumaran & McClelland, 2012; McClelland et 

al., 1995). Offline periods may provide optimal conditions for interleaved memory 

reactivation as memory retrieval of known information can be accessed without online 

encoding demands. However, this type of memory reactivation may also be achieved 

during online memory encoding given the correct circumstances. For example, in both 

the paradigms used in this thesis, participants were presented with large numbers of 

category exemplars, followed by explicit category feedback in an interleaved fashion i.e. 

category exemplars were randomly intermixed. This created a circumstance in which 

perceptual input could drive a large number of reactivation events, which may facilitate 

online consolidation processes, allowing the shared structure from among the exemplars 

to be extracted by neocortical learning systems without the need for offline consolidation.  

 Assessing memory generalisation immediately after training would allow the 

amount of concept-based learning that had occurred during training to be assessed in these 

paradigms. This measurement was purposefully avoided in the studies reported in this 

thesis as we wanted to avoid drawing attention to this aspect of the testing paradigm which 

may have subsequently influenced processes of offline consolidation (Baran, Daniels & 

Spencer, 2013; van Dongen et al., 2012; Wilhelm et al., 2011). This however would be 

an important point to address in the future and may provide strong evidence to suggest 

that online regularity extraction is possible, given that the circumstances during encoding 

permit interleaved replay of category exemplars.  
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The extent to which this type of online consolidation may happen within the real-

world is questionable given that the typical presentation of category exemplars is much 

slower, with the number of exemplars gradually increasing over time. For example, the 

development of a ‘dog’ concept may be initially derived from pictures of dogs in books 

and a small number of family pets, encountering a large variety of dogs will be a slow 

and gradual process. Although further evidence for online memory consolidation is 

required, an interesting consideration for future work would be to assess whether there 

are different behavioural consequences of consolidation in these two states (i.e. online 

and offline). One potential difference may be the flexibility of the representation; offline 

memory replay may provide access to all previous exemplars of a concept, resulting in 

reactivation with a large number of experiences and therefore the development of highly 

flexible conceptual representations. In contrast, online consolidation may be much more 

rigid with goal-directed or perceptually-directed replay, which results in a concept 

structure that is restrained by input. It could be imagined that in a behaviourally relevant 

situation, the quick extraction of a rigid representation may outweigh the benefits of a 

more flexible representation that could be developed over time e.g. learning to avoid 

quicksand on a beach. These ideas are speculative; however, identifying whether there 

are different behavioural consequences of online and offline consolidation would increase 

our current understanding of the role of consolidation in the development of conceptual 

representations.  

6.3.2.2 Which Memories are selected for Reactivation? 

Memory replay may happen across a number of states; however, it is not known 

whether all memories undergo reactivation, or if there is a ‘selection’ process. There is 

evidence to suggest that sleep-associated memory replay may be biased towards 

rewarding events (Bendor & Wilson, 2012), suggesting a prioritisation process for the 

consolidation of information that is of future relevance. A prioritisation process that takes 

into account the specific goals of the individual would be particularly adaptive, and there 

are a number of factors which may influence the significance of individual experiences, 

e.g. reward (Breton & Robertson, 2014; Diekelmann, Wilhelm & Born, 2009; Oudiette 

et al., 2013) or emotion (Cairney et al., 2014; Hu, Stylos-Allan & Walker, 2006). The 

results from Chapter 4 also suggest that consolidation mechanisms during sleep may be 
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selective; however, this selectivity may depend upon the system that the memory is more 

strongly reliant upon, rather than the content of the representation. 

The findings from Chapter 4 suggest that sleep may benefit individual associative 

representations, but not concept-based knowledge. This result was interpreted in line with 

the predictions set out by Mirkovic & Gaskell (2016) who extended the CLS account to 

suggest that aspects of a memory representation that rely strongly on the hippocampus 

(i.e. item-level specific details) may be prioritized for consolidation, over aspects that 

have support from the neocortex (i.e. shared regularity structure). In Chapter 4, we 

discussed the idea that behavioural benefits from offline consolidation may emerge for 

concept-based regularity knowledge, however only following sufficient integration of 

new information. We related this idea to the information overlap to abstract (iOTA) 

hypothesis proposed by Lewis and Durrant (2011), which suggests that concept-based 

regularity knowledge may benefit from the gradual strengthening of shared overlapping 

representations as a result of sleep-associated memory replay. This is proposed to happen 

in combination with other sleep-associated processes such as synaptic downscaling, 

which facilitates a global restoration of synaptic weight and acts to preserves the relative 

strength across representations and networks. By this account, memory replay during 

sleep may progressively strengthen the shared structure from across experiences, and 

these networks may subsequently maintain their relative strength in relation to non-shared 

information. Sleep-associated benefits for shared concept-based knowledge may 

therefore emerge over longer time-scales and be related to the amount of item-level 

integration. 

Support for this idea is provided by Lutz et al. (2017) who used a visual Deese-

Roediger-McDermott (DRM) paradigm to investigate the abstraction of gist. Like the 

result from Chapter 4, they found that compared to wake, sleep enhanced memory for 

single items following a 10-hour sleep delay, but did not influence measures of gist 

abstraction. When memory was assessed a year later, significant gist knowledge was 

observed, however this was only in participants who slept immediately after encoding. 

Lutz et al. (2017) suggest that sleep may strengthen episodic memories in the short-term, 

but facilitate long-term gist abstraction. It would be interesting across longer time-scales 

to assess whether sleep-associated benefits at the item-level lead to later concept-based 

benefits following sufficient memory integration.  
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One approach to assess the relationship between item- and concept-based 

knowledge with the mechanism of memory reactivation would be to externally 

manipulate reactivation during sleep and assess the subsequent impact on memory. 

Batterink & Paller (2017) have shown that reactivation of individual items during sleep, 

manipulated experimentally using TMR, improves grammatical generalisation, 

suggesting that item-level replay can lead to the abstraction of grammatical rules. 

However, in their study, Batterink & Paller (2017) only tested participants’ grammar 

knowledge using novel phrases that had not been trained prior to sleep; they were 

therefore unable to assess the differential impact of reactivation on trained versus 

generalised knowledge. If an auditory component was introduced to the face-location 

associative task used in Chapter 4 of this thesis, this paradigm would lend itself well to 

assess the contribution of reactivation on item and concept-based knowledge via a TMR 

paradigm. Furthermore, it would allow the interplay between item and concept-based 

knowledge and the role of reactivation as a mechanism of consolidation to be explored. 

6.3.2.3 Is there an Interaction between Sleep and Wake? 

As previously discussed, an important aspect of real-world concepts is that they 

develop across multiple experiences and events that are separated in time. For example, 

you may develop a ‘birthday party’ concept (e.g. cake, balloons, games etc.) however the 

individual memories that contribute to this concept (i.e. birthday parties) may only occur 

a few times per year, leading to the very gradual integration of information over a long 

timescale. The impact of time between events therefore needs to be accounted for when 

understanding the development of concept-based representations in the long-term.  

Originally, the CLS proposed that the assimilation of new information into the 

neocortex is a slow and gradual process (McClelland et al., 1995). However new 

simulations, which extend those originally reported, demonstrate that new information 

that is consistent with existing neocortical knowledge structures can be learned rapidly 

and without interference (McClelland, 2013). This has since been supported by a number 

of behavioural observations, the most influential presented by Tse et al. (2007). They 

showed that the development of neocortical schema representations for flavour-place 

associations in rats, developed gradually over time, in line with the idea of a slow learning 

neocortical system (McClelland et al., 1995). However, following the consolidation of 

these initial representations, new traces showed rapid assimilation and hippocampal-
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independence after a single exposure, suggesting that the previously consolidated 

knowledge had accelerated memory integration. This provides evidence to suggest that 

the consolidation of information may accelerate the integration of new and consistent 

representations by shifting memory processing in favour of neocortical over hippocampal 

systems (McClelland, 2013).  

In an attempt to capture this role for time in concept development and any potential 

schema-related benefits, we introduced post-consolidation training into the behavioural 

experiments in this thesis. Incorporating further training after the initial post-

consolidation test is not typical within the consolidation literature, and therefore this 

manipulation offered an interesting insight into the interaction between consolidation and 

subsequent learning. In Chapter 3, our findings were consistent with a schema-related 

benefit and suggest that processes during sleep had facilitated memory consolidation and 

the development of category representations, which allowed new and consistent 

information to be assimilated into long-term memory networks at a quicker rate 

(McClelland et al., 1995; McClelland, 2013; Kumaran et al., 2016; Tse et al., 2007; van 

Kesteren et al., 2013). The impact of sleep-associated consolidation on category 

knowledge may therefore be qualitatively different to its impact on memories in the 

declarative domain.  

The SLIMM (Schema-Linked Interaction between Medial prefrontal and Medial 

temporal regions) framework suggested by Van Kesteren et al. (2012) offers a mechanism 

to explain how prior knowledge may influence the encoding of new information. The 

model extends the standard two-stage model of system-level consolation and introduces 

a third component – the medial prefrontal cortex (mPFC). The model proposes that the 

mPFC acts to detect congruency between new information and existing knowledge during 

encoding. If new information is congruent, the SLIMM model suggests that the mPFC 

inhibits activity in the hippocampus, and allows information to be directly assimilated 

into neocortical networks. This framework is therefore in line with our suggestion in the 

previous section, whereby certain circumstances during wake may facilitate online 

integration of information to the neocortex (online consolidation). The results from 

Chapter 3 expand on the SLIMM model to suggest that sleep-associated consolidation 

may support the mPFC congruency judgement by facilitating the development of 

concept-based representations. A relationship between offline consolidation during sleep 



192 

and mPFC activity during subsequent encoding would provide strong support for their 

combined role in the schema related memory consolidation benefit.  

One limitation of the data presented in Chapter 3 is that there was only an 

association with sleep, with no evidence to suggest that specific features of sleep (e.g. 

sleep spindles) contributed to the schema effect, as would be predicted by the CLS if 

consolidation was driven by memory reactivation. Further research is required to address 

the causal role of sleep in the presented results; this could be achieved using PSG 

recordings of sleep in conjunction with sleep manipulation techniques such as TMR 

(Rasch et al., 2007; Rudoy et al., 2009). In addition, to truly determine whether this is a 

schema effect, whereby new and crucially ‘consistent’ information shows swifter 

neocortical assimilation, it would be important to assess the rate of integration for non-

consistent and incongruent category information. This would be an important 

manipulation to add support to our interpretation of the data.  

The results from Chapter 3 suggest that there is interplay between processes of 

consolidation during sleep and subsequent memory encoding and integration of new 

information. When considering the development of conceptual representations, it may 

therefore be insufficient to assess the role of wake- and sleep-associated processes as 

separate entities, and important instead to consider them as a cycle of events, whereby 

processes during one state (e.g. consolidation during sleep) may facilitate processes in the 

other (e.g. new encoding and integration during wake). Investigating the impact of wake 

and sleep cycles on concept-based representations over longer time-scales e.g. multiple 

days and weeks, would be an interesting extension to the studies presented in this thesis 

and would further extend our current understanding of the interplay between these states.  

6.3.2.4 What Information Contributes to Concept Knowledge? 

In Chapter 4, we wanted to capture the more complex nature of conceptual 

memories by assessing the impact of co-occurring information that was predictive of 

category knowledge but did not contribute to the concept directly i.e. it was not diagnostic 

of category membership. To do this, each category exemplar was presented with a context 

cue that was either predictive or non-predictive of category membership. We found 

greater memory for category items presented with predictive contextual cues; however, 

this was specific to the delay group containing wake and not sleep. Unfortunately, it is 
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not clear if this is a wake-associated consolidation benefit, or if this effect is driven by 

pre-delay performance, in which the wake group (and not the sleep group) also showed a 

benefit for items with predictive information. One possible interpretation of the learning-

related benefit observed for the predictive items may be linked to prediction-based 

learning. In the predictive condition, context cues increased the amount of information 

that could be used to derive predictions for the correct category response. Greve et al. 

(2017) provide data to suggest that prediction error i.e. the degree of conflict between 

predictions and feedback, can drive declarative learning, and therefore this may have also 

influenced learning in our task. It is not however clear why this would be observed only 

in the wake group. This may be explained by time-of-day effects (discussed in more detail 

below) however further investigation is required to determine the cause of this group 

difference.  

The idea that context cues may support prediction-based learning does however 

highlight the fact that the nature of the concept developed may be driven by learning 

strategy. In the studies presented in this thesis we did not actively manipulate the learning 

strategy employed by participants, i.e. they were informed that category membership 

could be determined by rules, but they were not instructed to try to derive the rules in a 

particular way. Although this may reflect the varied nature in which information is 

encoded in the real-world, strategy-related differences may account for individual 

variation in our data. Assessing the type of strategies employed by participants would be 

an important area of future work, allowing a clearer understanding of the type of processes 

involved in concept learning and development. Furthermore, assessing the impact of 

informed versus non-informed knowledge of potential rules and/or underlying structure 

may also prove to be important. For instance, it may be the case that informing 

participants of category rules in our studies promoted ‘rule-finding’, and therefore these 

studies may not capture all aspects of concept development.  

The CLS does not make predictions as to the information that is assimilated into 

a concept. The data from Chapter 4 of this thesis would suggest that elements of the 

environment that are not diagnostic of category membership, but can provide useful 

information, may be integrated into the concept and have a later influence on memory 

processing. This type of mechanism would be adaptive in the long-term, whereby the 

integration of the wider context may increase the flexibility of the overall representation. 
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Much further investigation is required to determine what elements of the environment 

contribute to conceptual knowledge, and the factors present during encoding that may 

influence their integration.  

6.4 Methodological Considerations for Studying Concept 

 Development 

Previous literature addressing the role of consolidation in the development of 

conceptual memory representations have varied in the type of experimental paradigm, 

stimuli, measure of generalisation and their approach to assessing knowledge over time. 

This diverse approach is reflective of the complex nature of conceptual representations 

and the wide array of information they represent. However, greater consideration over 

experimental variation in the literature may allow a clearer understanding as to the 

development of conceptual representations. These methodological considerations are 

discussed below.  

6.4.1 Experimental Paradigm, Stimuli and the Measure of Concept 

 Knowledge 

Due to the complex nature of conceptual memory representations, there is an 

experimental trade-off between capturing concept complexity and gaining a clear 

measure related to the underlying mechanisms and processes. In Chapter 2 and 3 of this 

thesis we reduced the ‘concept’ to two simple cross-modal dimensions. This allowed us 

to investigate the integration of very basic and abstract information from different 

modalities, and the extraction of statistical regularities. Furthermore, the abstract nature 

of the stimuli allowed us to measure concept development from initial encoding, without 

the influence of pre-existing semantic information. Assessing the impact of learning and 

consolidation on these representations therefore provided some understanding as to the 

impact of consolidation on the fundamental mechanisms contributing to the development 

of concept-based representations.  

To build upon these abstract representations, in Chapter 4 we introduced an 

associative memory task that had three ‘critical’ concept features, but the overall 

complexity of the stimuli was increased by using faces which involved a number of 
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different features e.g. eye shape, nose shape, hair style etc., and drew upon a certain level 

of pre-existing semantic information. For instance, although the faces and their categories 

were all unknown to participants, categorising faces is quite a natural task and participants 

would have pre-existing knowledge as to the kinds of features that are typically shared 

across individuals (e.g. age – young/old) and those which are considered unique (e.g. nose 

shape). The stimuli were realistic and were able to capture elements of real-world 

categorisation that the two-dimensional abstract stimuli could not, however it is possible 

that factors related to pre-existing knowledge may have influenced learning and 

consolidation. An ideal stimulus set would allow the complexity of completely novel 

stimuli to be manipulated, such that both the basic mechanisms and the broader realistic 

representations could be simultaneously investigated.  

The paradigm used to train concept knowledge may also lead to different 

behavioural outcomes when the contribution of offline consolidation is assessed. Within 

the consolidation literature more generally, differences in sensitivity to the benefits of 

sleep are observed, with statistical learning paradigms showing memory improvements 

following sleep, and declarative memories typically showing memory stabilisation (i.e. 

reduced forgetting when compared to wake; Diekelmann, Wilhelm & Born, 2009). In line 

with this distinction, the benefit of sleep on concept-knowledge appears to be influenced 

by the type of training paradigm. Studies that have used statistical learning paradigms 

typically report sleep-associated consolidation benefits after a single sleep episode, 

(Durrant, Cairney & Lewis, 2013; 2016; Durrant et al., 2015; 2011; Frost & Monaghan, 

2017), while declarative training paradigms do not show these same immediate benefits 

(e.g. our results from Chapter 4 and Mirkovic & Gaskell, 2016; Sweegers & Talamini, 

2014).  

Given that representations trained via statistical learning paradigms may be more 

sensitive to sleep generally, it may be that memory generalisation can progress at a faster 

rate, which allows benefits to emerge after a single episode of consolidation. In Chapter 

4, we suggest that the impact of offline consolidation on conceptual representations may 

be slower to emerge if sleep prioritizes the consolidation of more hippocampal aspects of 

a memory representation. To provide a full account of the role of consolidation in the 

development of concept-based representations, it may therefore be important to 

distinguish between types of learning. This, in conjunction with assessing the time-course 
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of consolidation benefits, will be important for establishing and predicting the type of 

consolidation-related changes a memory may show in the real-world. 

A final point to consider relates to the measure of concept-knowledge that is taken. 

In the experimental paradigms in this thesis we aimed to assess the contribution of 

concept knowledge to novel instances of the concept. This is one of the fundamental 

advantages of storing conceptual information in the real-world, as they allow existing 

knowledge to drive successful interactions during new situations. The differential impact 

of consolidation on item- and concept-based knowledge has not always been dissociated 

in the literature (Ellenbogen et al., 2007; Lau, Tucker & Fishbein, 2010; Lau, Alger & 

Fishbein, 2011) and the results from Chapter 4 of this thesis suggest that this may be an 

important factor when determining the exact contribution of sleep on item- and concept-

based representations. Future studies that make a clear distinction between these two 

types of representation will allow the interactions between the memory types to be 

assessed, and the mechanisms responsible for their development over time to be 

determined.  

6.4.2 Assessing the Role of Consolidation 

Further investigation into the processes that drive consolidation and their impact on 

conceptual memory development is required. In the studies presented in this thesis, the 

different contributions from wake and sleep were assessed over time intervals that 

naturally contained wakefulness (i.e. across the day) and sleep (i.e. overnight). This type 

of paradigm was chosen to maximize the potential for sleep-associated benefits to be 

observed, given that the sleep opportunity spanned an entire evening of overnight sleep. 

This is a commonly employed paradigm in sleep research and offers a clear sleep/wake 

comparison (Dumay & Gaskell, 2007; Ellenbogen et al., 2006; Fenn & Hambrick, 2015; 

Kurdziel & Spencer, 2016; Payne et al., 2012; Payne & Kensinger, 2011; Sonni & 

Spencer, 2015; Tham, Lindsay & Gaskell, 2015; van Dongen et al., 2012). There are 

however confounds related to this paradigm, namely time-of-day effects related to 

circadian and homeostatic pressures (Borbely & Achermann, 1999) and differences in 

levels of interference across the different delays. Care was taken to account for these 

potential confounds, with potential-time-of-day effects assessed using explicit measures 

of sleepiness (i.e. using the Stanford Sleepiness Scale, Hoddes et al., 1973) and implicit 
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measures of vigilance (i.e. using a psychomotor vigilance task, Khitrov et al., 2014). In 

the studies presented in the thesis, we did not observe any group differences in these 

measures, suggesting that any group behavioural effects were not driven by general 

differences in sleepiness and/or vigilance. However future investigations may wish to 

avoid these confounds.  

One way to remove potential time-of-day effects is to assess memory using 

afternoon nap paradigms, in which memory is trained and assessed over a 90-minute 

period of sleep, typically carried out in the afternoon. This is a natural extension to studies 

that have investigated the effects of consolidation over longer timescales and provides a 

good opportunity to replicate sleep-associated benefits in the absence of circadian 

confounds (Diekelmann & Born, 2010; Mednick, Nakayama & Stickgold, 2003). 

Although nap studies remove time-of-day group differences, they do have limitations 

related to the amount, and type, of sleep obtained during the nap. A 90-minute period is 

typically sufficient for participants to complete a full cycle of sleep and therefore waking 

after this time typically reduces effects of sleep inertia (i.e. fatigue that is often reported 

if woken from deep sleep). However, due to the nap taking place in the afternoon, the 

type of sleep obtained across participants is varied and strongly influenced by sleep 

pressure (Dinges, 1986; Ellenbogen et al., 2006). Participants with a small amount of 

sleep pressure may spend very little time in deep NREM sleep and a large amount of time 

in REM sleep, while those with a large amount of sleep pressure may spend the majority 

of the 90-minute cycle in NREM sleep (Knoblauch et al., 2002). The quality and type of 

sleep obtained across naps may therefore have a large impact on the relationships that are 

observed when associated with behavioural measures of memory. The strengths and 

weaknesses of these paradigms should be considered when investigating and/or 

replicating effects of sleep-associated consolidation on memory.  

Factors related to the level of interference cannot be avoided in wake versus sleep 

paradigms. However, strong evidence for specific sleep-associated benefits (rather than 

‘less interference’ across sleep) can be observed if sleep is measured using PSG and 

relationships are found with features of sleep, for example number of sleep spindles 

and/or time spent in a specific sleep stage. Measuring sleep using PSG recordings is a 

natural extension to the study presented in Chapter 4 of this thesis and would help to 

determine the relationship between the behavioural effects observed and sleep 
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physiology. If a relationship with NREM sleep or sleep spindles was observed (i.e. 

features implicated in memory reactivation), it would strengthen our claims that sleep has 

a specific influence on memory processing. 

In addition, techniques that are able to manipulate sleep provide causal evidence 

for a role of sleep in memory processing and mechanisms of consolidation. There are 

currently two paradigms that have been shown to actively promote memory consolidation 

by manipulating sleep: TMR (Rasch, et al., 2007; Rudoy et al., 2009) and closed-loop 

stimulation, (CLoS, Ngo et al., 2013). Both of these techniques have been shown to 

manipulate features of sleep related to memory reactivation, including sleep spindles and 

slow oscillatory activity (Cairney et al., 2015; 2014; Ngo et al., 2015; 2013; Oudiette & 

Paller, 2013). They therefore provide robust evidence for a specific role of sleep in 

memory consolidation. Developing similar methods to target consolidation during 

wakefulness would similarly allow its role in memory processing to be determined. 

Understanding the underlying mechanisms driving consolidation is one of the main goals 

of memory consolidation research.  

6.4.3 Investigating Resting State Connectivity and Consolidation 

This study reported in Chapter 5 used a seed-based correlation (SCA) analysis to 

investigate whole brain voxel-wise functional connectivity with the hippocampus and 

rFFA. The SCA technique has proven useful for revealing the connectivity properties of 

many seed areas and is a popular technique used in the literature by many groups 

(Buckner et al., 2013; Cole, Stephen & Christian, 2010). The primary advantage of SCA 

is that it is a direct approach, which shows the network regions that are most strongly 

connected with a seed region or region of interest (ROI), providing a relatively 

straightforward and interpretable result. Although a popular technique, SCA analysis 

imposes anatomical restrictions on the measurement of network connectivity and may 

under-represent the data. Fundamentally, there are as many possible ‘networks’ to be 

derived as there are possible seeds and therefore interpreting any single connectivity 

pattern as distinct may be over-simplistic (Cole et al., 2010). It will be important in future 

work to complement findings from Chapter 5 with larger samples which would allow 

whole-brain connectivity patterns and their relationship with behaviour to be assessed.  
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Other caveats of investigating resting state functional connectivity include the 

interpretability of anti-correlated networks and the nature of causal relationships. The 

observation of inverse temporal relationships between systems in both the presence and 

absence of tasks is thought to be functionally relevant (Fox et al., 2005; Fransson, 2005; 

Zuo et al., 2010). However, whether these between-network relationships are truly 

‘negative’, or the consequence of the analysis procedure (e.g. pre-processing procedures 

necessary to correct for global non-neuronal physiological noise) is still debated, with no 

current consensus (Chang & Glover, 2009; Fox et al., 2009; Van Dijk et al., 2010; 

Weissenbacher et al., 2009). In the future it will be important to identify factors that 

influence the nature and strength of these relationships and their impact on behaviour. 

The data from the Chapter 5, along with task-related brain activity from others (e.g. 

Sweegers et al. 2014) suggest that there may be network interactions across cognitive 

states, i.e. sensory-motor networks appear coupled with regions of the DMN during 

online tasks and decoupled during rest. Further research is required to determine the 

nature and dependency of this coupling. For example, does the DMN suppress activity 

within sensory-motor networks during rest and vice-versa during task performance? 

Combining resting state and task-based fMRI with other methodologies such as 

transcranial magnetic stimulation (TMS) may provide invaluable insights into these 

network-dependencies and their functional relevance in the future (Cole et al., 2010).  

6.5 Directions for Future Research 

The research in this thesis has provided some key insights into the development of 

conceptual memory and the impact of offline consolidation on these representations. 

Throughout this discussion, a number of avenues for future research have been 

highlighted, these have related to the representation of conceptual knowledge in the brain, 

the mechanisms of memory consolidation and the interaction between consolidation 

processes during sleep and wake. The main ideas derived from the work in this thesis are 

summarised below.  

Firstly, further investigation is required into the brain basis of conceptual 

knowledge and how consolidation impacts these representations. There is strong support 

for the hub-and-spoke model of semantic memory (Patterson, Nestor & Rogers, 2007; 

Lambon Ralph et al., 2017) and the paradigms used in this thesis are suitable for future 
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work assessing key aspects of this model, particularly the integration of cross-modal 

memory features into coherent conceptual representations. In line with the CLS view of 

consolidation, there should be a division of labour across hippocampal and neocortical 

memory systems, with concept-based representations showing greater reliance upon 

neocortical networks and item-specific memory details reliant upon the hippocampus. 

Using functional neuroimaging, it may be possible to characterise this system-level 

distinction, and by assessing how these representations change over time, it may be 

possible to trace the development of concept-based representations.  

In accordance with the CLS, and the predicted division of labour between memory 

systems (Mirkovic & Gaskell, 2016), it would be predicted that individual items would 

show a hippocampal to neocortical shift in dependence over offline consolidation and this 

has indeed been shown in previous neuroimaging studies (Takashima et al., 2009). 

However, the retrieval of concept-based knowledge, when assessed through tasks 

requiring concept-based generalisations for example, may show recruitment of 

heteromodal integration regions across the cortex (e.g. the angular gyrus and ATLs) and 

with consolidation and subsequent learning you may expect a strengthening of this 

neocortical representation. Such a finding would provide strong support for the reliance 

of item- and concept-based representations on different memory systems, and may help 

to explain the differential impact of offline consolidation on the two types of memory.  

A second direction for future study would be to build upon the resting state 

connectivity results reported in Chapter 5, to assess patterns of resting state connectivity 

that are time-locked to memory encoding and retrieval, allowing state-dependent 

relationships between long-term memory processing and rest to be investigated. Using 

neuroimaging techniques such as MVPA it would be possible to determine memory 

specific patterns of activity during memory encoding. Investigating whether these same 

patterns of activity are also observed during quiet rest, along with a relationship with 

behavioural memory improvements, would provide strong support for the mechanism of 

memory reactivation in long-term memory processing during wake. Similar methods 

could also be used during offline consolidation i.e. during sleep, and in conjunction with 

PSG sleep recordings, which would allow features of sleep to be temporally related to 

neuroimaging evidence of memory reactivation; this would provide robust evidence of 

memory reactivation as a mechanism of memory consolidation. 
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In addition, this would allow the interaction between item- and concept-based 

representations to be assessed and related to the mechanism of replay. In Chapter 4, we 

suggest that there may be a prioritisation process during sleep in which item-level details 

may be preferentially consolidated over knowledge of shared-structure (Mirkovic & 

Gaskell, 2016). In line with mechanisms described by the iOTA model (Lewis & Durrant, 

2011), we suggest that the benefit of sleep on concept-based representation may emerge 

following sufficient integration of item representations and in conjunction with processes 

such as synaptic downscaling. By measuring replay events, it would be possible to 

determine how the degree of item-level replay impacts upon concept-knowledge over 

time. We would predict concept knowledge to show a linear relationship with memory 

replay, suggesting that the integration of new memories into neocortical networks, via 

memory reactivation, facilitates the abstraction of shared structure and development of 

conceptual representations.  

  



202 

6.6 Conclusions 

This thesis investigated the impact of offline consolidation on the development of 

conceptual memory representations. Conceptual memory was assessed using a cross-

modal information-integration categorisation task and an associative memory task that 

required the extraction of regularities to form concept-based representations. Results from 

the categorisation task suggest that offline consolidation during sleep supports the 

assimilation of new and category-congruent information into long-term memory 

networks. Evidence from the associative memory task suggests that there may be a 

prioritisation process of offline consolidation during sleep, whereby item-level memories 

show preferential consolidation and associated sleep benefits, in comparison to concept-

based representations. Together, these results suggest that processes of offline 

consolidation during sleep do not provide immediate boosts in conceptual knowledge, but 

subtle benefits may emerge when measured in combination with further post-

consolidation learning and when the memory systems supporting the representation are 

considered. An investigation into intrinsic brain connectivity during rest suggests that 

general variations in connectivity can in part explain individual differences in long-term 

memory performance, with decoupling between heteromodal and sensory-motor regions 

supporting memory generalisation and the formation of concepts. This thesis provides 

new insights into the role of consolidation on the development of conceptual memory 

representations and has raised important questions for future research.  
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