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Abstract

This thesis deals with joint channel and frequency offset estimation in many scenarios of

wireless communications. In additive white Gaussian noise(AWGN) channels, a general

literature survey of channel and frequency offset estimators based on the data-aided max-

imum likelihood (ML) principle is presented. The Cramer-Rao lower bounds (CRLB)s of

the joint estimators are presented. Performance analysis of advanced frequency estima-

tors recently proposed in the literature is provided. The performance of the estimators is

compared for different application scenarios so that to geta better understanding of the

differences, in terms of accuracy, complexity, frequency estimation range, signal to noise

ratio (SNR) threshold. The dichotomous search (DS) frequency estimator is found to be

the best practical choice. The DS frequency estimator emploies a fast Fourier transform

(FFT)-based coarse search and dichotomous fine search of theperiodogram peak to ap-

proximate the ML optimal estimator. This algorithm achieves the ML-like accuracy over

a wide range of SNRs and throughout the wide frequency estimation range. As it relies

entirely on linear operations, it is perfectly suitable forreal-time implementation.

In time-invariant frequency-selective channels, the joint data-aided estimation of chan-

nel and frequency offset for signals exploiting multipath diversity is considered. This di-

versity improves the estimation performance by searching for the peak of the combined

periodograms of multipath components. The first estimator is based on the Bayesian

approach and can be used when certain prior statistical knowledge about the channel is

available. The second estimator is based on the ML approach and can operate when these

channel statistics are not available. Both estimators employ the DS frequency estimation

technique. These estimators have a high-accuracy performance with an estimation error

very close to the CRLBs over a wide range of SNRs and throughout thewide frequency

acquisition range.
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In frequency-flat time-variant fading channels, new joint data-aided channel and fre-

quency offset estimators are derived. The proposed estimators are based on the basis ex-

pansion model (BEM) of the fading process and the DS frequencyestimation technique.

The first estimator is based on the Bayesian approach and exploits prior channel statis-

tics to provide a high performance. The second estimator relies on the ML approach,

and with a slightly lower accuracy, can operate when the prior statistics are unknown.

The performance of the proposed joint estimators is examined for different scenarios in

Rayleigh fading channels. The sensitivity of the Bayesian estimator to the knowledge of

the Doppler frequency is investigated using such BEMs as Karhunen-Lòeve (KL), dis-

crete prolate spheroidal (DPS), generalised complex exponential (GCE), and B-spline

(BS) functions. The BS-BEM is found to be the most robust and the best practical choice.

In doubly-selective fading channels, a joint data-aided channel and frequency offset

Bayesian estimator is proposed. The joint estimator is basedon the BS-BEM represen-

tation of the fading process and the DS frequency estimationtechnique. Simulation re-

sults for different scenarios in Rayleigh fading channels show that the proposed estimator

achieves a high accuracy performance, which is close to thatwith perfect knowledge of

the frequency offset, over a wide range of SNRs, for differentDoppler frequencies and

throughout all the frequency acquisition range.

Iterative turbo receivers are developed for frequency-flattime-variant fading channels

which jointly perform channel and frequency offset estimation together with data detec-

tion and decoding. The estimation and detection are based onthe BS-BEM of the fading

time variations and use the DS frequency estimation. Soft information generated in the

turbo decoder is used to improve the quality of detection in the subsequent iterations.

Depending on how much knowledge of channel statistics is available, three versions of

the joint estimator, the Bayesian, ML and regularised-ML (ǫ-ML) are provided. Simula-

tion results show that the proposed receivers provide as good performance as the corre-

sponding ones operating with perfect knowledge of the frequency offset, and close to that

operating with perfect channel knowledge.
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The main purpose of this work is to investigate data-aided frequency offset estimators

in wireless communications for signals propagated throughadditive white Gaussian noise

(AWGN) channels and slow fading multipath channels, and based on this investigation, to

propose joint channel and frequency offset estimators for frequency-flat time-variant and

doubly-selective fading channels to be used in developed iterative turbo receivers. The

joint estimation would allow higher accuracy with respect to techniques dealing separately

with these two problems. We first explore and compare the performance in terms of ac-

curacy and complexity of advanced frequency estimators that has been recently proposed

in the literature for the AWGN channels, and present the jointchannel and frequency

offset estimation together with the corresponding Cramer-Rao lower bounds (CRLB)s.

Then, we investigate frequency offset estimators, based onthe Bayesian and maximum

likelihood (ML) approaches, for time-invariant frequency-selective channels and present
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CHAPTER 1. INTRODUCTION 2

joint channel and frequency offset estimators together with the corresponding CRLBs.

After that, we propose joint channel and frequency offset estimators for frequency-flat

time-variant fading channels, based on basis expansion models (BEM)s of the fading pro-

cess, and compare the performance and robustness of the estimators for different BEMs.

Then, we propose a joint channel and frequency offset estimator for doubly-selective fad-

ing channels. Finally, we develop iterative turbo receivers for frequency-flat time-variant

fading channels which jointly perform channel and frequency offset estimation together

with data detection and decoding, where soft information generated in the turbo decoder

is used to improve the quality of detection in the subsequentiterations.

1.1 Motivation and Problem Statement

Modern digital RF (radio frequency) communication systems are able to operate very

close to theoretical performance limits. This fact has enabled everyday technologies,

such as cellular telephony and digital television, as well as more exotic applications such

as secure military communications and deep-space links with robotic probes. However,

many of these systems depend on coherent detection, which requires that the phase of the

received signal to be known. In practice, a wireless receiver will not have prior knowledge

of the phase of the received RF signal, therefore the receivermust derive the phase of the

signal from careful measurement of the signal’s parameters. The process of estimating

and compensating for the phase is called carrier synchronization or carrier recovery.

An important part of carrier synchronization is compensating for carrier frequency

offset. A frequency offset results in a time-varying phase shift. The offset is caused

by mismatches between transmitter and receiver oscillators and by Doppler effects. In a

typical wireless communication system, the signal to be transmitted is upconverted to a

carrier frequency prior to transmission. The receiver is expected to tune to the same carrier

frequency for downconverting the signal to baseband, priorto demodulation. However,

due to device impairments, the carrier frequency of the receiver fcr may not be the same

as the carrier frequency of the transmitterfct. When this happens, the received baseband

signal, instead of being centered at DC (0Hz), will be centered at a frequencyf0, where

f0 = fct − fcr. This frequency offsetf0 in the frequency domain corresponds to an
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CHAPTER 1. INTRODUCTION 3

exponential multiplier in the time domain. Ignoring noise,fading and multipath (that is

discussed later in the thesis), the baseband time domain representation of the received

signal is

r(t) = ej2πf0ts(t) , (1.1)

wheres(t) is the transmitted signal.

The carrier frequency offset of a modulated signal is estimated in one of two ways: 1)

Infer the frequency offset directly from the transmitted data; 2) Infer the frequency from

pilot symbols (also sometimes called training symbols, or sync words), which are known

a priori by the receiver, and which are inserted into the stream of data symbols. Option

1) is called non data aided (NDA) or decision directed (DD) estimation, depending on

whether a preliminary decision on the data symbol is incorporated into the estimate (DD)

or not (NDA). Option 2) is known as data aided (DA) estimation.

NDA and DD estimation is the most efficient approach because no additional signal

bandwidth is required for aiding synchronization. Nonetheless, NDA and DD estimation

performs poorly for low SNR conditions, or for highly distorted signals. In contrast, DA

estimation is more tolerant of degraded signal conditions.The downside of DA estimation

is that the pilot symbols are non-information bearing, and hence increase the bandwidth

overhead of the signal. Yet, DA estimation is widely used in modern communication

systems due to its performance advantages, and it is the application studied in this thesis.

1.2 Overview

In wireless communication systems, where reliable transmission techniques at high data

rates is a requirement, an appropriate signal detection in the receiver can only be achieved

by using highly efficient synchronization techniques in which joint channel and frequency

offset estimation is performed. Known data symbols called the pilot symbols is a practical

method used to provide the receiver with the required information about the channel [1,2].

For time-invariant channels, the pilot symbols can be sent in a burst mode as preambles,

postambles, or midambles. However, for time-variant channels, pilot symbols are usu-

ally inserted periodically within the data block in a process known as pilot symbol aided
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CHAPTER 1. INTRODUCTION 4

modulation (PSAM) [3,4] to keep up with the channel variations.

The periodogram maximiser ML frequency estimator possesses the optimum perfor-

mance, but also involves impractical complexity. Practical frequency estimators approx-

imating the ML estimator are classified as correlation-based [5–12] and periodogram-

based frequency estimators [13–19].

The correlation-based frequency estimators, such as the estimators of Fitz [5], and

Luise and Reggiannini (L&R) [6], can exhibit a comparable performance to that of the

ML estimator. However, both estimators possess a limited frequency estimation rangeΨ.

ThisΨ is inversely proportional to the number of input samplesN and cannot be changed

to suit a certain channel requirement. This prevents the estimators from being used for

scenarios where a wide frequency estimation range is required. It also limits the usage for

relatively largeN . In addition, these estimators use nonlinear operations and possess a

high computational load. We consider the following correlation-based frequency estima-

tors. A frequency estimator that relies on the phase of the correlation sample at a single

lag (L), referred to as the SL estimator, that was proposed in [7]. In[8], an estimator was

presented relying on unweighted linear combination of the phase differences ofL lags

correlation samples, referred to as the B&S estimator. A weighted average phase differ-

ences estimator was presented in [9], referred to as the M&M estimator. Depending on

the small error assumption, a simplified estimator for the AWGN channel can be derived

from the one proposed in [10] based on the nonlinear least-squares (NLS), referred to as

the SNLS estimator. An approximated NLS estimator was proposed in [11], referred to

as the ANLS estimator, based on the summation-by-parts rule. An improved estimator

was proposed in [12] based on the weighted normalised autocorrelation linear predictor,

referred to as WNALP.

The periodogram-based frequency estimators use coarse andfine search for the pe-

riodogram peak [13]. Usually, the coarse search is anM -point fast Fourier transform

(FFT), or discrete Fourier transform (DFT), whereM ≥ N . Some estimators useM = N

which allows efficient implementation. However, this requires more complicated meth-

ods to be used in the fine search and can affect the accuracy of the estimator. The linear

interpolation frequency estimator [14] usesM = N and exploits a three-point linear in-

terpolation fine search. Although the coarse search is computationally efficient, the fine
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CHAPTER 1. INTRODUCTION 5

search requires nonlinear operations to achieve a certain accuracy, which results in an in-

crease of the complexity. This estimator has anf0-dependent performance that can cause

the threshold signal to noise ratio (SNR),i.e. the SNR below which the estimation error

starts diverging from the CRLB, to be significantly higher than that of the ML estima-

tor. Other methods can be used in the fine search, such as the three/five-point interpola-

tion techniques [15], and Newton’s method for locating the root of an equation [16]. In

spite of the efficient coarse search, the fine search uses moresophisticated nonlinear tech-

niques, which makes it difficult for practical implementation. We consider the following

periodogram-based frequency estimators. A popular estimator of this type is the dichoto-

mous search of the periodogram peak (DS) [17]. This estimator exploits FFT/DFT of the

sizeM ≈ 1.5N for the coarse search, and then refines the estimate overQ iterations of

searching within binary partitions in the neighbourhood ofthe initial peak. This estimator

relies entirely on linear operations and is perfectly convenient for real-time implementa-

tion. An important modified dichotomous search (MDS) estimator was proposed in [18],

which attains the CRLB without the need for zero-padding the processed samples, allow-

ing a reduction in the complexity to be achieved. An improveddichotomous search (IDS)

estimator was proposed in [19] exploiting a new initialisation scheme in an attempt to

accelerate the convergence so that to allow reducing the number of iterations in the fine

search and also without the need to zero-padding. A robust hybrid of periodogram-based

and correlation-based estimator (grouped here with the periodogram-based estimators)

was proposed in [20] and is referred to as MLAF.

Performance analysis is obtained in terms of accuracy and complexity of the men-

tioned advanced frequency estimators, where the performance is compared for different

application scenarios. Based on that, the DS estimator is found to be the best practical

choice.

In wireless communication systems, the waves traveling from the transmitter to the

receiver get reflected, scattered, diffracted, or refracted due to the surrounding objects

and the media property [21]. This creates multiple propagation paths, where the received

signal is a sum of many copies of the transmitted signal with different delays and attenu-

ations [22]. As a result, the channel possesses a randomly time-variant impulse response

and becomes a fading channel that requires statistical treatment [23,24]. In this case, the

performance of the single-branch receiver is poor due to theSNR reduction, and diversity
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reception is used to improve that performance [25, 26]. Depending on the fading rate of

the channel compared to the baseband signal variations, thechannels can be classified

as fast fading or slow fading channels. In the fast fading channels, the channel impulse

response changes rapidly within the symbol interval [23]. This implies more complicated

models to represent these channels as in [27,28], and requires special techniques for esti-

mation as described in [29,30]. However in the slow fading channels, the channel can be

simply assumed static (time-invariant) during the observation interval [23].

Most frequency estimators for time-invariant frequency-selective channels in the lit-

erature are based on the correlations of the received signaldue to the simplicity in the

implementation. The estimator in [25] is an extension to themultipath channels with di-

versity reception of the correlation-based algorithm for the nonfading channels proposed

in [6]. However, it has a narrow frequency acquisition rangeand poor performance at low

SNRs. This is a common case in the correlation-based estimators [31–33].

Joint estimators of channel and frequency offset exploiting multipath diversity is con-

sidered for the time-invariant channels. This diversity isshown to improve the estimation

performance in a similar way that the detection performancein multipath channels is

improved by the RAKE receiver [22]. Two joint estimators are studied. The first fol-

lows the Bayesian approach and can be used when certain prior statistical knowledge

about the channel is available. The other follows the maximum likelihood approach when

these channel properties are not available. For practical implementation, both estima-

tors employ the DS frequency estimation. Therefore, and without increasing the com-

plexity, these estimators outperform the correlation-based algorithms and possess a wide

frequency acquisition range.

The joint channel and frequency offset estimation becomes challenging when dealing

with time-variant channels, where in addition to the additive noise, the transmitted signal

is corrupted with a random multiplicative distortion [23].This makes the channel and

frequency offset estimation complicated, and so, traditional techniques have dealt sep-

arately with these two problems. Various frequency offset estimators for frequency-flat

time-variant fading channels have been proposed in the literature. However most of these

estimators are correlation-based [7,8,10,11,34,35], andso, their performance is inferior

to that of the optimal ML estimator and/or they possess a limited frequency acquisition
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range. The estimator in [34] is based on weighted linear regression for the phase of the

sample correlation function, however the covariance matrix of the phase estimation is as-

sumed to be known. In [35], a modification was presented to allow the operability in a

wider acquisition range, and in this case the covariance matrix is estimated. However, an

assumption was made for the fading correlation. No such assumption was made in [8],

where two estimators were proposed. The first is based on unweighted version of the

method of [35] and the second is based on a nonlinear least-squares (NLS) approach.

Similar NLS technique was derived in [10] based on the multiple lags correlation func-

tion. Several channel estimators for frequency-flat time-variant channels were proposed

in [4, 36–42]. The BEM has been efficiently used for channel estimation [36, 38–43].

However, these estimators yield a severe degradation in theperformance at the presence

of a frequency offset. This problem can be resolved using joint channel and frequency

offset estimation, which to the best of our knowledge, has not been well addressed in the

literature and the main aim here is to fill that gap.

We focus on estimating the channel which contains both, the multiplicative distortion

and frequency offset. This channel is all what the receiver needs in practical applica-

tions, where there is no need for spending much complexity onexplicit estimators for

its individual components. The goal here is twofold. Firstly, we propose interpolation-

based practical frequency offset estimators based on the dichotomous search technique,

involving a two stage [13] search of the generalised periodogram peak [44], an FFT-based

coarse search [45] and dichotomous fine search [17]. The estimators achieve superior

performance compared to that of the correlation-based estimators, and possess a wide

frequency acquisition range. Secondly, we propose algorithms that estimate the channel

jointly with the frequency offset. The estimation is based on approximating the time-

variant fading process by a BEM and employ the DS frequency estimation technique.

This leads to a mathematical model that offers a simple (reduced dimensionality) pro-

cessing in addition to a high-accuracy performance over thewide frequency offset range.

The novel joint estimators are derived based on two approaches. The first is the Bayesian

approach and can be used when certain prior statistical knowledge about the channel is

available. The other is the ML approach and is applicable when the channel statistics are

not available.

Simulations for different scenarios in Rayleigh fading channels are used to investigate
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the performance of the new estimators. The proposed Bayesianjoint estimator is stud-

ied based on different BEMs such as Karhunen-Loève (KL), discrete prolate spheroidal

(DPS), generalized complex exponential (GCE), and B-spline (BS) functions, where the

channel statistics are perfectly or imperfectly known. Based on that, the BS BEM is found

to be the best choice in practice.

Accurate channel estimation is challenging in frequency-selective and time-variant

fading channels, especially in the presence of a frequency offset. Most of the frequency

offset estimators proposed in the literature have been devoted to correlation-based esti-

mation, such as [25, 46] for frequency-selective time-invariant channels and [8, 11, 34]

for frequency-flat time-variant fading channels. However,the performance of such es-

timators is inferior to that of the estimator based on the generalised periodogram [44],

and unlike that estimator, they are operable only at high SNRsand/or they possess a

limited frequency acquisition range [47, 48]. Periodogram-based joint channel and fre-

quency offset estimation for frequency-flat time-variant fading channels has been consid-

ered in [49, 50], where joint estimators exploiting BEM of thechannel time variations

have been proposed. BEMs have been widely used for frequency-flat time-variant chan-

nel estimation [38, 41, 51]. However, these estimators yield a severe degradation in the

performance in the presence of a frequency offset. Joint channel and frequency offset es-

timation for frequency-selective time-invariant channels has been addressed in [52]. For

doubly-selective fading channels, BEM-based channel estimation has been considered

in [53]. The estimation of doubly-selective fading channels in the presence of a frequency

offset for multicarrier systems, based on complex exponential BEM, has been addressed

in [54].

We focus on estimating jointly the doubly-selective fadingchannels and frequency

offset by using BS BEM. The proposed estimator is based on representing the fading

process by BEMs and employing frequency estimation based on the DS estimator.

By considering the soft information from a soft-input soft-output (SISO) decoder in

an iterative channel estimation and data detection, various iterative turbo processing tech-

niques have been widely considered for pilot symbol assisted modulation (PSAM) sys-

tems at the receivers. However, most studies have either ignored the possible presence

of a frequency offset [55], or assumed time-invariant channels when dealing with the fre-
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quency offset [56]. We consider iterative turbo-based receivers for PSAM systems and

QAM signals dealing with joint estimation of the time-variant channel and frequency off-

set together with data detection and decoding, which, to thebest of our knowledge, is

seldom treated in the literature.

1.3 Contributions

Major contributions in this thesis can be summed up as follows:

• Performance of advanced frequency estimators that have been recently proposed

in the literature for signals in the additive white Gaussiannoise has been anal-

ysed. A fair performance comparison has been obtained of many recent estimators

from both classes, correlation-based and periodogram-based estimators, under the

same simulation environment and for different applicationscenarios so that to get

a better understanding about the differences, most precisely, in terms of accuracy,

complexity, frequency acquisition range, signal to noise ratio (SNR) threshold and

the sensitivity of these towards different SNR and frequency scenarios. The di-

chotomous search estimator, which involves a two stage technique for searching

the periodogram peak, an FFT-based coarse search and a dichotomous fine search,

has been shown to outperform the other estimators in many scenarios, keeping a

high-accuracy performance throughout the wide frequency estimation range and

for all considered SNRs. It also relies only on linear operations with a relatively

low complexity, which makes it the best choice in many practical scenarios.

• Joint estimation of channel and frequency offset in frequency-selective channels

for data-aided scenarios has been studied. The considered estimators exploit the

multipath diversity by combining the periodograms of the multipath elements and

searching for the maximum of the combined statistic. Two joint estimators have

been considered. The first estimator depends on the Bayesian approach and can

provide a high-accuracy performance whenever prior statistical characteristics of

the channel are known, namely the mean and covariance matrices of the channel

parameters and the variance of the AWGN. The second estimator, with a slightly
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higher estimation error, is an alternative joint estimatorthat can operate when these

characteristics are unavailable. To reduce the complexityof the frequency offset

estimators and attain a high accuracy, the estimators exploit the dichotomous search

frequency estimation. These estimators have been extensively investigated for many

different application scenarios in Rayleigh fading channels. These estimators have

been shown to maintain a high-accuracy performance with an estimation error very

close to the CRLB over a wide range of SNR and throughout the widefrequency

acquisition range.

• Joint data-aided estimators of channel and frequency offset in time-variant fading

channels have been derived, depending on how much knowledgeof channel statis-

tics is available, based on basis expansion models (BEM)s of the time variation and

the dichotomous search frequency estimation. These estimators are examined for

Rayleigh fading channels. They achieve a high accuracy performance over a wide

range of signal to noise ratio, for different Doppler frequencies and throughout all

the frequency acquisition range.

• The performance of the joint data-aided estimators of channel and frequency off-

set in time-variant fading channels has been compared usingdifferent BEMs such

as, Karhunen-Lòeve (KL), discrete prolate spheroidal (DPS), generalized complex

exponential (GCE), and B-spline (BS) functions for different scenarios in Rayleigh

fading channels, where the channel statistics are perfectly or imperfectly known.

When channel statistics are perfectly known, the KL and DPS BEMs use slightly

lower number of basis functions than that of the GCE and BS BEMs toallow

achieving the same performance. However, the best reached performance of all

the BEM-based estimators is the same. When channel statisticsare mismatched,

the estimators based on the GCE and BS BEMs are more robust than those based

on the KL and DPS BEMs. This makes the BS functions a better choice in prac-

tice as it has a sparse matrix that results in a lower complexity than the other basis

functions.

• The joint channel and frequency offset estimator has been derived for doubly-

selective fading channels. The estimator has been investigated for different scenar-

ios in Rayleigh fading channels, where it maintains a high-accuracy performance

over wide SNR, frequency offset and Doppler frequency ranges, which is very close
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to that of the Bayesian channel estimator operating with perfect knowledge of the

frequency offset.

• Iterative turbo receivers have been developed for time-variant fading channels, de-

pending on how much knowledge of channel statistics is available. The receivers

jointly perform channel and frequency offset estimation together with data detection

and decoding. Soft information generated in the turbo decoder is used to improve

the quality of the detection in the subsequent iterations. The receivers have been

shown to provide as good performance as the corresponding ones operating with

perfect knowledge of the frequency offset, and is very closeto that operating with

perfect channel knowledge.

1.4 Thesis Outline

The rest of the report is separated into following chapters,according to the different sys-

tems investigated and analyzed.

• Chapter 2: Fundamental Techniques

In this chapter, fundamental techniques used throughout this thesis are introduced.

Different simulators of time-variant channels are first compared and the one whose

statistics match to those of the desired reference Clarke’s model is applied. The

basic principles of BEMs are also described, which are used toapproximate the

fading channels. Turbo encoder and decoder are also briefly introduced.

• Chapter 3: Joint Estimation of Channel and Frequency Offset inAdditive White

Gaussian Noise Channels

In this chapter, a general literature survey of data-aided channel and frequency off-

set estimators based on the maximum likelihood (ML) principle for signals trans-

mitted through additive white Gaussian noise (AWGN) channels is provided. The

CRLBs of the joint estimators are derived. Performance analysis in terms of ac-

curacy and complexity of advanced frequency estimators that has been recently

proposed in the literature is performed. The dichotomous-based joint channel and

frequency offset estimators are then investigated.
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• Chapter 4: Joint Estimation of Channel and Frequency Offset inFrequency-

Selective Channels

This chapter presents the joint data-aided estimation of channel and frequency offset

for signals propagated through time-invariant frequency-selective channels. Two

joint estimators, Bayesian-based estimator when certain prior statistical knowledge

about the channel is known and ML-based estimator when thesechannel properties

are not available, are studied. Both estimators employ an FFT-based coarse search

and a dichotomous fine search for the periodogram peak. Extensive simulations for

different scenarios are used to investigate the performance of the joint estimators in

Rayleigh fading channels.

• Chapter 5: Joint Estimation of Channel and Frequency Offset inTime-Variant Fad-

ing Channels

In this chapter, novel joint data-aided channel and frequency offset estimators are

proposed for frequency-flat time-variant fading channels,based on the BEM of the

time variation and the dichotomous search frequency estimation technique. Two

joint estimators, following the Bayesian and maximum likelihood approaches (de-

pending on the availability of the prior knowledge of the channel statistics), are

derived. The performance of the proposed joint estimators is examined for different

scenarios in Rayleigh fading channels. The sensitivity of the Bayesian estimator to

the knowledge of the Doppler frequency is investigated using different BEMs.

• Chapter 6: Joint Estimation of Channel and Frequency Offset inDoubly-Selective

Fading Channels

In this chapter, the proposed joint data-aided channel and frequency offset estima-

tors are upgraded to be applicable for doubly-selective fading channels. The con-

sidered estimator follows the Bayesian approach and is basedon the B-spline model

representation of the fading process and the dichotomous search frequency estima-

tion technique. This joint estimator is examined for different scenarios in Rayleigh

fading channels and compared to the Bayesian channel estimator operating with

perfect knowledge of the frequency offset.

• Chapter 7: Iterative Turbo Receivers in Time-Variant Fading Channels

Iterative turbo receivers are developed in this chapter fortime-variant fading chan-

nels which jointly perform channel and frequency offset estimation together with
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data detection and decoding. Three versions of the joint estimator, the Bayesian,

the maximum likelihood and the regularised-maximum likelihood are presented de-

pending on how much knowledge of channel statistics is available. The estimation

and detection are based on the basis expansion model of the fading time variations

and use the dichotomous search frequency estimation technique. Soft information

generated in the turbo decoder is used to improve the qualityof detection in the

subsequent iterations. The performance of the developed receivers is investigated

and compared to that of the corresponding ones operating with perfect knowledge

of the frequency offset and also to that of the one operating with perfect channel

knowledge.

1.5 Notation

In this thesis, we use capital and small bold fonts to denote matrices and vectors, i.e.,A

anda, respectively. Elements of the matrix and vector are denoted asAm,n = [A]m,n and

am = [a]m. The symbolj is an imaginary unitj =
√
−1. We denoteℜ{·} andℑ{·}

as the real and imaginary components of a complex number, respectively; (·)∗ denotes

complex conjugate;IQ denotes anQ × Q identity matrix; (·)T and(·)H denote matrix

transpose and Hermitian transpose, respectively.⊗ denotes the Kronecker product.⌈·⌉
denotes the smallest integer.E{·} denotes the statistical expectation operator and tr{·}
denotes the trace operator.
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2.1 Introduction

In this chapter, fundamental techniques used throughout this thesis are introduced. First,

time-variant fading channel models are studied in Section 2.2. Then in Section 2.3, basis

expansion models (BEM)s are presented. Finally, a brief description of turbo coding is

provided in Section 2.4.
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2.2 Time-Variant Fading Channel Models

In this thesis, we investigate joint channel and frequency offset estimation and signal

detection in time-variant Rayleigh fading channels. Before that, we should first model

and simulate the fading channel accurately. This section introduces a simulator of time-

variant Rayleigh fading channels, which is used in the subsequent chapters.

Rayleigh fading is most applicable when there is no dominant propagation along a line

of sight between the transmitter and receiver. Rayleigh fading is a reasonable model when

there are many objects in the environment that scatter the radio signal before it arrives at

the receiver. The central limit theorem holds that, if thereis sufficiently much scatter, the

channel impulse response will be well-modeled as a Gaussianprocess irrespective of the

distribution of the individual components. If there is no dominant component to the scat-

ter, then such a process will have zero mean and phase evenly distributed between0 and

2π radians. The envelope of the channel response will therefore be Rayleigh distributed.

Clarke’s model [63] and its simplified model by Jakes [64] havebeen widely used to

simulate time-variant Rayleigh fading channels. Although the simplicity of the original

Jakes’ model makes it popular, there are two deficiencies that can not be ignored [65]:

the original Jakes’ model is a deterministic model and it is difficult to generate multiple

independent fading channels, such as frequency-selective(multipath) fading and MIMO

channels. Various modifications [66–69] and improvements [65, 70, 71] have been re-

ported for generating multiple uncorrelated fading waveforms needed for modeling fre-

quency selective fading and MIMO channels, such as Inverse Discrete Fourier Transform

(IDFT) [72] and the autoregressive approach [73]. It is pointed in [74] that Jakes’ simu-

lator is not wide-sense stationary when averaged across thephysical ensemble of fading

channels. In [74], an improved simulator, named Pop-Beaulieu simulator, is applied to re-

move this stationarity problem by introducing random phaseshifts in the low-frequency

oscillators. However, it is shown that the Pop-Beaulieu simulator has deficiencies in some

of its high-order statistics [71].

Based on the Pop-Beaulieu simulator, novel sum-of-sinusoidsstatistical simulation

models with a small number of sinusoids are proposed for Rayleigh fading channels

in [65,71]. These modified models improve the original Jakes’ model by introducing ran-
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dom path gain, random initial phase and random Doppler frequency for sinusoids within

these models [71]. The high-order statistical properties of these novel models, such as

the autocorrelations and cross-correlations of the quadrature components, the autocorre-

lation of the complex envelop, and the probability density functions (PDFs) of the fading

envelop, asymptotically approach the desired ones as the number of sinusoids approaches

infinity [65,71].

In this section, we introduce the reference Clarke’s model mathematically and analyze

the deficiencies of the Jakes’ model and the Pop-Beaulieu model. Then, we introduce a

modified model proposed in [65,71] which provides good convergence of the probability

density functions of the envelope, the level crossing rate,the average fading duration, and

the autocorrelation of the squared fading envelope, even when the number of sinusoids is

as small as 8 [71]. This modified model is used to generate multiple independent time-

variant channels in this thesis.

2.2.1 Original Clarke’s Model

According to Clarke, the fading process of a frequency-flat Rayleigh fading channel is

given by [63,75]

g(nTs) = E0

K0∑

k=1

Ck exp [j(2πfDTsn cosαk + φk)] , (2.1)

whereE0 is the normalising factor,K0 is the number of scatterers,Ck, αk andφk are,

respectively, the random path gain, angle of incoming wave and initial phase associated

with the kth scatterer,fD is the maximum Doppler frequency occurring whenαk = 0,

andfDTs is the normalised maximum Doppler frequency.

The Doppler effect, named after Austrian physicist Christian Doppler who proposed

it, is the change in frequency of a wave for an observer movingrelative to the source of

the wave.

The Doppler frequency of thekth scatterer is [75]

fk = fD cosαk ; fD =
υ

λ
, λ =

c

f
, (2.2)
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whereυ is the receiver’s velocity relative to the transmitter,λ is the wavelength of the

incident wave,c is the speed of the wave (3×108 m/s for electromagnetic waves traveling

through air or vacuum) andf is the frequency of the wave.

Assuming thatCk has a real value, (2.1) can be split into inphase and quadrature com-

ponents as

g(nTs) = gi(nTs) + jgq(nTs) ; (2.3a)

gi(nTs) = E0

K0∑

k=1

Ck cos(2πfDTsn cosαk + φk) , (2.3b)

gq(nTs) = E0

K0∑

k=1

Ck sin(2πfDTsn cosαk + φk) . (2.3c)

For largeK0 , the central limit theorem allowsgi(nTs) andgq(nTs) to be approxi-

mated as Gaussian random processes [22]. Adopting Clarke’s two-dimensional isotropic

scattering model, and assuming thatαk andφk are independent and uniformly distributed

over [−π, π], each of these processes has a zero-mean value [24,63]

µ0 = µgi = µgq = E{gq(nTs)} = 0 , (2.4)

and a variance of [24,63]

σ2
0 = σ2

gi
= σ2

gq
= var{gq(nTs)} =

E2
0

2

K0∑

k=1

E
{
C2

k

}
. (2.5)

Therefore, the fading processg(nTs) has zero mean(µy = 0), variance2σ2
0, and some

second-order statistics as autocorrelation and cross-correlation functions of [63,75]

Rgigi(u) = Rgqgq(u) = σ2
0J0(2πfDTsu) , (2.6a)

Rgigq(u) = Rgqgi(u) = 0 , (2.6b)

Rgg(u) = 2σ2
0J0(2πfDTsu) , (2.6c)

R|g|2|g|2(u) = 4σ4
0 + 4σ4

0J
2
0 (2πfDTsu)−

4σ4
0J

2
0 (2πfDTsu)

K0

, (2.6d)

whereJ0(·) is the zero-order Bessel function of the first kind [76]. The fading envelope,

|g(nTs)|, has Rayleigh distribution and its PDF is given by [75]

p|g|(x) =
x

σ2
0

exp

[
− x2

2σ2
0

]
, x ≥ 0 , (2.7)

whereas the phase,Θg(t), has uniform distribution and its PDF is given by

pΘg
(θg) =

1

2π
, θg ∈ [−π, π] . (2.8)
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2.2.2 Jakes’ Model

Jakes [64] derived his simulation model for Rayleigh fading channels based on Clarke’s

model in (2.1) by selecting

Ck =
1√
K0

, (2.9a)

αk =
2πk

K0

, (2.9b)

φk = 0 , k = 1, 2, . . . , K0 , (2.9c)

so that the normalised fading process of this model is given by [64]

g(nTs) = gi(nTs) + jgq(nTs) ; (2.10a)

gi(nTs) =
2√
K0

K∑

k=0

ak cos(2πfknTs) , (2.10b)

gq(nTs) =
2√
K0

K∑

k=0

bk cos(2πfknTs) ; (2.10c)

K0 = 4K + 2 , (2.10d)

ak =





√
2 cos β0 , k = 0 ,

2 cos βk , k = 1, 2, . . . , K ,
(2.10e)

bk =





√
2 sin β0 , k = 0 ,

2 sin βk , k = 1, 2, . . . , K ,
(2.10f)

βk =





π
4
, k = 0 ,

πk
K
, k = 1, 2, . . . , K ,

(2.10g)

fk =




fD , k = 0 ,

fD cos 2πk
K0

, k = 1, 2, . . . , K .
(2.10h)

The simplifying parameters selected as (2.9) make the inphase and quadrature compo-

nents correlated [77], and the simulation model deterministic [28] and wide-sense non-

stationary [78]. Therefore, various modifications of Jakes’ simulator have been proposed,

such as in [28,78–83].
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2.2.3 Modified Simulation Model

A modified simulation model was proposed in [81] and corrected in [83], which resolves

the disadvantages of Jakes’ model by reintroducing the randomness for the variablesCk,

αk, andφk. The normalised fading process of the improved simulator proposed in [81] is

given by

g(nTs) = gi(nTs) + jgq(nTs) ; (2.11a)

gi(nTs) =

√
2

K
E0

K∑

k=1

cos(βk) cos(2πfDTsn cosαk + φk) , (2.11b)

gq(nTs) =

√
2

K
E0

K∑

k=1

sin(βk) sin(2πfDTsn cosαk + φk) ; (2.11c)

αk =
2πk − π + θ

4K
, k = 1, 2, . . . , K , (2.11d)

whereθ, βk andφk are independent random variables that are uniformly distributed over

[−π, π].

In [81], the value ofφk was incorrectly chosen to be the same (i.e. φ) for all k. How-

ever, this mistake was acknowledged and the value was corrected to becomeφk in [83],

which is the version we follow here.

The computational efficiency and statistical correlation functions of this modified

model are better than those of Jakes’ model [81]. The second-order statistics of the modi-

fied model match the desired ones and are independent of the number of sinusoidsK [81].

The autocorrelation function of the squared envelope (i.e. a fourth-order statistic) asymp-

totically approaches the desired one asK increases, and converging fast, reaching a good

approximation with as smallK as8.

Noting that the autocorrelation and autocovariance functions are identical for the

Rayleigh fading process andσ2
0 = E2

0/2, the elements of theN × N covariance ma-

trix Rg of the fading process are obtained from (2.6c) as

[Rg]u v
= Rgg(u− v) = E2

0J0(2πfDTs(u− v)) , u, v = 1, . . . , N . (2.12)

The modified model in (2.11), represented in matrix form by theN × 1 column vector

g, is used throughout the thesis to simulate the time-variantfading processes.
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2.3 Basis Expansion Models

Accurate estimation of the fading processg(nTs) in (2.11) requires complicated tech-

niques such as the Wiener filtering [4, 37]. A simpler solution can be obtained based on

approximatingg(nTs) using the basis expansion model [36,38]. This approximation sim-

plifies the time-variant fading model and converts it into a linear combination of several

basis functions as

g̃(nTs) =
M∑

m=1

amB(nTs,m) , (2.13)

whereB(nTs,m) are theM known basis functions andam are unknown expansion coef-

ficients. In matrix form, it can be written as

g̃ = Ba , (2.14)

whereB is anN × M matrix with elementsB(nTs,m) anda is anM × 1 vector of

expansion coefficientsam. Thus, the problem of estimatingN -dimensional time-variant

fading processg(nTs) is transformed into a lower dimensional problem of estimating only

M time-invariant expansion coefficientsam, where usuallyM << N .

The BEM-based approach has been widely used due to its low complexity and high

accuracy. Different basis functions can be used in the BEM such as complex exponen-

tial [38, 40, 54], polynomial [39], generalised complex exponential [84, 85], Karhunen-

Loève [85–87], discrete prolate spheroidal [41, 88–90], and B-splines [42, 51, 91]. The

last four BEMs are most often considered in applications to channel estimation.

2.3.1 Karhunen-Loeve Functions

Karhunen-Lòeve (KL) functions [87] are a set of orthogonal functions that exploits the

fading covariance matrixRg. This allows the KL-BEM to provide the best approximation

of the fading process, assuming the perfect knowledge ofRg. TheN × N matrixU of

eigenvectors ofRg is obtained first as

RgU = UΥ , (2.15)
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whereΥ is theN × N diagonal matrix of eigenvalues. Then the basis function matrix

B is formed by theM eigenvectors (columns ofU) corresponding to theM maximum

eigenvalues (diagonal elements ofΥ).

2.3.2 Discrete Prolate Spheroidal Functions

The use of the KL BEM results in a low modeling error [86, 87]. However, the fading

covariance matrix is not always available at the receiver. Alternatively, a BEM based

on discrete prolate spheroidal (DPS) functions was proposed in [41]. The DPS BEM

corresponds to the discrete KL BEM with a rectangular spectrum [41]. The DPS basis

functions are bandlimited to the Doppler frequency[−fDTs, fDTs] and simultaneously

most concentrated in the certain time interval of lengthM [92]. DPS sequences are widely

used for channel estimation both in time and frequency domains [41,90,93].

The DPS functions are orthogonal functions that are generated exploiting the Doppler

frequency [41]. First, a matrixD is generated as

[D]u v =
sin (2πfDTs (u− v))

π (u− v)
, u, v = 1, . . . , N . (2.16)

Then,B is formed fromM eigenvectors ofD corresponding to theM maximum eigen-

values.

2.3.3 Generalised Complex Exponential Functions

Generalized complex exponential (GCE) functions [84] are a modified version of the

complex exponential (CE) functions [38], for which the period of the basis functions is

extended longer than the observation intervalN , and are given by

B(nTs,m) = ej
2πnTs
ξN (m−1−M−1

2 ) , (2.17)

whereξ > 1, and here, we will be usingξ = 2. The CE basis functions are generated in

the same way, but usingξ = 1. This extension in the period helps in decreasing the model

approximation error. These basis functions do not exploit any statistical information of

the channel.
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2.3.4 B-Spline Functions

B-spline (BS) functions [42] do not require any prior channel statistics. The BS functions

of orderη are symmetrical, bell-shaped functions that are given by [94]

Bη(x) =
1

η!

η+1∑

i=0

(−1)i
(
η + 1

i

)(
x

PTs
+
η + 1

2
− i

)η

+

, (2.18)

where

P =
N − 1

M − η
, (2.19)

PTs is the sampling interval separating two adjacent B-spline functions, andx+ =

max{0, x}. In this case,B(nTs,m) = Bη

(
nTs − (m− η+1

2
)PTs

)
. The matrixB of

the BS functions is a sparse matrix that only containsη + 1 nonzero elements in each

row, which makes it attractive for implementation. The accuracy and complexity of the

BS-BEM approximation depends on the spline degreeη. In many situations, the cubic

B-spline (η = 3) provides the best trade-off between complexity and accuracy [94]. We

use the cubic B-spline in the simulation below wheneverM ≥ 4, and for1 ≤ M ≤ 3 we

useη =M − 1.

As shown above, the KL and DPS BEMs can approximate the time-variant fading

channel with small modeling error but require the statistics of fading and have to suffer

extra error caused by the mismatched estimation of these statistics. Although the GCE

and BS BEMs do not require the knowledge of the statistical information of fading, they

introduce higher modeling errors than the KL and DPS BEMs. Theperformance and

robustness of estimators using the different BEMs are compared later in Chapter 5, so

that to use the one which can provide the most robust performance to approximate the

fading process.

2.4 Turbo Coding

A new class of error correction codes named turbo codes were first introduced by a group

of researchers (Berrou, Glavieux and Thitimajshima) in1993 at the International Con-

ference on Communications [95]. These codes were shown to achieve a significant gain
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in power efficiency over other coding methods existed at the time and allowed to the first

time to approach the Shannon capacity limit within only0.7 dB. This remarkable achieve-

ment ends the conventional thought that the Shannon limit can only be approached using

extraordinarily long codes with exceptionally complex decoding processes [96]. As one

of the most powerful error correction codes, turbo codes have been developed rapidly and

attracted substantial attention in wireless communication community [97–103].

Turbo codes are based on two fundamental concepts, concatenated coding and iterative

decoding, the latter of which is the core of the turbo principle and is responsible in the

outstanding performance of turbo codes. The turbo codes areused in Chapter 7 of this

thesis. A brief discussion of the structure of the turbo encoder and decoder is given

together with the differences between the main turbo decoding algorithms. Interested

readers can find more detailed description of turbo coding in[104–106].

2.4.1 Turbo Encoding

The structure of the turbo encoder as seen in Figure 2.1 can beanalysed from its name,

parallel concatenated recursive systematic convolutional (RSC) code. The encoder has

two concatenated RSC encoders and an interleaver in between.The RSC codes apply a

feedback loop (recursive part) and set one of the outputs equal to the input data (systematic

part) unlike non-systematic convolutional (NSC) codes. Figure 2.2 shows the structure of

RSC encoder while Figure 2.3 shows the corresponding NSC encoder. The polynomial

generation of the feedback and output connectivity in the RSCencoder are7, 5 in octal.

Description of working principles of turbo encoder is as follows. Firstly, a data se-

quence of lengthN , d = [d[1], . . . , d[N ]], is encoded by the first RSC encoder, where

the output is a lengthN coded sequencex1
p = [x1p[1], . . . , x

1
p[N ]]. Then, the second

RSC encoder encodes an interleaved data sequence to generateanother coded sequence

x2
p = [x2p[1], . . . , x

2
p[N ]] of lengthN . Finally, the turbo coded sequence is generated by

multiplexingd, x1
p andx2

p. This results in a code rate of1/3 without puncturing. Simi-

larly, higher code rates can be obtained by applying a puncturing scheme.

The interleaver, as a device, reorders the input data sequence, while a deinterleaver
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Figure 2.1: Structure of a turbo encoder.

(used in the decoder) recovers the original order of that data sequence. The joint influ-

ence of the interleaver and RSC encoder mostly lead to a high code weight composite

codeword. This is critical to the performance of turbo codes[107]. A number of inter-

leavers can be used in the turbo encoders such as pseudo-random [108], block [109], and

s-random interleavers [110–113]. The s-random interleaver is used in this thesis due to its

superior performance [105]. The output pattern of this interleaver is randomly generated,

so that any two input bits within a distance ofs bits are separated after interleaving by at

leasts bits.

2.4.2 Turbo Decoding

Figure 2.4 demonstrates the turbo decoder for the encoder inFigure 2.1. Similarly to that

used in the encoder, two RSC decoders are linked by an deinterleaver/interleaver.

The turbo decoder works iteratively where in each iterationthe two RSC decoders

exchange the decoded information in order to assist one another. Received signals

y[k] = (yd[k], y
1
p[k], y

2
p[k]) from the demodulator are demultiplexed to sequencesyd[k],

y1p[k] andy2p[k], respectively, whereyd[k] corresponds to the received systematic codes,

y1p[k] corresponds to the received 1st parity bits, andy2p[k] corresponds to the received

2nd parity bits. The first RSC decoder appliesyd[k] andy1p[k] as input sequences and the
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Figure 2.2: Example of a recursive systematic convolutional (RSC) encoder.

second RSC decoder appliesyd[k] andy2p[k]. Inputs of corresponding decoder are set to

zeros at the punctured positions when the parity bits of a given RSC encoder are punctured

before transmission. For the initial iteration, the first RSCdecoder takes onlyyd[k] and

y1p[k] to generate soft information of the data bits,LE,1(d̄[k]). The second RSC decoder

can then perform decoding using the soft information ofLE,1(d̄[k]) andLap,1(d[k]) from

the first RSC decoder, in addition to the receivedyd[k] andy2p[k]. The second decoder

output is another soft decoding informationLE,2(d̄[k]), which is deinterleaved to gener-

ateLap,2(d[k]) and fed back to the first RSC decoder. During the following iterations, the

first RSC decoder takesLap,2(d[k]) from the second RSC decoder in the previous itera-

tion as additional information toyd[k] andy1p[k], to generateLE,1(d̄[k]). As the number

of iterations increases, the performance of the turbo decoder improves. However, the

improvement start later to decrease as the number of iterations increases. This process

continues iteratively until the decoders’s estimates of the original data bits converge. As a

settlement between performance and complexity, eight iterations are commonly used [96].

At the end, the outputa posteriori informationL(d̄[k]) of a data bitd[k] delivered from

the second RSC decoder is deinterleaved and used for the final hard decision.

Every RSC decoder decodes use its input received signals (yd[k] andyip[k], i = 1, 2)

and thea priori information (Lap,i(d[k]), i = 1, 2) from the other RSC decoder to perform

decoding, and provides the extrinsic informationLE,i(d̄[k]) for the other decoder. Note

that the extrinsic information is only exchanged between decoders as intermediate infor-
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Figure 2.3: Example of a non-systematic convolutional (NSC)encoder.

mation during the decoding process. The turbo decoder is called soft-input soft-output

decoder due to the exchange of soft information between bothRSC decoders for which

it accepts softa priori informationLap,i(d[k]) at one of its inputs from the previous de-

coding process and generates soft informationLE,i(d̄[k]). Soft information means that

besides decoded bits, the associated probability that eachbit has been decoded correctly

is also provided, usually in the form of log-likelihood ratio (LLR). This indicates that

the decoder yields not only the coded bits but also how reliable they are. As its name

implies, the LLR is the logarithm of the ratio of two probabilities in the case of binary

transmission, e.g., the outputa posteriori information (L(d̄[k])) is generally given by

L(d̄[k]) = log
P (d[k] = +1|y)
P (d[k] = −1|y) , (2.20)

where the numerator and denominator are probabilities of the transmitted bitd[k] = +1

andd[k] = −1 conditioned on the received sequencey. Based on (2.20), the more positive

the value ofL(d̄[k]) is, the more reliably the transmitted bit was ‘1’, or the morenegative

the value ofL(d̄[k]) is, the more likely ‘0’ was transmitted.

In the turbo decoder shown in Figure 2.4, the outputL(d̄[k]), a posteriori information

of an information bitd[k], is given by

L(d̄[k]) = L(d̃[k]) + Lap(d[k]) + LE(d̄[k]) , (2.21)
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Figure 2.4: Structure of a turbo decoder.

whereL(d̃[k]) is the channel information,Lap(d[k]) is the a priori information and

LE(d̄[k]) is the extrinsic information.

The channel informationL(d̃[k]) can be extracted directly fromy[k] which are the

received signals ofd[k]. Supposing thatd[k] are transmitted withEs transmitted energy

per symbol, over an AWGN channel, the received signal is

y[k] = a · d[k] + n[k] , (2.22)

wherenk denotes an AWGN with a variance ofσ2
n, anda is the fading amplitude in a

fading channel or a constant value in an AWGN channel. For sucha model, the channel

information is given by [96]

L(d̃[k]) = log
exp

(
− Es

2σ2
n
(y[k]− a)2

)

exp
(
− Es

2σ2
n
(y[k] + a)2

)

= log

(
exp

(
2aEs

σ2
n

y[k]

))

= Lc · y[k], (2.23)

whereLc = 2aEs/σ
2
n is the channel reliability factor, which reflects the reliability of

estimating the transmitted signal from the received signal. For example,Lc will be large
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if SNR in the channel is high, and we can estimate the transmitted signal from the received

signal correctly with a high probability. In such a case, thereceived signal will impact

heavily on the final outputa posteriori LLR.

Thea priori informationLap(d[k]) used here is the deinterleaved extrinsic information

from the other RSC decoder.

The extrinsic informationLE(d̄[k]) is the information that decoder exploits from the

whole received sequence anda priori information, but excludes these of the bits which

are currently being decoded in this iteration. It is only theextrinsic information that the

decoders exchange between each other since the same information should not be used

more than once at each decoding step.

Taking all these three types of information above into account, the turbo decoder de-

livers thea posteriori information of data bits. The final decision of the decoding is based

on thea posteriori information of data bits.

There are three typical decoding algorithms applied widely, the maximuma Posteriori

(MAP), max-log-MAP and log-MAP algorithms [95,107,114–117].

The maximuma Posteriori (MAP) algorithm was firstly proposed by Bahl, Cocke,

Jelinek and Raviv in [107] and modified by Berrou, Glavieuv and Thitmajshima in [95].

Compared with the conventional maximum likelihood sequenceestimation (MLSE) al-

gorithm which can be efficiently implemented by the Viterbi algorithm [118], the MAP

algorithm is a symbol-by-symbol detection algorithm basedon maximuma posteriori in-

formation. It is optimal in the sense of minimizing the probability of a symbol error by

takinga priori information of the coded bits into account and providing soft information

about estimated bits. The performance of the MAP and MLSE algorithms would be the

same when there is noa priori information to be exploited. However, whena priori infor-

mation is available, for example, in the soft-input soft-output turbo decoder exchanging

the extrinsic information between two RSC decoders, the MAP algorithm will outperform

the conventional MLSE one [95].

Although the MAP algorithm is the optimal decoding scheme, it is too complicated

to be realized for implementation since the exact representation of probabilities used in
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the MAP algorithm requires a high dynamic range [96]. Moreover, there are many non-

linear functions and numerous multiplications proposed inthe scheme [96]. Working in

the logarithmic domain instead of the linear domain for the probability used in the MAP

algorithm and invoking the approximation

ln(ex1 + . . .+ exn) ≈ max
i∈1,2...,n

xi, (2.24)

the max-log-MAP algorithm reduces the complexity significantly. However, it is obvi-

ous that the max-log-MAP algorithm is suboptimal since onlya part of information is

exploited due to the approximation.

This approximation can be avoided by applying the Jacobian logarithm to calculate

x = ln(ex1 + . . .+ exn). The Jacobian logarithm [119,120] is given by

ln(ex1 + ex2) = max(x1, x2) + ln(1 + e−|x1−x2|)

= max(x1, x2) + fc(|x1 − x2|)

= gc(x1, x2), (2.25)

wherefc(|x1 − x2|) can be regarded as a correction term. Robertson, Hoeher and Ville-

brun in [115] proposed a method to show how to use the Jacobianlogarithm to calculate

ln(ex1 + . . .+ exn) accurately. They supposedx = ln(ex1 + . . .+ exn−1) is known. Then,

they obtained

ln(ex1 + . . .+ exn) = ln(ex + exn)

= max(x, xn) + fc(|x− xn|). (2.26)

This method is referred to as the log-MAP algorithm [115]. Itwas also shown that the

correction termfc(|x1 − x2|) can be implemented efficiently by a one-dimension look-up

table to avoid real time computation, moreover, only a few values are needed for the table.

By applying the Jacobian logarithm, the log-MAP algorithm retains the optimality of the

original MAP algorithm, while preserves the computationalsimplicity of the max-log-

MAP algorithm, and so, is used here in the thesis. Interestedreaders can find more details

about the MAP, max-log-MAP and log-MAP algorithms in [114,116,117].
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2.5 Conclusions

Fundamental techniques have been presented in this chapter, such as the models of the

time-variant channels, BEMs and Turbo coding, which are usedthroughout this thesis.

After briefly introducing the optimal Clarke’s model and the deficiencies of Jakes’ model,

a recently modified model has been presented. This modified model resolves the corre-

lated, deterministic and nonstationary problems of the Jakes’ model using a small number

of sinusoids and is adopted in this thesis to simulate the time-variant fading channels.

The BEMs have been widely used to approximate the time-variant fading channels,

due to the low complexity and high accuracy it offer. The mostwidely used BEMs,

which are KL, DSP, GCE and BS, have been introduced. The KL functions are generated

based on the fading covariance matrix, which allows the bestapproximation. The DPS

functions require the knowledge of the Doppler frequency. No such channel statistics are

required to generate the GCE and BS functions. The KL and DPS BEMscan achieve a

smaller modeling error compared to that of the GCE and BS BEMs provided the perfect

knowledge of the channel statistics. However, the KL and DPSBEMs suffer from an extra

error in practice caused by the mismatched estimation of these statistics. This is discussed

in more details in Chapter 5 where the performance and robustness of estimators using

different BEMs are compared and the best practical choice is decided.

Finally, the turbo encoder and decoder with different decoding algorithms, such as the

MAP, max-log-MAP and log-MAP algorithms have been presented. The advantages and

disadvantages of each decoding algorithm have been described. The log-MAP decoding

algorithm has been adopted to realise the decoding schemes in this thesis as it retains the

optimality of the MAP algorithm, while preserves the computational simplicity of the less

accurate max-log-MAP algorithm.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



Chapter 3

Joint Estimation of Channel and

Frequency Offset in Additive White

Gaussian Noise Channels

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Signal and Channel Models . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Maximum Likelihood Joint Estimation . . . . . . . . . . . . . . . . 38

3.4 Cramer-Rao Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Literature Survey of Practical Frequency Offset Estimators . . . . . 44

3.6 Simulation Results and Performance Analysis . . . . . . . . . . . . 52

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

This chapter offers a general literature survey of data-aided channel and frequency

offset estimators based on the maximum likelihood (ML) principle for signals transmit-

ted through additive white Gaussian noise (AWGN) channels. The CRLBs of the joint

estimators will be derived and fundamental techniques, used throughout this thesis will

be introduced. A performance analysis of advanced frequency estimators that have been

recently proposed in the literature is provided. A fair performance comparison is obtained

for those estimators under the same simulation environmentand for different application

scenarios so that to get a better understanding about the differences, most precisely, in
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terms of accuracy, complexity, frequency acquisition range, signal to noise ratio (SNR)

threshold and the sensitivity of these towards different SNR and frequency offset scenar-

ios.

3.1 Introduction

In digital communication systems, where reliable transmission techniques at high data

rates is a requirement, an appropriate signal detection in the receiver can only be achieved

by using highly efficient synchronization techniques. Known data symbols called the pilot

symbols is a practical method used to provide the receiver with the required information

about the channel [1,2]. In the data-aided systems, these pilot symbols are often inserted

within the data stream, either periodically or in a burst mode, during the modulation in the

transmitter which helps to perform accurate joint channel and frequency offset estimation

in the receiver [1,2].

The periodogram maximiser ML frequency estimator possesses the optimum perfor-

mance, but also involves impractical complexity. Practical frequency estimators approxi-

mating the ML estimator are classified as correlation-based[5–12] or periodogram-based

frequency estimators [13–19].

The correlation-based frequency estimators, such as the estimators of Fitz [5], and

Luise and Reggiannini (L&R) [6], can exhibit a comparable performance to that of the

ML estimator. However, both estimators possess a limited frequency estimation range

Ψ. This Ψ is inversely proportional to the number of input samplesN and cannot be

changed to suit a certain channel requirement. This prevents the estimators to be used for

scenarios where a wide frequency estimation range is required. It also limits the usage

for relatively largeN . In addition, these estimators use nonlinear operations and possess

a high computational load.

In our simulation we consider the following correlation-based frequency estimators. A

frequency estimator that relies on the phase of the correlation sample at a single lag(L),

referred to as the SL estimator, was proposed in [7]. In [8], an estimator was presented

relying on unweighted linear combination of the phase differences ofL lags correlation
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samples, referred to as the B&S estimator. A weighted averagephase differences esti-

mator was presented in [9], referred to as the M&M estimator.Depending on the small

error assumption, a simplified estimator for the AWGN channelcan be derived from the

one proposed in [10] based on the nonlinear least-squares (NLS), referred to as the SNLS

estimator. An approximated NLS estimator was proposed in [11], referred to as the ANLS

estimator, based on the summation-by-parts rule. An improved estimator was proposed

in [12] based on the weighted normalised autocorrelation linear predictor, referred to as

WNALP.

The periodogram-based frequency estimators use coarse andfine search for the peri-

odogram peak [13]. Usually, the coarse search is anNFFT -point FFT (or DFT), where

NFFT ≥ N . Some estimators useNFFT = N which allows efficient implementation.

However, this requires more complicated methods to be used in the fine search and can

affect the accuracy of the estimator. The linear interpolation frequency estimator [14]

usesNFFT = N and exploits a three-point linear interpolation fine search. Although the

coarse search is computationally efficient, the fine search requires nonlinear operations to

achieve a certain accuracy, which results in an increase of the complexity. This estima-

tor has anf0Ts-dependent performance that can cause the threshold SNR(SNRth), i.e. the

SNR below which the estimation error starts diverging from the CRLB, to be significantly

higher than that of the ML estimator. Other methods can be used in the fine search, such

as the three/five-point interpolation techniques [15], andNewton’s method for locating the

root of an equation [16]. In spite of the efficient coarse search, the fine search uses more

sophisticated nonlinear techniques, which makes it difficult for practical implementation.

In our simulation we consider the following periodogram-based frequency estima-

tors. A popular estimator of this type is the dichotomous search of the periodogram

peak (DS) [17]. This estimator exploits FFT/DFT of the sizeNFFT ≈ 1.5N for the

coarse search, and then refines the estimate overQ iterations of searching within binary

partitions in the neighbourhood of the initial peak. This estimator relies entirely on lin-

ear operations and is perfectly convenient for real-time implementation. An important

modified dichotomous search (MDS) estimator was proposed in[18], which attains the

CRLB without the need to perform zero-pad the processed samples and allowing a reduc-

tion in the complexity required. An improved dichotomous search (IDS) estimator was

proposed in [19] exploiting a new initialisation scheme in an attempt to accelerate the
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convergence so that to allow reducing the number of iterations in the fine search and also

without the need to perform zero-padding. A robust hybrid ofperiodogram-based and

correlation-based estimator (grouped here with the periodogram-based estimators) was

proposed in [20] and is referred to as MLAF.

A performance analysis is conducted in terms of accuracy andcomplexity of the men-

tioned advanced frequency estimators, where the performance is compared for different

application scenarios, in which some of unknown characteristics are revealed to the first

time for some popular estimators. The primary aim is to get a better understanding for

which scenarios a certain estimator obtains its best performance, and also to check some

of the claimed improvements of several recent estimators.

This chapter is organised as follows. In Section 3.2, the signal and channel models

are presented. The maximum likelihood joint estimators arederived in Section 3.3. In

Section 3.4, the Cramer-Rao Lower Bounds (CRLB)s are derived for the different ML

estimators. Section 3.5 presents a quick literature surveyof practical frequency offset

estimators. Simulation results and a performance analysisare given in Section 3.6, and

Section 3.7 concludes the chapter.

3.2 Signal and Channel Models

It is convenient to start with constructing a certain mathematical model for the received

signal in which the most important characteristics of the channel are reflected. It is as-

sumed for the scenarios discussed in this chapter that the considered signal is a known

(pilot) signal transmitted through a deterministic (nonfading) single-path channel and

corrupted with complex additive white Gaussian noise (AWGN). A unit amplitude PSK

modulated pilot block is considered to be transmitted usinga unit-energy Nyquist pulse

shapep(t). After frequency downconverting (i.e. multiplying by e−j2πfcrt), the complex-

baseband representation of the received signal corresponding to theN symbols is

r0(t) = Aej(2πf0t+φ)

N−1∑

k=0

s(kTs)p(t− kTs) + w(t) , (3.1)
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wheref0 andφ are the carrier frequency-offset and phase, respectively,Ts is the symbol

period andw(t) is a complex-valued, zero-mean, white Gaussian random process.

Then a matched filter is used. The output of this filter matchedto the pulse shapep(t)

is

r(t) = Aejφ
N−1∑

k=0

s(nTs)e
j2πf0tp(t− kTs) ∗ p(−t) + w(t) ∗ p(−t) . (3.2)

If the frequency offset is sufficiently small, then [1]

ej2πf0tp(t− kTs) ≈ ej2πf0Tskp(t− kTs) . (3.3)

Then, the matched filter output is expressed as

r(t) ≈ Aejφ
N−1∑

k=0

s(kTs)e
j2πf0TskR(t− kTs) + z(t) (3.4)

whereR(τ) is the pulse shape autocorrelation function

R(τ) =

∫ ∞

−∞

p(t)p(t− τ)dt , (3.5)

andz(t) = w(t) ∗ p(−t).

Sampling is then used to get the discrete-time sequence. Theoutput of the matched

filter is sampled att = nTs to produce

r(nTs) ≈ Aejφ
N−1∑

k=0

s(kTs)e
j2πf0TskR(nTs − kTs) + z(nTs) (3.6)

= Aejφej2πf0Tsns(nTs) + z(nTs) , n = 0, 1, . . . , N − 1 , (3.7)

where the last equality follows from the Nyquist no-ISI property of the pulse shape.

Such a situation is configured in Figure 3.1.

For this scenario, the received signal and channel models, respectively, can be ex-

pressed as

r(nTs) = s(nTs)h(nTs) + z(nTs) ; (3.8a)

h(nTs) = Aej(2πf0Tsn+φ) , n = 0, 1, . . . , N − 1 , (3.8b)

where

s(nTs) is the transmittednth pilot symbol;
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Figure 3.1: Configuration of the channel effects on signals transmitted through AWGN

channels.

z(nTs) is the complex-valued AWGNnth sample with zero mean and varianceσ2;

A is the unknown positive real attenuation to be estimated;

φ is the unknown phase shift to be estimated; usually, the attenuation and phase shift

are expressed together as a complex scalara = Aejφ termed as the channel parameter;

f0 is the unknown frequency offset to be estimated;

f0Ts ∈ Ψ is the normalised frequency offset;

Ψ = [−ψ/2, ψ/2] is the normalised frequency acquisition range;

ψ can maximally be1 for wide acquisition range;

Ts is the interval separating two successive pilot symbols (symbol interval);

N is the number of pilot symbols.

The received signal model can be written in matrix form as

r = µ(χ) + z = Sh(χ) + z = Sλf0Ts
Aejφ + z , (3.9)

where

r is anN × 1 column vector with elementsr(nTs);

n = 0, 1, . . . , N − 1;

µ(χ) is anN × 1 column vector of the mean ofr;

χ is a3× 1 column vector[A f0Ts φ]
T of the real parameters to be estimated;

z is anN × 1 column vector of the AWGN with covariance matrixRz = σ2IN and

elementsz(nTs);

IN is anN ×N identity matrix;

S is anN ×N diagonal matrix of diag{s(nTs)};

h(χ) is anN × 1 column vector with elementsh(nTs);

λf0Ts
is anN × 1 column vector with elementsej2πf0Tsn.
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3.3 Maximum Likelihood Joint Estimation

The most practical and commonly used method for joint estimation that has been exten-

sively introduced in the literature is the one relying on themaximum likelihood (ML)

principle, for which the parametersA, f0Ts andφ required to be estimated are regarded

as unknown deterministic constants that maximise the likelihood function [121]. This

function is the unconditional probability density function (PDF) of the received signal

considered as a function of the unknown parameters after replacing r by the observed

samples [122]. This ML estimation problem was solved by Rife and Boorstyn in [13].

The received signal in the considered scenario has an unconditional PDF of [121]

p (r;χ) =
1

πN |Rz|
exp

[
− (r− µ (χ))H R−1

z (r− µ (χ))
]

p (r;A, f0Ts, φ) =
1

πNσ2N
exp

[
− 1

σ2

(
r− Sλf0Ts

Aejφ
)H (

r− Sλf0Ts
Aejφ

)]
, (3.10)

where|X| denotes the determinant of matrixX and [·]H denotes the matrix conjugate

transpose.

3.3.1 Frequency Offset Estimator

The likelihood function has to be maximised to find the ML joint estimator, or equiva-

lently, the function

J(a, fTs) = [r− SλfTs
a]H [r− SλfTs

a] (3.11)

needs to be minimised [121]. It is easier to start differentiatingJ(a, fTs) with respect to

a, which leads to [121]

∂J(a, fTs)

∂a
= −

[
λH

fTs
SH (r− SλfTs

a)
]∗
, (3.12)

where[·]∗ denotes the complex conjugate. Setting this equal to zero yields the ML esti-

mator ofa for a certainfTs as [121]

â =
λH

fTs
SHr

λH
fTs

SHSλfTs

=
λH

fTs
SHr

tr {SHS} , (3.13)
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where tr{·} denotes the matrix trace. For the sake of simplicity and without loss of gener-

ality, s(nTs) can be assumed to be normalised PSK pilot symbols with a unit amplitude,

so that tr
{
SHS

}
= N . Substituting (3.13) into (3.11) yields [121]

J(â, fTs) = rH (r− SλfTs
â) = rHr− 1

N
rHSλfTs

λH
fTs

SHr

= rHr− 1

N

∣∣λH
fTs

SHr
∣∣2 , (3.14)

which is minimised by maximising

IfTs
=
∣∣λH

fTs
SHr

∣∣2 (3.15)

with respect tofTs over the frequency acquisition range. This function is known as the

periodogram [123], so that the ML frequency offset (MLF) estimator is the periodogram

maximiser as has been shown in [13,45] and is given by

f̂0TsML = arg max
fTs∈Ψ

{IfTs
} = arg max

fTs∈Ψ





∣∣∣∣∣
N−1∑

n=0

r(nTs)s
∗(nTs)e

−j2πfTsn

∣∣∣∣∣

2


 . (3.16)

This can be done using a DFT or the efficient computation of it using an FFT algorithm

of sizeNFFT of the functionr(nTs)s∗(nTs), denoted asFFT {r(nTs)s∗(nTs), NFFT},

over a grid of frequenciesfTs covering the frequency acquisition range. The frequency

acquisition rangeΨ = [−ψ/2, ψ/2] can either be considered wide (maximally when

ψ = 1) or narrow (whenψ << 1). The narrow frequency acquisition range allows

improvement of the frequency estimator performance for lowSNR values and reduction

in the complexity as detailed in [47,124]. In this thesis, noconstraints are assumed upon

the frequency offset, and unless otherwise specified, a widefrequency acquisition range

whereψ = 1 is considered.

3.3.2 Attenuation Estimator

The ML attenuation (MLA) estimator can be obtained from (3.13) at f̂0Ts as

ÂML =
∣∣∣âf̂0TsML

∣∣∣ = 1

N

∣∣∣∣∣
N−1∑

n=0

r(nTs)s
∗(nTs)e

−j2πf̂0TsMLn

∣∣∣∣∣ . (3.17)
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3.3.3 Phase Estimator

The ML phase (MLP) estimator is also produced from (3.13) at̂f0Ts as

φ̂ML = arg
{
â
f̂0TsML

}
= arg

{
N−1∑

n=0

r(nTs)s
∗(nTs)e

−j2πf̂0TsMLn

}
. (3.18)

3.3.4 Channel Estimator

In wireless communication systems, the three parametersA, f0Ts, andφ are usually esti-

mated jointly to obtain the channel estimateh(χ). The ML joint channel and frequency

offset (MLJ) estimate is given by

ĥML(nTs) = ÂMLe
j(2πf̂0TsMLn+φ̂ML) , n = 0, 1, . . . , N − 1 , (3.19)

which is employed by the receiver for detecting the unknown transmitted data.

3.4 Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) is the lower limit that the variance of any unbiased

estimator can reach [121]. The vector CRLB for the real parameter vectorχ is obtained

using the Fisher information matrixI(χ) that is derived as [121]

[I(χ)]u v = 2ℜ
{
∂µH(χ)

∂χu

R−1
z

∂µ(χ)

∂χv

}

=
2

σ2
ℜ
{

N−1∑

n=0

∂s∗(nTs)h
∗(nTs)

∂χu

∂s(nTs)h(nTs)

∂χv

}

=
2

σ2
ℜ
{

N−1∑

n=0

∂h∗(nTs)

∂χu

∂h(nTs)

∂χv

}
, (3.20)

where[X]i j denotes the(i, j)th element of matrixX, ℜ{·} denotes the real component of

a complex number, ands∗(nTs)s(nTs) = 1 for n = 0, 1, . . . , N−1 as assumed previously.

The CRLB of the considered parameters was derived by Rife and Boorstyn in [13]. The
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partial derivatives are obtained as [121]

∂h(nTs)

∂A
= ej(2πf0Tsn+φ) , (3.21a)

∂h(nTs)

∂f0Ts
= j2πnAej(2πf0Tsn+φ) , (3.21b)

∂h(nTs)

∂φ
= jAej(2πf0Tsn+φ) . (3.21c)

Substituting this into (3.20) produces [121]

I(χ) =
2

σ2




N 0 0

0 (2π)2A2

N−1∑

n=0

n2 2πA2

N−1∑

n=0

n

0 2πA2

N−1∑

n=0

n A2N




=
2

σ2




N 0 0

0 (2π)2A2N(N−1)(2N−1)
6

πA2N(N − 1)

0 πA2N(N − 1) A2N


 , (3.22)

where the following identities have been used [125]

N−1∑

n=0

n =
N(N − 1)

2
, (3.23a)

N−1∑

n=0

n2 =
N(N − 1)(2N − 1)

6
. (3.23b)

The inverse of this matrix is [121]

I−1(χ) =
σ2

2




1
N

0 0

0 12
(2π)2A2N(N2−1)

− 6
2πA2N(N+1)

0 − 6
2πA2N(N+1)

2(2N−1)
A2N(N+1)


 . (3.24)

Therefore, the CRLBs of the estimated attenuation (CRLBA), frequency offset (CRLBF)

and phase (CRLBP) are given by [121]

σ2
CRA

=
σ2

2N
, (3.25)

σ2
CRf0Ts

=
6

4π2ρN(N2 − 1)
, (3.26)

σ2
CRφ

=
2N − 1

ρN(N + 1)
, (3.27)

whereρ is the signal to noise ratio (SNR) that is defined as

ρ =
µH(χ)µ(χ)

E{zHz} =
A2tr

{
SHS

}

Nσ2
=
A2

σ2
, (3.28)
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where E{·} denotes the expectation.

For the joint channel and frequency offset estimate, which is a function of the three

estimated parameters, the vector CRLB representing the minimum variances of theN ele-

ments of the estimated channelĥ(nTs) is given by the diagonal elements of the covariance

matrix [121]

R
ĥ
=
∂h(χ)

∂χ
I−1(χ)

∂hH(χ)

∂χ
, (3.29)

where

∂h(χ)

∂χ
=




∂h(0)
∂A

∂h(0)
∂f0Ts

∂h(0)
∂φ

∂h(Ts)
∂A

∂h(Ts)
∂f0Ts

∂h(Ts)
∂φ

...
...

...
∂h((N−1)Ts)

∂A

∂h((N−1)Ts)
∂f0Ts

∂h((N−1)Ts)
∂φ




=




∂Aejφ

∂A
∂Aejφ

∂f0Ts

∂Aejφ

∂φ

∂Aej(2πf0Ts+φ)

∂A
∂Aej(2πf0Ts+φ)

∂f0Ts

∂Aej(2πf0Ts+φ)

∂φ
...

...
...

∂Aej(2πf0Ts(N−1)+φ)

∂A
∂Aej(2πf0Ts(N−1)+φ)

∂f0Ts

∂Aej(2πf0Ts(N−1)+φ)

∂φ




=




ejφ 0 jAejφ

ej(2πf0Ts+φ) j2πAej(2πf0Ts+φ) jAej(2πf0Ts+φ)

...
...

...

ej(2πf0Ts(N−1)+φ) j2πA(N − 1)ej(2πf0Ts(N−1)+φ) jAej(2πf0Ts(N−1)+φ)



.

(3.30)

Therefore, the CRLB of the elementĥ(nTs) is the(n+ 1)th diagonal element ofR
ĥ

and
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is given by

σ2
CRh(nTs)

= [R
ĥ
]
n+1n+1

=
σ2

2

[
ej(2πf0Tsn+φ) j2πAnej(2πf0Tsn+φ) jAej(2πf0Tsn+φ)

]

×




1
N

0 0

0 12
(2π)2A2N(N2−1)

− 6
2πA2N(N+1)

0 − 6
2πA2N(N+1)

2(2N−1)
A2N(N+1)







e−j(2πf0Tsn+φ)

−j2πAne−j(2πf0Tsn+φ)

−jAe−j(2πf0Tsn+φ)




=
σ2

2
ej(2πf0Tsn+φ)

[
1 j2πAn jA

]



1
N

−j
(

12n
2πAN(N2−1)

− 6
2πAN(N+1)

)

−j
(
− 6n

AN(N+1)
+ 2(2N−1)

AN(N+1)

)




× e−j(2πf0Tsn+φ)

=
σ2

2

[
1

N
+

(
12n2

N(N2 − 1)
− 6n

N(N + 1)

)
+

(
− 6n

N(N + 1)
+

2(2N − 1)

N(N + 1)

)]

=
σ2

2

(
1

N
+

12n2

N(N2 − 1)
− 12n

N(N + 1)
+

2(2N − 1)

N(N + 1)

)
, (3.31)

wheren = 0, 1, . . . , N − 1.

Finally, the average CRLB of the joint channel and frequency offset estimation

(CRLBJ) is given by

σ2
CRh

=

N−1∑

n=0

σ2
CRh(nTs)

N−1∑

n=0

|h(nTs)|2
=

σ2

2NA2

N−1∑

n=0

(
1

N
+

12n2

N(N2 − 1)
− 12n

N(N + 1)
+

2(2N − 1)

N(N + 1)

)

=
1

2ρN



1 +

12
N−1∑

n=0

n2

N(N2 − 1)
−

12
N−1∑

n=0

n

N(N + 1)
+

2(2N − 1)

N + 1




=
1

2ρN

(
1 +

2(2N − 1)

N + 1
− 6(N − 1)

N + 1
+

2(2N − 1)

N + 1

)

=
1

2ρN

(
N + 1 + 4N − 2− 6N + 6 + 4N − 2

N + 1

)

=
1

2ρN

(
3N + 3

N + 1

)

=
3

2ρN
, (3.32)

where the equalities in (3.23) have been used.
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3.5 Literature Survey of Practical Frequency Offset Es-

timators

It can be noticed that most of the complexity of the joint channel estimator is consumed

by the frequency offset estimation part during the evaluation of the periodogram samples

in (3.15) using an FFT of sizeNFFT . For getting an accurate frequency estimate with

an error that attains the CRLB using the direct FFT applicationalone, a high number

of periodogram samples, much more than that of the input samples r(nTs)s∗(nTs), is

required. This implies zero-padding the input samples up toa relatively large size of FFT

that has to be [126]

NFFT >
1

σCRf0Ts

. (3.33)

Therefore, the periodogram maximiser ML frequency estimator possesses too much com-

plexity for any practical real-time implementation, and many practical algorithms ap-

proximating the ML estimator have been considered in the literature. These estimators

are classified as correlation-based frequency estimators and interpolation-based frequency

estimators [47].

The correlation-based frequency estimators, such as the estimators of Fitz [5], and

Luise and Reggiannini [6], can exhibit a comparable performance to that of the ML esti-

mator. However, both estimators possess a limited frequency acquisition rangeΨ. ThisΨ

is inversely proportional to the number of considered samplesN and cannot be changed

to suit a certain channel requirement. This prevents the estimators from being used for

scenarios where a wide frequency acquisition range is required. It also limits the usage

for relatively largeN . In addition, these estimators use nonlinear operations and possess

a high computational load.

The interpolation-based frequency estimators employ two stages of searching for the

periodogram peak, first a coarse search stage, followed by a fine search one [13]. The

coarse search stage is based typically on an FFT of a relatively short size (compared to

that used in the ML estimator). In this stage, an initial estimation of the frequency offset

is determined, which corresponds to the location of the maximum sample of the obtained

periodogram. This involves less complexity compared to that for the ML estimator. Then

diverse techniques can be used in the fine search stage to refine this estimation by inter-
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polating a better value within the neighborhood of the initial value obtained in the coarse

search stage. Usually, the coarse search stage is anN -point FFT, which allows efficient

implementation. However, this requires more complicated methods to be used in the fine

search stage and can affect the accuracy of the estimator. Several methods have been

presented over the years beginning with Palmer’s suggestion of the FFT coarse search

estimator [45], and Rife and Boorstyn [13] proposal of the secant method in the fine

search refining the FFT coarse search. Abatzoglou [16] has presented an estimator based

on Newton’s method for locating the root of an equation in thefine search stage. Other

estimators based on three-point interpolation, and five-point interpolation for fine search

have been described by Quinn [14,127] and Macleod [15]. In spite of the efficient coarse

search, the fine search uses more sophisticated nonlinear techniques, which makes it dif-

ficult for practical implementation. The linear interpolation (LI) frequency estimator [14]

exploitsN -point FFT-based coarse search and three-point linear interpolation fine search.

Although the coarse search is computationally efficient, the fine search requires nonlinear

operations to achieve a certain accuracy, which results in an increase of the complexity. In

addition, the LI estimator has anf0-dependent performance that can cause the threshold

SNR(SNRth) to be significantly higher than that of the ML estimator.

Zakharov and Tozer [17] have proposed the dichotomous search (DS) estimator that

performs three-point interpolation exploiting DFT-basediterations. This estimator relies

entirely on linear operations that involves efficient real multiply and accumulate (MAC)

operations and is perfectly convenient for real-time implementation. The same authors

and Baronkin [47] have presented later a group of combined DFT-based estimators util-

ising three-point interpolation depending on one or more techniques of parabolic inter-

polation, dichotomous search and two-rate spectral estimation. This was to reduce the

complexity and make it even more desirable for the real-timeimplementation. Aboutan-

ios [18] has suggested a modified dichotomous search estimator with less complexity (in

general) compared to the original dichotomous search and still involving only the efficient

linear operations. However, some accuracy deteriorationsoccurs around the SNRth for

certain successive limited frequency intervals at the midway between two DFT frequen-

cies. Furthermore, for certain application scenarios withrelatively lowN and narrowΨ,

the original DS estimator requires less complexity by usingthe DFT. More detailed study

comparing the performance and complexity of these estimators can be found in [124].
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After obtaining the frequency offset estimatêf0Ts, the attenuation, phase, and joint

channel and frequency offset estimates, respectively, aregiven by

Â =
∣∣∣âf̂0Ts

∣∣∣ = 1

N

∣∣∣∣∣
N−1∑

n=0

r(nTs)s
∗(nTs)e

−j2πf̂0Tsn

∣∣∣∣∣ , (3.34)

φ̂ = arg
{
â
f̂0Ts

}
= arg

{
N−1∑

n=0

r(nTs)s
∗(nTs)e

−j2πf̂0Tsn

}
. (3.35)

ĥ(nTs) = Âej(2πf̂0Tsn+φ̂) , n = 0, 1, . . . , N − 1 . (3.36)

3.5.1 Correlation-Based Frequency Estimators

The correlation-based frequency estimators, such as the estimators of Fitz [5], and Luise

and Reggiannini [6], can exhibit a comparable performance tothat of the ML estimator.

Both estimators possess a limited frequency acquisition range Ψ. This Ψ is inversely

proportional to the number of input samplesN and cannot be changed to suit a certain

channel requirement. This prevents the estimators to be used for scenarios where a wide

frequency acquisition range is required. It also limits theusage for relatively largeN .

In addition, these estimators use nonlinear operations andpossess a high computational

load. In general, this type of estimators rely on the normalized correlation samples

Rx(mTs) =
1

N −m

N−1∑

n=m

x(nTs)x
∗(nTs −mTs) , (3.37)

their phases

ϕ(mTs) = arg {Rx(mTs)} , (3.38)

and/or their phase differences

∆ϕ(mTs) = arg {Rx(mTs)R
∗
x(mTs − Ts)} , (3.39)

wherex(nTs) = r(nTs)s
∗(nTs). The following correlation-based estimators are consid-

ered in this work.
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Single Lag Frequency Estimator

A frequency estimator based on a single lag was proposed in [7] (referred to as the SL

estimator) and is given by

f̂0Ts =
ϕ(LTs)

2πL
, (3.40)

with an estimation range limited to±3/4N .

Besson and Stoica Frequency Estimator

An estimator was presented in [8] (referred to as the B&S estimator) and is given by

f̂0Ts =
1

2πL

L∑

m=1

∆ϕ(mTs) , (3.41)

with the full estimation range (up to±1/2).

Mengali and Morelli Frequency Estimator

A weighted average phase difference estimator was presented in [9] (referred to as the

M&M estimator) and is given by

f̂0Ts =
1

2π

L∑

m=1

w(m)∆ϕ(mTs) , (3.42)

wherew(m) is given by

w(m) =
3 [(N −m)(N −m+ 1)− L(N − L)]

L (4L2 − 6LN + 3N2 − 1)
, (3.43)

with the full estimation range.

Simplified Nonlinear Least-Squares Frequency Estimator

A simplified estimator was proposed in [10] for the time-variant fading channels based on

the nonlinear least-squares (referred to as the SNLS estimator) and is given by

f̂0Ts =

∑L

m=1m |Rx(mTs)|2 ϕ(mTs)
2π
∑L

m=1m
2 |Rx(mTs)|2

. (3.44)
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For the AWGN channel, and knowing that in this case|Rx(mTs)| is constant, the SNLS

estimator can be derived as

f̂0Ts =

∑L

m=1mϕ(mTs)

2π
∑L

m=1m
2

, (3.45)

where
L∑

m=1

m2 =
L(L+ 1)(2L+ 1)

6
. (3.46)

Therefore, the SNLS for the AWGN is given by

f̂0Ts =
3

πL(L+ 1)(2L+ 1)

L∑

m=1

mϕ(mTs) . (3.47)

with an estimation range limited to±1/N .

Approximated Nonlinear Least-Squares Frequency Estimator

An approximated NLS estimator was proposed in [11] (referred to as the ANLS estima-

tor), with the full estimation range, and is given by

f̂0Ts =
3
∑L

m=1 [L(L+ 1)−m(m− 1)]∆ϕ(mTs)

2πL(L+ 1)(2L+ 1)
. (3.48)

Weighted Normalised Autocorrelation Linear Predictor Frequency Estimator

An improved estimator was proposed in [12] based on the weighted normalised autocor-

relation linear predictor (referred to as WNALP), and also with the full estimation range,

which is given by

f̂0Ts = arg

{
L∑

m=1

w(m)R̄x(mTs)R̄
∗
x(mTs − Ts)

}
, (3.49)

whereR̄x(mTs) = Rx(mTs)/ |Rx(mTs)| is the autocorrelation normalised by its ampli-

tude andw(m) is given by (3.43).
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3.5.2 Periodogram-Based Frequency Estimators

The periodogram-based frequency estimators use coarse andfine search for the peri-

odogram peak [13] and possess the full estimation range. Usually, the coarse search is

anNFFT -point fast Fourier transform (FFT), or discrete Fourier transform (DFT), where

NFFT ≥ N . Some estimators useNFFT = N which allows efficient implementation.

However, this requires more complicated methods to be used in the fine search and can

affect the accuracy of the estimator. The linear interpolation frequency estimator [14]

usesNFFT = N and exploits three-point linear interpolation fine search.Although the

coarse search is computationally efficient, the fine search requires nonlinear operations to

achieve a certain accuracy, which results in an increase of the complexity. This estimator

has anf0Ts-dependent performance that can cause the threshold SNR to be significantly

higher than that of the ML estimator. Other methods can be used in the fine search, such

as the three/five-point interpolation techniques [15], andNewton’s method for locating the

root of an equation [16]. In spite of the efficient coarse search, the fine search uses more

sophisticated nonlinear techniques, which makes it difficult for practical implementation.

Dichotomous Search Frequency Estimator

A popular estimator of this type is the dichotomous search ofthe periodogram peak

(DS) [17]. This estimator exploits FFT/DFT of the sizeNFFT ≈ 1.5N for the coarse

search, and then refines the estimate overQ iterations of searching within binary parti-

tions in the neighbourhood of the initial peak. This estimator relies entirely on linear op-

erations and is perfectly convenient for real-time implementation. In the coarse search, an

FFT/DFT of the signalr(nTs)s∗(nTs) with a frequency step∆fTs = 1/NFFT is used to

obtainWfTs
over the frequenciesfkTs = k∆fTs, wherek = −K, . . . , −1, 0, 1, . . . , K

andK = ψ/(2∆fTs). Periodogram samplesYfTs
= |WfTs

|2 are then determined and

an initial (coarse-search) frequency estimatefpTs = arg max
fTs∈Ψ

{YfTs
} is found. The

maximum periodogram sampleY2 = YfpTs
together with its two adjacent samples,

Y1 = Yfp−1Ts
andY3 = Yfp+1Ts

are then located. In the fine search,fpTs is refined by

exploitingQ dichotomous iterations for which the following steps are repeated:
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• ∆fTs = ∆fTs/2.

• If Y3 < Y1

then Y3 = Y2 andfpTs = fpTs −∆fTs,

else Y1 = Y2 andfpTs = fpTs +∆fTs.

• Y2 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πfpTsn

∣∣∣
2

.

At the end of all iterations, the final DS frequency offset (DSF) estimate isf̂0TsDS =

fmTs. For optimum performance, the number of iterationsQ should be high enough so

that the final frequency step∆fTsf gets below the minimum value of the frequency CRLB

(σCRf0Ts
min) in the SNR range of interest. This corresponds to the value of the CRLB at the

end of that range (taken here at30 dB). Mathematically speaking, the final frequency step

that becomes∆fTsf = ∆fTs/2
Q = ψ/(K2Q+1) is required to be∆fTsf < σCRf0Ts

min,

and accordingly,Q has to satisfy [47]

Q > log2

(
∆fTs

σCRf0Ts
min

)
or Q > log2

(
ψ

KσCRf0Ts
min

)
− 1 . (3.50)

Modified Dichotomous Search Frequency Estimator

An important modified dichotomous search (MDS) estimator was proposed in [18],

which attains the CRLB without the need to zero-padding the processed samples and

allowing a reduction in the complexity to be achieved. The coarse search of the MDS es-

timator is the same as that for the DS estimator except forNFFT = N . In the fine search,

the algorithm performs the following initialisation steps:

• ∆fTs = 0.75∆fTs.

• If Y3 > Y1

then Y1 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πn(fpTs−
2
3
∆fTs)

∣∣∣
2

and fpTs = fpTs +
1
3
∆fTs,

else Y3 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πn(fpTs+
2
3
∆fTs)

∣∣∣
2

and fpTs = fpTs − 1
3
∆fTs.
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Then, the following steps are repeated forQ iterations:

• Y2 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πnfpTs

∣∣∣
2

.

• ∆fTs = ∆fTs/2.

• If Y3 > Y1

then Y1 = Y2 andfpTs = fpTs +∆fTs,

else Y3 = Y2 andfpTs = fpTs −∆fTs.

At the end of all iterations, the final frequency estimate iŝf0Ts = fpTs.

Improved Dichotomous Search Frequency Estimator

An improved dichotomous search (IDS) estimator was proposed in [19] exploiting a new

initialisation scheme in an attempt to accelerate the convergence so that to allow reducing

the number of iterations in the fine search and also without the need to zero-padding. The

initial (coarse-search) frequency estimate is determinedasfpTs = arg max
fTs∈Ψ

{|WfTs
|}. In

the fine search, the algorithm performs the following initialisation steps:

• λ =
|Wfp+1Ts |−|Wfp−1Ts|

|Wfp+1Ts|+|Wfp−1Ts|−2|WfpTs | cos(πN
M

)
.

• fpTs = fpTs + λ∆fTs.

• c = min {0.5, 2σf0Ts
} and∆fTs = c∆fTs.

• Y1 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πn(fpTs−∆fTs)
∣∣∣
2

.

• Y2 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πn(fpTs)
∣∣∣
2

.

• Y3 =
∣∣∣
∑N−1

n=0 r(nTs)s
∗(nTs)e

−j2πn(fpTs+∆fTs)
∣∣∣
2

.

Then,Q dichotomous iterations are performed as with the DS estimator and at the end of

all iterationsf̂0Ts = fpTs. However, the wayc is presented in [19] and given above does

not allow the estimator to perform properly in all scenarios. Besides, it involves nonlinear

operations and significant complexity to estimate the SNR. This problem can be resolved

by choosingc = 0.5, which is used in the complexity and simulation analysis below.
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Main Lobe Autocorrelation Function Frequency Estimator

A robust hybrid of periodogram-based and correlation-based estimator (grouped in this

thesis with the periodogram-based estimators) was proposed in [20] and is referred to as

MLAF. The coarse search is similar to that of the DS estimatorbut with much more zero-

padding, whereNFFT = 4N is required to obtain an initial frequency estimatefpTs. In

the fine search, a refining frequency is obtained by exploiting the maximum periodogram

sample and its8 adjacent samples asfrTs = 1
2π

arg
{∑4

k=−4 Yfp+kTs
ej2π∆fTs

}
. The fre-

quency estimate is then calculated aŝf0Ts = fpTs + frTs.

3.6 Simulation Results and Performance Analysis

A binary sequence transmitted through a deterministic (nonfading) single-path channel

and corrupted with a complex AWGN is implemented. The simulated received signal and

channel are according to (3.8). The performance of the frequency estimators is analysed

first. Then, the performance of the dichotomous search-based frequency, attenuation,

phase, and joint channel estimators are investigated.

3.6.1 Performance Analysis of the Frequency Estimators

A complex exponential signal of lengthN = 26 in the AWGN channels is considered in

the simulation. The mean square error (MSE) of the frequencyestimate in each simulation

trial is calculated as

f0Ts-MSE=
(
f0Ts − f̂0Ts

)2
, (3.51)

and then averaged over10 000 simulation trials. The following parameters are used:L =

N/2 for M&M, SNLS, ANLS and WNALP,L = 2N/3 for SL and B&S,NFFT = 1.5N

for DS,NFFT = N for MDS and IDS, andNFFT = 4N for MLAF.

Figure 3.2 shows the SNR-dependent performance of the considered estimators com-

pared to the CRLB forf0Ts = 0.025. This low frequency was chosen to guarantee that the
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Figure 3.2:f0Ts-MSE of the frequency estimators for AWGN channels as a function of

SNR for a small frequency offset;N = 26, f0Ts = 0.025 andQ = 8 for DS, MDS and

IDS.

narrowest frequency estimation range of the estimators (which isψ = 3/2N for SL esti-

mator) is not exceeded. All estimators attain the CRLB at high SNRs. At very low SNRs,

the SNLS and SL estimators can be seen with a relatively lowerf0Ts-MSE, which is due

to the limited frequency estimation range of those estimators. However, the SL estimator

possesses the poorest performance in general, with a high SNR threshold (i.e. the SNR

below which the estimation error starts diverging from the CRLB) of about10 dB. Among

the other estimators with the full frequency estimation range, the DS and MLAF estima-

tors possess the lowest SNR threshold of0 dB. The SNR threshold is1 dB for the ANLS,

M&M and WNALP estimators and2 dB for the MDS and IDS estimators. The diverging

rate of thef0Ts-MSE of the WNALP estimator from the CRLB below SNR threshold is

comparable to that of the periodogram-based estimators; however, thef0Ts-MSE of the

BS, M&M and ANLS correlation-based estimators possesses a slower diverging rate.

The f0Ts-dependent performance for SNR= 4 dB is shown in Figure 3.3. The

WNALP correlation-based estimator and all the periodogram-based estimators are shown
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Figure 3.3:f0Ts-MSE of the frequency estimators for AWGN channels as a function of

f0Ts; N = 26, SNR= 4 dB andQ = 8 for DS, MDS and IDS.

to possess the full frequency estimation range, unlike the other correlation-based estima-

tors, for which the practical range is narrower than the theoretical one. Thef0Ts-MSE of

the B&S, M&M and ANLS estimators are shown to start diverging from the CRLB for

f0Ts > 0.41. This explains the relatively lowerf0Ts-MSE of the B&S, M&M and ANLS

estimators than that of the periodogram-based estimators for SNRs below SNR threshold

shown in Figure 3.2.

Simulation results reveal that apart from the WNALP estimator, and unlike the

periodogram-based estimators, the performance of the considered correlation-based es-

timators at low SNRs becomes poorer with the increase off0Ts. They even suffer from

a frequency-dependent SNR threshold. This can be seen in Figure 3.4, where the SNR-

dependent performance is studied again but now forf0Ts = 0.41, which is still within

the practical frequency estimation range of the B&S, M&M and ANLS estimators shown

in Figure 3.3. Here, the SL and ANLS estimators can no longer operate as the consid-

ered frequency is outside their frequency estimation ranges. A significant degradation in

the performance of the B&S, M&M and ANLS estimators can be seenfor low SNRs,
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Figure 3.4:f0Ts-MSE of the frequency estimators for AWGN channels as a function of

SNR for a large frequency offset;N = 26, f0Ts = 0.41 andQ = 8 for DS, MDS and

IDS.

where the SNR threshold increases by about3 dB compared with that of the results in

Figure 3.3. Meanwhile, the performance of the WNALP and all the periodogram-based

estimators is not significantly changed, and those estimators now outperform the other

correlation-based estimators. The DS estimator is seen to possess the best performance

with SNR threshold of0 dB and the MLAF estimator is slightly behind with an SNR

threshold of1 dB.

More attention is next paid to investigate the performance of the periodogram-based

estimators and check/challenge the claimed advantages of the recently proposed estima-

tors. Figure 3.5 shows the SNR-dependent performance forQ = 5, 6 and10. Although

the fine search of the MLAF estimator is not iterative, it is added for comparison reasons.

It can be seen thatQ can be chosen depending on the SNR range of interest. AsQ in-

creases, the SNR coverage range increases for DS, MDS and IDSestimators in the same

way. The claim in [19] that the IDS estimator withQ = 5 obtains a similar estimate to

that of the DS and MDS estimators withQ = 10 is not true.
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Figure 3.6:f0Ts-MSE of the periodogram-based frequency estimators for AWGNchan-

nels as a function of SNR in the low range for differentf0Ts within one high coarse FFT

frequency bin;N = 26 andQ = 10 for DS, MDS and IDS.
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f0Ts within one high coarse FFT frequency bin;N = 26 andQ = 10 for DS, MDS and IDS.
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Figure 3.8:f0Ts-MSE of the periodogram-based frequency estimators for AWGNchan-

nels as a function off0Ts within the first coarse FFT frequency bin of the MDS estimator

for a high SNR;N = 26, SNR= 20 dB andQ = 8 for DS, MDS and IDS.

The performance is then examined for different frequencieswithin a frequency bin of

the course FFT. The SNR-dependent performance for differentfrequencies within a high

frequency bin is shown for low SNR range in Figure 3.6 and for high SNR range in Fig-

ure 3.7. The MDS and IDS estimators possess anf0Ts-dependent SNR threshold, which

becomes higher by4 dB at the bin-centre frequency than that at the bin-edge frequency as

shown in Figure 3.6. The DS and MLAF estimators are less sensitive to frequency change

with only 1 dB difference in threshold SNR. However, unlike the other estimators, a sig-

nificant performance degradation of the MLAF estimator can be seen in Figure 3.7 at the

bin-centre frequency.

Figure 3.8 investigates thef0Ts-MSE (at SNR= 20 dB) againstf0Ts within a few low

frequency bins. The DS, MDS and IDS provide a consistent high-accuracy performance

throughout the considered range, whereas a performance degradation of the MLAF esti-

mator is seen at frequencies close to the bin centres. Interestingly, the error of the MLAF
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Figure 3.9:f0Ts-MSE of the periodogram-based frequency estimators for AWGNchan-

nels as a function off0Ts within the first coarse FFT frequency bin of the MDS estimator

for a high SNR;N = 26, SNR= 1 dB andQ = 8 for DS, MDS and IDS.

sometimes is below the CRLB, which is likely to be due to the discrete nature of the larger

FFT where the frequency under analysis happens to fall very close to the edge of the bin.

For SNR= 1 dB, a significant performance degradation of the MDS and IDS estima-

tors can be seen in Figure 3.9 in the middle of a bin. The MLAF possesses littlef0Ts-MSE

fluctuation and the DS estimators is seen to have the lowest (almost constant)f0Ts-MSE.

The computational complexity of the estimators consideredin the simulation and their

frequency estimation range are summarised in Table 3.1. Forthe correlation-based esti-

mators, the SL estimator possesses the lowest complexity but also the worst performance.

Then comes the SNLS but it only operates for narrow frequencyestimation range. Al-

though the WNALP estimator has the best performance in this group, it possesses the

highest complexity with many nonlinear operations. The M&Mand SNLS estimators

involve similar complexity and performance. They are less complex than the B&S esti-

mator and outperform it. Among the periodogram-based estimators, the IDS estimator

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



C
H

A
P

T
E

R
3.

JO
IN

T
E

S
T

IM
AT

IO
N

O
F

C
H

A
N

N
E

L
A

N
D

F
R

E
Q

U
E

N
C

Y
O

F
F

S
E

T
IN

A
D

D
IT

IV
E

W
H

IT
E

G
A

U
S

S
IA

N
N

O
IS

E
C

H
A

N
N

E
LS

61

Table 3.1: Computational Complexity and Frequency Estimation Range of the Estimators for AWGN Channels Considered in the Simulation.

Estimator FFT/DFT Complex Multiplications Complex Additions Nonlinear operations Estimation Range

SL — N − L N − L− 1 1 [− 3
4N

3
4N

)

B&S — L(2N − L+ 1)/2 L(2N − L− 3)/2 L [−1
2
, 1

2
)

M&M — L(2N − L+ 1)/2 L(2N − L− 3)/2 L [−1
2
, 1

2
)

SNLS — L(2N − L− 1)/2 L(2N − L− 3)/2 L [− 1
N
, 1

N
)

ANLS — L(2N − L+ 1)/2 L(2N − L− 3)/2 L [−1
2
, 1

2
)

WNALP — L(2N − L+ 1)/2 L(2N − L− 3)/2 2L+ 1 [−1
2
, 1

2
)

DS 1.5N -point (Q− 1)(N − 1) (Q− 1)(N − 1) — [−1
2
, 1

2
)

MDS N -point Q(N − 1) Q(N − 1) — [−1
2
, 1

2
)

IDS N -point (Q+ 2)(N − 1) (Q+ 2)(N − 1) N + 4 [−1
2
, 1

2
)

MLAF 4N -point 9 8 1 [−1
2
, 1

2
)

R
.K

hal,P
h.D

.T
hesis,D

epartm
entofE

lectronics,U
niversity

ofYork
2011



CHAPTER 3. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN ADDITIVE

WHITE GAUSSIAN NOISE CHANNELS 62

Table 3.2: Estimators and Bounds for AWGN Channels Considered inthe Simulation.

Algorithm CRLB ML estimator DS estimator

Parameter

χ1 = A σCRA
in (3.25) ÂML in (3.17) ÂDS in (3.34)

χ2 = f0Ts σCRf0Ts
in (3.26) f̂0TsML in (3.16) f̂0TsDS in Section 3.5.2

χ3 = φ σCRφ
in (3.27) φ̂ML in (3.18) φ̂DS in (3.35)

h(nTs) σCRh
in (3.32) ĥML(nTs) in (3.19) ĥDS(nTs) in (3.36)

has the highest complexity. The MLAF also possesses a high complexity and involves a

nonlinear operation. The MDS has slightly less complexity than the DS estimator. Both

the estimators do not involve any nonlinear operations and are less complex than the

correlation-based M&M and SNLS estimators. However, the DSestimator outperforms

the MDS one, and can be less complex in some scenarios when thefrequency estimation

range is narrow and only a few DFTs are needed in the coarse search.

In conclusion, The DS estimator outperforms the other estimators in many scenarios.

It has a high-accuracy performance throughout the wide frequency estimation range and

over a wide range of SNRs. This estimator also possesses a relatively low complexity

involving only linear operations which makes it the best choice in practice, as so, is used

here throughout the thesis.

3.6.2 Performance Analysis of Dichotomous Search-Based Estima-

tors

The performance of the dichotomous search-based estimators is investigated and com-

pared against the reference CRLBs according to Table 3.2 over anSNR range up to30

dB, which is considered below in the simulations according to(3.28) asρ = A2/σ2.

Computer simulations are used to estimate the square root of the mean square error
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(RMSE) of the parameterχi and the joint channel estimations, respectively, as

χi-RMSE=

√√√√ 1

Nt

Nt∑

t=1

(
χi − χ̂it

)2
; i = 1, 2, 3 , (3.52a)

h-RMSE=

√√√√√√√√√
1

Nt

Nt∑

t=1

N−1∑

n=0

∣∣∣h(nTs)− ĥt(nTs)
∣∣∣
2

N−1∑

n=0

|h(nTs)|2
, (3.52b)

over a number ofNt = 10 000 simulation trials, wherêχit
andĥt(nTs) are the estimated

ith parameter and thenth channel sample, respectively, in thetth simulation trial. The

following parameters are used for the simulations: the length of the pilot symbols isN =

63, the size of the FFT used in the ML estimator according to (3.33) isNFFT = 40 960,

the frequency step used in the coarse search stage of the DS estimator is∆fTs = 0.01238,

and the number of iterations used in the fine search stage according to (3.50) isQ = 10.

Frequency Offset Estimator: Figure 3.10 shows thef0Ts-RMSE of the DS and the ML

frequency offset estimators compared to the CRLB versus SNR in(a) and versusf0Ts in

(b). In Figure 3.10(a), thef0Ts-RMSE of the estimators as a function of SNR is presented

for f0Ts = 0.01. The DS estimator as can be seen exhibits a high-accuracy performance

which is very close to that of the ML estimator throughout theSNR range of interest. For

both estimators, thef0Ts-RMSE attains the CRLB for a wide range of SNR. However,

there exists a threshold SNR(SNRth) of approximately−3 dB below which the error in-

creases rapidly and diverges from the CRLB. This is a known characteristic of nonlinear

estimators [121], and is due to the occurrence of the outliers [13]. The considerable error

in this area can be limited by constraining the estimated value to a narrow frequency ac-

quisition range, which also helps reducing the complexity [47,124]. Figure 3.10(b) shows

thef0Ts-RMSE of the estimators as a function off0Ts for SNR= 30 dB. A consistent and

accurate performance can be noticed over all the allowable frequency acquisition range

for both DS and ML estimators where the error coincides with the CRLB.

Attenuation Estimator: Figure 3.11 shows theA-RMSE of the considered DS and

ML attenuation estimators compared to the CRLB for the same scenarios. Figure 3.11(a)

illustrates theA-RMSE as a function of SNR forf0Ts = 0.01. The DS estimator as
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Figure 3.10:f0Ts-RMSE of the DS and ML frequency offset estimators for AWGN chan-

nels;N = 63,NFFT = 40960 for ML, ∆fTs = 0.01238 andQ = 10; (a) SNR-dependent

performance forf0Ts = 0.01 and (b)f0Ts-dependent performance for SNR= 30 dB.
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Figure 3.11:A-RMSE of the DS and ML attenuation estimators for AWGN channels;

N = 63, NFFT = 40960 for ML, ∆fTs = 0.01238 andQ = 10; (a) SNR-dependent

performance forf0Ts = 0.01 and (b)f0Ts-dependent performance for SNR= 30 dB.
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can be seen exhibits a high-accuracy performance which is very close to that of the ML

estimator throughout all the investigated SNR range. In Figure 3.11(b), theA-RMSE is

plotted versusf0Ts for SNR = 30 dB. A consistent and accurate performance can also

be seen over all the wide frequency acquisition range for both DS and ML estimators and

the error coincides with the CRLB.

Phase Estimator: Figure 3.12 shows simulation results concerning the phase estima-

tion error compared to the CRLB for the same scenario. In Figure3.12(a), theφ-RMSE

of the estimators is illustrated as a function of SNR. The DS estimator reveals an accurate

performance which is very close to that of the ML estimator throughout the SNR range of

interest. A threshold SNR can be noticed as for the frequencyoffset estimators. However,

in this case the SNRth is about1 dB lower. Figure 3.12(b) shows theφ-RMSE of the

estimators as a function off0Ts. It can be seen that the estimation error of both estimators

attains the CRLB over all the wide frequency acquisition range, which shows that both

estimators possess a wide frequency acquisition range.

Channel Estimator: In Figure 3.13, theh-RMSE of the joint channel and frequency

offset estimators compared to the CRLB is illustrated for the same scenario. As can be

seen in Figure 3.13(a), a high-accuracy performance of the DS estimator which is identical

to that of the ML estimator is achieved over the considered SNR range. Compared to the

frequency offset and the phase estimators, the threshold SNR in this case is the lowest

(SNRth ≈ −6 dB). The DS estimator, as can be seen in Figure 3.13(b), attains the same

ML-like performance throughout the wide frequency acquisition range.

3.7 Conclusions

In this chapter, the maximum likelihood (ML) joint data-aided channel and frequency

offset estimation has been studied for signals propagated through AWGN channels. The

CRLBs of the joint estimators have been derived and fundamentaltechniques have been

introduced. The ML estimator has optimum performance but impractical complexity. A

literature review has been presented for the two main approaches approximating the ML
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Figure 3.12:φ-RMSE of the DS and ML phase estimators for AWGN channels;N = 63,

NFFT = 40960 for ML, ∆fTs = 0.01238 andQ = 10; (a) SNR-dependent performance

for f0Ts = 0.01 and (b)f0Ts-dependent performance for SNR= 30 dB.
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Figure 3.13:h-RMSE of the DS and ML joint estimators for AWGN channels;N = 63,

NFFT = 40960 for ML, ∆fTs = 0.01238 andQ = 10; (a) SNR-dependent performance

for f0Ts = 0.01 and (b)f0Ts-dependent performance for SNR= 30 dB.
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estimator, namely, the correlation-based and the periodogram-based estimators, including

some recently introduced advanced frequency estimators.

In the first approach, traditional estimators possess good accuracy, however they usu-

ally have a high complexity. In addition, these estimators possess a limited frequency

acquisition range that depends on number of observed symbolsN , and so, might be in-

applicable for certain practical scenarios. In the second approach, traditional estimators

either exploit complicated nonlinear techniques or have a poor and inconsistent perfor-

mance that depend on some parameters of the signal.

Performance analysis of recently introduced advanced frequency estimators for sig-

nals in the AWGN channels has been presented. The performanceof the correlation-

based estimators considered, with the exception of the WNALPestimator [12], has been

shown to be frequency-sensitive at low SNRs, where the performance degrades and the

SNR threshold increases as the frequency increases. Their frequency estimation range

is also narrower than that of the WNALP and periodogram-basedestimators. However,

the WNALP has a relatively high complexity. Among the periodogram-based estima-

tors considered, the IDS [19] and MLAF [20] estimators possess the highest complexity.

The performance of both the MDS [18] and IDS estimators is frequency-sensitive at low

SNRs, whereas the MLAF estimator possesses a frequency-sensitive performance at high

SNRs. The DS estimator [17], exploiting an FFT-based coarse search and dichotomous

fine search using three-point interpolation of the periodogram peak and its two adjacent

samples, has been shown to outperform the other estimators in many scenarios, keeping

a high-accuracy performance throughout the wide frequencyestimation range and for all

considered SNRs. It also relies only on linear operations with a relatively low complexity,

which makes it the best choice in many practical scenarios, and so, is used throughout the

thesis.

The dichotomous search algorithm for frequency offset estimation jointly with the

channel parameter estimation has been considered. The dichotomous-based joint channel

and frequency offset estimator has been investigated for different scenarios. Simulation

results have shown a high-accuracy performance of the different parameter and joint chan-

nel estimators, which is very close to that of the ML estimator over a wide range of SNR

and throughout all the wide frequency acquisition range.
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In this chapter, the joint data-aided estimation of channeland frequency offset for sig-

nals propagated through time-invariant frequency-selective channels is considered. The

joint estimation exploits multipath diversity that improves the performance by searching

for the maximum of the combined periodograms of the multipath components. Two joint

estimators are considered, the first of which is based on the Bayesian approach that can

provide a high-accuracy performance when certain prior channel statistical knowledge
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is available. The second is based on the ML approach, with a a slightly lower accu-

racy than that of the Bayesian-based estimator, which can operate in the absence of these

channel statistics. The joint estimators exploit the DS frequency estimation technique of

the course and fine searching for the maximum of the generalised periodogram. Simula-

tion results for different scenarios in Rayleigh fading channels show that these estimators

have a high-accuracy performance with an estimation error very close to the CRLBs over

a wide range of SNRs and throughout the wide frequency acquisition range.

4.1 Introduction

In wireless communication systems, the waves traveling from the transmitter to the re-

ceiver get reflected, scattered, diffracted, or refracted due to the surrounding objects and

the media property [21]. This creates multiple propagationpaths, where the received

signal is a sum of many copies of the transmitted signal with different delays and attenu-

ations [22]. As a result, the channel possesses a randomly time-variant impulse response

and becomes a fading channel that requires statistical treatment [23,24]. In this case, the

performance of the single-branch receiver is poor due to theSNR reduction, and diversity

reception is used to improve that performance [25, 26]. Depending on the fading rate of

the channel compared to the baseband signal variations, thechannels can be classified

as fast fading or slow fading channels. In the fast fading channels, the channel impulse

response changes rapidly within the symbol interval [23]. This implies more complicated

models to represent these channels as in [27,28], and requires special techniques for esti-

mation as described in [29,30]. However in the slow fading channels, the channel can be

simply assumed static (time-invariant) during the observation interval [23].

Most frequency estimators for time-invariant frequency-selective channels in the lit-

erature are based on the correlations of the received signaldue to the simplicity in the

implementation. The estimator in [25] is an extension to themultipath channels with di-

versity reception of the correlation-based algorithm for the nonfading channels proposed

in [6]. However, it has a narrow frequency acquisition rangeand poor performance for

low SNR range. This is a common case in the correlation-basedestimators [31–33]. Sig-

nificant performance degradation in the single-path scenario have been addressed in many
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publications [31,32], where multipath diversity is not used to improve the performance.

Joint estimators of channel and frequency offset exploiting multipath diversity will be

considered in this chapter for the time-invariant channels. This diversity will be shown

to improve the estimation performance in a similar way that the detection performance

in multipath channels is improved by the RAKE receiver [22]. Two joint estimators are

studied. The first follows the Bayesian approach and can be used when certain prior

statistical knowledge about the channel is available. The second follows the maximum

likelihood approach when these channel properties are not available. For practical im-

plementation, both estimators employ two stages for searching the periodogram peak,

the FFT-based coarse search and dichotomous fine search. Without increasing the com-

plexity, these estimators outperform the correlation-based algorithms and possess a wide

frequency acquisition range.

Extensive simulation for different conditions is used to investigate the performance

of the joint estimators in Rayleigh fading channels. The simulation results show high-

accuracy performance of these estimators over a wide range of SNR andf0Ts with an

estimation error very close to the CRLB.

This chapter is organised as follows. Section 4.2 describesthe signal and channel mod-

els. In Section 4.3, the Bayesian joint estimators are presented and in Section 4.4, the max-

imum likelihood joint estimators are presented. The Cramer-Rao Lower Bounds (CRLB)s

are discussed for the different estimators in Section 4.5. Section 4.6 describes the effi-

cient dichotomous-based implementation. Simulation results and performance analysis

are given in Section 4.7, and Section 4.8 concludes the chapter.

4.2 Signal and Channel Models

It is assumed for the scenarios discussed in this chapter that the considered signal is

a known (pilot) single transmitted through a time-invariant frequency-selective channel

and corrupted with complex AWGN. In the time-invariant channel, the channel parame-

ters required to be estimated can be assumed constant over the observation interval. For

such a situation, and after frequency downconverting the received waveform, filtering in
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a matched filter and sampling at proper times, the baseband discrete signal and channel

models can be represented as [22]

r(nTs) = A(nTs)e
j2πf0Tsn + z(nTs) ; n = 0, 1, . . . , N − 1 , (4.1a)

A(nTs) =
M∑

m=1

amϕm(nTs) , ϕm(nTs) = s(nTs − τm) , (4.1b)

where

N is the number of the received samples andn is the sample index;

M is the number of paths andm is the path index;

r(nTs) is the receivednth sample;

A(nTs) is the complex-valued envelopenth sample;

f0 is the unknown frequency offset to be estimated;

Ts is the symbol interval;

f0Ts is the normalised frequency offset;

z(nTs) is the complex-valued AWGNnth sample with zero mean and varianceσ2;

am is the unknown complex-valuedmth path amplitude (channel parameter) to be es-

timated;

ϕm(nTs) is the multipath (delayed)(n,m)th element (basis function) of the transmit-

ted signal;

s(nTs) is the transmittednth pilot symbol;

τm is themth path delay.

It is helpful to arrange the received signal in matrix form as

r = Ωf0Ts
a+ z ; Ωf0Ts

= Λf0Ts
Φ , (4.2)

where

r isN × 1 column vector with elementsr(nTs) andn = 0, 1, . . . , N − 1;

Ωf0Ts
isN ×M matrix with elements[Ωf0Ts

]nm = ϕm(nTs)e
j2πf0Tsn;

Λf0Ts
isN ×N diagonal matrix with diagonal elementsej2πf0Tsn;

Φ isN ×M basis function matrix with elements[Φ]nm = ϕm(nTs);

a isM × 1 column vector of the channel parameters with elementsam;

z isN × 1 column vector of the AWGN with covariance matrixRz = σ2IN and

elementsz(nTs);

IN isN ×N identity matrix.
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In this case, the task is to estimate the path amplitudes{am}Mm=1 that hereafter will

be denoted as the channel parameters in addition to the frequency offsetf0Ts. For time-

invariant channels, the channel parameters are complex-valued random parameters, but

with unchanging values during one observation interval, and f0Ts is an unknown deter-

ministic parameter.

4.3 Bayesian Joint Estimation

The Bayesian joint estimator as the name implies is derived based on the Bayesian ap-

proach in which the parameters{am}Mm=1 are assumed to be random variables whose

particular realizations are to be estimated [121]. In this case, the joint estimator requires

given prior probability density function (PDF) ofa, and the received signal has a condi-

tional PDF of [48,121]

p (r|f0Ts, a) =
1

πNσ2N
exp

[
− 1

σ2
(r−Ωf0Ts

a)H (r−Ωf0Ts
a)

]
. (4.3)

In this section, the channel is assumed to be Rayleigh channel, and so the random

channel parameter vectora has to be zero-mean Gaussian random with normal complex

distribution and its prior PDF is

p(a) =
1

πM |Ra|
exp

[
−aHR−1

a a
]
, (4.4)

whereRa is the covariance matrix which is assumed to be known.

4.3.1 Frequency Offset Estimator

The frequency offsetf0Ts is estimated using the same technique as described in [48]. In

this case, the channel parameters{am}Mm=1 are considered nuisance parameters that can

be integrated out of the conditional PDFp(r|f0Ts, a) through a Bayesian approach [121].

This is expressed as [48]

p (r|f0Ts) =
∫
p (r|f0Ts, a) p(a)dℜ{a}dℑ{a} , (4.5)
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whereℜ{·} andℑ{·} denote the real and imaginary components of a complex function,

respectively. In this case, the frequency offset estimatoris obtained by maximising the

likelihood functionp (r|fTs) over the frequency acquisition range as [48,121]

f̂0TsB = arg max
fTs∈Ψ

{p (r|fTs)} . (4.6)

The likelihood functionp (r|fTs) is obtained by solving the integration in (4.5) which

gives [48]

p (r|fTs) =
e−σ−2rHr

πNσ2N

∫
exp

[
2ℜ
{
σ−2aHWfTs

}
− σ−2aHΓa

]
p(a)dℜ{a}dℑ{a} ,

(4.7)

where

Γ = ΦHΦ (4.8)

is anM ×M correlation matrix [128] of the basis functions with elements

γu v =
N−1∑

n=0

ϕ∗
u(nTs)ϕv(nTs) ; u, v = 1, . . . ,M , (4.9)

and

WfTs
= ΦHΛH

fTs
r , (4.10)

which can be obtained by

WfTs
(m) = FFT {r(nTs)ϕ∗

m(nTs), NFFT} ; m = 1, . . . ,M . (4.11)

The PDF in (4.7) as solved in [48] yields

p (r|fTs) =
exp

[
−σ−2rHr

]

πNσ2N |σ−2RaΓ+ IM | exp
[
σ−2YfTs

]
, (4.12)

where

YfTs
= WH

fTs

(
Γ+ σ2R−1

a

)−1
WfTs

(4.13)

andIM is theM ×M identity matrix. Now, substituting (4.12) into (4.6) produces

f̂0TsB = arg max
fTs∈Ψ

{
exp

[
−σ−2rHr

]

πNσ2N |σ−2RaΓ+ IM | exp
[
σ−2YfTs

]
}
. (4.14)

Excluding the frequency-independent first factor inside the brackets, and taking the natu-

ral logarithm, the Bayesian frequency offset (BF) estimator becomes [48]

f̂0TsB = arg max
fTs∈Ψ

{YfTs
} = arg max

fTs∈Ψ

{
WH

fTs

(
Γ+ σ2R−1

a

)−1
WfTs

}
, (4.15)

whereYfTs
is therefore a generalised periodogram [44] that exploits the multipath diver-

sity by combining the periodograms of the multipath elements.
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4.3.2 Channel Estimator

The channel parameters are then jointly estimated exploiting the estimated value of the

frequency offset. Now, after obtaininĝf0TsB and replacing its value in (4.2), this model

becomes linear and can be reformed as

r = Ω
f̂0TsB

a+ z , (4.16)

whereΩ
f̂0TsB

is now a knownN ×M matrix. This model is the well-known Bayesian

general linear model, and the Bayesian channel parameter (BC) estimator is the MMSE

estimator given by [121]

âB =
(
ΩH

f̂0TsB

Ω
f̂0TsB

+ σ2R−1
a

)−1

ΩH

f̂0TsB

r . (4.17)

Considering (4.8) and (4.10), the BC estimator becomes

âB =
(
Γ+ σ2R−1

a

)−1
W

f̂0TsB
. (4.18)

4.4 Maximum Likelihood Joint Estimation

In Section 4.3, the channel is considered to have Rayleigh fading with a known covariance

matrix Ra, and complex AWGN with a known varianceσ2. As can be seen in (4.15)

and (4.18), these prior statistical specifications are included in the derived Bayesian joint

estimator. However, when dealing with different scenarioswhere there is no certainty

about these statistical properties of the channel and the AWGN, a maximum likelihood

joint estimator can be used. For the ML approach, the parametersa are assumed to be

deterministic but unknown parameters which are required tobe estimated. In this case,

the received signal has an unconditional PDF of [121]

p (r; f0Ts, a) =
1

πNσ2N
exp

[
− 1

σ2
(r−Ωf0Ts

a)H (r−Ωf0Ts
a)

]
. (4.19)

4.4.1 Frequency Offset Estimator

The frequency offsetf0Ts is estimated using the same technique described in [44]. The

ML estimator produces the values of the required parametersthat maximise the likelihood
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function or minimise the function [121]

J(fTs, a) = (r−ΩfTs
a)H(r−ΩfTs

a) . (4.20)

It is easier first to differentiateJ(fTs, a) with respect toa, which produces [121], [44]

∂J(fTs, a)

∂a
= −

[
ΩH

fTs
(r−ΩfTs

a)
]∗
. (4.21)

Now setting it equal to zero yields the ML estimator ofa for a certainfTs as [121], [44]

â =
(
ΩH

fTs
ΩfTs

)−1
ΩH

fTs
r . (4.22)

Substituting this into (4.20) yields [44]

J(fTs, â) = rHr− rHΩfTs

(
ΩH

fTs
ΩfTs

)−1
ΩH

fTs
r , (4.23)

which is minimised by maximising

YfTs
= rHΩfTs

(
ΦHΦ

)−1
ΩH

fTs
r (4.24)

over the frequency acquisition range. Hence, and recallingΓ and WfTs
from (4.8)

and (4.10), it follows that the ML frequency offset (MLF) estimator is [44]

f̂0TsML = arg max
fTs∈Ψ

{
WH

fTs
Γ−1WfTs

}
. (4.25)

4.4.2 Channel Estimator

After getting the estimated value of the frequency offset̂f0TsML, the channel parame-

ters can then be jointly estimated. Substitutinĝf0TsML from (4.25) into (4.22), the ML

channel parameter (MLC) estimator is [44]

âML = Γ−1W
f̂0TsML

. (4.26)

4.5 Cramer-Rao Lower Bound

The variance of any unbiased estimator must be greater than or equal to the CRLB [121].

For unbiased frequency offset estimators operating on the scenarios considered in this
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chapter, the CRLB of the estimated frequency offset (CRLBF) has been derived by

Baronkinet al. [48] and is given by

σCRf0Ts
=

√
tr {ΓRa}

8π2Nρtr {CRa}
=

√
σ2

8π2tr {CRa}
, (4.27)

whereρ is the SNR that is defined as

ρ =
E
{
(Ωf0Ts

a)H (Ωf0Ts
a)
}

E{zHz} =
E
{
aHΦHΛH

f0Ts
Λf0Ts

Φa
}

Nσ2

=
E
{
aHΓa

}

Nσ2
=

tr {ΓRa}
Nσ2

, (4.28)

and

C = ΦHT
[
IN −ΦΓ−1ΦH

]
TΦ ; T = diag{n} , n = 0, 1, . . . , N − 1 . (4.29)

For the estimators of the channel parameters, the vector CRLB representing the mini-

mum variances of theM elements of{âm}Mm=1 based on the Bayesian and the maximum

likelihood approaches, respectively, are given by the diagonal elements of the covariance

matrices [121]

RâB =
(
σ−2Γ+R−1

a

)−1
, (4.30)

RâML = σ2Γ−1 . (4.31)

The average CRLBs of the Bayesian estimated channel parameters (CRLBCB) and the

ML estimated channel parameters (CRLBCML ) are hence given by

σCRaB
=

√
tr
{
(σ−2Γ+R−1

a )−1}

tr{Ra}
, (4.32)

σCRaML
=

√
σ2tr {Γ−1}

tr{Ra}
. (4.33)

These CRLBs will be used in the simulation-based analysis of theconsidered esti-

mators for multipath slow fading Rayleigh channels to provide a reference level against

which the performance of these estimators can be compared.
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4.6 Efficient Dichotomous-Based Implementation

A considerable reduction in the complexity, and without deterioration in the accuracy can

be obtained using the dichotomous search frequency estimator. This technique has been

proposed in [17] and studied in Section 3.5.2 for AWGN channels. For time-invariant

frequency-selective channels, the DS frequency estimation algorithm has been presented

in [44, 48]. It consists of two stages of FFT-based coarse search and dichotomous fine

search and its implementation for the joint channel and frequency offset estimation based

on the Bayesian and the maximum likelihood approaches is described hereafter to follow.

For practical simulation of the dichotomous search technique and according to the pro-

posed joint estimators in (4.15), (4.18), (4.25) and (4.26), the best way for implementation

is as follows. First, theM ×M known deterministic matrixG is precomputed as

G =





(
ΦHΦ+ σ2R−1

a

)−1
, Bayesian approach,

(
ΦHΦ

)−1
, ML approach.

(4.34)

Next, the following FFTs are calculated

WfTs
(m) = FFT {r(nTs)ϕ∗

m(nTs), NFFT} ; m = 1, . . . ,M , (4.35)

whereNFFT ≈ 4N [44,48,124]. Then, the generalised periodogram samples are obtained

over a grid of frequencies separated by∆fTs = 1/NFFT and covering the frequency

acquisition range as

YfTs
=

M∑

u=1

M∑

v=1

[G]u vW
∗
fTs

(u)WfTs
(v) , (4.36)

and the initial coarse-search frequency estimate is

fpTs = arg max
fTs∈Ψ

{YfTs
} , (4.37)

which is passed to the fine search together with the periodogram peakY2 = YfpTs
and its

two adjacent samplesY1 = Yfp−1Ts
andY3 = Yfp+1Ts

.

In the fine search stage, the initial frequency estimatefpTs is refined exploitingQ

dichotomous iterations of DFT-based three-point interpolation of Y1, Y2 andY3. Each

iteration repeats the following steps [17]:
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• ∆fTs = ∆fTs/2.

• If Y3 < Y1 thenY3 = Y2 andfpTs = fpTs − ∆fTs, elseY1 = Y2 andfpTs =

fpTs +∆fTs.

• WfpTs
(m) =

N−1∑

n=0

r(nTs)ϕ
∗
m(nTs)e

−j2πfpTsn, wherem = 1, . . . ,M .

• Y2 =
M∑

u=1

M∑

v=1

[G]u vW
∗
fpTs

(u)WfpTs
(v).

At the end of all iterations, the frequency offset estimatoris f̂0Ts = fpTs. For optimum

performance, the number of iterationsQ should be high enough so that the final frequency

step in the fine search gets below the minimum value of the frequency CRLB (σCRf0Ts
min)

in the SNR range of interest. Accordingly, Q has to satisfy (3.50).

Finally, the values of
{
WfpTs

(m)
}M
m=1

from the last iteration are used to estimate the

M × 1 column vector of the channel parameters as

â = GWfpTs
. (4.38)

4.7 Simulation Results and Performance Analysis

A binary sequence transmitted through a time-invariant frequency-selective Rayleigh

channel and corrupted with a complex AWGN is implemented according to (4.1). The

performance of the dichotomous search joint Bayesian and ML estimators is investigated

and compared against the reference CRLBs over an SNR range up to30 dB, which is

considered below in the simulation according to (4.28) asρ = tr {ΓRa} /Nσ2.

Computer simulations are used to estimate the square root of the mean square error

(RMSE) of the frequency offsetf0Ts and the channel parameters{am}Mm=1 estimates,
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respectively, as

f0Ts-RMSE=

√√√√ 1

Nt

Nt∑

t=1

(
f0Ts − f̂0Tst

)2
, (4.39a)

a-RMSE=

√√√√√√√√√
1

Nt

Nt∑

t=1

M∑

m=1

∣∣am − âmt

∣∣2

M∑

m=1

|am|2
, (4.39b)

over a number ofNt = 10 000 simulation trials, wherêf0Tst and âmt
are the estimated

frequency offset and themth channel parameter, respectively, in thetth simulation trial.

The following parameters are used for the simulations: the length of the pilot symbols is

Np = 63, the size of the FFT used in the coarse search stage of the dichotomous estimator

is NFFT = 256, and the number of iterations used in the fine search stage isQ = 8.

Regular path delays are considered withτm = (m−1)Ts, wherem = 1, . . . ,M . However,

to explore the performance difference between the Bayesian and maximum likelihood

approaches, a delay uncertainty ofM = 18 is assumed. In this case, uncorrelated zero-

mean Gaussian channel parameters are generated for each trial with variances

σ2
m =




1 , m = 1, . . . ,Mr ,

10−7 , m =Mr + 1, . . . ,M ,
(4.40)

whereMr is the number of real paths that is considered to beMr = 1, 2, 4, or9. The size

of the observed received signal block isN = Np +M − 1 = 80.

Estimation of the Frequency Offset: Figure 4.1 shows thef0Ts-RMSE, as a function

of SNR in (a) and as a function off0Ts in (b), for the Bayesian and ML frequency offset

estimators compared to the CRLB forMr = 9. In Figure 4.1(a), thef0Ts-RMSE of the

estimators versus SNR is presented forf0Ts = 0.01. The Bayesian estimator as can be

seen exhibits a high-accuracy performance with an estimation error attaining the CRLB

throughout the investigated SNR range above SNRth ≈ 1 dB. For the ML estimator, the

f0Ts-RMSE is very close to the CRLB for a wide range of SNR, with a slightly higher

level than that for the Bayesian estimator. However, the threshold SNR (SNRth ≈ 3

dB) is about2 dB higher than that of the B estimator. This small differenceis expected

and corresponds to the absence of the prior channel statistics in the ML approach. Most

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

TIME-INVARIANT FREQUENCY-SELECTIVE CHANNELS 82

−10 −5 0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

SNR, dB

f
0
T

s
-R

M
S
E

 

 
MLF
BF
CRLBF

(a)

0 0.1 0.2 0.3 0.4 0.5
10

−6

10
−5

10
−4

10
−3

f0Ts

f
0
T

s
-R

M
S
E

 

 
MLF
BF
CRLBF

(b)

Figure 4.1:f0Ts-RMSE of the frequency offset estimators for time-invariantfrequency-

selective channels;Np = 63, f0Ts = 0.01, M = 18, Mr = 9, NFFT = 256 andQ = 8;

(a) SNR-dependent performance forf0Ts = 0.01 and (b)f0Ts-dependent performance

for SNR= 30 dB.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 4. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

TIME-INVARIANT FREQUENCY-SELECTIVE CHANNELS 83

importantly, this is due to the lack of the path delay knowledge. Figure 4.1(b) shows the

f0Ts-RMSE of the estimators versusf0Ts for SNR = 30 dB. It can be noticed that the

high-accuracy performance of both estimators is independent of f0Ts. This shows that

both estimators possess a wide frequency acquisition range.

Estimation of the Channel Parameters: Figure 4.2 shows simulation results concern-

ing the channel parameter estimation error compared to the CRLB for the same scenario.

Figure 4.2(a) illustrates the SNR-dependent performance for f0Ts = 0.01. It can be no-

ticed that the Bayesian estimator outperforms the ML estimator, which is also reflected

through the level difference between the two CRLBs. This is due to the use of the prior

information ofRa andσ2 that characterises the Bayesian approach. However, both es-

timators exhibit a high-accuracy performance with ana-RMSE being very close to the

CRLB throughout the SNR range of interest. In Figure 4.2(b), thea-RMSE of the estima-

tors as a function off0Ts is shown for SNR= 30 dB. Thea-RMSE is constant and very

close to the CRLB for both estimators over all the wide frequency acquisition range.

SNR-Dependent Performance for DifferentMr: Simulation results shown in Fig-

ure 4.3 analyse the performance of the frequency offset estimators, Bayesian in (a) and

ML in (b), with respect to the number of real pathsMr compared to the CRLB and for

f0Ts = 0.01. For both estimators, a relatively poor performance can be noticed for the

single-path channel (Mr = 1), where thef0Ts-RMSE does not attain the CRLB even for

the high SNR range. An initial increase of the number of real paths toMr = 2 is shown

to lead to a substantial improvement of the accuracy, where the f0Ts-RMSE attains the

CRLB for high SNR range. A further increase ofMr allows an additional accuracy im-

provement, but this improvement is not as significant as in the initial case. For example,

increasing the real paths for the Bayesian estimator fromMr = 4 to Mr = 9 is shown

in Figure 4.3(a) to result in a decrease of the SNRth by only 3 dB compared to the12 dB

reduction caused by the initial increase of the real paths toMr = 2. This phenomenon is

similar to that encountered in the RAKE receivers, where the diversity reception in fading

channels leads to an improvement in the bit error rate performance [22]. It can be seen

in Figure 4.3 that the SNRths corresponding to differentMr values for the ML estimator

are higher in general than those for the Bayesian estimator. This is the penalty for the
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Figure 4.2:a-RMSE of the channel parameter estimators for time-invariant frequency-

selective channels;Np = 63, f0Ts = 0.01, M = 18, Mr = 9, NFFT = 256 andQ = 8;

(a) SNR-dependent performance forf0Ts = 0.01 and (b)f0Ts-dependent performance

for SNR= 30 dB.
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Figure 4.3:f0Ts-RMSE of the frequency offset estimators for time-invariantfrequency-

selective channels for different numbers of real paths;Np = 63, f0Ts = 0.01, M = 18,

NFFT = 256 andQ = 8; (a) Bayesian estimator and (b) ML estimator.
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capability to operate in the absence of timing information.

4.8 Conclusions

In this chapter, the joint data-aided estimation of the channel and frequency offset has been

studied for signals propagated through time-invariant frequency-selective channels. The

considered frequency offset estimators exploit the multipath diversity by combining the

periodograms of the multipath elements and searching for the maximum of the combined

statistic. The CRLBs have been presented for these estimators.

Two joint estimators have been studied. The first joint estimator depends on the

Bayesian approach and can provide a high-accuracy performance whenever prior statis-

tical characteristics of the channel are known, namely the mean and covariance matrices

of the channel parameters and the variance of the AWGN. The second estimator, with

a slightly higher estimation error, is an alternative jointestimator that can operate when

these characteristics are unavailable. To reduce the complexity of the frequency offset

estimators and attain a high accuracy, the estimators exploit a two stage technique for

searching the periodogram peak, an FFT-based coarse searchand a dichotomous fine

search.

These estimators have been extensively investigated for many different application

scenarios in Rayleigh fading channels. The simulation results have demonstrated high-

accuracy performance of these estimators with an estimation error very close to the CRLB

over a wide range of SNR and throughout the wide frequency acquisition range.
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In this chapter, new joint data-aided channel and frequencyoffset estimators are pro-

posed for frequency-flat time-variant fading channels. Theproposed estimators are based

on the basis expansion model of the fading process and the dichotomous search fre-

quency estimation technique. The first estimator relies on the Bayesian approach and
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exploits prior channel statistics to provide a high performance. The second estimator fol-

lows the maximum likelihood approach, and with a slightly lower accuracy, can operate

when the prior statistics are unknown. The performance of the proposed joint estimators

is examined for different scenarios in Rayleigh fading channels. The sensitivity of the

Bayesian estimator is investigated using such BEMs as Karhunen-Loève (KL), discrete

prolate spheroidal (DPS), generalized complex exponential (GCE), and B-spline (BS)

functions to the knowledge of the Doppler frequency.

5.1 Introduction

Efficient channel and frequency offset estimation is a crucial task in wireless communi-

cation systems, where reliable transmission at high data rates is required. Transmitting

pilot symbols is a practical method used to provide the receiver with the required infor-

mation about the channel [1,2]. For time-invariant (TI) channels, the pilot symbols can be

sent in a burst mode as preambles, postambles, or midambles.However, for time-variant

channels, pilot symbols are usually inserted periodicallywithin the data block in a pro-

cess known as pilot symbol aided modulation (PSAM) [3,4] to keep up with the channel

variations.

The joint channel and frequency offset estimation becomes challenging when dealing

with time-variant channels, where in addition to the additive noise, the transmitted signal

is corrupted with a random multiplicative distortion [23].This makes the channel and fre-

quency offset estimation complicated, and so, traditionaltechniques have dealt separately

with these two problems.

Various frequency offset estimators for frequency-flat time-variant fading channels

have been proposed in the literature. However most of these estimators are correlation-

based [7, 8, 10, 11, 34, 35], and so, their performance is inferior to that of the optimal

maximum likelihood (ML) estimator and/or they possess a limited frequency acquisition

range. The estimator in [34] is based on weighted linear regression for the phase of the

sample correlation function, however the covariance matrix of the phase estimation is as-

sumed to be known. In [35], a modification was presented to allow the operability in a
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wider acquisition range, and in this case the covariance matrix is estimated. However, an

assumption was made regarding the form of the fading correlation. No such assumption

was made in [8], where two estimators were proposed. The firstis based on unweighted

version of the method of [35] and the second is based on a nonlinear least-squares (NLS)

approach. Similar NLS technique was derived in [10] based onthe multiple lags correla-

tion function.

Several channel estimators for frequency-flat time-variant channels were proposed

in [4, 36–42] and the basis expansion model (BEM) has been efficiently used for the

channel estimation [36, 38–43]. However, these estimatorsyield a severe degradation in

the performance at the presence of a frequency offset. This problem can be resolved us-

ing joint channel and frequency offset estimation, which tothe best of our knowledge,

has not been well addressed in the literature and the main aimhere is to fill that gap. The

joint channel and frequency offset estimation would allow ahigher accuracy performance,

compared to the techniques dealing separately with these two problems.

We focus on estimating the channel which contains both, the multiplicative distortion

and frequency offset. This channel is all what the receiver needs in practical applica-

tions, where there is no need for spending much complexity onexplicit estimators for its

individual components.

The goal of this chapter is twofold. Firstly, we propose interpolation-based practi-

cal frequency offset estimators based on the dichotomous search technique, involving

two stage [13] search of the generalised periodogram peak [44], a fast Fourier trans-

form (FFT)-based coarse search [45] and dichotomous fine search [17], which achieve

superior performance compared to that of the correlation-based estimators, and possess

a wide frequency acquisition range. Secondly, we propose algorithms that estimate the

channel jointly with the frequency offset. The estimation is based on approximating the

time-variant fading process by a BEM and employ the dichotomous search frequency es-

timation technique. The use of BEMs leads to a mathematical model that offers a simple

(reduced dimensionality) processing in addition to a high-accuracy performance over the

wide frequency offset range. The novel joint estimators arederived based on two ap-

proaches. The first is the Bayesian approach and can be used when certain prior statistical

knowledge about the channel is available. The other is the MLapproach and is applicable
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when the channel statistics are not available.

Simulation for different scenarios in Rayleigh fading channels is used to investigate

the performance of the new estimators. This is done using theimproved Rayleigh fading

simulator in [83]. The proposed Bayesian joint estimator is studied based on different

BEMs such as the Karhunen-Loève (KL), discrete prolate spheroidal (DPS), generalized

complex exponential (GCE), and B-spline (BS) functions, wherethe channel statistics are

perfectly or imperfectly known. When channel statistics areperfectly known, simulation

results show that the KL and DPS BEMs use a fewer number of basisfunctions than

that of the GCE and BS BEMs to allow achieving the same performance. However, the

best reached performance of all the BEM-based estimators is the same. When channel

statistics are mismatched, results show that the estimators based on the GCE and BS

BEMs are more robust than those based on the KL and DPS BEMs. Thismakes the

BS functions a better choice in practice as it has a sparse matrix that results in a lower

complexity than the other basis functions. For the proposedBS-based Bayesian and ML

estimators, results show that the proposed frequency offset estimators outperform known

correlation-based estimators for different examined scenarios. In addition, the proposed

joint estimators significantly outperform the conventional channel estimator that does not

account for the frequency offset, and achieve a very close accuracy to that of the ideal

channel estimator operating with perfect knowledge of the frequency offset.

This chapter is organised as follows. Section 5.2 describessignal and channel models.

The basis expansion models are presented in Section 5.3. Sections 5.4 and 5.5 illustrate

the derivation of the proposed joint Bayesian and maximum likelihood estimators, respec-

tively. Efficient implementation of the estimators using the dichotomous search algorithm

is presented in Section 5.6. Simulation results using different BEMs are discussed in Sec-

tion 5.7 and using B-splines are discussed in Section 5.8. Finally, Section 5.9 contains

conclusions.
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5.2 Signal and Channel Models

We consider a known (pilot) signal transmitted through frequency-nonselective (flat)

time-variant Rayleigh channel and corrupted with complex additive white Gaussian noise

(AWGN). For such a scenario, the baseband discrete received signal and channel models,

respectively, after frequency downconverting, filtering in a matched filter and sampling at

proper times, can be expressed in time domain as [22]

r(nTs) = s(nTs)h(nTs) + z(nTs) ; (5.1a)

h(nTs) = g(nTs)e
j2πf0Tsn , n = 0, 1, . . . , N − 1 , (5.1b)

wheres(nTs) is the transmitted pilot signal,z(nTs) is the complex-valued AWGN with

zero mean and varianceσ2, g(nTs) is the fading process,f0 is the frequency offset,f0Ts is

the normalised frequency offset (for simplicity, it will betermed as the frequency offset),

Ts is the symbol interval andN is the number of the considered pilot symbols.

The fading processg(nTs) is modeled as a complex Gaussian process with zero mean

and covariance matrix with elements [24,63,64]

[Rg]u v
= Rg(u− v) = J0(2πfDTs(u− v)) , u, v = 1, . . . , N , (5.2)

whereRg(·) is the autocorrelation function ofg(nTs), J0(·) is the zero-order Bessel func-

tion of the first kind,fD is the Doppler frequency andfDTs is the normalised Doppler

frequency (for simplicity, it will be termed as the Doppler frequency).

The received signal and channel models, respectively, in matrix form can be written as

r = Sh+ z , (5.3a)

h = Λf0Ts
g , (5.3b)

wherer, h, g andz areN × 1 column vectors with elementsr(nTs), h(nTs), g(nTs)

andz(nTs), respectively,S andΛf0Ts
areN ×N diagonal matrices of diag{s(nTs)} and

diag
{
ej2πf0Tsn

}
, respectively, andn = 0, 1, . . . , N − 1.
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5.3 Basis Expansion Models

Accurate estimation of the fading processg(nTs) in (5.1b) requires complicated tech-

niques such as the Wiener filtering [4,37]. A simpler solution is based on approximating

g(nTs) using the basis expansion model [36,38]. This approximation simplifies the time-

variant fading model and converts it into a linear combination of several basis functions

as

g̃(nTs) =
M∑

m=1

amB(nTs,m) , (5.4)

whereB(nTs,m) are theM known basis functions andam are unknown expansion coef-

ficients. In matrix form, it can be written as

g̃ = Ba , (5.5)

whereB is anN × M matrix with elementsB(nTs,m) anda is anM × 1 vector of

expansion coefficientsam. Thus, the problem of estimatingN -dimensional time-variant

fading processg(nTs) is transformed into a lower dimensional problem of estimating

only M time-invariant expansion coefficientsam, where usuallyM << N . Therefore,

the vector of unknown parameters includes the expansion coefficients{am}Mm=1 and the

frequency offsetf0Ts.

The resulting approximated received signal model will be shown to have a similar form

to that of the slow fading multipath Rayleigh channels discussed in Chapter 4. As a result,

two novel joint estimators for the frequency-flat time-variant fading channels are proposed

in Sections 5.4, 5.5 by expanding the Bayesian and the maximumlikelihood approaches

that was discussed in Chapter 4 for the time-invariant frequency-selective channels.

Using the basis expansion model (5.5) to represent the channel fading in (5.1), the

approximated received signal and channel models, respectively, in matrix form can be

written as

r̃ = Sh̃+ z ; (5.6a)

h̃ = Λf0Ts
Ba , (5.6b)

where r̃, h̃ and z are N × 1 column vectors with elements̃r(nTs), h̃(nTs) and

z(nTs), respectively,S andΛf0Ts
areN × N diagonal matrices of diag{s(nTs)} and

diag
{
ej2πf0Tsn

}
, respectively, andn = 0, 1, . . . , N − 1.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 93

The proposed estimators rely on the fact that the approximation error can be ignored

when choosingM high enough, so that the BEM approximation model (5.6) can be used

instead of the original received signal model of the fast fading frequency-flat Rayleigh

channel represented in (5.1). Therefore, the processed model can be reformed as

r = Λf0Ts
Φa+ z ; Φ = SB , (5.7a)

h = Λf0Ts
Ba , (5.7b)

which is of a similar form to that of the time-invariant frequency-selective channel model

considered in Chapter 4. This encourages tracking the same way of estimation, and two

methods are involved. The first is based on the Bayesian approach that leads to the mini-

mum mean square error (MMSE) joint channel estimation. Whereas, the second is based

on the maximum likelihood (ML) approach. The Bayesian joint estimator demonstrates

a high-accuracy performance as it incorporates some prior knowledge about the required

parameters to be estimated [121]. However, the ML one, and without loosing much of the

accuracy, is a good choice when the statistical characteristics of the fading and noise are

unknown. The two proposed joint estimators are described below.

The BEM-based approach has been widely used due to its low complexity and high

accuracy. In this approach, in addition to the statistical estimation error, the BEM-based

estimator suffers from a modeling error. Different basis functions can be used in the BEM

such as complex exponential [38, 40], polynomial [39], discrete prolate spheroidal [41],

and B-splines [42,91,129]. The following four BEMs are most often considered in appli-

cations to channel estimation.

5.3.1 KL Functions

KL functions as described in Section 2.3.1 exploit the fading covariance matrixRg. This

allows the KL-BEM to provide the best approximation of the fading process provided the

perfect knowledge ofRg. TheN ×N matrixU of eigenvectors ofRg is obtained first as

RgU = UΥ , (5.8)

whereΥ is theN × N diagonal matrix of eigenvalues. Then the basis function matrix

B is formed by theM eigenvectors (columns ofU) corresponding to theM maximum

eigenvalues (diagonal elements ofΥ).
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5.3.2 DPS Functions

DPS functions as mentined in Section 2.3.2 are generated exploiting the Doppler fre-

quency. First, a matrixD is generated as

[D]u v =
sin (2πfDTs (u− v))

π (u− v)
, u, v = 1, . . . , N . (5.9)

Then,B is formed fromM eigenvectors ofD corresponding to theM maximum eigen-

values.

5.3.3 GCE Functions

GCE functions as discussed in Section 2.3.3 are a modified version of the complex expo-

nential functions for which the period of the basis functions is extended longer than the

observation interval, and are given by

B(nTs,m) = ej
2πnTs
ξN (m−1−M−1

2 ) , (5.10)

whereξ > 1, and here, we useξ = 2.

5.3.4 BS Functions

BS functions are described in Section 2.3.4 and do not requireany prior channel statistics.

The BS functions are given by [94]

Bη(x) =
1

η!

η+1∑

i=0

(−1)i
(
η + 1

i

)(
x

PTs
+
η + 1

2
− i

)η

+

, (5.11)

where

P =
N − 1

M − η
, (5.12)

PTs is the sampling interval separating two adjacent B-spline functions, andx+ =

max{0, x}. In this case,B(nTs,m) = Bη

(
nTs − (m− η+1

2
)PTs

)
. The matrixB of

the BS functions is a sparse matrix that only containsη + 1 nonzero elements in each

row, which makes it attractive for implementation. The accuracy and complexity of the
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BS-BEM approximation depends on the spline degreeη. In many situations, the cubic

B-spline (η = 3) provides the best trade-off between complexity and accuracy [94]. We

use the cubic B-spline in the simulation below wheneverM ≥ 4, and for1 ≤ M ≤ 3 we

useη =M − 1.

The approximation mean square error is defined as

ǫ2 = E





N−1∑

n=0

|g(nTs)− g̃(nTs)|2

N−1∑

n=0

|g(nTs)|2




. (5.13)

As described in [43], this error is inversely affected by thesampling factorγ that is given

as

γ =
1

fDTsP
. (5.14)

For a certain Doppler frequencyfDTs, which is assumed here to be known or can be

determined, increasingM leads to a decrease inP and an increase inγ, which results in a

desired decrease in the errorǫ2 [43]. However, in Section 5.7, it is shown that depending

on fDTs and the signal to noise ratio (SNR) range of interest, there isan optimum value

ofM , denoted asMO, above which the performance of the B-spline-based joint estimator

can not be improved. This is due to the fact that there is a lower bound, the CRLB, on

the variance of any unbiased estimator. Therefore, it is essential to useM = MO, so

that to prevent getting a low-accuracy performance (whenM < MO) or adding some

unnecessary extra complexity (whenM > MO).

The approximation error depends also on the method used to determine the spline co-

efficientsam. Different methods can be used to determineam, and in [43], the optimal

spline, spline interpolation and local spline approximations with several types of coeffi-

cients have been examined.

In the proposed algorithms however, these coefficients are estimated jointly with the

frequency offset as described in Sections 5.4, 5.5. The resulting estimation error of that

method is comparable to the approximation error of the optimal spline method while a

significantly lower complexity is achieved.
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5.4 Bayesian Joint Estimator

The Bayesian joint estimator is derived based on the Bayesian approach in which the

parametersa are assumed to be random variables whose particular realizations are to be

estimated [121]. In this case, the joint estimator requiresgiven prior probability density

functions (PDF) ofa, and the received signal has a conditional PDF of [48,121]

p (r|f0Ts, a) =
1

πNσ2N
exp

[
− 1

σ2
(r−Λf0Ts

Φa)H (r−Λf0Ts
Φa)

]
. (5.15)

The random spline coefficient vectora has to follow the assumed Rayleigh channel prop-

erties, and so, it is also zero-mean Gaussian random with normal complex distribution

and its prior PDF is

p(a) =
1

πM |Ra|
exp

[
−aHR−1

a a
]
, (5.16)

whereRa is the covariance matrix ofa. This matrix can be obtained as described in [129]

using the original covariance matrixRg of the fading process of the channel, obtained

in (5.2). The fading covariance matrix of the approximated fading process has to be equal

to that of the original one, and since the fading is Rayleigh (i.e. zero-mean), it follows

that [129]

Rg = E
{
ggH

}
= E

{
g̃g̃H

}
= E

{
BaaHBH

}
= BRaB

H . (5.17)

Multiplying both sides of (5.17) by
(
BHB

)−1
BH from the left andB

(
BHB

)−1
from

the right yields [129]

Ra =
(
BHB

)−1
BHRgB

(
BHB

)−1
. (5.18)

5.4.1 Frequency Offset Estimator

For estimation of the frequency offsetf0Ts, the expansion coefficientsam are considered

to be nuisance parameters that can be integrated out of the conditional PDFp(r|f0Ts, a)
through Bayesian approach [121]. This is expressed as [48]

p (r|fTs) =
∫
p (r|fTs, a) p(a)dℜ{a}dℑ{a} . (5.19)
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The frequency offset estimator is obtained by maximising the likelihood function

p (r|fTs) over a grid of frequenciesfTs covering the frequency acquisition rangeΨ =

[−ψ/2, ψ/2] as [48,121]

f̂0Ts = arg max
fTs∈Ψ

{p (r|fTs)} . (5.20)

The frequency acquisition rangeΨ can be considered either wide (ψ = 1) or narrow

(ψ << 1).

The likelihood functionp(r|fTs) is obtained by solving the integration in (5.19) which

gives [48]

p (r|fTs) =
exp

[
−σ−2rHr

]

πNσ2N

∫
exp

[
2ℜ
{
σ−2aHWfTs

}
− σ−2aHΓa

]
p(a)dℜ{a}dℑ{a} ,

(5.21)

where

Γ = ΦHΦ = BHSHSB , (5.22)

WfTs
= ΦHΛH

fTs
r = BHSHΛH

fTs
r . (5.23)

The PDF in (5.21) yields [48]

p (r|fTs) =
exp

[
−σ−2rHr

]

πNσ2N |σ−2RaΓ+ IM | exp
[
σ−2YfTs

]
, (5.24)

where

YfTs
= WH

fTs

(
Γ+ σ2R−1

a

)−1
WfTs

(5.25)

andIM is theM ×M identity matrix. Now, substituting (5.24) into (5.20) produces

f̂0Ts = arg max
fTs∈Ψ

{
exp

[
−σ−2rHr

]

πNσ2N |σ−2RaΓ+ IM | exp
[
σ−2YfTs

]
}
. (5.26)

Excluding the frequency-independent first factor inside the brackets in (5.26), and taking

the natural logarithm, the frequency offset estimator becomes [48]

f̂0Ts = arg max
fTs∈Ψ

{YfTs
} , (5.27)

which is a maximiser of the generalised periodogramYfTs
[44] over the frequency acqui-

sition range. Finally, the Bayesian frequency offset (BF) estimator is given by

f̂0Ts = arg max
fTs∈Ψ

{
WH

fTs

(
Γ+ σ2R−1

a

)−1
WfTs

}
(5.28a)

= arg max
fTs∈Ψ

{
rHΛfTs

SB
(
BHSHSB+ σ2R−1

a

)−1
BHSHΛH

fTs
r
}
. (5.28b)

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 98

5.4.2 Channel Estimator

The channel is then jointly estimated exploiting the estimated value of the frequency

offset. Replacing the frequency offset in (5.7a) by the estimated valuef̂0TsB, this model

becomes linear and can be reformed as

r = Ωa+ z ; Ω = Λ
f̂0TsB

Φ , (5.29)

where, after determininĝf0TsB,Ω is a knownN×M matrix. Hence, the MMSE estimator

of the spline coefficientsa is [121]

âB =
(
ΩHΩ+ σ2R−1

a

)−1
ΩHr . (5.30)

Substituting the value ofΩ from (5.29) into (5.30), and considering (5.22) and (5.23),the

estimator becomes

âB =
(
Γ+ σ2R−1

a

)−1
W

f̂0TsB
. (5.31)

Finally, the Bayesian joint channel and frequency offset (BJ)estimator is obtained by

substituting (5.31) into (5.6b) as

ĥ = Λ
f̂0TsB

B
(
Γ+ σ2R−1

a

)−1
W

f̂0TsB
(5.32a)

= Λ
f̂0TsB

B
(
BHSHSB+ σ2R−1

a

)−1
BHSHΛH

f̂0TsB

r . (5.32b)

5.5 Maximum Likelihood Joint Estimation

So far, the fast fading frequency-flat channel is consideredto have Rayleigh fading with

a known covariance matrixRg (i.e. a knownRa), and AWGN with a known variance

σ2. As can be seen in (5.28) and (5.32), these prior statisticalspecifications are included

in the derived Bayesian joint estimator. However, when dealing with different scenarios

where there is no certainty about these statistical properties of the fading and the AWGN,

the classical ML joint estimation approach can be used. For the ML approach, the coef-

ficientsa are assumed to be deterministic but unknown parameters which are required to

be estimated. In this case, the received signal has an unconditional PDF of [121]

p (r; f0Ts, a) =
1

πNσ2N
exp

[
− 1

σ2
(r−Λf0Ts

Φa)H (r−Λf0Ts
Φa)

]
. (5.33)
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5.5.1 Frequency Offset Estimator

The frequency offsetf0Ts is estimated using the same technique as described in [44] and

detailed in Section 4.4.1. The ML frequency offset (MLF) estimator is the maximiser of

the generalised periodogram

YfTs
= rHΛfTs

Φ
(
ΦHΦ

)−1
ΦHΛH

fTs
r (5.34)

over the frequency acquisition range and is given by

f̂0Ts = arg max
fTs∈Ψ

{
WH

fTs
Γ−1WfTs

}
(5.35a)

= arg max
fTs∈Ψ

{
rHΛfTs

SB
(
BHSHSB

)−1
BHSHΛH

fTs
r
}
. (5.35b)

5.5.2 Channel Estimator

After getting the estimated value of the frequency offset̂f0TsML, the channel can then be

jointly estimated. As shown in Section 4.4.2, the coefficientsa are estimated as [44]

âML = Γ−1W
f̂0TsML

, (5.36)

and finally from (5.6b) the ML joint channel and frequency offset (MLJ) estimator follows

as

ĥ = Λ
f̂0TsML

BΓ−1W
f̂0TsML

(5.37a)

= Λ
f̂0TsML

B
(
BHSHSB

)−1
BHSHΛH

f̂0TsML

r . (5.37b)

5.6 Efficient Dichotomous-based Implementation

For real-time implementation, the DS technique can lead to ahigh-accuracy performance

with a considerable decrease in complexity.

According to the proposed joint estimators in (5.28), (5.32), (5.35) and (5.37), the best

way for implementation based on the DS technique is summarised in Table 5.1.
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Table 5.1: Dichotomous Search Algorithms for the Proposed Joint Channel and Fre-

quency Offset Estimators for Frequency-Selective Time-Variant Fading Channels.

Compute G =





(
B

H
S
H
SB+ σ2

R
−1
a

)−1
, Bayesian approach

(
B

H
S
H
SB
)−1

, ML approach

Calculate WfTs
(m) = FFT {r(nTs)s

∗(nTs)B
∗(nTs, m), NFFT } ; m = 1, . . . ,M

Determine YfTs
=

M∑

u=1

M∑

v=1

[G]u v W
∗

fTs
(u)WfTs

(v)

Find fpTs = arg max
fTs∈Ψ

{YfTs
}

Locate Y1 = Yfp−1Ts
, Y2 = YfpTs

, Y3 = Yfp+1Ts

ForQ iterations do

∆fTs = ∆fTs/2

If Y3 < Y1 thenY3 = Y2 andfpTs = fpTs −∆fTs,

elseY1 = Y2 andfpTs = fpTs +∆fTs

WfpTs
(m) =

N−1∑

n=0

r(nTs)s
∗(nTs)B

∗(nTs, m)e−j2πfpTsn ; m = 1, . . . ,M

Y2 =

M∑

u=1

M∑

v=1

[G]u v W
∗

fpTs
(u)WfpTs

(v)

Finally f̂0Ts = fpTs , ĥ = ΛfpTs
BGWfpTs

5.7 Simulation Results and Performance Comparison for

different BEMs

A binary sequence transmitted through a time-variant Rayleigh fading channel and cor-

rupted with a complex AWGN is implemented. The received signal and channel models

in (5.1) are simulated using the modified version of Jakes’ model [64] that was proposed

in [81] and corrected in [83]. However, we assume in the estimation process that the re-

ceived signal and channel models are based on the BEM as in (5.7), and so, the results

contain the model mismatching error.

The SNR below is calculated as

SNR=
E
{
(Λf0Ts

Sg)H (Λf0Ts
Sg)

}

E{zHz} =
tr
{
SHSRg

}

Nσ2
z

, (5.38)

where the following matrices manipulation has been used

(AB)H = BHAH . (5.39)
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The mean square error (MSE) of the joint channel and frequency offset estimation is

calculated as

h-MSE=
1

Nt

Nt∑

t=1

∑N−1
n=0

∣∣∣h(nTs)− ĥt(nTs)
∣∣∣
2

∑N−1
n=0 |h(nTs)|2

, (5.40)

over a number ofNt = 10 000 simulation trials, wherêhi(nTs) is thenth estimated

channel sample in thetth simulation trial. We use a binary pseudo-random transmitted

sequence of lengthN = 128, the frequency offset isf0Ts = 0.0123, the size of the FFT in

the coarse search isNFFT = N = 128, the number of dichotomous iterations isQ = 5,

and the frequency acquisition range is wide (ψ = 1).

As seen in (5.32), the joint Bayesian BEM-based estimators employ prior information

about the Doppler frequency due to the dependence ofRa (andB for the KL and DPS

BEMs) onfDTs. The performance of the joint BEM-based estimators is studied first for

the case of the perfect knowledge of the Doppler frequency. Then, the performance of

different BEMs is compared in two scenarios of the mismatchedDoppler frequency. The

estimators with perfect knowledge of the Doppler frequencyare termed as perfect, the

others are termed as mismatched.

5.7.1 Perfect Doppler Estimation

Here we assume that the receiver knows the exact value of the Doppler frequency. Fig-

ure 5.1 shows theM -dependenth-MSE performance for the BEM-based dichotomous

joint Bayesian estimators in slow (fDTs = 0.005), moderate (fDTs = 0.02), and fast

(fDTs = 0.05) fading channels, where SNR= 30 dB. It can be seen that for any BEM,

there exists a thresholdM (Mth), below whichh-MSE increases rapidly. This is due to a

high modeling error for such a lowM . Theh-MSE stays almost constant forM > Mth.

The exploitation of the fading covariance matrix (inRa) and the noise varianceσ2
z in the

Bayesian estimators prevents degradation in the performance for highM . For a higher

fDTs, the estimator requires a higherMth to achieve its best performance. TheMth for

the KL and DPS BEMs is lower than that for the GCE and BS BEMs. This isdue to

exploitation of prior statistical information of the channel when generating KL and DPS

basis functions. However, the best achieved performance, for M > Mth, is the same for

all BEMs.
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Figure 5.1:h-MSE of the Bayesian joint estimators for frequency-flat time-variant fading

channels as a function ofM vs fDTs for perfect knowledge of the Doppler frequency;

N = 128, f0Ts = 0.0123,NFFT = 128,Q = 5 and SNR= 30 dB.

In real life scenarios however, it is difficult for the receiver to obtain the exact value

of the Doppler frequency, which means that there will be a mismatch between the real

Doppler frequencyfDTs and the corresponding value used in the estimator, which is

termed aŝfDTs.

5.7.2 Mismatched Doppler Estimation

We consider two possible scenarios for choosinĝfDTs. The first is to use a value, which

corresponds to a maximum speed difference between two communication terminals. The

second is to estimate the real Doppler frequency.
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Figure 5.2:h-MSE of the Bayesian joint estimators for frequency-flat time-variant fading

channels as a function of SNR for the mismatched Doppler frequency;N = 128, f0Ts =

0.0123, NFFT = 128, Q = 5, fDTs = 0.005 andM = 7; perfect: f̂DTs = fDTs and

mismatched:̂fDTs = 0.05.

Significantly Overestimated Doppler Frequency

Here we consider that the receiver assumes a fixed Doppler frequency, such aŝfDTs =

0.05. Figure 5.2 shows theh-MSE performance of the joint estimators forfDTs = 0.005

andM = 7. For the perfect estimators, all BEMs allow achieving the same h-MSE

performance. For the mismatched estimators, the ones usingthe GCE and BS BEMs are

seen to be less sensitive to the mismatched Doppler frequency than those using the KL

and DPS BEMs. Theh-MSE of the mismatched GCE and BS-based estimators is close

to that of the perfect estimators, whereas the KL and DPS-based estimators suffer from

a significantly higherh-MSE with the DPS-based one being the worst. This is due to

the fact that the basis matrixB for the KL and DPS functions depends on the Doppler

frequency, whereas for the GCE and BS, it is independent of the Doppler frequency.
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Figure 5.3:h-MSE of the Bayesian joint estimators for frequency-flat time-variant fading

channels as a function ofM for the mismatched Doppler frequency;N = 128, f0Ts =

0.0123,NFFT = 128,Q = 5, SNR= 30 dB, fDTs = 0.005 andf̂DTs = 0.05.

A better understanding of such mismatched estimators can beobtained from theM -

dependent performance in Figure 5.3 for SNR= 30 dB. Unlike the case with the perfect

estimators (as shown in Figure 5.1), the GCE and BS BEMs now allowachieving a better

performance and using a significantly smallerM than the KL and DPS BEMs. This can

also be seen in Figure 5.4. WithM = 5, the GCE and BS-based mismatched estimators

achieve a high-accuracy performance, which is very close tothat of the perfect estimators.

The performance of the KL and DPS-based mismatched estimators usingM = 17 is

better than that usingM = 7 (see Figure 5.2), however it is still inferior to that of the

GCE and BS-based mismatched estimators withM = 5.

Estimated Doppler Frequency

Here we assume that the receiver estimates the Doppler frequencyfDTs that is considered

to be random and uniformly distributed between0 and0.02. The estimated valuêfDTs is
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Figure 5.4:h-MSE of the Bayesian joint estimators for frequency-flat time-variant fading

channels as a function of SNR for the mismatched Doppler frequency;N = 128, f0Ts =

0.0123, NFFT = 128, Q = 5 andfDTs = 0.005; perfect:f̂DTs = fDTs andM = 7, and

mismatched:̂fDTs = 0.05,M = 5 for GCE & BS, andM = 17 for KL & DPS.

considered as random and normally distributed with meanfDTs and variance16× 10−6.

Theh-MSE performance of such estimators is shown in Figure 5.5. We useM = 16

that guarantees a best performance forfDTs up to0.02 as expected from Figure 5.1. The

results show that the GCE and BS BEMs allow achieving a significantly better perfor-

mance compared to that of the KL and DPS-based estimators. The performance of the

DPS-based mismatched estimator is the poorest.

Finally, theh-MSE performance of the mismatched estimators againstM is examined

in Figure 5.6. The results show that the GCE and BS BEMs allow achieving a similar

performance, which is significantly better than that of the estimators using the KL and

DPS BEMs.

It is seen that the GCE and BS BEMs are a good choice in practical scenarios, due to

their low sensitivity to the mismatched Doppler frequency.Unlike the case with the GCE,
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Figure 5.5:h-MSE of the Bayesian joint estimators for frequency-flat time-variant fading

channels as a function of SNR for the mismatched Doppler frequency;N = 128, f0Ts =

0.0123, NFFT = 128, Q = 5, fDTs ∼ U (0, 0.02) andM = 16; perfect: f̂DTs = fDTs

and mismatched:̂fDTs ∼ N (fDTs, 16× 10−6).

the basis matrixB for the BS BEM is a sparse matrix, which results in a low complexity

of the estimator and makes the BS a good choice in practice.

Therefore, the B-spline functions are used as a BEM throughoutthis thesis and the

BS-based estimators are examined in details below.
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Figure 5.6:h-MSE of the Bayesian joint estimators for frequency-flat time-variant fad-

ing channels as a function ofM for the mismatched Doppler frequency;N = 128,

f0Ts = 0.0123, NFFT = 128, Q = 5, SNR = 30 dB, fDTs ∼ U (0, 0.02) and

f̂DTs ∼ N (fDTs, 16× 10−6).

5.8 Simulation Results and Performance Analysis of Es-

timators using B-Spline BEM

The square root of the mean square error (RMSE) of the frequency offset and channel

estimates, respectively, are calculated as

f0Ts-RMSE=

√√√√ 1

Nt

Nt∑

i=1

(
f0Ts − f̂0Tsi

)2
, (5.41a)

h-RMSE=

√√√√√ 1

Nt

Nt∑

i=1

∑N−1
n=0

∣∣∣h(nTs)− ĥi(nTs)
∣∣∣
2

∑N−1
n=0 |h(nTs)|2

, (5.41b)

overNt = 10 000 simulation trials, wherêf0Tsi andĥi(nTs) are frequency and channel

estimates obtained in theith simulation trial.
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Table 5.2: Estimators for Frequency-Selective Time-Variant Fading Channels Considered

in the Simulation.

Estimator Algorithm Frequency Channel Equation

Frequency

BF Deterministic Unknown Random (5.28)

MLF Deterministic Unknown Deterministic (5.35)

RMLF Deterministic Known (5.43)

Channel

BC Ignored Random (5.42)

BJ Deterministic Random (5.32)

MLJ Deterministic Deterministic (5.37)

RBC Known Random (5.32)

A binary pseudo-random sequence of lengthN is generated as the pilot signal, the size

of the FFT in the coarse search stage isNFFT , and the frequency acquisition range, unless

otherwise specified, is wide (ψ = 1).

The proposed joint channel and frequency offset estimatorsare compared with a ref-

erence Bayesian channel estimator, denoted as RBC, where the frequency offset is con-

sidered to be known (or zero). This estimator is given as in (5.32) but withf̂0Ts being

replaced withf0Ts. Another estimator is introduced for comparison, the Bayesian chan-

nel estimator, denoted as BC, which ignores the frequency offset of the channel and is

derived as

ĥ = B
(
BHSHSB+ σ2R−1

a

)−1
BHSHr . (5.42)

In addition, the frequency estimators are compared with a reference ML frequency es-

timator, denoted as RMLF, where the fading process of the channel is considered to be

known. This is the well-known ML frequency estimator that isgiven as [13]

f̂0Ts = arg max
fTs∈Ψ

∣∣∣∣∣
N−1∑

n=0

s∗(nTs)g
∗(nTs)r(nTs)e

−j2πfTsn

∣∣∣∣∣

2

. (5.43)

The frequency estimation is an intermediate stage for the joint channel estimation and

so its accuracy is not as significant as that of the final total channel estimation (that con-

tains both the fading and the frequency offset). However thefrequency estimation study is
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added to gain insight about the proposed algorithms. Table 5.2 summarises the properties

of the different estimators considered in the simulation.

To start with, it is of significant importance to learn how to select the key parameters,Q

andM so as to get the best performance of the proposed algorithms within the minimum

complexity. For that reason, the reference estimators RMLF and RBC are examined first

as they have the maximum accuracy and their RMSE can serve as lower bounds for the

proposed estimators.

Figure 5.7 shows the SNR-dependent RMSE of (a) the RMLF estimator with different

Q and (b) the RBC estimator with differentM . As can be seen in Figure 5.7(a), for each

SNR in the low range below20 dB, thef0Ts-RMSE reaches the same level for allQ

values, and the increase inQ does not affect the accuracy in this range. For the highest

SNR of60 dB, thef0Ts-RMSE reaches the minimum value only forQ = 14. For the other

values ofQ, there is aQ-dependent maximum SNR, denoted as SNRmax, above which the

f0Ts-RMSE diverges above that for theQ = 14. Increasing the value ofQ leads to an

increase in the SNRmax. These results reveal that according to the SNRmax implied by

the channel, the value ofQ needs to be adjusted to an optimum valueQO that assures a

high-accuracy performance over all the considered SNR range. The criterion for selecting

QO is as follows.

• For the given SNRmax, the minimum requiredf0Ts-RMSE (f0Ts-RMSEmin) is de-

termined from thef0Ts-RMLF estimator’s plot forQ = 14 in Figure 5.7(a), which

is of a comparable level to that of the CRLB at that point.

• For that error, the requiredQO is the one that makes the final frequency step after

all the iterations in the dichotomous fine search stage belowf0Ts-RMSEmin. Hence

1

NFFT2QO
< (f0Ts-RMSEmin)

⇒ QO > log2

(
1

NFFT (f0Ts-RMSEmin)

)
. (5.44)

This criterion is followed later on in the simulation results examining the proposed BJ

and MLJ estimators (and the corresponding BF and MLF estimators), where SNRmax is

assumed to be30 dB, and for this caseQO = 8.
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Figure 5.7: RMSE of the reference estimators for frequency-flat time-variant fading chan-

nels as a function of SNR;N = 64, NFFT = 256, f0Ts = 0.01 and fDTs = 0.02;

(a) RMLF withM = 18 and differentQ, and (b) RBC withQ = 14 and differentM .
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The same attribute is applied regarding the required value of M in the RBC estimator

for getting the best accuracy over a certain SNR range. This can be seen in Figure 5.7(b),

where the SNRmax defining the range of the best reached accuracy is directly related toM .

For SNRmax = 60 dB, the requiredMO is 18, whereas for a lower SNRmax, a lower value

of MO is sufficient. The value ofMO depends as well on the knownfDTs. Therefore, the

best way to obtain the value ofMO is according to the following criterion.

• For the given SNRmax, theh-RMSEmin is determined from the RBC estimator’s plot

for M = 18 in Figure 5.7(b).

• For that error,γ is determined from the relationship between the approximation

error and the sampling factor given for the optimal splines in [43].

• For thatγ, P is determined from (5.14) according to the givenfDTs.

• For thatP , the requiredMO is determined from (5.12) according to the givenN

andTs.

For the simulation examining the proposed BJ and MLJ estimators that is followed later

on, SNRmax is assumed to be30 dB, and the desiredMO depends on the givenfDTs

according to the above criterion and is determined such thatthe sampling factorγ =

(M−3)/fDTs(N−1) is approximately5 for the BJ estimator, and4 for the MLJ estimator

(e.g. for fDTs = 0.02,MO = 9 for the BJ estimator andMO = 8 for the MLJ estimator).

It is worth mentioning that the simulation results described above in Figure 5.7(b) were

carried out first forQ = 14 so as to concentrate the attention on the influence of changing

M without being affected by a lowQ. Then, the simulations were repeated for the op-

timum valuesQO deducted from Figure 5.7(a) according to the best reached SNR range

for a certainM obtained in the first time. Identical results to that shown inFigure 5.7(b)

have been obtained. The same was done with the simulations inFigure 5.7(a), starting

with M = 18 for all Q values, then repeating with the optimumMO.

Figure 5.8 shows the SNR-dependentf0Ts-RMSE of the considered frequency es-

timators (mentioned in Table 5.2) for Doppler frequenciesfDTs = 0.01, 0.02, 0.03

(M = 6, 9, 12 for the BF estimator, andM = 6, 8, 11 for the RMLF and MLF esti-

mators). It can be seen that thef0Ts-RMSE of the BF estimator is considerably higher
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Figure 5.8: f0Ts-RMSE of the proposed BS-based frequency offset estimators for

frequency-flat time-variant fading channels as a function of SNR for different values of

fDTs (andM ); N = 64,NFFT = 256, f0Ts = 0.01 andQ = 8.

than that of the RMLF estimator over all the considered SNR range. In addition, the

threshold SNR (SNRth) below which thef0Ts-RMSE increases more rapidly, is becom-

ing higher for lowerfDTs. Thef0Ts-RMSE above the SNRth is approximately the same

for the differentfDTs, with slightly higher levels forfDTs = 0.01. The performance is

even poorer for the MLF estimator. It can be noticed that below the SNRth, the f0Ts-

RMSE is approximately the same for the differentfDTs, and with slightly higher SNRth

for lower fDTs. However, thef0Ts-RMSE differs significantly above the SNRth and is

higher for higherfDTs.

The poor frequency offset estimation is expected and due to the effect of the Doppler

frequency in the time-variant fading channels. In practical scenarios, the final joint chan-

nel estimation̂h (that contains the fading process and the frequency offset)is of more

significant importance for the receivers. Therefore, and asfar as it is concerned in the

proposed joint channel estimator, there is no need to employmore complicated techniques

for getting an accurate individual estimate off0Ts.
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Figure 5.9:h-RMSE of the proposed BS-based joint estimators for frequency-flat time-

variant fading channels as a function of SNR for different values offDTs (andM ); N =

64,NFFT = 256, f0Ts = 0.01 andQ = 8.

Figure 5.9 shows the SNR-dependenth-RMSE of the considered channel estimators

for Doppler frequenciesfDTs = 0.01, 0.02, 0.03 (M = 6, 9, 12 for the RBC and BJ

estimators,M = 6, 8, 11 for the MLJ estimator, andM = 7, 9, 11 for the BC estimator).

It can be seen that theh-RMSE of the proposed BJ estimator is very close to that of the

(ideal) RBC estimator throughout the considered range of SNRs above0 dB. A slight

shift can be noticed betweenh-RMSE plots that correspond to differentfDTs, similarly

to that of the RBC estimator. But in general, a high-accuracy performance is obtained

for all values offDTs. The same behavior can be seen for the proposed MLJ estimator,

except for the small loss in the accuracy that is more noticeable at low SNRs. This is

due to the absence of the prior information ofRa andσ2. For the BC estimator, a poor

performance in general can be seen, withh-RMSE that increases for lowerfDTs. This

shows the inappropriateness of such estimators and gives anidea about the improvement

offered by considering the frequency offset for the new joint estimators.

Figure 5.10 shows thef0Ts-dependenth-RMSE for differentfDTs (andM values as

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 114

0   0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
−2

10
−1

10
0

f0Ts

h
-R

M
S
E

 

 

R
M

S
E

  

fDTs = 0.03, M = 12
fDTs = 0.02, M = 9
fDTs = 0.01, M = 6

BC

RBCBJ
MLJ

Figure 5.10:h-RMSE of the proposed BS-based joint estimators for frequency-flat time-

variant fading channels as a function off0Ts for different values offDTs (andM ); N =

64,NFFT = 256,Q = 8 and SNR= 30 dB.

mentioned above). It can be seen that for the proposed BJ estimator, a high-accuracy

performance in general is obtained for all the values offDTs and throughout the entire

widef0Ts range, where theh-RMSE is constant and almost the same as that of the (ideal)

RBC estimator. This is true as well for the proposed MLJ estimator with theh-RMSE

plots being slightly upward shifted by the same amount over all the f0Ts range and for all

thefDTs values. However, theh-RMSE of the BC estimator increases rapidly diverging

from that of the RBC estimator at the beginning of thef0Ts range. This expresses a poor

and impractical performance even with a low frequency offset.

Figure 5.11 shows thefDTs-dependenth-RMSE for different frequency offsetsf0Ts,

M = 16 for the RBC, BJ and BC estimators, andM = 12 for the MLJ estimator. For

the proposed BJ estimator, a high-accuracy performance can be seen with theh-RMSE

having the same level for all thef0Ts values and practically coincides with that of the

(ideal) RBC estimator over all the consideredfDTs range. Theh-RMSE level however

can be seen slightly increasing whenfDTs increases. For the proposed MLJ estimator,
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Figure 5.11:h-RMSE of the proposed BS-based joint estimators for frequency-flat time-

variant fading channels as a function offDTs for different values off0Ts; N = 64,

NFFT = 256,Q = 8 and SNR= 30 dB.

theh-RMSE is the same for all thef0Ts values but with higher level than that of the RBC

estimator. This additional error decreases slowly with theincrease infDTs. However, the

h-RMSE of the BC estimator is varied significantly withf0Ts. This error can approach

that of the MLJ estimator for only the low frequency offset of0.005 and highfDTs. Apart

from that, a significant error is obtained.

5.8.1 Performance Analysis of Frequency Offset Estimators

The performance of the proposed BF and MLF estimators dependson the parameters

NFFT , Q andM . Simulation results (not shown here) reveal that the minimum required

value ofNFFT to achieve an accurate frequency offset estimation is4N , which is in

agreement with [44,48]. The optimal value ofQ depends on the maximum SNR, and for

a range of interest up to30 dB, we useQ = 8. These values are used in the simulation.
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However, the optimal value ofM is not the same in the two proposed estimators, and

it depends on SNR andfDTs. We investigate the performance of these estimators for

different values ofM , SNR andfDTs to get a better understanding of the optimal value

of M to be used for each estimator.

Figure 5.12 shows theM -dependentf0Ts-RMSE of the proposed frequency offset

estimators for differentfDTs. We use cubic (η = 3) splines forM > 3, and zero-

order (η = 0), linear (η = 1) and parabolic (η = 2) splines forM = 1, 2 and 3,

respectively. Thef0Ts-RMSE of both estimators decreases asM increases. This is due

to the decrease of the model mismatching error [43]. However, for the MLF estimator,

the f0Ts-RMSE reaches a minimum at a certain optimalM and increases with further

increase ofM . The MLF estimator is more sensitive to the choice ofM for a lowerfDTs

and a lower SNR. On the other hand, thef0Ts-RMSE of the BF estimator continues to

decrease before reaching a floor level at a certain thresholdM . Thus, the exploitation

of the fading covariance matrixRg and the noise varianceσ2 in the BF estimator allows

achieving a higher-accuracy performance compared to that of the MLF estimator. In both

estimators, a greater value of optimal/thresholdM is required as SNR orfDTs increases,

where the thresholdM of the BF estimator is always greater than the optimalM of the

MLF estimator.

Figure 5.13 shows thefDTs-dependentf0Ts-RMSE of the estimators for differentM .

For the BF estimator, a high-accuracy performance is achieved for all Doppler frequencies

up to a certain value (depending onM ), above which thef0Ts-RMSE increases rapidly.

Apart from the very low Doppler frequencies, the increase inthe minimumf0Ts-RMSE

of the BF estimator is hardly noticeable asfDTs increases. However, the MLF estimator

achieves its best performance for a certainfDTs-range (depending onM ), where thef0Ts-

RMSE increases rapidly outside that range. This range becomes wider for higher Doppler

frequencies.

It is seen that the optimal choice ofM depends on SNR andfDTs. In the following

simulation, the performance is investigated for SNR-range up to 30 dB, using one value

of M for the entire range. According to Figure 5.12, the threshold M at SNR= 30 dB

will guarantee a best performance at SNR≤ 30 dB for the BF estimator. However, for the

MLF estimator, since there is a degradation in the performance asM increases higher than
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Figure 5.12: f0Ts-RMSE of the proposed BS-based frequency offset estimators for

frequency-flat time-variant fading channels as a function of M for different values of

fDTs; N = 100, NFFT = 4N , f0Ts = 0.0123 andQ = 8; (a) SNR = 15 dB and

(b) SNR= 30 dB.
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the optimalM , using the optimalM at SNR= 30 dB will not allow a good performance

for lower SNRs. Other simulation results (not presented here) have shown that the optimal

M at SNR= 15 dB (midrange) provides the best trade off between performance at low

and high SNR-range. For that reason, the optimalM of the MLF estimator is chosen such

that to achieve the best performance at SNR= 15 dB, whereas the thresholdM of the BF

estimator is chosen such that to achieve the best performance at SNR= 30 dB. Simulation

results for different values ofN (not presented here) have shown that the optimal choice of

M can be determined such that the sampling factorγ = 1/(fDTsP ) [43], for SNR-range

of interest up to30 dB, is

γ =
M − η

fDTs(N − 1)
≈




2.5 , for MLF estimator,

5 , for BF estimator.
(5.45)

Now, the performance of the proposed frequency offset estimators is compared with

the performance of known frequency offset estimators that rely on the normalized corre-
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lation samples

Rx(mTs) =
1

N −m

N−1∑

n=m

x(nTs)x
∗(nTs −mTs) , (5.46)

their phasesϕ(mTs) = arg{Rx(mTs)}, and/or their phase difference∆ϕ(mTs) =

ϕ(mTs) − ϕ(mTs − Ts) wherex(nTs) = r(nTs)s
∗(nTs). In our simulation, we con-

sider the following estimators:

• A frequency estimator proposed in [7] (referred to as the SL estimator) is given by

F̂0 =
ϕ(LTs)

2πL
. (5.47)

• An estimator presented in [8] (referred to as the BS estimator) is given by

F̂0 =
1

2πL

L∑

m=1

∆ϕ(mTs) . (5.48)

• An estimator in [8] (referred to as the NLS estimator) is given by

F̂0 =
1

2
argmax

F∈Ψ
ℜ
{

L∑

m=0

R2
x(mTs)e

−j2πmF

}
. (5.49)

• A simplified NLS estimator proposed in [10,11] (referred to as the SNLS estimator)

is given by

F̂0 =

∑L

m=1m |Rx(mTs)|2 ϕ(mTs)
2π
∑L

m=1m
2 |Rx(mTs)|2

. (5.50)

• To extend the frequency acquisition range of the SNLS estimator, a frequency es-

timator proposed in [10] (referred to as the SNLSu estimator) is given as in (5.50)

but withϕ(mTs) being replaced with the unwrapped phase

ϕu(mTs) = ϕu(mTs − Ts) + arctan

{
sin (∆ϕ(mTs))

cos (∆ϕ(mTs))

}
, (5.51)

whereϕu(0) = ϕ(0).

• An approximated NLS estimator proposed in [11] (referred toas the ANLS estima-

tor) is given by

F̂0 =

∑L

m=1

[∑L−1
k=m k |Rx(mTs)|2

]
∆ϕ(mTs)

2π
∑L

m=1m
2 |Rx(mTs)|2

. (5.52)
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Table 5.3: Optimal Choice ofM for the Proposed Frequency Offset Estimators for

Frequency-Selective Time-Variant Fading Channels.

Optimal M ThresholdM

fDTs MLF BF

0.005 3 5

0.01 5 8

0.05 15 28

Table 5.4: Optimal Choice ofL for the Correlation-Based Frequency Offset Estimators

for Frequency-Selective Time-Variant Fading Channels Considered in the Simulation.

Optimal L

fDTs BS SL NLS SNLS SNLSu ANLS

0.005 9 9 12 9 8 9

0.01 5 5 4 5 5 5

0.05 1 1 1 1 1 1

Figure 5.14 shows the SNR-dependentf0Ts-RMSE of the frequency offset estimators

in the slow (fDTs = 0.005), moderate (fDTs = 0.01) and fast (fDTs = 0.05) fading chan-

nels. For the proposed estimators, we use values ofM that satisfy (5.45) as recorded in

Table 5.3. The optimal choice ofL for the correlation-based estimators are summarized

in Table 5.4 and obtained according to simulation results not shown here. For all scenar-

ios, there exists a threshold SNR (SNRth) below which thef0Ts-RMSE increases rapidly.

The proposed BF and MLF estimators outperform the correlation-based estimators in all

the fading channels at SNR> SNRth. The BF estimator outperforms the MLF estimator.

For all estimators, for lowerfDTs, SNRth is higher andf0Ts-RMSE at SNR> SNRth

is smaller. For SNR< SNRth, the f0Ts-RMSE depends on the frequency acquisition

range [47]. The SL and SNLS estimators possess a narrow (L-dependent) frequency ac-

quisition range ofψ = 1/L [7, 11], which explains the relatively lowf0Ts-RMSE. For

the proposed estimators, the SNRth and thef0Ts-RMSE for SNR< SNRth depend on the

frequency acquisition range, and in Figure 5.14, the wide (ψ = 1) acquisition range is

used.
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Figure 5.15: f0Ts-RMSE of the proposed BS-based frequency offset estimators for

frequency-flat time-variant fading channels as a function of SNR for different values of

ψ; N = 100, NFFT = 4N , f0Ts = 0.0123, fDTs = 0.01, Q = 8, M = 5 for MLF and

M = 8 for BF.

Figure 5.15 shows the SNR-dependentf0Ts-RMSE of the proposed frequency offset

estimators for differentψ, wheref0Ts = 0.0123 andfDTs = 0.01. It can be seen that

using a narrower frequency acquisition range leads to an improvement in the performance

at SNR< SNRth. This demonstrates the superiority of the proposed frequency offset esti-

mators over the correlation-based estimators in having an adjustable frequency acquisition

range (up toψ = 1).

Figure 5.16 shows thef0Ts-dependentf0Ts-RMSE of the frequency offset estimators

for fDTs = 0.01 and SNR= 10 dB. The value ofL for the correlation-based estimators

is selected according to Table 5.4. Both proposed estimatorspossess the widest frequency

acquisition range among the investigated estimators. The theoretical frequency acquisi-

tion range isψ = 1 for the BF, MLF, ANLS and BS estimators,ψ = 0.5 for the SNLSu

and NLS estimators, andψ = 1/L = 0.2 for the SNLS and SL estimators. This can

be achieved at high SNRs, whereas for SNR= 10 dB, the real frequency acquisition
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Figure 5.16:f0Ts-RMSE of the frequency offset estimators for frequency-flat time-variant

fading channels as a function off0Ts; N = 100, fDTs = 0.01, SNR= 10 dB,M = 4 for

MLF andM = 6 for BF.

range of the estimators is slightly lower than the theoretical one. The proposed estimators

outperform the correlation-based estimators over all the investigated range off0Ts.

5.8.2 Performance Analysis of Joint Channel and Frequency Offset

Estimators

The performance of the proposed joint channel and frequencyoffset estimators is com-

pared with the performance of an ideal reference Bayesian channel (RBC) estimator,

where the frequency offset is known. This estimator is givenas in (5.32) but witĥF0 being

replaced withf0Ts. Another estimator is also introduced for comparison, the Bayesian

channel (BC) estimator, which ignores the frequency offset and is given by

ĥ = B
(
BHSHSB+ σ2R−1

a

)−1
BHSHr . (5.53)

Table 5.5 summarizes properties of the estimators considered in the simulation.
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Table 5.5: Channel Estimators for Frequency-Selective Time-Variant Fading Channels

Considered in the Simulation.

Algorithm Frequency Offset Channel Equation

RBC Known Random (5.32)

BC Ignored Random (5.53)

BJ Deterministic Random (5.32)

MLJ Deterministic Deterministic (5.37)

Table 5.6: Optimal Choice ofM for the Proposed Estimators for Frequency-Selective

Time-Variant Fading Channels at SNR= 30 dB.

Optimal M ThresholdM

fDTs MLF MLJ RBC BC BJ BF

0.01 6 7 8 10 8 8

0.02 9 11 13 13 13 13

0.03 12 15 18 16 18 18

Figure 5.17 shows theM -dependenth-RMSE of the joint estimators for different

fDTs. The best performance of the MLJ estimator is achieved at an optimal value ofM ,

above which theh-RMSE increases slowly. However, the BJ estimator achieves a better

performance for highM values, and theh-RMSE reaches a floor level at a thresholdM

depending onfDTs. For a higherfDTs, the estimators require a higherM .

Figure 5.18 shows thefDTs-dependenth-RMSE of the joint estimators for different

M . For the BJ estimator, an optimal performance can be seen for Doppler frequencies

lower than a certain value (depending onM ), above which theh-RMSE increases rapidly.

Using a greater value ofM allows maintaining the optimal performance for a wider range

of Doppler frequencies. The optimal performance is seen to cover the Doppler frequencies

up tofDTs = 0.1 usingM = 53. However for the MLJ estimator, and depending on the

value ofM , a good performance can be achieved for a certainfDTs range, above which

theh-RMSE increases rapidly. For a greater value ofM , this range becomes wider and
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Figure 5.17:h-RMSE of the proposed BS-based joint estimators for frequency-flat time-

variant fading channels as a function ofM for different values offDTs; N = 100,

NFFT = 4N , f0Ts = 0.0123,Q = 8 and SNR= 30 dB.

covers higher Doppler frequencies.

Simulation results (not presented here) have shown that theoptimalM also depends

on SNR andN , and an optimal/threshold value ofM throughout an SNR-range of interest

up to30 dB is determined such that the sampling factor is

γ ≈




4 , for MLJ estimator,

5 , for BJ estimator.
(5.54)

Figure 5.19 shows the SNR-dependenth-RMSE of the channel estimators for different

fDTs. The value ofM for the estimators is selected according to Table 5.6. Theh-RMSE

of the BJ estimator is very close to that of the (ideal) RBC estimator throughout the SNR-

range. For all the values offDTs, a high-accuracy performance in general is obtained. The

same behavior can be seen for the proposed MLJ estimator, except for a slight increase

of h-RMSE due to the absence of the prior information ofRa andσ2. However, the BC
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Figure 5.18:h-RMSE of the proposed BS-based joint estimators for frequency-flat time-

variant fading channels as a function offDTs for different values ofM ; N = 100,

NFFT = 4N , f0Ts = 0.0123,Q = 8 and SNR= 30 dB.

estimator demonstrates a poor performance in all scenarios.

Figure 5.20 shows thef0Ts-dependent RMSE of the channel estimators in Fig-

ure 5.20(a) and the frequency offset estimators in Figure 5.20(b) for differentfDTs. We

use the values ofM as summarized in Table 5.6. For the BJ estimator and all Doppler

frequencies, a high-accuracy performance can be seen throughout the entire wide fre-

quency acquisition range, where theh-RMSE is constant and almost the same as that of

the (ideal) RBC estimator. The same is seen for the proposed MLJestimator with theh-

RMSE plots being slightly upward shifted over allf0Ts range and for all thefDTs values.

However, theh-RMSE of the BC estimator increases rapidly diverging from that of the

RBC estimator asf0Ts increases. This shows a poor performance of such channel esti-

mators, even for low frequency offset values. The proposed frequency offset estimators,

as seen in Figure 5.20(b), possess a wide frequency acquisition range (ψ ≈ 1) for all the

examined Doppler frequencies.
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Figure 5.19:h-RMSE of the proposed BS-based joint estimators for frequency-flat time-

variant fading channels as a function of SNR for different values offDTs; N = 100,

NFFT = 4N , f0Ts = 0.0123 andQ = 8.

Finally, a valuable characteristic of the proposed joint estimators is investigated below.

So far in the simulation, we usedNFFT = 4N = 400 andQ = 8, which is a neces-

sity for a high-accuracy frequency offset estimation for SNR up to30 dB. However, the

proposed joint estimators do not require that much accuracyin the frequency offset es-

timation and can achieve a good performance without zero-padding the processed signal

(i.e. with NFFT = N ) and using a few dichotomous iterations. Figure 5.21 shows the

f0Ts-dependent RMSE for differentNFFT andQ, wherefDTs = 0.01, SNR = 30 dB

andM = 8. In Figure 5.21(a), theh-RMSE of the BJ estimator is plotted against that of

the ideal RBC estimator, whereas Figure 5.21(b) illustrates thef0Ts-RMSE of the BF esti-

mator. For the BF estimator, a high-accuracy frequency offset estimation performance, as

seen in Figure 5.21(b), is only achieved forNFFT = 400 andQ = 8. UsingNFFT = 100

and lowerQ leads to a significant performance degradation. For the BJ estimator, a per-

formance very close to that of the ideal RBC estimator is achieved forNFFT = 400 and

Q = 8. However, the performance is still very good when usingNFFT = 100 andQ = 4,
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Figure 5.20: RMSE of the proposed BS-based estimators for frequency-flat time-variant

fading channels as a function off0Ts for different values offDTs;N = 100,NFFT = 4N ,

Q = 8 and SNR= 30 dB; (a) proposed joint estimators and (b) proposed frequencyoffset

estimators.
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Figure 5.21: RMSE of the proposed BS-based Bayesian estimatorsfor frequency-flat

time-variant fading channels as a function off0Ts for different values ofNFFT andQ;

N = 100, fDTs = 0.01, SNR= 30 dB; (a) proposed BJ and ideal RBC estimators, and

(b) proposed BF estimator.
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where the change in theh-RMSE is hardly noticeable. ForQ = 2 andQ = 0 (coarse

search only), the performance degradation of the BJ estimator is less significant than that

of the BF estimator. Similar simulation (not shown here) has been carried out for the

proposed ML-based estimators. The results have shown that the MLJ estimator achieves

a high-accuracy performance when usingNFFT = 100 andQ = 3, which is hardly dis-

tinguishable from its performance when usingNFFT = 400 andQ = 8. As a result, the

spline-approximation reduces the impact of the frequency offset estimation errors on the

joint estimate of the channel. This is the benefit of using thejoint channel and frequency

offset estimation rather than dealing separately with the two estimation problems.

5.9 Conclusions

In this chapter, novel joint data-aided channel and frequency offset estimators have been

proposed for frequency-flat time-variant fading channels.These estimators are based on

representing the time-variant fading process using the BEM.This model simplifies the

solution and allows the estimators to achieve a high-accuracy performance. To reduce

the complexity of the frequency offset estimators, and attain a high accuracy, the new

estimators exploit a two stage technique for searching the generalised periodogram peak,

an FFT-based coarse search and dichotomous fine search.

The first joint estimator is based on the Bayesian approach andcan provide a high-

accuracy performance whenever prior statistical characteristics of the channel are known,

namely the covariance matrix of the fading and the variance of the AWGN. The second

estimator, with a slightly higher estimation error, is an alternative joint estimator that can

operate when these characteristics are unavailable.

The proposed Bayesian joint estimator have been studied based on different BEMs

such as, Karhunen-Loève (KL), discrete prolate spheroidal (DPS), generalized complex

exponential (GCE), and B-spline (BS) functions for different scenarios in Rayleigh fading

channels, where the channel statistics are perfectly or imperfectly known. When channel

statistics are perfectly known, simulation results have shown that the KL and DPS BEMs

use fewer number of basis functions than that of the GCE and BS BEMs to allow achiev-
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ing the same performance. However, the best reached performance of all the BEM-based

estimators is the same. When channel statistics are mismatched, results have shown that

the estimators based on the GCE and BS BEMs are more robust than those based on the

KL and DPS BEMs. This makes the BS functions a better choice in practice as it has a

sparse matrix that results in a lower complexity than the other basis functions.

The proposed BS-based Bayesian and ML joint estimators have been extensively in-

vestigated for different application scenarios in Rayleighfading channels. Simulation

results have shown that the proposed periodogram-based frequency offset estimators

clearly outperform known correlation-based estimators. The new estimators have also

been shown to possess the widest frequency acquisition range, which can be adjusted ac-

cording to a priori knowledge of the frequency offset range to improve the accuracy. The

proposed joint estimators provide a substantial performance improvement compared to

the Bayesian channel estimator that ignores the frequency offset. Both of the proposed

estimators have been shown to maintain a high-accuracy performance over wide SNR,

f0Ts andfDTs ranges, which is very close to that of the Bayesian channel estimator op-

erating with perfect knowledge of the frequency offset. An explicit criterion for adjusting

the parametersNFFT , M andQ to an optimum value has been clarified so that accord-

ing to the required SNR range andfDTs, the maximum accuracy of the frequency and

channel estimation is achieved within the minimum complexity. Moreover, the proposed

estimation techniques are superior in being able to compensate for the inaccuracy in the

frequency offset estimation and capable of achieving a high-accuracy channel estimation

performance without zero-padding the processed signal andusing a simplified fine search

(less number of iterationsQ).
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In this Chapter, a joint data-aided channel and frequency offset estimator is proposed

for doubly-selective fading channels. The joint estimatoris based on the B-spline model

for approximating the fading process and the dichotomous search frequency estimation

technique. The estimator relies on the Bayesian approach. Itis examined for different

scenarios in Rayleigh fading channels. Simulation results show that the proposed estima-

tor achieves a high accuracy performance, which is close to that with perfect knowledge

of the frequency offset, over a wide range of signal to noise ratios, for different Doppler
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frequencies and throughout all the frequency acquisition range.

6.1 Introduction

Accurate channel estimation is very important in communication systems, where reliable

transmission is required. This is challenging in frequency-selective and time-variant fad-

ing channels, especially in the presence of a frequency offset.

Most of the frequency offset estimators proposed in the literature have been devoted

to correlation-based estimation, such as [25, 46] for frequency-selective time-invariant

channels and [8, 11, 34] for frequency-flat time-variant fading channels. However, the

performance of such estimators is inferior to that of the estimator based on the general-

ized periodogram [44], and unlike that estimator, they are operable only for high signal

to noise ratios (SNR)s and/or they possess a limited frequency acquisition range [47,48].

Periodogram-based joint channel and frequency offset estimation for frequency-flat time-

variant fading channels has been considered in Chapter 5, where joint estimators ex-

ploiting basis expansion model (BEM) of the channel time variations have been pro-

posed. BEMs have been widely used for frequency-flat time-variant channel estima-

tion [38, 41, 51]. However, these estimators yield a severe degradation in the perfor-

mance in the presence of a frequency offset. Joint channel and frequency offset esti-

mation for frequency-selective time-invariant channels has been addressed in [52]. For

doubly-selective fading channels, BEM-based channel estimation has been considered

in [53]. The estimation of doubly-selective fading channels in the presence of a frequency

offset for multicarrier systems, based on complex exponential BEM, has been addressed

in [54,91].

We focus on estimating jointly the doubly-selective fadingchannels and frequency

offset by using B-spline BEM. The joint estimation allows moreefficient and higher ac-

curacy performance, compared to techniques dealing separately with these two problems.

The proposed estimator is based on representing the fading process by BEMs and em-

ploying frequency estimation based on the dichotomous search [17] of the generalized

periodogram peak.
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Extensive simulations for different conditions are used toinvestigate the performance

of the new estimators. The simulation results show accurateperformance of the new

estimators for the different examined scenarios.

This chapter is organised as follows. Section 6.2 describesthe signal and channel

models. In Section 6.3, the basis expansion model is described. Sections 6.4 illustrates the

derivation of the proposed joint estimators. An efficient implementation of the estimators

using the dichotomous search algorithm is presented in Section 6.5. Simulation results

are discussed in Section 6.6. Finally, Section 6.7 containsconclusions.

6.2 Signal and Channel Models

We consider a known (pilot) signal transmitted through a doubly-selective fading channel.

The baseband discrete received signal and channel models, respectively, after frequency

downconverting, filtering in a matched filter and sampling atproper times, can be ex-

pressed as

r(nTs) =
L−1∑

l=0

s(nTs − τl)hl(nTs) + z(nTs) , (6.1a)

hl(nTs) = gl(nTs)e
j2πf0Tsn , n = 0, 1, . . . , N − 1 , (6.1b)

wheres(uTs) is the transmitted pilot symbol, the firstL− 1
(
{s(uTs)}−1

u=−L+1

)
of which

are theprecursors, z(nTs) is the complex-valued additive white Gaussian noise (AWGN)

with zero mean and varianceσ2
n, τl andgl(nTs) are thelth path delay and fading process,

respectively,f0Ts is the frequency offset andTs is the symbol interval;L andN are the

number of paths and received symbols, respectively.

The paths are assumed to be independent and the fading of eachpath follows Jakes’

model [64]. The covariance matrix of such fading process is given by

Rg = PL ⊗Rg , (6.2a)
[
Rg

]
u v

= J0(2πfDTs(u− v)) , u, v = 1, 2, . . . , N , (6.2b)

wherePL = diag
{
σ2
gl

}L−1

l=0
is the power delay profile,σ2

gl
is the variance of thelth path,

J0(·) is the zero-order Bessel function of the first kind,fDTs is the Doppler frequency
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and⊗ denotes the Kronecker product. The Kronecker product ofA andB, denoted as

A⊗B, whereA is anN ×M matrix andB is anL×K matrix, is defined by

A⊗B =




A1 1B · · · A1MB
...

. ..
...

AN 1B · · · AN MB


 . (6.3)

The received signal and channel models, respectively, in matrix form can be written as

r = Sh+ z , (6.4a)

h = Λf0Ts
g , Λf0Ts

= IL ⊗Λf0Ts
, (6.4b)

wherer andz areN × 1 received signal and noise vectors with elementsr(nTs) and

z(nTs), respectively,S = [diag(s0), . . . , diag(sl), . . . , diag(sL−1)] is anN × NL pilot

matrix, sl is a1 × N vector with elementss(nTs − τl), h = [hT
0 , . . . ,h

T
l , . . . ,h

T
L−1]

T is

anNL × 1 channel response vector,[·]T denotes the matrix transpose,hl is anN × 1

vector with elementshl(nTs), g = [gT
0 , . . . ,g

T
l , . . . ,g

T
L−1]

T is anNL× 1 fading process

vector,gl is anN × 1 vector with elementsgl(nTs), IL is anL × L identity matrix, and

ΛF0 = diag
{
ej2πf0Tsn

}
is the frequency offset matrix.

6.3 Basis Expansion Model

Accurate estimation of the fading processesgl(nTs) requires complicated techniques such

as the Wiener filtering [4]. A simpler solution can be obtained based on representing

gl(nTs) using a basis expansion model (BEM) withM basis functions as

g̃l(nTs) =
M∑

m=1

al(m)B(nTs,m) , l = 0, 1, . . . , L− 1 , (6.5)

whereB(nTs,m) are basis functions andal(m) are unknown expansion coefficients. In

matrix form, it can be written as

g̃ = Ba , B = IL ⊗B , (6.6)

where B is an N × M basis function matrix with elements{B(nTs,m)}, a =

[aT
0 , . . . , a

T
l , . . . , a

T
L−1]

T is anML × 1 expansion coefficient vector andal is anM × 1

vector with elements{al(m)}.
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Thus, the estimation problem of theL × N time-variant fading processgl(nTs) is

transformed into estimation of theL × M time-invariant expansion coefficientsal(m).

UsuallyM << N , which makes the BEM-based approach attractive.

Different basis functions can be used in the BEM such as complex exponential [38,54],

Karhunen-Lòeve [87], discrete prolate spheroid- al [41] and B-splines [51]. It is shown in

Chapter 5 that the channel estimation based on the B-splines isless sensitive to the accu-

rate knowledge of statistical characteristics of the fading and simpler for implementation

than that based on the other BEMs. Therefore, here we use the BS BEM.

The B-splines of orderη are symmetrical, bell-shaped functions that are given by [94]

Bη(x) =
1

η!

η+1∑

i=0

(−1)i
(
η + 1

i

)(
x

PTs
+
η + 1

2
− i

)η

+

, (6.7)

whereP = (N − 1)/(M − η), PTs is the sampling interval separating two adjacent B-

spline functions andx+ = max{0, x}. In this case, elements of the basis function matrix

are calculated asB(nTs,m) = Bη

(
nTs − (m− η+1

2
)PTs

)
. The accuracy and complexity

of B-spline approximation depends on the spline degreeη. In many situations, the cubic

B-spline (η = 3) provides the best trade-off between complexity and accuracy [94]. We

use the cubic B-spline in the simulation below wheneverM ≥ 4. However, other BEMs

can also be used in the joint estimator.

6.4 Joint Estimation

The model mismatching error due to the approximation of the fading process can be

neglected when choosingM high enough, so thatg can be assumed equal tog̃; this is

a practical assumption as detailed in [38, 41, 43]. Thus, thesignal model can be now

regarded as

r = Λf0Ts
Φa+ z ; Φ = SB , (6.8a)

h = Λf0Ts
Ba . (6.8b)
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The vectora is assumed to be zero mean Gaussian witha priori PDF p(a) =

π−M |Ra|−1 e−aHR
−1
a a, andRa is the covariance matrix ofa that can be obtained as [51]

Ra = PL ⊗Ra , Ra =
(
B

H
B
)−1

B
H
RgB

(
B

H
B
)−1

. (6.9)

6.4.1 Frequency Offset Estimator

By using the Bayesian approach (as detailed in [48, 49]), we arrive at the following

Bayesian frequency (BF) estimator

f̂0Ts = arg max
fTs∈Ψ

{YfTs
}

= arg max
fTs∈Ψ

{
rHΛfTs

SB
(
BHSHSB+ σ2

nR
−1
a

)−1
BHSHΛ

H

fTs
r
}

(6.10)

where

YfTs
= WH

fTs

(
Γ+ σ2

nR
−1
a

)−1
WfTs

, (6.11a)

Γ = ΦHΦ = BHSHSB , (6.11b)

WfTs
= ΦHΛ

H

fTs
r = BHSHΛ

H

fTs
r , (6.11c)

(·)H denotes the Hermitian transpose,YfTs
is the generalised periodogram [44, 48], and

Ψ = [−ψ/2, ψ/2] is the frequency acquisition range that can be considered either wide

(ψ = 1) or narrow (ψ << 1).

6.4.2 Channel Estimator

After obtainingF̂0 and substituting it in (6.8), the minimum mean square error (MMSE)

estimator of the vectora is given by

â =
(
Γ+ σ2

nR
−1
a

)−1
W

f̂0Ts
. (6.12)

Finally, the Bayesian joint channel and frequency offset (BJ)estimator is obtained by

substituting (6.12) into (6.8b) as

ĥ = Λ
f̂0Ts

B
(
BHSHSB+ σ2

nR
−1
a

)−1
BHSHΛ

H

f̂0Ts
r . (6.13)
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Table 6.1: Dichotomous Search Algorithm for the Proposed Joint Channel and Frequency

Offset Estimator for Doubly-Selective Fading Channels.

Compute G =
(
BHSHSB+ σ2

nR
−1
a

)−1

Calculate D
(m)
fTs

(l) =
∑N−1

n=0 r(nTs)s
∗(nTs − τl)B

∗(nTs,m)e−j2πfTsn

RearrangeWfTs
= [DfTs

(0), . . . ,DfTs
(l), . . . ,DfTs

(L− 1)]T

DetermineYfTs
=
∑ML

u=1

∑ML

v=1 [G]u vW
∗
fTs

(u)WfTs
(v)

Find fpTs = arg max
fTs∈Ψ

{YfTs
}

Locate Y1 = Yfp−1Ts
, Y2 = YfpTs

, Y3 = Yfp+1Ts

ForQ iterations do

∆fTs = ∆fTs/2

If Y3 < Y1 thenY3 = Y2 andfpTs = fpTs −∆fTs,

elseY1 = Y2 andfpTs = fpTs +∆fTs

D
(m)
fpTs

(l) =
∑N−1

n=0 r(nTs)s
∗(nTs − τl)B

∗(nTs,m)e−j2πfpTsn

WfpTs
= [DfpTs

(0), . . . ,DfpTs
(l), . . . ,DfpTs

(L− 1)]T

Y2 =
∑ML

u=1

∑ML

v=1[G]u vW
∗
fpTs

(u)WfpTs
(v)

Finally f̂0Ts = fpTs , ĥ = ΛfpTs
BGWfpTs

6.5 Dichotomous-based Implementation

Most of the complexity in the proposed estimator is consumedby the frequency offset

estimation part when calculatingWfTs
in (6.11c) that is used for evaluation of the gen-

eralized periodogramYfTs
in (6.11a). For a coarse evaluation (search), FFT of a size

NFFT ≥ N (with a frequency step∆fTs = 1/NFFT ) can be used. For a fine search,

we use the dichotomous search [17]. This approach is free of nonlinear operations and

well suited for real-time implementation [47]. The proposed estimator is summarised in

Table 6.1.
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Figure 6.1: h-MSE of the proposed BS-based Bayesian joint estimators for doubly-

selective fading channels as a function ofM for different values offDTs; N = 128,

NFFT = N , L = 5, f0Ts = 0.0123,Q = 5 and SNR= 30 dB.

6.6 Simulation Results and Performance Analysis

We consider a binary pseudo-random pilot signal and the signal to noise ratio (SNR) is

calculated as

SNR=
E
{(

Λf0Ts
Sg
)H (

Λf0Ts
Sg
)}

E{zHz} =
ǫ

σ2
n

, (6.14)

whereǫ =
∑L−1

l=0 σ
2
gl

. The mean square error (MSE) of estimation is averaged over10 000

simulation trials, where the MSE of the frequency offset andchannel estimates, respec-

tively, in each simulation trial are calculated as

f0Ts-MSE=
(
f0Ts − f̂0Ts

)2
, (6.15a)

h-MSE=

∑L−1
l=0

∑N−1
n=0

∣∣∣hl(nTs)− ĥl(nTs)
∣∣∣
2

∑L−1
l=0

∑N−1
n=0 |hl(nTs)|2

. (6.15b)

We consider a random pilot signal of lengthN = 128 transmitted through doubly-

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 6. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

DOUBLY-SELECTIVE FADING CHANNELS 140

0 0.01 0.02 0.03 0.04 0.05

−40

−35

−30

−25

−20

−15

−10

−5

0

fDTs

h
-M

S
E

,
d
B

 

 
RBC
BJ

M = 7
M = 16 M = 35

Figure 6.2: h-MSE of the proposed BS-based Bayesian joint estimators for doubly-

selective fading channels as a function offDTs for different values ofM ; N = 128,

NFFT = N , L = 5, f0Ts = 0.0123,Q = 5 and SNR= 30 dB.

selective fading channel that hasL = 5 paths, with an exponentially decaying power

delay profile. The frequency acquisition range is wide (ψ = 1). Unless otherwise spec-

ified, the size of FFT in the coarse search isNFFT = N = 128 and the number of

dichotomous iterations in the fine search isQ = 5.

The proposed estimator is compared to an ideal reference Bayesian channel (RBC)

estimator, where the frequency offset is assumed to be known. This estimator is given as

in (6.13) but withf̂0Ts being replaced withf0Ts.

Figure 6.1 shows theM -dependenth-MSE in the slow (fDTs = 0.005), moderate

(fDTs = 0.02) and fast (fDTs = 0.05) fading channels. There is a thresholdM , below

which the error rapidly increases due to a high modeling mismatch error, and above which

the error stays almost constant. The exploitation of the fading covariance matrix and

the noise variance prevents a degradation in the performance for highM . For a higher

fDTs, the estimator requires a higherM to achieve its best performance. ThisM can

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 6. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

DOUBLY-SELECTIVE FADING CHANNELS 141

−10 −5 0 5 10 15 20 25 30

−35

−30

−25

−20

−15

−10

−5

0

SNR, dB

h
-M

S
E

,
d
B

 

 
RBC
BJ

fDTs = 0.02, M = 16

fDTs = 0.005, M = 7

fDTs = 0.05, M = 35

Figure 6.3: h-MSE of the proposed BS-based Bayesian joint estimators for doubly-

selective fading channels as a function of SNR for differentvalues offDTs (andM );

N = 128,NFFT = N , L = 5, f0Ts = 0.0123 andQ = 5.

be determined such that the sampling factorγ = 1/(fDTsP ) is approximately5, which

is defined by approximating properties of B-splines [43]. Figure 6.2 shows thefDTs-

dependenth-MSE for differentM . The best performance is achieved forfDTs smaller

than a threshold that increases withM . It is seen from Figure 6.1 and Figure 6.2 that the

proposed BJ estimator achieves a high accuracy performance which is close to that of the

ideal RBC estimator. Thus, the frequency offset (nonlinear) estimation involved in the BJ

estimator helps in reducing the modeling mismatch error, even whenf0Ts = 0 (according

to simulation results not shown here).

Figure 6.3 shows the SNR-dependenth-MSE for differentfDTs. We notice a threshold

SNR, below which theh-MSE of the BJ estimator diverts slightly from that of the RBC

estimator. This characteristic appears due to the involvement of the nonlinear frequency

estimation and the occurrence of the outliers [13].

Figure 6.4 shows thef0Ts-dependent MSE performance for differentNFFT andQ.
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Figure 6.4: MSE of the proposed BS-based Bayesian estimators in doubly-selective fad-

ing channels as a function off0Ts for different values ofNFFT andQ; N = 128, L = 5,

fDTs = 0.05, M = 35 and SNR= 30 dB; (a) proposed BF estimator and (b) proposed

BJ and ideal RBC estimators.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 6. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

DOUBLY-SELECTIVE FADING CHANNELS 143

0 0.1 0.2 0.3 0.4 0.5
−38

−36

−34

−32

−30

−28

−26

−24

−22

f0Ts

h
-M

S
E

,
d
B

 

 
RBC
BJ

fDTs = 0.005, M = 7

fDTs = 0.02, M = 16

fDTs = 0.05, M = 35

Figure 6.5: h-MSE of the proposed BS-based Bayesian joint estimators for doubly-

selective fading channels as a function off0Ts for SNR = 30 dB and different values

of fDTs (andM ).

For the BF estimator,NFFT = 4N = 512 andQ = 8 is a necessity for a high-accuracy

frequency estimation. However, the BJ estimator does not require that high accuracy in the

frequency offset estimation and can achieve a good joint estimation (h-MSE) performance

with a significantly lowerNFFT (with as smallNFFT asNFFT = N ) and using a few

dichotomous iterations. ForfDTs = 0.05, an RBC-like performance is achieved using

as smallQ asQ = 3. Slower fading channels may require a slightly higherQ and

other simulation results (not presented here) have shown thatQ = 5 is the best choice

and covers all thefDTs. Figure 6.5 shows that the proposed estimator possesses a wide

frequency acquisition range for differentfDTs and usingNFFT = N = 128 andQ = 5.
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6.7 Conclusions

A novel joint data-aided channel and frequency offset estimator has been proposed for

doubly-selective fading channels. This estimator is basedon approximating the fading

process using the B-spline model. This model simplifies the solution and allows the

estimator to achieve a high accuracy performance. The jointestimator is based on the

Bayesian approach and provides a high accuracy performance when some prior statistical

characteristics of the channel are known, namely the covariance matrix of the fading and

the variance of the AWGN. To reduce the complexity of the frequency offset estimation,

a two stage technique is exploited for searching a peak of thegeneralized periodogram,

an FFT-based coarse search and dichotomous fine search. Simulation results for different

scenarios in Rayleigh fading channels have shown that the proposed estimator maintains,

over wide SNR, frequency offset and Doppler frequency ranges, a high accuracy per-

formance, which is very close to that of the Bayesian channel estimator operating with

perfect knowledge of the frequency offset.
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In this chapter, we develop iterative turbo receivers for frequency-flat time-variant fad-

ing channels which jointly perform channel and frequency offset estimation together with

data detection and decoding. Three versions of the joint estimator, the Bayesian, the max-

imum likelihood and the regularised-maximum likelihood are presented depending on
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how much knowledge of channel statistics is available. The estimation and detection are

based on the basis expansion model of the fading time variations and use the dichotomous

search frequency estimation technique. Soft information generated in the turbo decoder

is used to improve the quality of detection in the subsequentiterations. Simulation results

show that the proposed receivers provide as good performance as the corresponding ones

operating with perfect knowledge of the frequency offset.

7.1 Introduction

Various frequency offset estimators have been proposed fortime-variant channels [8,11].

However most of these estimators are correlation-based with inferior performance to that

of the optimal estimator and/or possess a limited frequencyacquisition range [49]. Differ-

ent estimators of the channel time variations have also beenproposed [37, 42], however,

the frequency offset is not taken into account in these works. By considering the soft in-

formation from a soft-input soft-output (SISO) decoder in an iterative channel estimation

and data detection, various iterative turbo processing techniques have been widely con-

sidered for pilot symbol assisted modulation (PSAM) systems at the receivers. However,

most studies have either ignored the possible presence of a frequency offset [55], or as-

sumed time-invariant channels when dealing with the frequency offset [56]. We consider

iterative turbo-based receivers for PSAM systems and QAM signals dealing with joint es-

timation of the time-variant channel and frequency offset together with data detection and

decoding, which, to the best of our knowledge, has not been discussed in the literature.

This chapter is organised as follows. Section 7.2 describestransmission models. Sec-

tion 7.3 illustrates the joint frequency offset and channelestimators exploited in the re-

ceivers. Efficient implementation of the estimators using the dichotomous search algo-

rithm is presented in Section 7.4. Classical receivers with joint estimation are considered

in Section 7.5 and iterative turbo-based receivers are proposed in Section 7.6. Simulation

results are discussed in Section 7.7. Finally, Section 7.8 contains conclusions.
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7.2 Transmission Models

We consider a PSAM system, where a block ofN symbols is transmitted through a

frequency-flat time-variant fading channel. The transmitted block consists ofNd data

symbols andNp pilot symbols that are inserted periodically between eachT − 1 data

symbols. The baseband discrete received signal and channel, respectively, after frequency

downconverting, filtering in a matched filter and sampling atproper times, are modeled

as

r(nTs) = s(nTs)h(nTs) + z(nTs) , (7.1a)

h(nTs) = g(nTs)e
j2πf0Tsn , n = 0, 1, . . . , N − 1 , (7.1b)

wheres(nTs) is the transmitted signal,z(nTs) is the complex-valued additive white Gaus-

sian noise with zero mean and varianceσ2
z , Ts is the symbol interval,f0Ts is the nor-

malised frequency offset andg(nTs) is the fading process. We consider a Rayleigh fading

process following the Jakes’ model [64] with a covariance matrix given by

[Rg]u v
= σ2

gJ0(2πfDTs(u− v)) , u, v = 1, . . . , N , (7.2)

whereσ2
g is the fading variance,J0(·) is the zero-order Bessel function of the first kind

andfDTs is the normalised Doppler frequency.

The received signal and channel models, respectively, can be written in matrix form as

r = Sh+ z , (7.3a)

h = Λf0Ts
g , (7.3b)

wherer, h, g andz areN × 1 column vectors with elementsr(nTs), h(nTs), g(nTs) and

z(nTs), respectively,S = diag{s(nTs)} andΛf0Ts
= diag

{
ej2πf0Tsn

}
.

The fading processg(nTs) can be represented using a basis expansion model [38] with

M basis functions as

g(nTs) =
M∑

m=1

amB(nTs,m) , (7.4)

wheream are unknown expansion coefficients andB(nTs,m) are known basis functions.

Thus, the problem of estimating anN -dimensional time-variant fading processg(nTs)
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is transformed into a lower dimensional problem of estimating onlyM time-invariant

expansion coefficientsam, where usuallyM << N .

The processed model in matrix form is given now by

r = Λf0Ts
Φa+ z , Φ = SB , (7.5a)

h = Λf0Ts
Ba , (7.5b)

wherea isM × 1 column vector of expansion coefficientsam, B isN ×M matrix with

elementsB(nTs,m), n = 0, 1, . . . , N − 1 andm = 1, . . . ,M .

7.3 Joint Frequency Offset and Channel Estimation

The frequency offset estimator is given by [49]

f̂0Ts = arg max
fTs∈Ψ

{YfTs
}

= arg max
fTs∈Ψ

{
WH

fTs
(Γ+Υ)−1

WfTs

}
, (7.6)

where[·]H denotes the Hermitian transpose,Ψ = [−ψ/2, ψ/2] is the frequency acquisi-

tion range,0 < ψ ≤ 1, YfTs
is the generalized periodogram [44,48],WfTs

= ΦHΛH
fTs

r,

Γ = ΦHΦ andΥ depends on the estimation approach relying on how much knowledge

of channel statistics is available. For the Bayesian estimation, Υ = σ2
zR

−1
a , whereRa

is theM × M covariance matrix of the expansion coefficients, which can be obtained

by [51]

Ra =
(
BHB

)−1
BHRgB

(
BHB

)−1
. (7.7)

This approach provides the best performance and is applicable whenσ2
z and Rg are

known. In the absence of this prior information, the maximumlikelihood estimation can

be used with a slight performance degradation, for whichΥ = O, whereO is M ×M

zero matrix. A third option is the regularised-maximum likelihood estimation, for which

Υ = ǫσ2
zIM , whereIM isM ×M identity matrix andǫ is a regularising parameter with

the best value ofσ−2
g . This approach is applicable whenσ2

z andσ2
g are known and provides

a performance which is better than that of the maximum likelihood estimator and worse

than that of the Bayesian estimator.
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The expansion coefficient vector estimator is then given by [49]

â = (Γ+Υ)−1
W

f̂0Ts
(7.8)

and the joint channel and frequency offset estimator is obtained as [49]

ĥ = Λ
f̂0Ts

Bâ . (7.9)

7.4 Efficient Implementation

Complexity in the described estimator is mostly consumed by the frequency offset esti-

mation part for calculatingWfTs
. This can be done using fast Fourier transform (FFT) of

a sizeNFFT >> N , which however is very complicated. We use a more practical two-

stage technique for searching the maximum in (7.6): an FFT ofsizeNFFT ≈ N is used

in a coarse search with a frequency resolution∆fTs = 1/N , then the frequency offset

estimate is refined by a dichotomous fine search [17] of a smallnumber of iterationsQ.

This approach allows achieving a high-accuracy performance throughout the wide fre-

quency acquisition range and well suited for implementation [47]. The algorithm is sum-

marised in Table 7.1.

7.5 Classical Receivers

The received signal can be split into two parts corresponding to the pilot and data instants,

respectively, asrp = Sphp+zp andrd = Sdhd+zd, whereSp,hp andzp correspond to the

pilot instants andSd, hd andzd correspond to the data instants ofS, h andz, respectively.

The fading process as well can be split into two parts corresponding to the pilot and data

instants, respectively, asgp = Bpa andgd = Bda, whereBp andBd correspond to the

pilot and data instants ofB, respectively.

Classical receivers can exploit the above estimation schemeusing only pilot symbols

to obtainf̂0Ts andâ according to (7.6) and (7.8), respectively, but with replacingB, S, r
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Table 7.1: Dichotomous Search Algorithms for the Proposed Joint Channel and Fre-

quency Offset Estimators in the Iterative Turbo Receivers for Frequency-Selective Time-

Variant Fading Channels.

Compute G =
(
BHSHSB+Υ

)−1
;

Υ =





σ2
zR

−1
a , Bayesian approach

σ−2
g σ2

zIM , ǫ-ML approach

O , ML approach

Calculate WfTs
(m) =

∑N−1
n=0 r(nTs)s

∗(nTs)B
∗(nTs,m)e−j2πfTsn

DetermineYfTs
=
∑M

u=1

∑M

v=1 [G]u vW
∗
fTs

(u)WfTs
(v)

Find fpTs = arg max
fTs∈Ψ

{YfTs
}

Locate Y1 = Yfp−1Ts
, Y2 = YfpTs

, Y3 = Yfp+1Ts

ForQ iterations do

∆fTs = ∆fTs/2

If Y3 < Y1 thenY3 = Y2 andfpTs = fpTs −∆fTs,

elseY1 = Y2 andfpTs = fpTs +∆fTs

WfpTs
(m) =

∑N−1
n=0 r(nTs)s

∗(nTs)B
∗(nTs,m)e−j2πfpTsn

Y2 =
∑M

u=1

∑M

v=1[G]u vW
∗
fpTs

(u)WfpTs
(v)

Finally f̂0Ts = fpTs , â = GWfpTs
, ĥ = Λ

f̂0Ts
Bâ
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Figure 7.1: Turbo-based transmission system of QAM signals.

with Bp, Sp, rp. Thenĥ is determined as in (7.9) and̂hd can be obtained from̂h at the

data instants. Finally, a minimum Euclidean distance detector is used as

ŝd = arg min
sd∈A

{
(rd − Sdĥd)

H(rd − Sdĥd)
}
, (7.10)

whereA is the alphabet of all symbols corresponding to the modulation constellation

points (we consider2K-QAM modulation, whereK is the number of bits used to represent

each symbol).

7.6 Iterative Receivers

To obtain a significant performance improvement, we developturbo iterative receivers

for QAM modulation systems in which joint channel and frequency offset estimation,

detection and decoding are iteratively refined.

The turbo-based transmission system with QAM modulation isshown in Figure 7.1.

First, the data bits are encoded by a turbo encoder. Then, theoutput bits of the turbo

encoder are interleaved by a channel interleaver. After that, QAM mapping is performed

where the output bits of the channel interleaver are groupedinto QAM symbols. Finally,

the pilot symbols are inserted periodically between eachT − 1 data symbols.

The proposed turbo-based iterative reception system for QAM modulated signals is

shown in Figure 7.2. In the first iteration, pilot-based joint channel and frequency offset

estimation is performed in the same way as discussed for the classical receivers considered

in Section 7.5. The channel estimates are then passed to an improved detector, which
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Figure 7.2: Proposed turbo-based iterative reception system of QAM signals.

has the ability in the subsequent iteration to improve the performance by utilising the

soft output log-likelihood ratio (LLR) information generated at a soft-input soft-output

(SISO) turbo decoder in the current iteration. In the first iteration, there are noa priori

soft LLR from the decoder yet and the detector generatesa posteriori soft LLR for every

bit bk = ±1, k = 1, . . .,K of a received symbol as

λbk = ln
∑

sd∈A
+
k

e−δ(sd) − ln
∑

sd∈A
−

k

e−δ(sd) , (7.11)

whereA±
k = {sd ∈ A|bk = ±1} and the metricδ(sd) is calculated as

δ(sd) = σ−2
z

∣∣∣rd − sdĥd

∣∣∣
2

. (7.12)

The detector LLRs,λbk , are then deinterleaved and passed to a SISO turbo iterativede-

coder, which generates initial decoded bits and initial soft LLR information. The decoder

LLRs are then interleaved to providea priori soft LLR, L(bi), which is required for the

detector in the subsequent iteration. The decoder LLRs (which correspond to all coded

bits) are also transformed to binary bits by hard decision. These are treated as initial

coded data bits, which are then interleaved, QAM mapped (using Gray code) and have pi-

lot symbols inserted in the same way as in the transmission system. The second iteration
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then starts by performing the joint channel and frequency offset estimation, but now based

on all pilot and data symbols, and so, more accurate estimates are obtained and passed to

the detector. The improved detector then generatesa posteriori soft LLR as [130]

λbk = ln

[∑
sd∈A

+
k
e−δ(sd)

∏
i 6=k P (bi)∑

sd∈A
−

k
e−δ(sd)

∏
i 6=k P (bi)

]
, (7.13)

whereP (bi) is a priori probability of a bitbi and obtained using itsa priori soft LLR,

L(bi), as [130]

P (bi) =
1

2

[
1 + bi tanh

(
1

2
L(bi)

)]
. (7.14)

Hence, the detector LLRs are now refined, which leads to refineddecoder LLRs and less

error in the decoded bits. The same estimation, detection and decoding reception scheme

repeats for a few iterations to obtain a high-accuracy performance.

7.7 Simulation Results

Different basis functions can be used in the BEM such as complex exponential [38],

Karhunen-Lòeve [87], discrete prolate spheroidal [41] and B-splines [51]. It is shown in

Chapter 5 that the channel estimation based on B-splines is less sensitive to the accurate

knowledge of statistical characteristics of the fading andsimpler for implementation than

that based on the other BEMs. Therefore, in our simulation, weuse B-splines, however,

other BEMs can also be used.

The mean square error (MSE) of the frequency offset and channel estimates, respec-

tively, in each simulation trial are calculated as

f0Ts-MSE=
(
f0Ts − f̂0Ts

)2
, (7.15a)

h-MSE=

∑N−1
n=0

∣∣∣h(nTs)− ĥ(nTs)
∣∣∣
2

∑N−1
n=0 |h(nTs)|2

(7.15b)

and then averaged over all trials. We consider a PSAM system for 16-QAM signals trans-

mitted in a time-variant fading channel with a Doppler frequencyfDTs = 0.01 and the

total number of symbols isN = 514, of whichNp = 28 are pilots that are inserted pe-

riodically everyT = 19 symbols. We assume a frequency offsetf0Ts = 0.0123 and a
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Figure 7.3: BER performance of the classical receivers for16-QAM signals in frequency-

flat time-variant fading channels;N = 514, Np = 28, T = 19, fDTs = 0.01, f0Ts =

0.0123,M = 23,NFFT = 32 andQ = 5.

wide frequency estimation rangeψ = 1, where the number of dichotomous iterations in

the fine search isQ = 5.

The BER performance of the developed joint estimation-basedreceivers is compared

to that of the ideal reference channel-based receivers, where the frequency offset is as-

sumed to be known, and also to the one operating with perfect channel information. The

considered receivers/estimators are summarised in Table 7.2.

Figure 7.3 shows the BER performance of the classical receivers, whereM = 23 and

NFFT = 32. The performance of the joint estimation-based receivers,MLJ, ǫ-MLJ, BJ is

as good as that of the ideal reference RMLC, Rǫ-MLC, RBC channel-based receivers that

operate with perfect knowledge off0Ts and is close to that of the PCI receiver that oper-

ates with perfect channel information. The performance of channel estimation (h-MSE)

and frequency offset estimation (f0Ts-MSE) can be seen in Figure 7.4 and Figure 7.5,

respectively. The receivers based on joint estimation provide very close channel estima-

tion performance to that of the corresponding ideal receivers with perfect frequency offset

knowledge, and in all cases, the best performance is obtained by the Bayesian-based re-

ceiver, which employs more initial knowledge of channel statistics.
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Table 7.2: Receivers/Estimators for Frequency-Selective Time-Variant Fading Channels Considered in the Simulation.
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Figure 7.4: h-MSE performance of the classical receivers for16-QAM signals in

frequency-flat time-variant fading channels;N = 514, Np = 28, T = 19, fDTs = 0.01,

f0Ts = 0.0123,M = 23,NFFT = 32 andQ = 5.
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Figure 7.5: f0Ts-MSE performance of the classical receivers for16-QAM signals in

frequency-flat time-variant fading channels;N = 514, Np = 28, T = 19, fDTs = 0.01,

f0Ts = 0.0123,M = 23,NFFT = 32 andQ = 5.
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Figure 7.6: BER performance of the developed iterative turboreceivers for16-QAM

signals in frequency-flat time-variant fading channels encoded by a1/3 turbo coder with

generation polynomial of13, 15 in octal and obtained after the4th iteration;N = 514,

Np = 28, T = 19, fDTs = 0.01, f0Ts = 0.0123,M = 17,NFFT = N andQ = 5.
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Figure 7.7:h-MSE performance of the developed iterative turbo receivers for 16-QAM

signals in frequency-flat time-variant fading channels encoded by a1/3 turbo coder with

generation polynomial of13, 15 in octal and obtained after the4th iteration;N = 514,

Np = 28, T = 19, fDTs = 0.01, f0Ts = 0.0123,M = 17,NFFT = N andQ = 5.
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Figure 7.8:f0Ts-MSE performance of the developed iterative turbo receivers for16-QAM

signals in frequency-flat time-variant fading channels encoded by a1/3 turbo coder with

generation polynomial of13, 15 in octal and obtained after the4th iteration;N = 514,

Np = 28, T = 19, fDTs = 0.01, f0Ts = 0.0123,M = 17,NFFT = N andQ = 5.

Figure 7.6, Figure 7.7 and Figure 7.8 show BER,h-MSE andf0Ts-MSE performance

for the proposed iterative receivers/estimators encoded by a 1/3 turbo coder of which

the generation polynomial is13, 15 in octal and obtained after the4th iteration, where

M = 17 andNFFT = N . It can be seen that a significant performance improvement over

the classical receivers is obtained, and again, the joint estimation-based receivers provide

very close performance to that using the ideal reference channel estimators operating with

perfect frequency offset knowledge and is close to that of the iterative receiver with perfect

channel information.

7.8 Conclusions

We have developed iterative turbo receivers for time-variant fading channels which jointly

perform channel and frequency offset estimation together with data detection and decod-

ing. The Bayesian, maximum likelihood and regularised-maximum likelihood estimators
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have been presented depending on how much knowledge of channel statistics is available.

The estimation and detection are based on the basis expansion model representation of

the fading time variations, the B-splines BEM is chosen, and use the dichotomous search

frequency estimation technique. Soft information generated in the turbo decoder is used

to improve the quality of the detection in the subsequent iterations. Simulation results

have shown that the proposed receivers provide as good performance as the correspond-

ing ones operating with perfect knowledge of the frequency offset, and is very close to

that operating with perfect channel knowledge.
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This thesis has investigated the joint channel and frequency offset estimation in dif-

ferent scenarios of wireless communications. The joint estimation of the channel and

frequency offset in AWGN channels has been investigated and the performance has been

compared in terms of accuracy and complexity of advanced frequency estimators that

have been recently proposed in the literature and the DS estimator has been found to be the

best choice. DS-based joint estimation of channel and frequency offset in time-invariant

frequency-selective channels has been studied. A joint channel and frequency offset esti-

mators have been proposed for frequency-flat time-variant fading channels based on dif-

ferent BEMs (such as the KL, DPS, GCE, and BS) of the fading time variations and the

DS frequency estimation, where the BS-BEM has been found to be the best choice. Joint

channel and frequency offset estimator has been proposed for doubly-selective fading

channels based on the BS-BEM representation of the fading process and the DS frequency

estimation. Finally, iterative turbo receivers have been developed for frequency-flat time-

variant fading channels which jointly perform channel and frequency offset estimation

together with data detection and decoding based on the BS-BEM of the fading process

and the DS frequency estimation, where soft information generated in the turbo decoder

is used to improve the quality of detection in the subsequentiterations.
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8.1 Conclusions

A brief introduction of the whole work has been given, and fundamental techniques that

have been used throughout the thesis, including simulatorsof time-variant fading chan-

nels, BEMs and turbo codes have been presented.

The maximum likelihood (ML) joint channel and frequency offset estimation has

been presented for signals propagated through AWGN channels. The CRLBs of the

joint estimators have been given. A literature review has been provided for the two

main approaches approximating the ML estimator, namely, the correlation-based and the

periodogram-based estimators, including some recently introduced advanced frequency

estimators. In the first approach, conventional estimatorspossess good accuracy, however

they normally have a high complexity. These estimators alsopossess a limited frequency

estimation range that depends on the number of observed symbols, and so, might be

inapplicable for certain practical scenarios. In the second approach, conventional esti-

mators either exploit complicated nonlinear techniques orhave a poor and inconsistent

performance that depend on some parameters of the signal. The performance of recently

introduced advanced frequency estimators has been studied. With the exception of the

WNALP estimator, the performance of the correlation-based estimators considered has

been shown to be frequency-sensitive at low SNRs, whereas thefrequency increases, the

performance degrades and the SNR threshold increases. Their frequency estimation range

is also narrower than that of the WNALP and periodogram-basedestimators. However,

the WNALP has a relatively high complexity. For the periodogram-based estimators con-

sidered, the IDS and MLAF estimators possess the highest complexity. At low SNRs, the

performance of both the MDS and IDS estimators is frequency-sensitive, whereas at high

SNRs, the MLAF estimator possesses a frequency-sensitive performance. The DS esti-

mator, exploiting a two stage technique for searching the periodogram peak, an FFT-based

coarse search and dichotomous fine search, has been shown to outperform the other esti-

mators in many scenarios, keeping a high-accuracy performance for all considered SNRs

and throughout the wide frequency estimation range. It alsorelies only on linear opera-

tions with a relatively low complexity, which makes it the best choice in many practical

scenarios, and so, the DS estimator has been used throughoutthe thesis. The DS-based

joint channel and frequency offset estimator has been investigated for different scenarios.
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Results have shown a high-accuracy performance of the joint channel and frequency off-

set estimators, which is very close to that of the ML estimator throughout all the wide

frequency acquisition range and over a wide range of SNR.

The joint estimation of the channel and frequency offset forsignals propagated through

time-invariant frequency-selective channels has been investigated. The frequency offset

estimators utilise the multipath diversity by combining the periodograms of the multipath

components and searching for the greatest of the combined statistic. The CRLBs have

been presented for these estimators. Two joint estimators,Bayesian-based estimator that

can provide a high-accuracy performance whenever prior knowledge of certain channel

statistics, namely the covariance matrix of the fading and the variance of the AWGN, is

available, and ML-based estimator, with a slightly higher estimation error, that can operate

in the absence of these channel statistics, have been studied. To reduce the estimation

complexity and keep a high accuracy, the estimators exploitthe DS frequency estimation

technique of two-stage searching for the generalised periodogram peak. The estimators

have been investigated for different application scenarios in Rayleigh fading channels.

Results have shown a high-accuracy performance with an estimation error very close to

the CRLB throughout the wide frequency acquisition range and over a wide range of

SNR.

Novel joint channel and frequency offset estimators have been derived for frequency-

flat time-variant fading channels. These estimators rely onrepresenting the time-variant

fading process using the BEM, which leads to a simplification in the processing and al-

lows the estimators to achieve a high-accuracy performance. The new estimators use the

DS frequency offset estimation technique, which allows a reduction in the complexity,

and attaining a high accuracy performance. Two Bayesian-based and ML-based joint

estimators have been proposed depending on the availability of the prior knowledge of

the channel statistics. The proposed Bayesian joint estimator have been studied based

on different BEMs such as, KL, DPS, GCE, and BS functions for different scenarios in

Rayleigh fading channels, where the channel statistics are perfectly or imperfectly known.

For perfectly known channel statistics, results have shownthat the KL and DPS BEMs

use fewer basis functions than the GCE and BS BEMs to allow achieving the same per-

formance. However, the best reached performance of all the BEM-based estimators is the

same. For mismatched channel statistics, results have shown that the GCE and BS BEMs
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are more robust than the KL and DPS BEMs. This makes the BS-BEM a better choice

in practice as it has a sparse matrix that results in a lower complexity than the other basis

functions, and so, the BS-BEM has been used throughout the thesis. The proposed BS-

based Bayesian and ML joint estimators have been investigated for different application

scenarios in Rayleigh fading channels. Results have shown that the proposed DS-based

frequency offset estimators outperform known correlation-based estimators. The new es-

timators have also been shown to possess the widest frequency acquisition range, which

can be adjusted according to a priori knowledge of the frequency offset range to improve

the accuracy for low SNRs. The proposed joint estimators offer a substantial performance

improvement compared to the Bayesian channel estimator thatignores the frequency off-

set. Both proposed estimators have been shown to keep a high-accuracy performance over

wide SNR, frequency offset and Doppler frequency ranges, which is very close to that of

the Bayesian channel estimator operating with perfect frequency offset knowledge. An

explicit criterion for adjusting the estimator parametershas been presented so that accord-

ing to the required SNR range and the Doppler frequency, the maximum accuracy of the

frequency and channel estimation is achieved within the minimum complexity. More-

over, the proposed estimation techniques are superior in being able to compensate for the

inaccuracy in the frequency offset estimation and capable of achieving a high-accuracy

channel estimation performance even without zero-paddingthe processed signal and us-

ing a simplified fine search.

A novel joint channel and frequency offset estimator has been derived for doubly-

selective fading channels. This estimator is based on the the B-spline BEM representation

of the fading process that simplifies the solution and allowsachieving a high accuracy

performance. The joint estimator relies on the Bayesian approach and provides a high

accuracy performance when the prior knowledge of the statistical characteristics of the

channel is available. The DS frequency estimation technique is used to reduce the com-

plexity of the frequency offset estimation. Simulation results for different scenarios in

Rayleigh fading channels have shown that the proposed estimator keeps a high accuracy

performance, over wide SNR, frequency offset and Doppler frequency ranges, which is

very close to that of the Bayesian channel estimator operating with perfect knowledge of

the frequency offset.

Iterative turbo receivers have been developed for time-variant fading channels which
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jointly perform channel and frequency offset estimation together with data detection and

decoding. Depending on how much knowledge of the channel statistics is available,

the Bayesian, maximum likelihood and regularised-maximum likelihood estimators have

been presented. The estimation and detection are based on the B-splines BEM represen-

tation of the fading time variations and use the DS frequencyestimation technique. Soft

information generated in the turbo decoder is used to improve the detection performance

in the subsequent iterations. Simulation results have shown that the proposed receivers

provide as good performance as the corresponding ones operating with perfect knowledge

of the frequency offset, and is very close to that operating with perfect channel knowledge.

8.2 Further Work

Some suggestions for further work based on this thesis are given below:

• In this thesis, the performance of the joint channel and frequency offset estimation

in frequency-flat time-variant fading channels has been studied for the case of the

perfect knowledge of the Doppler frequency using differentBEMs in slow, moder-

ate, and fast fading channels. The cubic B-spline is used as ithas been reported in

the literature to provide the best trade-off between accuracy and complexity in many

scenarios. However, a noticeable higher number of cubic B-splines are required for

the fast fading channels compared to that of the Karhunen-Loève and discrete pro-

late spheroidal basis functions for the estimator to achieve its best performance. It

is expected that a higher order B-splines is a better choice for the fast fading chan-

nels to reduce the required number of basis functions, but further research needs to

be done here to compare the performance in terms of accuracy and complexity for

that scenario.

• The iterative turbo receivers with joint estimation of channel and frequency offset

in frequency-flat time-variant fading channels are considered to operate with per-

fect knowledge of the Doppler frequency. The sensitivity ofthe channel estimation

to the mismatched Doppler frequency has been investigated in some of our pub-

lications, where the performance is found to be very sensitive to underestimation
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of the Doppler frequency and has little sensitivity to overestimation, which can be

assumed to be applicable for the joint channel and frequencyoffset estimation as

well. Therefore, a good upgrade of the work in this thesis is to derive a practi-

cal joint channel, frequency offset and Doppler frequency estimator (with a certain

Doppler frequency overestimation to avoid degradation in performance caused by

underestimation of the Doppler frequency) and investigatethe performance of iter-

ative turbo receivers that use this upgraded joint estimator.

• In this thesis, the joint channel and frequency offset estimators are derived and

investigated for the Rayleigh fading channels. It is straightforward to specify the

estimators for different types of fading channels, such as the Rician and Nakagami

fading channels, by considering the different corresponding PDFs of the fading

process, with the presence of a vector of means and a different covariance matrix.

Therefore, it will be helpful to extend the joint estimatorsfor such more general

fading channels and more research can be done to investigateits performance.

• The iterative turbo receivers with joint estimation of channel and frequency offset

in time-variant fading channels are considered in this thesis. Those receivers can

be specified in a future research for orthogonal frequency division multiplexing

(OFDM) signals in frequency-selective channels, which hasbeen of great interest

recently. This can be done by employing pilot tones and perform similar BEM-

based processing in the frequency domain.

• In this thesis, the iterative turbo receivers with joint estimation of channel and

frequency offset are considered for single-input single-output (SISO) fading chan-

nels. In a further research work, those receivers can be extended for the multiple-

input multiple-output (MIMO) fading channels, where special techniques concern-

ing multiplexing are required.
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AWGN AdditionalWhiteGaussianNoise

BEM BasisExpansionModel

BER Bit-Error-Rate

BS B-Splines

BPSK BinaryPhaseShift Keying

CE ComplexExponential

CP Cyclic Prefix

dB Decibel

DPS DiscreteProlateSpheroidal

FEC ForwardError Correction

Hz Hertz

ICI Inter-CarrierInterference

ISI Inter-Symbol Interference

IDFT InverseDiscreteFourierTansform

GCE GeneralizedComplexExponential

KL Karhunen-Loeve

LLR Log-L ikelihoodRatio

MAP MaximumA Posteriori

MIMO Multiple-InputMultiple-Output

ML MaximumL ikelihood

MLSE MaximumL ikelihoodSequentialEstimation

MMSE M inimum MeanSquareError

MSE MeanSquareError

NSC Non-SystematicConvolutional

OFDM OrthogonalFrequencyDivision Multiplexing
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PCI PerfectChannelInformation

PDF ProbabilityDensityFunction

PSAM Pilot Symbol AssistedModulation

PSK Phase-Shift Keying

QAM QuadratureAmplitudeModulation

rms root-mean-square

RSC RecursiveSystematicConvolutional

SIHO Soft-InputHard-Output

SISO Soft-InputSoft-Output

SISO Single-InputSingle-Output

SNR Signal toNoiseRatio

STBC Space-TimeBlock Codes

STTC Space-TimeTrellis Codes

SVD SingularValueDecomposition
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