Joint Channel and Frequency Offset Estimation
for Wireless Communications

Rami Khal

Doctor of Philosophy (Ph.D.)

University of York

Department of Electronics

August 2011



Abstract

This thesis deals with joint channel and frequency offsetedion in many scenarios of
wireless communications. In additive white Gaussian nGd&€GN) channels, a general
literature survey of channel and frequency offset estinsatased on the data-aided max-
imum likelihood (ML) principle is presented. The Cramer-Rawé¢r bounds (CRLB)s of
the joint estimators are presented. Performance analysidvanced frequency estima-
tors recently proposed in the literature is provided. Thégomance of the estimators is
compared for different application scenarios so that toagle¢tter understanding of the
differences, in terms of accuracy, complexity, frequerstyngation range, signal to noise
ratio (SNR) threshold. The dichotomous search (DS) frequestimator is found to be
the best practical choice. The DS frequency estimator esgpbfast Fourier transform
(FFT)-based coarse search and dichotomous fine search pétiselogram peak to ap-
proximate the ML optimal estimator. This algorithm achievee ML-like accuracy over
a wide range of SNRs and throughout the wide frequency estmednge. As it relies

entirely on linear operations, it is perfectly suitable feal-time implementation.

In time-invariant frequency-selective channels, thetjdata-aided estimation of chan-
nel and frequency offset for signals exploiting multipaivedsity is considered. This di-
versity improves the estimation performance by searchinghfe peak of the combined
periodograms of multipath components. The first estimadrased on the Bayesian
approach and can be used when certain prior statistical lkelg@ about the channel is
available. The second estimator is based on the ML approathan operate when these
channel statistics are not available. Both estimators eptpl DS frequency estimation
technique. These estimators have a high-accuracy penfimenaith an estimation error
very close to the CRLBs over a wide range of SNRs and throughouwtitteefrequency
acquisition range.
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In frequency-flat time-variant fading channels, new joiatadaided channel and fre-
guency offset estimators are derived. The proposed estimmate based on the basis ex-
pansion model (BEM) of the fading process and the DS frequestignation technique.
The first estimator is based on the Bayesian approach andisxpimr channel statis-
tics to provide a high performance. The second estimatesrein the ML approach,
and with a slightly lower accuracy, can operate when ther statistics are unknown.
The performance of the proposed joint estimators is exasnioedifferent scenarios in
Rayleigh fading channels. The sensitivity of the Bayesiamegor to the knowledge of
the Doppler frequency is investigated using such BEMs as Ugah-Lave (KL), dis-
crete prolate spheroidal (DPS), generalised complex expal (GCE), and B-spline
(BS) functions. The BS-BEM is found to be the most robust and #s¢ fractical choice.

In doubly-selective fading channels, a joint data-aideanctel and frequency offset
Bayesian estimator is proposed. The joint estimator is basetie BS-BEM represen-
tation of the fading process and the DS frequency estimaéohnique. Simulation re-
sults for different scenarios in Rayleigh fading channetsisthat the proposed estimator
achieves a high accuracy performance, which is close tonthhatperfect knowledge of
the frequency offset, over a wide range of SNRs, for diffef@oppler frequencies and

throughout all the frequency acquisition range.

Iterative turbo receivers are developed for frequencytifta¢-variant fading channels
which jointly perform channel and frequency offset estimatogether with data detec-
tion and decoding. The estimation and detection are bas#uedBS-BEM of the fading
time variations and use the DS frequency estimation. Séftimation generated in the
turbo decoder is used to improve the quality of detectiorha subsequent iterations.
Depending on how much knowledge of channel statistics igdadla, three versions of
the joint estimator, the Bayesian, ML and regularised-IHM(L) are provided. Simula-
tion results show that the proposed receivers provide ad gedormance as the corre-
sponding ones operating with perfect knowledge of the feequy offset, and close to that

operating with perfect channel knowledge.
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The main purpose of this work is to investigate data-aideduency offset estimators
in wireless communications for signals propagated thradgttive white Gaussian noise
(AWGN) channels and slow fading multipath channels, anddbasehis investigation, to
propose joint channel and frequency offset estimatorsréauency-flat time-variant and
doubly-selective fading channels to be used in developadtive turbo receivers. The
joint estimation would allow higher accuracy with respedechniques dealing separately
with these two problems. We first explore and compare theopeence in terms of ac-
curacy and complexity of advanced frequency estimatotsdsbeen recently proposed
in the literature for the AWGN channels, and present the jol@nnel and frequency
offset estimation together with the corresponding Cramer-Rever bounds (CRLB)s.
Then, we investigate frequency offset estimators, baseth@Bayesian and maximum

likelihood (ML) approaches, for time-invariant frequersglective channels and present
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CHAPTER 1. INTRODUCTION 2

joint channel and frequency offset estimators togetheln wie corresponding CRLBs.
After that, we propose joint channel and frequency offsétredors for frequency-flat
time-variant fading channels, based on basis expansioeis\(BIEM)s of the fading pro-
cess, and compare the performance and robustness of timaiess for different BEMSs.
Then, we propose a joint channel and frequency offset egiimfar doubly-selective fad-
ing channels. Finally, we develop iterative turbo receivfer frequency-flat time-variant
fading channels which jointly perform channel and freqyeoitset estimation together
with data detection and decoding, where soft informatiomegated in the turbo decoder

is used to improve the quality of detection in the subseqiterations.

1.1 Motivation and Problem Statement

Modern digital RF (radio frequency) communication systemes able to operate very
close to theoretical performance limits. This fact has &thleveryday technologies,
such as cellular telephony and digital television, as welin@re exotic applications such
as secure military communications and deep-space links nefiotic probes. However,
many of these systems depend on coherent detection, witjahves that the phase of the
received signal to be known. In practice, a wireless recewlienot have prior knowledge

of the phase of the received RF signal, therefore the receiust derive the phase of the
signal from careful measurement of the signal’s parameféng process of estimating

and compensating for the phase is called carrier synctabaizor carrier recovery.

An important part of carrier synchronization is compenmggatior carrier frequency
offset. A frequency offset results in a time-varying phak#éts The offset is caused
by mismatches between transmitter and receiver oscila@nd by Doppler effects. In a
typical wireless communication system, the signal to besmatted is upconverted to a
carrier frequency prior to transmission. The receiver geeted to tune to the same carrier
frequency for downconverting the signal to baseband, paaemodulation. However,
due to device impairments, the carrier frequency of theivecg.. may not be the same
as the carrier frequency of the transmitfgr When this happens, the received baseband
signal, instead of being centered at DiEg), will be centered at a frequendy, where

fo = fa — fo. This frequency offsef, in the frequency domain corresponds to an
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exponential multiplier in the time domain. Ignoring nois&ding and multipath (that is
discussed later in the thesis), the baseband time domaiaseqtation of the received
signal is

r(t) = e??mots(t) (1.2)

wheres(t) is the transmitted signal.

The carrier frequency offset of a modulated signal is esthan one of two ways: 1)
Infer the frequency offset directly from the transmittedaj&) Infer the frequency from
pilot symbols (also sometimes called training symbols yoicavords), which are known
a priori by the receiver, and which are inserted into theassiref data symbols. Option
1) is called non data aided (NDA) or decision directed (DDneation, depending on
whether a preliminary decision on the data symbol is incateal into the estimate (DD)
or not (NDA). Option 2) is known as data aided (DA) estimation

NDA and DD estimation is the most efficient approach becausadditional signal
bandwidth is required for aiding synchronization. Noné&tkg, NDA and DD estimation
performs poorly for low SNR conditions, or for highly disted signals. In contrast, DA
estimation is more tolerant of degraded signal conditidimg downside of DA estimation
is that the pilot symbols are non-information bearing, aedde increase the bandwidth
overhead of the signal. Yet, DA estimation is widely used indern communication

systems due to its performance advantages, and it is theeaipmh studied in this thesis.

1.2 Overview

In wireless communication systems, where reliable tragssiom technigues at high data
rates is a requirement, an appropriate signal detectidreingceiver can only be achieved
by using highly efficient synchronization techniques inevhjoint channel and frequency
offset estimation is performed. Known data symbols caleddilot symbols is a practical
method used to provide the receiver with the required in&diom about the channel [1,2].
For time-invariant channels, the pilot symbols can be seatlurst mode as preambles,
postambles, or midambles. However, for time-variant cle&)milot symbols are usu-

ally inserted periodically within the data block in a prosé&sown as pilot symbol aided
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CHAPTER 1. INTRODUCTION 4

modulation (PSAM) [3, 4] to keep up with the channel variaio

The periodogram maximiser ML frequency estimator possetse optimum perfor-
mance, but also involves impractical complexity. Pradticeguency estimators approx-
imating the ML estimator are classified as correlation-dg%e-12] and periodogram-

based frequency estimators [13-19].

The correlation-based frequency estimators, such as timatsrs of Fitz [5], and
Luise and Reggiannini (L&R) [6], can exhibit a comparable parfance to that of the
ML estimator. However, both estimators possess a limiteguency estimation range.
This U is inversely proportional to the number of input sampleand cannot be changed
to suit a certain channel requirement. This prevents theagirs from being used for
scenarios where a wide frequency estimation range is rdjuiir also limits the usage for
relatively largeN. In addition, these estimators use nonlinear operatiodspassess a
high computational load. We consider the following cortielabased frequency estima-
tors. A frequency estimator that relies on the phase of theeledion sample at a single
lag (L), referred to as the SL estimator, that was proposed in [1B]iran estimator was
presented relying on unweighted linear combination of thase differences of lags
correlation samples, referred to as the B&S estimator. A e average phase differ-
ences estimator was presented in [9], referred to as the Mé&fivhator. Depending on
the small error assumption, a simplified estimator for the ANM&hannel can be derived
from the one proposed in [10] based on the nonlinear leastrsg (NLS), referred to as
the SNLS estimator. An approximated NLS estimator was meg@on [11], referred to
as the ANLS estimator, based on the summation-by-parts Auteimproved estimator
was proposed in [12] based on the weighted normalised awgdaton linear predictor,
referred to as WNALP.

The periodogram-based frequency estimators use coarsénanskearch for the pe-
riodogram peak [13]. Usually, the coarse search is\V&point fast Fourier transform
(FFT), or discrete Fourier transform (DFT), whére> N. Some estimators usg = N
which allows efficient implementation. However, this ragsimore complicated meth-
ods to be used in the fine search and can affect the accuralg ektimator. The linear
interpolation frequency estimator [14] usés = N and exploits a three-point linear in-

terpolation fine search. Although the coarse search is ctatipnally efficient, the fine
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search requires nonlinear operations to achieve a cextauracy, which results in an in-
crease of the complexity. This estimator hasfglependent performance that can cause
the threshold signal to noise ratio (SNRE the SNR below which the estimation error
starts diverging from the CRLB, to be significantly higher thaattof the ML estima-
tor. Other methods can be used in the fine search, such as#edfitre-point interpola-
tion techniques [15], and Newton’s method for locating thetrof an equation [16]. In
spite of the efficient coarse search, the fine search usessophesticated nonlinear tech-
niques, which makes it difficult for practical implementati We consider the following
periodogram-based frequency estimators. A popular egimoéthis type is the dichoto-
mous search of the periodogram peak (DS) [17]. This estineaqoloits FFT/DFT of the
size M =~ 1.5N for the coarse search, and then refines the estimate(piterations of
searching within binary partitions in the neighbourhoothefinitial peak. This estimator
relies entirely on linear operations and is perfectly comwet for real-time implementa-
tion. An important modified dichotomous search (MDS) estonaas proposed in [18],
which attains the CRLB without the need for zero-padding tlee@ssed samples, allow-
ing a reduction in the complexity to be achieved. An improstedhotomous search (IDS)
estimator was proposed in [19] exploiting a new initialigatscheme in an attempt to
accelerate the convergence so that to allow reducing thédeuof iterations in the fine
search and also without the need to zero-padding. A robustchgf periodogram-based
and correlation-based estimator (grouped here with thegegram-based estimators)

was proposed in [20] and is referred to as MLAF.

Performance analysis is obtained in terms of accuracy antplexity of the men-
tioned advanced frequency estimators, where the perfarenasncompared for different
application scenarios. Based on that, the DS estimator isdféol be the best practical
choice.

In wireless communication systems, the waves travelingftbe transmitter to the
receiver get reflected, scattered, diffracted, or refchchge to the surrounding objects
and the media property [21]. This creates multiple propagaiaths, where the received
signal is a sum of many copies of the transmitted signal wiferént delays and attenu-
ations [22]. As a result, the channel possesses a randaméyvariant impulse response
and becomes a fading channel that requires statisticairtezs [23, 24]. In this case, the
performance of the single-branch receiver is poor due t&NiR reduction, and diversity
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reception is used to improve that performance [25, 26]. Ddpgy on the fading rate of
the channel compared to the baseband signal variationghtrenels can be classified
as fast fading or slow fading channels. In the fast fadinghaleés, the channel impulse
response changes rapidly within the symbol interval [28]isTmplies more complicated
models to represent these channels as in [27, 28], and esgpecial techniques for esti-
mation as described in [29, 30]. However in the slow fadingretels, the channel can be

simply assumed static (time-invariant) during the obsowanterval [23].

Most frequency estimators for time-invariant frequenelestive channels in the lit-
erature are based on the correlations of the received sily@ato the simplicity in the
implementation. The estimator in [25] is an extension torthdtipath channels with di-
versity reception of the correlation-based algorithm Fe honfading channels proposed
in [6]. However, it has a narrow frequency acquisition raagd poor performance at low
SNRs. This is a common case in the correlation-based estisn&tb-33].

Joint estimators of channel and frequency offset explgitiultipath diversity is con-
sidered for the time-invariant channels. This diversitghswn to improve the estimation
performance in a similar way that the detection performanceultipath channels is
improved by the RAKE receiver [22]. Two joint estimators atedsed. The first fol-
lows the Bayesian approach and can be used when certain attisal knowledge
about the channel is available. The other follows the marartikelihood approach when
these channel properties are not available. For practigplementation, both estima-
tors employ the DS frequency estimation. Therefore, antowit increasing the com-
plexity, these estimators outperform the correlationebaagorithms and possess a wide

frequency acquisition range.

The joint channel and frequency offset estimation becorhafienging when dealing
with time-variant channels, where in addition to the additioise, the transmitted signal
is corrupted with a random multiplicative distortion [23This makes the channel and
frequency offset estimation complicated, and so, tradgidechniques have dealt sep-
arately with these two problems. Various frequency offstin@ators for frequency-flat
time-variant fading channels have been proposed in thatitee. However most of these
estimators are correlation-based [7, 8,10, 11, 34, 35] santheir performance is inferior

to that of the optimal ML estimator and/or they possess adichfrequency acquisition
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range. The estimator in [34] is based on weighted linearessyon for the phase of the
sample correlation function, however the covariance matrthe phase estimation is as-
sumed to be known. In [35], a modification was presented tawaihe operability in a
wider acquisition range, and in this case the covarianceixriatestimated. However, an
assumption was made for the fading correlation. No suchngson was made in [8],
where two estimators were proposed. The first is based onighted version of the
method of [35] and the second is based on a nonlinear leasaras| (NLS) approach.
Similar NLS technique was derived in [10] based on the migltipgs correlation func-
tion. Several channel estimators for frequency-flat tirmgant channels were proposed
in [4,36—-42]. The BEM has been efficiently used for channahegton [36, 38—43].
However, these estimators yield a severe degradation ipgtfermance at the presence
of a frequency offset. This problem can be resolved using jchannel and frequency
offset estimation, which to the best of our knowledge, hadeen well addressed in the

literature and the main aim here is to fill that gap.

We focus on estimating the channel which contains both, thiepticative distortion
and frequency offset. This channel is all what the receies=ds in practical applica-
tions, where there is no need for spending much complexitgxgiicit estimators for
its individual components. The goal here is twofold. Fystle propose interpolation-
based practical frequency offset estimators based on t®timous search technique,
involving a two stage [13] search of the generalised pegoaim peak [44], an FFT-based
coarse search [45] and dichotomous fine search [17]. Thenastis achieve superior
performance compared to that of the correlation-basedastirs, and possess a wide
frequency acquisition range. Secondly, we propose alguostthat estimate the channel
jointly with the frequency offset. The estimation is basedapproximating the time-
variant fading process by a BEM and employ the DS frequendynasbn technique.
This leads to a mathematical model that offers a simple ¢edwimensionality) pro-
cessing in addition to a high-accuracy performance ovewitle frequency offset range.
The novel joint estimators are derived based on two appesachhe first is the Bayesian
approach and can be used when certain prior statistical llkage about the channel is
available. The other is the ML approach and is applicablenvthe channel statistics are

not available.

Simulations for different scenarios in Rayleigh fading aiels are used to investigate
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the performance of the new estimators. The proposed Baygsiarestimator is stud-
ied based on different BEMs such as Karhuneme (KL), discrete prolate spheroidal
(DPS), generalized complex exponential (GCE), and B-spB%®) functions, where the
channel statistics are perfectly or imperfectly known. Besethat, the BS BEM is found

to be the best choice in practice.

Accurate channel estimation is challenging in frequerelgative and time-variant
fading channels, especially in the presence of a frequefisgto Most of the frequency
offset estimators proposed in the literature have beentdéwvo correlation-based esti-
mation, such as [25, 46] for frequency-selective time4iiarg channels and [8, 11, 34]
for frequency-flat time-variant fading channels. Howetke performance of such es-
timators is inferior to that of the estimator based on theegairsed periodogram [44],
and unlike that estimator, they are operable only at high SBiiRBor they possess a
limited frequency acquisition range [47, 48]. Periodogiiaased joint channel and fre-
guency offset estimation for frequency-flat time-variadihg channels has been consid-
ered in [49, 50], where joint estimators exploiting BEM of ttlgannel time variations
have been proposed. BEMs have been widely used for frequtatdyme-variant chan-
nel estimation [38, 41, 51]. However, these estimatorglyséetevere degradation in the
performance in the presence of a frequency offset. Jointredlaand frequency offset es-
timation for frequency-selective time-invariant charsnieds been addressed in [52]. For
doubly-selective fading channels, BEM-based channel aestom has been considered
in [53]. The estimation of doubly-selective fading charsialthe presence of a frequency
offset for multicarrier systems, based on complex expaoaeBEM, has been addressed
in [54].

We focus on estimating jointly the doubly-selective fadcttannels and frequency
offset by using BS BEM. The proposed estimator is based on septiag the fading

process by BEMs and employing frequency estimation basedeoD$ estimator.

By considering the soft information from a soft-input softjout (SISO) decoder in
an iterative channel estimation and data detection, vaitewative turbo processing tech-
niques have been widely considered for pilot symbol asistedulation (PSAM) sys-
tems at the receivers. However, most studies have eitheredrthe possible presence

of a frequency offset [55], or assumed time-invariant cledswhen dealing with the fre-
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guency offset [56]. We consider iterative turbo-basedivecs for PSAM systems and
QAM signals dealing with joint estimation of the time-variahannel and frequency off-
set together with data detection and decoding, which, tdodst of our knowledge, is

seldom treated in the literature.

1.3 Contributions

Major contributions in this thesis can be summed up as falow

e Performance of advanced frequency estimators that have reeently proposed
in the literature for signals in the additive white Gaussiemise has been anal-
ysed. A fair performance comparison has been obtained of megent estimators
from both classes, correlation-based and periodogramebastimators, under the
same simulation environment and for different applicagoanarios so that to get
a better understanding about the differences, most pigcisderms of accuracy,
complexity, frequency acquisition range, signal to noa@r(SNR) threshold and
the sensitivity of these towards different SNR and freqyesaenarios. The di-
chotomous search estimator, which involves a two stagenigeé for searching
the periodogram peak, an FFT-based coarse search and #otchs fine search,
has been shown to outperform the other estimators in mamasos, keeping a
high-accuracy performance throughout the wide frequerstynation range and
for all considered SNRs. It also relies only on linear operaiwith a relatively

low complexity, which makes it the best choice in many padtscenarios.

e Joint estimation of channel and frequency offset in fregyeselective channels
for data-aided scenarios has been studied. The considstiethtors exploit the
multipath diversity by combining the periodograms of theltipath elements and
searching for the maximum of the combined statistic. Twatj@stimators have
been considered. The first estimator depends on the Baygseioaeh and can
provide a high-accuracy performance whenever prior $izdischaracteristics of
the channel are known, namely the mean and covariance e®mtricthe channel

parameters and the variance of the AWGN. The second estinvetara slightly
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higher estimation error, is an alternative joint estimalat can operate when these
characteristics are unavailable. To reduce the compl@fithe frequency offset
estimators and attain a high accuracy, the estimators iexpéodichotomous search
frequency estimation. These estimators have been exédysivestigated for many
different application scenarios in Rayleigh fading chaan@hese estimators have
been shown to maintain a high-accuracy performance wittsamation error very
close to the CRLB over a wide range of SNR and throughout the fwedpiency

acquisition range.

e Joint data-aided estimators of channel and frequencytafiggme-variant fading
channels have been derived, depending on how much knowtdadmnnel statis-
tics is available, based on basis expansion models (BEMJ}gdfrhe variation and
the dichotomous search frequency estimation. These dstisnare examined for
Rayleigh fading channels. They achieve a high accuracy pedoce over a wide
range of signal to noise ratio, for different Doppler fregaies and throughout all

the frequency acquisition range.

e The performance of the joint data-aided estimators of celaand frequency off-
set in time-variant fading channels has been compared dgiiegent BEMs such
as, Karhunen-Leve (KL), discrete prolate spheroidal (DPS), generalizadplex
exponential (GCE), and B-spline (BS) functions for differergrsarios in Rayleigh
fading channels, where the channel statistics are perfectimperfectly known.
When channel statistics are perfectly known, the KL and DPS BlEbg slightly
lower number of basis functions than that of the GCE and BS BEMslltw
achieving the same performance. However, the best readréaiipance of all
the BEM-based estimators is the same. When channel sta@séasismatched,
the estimators based on the GCE and BS BEMs are more robust themnlibsed
on the KL and DPS BEMs. This makes the BS functions a better ehniprac-
tice as it has a sparse matrix that results in a lower compléxan the other basis

functions.

e The joint channel and frequency offset estimator has beewedefor doubly-
selective fading channels. The estimator has been inagstdor different scenar-
ios in Rayleigh fading channels, where it maintains a higtueacy performance

over wide SNR, frequency offset and Doppler frequency rangkih is very close
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to that of the Bayesian channel estimator operating witheggenowledge of the

frequency offset.

e lterative turbo receivers have been developed for timemafading channels, de-
pending on how much knowledge of channel statistics is alvkl The receivers
jointly perform channel and frequency offset estimatiayetier with data detection
and decoding. Soft information generated in the turbo dectdused to improve
the quality of the detection in the subsequent iterationse fieceivers have been
shown to provide as good performance as the correspondieg @perating with
perfect knowledge of the frequency offset, and is very ctoshat operating with

perfect channel knowledge.

1.4 Thesis Outline

The rest of the report is separated into following chapteesprding to the different sys-
tems investigated and analyzed.

e Chapter 2: Fundamental Techniques

In this chapter, fundamental techniques used throughithbsis are introduced.
Different simulators of time-variant channels are first pamed and the one whose
statistics match to those of the desired reference Clarketeinis applied. The
basic principles of BEMs are also described, which are usexppsoximate the

fading channels. Turbo encoder and decoder are also bméfbduced.

e Chapter 3: Joint Estimation of Channel and Frequency Offs@diditive White

Gaussian Noise Channels

In this chapter, a general literature survey of data-aideshoel and frequency off-
set estimators based on the maximum likelihood (ML) pritecipr signals trans-
mitted through additive white Gaussian noise (AWGN) chasimeprovided. The
CRLBs of the joint estimators are derived. Performance arslpsierms of ac-
curacy and complexity of advanced frequency estimatorshiha been recently
proposed in the literature is performed. The dichotomaaseld joint channel and

frequency offset estimators are then investigated.
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e Chapter 4: Joint Estimation of Channel and Frequency Offsdtrgquency-
Selective Channels

This chapter presents the joint data-aided estimationariicll and frequency offset
for signals propagated through time-invariant frequeselgctive channels. Two
joint estimators, Bayesian-based estimator when cert&n gatistical knowledge
about the channel is known and ML-based estimator when tttes®nel properties
are not available, are studied. Both estimators employ anlfaS€&d coarse search
and a dichotomous fine search for the periodogram peak. &ixeesimulations for
different scenarios are used to investigate the performahthe joint estimators in
Rayleigh fading channels.

e Chapter 5: Joint Estimation of Channel and Frequency Offséinie-Variant Fad-

ing Channels

In this chapter, novel joint data-aided channel and frequeffset estimators are
proposed for frequency-flat time-variant fading channedsed on the BEM of the
time variation and the dichotomous search frequency esom&echnique. Two

joint estimators, following the Bayesian and maximum likethd approaches (de-
pending on the availability of the prior knowledge of the ihel statistics), are
derived. The performance of the proposed joint estimastoegamined for different
scenarios in Rayleigh fading channels. The sensitivity efBayesian estimator to

the knowledge of the Doppler frequency is investigatedaidifferent BEMs.

e Chapter 6: Joint Estimation of Channel and Frequency OffsBoubly-Selective
Fading Channels

In this chapter, the proposed joint data-aided channel mggiéncy offset estima-
tors are upgraded to be applicable for doubly-selectivengadhannels. The con-
sidered estimator follows the Bayesian approach and is lwastek B-spline model
representation of the fading process and the dichotomauslsé&equency estima-
tion technique. This joint estimator is examined for diffiet scenarios in Rayleigh
fading channels and compared to the Bayesian channel estimgérating with

perfect knowledge of the frequency offset.

e Chapter 7: Iterative Turbo Receivers in Time-Variant Fadingi@tels

Iterative turbo receivers are developed in this chaptetifioe-variant fading chan-

nels which jointly perform channel and frequency offsetreation together with
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data detection and decoding. Three versions of the joiithasir, the Bayesian,
the maximum likelihood and the regularised-maximum likebd are presented de-
pending on how much knowledge of channel statistics is alvkal The estimation
and detection are based on the basis expansion model ofding tame variations
and use the dichotomous search frequency estimation tpefinSoft information
generated in the turbo decoder is used to improve the qualitetection in the
subsequent iterations. The performance of the developivess is investigated
and compared to that of the corresponding ones operatifgpsitfect knowledge
of the frequency offset and also to that of the one operatiitly perfect channel

knowledge.

1.5 Notation

In this thesis, we use capital and small bold fonts to denatiioes and vectors, i.eA
anda, respectively. Elements of the matrix and vector are dehase!,,, ,, = [A],,,, and
am = [a],,. The symbolj is an imaginary unij = /—1. We denoter{-} and{-}
as the real and imaginary components of a complex numberecteely; (-)* denotes
complex conjugatel, denotes ar) x @ identity matrix; (-)” and(-)" denote matrix
transpose and Hermitian transpose, respectivelylenotes the Kronecker produd. |
denotes the smallest integek.{-} denotes the statistical expectation operator afid tr

denotes the trace operator.

1.6 Publication List

Conference Papers [49,50,57-62]

[1] R.N.Khaland Y. V. Zakharov, “Iterative receivers with jotitannel and frequency
offset estimation in time-variant fading channels,Hroc. |IEEE ISVCS 10, York,
UK, Sep. 2010, pp. 844-848.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 1. INTRODUCTION 14

2]

3]

R. N. Khal, “Comparison of accuracy and complexity of advanftequency esti-
mators,” inProc. |IEEE ISWCS 10, York, UK, Sep. 2010, pp. 490-495.

J. Zhang, R. N. Khal, and Y. V. Zakharov, “Sensitivity of chahastimation using
B-splines to mismatched Doppler frequency,Aroc. |EEE IS\VCS 10, York, UK,
Sep. 2010, pp. 946-950.

J. Zhang, Y. V. Zakharov, and R. N. Khal, “Optimum detectiorsatially uncor-
related SIMO Rayleigh fast fading channels with imperfe@rotel estimation,” in
Proc. IEEE ISNVCS 10, York, UK, Sep. 2010, pp. 476—-479.

R. N. Khal, Y. V. Zakharov, and J. Zhang, “B-spline based joihamnel and
frequency offset estimation in doubly-selective fadingmhels,” inProc. |EEE
ICASSP’ 10, Dallas, Texas, USA, Mar. 2010, pp. 3214-3217.

R. N. Khal, J. Zhang, and Y. V. Zakharov, “Robustness of joint&agn frequency
offset and channel estimation based on basis expansionisioeProc. 43rd
Asilomar Conf. ACSSC’'09, Pacific Grove, California, USA, Nov. 2009, pp. 957—-
961.

J. Zhang, Y. V. Zakharov, and R. N. Khal, “Optimal detection 8'BC MIMO
systems in spatially correlated Rayleigh fast fading chisnwigh imperfect channel
estimation,” inProc. 43rd Asilomar Conf. ACSSC’' 09, Pacific Grove, California,
USA, Nov. 2009, pp. 1387-1391.

R. N. Khal, Y. V. Zakharov, and J. Zhang, “Joint channel andjfiency offset
estimators for frequency-flat fast fading channels,Pnoc. 42nd Asilomar Conf.
ACSSC’ 08, Pacific Grove, California, USA, Oct. 2008, pp. 423—-427.

1.7 Awards

1]

Kathleen Mary Stott Prize for excellence in scientific reskaThe University of
York, Department of Electronics, York, UK, Jul. 2010.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



Chapter 2

Fundamental Techniques

Contents
2.1 Introduction . . . . . . . ... 15
2.2 Time-Variant Fading ChannelModels . . . . . . ... ... ..... 16
2.3 BasisExpansionModels . . . . . ... ... oL 21
24 TurboCoding . . ... . . . . . . e 23
25 Conclusions. . . . . ... 31

2.1 Introduction

In this chapter, fundamental techniques used through@uthbsis are introduced. First,
time-variant fading channel models are studied in Secti@nBhen in Section 2.3, basis
expansion models (BEM)s are presented. Finally, a briefrgesm of turbo coding is

provided in Section 2.4.
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2.2 Time-Variant Fading Channel Models

In this thesis, we investigate joint channel and frequenftset estimation and signal
detection in time-variant Rayleigh fading channels. Beftwa,twe should first model
and simulate the fading channel accurately. This sectitodnces a simulator of time-

variant Rayleigh fading channels, which is used in the sulesatchapters.

Rayleigh fading is most applicable when there is no dominesyiggation along a line
of sight between the transmitter and receiver. Rayleighmfadi a reasonable model when
there are many objects in the environment that scatter the signal before it arrives at
the receiver. The central limit theorem holds that, if thersufficiently much scatter, the
channel impulse response will be well-modeled as a Gaupstaess irrespective of the
distribution of the individual components. If there is nawloant component to the scat-
ter, then such a process will have zero mean and phase evstilputed between and

27 radians. The envelope of the channel response will thexdferRayleigh distributed.

Clarke’s model [63] and its simplified model by Jakes [64] haeen widely used to
simulate time-variant Rayleigh fading channels. Althouigé simplicity of the original
Jakes’ model makes it popular, there are two deficiencidsctiranot be ignored [65]:
the original Jakes’ model is a deterministic model and itif§adilt to generate multiple
independent fading channels, such as frequency-seldatniipath) fading and MIMO
channels. Various modifications [66—69] and improveme6&s 70, 71] have been re-
ported for generating multiple uncorrelated fading wawei® needed for modeling fre-
guency selective fading and MIMO channels, such as Inverser&e Fourier Transform
(IDFT) [72] and the autoregressive approach [73]. It is painin [74] that Jakes’ simu-
lator is not wide-sense stationary when averaged acrogshysecal ensemble of fading
channels. In [74], an improved simulator, named Pop-Beasliaulator, is applied to re-
move this stationarity problem by introducing random phstséis in the low-frequency
oscillators. However, it is shown that the Pop-Beaulieu &taon has deficiencies in some

of its high-order statistics [71].

Based on the Pop-Beaulieu simulator, novel sum-of-sinusstigi$stical simulation
models with a small number of sinusoids are proposed for Reyliading channels
in [65,71]. These modified models improve the original Jakexiel by introducing ran-
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dom path gain, random initial phase and random Doppler &rqy for sinusoids within
these models [71]. The high-order statistical propertiethese novel models, such as
the autocorrelations and cross-correlations of the giacdr@omponents, the autocorre-
lation of the complex envelop, and the probability densitiydtions (PDFs) of the fading
envelop, asymptotically approach the desired ones as théeof sinusoids approaches
infinity [65, 71].

In this section, we introduce the reference Clarke’s mod¢heraatically and analyze
the deficiencies of the Jakes’ model and the Pop-Beaulieu Imdten, we introduce a
modified model proposed in [65, 71] which provides good cogwrce of the probability
density functions of the envelope, the level crossing taeaverage fading duration, and
the autocorrelation of the squared fading envelope, evamuiie number of sinusoids is
as small as 8 [71]. This modified model is used to generateipfaiindependent time-
variant channels in this thesis.

2.2.1 Oiriginal Clarke’s Model

According to Clarke, the fading process of a frequency-flati&gl fading channel is
given by [63, 75]

Ko
g(nTy) = EOZC’k exp [j(2m fpTsn cos ag + dr)] , (2.1)
k=1

where E is the normalising factork, is the number of scatterer§y, o, and ¢, are,
respectively, the random path gain, angle of incoming wangeiaitial phase associated
with the kth scattererfp is the maximum Doppler frequency occurring when = 0,

and fpT, is the normalised maximum Doppler frequency.

The Doppler effect, named after Austrian physicist Chnsfoppler who proposed
it, is the change in frequency of a wave for an observer mokahative to the source of
the wave.

The Doppler frequency of thieth scatterer is [75]

Jk = Jpcosay; Jp = A= — (2.2)
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wherew is the receiver’s velocity relative to the transmitteris the wavelength of the
incident waveg is the speed of the wava & 10® m/s for electromagnetic waves traveling

through air or vacuum) anflis the frequency of the wave.

Assuming that”;, has a real value, (2.1) can be split into inphase and quadretun-

ponents as
9(nTy) = gi(nT;) + jge(nTy) ; (2.32)
gi(nTy) = Ey f: Cy cos(2m fpTyn cos ay + dr.) (2.3b)
k;;
gq(nTy) = Ey Z Csin(2m fpTgn cos ay + o) - (2.3¢)
k=1

For large K, , the central limit theorem allows;(nT;) and g,(n7;) to be approxi-
mated as Gaussian random processes [22]. Adopting Clavke gitnensional isotropic
scattering model, and assuming thatand¢, are independent and uniformly distributed

over|—m, 7|, each of these processes has a zero-mean value [24, 63]

Mo = Mg, = Hgq = E{g,(nT)} =0, (2.4)

and a variance of [24, 63]

of =0y =0, =var{g,(nT.)} = 5 ZE{C2 (2.5)

9i

Therefore, the fading procegénT;) has zero meafy, = 0), variance2s3, and some
second-order statistics as autocorrelation and crogsiation functions of [63, 75]

Ry, (1) = Ry, (v) = 03 Jo(2m fpTsu), (2.6a)

Ry,g,(t) = Ryg,g,(u) =0, (2.6b)

Ryy(u) = 205 Jo (27 fpTisu), (2.6¢)
4og I3 (2m fpTsu)

Rigpigf2(u) = 4oy + oy Jg (2 foTou) — (2.6d)

Ky ’
where Jy(-) is the zero-order Bessel function of the first kind [76]. Thdifig envelope,
lg(nTy)|, has Rayleigh distribution and its PDF is given by [75]

x x?
plgl(x) = J—gexp {—T‘g} , x>0, (2.7)
whereas the phas@,(t), has uniform distribution and its PDF is given by
1
pe,(0y) = o b, € [—m, 7. (2.8)
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2.2.2 Jakes’ Model

Jakes [64] derived his simulation model for Rayleigh fadihgrinels based on Clarke’s
model in (2.1) by selecting

1
C —_—, 2.9a
21k
= — 2.9b
g KO ) ( )
or=0, k=12 ... K, (2.9¢c)
so that the normalised fading process of this model is giyej®4]
g(nTy) = g;(nTy) + jgq(nTy) : (2.10a)
9 K
gi(nTy) = ay cos(2m fynTy) , (2.10Db)
9 K
9q(nTs) = by, cos(2m fynTy) ; (2.10c)
Koy =4K + 2, (2.10d)
(
V2cos By, k=0,
ay — o (2.10e)
2 cos B, k=1,2,..., K,
)
V2sinfy, k=0,
by = o (2.10f)
2sin [y, , =1,2,...,K,
\
T k=0
B = . (2.109)
%, k=12 K,
(
f Y k = 07
Je = i (2.10h)
\chos%, k=1,2,... K.

The simplifying parameters selected as (2.9) make the sghad quadrature compo-
nents correlated [77], and the simulation model determij28] and wide-sense non-
stationary [78]. Therefore, various modifications of Jakenulator have been proposed,
such as in [28, 78-83].
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2.2.3 Modified Simulation Model

A modified simulation model was proposed in [81] and corre@ate83], which resolves
the disadvantages of Jakes’ model by reintroducing theoraness for the variables,,
ag, andg,. The normalised fading process of the improved simulatoppsed in [81] is

given by

g(nTy) = gi(nTs) + jgg(nTy); (2.11a)

K
g:(nTy) = \/%Eo Z cos(By) cos(2m fpTyn cos ay, + ) , (2.11b)
k=1

K
2
Gg(nTs) =4/ EEO Z sin(Sy) sin(2m fpTsn cos ag + @) ; (2.11¢c)
k=1
2tk —m+0
= — =1,2,....K 2.11
097 AK ) k ) &y ) ) ( d)

whered, 5, andg, are independent random variables that are uniformly Oisied over

[—m, 7.

In [81], the value ofp, was incorrectly chosen to be the same. (p) for all £&. How-
ever, this mistake was acknowledged and the value was tedréz become,, in [83],

which is the version we follow here.

The computational efficiency and statistical correlationdtions of this modified
model are better than those of Jakes’ model [81]. The seoothel- statistics of the modi-
fied model match the desired ones and are independent of thigemwf sinusoidg( [81].

The autocorrelation function of the squared enveloged fourth-order statistic) asymp-
totically approaches the desired onegascreases, and converging fast, reaching a good

approximation with as small” ass.

Noting that the autocorrelation and autocovariance fonetiare identical for the
Rayleigh fading process angf = FEZ/2, the elements of théV x N covariance ma-

trix R, of the fading process are obtained from (2.6c) as

R,]. = Ryy(u—v)=E;Jo2rfpTs(u—v)), wuv=1,...,N. (2.12)

The modified model in (2.11), represented in matrix form k®/thx 1 column vector

g, is used throughout the thesis to simulate the time-vafahhg processes.
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2.3 Basis Expansion Models

Accurate estimation of the fading procegs:.7;) in (2.11) requires complicated tech-
niques such as the Wiener filtering [4, 37]. A simpler soluttan be obtained based on
approximatingy(n7}) using the basis expansion model [36,38]. This approximatim-

plifies the time-variant fading model and converts it intoneér combination of several

basis functions as

M
§<nTS) = Z amB(nTS7 m) ) (213)

whereB(nT, m) are theM known basis functions and,, are unknown expansion coef-

ficients. In matrix form, it can be written as
g =Ba, (2.14)

whereB is an N x M matrix with elements3(nT;, m) anda is anM x 1 vector of
expansion coefficients,,. Thus, the problem of estimatiny-dimensional time-variant
fading procesg(nTy) is transformed into a lower dimensional problem of estin@tnly

M time-invariant expansion coefficients,, where usually/ << N.

The BEM-based approach has been widely used due to its lowlegitypand high
accuracy. Different basis functions can be used in the BENh sisccomplex exponen-
tial [38, 40, 54], polynomial [39], generalised complex erpntial [84, 85], Karhunen-
Loeve [85—-87], discrete prolate spheroidal [41,88-90], argplies [42,51,91]. The
last four BEMs are most often considered in applications smalel estimation.

2.3.1 Karhunen-Loeve Functions

Karhunen-Leve (KL) functions [87] are a set of orthogonal functionst teegploits the
fading covariance matriR,. This allows the KL-BEM to provide the best approximation
of the fading process, assuming the perfect knowledge ofThe N x N matrix U of
eigenvectors oR, is obtained first as

R,U=UTY, (2.15)
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whereY is the N x N diagonal matrix of eigenvalues. Then the basis functiorrisnat
B is formed by the)M eigenvectors (columns dff) corresponding to thé/ maximum

eigenvalues (diagonal elementsYj.

2.3.2 Discrete Prolate Spheroidal Functions

The use of the KL BEM results in a low modeling error [86, 87]. wéwer, the fading
covariance matrix is not always available at the receivelterAatively, a BEM based
on discrete prolate spheroidal (DPS) functions was prapasg¢4l]. The DPS BEM
corresponds to the discrete KL BEM with a rectangular specidl]. The DPS basis
functions are bandlimited to the Doppler frequeneyfp 7%, fp7s] and simultaneously
most concentrated in the certain time interval of lengtfi92]. DPS sequences are widely

used for channel estimation both in time and frequency dosdil, 90, 93].

The DPS functions are orthogonal functions that are gee@tploiting the Doppler
frequency [41]. First, a matril is generated as

_ sin (27 fpTs (u —v))

uv

D] , uw,v=1,...,N. (2.16)

7 (u —v)
Then,B is formed fromM eigenvectors oD corresponding to thé/ maximum eigen-

values.

2.3.3 Generalised Complex Exponential Functions

Generalized complex exponential (GCE) functions [84] areaalifred version of the
complex exponential (CE) functions [38], for which the pdrf the basis functions is

extended longer than the observation intetValand are given by

B(nTy,m) = oI e (m-1-452) , (2.17)

where¢ > 1, and here, we will be using = 2. The CE basis functions are generated in
the same way, but usirgg= 1. This extension in the period helps in decreasing the model
approximation error. These basis functions do not explojt statistical information of

the channel.
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2.3.4 B-Spline Functions

B-spline (BS) functions [42] do not require any prior chanratistics. The BS functions

of ordern are symmetrical, bell-shaped functions that are given 8y [9

1 (n+1 x n+1 !
B = — —1) — =i 2.18
=g (") (e ) 218)
where
N -1
= 2.19
et (2.19)

PT, is the sampling interval separating two adjacent B-splinecions, andz, =
max{0,z}. In this caseB(nT,,m) = B, (nT, — (m — Z1)PT,). The matrixB of
the BS functions is a sparse matrix that only contajns 1 nonzero elements in each
row, which makes it attractive for implementation. The aecy and complexity of the
BS-BEM approximation depends on the spline degre¢n many situations, the cubic
B-spline (; = 3) provides the best trade-off between complexity and acyuji@4]. We
use the cubic B-spline in the simulation below wheneler 4, and forl < M < 3 we

usen =M — 1.

As shown above, the KL and DPS BEMs can approximate the timantafading
channel with small modeling error but require the statsti€ fading and have to suffer
extra error caused by the mismatched estimation of thefistetm Although the GCE
and BS BEMs do not require the knowledge of the statisticarmédion of fading, they
introduce higher modeling errors than the KL and DPS BEMs. pédormance and
robustness of estimators using the different BEMs are coedplater in Chapter 5, so
that to use the one which can provide the most robust perficenéo approximate the

fading process.

2.4 Turbo Coding

A new class of error correction codes named turbo codes wetétiroduced by a group
of researchers (Berrou, Glavieux and Thitimajshima)9a3 at the International Con-
ference on Communications [95]. These codes were shown tevach significant gain
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in power efficiency over other coding methods existed atithe aind allowed to the first

time to approach the Shannon capacity limit within oilydB. This remarkable achieve-
ment ends the conventional thought that the Shannon limibody be approached using
extraordinarily long codes with exceptionally complex déiag processes [96]. As one
of the most powerful error correction codes, turbo codeg theen developed rapidly and

attracted substantial attention in wireless communicat@mmmunity [97—-103].

Turbo codes are based on two fundamental concepts, coataderoding and iterative
decoding, the latter of which is the core of the turbo priteignd is responsible in the
outstanding performance of turbo codes. The turbo codessa® in Chapter 7 of this
thesis. A brief discussion of the structure of the turbo eleccand decoder is given
together with the differences between the main turbo degpdigorithms. Interested
readers can find more detailed description of turbo codirjjdd—106].

2.4.1 Turbo Encoding

The structure of the turbo encoder as seen in Figure 2.1 candlgsed from its name,
parallel concatenated recursive systematic convoluti®8C) code. The encoder has
two concatenated RSC encoders and an interleaver in betWéenRSC codes apply a
feedback loop (recursive part) and set one of the outputsl égthe input data (systematic
part) unlike non-systematic convolutional (NSC) codesuFed.2 shows the structure of
RSC encoder while Figure 2.3 shows the corresponding NSCdencdhe polynomial

generation of the feedback and output connectivity in the B&€oder ar&, 5 in octal.

Description of working principles of turbo encoder is addals. Firstly, a data se-
quence of lengthV, d = [d[1],...,d[N]], is encoded by the first RSC encoder, where
the output is a lengthV coded sequence, = [z,[1],...,z,[N]]. Then, the second
RSC encoder encodes an interleaved data sequence to gearetter coded sequence
x2 = [z2[1],...,22[N]] of length N. Finally, the turbo coded sequence is generated by
multiplexingd, x, andx?. This results in a code rate @3 without puncturing. Simi-

larly, higher code rates can be obtained by applying a puincigcheme.

The interleaver, as a device, reorders the input data sequerhile a deinterleaver
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Figure 2.1: Structure of a turbo encoder.

(used in the decoder) recovers the original order of that datuence. The joint influ-
ence of the interleaver and RSC encoder mostly lead to a hige e@ight composite
codeword. This is critical to the performance of turbo cod€¥]. A number of inter-
leavers can be used in the turbo encoders such as pseudwo¥w§h@B], block [109], and
s-random interleavers [110-113]. The s-random interleiaugsed in this thesis due to its
superior performance [105]. The output pattern of thisrleterer is randomly generated,
so that any two input bits within a distance©bits are separated after interleaving by at
leasts bits.

2.4.2 Turbo Decoding

Figure 2.4 demonstrates the turbo decoder for the encodrégume 2.1. Similarly to that

used in the encoder, two RSC decoders are linked by an deiaverl/interleaver.

The turbo decoder works iteratively where in each iteratios two RSC decoders
exchange the decoded information in order to assist onehanotReceived signals
ylk] = (yalk], y,[k], y2[k]) from the demodulator are demultiplexed to sequengés,
y,[k] andy’[k], respectively, wherg,[k] corresponds to the received systematic codes,
y,[k] corresponds to the received 1st parity bits, gfid]| corresponds to the received
2nd parity bits. The first RSC decoder applig§:] andy, k] as input sequences and the
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Figure 2.2: Example of a recursive systematic convolutiR&C) encoder.

second RSC decoder appliggk| andy.[k]. Inputs of corresponding decoder are set to
zeros at the punctured positions when the parity bits of@giRSC encoder are punctured
before transmission. For the initial iteration, the first R&2oder takes only,[k] and
y,|k] to generate soft information of the data bifs; 1 (d[k]). The second RSC decoder
can then perform decoding using the soft informatiorgf; (d[k]) and L, (d[k]) from

the first RSC decoder, in addition to the receivgfk] andy’[k]. The second decoder
output is another soft decoding informatidi; »(d[k]), which is deinterleaved to gener-
ate L, »(d[k]) and fed back to the first RSC decoder. During the followingtiens, the
first RSC decoder takes,, »(d[k]) from the second RSC decoder in the previous itera-
tion as additional information tg,[k] andy}[k], to generate.z 1 (d[k]). As the number
of iterations increases, the performance of the turbo dacodproves. However, the
improvement start later to decrease as the number of besatncreases. This process
continues iteratively until the decoders’s estimates efdfiginal data bits converge. As a
settlement between performance and complexity, eiglatitars are commonly used [96].

At the end, the outpua posteriori information L(d[k]) of a data bitd[k] delivered from
the second RSC decoder is deinterleaved and used for the dirthtiecision.

Every RSC decoder decodes use its input received signglg éndy; [k],i = 1,2)
and thea priori information (L, ;(d[k]),: = 1, 2) from the other RSC decoder to perform

decoding, and provides the extrinsic informatibp ;(d[k]) for the other decoder. Note

that the extrinsic information is only exchanged betweeroders as intermediate infor-
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Figure 2.3: Example of a non-systematic convolutional (N&@oder.

mation during the decoding process. The turbo decoder lisdcabft-input soft-output
decoder due to the exchange of soft information between R8@ decoders for which
it accepts soft priori information L, ;(d[k]|) at one of its inputs from the previous de-
coding process and generates soft informatign (d[k]). Soft information means that
besides decoded bits, the associated probability thatl@ablas been decoded correctly
is also provided, usually in the form of log-likelihood @{LLR). This indicates that
the decoder yields not only the coded bits but also how riglittiey are. As its name
implies, the LLR is the logarithm of the ratio of two probatids in the case of binary
transmission, e.g., the outpaiposteriori information (L(d[k))) is generally given by

P(d[k] = +1]y)
P(dK] = ~1Jy)’

L(d[k]) = log (2.20)

where the numerator and denominator are probabilitieseoframsmitted bitl/[k] = +1

andd[k] = —1 conditioned on the received sequegcdased on (2.20), the more positive
the value ofL(d[k]) is, the more reliably the transmitted bit was ‘1’, or the moegative

the value ofLL(d[k]) is, the more likely ‘0’ was transmitted.

In the turbo decoder shown in Figure 2.4, the outp(t[k]), a posteriori information

of an information bitd[k], is given by

L(d[k]) = L(d[k]) + Lap(d[k]) + Lp(d[k]) (2.21)
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Figure 2.4: Structure of a turbo decoder.

where L(d[k]) is the channel information[,,(d[k]) is the a priori information and

Lg(d[k]) is the extrinsic information.

The channel informatior.(d[k]) can be extracted directly from[k] which are the
received signals of[k]. Supposing that[k] are transmitted withF, transmitted energy

per symbol, over an AWGN channel, the received signal is
ylk] = a - d[k] +n[k] (2.22)

wheren,; denotes an AWGN with a variance of, anda is the fading amplitude in a
fading channel or a constant value in an AWGN channel. For autiodel, the channel

information is given by [96]
~ exp (2 (ylk] - 0)?)
L(d[k]) =log . .
exp (—£5 (ylk] +a)?)

— log (exp (Qngy[k]»

— L.-ylH, (2.23)

where L. = 2aF,/c? is the channel reliability factor, which reflects the relidp of

estimating the transmitted signal from the received sighat example . will be large
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if SNR in the channel is high, and we can estimate the tratsasignal from the received
signal correctly with a high probability. In such a case, teeeived signal will impact

heavily on the final outpua posteriori LLR.

Theapriori informationL,,(d[k]|) used here is the deinterleaved extrinsic information
from the other RSC decoder.

The extrinsic informatiorL i (d[k]) is the information that decoder exploits from the
whole received sequence aadgriori information, but excludes these of the bits which
are currently being decoded in this iteration. It is only é&x#rinsic information that the
decoders exchange between each other since the same itiormsiaould not be used

more than once at each decoding step.

Taking all these three types of information above into aototine turbo decoder de-
livers thea posteriori information of data bits. The final decision of the decodmbased

on thea posteriori information of data bits.

There are three typical decoding algorithms applied widbl maximunma Posteriori
(MAP), max-log-MAP and log-MAP algorithms [95,107,1147]1

The maximuma Posteriori (MAP) algorithm was firstly proposed by Bahl, Cocke,
Jelinek and Raviv in [107] and modified by Berrou, Glavieuv amdtrfiajshima in [95].
Compared with the conventional maximum likelihood sequezstenation (MLSE) al-
gorithm which can be efficiently implemented by the Viterlgaithm [118], the MAP
algorithm is a symbol-by-symbol detection algorithm basednaximuma posteriori in-
formation. It is optimal in the sense of minimizing the prblbiy of a symbol error by
takinga priori information of the coded bits into account and providing gabrmation
about estimated bits. The performance of the MAP and MLSErdlgns would be the
same when there is ragpriori information to be exploited. However, wharpriori infor-
mation is available, for example, in the soft-input softput turbo decoder exchanging
the extrinsic information between two RSC decoders, the MigBrahm will outperform
the conventional MLSE one [95].

Although the MAP algorithm is the optimal decoding schemés too complicated

to be realized for implementation since the exact reprasient of probabilities used in
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the MAP algorithm requires a high dynamic range [96]. Moepthere are many non-
linear functions and numerous multiplications proposetheénscheme [96]. Working in
the logarithmic domain instead of the linear domain for thabgbility used in the MAP

algorithm and invoking the approximation

In(e™ + ...+ €") ~ max uz;, (2.24)

i€1,2...,n

the max-log-MAP algorithm reduces the complexity signifita However, it is obvi-
ous that the max-log-MAP algorithm is suboptimal since aalgart of information is

exploited due to the approximation.

This approximation can be avoided by applying the Jacolmgarithm to calculate
x = In(e”™ + ...+ e*). The Jacobian logarithm [119, 120] is given by

In(e®™ 4 ™) = max(xy,z2) + In(1 + e*‘“r“')
= max(z1, z2) + fe(|lz1 — 72])

= ge(x1,72), (2.25)

wheref.(|z; — z2|) can be regarded as a correction term. Robertson, Hoeher #ed Vi
brun in [115] proposed a method to show how to use the Jacddmgnithm to calculate
In(e™ + ...+ e") accurately. They supposed= In(e* + ...+ e* 1) is known. Then,
they obtained

In(e” 4+ ...+ e™) =In(e® + ™)
= max(z, z,) + fe(|lz — z,). (2.26)

This method is referred to as the log-MAP algorithm [115]wé#s also shown that the
correction termyf,.(|z; — x2|) can be implemented efficiently by a one-dimension look-up
table to avoid real time computation, moreover, only a felues are needed for the table.
By applying the Jacobian logarithm, the log-MAP algorithrtanes the optimality of the
original MAP algorithm, while preserves the computatiosahplicity of the max-log-
MAP algorithm, and so, is used here in the thesis. Interast&diers can find more details
about the MAP, max-log-MAP and log-MAP algorithms in [11461117].
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2.5 Conclusions

Fundamental techniques have been presented in this chaptéras the models of the
time-variant channels, BEMs and Turbo coding, which are ukeslighout this thesis.
After briefly introducing the optimal Clarke’s model and trefidiencies of Jakes’ model,
a recently modified model has been presented. This modifietehmesolves the corre-
lated, deterministic and nonstationary problems of thegakodel using a small number

of sinusoids and is adopted in this thesis to simulate the-trariant fading channels.

The BEMs have been widely used to approximate the time-vaféaling channels,
due to the low complexity and high accuracy it offer. The megtely used BEMSs,
which are KL, DSP, GCE and BS, have been introduced. The KL iomet&re generated
based on the fading covariance matrix, which allows the &pptoximation. The DPS
functions require the knowledge of the Doppler frequenay.shch channel statistics are
required to generate the GCE and BS functions. The KL and DPS BfaM®chieve a
smaller modeling error compared to that of the GCE and BS BEMdged the perfect
knowledge of the channel statistics. However, the KL and BEBIs suffer from an extra
error in practice caused by the mismatched estimation setetatistics. This is discussed
in more details in Chapter 5 where the performance and robsstof estimators using

different BEMs are compared and the best practical choiced&ldd.

Finally, the turbo encoder and decoder with different deugpdlgorithms, such as the
MAP, max-log-MAP and log-MAP algorithms have been preséniéhe advantages and
disadvantages of each decoding algorithm have been dedcrithe log-MAP decoding
algorithm has been adopted to realise the decoding scherti@s thesis as it retains the
optimality of the MAP algorithm, while preserves the conaiignal simplicity of the less

accurate max-log-MAP algorithm.
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This chapter offers a general literature survey of dataghichannel and frequency
offset estimators based on the maximum likelihood (ML) pipie for signals transmit-
ted through additive white Gaussian noise (AWGN) channelse CRLBs of the joint
estimators will be derived and fundamental techniquesy tis®ughout this thesis will
be introduced. A performance analysis of advanced frequesitmators that have been
recently proposed in the literature is provided. A fair pemiance comparison is obtained
for those estimators under the same simulation environanghfor different application

scenarios so that to get a better understanding about tlegetites, most precisely, in
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terms of accuracy, complexity, frequency acquisition sggrgjgnal to noise ratio (SNR)
threshold and the sensitivity of these towards differenR2Md frequency offset scenar-

ios.

3.1 Introduction

In digital communication systems, where reliable transrois techniques at high data
rates is a requirement, an appropriate signal detectidreingceiver can only be achieved
by using highly efficient synchronization techniques. Knadata symbols called the pilot
symbols is a practical method used to provide the receiviir thie required information
about the channel [1, 2]. In the data-aided systems, théstesgmbols are often inserted
within the data stream, either periodically or in a burst matliring the modulation in the
transmitter which helps to perform accurate joint channdlfaeequency offset estimation

in the receiver [1, 2].

The periodogram maximiser ML frequency estimator possetse optimum perfor-
mance, but also involves impractical complexity. Pradticaguency estimators approxi-
mating the ML estimator are classified as correlation-b§seti2] or periodogram-based

frequency estimators [13—19].

The correlation-based frequency estimators, such as timagsrs of Fitz [5], and
Luise and Reggiannini (L&R) [6], can exhibit a comparable perfance to that of the
ML estimator. However, both estimators possess a limiteduency estimation range
V. This ¥ is inversely proportional to the number of input sampMésand cannot be
changed to suit a certain channel requirement. This pretkatestimators to be used for
scenarios where a wide frequency estimation range is mdjuit also limits the usage
for relatively large/N. In addition, these estimators use nonlinear operatiodgassess

a high computational load.

In our simulation we consider the following correlationskd frequency estimators. A
frequency estimator that relies on the phase of the coivaelaample at a single lag.),
referred to as the SL estimator, was proposed in [7]. In [B]estimator was presented

relying on unweighted linear combination of the phase dhifees ofL lags correlation
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samples, referred to as the B&S estimator. A weighted avephgse differences esti-
mator was presented in [9], referred to as the M&M estimab®pending on the small

error assumption, a simplified estimator for the AWGN chamwael be derived from the

one proposed in [10] based on the nonlinear least-squates)(Keferred to as the SNLS
estimator. An approximated NLS estimator was proposedlii [gferred to as the ANLS

estimator, based on the summation-by-parts rule. An ingat@stimator was proposed
in [12] based on the weighted normalised autocorrelatioadr predictor, referred to as
WNALP.

The periodogram-based frequency estimators use coarsinarskarch for the peri-
odogram peak [13]. Usually, the coarse search isvVap,-point FFT (or DFT), where
Nrpr > N. Some estimators us€ - = N which allows efficient implementation.
However, this requires more complicated methods to be us#étkifine search and can
affect the accuracy of the estimator. The linear interpatatrequency estimator [14]
usesNrrr = N and exploits a three-point linear interpolation fine seafdthough the
coarse search is computationally efficient, the fine seaghires nonlinear operations to
achieve a certain accuracy, which results in an increaseeot@mplexity. This estima-
tor has anf,T;-dependent performance that can cause the threshold SNRy,), i.e. the
SNR below which the estimation error starts diverging froem€RLB, to be significantly
higher than that of the ML estimator. Other methods can bd usthe fine search, such
as the three/five-point interpolation techniques [15], editon’s method for locating the
root of an equation [16]. In spite of the efficient coarse sleathe fine search uses more

sophisticated nonlinear techniques, which makes it difffon practical implementation.

In our simulation we consider the following periodogranséa frequency estima-
tors. A popular estimator of this type is the dichotomousraeaf the periodogram
peak (DS) [17]. This estimator exploits FFT/DFT of the si¥err ~ 1.5N for the
coarse search, and then refines the estimate@vtarations of searching within binary
partitions in the neighbourhood of the initial peak. Thisiraator relies entirely on lin-
ear operations and is perfectly convenient for real-timpl@mentation. An important
modified dichotomous search (MDS) estimator was proposeld &), which attains the
CRLB without the need to perform zero-pad the processed sarapttallowing a reduc-
tion in the complexity required. An improved dichotomouarsd (IDS) estimator was
proposed in [19] exploiting a new initialisation scheme maitempt to accelerate the
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convergence so that to allow reducing the number of itematio the fine search and also
without the need to perform zero-padding. A robust hybrigpefiodogram-based and
correlation-based estimator (grouped here with the pegmain-based estimators) was

proposed in [20] and is referred to as MLAF.

A performance analysis is conducted in terms of accuracycantplexity of the men-
tioned advanced frequency estimators, where the perfaenancompared for different
application scenarios, in which some of unknown chareasties are revealed to the first
time for some popular estimators. The primary aim is to geetteb understanding for
which scenarios a certain estimator obtains its best pagoce, and also to check some

of the claimed improvements of several recent estimators.

This chapter is organised as follows. In Section 3.2, theadignd channel models
are presented. The maximum likelihood joint estimatorsdeméved in Section 3.3. In
Section 3.4, the Cramer-Rao Lower Bounds (CRLB)s are derived éodifferent ML
estimators. Section 3.5 presents a quick literature suobgyractical frequency offset
estimators. Simulation results and a performance anadysigiven in Section 3.6, and

Section 3.7 concludes the chapter.

3.2 Signal and Channel Models

It is convenient to start with constructing a certain mathgoal model for the received
signal in which the most important characteristics of tharstel are reflected. It is as-
sumed for the scenarios discussed in this chapter that ti@dsyed signal is a known
(pilot) signal transmitted through a deterministic (nahifa) single-path channel and
corrupted with complex additive white Gaussian noise (AWGAIUNit amplitude PSK
modulated pilot block is considered to be transmitted usingit-energy Nyquist pulse
shapep(t). After frequency downconverting.é. multiplying by e=7%7/=rt), the complex-
baseband representation of the received signal corresgptadthe N symbols is

N—
ro(t) = Aed @™ N T (KT p(t — kT,) + w(t), (3.1)
k=0

—_
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where f, and¢ are the carrier frequency-offset and phase, respectiveig the symbol

period andw(t) is a complex-valued, zero-mean, white Gaussian randonepsoc

Then a matched filter is used. The output of this filter matdbeate pulse shape(t)
is
N—-1
r(t) = Ae? Y " s(nT) e ol p(t — KT,) * p(—t) + w(t)  p(—t). (3.2)
k=0
If the frequency offset is sufficiently small, then [1]

ej27rfotp(t _ k‘Ts) ~ €j27rf0Tsk’p(t — kTs) . (3.3)

Then, the matched filter output is expressed as

N-1
r(t) ~ Ael? Z s(kT,)e?*™ 0Tk R(t — kT,) + 2(t) (3.4)
k=0

whereR(7) is the pulse shape autocorrelation function

R(t) = /OO p(t)p(t — 7)dt, (3.5)

—00

andz(t) = w(t) * p(—t).

Sampling is then used to get the discrete-time sequence.oiipet of the matched

filter is sampled at = nT} to produce

N-1
r(nT,) ~ Ael? Z s(kT,)e?*™ oLk R(nT, — kT,) + 2(nT)) (3.6)
k=0
= Aed?d?m 0 Tng(0T)) + 2(nT,) , n=0,1,...,N—1, (3.7)

where the last equality follows from the Nyquist no-ISI peoy of the pulse shape.
Such a situation is configured in Figure 3.1.

For this scenario, the received signal and channel modefpectively, can be ex-

pressed as

r(nTs) = s(nTs)h(nTy) + z(nTy) ; (3.8a)
h(nT,) = AedCmfoTante) n=0,1,...,N—1, (3.8b)

where

s(nTy) is the transmitteaith pilot symbol;
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Transmitter —— @ @ @ e q Receiver
A eszTfoTS ej(ﬂ Z(nTs)
Attenuation Frequency Phase AWGN
Offset Shift

Figure 3.1: Configuration of the channel effects on signalsamitted through AWGN

channels.

z(nT,) is the complex-valued AWGNth sample with zero mean and variance

A'is the unknown positive real attenuation to be estimated,;

¢ is the unknown phase shift to be estimated; usually, theadton and phase shift
are expressed together as a complex seatarde’® termed as the channel parameter;

fo is the unknown frequency offset to be estimated;

foTs € ¥ is the normalised frequency offset;

U = [—1/2,4/2] is the normalised frequency acquisition range;

1» can maximally bd for wide acquisition range;

T, is the interval separating two successive pilot symbols{syl interval);

N is the number of pilot symbols.

The received signal model can be written in matrix form as
r=pu(x)+2z=Sh(x)+z=S\rA4° +z, (3.9)

where

risanN x 1 column vector with elementgnTy);

n=0,1,...,N—1;

p(x)isanN x 1 column vector of the mean of

x is a3 x 1 column vectofA foT, ¢]* of the real parameters to be estimated;

z is anN x 1 column vector of the AWGN with covariance matd#, = ¢%Iy and
elements: (nTy);

IyisanN x N identity matrix;

SisanN x N diagonal matrix of dia§s(nT5)};

h(x)isanN x 1 column vector with elements(nT});

Afr. iISanN x 1 column vector with elementg?m /o7,
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3.3 Maximum Likelihood Joint Estimation

The most practical and commonly used method for joint estonahat has been exten-
sively introduced in the literature is the one relying on thaximum likelihood (ML)
principle, for which the parameters, f,7, and¢ required to be estimated are regarded
as unknown deterministic constants that maximise theilikeld function [121]. This
function is the unconditional probability density funatioPDF) of the received signal
considered as a function of the unknown parameters aftéadieg r by the observed
samples [122]. This ML estimation problem was solved by Rifé Boorstyn in [13].

The received signal in the considered scenario has an urticorad PDF of [121]

P = e [- - () R - ()]

1 1 | .
p(r; A, ol 0) = —5—55 oxp [—; (r = SAprAe?) " (x - SAfoTsAem)} , (3.10)

where |X| denotes the determinant of mati and -] denotes the matrix conjugate
transpose.

3.3.1 Frequency Offset Estimator

The likelihood function has to be maximised to find the ML jo@stimator, or equiva-
lently, the function
J(a, fT) = [r — SAsp.a)” [r — SAjr.d] (3.11)

needs to be minimised [121]. It is easier to start differimg ./ (a, f7T,) with respect to
a, which leads to [121]

oJ a, TS *
% = — [A.S" (r — SAsra)] ", (3.12)
where|-]* denotes the complex conjugate. Setting this equal to zelds/ithe ML esti-
mator ofa for a certainf7, as [121]

AfpSfe Af, Sfr
A SHSA;p,  tr{SHS}’

a =

(3.13)
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where t{-} denotes the matrix trace. For the sake of simplicity andeuittoss of gener-
ality, s(nT) can be assumed to be normalised PSK pilot symbols with a mptiaude,
so that t{ S”S} = N. Substituting (3.13) into (3.11) yields [121]

1
J(a, fT,) = (r — SApr,a) = rflr — ﬁrHS)\fTS)\?TSSHr
1, .5 2
:rHr—NP\fTSSHr‘ , (3.14)
which is minimised by maximising
Iir, = [N STe|* (3.15)

with respect tof T, over the frequency acquisition range. This function is kn@s the
periodogram [123], so that the ML frequency offset (MLF)imsttor is the periodogram

maximiser as has been shown in [13,45] and is given by

N-1 2
rieal — — * —j2w fTsn
foTuars = arg max {Iyr,} = arg max, ZU r(nTy)s™ (nTy)e . (3.16)

This can be done using a DFT or the efficient computation o$iigian FFT algorithm

of size Nrpr of the functionr(nTy)s*(nTy), denoted asF F T {r(nTy)s*(nTs), Nrrr},
over a grid of frequenciegT, covering the frequency acquisition range. The frequency
acquisition rangel = [—/2,1/2] can either be considered wide (maximally when
1 = 1) or narrow (whemy << 1). The narrow frequency acquisition range allows
improvement of the frequency estimator performance for &NR values and reduction

in the complexity as detailed in [47,124]. In this thesiscoostraints are assumed upon
the frequency offset, and unless otherwise specified, a frédgiency acquisition range

wherey = 1 is considered.

3.3.2 Attenuation Estimator

The ML attenuation (MLA) estimator can be obtained from @.atﬁj\; as

1

N
=N Zr(nTs)s*(nTs)e’jz’TﬁsML" : (3.17)

n=0

Anm

. P—
L ‘ foTs i
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3.3.3 Phase Estimator

The ML phase (MLP) estimator is also produced from (3.1:%5; as

N-1
QgML = arg {dﬁSA{L} = arg { r(nTy)s* (nTs)e—ﬂﬂfoTsMLn} ) (3.18)

n=0
3.3.4 Channel Estimator

In wireless communication systems, the three parametefsl’,, and¢ are usually esti-
mated jointly to obtain the channel estim&iey). The ML joint channel and frequency
offset (MLJ) estimate is given by

iLML<nTS) = AMLej(%rﬁgMLn—i_qBML) y n = 0, 1, ceey N -1 y (319)

which is employed by the receiver for detecting the unknawngmitted data.

3.4 Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) is the lower limit that the vaz&of any unbiased
estimator can reach [121]. The vector CRLB for the real paramadctory is obtained

using the Fisher information matriXx) that is derived as [121]

100, - 20 { 2 D g O
2 0s*(nTs)h*(nTs) 0s(nTs)h(nTy)
N 02% {HZ% OXu Do }
{ ah;;T 8haZT)} | (3.20)

where[X], ; denotes thei, j)th element of matriXX, f{-} denotes the real component of
acomplex number, and (nTs)s(nTs) = 1forn =0,1,..., N—1as assumed previously.
The CRLB of the considered parameters was derived by Rife andsBmoin [13]. The
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partial derivatives are obtained as [121]

h(nT. -
a éz S) _ e](27rf0TSn+d)) , (321a)
Oh(nTs) | ;
s) _ 2rnA Jj(2m foTsn+¢) 3.21b
afOTs J4mnAae ) ( )
Oh(nTy) _ jAICToTint6) (3.21¢c)
do
Substituting this into (3.20) produces [121]
N 0 0 |
N-1 N-1
0 (27)2A2 n® 2mA? n
I(x) = - 2 Zo Zo
o " "=
N—-1
0 2w A? Z n A*N
| n=0 .
o 0 0
:% 0 (2ﬂ)2A2N(]23[71)(2N71) TA2N(N - 1)] , (3.22)
g
0 TAPN(N - 1) A’N
where the following identities have been used [125]
N—-1
N(N -1
S - ( ' ). (3.23a)
n=0
N—-1
N(N —-1)(2N -1
St = (N — 1)( ) (3.23b)
n=0 6
The inverse of this matrix is [121]
o? % ’ '
—1 _
I (x) = FRK PN NG | (3:24)
0 — 6 2(2N-1)
2 A2N(N+1) AZN(N+1)

Therefore, the CRLBs of the estimated attenuation (CRLBA), feegy offset (CRLBF)
and phase (CRLBP) are given by [121]

0.2

O%RA = oN (3.25)

6
2 = 3.26
UCRfQTs 47T2pN(N2 o 1) 9 ( )

2N —1
2 = 3.27

wherep is the signal to noise ratio (SNR) that is defined as

_popx) _ Awr{sTs} A (3.28)

E{zllz} No? N
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where E-} denotes the expectation.
For the joint channel and frequency offset estimate, whsca function of the three

estimated parameters, the vector CRLB representing the mmivariances of th&/ ele-
ments of the estimated chanlﬁéhTs) is given by the diagonal elements of the covariance

matrix [121] Y
dh(x) -1, 0" (x)
R; = I — 3.29
where
) Oh(0) dh(0)
A OfoTs 06
Oh(T5) Oh(Ts) ON(Ts)
ah(X) _ A 9foTs 3¢
Ix : : :
Oh((N=1)Ts) Oh((N—1)Ts) Oh((N—1)Ts)
L A 0foTs 06 i
i DAeI® DAei® DAed®
0A dfoTs 0¢
9AeI (2T foTs+¢) 9Aei 2T foTs+) 9Aed (2 foTs+d)
_ A dfoTs ¢
9AI@TfoTs(N=1)+8)  §Aei@rfoTs(N=1)+8)  §Aei (27 foTs(N—1)+¢)
L A dfoTs GBI J
| el? 0 jAeI? ]
i@ foTs+9) j2m Aed P foTs+¢) j A CmfoTs+0)
_ej(27rfoTs(N—1)+¢) j2mA(N — 1)ej(27rfoTs(N—1)+¢) jAej(waoTs(N—1)+¢)_
(3.30)

Therefore, the CRLB of the elemehtnT,) is the(n + 1)th diagonal element dr;, and

2011
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is given by
&Ry, = Rl
CRh(nTS) h n+1n+1
2
= % 6j(27Tf0Tsn+¢) jQWAnej(%foTS”JF@ jAej(2”f0T8”+¢)
% 0 0 e—j(QﬂfoTsn+¢)
X 10 (271.)21421]\2[(]\/2,1) — 2TFA2]\?(N+1) _]'Qﬂ-Ane*j(%rfoTanrd))
6 2(2N—1) i faTun
0 T 2w A2N(N+1) AZN(N+1) —]A@ J (27 foTsn+¢)
1
N

2
0" j@rfoTsn . . - 12n 6
— 76]( fo +9¢) [1 j27TA7L jA:| —J] (27TAN(N271) - 27-|-AN(N+1)>

; 6n 2(2N-1)
-J <_AN(N+1) + AN(N+1)>

>< e_j(Qﬂ—foTS n+¢)

o1 12n? 6n 6n 2(2N —1)

) {N * (N(N2 —1) NN+ 1)) N <_N(N+ TR 1))}

a1 12n2 12n 2(2N — 1)

T2 (N TNV TN TN 1)) ’ (3-31)
wheren =0,1,..., N — 1.

Finally, the average CRLB of the joint channel and frequendgedfestimation
(CRLBJ) is given by

N—-1
2
R Y 122 120 202N —1)
OOR, = N1 T oNA2 ZO (N TNNE-) NN+ TNV 1))
|h(nT)| "~
n=0
N—-1 N—-1
12 n*  12) n

_ 1 14 =0 ___ =0 22N —1)

29N NNZ—1) N(N+1) N+l
1 (1+2(2N—1) 6N 1) +2(2N—1)>

29N N1 N1 N1
1 [N+41+4AN—2—GN+6+4N—2
- 2pN ( N+1 >
1 (3N +3
- 2pN < N+1 )

3

o> (3.32)

where the equalities in (3.23) have been used.
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3.5 Literature Survey of Practical Frequency Offset Es-

timators

It can be noticed that most of the complexity of the joint alrestimator is consumed
by the frequency offset estimation part during the evatunatif the periodogram samples
in (3.15) using an FFT of siz&»rr. For getting an accurate frequency estimate with
an error that attains the CRLB using the direct FFT applicatimme, a high number
of periodogram samples, much more than that of the input EmmpnT)s*(nTy), is
required. This implies zero-padding the input samples wpriatively large size of FFT
that has to be [126]

1

NFFT > (333)

9CRyy 1, '
Therefore, the periodogram maximiser ML frequency estimpbssesses too much com-

plexity for any practical real-time implementation, andnygractical algorithms ap-
proximating the ML estimator have been considered in tlegdture. These estimators
are classified as correlation-based frequency estimatdrgerpolation-based frequency

estimators [47].

The correlation-based frequency estimators, such as timatsrs of Fitz [5], and
Luise and Reggiannini [6], can exhibit a comparable perforreao that of the ML esti-
mator. However, both estimators possess a limited frequaecquisition rang&. ThisWw
is inversely proportional to the number of considered sas\yl and cannot be changed
to suit a certain channel requirement. This prevents theagirs from being used for
scenarios where a wide frequency acquisition range is redyuit also limits the usage
for relatively large/N. In addition, these estimators use nonlinear operatiodganssess

a high computational load.

The interpolation-based frequency estimators employ tages of searching for the
periodogram peak, first a coarse search stage, followed eaéarch one [13]. The
coarse search stage is based typically on an FFT of a rdiaifiert size (compared to
that used in the ML estimator). In this stage, an initialraestion of the frequency offset
is determined, which corresponds to the location of the mara sample of the obtained
periodogram. This involves less complexity compared tofibrathe ML estimator. Then

diverse techniques can be used in the fine search stage te tt@Brestimation by inter-
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polating a better value within the neighborhood of the ahitialue obtained in the coarse
search stage. Usually, the coarse search stagesppoint FFT, which allows efficient
implementation. However, this requires more complicatethods to be used in the fine
search stage and can affect the accuracy of the estimatoergbenethods have been
presented over the years beginning with Palmer’'s suggesfithe FFT coarse search
estimator [45], and Rife and Boorstyn [13] proposal of the secaethod in the fine
search refining the FFT coarse search. Abatzoglou [16] lesepted an estimator based
on Newton’s method for locating the root of an equation infihe search stage. Other
estimators based on three-point interpolation, and fivatpoterpolation for fine search
have been described by Quinn [14,127] and Macleod [15]. ike b the efficient coarse
search, the fine search uses more sophisticated nonlirdeniqees, which makes it dif-
ficult for practical implementation. The linear interpabat (LI) frequency estimator [14]
exploits V-point FFT-based coarse search and three-point lineapiwiegion fine search.
Although the coarse search is computationally efficier fithe search requires nonlinear
operations to achieve a certain accuracy, which results inaease of the complexity. In
addition, the LI estimator has afy-dependent performance that can cause the threshold
SNR(SNRy,) to be significantly higher than that of the ML estimator.

Zakharov and Tozer [17] have proposed the dichotomous lséB$8) estimator that
performs three-point interpolation exploiting DFT-bastedations. This estimator relies
entirely on linear operations that involves efficient realltiply and accumulate (MAC)
operations and is perfectly convenient for real-time impatation. The same authors
and Baronkin [47] have presented later a group of combinedIRdSEd estimators util-
ising three-point interpolation depending on one or moohéues of parabolic inter-
polation, dichotomous search and two-rate spectral eBamaThis was to reduce the
complexity and make it even more desirable for the real-irm@lementation. Aboutan-
ios [18] has suggested a modified dichotomous search estinvdh less complexity (in
general) compared to the original dichotomous search dhithgblving only the efficient
linear operations. However, some accuracy deterioratoesrs around the SNRfor
certain successive limited frequency intervals at the raibetween two DFT frequen-
cies. Furthermore, for certain application scenarios vathtively low N and narrow,
the original DS estimator requires less complexity by usihggDFT. More detailed study

comparing the performance and complexity of these estirmatm be found in [124].
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After obtaining the frequency offset estimaﬁfﬁl\;, the attenuation, phase, and joint

channel and frequency offset estimates, respectivelyiaea by

N-1
A 1 o
A=\a =5 r(nTy)s* (nT)e 2 folsn| (3.34)
n=0
A N-1
¢ = arg{ } arg {Z r(nTs)s*(nTy)e Jz’rfOTg”} . (3.35)
n=0
h(nT,) = Aed@mhoTn+d) 1 . N —1. (3.36)

3.5.1 Correlation-Based Frequency Estimators

The correlation-based frequency estimators, such as timagsrs of Fitz [5], and Luise
and Reggiannini [6], can exhibit a comparable performandbadbof the ML estimator.
Both estimators possess a limited frequency acquisitiogadn This VU is inversely
proportional to the number of input sampl&sand cannot be changed to suit a certain
channel requirement. This prevents the estimators to ket fosescenarios where a wide
frequency acquisition range is required. It also limits tisage for relatively largev.

In addition, these estimators use nonlinear operationgasdess a high computational

load. In general, this type of estimators rely on the nornealicorrelation samples

N—
R.(mTy) = *(nTy — mTy), (3.37)
their phases
p(mTy) = arg {Ro(mT5)} (3.38)
and/or their phase differences
A(p(st) = arg {Rm(mTS)R;(mTS - TS)} ) (339)

wherex(nTs) = r(nTs)s*(nTy). The following correlation-based estimators are consid-
ered in this work.
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Single Lag Frequency Estimator

A frequency estimator based on a single lag was proposed inefferred to as the SL

estimator) and is given by
e(LT5)

onL

foT, = (3.40)

with an estimation range limited th3/4N.

Besson and Stoica Frequency Estimator

An estimator was presented in [8] (referred to as the B&S edtimh and is given by

To= 5 L Z Ap(mT,) (3.41)

with the full estimation range (up t&x1/2).

Mengali and Morelli Frequency Estimator

A weighted average phase difference estimator was pres@n{®] (referred to as the

M&M estimator) and is given by

1

T, = 5 Z m)Ap(mTy), (3.42)

wherew(m) is given by
3[(N —m)(N —m+1) = L(N — L)]

_ 3.43
w(m) L(4L2 —6LN +3N2—1) : (3.43)

with the full estimation range.

Simplified Nonlinear Least-Squares Frequency Estimator

A simplified estimator was proposed in [10] for the time-aatifading channels based on
the nonlinear least-squares (referred to as the SNLS dstirand is given by

i Zﬁz:l m | Ry (mTy) |2 o(mT5)

JoTs = (3.44)
27 3"y m? |Re(mT,)[?
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For the AWGN channel, and knowing that in this caBe(mTy)| is constant, the SNLS
estimator can be derived as

il an:1 mp(mTy)

foly = =22 ST (3.45)
where .
ZmQZ L(L+1)6(2L+1)' (3.46)
m=1
Therefore, the SNLS for the AWGN is given by
_ 3 L
M= T DRI+ 1) mZ:1 mep(mTy). (3.47)

with an estimation range limited t1/N.

Approximated Nonlinear Least-Squares Frequency Estimator

An approximated NLS estimator was proposed in [11] (refktoeas the ANLS estima-

tor), with the full estimation range, and is given by

i ® SE_L(L A+ 1) — m(m — 1)] Ap(mTy)
0 297 L(L+1)(2L + 1) '

(3.48)

Weighted Normalised Autocorrelation Linear Predictor Frequency Estimator

An improved estimator was proposed in [12] based on the wedghormalised autocor-
relation linear predictor (referred to as WNALP), and alsthwtine full estimation range,
which is given by

m=1

L
ﬁi = arg {Z w(m) R, (mT,) R (mT, — TS)} , (3.49)

whereR,(mT,) = R,(mT,)/|R.(mT,)| is the autocorrelation normalised by its ampli-
tude andw(m) is given by (3.43).
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3.5.2 Periodogram-Based Frequency Estimators

The periodogram-based frequency estimators use coarséirendearch for the peri-
odogram peak [13] and possess the full estimation rangeallysthe coarse search is
an Nppr-point fast Fourier transform (FFT), or discrete Fouri@angform (DFT), where
Nrpr > N. Some estimators us€rrr = N which allows efficient implementation.
However, this requires more complicated methods to be us#ukifine search and can
affect the accuracy of the estimator. The linear interpmtafrequency estimator [14]
usesNrpr = N and exploits three-point linear interpolation fine sear8lthough the
coarse search is computationally efficient, the fine seaghires nonlinear operations to
achieve a certain accuracy, which results in an increadeeafamplexity. This estimator
has anf,T,-dependent performance that can cause the threshold SNRsigtificantly
higher than that of the ML estimator. Other methods can bd usthe fine search, such
as the three/five-point interpolation techniques [15], editon’s method for locating the
root of an equation [16]. In spite of the efficient coarse sleathe fine search uses more

sophisticated nonlinear techniques, which makes it difffon practical implementation.

Dichotomous Search Frequency Estimator

A popular estimator of this type is the dichotomous searclhef periodogram peak
(DS) [17]. This estimator exploits FFT/DFT of the si2&-rr ~ 1.5N for the coarse
search, and then refines the estimate @yeterations of searching within binary parti-
tions in the neighbourhood of the initial peak. This estionaelies entirely on linear op-
erations and is perfectly convenient for real-time implatagon. In the coarse search, an
FFT/DFT of the signat(nT,)s*(nT,) with a frequency step\ fT, = 1/Nppr is used to
obtainW;r, over the frequencie§, 7, = kAfTs, wherek = —-K, ..., -1,0,1, ..., K
and K = ¢/(2AfT,). Periodogram samples;;, = |W;r,|” are then determined and
an initial (coarse-search) frequency estimg{é, = arg fr%ug% {Y}r,} is found. The
maximum periodogram samplg, = Y} 1, together with its two adjacent samples,
Y1 =Y, 1, andYs; = Y . 1, are then located. In the fine seargh7 is refined by

exploiting @@ dichotomous iterations for which the following steps anee&ted:
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o AfT, = AfT,/2.

o If Y3<V
then Y3 = Y; andf, T = f,Ts — AfT5,
else Y, =Y, andf, T, = f,Ts + AfTs.

_ N-1 * —i2nfpTsn 2
o Yo =|>" ", r(nTy)s*(nTy)e P

At the end of all iterations, the final DS frequency offset [)®stimate isf/OiDS =
fmTs. For optimum performance, the number of iteratiohshould be high enough so
that the final frequency step /7 ; gets below the minimum value of the frequency CRLB
(aCRfoTsmm) in the SNR range of interest. This corresponds to the vdltleedCRLB at the
end of that range (taken here3atdB). Mathematically speaking, the final frequency step
that becomes\ [T, ; = AfT,/29 = /(K29%") is required to be\ f T, < OC Ry, mins
and accordinglyg) has to satisfy [47]

Q > log, <£> or Q> log, (KL) 1. (3.50)

UCRfOTSmin O-CRfOTS min
Modified Dichotomous Search Frequency Estimator

An important modified dichotomous search (MDS) estimatos weoposed in [18],
which attains the CRLB without the need to zero-padding thegssed samples and
allowing a reduction in the complexity to be achieved. Tharse search of the MDS es-
timator is the same as that for the DS estimator excepViarr = N. In the fine search,

the algorithm performs the following initialisation steps

o AfT, = 0.75AfT,.

e IfY; >V
then ¥i = [N r(nT,)s* (T o231
and f,T, = f,T. + ;A [T,

else Y5 = ‘ZnN:_ol r(nTy) S*(nTs)e—j2rrn(prg+§AfTs) ?

and [T, = f,T, — sAfT..
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Then, the following steps are repeated dpiterations:

o Vo= |35 r(nTy)s" oy
2= Do r(nTy)s*(nTy)e

o AfT, =AfT,/2.

e fY; >V

then Y, = Ys andf, T, = f, 1, + AfT,
else Y; =Y, andf, T, = f,T5 — AfT;.

At the end of all iterations, the final frequency estimatﬁ/oiﬁs = fpTs.

Improved Dichotomous Search Frequency Estimator

An improved dichotomous search (IDS) estimator was proposgL9] exploiting a new

initialisation scheme in an attempt to accelerate the agevee so that to allow reducing

the number of iterations in the fine search and also withauh#ed to zero-padding. The

initial (coarse-search) frequency estimate is determassfj7; = arg fHTla}fp {IW¢r,|}. In
s€

the fine search, the algorithm performs the following itig@tion steps:

A\ =
|Wfp+1Ts

Wi [=[We, s

+|Wfp71T5 _Q‘Wprs

cos(%) )

fpls = fls + AAfT.

¢ =min{0.5, 20,7, } andA fT, = cAfTs.

Y1 -

Y, =

}/é_

2
2
2

7]:[;01 r(nTy)s* (nTs)e_jQWn(prs—AfTs)

Nl r(nTy)s* (nTy)e 32 mfpTs) ’
n=0 S s

N-1 * —ji2mn(fpTs+AfTs) 2
n=0 T(?’LTS)S (TLTS)G !

Then,@ dichotomous iterations are performed as with the DS estinaatd at the end of

all iterationsﬁi = f,Ts. However, the way is presented in [19] and given above does

not allow the estimator to perform properly in all scenaridssides, it involves nonlinear

operations and significant complexity to estimate the SN problem can be resolved

by choosing: = 0.5, which is used in the complexity and simulation analysi®wel
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Main Lobe Autocorrelation Function Frequency Estimator

A robust hybrid of periodogram-based and correlation-dastimator (grouped in this
thesis with the periodogram-based estimators) was proapag@0] and is referred to as
MLAF. The coarse search is similar to that of the DS estimiatwmwith much more zero-
padding, whereVyp; = 4N is required to obtain an initial frequency estimg}d. In
the fine search, a refining frequency is obtained by exptpitie maximum periodogram
sample and it8 adjacent samples &7, = - arg {>",_ , Y} ., n.e/?™/T}. The fre-

quency estimate is then calculated]@ = 15 + [ 1.

3.6 Simulation Results and Performance Analysis

A binary sequence transmitted through a deterministic fading) single-path channel
and corrupted with a complex AWGN is implemented. The sinealaieceived signal and
channel are according to (3.8). The performance of the &eguestimators is analysed
first. Then, the performance of the dichotomous searchebfisguency, attenuation,

phase, and joint channel estimators are investigated.

3.6.1 Performance Analysis of the Frequency Estimators

A complex exponential signal of lengtii = 26 in the AWGN channels is considered in
the simulation. The mean square error (MSE) of the frequestignate in each simulation
trial is calculated as

foTMSE= (foT, ~ FiT.) 351)

and then averaged ovéd 000 simulation trials. The following parameters are used:=
N/2 for M&M, SNLS, ANLS and WNALP,L = 2N/3 for SL and B&S,Nppr = 1.5N
for DS, Ny = N for MDS and IDS, andVyrr = 4N for MLAF.

Figure 3.2 shows the SNR-dependent performance of the @esiéstimators com-

pared to the CRLB fof, 7, = 0.025. This low frequency was chosen to guarantee that the
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Figure 3.2: f,T,-MSE of the frequency estimators for AWGN channels as a fonabf
SNR for a small frequency offsely = 26, f,7; = 0.025 and@ = 8 for DS, MDS and
IDS.

narrowest frequency estimation range of the estimatorgcfwh ¢ = 3/2N for SL esti-
mator) is not exceeded. All estimators attain the CRLB at higRS At very low SNRs,
the SNLS and SL estimators can be seen with a relatively IgwErMSE, which is due
to the limited frequency estimation range of those estinsatdowever, the SL estimator
possesses the poorest performance in general, with a hight&shold i(e. the SNR
below which the estimation error starts diverging from the BIRaf about10 dB. Among
the other estimators with the full frequency estimatiorgerthe DS and MLAF estima-
tors possess the lowest SNR threshold dB. The SNR threshold isdB for the ANLS,
M&M and WNALP estimators and dB for the MDS and IDS estimators. The diverging
rate of thef,T,-MSE of the WNALP estimator from the CRLB below SNR threshold is
comparable to that of the periodogram-based estimatovgever, thef,7,-MSE of the

BS, M&M and ANLS correlation-based estimators possessesresldiverging rate.

The fyT,-dependent performance for SNR 4 dB is shown in Figure 3.3. The
WNALP correlation-based estimator and all the periodoghba®sed estimators are shown
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Figure 3.3: f;7,-MSE of the frequency estimators for AWGN channels as a fonabf
foTs; N =26, SNR= 4 dB and(@ = 8 for DS, MDS and IDS.

to possess the full frequency estimation range, unlike thercorrelation-based estima-
tors, for which the practical range is narrower than the téécal one. ThefT,-MSE of
the B&S, M&M and ANLS estimators are shown to start divergingni the CRLB for
foTs > 0.41. This explains the relatively lowef, 7,-MSE of the B&S, M&M and ANLS
estimators than that of the periodogram-based estimaioSNRs below SNR threshold

shown in Figure 3.2.

Simulation results reveal that apart from the WNALP estimatnd unlike the
periodogram-based estimators, the performance of thadsyes correlation-based es-
timators at low SNRs becomes poorer with the increasgtf. They even suffer from
a frequency-dependent SNR threshold. This can be seenume=8y4, where the SNR-
dependent performance is studied again but nowf§@t = 0.41, which is still within
the practical frequency estimation range of the B&S, M&M amdlL& estimators shown
in Figure 3.3. Here, the SL and ANLS estimators can no longerate as the consid-
ered frequency is outside their frequency estimation rangesignificant degradation in
the performance of the B&S, M&M and ANLS estimators can be deerow SNRs,
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Figure 3.4: f,T,-MSE of the frequency estimators for AWGN channels as a fonabf
SNR for a large frequency offsely = 26, f,7, = 0.41 and@ = 8 for DS, MDS and
IDS.

where the SNR threshold increases by al®dB compared with that of the results in
Figure 3.3. Meanwhile, the performance of the WNALP and al pleriodogram-based
estimators is not significantly changed, and those estimatow outperform the other
correlation-based estimators. The DS estimator is seendsess the best performance
with SNR threshold of) dB and the MLAF estimator is slightly behind with an SNR
threshold ofl dB.

More attention is next paid to investigate the performarfcén® periodogram-based
estimators and check/challenge the claimed advantagés oétently proposed estima-
tors. Figure 3.5 shows the SNR-dependent performanc@ fer5, 6 and10. Although
the fine search of the MLAF estimator is not iterative, it isled for comparison reasons.
It can be seen thad can be chosen depending on the SNR range of interest) &s
creases, the SNR coverage range increases for DS, MDS anestid&tors in the same
way. The claim in [19] that the IDS estimator with = 5 obtains a similar estimate to
that of the DS and MDS estimators with= 10 is not true.
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Figure 3.6: f,T,-MSE of the periodogram-based frequency estimators for AWGah-
nels as a function of SNR in the low range for differggil, within one high coarse FFT
frequency bin;NV = 26 and@ = 10 for DS, MDS and IDS.
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Figure 3.8: f,T,-MSE of the periodogram-based frequency estimators for AWG&h-
nels as a function ofy 7T, within the first coarse FFT frequency bin of the MDS estimator
for a high SNR;N = 26, SNR= 20 dB and@ = 8 for DS, MDS and IDS.

The performance is then examined for different frequeneiéisin a frequency bin of
the course FFT. The SNR-dependent performance for différequencies within a high
frequency bin is shown for low SNR range in Figure 3.6 and fghtSNR range in Fig-
ure 3.7. The MDS and IDS estimators possesgydi-dependent SNR threshold, which
becomes higher by dB at the bin-centre frequency than that at the bin-edgei&ecgy as
shown in Figure 3.6. The DS and MLAF estimators are less tem$d frequency change
with only 1 dB difference in threshold SNR. However, unlike the otheinesstors, a sig-
nificant performance degradation of the MLAF estimator carsden in Figure 3.7 at the
bin-centre frequency.

Figure 3.8 investigates thg7,-MSE (at SNR= 20 dB) againstf, 7’ within a few low
frequency bins. The DS, MDS and IDS provide a consistent-higfturacy performance
throughout the considered range, whereas a performancadé¢gn of the MLAF esti-
mator is seen at frequencies close to the bin centres. #titegdy, the error of the MLAF
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Figure 3.9: f,T,-MSE of the periodogram-based frequency estimators for AWGah-
nels as a function ofy 7, within the first coarse FFT frequency bin of the MDS estimator
for a high SNR;N = 26, SNR= 1 dB and@ = 8 for DS, MDS and IDS.

sometimes is below the CRLB, which is likely to be due to the @icnature of the larger

FFT where the frequency under analysis happens to fall vesgdo the edge of the bin.

For SNR= 1 dB, a significant performance degradation of the MDS and |IDighes
tors can be seen in Figure 3.9 in the middle of a bin. The MLAS$spsses littl¢,7,-MSE

fluctuation and the DS estimators is seen to have the lowiaso$aconstant),7;-MSE.

The computational complexity of the estimators consid@ndle simulation and their
frequency estimation range are summarised in Table 3.1theéocorrelation-based esti-
mators, the SL estimator possesses the lowest complexigidmthe worst performance.
Then comes the SNLS but it only operates for narrow frequestynation range. Al-
though the WNALP estimator has the best performance in tloamrit possesses the
highest complexity with many nonlinear operations. The M&d SNLS estimators
involve similar complexity and performance. They are lessiplex than the B&S esti-

mator and outperform it. Among the periodogram-based estirg, the IDS estimator
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Estimator FFT/DFT Complex Multiplications Complex Addit®n Nonlinear operations Estimation Range

SL — N—-L
B&S — L(2N — L+1)/2
M&M — L2N — L +1)/2
SNLS — L(2N — L —1)/2
ANLS — L2N — L +1)/2

WNALP — L2N — L +1)/2

DS 1.5N-point (Q—1)(N—1)
MDS N-point QN —1)

IDS N-point (Q+2)(N—1)
MLAF 4 N-point 9

N-L-1
L2N — L —3)/2
LN — L —3)/2
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Table 3.2: Estimators and Bounds for AWGN Channels Considerdgti®imulation.

Algorithm CRLB ML estimator DS estimator
x1=4 | ogp,in(3.25) Appin (3.17) Apgin (3.34)
X2 = foTs | opp. . in(3.26) | foTspy in (3.16) | foTupg in Section 3.5.2
Parameter futs — —
X3 = ¢ O-C’R¢ in (3.27) oumr in (3.18) ops in (3.35)
h(nT}) ocp, IN(3:32) | hap(nTy)in (3.19)|  hps(nTy) in (3.36)

has the highest complexity. The MLAF also possesses a higiplexity and involves a
nonlinear operation. The MDS has slightly less complexigntthe DS estimator. Both
the estimators do not involve any nonlinear operations ardess complex than the
correlation-based M&M and SNLS estimators. However, theedfimator outperforms
the MDS one, and can be less complex in some scenarios whéeduency estimation

range is narrow and only a few DFTs are needed in the coarsehsea

In conclusion, The DS estimator outperforms the other egbins in many scenarios.
It has a high-accuracy performance throughout the wideufeqy estimation range and
over a wide range of SNRs. This estimator also possessestiaeaigldow complexity
involving only linear operations which makes it the bestichon practice, as so, is used
here throughout the thesis.

3.6.2 Performance Analysis of Dichotomous Search-Based Estima-

tors

The performance of the dichotomous search-based estsnigtanvestigated and com-
pared against the reference CRLBs according to Table 3.2 ovBN&hrange up t30

dB, which is considered below in the simulations according@ta8) asp = A2%/o>.

Computer simulations are used to estimate the square robeahean square error
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(RMSE) of the parametey; and the joint channel estimations, respectively, as

Nt
1
\RMSE= | (Gi—xi)"; i=1,2,3, (3.52a)
ty—1
N-1 . 9
Ny Z‘h(nTs)—ht(nTs)
1 =
h-RMSE= |— Y =~ 3.52b
SE= | & - — (3.52b)
\ t=1 |h(nTS)|

over a number ofV; = 10000 simulation trials, where;, andfzt(nTS) are the estimated
ith parameter and theth channel sample, respectively, in tita simulation trial. The
following parameters are used for the simulations: thetlen§ithe pilot symbols isV =
63, the size of the FFT used in the ML estimator according to3BIS N rrr = 40 960,
the frequency step used in the coarse search stage of theiD@tes isA f 7, = 0.01238,
and the number of iterations used in the fine search stagedacgdo (3.50) i) = 10.

Frequency Offset Estimator: Figure 3.10 shows thg7,-RMSE of the DS and the ML
frequency offset estimators compared to the CRLB versus SN& iand versug,7 in

(b). In Figure 3.10(a), thé,T,-RMSE of the estimators as a function of SNR is presented
for o7, = 0.01. The DS estimator as can be seen exhibits a high-accurafyrpance
which is very close to that of the ML estimator throughout 8R range of interest. For
both estimators, th¢,7,-RMSE attains the CRLB for a wide range of SNR. However,
there exists a threshold SNBNRy,) of approximately—3 dB below which the error in-
creases rapidly and diverges from the CRLB. This is a known ckexiatic of nonlinear
estimators [121], and is due to the occurrence of the os{]ie3]. The considerable error
in this area can be limited by constraining the estimatedevéd a narrow frequency ac-
quisition range, which also helps reducing the complexii; 124]. Figure 3.10(b) shows
the f,T,-RMSE of the estimators as a functionfyfl, for SNR = 30 dB. A consistent and
accurate performance can be noticed over all the allowabtp€&ncy acquisition range
for both DS and ML estimators where the error coincides with@RLB.

Attenuation Estimator: Figure 3.11 shows thel-RMSE of the considered DS and
ML attenuation estimators compared to the CRLB for the sameesies. Figure 3.11(a)
illustrates theA-RMSE as a function of SNR fof,7;, = 0.01. The DS estimator as
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Figure 3.10:f,T,-RMSE of the DS and ML frequency offset estimators for AWGN chan
nels;N = 63, Nppr = 40960 for ML, A fT, = 0.01238 and@ = 10; (a) SNR-dependent
performance forfy 7, = 0.01 and (b) fo7s-dependent performance for SNR30 dB.
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Figure 3.11: A-RMSE of the DS and ML attenuation estimators for AWGN channels
N = 63, Nppr = 40960 for ML, AfT, = 0.01238 and@ = 10; (a) SNR-dependent
performance forf, 7, = 0.01 and (b) f,T;-dependent performance for SNR30 dB.
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can be seen exhibits a high-accuracy performance whichrysclese to that of the ML
estimator throughout all the investigated SNR range. lufe@.11(b), theA-RMSE is
plotted versusfy7; for SNR = 30 dB. A consistent and accurate performance can also
be seen over all the wide frequency acquisition range fdr B& and ML estimators and

the error coincides with the CRLB.

Phase Estimator: Figure 3.12 shows simulation results concerning the phsisma-

tion error compared to the CRLB for the same scenario. In Figur2(a), thep-RMSE

of the estimators is illustrated as a function of SNR. The Disnegor reveals an accurate
performance which is very close to that of the ML estimatootighout the SNR range of
interest. A threshold SNR can be noticed as for the frequefisgt estimators. However,

in this case the SNRis aboutl dB lower. Figure 3.12(b) shows the RMSE of the
estimators as a function gf7;. It can be seen that the estimation error of both estimators
attains the CRLB over all the wide frequency acquisition ramngach shows that both

estimators possess a wide frequency acquisition range.

Channel Estimator: In Figure 3.13, theh-RMSE of the joint channel and frequency
offset estimators compared to the CRLB is illustrated for e scenario. As can be
seen in Figure 3.13(a), a high-accuracy performance of Siedbimator which is identical
to that of the ML estimator is achieved over the considere® $&hge. Compared to the
frequency offset and the phase estimators, the threshoRl i8Nhis case is the lowest
(SNRy = —6 dB). The DS estimator, as can be seen in Figure 3.13(b), atfagsame
ML-like performance throughout the wide frequency acdigsirange.

3.7 Conclusions

In this chapter, the maximum likelihood (ML) joint data-adichannel and frequency
offset estimation has been studied for signals propagatedgh AWGN channels. The
CRLBs of the joint estimators have been derived and fundamesthhiques have been
introduced. The ML estimator has optimum performance bytraatical complexity. A

literature review has been presented for the two main appesaapproximating the ML

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 3. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN ADDITIVE

WHITE GAUSSIAN NOISE CHANNELS 67
o [ —o—DSP
10 + MLP -
—— CRLBP |
710"
=
i
-
10° :
5 :3

-10 -5 0 5 10 15 20 25 30
SNR, dB

(@)

—o—DSP
10} + MLP ]
; —— CRLBP |

0 0.1 0.2 0.3 0.4 0.t
fOTs
(b)
Figure 3.12:9-RMSE of the DS and ML phase estimators for AWGN chann¥ls; 63,
Nppr = 40960 for ML, AfT, = 0.01238 and@ = 10; (a) SNR-dependent performance
for foTy = 0.01 and (b) foTs-dependent performance for SNR30 dB.
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Figure 3.13:h-RMSE of the DS and ML joint estimators for AWGN channelé;= 63,
Nppr = 40960 for ML, AfT, = 0.01238 and@ = 10; (a) SNR-dependent performance
for foTs = 0.01 and (b) foTs-dependent performance for SNR30 dB.
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estimator, namely, the correlation-based and the periagiedpased estimators, including

some recently introduced advanced frequency estimators.

In the first approach, traditional estimators possess goodracy, however they usu-
ally have a high complexity. In addition, these estimatarssess a limited frequency
acquisition range that depends on number of observed sgmhchnd so, might be in-
applicable for certain practical scenarios. In the secqmiaach, traditional estimators
either exploit complicated nonlinear techniques or havea and inconsistent perfor-

mance that depend on some parameters of the signal.

Performance analysis of recently introduced advancediéecy estimators for sig-
nals in the AWGN channels has been presented. The perfornudrtbe correlation-
based estimators considered, with the exception of the WNédtihator [12], has been
shown to be frequency-sensitive at low SNRs, where the paence degrades and the
SNR threshold increases as the frequency increases. Thagquency estimation range
is also narrower than that of the WNALP and periodogram-basgichators. However,
the WNALP has a relatively high complexity. Among the perigdiom-based estima-
tors considered, the IDS [19] and MLAF [20] estimators pesdée highest complexity.
The performance of both the MDS [18] and IDS estimators igudesmcy-sensitive at low
SNRs, whereas the MLAF estimator possesses a frequencghgepsrformance at high
SNRs. The DS estimator [17], exploiting an FFT-based coaaech and dichotomous
fine search using three-point interpolation of the periodogpeak and its two adjacent
samples, has been shown to outperform the other estimatonamy scenarios, keeping
a high-accuracy performance throughout the wide frequestiynation range and for all
considered SNRs. It also relies only on linear operationis avitelatively low complexity,
which makes it the best choice in many practical scenariatsa, is used throughout the

thesis.

The dichotomous search algorithm for frequency offsetnetion jointly with the
channel parameter estimation has been considered. Th&talcbus-based joint channel
and frequency offset estimator has been investigated ff@reint scenarios. Simulation
results have shown a high-accuracy performance of theeliffgparameter and joint chan-
nel estimators, which is very close to that of the ML estimatger a wide range of SNR

and throughout all the wide frequency acquisition range.
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In this chapter, the joint data-aided estimation of chaanel frequency offset for sig-
nals propagated through time-invariant frequency-sekechannels is considered. The
joint estimation exploits multipath diversity that impes/the performance by searching
for the maximum of the combined periodograms of the mulligatmponents. Two joint
estimators are considered, the first of which is based on tlyedtan approach that can

provide a high-accuracy performance when certain prionghabstatistical knowledge
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is available. The second is based on the ML approach, with lgylatlg lower accu-
racy than that of the Bayesian-based estimator, which caratepie the absence of these
channel statistics. The joint estimators exploit the D§udiency estimation technique of
the course and fine searching for the maximum of the genedatisriodogram. Simula-
tion results for different scenarios in Rayleigh fading alels show that these estimators
have a high-accuracy performance with an estimation eenyr close to the CRLBs over

a wide range of SNRs and throughout the wide frequency a¢quisange.

4.1 Introduction

In wireless communication systems, the waves travelingnftioe transmitter to the re-
ceiver get reflected, scattered, diffracted, or refractggltd the surrounding objects and
the media property [21]. This creates multiple propagapaths, where the received
signal is a sum of many copies of the transmitted signal wiferént delays and attenu-
ations [22]. As a result, the channel possesses a randaméyvariant impulse response
and becomes a fading channel that requires statisticairtezd [23, 24]. In this case, the
performance of the single-branch receiver is poor due t&NiR reduction, and diversity
reception is used to improve that performance [25, 26]. Ddjp®y on the fading rate of
the channel compared to the baseband signal variationghtimenels can be classified
as fast fading or slow fading channels. In the fast fadinghobés, the channel impulse
response changes rapidly within the symbol interval [28]isTmplies more complicated
models to represent these channels as in [27, 28], and esggpecial techniques for esti-
mation as described in [29, 30]. However in the slow fadingretels, the channel can be

simply assumed static (time-invariant) during the obsowanterval [23].

Most frequency estimators for time-invariant frequenelestive channels in the lit-
erature are based on the correlations of the received sifyrgato the simplicity in the
implementation. The estimator in [25] is an extension torthdtipath channels with di-
versity reception of the correlation-based algorithm fa honfading channels proposed
in [6]. However, it has a narrow frequency acquisition raage poor performance for
low SNR range. This is a common case in the correlation-baseahators [31-33]. Sig-

nificant performance degradation in the single-path seehare been addressed in many
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publications [31, 32], where multipath diversity is not d$e improve the performance.

Joint estimators of channel and frequency offset explgitirultipath diversity will be
considered in this chapter for the time-invariant channg&lsis diversity will be shown
to improve the estimation performance in a similar way that detection performance
in multipath channels is improved by the RAKE receiver [22voTjoint estimators are
studied. The first follows the Bayesian approach and can bé wken certain prior
statistical knowledge about the channel is available. Huosd follows the maximum
likelihood approach when these channel properties arevailable. For practical im-
plementation, both estimators employ two stages for seagdihe periodogram peak,
the FFT-based coarse search and dichotomous fine seardimouMibcreasing the com-
plexity, these estimators outperform the correlationeldaalgorithms and possess a wide

frequency acquisition range.

Extensive simulation for different conditions is used teestigate the performance
of the joint estimators in Rayleigh fading channels. The $athon results show high-
accuracy performance of these estimators over a wide rah§&lR and f,7, with an

estimation error very close to the CRLB.

This chapter is organised as follows. Section 4.2 desctitgesignal and channel mod-
els. In Section 4.3, the Bayesian joint estimators are ptedemd in Section 4.4, the max-
imum likelihood joint estimators are presented. The CraReo-Lower Bounds (CRLB)s
are discussed for the different estimators in Section 4éctiG 4.6 describes the effi-
cient dichotomous-based implementation. Simulationltesund performance analysis

are given in Section 4.7, and Section 4.8 concludes the ehapt

4.2 Signal and Channel Models

It is assumed for the scenarios discussed in this chapterthbaconsidered signal is
a known (pilot) single transmitted through a time-invatifrequency-selective channel
and corrupted with complex AWGN. In the time-invariant chalnthe channel parame-
ters required to be estimated can be assumed constant evebskrvation interval. For

such a situation, and after frequency downconverting theived waveform, filtering in
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a matched filter and sampling at proper times, the basebacdetk signal and channel

models can be represented as [22]

r(nT,) = A(nT,)e?*™ 01" 4 2(nTy); n=0,1,...,.N—1, (4.1a)
M
Z A om(nTy) om(nTy) = s(nTy — 1), (4.1b)
m=1

where
N is the number of the received samples and the sample index;
M is the number of paths and is the path index;
r(nTs) is the receivedith sample;
A(nTy) is the complex-valued envelopgh sample;
fo is the unknown frequency offset to be estimated;
T, is the symbol interval;
foT, is the normalised frequency offset;
z(nTy) is the complex-valued AWGNth sample with zero mean and variance
a,, IS the unknown complex-valuedth path amplitude (channel parameter) to be es-
timated;
©m(nTy) is the multipath (delayed):, m)th element (basis function) of the transmit-
ted signal;
s(nTy) is the transmitteaith pilot symbol;
Tm IS themth path delay.

It is helpful to arrange the received signal in matrix form as
r= QfoTsa +z; QfoTs - AfoTs(I) ) (42)

where
ris N x 1 column vector with elementgnT;) andn = 0,1,..., N — 1;
Q7. is N x M matrix with element$Q ;7. = @ (nTy)es2 oTam;
A1, is N x N diagonal matrix with diagonal elemerg&™/o7:";
® is N x M basis function matrix with elemenf®],,,, = ©,,(nT5);
ais M x 1 column vector of the channel parameters with elemepts
zis N x 1 column vector of the AWGN with covariance matii. = ¢*Iy and
elements:(nTy);
Iy is N x N identity matrix.
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In this case, the task is to estimate the path amplitydgg?’_, that hereafter will
be denoted as the channel parameters in addition to theeinegwffsetf,7,. For time-
invariant channels, the channel parameters are complard/@andom parameters, but
with unchanging values during one observation intervadl AT is an unknown deter-

ministic parameter.

4.3 Bayesian Joint Estimation

The Bayesian joint estimator as the name implies is derivagdan the Bayesian ap-
proach in which the parametefs,, })/_, are assumed to be random variables whose
particular realizations are to be estimated [121]. In thise; the joint estimator requires
given prior probability density function (PDF) af and the received signal has a condi-
tional PDF of [48,121]

1 1
p(r|foTs,a) = NN exp = (r— QfOTSa)H (r—Qpra) . (4.3)

In this section, the channel is assumed to be Rayleigh chaandlso the random
channel parameter vectarhas to be zero-mean Gaussian random with normal complex

distribution and its prior PDF is

1

_ L Hp-1
p(a) = TR exp [—a""R;'a] , (4.4)

whereR, is the covariance matrix which is assumed to be known.

4.3.1 Frequency Offset Estimator

The frequency offsef, T, is estimated using the same technique as described in [48]. |
this case, the channel parametéss, })/_, are considered nuisance parameters that can
be integrated out of the conditional PRR| fTs, a) through a Bayesian approach [121].

This is expressed as [48]

p(xlfoTy) = / p (| foT, a) p(a)dR{a}dS{a} (4.5)
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where®{-} and<3{-} denote the real and imaginary components of a complex fumcti
respectively. In this case, the frequency offset estimatabtained by maximising the
likelihood functionp (r|fT5) over the frequency acquisition range as [48,121]

JoTup = arg max {p (r[fT)} . (4.6)
The likelihood functionp (x| fT;) is obtained by solving the integration in (4.5) which
gives [48]
efa_err
Pl = Sy / exp [2R {o2al"W 1, } — o~?al'Ta] p(a)dR{a}dS{a} |
4.7)
where
r=o"® (4.8)
isanM x M correlation matrix [128] of the basis functions with elertgen
N—-1
Yuv = Z(,DZ(TLTS)QOU(TLTS); u,v=1,..., M, (49)
n=0
and
Wip, = &AL r, (4.10)
which can be obtained by
WfTS (m) = FFT {T(?”LTS)QO:;L(TLTS), NFFT} 5 m = 1, ey M. (411)
The PDF in (4.7) as solved in [48] yields
exp [—o~?rfr] .
R e e T i LR AR (4.12)
where
Yir, = W (D +0°R;Y) ™ Wp, (4.13)
andI,, is the M x M identity matrix. Now, substituting (4.12) into (4.6) prachs
— exp [—o~?rfr] Y
foTsp = arg fstae)éf {7TNO'2N o R,T + T exp [O’ YfTJ ) (4.14)

Excluding the frequency-independent first factor insidelihackets, and taking the natu-

ral logarithm, the Bayesian frequency offset (BF) estimamdmes [48]
foT,p = arg ;nTi)&l {Yir,} = arg J%ae)\% {WfTS (I‘ + UQRal) WfTS} , (4.15)

whereY;r, is therefore a generalised periodogram [44] that explbisnultipath diver-

sity by combining the periodograms of the multipath eleraent
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4.3.2 Channel Estimator

The channel parameters are then jointly estimated expipttie estimated value of the
frequency offset. Now, after obtainiry@iB and replacing its value in (4.2), this model

becomes linear and can be reformed as
r:QﬁSBa—{—z, (4.16)

whereﬂﬁm is now a knownN x M matrix. This model is the well-known Bayesian
general linear model, and the Bayesian channel parameter @i@jator is the MMSE

estimator given by [121]

-1
g — (Q%iBQA +a2R;1) QL ¢ (4.17)

foTsp foTsp
Considering (4.8) and (4.10), the BC estimator becomes

-1

ap = ([ +°R,") (4.18)

foTep

4.4 Maximum Likelihood Joint Estimation

In Section 4.3, the channel is considered to have Rayleighdadith a known covariance
matrix R,, and complex AWGN with a known variane€. As can be seen in (4.15)
and (4.18), these prior statistical specifications areushetl in the derived Bayesian joint
estimator. However, when dealing with different scenavibere there is no certainty
about these statistical properties of the channel and the M\WWGmaximum likelihood

joint estimator can be used. For the ML approach, the paemswtare assumed to be
deterministic but unknown parameters which are requirdgetestimated. In this case,

the received signal has an unconditional PDF of [121]

1 1
p (I‘; JoTs, a) = W eXp _; (I' - QfoTsa)H (I‘ - QfoTsa) : (4.19)

4.4.1 Frequency Offset Estimator

The frequency offsef, 7, is estimated using the same technique described in [44]. The

ML estimator produces the values of the required paramttatsnaximise the likelihood
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function or minimise the function [121]
J(fT,,a) = (r — Qr.a)"(r — Qyr,a). (4.20)

It is easier first to differentiatd ( /T, a) with respect ta, which produces [121], [44]

AJ ([T, a)

e Q. (r — Q)] (4.21)

Now setting it equal to zero yields the ML estimatoraofor a certainf7 as [121], [44]
a= (0% Q) Qr. (4.22)
Substituting this into (4.20) yields [44]
J(fTs,a) = vr — v/1Q, (0. Q) ' QL r, (4.23)
which is minimised by maximising
Yir, =1, (@7®) " Q. r (4.24)

over the frequency acquisition range. Hence, and recallinand W, from (4.8)
and (4.10), it follows that the ML frequency offset (MLF) iesator is [44]

JoTunsy, = arg max (Wi I "Wz, } (4.25)

4.4.2 Channel Estimator

After getting the estimated value of the frequency offﬁ/ﬁ\l”SML, the channel parame-
ters can then be jointly estimated. Substitutﬁﬁm from (4.25) into (4.22), the ML

channel parameter (MLC) estimator is [44]

Ay =T"'W — . (4.26)

fOTsN[L

4.5 Cramer-Rao Lower Bound

The variance of any unbiased estimator must be greater thegual to the CRLB [121].

For unbiased frequency offset estimators operating on ¢kaasios considered in this
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chapter, the CRLB of the estimated frequency offset (CRLBF) has lkerived by
Baronkinet al. [48] and is given by

tr {TR,} o
_ — 4.27
9CRy, 1, \/87r2Nptr {CR,} \/87r2tr {CR,}’ ( )

wherep is the SNR that is defined as

H
e ) e e
P E{z"z} No?
B E{aHI‘a} ~ tr{TR,}
~ No2  No?2 '’

(4.28)

and

C=o"T[Iy— eI '®"|T®; T=dagn}, n=01,...,N—1. (4.29)

For the estimators of the channel parameters, the vector CBusenting the mini-
mum variances of thé/ elements of a,, }»._, based on the Bayesian and the maximum
likelihood approaches, respectively, are given by theahagelements of the covariance

matrices [121]

Rap = (0 T+ R;) ™, (4.30)
Rayy =0T, (4.31)

The average CRLBs of the Bayesian estimated channel parame€Rt8(Cz) and the

ML estimated channel parameters (CRLB¢are hence given by

~ Jtr{(e T+ R}
OCR,p — \/ tr{R,} ) (4.32)

~Jo?r{r-1)
O_CRaIML = W . (433)

These CRLBs will be used in the simulation-based analysis ottmsidered esti-

mators for multipath slow fading Rayleigh channels to prevédreference level against

which the performance of these estimators can be compared.
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4.6 Efficient Dichotomous-Based Implementation

A considerable reduction in the complexity, and withouedietration in the accuracy can
be obtained using the dichotomous search frequency estingtis technique has been
proposed in [17] and studied in Section 3.5.2 for AWGN chasinélor time-invariant
frequency-selective channels, the DS frequency estimaifigorithm has been presented
in [44, 48]. It consists of two stages of FFT-based coarsecheand dichotomous fine
search and its implementation for the joint channel andueegy offset estimation based

on the Bayesian and the maximum likelihood approaches isileddchereafter to follow.

For practical simulation of the dichotomous search tealmmand according to the pro-
posed joint estimators in (4.15), (4.18), (4.25) and (4.2&) best way for implementation

is as follows. First, thé/ x M known deterministic matriXz is precomputed as

®"® + 0’R;')”", Bayesian approach
ol ) y pproag (4.34)

1

(®7®) ML approach
Next, the following FFTs are calculated
WfTS (m) = fFT{T(nTS)ap;(nTS), NFFT} 3 m = 1, e M, (435)

whereNprr =~ 4N [44,48,124]. Then, the generalised periodogram sampésstdained
over a grid of frequencies separated hy7, = 1/Ngpr and covering the frequency

acquisition range as

Yir, = Z Z wo Win, (W)W, (v), (4.36)
and the initial coarse-search frequency estimate is
prs = arg f%}fgfp {YfTs} ) (437)

which is passed to the fine search together with the perietogeaky; = Y . and its
two adjacent samplés, =Y, andYs =Yy 7.

In the fine search stage, the initial frequency estim@te is refined exploiting®)
dichotomous iterations of DFT-based three-point inteapoh of Y, Y> andY;. Each

iteration repeats the following steps [17]:
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o AfT, = AfT,/2.

o If Y3 < YjthenY; = Y, and f, T, = f, 1, — AfTy, elseY, = Yy and f, T =
fols + AfTs.

=z

o Wy (m)= r(nTy) ek (nTy)e 72 = wherem = 1,..., M.

n

Il
=)

o Y, = Z Z[G]UUW;‘;TS (U)WfPTs (U)

u=1 v=1

At the end of all iterations, the frequency offset estimeiﬂ;oﬁ = f,Ts. For optimum
performance, the number of iteratioRshould be high enough so that the final frequency
step in the fine search gets below the minimum value of theiénecy CRLB 6CR,fOT5min)

in the SNR range of interest. Accordingly, Q has to satisf$@3

Finally, the values O{Wprs(m)}f::l from the last iteration are used to estimate the

M x 1 column vector of the channel parameters as

a=GW, .. (4.38)

4.7 Simulation Results and Performance Analysis

A binary sequence transmitted through a time-invariangdemcy-selective Rayleigh
channel and corrupted with a complex AWGN is implemented atiog to (4.1). The
performance of the dichotomous search joint Bayesian and $fimators is investigated
and compared against the reference CRLBs over an SNR range3gpd®, which is

considered below in the simulation according to (4.28) astr {TR,,} /No?.

Computer simulations are used to estimate the square robeahean square error

(RMSE) of the frequency offsef,7, and the channel parametefs,, }}_, estimates,
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respectively, as

1 &
foT.-RMSE = \ NtZ(fOT A St) : (4.392)
M
QS
a-RMSE = A e — (4.39b)
\ t=1 Z|am|
m=1

over a number ofV, = 10000 simulation trials, whergﬁt anda,,, are the estimated
frequency offset and thexith channel parameter, respectively, in the simulation trial.
The following parameters are used for the simulations: ¢éngth of the pilot symbols is
N, = 63, the size of the FFT used in the coarse search stage of thetdimbus estimator

is Nppr = 256, and the number of iterations used in the fine search sta@ge-s 8.
Regular path delays are considered with= (m—1)T,, wherem = 1,..., M. However,

to explore the performance difference between the Bayesidmaaximum likelihood
approaches, a delay uncertainty/df = 18 is assumed. In this case, uncorrelated zero-

mean Gaussian channel parameters are generated for edhaetittrivariances

o2 — ’ o (4.40)
107, m=M,+1,...,M,
where),. is the number of real paths that is considered tdhe= 1, 2, 4, or9. The size

of the observed received signal blockNs= N, + M — 1 = 80.

Estimation of the Frequency Offset: Figure 4.1 shows thé¢,7,-RMSE, as a function
of SNR in (a) and as a function g§T in (b), for the Bayesian and ML frequency offset
estimators compared to the CRLB fof. = 9. In Figure 4.1(a), the,7,-RMSE of the
estimators versus SNR is presented fgf, = 0.01. The Bayesian estimator as can be
seen exhibits a high-accuracy performance with an estomatiror attaining the CRLB
throughout the investigated SNR range above §MR1 dB. For the ML estimator, the
foTs-RMSE is very close to the CRLB for a wide range of SNR, with a shghigher
level than that for the Bayesian estimator. However, thestiolel SNR (SNR =~

dB) is about2 dB higher than that of the B estimator. This small differerscexpected

and corresponds to the absence of the prior channel statistthe ML approach. Most
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Figure 4.1: f,T,-RMSE of the frequency offset estimators for time-invarittatjuency-
selective channelsy, = 63, foT; = 0.01, M = 18, M, = 9, Nppr = 256 and@ = §;

(a) SNR-dependent performance ffafl; = 0.01 and (b) f,7,-dependent performance
for SNR = 30 dB.
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importantly, this is due to the lack of the path delay knowledFigure 4.1(b) shows the
foTs-RMSE of the estimators versysT, for SNR = 30 dB. It can be noticed that the
high-accuracy performance of both estimators is indepanolef,7;. This shows that

both estimators possess a wide frequency acquisition range

Estimation of the Channel Parameters: Figure 4.2 shows simulation results concern-
ing the channel parameter estimation error compared to théBG&Lthe same scenario.
Figure 4.2(a) illustrates the SNR-dependent performancé,fd, = 0.01. It can be no-
ticed that the Bayesian estimator outperforms the ML estmathich is also reflected
through the level difference between the two CRLBs. This is du#é use of the prior
information of R, ando? that characterises the Bayesian approach. However, both es-
timators exhibit a high-accuracy performance withaaRMSE being very close to the
CRLB throughout the SNR range of interest. In Figure 4.2(l®atRMSE of the estima-

tors as a function of,T; is shown for SNR= 30 dB. Thea-RMSE is constant and very

close to the CRLB for both estimators over all the wide freqyeaezjuisition range.

SNR-Dependent Performance for DifferentM,.: Simulation results shown in Fig-
ure 4.3 analyse the performance of the frequency offsahasirs, Bayesian in (a) and
ML in (b), with respect to the number of real paths. compared to the CRLB and for
foTs = 0.01. For both estimators, a relatively poor performance candieed for the
single-path channel\(, = 1), where thef,T,-RMSE does not attain the CRLB even for
the high SNR range. An initial increase of the number of redhp to)/, = 2 is shown
to lead to a substantial improvement of the accuracy, whergt/;-RMSE attains the
CRLB for high SNR range. A further increase &f,. allows an additional accuracy im-
provement, but this improvement is not as significant asénnitial case. For example,
increasing the real paths for the Bayesian estimator fidégm= 4 to M, = 9 is shown
in Figure 4.3(a) to result in a decrease of the $Nfy only 3 dB compared to thé2 dB
reduction caused by the initial increase of the real pathd,te= 2. This phenomenon is
similar to that encountered in the RAKE receivers, where therdity reception in fading
channels leads to an improvement in the bit error rate padoce [22]. It can be seen
in Figure 4.3 that the SNFS corresponding to differert/,. values for the ML estimator

are higher in general than those for the Bayesian estimatois i$ the penalty for the
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Figure 4.2:a-RMSE of the channel parameter estimators for time-invarfi@guency-
selective channelsy, = 63, foT; = 0.01, M = 18, M, = 9, Nppr = 256 and@ = §;
(a) SNR-dependent performance i, = 0.01 and (b) f,7-dependent performance
for SNR= 30 dB.
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Figure 4.3: f,T,-RMSE of the frequency offset estimators for time-invarittetjuency-
selective channels for different numbers of real paffis= 63, fo7, = 0.01, M = 18,

Nrppr = 256 and@ = 8; (a) Bayesian estimator and (b) ML estimator.
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capability to operate in the absence of timing information.

4.8 Conclusions

In this chapter, the joint data-aided estimation of the clehand frequency offset has been
studied for signals propagated through time-invariarquency-selective channels. The
considered frequency offset estimators exploit the mathiliversity by combining the
periodograms of the multipath elements and searching émaximum of the combined

statistic. The CRLBs have been presented for these estimators.

Two joint estimators have been studied. The first joint eston depends on the
Bayesian approach and can provide a high-accuracy perfaenahenever prior statis-
tical characteristics of the channel are known, namely teamand covariance matrices
of the channel parameters and the variance of the AWGN. Thendeestimator, with
a slightly higher estimation error, is an alternative jastimator that can operate when
these characteristics are unavailable. To reduce the exmpbf the frequency offset
estimators and attain a high accuracy, the estimators iexplwo stage technique for
searching the periodogram peak, an FFT-based coarse swmatch dichotomous fine

search.

These estimators have been extensively investigated fow rddferent application
scenarios in Rayleigh fading channels. The simulation te$idve demonstrated high-
accuracy performance of these estimators with an estimatior very close to the CRLB

over a wide range of SNR and throughout the wide frequencyisitipn range.
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In this chapter, new joint data-aided channel and frequeiffsgt estimators are pro-
posed for frequency-flat time-variant fading channels. pitoposed estimators are based
on the basis expansion model of the fading process and ti®tdimous search fre-

guency estimation technique. The first estimator relieshenBayesian approach and
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exploits prior channel statistics to provide a high perfante. The second estimator fol-
lows the maximum likelihood approach, and with a slightlywés accuracy, can operate
when the prior statistics are unknown. The performance@®ptioposed joint estimators
iIs examined for different scenarios in Rayleigh fading cledsin The sensitivity of the
Bayesian estimator is investigated using such BEMs as Karhuoeve (KL), discrete
prolate spheroidal (DPS), generalized complex exporle(@&E), and B-spline (BS)

functions to the knowledge of the Doppler frequency.

5.1 Introduction

Efficient channel and frequency offset estimation is a @lueisk in wireless communi-
cation systems, where reliable transmission at high daés 1a required. Transmitting
pilot symbols is a practical method used to provide the wecenith the required infor-
mation about the channel [1,2]. For time-invariant (T1) chels, the pilot symbols can be
sent in a burst mode as preambles, postambles, or midanid@sever, for time-variant
channels, pilot symbols are usually inserted periodicaithin the data block in a pro-
cess known as pilot symbol aided modulation (PSAM) [3, 4]eéeup with the channel

variations.

The joint channel and frequency offset estimation becorhalenging when dealing
with time-variant channels, where in addition to the additioise, the transmitted signal
is corrupted with a random multiplicative distortion [23}his makes the channel and fre-
guency offset estimation complicated, and so, traditibeainiques have dealt separately

with these two problems.

Various frequency offset estimators for frequency-flatetivariant fading channels
have been proposed in the literature. However most of thetsmagors are correlation-
based [7, 8, 10, 11, 34, 35], and so, their performance isionféo that of the optimal
maximum likelihood (ML) estimator and/or they possess atéochfrequency acquisition
range. The estimator in [34] is based on weighted linearessyon for the phase of the
sample correlation function, however the covariance mairthe phase estimation is as-

sumed to be known. In [35], a modification was presented tmalhe operability in a
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wider acquisition range, and in this case the covarianceixriatestimated. However, an
assumption was made regarding the form of the fading cdimalaNo such assumption
was made in [8], where two estimators were proposed. Thaditsised on unweighted
version of the method of [35] and the second is based on amealieast-squares (NLS)
approach. Similar NLS technique was derived in [10] basethemmultiple lags correla-

tion function.

Several channel estimators for frequency-flat time-var@drannels were proposed
in [4, 36—42] and the basis expansion model (BEM) has beenegitig used for the
channel estimation [36, 38—43]. However, these estimatieid a severe degradation in
the performance at the presence of a frequency offset. Taidgm can be resolved us-
ing joint channel and frequency offset estimation, whichihe best of our knowledge,
has not been well addressed in the literature and the maiheienis to fill that gap. The
joint channel and frequency offset estimation would alldwgher accuracy performance,

compared to the techniques dealing separately with thesereblems.

We focus on estimating the channel which contains both, thiéphicative distortion
and frequency offset. This channel is all what the receiesds in practical applica-
tions, where there is no need for spending much complexitgxpticit estimators for its

individual components.

The goal of this chapter is twofold. Firstly, we propose iptdation-based practi-
cal frequency offset estimators based on the dichotomoaicisdéechnique, involving
two stage [13] search of the generalised periodogram ped&k §fast Fourier trans-
form (FFT)-based coarse search [45] and dichotomous finets¢h7], which achieve
superior performance compared to that of the correlatesed estimators, and possess
a wide frequency acquisition range. Secondly, we propagerihms that estimate the
channel jointly with the frequency offset. The estimatierbased on approximating the
time-variant fading process by a BEM and employ the dichotmsrsearch frequency es-
timation technique. The use of BEMs leads to a mathematicdehtbat offers a simple
(reduced dimensionality) processing in addition to a haghuracy performance over the
wide frequency offset range. The novel joint estimatorsderaved based on two ap-
proaches. The first is the Bayesian approach and can be usedce#ttain prior statistical

knowledge about the channel is available. The other is thepfiroach and is applicable
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when the channel statistics are not available.

Simulation for different scenarios in Rayleigh fading chalsnis used to investigate
the performance of the new estimators. This is done usingrtpeoved Rayleigh fading
simulator in [83]. The proposed Bayesian joint estimatortiglied based on different
BEMs such as the Karhunen-&ee (KL), discrete prolate spheroidal (DPS), generalized
complex exponential (GCE), and B-spline (BS) functions, wiieeechannel statistics are
perfectly or imperfectly known. When channel statistics@egectly known, simulation
results show that the KL and DPS BEMs use a fewer number of thasddions than
that of the GCE and BS BEMs to allow achieving the same performaHowever, the
best reached performance of all the BEM-based estimatoreisdme. When channel
statistics are mismatched, results show that the estiswétased on the GCE and BS
BEMs are more robust than those based on the KL and DPS BEMs. nTdkes the
BS functions a better choice in practice as it has a sparsexntiaét results in a lower
complexity than the other basis functions. For the prop@&®&dased Bayesian and ML
estimators, results show that the proposed frequencyt@$sienators outperform known
correlation-based estimators for different examined ages. In addition, the proposed
joint estimators significantly outperform the conventioectzannel estimator that does not
account for the frequency offset, and achieve a very closaracy to that of the ideal

channel estimator operating with perfect knowledge of tagudency offset.

This chapter is organised as follows. Section 5.2 descsiggsl and channel models.
The basis expansion models are presented in Section 5.80186.4 and 5.5 illustrate
the derivation of the proposed joint Bayesian and maximugiihibod estimators, respec-
tively. Efficient implementation of the estimators using thichotomous search algorithm
IS presented in Section 5.6. Simulation results using diffeBEMs are discussed in Sec-
tion 5.7 and using B-splines are discussed in Section 5.&lliZirSection 5.9 contains

conclusions.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN
FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 91

5.2 Signal and Channel Models

We consider a known (pilot) signal transmitted through fiexcy-nonselective (flat)
time-variant Rayleigh channel and corrupted with complekitaeg white Gaussian noise
(AWGN). For such a scenario, the baseband discrete recdiyeal &ind channel models,
respectively, after frequency downconverting, filteringsimatched filter and sampling at

proper times, can be expressed in time domain as [22]

r(nT,) = s(nTs)h(nTy) + z(nTy) ; (5.1a)
h(nT,) = g(nTy)es>™oTsn  n=0,1,... N —1, (5.1b)

wheres(nTy) is the transmitted pilot signat(n7}) is the complex-valued AWGN with
zero mean and varianeé, g(nT,) is the fading procesy; is the frequency offsetf, T, is
the normalised frequency offset (for simplicity, it will bermed as the frequency offset),

T, is the symbol interval and/ is the number of the considered pilot symbols.

The fading procesg(nT5) is modeled as a complex Gaussian process with zero mean

and covariance matrix with elements [24, 63, 64]

Ry, = Ry(u—v)=Jy2rfpTs(u—v)), uw,v=1,...,N, (5.2)

uv

whereR,(-) is the autocorrelation function g{n7}), Jo(-) is the zero-order Bessel func-
tion of the first kind, fp is the Doppler frequency anf, 7 is the normalised Doppler
frequency (for simplicity, it will be termed as the Doppleeduency).

The received signal and channel models, respectively, trixriarm can be written as

r=Sh+z, (5.3a)
h= A8, (5.3b)

wherer, h, g andz are N x 1 column vectors with elementgnTy), h(nTs), g(nTy)
andz(nTy), respectivelyS andAy ., are N x N diagonal matrices of digdg(n7)} and
diag{e/*"/o%:" 1 respectively, and = 0,1,..., N — 1.
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5.3 Basis Expansion Models

Accurate estimation of the fading procegs:.7;) in (5.1b) requires complicated tech-
niques such as the Wiener filtering [4, 37]. A simpler solut®based on approximating
g(nT) using the basis expansion model [36, 38]. This approximatimplifies the time-

variant fading model and converts it into a linear combimanf several basis functions

as
M
§(nTy) = anB(nT,,m), (5.4)

whereB(nTy, m) are theM known basis functions and,, are unknown expansion coef-

ficients. In matrix form, it can be written as
g = Ba, (5.5)

whereB is an N x M matrix with elementsB(nT;, m) anda is an M x 1 vector of
expansion coefficients,,. Thus, the problem of estimatiny-dimensional time-variant
fading procesg)(nT;) is transformed into a lower dimensional problem of estinmati
only M time-invariant expansion coefficients,, where usuallyM/ << N. Therefore,
the vector of unknown parameters includes the expansiofficdeats {am}wj‘f:1 and the

frequency offseff, 7.

The resulting approximated received signal model will bexghto have a similar form
to that of the slow fading multipath Rayleigh channels disedsn Chapter 4. As a result,
two novel joint estimators for the frequency-flat time-aatifading channels are proposed
in Sections 5.4, 5.5 by expanding the Bayesian and the maxilkeiihood approaches

that was discussed in Chapter 4 for the time-invariant frequeselective channels.

Using the basis expansion model (5.5) to represent the ehdading in (5.1), the
approximated received signal and channel models, respigtin matrix form can be

written as
f=Sh+z; (5.6a)
h=Aj.Ba, (5.6b)
where #, h and z are N x 1 column vectors with element&(nT,), h(nT,) and

z(nTy), respectively,S and Ay, are N x N diagonal matrices of digg(n7})} and
diag{e/*/o%:" 1 respectively, and = 0,1,..., N — 1.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN
FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 93

The proposed estimators rely on the fact that the approiemaitror can be ignored
when choosing\/ high enough, so that the BEM approximation model (5.6) canseel u
instead of the original received signal model of the fastifgdrequency-flat Rayleigh

channel represented in (5.1). Therefore, the processedlroad be reformed as
r=AprPatz; P=SB, (5.7a)
h = AfOTSBa, (57b)

which is of a similar form to that of the time-invariant fregpcy-selective channel model
considered in Chapter 4. This encourages tracking the samefwestimation, and two
methods are involved. The first is based on the Bayesian agiptbat leads to the mini-
mum mean square error (MMSE) joint channel estimation. WA e second is based
on the maximum likelihood (ML) approach. The Bayesian jostiraator demonstrates
a high-accuracy performance as it incorporates some pniowledge about the required
parameters to be estimated [121]. However, the ML one, atitbwi loosing much of the
accuracy, is a good choice when the statistical charatitsrisf the fading and noise are

unknown. The two proposed joint estimators are describ&mhbe

The BEM-based approach has been widely used due to its lowlegitypand high
accuracy. In this approach, in addition to the statististingation error, the BEM-based
estimator suffers from a modeling error. Different basisctions can be used in the BEM
such as complex exponential [38, 40], polynomial [39], tBse prolate spheroidal [41],
and B-splines [42,91,129]. The following four BEMs are mosénfconsidered in appli-

cations to channel estimation.

5.3.1 KL Functions

KL functions as described in Section 2.3.1 exploit the fgdinvariance matriR,. This
allows the KL-BEM to provide the best approximation of theifepprocess provided the
perfect knowledge aR,. The N x N matrix U of eigenvectors oR, is obtained first as

R,U=UT, (5.8)

whereY is the N x N diagonal matrix of eigenvalues. Then the basis functiorrimat
B is formed by the)M eigenvectors (columns dff) corresponding to thé/ maximum

eigenvalues (diagonal elementsYy.
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5.3.2 DPS Functions

DPS functions as mentined in Section 2.3.2 are generatddieng the Doppler fre-

guency. First, a matriP is generated as

~ sin (27 fpT (u —v))

uv

[D]

o u,v=1,...,N. (5.9)

7 (u —v)
Then,B is formed fromM eigenvectors oD corresponding to thé/ maximum eigen-

values.

5.3.3 GCE Functions

GCE functions as discussed in Section 2.3.3 are a modifietbnarsthe complex expo-
nential functions for which the period of the basis functias extended longer than the

observation interval, and are given by

- 2mnTs ( 1 NI—I)
2

B(nTg,m) = ¢ e "7 : (5.10)

whereé > 1, and here, we usg= 2.

5.3.4 BS Functions

BS functions are described in Section 2.3.4 and do not regayerior channel statistics.
The BS functions are given by [94]

12 N/ 2z o+l )\
By(z) =~y (1) S I N 5.11
=5 (") (B ) 5.11)
where
N -1
P = 5.12
M—'r]’ ( )

PT, is the sampling interval separating two adjacent B-splingctions, andz, =
max{0,z}. In this caseB(nTs,m) = B, (nT, — (m — Z2)PT}). The matrixB of
the BS functions is a sparse matrix that only contajns 1 nonzero elements in each

row, which makes it attractive for implementation. The aecy and complexity of the
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BS-BEM approximation depends on the spline degreén many situations, the cubic
B-spline (; = 3) provides the best trade-off between complexity and acyui@4]. We
use the cubic B-spline in the simulation below wheneler> 4, and forl < M < 3 we

usen = M — 1.

The approximation mean square error is defined as

N—-1
Z |g(nTs) - g(nTs)’2
2 n=0
e=F N : (5.13)
> lg(nTy)?
n=0
As described in [43], this error is inversely affected by shenpling factory that is given
as
I (5.14)
T fDTsP . .

For a certain Doppler frequencky T, which is assumed here to be known or can be
determined, increasinty leads to a decrease ihand an increase i, which results in a
desired decrease in the eredif43]. However, in Section 5.7, it is shown that depending
on fpT, and the signal to noise ratio (SNR) range of interest, theam isptimum value

of M, denoted ad/,, above which the performance of the B-spline-based joiinasor
can not be improved. This is due to the fact that there is arldsend, the CRLB, on
the variance of any unbiased estimator. Therefore, it isrd&d to useM = My, SO
that to prevent getting a low-accuracy performance (Whén< M) or adding some
unnecessary extra complexity (wh&h > My).

The approximation error depends also on the method useddoniee the spline co-
efficientsa,,. Different methods can be used to determing and in [43], the optimal
spline, spline interpolation and local spline approximasi with several types of coeffi-
cients have been examined.

In the proposed algorithms however, these coefficients strmated jointly with the
frequency offset as described in Sections 5.4, 5.5. Thetieg@stimation error of that
method is comparable to the approximation error of the ogitispline method while a

significantly lower complexity is achieved.
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5.4 Bayesian Joint Estimator

The Bayesian joint estimator is derived based on the Bayesproach in which the
parametera are assumed to be random variables whose particular reafigaare to be
estimated [121]. In this case, the joint estimator requgigen prior probability density
functions (PDF) of, and the received signal has a conditional PDF of [48,121]

1 1
p(r|foTls,a) = NN exp = (r — AfOTSq)a)H (r—App®a)| . (5.15)

The random spline coefficient vectaihas to follow the assumed Rayleigh channel prop-
erties, and so, it is also zero-mean Gaussian random withalazomplex distribution

and its prior PDF is
1

_ Hp-1
p(a) = mexp [—a""R,'a] , (5.16)

whereR,, is the covariance matrix af. This matrix can be obtained as described in [129]
using the original covariance matrRR, of the fading process of the channel, obtained
in (5.2). The fading covariance matrix of the approximaiadirig process has to be equal
to that of the original one, and since the fading is Rayleigh ¢ero-mean), it follows
that [129]

R, =E{gg"”} =E{gg"} = E{Baa”"B”} = BR,B". (5.17)

Multiplying both sides of (5.17) b)(BHB)f1 B# from the left andB (BHB)f1 from
the right yields [129]

R, = (B"B)” B"R,B (B"B) . (5.18)

5.4.1 Frequency Offset Estimator

For estimation of the frequency offsg{T’,, the expansion coefficients, are considered
to be nuisance parameters that can be integrated out of tititiomal PDFp(r| f T, a)

through Bayesian approach [121]. This is expressed as [48]

p(x|fT,) = / p (x| T, a) p(a)dR{a}dS{a} (5.19)
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The frequency offset estimator is obtained by maximising tikelihood function
p(r|fTs) over a grid of frequenciegT, covering the frequency acquisition rangle=
[—v/2,v¢/2] as [48,121]

T, = arg max. {p (x| /T,)} . (5.20)

The frequency acquisition range can be considered either wid¢ (= 1) or narrow

(¥ << 1).

The likelihood functiomp(r| f7T5) is obtained by solving the integration in (5.19) which

gives [48]
exp [—o*r'r] —2_H o H
p(r|fTs) = NN /exp [2R{c*a"" W1, } — 07 %a""Ta] p(a)dR{a}d3{a},
(5.21)
where
I =®"®» =B”SYSB, (5.22)
W, = ®7AY r=B"S"A}r. (5.23)
The PDF in (5.21) yields [48]
exp [—o?rfr] .
p(r|fTs) = NI TR, + Ty exp [a YfTJ , (5.24)
where
Yir, = W (D +0’R;Y) T W, (5.25)

andlI,, is the M x M identity matrix. Now, substituting (5.24) into (5.20) proxzks

FoT, = exp [0 1] -2y, 5.26
JoT, = arg fr%aé}\(ll NN |o2R, I + 1| b [0 fTS] ' (5.26)

Excluding the frequency-independent first factor insidelibackets in (5.26), and taking
the natural logarithm, the frequency offset estimator beze®[48]

JoTs = arg }%ae}\% {YfTs} ) (527)
which is a maximiser of the generalised periodogiam [44] over the frequency acqui-

sition range. Finally, the Bayesian frequency offset (BFnastor is given by

7T, = are max {Wj&fTs (T+0?R;Y) WfTs} (5.28a)

_1\—1
= arg ma {r"Am.SB (BS"SB + o°R;") " BS"Alxr} . (5.28D)
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5.4.2 Channel Estimator

The channel is then jointly estimated exploiting the estedavalue of the frequency
offset. Replacing the frequency offset in (5.7a) by the estiat valueﬁiB, this model

becomes linear and can be reformed as

r=Qa+z;, Q=A—- &, (5.29)

foTsp

where, after determininﬁB, Qis a knownN x M matrix. Hence, the MMSE estimator

of the spline coefficients is [121]
ap = (279 +0°R;) T Qr, (5.30)

Substituting the value df from (5.29) into (5.30), and considering (5.22) and (5.23,
estimator becomes
ap=(C+o°R,) W (5.31)

JoTsp
Finally, the Bayesian joint channel and frequency offset (@i)mator is obtained by
substituting (5.31) into (5.6b) as

~

h=A—~ B(T+0°R;')' W~ (5.32a)

- .ﬁsB fOTsB

— A~ B(BS"SB+0’R;!) ' BSYAL . (5.32b)

T T fTsp foTsp

5.5 Maximum Likelihood Joint Estimation

So far, the fast fading frequency-flat channel is considevdthve Rayleigh fading with
a known covariance matriR, (i.e. a knownR,), and AWGN with a known variance
o%. As can be seen in (5.28) and (5.32), these prior statistjatifications are included
in the derived Bayesian joint estimator. However, when dgalvith different scenarios
where there is no certainty about these statistical prigseof the fading and the AWGN,
the classical ML joint estimation approach can be used. kf®ML approach, the coef-
ficientsa are assumed to be deterministic but unknown parametersahnécrequired to
be estimated. In this case, the received signal has an umiooad PDF of [121]

! (r — Agr.®a)” (r — Ay, ®a)| . (5.33)

1
p(r; fols,a) = NN P | T3

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN
FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 99

5.5.1 Frequency Offset Estimator

The frequency offsef, T} is estimated using the same technique as described in [d4] an
detailed in Section 4.4.1. The ML frequency offset (MLF)irsttor is the maximiser of

the generalised periodogram
Yir, = v Ap, @ (91®) " ®YA 1 (5.34)

over the frequency acquisition range and is given by

JoT, = arg max {Wi.T7'"Wr, } (5.35a)
~1
= arg mae {r"Asz.SB (B7S"SB) ' BYS A} | (5.35b)

5.5.2 Channel Estimator

After getting the estimated value of the frequency oﬁﬁé\LML, the channel can then be

jointly estimated. As shown in Section 4.4.2, the coeffitsenare estimated as [44]

ay,=T"'"W — (5.36)

JoTspr

and finally from (5.6b) the ML joint channel and frequencyseff(MLJ) estimator follows
as

h=A—~ BI'W_— (5.37a)

foTSJVIL foTS]WL

= A B (BS”SB)”' B"S"AL. r. (5.37D)

T T foTs folsyr

5.6 Efficient Dichotomous-based Implementation

For real-time implementation, the DS technique can leadhigla-accuracy performance

with a considerable decrease in complexity.

According to the proposed joint estimators in (5.28), (3.8235) and (5.37), the best

way for implementation based on the DS technique is sumethiisTable 5.1.
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Table 5.1: Dichotomous Search Algorithms for the Propos@dt hannel and Fre-

quency Offset Estimators for Frequency-Selective Timaaved Fading Channels.

(B#S”SB + o?R; ) ~' | Bayesian approach

(B¥SHSB) - ML approach

Compute G =

Calculate  Wyp, (m) = FFT{r(nT,)s*(nTs)B*(nTs, m), Nppr}; m=1 M

M M
Determine Yyr, = » > [G],, Wz, (w)Wyr, (v)
u=1v=1
Fin Ts = Y,
d fpTs = arg max {Yyr.}

yoeeey

Locate Yi= YfpflT’s , Yo = Yprs , Y3 = Yfp+1Ts

For @ iterations do
If Ys <Y; thenY3 =Y, andprs = prs — AfTs,

elseY; =Y, andf,Ts = f,Ts + AfT;
N1
Wy, r,(m) = Z r(nTy)s* (nTs) B* (nTy, m)e 92 vTen .y =1, M

n=0

M M
Z Z uv Wfp Wfp ( )
u=1v=1

Finally foTs = f,T | h=A;7, BGW; 1,

5.7 Simulation Results and Performance Comparison for
different BEMs

A binary sequence transmitted through a time-variant Rglgléding channel and cor-
rupted with a complex AWGN is implemented. The received dignd channel models
in (5.1) are simulated using the modified version of Jakeddeh{64] that was proposed
in [81] and corrected in [83]. However, we assume in the edion process that the re-
ceived signal and channel models are based on the BEM as n &4 so, the results

contain the model mismatching error.

The SNR below is calculated as

E{(Anr.Se)" (AnrSe)}  tr{s¥sR,)

SNR= = 5.38
E{z"z} No? ’ (5-38)

where the following matrices manipulation has been used
(AB)" = BTA" (5.39)
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The mean square error (MSE) of the joint channel and frequefiset estimation is

calculated as

~ 2
| & SN BT = hu(nTy)
h-MSE = — E

- : (5.40)
Ny =1 Zgzol |h(”Ts)|2

over a number ofV, = 10000 simulation trials, Wherézi(nTS) is the nth estimated
channel sample in th&h simulation trial. We use a binary pseudo-random trartsuhit
sequence of lengthy = 128, the frequency offset i, 7T, = 0.0123, the size of the FFT in
the coarse search 8pprr = N = 128, the number of dichotomous iterations(is= 5,

and the frequency acquisition range is wige=£ 1).

As seen in (5.32), the joint Bayesian BEM-based estimatordagnmpior information
about the Doppler frequency due to the dependend® ofandB for the KL and DPS
BEMSs) on fpT,. The performance of the joint BEM-based estimators is stufiist for
the case of the perfect knowledge of the Doppler frequentyenT the performance of
different BEMs is compared in two scenarios of the mismatdbeplpler frequency. The
estimators with perfect knowledge of the Doppler frequeay termed as perfect, the

others are termed as mismatched.

5.7.1 Perfect Doppler Estimation

Here we assume that the receiver knows the exact value ofapel&r frequency. Fig-
ure 5.1 shows thé/-dependenh-MSE performance for the BEM-based dichotomous
joint Bayesian estimators in slowf (7, = 0.005), moderate (p7, = 0.02), and fast
(fpT, = 0.05) fading channels, where SNR 30 dB. It can be seen that for any BEM,
there exists a threshold (M), below whichh-MSE increases rapidly. This is due to a
high modeling error for such a low/. Theh-MSE stays almost constant faf > Mj,.
The exploitation of the fading covariance matrix ) and the noise variane€ in the
Bayesian estimators prevents degradation in the perforenmmchigh M. For a higher
fpTs, the estimator requires a high&fy, to achieve its best performance. Thg, for
the KL and DPS BEMs is lower than that for the GCE and BS BEMs. Thauis to
exploitation of prior statistical information of the chaimwhen generating KL and DPS
basis functions. However, the best achieved performaoncé//f > My, is the same for
all BEMs.
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Figure 5.1:h-MSE of the Bayesian joint estimators for frequency-flat tivaeiant fading
channels as a function aff vs fpT; for perfect knowledge of the Doppler frequency;
N =128, foT, = 0.0123, Nppr = 128, Q = 5 and SNR= 30 dB.

In real life scenarios however, it is difficult for the receivto obtain the exact value
of the Doppler frequency, which means that there will be anmateh between the real
Doppler frequencyfpT, and the corresponding value used in the estimator, which is
termed a%i.

5.7.2 Mismatched Doppler Estimation

We consider two possible scenarios for choosf/ﬂi. The first is to use a value, which
corresponds to a maximum speed difference between two coration terminals. The

second is to estimate the real Doppler frequency.
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Figure 5.2:h-MSE of the Bayesian joint estimators for frequency-flat tivagiant fading
channels as a function of SNR for the mismatched Doppleugray; N = 128, foT, =
0.0123, Nppr = 128, QQ = 5, fpTs = 0.005 and M = 7, perfect:f/Di = fpT, and
mismatched;f/Di = 0.05.

Significantly Overestimated Doppler Frequency

Here we consider that the receiver assumes a fixed Dopplgudney, such aﬁ =

0.05. Figure 5.2 shows the-MSE performance of the joint estimators 7, = 0.005
and M = 7. For the perfect estimators, all BEMs allow achieving the sarMSE
performance. For the mismatched estimators, the ones tien@CE and BS BEMs are
seen to be less sensitive to the mismatched Doppler freguban those using the KL
and DPS BEMs. Th&-MSE of the mismatched GCE and BS-based estimators is close
to that of the perfect estimators, whereas the KL and DP8¢bastimators suffer from

a significantly higheh-MSE with the DPS-based one being the worst. This is due to
the fact that the basis matrR® for the KL and DPS functions depends on the Doppler
frequency, whereas for the GCE and BS, it is independent of dpp[@r frequency.
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Figure 5.3:h-MSE of the Bayesian joint estimators for frequency-flat tivagiant fading
channels as a function af/ for the mismatched Doppler frequendy; = 128, foT, =
0.0123, Nppr = 128, Q = 5, SNR= 30 dB, fpT, = 0.005 and 5T, = 0.05.

A better understanding of such mismatched estimators carbtaéned from thel/-
dependent performance in Figure 5.3 for SNR30 dB. Unlike the case with the perfect
estimators (as shown in Figure 5.1), the GCE and BS BEMs now attweving a better
performance and using a significantly smallérthan the KL and DPS BEMs. This can
also be seen in Figure 5.4. Witf = 5, the GCE and BS-based mismatched estimators
achieve a high-accuracy performance, which is very cloieatioof the perfect estimators.
The performance of the KL and DPS-based mismatched estismating\/ = 17 is
better than that using/ = 7 (see Figure 5.2), however it is still inferior to that of the
GCE and BS-based mismatched estimators With-= 5.

Estimated Doppler Frequency

Here we assume that the receiver estimates the Dopplerineyyi, 7, that is considered

to be random and uniformly distributed betwerand0.02. The estimated valugﬁ is
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Figure 5.4:h-MSE of the Bayesian joint estimators for frequency-flat tivagiant fading
channels as a function of SNR for the mismatched Doppleugray; N = 128, foT, =
0.0123, Nppr = 128, QQ = 5 and fpT, = 0.005; perfect:ﬁ = fpT,andM = 7, and
mismatched;fp T, = 0.05, M = 5 for GCE & BS, and\/ = 17 for KL & DPS.

considered as random and normally distributed with mggh, and variance 6 x 1075.
The h-MSE performance of such estimators is shown in Figure 5.8 ugeM = 16
that guarantees a best performanceffor, up to0.02 as expected from Figure 5.1. The
results show that the GCE and BS BEMs allow achieving a significdetter perfor-
mance compared to that of the KL and DPS-based estimators.p&tiormance of the

DPS-based mismatched estimator is the poorest.

Finally, theh-MSE performance of the mismatched estimators agdihg examined
in Figure 5.6. The results show that the GCE and BS BEMs alloweaoig a similar
performance, which is significantly better than that of te&neators using the KL and
DPS BEMs.

It is seen that the GCE and BS BEMs are a good choice in practieabsos, due to

their low sensitivity to the mismatched Doppler frequendwlike the case with the GCE,
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Figure 5.5:h-MSE of the Bayesian joint estimators for frequency-flat tivagiant fading

channels as a function of SNR for the mismatched Doppleugray; N = 128, foT, =
0.0123, Nppr = 128, Q = 5, fpT, ~ U (0, 0.02) and M = 16; perfect: fpT, = fpT,

and mismatchedfp T, ~ N (fpTs, 16 x 107).

the basis matriB for the BS BEM is a sparse matrix, which results in a low compyexi

of the estimator and makes the BS a good choice in practice.

Therefore, the B-spline functions are used as a BEM througtinsithesis and the

BS-based estimators are examined in details below.
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Figure 5.6:h-MSE of the Bayesian joint estimators for frequency-flat tivaeiant fad-

ing channels as a function af/ for the mismatched Doppler frequencyy = 128,
fols = 0.0123, Npppr = 128, @ = 5, SNR = 30 dB, fp7s ~ U (0,0.02) and

FoTs ~ N (fpTs, 16 x 107).

5.8 Simulation Results and Performance Analysis of Es-

timators using B-Spline BEM

The square root of the mean square error (RMSE) of the fregqueffiget and channel

estimates, respectively, are calculated as

f,T,-RMSE = \

h-RMSE =

Ny
1 N2
v 2 (AT - A7) (5.412)
i=1
~ 2
| & S0 R(T) — hi(nTy)
: (5.41b)

E i=1 25;01 |h(nT5) |2

over N; = 10000 simulation trials, Wherg%\TSi andh;(nT,) are frequency and channel

estimates obtained in thith simulation trial.
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Table 5.2: Estimators for Frequency-Selective Time-Vdriaading Channels Considered

in the Simulation.

Estimator | Algorithm | Frequency Channel Equation
BF Deterministici, Unknown Random (5.28)
Frequency] MLF Deterministic| Unknown Deterministig (5.35)
RMLF Deterministic Known (5.43)
BC Ignored Random (5.42)
Channel BJ Deterministic Random (5.32)
MLJ Deterministic Deterministic (5.37)
RBC Known Random (5.32)

A binary pseudo-random sequence of lenjtis generated as the pilot signal, the size
of the FFT in the coarse search stag®’js-r, and the frequency acquisition range, unless
otherwise specified, is wide)(= 1).

The proposed joint channel and frequency offset estimat@sompared with a ref-
erence Bayesian channel estimator, denoted as RBC, where querfiy offset is con-
sidered to be known (or zero). This estimator is given as iBbbut withﬁi being
replaced withf,7,. Another estimator is introduced for comparison, the Bayeshan-
nel estimator, denoted as BC, which ignores the frequencgtodiisthe channel and is
derived as

h =B (B"S”SB + o’R;!) ' B7S"r. (5.42)

In addition, the frequency estimators are compared withfereace ML frequency es-
timator, denoted as RMLF, where the fading process of theraasa considered to be

known. This is the well-known ML frequency estimator thagigen as [13]

N-1 2
FoTl, = arg max | 3 ' (nT)g" (VT )r(nT)e 720 (5.43)
® n=0

The frequency estimation is an intermediate stage for tiné ghannel estimation and
S0 its accuracy is not as significant as that of the final tdtahoel estimation (that con-

tains both the fading and the frequency offset). Howevefrédguency estimation study is
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added to gain insight about the proposed algorithms. TaBlsttimmarises the properties

of the different estimators considered in the simulation.

To start with, it is of significant importance to learn how &bext the key parametel,
andM so as to get the best performance of the proposed algorithtinisthe minimum
complexity. For that reason, the reference estimators RMIdFRBC are examined first
as they have the maximum accuracy and their RMSE can servevas bounds for the

proposed estimators.

Figure 5.7 shows the SNR-dependent RMSE of (a) the RMLF estimatto different
@ and (b) the RBC estimator with differenf. As can be seen in Figure 5.7(a), for each
SNR in the low range below0 dB, the f,T,-RMSE reaches the same level for éll
values, and the increase Ghdoes not affect the accuracy in this range. For the highest
SNR 0of60 dB, the f,T,-RMSE reaches the minimum value only fgr= 14. For the other
values of), there is &)-dependent maximum SNR, denoted as SNRabove which the
foTs-RMSE diverges above that for thi¢ = 14. Increasing the value dp leads to an
increase in the SNRyx These results reveal that according to the §NRMplied by
the channel, the value @) needs to be adjusted to an optimum vaide that assures a
high-accuracy performance over all the considered SNRexahige criterion for selecting

Qo is as follows.

e For the given SNRayx the minimum required,7,-RMSE (f,7,-RMSEy,;,) is de-
termined from thefy7,-RMLF estimator’s plot for) = 14 in Figure 5.7(a), which

Is of a comparable level to that of the CRLB at that point.

e For that error, the require@, is the one that makes the final frequency step after

all the iterations in the dichotomous fine search stage bé¢i@wRMSE,,,. Hence

1
—_— <
Nppr2Q0

1
= Qo >log, (NFFT (fOTS-RMSEmin)) ) (5.44)

(foTs-RMSEqin)

This criterion is followed later on in the simulation resuéixamining the proposed BJ
and MLJ estimators (and the corresponding BF and MLF estisgatehere SNR is
assumed to ba0 dB, and for this cas€), = 8.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS

110

BENES:

QOOLOLOL

== =00 ~IO
=N O
L TR |

sl

......
7 o

R B
497
—
VA
_—

SSSSSS
(NIRRT

— = =00~
coWwo
L PR |

~10 0 10 20 30 40
SNR, dB

(b)

60

Figure 5.7: RMSE of the reference estimators for frequeratytifhe-variant fading chan-
nels as a function of SNRV = 64, Nppr = 256, foT, = 0.01 and fpT, = 0.02;
(a) RMLF with M = 18 and different, and (b) RBC with() = 14 and different)/.
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The same attribute is applied regarding the required vaiug @ the RBC estimator
for getting the best accuracy over a certain SNR range. Hnide seen in Figure 5.7(b),
where the SNRa.x defining the range of the best reached accuracy is direddteckto)M .
For SNRyax = 60 dB, the required\/,, is 18, whereas for a lower SNR,, a lower value
of My is sufficient. The value od/, depends as well on the knowip 7. Therefore, the

best way to obtain the value éf, is according to the following criterion.

e Forthe given SNRax theh-RMSE,, is determined from the RBC estimator’s plot
for M = 18 in Figure 5.7(b).

e For that error,y is determined from the relationship between the approxonat

error and the sampling factor given for the optimal splimeg!B].
e For thaty, P is determined from (5.14) according to the givasi’.

e For thatP, the requiredM, is determined from (5.12) according to the giv&n
andT.

For the simulation examining the proposed BJ and MLJ estirsdhat is followed later
on, SNR,ax iIs assumed to b80 dB, and the desired/, depends on the givefi,T,
according to the above criterion and is determined suchttteasampling factory =
(M—=3)/fpTs(N—1) is approximately for the BJ estimator, antifor the MLJ estimator
(eg.for fpT, = 0.02, My = 9 for the BJ estimator andl/, = 8 for the MLJ estimator).

Itis worth mentioning that the simulation results desalibbove in Figure 5.7(b) were
carried out first foi) = 14 so as to concentrate the attention on the influence of chgngin
M without being affected by a lowW). Then, the simulations were repeated for the op-
timum values), deducted from Figure 5.7(a) according to the best reachd®l iaNge
for a certain)/ obtained in the first time. Identical results to that showfigure 5.7(b)
have been obtained. The same was done with the simulatidfigiume 5.7(a), starting

with M = 18 for all ) values, then repeating with the optimuv,.

Figure 5.8 shows the SNR-dependgyi,-RMSE of the considered frequency es-
timators (mentioned in Table 5.2) for Doppler frequencfes, = 0.01, 0.02, 0.03
(M = 6,9, 12 for the BF estimator, and/ = 6, 8, 11 for the RMLF and MLF esti-
mators). It can be seen that thigl,-RMSE of the BF estimator is considerably higher
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Figure 5.8: f,T,-RMSE of the proposed BS-based frequency offset estimatars fo
frequency-flat time-variant fading channels as a functib8MNR for different values of
foTs (@ndM); N = 64, Nppr = 256, foT, = 0.01 and@ = 8.

than that of the RMLF estimator over all the considered SNRyeanin addition, the
threshold SNR (SNR) below which thef,T,-RMSE increases more rapidly, is becom-
ing higher for lowerfpT;. The f,T,-RMSE above the SNRis approximately the same
for the differentf, 7T, with slightly higher levels forfp7; = 0.01. The performance is
even poorer for the MLF estimator. It can be noticed thatwellte SNR,, the f,T-
RMSE is approximately the same for the differgntl’;, and with slightly higher SNR
for lower fpT,. However, thef,T,-RMSE differs significantly above the SyRand is
higher for higherfp 7.

The poor frequency offset estimation is expected and dueeteffect of the Doppler
frequency in the time-variant fading channels. In pratscanarios, the final joint chan-
nel estimationh (that contains the fading process and the frequency offsetj more
significant importance for the receivers. Therefore, anthass it is concerned in the
proposed joint channel estimator, there is no need to enmpég complicated techniques

for getting an accurate individual estimatefgf’.

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



CHAPTER 5. JOINT ESTIMATION OF CHANNEL AND FREQUENCY OFFSET IN

FREQUENCY-FLAT TIME-VARIANT FADING CHANNELS 113
—— fpT, =0.03, M =12 |
. BJ - fpT,=0.02, M =9
o S MLJ fpTs =0.01, M =6
10 > .
R N
— & AN
N
S Nty BC
LIJ ..__\\F\.‘ N _
U) RC o N N ™ N =< -
= B ™™ == g e
Y TR Y Y T~
1 -1 RN RN ~ _
<10t NG ==
”\:\\‘;'\\\, N
S X
10 | | | | | |

~10 -5 0 5 10 15 20 25 30
SNR, dB

Figure 5.9:h-RMSE of the proposed BS-based joint estimators for frequdiatyime-
variant fading channels as a function of SNR for differeruga of f, T (andM); N =
64, Nppr = 256, fOTs =0.01 andQ = 8.

Figure 5.9 shows the SNR-depend@rRMSE of the considered channel estimators
for Doppler frequenciegp 7, = 0.01, 0.02, 0.03 (M = 6, 9, 12 for the RBC and BJ
estimators)M = 6, 8, 11 for the MLJ estimator, and/ = 7, 9, 11 for the BC estimator).

It can be seen that tHe-RMSE of the proposed BJ estimator is very close to that of the
(ideal) RBC estimator throughout the considered range of SNiRges) dB. A slight

shift can be noticed betwednrRMSE plots that correspond to differefit 7, similarly

to that of the RBC estimator. But in general, a high-accuracjopaance is obtained

for all values of fpT,. The same behavior can be seen for the proposed MLJ estimator
except for the small loss in the accuracy that is more ndieeat low SNRs. This is
due to the absence of the prior information®f ands?. For the BC estimator, a poor
performance in general can be seen, WitRMSE that increases for lowei,7,. This
shows the inappropriateness of such estimators and giveleambout the improvement

offered by considering the frequency offset for the newtjestimators.

Figure 5.10 shows thé T,-dependenh-RMSE for differentf,7, (and M values as
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Figure 5.10:h-RMSE of the proposed BS-based joint estimators for frequéatyime-
variant fading channels as a function Qff; for different values offp 7 (andM); N =
64, Nppr = 256, Q = 8 and SNR= 30 dB.

mentioned above). It can be seen that for the proposed BJatstina high-accuracy
performance in general is obtained for all the valueg g, and throughout the entire
wide f,T, range, where thR-RMSE is constant and almost the same as that of the (ideal)
RBC estimator. This is true as well for the proposed MLJ estmaith the h-RMSE
plots being slightly upward shifted by the same amount oll¢he f, 7, range and for all

the fpT, values. However, the-RMSE of the BC estimator increases rapidly diverging
from that of the RBC estimator at the beginning of ffy&’, range. This expresses a poor

and impractical performance even with a low frequency offse

Figure 5.11 shows thé,T,-dependenh-RMSE for different frequency offset§ 7,
M = 16 for the RBC, BJ and BC estimators, and = 12 for the MLJ estimator. For
the proposed BJ estimator, a high-accuracy performance &€aedn with théh-RMSE
having the same level for all thg 7, values and practically coincides with that of the
(ideal) RBC estimator over all the considerggl, range. Theh-RMSE level however

can be seen slightly increasing whépT, increases. For the proposed MLJ estimator,
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Figure 5.11:h-RMSE of the proposed BS-based joint estimators for frequéatyime-
variant fading channels as a function 7, for different values off,7,; N = 64,
Nppr = 256, Q = 8 and SNR= 30 dB.

theh-RMSE is the same for all thg T, values but with higher level than that of the RBC
estimator. This additional error decreases slowly withiticeease inf, 7. However, the
h-RMSE of the BC estimator is varied significantly wifh7,. This error can approach
that of the MLJ estimator for only the low frequency offsebdf05 and highf,T;. Apart
from that, a significant error is obtained.

5.8.1 Performance Analysis of Frequency Offset Estimators

The performance of the proposed BF and MLF estimators depemdke parameters
Nrrr, @ and M. Simulation results (not shown here) reveal that the miminmaquired
value of N1 to achieve an accurate frequency offset estimatiodNs which is in
agreement with [44,48]. The optimal value@fdepends on the maximum SNR, and for

a range of interest up %0 dB, we use) = 8. These values are used in the simulation.
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However, the optimal value af/ is not the same in the two proposed estimators, and
it depends on SNR andl,7,. We investigate the performance of these estimators for
different values of\/, SNR andfpT, to get a better understanding of the optimal value

of M to be used for each estimator.

Figure 5.12 shows thé/-dependentf,7,-RMSE of the proposed frequency offset
estimators for differentp7,. We use cubic/ = 3) splines forM > 3, and zero-
order @ = 0), linear (g = 1) and parabolic/{ = 2) splines forM = 1, 2 and 3,
respectively. Thefy7,-RMSE of both estimators decreasesMdncreases. This is due
to the decrease of the model mismatching error [43]. Howdwethe MLF estimator,
the fT,-RMSE reaches a minimum at a certain optiméland increases with further
increase of\/. The MLF estimator is more sensitive to the choicébfor a lower fp T
and a lower SNR. On the other hand, thd,-RMSE of the BF estimator continues to
decrease before reaching a floor level at a certain thresholdrhus, the exploitation
of the fading covariance matriR, and the noise variance’ in the BF estimator allows
achieving a higher-accuracy performance compared to thaedLF estimator. In both
estimators, a greater value of optimal/threshidds required as SNR of T increases,
where the threshold/ of the BF estimator is always greater than the optif¥abf the

MLF estimator.

Figure 5.13 shows thé,T,-dependenf,T,-RMSE of the estimators for differeat .
For the BF estimator, a high-accuracy performance is actiierall Doppler frequencies
up to a certain value (depending on), above which thef,7,-RMSE increases rapidly.
Apart from the very low Doppler frequencies, the increastheaminimumf,7,-RMSE
of the BF estimator is hardly noticeable AsT, increases. However, the MLF estimator
achieves its best performance for a certgifi ;-range (depending o), where thef,7-
RMSE increases rapidly outside that range. This range bexwider for higher Doppler

frequencies.

It is seen that the optimal choice 8f depends on SNR anfh7;. In the following
simulation, the performance is investigated for SNR-rangéo0 dB, using one value
of M for the entire range. According to Figure 5.12, the threshidl at SNR= 30 dB
will guarantee a best performance at SNR0 dB for the BF estimator. However, for the

MLF estimator, since there is a degradation in the perfocaa@s)/ increases higher than
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Figure 5.12: f,T,-RMSE of the proposed BS-based frequency offset estimatars fo
frequency-flat time-variant fading channels as a functibn\o for different values of
foTs; N = 100, Nppr = 4N, foTs = 0.0123 and@ = 8; (&) SNR = 15 dB and

(b) SNR= 30 dB.
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Figure 5.13: f,T,-RMSE of the proposed BS-based frequency offset estimatars fo
frequency-flat time-variant fading channels as a functibri /', for different values of
M; N =100, Nppr = 4N, foTs = 0.0123, Q = 8 and SNR= 30 dB.

the optimal), using the optimall/ at SNR= 30 dB will not allow a good performance
for lower SNRs. Other simulation results (not presented)lieree shown that the optimal
M at SNR= 15 dB (midrange) provides the best trade off between perfoomat low
and high SNR-range. For that reason, the optitdadf the MLF estimator is chosen such
that to achieve the best performance at SNR5 dB, whereas the threshold of the BF

estimator is chosen such that to achieve the best perfoerai8NR= 30 dB. Simulation

results for different values a@¥ (not presented here) have shown that the optimal choice of

M can be determined such that the sampling fagter 1/( fp 7, P) [43], for SNR-range
of interest up ta30 dB, is

M-n 2.5, for MLF estimator,

RN o

~
5, for BF estimator

Now, the performance of the proposed frequency offset astira is compared with

the performance of known frequency offset estimators thlgtan the normalized corre-
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lation samples
N—-1

Z x(nTs)x*(nTy — mTy), (5.46)

n=m

their phasesp(mT;) = arg{R.,(mTs)}, and/or their phase differencAyp(mT;) =

1
N —m

Rm (st) =

o(mTy) — o(mTy — Ts) wherex(nTy) = r(nTs)s*(nTs). In our simulation, we con-

sider the following estimators:

A frequency estimator proposed in [7] (referred to as the Sloeator) is given by

~ o(LTy)
B, =228 A7
0 oL (5.47)

e An estimator presented in [8] (referred to as the BS estim&aiven by

~ 1
Fy=——
07 orL

M) =

Ap(mTy) . (5.48)

m=1

e An estimator in [8] (referred to as the NLS estimator) is gy

L

oo 1 2 —j2rmF
Fy = 5 a8 ?25% {Z_(]Rz(st)e : (5.49)

e A simplified NLS estimator proposed in [10,11] (referred sdlae SNLS estimator)

is given by
L 2
~ m mT. mT,
FO — Zm:l - |Rx( S)‘ gD( 23> ) (550)
2m Zm:l m? | Ry (mT)|

e To extend the frequency acquisition range of the SNLS estima frequency es-
timator proposed in [10] (referred to as the SNLSu estin)asogiven as in (5.50)
but with o(mT}) being replaced with the unwrapped phase

S G o)

(5.51)
wherep, (0) = ¢(0).

e An approximated NLS estimator proposed in [11] (referredddhe ANLS estima-
tor) is given by
S [ B IRmT)P| Ag(mT)

Fy, = . 5.52
’ 2w S w2 | (mT)P (5:52)
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Figure 5.14: f,T,-RMSE of the frequency offset estimators for frequency-ilaetvariant fading channels as a function of SNR for slo
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Table 5.3: Optimal Choice of\/ for the Proposed Frequency Offset Estimators for

Frequency-Selective Time-Variant Fading Channels.

Optimal M Threshold M

foT; MLF BF
0.005 3 5
0.01 5 8
0.05 15 28

Table 5.4: Optimal Choice of for the Correlation-Based Frequency Offset Estimators

for Frequency-Selective Time-Variant Fading Channels Glamed in the Simulation.

Optimal L

fpTs BS SL NLS SNLS SNLSu ANLS

0.006 9 9 12 9 8 9
001 5 5 4 5 5 )
0.05 1 1 1 1 1 1

Figure 5.14 shows the SNR-dependgif,-RMSE of the frequency offset estimators
in the slow (fp T = 0.005), moderate fp 7, = 0.01) and fast {7 = 0.05) fading chan-
nels. For the proposed estimators, we use valued dihat satisfy (5.45) as recorded in
Table 5.3. The optimal choice df for the correlation-based estimators are summarized
in Table 5.4 and obtained according to simulation resultsshown here. For all scenar-
i0s, there exists a threshold SNR (SiNPelow which thef,T;-RMSE increases rapidly.
The proposed BF and MLF estimators outperform the correldimsed estimators in all
the fading channels at SNR SNR;,. The BF estimator outperforms the MLF estimator.
For all estimators, for lowef,T,, SNR;, is higher andf,7,-RMSE at SNR> SNRy
iIs smaller. For SNR< SNRy, the f,7,-RMSE depends on the frequency acquisition
range [47]. The SL and SNLS estimators possess a hattedependent) frequency ac-
quisition range ofy = 1/L [7,11], which explains the relatively lovi,7;-RMSE. For
the proposed estimators, the SN&nd thef,T,-RMSE for SNR< SNRy, depend on the
frequency acquisition range, and in Figure 5.14, the wigle<( 1) acquisition range is

used.
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Figure 5.15: f,T,-RMSE of the proposed BS-based frequency offset estimatars fo
frequency-flat time-variant fading channels as a functib8MNR for different values of

Y; N = 100, Nppr = 4N, foT, = 0.0123, fpT, = 0.01, Q = 8, M = 5 for MLF and

M = 8 for BF.

Figure 5.15 shows the SNR-dependégsit,.-RMSE of the proposed frequency offset
estimators for different), where f,7, = 0.0123 and fpT, = 0.01. It can be seen that
using a narrower frequency acquisition range leads to armowement in the performance
at SNR< SNRy,. This demonstrates the superiority of the proposed freqyuefiset esti-
mators over the correlation-based estimators in havinglpustable frequency acquisition
range (up ta) = 1).

Figure 5.16 shows th& T,-dependenf,7,-RMSE of the frequency offset estimators
for f/pT, = 0.01 and SNR= 10 dB. The value of. for the correlation-based estimators
is selected according to Table 5.4. Both proposed estimptmsess the widest frequency
acquisition range among the investigated estimators. fAderetical frequency acquisi-
tion range isy = 1 for the BF, MLF, ANLS and BS estimatorsg, = 0.5 for the SNLSu
and NLS estimators, and = 1/L = 0.2 for the SNLS and SL estimators. This can
be achieved at high SNRs, whereas for SNR10 dB, the real frequency acquisition
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Figure 5.16:f,T,-RMSE of the frequency offset estimators for frequency-ihaétvariant
fading channels as a function &§f7; N = 100, fpT, = 0.01, SNR= 10 dB, M = 4 for
MLF and M = 6 for BF.

range of the estimators is slightly lower than the theoattime. The proposed estimators

outperform the correlation-based estimators over allitliestigated range of 7.

5.8.2 Performance Analysis of Joint Channel and Frequency Offset

Estimators

The performance of the proposed joint channel and frequefisgt estimators is com-
pared with the performance of an ideal reference BayesiannehgRBC) estimator,
where the frequency offset is known. This estimator is gain (5.32) but with", being
replaced withf,T,. Another estimator is also introduced for comparison, thgeB&an

channel (BC) estimator, which ignores the frequency offsdtiaigiven by
h=B (BS”SB + ¢’R;"!) " BS"r. (5.53)

Table 5.5 summarizes properties of the estimators coresidarthe simulation.
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Table 5.5: Channel Estimators for Frequency-Selective TWargant Fading Channels

Considered in the Simulation.

Algorithm  Frequency Offset Channel Equation

RBC Known Random (5.32)
BC Ignored Random (5.53)
BJ Deterministic Random (5.32)

MLJ Deterministic Deterministic (5.37)

Table 5.6: Optimal Choice o#/ for the Proposed Estimators for Frequency-Selective
Time-Variant Fading Channels at SNR30 dB.

Optimal M Threshold M

fpTs MLF ML) RBC BC BJ BF

0.01 6 7 8 10 8 8
0.02 9 11 13 13 13 13
0.03 12 15 18 16 18 18

Figure 5.17 shows thé/-dependenh-RMSE of the joint estimators for different
fpTs. The best performance of the MLJ estimator is achieved apéamal value of)M,
above which théh-RMSE increases slowly. However, the BJ estimator achievestarb
performance for high\/ values, and th&-RMSE reaches a floor level at a threshold
depending orfpT;. For a higherf, T, the estimators require a highgf.

Figure 5.18 shows thg,T,-dependenh-RMSE of the joint estimators for different
M. For the BJ estimator, an optimal performance can be seendppler frequencies
lower than a certain value (depending ), above which thé-RMSE increases rapidly.
Using a greater value dff allows maintaining the optimal performance for a wider @ng
of Doppler frequencies. The optimal performance is seenterthe Doppler frequencies
up to fpT, = 0.1 usingM = 53. However for the MLJ estimator, and depending on the
value of M, a good performance can be achieved for a cerfgifi range, above which

the h-RMSE increases rapidly. For a greater valué\bf this range becomes wider and
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Figure 5.17:h-RMSE of the proposed BS-based joint estimators for frequéatyime-
variant fading channels as a function df for different values offp7,; N = 100,
Nppr = 4N, fOTs = 0.0123, Q = 8 and SNR= 30 dB.

covers higher Doppler frequencies.

Simulation results (not presented here) have shown thatgtimal M/ also depends
on SNR andV, and an optimal/threshold value df throughout an SNR-range of interest

up to30 dB is determined such that the sampling factor is

4, for MLJ estimator,

e (5.54)

5, for BJ estimator

Figure 5.19 shows the SNR-dependbefRMSE of the channel estimators for different
fpTs. The value ofM for the estimators is selected according to Table 5.6. lIFRMSE
of the BJ estimator is very close to that of the (ideal) RBC egtimthiroughout the SNR-
range. For all the values ¢}, 7%, a high-accuracy performance in general is obtained. The
same behavior can be seen for the proposed MLJ estimat@pesar a slight increase
of h-RMSE due to the absence of the prior informatiorRyfando?. However, the BC
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Figure 5.18:h-RMSE of the proposed BS-based joint estimators for frequéatyime-
variant fading channels as a function §§7, for different values ofAM; N = 100,
Nppr = 4N, fOTs = 0.0123, Q = 8 and SNR= 30 dB.

estimator demonstrates a poor performance in all scenarios

Figure 5.20 shows thg,T,-dependent RMSE of the channel estimators in Fig-
ure 5.20(a) and the frequency offset estimators in Figu2é(b) for differentf,7T,. We
use the values of/ as summarized in Table 5.6. For the BJ estimator and all Dopple
frequencies, a high-accuracy performance can be seengtiwatithe entire wide fre-
guency acquisition range, where theRMSE is constant and almost the same as that of
the (ideal) RBC estimator. The same is seen for the proposeddstirdator with thén-
RMSE plots being slightly upward shifted over #lll’; range and for all th¢, T values.
However, theh-RMSE of the BC estimator increases rapidly diverging front tifethe
RBC estimator ag,7, increases. This shows a poor performance of such chanmel est
mators, even for low frequency offset values. The proposegliency offset estimators,
as seen in Figure 5.20(b), possess a wide frequency aaguisange () ~ 1) for all the
examined Doppler frequencies.
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Figure 5.19:h-RMSE of the proposed BS-based joint estimators for frequéatyime-
variant fading channels as a function of SNR for differenuga of f,7,; N = 100,
Nrpr = 4N, fOTs =0.0123 andQ = &.

Finally, a valuable characteristic of the proposed joitinestors is investigated below.
So far in the simulation, we useNlzrr = 4N = 400 and(@) = 8, which is a neces-
sity for a high-accuracy frequency offset estimation forRS to30 dB. However, the
proposed joint estimators do not require that much accuratye frequency offset es-
timation and can achieve a good performance without zedolpg the processed signal
(i.e. with Nppp = N) and using a few dichotomous iterations. Figure 5.21 shbws t
foTs-dependent RMSE for differenVxxr and@Q, where fpT, = 0.01, SNR = 30 dB
andM = 8. In Figure 5.21(a), th&-RMSE of the BJ estimator is plotted against that of
the ideal RBC estimator, whereas Figure 5.21(b) illustrdte gt/ ,-RMSE of the BF esti-
mator. For the BF estimator, a high-accuracy frequency offsemation performance, as
seen in Figure 5.21(b), is only achieved f9f - = 400 and( = 8. UsingNgpr = 100
and lower(@ leads to a significant performance degradation. For the Ba&tsir, a per-
formance very close to that of the ideal RBC estimator is aeidar N+ = 400 and

@ = 8. However, the performance is still very good when us\g-r = 100 and@ = 4,
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Figure 5.20: RMSE of the proposed BS-based estimators foudrexy-flat time-variant
fading channels as a function HfT; for different values off pT; N = 100, Nppr = 4N,
@ = 8 and SNR= 30 dB; (a) proposed joint estimators and (b) proposed frequefisgt

estimators.
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Figure 5.21: RMSE of the proposed BS-based Bayesian estimfatofeequency-flat
time-variant fading channels as a functionf@f’, for different values ofNyrr and Q;
N =100, fpT, = 0.01, SNR = 30 dB; (a) proposed BJ and ideal RBC estimators, and
(b) proposed BF estimator.
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where the change in the-RMSE is hardly noticeable. F@p = 2 and@ = 0 (coarse
search only), the performance degradation of the BJ estinsliess significant than that
of the BF estimator. Similar simulation (not shown here) hasrbcarried out for the
proposed ML-based estimators. The results have shownhib&LJ estimator achieves
a high-accuracy performance when usiNgrr = 100 and@ = 3, which is hardly dis-
tinguishable from its performance when usiNgr = 400 and@ = 8. As a result, the
spline-approximation reduces the impact of the frequeriisgbestimation errors on the
joint estimate of the channel. This is the benefit of usingdimg channel and frequency

offset estimation rather than dealing separately withweedstimation problems.

5.9 Conclusions

In this chapter, novel joint data-aided channel and freque&ffset estimators have been
proposed for frequency-flat time-variant fading chann&lsese estimators are based on
representing the time-variant fading process using the BENs model simplifies the
solution and allows the estimators to achieve a high-acguparformance. To reduce
the complexity of the frequency offset estimators, andimtahigh accuracy, the new
estimators exploit a two stage technique for searching éineglised periodogram peak,

an FFT-based coarse search and dichotomous fine search.

The first joint estimator is based on the Bayesian approactcangrovide a high-
accuracy performance whenever prior statistical chaattes of the channel are known,
namely the covariance matrix of the fading and the variaidee®@ AWGN. The second
estimator, with a slightly higher estimation error, is arealative joint estimator that can

operate when these characteristics are unavailable.

The proposed Bayesian joint estimator have been studied! lmaséifferent BEMs
such as, Karhunen-lawe (KL), discrete prolate spheroidal (DPS), generalizzdpex
exponential (GCE), and B-spline (BS) functions for differesgrsarios in Rayleigh fading
channels, where the channel statistics are perfectly oeiifaptly known. When channel
statistics are perfectly known, simulation results haveashthat the KL and DPS BEMs
use fewer number of basis functions than that of the GCE and BSBEMllow achiev-
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ing the same performance. However, the best reached penficerof all the BEM-based
estimators is the same. When channel statistics are misathtogsults have shown that
the estimators based on the GCE and BS BEMs are more robust tienliased on the
KL and DPS BEMs. This makes the BS functions a better choicedntjpe as it has a

sparse matrix that results in a lower complexity than theioliasis functions.

The proposed BS-based Bayesian and ML joint estimators haare ddensively in-
vestigated for different application scenarios in Raylefigting channels. Simulation
results have shown that the proposed periodogram-basgdefmey offset estimators
clearly outperform known correlation-based estimatore Tiew estimators have also
been shown to possess the widest frequency acquisitioe rarigch can be adjusted ac-
cording to a priori knowledge of the frequency offset rangariprove the accuracy. The
proposed joint estimators provide a substantial perfoo@amprovement compared to
the Bayesian channel estimator that ignores the frequerisgtofBoth of the proposed
estimators have been shown to maintain a high-accuracgmpeshce over wide SNR,
foTs and fpT, ranges, which is very close to that of the Bayesian channehattr op-
erating with perfect knowledge of the frequency offset. Apleit criterion for adjusting
the parameterd'rrr, M and(@ to an optimum value has been clarified so that accord-
ing to the required SNR range arf@ 7, the maximum accuracy of the frequency and
channel estimation is achieved within the minimum comgexVioreover, the proposed
estimation techniques are superior in being able to congperisr the inaccuracy in the
frequency offset estimation and capable of achieving a-aAigfuracy channel estimation
performance without zero-padding the processed signalisind a simplified fine search

(less number of iterationg).

R. Khal, Ph.D. Thesis, Department of Electronics, University of York 2011



Chapter 6

Joint Estimation of Channel and
Frequency Offset in Doubly-Selective

Fading Channels

Contents
6.1 Introduction . . . . . . . .. ... 133
6.2 Signaland ChannelModels . . . . ... ... ... ... ....... 134
6.3 BasisExpansionModel . .. .. ... ... .. .. ... ..., 135
6.4 JointEstimation . . . ... ... ... ... .. 136
6.5 Dichotomous-based Implementation . . . . .. ... ... ...... 138
6.6 Simulation Results and Performance Analysis . . . ... ... ... 139
6.7 Conclusions. . . . . . ... 144

In this Chapter, a joint data-aided channel and frequenseb#stimator is proposed
for doubly-selective fading channels. The joint estimagdsased on the B-spline model
for approximating the fading process and the dichotomoasckefrequency estimation
technique. The estimator relies on the Bayesian approadk.ekamined for different
scenarios in Rayleigh fading channels. Simulation reshltsvghat the proposed estima-
tor achieves a high accuracy performance, which is closkeabwith perfect knowledge

of the frequency offset, over a wide range of signal to noég®s, for different Doppler
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frequencies and throughout all the frequency acquisigoge.

6.1 Introduction

Accurate channel estimation is very important in commuiocesystems, where reliable
transmission is required. This is challenging in frequeselective and time-variant fad-

ing channels, especially in the presence of a frequencgtoffs

Most of the frequency offset estimators proposed in theditee have been devoted
to correlation-based estimation, such as [25, 46] for feeqy-selective time-invariant
channels and [8, 11, 34] for frequency-flat time-variantrigdchannels. However, the
performance of such estimators is inferior to that of thénestor based on the general-
ized periodogram [44], and unlike that estimator, they arerable only for high signal
to noise ratios (SNR)s and/or they possess a limited frequecguisition range [47,48].
Periodogram-based joint channel and frequency offsehatitn for frequency-flat time-
variant fading channels has been considered in Chapter Sewbiat estimators ex-
ploiting basis expansion model (BEM) of the channel time ateoshs have been pro-
posed. BEMs have been widely used for frequency-flat timemtiuchannel estima-
tion [38, 41, 51]. However, these estimators yield a sevegratlation in the perfor-
mance in the presence of a frequency offset. Joint chanmkfraquency offset esti-
mation for frequency-selective time-invariant channels been addressed in [52]. For
doubly-selective fading channels, BEM-based channel aestim has been considered
in [53]. The estimation of doubly-selective fading charsialthe presence of a frequency
offset for multicarrier systems, based on complex expoaeBEM, has been addressed
in [54,91].

We focus on estimating jointly the doubly-selective fadctgannels and frequency
offset by using B-spline BEM. The joint estimation allows mefécient and higher ac-
curacy performance, compared to techniques dealing depavath these two problems.
The proposed estimator is based on representing the fadooggs by BEMs and em-
ploying frequency estimation based on the dichotomousckdd7] of the generalized

periodogram peak.
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Extensive simulations for different conditions are usedht@stigate the performance
of the new estimators. The simulation results show accyratéormance of the new

estimators for the different examined scenarios.

This chapter is organised as follows. Section 6.2 desctitbesignal and channel
models. In Section 6.3, the basis expansion model is destri®ections 6.4 illustrates the
derivation of the proposed joint estimators. An efficienpiementation of the estimators
using the dichotomous search algorithm is presented inde6t5. Simulation results

are discussed in Section 6.6. Finally, Section 6.7 contanslusions.

6.2 Signal and Channel Models

We consider a known (pilot) signal transmitted through aadipselective fading channel.
The baseband discrete received signal and channel modsgeatively, after frequency
downconverting, filtering in a matched filter and samplingoadper times, can be ex-

pressed as

~

r(nTs) = - s(nTs — m)h(nTs) + z(nTy) , (6.1a)
!

hi(nTy) = g/(nT,)e?* =" n=0,1,...,N -1, (6.1b)

Il
o

wheres(uT}) is the transmitted pilot symbol, the first— 1 ({s(uT})}.1 ,.,) of which

are theprecursors, z(nTy) is the complex-valued additive white Gaussian noise (AWGN)
with zero mean and varianeg, 7, andg;(nT;) are thelth path delay and fading process,
respectively,fy T is the frequency offset anfl, is the symbol intervall, and N are the

number of paths and received symbols, respectively.

The paths are assumed to be independent and the fading opatcfollows Jakes’

model [64]. The covariance matrix of such fading processvesrgby

R, =P, ®R,, (6.2a)
[Eg]w = Jo2rfpTs(u—v)), w,v=1,2 ..., N, (6.2b)
L-1

whereP, = diag{agl} is the power delay profilexgl is the variance of théh path,

=0
Jo(+) is the zero-order Bessel function of the first ki@, 7 is the Doppler frequency
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and® denotes the Kronecker product. The Kronecker produck @ndB, denoted as
A ® B, whereA isanN x M matrix andB is anL x K matrix, is defined by
AB --- A uB
AgB=| - : . (6.3)
Ay:B -+ AyyB

The received signal and channel models, respectively, trixriarm can be written as

r=Sh+z, (6.4a)
h=Aprg, Apr, =1.® KfoTs ; (6.4b)

wherer andz are N x 1 received signal and noise vectors with elemertis’;) and
z(nTy), respectivelyS = [diag(so), ..., diad(s;),...,diags;_1)] is anN x NL pilot
matrix,s; is al x N vector with elements(nT, — 7;), h = [hl,... hl ... hT ||Tis
an NL x 1 channel response vectdr! denotes the matrix transpode, is an N x 1
vector with elementé;(n7:),g = [gl,...,&/,.--,&;_1)7 isanNL x 1 fading process
vector,g; is anN x 1 vector with elementg,;(nT;), I, is anL x L identity matrix, and

Ap, = diag{e’?7/oT:n 1 is the frequency offset matrix.

6.3 Basis Expansion Model

Accurate estimation of the fading processgsaT) requires complicated techniques such
as the Wiener filtering [4]. A simpler solution can be obtairEsed on representing

g1(nTs) using a basis expansion model (BEM) with basis functions as

M
a(nTy) => a(m)B(nT,m), 1=0,1,...,L—1, (6.5)

m=1

where B(nT,, m) are basis functions and(m) are unknown expansion coefficients. In
matrix form, it can be written as

g=Ba, B=I,®B, (6.6)

where B is an N x M basis function matrix with element§B(nT,,m)}, a =
[al,....al ... ;al ||T isanML x 1 expansion coefficient vector angis anM x 1

vector with element$a;(m)}.
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Thus, the estimation problem of the x N time-variant fading procesg (nTy) is
transformed into estimation of the x M time-invariant expansion coefficients(m).

Usually M << N, which makes the BEM-based approach attractive.

Different basis functions can be used in the BEM such as congxeonential [38,54],
Karhunen-Le&ve [87], discrete prolate spheroid- al [41] and B-splind$.[& is shown in
Chapter 5 that the channel estimation based on the B-splitessisensitive to the accu-
rate knowledge of statistical characteristics of the fgdind simpler for implementation
than that based on the other BEMs. Therefore, here we use the BIS BE

The B-splines of orde are symmetrical, bell-shaped functions that are given By [9

1 (n+1 x n+1 \"

+

whereP = (N — 1)/(M — n), PTy is the sampling interval separating two adjacent B-
spline functions and, = max{0, z}. In this case, elements of the basis function matrix
are calculated aB(nT,,m) = B, (nT, — (m — 2+)PT}). The accuracy and complexity
of B-spline approximation depends on the spline degtd@ many situations, the cubic
B-spline ¢y = 3) provides the best trade-off between complexity and aoyuji@4]. We
use the cubic B-spline in the simulation below whenelver> 4. However, other BEMs

can also be used in the joint estimator.

6.4 Joint Estimation

The model mismatching error due to the approximation of twnfy process can be
neglected when choosiny high enough, so that can be assumed equal g this is
a practical assumption as detailed in [38, 41, 43]. Thus,stgeal model can be now

regarded as

r=A;,r,Pa+z; ®=SB, (6.8a)
h=As7Ba. (6.8b)
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The vectora is assumed to be zero mean Gaussian vatipriori PDF p(a) =

MR, e~*"Ra’a andR, is the covariance matrix af that can be obtained as [51]

R,-P,oR,. R,-(B"B) B'R,B(B'B) . (6.9)

6.4.1 Frequency Offset Estimator
By using the Bayesian approach (as detailed in [48, 49]), wieeaat the following
Bayesian frequency (BF) estimator

T = Y,
foTs = arg Jp;saeg{ T}

— arg max {r"A7.SB (B"S"SB + 02R,") ' BYS"Af, x| (6.10)

fTsev
where
Yir, = W (D +02R; ) Wy, (6.11a)
I =®"® = BYS’SB, (6.11b)
Wi, = @Ay r=B7S"A ¢, (6.11c)

() denotes the Hermitian transpodéy:, is the generalised periodogram [44, 48], and
U = [—/2,1/2] is the frequency acquisition range that can be considetbdrevide

(» = 1) or narrow (@ << 1).

6.4.2 Channel Estimator

After obtainingfo and substituting it in (6.8), the minimum mean square eivIGE)

estimator of the vectai is given by

a=(T+0R;) W . (6.12)

Finally, the Bayesian joint channel and frequency offset @il)mator is obtained by
substituting (6.12) into (6.8b) as

=

— A B (BYS”SB + o’R; ") B¥SYA zr. (6.13)

fOTs
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Table 6.1: Dichotomous Search Algorithm for the Proposeat &thannel and Frequency
Offset Estimator for Doubly-Selective Fading Channels.

Compute G = (B”S”SB + afLRgl)_l

Calculate DEZ;S)(Z) = SN e (nT)s* (nT, — 1) B*(nT,, m)e 927/ Tsn
Rearrang€W ;r, = [D;7,(0),..., D (1),..., Dy (L — 1)]7
DetermineYr, = 52,5 3,5 (Gl Wiz, ()W, (v)

Find T = arg max. {Yer,}

Locate le = Yfp—lTs , ng = YprS , YE), = Yfp+lTs

For () iterations do
AfT, = AfT/2
If Y5 <Y thenY; =Y, andf, T, = f,Ts — AfTs,
elseY; =Y, andf, T, = f, T, + AfT;
DY) (1) = SN (08 (0T — ) B (0T, m)e 3275t

W, =[Dsr(0),....Dpr(0),...,Dgr (L —1)]F

Yy = Yt S IGL W, (w) W, (v)

u=1 v=1

Finally  fo7.= f,T., h=A;7BGW, 1.

6.5 Dichotomous-based Implementation

Most of the complexity in the proposed estimator is consulmgthe frequency offset
estimation part when calculating/ s, in (6.11c) that is used for evaluation of the gen-
eralized periodograny;;, in (6.11a). For a coarse evaluation (search), FFT of a size
Nppr > N (with a frequency step\ f7; = 1/Npprr) can be used. For a fine search,
we use the dichotomous search [17]. This approach is fre@mfnear operations and
well suited for real-time implementation [47]. The propd®stimator is summarised in
Table 6.1.
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Figure 6.1: h-MSE of the proposed BS-based Bayesian joint estimators fablge
selective fading channels as a function df for different values offpT,; N = 128,
Nppr = N, L =5, f(),_zﬂi9 = 0.0123, Q = 5 and SNR= 30 dB.

6.6 Simulation Results and Performance Analysis

We consider a binary pseudo-random pilot signal and theakignnoise ratio (SNR) is

calculated as

S— H_
Eq(AnnSg) (AsrSg
SNR= {( .58) (Aur )}:i, (6.14)
E{zz} o2

n

wheree = EZL:‘OI agl. The mean square error (MSE) of estimation is averagedlou&r0

simulation trials, where the MSE of the frequency offset ahdnnel estimates, respec-
tively, in each simulation trial are calculated as

—— 2
HTMSE = (foT: = foT.) . (6.15a)
N 2
LS M hi(nTy) = hu(nT)

h-MSE =

— — (6.15b)
lL:()l 25:01 ’hl(nTs) ’2

We consider a random pilot signal of length = 128 transmitted through doubly-
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Figure 6.2: h-MSE of the proposed BS-based Bayesian joint estimators fablge
selective fading channels as a function fof7, for different values ofA/; N = 128,
Nppr = N, L =5, f(),_zﬂi9 = 0.0123, Q = 5 and SNR= 30 dB.

selective fading channel that has= 5 paths, with an exponentially decaying power
delay profile. The frequency acquisition range is wigie= 1). Unless otherwise spec-
ified, the size of FFT in the coarse searchNisrr = N = 128 and the number of
dichotomous iterations in the fine searcliis= 5.

The proposed estimator is compared to an ideal referencesBayehannel (RBC)
estimator, where the frequency offset is assumed to be kndhis estimator is given as
in (6.13) but withf, 7., being replaced witlf,T.

Figure 6.1 shows théd/-dependenh-MSE in the slow (p7, = 0.005), moderate
(fpTs = 0.02) and fast (p7; = 0.05) fading channels. There is a threshadlfi below
which the error rapidly increases due to a high modeling ratsimerror, and above which
the error stays almost constant. The exploitation of thenfadovariance matrix and
the noise variance prevents a degradation in the perforenfonchigh M. For a higher

fpTs, the estimator requires a high&f to achieve its best performance. THhis can
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Figure 6.3: h-MSE of the proposed BS-based Bayesian joint estimators fablgio
selective fading channels as a function of SNR for differeaities of f, 7, (and M);
N =128, Nppr = N, L =5, f()irs = 0.0123 andQ = 5.

be determined such that the sampling factor 1/(fp7:P) is approximatelys, which

is defined by approximating properties of B-splines [43]. urgy6.2 shows thgpT,-
dependenh-MSE for different). The best performance is achieved fyT, smaller
than a threshold that increases with It is seen from Figure 6.1 and Figure 6.2 that the
proposed BJ estimator achieves a high accuracy performahmcé g close to that of the
ideal RBC estimator. Thus, the frequency offset (nonlinestijreation involved in the BJ
estimator helps in reducing the modeling mismatch err@nevhenf,7, = 0 (according

to simulation results not shown here).

Figure 6.3 shows the SNR-dependbAYISE for differentf,7T,. We notice a threshold
SNR, below which théh-MSE of the BJ estimator diverts slightly from that of the RBC
estimator. This characteristic appears due to the invodveraf the nonlinear frequency

estimation and the occurrence of the outliers [13].

Figure 6.4 shows th¢,T;-dependent MSE performance for differelit-r and Q.
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Figure 6.4: MSE of the proposed BS-based Bayesian estimatodicubly-selective fad-
ing channels as a function ¢§T, for different values ofVyrr and@; N = 128, L = 5,
fpTs = 0.05, M = 35 and SNR= 30 dB; (a) proposed BF estimator and (b) proposed
BJ and ideal RBC estimators.
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Figure 6.5: h-MSE of the proposed BS-based Bayesian joint estimators fablgio
selective fading channels as a functionfgf, for SNR = 30 dB and different values
of fpT, (andM).

For the BF estimatorN.r = 4N = 512 and@ = 8 is a necessity for a high-accuracy
frequency estimation. However, the BJ estimator does naim@that high accuracy in the
frequency offset estimation and can achieve a good joiithaibn (h-MSE) performance
with a significantly lowerNgrr (with as smallNprr as Nppr = N) and using a few
dichotomous iterations. Fofp7, = 0.05, an RBC-like performance is achieved using
as smallQ as@ = 3. Slower fading channels may require a slightly higlhgrand
other simulation results (not presented here) have shoattth= 5 is the best choice
and covers all thgpT,. Figure 6.5 shows that the proposed estimator possessatea wi
frequency acquisition range for differefit 7, and usingNprr = N = 128 and(@ = 5.
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6.7 Conclusions

A novel joint data-aided channel and frequency offset estttmhas been proposed for
doubly-selective fading channels. This estimator is basedpproximating the fading
process using the B-spline model. This model simplifies tHatism and allows the
estimator to achieve a high accuracy performance. The @stitnator is based on the
Bayesian approach and provides a high accuracy performamee some prior statistical
characteristics of the channel are known, namely the cavee matrix of the fading and
the variance of the AWGN. To reduce the complexity of the fezgny offset estimation,
a two stage technique is exploited for searching a peak oféneralized periodogram,
an FFT-based coarse search and dichotomous fine searcHatamuesults for different
scenarios in Rayleigh fading channels have shown that th@opeal estimator maintains,
over wide SNR, frequency offset and Doppler frequency rangdsigh accuracy per-
formance, which is very close to that of the Bayesian chanstghator operating with

perfect knowledge of the frequency offset.
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In this chapter, we develop iterative turbo receivers fegérency-flat time-variant fad-
ing channels which jointly perform channel and frequendgeifestimation together with
data detection and decoding. Three versions of the joimhastr, the Bayesian, the max-

imum likelihood and the regularised-maximum likelihoo@ gresented depending on
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how much knowledge of channel statistics is available. Higmation and detection are
based on the basis expansion model of the fading time vamg&#nd use the dichotomous
search frequency estimation technique. Soft informatiemegated in the turbo decoder
is used to improve the quality of detection in the subsequerations. Simulation results

show that the proposed receivers provide as good perforerasithe corresponding ones

operating with perfect knowledge of the frequency offset.

7.1 Introduction

Various frequency offset estimators have been proposethiervariant channels [8, 11].
However most of these estimators are correlation-basédimferior performance to that
of the optimal estimator and/or possess a limited frequanquisition range [49]. Differ-
ent estimators of the channel time variations have also pegwosed [37, 42], however,
the frequency offset is not taken into account in these wdBlsconsidering the soft in-
formation from a soft-input soft-output (SISO) decoder mitgrative channel estimation
and data detection, various iterative turbo processingnigoes have been widely con-
sidered for pilot symbol assisted modulation (PSAM) systatrthe receivers. However,
most studies have either ignored the possible presencerefjaency offset [55], or as-
sumed time-invariant channels when dealing with the fraqueffset [56]. We consider
iterative turbo-based receivers for PSAM systems and QAjviads dealing with joint es-
timation of the time-variant channel and frequency offegether with data detection and

decoding, which, to the best of our knowledge, has not bessudsed in the literature.

This chapter is organised as follows. Section 7.2 desctia@smission models. Sec-
tion 7.3 illustrates the joint frequency offset and charestimators exploited in the re-
ceivers. Efficient implementation of the estimators usimg dichotomous search algo-
rithm is presented in Section 7.4. Classical receivers witlt gstimation are considered
in Section 7.5 and iterative turbo-based receivers aregsegpin Section 7.6. Simulation

results are discussed in Section 7.7. Finally, Section @n8ains conclusions.
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7.2 Transmission Models

We consider a PSAM system, where a blockfsymbols is transmitted through a
frequency-flat time-variant fading channel. The transeditblock consists ofv, data
symbols andV, pilot symbols that are inserted periodically between €&ch 1 data
symbols. The baseband discrete received signal and chaesyeéctively, after frequency
downconverting, filtering in a matched filter and samplingiper times, are modeled
as

r(nTy) = s(nTs)h(nTs) + z(nTy), (7.1a)

=
S

3
I

g(nT,)e*oln = n—0,1,..., N -1, (7.1b)

wheres(nTy) is the transmitted signat(n7}) is the complex-valued additive white Gaus-
sian noise with zero mean and variance 7, is the symbol intervalf, T} is the nor-
malised frequency offset andnT5) is the fading process. We consider a Rayleigh fading

process following the Jakes’ model [64] with a covariancérimgiven by

Ry, = O'EJO(Qﬂ'fDTS(U —-v)), w,v=1,..., N, (7.2)

u

wherea§ is the fading variance/y(-) is the zero-order Bessel function of the first kind
and fpTy is the normalised Doppler frequency.

The received signal and channel models, respectively, eavritten in matrix form as

r=Sh+z, (7.3a)
h=Azng, (7.3Db)

wherer, h, g andz are N x 1 column vectors with element$nTy), h(nTy), g(nTs) and
z(nTy), respectivelyS = diag{s(nT})} andA s r, = diag{e/27/o%:"

The fading procesg(nT;) can be represented using a basis expansion model [38] with
M basis functions as

M
g(nTy) = > anB(nT,,m), (7.4)

wherea,, are unknown expansion coefficients aith7;, m) are known basis functions.

Thus, the problem of estimating aw-dimensional time-variant fading proceg&:Ty)
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is transformed into a lower dimensional problem of estingnly M/ time-invariant

expansion coefficients,,, where usually/ << N.

The processed model in matrix form is given now by

r=A;r®Patz, ®=SB, (7.5a)
h=A;rBa, (7.5b)

wherea is M x 1 column vector of expansion coefficients, B is N x M matrix with
elementsB(nT;,m),n=0,1,...,N—landm =1,..., M.

7.3 Joint Frequency Offset and Channel Estimation

The frequency offset estimator is given by [49]

foTs = arg max Yz}

— H -1
= arg }:rplsaeﬁ {WfTs (T'+7) WfTS} , (7.6)
where[-]" denotes the Hermitian transpode= [—1/2, /2] is the frequency acquisi-

tion range0 < ¢ < 1, Yy, is the generalized periodogram [44, 48Y, 1, = <I>HA]1;[TSr,
I' = & ® andY depends on the estimation approach relying on how much lauyel
of channel statistics is available. For the Bayesian estima¥ = +’R', whereR,
is the M x M covariance matrix of the expansion coefficients, which carobtained
by [51]

1

R, = (B"B) ' B"R,B (B"B) . (7.7)

This approach provides the best performance and is apfgicabenc? and R, are
known. In the absence of this prior information, the maximikalihood estimation can
be used with a slight performance degradation, for whitk= O, whereO is M x M
zero matrix. A third option is the regularised-maximum likeod estimation, for which
Y = eo?l,,, wherely, is M x M identity matrix andk is a regularising parameter with
the best value ofg—z. This approach is applicable whet ando—g are known and provides
a performance which is better than that of the maximum kiagd estimator and worse

than that of the Bayesian estimator.
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The expansion coefficient vector estimator is then giverdigy [
~ —1
a=(T'+7) Wiz (7.8)
and the joint channel and frequency offset estimator isinbthas [49]

h=A—Ba (7.9)

fO,Ts :

7.4 Efficient Implementation

Complexity in the described estimator is mostly consumedhkyftequency offset esti-
mation part for calculatindV ;1. This can be done using fast Fourier transform (FFT) of
a sizeNgpr >> N, which however is very complicated. We use a more practicai t
stage technique for searching the maximum in (7.6): an FRSizefNprr ~ N is used

in a coarse search with a frequency resolutiofi’;, = 1/N, then the frequency offset

estimate is refined by a dichotomous fine search [17] of a smatlber of iterations).

This approach allows achieving a high-accuracy perforrmamoughout the wide fre-
guency acquisition range and well suited for implementaf@y]. The algorithm is sum-

marised in Table 7.1.

7.5 Classical Receivers

The received signal can be split into two parts correspanttithe pilot and data instants,
respectively, as, = S,h,+z, andr; = S;h,+z,, whereS,, h, andz, correspond to the
pilot instants an®,, h,; andz, correspond to the data instantshth andz, respectively.
The fading process as well can be split into two parts comedimg to the pilot and data
instants, respectively, ag, = B,a andg, = B,a, whereB, andB, correspond to the

pilot and data instants d8, respectively.

Classical receivers can exploit the above estimation schesmeg only pilot symbols

to obtainf/oi anda according to (7.6) and (7.8), respectively, but with replgd, S, r
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Table 7.1: Dichotomous Search Algorithms for the Proposedt hannel and Fre-
guency Offset Estimators in the Iterative Turbo Receivers-fequency-Selective Time-
Variant Fading Channels.

Compute G = (B”S¥SB + ‘I‘)_1 :

R, Bayesian approach
Y =o0,2021y, eMLapproach
o, ML approach

Calculate WfTS (m) = ZnN:_OI T(TLTS)S* (nTs>B*<TLTS, m)e—jQWfTsn
i M M «
DetermineY;r, = > ., > ._, [Gl,. Wng(u)WfTS (v)

Find [T = arg max. {Yer, }

Locate Yi = Yfp—lTs , ng = YprS , YE), = Yfp+1Ts

For () iterations do
AfT, = AfT,/2
If Y5 < Y;thenY; =Y, andf, T, = f,Ts — AfTs,
elseY; =Y, andf,T; = f,Ts + AfT;

WfPTS (m) - 27]:7:_01 T(nTs)S* (nTS)B* (nng m)e*jZWprSn

Yy = 234:1 Zﬁiﬂ(}]uvw};n (WWy,r,(v)

~

Flna”y fOTs = prs 5 a= GWprs ’ h = jxf/o?st1
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Figure 7.1: Turbo-based transmission system of QAM signals

with B,, S,, r,. Thenh is determined as in (7.9) arlg, can be obtained frorh at the

data instants. Finally, a minimum Euclidean distance detes used as
Sq = arg mif}‘ {(rd — Syhy)(rg — Sdﬁd)} ; (7.10)
Sq4€

where A is the alphabet of all symbols corresponding to the modaationstellation
points (we conside2” -QAM modulation, whereX is the number of bits used to represent

each symbol).

7.6 lterative Receivers

To obtain a significant performance improvement, we devélopo iterative receivers
for QAM modulation systems in which joint channel and fregeye offset estimation,

detection and decoding are iteratively refined.

The turbo-based transmission system with QAM modulatiosh®wyn in Figure 7.1.
First, the data bits are encoded by a turbo encoder. Themutpeit bits of the turbo
encoder are interleaved by a channel interleaver. Aftar @AM mapping is performed
where the output bits of the channel interleaver are grouedQAM symbols. Finally,

the pilot symbols are inserted periodically between éaeh1 data symbols.

The proposed turbo-based iterative reception system favi@#odulated signals is
shown in Figure 7.2. In the first iteration, pilot-based jathannel and frequency offset
estimation is performed in the same way as discussed fotdbsical receivers considered

in Section 7.5. The channel estimates are then passed topaovied detector, which
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Figure 7.2: Proposed turbo-based iterative receptioresysf QAM signals.

has the ability in the subsequent iteration to improve thdop@mance by utilising the
soft output log-likelihood ratio (LLR) information geneeat at a soft-input soft-output
(SISO) turbo decoder in the current iteration. In the firstation, there are na priori
soft LLR from the decoder yet and the detector generafsteriori soft LLR for every

bitb, = +1,k =1, ..., K of areceived symbol as

Ay =In Y e00d —qn Y e (7.11)

sdE-A;F SdE.A]:

where A = {s, € A|b, = £1} and the metrid(s,) is calculated as

2
(7.12)

Ta — Sahd

8(sq) = 0.7

The detector LLRs),,, are then deinterleaved and passed to a SISO turbo itedsive
coder, which generates initial decoded bits and initial kbR information. The decoder
LLRs are then interleaved to providepriori soft LLR, L(b;), which is required for the
detector in the subsequent iteration. The decoder LLRs (wtacrespond to all coded
bits) are also transformed to binary bits by hard decisiohesE are treated as initial
coded data bits, which are then interleaved, QAM mappedduSray code) and have pi-

lot symbols inserted in the same way as in the transmissisteisy The second iteration
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then starts by performing the joint channel and frequenfsebéstimation, but now based
on all pilot and data symbols, and so, more accurate estinaa¢eobtained and passed to
the detector. The improved detector then genem@apesteriori soft LLR as [130]

D syt e 00sa) [Tz P(b)
>\bk =In k 5(s0)
steA; el Hz‘;ﬁk P(b;)

where P(b;) is a priori probability of a bith; and obtained using ita priori soft LLR,
L(b;), as [130]

, (7.13)

P(b;) = % {1 + b; tanh (%L(bi)ﬂ . (7.14)

Hence, the detector LLRs are now refined, which leads to retieedder LLRs and less
error in the decoded bits. The same estimation, detectidraooding reception scheme

repeats for a few iterations to obtain a high-accuracy perémce.

7.7 Simulation Results

Different basis functions can be used in the BEM such as compteonential [38],
Karhunen-L@&ve [87], discrete prolate spheroidal [41] and B-spline§.[Rls shown in
Chapter 5 that the channel estimation based on B-splinessiségssitive to the accurate
knowledge of statistical characteristics of the fading sinapler for implementation than
that based on the other BEMs. Therefore, in our simulationyseeB-splines, however,
other BEMs can also be used.

The mean square error (MSE) of the frequency offset and @lastimates, respec-

tively, in each simulation trial are calculated as

FTMSE= (fT. ~ FiT.) (7.152)

2

Y0 [T = h(nT,)
Yoo [h(nT)?

and then averaged over all trials. We consider a PSAM systefQAM signals trans-

h-MSE = (7.15b)

mitted in a time-variant fading channel with a Doppler freqay fp7, = 0.01 and the
total number of symbols i = 514, of which N, = 28 are pilots that are inserted pe-
riodically everyT = 19 symbols. We assume a frequency offggf, = 0.0123 and a
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Figure 7.3: BER performance of the classical receiverd6e@QAM signals in frequency-
flat time-variant fading channelsy = 514, N, = 28, T = 19, fpT, = 0.01, fT, =
0.0123, M = 23, Nppr = 32 and@ = 5.

wide frequency estimation range= 1, where the number of dichotomous iterations in

the fine search i® = 5.

The BER performance of the developed joint estimation-baseeivers is compared
to that of the ideal reference channel-based receiversienthe frequency offset is as-
sumed to be known, and also to the one operating with perfestreel information. The

considered receivers/estimators are summarised in Tahle 7

Figure 7.3 shows the BER performance of the classical recgiwhere)M = 23 and
Nrrr = 32. The performance of the joint estimation-based receindts), e-MLJ, BJ is
as good as that of the ideal reference RMLENRLC, RBC channel-based receivers that
operate with perfect knowledge @7, and is close to that of the PCI receiver that oper-
ates with perfect channel information. The performancehaintel estimationi(-MSE)
and frequency offset estimatiorf,{,-MSE) can be seen in Figure 7.4 and Figure 7.5,
respectively. The receivers based on joint estimationigeovery close channel estima-
tion performance to that of the corresponding ideal recsméth perfect frequency offset
knowledge, and in all cases, the best performance is olotdipehe Bayesian-based re-

ceiver, which employs more initial knowledge of channetistis.
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Figure 7.4: h-MSE performance of the classical receivers f@-QAM signals in
frequency-flat time-variant fading channel$;,= 514, N, = 28, T' = 19, fpT, = 0.01,

fols = 0.0123, M = 23, Nppr = 32 and@ = 5.
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Figure 7.5: f,T,.-MSE performance of the classical receivers {6rQAM signals in
frequency-flat time-variant fading channel$;= 514, N, = 28, T' = 19, fpT, = 0.01,

fols = 0.0123, M = 23, Nppr = 32 and@ = 5.
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Figure 7.6: BER performance of the developed iterative tudm®ivers forl6-QAM

signals in frequency-flat time-variant fading channelsoeled by al /3 turbo coder with

generation polynomial of3, 15 in octal and obtained after thih iteration; N = 514,
N, =28,T =19, fpT, = 0.01, foTs = 0.0123, M = 17, Nppr = N and@ = 5.
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Figure 7.7:h-MSE performance of the developed iterative turbo recsiver 16-QAM

signals in frequency-flat time-variant fading channelsoeled by al /3 turbo coder with

generation polynomial of3, 15 in octal and obtained after thih iteration; N = 514,
N, =28,T =19, fpTs =0.01, foT, = 0.0123, M = 17, Nppyr = N and@ = 5.
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Figure 7.8:f,T,-MSE performance of the developed iterative turbo recsif@r 6-QAM
signals in frequency-flat time-variant fading channelsoeled by al /3 turbo coder with
generation polynomial of3, 15 in octal and obtained after thih iteration; N = 514,
N, =28,T =19, fpT, = 0.01, foTs = 0.0123, M = 17, Nppr = N and@ = 5.

Figure 7.6, Figure 7.7 and Figure 7.8 show BBERVMISE andf,7's-MSE performance
for the proposed iterative receivers/estimators encoged by/3 turbo coder of which
the generation polynomial i3, 15 in octal and obtained after thih iteration, where
M = 17andNgpr = N. It can be seen that a significant performance improvemestit ov
the classical receivers is obtained, and again, the jotmhagson-based receivers provide
very close performance to that using the ideal referencerada@stimators operating with
perfect frequency offset knowledge and is close to thateitdrative receiver with perfect
channel information.

7.8 Conclusions

We have developed iterative turbo receivers for time-vdiffiading channels which jointly
perform channel and frequency offset estimation togethir data detection and decod-

ing. The Bayesian, maximum likelihood and regularised-mmaxn likelihood estimators
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have been presented depending on how much knowledge of@lsdatistics is available.
The estimation and detection are based on the basis expamsidel representation of
the fading time variations, the B-splines BEM is chosen, armdthie dichotomous search
frequency estimation technique. Soft information gereztat the turbo decoder is used
to improve the quality of the detection in the subsequem&itens. Simulation results
have shown that the proposed receivers provide as goodrpenice as the correspond-
ing ones operating with perfect knowledge of the frequerftseg and is very close to

that operating with perfect channel knowledge.
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This thesis has investigated the joint channel and frequefiset estimation in dif-
ferent scenarios of wireless communications. The jointregton of the channel and
frequency offset in AWGN channels has been investigatedt@m@erformance has been
compared in terms of accuracy and complexity of advanceguéecy estimators that
have been recently proposed in the literature and the D@t has been found to be the
best choice. DS-based joint estimation of channel and &ecy offset in time-invariant
frequency-selective channels has been studied. A joimtradaand frequency offset esti-
mators have been proposed for frequency-flat time-varadinf channels based on dif-
ferent BEMs (such as the KL, DPS, GCE, and BS) of the fading tim@awans and the
DS frequency estimation, where the BS-BEM has been found tbeobdst choice. Joint
channel and frequency offset estimator has been proposedbtily-selective fading
channels based on the BS-BEM representation of the fadinggs@nd the DS frequency
estimation. Finally, iterative turbo receivers have beevetbped for frequency-flat time-
variant fading channels which jointly perform channel areftiency offset estimation
together with data detection and decoding based on the BS-BHENedading process
and the DS frequency estimation, where soft informatioregated in the turbo decoder

is used to improve the quality of detection in the subsedqiterations.
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8.1 Conclusions

A brief introduction of the whole work has been given, anddamental techniques that
have been used throughout the thesis, including simulafatisme-variant fading chan-

nels, BEMs and turbo codes have been presented.

The maximum likelihood (ML) joint channel and frequency saf estimation has
been presented for signals propagated through AWGN chanfiiéie CRLBs of the
joint estimators have been given. A literature review hasnbprovided for the two
main approaches approximating the ML estimator, namedyctirelation-based and the
periodogram-based estimators, including some recentlgdnced advanced frequency
estimators. In the first approach, conventional estimgtossess good accuracy, however
they normally have a high complexity. These estimators pdssess a limited frequency
estimation range that depends on the number of observedodyrdnd so, might be
inapplicable for certain practical scenarios. In the sdcapproach, conventional esti-
mators either exploit complicated nonlinear techniquebawe a poor and inconsistent
performance that depend on some parameters of the signapdrformance of recently
introduced advanced frequency estimators has been studiét the exception of the
WNALP estimator, the performance of the correlation-basgthators considered has
been shown to be frequency-sensitive at low SNRs, wheredeetiigency increases, the
performance degrades and the SNR threshold increases ffHggiency estimation range
is also narrower than that of the WNALP and periodogram-basgichators. However,
the WNALP has a relatively high complexity. For the periodogrbased estimators con-
sidered, the IDS and MLAF estimators possess the highegtleaity. At low SNRs, the
performance of both the MDS and IDS estimators is frequesgrysitive, whereas at high
SNRs, the MLAF estimator possesses a frequency-sensitiferpance. The DS esti-
mator, exploiting a two stage technique for searching the@gegram peak, an FFT-based
coarse search and dichotomous fine search, has been shoutp¢oform the other esti-
mators in many scenarios, keeping a high-accuracy perforenfor all considered SNRs
and throughout the wide frequency estimation range. It g@Bes only on linear opera-
tions with a relatively low complexity, which makes it thesbehoice in many practical
scenarios, and so, the DS estimator has been used througkediiesis. The DS-based

joint channel and frequency offset estimator has beenfigaged for different scenarios.
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Results have shown a high-accuracy performance of the jbarreel and frequency off-
set estimators, which is very close to that of the ML estim#tooughout all the wide

frequency acquisition range and over a wide range of SNR.

The joint estimation of the channel and frequency offsesignals propagated through
time-invariant frequency-selective channels has beegsiiyated. The frequency offset
estimators utilise the multipath diversity by combining feriodograms of the multipath
components and searching for the greatest of the combiaéidtst The CRLBs have
been presented for these estimators. Two joint estimaBanggsian-based estimator that
can provide a high-accuracy performance whenever priowledge of certain channel
statistics, namely the covariance matrix of the fading dnedvariance of the AWGN, is
available, and ML-based estimator, with a slightly highstireation error, that can operate
in the absence of these channel statistics, have been dtu@itereduce the estimation
complexity and keep a high accuracy, the estimators exjpleiDS frequency estimation
technique of two-stage searching for the generalised gegi@am peak. The estimators
have been investigated for different application sceainoRayleigh fading channels.
Results have shown a high-accuracy performance with an asbimerror very close to
the CRLB throughout the wide frequency acquisition range aret a wide range of
SNR.

Novel joint channel and frequency offset estimators haenlkerived for frequency-
flat time-variant fading channels. These estimators relyepnesenting the time-variant
fading process using the BEM, which leads to a simplificatothe processing and al-
lows the estimators to achieve a high-accuracy performafice new estimators use the
DS frequency offset estimation technique, which allowsaduction in the complexity,
and attaining a high accuracy performance. Two Bayesiaaebasd ML-based joint
estimators have been proposed depending on the avayadiilthe prior knowledge of
the channel statistics. The proposed Bayesian joint esiinttve been studied based
on different BEMs such as, KL, DPS, GCE, and BS functions foredght scenarios in
Rayleigh fading channels, where the channel statisticsafegily or imperfectly known.
For perfectly known channel statistics, results have shihvahthe KL and DPS BEMs
use fewer basis functions than the GCE and BS BEMSs to allow acdigi¢he same per-
formance. However, the best reached performance of all thé-B&sed estimators is the
same. For mismatched channel statistics, results havenstmawthe GCE and BS BEMs
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are more robust than the KL and DPS BEMSs. This makes the BS-BEMter ldoice

in practice as it has a sparse matrix that results in a lowmptexity than the other basis
functions, and so, the BS-BEM has been used throughout this thdse proposed BS-
based Bayesian and ML joint estimators have been investidatalifferent application
scenarios in Rayleigh fading channels. Results have shownhihgroposed DS-based
frequency offset estimators outperform known correlatiased estimators. The new es-
timators have also been shown to possess the widest fregaequisition range, which
can be adjusted according to a priori knowledge of the fraqueffset range to improve
the accuracy for low SNRs. The proposed joint estimators affeibstantial performance
improvement compared to the Bayesian channel estimatoigthates the frequency off-
set. Both proposed estimators have been shown to keep at¢eghaay performance over
wide SNR, frequency offset and Doppler frequency ranges;hwisi very close to that of
the Bayesian channel estimator operating with perfect #rqy offset knowledge. An
explicit criterion for adjusting the estimator parametaais been presented so that accord-
ing to the required SNR range and the Doppler frequency, @sdmum accuracy of the
frequency and channel estimation is achieved within themmim complexity. More-
over, the proposed estimation techniques are superioling lable to compensate for the
inaccuracy in the frequency offset estimation and capab&ehbieving a high-accuracy
channel estimation performance even without zero-padifiegprocessed signal and us-
ing a simplified fine search.

A novel joint channel and frequency offset estimator hasbaerived for doubly-
selective fading channels. This estimator is based on thBspline BEM representation
of the fading process that simplifies the solution and alleaisieving a high accuracy
performance. The joint estimator relies on the Bayesianagmbr and provides a high
accuracy performance when the prior knowledge of the sitatischaracteristics of the
channel is available. The DS frequency estimation teclaigwsed to reduce the com-
plexity of the frequency offset estimation. Simulationuks for different scenarios in
Rayleigh fading channels have shown that the proposed dstikeeps a high accuracy
performance, over wide SNR, frequency offset and Dopplejueacy ranges, which is
very close to that of the Bayesian channel estimator operatith perfect knowledge of

the frequency offset.

Iterative turbo receivers have been developed for timeamafading channels which
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jointly perform channel and frequency offset estimatiogetiver with data detection and
decoding. Depending on how much knowledge of the channgktita is available,
the Bayesian, maximum likelihood and regularised-maximikelihood estimators have
been presented. The estimation and detection are based &idplines BEM represen-
tation of the fading time variations and use the DS frequerstymation technique. Soft
information generated in the turbo decoder is used to ingtbe detection performance
in the subsequent iterations. Simulation results have shbat the proposed receivers
provide as good performance as the corresponding onestimgendth perfect knowledge
of the frequency offset, and is very close to that operatiitly perfect channel knowledge.

8.2 Further Work

Some suggestions for further work based on this thesis aes ¢pelow:

¢ In this thesis, the performance of the joint channel andueagy offset estimation
in frequency-flat time-variant fading channels has beedistufor the case of the
perfect knowledge of the Doppler frequency using diffef@EMs in slow, moder-
ate, and fast fading channels. The cubic B-spline is usedhasibeen reported in
the literature to provide the best trade-off between aayusad complexity in many
scenarios. However, a noticeable higher number of cubicliBespare required for
the fast fading channels compared to that of the Karhuneérv&.and discrete pro-
late spheroidal basis functions for the estimator to aehiesvbest performance. It
is expected that a higher order B-splines is a better chorcenéofast fading chan-
nels to reduce the required number of basis functions, thiduresearch needs to
be done here to compare the performance in terms of accunalcgcamplexity for

that scenario.

e The iterative turbo receivers with joint estimation of chahand frequency offset
in frequency-flat time-variant fading channels are considdo operate with per-
fect knowledge of the Doppler frequency. The sensitivityhaf channel estimation
to the mismatched Doppler frequency has been investigatsdme of our pub-

lications, where the performance is found to be very sesmsit underestimation
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of the Doppler frequency and has little sensitivity to owtireation, which can be
assumed to be applicable for the joint channel and frequefisgt estimation as
well. Therefore, a good upgrade of the work in this thesiislérive a practi-
cal joint channel, frequency offset and Doppler frequerstingator (with a certain
Doppler frequency overestimation to avoid degradationariggmance caused by
underestimation of the Doppler frequency) and investitfaegperformance of iter-

ative turbo receivers that use this upgraded joint estimato

¢ In this thesis, the joint channel and frequency offset estioms are derived and
investigated for the Rayleigh fading channels. It is strd@iward to specify the
estimators for different types of fading channels, suchhasician and Nakagami
fading channels, by considering the different correspogmd?DFs of the fading
process, with the presence of a vector of means and a diffeogariance matrix.
Therefore, it will be helpful to extend the joint estimatdos such more general
fading channels and more research can be done to investgasrformance.

e The iterative turbo receivers with joint estimation of chahand frequency offset
in time-variant fading channels are considered in thisitheBhose receivers can
be specified in a future research for orthogonal frequeneigidn multiplexing
(OFDM) signals in frequency-selective channels, which besn of great interest
recently. This can be done by employing pilot tones and perfeimilar BEM-

based processing in the frequency domain.

e In this thesis, the iterative turbo receivers with jointimsition of channel and
frequency offset are considered for single-input singlgat (SISO) fading chan-
nels. In a further research work, those receivers can ba@satkfor the multiple-
input multiple-output (MIMO) fading channels, where s@t¢echniques concern-

ing multiplexing are required.
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