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Abstract

Emulation is a statistical technique that can be utilised for estimating model

simulations when the computer models are too computationally expensive to run.

Emulators need to be subjected to a validation process since various assumptions

have to be made. One assumption is that the computer model output is thought

of as a realization of a Gaussian process with a mean and a covariance function.

The computer model, however, is not a random sample from the Gaussian process

distribution. In this thesis, we develop a graphical diagnostic that can be used

to investigate whether the Gaussian process assumption is suitable for building

emulators.

Diagnostic methods can be used to assess the validity of the statistical model

in order to investigate the best probability model for describing the computer

model. However, it is not always possible to derive the required reference dis-

tribution for some diagnostics analytically. In this thesis, a simulation-based

method is developed based on simulating samples from the posterior distribution

of the output function. This simulation-based method can be used to obtain the

reference distribution of diagnostics that cannot be obtained analytically. The ob-

served diagnostic values will be ‘consistent’ with the simulated diagnostic values

if the Gaussian process emulator is valid.

iv



Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Computer models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications of computer models . . . . . . . . . . . . . . . . . . 2

1.3 The need for surrogate models . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Statistical inference for complex simulators using emulators 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Emulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Gaussian process emulators . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . 19

v



vi

2.3.2 The covariance functions . . . . . . . . . . . . . . . . . . . 21

2.3.3 Constructing Gaussian process emulators . . . . . . . . . . 24

2.4 Inference for Gaussian process parameters . . . . . . . . . . . . . 27

2.4.1 Estimating correlation length parameters using the poste-

rior mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Markov Chain Monte Carlo algorithm . . . . . . . . . . . 29

2.4.3 Cross-validation method . . . . . . . . . . . . . . . . . . . 31

2.5 Designs for building emulators . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Latin hypercube design . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Sliced Latin hypercube design . . . . . . . . . . . . . . . . 33

2.5.3 Distance-Based designs . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Other space-filling designs . . . . . . . . . . . . . . . . . . 38

2.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Validating Gaussian process emulators 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Uncertainty calibration in emulators . . . . . . . . . . . . . . . . 44

3.3 Situations of inappropriate assumptions in building Gaussian pro-

cess emulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



CONTENTS vii

3.4 Diagnostic methods for Gaussian process emulators . . . . . . . . 47

3.4.1 Cross-validation method . . . . . . . . . . . . . . . . . . . 49

3.4.2 Simple diagnostic methods . . . . . . . . . . . . . . . . . . 50

3.4.3 Diagnostic methods that measure uncertainty . . . . . . . 53

3.5 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Borehole model . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 OTL Circuit function . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Piston Simulation function . . . . . . . . . . . . . . . . . . 62

3.5.4 Multivariate Student-t simulator (Mt) . . . . . . . . . . . 63

3.5.5 Nonstationary variance simulator (NSV) . . . . . . . . . . 64

3.5.6 A Gaussian process simulator (GP) . . . . . . . . . . . . . 65

3.5.7 Evaluating some diagnostics for the emulators . . . . . . . 71

3.6 Conclusion and recommendations . . . . . . . . . . . . . . . . . . 85

4 A simulation-based method and the coverage interval diagnostic 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 The coverage interval diagnostic using separate validation sets . . 88

4.3 The coverage interval diagnostic using the cross-validation method 91

4.3.1 Validating the prior assumptions rather than the posterior

emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



viii

4.3.2 Investigating the distribution of p(KCICV
α (y)|δ̂) . . . . . . 94

4.4 Quantile-quantile (QQ) plots . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Simulation-based method . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 The simulation-based method for diagnostics . . . . . . . . 101

4.5.2 The simulation-based method for the coverage interval di-

agnostic using separate validation sets . . . . . . . . . . . 102

4.5.3 The simulation-based method for the coverage interval di-

agnostic using the cross-validation method . . . . . . . . . 104

4.6 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 The coverage interval diagnostic with data from a multivariate

Student-t distribution . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.1 Building a Gaussian process emulator . . . . . . . . . . . 114

4.8 Nonstationary variance simulator (NSV) . . . . . . . . . . . . . . 124

4.8.1 Building a Gaussian process emulator . . . . . . . . . . . . 125

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.A Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.A.1 Using simulation to estimate the distribution of KCICV
α (·) 134

5 Diagnostics for advanced Gaussian process emulators 138



CONTENTS ix

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Treed Gaussian process emulators . . . . . . . . . . . . . . . . . . 140

5.2.1 Constructing TGP emulators . . . . . . . . . . . . . . . . 140

5.2.2 Estimating the parameters . . . . . . . . . . . . . . . . . 143

5.2.3 Predictions of TGP emulators . . . . . . . . . . . . . . . . 143

5.2.4 One-dimensional synthetic example . . . . . . . . . . . . . 145

5.3 Composite Gaussian process emulators . . . . . . . . . . . . . . . 149

5.3.1 Improving the mean model . . . . . . . . . . . . . . . . . . 150

5.3.2 Improving both the mean and variance models . . . . . . . 152

5.3.3 Estimating the parameters . . . . . . . . . . . . . . . . . . 155

5.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 The coverage interval diagnostic for TGP and CGP models . . . . 160

5.5 Modified borehole model illustrative example . . . . . . . . . . . . 163

5.5.1 The coverage interval diagnostic for the Modified borehole

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5.2 The plot of pivoted Cholesky errors and the scaled condi-

tional standard deviations . . . . . . . . . . . . . . . . . . 172

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6 Conclusions 178



6.1 Summary of the thesis chapters and key developments . . . . . . . 178

6.2 The relationship between diagnostics . . . . . . . . . . . . . . . . 181

6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



Chapter 1

Introduction

1.1 Computer models

In recent years, computer experiments have increasingly been used as replace-

ments for physical experiments which are considered impractical, impossible or

too costly. In order to perform a computer experiment, it is necessary to construct

a computer model, called a simulator, which is a mathematical representation of

the real system and is usually implemented on a computer. We consider a de-

terministic simulator, i.e. one that will produce the same outputs if it is run at

the same inputs. The process of running the simulator at different input values

is known as a computer experiment. Mathematically, the simulator is referred to

as a function, y = f(x) for x ∈ χ ⊂ Rp , where x = (x1, . . . , xp) is a vector of

inputs and the output is a scalar, y ∈ R . Typically, simulators will have multiple

outputs but in this thesis we focus on single output simulators. Some simulators

may also be stochastic, but we do not consider this here.

1
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1.2 Applications of computer models

Computer models have widely been used to investigate the systems of the real

world in most science and technology fields. For example, in engineering, Amiri

(2012) used the CMG STARS reservoir simulator (Computer Modelling Grup)

to simulate low-frequency electrical heating for different models. This simula-

tor models multicomponent thermal flow under electrical heating. Vitsas (2016)

used a commercial flight simulator, called X -Plane Flight Simulator 10. This

simulator gives the user the opportunity for flying different military, commercial

and unconventional experimental aircraft over global scenery which covers most

geographical areas on the Earth.

In climate and environment, the pCNEM (probabilistic Canadian NAAQS

(National Ambient Air Quality Standards) Exposure Model) simulator was de-

veloped by Zidek et al. (2005). The pCNEM simulator generates a pollutant

concentrations sequence to which a randomly chosen person is exposed over time.

Crookston et al. (2010) modified a Climate Forest Vegetation Simulator (Climate-

FVS) that provides a useful tool for forest managers. The Climate-FVS model

incorporates the potential impacts of climate change in forest plans. The Climate-

FVS model also simulates the potential impacts of climate change on various

climatically diverse landscapes.

Spracklen et al. (2005) developed the Global Model of Aerosol Processes

(GLOMAP) to be an extension of a chemical transport model. The GLOMAP

generates the evolution of the global aerosol size distribution. This model also

involves the processes of aerosol nucleation, condensation, wet and dry deposi-

tion and cloud processing. Emanuel (2002) constructed a relatively simple climate

simulator consisting of a single ocean layer and a two-layer atmosphere. This sim-
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ple climate simulator is able to produce multiple overlapping stable equilibrium

states based on a few feedback processes.

Weaver et al. (2001) developed the University of Victoria (UVic) Earth System

Climate Model consisting of an energy-moisture balance atmospheric model, a

dynamic-thermodynamic sea-ice model and an ocean general circulation model.

This model can capture the pathways of bottom, deep and intermediate waters as

revealed via simulations which involve the passive tracers release. The model also

generates routes of the warm and cold water by returning the upper layer water

to the Atlantic Ocean to compensate for North Atlantic Deep Water production

and export.

In health, Jandarov et al. (2014) developed an epidemic model that involves

a formulation for the spatial transmission among various host cities. This model

describes spatiotemporal patterns of epidemics and can accommodate small pop-

ulation sizes and disease recolonization. In population, Baggaley et al. (2012b)

considered a wavefront model for the spread of Neolithic culture across Europe.

The wavefront model allows both an isotropic background spread that incorpo-

rates the impacts of local geography, and a localized anisotropic spread connected

with major waterways.

1.3 The need for surrogate models

Computer models can be computationally very expensive to run. This means

that it can take many hours or even several days to return a value of y at a

single of x . Therefore, the simulator can only be run at a limited number of

inputs. The computationally expensive problem can be caused, for example, by
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the simulator being very complex or a high degree of precision being required.

Gaussian process emulators have been widely used as surrogates of computer

models in many fields of science and technology. The first use of Gaussian pro-

cess emulators as surrogates of computer models was by Sacks et al. (1989b).

They present a description of how statistical inference can be used in computer

modelling for estimating simulators. Currin et al. (1991) developed the concept

of emulators under a Bayesian framework. Gaussian process emulators can be

used not only to provide approximations for computationally expensive computer

models, but also to provide a probability distribution for the computer models.

This probability distribution can be then used to run any subsequent analysis of

the computer models.

In certain situations, the statistical assumptions that are made in building

Gaussian process emulators may not be precisely satisfied. If the assumptions

do not hold, the results that depend on emulators will not be accurate. Hence,

Gaussian process emulators are required to be subjected to a validation process

using appropriate diagnostics. Some diagnostic methods are just based on the

differences between emulator predictions and the simulator outputs. Other diag-

nostic methods consider the uncertainty in the emulator predictions. Bastos and

O’Hagan (2009) propose a number of numerical and graphical diagnostic methods

that take into account uncertainty in the emulator predictions. Their diagnostics

are based on comparisons between the validation outputs of the simulator and

the emulator predictions. Bastos and O’Hagan (2009) propose comparing the

observed value of the diagnostic with its distribution.

In this thesis, we aim to extend the work that is given by Bastos and O’Hagan

(2009) for diagnostic methods that consider the uncertainty in the emulator pre-

dictions. We evaluate the performance of current diagnostic methods for examin-
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ing assumptions that are made in constructing Gaussian process emulators. We

apply these diagnostic methods on emulators that are built on different simula-

tors that have different behaviours. We also present a modification of an existing

graphical diagnostic method which makes the diagnostic more informative. We

develop a graphical diagnostic method that tests coverage properties of Gaus-

sian process emulators. Another contribution is developing a simulation-based

method that can be used to obtain the distribution of any diagnostic and it may

be applied when the diagnostic distribution cannot be found analytically.

1.4 Outline of the thesis

The focus of this thesis lies in diagnostic methods for examining assumptions

that are made in building Gaussian process emulators. The thesis consists of six

chapters:

• In Chapter 2, we review literature on applications of Gaussian process em-

ulators in several areas of science. The aim is to see what choices authors

have made for the mean and the covariance functions when building Gaus-

sian process emulators. Furthermore, we want to find the popular designs

for generating the design points, the most popular methods that authors

used for estimating the correlation length parameters, and the most pop-

ular method that authors prefer to use for validating their emulators: the

cross-validation methods or separate validation sets. In addition, we aim to

investigate what diagnostic methods have been used for validating Gaussian

process emulators. The processes of constructing emulators, as surrogates

of simulators, under a Bayesian framework are reviewed. We also review

several methods used for estimating the correlation parameters in the cor-
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relation function. Then, several designs for training and validation inputs

that have been used in building Gaussian process emulators are reviewed.

• In Chapter 3, the concept of uncertainty calibration in Gaussian process

emulators is described in terms of overconfidence and underconfidence of

emulators. We also present the concept of diagnostics and develop a modifi-

cation of an existing diagnostic that makes the diagnostic more informative.

We investigate the performance of a number of current diagnostic methods

for examining assumptions that are made in constructing Gaussian process

emulators.

• In Chapter 4, we focus on the development of a graphical diagnostic method

that examines coverage properties of Gaussian process emulators. In addi-

tion, since the distribution of some diagnostic methods cannot be derived

analytically, we develop a method, called simulation-based method, that can

be used to obtain the distribution of any diagnostic. We also investigate

the performance of our diagnostics with data that have different properties

to that of a Gaussian process.

• Stationary Gaussian process emulators have been used widely in the litera-

ture. However, the stationary assumption for building Gaussian process

emulators may not be suitable for functions that show discontinuity or

nonstationary in their behaviour. In Chapter 5, two types of ‘advanced’

Gaussian process emulators that were used for dealing with nonstationary

functions are reviewed. These advanced Gaussian process emulators are

built under a Bayesian framework. It is necessary to test whether the Gaus-

sian process assumption is suitable for building these advanced Gaussian

process emulators or not. We also investigate the performance of diagnostic

methods for these advanced Gaussian process emulators.
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• Finally, the conclusion and recommendations of this study as well as ideas

for future research relevant to this thesis are discussed in Chapter 6.



Chapter 2

Statistical inference for complex

simulators using emulators

2.1 Introduction

In this chapter, we review a well-known statistical method, called emulation,

for tackling the problem of computationally expensive simulators and predicting

outputs of simulators. We explain the concept of emulators and present the

processes of building emulators under a Bayesian framework. We present various

methods for estimating the correlation parameters in the correlation function.

We also review some designs for choosing the training and validation inputs. We

also present literature search for Gaussian process emulators. Finally, we consider

an example as an illustration of Gaussian process emulators.

8
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2.2 Emulators

Statistical inference can be used in computer modelling to provide approxi-

mations of simulators. The simulator is a function, f(·), where for an input

x = (x1, . . . , xp) ∈ χ ⊂ Rp , the output is y = f(x). Suppose we have a set

of inputs, x1, . . . ,xn , and evaluations y = {y1 = f(x1), . . . , yn = f(xn)} of the

simulator outputs at these inputs. Now, suppose we wish to run the simulator

at more values of inputs, but cannot do so because the simulator can be com-

putational very expense to run. Thus, we wish to make joint inferences about a

set of simulator outputs yn+1 = f(xn+1), yn+2 = f(xn+2), . . . given the available

evaluations of simulator outputs, y .

We consider f(·) to be an uncertain function, in that the simulator output

f(x) is unknown before running the simulator at the untried input value x . Then,

we can use a Bayesian perspective to construct a probability distribution for f(·)

based on y , and quantify the uncertainty about f(·) due to running the simulator

at a limited number of inputs. We call this probability distribution an emulator

which can be then used to run any subsequent analysis of the simulator. In fact,

this problem can be entirely perceived as a statistical regression problem and any

regression model can be used for constructing emulators.

The idea of emulators was proposed by Sacks et al. (1989b) and Currin et al.

(1991) developed the concept of emulators using a Bayesian framework. Emula-

tors have been used widely in various applications in most science and technology

fields. In order to find applications of Gaussian process emulators, we searched

the Web of Science (formerly Web of Knowledge) under the terms ‘Gaussian

process emulator’, ‘Gaussian process metamodel’, ‘Gaussian process model’ and

‘Gaussian process regression’ according to the following strategy:
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1. We used the quotation marks to make our search more accurate.

2. As of 17/10/2017, we found about 1230 studies under the term ‘Gaus-

sian process regression’ and 299 studies under the term ‘Gaussian process

model’. We read the titles and abstracts of some papers that were thought

to be relevant to our topic.

3. We found about 71 studies under the terms ‘Gaussian process metamodel’

and ‘Gaussian process emulator’. We focused on papers with mostly dif-

ferent authors in order to see difference between methods and applications,

because some authors may use the same methodology in their papers. For

example, some authors used the same forms of the mean and the covari-

ance functions, the same design and the same method for estimating the

correlation parameters in their publications.

4. We also added some other papers that were referred to in some of these

studies because they contain some detail and some of them used different

methodology.

The aim of this search is to find what choices authors have made when building

Gaussian process emulators. For example, what they have used for the mean and

the covariance functions 1 and what are the most popular forms of these functions.

Furthermore, we want to find the designs that have been used for generating the

design points, for example, the Latin hypercube design (LHD) and the sliced

Latin hypercube design (SLHD). Also, we want to find the most popular methods

that authors used for estimating the correlation length parameters such as the

maximum likelihood estimate (MLE) and a Markov Chain Monte Carlo (MCMC)

algorithm. In addition, we want to see which method that authors prefer to use

1We will define these and the subsequent terms in Section 2.3 and the subsequent sections.
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for validating their emulators: the cross-validation methods or separate validation

sets. Finally, we aim to find diagnostic methods that have been used for validating

their emulators. Some authors use diagnostics that depend only on the difference

between the simulator outputs and the emulator predictions such as the mean

squared error (MSE), the root mean squared error (RMSE), the standardised root

mean squared error (SRMSE) and the predictivity coefficient (Q2 ). Some other

authors use diagnostic methods that consider the uncertainty in the emulator

predictions such as the Mahalanobis distance and the individual standardised

errors. Table 2.1 presents some of these applications with some detail.
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ó
m

ez
-D

a
n

s
et

a
l.

(2
0
1
6
)

S
o
il
-L

ea
f-

1
0

3
0
0

co
n

st
a
n
t

sq
u

a
re

d
L

H
D

M
L

E
1
0
0
0

R
M

S
E

C
a
n

o
p
y

ex
p

o
n

en
ti

a
l

v
a
li

d
a
ti

o
n

a
n

d
m

a
x
im

u
m

ra
d

ia
ti

v
e

p
o
in

ts
a
b

so
lu

te

tr
a
n

sf
er

m
o
d

el
er

ro
r

3
4
-

G
u

et
a
l.

(2
0
1
6
)

T
IT

A
N

2
D

4
2
0
4
8

li
n

ea
r

in
p

o
w

er
m

a
x
im

in
p

o
st

er
io

r
6
3
3

M
S

E

m
o
d

el
a
n

d
in

p
u

ts
ex

p
o
n

en
ti

a
l

L
H

D
m

o
d

e
v
a
li
d

a
ti

o
n

5
0

p
o
in

ts

3
5
-

H
a
n

a
n

d
Y

o
n

g
T

a
n

(2
0
1
6
)

D
es

ig
n

o
f

7
1
0
0

co
n

st
a
n
t

sq
u

a
re

d
L

H
D

M
L

E
N

o
n

e
N

o
n

e

a
ch

em
ic

a
l

ex
p

o
n

en
ti

a
l

cy
cl

o
n

e
m

o
d

el

3
6
-

L
e

G
ra

ti
et

et
a
l.

(2
0
1
6
)

el
a
st

ic
tr

u
ss

1
0

1
0
0

co
n

st
a
n
t

M
a
té
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Note that Katurji et al. (2015) used a package to construct a Gaussian process

emulator but they did not provide details about building their Gaussian process

emulator and they referred to Oakley and O’Hagan (2004). Rojnik and Naveršnik

(2008), Petropoulos et al. (2009), Lee et al. (2011), Bijak et al. (2013) and Sexton

and Everingham (2014) used GEM-SA software and they did not provide all the

detail about their Gaussian process emulators. The GEM-SA software, written

by Marc Kennedy but no longer available, is Gaussian Emulation Machine for

Sensitivity Analysis. This software allows the user to build an emulator of a

computer model and performs uncertainty and sensitivity analyses of the model.

We noticed from this search that there was an increase of the use of Gaussian

process emulators for computer model calibrations in the last few years. Calibra-

tion involves inferring a set of values of unknown inputs such that the observed

data fit to the corresponding outputs of the computer model as closely as possi-

ble. The inferred set of values are treated estimates of the unknown inputs and

can be used to run any subsequent analysis.

Calibration methods require running the simulator at different input values

which may become impractical for expensive simulators. Gaussian process emu-

lators can be used as surrogates of simulators. For example, Chang et al. (2016)

constructed a calibration of ice-sheet model depends on a reduced dimensional

emulator. They approximated their model by a Gaussian process emulator. Then,

they inferred the model parameters using the data and based on the emulator.

Oakley and Youngman (2017) constructed a Gaussian process emulator for the

likelihood function for calibrating a moderately computationally expensive sim-

ulator of a physical process to data from the process to find values of the model

inputs.
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2.3 Gaussian process emulators

This section reviews Gaussian process regression, which has become very common

for building emulators. We first describe a Gaussian process and then explain how

emulators can be constructed from a Bayesian perspective.

2.3.1 Gaussian process

A Gaussian process is defined as an infinite collection of random variables, any

finite number of which have a joint Gaussian distribution. Mathematically, if

the joint distribution of y = {y1 = f(x1), . . . , yn = f(xn)} , for every (n =

1, 2, . . .), has a multivariate normal distribution for all x1, . . . ,xn , then f(·) has a

Gaussian process distribution. This property makes the Gaussian process popular

in modelling computer models due to its flexible structure which can adapt to

complex functions between inputs and outputs as well as being mathematically

tractable. The Gaussian process is specified by its mean function, m(·), and

covariance function, V (·, ·). Thus, the Gaussian process can be written as

f(·) ∼ GP (m(·), V (·, ·)).

For example, if we have two input values, x1 and x2 , we writeE[f(x1)]

E[f(x2)]

 =

m(x1)

m(x2)

 ,

 Var[f(x1)] Cov[f(x1), f(x2)]

Cov[f(x2), f(x1)] Var[f(x2)]

 =

V (x1,x1) V (x1,x2)

V (x2,x1) V (x2,x2)

 .

The mean function can be specified by various forms. The linear form, however,

is more usual and convenient in terms of simplifying the subsequent steps in

building the emulator. We review here the linear mean function in some detail.
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The linear mean function: The linear form of the mean function is given

by

m(x) = h(x)Tβ, (2.3.1)

where β is a vector of unknown coefficients parameters that will be inferred from

the data and h(·) : χ ⊂ Rp −→ Rq is a vector of q known regression functions

of x , which describe the global trend of the simulator’s behaviour. The linear

form of the mean function was suggested by O’Hagan (1978), where he described

how the inference about β is made analytically. The choice of h(·) is arbitrary,

although it should be selected to incorporate prior belief about the form of the

simulator. The regression functions, h(·), can be chosen in different forms:

1. One of the simplest cases of the regression function is when q = 1 and

h(x) = 1 for all x . In this case, the mean function is equal to the coefficient

parameter, β , and represents an unknown overall mean for the output. This

means that there is a prior expectation that there is no trend in how the

output will respond to the variation in the inputs.

2. Another simple case of the regression function is when h(x)T = (1,xT ).

In this case, q is equal to 1 + p where p is the number of input variables.

The mean function in this case is m(x) = β0 + β1x1 + . . . + βpxp , which

represents a prior expectation that the output of the simulator will exhibit

a linear trend in response to each input variable.

3. The quadratic form or higher polynomial terms could be a choice for the re-

gression function if nonlinearity is our prior expectation about the response.

Table 2.1 in Section 2.2 shows 24 authors used the linear form in inputs of the

mean function and 20 of authors used a constant mean function. Lee et al. (2011)

used the constant mean function, m(x) = β , and the linear mean function,
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m(x) = h(x)Tβ to a construct Gaussian process emulator for global aerosol

model and they found a minor difference in the results.

In order to choose the most convenient form of h(·), Vernon et al. (2010)

used backwards stepwise elimination. They considered a polynomial in the mean

function terms. Before discarding an input variable, they fitted a third order

polynomial to see the set of active variables, which is the most influence set of

inputs on the outputs, based on the adjusted R2 .

2.3.2 The covariance functions

The covariance function between the simulator outputs is written as

V (x,x′) = σ2C(x,x′; δ), (2.3.2)

where σ2 is an unknown parameter that represents the overall variance and

C(x,x′; δ) is a known correlation function with a vector of unknown correla-

tion parameters δ . The correlation function must satisfy the property that,

C(x,x; δ) = 1. Furthermore, the correlation function must be chosen in such

that the covariance matrix of any set of outputs is positive semi-definite.

In many studies, an assumption of a separable covariance function is made,

where the correlation function is the product of p one-dimensional correlation

functions given by

C(x,x′; δ) =

p∏
i=1

Ci(xi, x
′
i; δi). (2.3.3)

The correlation function is a crucial part of the Gaussian process and has an

essential role in building Gaussian process emulators, where its choice can have

a great effect on the emulator predictions, especially with small sample sizes. In

this section, we present some popular forms of the correlation function that have
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been used in computer experiments.

The squared exponential correlation function, also called the Gaus-

sian correlation function, is the most popular and convenient choice in terms of

building subsequent steps in Gaussian process emulators. Its form is given by

C(x,x′; δ) = exp

{
−

p∑
i=1

(
xi − x′i
δi

)2
}
, (2.3.4)

where δi > 0 are unknown correlation length parameters. Large values of δi

suggest that the output is a smooth function of the i-th input while small values

indicate highly nonlinearity.

The power exponential correlation function is a generalization of the

squared exponential correlation function and it has been used in the literature in

building Gaussian process emulators. The form of the power exponential corre-

lation function is given by

C(x,x′; δ) = exp

{
−

p∑
i=1

∣∣∣∣(xi − x′i)δi

∣∣∣∣γ
}
, (2.3.5)

where δi > 0 are the correlation length parameters and γ ∈ (0, 2] is the power

parameter. The power exponential correlation function will be the squared expo-

nential correlation function if γ = 2. In this case it will be infinitely differentiable

with respect to xi . The power exponential correlation function will be differen-

tiable only once if the power parameter, γ , lies in the interval (1, 2). In contrast,

if γ ≤ 1, then it will not be differentiable at all.

The Matérn correlation function is another choice of the correlation func-

tion which is given by

C(x,x′; δ) =

p∏
i=1

21−ν

Γ(ν)

(√
2ν|xi − x′i|

δi

)ν

Kν

(√
2ν|xi − x′i|

δi

)
, (2.3.6)

where ν and δi are positive parameters, Kν is a modified Bessel function. The

parameters δi are the correlation length parameter and ν is the smoothness



CHAPTER 2. STATISTICAL INFERENCE FOR COMPLEX
SIMULATORS USING EMULATORS 23

parameter. The smoothness parameter, ν , controls the existence of the simulator

derivatives and it behaves like the power parameter in the power exponential

correlation function.

The most popular cases of the Matérn correlation function in computer ex-

periments are when the smoothness parameter is ν = 3/2 and ν = 5/2:

Cν=3/2(x,x′; δ) =

p∏
i=1

(
1 +

√
3|xi − x′i|
δi

)
exp

(
−
√

3|xi − x′i|
δi

)
,

Cν=5/2(x,x′; δ) =

p∏
i=1

(
1 +

√
5|xi − x′i|
δi

+
5|xi − x′i|2

3δ2
i

)
exp

(
−
√

5|xi − x′i|
δi

)
.

If ν → ∞ , the Matérn correlation function will be the squared exponential cor-

relation function (Rasmussen and Williams, 2006).

Table 2.1 in Section 2.2 shows that the squared exponential correlation func-

tion was used by 37 authors. This may be because it has been extensively used

in literature as well as it expresses the smoothness of Gaussian process as a func-

tion of the inputs. Some authors also used the squared exponential correlation

function because it is infinitely differentiable which makes it convenient for using

Gaussian process to model f(x) and its derivatives. Table 2.1 also shows the

power exponential correlation function was used twice by , Novak et al. (2014)

and Gu et al. (2016) with power γ ∈ [1, 2]. Table 2.1 also shows the Matérn

correlation function was used in three of the selected papers.

Nonstationary covariance function: In building Gaussian process emu-

lators, it is very common to use a stationary correlation function, which means

that the correlation function C(x,x′) satisfies the condition

C(x,x′) = C(x + a,x′ + a), (2.3.7)

for any a ∈ Rp .
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The covariance structure can be extended to be a nonstationary function,

which allows the model to adapt to functions whose smoothness varies with the

inputs. Paciorek and Schervish (2003) introduced a nonstationary correlation

function

C(xi,xj; δ) =

∫
R2

Kxi(u)Kxj(u)du, (2.3.8)

where xi,xj and u are locations in R2 and Kx(·) is a kernel function. They

proposed a particular example of a nonstationary correlation function given by

C(xi,xj; δ) = |Σi|
1
4 |Σj|

1
4 |(Σi + Σj)/2|

−1
2 exp(−Qij) (2.3.9)

with

Qij = (xi − xi)
T ((Σi + Σj)/2)−1(xi − xi), (2.3.10)

where Σi and Σj are the correlation matrices at xi and xj .

Nonstationary variance: The assumption of the constant variance, σ2 ,

in the covariance function can be relaxed, where we can incorporate a variance

model, σ2(x), in the covariance matrix rather than σ2 . The variance model,

σ2(x), quantifies the change of local variability. Ba and Joseph (2012) used a

nonstationary variance model, σ2(x), where they separated it as σ2(x) = σ2ν(x),

where σ2 is an unknown constant variance and ν(x) is a function of x .

2.3.3 Constructing Gaussian process emulators

In this section, we follow the presentation in Bastos (2010) for building Gaussian

process emulators. The simulator, f(·), is considered as an uncertain function, so

to construct a Gaussian process emulator, we represent the uncertainty about the

simulator outputs by a Gaussian process. This means that our prior knowledge

about f(·) is represented by a Gaussian process with a prior mean function m(·)
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and a prior covariance function V (·, ·) using a hierarchical model

f(·)|β, σ2, δ ∼ GP (m(·), V (·, ·)), (2.3.11)

where the prior mean function is given by

E[f(x)|β] = m(x) = h(x)Tβ, (2.3.12)

and the prior covariance function is given by

Cov[f(x), f(x′)|β, σ2, δ] = V (x,x′) = σ2C(x,x′; δ). (2.3.13)

Updating the prior

Now, suppose we have n evaluated outputs, y = (y1 = f(x1), . . . , yn = f(xn))T ,

of the simulator at training inputs, x1, . . . ,xn . According to equation (2.3.11),

we describe our uncertainty about y with a multivariate normal distribution.

y|β, σ2, δ ∼ Nn(Hβ, σ2A), (2.3.14)

where

H = [h(x1), . . . ,h(xn)]T , (2.3.15)

A =


C(x1,x1) C(x1,x2) · · · C(x1,xn)

C(x2,x1) C(x2,x2) · · · C(x2,xn)

...
...

. . .
...

C(xn,x1) C(xn,x2) · · · C(xn,xn)


. (2.3.16)

Given the available outputs of the simulator, y , the distribution of f(·) will be

another Gaussian process given by

f(·)|y,β, σ2, δ ∼ GP (m0(·), V0(·, ·)), (2.3.17)
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where

m0(x) = h(x)Tβ + t(x)TA−1(y−Hβ)

V0(x,x′) = σ2[C(x,x′; δ)− t(x)TA−1t(x′)],

where t(x) = (C(x,x1; δ), . . . , C(x,xn; δ))T .

Removing the conditioning on β and σ2

To find the posterior distribution of f(·) given y and δ only, we first write

p(f(·),β, σ2|y, δ) = p(f(·)|y,β, σ2, δ)p(β, σ2|y, δ). (2.3.18)

The distribution of p(f(·)|y,β, σ2, δ) is already known by equation (2.3.17), so

we only need to find p(β, σ2|y, δ). Bayes’ Theorem gives

p(β, σ2|y, δ) ∝ p(β, σ2|δ)p(y|β, σ2, δ). (2.3.19)

Oakley and O’Hagan (2002) assumed, for convenience, a non-informative prior for

(β, σ2) which is p(β, σ2|δ) ∝ σ−2 . Combining this prior with equation (2.3.14),

the posterior distribution for (β, σ2) has a Normal-inverse-gamma distribution,

characterised by

β|y, σ2, δ ∼ N(β̂, σ2(HTA−1H)−1) (2.3.20)

and

σ2|y, δ ∼ Inv-gamma

(
n− q

2
,
(n− q − 2)σ̂2

2

)
, (2.3.21)

where for any θ ∼ Inv-gamma(a, b), the density function will be given by f(θ) =

ba

Γ(a)
θ−(a+1) exp(− b

θ
), where θ, a, b > 0. The β̂ and σ̂2 are defined by

β̂ = (HTA−1H)−1HTA−1y (2.3.22)

σ̂2 =
yT (A−1 − A−1H(HTA−1H)−1HTA−1)y

n− q − 2
. (2.3.23)
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By multiplying equations (2.3.17) and (2.3.20) and integrating β out, it can

be shown that:

f(·)|y, σ2, δ ∼ GP (m1(·), V ∗1 (·, ·)), (2.3.24)

where the posterior mean, m1(·), is

m1(x) = h(x)T β̂ + t(x)TA−1(y−Hβ̂) (2.3.25)

and the posterior variance, V ∗1 (·, ·), is

V ∗1 (x,x′) = σ2
[
C(x,x′; δ)− t(x)TA−1t(x′) (2.3.26)

+ (h(x)− t(x)TA−1H)(HTA−1H)−1(h(x′)− t(x′)TA−1H)T
]
.

By multiplying equations (2.3.21) and (2.3.24) and integrating σ2 out, we can

obtain the posterior emulator which is given by:

f(·)|y, δ ∼ Student-t Process(n− q,m1(·), V1(·, ·)), (2.3.27)

where

m1(x) = h(x)T β̂ + t(x)TA−1(y−Hβ̂), (2.3.28)

V1(x,x′) = σ̂2
[
C(x,x′; δ)− t(x)TA−1t(x′) (2.3.29)

+ (h(x)− t(x)TA−1H)(HTA−1H)−1(h(x′)− t(x′)TA−1H)T
]
.

Although the posterior emulator is a Student-t process, we refer to the emulator

as a Gaussian process throughout the thesis because the prior is a Gaussian pro-

cess and in practice we use a large number of design points, so with large degrees

of freedom the Student-t distribution is similar to the Gaussian distribution.

2.4 Inference for Gaussian process parameters

The parameters β, σ2 and δ are assumed as unknown in building Gaussian pro-

cess emulators. Posterior distributions for β and σ2 can be found analytically
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conditional on δ , but there is no analytical method for obtaining the posterior

distribution of the correlation length parameters, δ . The simplest way is to give

them fixed values that can be suggested according to the prior knowledge about

the simulator smoothness.

An alternative method is to obtain an estimate δ̂ of δ from the likelihood

function f(y|δ) or from the posterior distribution f(δ|y) and then proceed with

the analysis conditioning on δ = δ̂ . This method is called a plug-in approach.

Several methods have been used for estimating the correlation length parame-

ters. We present in this section a number of these methods for estimating these

unknown parameters.

2.4.1 Estimating correlation length parameters using the

posterior mode

In this section, we consider estimating the correlation length parameters using

the posterior mode. Some authors refer to estimating δ using the posterior mode

and other refer to estimating δ using the maximum likelihood estimate (MLE).

However, if we use a flat prior for estimating δ using the posterior mode, the two

methods will be equivalent. The density function of y conditional on β , σ2 and

δ is given by

f(y|β, σ2, δ) =
|A|− 1

2

(σ2)
n
2 (2π)

n
2

exp

{
−(y−Hβ)T

A−1

2σ2
(y−Hβ)

}
. (2.4.1)

Using an improper uniform prior for each element of δ and a non-informative

priors for β and σ2 , f(β, σ2) ∝ σ−2 , the posterior density of the parameters β ,

σ2 and δ is

f(β, σ2, δ|y) =
|A|− 1

2

(σ2)
n
2 (2π)

q
2

exp

{
−(y−Hβ)T

A−1

2σ2
(y−Hβ)

}
.σ−2. (2.4.2)
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Hence, we can obtain the posterior f(δ|y) as :

f(δ|y) =

∫ ∫
|A|−1

2

(σ2)
n
2 (2π)

q
2

exp

{
−(y−Hβ)T

A−1

2σ2
(y−Hβ)

}
.σ−2dσ2dβ

=

∫ ∫
|A|−1

2

(σ2)
(n+2)

2 (2π)
q
2

exp{−[(y−Hβ̂)T
A−1

2σ2
(y−Hβ̂)

+ (β − β̂)T
HTA−1H

2σ2
(β − β̂)]}dσ2dβ. (2.4.3)

Since β|σ2, δ ∼ N(β̂, σ2(HTA−1H)−1), then it can be seen that∫
exp

{
−(β − β̂)T

HTA−1H

2σ2
(β − β̂)

}
dβ =

(σ2)
q
2 (2π)

q
2

|HTA−1H|1/2

Hence, by integrating β out from equation (2.4.3) we obtain

f(δ, σ2|y) ∝
∫
|A|− 1

2 |HTA−1H|− 1
2

(σ2)
1
2

(n+2−q)
exp

{
−(y−Hβ̂)T

A−1

2σ2
(y−Hβ̂)

}
dσ2

= |A|−
1
2 |HTA−1H|−

1
2

×
∫

(σ2)−
(n−q)

2
−1 exp

{
−(y−Hβ̂)T

A−1

2σ2
(y−Hβ̂)

}
dσ2.

We can notice that the integrand is proportional to the inverse-gamma density

with parameters (n−q
2

) and
(

(n−q−2)σ̂2

2

)
, where σ̂2 = (y−Hβ̂)TA−1(y−Hβ̂)

n−q−2
. There-

fore, we can integrate σ2 out to obtain

f(δ|y) ∝ |A|−
1
2 |HTA−1H|−

1
2 (σ̂2)−

(n−q)
2 = g(δ). (2.4.4)

An estimate for δ can be obtained by maximizing (2.4.4)

δ̂ = arg max
δ

(f(δ|y)). (2.4.5)

2.4.2 Markov Chain Monte Carlo algorithm

The posterior distribution of δ can be obtained by multiplying equation (2.4.4)

with a prior distribution for δ . Some authors, for example Andrianakis and
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Challenor (2011), used a Markov Chain Monte Carlo (MCMC) algorithm with

different priors of the correlation length parameters to obtain samples from the

posterior distribution of the correlation length parameters, g(δ). After obtaining

samples from g(δ), denoted by δi , i = 1, . . . ,M , inferences can be done using

the predictive distribution of f(x), equation (2.3.24). The mean and the variance

can be calculated as follows:

m̂(x) =
1

M

M∑
i=1

mi
1(x) (2.4.6)

V̂ (x,x′) =
1

M

M∑
i=1

V i
1 (x,x′) +

1

M

M∑
i=1

[mi
1(x)− m̂(x)][mi

1(x′)− m̂(x′)] (2.4.7)

where mi(x) and V i(x,x′) are the posterior mean and the posterior variance,

given by (2.3.28) and (2.3.29), calculated at δi . The algorithm that was proposed

by Andrianakis and Challenor (2011) can be described as follows: suppose δ̂ is

an estimate of the δ value that maximizes the posterior g(δ). Then, the Hessian

matrix, Hδ̂ , (the matrix of second derivatives) is calculated at δ̂ . Let Vδ̂ =

−c2H−1

δ̂
where c is a scaler that controls the convergence rate of the algorithm.

They set c = 2.4/
√
p and then samples of δ can be obtain as follows:

1. Initialize δ(1) at δ̂ .

2. Calculate N(0, Vδ̂) at δ(i) and add it to δ(i) and call the result δ∗ .

3. Calculate α = g(δ∗)

g(δ(i))

4. Set

δ(i+1) =

 δ∗ with probability α

δ(i) with probability 1− α

5. Repeat the 2-4 steps until an adequate number of drawn samples.
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2.4.3 Cross-validation method

The cross-validation method is another choice for estimating the correlation pa-

rameters, but more computations are required in this method. Estimating δ

using the cross-validation method can be achieved using the following strategy:

Suppose y−i are all the outputs except the observation yi = f(xi). For a given

value of δ , the posterior distribution of f(·) can be derived conditional on y−i .

Then, we calculate the difference, di , between the posterior mean of yi = f(xi),

E[f(xi)|y−i, δ] , and the observed value, yi = f(xi). We repeat this procedure

for i = 1, . . . , n . The estimated values of the correlation length parameters, δ ,

minimize
∑n

i=1 d
2
i .

Table 2.1 in Section 2.2 shows 29 authors estimated the correlation length pa-

rameters using the maximum likelihood. This is because this method is less com-

putationally expensive than the Markov Chain Monte Carlo algorithm and the

cross-validation method. Table 2.1 also shows that 3 authors used the posterior

mode, 5 authors used an MCMC algorithm and 1 author used the cross-validation

method for estimating the correlation length parameters.

2.5 Designs for building emulators

In this section, we discuss the choice of design points for Gaussian process emu-

lators. The design points should cover all the input space and spread evenly over

the input space with the smallest number of points. A design that achieves these

properties is called a space-filling design which will be focused on in this section.

The design points that are used for building Gaussian process emulators are

called training points, where the simulator is evaluated at these training points.
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In this section, we review some space-filling designs, first we describe the Latin

hypercube design, and then describe the sliced Latin hypercube design.

2.5.1 Latin hypercube design

The Latin hypercube design (LHD) was introduced by McKay et al. (1979) as

an alternative to simple random sampling design. The LHD is considered as a

type of stratified sample because it partitions the region of each variable into n

subregions of equal probability.

The LHD is very common in computer experiments literature as it is simple to

generate and the observations are spread evenly through the input space for each

variable. Table 2.1 in Section 2.2 shows 33 authors used the LHD to generate the

design points for Gaussian process emulators.

Suppose we have a simulator, y = f(x), with x = (x1, . . . , xp). We want to

generate n design points x1, . . . ,xn with xi = (xi1, . . . , xip), and we write the

design points in a matrix

X =


x11 · · · x1p

...
. . .

...

xn1 · · · xnp

 =


x1

...

xn


with element j, k denoted by Xjk .

Let Π be an n × p matrix, in which each of its columns is an independent

random permutation of {1, 2, . . . , n} . Let Ujk be independent, identical and

uniformly distributed random variables on (0, 1) and independent of Π. Then,

an n× p Latin hypercube design, X , is generated by

Xjk =
Πjk − Ujk

n
. (2.5.1)
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Figure 2.1 shows a LHD of size 10 in the region χ = [0, 1]2 . It can be seen that

the marginal spaces of both input variables are well covered.

Latin hypercube design

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x2

x
1

Figure 2.1: Latin hypercube design with 10 points and 2 dimensions on the region

χ = [0, 1]2 . The points spread evenly over the input space.

2.5.2 Sliced Latin hypercube design

The sliced Latin hypercube design (SLHD) was proposed by Qian (2012) and it

is a type of a space-filling design. The SLHD is a special Latin hypercube design,

which can be split into slices of smaller Latin hypercube designs. The SLHD has

an attractive feature which is that maximum uniformity in any one-dimensional

projection is achieved in each slice of the design.
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Constructing a sliced Latin hypercube design

We describe here an easy-to-implement method, introduced by Qian (2012), for

constructing a SLHD. This method is also flexible in run size and can be used

with any number of factors. We illustrate this method with a simple example.

Suppose we want to construct a SLHD with n points with q slices, where each

slice is a Latin hypercube design. We write these q LHDs as X1, . . . ,Xq . To do

that, let n = mt , where m and t are positive integers. We define Zn = {1, . . . , n}

and divide Zn into m blocks, b1, . . . ,bm , where

bi = {a ∈ Zn|da/te = i}, (2.5.2)

where for any a ∈ R , dae is defined as the smallest integer no less than a .

As an example, suppose the input is 3-dimensional with n = 12 design points

in total and the aim is to construct a SLHD made up of 3 slices. Suppose m = 4

and t = 3, so we divide Z12 into four blocks, each of which contains 3 elements,

b1 = {1, 2, 3} , b2 = {4, 5, 6} , b3 = {7, 8, 9} and b4 = {10, 11, 12} , where

bi = {a ∈ Z12|da/3e = i}, for i = 1, . . . , 4.

Then, we need to generate a matrix, called a sliced permutation matrix, Mn ,

by two steps:

Step 1: For i = 1, . . . ,m , permute independently the elements in the blocks

b1, . . . ,bm . In the example, this step will be, for i = 1, . . . , 4, we permute

independently the elements in the blocks b1, . . . ,b4 to obtain, say, b1 = {3, 2, 1} ,

b2 = {5, 6, 4} , b3 = {9, 8, 7} and b4 = {11, 12, 10} .

Step 2: Let Mn be an m × t matrix with rows b1, . . . ,bm . For j = 1, . . . , t ,

randomly shuffle the entries in the j − th column of Mn with a permutation

carried out from one column to another independently. In the example, we put



CHAPTER 2. STATISTICAL INFERENCE FOR COMPLEX
SIMULATORS USING EMULATORS 35

b1, . . . ,b4 in a matrix 
b1

b2

b3

b4


=


3 2 1

5 6 4

9 8 7

11 12 10


and then we randomly shuffle the elements in each column to obtain a sliced

permutation matrix M12

M12 =


9 8 10

5 2 1

11 12 4

3 6 7


.

This permutation matrix can be used to provide the values of a single input where

each column will correspond to one slice of Latin hypercube, so the first slice will

have 9, 5, 11 and 3, the second slice will have 8, 2, 12 and 6 and so forth. This

means that we rearrange the permutation matrix of each input and organise them

in 3 matrices to obtain the final design.

To construct a SLHD, we first generate independently q sliced permutation

matrices, M1
n, . . . ,M

q
n , using the two steps above. In our example, we generate

q = 3 different independent sliced permutation matrices

M1
12 = M12 =


9 8 10

5 2 1

11 12 4

3 6 7


,M2

12 =


6 12 4

2 5 3

11 8 10

7 1 9


,M3

12 =


7 6 11

3 10 4

5 9 1

12 2 8


.

Then, for c = 1, . . . , t , we construct an m× q matrix M (c) by putting its j − th

column to be the c − th column of M j
n , for j = 1, . . . , q . For example, the first

column of M1
n will be the first column of M (1) , the first column of M2

n will be
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the second column of M (1) , . . . , the first column of M j
n will be the last column

of M (1) .

This is obtained as follows, for c = 1, . . . , 3, we obtain a 4× 3 matrix, M (c) ,

by letting its j − th column to be the c − th column of M j
12 , for j = 1, . . . , 3.

For example, the first column of M1
12 will be the first column of M (1) , the first

column of M2
12 will be the second column of M (1) , the first column of M3

12 will

be the last column of M (1) and so forth.

M (1) =


9 6 7

5 2 3

11 11 5

3 7 12


,M (2) =


8 12 6

2 5 10

12 8 9

6 1 2


,M (3) =


10 4 11

1 3 4

4 10 1

7 9 8


.

Finally, we combine the matrices M (1), . . . ,M (t) , row by row to obtain the

matrix M , given by

M = ∪tc=1M
(c). (2.5.3)

In our example, the matrices M (1),M (2) and M (3) are combined row by row

to obtain the matrix M . For example, the first column of M (1) , the first column

of M (2) and the first column of M (3) will be the first column of M , the second

column of M (1) , the second column of M (2) and the second column of M (3) will

be the second column of M and so forth.

MT =


9 5 11 3 8 2 12 6 10 1 4 7

6 2 11 7 12 5 8 1 4 3 10 9

7 3 5 12 6 10 9 2 11 4 1 8

 ,

where M (1),M (2) and M (3) in M are divided by the solid lines. As seen, M

is a special LHD where each column is a permutation on Z12 , and each of
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dM (1)/3e, dM (2)/3e and dM (3)/3e is a smaller LHD of 4 runs, where each column

is a permutation on Z4 .

Hence, an n × q sliced Latin hypercube design, X = xik , with q slices and

M = mik , can be generated as follows:

xik =
mik − uik

n
, for i = 1, . . . , n, k = 1, . . . , q, (2.5.4)

where uik are independent uniform random variables on [0, 1) and the uik and

the mik are mutually independent. In our example, using equation (2.5.4), we

obtain a SLHD, X , of 12 runs in three factors with three slices, X1,X2 and X3 .

Figure 2.2 shows a SLHD of size 12 in a region χ = [0, 1] in the example.
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Figure 2.2: Bivariate projections of sliced Latin hypercube design with three

slices X1,X2 and X3 that are represented by ◦,+ and M respectively. The

points spread evenly over the input space for each slice.
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2.5.3 Distance-Based designs

A design that is based on measures of distance between points and quantifies how

the points are spread evenly, is called a distance-based design. Let X ⊂ χ be an

arbitrary design, which contains {x1, . . . , xn} points and let d be a metric on χ ,

for example, the Euclidean distance. We can measure the minimum distance be-

tween two points for any design. A design that maximizes the minimum distance

is called a maximin distance design and we denote it by XMm ,

XMm = max
X⊂χ

min
{x,x′}∈X

d(x, x′). (2.5.5)

A distance-based design will be called a minimax design if every point x ∈ χ is

close to some points in X and it is given by

XmM = min
X

max
x∈χ

d(x,X). (2.5.6)

Minimax and maximin distance criteria measure how uniformly the points are

scattered through the region. Therefore, XMm ensures that no two points in the

input space are too close to each other (Fang et al., 2010).

Maximin Latin Hypercube Designs: A maximum Latin hypercube de-

sign, which was described by Morris and Mitchell (1995), can be obtained when

we choose a design that satisfies a distance-based criterion, that is, maximizes

the minimum distance between points from a set of Latin hypercube design.

2.5.4 Other space-filling designs

Lattice Designs: The points in this design are selected on a grid such that, they

appear equally spaced in the input space. The lattice design was considered in

computer experiments by Bates et al. (1996). To generate n lattice points in p-
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dimensions, we need a positive integer set g = {g1, . . . , gp} , so for j = 0, . . . , n−1,

we can generate lattice points as follows:

Xj+1 =

(
h(
j

n
g1), . . . , h(

j

n
gp)

)
, (2.5.7)

where h(x) returns the non integer component of x , e.g h(2.4) = 0.4. The

problem with lattice design is that it is difficult to find suitable generator, g ,

because g and n are required to form a set of prime numbers and this may not

fill the input space very well.

The space-filling designs have been achieved by many different sequences of

numbers, where different algorithms are used to generate these designs. For

instance, Weyl sequence has a generator, g , of irrational numbers on a regular

space grid. A Halton sequence has a prime integers generator for each dimension,

and a sequence of fractions is generated for each prime.

Sobol’ Sequence: In the Sobol’ design, also called LP-τ , a sequence as a

set of coordinates is generated for each dimension in the same way of a Halton

sequence, but the points are recorded according to a complicated rule. Galanti

and Jung (1997) demonstrate the Sobol’ sequence by a simple numerical example.

The Sobol’ sequence provides points that have a useful property that, the sequence

can be expanded and it will still be a Sobol’ sequence. For example, we can

construct longer Sobol’ sequences from a shorter Sobol’ sequence by adding points

to the shorter sequence. In contrast, the LHD must be recomputed if more points

are needed (Santner et al., 2003).

The Sobol’ sequence can be used in a computer experiments for almost all ap-

plications and it may be more convenient than the LHD if we need more informa-

tion about the correlation length because it can generate a variety of inter-point

distances (Santner et al., 2003).
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2.6 Example

In this section, we consider the Borehole function as an example of a simulator,

and for illustration, we suppose it is computationally expensive. The Borehole

model is commonly used for testing methods in computer experiments. Worley

(1987) used the Borehole model to describe the flow rate of water through a

borehole. The Borehole model is given by:

f(x) =
2πTu(Hu −Hl)

ln( r
rw

)
(

1 + 2LTu
ln( r

rw
)r2wKw

+ Tu
Tl

) , (2.6.1)

where x = (rw, r, Tu, Hu, Tl, Hl, L,Kw). The response variable f(x) represents

the flow rate of water through the borehole in m3/year . The eight input variables

and their ranges and units are as follows:

• rw ∈ [0.05, 0.15](m) is the radius of borehole.

• r ∈ [100, 50000](m) is the radius of influence.

• Tu ∈ [63070, 115600](m2/year) is the transmissivity of upper aquifer.

• Hu ∈ [990, 1110](m) is the potentiometric head of upper aquifer.

• Tl ∈ [63.1, 116](m2/year) is the transmissivity of lower aquifer.

• Hl ∈ [700, 820](m) is the potentiometric head of lower aquifer.

• L ∈ [1120, 1680](m) is the length of borehole.

• Kw ∈ [9855, 12045](m/year) is the hydraulic conductivity of borehole.

The design points were obtained by generating 80 training inputs using a SLHD

and they are denoted by x1, . . . ,x80 . Then, we evaluated the output of the
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Borehole model at these training inputs, y = (y1 = f(x1), . . . , y80 = f(x80)).

Before fitting a Gaussian process emulator, we transformed each input variables

to be in the interval [−1, 1]8 . To construct the Gaussian process emulator with

Bayesian framework, we assume that the prior uncertainty on the Borehole model

is represented by a Gaussian process, equation (2.3.11). We used a linear mean

function with h(x)T = (1,xT ) and a covariance matrix, V = σ2C(x,x′), with

the squared exponential correlation function C(x,x′) given in equation (2.3.4).

According to the training data, the parameters δ were estimated by the max-

imum likelihood and the results are (0.64, 10.34, 5.69, 0.64, 3.72, 0.28, 5.73, 0.43).

It can be noticed that some inputs have large correlation length parameters, indi-

cating that the simulator is more smooth with these inputs. After obtaining the

estimated values of the parameters, the Gaussian process emulator was validated

with 20 validation inputs, also generated by a SLHD, conditioned on the training

points and the estimated correlation length parameters. Figure 2.3 shows the

posterior emulator for the Borehole function with narrow 95% credible intervals.

The predicted points seem to be reasonable since most of them lie on the y = x

line. Moreover, the uncertainty, which is represented by the error bars, seems to

be very small, indicating that the emulator predictions are good approximations

of the simulator outputs with 95% credible intervals.
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The emulator for the Borehole model
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Figure 2.3: The posterior emulator approximations against observed values for

the Borehole model with 95% credible intervals. The emulator predictions are

good approximations of the simulator outputs with small 95% credible intervals.

2.7 Summary

In this chapter, we have reviewed the concept of emulators as surrogates of sim-

ulators. We have presented the processes of building emulators based on the

Bayesian perspective and we have presented some methods for estimating the

Gaussian process parameters. We have shown how design points can be chosen

using the Latin hypercube design and the sliced Latin hypercube design.

Since emulators have been used in various areas of science, it is necessary to

check the validation of emulators before using them. In the next chapter, we

review a number of diagnostic methods as well as develop a modification of an

existing diagnostic method for validating Gaussian process emulators.



Chapter 3

Validating Gaussian process

emulators

3.1 Introduction

In this chapter, we explain the concept of uncertainty calibration in Gaussian

process emulators. We also discuss situations where Gaussian process emulators

may not perform well. We discuss the concept of diagnostics and review a number

of published diagnostic methods for examining assumptions that are made in

constructing Gaussian process emulators. We also develop a modification of an

existing diagnostic method. Finally, we examine the performance of diagnostic

methods with some different Gaussian process emulators in order to investigate

whether these diagnostic methods can detect potential problems in some of these

emulators.
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3.2 Uncertainty calibration in emulators

In this section, we explain the concept of uncertainty calibration in Gaussian

process emulators. When Gaussian process emulators do not perform well, we

may obtain poor predictions of the simulator outputs or poor quantification of

uncertainty in the emulator predictions. By poor predictions, we mean that the

predictive mean is relatively far from the simulator outputs. By poor quantifi-

cation of uncertainty, we mean the predictive variance is too large or too small

resulting in the emulator being underconfident or overconfident respectively.

Let x∗1, . . . ,x
∗
m be a set of inputs, called validation inputs, and evaluations

y∗ = (y∗1 = f(x∗1), . . . , y∗m = f(x∗m)) of the simulator outputs at these inputs,

called validation outputs. Given a Gaussian process emulator for f(·), we can

obtain, for example, the 95% credible interval for each validation output. We

aim to investigate the proportion of the 95% credible intervals that contain the

validation outputs. By ‘good’ uncertainty calibration we mean that the frequency

in which the validation outputs lie inside the 95% credible intervals is ‘close’

to what we expect it to be (95%). However, the validation outputs are not

independent and so the procedure is more complex because the distribution of

the number of the 95% credible intervals that would contain the validation outputs

is not known.

An underconfident emulator can occur when we obtain very wide 95% credible

intervals for the emulator predictions and the validation outputs always lie inside

these 95% credible intervals. Therefore, the 95% credible intervals show too

much uncertainty. An overconfident emulator can occur when we obtain small

95% credible intervals for the emulator predictions, but the validation outputs

always lie outside the 95% credible intervals, and hence there is an overconfidence
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in the emulator predictions. In order to illustrate the concept of uncertainty

calibration graphically, we constructed different Gaussian process emulators on

one-dimensional simulators, Figure 3.1.

Underconfident emulator
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Figure 3.1: Gaussian process emulators conditioned on the training data and

different values of the correlation length parameter. The black dots represent

the training outputs; the solid line is the simulator and the dotted lines are

the point-wise 95% credible intervals. The left panel shows an underconfident

emulator while the right panel shows an overconfident emulator.

The left panel in Figure 3.1 shows an underconfident Gaussian process emu-

lator. This is because the widths of the 95% credible intervals for the outputs are

very wide and the simulator always lies inside the 95% credible intervals for any

input. The right panel in Figure 3.1 presents an overconfident Gaussian process

emulator. It is seen that the 95% credible intervals are small and the simulator

lies well outside the 95% credible intervals over much of the input space.
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3.3 Situations of inappropriate assumptions in

building Gaussian process emulators

In computer modelling, emulators can be constructed under a Bayesian perspec-

tive using any joint probability distribution. The Gaussian distribution, however,

is the simplest one that is mathematically tractable and leads to simple forms of

the posterior mean and the posterior variance. Using other types of probability

distribution could make the subsequent analysis very complex with no analytic

expressions for the posterior mean and the posterior variance.

However, the simulator is not a random sample from the Gaussian process

distribution. This means that when using the Gaussian process as a model of

the simulator, we may not obtain accurate predictions and the uncertainty in the

emulator predictions may not be quantified very well. We review a number of

situations in which Gaussian process emulators may not perform well.

1. The stationary Gaussian process may fail to adapt to the smoothness of

a variable in the function when the function varies more quickly in some

parts than in others in the input region. In this case, the covariance will be

large in some parts in the input space than in other parts and a stationary

covariance function may not adapt to this behaviour.

2. Gaussian process emulators contain many parameters that need to be in-

ferred from the data and inappropriate estimates for the Gaussian process

emulators parameters may be obtained.

3. Gaussian process emulators may produce poor predictions of the simulator

outputs if inappropriate forms of the mean function and the covariance

function are chosen in building the emulators.
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Therefore, Gaussian process emulators need to be subjected to the validation pro-

cess. The validation process is the process of checking the assumptions that are

used in building the Gaussian process emulator. The distribution of the emulator

depends on the correlation parameters. In this chapter, for some emulators, the

plug-in method is used where an estimate δ̂ , equation (2.4.5), for the correlation

parameters is used as the true value δ without considering uncertainty. More-

over, for some other emulators, we use the given true values of the correlation

parameters, so we can investigate the consequence of estimating the correlation

parameters.

3.4 Diagnostic methods for Gaussian process

emulators

Diagnostic methods have been used to validate Gaussian process emulators and

test the assumptions that are used in building the emulators. In general, the

diagnostic can be perceived as a set of processes that can be used to assess the

validity of the statistical model. For example, diagnostics can be useful tools for

assessing the assumptions of the underling model. They can examine the model

structure or studying subgroups of observations that have a relatively significant

effect on the model predictions. Diagnostics can be graphical or quantitative

results, each of which can provide a useful guide for analyses. They can provide

directions to improve the assumptions of the model. Thus, by using diagnostic

methods, we aim to investigate the best probability model for describing the

simulator.

To explain the concept of diagnostics, suppose we have a set of validation
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inputs, x∗1, . . . ,x
∗
m , which must be distinct from the training inputs. Thus, y∗ =

(y∗1 = f(x∗1), . . . , y∗m = f(x∗m)) are evaluations of the simulator outputs at these

validation inputs. Before running the simulator at these inputs, y∗ is uncertain

and has a multivariate Student-t distribution conditional on the training data and

δ . We also define y∗obs to be the observed values of y∗ obtained after running

the simulator.

A general diagnostic, K(·), can be perceived as a function of the validation

outputs, y∗ , and the emulator for f(·): it is a function given by K(y∗, p(f(x∗)|y))

and for simplicity, we denote it by K(y∗). Before observing the validation out-

puts, K(y∗) can be thought of as a random variable with a distribution induced

by the distribution of y∗ . Therefore, it is necessary to make inference about the

reference distribution of K(·).

We define K(y∗obs) to be the observed value of K(y∗) which is calculated after

observing the validation outputs. Bastos and O’Hagan (2009) propose comparing

the observed value of the diagnostic, K(y∗obs), with the distribution of K(y∗).

This means that comparing the observed value of the diagnostic with its induced

distribution by the posterior distribution of the outputs. If the observed value

of the diagnostic has a small probability and lies in an appropriately selected

region, a conflict will then be indicated between the simulator and the emulator.

The emulator will be an accurate representation of the simulator if there are no

conflicts over a wide range of such diagnostics.

We can notice that the concept of diagnostics is similar to the concept of

scoring rules. A scoring rule, S(p(y∗),y∗), can be seen as a function of the true

values and a predictive distribution, p(y∗) (Reich and Cotter, 2015). Scoring

rules evaluate the predictions after the events or variables of interest are observed.

They provide a numerical score based on the predictive distribution and on the
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true values. Thus, scoring rules can be used to measure the accuracy of the

predictions. Therefore, there is a connection between the concept of diagnostics

and the concept of scoring rules. The diagnostic K(y∗) can be seen as a scoring

rule where it is a function of the emulator of f(·) and the validation outputs.

However, the focus can be deferent. Scoring rules may wish to measure how

well data are predicted. Diagnostics are used to investigate whether the emulator

is a valid model for the simulator and not overconfident or underconfident.

3.4.1 Cross-validation method

Gaussian process emulators are usually validated using new inputs called vali-

dation inputs. In practice, however, we may have a small number of available

simulator runs and we wish to use all of them as training data. Therefore, the

cross-validation technique is being used as an alternative choice for validating

Gaussian process emulators.

To illustrate the procedure of the cross-validation method, suppose that sim-

ulator outputs are evaluated at training inputs x1, . . . ,xn , to obtain training

outputs y = {y1 = f(x1), . . . , yn = f(xn)} . We construct an emulator for f(·)

via

f(·)|β, σ2, δ ∼ GP (m(·), V (·, ·)), (3.4.1)

where

m(x) = h(x)Tβ (3.4.2)

and

V (x,x′) = σ2C(x,x′; δ). (3.4.3)

For i = 1, . . . , n , suppose that y−i are the outputs of all training runs except
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the observation yi = f(xi). For given values of the parameters β, σ2 and δ , the

posterior distribution of each output value, yi = f(xi), can be derived using the

other n− 1 observations, y−i . The posterior distribution of yi is given by

yi|y−i, δ ∼ Student-t(n− q − 1,mi(·), Vi(·, ·)), (3.4.4)

where mi(·) and Vi(·, ·) are the posterior mean and the posterior variance given by

equations (2.3.28) and (2.3.29) based on y−i . In this case, the general diagnostic,

K(·), is a function of the simulator outputs, y , and the posterior distribution of

yi , equation (3.4.4), and for simplicity, we denote it by K(y).

The cross-validation can be used to predict more than one point. In this case,

it will be called multifold cross-validation where y is split into k folds, and each

fold contains t points, t < n , so we can remove one fold and predict its points

jointly.

3.4.2 Simple diagnostic methods

Simple diagnostic methods have been used widely for validating Gaussian process

emulators. They are based on calculating the differences between the validation

outputs and the emulator predictions. We use the term ‘simple diagnostic meth-

ods’ to mean methods that do not consider uncertainty in the emulator predic-

tions. They only depend on the posterior mean and do not take into account the

posterior variance.

Table 2.1 in Section 2.2 shows that several authors used similar simple mea-

sures for validating their Gaussian process emulators. For example, the predictiv-

ity coefficient Q2 diagnostic, also called Nash-Sutcliffe model efficiency coefficient,

has been used by Marrel et al. (2015) as a diagnostic for Gaussian process emu-
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lators. The predictivity coefficient diagnostic is proposed by Nash and Sutcliffe

(1970) and it is given by

Q2 = 1−

∑m
j=1

[
E[y∗j |y, δ]− y∗j

]2

∑m
j=1

[
y∗j − 1

n

∑n
i=1 yi

]2 , (3.4.5)

where E[y∗j |y, δ] are elements of the predictive mean of the Gaussian process

emulator given by equation (2.3.28). The emulator predictions will be ‘accurate’

when the Q2 value is close to 1.

Simple diagnostic methods using the cross-validation method

Table 2.1 in Section 2.2 also shows that several authors used simple measures for

validating their Gaussian process emulators using the cross-validation method.

For example, Petropoulos et al. (2009) used the root mean squared error to vali-

date their emulators. The mean squared error is the mean of the squared errors

between the emulator predictions and the simulator outputs.

MSE =

∑n
i=1(E[yi|y−i, δ]− yi)2

n
,

where E[yi|y−i, δ] are elements of the predictive mean of the Gaussian process

emulator given by equation (2.3.28). Thus, the root mean squared error is the

square root of the mean squared error, RMSE =
√

MSE. The MSE and RMSE

are scoring rules that measure the mean squared difference between the emulator

predictions and the simulator outputs. Thus, they are negatively oriented scores

which means that the lower value is the better.

Also, as seen in Table 2.1, other authors considered different ways for standar-

dising the differences between the simulator outputs and the emulator predictions.

For example, Bijak et al. (2013) and Liu and Guillas (2016) used the standardised
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root mean squared error to validate their emulator. The root mean squared error

can be standardised using the range

SRMSE =
RMSE

R
,

where R = max(y)−min(y).

We can notice that the predictivity coefficient diagnostic, equation (3.4.5),

can be seen as the skill score of the MSE. The scoring rule, S , can be converted

to a skill score with respect to a reference forecast using the form

SSref =
S − Sref

Sperf − Sref
× 100%, (3.4.6)

where Sperf is the accuracy measure that would be achieved by the perfect fore-

cast and Sref is the accuracy of a reference forecast which is an estimate of the

marginal distribution of the predictions. A skill score is a generic term that refers

to the accuracy of a prediction or an estimate of the true value with respect to

a reference forecast. The skill score can be interpreted as the percentage of the

improvement over the reference forecast.

For the MSE, a reference forecast is given by

MSEref =
1

m

m∑
i=1

(
y∗i −

1

n

n∑
i=1

yi

)2

. (3.4.7)

The skill score for the MSE can be obtained using equation (3.4.6).

SSMSE =
MSE−MSEref

0−MSEref

(3.4.8)

= 1− MSE

MSEref

, (3.4.9)

where the perfect forecast have MSE = 0. Perfect predictions result in a MSE

of zero, and skill score value of 1. The skill score for the MSE will be zero when

MSE = MSEref whereas the skill score for the MSE will have a negative value

when the MSE is larger than MSEref (Warner, 2010).
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3.4.3 Diagnostic methods that measure uncertainty

There has been limited work on diagnostic methods that take into account uncer-

tainty in the emulator predictions. Bastos and O’Hagan (2009) propose a number

of numerical and graphical diagnostic methods based on comparisons between the

validation outputs of the simulator and the emulator predictions. The diagnostic

methods proposed by Bastos and O’Hagan (2009) include the individual stan-

dardised errors, the Mahalanobis distance, the credible interval diagnostic, the

eigen and the pivoted Cholesky decompositions of the covariance matrix and

some other diagnostics. We discuss here some of these diagnostic methods in

some detail.

Individual standardised errors

The individual standardised errors for the validation outputs are given by

KI
i (y∗) =

y∗i − E[y∗i |y, δ]√
V [y∗i |y, δ]

, (3.4.10)

where V [y∗i |y, δ], for i = 1, . . . ,m , are the elements of the predictive variance

of the Gaussian process emulator given by equation (2.3.29). Each individual

standardised error can be perceived as a diagnostic. The individual standardised

errors will have a standard Student-t distribution if uncertainty about the simu-

lator is properly represented by the emulator. Using a large number of training

points, however, the individual standardised errors can be considered to have a

standard normal distribution due to having large degrees of freedom.

A conflict will be indicated between the emulator and the simulator if large

individual standardised errors are found, with an absolute value larger than, say,

3. Isolated extreme individual standardised errors may suggest a local problem
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only for those validation points. If large individual standardised errors tend to

correspond to validation points that are close to training points, then overes-

timation of some correlation length parameters may be indicated. This means

that the nearby training data points may influence the emulator predictions too

strongly. In contrast, the underestimation of correlation length parameters may

be suggested if there are small individual standardised errors.

A systematic problem will be indicated if many large individual standardised

errors are found. An unsuitable choice of the mean function will be suggested or

the stationary assumption is not appropriate if large errors with the same sign

appear in parts of the input space (Bastos and O’Hagan, 2009). To illustrate the

idea of diagnostics that compare the observed value of the diagnostic, K(y∗obs),

with the distribution of K(y∗), we consider the following simple example.

Example

Suppose we have only one validation input, x∗ , and its evaluation y∗ = f(x∗) of

the simulator output, so the diagnostic could be

KI(y∗) =
f(x∗)− E[f(x∗)|y, δ]√

V [f(x∗)|y, δ]
, (3.4.11)

where E[f(x∗)|y, δ] and V [f(x∗)|y, δ] are the predictive mean and the predictive

variance for the Gaussian process emulator. Now for this particular choice of a

diagnostic, if the emulator is valid, then before we observe f(x∗), the diagnostic

KI(y∗) has a Student-t distribution with n − q degrees of freedom. This is a

simple example for a simple diagnostic whose distribution is known. Therefore,

after observing the validation output, y∗obs = fobs(x
∗), we calculate the observed

diagnostic

KI(y∗obs) =
fobs(x

∗)− E[f(x∗)|y, δ]√
V [f(x∗)|y, δ]

. (3.4.12)
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We then compare the observed diagnostic, KI(y∗obs), with the distribution of

KI(y∗), which is a Student-t distribution with E[f(x∗)|y, δ] , V [f(x∗)|y, δ] and

n−q degrees of freedom. If the observed value of the diagnostic, KI(y∗obs) is close

to its expected value from this distribution, the diagnostic may suggest that the

emulator is an accurate representation of the simulator. Otherwise, a conflict will

be suggested between the emulator and the simulator.

Mahalanobis distance

The individual standardised errors provide a set of useful diagnostics. However,

summarising them in a single value is also valuable. The Mahalanobis distance

can be used as a diagnostic to measure the overall fit. The Mahalanobis distance

considers the correlation among the simulator outputs and it is given by

KMD(y∗) = (y∗ − E[y∗|y, δ])T (V [y∗|y, δ])−1(y∗ − E[y∗|y, δ]). (3.4.13)

A conflict will be indicated between the emulator and the simulator if the value

of the Mahalanobis distance is extreme. Under Gaussian process emulator as-

sumptions, Bastos and O’Hagan (2009) proved that the reference distribution of

the Mahalanobis diagnostic, conditional on the training data and a correlation

length parameter estimate, is a scaled F -Snedecor distribution with m and n−q

degrees of freedom:

(n− q)
m(n− q − 2)

KMD(y∗)|y, δ ∼ Fm,n−q. (3.4.14)

Variance decompositions

The individual standardised errors may be difficult to interpret due to the cor-

relation among them. In order to tackle this problem, suppose G is a standard
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deviation matrix such that V [y∗|y, δ] = GGT . The following transformed errors

KG(y∗) = G−1(y∗ − E[y∗|y, δ]) (3.4.15)

will then have uncorrelated values. Under the normality assumption, each error

has a standard Student-t distribution with (n − q) degrees of freedom. In the

KG(y∗) diagnostics, we look for large and small errors. A useful property of this

diagnostic is that the sum of squares of these transformed errors, KG(y∗), is the

Mahalanobis distance

KMD(y∗) = KG(y∗)TKG(y∗)

and hence these diagnostics can be interpreted as a decomposition of KMD(y∗).

A positive definite matrix can be decomposed into the product of a square root

matrix and its transpose by many various methods and Bastos and O’Hagan

(2009) suggest the Cholesky decomposition.

Cholesky decomposition

We can obtain the Cholesky decomposition, GC , when GT is the unique upper

triangular matrix, R such that V [y∗|y, δ] = RTR , and the elements of KG(y∗),

denoted by KC(y∗), will be called Cholesky errors. Each of the Cholesky errors,

KC
i (y∗), is the unique linear combination of the first i validation errors such that

the predictive variance of the first i validation error is the conditional variance

of the i-th validation error given the i− 1 errors. The Cholesky errors produce

uncorrelated transformed errors associated with the individual validation points.

However, the decomposition is not invariant to the order of the validation points

(Bastos and O’Hagan, 2009).
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Pivoted Cholesky decomposition

Bastos and O’Hagan (2009) proposed the pivoted Cholesky decomposition to

construct the uncorrelated errors, equation (3.4.15). The pivoted Cholesky de-

composition can be obtained by a permutation of validation points, such that

the first error corresponds to the largest predictive variance. The second error

corresponds to the largest predictive variance given the first error and so forth.

The pivoted Cholesky errors can be calculated by

KPC(y∗) = G−1
PC(y∗ − E[y∗|y, δ]), (3.4.16)

where GPC = PR and P is a permutation matrix. Thus, by plotting the pivoted

Cholesky errors against the index, which is the pivoting order, we expect the errors

to be around 0 with a constant variance. The pivoted Cholesky decomposition

can easily be obtained in R with the function chol(V [y∗|y, δ] ,pivot=TRUE).

An overconfident or underconfident emulator, is suggested if many large errors

or many small errors are found in the plot. Both these cases can also indicate

a nonstationarity. Moreover, further interpretation is provided by the pivoted

Cholesky decomposition which they can be linked with the correlation structure.

Large or small pivoted Cholesky errors on the left side of the plot suggest a

nonstationary process or poor estimation of the predictive variance. In contrast,

unsuitable correlation structure or poor estimation of the correlation length pa-

rameters can be indicated if extreme errors (large or small) are seen on the right

side of the plot.

To show how the pivoted Cholesky decomposition works, we consider a simple

one-dimensional simulator given by

f(x) = 3x+ sin(3x)



58

with two training inputs x = (x1 = 0.2, x2 = 0.8). After obtaining the simulator

outputs at these training inputs, we derived the Gaussian process emulator as-

suming values of the parameters β , σ2 and δ . We chose the validation inputs to

be x∗ = (x∗1 = 0.5, x∗2 = 1.4, x∗3 = 1.5), where the second and the third validation

points were chosen to be close to each other and far from the first validation

point. Figure 3.2 shows the locations of the training points and the validation

points.
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Figure 3.2: The locations of the training points (•), the validation points (4)

and the posterior emulator with 95% credible intervals. In plot (a), the emulator

was built using two training inputs and three validation inputs. In plot (b) the

emulator was built using three training inputs and two validation inputs, where

the third validation input in plot (a) was treated as a training input in plot (b).
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The posterior variance matrix is

Var[f(x∗)|y] =


0.222 −0.499 −0.485

−0.499 6.718 7.823

−0.485 7.823 9.223



and as we can see that the third validation point has the largest variance,

V [f(x∗3)|y] = 9.223; the second validation point has the second largest variance,

V [f(x∗2)|y] = 6.718, and the first validation point has the smallest variance,

V [f(x∗1)|y] = 0.222.

Using the chol(V [y∗|y, δ] ,pivot=TRUE) function in R, we then calculated

the pivoted Cholesky decomposition, GPC = PR , where RTR = V [y∗|y] and P

is a permutation matrix, and it is as follows

GPC =


3.037 −0.160 2.576

0 0.443 −0.197

0 0 0.211

 ,

where the pivoting order is (3, 1, 2). The first index in the pivoting order is

3, which corresponds to the third validation output because it has the largest

variance,
√
V [f(x∗3)|y] = 3.037. Then, conditional on y and f(x∗3), the first

validation point has the second largest variance,
√
V [f(x∗1)|y, f(x∗3)] = 0.443,

where the second index in the pivoting order is 1. Finally, the third index in the

pivoting order corresponds to the second validation point which has the smallest

variance conditioned on y, f(x∗3) and f(x∗1) with
√
V [f(x∗2)|y, f(x∗1), f(x∗3)] =

0.211. Note that these three (conditional) standard deviations are given in the

diagonal of GPC .



60

Plot of the pivoted Cholesky errors against the conditional standard

deviations

In this section, we suggest a modification of the pivoted Cholesky diagnostic.

We propose a plot of pivoted Cholesky errors against the conditional standard

deviations. In the plot of pivoted Cholesky errors against the pivoting order, the

errors will be spread uniformly in the x-axis because they are plotted by index.

Hence, the x-axis only represents an ordinal scale, which refers to the order of

the pivoted Cholesky errors.

We propose instead to plot pivoted Cholesky errors against conditional stan-

dard deviations, so the x-axis now represents a ratio scale. The ratio scale is

more informative because it allows us to make comparisons between the points.

For example, we can see which points are close to each other and which points are

far from the others. This allows us to determine how close the validation points

are to each other and to the training points.

Mathematically, let x∗1, . . . ,x
∗
m be validation inputs, so we order these valida-

tion inputs according to conditional variances of validation outputs. The condi-

tional standard deviations can be obtained as follows:

• Calculate v1 = V (f(x∗1)|y), . . . , vm = V (f(x∗m)|y), and then choose x∗(1) =

x∗i1 where

i1 = arg max
i
vi.

• Calculate vi|(1) = V (f(x∗i )|y, f(x∗(1))) for i = 1, . . . ,m and (i 6= i1), then

choose x∗(2) = x∗i2 where

i2 = arg max
i
vi|(1).
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• Calculate vi|(1),(2) = V (f(x∗i )|y, f(x∗(1)), f(x∗(2))) for (i 6= i1 6= i2), then

choose x∗(3) = x∗i3 where

i3 = arg max
i
vi|(1),(2)

and so forth. Therefore, we plot the pivoted Cholesky errors, KPC(y∗), against

S = {S1 =
√
vi1 , S2 =

√
vi2|(1), S3 =

√
vi3|(1),(2), . . . , Sm =

√
vim|(1),(2),...,(m−1)} ,

where vi1 = V [f(x∗(1))|y], vi2|(1) = V [f(x∗(2))|y, f(x∗(1))], . . . , vim|(1),(2),...,(m−1) =

V [f(x∗(m))|y, f(x∗(1)) . . . , f(x∗(m−1))].

In order to scale the conditional standard deviations, the conditional standard

deviations can be standardised by

KCSD(y∗) =
4× S

R
, (3.4.17)

where R = max(Y)−min(Y) and Y = (y,y∗). This scale shows, approximately,

how wide the 95% credible intervals are relative to the range of the data.

3.5 Illustrative examples

In this section, we examine the performance of some diagnostic methods on dif-

ferent Gaussian process emulators constructed on different simulators. First, we

present the mathematical expression and a brief description of each example. We

then explain how we constructed a Gaussian process emulator for each example.

3.5.1 Borehole model

The description and the mathematical expression of the Borehole model have

been given in Section 2.6.
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3.5.2 OTL Circuit function

The output transformerless (OTL) Circuit function was used by Ben-Ari and

Steinberg (2007) to show the performance of kriging methods for non-parametric

smoothing of high-dimensional data. The output variable Vm is the midpoint

voltage and it is given by

Vm(x) =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf

+
11.35Rf

β(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1

,

where Vb1 = 12Rb2
Rb1+Rb2

. The OTL Circuit function contains six input variables:

• Rb1 ∈ [50, 150] is the resistance b1 (K-Ohms).

• Rb2 ∈ [25, 70] is the resistance b2 (K-Ohms).

• Rf ∈ [0.5, 3] is the resistance f (K-Ohms).

• Rc1 ∈ [1.2, 2.5] is the resistance c1 (K-Ohms).

• Rc2 ∈ [0.25, 1.2] is the resistance c2 (K-Ohms).

• β ∈ [50, 300] is the current gain (Amperes).

3.5.3 Piston Simulation function

The Piston Simulation function was developed by Kenett and Zacks (1998) to

simulate a piston motion within a cylinder. The output C is measured to be the

cycle time that the piston takes to complete one cycle in seconds. It is given by

C(x) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

,where

V =
S

2k

(√
A2 + 4k

P0V0

T0

Ta − A

)
,

A = P0S + 19.62M − kV0

S
.
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The input variables that affect the performance of the piston are as follows:

• M ∈ [30, 60] is the piston weight (kg).

• S ∈ [0.005, 0.020] is the piston surface area (m2).

• V0 ∈ [0.002, 0.010] is the initial gas volume (m3).

• k ∈ [1000, 5000] is the spring coefficient (N/m).

• P0 ∈ [90000, 110000] is the atmospheric pressure (N/m2).

• Ta ∈ [290, 296] is the ambient temperature (K).

• T0 ∈ [340, 360] is the filling gas temperature (K).

3.5.4 Multivariate Student-t simulator (Mt)

The purpose of this example is to examine the performance of diagnostics with

data that have a different properties to that of a Gaussian process. The multi-

variate Student-t distribution has heavy tails, so we aim to investigate whether

the diagnostics can detect this behaviour. We generated n design points in the

[−1, 1]8 space using a Latin hypercube design (LHD), denoted by x1, . . . ,xn ,

where xi is a vector of eight input variables.

Assuming values of the parameters β = (5, 10.5, 21.2, 9.4, 1.2, 15, 8, 0.2, 1.8),

σ2 = 150 and δ = (1.8, 31.23, 2.26, 10.09, 2.04, 0.21, 1.05, 1.4), we first calculated

the mean vector, M = h(x)Tβ with h(x) = (1,xT ) and the covariance matrix,

V = σ2C(x,x′), with the squared exponential correlation function, C(x,x′),

given in equation (2.3.4). Then, an n × 1 vector of ‘simulator outputs’, y =
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(y1, . . . , yn), was generated from the multivariate Student-t distribution with 3

degrees of freedom, M and V

y ∼ multivariate Student-t (3,M, V ). (3.5.1)

Thus, we have {(x1, y1), . . . , (xn, yn)} , and we selected some of them to be train-

ing points and the rest to be the validation points.

3.5.5 Nonstationary variance simulator (NSV)

The purpose of this example is to examine the performance of diagnostic methods

with data that have a nonstationary variance. The aim therefore is to investigate

whether or not the diagnostics can detect that the Gaussian process emulator with

the assumption of a stationary variance is not suitable for these data. We gener-

ated n design points in the space [−1, 1]8 using a LHD, denoted by x1, . . . ,xn ,

where xi is a vector of eight input variables.

Assuming values of the parameters β = (0.3, 0.5, 2.2, 2.4, 0.2, 0.1, 0.8, 0.2, 0.8)

and δ = (0.803, 3.239, 2.2634, 0.0945, 0.047, 0.216, 1.05, 1.4), the Gaussian pro-

cess was specified with a linear mean function, equation (2.3.1), with h(x)T =

(1,xT ) and the covariance matrix with the squared exponential correlation func-

tion C(x,x′) given in equation (2.3.4). First, we calculated the mean vector

M = h(x)Tβ and the correlation matrix, C = C(x,x′). Then, the variance was

chosen to be a nonstationary where we first chose a function of the inputs defined

by

g(xi) = b0 + b1x1 + . . .+ b8x8, (3.5.2)

where b0 = 0.3, b1 = 0.4, b2 = 0.2, b3 = 0.01, b4 = 0.13, b5 = 0.01, b6 = 0.03, b7 =
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0.8, b8 = 0.12. Then, a matrix Σ was obtained by

Σ =


g2(x1) g(x1)g(x2) · · · g(x1)g(xn)

g(x2)g(x1) g2(x2) · · · g(x2)g(xn)

...
...

. . .
...

g(xn)g(x1) g(xn)g(x2) · · · g2(xn)


. (3.5.3)

The choice of equation (3.5.2) results in standard deviations that vary by a factor

of 2 over the input space. To obtain the variance matrix, we multiplied the matrix

Σ by the matrix C element by element, Vij = Σij × Cij .

Then, an n× 1 vector of ‘simulator outputs’, y = (y1, . . . , yn), was generated

from the multivariate normal distribution with mean M and covariance matrix

V

y ∼ Nn(M,V ). (3.5.4)

Thus, we have {(x1, y1), . . . , (xn, yn)} , and we selected some of them to be train-

ing points and the rest to be the validation points.

3.5.6 A Gaussian process simulator (GP)

The purpose of this example is to investigate the performance of diagnostics when

the Gaussian assumption known to be correct. If the data come from the Gaus-

sian distribution, Gaussian process emulators should pass such diagnostics. We

generated n design points in the space [−1, 1]8 using a LHD from the Gaussian

process.

Assuming values of the parameters β = (5, 10.5, 21.2, 9.4, 1.2, 15, 8, 0.2, 1.8),

σ2 = 3 and δ = (1.8, 31.23, 2.26, 10.09, 2.04, 0.21, 1.05, 1.4), we first calculated

the mean vector, M = h(x)Tβ with h(x) = (1,xT ) and the covariance matrix,



66

V = σ2C(x,x′), with the squared exponential correlation function C(x,x′) given

in equation (2.3.4), where xi is a vector of eight input variables. Then, an n× 1

vector of ‘simulator outputs’, y , was generated from the Gaussian distribution

with M and V

y ∼ Nn(M,V ). (3.5.5)

Thus, we have {(x1, y1), . . . , (xn, yn)} , and we selected some of them to be train-

ing points and the rest to be the validation points.

For the Multivariate t simulator, nonstationary variance simulator and the

Gaussian process simulator, we will examine the performance of diagnostics for

emulators that are derived based on the case when the values of the correlation

length parameters, δ are known and also for emulators that are derived based on

the estimated values of the correlation length parameters, δ̂ .

Building Gaussian process emulators

Before fitting a Gaussian process, we transformed each input variable for the

Borehole model, the OTL Circuit function and the Piston Simulation function to

be in the interval [−1, 1]8 . The design points for the examples were obtained using

a LHD. We built the emulators using different set sizes of the training points, five

times the input dimension p of each model, 5p , ten times the input dimension of

each model, 10p , and twenty times the input dimension of each model, 20p . The

number of the validation points was chosen to be three times the input dimension,

3p . Then, we evaluated outputs of each model at its training inputs to obtain

the training outputs.

In order to construct Gaussian process emulators under a Bayesian frame-

work, we assumed that the prior uncertainty of each model is represented by
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a Gaussian process, equation (2.3.11). We used a linear mean function with

h(x)T = (1,xT ) and the covariance matrix, V = σ2C(x,x′), with the squared

exponential correlation function C(x,x′) given in equation (2.3.4). The corre-

lation length parameters were estimated by the maximum likelihood. We then

derived the Gaussian process emulator for each model.

The performance of the Gaussian process emulators

In order to show the typical behaviour of our emulators, we plotted them based on

a single choice of training and validation points. Figure 3.3 shows the Gaussian

process emulators with 95% credible intervals, where the emulators are denoted

by (B) for the Borehole model, (OTLC) for the OTL Circuit model and (PS) for

the Piston Simulation model.

The emulator plot of the B simulator with 5p training points shows that most

of the predicted points do not lie on the y = x line. Moreover, its uncertainty,

which is represented by the error bars, is large. It can also be shown that one point

seems to be far from the others and lies far from the line y = x . This suggests

that the emulator performance is not accurate in some parts of the input space.

By increasing the training points to 10p , the emulator performance improved as

most of the predicted points now lie on the y = x line. Moreover, its uncertainty

seems to be small, but some points still do not lie on the y = x line. Using 20p

training points, all the predicted points lie close to the y = x line with small

uncertainty, indicating that the emulator predictions are good approximations of

the simulator outputs.

Using 5p training points, the predicted points of the OTLC simulator seem to

be reasonable since most of them lie on the y = x line. Moreover, the uncertainty
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seems to be small. With 10p and 20p training points, all the predicted points

lie on the y = x line with very small uncertainty, indicating that the emulator

predictions are good approximations of the simulator outputs.

With 5p training points, the predicted points of the PS simulator also seem

to be reasonable and have relatively small 95% credible intervals. Several points,

however, do not lie on the y = x line. The predicted points were improved with

10p training points and the uncertainty seems to be small, but some points still

do not lie on the y = x line. With 20p training points, the emulator plot shows

that most of the predicted points lie on the y = x line with small uncertainty.

Figure 3.4 shows the Gaussian process emulators with 95% credible intervals,

where the emulators are denoted by (Mt) for the multivariate Student-t simulator

and (NSV) for the nonstationary variance simulator. It can be shown that with

5p training points, most of the predicted points do not lie on the y = x line.

Moreover, their uncertainties are very large. With 10p and 20p training points,

it can be seen that most of the predicted points still do not lie on the y = x

line. Moreover, their uncertainties are still very large. This may suggest that

the predictions are not good approximations of the true values (the simulated

values). We can also note that the predicted points of the NSV simulator have

the same level of error bars for all the validation outputs.

We can conclude that increasing the training points have improved the em-

ulator predictions for the Borehole model, the OTL Circuit model and the Pis-

ton Simulation model. However, the emulator predictions for the multivariate

Student-t simulator and the nonstationary variance simulator were not improved

by increasing the training points.
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3.5.7 Evaluating some diagnostics for the emulators

We performed a number of numerical and graphical diagnostic methods for the

emulators in order to check whether these diagnostics can detect the behaviour

of the data. These diagnostic methods are based on comparisons between the

emulator predictions and the simulator outputs.

Diagnostics measure the overall fit of emulators

We calculated the standardised root mean squared error, SRMSE, the predictivity

coefficient, Q2 , and the Mahalanobis distance, KMD(·), that measure the overall

fit of Gaussian process emulators. We considered these diagnostics with different

combinations of sample sizes for training and validation inputs. Moreover, we

considered these diagnostics with different methods for validating emulators, the

cross-validation method and using separate sets of validation points, Table 3.1.

Table 3.1: The notations and numbers of training and validation points with

different methods for building Gaussian process emulators, the cross-validation

method and separate set of validation points.

Number of

training points

Cross-validation

method

Number of validation points

2p 3p 1000p

5p 5pcv 5p2p 5p3p 5p1000p

10p 10pcv 10p2p 10p3p 10p1000p

20p 20pcv 20p2p 20p3p 20p1000p

To simplify the notations, we used, for example, ‘10p2p ’ to refer to 10p train-

ing points and 2p validation points, and ‘10pcv ’ to refer to 10p training points

with cross-validation method. Each of the 12 combinations for training and vali-
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dation inputs was replicated 100 times with different design points for each repli-

cation. We selected 2p and 3p as ‘plausible’ numbers of validation points and

1000p is selected to provide an indication of ‘true’ predictive performance over

the input space.

Having 100 values of each diagnostic, we used the box-plot to show the per-

formance of each diagnostic. The box-plots of the SRMSE for the emulators with

different combinations of sample sizes for training and validation inputs for both

the cross-validation method and separate set of validation points for validating

emulators are shown in Figure 3.5.
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Figure 3.5: Box-plots of the SRMSE obtained using different numbers of training

and validation points and different methods for building emulators, the cross-

validation method and separate set of validation points. The box-plots for the

emulators present small values of the SRMSE, especially with cross-validation

method. The box-plots show that increasing the number of the validation points

is insignificant. There is no obvious pattern in the box-plots for the emulator of

the Mt simulator.
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According to the box-plots of the SRMSE for the emulators, we can obtain

the following results:

• Result 1: The box-plots for the emulators present small SRMSE values.

The box-plots show small values of the SRMSE. The values of the SRMSE

for the emulators of the B, OTLC and PS simulators approach to zero as

the number of training points increases. However, the values of the SRMSE

in the box-plots for the emulators of NSV and GP simulators were slightly

reduced by increasing the training points.

• Result 2: The SRMSE values with cross-validation method are less repre-

sentative.

As seen the box-plots provide smaller values than those using separate val-

idation points for almost all the different combinations of training and val-

idation points. Using 20p training points, the box-plots of the SRMSE

with cross-validation method have become almost equivalent to those with

separate validation points for all the different numbers of validation points.

• Result 3: The set size of the validation points is less important.

As we can see that the box-plots for almost all the different combinations

of training and validation points, increasing the number of the validation

points from 2p to 3p and then to 1000p has a minor impact on the SRMSE

performance if the number of training points is fixed.

• Result 4: There is no obvious pattern in the box-plots of the SRMSE for

the emulator of the Mt simulator.

The box-plots do not show any obvious pattern for deciding how the em-

ulator performs with cross-validation or using separate validation points.
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Also, there is no obvious feature for deciding how the emulator performs by

increasing the training or the validation points.

We also applied the predictivity coefficient, Q2 to the emulators. However,

the Q2 is the skill score of the MSE and negative values of the Q2 can be obtained

which makes it difficult to interpret. This can occur when we have large values of∑m
j=1

[
E[y∗j |y, δ]− y∗j

]2

over small values of
∑m

j=1

[
y∗j − 1

n

∑n
i=1 yi

]2

in equation

(3.4.5). Furthermore, the standardised root mean squared error is the square root

of the mean squared error that is scaled by R = max(y) −min(y). The predic-

tivity coefficient diagnostic is one minus the mean squared error that is scaled by∑m
j=1

[
y∗j−

1
n

∑n
i=1 yi

]2
m

. Thus, the SRMSE diagnostic and the Q2 diagnostic measure

the same quantity but with different scales.

Mt with 10p3p

0.1 0.2

0.0

0.5

SRMSE

Q
2

Figure 3.6: Plot of the SRMSE against the Q2 for the emulator of the multivariate

t simulator. The plot shows a negative linear relationship between these two

diagnostics.

Figure 3.6 shows the relationship between these two diagnostics for the em-



76

ulator of the multivariate t simulator. As we can see that the values of the Q2

decrease as the values of the SRMSE increase, suggesting a strong negative linear

relationship between these two diagnostics. This means that we can expect the

values of Q2 if we know the values of the SRMSE. Thus, these two diagnostics

provide almost the same information.

The Mahalanobis distance is another diagnostic that we applied to our em-

ulators. Figure 3.7 presents the box-plots of the Mahalanobis distance for the

examples. For the emulators of the Mt, NSV and GP simulators, we examine the

performance of the Mahalanobis distance for emulators that are derived based on

the estimated values of the correlation length parameters, δ̂ and also for emu-

lators that are derived based on the original values of δ . The MtO, NSVO and

GPO refer to the emulators of the Mt, NSV and GP simulators that are built

based on the original values of δ . As we can see that the box-plots of the Maha-

lanobis distance are very tight due to the outliers. This makes the box-plots of

the Mahalanobis distance very difficult to interpret.
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Therefore, we excluded the outliers from the plots in order to show the perfor-

mance of diagnostics clearly. Figure 3.8 presents the box-plots of the Mahalanobis

distance for the examples after excluding the outliers.

According to Figure 3.8, we can obtain the following results:

• Result 1: The Mahalanobis distance values are more often outside the

bounds of the 95% credible intervals for the emulators of the B, OTLC and

PS simulators than expected, when derived based on the estimated values

of the correlation parameters.

Assuming the Gaussian process assumption is valid, but using an estimate

δ̂ of the correlation parameters, the box-plots of the Mahalanobis distance

provide relatively many large values with 5p2p that lie outside the bounds.

The Mahalanobis distance values that lie outside the bounds decrease by

increasing the number of the training points to 10p2p and 20p2p . However,

many large values of the Mahalanobis distance still do not lie in the 95%

credible interval. This may indicate that a problem in the process of esti-

mating the correlation parameters. Moreover, this may also suggest that

based on δ̂ , the emulator may not necessarily behave well.

• Result 2: The Mahalanobis distance did not detect the potential problems

in the emulators of the Mt and NSV simulators.

Using the true δ , the box-plots present smaller values of the Mahalanobis

distance for all the different combinations of the training and validation

points. Furthermore, using an estimate δ̂ of the correlation parameters,

the Mahalanobis distance values more often lie inside the bounds for the

emulators of the Mt and NSV simulators. The box-plots present small

values of the Mahalanobis distance with 10p2p and 20p2p .
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• Result 3: The Mahalanobis distance does not behave very consistently

over replications for the emulators of the B, OTLC and PS simulators.

It can be seen that the box-plots of the Mahalanobis distance show a vari-

ability in the performance of the Mahalanobis distance over replications for

the emulators of these real simulators. Although, the values of the Ma-

halanobis distance that lie outside the bounds decrease by increasing the

number of the training points to 10p2p and 20p2p , many large values of

the Mahalanobis distance still do not lie in the 95% credible interval.

• Result 4: The effect of increasing the validation points is negligible.

It can be seen in the all the box-plots that increasing the validation points

from 2p to 3p has a minor impact on the performance of the Mahalanobis

distance. This is because there is no a big change in the distribution of the

Mahalanobis distance as we change the number of the validation points.
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As we have seen that the performance of the Mahalanobis distance is not

consistent over replications for the emulators of some simulators. According to

equation (3.4.13), it is possible to obtain large value of the Mahalanobis distance

even when the posterior mean is very close to true value of the simulator. This

happens when the difference between the posterior mean and the true value is

small and the posterior variance is very small. Hence, we plotted the Mahalanobis

distance against the SRMSE for the emulator of the Multivariate t simulator to

investigate the relationship between these two diagnostics, Figure 3.9.
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Figure 3.9: Plots of the SRMSE against the Mahalanobis distance with 95%

credible interval for the emulator of the Multivariate t simulator: (a) SRMSE with

10p3p against the Mahalanobis distance with 10p3p ;(b) SRMSE with 10p1000p

against the Mahalanobis distance with 10p3p ; (c) SRMSE with 10p1000p against

SRMSE with 10p3p . Plots (a) and (b) show many large Mahalanobis distance

values while plot (c) demonstrates a positive relationship between SRMSE with

10p1000p and SRMSE with 10p3p .

Figure 3.9 (a) shows the plot of the SRMSE against the Mahalanobis distance

using 10p3p . As we can see that many large values of the Mahalanobis distance
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lie outside the 95% credible interval and correspond to small values of SRMSE.

This indicates that the difference between the posterior mean and the true values

is small and the posterior variance is very small which leads to large values of the

Mahalanobis distance. Thus, when we obtain large Mahalanobis distance value,

further investigation is needed because the prediction may be very close to the

true value and the variance is very small.

In Figure 3.9 (b) we plotted the SRMSE with 10p1000p against the Maha-

lanobis distance with 10p3p . There are also many large values of the Mahalanobis

distance lie outside the 95% credible interval with small values of SRMSE. This

confirms that large values of the Mahalanobis distance can be obtained when

the difference between the posterior mean and the true values is small and the

posterior variance is very small.

Figure 3.9 (c) presents the plot of SRMSE with 10p1000p against the SRMSE

with 10p3p . We can see that there is a strong positive linear relationship between

the values of the SRMSE with 10p1000p and the values of the SRMSE with 10p3p .

This means that increasing the number of the validation points to 1000p has a

minor impact on the SRMSE performance. Thus, a small number of validation

points, 3p , is sufficient for obtaining a reliable result of the SRMSE diagnostic.

Graphical diagnostics for Gaussian process emulators

We performed graphical diagnostics that consider a comparison between each

validation point and its predicted value and take into account the uncertainty

in the emulator predictions. We considered the plot of pivoted Cholesky errors

against the pivoting order and the plot of pivoted Cholesky errors against the

scaled conditional standard deviations, KCSD(y∗). Figure 3.10 shows the plots
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of the pivoted Cholesky errors against the pivoting order and the plots of the

pivoted Cholesky errors against the scaled conditional standard deviations for

the emulator of the Borehole simulator using 10p3p .
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Figure 3.10: Plots of the pivoted Cholesky errors against the pivoting order and

the pivoted Cholesky errors against the scaled conditional standard deviations

for the emulator of the Borehole simulator with 10p3p . Note that an increase in

pivoting order corresponds to a decrease in conditional standard deviations.

It can be shown that most of the pivoted Cholesky errors are not very large

and most of them lie inside the bounds, but several large pivoted Cholesky errors

are seen in the plot. The scaled conditional standard deviations, however, can be

considered small since most of them are close to zero. We can also notice that

the large pivoted Cholesky errors correspond to very small scaled conditional

standard deviations. In addition, the pivoted Cholesky errors decrease as the

scaled conditional standard deviations increase.
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Figure 3.11 shows the plots of the pivoted Cholesky errors against the pivoting

order and the pivoted Cholesky errors against the scaled conditional standard

deviations, KCSD(y∗), for the emulator of the Mt simulator using 10p3p .
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Figure 3.11: Plot of the pivoted Cholesky errors against the pivoting order and

the pivoted Cholesky errors against the scaled conditional standard deviations for

the emulator of the multivariate t simulator with 10p3p . The plots show small

pivoted Cholesky errors and large scaled conditional standard deviations.

It can be shown that the pivoted Cholesky errors are very small and all of the

lie inside the bounds. Although the pivoted Cholesky errors for the Mt simulator

are very small, the scaled conditional standard deviations are very large as they

are not close to zero.

We can conclude that the plot of the pivoted Cholesky errors against the

scaled conditional standard deviations is more informative than the plot of the

pivoted Cholesky errors against the pivoting order. This is because the scaled
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conditional standard deviations show the large widths of the intervals of some

emulators.

3.6 Conclusion and recommendations

In this chapter, we have explained the concept of uncertainty calibration. Diag-

nostic methods have been reviewed for checking assumptions of Gaussian process

emulators. We have developed a modification of an existing diagnostic for validat-

ing Gaussian process emulators. We have investigated the performance of some

current diagnostic methods for different Gaussian process emulators. According

to the diagnostics that were applied to our examples, our recommendations are

as follows:

• The cross-validation method can be unreliable with a small number of train-

ing inputs, in that they may not agree with results from separate validation

sets as seen with box-plots of the standardised root mean squared error.

• It is important to use more than one diagnostic method for validating Gaus-

sian process emulators, but not simply two related methods such as the

standardised root mean squared error and the predictivity coefficient. This

is because these diagnostics measure the same quantity but on different

scales.

• For the validation points, we suggest to use two times the number of the

input variables, 2p . We have seen that increasing the number of validation

points has a minor impact on improving the performance of diagnostics.

• For the number of the training points, we have noticed that five times the

number of input variables was not adequate for good predictions in many
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cases. We recommend to use at least ten times the number of the input

variables.

• We recommend using scaled conditional standard deviations rather than

pivoted order as it is more informative in the plot of the pivoted Cholesky

errors.



Chapter 4

A simulation-based method and

the coverage interval diagnostic

4.1 Introduction

Diagnostic methods can be used for checking and validating Gaussian process

emulators. For some diagnostics, however, it is not possible to derive analytically

the required reference distribution, which is the distribution of the observed di-

agnostic value if the simulator was a realisation from a Gaussian process. In this

chapter, we develop a simulation-based method based on simulating samples from

the posterior distribution of the output function. This simulation-based method

can be used to obtain the reference distribution of diagnostics that cannot be ob-

tained analytically. If the Gaussian process emulator is valid, the observed values

of the diagnostic for the validation data will be ‘consistent’ with the simulated

diagnostic values.

In this chapter, we also extend and develop a diagnostic proposed by Bastos

87
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and O’Hagan (2009). We develop a graphical presentation that measures the

coverage properties of (1−α)100% posterior credible intervals for the validation

outputs. Thus, we can investigate whether the proportion of the credible intervals

that contain the validation outputs is as we expect it to be or not. This will

help to assess whether the Gaussian process assumption is suitable for building

emulators.

In Section 4.2, we develop a coverage interval diagnostic for Gaussian process

emulators using separate validation sets. In Section 4.3, we present the coverage

interval diagnostic using the cross-validation method. The quantile-quantile plot

for testing the normality assumption is reviewed in Section 4.4. In Section 4.5, we

present the simulation-based procedure to obtain samples from the distribution

of diagnostics. An illustrative example for explaining the coverage interval diag-

nostic is shown in Section 4.6. An example of data from multivariate Student-t

distribution is given in Section 4.7. An example of the coverage interval diagnos-

tic for nonstationary variance simulator is shown in Section 4.8. The conclusion

is provided in Section 4.9.

4.2 The coverage interval diagnostic using sep-

arate validation sets

In this section, we develop Bastos and O’Hagan’s coverage interval diagnostic.

Suppose we have a Gaussian process emulator for f(·) based on n training points.

Let x∗1, . . . ,x
∗
m be a set of validation inputs. Before evaluating f(·) at these

validation inputs, we can obtain a credible interval for each validation output,

y∗i = f(x∗i ). We aim to investigate the proportion of the credible intervals that
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contain the validation outputs. Once the true validation outputs are obtained, if

the credible intervals for the validation outputs are very wide and the validation

outputs always lie inside these credible intervals, we describe the emulator as

underconfident. The emulator will be described as overconfident if the credible

intervals for the validation outputs are small and the validation outputs always

lie outside the credible intervals.

In order to explain the procedure of the coverage interval diagnostic, suppose

we have m credible intervals
(Lα(x∗1), Uα(x∗1))

.

.

(Lα(x∗m), Uα(x∗m))


, (4.2.1)

where Lα(·) and Uα(·) are the lower and the upper bounds of the (1 − α)100%

credible intervals for the validation outputs. Each of these credible intervals

should have a probability of 1 − α of containing the validation outputs, f(x∗i ).

This means that, for a valid emulator, we expect to have

p(Lα(x∗i ) < f(x∗i ) < Uα(x∗i )) = 1− α (4.2.2)

for all i = 1, . . . ,m . Bastos and O’Hagan (2009) define the credible interval

diagnostic, KCI
α (·), to be

KCI
α (y∗) =

1

m

m∑
i=1

I {Lα(x∗i ) < f(x∗i ) < Uα(x∗i )} , (4.2.3)

where I{·} is the indicator function. This formula determines the proportion

of the validation outputs lying inside the (1 − α)100% credible intervals for the

validation outputs. Thus, it helps us to investigate whether or not these credible

intervals are meaningful. Bastos and O’Hagan (2009) considered this diagnostic
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for (1 − α) = 0.95 and compared this numerical value with its expected value

and the lower and upper quartiles.

We consider this credible interval diagnostic for multiple values of (1 − α)

and develop a graphical presentation to measure the coverage properties of

(1 − α)100% posterior credible intervals for the validation outputs. We call

this diagnostic the coverage interval diagnostic and it can be used to investi-

gate whether the Gaussian process assumption is suitable for building Gaussian

process emulators or not. We also consider how this diagnostic can be used in a

cross-validation framework.

The expected value of KCI
α (·) is (1 − α). If the emulator is valid and the

values of the terms in the sum, in equation (4.2.3), are independent, the diagnostic

KCI
α (·) will have a binomial distribution, Bin(m, 1− α). However, the terms are

not independent, and we cannot analytically derive the distribution of KCI
α (·).

To illustrate this, suppose we have a one-dimensional simulator with 5 training

points as shown in Figure 4.1. Suppose also we have two predicted points, the

red points, that are close to each other with their 95% credible intervals as shown

in the plot.

Figure 4.1 shows that the simulator does not pass through the 95% credible

intervals for the two predicted points. For two predicted points that are close

to each other, if the simulator does not pass through the 95% credible interval

for the first predicted point, the simulator is not likely to pass through the 95%

credible interval for the second predicted point as well, hence the events are not

independent.
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The correlation between predicted values
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Figure 4.1: A simulator with 5 training points, the black points, and two predicted

points, the red points, by a Gaussian process emulator with 95% credible intervals.

The plot demonstrates the correlation between the predicted errors. For two

predicted points close to each other, if one interval missed the true point, it is

likely the other interval to miss the true point as well.

4.3 The coverage interval diagnostic using the

cross-validation method

The coverage interval diagnostic can also be used to examine the Gaussian process

assumption in Gaussian process emulators using the cross-validation method. The

cross-validation method is desirable when we have a small number of available

simulator runs and we wish to use all of them as training data. Suppose that

simulator outputs are evaluated at training inputs x1, . . . ,xn , to obtain training
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outputs y = {y1 = f(x1), . . . , yn = f(xn)} . Therefore, we construct an emulator

for f(·) via

f(·)|β, σ2, δ ∼ GP (m(·), V (·, ·)), (4.3.1)

where m(x) and V (x,x′) are a prior mean and a prior covariance function given

by (2.3.12) and (2.3.13) respectively. For i = 1, . . . , n , suppose that y−i are

the outputs of all data except the observation yi = f(xi). For given values

of the parameters β, σ2 and δ , the posterior distribution of each output value,

yi = f(xi), is a Student-t given by equation (3.4.4).

In the previous section, the emulator is validated using a separate validation

sets, so that we have an emulator based on n training points and the distribution

of any validation set is a Student-t given by equation (2.3.27). For the cross-

validation method, the procedure of validating the emulator is based on removing

one point and then predicting it using the other n − 1 points. Therefore, the

emulator validated after removing one point is not the emulator obtained based

on the whole set of training points.

In this case, diagnostics for the emulator for yi = f(xi) are based on y−i and

this does not validate the emulator based on the whole training set. However,

the simulator outputs are thought to be as samples from the Gaussian process.

Thus, it is possible to sample from a multivariate normal distribution with a

prior mean and a prior covariance. Then, we test the performance of diagnostics

using cross-validation method. If this procedure is repeated with a large number

of simulated outputs for each training output, the performance of diagnostics

using the cross-validation procedure is expected to be similar of that using new

validation sets. According to this procedure for the cross-validation method, we

can derive the distribution of diagnostics using these samples and investigate how

the data behave if they are drawn from a multivariate Gaussian distribution.
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The observed values of the coverage interval diagnostic for the (1 − α)100%

credible intervals can be calculated via the cross-validation procedure. Suppose

we can obtain n credible intervals for the n output values, y . The coverage

interval diagnostic is then given by

KCICV
α (y) =

n∑
i=1

I {Lα,−i(xi) < f(xi) < Uα,−i(xi)} , (4.3.2)

where Lα,−i(xi) and Uα,−i(xi) are the lower and the upper bounds of the (1 −

α)100% credible intervals for each output value, yi = f(xi).

4.3.1 Validating the prior assumptions rather than the

posterior emulator

In the previous section, we calculate the coverage interval diagnostic using a sep-

arate validation set, KCI
α (y∗). Therefore, we can investigate the distribution of

p(KCI
α (y∗)|y, δ̂). For the cross-validation method, however, we cannot consider

the distribution of p(KCICV
α (y)|y, δ̂) as it is determined by y . Thus, we can

instead consider what the distribution of the coverage interval diagnostic should

be given δ̂ only, p(KCICV
α (y)|δ̂). In this case, we can test the prior normality as-

sumption which means that we test whether the data come from the multivariate

normal distribution or not, y ∼ N(h(x)Tβ, σ2A).

The performance of the coverage interval diagnostic for the (1−α)100% credi-

ble intervals using the cross-validation method will be comparable with that using

a separate validation set. We aim to understand how the coverage interval diag-

nostic, KCICV
α (y), should behave if the emulator is valid. For a valid emulator,

the performance of the coverage interval diagnostic using the cross-validation

method will be similar to that using a separate validation set. This helps us to
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investigate whether the data come from the multivariate normal distribution or

not.

In order to investigate whether the data come from the multivariate normal

distribution or not, y ∼ N(h(x)Tβ, σ2A), values of β, σ2 and δ need to be

chosen. The choice of β and σ2 is not important where any given values of

these parameters can be chosen. This is because the distribution of KCICV
α (·)

will not be affected if different values of β and σ2 are chosen as will be shown

in Appendix 4.A. The choice of the correlation length parameters, however, can

make changes in the distribution of KCICV
α (·) as it will affect the correlations

between the points. Thus, we used the posterior distributions of the parameters

where the values of β̂ are used in the prior mean and the value of σ̂2 with the

estimated values of the correlation parameters, δ̂ , are used in the prior covariance.

4.3.2 Investigating the distribution of p(KCICV
α (y)|δ̂)

The values of the terms in the sum, in equation (4.3.2), are not independent. To

illustrate this, suppose we have a one-dimensional simulator with 7 training points

as shown in Figure 4.2. Note that there is one outlying training point. Figure

4.2 (a) shows a Gaussian process emulator after removing the outlying point and

predicting it conditional on the other six points. It can be seen that the 95%

credible intervals are very small and the outlying training point is unlikely to

be contained in the 95% credible intervals when it is excluded from the training

points.

In Figure 4.2 (b), we returned the outlying point and built a Gaussian process

emulator after removing the fourth point. It is shown that there is a significant

change in the 95% credible intervals for the outputs. The 95% credible intervals
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for the neighbouring outputs are now large and are shifted away from the true

outputs at the neighbouring inputs. This indicates that the credible intervals

depend on the locations of the outputs, so that if an omitted point is outlier,

then reintroducing it in the training set is likely to shift away the 95% credible

intervals from the true outputs at neighbouring true outputs. This illustrates why

the terms in the sum, in equation (4.3.2), are correlated and so the distribution

of KCICV
α (·) cannot be derived analytically.
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Figure 4.2: Gaussian process emulators with 95% credible intervals using the

cross-validation method. The black dots represent the training outputs for emu-

lators; the red dots are the removed points; the solid line is the posterior mean

and the dotted lines are the point-wise 95% credible intervals: (a) removing the

third training point; (b) removing the fourth training point. The plots demon-

strate that including the outlier as a training point, the credible intervals of the

neighbouring outputs will be shifted away from the true outputs.
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4.4 Quantile-quantile (QQ) plots

The QQ-plot can also be used to assess coverage, but in a different way. The

coverage interval diagnostic considers the correlation between the validation out-

puts and it provides the proportion of the (1 − α)100% credible intervals that

contain the validation outputs. Thus, the coverage interval diagnostic provides

a direct assessment of the coverage properties of the credible intervals and so we

can investigate whether these (1 − α)100% credible intervals are meaningful or

not.

In contrast, the QQ-plot is based on the distribution of uncorrelated stan-

dardised errors, equation (3.4.15), which is a Student-t distribution with (n− q)

degrees of freedom under the Gaussian process assumption. In the QQ-plot, the

Gaussian process assumption for the simulator outputs will be reasonable if the

points lie close to the y = x line through the origin. An overconfident (or an

underconfident) emulator may be indicated if the points cluster around a line

with slope greater (or less) than one, but it is harder to assess the extent of the

overconfidence (underconfidence).

4.4.1 Example

In this example, we illustrate the difference between the coverage interval di-

agnostic and the QQ-plot. Suppose we have 100 independent and identically

distributed random variables from a standard normal distribution denoted by

y = {y1, . . . , y100} . We can calculate prediction (credible) intervals for these data

with different α between 0.1 and 0.95. For example, 90% of the data are expected

to be in (−1.645, 1.645). The number of observations that lie inside the interval
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can be then calculated by the coverage interval diagnostic, equation (4.2.3), with

different values of α . Since the observations are independent, the distribution of

the coverage interval diagnostic is Bin(100, 1− α) and hence the intervals of the

observed coverage interval diagnostic values can be calculated. Figure 4.3 shows

the plot of the coverage interval diagnostic and the QQ-plot with 95% credible

intervals for the normal data.
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Figure 4.3: The coverage interval diagnostic plot and the QQ-plot for the normal

data. Plot (a) shows the observed coverage interval diagnostic values as red points

and the mean values of the corresponding simulated values as black points against

different values of (1 − α) with 95% credible intervals. Plot (b) shows the QQ-

plots with 95% credible intervals, obtained using the car package, by Fox et al.

(2016), in R. The plots suggest that the data come from normal distribution.

Figure 4.3 (a) shows the observed values (as proportions) of the coverage
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interval diagnostic and their simulated values against different values of (1− α)

with 95% credible intervals. It can be shown that only one observed value of the

coverage interval diagnostic lies outside the 95% credible intervals, suggesting

that a normal distribution assumption is appropriate. Figure 4.3 (b) presents the

QQ-plot with 95% credible interval for the standard normal data. It can be seen

that most of the points lie close to the y = x line. This also indicates that the

data come from normal distribution. However, there is an outlier point that lies

outside the 95% credible interval, but this is itself does not imply poor coverage.
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Figure 4.4: Observed coverage interval diagnostic curves for different datasets.

The observed coverage interval diagnostic values for different values of (1−α)

are highly correlated as they monotonically non-decreasing with (1− α). Figure

4.4 shows the observed coverage interval diagnostic curves for different datasets,
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where for each dataset, the observed coverage interval diagnostic values were

calculated for different values of (1 − α). From Figure 4.4, we can see that the

coverage properties are likely to be similar for two values of α that are close

to each other. Figure 4.4 also shows that it is possible to have good coverage

properties for one value of α , but poor at α′ if α and α′ further apart.

Now, suppose also we have independent and identically distributed random

variables from a Student-t distribution with 3 degree of freedom, denoted by

Y1, . . . , Y100 . Assuming normality for these data, we calculated the coverage in-

terval diagnostic, equation (4.2.3), with different values of α . Figure 4.5 shows

the plot of the coverage interval diagnostic and the QQ-plot with 95% credible

intervals for the Student-t data.

Figure 4.5 (a) shows the observed values (as proportions) of the coverage

interval diagnostic and their simulated values against different values of (1− α)

with 95% credible intervals. It can be shown that four observed values of coverage

interval diagnostic lie outside the 95% credible intervals. This suggests that there

is an overconfidence and that the data do not come from a normal distribution.

Figure 4.5 (b) presents the QQ-plot with 95% credible interval for the Student-

t data. It can be seen that most of the points cluster around the y = x line,

but there are many points which lie outside the 95% credible interval. Whilst

suggesting overconfidence, the resulting coverage properties are less clear.
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Figure 4.5: The coverage interval diagnostic plot and the QQ-plot for the Student-

t data. Plot (a) shows the observed coverage interval diagnostic values as red

points and the mean values of the corresponding simulated values as black points

against different values of (1 − α) with 95% credible intervals. Plot (b) shows

the QQ-plots with 95% credible intervals, obtained using the car package in R.

Plot (a) indicates an overconfidence. Plot (b) shows many points lying outside

the intervals.

4.5 Simulation-based method

In this section, we develop a simulation-based method that can be used to deter-

mine the required reference distribution of diagnostics. It may be applied when

analytical methods are intractable. Bastos and O’Hagan (2009) proposed obtain-
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ing the distribution of the coverage interval diagnostic by simulation. We develop

a simulation-based method to obtain the distribution of any diagnostic. We also

consider how the distribution of the coverage interval diagnostic can be used in

a cross-validation framework.

4.5.1 The simulation-based method for diagnostics

The diagnostic, K(·), is a function of the validation outputs, y∗ , and the emulator

for f(·), and can be thought of as a random variable with a distribution induced

by the distribution of y∗ . Therefore, it is necessary to investigate the consistency

of the observed diagnostic value, K(y∗obs), with its distribution.

For some diagnostics, it is possible to obtain their distribution analytically.

For example, the Mahalanobis distance diagnostic, equation (3.4.13), has a scaled

F -Snedecor distribution with m and n−q degrees of freedom. For some diagnos-

tics, however, their distribution may not be found analytically. For example, as

seen in Sections 4.2 and 4.3, the distribution of the coverage interval diagnostic

cannot be found analytically. Hence, we develop a simulation-based method that

can be used to obtain the required distribution of such diagnostics.

Suppose we have a Gaussian process emulator for f(·) based on n training

inputs, x1, . . . ,xn , and their evaluations of the simulator outputs, y = {y1 =

f(x1), . . . , yn = f(xn)} . Let x∗1, . . . ,x
∗
m be a set of m validation inputs. The

procedure of using the simulation-based method to obtain the reference distribu-

tion of the diagnostic K(·) can be achieved through the following steps:

• Sample y∗(i) = {f(i)(x
∗
1), . . . , f(i)(x

∗
m)} from the multivariate Student-t dis-

tribution with n−q degrees of freedom, the posterior mean, E[y∗|y, δ] , and
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the posterior variance, V [y∗|y, δ] .

• Evaluate K(i)(y
∗(i)) = K(y∗(i), p(f(·)|y)) to obtain one sample K(i)(y

∗(i))

from the distribution of K(·).

We repeat these steps to obtain N draws, K(1)(y
∗(i)), . . . , K(N)(y

∗(N)), from the

distribution of K(·). According to the procedure above, we can then approximate

the required reference distribution of any diagnostic of interest.

4.5.2 The simulation-based method for the coverage in-

terval diagnostic using separate validation sets

In this section, we consider the simulation-based method for the coverage inter-

val diagnostic since its distribution cannot be found analytically. Bastos and

O’Hagan (2009) considered the mean and the square of standard deviation of a

large number of samples of the coverage interval diagnostic as estimates of the

expectation and the variance of the coverage interval diagnostic. They considered

the observed value of the coverage interval diagnostic with summaries of its pre-

dictive distribution at (1−α) = 0.95. We develop a simulation-based method to

obtain a graphical presentation of the coverage interval diagnostic distribution.

We describe how to obtain the expected value and the 95% credible intervals of

the coverage interval diagnostic.

Suppose we have a Gaussian process emulator for f(·) based on n training

points. Suppose also we have a set of m validation inputs, x∗1, . . . ,x
∗
m . In order

to obtain the reference distribution of KCI
α (·), the simulation-based method can

be used. We first simulate outputs from the posterior distribution of f(·). Then,

we calculate the coverage interval diagnostic with different values of α between
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0.1 and 0.95. The procedure of using simulation-based method to obtain samples

of the diagnostic KCI
α (·) can be achieved according to the following algorithm.

Algorithm 1 This algorithm generates samples of the coverage interval diagnos-

tic from its reference distribution

Inputs: An emulator, p
(
f(·)|f(x1), . . . , f(xn)

)
.

m validation inputs, x∗1, . . . ,x
∗
m .

1: For i = 1 to m , calculate the (1−α)100% credible intervals for each validation

output based on the posterior mean, E[f(x∗i )|y, δ] , and the posterior variance,

V [f(x∗i )|y, δ] , that are given in equations (2.3.28) and (2.3.29), where the

lower and upper bounds of the (1− α)100% credible intervals are given by

Lα(x∗i ) = E[f(x∗i )|y, δ]− tn−q;α
2

√
V [f(x∗i )|y, δ] (4.5.1)

Uα(x∗i ) = E[f(x∗i )|y, δ] + tn−q;α
2

√
V [f(x∗i )|y, δ] (4.5.2)

end for.

2: For j = 1 to J , simulate outputs y∗(j) = {f(j)(x
∗
1), . . . , f(j)(x

∗
m)} from the

multivariate Student-t distribution with n− q degrees of freedom, the poste-

rior mean, E[y∗|y, δ] , and the posterior variance, V [y∗|y, δ] , of the emulator.

3: Calculate the coverage interval diagnostic

KCI
α (y∗(j)) =

m∑
i=1

I
{
Lα(x∗i ) < f(j)(x

∗
i ) < Uα(x∗i )

}
. (4.5.3)

end for.

Output: KCI
α (y∗(1)), . . . , KCI

α (y∗(J)), a sample from the distribution of

KCI
α (·) assuming a valid emulator.
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4.5.3 The simulation-based method for the coverage in-

terval diagnostic using the cross-validation method

In order to obtain the distribution of the coverage interval diagnostic using the

cross-validation method, the simulation-based method can be used. First, we

sample from the multivariate normal distribution with a prior mean, Hβ , and

a prior variance, σ2A . Hence, values of β, σ2 and δ need to be chosen. The

choice of β and σ2 is not important where any given values of these parameters

can be chosen. This is because the distribution of KCICV
α (·) will not be affected

if different values of β and σ2 are chosen as will be shown in Appendix 4.A.

The choice of the correlation length parameters, however, can make changes in

the distribution of KCICV
α (·) as it will affect the correlations between the points.

Thus, we used the posterior distributions of the parameters where the values of

β̂ are used in the prior mean and the value of σ̂2 with the estimated values of

the correlation parameters, δ̂ , are used in the prior covariance.

Then, we obtain n credible intervals for the n simulated output values. We

calculate the coverage interval diagnostic for the n simulated output values with

different values of α between 0.1 and 0.95. The procedure of using the simulation-

based method to obtain the reference distribution of the coverage interval diag-

nostic can be achieved according to the following algorithm.



CHAPTER 4. A SIMULATION-BASED METHOD AND THE
COVERAGE INTERVAL DIAGNOSTIC 105

Algorithm 2 This algorithm generates samples of the coverage interval diagnos-

tic from its reference distribution using the cross-validation method

Inputs: n training inputs, x1, . . . ,xn , and β̂, σ̂2 and δ̂ from the posterior

emulator.

1: For j = 1 to J , simulate outputs y(j) = {y(j)
1 = f(j)(x1), . . . , y

(j)
n = f(j)(xn)}

from the multivariate normal distribution with a prior mean, Hβ̂ , and a prior

variance, σ̂2A .

y(j)|δ = δ̂ ∼ Nn(Hβ̂, σ̂2A). (4.5.4)

where H and A are given by equations (2.3.15) and (2.3.16) respectively.

2: For i = 1 to n , derive the posterior distribution for the simulated output

yi = f(xi) conditional on the other y
(j)
−i simulated outputs

f(xi)|y(j)
−i , δ = δ̂ ∼ Student-t(n− q − 1,m1(·), V1(·, ·)). (4.5.5)

where m1(·) and V1(·, ·) are the posterior mean and the posterior variance

given by equations (2.3.28) and (2.3.29) respectively based on y
(j)
−i .

3: Calculate the (1 − α)100% credible intervals for the simulated output

based on the posterior mean, E[f(j)(xi)|y(j)
−i , δ̂] , and the posterior variance,

V [f(j)(xi)|y(j)
−i , δ̂] , where the lower and upper bounds of the (1 − α)100%

credible intervals are given by

Lα,−i(xi) = E[f(xi)|y(j)
−i , δ̂]− tn−q−1;α

2

√
V [f(xi)|y(j)

−i , δ̂] (4.5.6)

Uα,−i(xi) = E[f(xi)|y(j)
−i , δ̂] + tn−q−1;α

2

√
V [f(xi)|y(j)

−i , δ̂] (4.5.7)

4: Calculate the coverage interval diagnostic

KCICV
α (y(j)) =

n∑
i=1

I
{
Lα,−i(xi) < f(j)(xi) < Uα,−i(xi)

}
. (4.5.8)

end for.

end for.

Output: KCICV
α (y(1)), . . . , KCICV

α (y(J)), a sample from the distribution of

KCICV
α (·) assuming a valid emulator.
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4.6 Illustrative example

In order to illustrate the procedure of the coverage interval diagnostic, we ap-

plied the coverage interval diagnostic on emulators built on the Borehole model

described in Section 2.6. The aim is to determine whether the Gaussian process

assumption is suitable for building emulators. We also applied the QQ-plot on

the emulator of the Borehole model in order to investigate whether we can obtain

the same information that is obtained by the coverage interval diagnostic.

The design points were generated by a sliced Latin hypercube design (SLHD),

proposed by Qian (2012), where we generated 80 design inputs with two slices,

each of which has 40 inputs. Before fitting the Gaussian process, each input

variable was transformed to be in the interval [−1, 1]8 . First, we evaluated

simulator outputs of the Borehole model at the 40 inputs of the first slice,

y = (y1 = f(x1), . . . , y40 = f(x40)). We then fitted the Gaussian process based

on the 40 inputs of the first slice using a linear mean with h(x)T = (1,xT ) and

the covariance matrix, V = σ2C(x,x′), with the squared exponential correlation

function C(x,x′) given in equation (2.3.4). Then, after obtaining the estimated

values of the correlation length parameters, δ̂ , we used two methods for validat-

ing Gaussian process emulators

Method 1: Using the first slice of the design points as training inputs and the

second slice as validation inputs.

Method 2: Performing the cross-validation procedure with the first slice to de-

rive the posterior distribution of each output value, yi = f(xi) given the other

39 output values, y−i .

After obtaining Gaussian process emulators, we calculated the (1 − α)100%

credible intervals for each validation output of these two methods. Then, we
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calculated the observed values of the coverage interval diagnostic for the two

methods, equations (4.2.3) and (4.3.2), with different values of α .

In order to obtain the reference distribution of the coverage interval diagnostic,

KCI
α (·), for the Method 1, the simulation-based method was used. We sampled

1000 vectors of 40 validation outputs from the multivariate Student-t distribution

with 31 degrees of freedom, the posterior mean, E[y∗|y, δ] , and the posterior

variance, V [y∗|y, δ] . Then, we obtained simulated values of coverage interval

diagnostic, KCI
α (y∗sim), according to Algorithm 1.

The reference distribution of KCICV
α (·) for the Method 2, can also be obtained

using the simulation-based method. First, we sampled 1000 vectors of 40 ‘train-

ing’ outputs from the multivariate normal distribution with a prior mean and a

prior covariance. We used β = β̂, σ2 = σ̂2 and δ = δ̂ from the posterior emula-

tor in the prior mean and in the prior covariance. Then, we obtained simulated

values of coverage interval diagnostic, KCICV
α (ysim), according to Algorithm 2.

We calculated the simulated values of coverage interval diagnostic for the

two methods with different values of α . Figure 4.6 shows the observed coverage

interval diagnostic values (as proportions) and the mean values of their simulated

values against different values of (1− α) with 95% credible intervals for the two

methods. We used the 2.5% sample quantile as the lower bound of the 95%

credible intervals and the 97.5% sample quantile as the upper bound of the 95%

credible intervals.
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Method 1: separate validation set
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Method 2: cross-validation
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Figure 4.6: The observed coverage interval diagnostic values as red points and

the mean values of the corresponding simulated values as black points for the

emulator of the Borehole model against different values of (1 − α) with 95%

credible intervals based on 40 training points and 40 validation points (for Method

1). The plots suggest that the Gaussian process assumption is valid.

The observed values of the coverage interval diagnostic, KCI
α (y∗obs), for the

Method 1 are very close to their expectations. Moreover, all of them lie inside

the 95% credible intervals, suggesting that the assumption of Gaussian process

is suitable for building emulators. For the cross-validation method (Method 2),

most of the observed diagnostic values, KCICV
α (yobs), are very close to their ex-

pectations. In addition, all the observed values of the coverage interval diagnostic,

KCICV
α (yobs), lie inside the 95% credible intervals. This suggests that the Gaus-

sian process assumption is suitable for building emulators and the cross-validation



CHAPTER 4. A SIMULATION-BASED METHOD AND THE
COVERAGE INTERVAL DIAGNOSTIC 109

method is also appropriate for validating Gaussian process emulators.

As we can see that the 95% credible intervals of the coverage interval diagnos-

tic, KCI
α (y∗obs), for Method 1 are wider than those for Method 2. The coverage

interval diagnostic for Method 1 is given by

KCI
α (y∗) =

40∑
i=1

I {Lα(x∗i ) < f(x∗i ) < Uα(x∗i )}

=
40∑
i=1

I {Ei} ,

where Ei = Lα(x∗i ) < f(x∗i ) < Uα(x∗i ) for i = 1, . . . , 40. The variance of the

coverage interval diagnostic is

Var(KCI
α (y∗)) =

40∑
i=1

Var(I {Ei}) +
40∑
i=1

40∑
i 6=j

Cov
(
I{Ei}, I{Ej}

)
.

Hence, we calculated the sum of covariances between the events I{Ei} and I{Ej}

for i = 1, . . . , 40 and i 6= j . We chose here, for example, 1− α = 0.95.

Var(
1

40

40∑
i=1

I{Ei}) =
1

402

40∑
i=1

Var(I {Ei}) +
1

402

40∑
i=1

40∑
i 6=j

Cov
(
I{Ei}, I{Ej}

)
=

1

402

40∑
i=1

Var(I {Ei})

+
1

402

40∑
i=1

40∑
i 6=j

(
E(I{Ei}I{Ej})− E(I{Ei})E(I{Ej})

)
=

α(1− α)

40
+

1

402

40∑
i=1

40∑
i 6=j

(
p(Ei, Ej)− p(Ei)p(Ej)

)
=

0.95(1− 0.95)

40
+

1

402

40∑
i=1

40∑
i 6=j

(
p(Ei, Ej)− (0.95)(0.95)

)
= 0.0011875 + 0.003991611

The probability p
(
Ei, Ej

)
means that the joint probability for the events Ei and
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Ei

p
(
Ei, Ej

)
= p

(
Lα(x∗i ) < f(x∗i ) < Uα(x∗i ) and Lα(x∗j) < f(x∗j) < Uα(x∗j)

)
.

As we can see the sum of covariances between the events I{Ei} and I{Ej}

for i = 1, . . . , 40 and i 6= j are approximately three times of the variances.

Hence, this makes the 95% credible intervals of the coverage interval diagnostic

for Method 1 are wider than those for Method 2.

However, it can be shown from Figure 4.6 that the 95% credible intervals for

the observed values of the coverage interval diagnostic are wide. This indicates

that the number of the validation points is small. Thus, we repeated the process

above with 200 design points with two slices, each of which has 100 inputs.

Hence, for the Method 1, we have now 100 credible intervals for the m = 100

validation outputs of the second slice. For the Method 2, we have 100 credible

intervals for the n = 100 training outputs of the first slice. Figure 4.7 shows the

observed values (as proportions) of the coverage interval diagnostic and the mean

values of the corresponding simulated values against different values of (1 − α)

with 95% credible intervals based on 100 outputs.

It can be seen that most of the observed values of the diagnostic, KCI
α (y∗obs),

for the Method 1 are very close to their expectations. Moreover, all of the observed

values of the diagnostic, KCI
α (y∗obs), lie inside the 95% credible intervals, but now

the 95% credible intervals are less wide than before. For the cross-validation

method, the 95% credible intervals now are very small. The observed values of

the coverage interval diagnostic, KCICV
α (yobs), are also close to their expectations.

There are two observed values of the diagnostic, KCICV
α (yobs), lie outside the 95%

credible intervals.
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Method 1: separate validation set
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Method 2: cross-validation
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Figure 4.7: The observed values of the coverage interval diagnostic as red points

and the mean values of the corresponding simulated values as black points for

the emulator of the Borehole model against different values of (1− α) with 95%

credible intervals based on 100 training points and 100 validation points (for

Method 1). The plots suggest that the Gaussian process assumption is valid.

In this example, the two methods, the cross-validation method and using

separate set of validation points, give broadly the same conclusion, in that the

Gaussian process assumption is suitable for emulating the Borehole model.

We also applied the QQ-plots on the emulator of the Borehole model. Figure

4.8 presents the QQ-plot with 95% credible interval of the pivoted Cholesky errors

for the emulator of the Borehole model using a separate set of validation points

(Method 1).
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Figure 4.8: The QQ-plots with 95% credible intervals, obtained using the car

package in R, of the pivoted Cholesky errors for the emulator of the Borehole

model using separate validation sets: (a) based on 40 training points and 40

validation points; (b) based on 100 training points and 100 validation points.

Figure (a) may indicate that the emulator is underconfident while Figure (a)

shows many points lie outside the 95% credible interval.

Figure 4.8 (a) shows the QQ-plot of pivoted Cholesky errors with 40 validation

points. It can be shown that most of the points lie close to the y = x line.

Moreover, only one point lies outside the 95% credible interval. However, the

QQ-plot may indicate that the emulator is underconfident since the points are

around a line with slope less than one. Figure 4.8 (b), shows the QQ-plot of the

pivoted Cholesky errors with 100 validation points. It can be shown that there

are many points which do not lie close to the y = x line and some of them lying
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outside the 95% credible interval.

It can be concluded that the coverage interval diagnostic plot and the QQ-

plot can both be used for examining the Gaussian process assumption for building

emulators. However, each plot may provide different information from the other.

The coverage interval diagnostic considers the correlation between the validation

outputs and it provides a direct assessment of the coverage properties of the

credible intervals. The coverage interval diagnostic provides the proportion of

the (1 − α)100% credible intervals that contain the validation outputs. Hence,

we can investigate whether these (1− α)100% credible intervals are meaningful.

For the QQ-plot, it is based on the standardised errors distribution which is

a Student-t distribution with (n − q) degrees of freedom. The QQ-plot is less

informative than the coverage interval diagnostic plot. For example, the point

that lies outside the 95 credible intervals in Figure 4.8 (a) and the points that

lie outside the 95% credible interval in Figure 4.8 (b) do not provide any clear

information.

4.7 The coverage interval diagnostic with data

from a multivariate Student-t distribution

The purpose of this example is to examine the performance of the coverage inter-

val diagnostic with data which exhibit a different properties to that of a Gaussian

process. The multivariate Student-t distribution has heavy tails, so we aim to

investigate whether the coverage interval diagnostic can detect this behaviour.

We generated 40 training inputs in the space [−1, 1]8 using a LHD, denoted by

X1 = (x1, . . . ,x40), where xi is a vector of eight inputs. We then generated 1000
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inputs in the space [−1, 1]8 using a LHD, denoted by X2 = (x41, . . . ,x1040).

For selected values of the parameters β = (1,−0.5, 2.2,−3.4,−2.2, 1, 3, 0.6,

− 6.4), σ2 = 3 and δ = (0.8, 3.23, 2.26, 0.09, 0.04, 0.21, 1.05, 1.40), we calculated

the mean vector, a linear mean function with h(x)T = (1,xT ), and the covari-

ance matrix V = σ2C(x,x′), with the squared exponential correlation function

C(x,x′) given in equation (2.3.4)

M =

h(X1)Tβ

h(X2)Tβ

 , (4.7.1)

V = σ2

C(X1,X1) C(X1,X2)

C(X2,X1) C(X2,X2)

 . (4.7.2)

Then, a 1040×1 vector of ‘simulator outputs’, Y = (y1, . . . , y1040), was generated

from the multivariate Student-t distribution with 3 degrees of freedom, M and

V

Y ∼ multivariate Student-t (3,M, V ). (4.7.3)

Thus, y = (y1, . . . , y40) are the simulated outputs at the training inputs and

y41, . . . , y1040 are the simulated outputs at the 1000 inputs.

4.7.1 Building a Gaussian process emulator

Using the training data, we fitted the Gaussian process using a linear mean, equa-

tion (2.3.1), with h(x)T = (1,xT ) and the covariance matrix, V = σ2C(x,x′),

with the squared exponential correlation function C(x,x′) given in equation

(2.3.4). Then, we derived the Gaussian process emulator.

In order to show the “true validation result”, we applied the coverage interval

diagnostic on the emulator of the Multivariate t data using all the 1000 of the
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X2 inputs as validation points. We first calculated the (1 − α)100% credible

intervals for each ‘simulated output’. Then, we calculated the observed values of

the coverage interval diagnostic, equation (4.2.3), with different values of α .

The distribution of the diagnostic KCI
α (·) cannot be found analytically, and

so the simulation-based method was used. We sampled 1000 vectors of 1000 val-

idation outputs from the multivariate Student-t distribution with 31 degrees of

freedom, the posterior mean, E[y∗|y, δ] , and the posterior variance, V [y∗|y, δ] ,

of the emulator. Then, simulated coverage interval diagnostic values were ob-

tained according to Algorithm 1 with different values of α . Figure 4.9 shows

the observed values (as proportions) of the diagnostic KCI
α (y∗obs) with the mean

values of the corresponding simulated values against different values of (1 − α)

with 95% credible intervals using 40 training points and 1000 validation points.

It can be seen that sixteen from nineteen of the observed coverage interval

diagnostic values lie under their error bars of the 95% credible intervals. This

indicates that the emulator is overconfident. Different samples of size 1040 did

not always produce overconfident emulators. The aim of this example, however,

is to obtain a dataset where the Gaussian process emulator is overconfident and

Figure 4.9 represents a dataset with the desired properties.
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Multivariate t simulator
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Figure 4.9: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the Multivariate t data against different values of (1 − α) with

95% credible intervals based on 40 training points and 1000 validation points.

The plot shows an overconfident emulator.

Now we aim to investigate weather or not we can detect the “true validation

result” using a small set of validation points or using the cross-validation method.

Hence, we consider the two following methods

Method 1: Choosing a random sample of size 40 from the 1000 inputs as valida-

tion inputs. We will denote to the validation inputs by x∗1, . . . ,x
∗
40 and so their

simulated outputs will be denoted by y∗ = (y∗1, . . . , y
∗
40).

Method 2: Performing the cross-validation procedure with the training points

to derive the posterior distribution of each output value, yi = f(xi) given the

other 39 output values, y−i .
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We then applied the coverage interval diagnostic on the emulator of the Mul-

tivariate t data. We first calculated the (1− α)100% credible intervals for each

‘simulated output’. Then, we calculated the observed coverage interval diagnostic

values for the two methods, equations (4.2.3) and (4.3.2), with different values of

α .

Because the distributions of the diagnostics KCI
α (·) and KCICV

α (·) cannot be

found analytically, we used the simulation-based method to obtain the reference

distributions of KCI
α (·) and KCICV

α (·). For Method 1, we sampled 1000 vectors

of 40 validation outputs from the multivariate Student-t distribution with 31

degrees of freedom, the posterior mean, E[y∗|y, δ] , and the posterior variance,

V [y∗|y, δ] , of the emulator. Then, we obtained simulated values of the coverage

interval diagnostic according to Algorithm 1 with different values of α .

For Method 2, we first sampled 1000 vectors of 40 ‘training’ outputs from

the multivariate normal distribution with a prior mean and a prior covariance.

We used β = β̂, σ2 = σ̂2 and δ = δ̂ from the posterior emulator in the prior

mean and in the prior covariance. Then, we obtained simulated values of coverage

interval diagnostic, KCICV
α (ysim), according to Algorithm 2 with different values

of α . Figure 4.10 shows the observed values (as proportions) of the diagnostics

KCI
α (y∗obs) and KCICV

α (yobs) with the mean values of the corresponding simulated

values against different values of (1 − α) with 95% credible intervals. We used

the 2.5% sample quantile as the lower bound of the 95% credible intervals and

the 97.5% sample quantile as the upper bound of the 95% credible intervals.

The observed coverage interval diagnostic values for Method 1, KCI
α (y∗obs),

are far from their expectations with 13 from 19 observed values lying outside the

95% credible intervals (under their error bars). We repeated these process with

many different samples of size 40 and we almost always obtained the same result.
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This indicates that the emulator is overconfident and the result with Method 1 is

robust to different subsets of validation points. For Method 2, it can be seen that

all the observed diagnostic values, KCICV
α (yobs), are close to their expectations

and all of them lie inside their 95% credible intervals. This suggests that the

Gaussian process assumption is valid and the cross-validation method did not

detect the overconfidence.

Method 1: separate validation set
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Method 2: cross-validation
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Figure 4.10: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the Multivariate t data against different values of (1 − α) with

95% credible intervals based on 40 training points and 40 validation points (for

Method 1). The Method 1 plot indicates an overconfident emulator whereas the

Method 2 plot indicates the Gaussian process assumption is valid.

We increased the number of the training points to be 80. We also used a
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1000 points as validation points in order to show the “true validation result”

of the coverage interval diagnostic with 80 training points. Figure 4.11 shows

the observed values (as proportions) of the diagnostic KCI
α (y∗obs) with the mean

values of the corresponding simulated values against different values of (1 − α)

with 95% credible intervals using 80 training points and 1000 validation points.

Multivariate t simulator
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Figure 4.11: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the Multivariate t data against different values of (1 − α) with

95% credible intervals based on 80 training points and 1000 validation points.

The plot indicates an overconfident emulator.

It can be seen that most of the observed values of the coverage interval di-

agnostic are far from their expectations and fifteen of them lie under their error

bars of the 95% credible intervals, indicating the overconfidence of the emulator.

Now, for the Method 1, we used a sample of 80 points to be validation points
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and so we have 80 credible intervals for the m = 80 validation outputs. For the

Method 2, we have 80 credible intervals for the n = 80 training outputs. Figure

4.12 shows the observed values (as proportions) of the coverage interval diagnostic

and the mean values of the corresponding simulated values against different values

of (1− α) with 95% credible intervals based on 80 training outputs.

Method 1: separate validation set
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Method 2: cross-validation
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Figure 4.12: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the Multivariate t data against different values of (1 − α) with

95% credible intervals based on 80 training points and 80 validation points (for

Method 1). The Method 1 plot indicates an overconfident emulator whereas the

Method 2 plot indicates the Gaussian process assumption is valid.

For Method 1, there are 11 from 19 of the observed coverage interval diagnostic

values lying outside the 95% credible intervals. We repeated these process with

many different samples of size 80 and always obtained the same result, indicating
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that the emulator is overconfident. The observed values of the coverage interval

diagnostic for Method 2 are close to their expectations and all of them lie in-

side their corresponding 95% credible intervals. This suggests that the Gaussian

process assumption is valid.

It can be concluded that the coverage interval diagnostic using a separate

validation set was successful in detecting the behaviour of the data whose dis-

tribution has heavy tails and has a different properties to that of a Gaussian

process. The coverage interval diagnostic showed that the emulator for the mul-

tivariate Student-t data is overconfident using different size of validation sets.

Hence, the Gaussian process emulator is not appropriate for data generated from

a multivariate Student-t distribution. For the cross-validation method, however,

the coverage interval diagnostic failed in detecting that the data have a different

properties to that of a Gaussian process. This suggests that the cross-validation

method for the coverage interval diagnostic is unreliable as it is not sensitive to

data that have a different properties to that of a Gaussian process.

We also applied the QQ-plot on the emulator of the Multivariate t data.

Figure 4.13 presents the QQ-plot of the pivoted Cholesky errors with 95% credible

intervals.

Figure 4.13 (a) shows the QQ-plots with 95% credible interval of the pivoted

Cholesky errors with 40 validation points. It can be shown that most of the

points cluster around the y = x line and all the points lie inside the 95% credible

interval. The QQ-plots may suggest that the Gaussian process assumption is

suitable for building the emulator for the Multivariate t data. Figure 4.13 (b)

shows the QQ-plots with 95% credible interval of the pivoted Cholesky errors

with 80 validation points. It can be shown that most of the points cluster around

the y = x line and lie inside the 95% credible interval. However, several points
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lie outside the 95% credible interval that are not informative. The QQ-plots

may suggest that the Gaussian process assumption is suitable for building the

emulator for the Multivariate t data and they did not detect that the data have

heavy tails and comes from a multivariate Student-t distribution.
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Figure 4.13: The QQ-plot with 95% credible interval, obtained using the car

package in R, of the pivoted Cholesky errors for the Multivariate t data (a) with

40 training points and 40 validation points (b) with 80 training points and 80

validation points. Plot (a) shows that all the points lie inside the 95% credible

intervals whereas plot (b) shows that several points lie outside the 95% credible

intervals.

Figure 4.14 presents the QQ-plot of the pivoted Cholesky errors with 95%

credible intervals using all the 1000 of the X2 inputs as validation points. Figure

4.14 (a) shows the QQ-plots with 95% credible interval of the pivoted Cholesky
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errors based on 40 training points and 1000 validation points. It can be shown

that most of the points cluster around the y = x line, but many points lie

outside the 95% credible interval. Figure 4.14 (b) shows the QQ-plots with 95%

credible interval of the pivoted Cholesky errors based on 80 training points and

1000 validation points. The points also cluster around the y = x line with many

points lie outside the 95% credible interval. The points that lie outside the 95%

credible interval are not informative and some of the are very extreme.
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Figure 4.14: The QQ-plot with 95% credible interval, obtained using the car

package in R, of the pivoted Cholesky errors for the Multivariate t data (a) with

40 training points and 1000 validation points (b) with 80 training points and 1000

validation points. The plots show that many points lie outside the 95% credible

intervals.
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4.8 Nonstationary variance simulator (NSV)

The aim of this example is to investigate the performance of the coverage interval

diagnostic with data that have a nonstationary variance. We generated 40 train-

ing inputs in the space [−1, 1]8 using a LHD, denoted by X1 = (x1, . . . ,x40),

where xi is a vector of eight inputs. We also generated 1000 inputs in the space

[−1, 1]8 using a LHD, denoted by X2 = (x41, . . . ,x1040).

Assuming values of the parameters β = (5, 10.5, 21.2, 9.4, 0.2, 15, 8, 0.2, 1.8)

and δ = (1.8, 31.23, 2.26, 10.09, 2.04, 0.21, 1.05, 1.4), the Gaussian process was

specified with a linear mean function, equation (2.3.1), with h(x)T = (1,xT ) and

the covariance matrix, V = σ2C(x,x′), with the squared exponential correlation

function C(x,x′) given in equation (2.3.4). First, we calculated the mean vector

M = h(x)Tβ and the correlation matrix, C = C(x,x′).

M =

h(X1)Tβ

h(X2)Tβ

 , (4.8.1)

C =

C(X1,X1) C(X1,X2)

C(X2,X1) C(X2,X2)

 . (4.8.2)

Then, the variance was chosen to be a nonstationary where we first chose a

function of the inputs defined by

g(xi) = b0 + b1x1 + . . .+ b8x8, (4.8.3)

where b0 = 0.3, b1 = 0.4, b2 = 0.2, b3 = 0.01, b4 = 0.13, b5 = 0.01, b6 = 0.03, b7 =

0.8, b8 = 0.12. Then, a matrix Σ was obtained by

Σ =


g2(x1) g(x1)g(x2) · · · g(x1)g(x80)

g(x2)g(x1) g2(x2) · · · g(x2)g(x80)

...
...

. . .
...

g(x80)g(x1) g(x80)g(x2) · · · g2(x80)


. (4.8.4)
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The choice of equation (4.8.3) results in standard deviations that vary by a factor

of 2 over the input space. To obtain the variance matrix, we multiplied the matrix

Σ by the matrix C element by element, Vij = Σij×Cij . Then, a 1040×1 vector

of ‘simulator outputs’, Y = (y1, . . . , y1040), was generated from the multivariate

normal distribution with mean M and covariance matrix V

y ∼ N80(M,V ). (4.8.5)

Thus, y = (y1, . . . , y40) are the simulated outputs at the training inputs and

y41, . . . , y1040 are the simulated outputs at the 1000 inputs.

4.8.1 Building a Gaussian process emulator

After obtaining the 40 training outputs from the multivariate normal distribution,

a Gaussian process emulator was derived using a linear mean, equation (2.3.1),

with h(x)T = (1,xT ) and the covariance matrix, V = σ2C(x,x′), with the

squared exponential correlation function C(x,x′) given in equation (2.3.4).

In order to show the “true validation result” for the emulator of the NSV

simulator, the coverage interval diagnostic was applied using all the 1000 of the

X2 inputs as validation points. First, the (1 − α)100% credible intervals were

calculated for the ‘simulated output’. Then, we calculated the observed values of

the coverage interval diagnostic, equation (4.2.3), with different values of α .

The simulation-based method was used to obtain the distribution of KCI
α (·).

We sampled 1000 vectors of 1000 validation outputs from the multivariate

Student-t distribution with 31 degrees of freedom, the posterior mean, E[y∗|y, δ] ,

and the posterior variance, V [y∗|y, δ] , of the emulator. Then, simulated val-

ues, KCI
α (y∗sim), were obtained according to Algorithm 1 with different values



126

of α . Figure 4.15 shows the observed values (as proportions) of the diagnostics

KCI
α (y∗obs) with the mean values of the corresponding simulated values against

different values of (1 − α) with 95% credible intervals using 40 training points

and 1000 validation points.

Nonstationary variance simulator
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Figure 4.15: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the NSV simulator against different values of (1− α) with 95%

credible intervals based on 40 training points and 1000 validation points. The

plot shows an underconfident emulator.

It can be seen that 16 observed values from 19 of the coverage interval di-

agnostic lie above their error bars of the 95% credible intervals, indicating that

the emulator is underconfident. Different samples of size 1040 did not always

indicate underconfident emulators. However, we aim in this example to obtain a

dataset where the Gaussian process emulator is underconfident and Figure 4.15
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represents a dataset with the desired properties.

A small set of validation points and the cross-validation method were used

then to investigate weather we can detect the “true validation result”. Hence, we

considered the two following methods as in the previous section

Method 1: Choosing a random sample of size 40 from the 1000 inputs as val-

idation inputs. We will denote to the validation inputs by x∗1, . . . ,x
∗
40 to be

distinct from the training inputs and so their simulated outputs will be denoted

by y∗ = (y∗1, . . . , y
∗
40).

Method 2: Performing the cross-validation procedure with the first slice to de-

rive the posterior distribution of each output value, yi = f(xi) given the other

39 output values, y−i .

Then, we applied the coverage interval diagnostic on the emulator of the NSV

simulator for these two methods. We first calculated the (1 − α)100% credible

intervals for each ‘simulated output’. We then calculated the observed coverage

interval diagnostic values for the two methods, equations (4.2.3) and (4.3.2),

with different values of α . The simulation-based method was used to obtain the

reference distributions of KCI
α (·) and KCICV

α (·). For Method 1, we sampled 1000

vectors of 40 validation outputs from the multivariate Student-t distribution with

31 degrees of freedom, the posterior mean, E[y∗|y, δ] , and the posterior variance,

V [y∗|y, δ] , of the emulator. Then, simulated values, KCI
α (y∗sim), were obtained

according to Algorithm 1 with different values of α .

For Method 2, we first sampled 1000 vectors of 40 ‘training’ outputs from

the multivariate normal distribution with a prior mean and a prior covariance.

We used β = β̂, σ2 = σ̂2 and δ = δ̂ from the posterior emulator in the prior

mean and in the prior covariance. Then, we obtained simulated values of the

coverage interval diagnostic, KCICV
α (ysim), according to Algorithm 2. Figure



128

4.16 shows the observed values (as proportions) of the diagnostics KCI
α (y∗obs) and

KCICV
α (yobs) with the mean values of the corresponding simulated values against

different values of (1−α) with 95% credible intervals. We used the 2.5% sample

quantile as the lower bound of the 95% credible intervals and the 97.5% sample

quantile as the upper bound of the 95% credible intervals.

Method 1: separate validation set
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Method 2: cross-validation
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Figure 4.16: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the NSV simulator against different values of (1− α) with 95%

credible intervals based on 40 training points and 40 validation points (for Method

1). The plots indicates underconfident emulators.

It can be seen that 7 from 19 observed coverage interval diagnostic values with

separate validation points lie outside the 95% credible intervals (above the error

bars). This indicates that the emulator is underconfident. For Method 2, it can
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be seen that 5 observed diagnostic values, KCICV
α (yobs), lie above the error bars

of the 95% credible intervals. This also suggests that the cross-validation method

detected the underconfidence of the Gaussian process emulator.

We then increased the number of the training inputs to be 80, X1 =

(x1, . . . ,x80). We also used a 1000 points as validation points in order to show

the “true validation result” of the coverage interval diagnostic with 80 training

points. Figure 4.17 shows the observed values (as proportions) of the diagnostic

KCI
α (y∗obs) with the mean values of the corresponding simulated values against

different values of (1− α) with 95% credible intervals.

Nonstationary variance simulator
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Figure 4.17: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the NSV simulator against different values of (1− α) with 95%

credible intervals based on 80 training points and 1000 validation points. The

plot indicates an underconfident emulator.
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It can be seen that most of the observed coverage interval diagnostic values are

far from their expectations and sixteen from nineteen lie above their error bars

of the 95% credible intervals, indicating the underconfidence of the emulator.

Now, for the Method 1, we used a sample of 80 points to be validation points

and so we have 80 credible intervals for these validation outputs. For the Method

2, we have 80 credible intervals for the n = 80 training outputs. Figure 4.18

shows the observed values (as proportions) of the coverage interval diagnostic and

the mean values of the corresponding simulated values against different values of

(1− α) with 95% credible intervals based on 80 training outputs.

Method 1: separate validation set
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Method 2: cross-validation
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Figure 4.18: The observed values of the coverage interval diagnostic, as red points,

and the mean values of the corresponding simulated values, as black points, for

the emulator of the NSV simulator against different values of (1− α) with 95%

credible intervals based on 80 training outputs and 80 validation points. The

plots indicate underconfident emulators.
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For Method 1, there are 11 from 19 of the observed coverage interval diagnostic

values lying outside the 95% credible intervals. There are 15 observed values of

the coverage interval diagnostic for Method 2 lie above the 95% credible intervals.

The two plots suggests that the Gaussian process emulator is underconfident.

It can be concluded that the coverage interval diagnostic using separate val-

idation set and the cross-validation method were successful in detecting the be-

haviour of the data. The coverage interval diagnostic using the two methods

showed that the emulator for the NSV simulator is underconfident.
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Figure 4.19: The QQ-plot with 95% credible interval, obtained using the car

package in R, of the pivoted Cholesky errors for the emulator of the NSV simulator

(a) with 40 training points and 40 validation points (b) with 80 training points

and 80 validation points. The plots show that all the points lie inside the 95%

credible intervals.
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We also applied the QQ-plot on the emulator of the NSV simulator. Figure

4.19 (a) and (b) present the QQ-plots of the pivoted Cholesky errors with 95%

credible intervals using 40 and 80 validation points. It can be shown that all

the points cluster around the y = x line and all of them lie inside the 95%

credible interval. The QQ-plots may suggest that the Gaussian process emulator

is overconfident since the points are around a line with slope greater than one.
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Figure 4.20: The QQ-plot with 95% credible interval, obtained using the car

package in R, of the pivoted Cholesky errors for the emulator of the NSV simulator

(a) based on 40 training points and 1000 validation points (b) based on 80 training

points and 1000 validation points. The plots show that many points lie outside

the 95% credible intervals.

Using 1000 validation points, Figure 4.20 (a) and (b) present the QQ-plot

of the pivoted Cholesky errors with 95% credible intervals based on 40 and 80
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training points. It can be shown that many points do not cluster around the

y = x line and lie outside the 95% credible interval. The points that lie outside

the 95% credible interval are not informative and some of them are extreme.

4.9 Conclusion

In this chapter, we have developed the coverage interval diagnostic for check-

ing the Gaussian process assumption of Gaussian process emulators. We have

presented the procedure of simulation-based approach for generating samples

from the distribution of diagnostics using separate validation sets and the cross-

validation method. We have applied the coverage interval diagnostic on different

examples using both separate validation sets and the cross-validation method. It

has been shown how the coverage interval diagnostic using separate validation

sets can detect the data that have a different properties to that of a Gaussian

process.

However, the coverage interval diagnostic with the cross-validation method

can be less reliable. This is because it was not successful in detecting that

the Gaussian process emulator is not appropriate for data from a multivariate

Student-t distribution as it have heavy tails and have a different properties to

that of a Gaussian process. Hence, we recommend to use the coverage interval

diagnostic to investigate the Gaussian process assumption in building Gaussian

process emulators using separate validation sets as it is more reliable than with

the cross-validation method.
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4.A Appendix A

4.A.1 Using simulation to estimate the distribution of

KCICV
α (·)

In this appendix, we use simulation to estimate the distribution of the coverage

interval diagnostic, KCICV
α (·), using the cross-validation method when f(·) is

a sample from a Gaussian process. We want to show that KCICV
α (·) has the

same distribution for any values of β and σ2 . Suppose we a have a vector,

y ∼ Nn(Hβ, σ2A). For i = 1, . . . , n , suppose that y−i are all the simulated

outputs except the observation yi = f(xi). We derive the posterior distribution

for the simulated output yi = f(xi) conditional on the other y−i simulated

outputs which is a Student-t given by equation (3.4.4).

Then, we can obtain n credible intervals for the n output values, y
(Lα,−i(x1), Uα,−i(x1))

.

.

(Lα,−i(xn), Uα,−i(xn))


,

where

Lα,−i(xi) = E[yi|y−i, δ]− tn−q−1;α
2

√
V [yi|y−i, δ]

Uα,−i(xi) = E[yi|y−i, δ] + tn−q−1;α
2

√
V [yi|y−i, δ]

with

E[yi|y−i, δ] = h(xi)
T β̂ + t(xi)

TA−1
−i (y−i −H−iβ̂),

V [yi|y−i, δ] = σ̂2
[
C(xi,x

′
i; δ)− t(xi)

TA−1
−i t(x′i)

+ (h(xi)− t(xi)
TA−1
−iH−i)(H

T
−iA

−1
−iH−i)

−1(h(x′i)− t(x′i)
TA−1
−iH−i)

T
]
.
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Now suppose we have a different distribution ỹ ∼ Nn(H(β + α), τ 2A), i.e.

we will use KCICV
α (·) with different mean and variance (but not correlation)

parameters. This can be achieved by a transformation

ỹ = ay + b

with a = τ
σ

and b = − τ
σ
Hβ + H(β + α), so that E[ỹ] = H(β + α) and

Var[ỹ] = τ 2A . We now obtain the posterior distribution for the simulated output

ỹi conditional on the other ỹ−i which is

ỹi|ỹ−i ∼ Student-t(n− q − 1, m̃i(x), Ṽi(x,x))

with

E[ỹi|ỹ−i, δ] = h(xi)
T ˆ̃β + t(xi)

TA−1
−i (ỹ−i −H−i

ˆ̃β),

V [ỹi|ỹ−i, δ] = ˆ̃σ2
[
C(xi,x

′
i; δ)− t(xi)

TA−1
−i t(x′i)

+ (h(xi)− t(xi)
TA−1
−iH−i)(H

T
−iA

−1
−iH−i)

−1(h(x′i)− t(x′i)
TA−1
−iH−i)

T
]
.

where

ˆ̃β = (HT
−iA

−1
−iH−i)

−1HT
−iA

−1
−i ỹ−i

= (HT
−iA

−1
−iH−i)

−1HT
−iA

−1
−i (

τ

σ
y−i −

τ

σ
H−iβ +H−iβ +H−iα)

=
τ

σ
β̂ − τ

σ
β + β + α.

and

ˆ̃σ2 =
ỹT−i(A

−1
−i − A−1

−iH−i(H
T
−iA

−1
−iH−i)

−1HT
−iA

−1
−i )ỹ−i

n− q − 2

(n− q − 2)ˆ̃σ2 = ỹT−i(A
−1
−i − A−1

−iH(HT
−iA

−1
−iH−i)

−1HT
−iA

−1
−i )ỹ−i

= (
τ

σ
y−i −

τ

σ
H−iβ +H−iβ +H−iα)T (A−1

−i − A−1
−iH−i(H

T
−iA

−1
−iH−i)

−1HT
−iA

−1
−i )

× (
τ

σ
y−i −

τ

σ
H−iβ +H−iβ +H−iα).
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After some algebra, we can obtain

ˆ̃σ2 = (
τ

σ
)2 yT−i(A

−1
−i − A−1

−iH−i(H
T
−iA

−1
−iH−i)

−1HT
−iA

−1
−i )y−i

n− q − 2

= (
τ

σ
)2σ̂2.

Thus, the posterior mean, E[ỹi|ỹ−i, δ] , and the posterior variance, V [ỹi|ỹ−i, δ] ,

can be written as follows

E[ỹi|ỹ−i, δ] = h(xi)
T ˆ̃β + t(xi)

TA−1
−i (ỹ−i −H−i

ˆ̃β),

= h(xi)
T (
τ

σ
β̂ − τ

σ
β + β + α)

+ t(xi)
TA−1
−i

( τ
σ

y−i −
τ

σ
H−iβ +H−iβ +H−iα

− τ

σ
H−iβ̂ +

τ

σ
H−iβ −H−iβ −H−iα

)
= h(xi)

T (
τ

σ
β̂ − τ

σ
β + β + α) +

τ

σ
t(xi)

TA−1
−i (y−i −H−iβ̂)

=
τ

σ
h(xi)

T β̂ + h(xi)
T ((1− τ

σ
)β + α) +

τ

σ
t(xi)

TA−1
−i (y−i −H−iβ̂)

=
τ

σ
E[yi|y−i, δ] + h(xi)

T ((1− τ

σ
)β + α).

=
τ

σ
(E[yi|y−i, δ]− h(xi)

Tβ) + h(xi)
T (β + α).

= aE[yi|y−i, δ] + b.

and

V [ỹi|ỹ−i, δ] = ˆ̃σ2
[
C(xi,x

′
i; δ)− t(xi)

TA−1
−i t(x′i)

+ (h(xi)− t(xi)
TA−1
−iH−i)(H

T
−iA

−1
−iH−i)

−1(h(x′i)− t(x′i)
TA−1
−iH−i)

T
]
.

= (
τ

σ
)2σ̂2

[
C(xi,x

′
i; δ)− t(xi)

TA−1
−i t(x′i)

+ (h(xi)− t(xi)
TA−1
−iH−i)(H

T
−iA

−1
−iH−i)

−1(h(x′i)− t(x′−i)
TA−1
−iH−i)

T
]
.

= a2V [yi|y−i, δ].

Hence, ỹi lies inside its credible interval if and only if yi lies inside its credible

interval

Lα,−i(xi) < yi < Uα,−i(xi) ⇐⇒ L̃α,−i(xi) < ỹi < Ũα,−i(xi).
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This means that, for the cross-validation method, the distribution of the coverage

interval diagnostic, KCICV
α (·) does not change if different values of β and σ2 are

used.



Chapter 5

Diagnostics for advanced

Gaussian process emulators

5.1 Introduction

In this chapter, we consider diagnostics for more complex emulators than we have

considered so far. In particular, we consider emulators that can handle nonsta-

tionary covariance. The stationary assumption, equation (2.3.7), of the covari-

ance function for building Gaussian process emulators has been assumed for a

theoretical convenience rather than for representing reality. In practice, however,

this assumption can be easily challenged. Poor predictions or poor quantification

of uncertainty may be obtained if the stationary assumption deviates from the

truth. On the other hand, fitting Gaussian process emulators with nonstationary

correlation functions can be difficult for high-dimensional functions and may not

be computationally tractable.

We consider two extensions of Gaussian process emulators for estimating non-

138



CHAPTER 5. DIAGNOSTICS FOR ADVANCED GAUSSIAN
PROCESS EMULATORS 139

stationary functions. The first one is given by Gramacy and Lee (2012) who

present treed Gaussian process models that are based on the idea of partitioning

the input space into regions. Then, a stationary Gaussian process emulator is

fitted within each region independently. The second extension is given by Ba and

Joseph (2012) who develop composite Gaussian process models. The composite

Gaussian process models can be constructed as sum of two Gaussian processes

with a variance being a function of inputs. We selected these two models as they

avoid using complex nonstationary covariance functions and avoid including any

extra ‘input’ variables. Ba and Joseph (2012) validated their composite Gaus-

sian process models using the root mean squared error. Hence, we investigate

the development of diagnostic methods that consider uncertainty in the emulator

predictions for these two complex emulators.

There are other works for nonstationary modeling but not considered in this

chapter. Montagna and Tokdar (2016) propose a nonstationary Gaussian process

emulator that is based on two stationary Gaussian processes, one nested into the

other. The nonstationarity is achieved by adding an extra latent input, inferred

from the input variables, into the input space. This latent input can indicates

regions of the input space that have abrupt changes of the simulator outputs and

improves inadequacies in the fit. Xiong et al. (2007) propose a nonlinear mapping

approach based on density functions to represent the structure of a nonstationary

covariance function.

In Section 5.2, we review treed Gaussian process (TGP) emulators for estimat-

ing discontinuous and nonstationary functions. In Section 5.3 we review compos-

ite Gaussian process (CGP) emulators for dealing with nonstationary functions.

In Section 5.4, we present the procedure of calculating the coverage interval diag-

nostic for TGP and CGP emulators. In Section 5.5 we examine the performance
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of diagnostic methods for TGP and CGP emulators with an illustrative example.

The conclusion is provided in Section 5.6.

5.2 Treed Gaussian process emulators

In this section, we review treed Gaussian process (TGP) models, introduced by

Gramacy and Lee (2012), which can be used for emulating discontinuous and

nonstationary models. TGP emulators are based on the idea of partitioning the

space of the inputs into R regions, {rν}Rν=1 . Then, a stationary Gaussian process

emulator is fitted for data within each region independently. The aim of this

approach is to split the input space into small partitions that lead to a simple

overall model. This partitioning can help with dealing with nonstationary models

as well as reducing the computational demands by fitting models to fewer points.

The TGP emulator is flexible in that it can be smooth in a part of the input

space and nonsmooth in another part. The TGP emulator makes binary splits

in the input space on the value of a single input, for example, x1 > 0.6. These

partitions are recursive in that each new region is a subregion of a previous

region. For example, the input space may be divided into two halves by the

midpoint. Then, the space above (or below) the midpoint is divided by the second

partition and so forth. An independent stationary Gaussian process emulator is

then applied in each of the R regions.

5.2.1 Constructing TGP emulators

In order to construct the TGP emulator, a tree T divides the space of an input

into R partitions, {rν}Rν=1 . Each of these R partitions includes training inputs,
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Xν , and evaluations yν of simulator outputs at these inputs. Following the same

procedure for representing uncertainty about the simulator by equation (2.3.14),

uncertainty about yν is described by a stationary Gaussian process with a linear

mean function for each region, rν , separately. However, the distributions of βν

and σ2
ν are different from those in Section 2.3. The distributions of βν and σ2

ν

depend on other hyperparameters as follows

yν |βν , σ2
ν , δν ∼ Nnν (Hνβν , σ

2
νAν),

β0 ∼ N(µ,B),

βν |σ2
ν , τ

2
ν ,W,β0 ∼ N(β0, σ

2
ντ

2
νW),

τ 2
ν ∼ Inv-gamma

(ατ
2
,
qτ
2

)
, (5.2.1)

σ2
ν ∼ Inv-gamma

(ασ
2
,
qσ
2

)
,

W−1 ∼ Wishart((ρV)−1, ρ),

where Hν = (1,Xν) and Aν = Cν(X,X
′, δν) is the correlation between the sim-

ulator training outputs in the rν region. The unknown coefficients parameters,

βν , are believed to have a normal distribution with a common mean β0 , common

correlation function, W and a specific variance σ2
ντ

2
ν . Each of these hyperparam-

eters follows a distribution, as shown in (5.2.1), where σ2
ν is the overall variance

in the rν region, σ2
ντ

2
ν is the variance for βν and W is a p × p matrix. The

hyperparameters µ,B,V, ρ, ατ , qτ , ασ and qσ are assumed to be known. We can

see that the hyperparameters σ2
ν and τ 2

ν do not depend on the correlation length

parameters.

The correlation function structure is slightly different from that in Section 2.3.

The correlation function for the TGP emulator is considered with a nugget param-

eter, Cν(x,x
′) = Cν(x,x

′; δ) + gνdj,k , where d·,· represents the Kronecker delta

function. When the computer model has a numerical error, the nugget parame-
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ter, gν > 0, can be included to introduce a measurement error in the stochastic

process. Including a nugget parameter to the correlation function makes the

correlation function numerically more stable and prevents the correlation matrix

from becoming singular. Moreover, without including a nugget parameter, Gra-

macy and Lee (2012) argue that the Gaussian process emulator may not provide

accurate results if the model assumptions are not satisfied. However, including a

positive nugget leads to extra variance around the design points.

Gramacy and Lee (2012) consider the separable power exponential correlation

function given by equation (2.3.5) or the isotropic power exponential correlation

function

Cν(x,x
′; δ) = exp

{
−‖xi − x′i‖γ

δ

}
, (5.2.2)

where δ > 0 and γ ∈ (0, 2].

A prior for gν is proposed to be Exp(λ), whereas a prior for δ is chosen to be

p(δ, g) = p(δ)× p(g) (5.2.3)

= p(g)× 1

2
[Gamma(δ|a = 1, b = 20) (5.2.4)

+ Gamma(δ|a = 10, b = 10)].

This prior function provides equal mass for δ that represents a population for

Gaussian process parameterizations for nonsmooth surfaces and separate surfaces

for smooth or approximately linear.

A prior distribution of a tree is specified through a tree-generating process.

The process starts with a null tree and assumes all data in one region. Then, a

leaf node, η ∈ T , that represents an input space region, splits with probability

a(1 + qη)
b , where qη is the depth of the leaf node. The parameters a and b are

chosen to give a suitable size of trees. Gramacy and Lee (2012) used a = 0.5 and

b = 2 and they found that they work well in practice. The prior distribution for



CHAPTER 5. DIAGNOSTICS FOR ADVANCED GAUSSIAN
PROCESS EMULATORS 143

the splitting process includes selecting the splitting dimension, u , from a discrete

uniform distribution. The split location, s , is then selected uniformly from a

subset of the locations in the u− th dimension.

5.2.2 Estimating the parameters

The values of the parameters θν = {β, σ2, τ 2, δ}ν are obtained using the data

{Xν ,yν} , for ν = 1, . . . , R . The full set of parameters, θ = θ0

⋃R
ν θν , will be

conditional on the tree T , where θ0 = {W,β0, ξ} , and ξ is a known parameter

that can be given a prior distribution similar to how a prior is specified for β0 .

Gramacy and Lee (2012) used an MCMC algorithm to obtain samples from the

posterior distribution of θ by first drawing from θν |θ0 for ν1, . . . , νR . Then, θ0

is drawn as θ0|
⋃R
ν θν .

5.2.3 Predictions of TGP emulators

The emulator predictions are conditional on the structure of the tree and they

are averaged over the posterior distribution of (T ,θ) to obtain full accounting

of uncertainty. The posterior distribution of f(·) in the rν region conditional

on θ and T follows a normal distribution with a posterior mean and a posterior

variance given by

mν(x) = h(x)T β̃ν + tν(x)TA−1
ν (yν −Hνβ̃ν), (5.2.5)

Vν(x,x
′) = σ2

ν

[
K(x,x′)− qν(x)TQ−1

ν qν(x)
]
, (5.2.6)



144

where

h(x) = (1,x), (5.2.7)

tν(x) =
(
Cν(x,x1), . . . ,Cν(x,xnν )

)T
,

β̃ν = Vβ̃ν

(
HT
ν A
−1
ν yν + W−1β0/τ

2
ν

)
,

Vβ̃ν
=

(
HT
ν A
−1
ν Hν + W−1/τ 2

ν

)−1

,

Q−1
ν =

(
Aν + τ 2

νHνWHT
ν

)−1

,

qν(x) = tν(x) + τ 2
νHνWh(x),

K(x,x′) = Cν(x,x
′; δν) + τ 2

νh(x)TWh(x),

where h(x) is the regression functions in the ν partition just like the regression

functions in equation (2.3.1). The tν(x) in the ν partition is the same as t(x)

in Section 2.3 but with a nugget parameter. The parameter β̃ν depends also on

δ and yν but now it also depends on some other parameters, β0 and τ 2
ν , and it

has different structure from β̂ in (2.3.22). Moreover, unlike C(x,x′; δ), t(x) and

A−1 in posterior variance, equation (2.3.29), the terms K(x,x′),qν(x) and Q−1
ν

have an extra term as shown in (5.2.7).

Conditional on a tree, T , the posterior distribution of f(·) with the posterior

mean and the posterior variance, equations (5.2.5) and (5.2.6), is discontinuous

across the boundaries of the tree partitions. Also, in the posterior for the tree, T ,

uncertainty is higher near boundaries than in other parts. However, samples from

the joint posterior distribution of (T ,θ ), can be obtained. The average of these

samples may smooth out near the boundaries of the partition. The TGP model

has the ability to retain the flexibility that is necessary to model discontinuities

when the data indicate a nonsmooth process.

Integrating out the dependence on the tree can be achieved using MCMC. The

TGP emulators are implemented using an R package, called tgp. A description of
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the tgp package with examples is provided by Gramacy (2007). Estimates of the

parameters of the TGP emulators and integrating out the dependence on the tree

require using MCMC algorithms. This makes the TGP emulators computational

more expensive to run than the stationary Gaussian process emulator that is

described in Section 2.3.

5.2.4 One-dimensional synthetic example

We illustrate the TGP emulator with a one-dimensional example. Consider a

simulator given by

f(x) =


sin( x

10
) + 0.2 cos(x), if x > −2

0.1 + cos(x)
20

, otherwise .

(5.2.8)

-6 -4 -2 0 2 4

-0
.5

-0
.3

-0
.1

0.
1

x

f
(x

)

Figure 5.1: The simulator outputs of model (5.2.8) at some training inputs. The

function is discontinuous at x = −2.
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The inputs were chosen to be in the space [-6, 2], where we generated a

sequence of 7 points to be the training inputs. Figure 5.1 shows the inputs

against the model outputs. The function is discontinuous at x = −2 and shows

different behaviours in different parts of the input space.

We fitted a stationary Gaussian process emulator and a TGP emulator for

the simulator where we used the tgp package to fit the TGP emulator. Figure

5.2 shows the stationary Gaussian process emulator and the TGP emulator with

the 95% credible interval.
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Figure 5.2: Emulator posterior mean with 95% credible intervals against true

simulator outputs for the stationary Gaussian process emulator and the TGP

emulator based on 7 points. The uncertainty is large for both emulators.

The left panel is from the stationary Gaussian process emulator. It is shown

that the uncertainty is large and the emulator is underconfident. The right panel
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is from the TGP emulator. It is shown that the 95% credible interval is also

large and the TGP emulator does not show any partition in the input space. The

posterior mean of the TGP emulator does not pass through the training data and

the uncertainty is not zero at the training data due to including a nugget term

in the correlation function.

Hence, we increased the number of the points in the sequence and we found

that the number of the points in the sequence should be at least 26 in order to

obtain a partition in the input space. Figure 5.3 shows the stationary Gaussian

process emulator and the TGP emulator with the 95% credible interval.
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Figure 5.3: Emulator posterior mean with 95% credible intervals against true

simulator outputs for the stationary Gaussian process emulator and the TGP

emulator based on 26 points. The uncertainty in the TGP emulator is smaller

than that in the stationary Gaussian process emulator.
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The left panel shows that the stationary Gaussian process emulator is a little

underconfident. The right panel shows that the 95% credible interval of the TGP

emulator is smaller than that of the stationary Gaussian process emulator. The

TGP emulator is able to adapt to the behaviour of the data. This is because the

TGP emulator fits a Gaussian process emulator to the points that are less than

x = −2 and fits another Gaussian process emulator to the points that are greater

than x = −2.

The vertical line on the right panel shows a typical treed partition T̂ . Figure

5.4 shows the maximum a posteriori (MAP) tree, T̂ , for the TGP emulator. The

number of the training points in the first partition is 11 with σ̂2
1 = 0.0664 whereas

the number of the training points in the second partition is 15 with σ̂2
2 = 0.0112.

x <> −2

0.0664
11 obs

1

0.0112
15 obs

2

height=2, log(p)=139.306

Figure 5.4: The MAP tree of height 2 with the number of training points, nν ,

and σ2
ν in each partition of the tree. The partition is at x = −2 and the variance

in partition 1 is larger than that in partition 2.
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5.3 Composite Gaussian process emulators

In the nonstationary Gaussian process model literature, most of the studies, such

as Paciorek and Schervish (2003) and Anderes and Stein (2008), concentrate on

deriving complex nonstationary correlation functions, which may become com-

putationally intractable to fit in high dimensional inputs. Ba and Joseph (2012)

developed a nonstationary model, called a composite Gaussian process (CGP)

model, that has the ability to approximate expensive nonstationary simulators.

The CGP model can be developed by two steps. First, the CGP is constructed

as sum of two Gaussian processes, with one thought of as replacing the mean

h(·)Tβ . Second, the variance is defined to be a function of inputs, σ2(x), in or-

der to remedy the change of variability in the output. In this section, we review

the process of constructing CGP models in some detail.

Suppose we have n different training inputs x1, . . . ,xn and evaluations

y = {y1 = f(x1), . . . , yn = f(xn)} of the simulator outputs at these inputs.

A stationary Gaussian process as given by (2.3.11) can be represented by an

equivalent way as follows

y = m(x) + Z(x), (5.3.1)

where m(x) = h(x)Tβ and Z(x) ∼ GP (0, σ2C(·, ·)). The posterior mean is given

by equation (2.3.28). If a constant mean, µ , is used, the stationary Gaussian

process model will be defined as

y = µ+ Z(x). (5.3.2)

The posterior mean in this case is

m1(x) = µ̂+ tT (x)A−1(y− µ̂1), (5.3.3)

where 1 is an n-dimensional vector with all elements 1, and µ̂ =

(1TA−11)−1(1TA−1y).
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The posterior mean in equation (2.3.28) with a linear mean function will give

better predictions than that in (5.3.3) if m(x) = h(x)Tβ is close to the true

global trend. However, the correct function h(x) is rarely known in practice and

the predictions will be worse if the trend is specified wrongly. This is because with

expensive simulators, we only have a limited number of simulator outputs and so

the design points may not cover the input space well. Hence, using inappropriate

mean function, the emulator will capture the variation for points that are close to

training points and will revert to the inappropriate mean function for points that

are far from training points. Moreover, the points that are far from the training

points will have large variances and the points that are close to training points

will have small variances. Hence, assuming a constant overall variance, σ2 , will

not be appropriate.

5.3.1 Improving the mean model

The Gaussian process consists of a linear mean function, m(x) = h(x)Tβ , as the

global trend and a Gaussian process model, Z(x), for local adjustments. Instead

of choosing a parametric form for h(·), Ba and Joseph (2012) propose adding

another Gaussian process as follows

y = Zglobal(x) + Zlocal(x),

Zglobal(·) ∼ GP (µ, τ 2g(·, ·)), (5.3.4)

Zlocal(·) ∼ GP (0, σ2l(·, ·)),

where Zglobal(x) and Zlocal(x) are stationary and independent of each other such

that τ 2 > σ2 and g(x,x′) > l(x,x′) to ensure that the Zglobal(·) process is

smoother. Hence, the Zglobal(·) process, with constant mean µ , variance τ 2 and

correlation function g(·, ·), is smooth and is intended to describe the global trend.
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The Zlocal(·) process, with mean 0, variance σ2 and correlation function l(·, ·),

is for local adjustments. This model can be seen as an extension of the Gaussian

process in equation (5.3.2) that can adapt to more complex models.

Model (5.3.4) can be written as y ∼ GP (µ, τ 2g(·, ·)+σ2l(·, ·)), and it is still a

Gaussian process as it is the sum of two independent Gaussian processes. Using

the same procedure given in Section 2.3, the posterior mean can be written as

m1(x) = µ̂+ (g(x) + λl(x))T (G + λL)−1(y− µ̂1), (5.3.5)

where

µ̂ = (1T (G + λL)−11)−11T (G + λL)−1y,

g(x) = (g(x,x1;θ), . . . , g(x,xn;θ))T ,

l(x) = (l(x,x1;α), . . . , l(x,xn;α))T ,

G =


g(x1,x1;θ) · · · g(x1,xn;θ)

...
. . .

...

g(xn,x1;θ) · · · g(xn,xn;θ)

 ,

L =


l(x1,x1;α) · · · l(x1,xn;α)

...
. . .

...

l(xn,x1;α) · · · l(xn,xn;α)


and λ = σ2/τ 2 represents the ratio of variances. Although the structure of

correlation functions is different, G and L are similar to A in equation (2.3.14)

as well as g(x1,x1;θ) and l(x1,x1;α) are similar as t(x). Here, the correlation

functions is chosen to be squared exponential correlation functions with different

correlation length parameters

g(x,x′;θ) = exp

{
−

p∑
i=1

θi (xi − x′i)
2

}
, (5.3.6)

l(x,x′;α) = exp

{
−

p∑
i=1

αi (xi − x′i)
2

}
, (5.3.7)
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where θ = (θ1, . . . , θp) and α = (α1, . . . , αp) are unknown correlation length

parameters such that, 0 ≤ θ ≤ αl and αl ≤ α . Usually, the bounds αl are

chosen to be moderately large to ensure that Zglobal(x) is smoother than Zlocal(x).

The global trend in model (5.3.4) is expected to capture most of the variation

in the output than the local process, and so λ is restricted to be in the [0, 1]

interval. Model (5.3.5) will be reduced to model (5.3.2) if λ = 0.

5.3.2 Improving both the mean and variance models

Model (5.3.4) can be further relaxed by incorporating a variance model σ2(x)

rather than σ2 as follows:

y = Zglobal(x) + σ(x)Zlocal(x), (5.3.8)

Zglobal(x) ∼ GP (µ, τ 2g(·, ·)),

Zlocal(x) ∼ GP (0, l(·, ·)).

The Zlocal(x), with a variance model σ2(x), quantifies the change of local vari-

ability such that σ(x)Zlocal(x) ∼ GP (0, σ2(x)l(·, ·)). Model (5.3.8) can be written

as y ∼ GP (µ, τ 2g(·, ·) + σ2(x)l(·, ·)) which can be seen as an extension of the

Gaussian process in equation (5.3.2) with a nonstationary covariance function

τ 2g(·, ·) + σ2(x)l(·, ·). This model is a Gaussian process with a constant mean

function and the covariance function is a sum of two covariance functions. The

first covariance function is with constant variance, τ 2 and correlation function,

g(·, ·). The second covariance function is with nonstationary variance, σ2(x) and

correlation function, g(·, ·).

Ba and Joseph (2012) propose to separate the variance σ2(x) as σ2(x) =

σ2υ(x), where σ2 is an unknown variance and υ(x) is a positive function that
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fluctuates around the unit value. In order to obtain values of υ(x) , let Σ =

diag{υ(x1), . . . , υ(xn)} be the standardised local variances at each training point

x1, . . . ,xn . The Σ can be set as Σ = I initially and then values of υ(x) can be

obtain as follows:

• Calculate the squared residuals of the global trend, s2 = (s2
1, . . . , s

2
n)T where

si = yi − mglobal(xi), for i = (1, . . . , n), and mglobal(xi) is given later by

equation (5.3.16).

• A function for υ(x) is proposed as

υ(x) =
gTb (x)s2

gTb (x)1
, (5.3.9)

where gb(x) = (gb(x,x1;θ), . . . , gb(x,xn;θ))T with

gb(x,x
′;θ) = exp

{
−b

p∑
i=1

θi (xi − x′i)
2

}
, (5.3.10)

where b ∈ [0, 1] is an extra bandwidth parameter.

• Evaluate υ̂i = υ(xi) for i = 1, . . . , n and update Σ to Σ = diag{v̂1, . . . , v̂n} .

• Rescaled the standardised local volatilities υ(x) and Σ

Σ←− Σ/

(
1

n

n∑
i=1

υ̂i

)
and υ(x)←− υ(x)/

(
1

n

n∑
i=1

υ̂i

)
. (5.3.11)

The process above is repeated within a loop for few times to stabilize the estimates

of υ(x) and Σ. The bandwidth parameter b in equation (5.3.10) adds additional

flexility in controlling the smoothness of the variance function such that gb(x) −→

1 as b −→ 0, and gb(x) = g(x) if b = 1. When b = 0, the υ(x) will be smoothed

out to a constant function even the global trend is not flat. The benefit of the

standardisation in (5.3.11) is to make the diagonal elements of Σ have unit mean,

that is essential for keeping the ratio λ consistent in the global trend.
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Equation (5.3.10) can be seen as a weighted average of s2 values. This function

is smooth since it is linear in the observations s2
i , and so the variances of any

two points in the global trend will be more related if these points are strongly

correlated.

The posterior CGP emulator

Suppose now we want to know f(·) at a validation input x∗ . According to

the assumptions in model (5.3.8), the f(x∗), and the training outputs, y =

{y1, . . . , yn} , have a multivariate normal distribution

(
f(x∗)

y

)
∼ Nn+1

[(
µ

µ1

)
,

(
τ 2 + σ2υ(x) (τ 2g(x) + σ2υ1/2(x)Σ1/2l(x))T

τ 2g(x) + σ2υ1/2(x)Σ1/2l(x) τ 2G + σ2Σ1/2LΣ1/2

)]
.

(5.3.12)

In order to obtain the posterior distribution of f(·), we can follow the same pro-

cedure that is given in Section 2.3 for deriving the posterior emulator. Assuming

a noninformative prior for µ , p(µ) ∝ 1, and integrating µ out, the posterior

distribution of f(·), conditional on τ 2, σ2,θ and α , is a normal distribution with

a posterior mean

m1(x) = µ̂+ (τ 2g(x) + σ2υ1/2(x)Σ1/2l(x))T (τ 2G + σ2Σ1/2LΣ1/2)−1

× (y− µ̂1) (5.3.13)

= µ̂+ q(x)TQ−1(y− µ̂1)

and a posterior variance

V1(x,x) = τ 2
{

1 + λυ(x)− q(x)TQ−1q(x) +
(1− q(x)TQ−11)2

1TQ−11

}
, (5.3.14)
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where

µ̂ = (1TQ−11)−11TQ−1y,

q(x) = g(x) + λυ1/2(x)Σ1/2l(x),

Q = G + λΣ1/2LΣ1/2.

If the function υ(x) degenerates to a constant function, the posterior mean

(5.3.13) will be reduced to the posterior mean in (5.3.5). Unlike the posterior

variance of the stationary Gaussian process emulator, the posterior variance of

the CGP model, equation (5.3.14), depends on the local variability of the Zlocal(x)

model. This can improve the prediction intervals for the CGP model.

The posterior mean, equation (5.3.13), and the posterior variance, equation

(5.3.14), is for one predicted output. However, they can be generalized to be

for a vector of m of predicted outputs and they will be the similar to those in

equations (2.3.28) and (2.3.29) for the stationary Gaussian process emulator in

Chapter 2, but with µ̂,q(x) and Q instead of h(x)T β̂, t(x) and A .

The posterior mean (5.3.13) can be decomposed into two parts:

m1(x) = mglobal(x) +mlocal(x), (5.3.15)

mglobal(x) = µ̂+ gT (x)(G + λΣ1/2LΣ1/2)−1(y− µ̂1), (5.3.16)

mlocal(x) = λυ1/2(x)lT (x)Σ1/2(G + λΣ1/2LΣ1/2)−1(y− µ̂1). (5.3.17)

5.3.3 Estimating the parameters

Ba and Joseph (2012) derive maximum likelihood estimates for µ and τ 2 :

µ̂(λ,θ,α, b) = (1T (G + λΣ1/2LΣ1/2)−11)−1(1T (G + λΣ1/2LΣ1/2)−1y),

τ̂ 2(λ,θ,α, b) =
1

n
(y− µ̂1)T (G + λΣ1/2LΣ1/2)−1(y− µ̂1).
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We can see that µ̂ and τ̂ 2 are similar to β̂ and σ̂2 in equations (2.3.22) and

(2.3.23) but here we have H = 1 and with correlation G + λΣ1/2LΣ1/2 .

The maximum likelihood estimates for (λ,θ,α, b) can be obtained by mini-

mizing the log-likelihood:

φ(λ,θ,α, b) = n log(τ̂ 2(λ,θ,α, b)) + log(det(G + λΣ1/2LΣ1/2)). (5.3.18)

This likelihood function has 2p + 2 unknown parameters, whereas the likeli-

hood of the stationary Gaussian process model in equation (5.3.2) contains only p

unknown parameters. Therefore, estimating the CGP model parameters becomes

more difficult with large input dimension p . Thus, Ba and Joseph (2012) suppose

αj = θj + κ, j = 1, . . . , p, (5.3.19)

which makes the CGP model contains only p+3 unknown parameters (λ,θ, κ, b).

Thus, we can obtain the MLEs by minimizing

φ(λ,θ, κ, b) = n log(τ̂ 2(λ,θ, κ, b)) + log(det(G + λΣ1/2LΣ1/2)), (5.3.20)

under the constraints λ ∈ [0, 1], b ∈ [0, 1], θj ∈ [0, αl] and κ ∈ [αl,∞] for j =

1, . . . , p .

The CGP model with the p+ 3 unknown parameters is still computationally

more expensive than the stationary Gaussian process emulator given by equation

(5.3.2). This is due to adding another Gaussian process model to the Gaussian

process and making the variance to be a function of the inputs.

5.3.4 Example

In this example, we illustrate the difference between the process of building

stationary Gaussian process emulators and CGP emulators. Consider a one-
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dimensional simulator given by

f(x) = exp(− sin(15(x− 0.7)3)) + x.

We chose 8 training inputs in the interval [0, 1], and then we evaluated the

simulator output at these training inputs. In order to construct the station-

ary Gaussian process emulator, we assumed that the prior uncertainty on the

simulator is represented by equation (5.3.1). We used h(x)T = (1,xT ) and

Z(x) ∼ GP (0, σ2C(·, ·)), with the squared exponential correlation function

C(x, x′, δ) given in equation (2.3.4). The correlation length parameters were

estimated by the maximum likelihood and then the stationary Gaussian process

emulator was derived. Figure 5.5 shows the posterior distribution of f(·).

Posterior emulator
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Figure 5.5: The posterior distribution of f(·) for the stationary Gaussian process

emulator. The posterior mean is the blue line and the true simulator is the black

line with the point-wise 95% credible intervals as the dotted lines. The emulator

is overconfident in a part of the input space and underconfident in another part.
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The plot shows the posterior mean, the blue line, and the true simulator, the

black line, with the 95% credible intervals, the dotted lines, for the stationary

Gaussian process emulator. It can be shown that the emulator is overconfident

between around 0 and 0.4 in the nonsmooth part of the input space where the 95%

credible intervals are small and the simulator lies well outside the 95% credible

intervals. Moreover, the emulator is a little underconfident between around 0.4

and 1 in the smooth part of the input space as the 95% credible intervals are

wide and the simulator always lies inside the 95% credible intervals for any input

between around 0.6 and 1.

For the CGP emulator, we assumed that the prior uncertainty on the sim-

ulator is represented by two independent Gaussian processes. The first one is

Zglobal(x) ∼ GP (µ, τ 2g(·, ·)), with constant mean µ and covariance function

τ 2g(·, ·). The second one is Zlocal(x) ∼ GP (0, σ2l(·, ·)), with mean 0 and corre-

lation function σ2l(·, ·). The correlation functions g(x, x′, θ) and l(x, x′, α) were

chosen to be the squared exponential correlation function, equations (5.3.6) and

(5.3.7). We used the maximum likelihood for estimating the correlation length

parameters and then we derived the CGP emulator. Figure 5.6 shows the com-

ponents of the CGP emulator.

The first and the second panels in the first row show prior samples from the

Zglobal(x) and the Zlocal(x) where the samples are smooth. In order to represent

our prior uncertainty about the simulator, we combine the Zglobal(x) and the

Zlocal(x). The last panel in the first row shows the plot of Zglobal(x) + Zlocal(x)

where the function is also smooth.
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0.00 0.25 0.50 0.75 1.00

0

1

2

3

x

E
m

u
la

to
r

C
G

P
ex

p
ec

ta
ti

on

Figure 5.6: Plots of the components of the CGP emulator. The first row shows

plots of Zglobal(x), Zlocal(x) and Zglobal(x) + Zlocal(x). The first and the second

panels in the second row show the blue line as the global posterior mean and

the local posterior mean whereas the black line is the true simulator. The global

posterior mean is close to true simulator in the smooth part, between around 0.4

and 1, of the input space. The shape of the local posterior mean mimics the shape

of the true simulator. The last panel in the second row shows the true simulator,

the black line, and the posterior mean, the blue line, with the point-wise 95%

credible intervals, the dotted lines. The coverage of the 95% credible intervals is

good.
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The first panel in the second row shows that the global posterior mean, the

blue line, is close to the true simulator, the black line, in the smooth part of

the input space, between around 0.4 and 1. The second panel in the second row

shows that the shape of the local posterior mean mimics the shape of the true

simulator in the nonsmooth part and the smooth part. The last panel in the

second row shows that the posterior mean is more closer to the true simulator

than that for stationary Gaussian process emulator in most of the input space.

The 95% credible intervals are now smaller in the smooth part of the input space.

Moreover, the coverage of the 95% credible intervals is good in the nonsmooth

part of the input space. Thus, the performance of the CGP emulator is better

than that of the stationary emulator in that the CGP emulator is able to deal

with behaviour of this nonstationary function.

5.4 The coverage interval diagnostic for TGP

and CGP models

In this section, we consider the coverage interval diagnostic, KCI
α (·), to investigate

whether the Gaussian process assumption is suitable for building TGP and CGP

emulators. In order to calculate the observed values of the coverage interval

diagnostic, we can use the same procedure that is described in Section 4.2.

In order to obtain the reference distribution of KCI
α (·), the simulation-based

method can be used. Suppose we have a TGP emulator or a CGP emulator for

f(·) based on n training points. Suppose also we have a set of m validation

inputs, x∗1, . . . ,x
∗
m . We first simulate outputs from the posterior distribution of

f(·). Then, we calculate the coverage interval diagnostic with different values
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of α between 0.1 and 0.95. The procedure of using simulation-based method to

obtain samples of the diagnostic KCI
α (·) for the TGP model and the CGP model

can be achieved according to the following algorithm.

Algorithm 3 This algorithm generates samples of the coverage interval diagnos-

tic from its reference distribution
Inputs: A TGP or a CGP emulator, p(f(·)|f(x1), . . . , f(xn)).

m validation inputs, x∗1, . . . ,x
∗
m .

1: For i = 1 to m , calculate the (1−α)100% credible intervals for each validation

output based on the posterior mean, E[f(x∗i )|y] , and the posterior variance,

V [f(x∗i )|y] , where the lower and upper bounds of the (1 − α)100% credible

intervals are given by

Lα(x∗i ) = E[f(x∗i )|y]− zα
2

√
V [f(x∗i )|y] (5.4.1)

Uα(x∗i ) = E[f(x∗i )|y] + zα
2

√
V [f(x∗i )|y] (5.4.2)

end for.

2: For j = 1 to J , simulate outputs y∗(j) = {f(j)(x
∗
1), . . . , f(j)(x

∗
m)} from the

multivariate normal distribution with the posterior mean, E[y∗|y] , and the

posterior variance, V [y∗|y] .

3: Calculate the coverage interval diagnostic

KCI
α (y∗(j)) =

m∑
i=1

I
{
Lα(x∗i ) < f(j)(x

∗
i ) < Uα(x∗i )

}
. (5.4.3)

end for.

Output: KCI
α (y∗(i)), . . . , KCI

α (y∗(J)), a sample from the distribution of KCI
α (·)

assuming valid emulator.
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For the TGP emulator, the location of the tree is uncertain where at each iter-

ation, we may have different tree. Thus, it may not be appropriate to sample from

the multivariate normal distribution with the posterior mean, E[y∗|y] , and the

posterior variance, V [y∗|y] , and then calculate the coverage interval diagnostic

based on these samples.

However, we can start with the multivariate normal distribution to be the

approximate distribution of the outputs of the TGP emulator. So, in order to

obtain the distribution of the coverage interval diagnostic for the TGP emulator,

we will approximate the posterior TGP emulator by the multivariate normal

distribution and we will suppose that this approximate distribution is good for

the outputs of the TGP emulator.

If the location of the tree does not change significantly at each iteration,

the normality assumption may be then appropriate for these samples. Thus, we

can calculate the coverage interval diagnostic for these simulated outputs. If the

location of the tree change significantly at each iteration, the multivariate normal

distribution may not be appropriate to sample from it.

Moreover, for the TGP emulator, we can also obtain the observed values of

the coverage interval diagnostic and their reference distribution in each of the tree

partitions. Thus, we can investigate whether the Gaussian process assumption is

suitable for building the stationary Gaussian process emulator in each partition

of the tree, T . Suppose we have mν validation inputs in the rν region, X∗ν , and

evaluations y∗ν of the simulator outputs at these validation inputs. Therefore, we

can obtain mν credible intervals for the validation outputs in each partition, each

of which should have a probability of 1−α of containing the validation outputs,

y∗ν .
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In order to obtain the reference distribution of KCI
α (·) for the Gaussian process

emulator in each of the tree partitions, we can use the simulation-based method.

Suppose we have a stationary Gaussian process emulator in each partition of the

tree based on nν training points. We first simulate outputs from the posterior

distribution of f(·) for each partition. Then, we calculate the coverage interval

diagnostic with different values of α . The procedure of using simulation-based

method to obtain samples of the coverage interval diagnostic, KCI
α (·), for each

partition in the tree can be achieved by using Algorithm 3 but for the Gaussian

process emulator in each of the tree partitions.

5.5 Modified borehole model illustrative exam-

ple

In this section, we consider the stationary Gaussian process, TGP and CGP

emulators for an illustrative simulator: a modification of the borehole model.

Suppose the simulator is given by

f(x) =
2πTu(Hu −Hl)

ln( r
rw

)
(

1 + 2LTu
ln( r

rw
)r2wKw

+ Tu
Tl

) + g(x9), (5.5.1)

where

g(x9) =


sin(x9

10
) + 0.3 sin(x9), if x9 > −2

80 + cos(x9)
20

, otherwise ,

where x = (rw, r, Tu, Hu, Tl, Hl, L,Kw, x9). The nine input variables with their

ranges and units are as follows:

• rw ∈ [0.05, 0.15](m) is the radius of borehole.

• r ∈ [100, 50000](m) is the radius of influence.
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• Tu ∈ [63070, 115600](m2/year) is the transmissivity of upper aquifer.

• Hu ∈ [990, 1110](m) is the potentiometric head of upper aquifer.

• Tl ∈ [63.1, 116](m2/year) is the transmissivity of lower aquifer.

• Hl ∈ [700, 820](m) is the potentiometric head of lower aquifer.

• L ∈ [1120, 1680](m) is the length of borehole.

• Kw ∈ [9855, 12045](m/year) is the hydraulic conductivity of borehole.

• x9 ∈ [−6, 2] is a dummy input to introduce discontinuity.

We generated n = 100 training inputs by a LHD and each input variable was

transformed to be in the interval [−1, 1]9 . Then, we evaluated simulator outputs

of model (5.5.1) at the n = 100 inputs, y = (y1 = f(x1), . . . , y100 = f(x100)).

We then derived the stationary Gaussian process emulator based on the n = 100

inputs using a linear mean with h(x)T = (1,xT ) and the covariance matrix,

V = σ2C(x,x′), with the squared exponential correlation function C(x,x′) given

in equation (2.3.4). We also derived the TGP emulator and the CGP emulator

based on the n = 100 inputs, where we used the tgp package in R for the TGP

emulator. Then, we validated the stationary Gaussian process emulator, the TGP

emulator and the CGP emulator with m = 24 validation inputs, also generated

by a LHD.

For the TGP emulator, Figure 5.7 shows that the MAP tree partitions the

input space at x9 = −0.212121 with height 2. The number of the training points

in the first partition is 40 with σ̂2
1 = 0.0013 whereas the number of the training

points in the second partition is 60 with σ̂2
2 = 0.001.
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x9 <> −0.212121

0.0013
40 obs

1

0.001
60 obs

2

height=2, log(p)=199.712

Figure 5.7: The MAP tree of height 2 with the number of training points, nν , and

σ̂2
ν at each leaf using 100 training points. The partition is at x9 = −0.212121.

5.5.1 The coverage interval diagnostic for the Modified

borehole model

We applied the coverage interval diagnostic on the stationary Gaussian process

emulator, the TGP emulator and the CGP emulator that are built on the modified

borehole model in (5.5.1). We calculated the (1 − α)100% credible intervals for

each validation output. Then, we calculated the observed values of the coverage

interval diagnostic, equation (4.2.3), with different values of, α .

The reference distribution of the coverage interval diagnostic, KCI
α (·), is un-
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known because the values of the terms in the sum, in equation (4.2.3), are not

independent. Hence, to obtain the reference distribution of the coverage interval

diagnostic, KCI
α (·), the simulation-based method was used. For the stationary

Gaussian process emulator, we sampled 1000 vectors of 100 validation outputs

from the multivariate Student-t distribution with 90 degrees of freedom, the pos-

terior mean, E[y∗|y, δ] equation (2.3.28), and the posterior variance, V [y∗|y, δ]

equation (2.3.29). Then, we obtained simulated values of the coverage interval

diagnostic, KCI
α (y∗sim), according to Algorithm 1.

Figure 5.8 shows the observed coverage interval diagnostic values (as propor-

tions) and the mean values of their simulated values against different values of

(1 − α) with 95% credible intervals for the stationary Gaussian process emula-

tor. We used the 2.5% sample quantile as the lower bound of the 95% credible

intervals and the 97.5% sample quantile as the upper bound of the 95% credible

intervals.

It can be seen that all the observed values of the coverage interval diagnostic lie

under their expectations with 5 observed values of the coverage interval diagnostic

lying outside the 95% credible intervals. This suggests that using stationary

Gaussian process emulator for the whole input space may not suitable for the

modified borehole model.



CHAPTER 5. DIAGNOSTICS FOR ADVANCED GAUSSIAN
PROCESS EMULATORS 167
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Figure 5.8: The observed coverage interval diagnostic values as red points and

the mean values of the corresponding simulated values as black points against

different values of (1−α) with 95% credible intervals for the stationary Gaussian

process emulator of the modified borehole model based on 100 training points

and 24 validation points. The plot shows that the emulator is overconfident for

smaller credible intervals.

In order to obtain the reference distribution of the coverage interval diagnostic

for the TGP and the CGP emulators, we sampled 1000 simulated outputs for

each validation input from the multivariate normal distribution with the posterior

mean, E[y∗|y] , and the posterior variance, V [y∗|y] , of the emulators. Then, we

obtained simulated values of coverage interval diagnostic, KCI
α (y∗sim), according

to Algorithm 3. We calculated the simulated values of coverage interval diagnostic

with different values of α . Figure 5.9 shows the observed values (as proportions)

of the coverage interval diagnostic and the mean values of their simulated val-
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ues against different values of (1 − α) with 95% credible intervals for the TGP

emulator and the CGP emulator based on 100 training points.

TGP model
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Figure 5.9: The observed values of the coverage interval diagnostic as red points

and the mean values of the corresponding simulated values as black points against

different values of (1−α) with 95% credible intervals for the TGP and the CGP

emulators of the modified borehole model based on 100 training points and 24

validation points. The plots show that all the observed values lie inside the 95%

credible intervals for both TGP and CGP emulators.

We can see that, for both the TGP emulator and the CGP emulator, most of

the observed values of the coverage interval diagnostic are close to their expecta-

tions. Also, all the observed values of the coverage interval diagnostic, KCI
α (yobs),

lie inside the 95% credible intervals. This indicates that the coverage is reasonable

and the Gaussian process could be a reasonable choice for this data.
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The overall coverage of the input space for the TGP emulator is acceptable.

However, it is not necessary that the coverage is also acceptable in the partitions.

For example, it is possible to obtain an underconfident emulator in one partition

and an overconfident emulator in another partition but the overall coverage is

sensible. Hence, we now investigate coverage properties in each partition of the

input space. We calculated the (1−α)100% credible intervals for each validation

output in each of the tree partitions. In partition 1, there are n1 = 40 training

inputs, X1 = {x1, . . . ,x40} , and m1 = 10 validation inputs, X∗1 = {x∗1, . . . ,x∗10} .

Thus, the training outputs in the first partition are y1 = {y1, . . . , y40} and the

validation outputs are y∗1 = {y∗1, . . . , y∗10} . In partition 2, there are n2 = 60

training inputs, X2 = {x41, . . . ,x100} , and m2 = 14 validation inputs, X∗2 =

{x∗11, . . . ,x
∗
24} . Hence, the training outputs are y2 = {y41, . . . , y100} and the

validation outputs are y∗2 = {y∗11, . . . , y
∗
24} .

According to the TGP emulator, we split the posterior mean into two vectors.

The first vector is m1(X∗1) = {m1(x∗1), . . . ,m1(x∗10)} as the posterior mean of the

partition 1 emulator. The second vector is m2(X∗2) = {m2(x∗11), . . . ,m2(x∗24)} as

the posterior mean of the partition 2 emulator where mν(X
∗
ν), for ν = 1, 2, is

the posterior mean of the emulators in each partition, equation (5.2.5). Also, we

split the posterior covariance matrix of the TGP emulator into two matrices. The

first matrix is

V1(X∗1,X
∗′
1 ) =


V1(x∗1,x

∗
1) · · · V1(x∗1,x

∗
10)

...
. . .

...

V1(x∗10,x
∗
1) · · · V1(x∗10,x

∗
10)



as the posterior covariance matrix of the partition 1 emulator and the second
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matrix is

V2(X∗2,X
∗′
2 ) =


V2(x∗11,x

∗
11) · · · V2(x∗11,x

∗
24)

...
. . .

...

V2(x∗24,x
∗
11) · · · V2(x∗24,x

∗
24)


as the posterior covariance matrix of the partition 2 emulator where Vν(X

∗
ν ,X

∗′
ν ),

for ν = 1, 2, is the posterior covariance of the emulators in each partition, equa-

tion (5.2.6).

Then, we calculated the observed values of the coverage interval diagnostic

with different values of α for the emulator in each partition

KCI
α (y∗ν) =

mν∑
i=1

I {Lα(x∗i ) < f(x∗i ) < Uα(x∗i )} (5.5.2)

for ν = 1, 2. In order to obtain the distribution of the coverage interval diag-

nostic, we sampled 1000 simulated outputs for each validation input from the

multivariate normal distribution with E[y∗ν |yν ] and V [y∗ν |yν ] , where E[y∗ν |yν ]

and V [y∗ν |yν ] , for ν = 1, 2, are the posterior mean and the posterior variance for

each emulator in the partitions. Then, we obtained simulated values of coverage

interval diagnostic for each partition according to Algorithm 3 for the emulator

in each of the tree partitions with different values of α .

Figure 5.10 shows the observed values (as proportions) of the coverage interval

diagnostic and the mean values of their simulated values against different values

of (1−α) with 95% credible intervals for the validation output in each partition.

It can be seen that some observed values of the coverage interval diagnostic,

the red points, for partition 1 are close to their lower bounds of the 95% credible

intervals and not close to their expectations, but all of the observed values lie

inside the 95% credible intervals. For partition 2, although some observed values

of the coverage interval diagnostic are close to their upper bounds of the 95%
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credible intervals and not close to their expectations, all the observed values of

the coverage interval diagnostic lie inside the 95% credible intervals. This suggests

that the Gaussian process assumption is valid for the emulator in partition 1 and

the emulator in partition 2. Also, we can see that the 95% credible intervals for

the observed values of the coverage interval diagnostic for partition 1 are wider

than those for partition 2.
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Figure 5.10: The observed values of the coverage interval diagnostic as red points

and the mean values of the corresponding simulated values as black points against

different values of (1−α) with 95% credible intervals for the emulators in each of

the tree partitions. The emulator in partition 1 is based on 40 training points and

10 validation points whereas the emulator in partition 2 is based on 60 training

points and 14 validation points. The plots show that some point close to their

lower bounds of the 95% credible intervals for partition 1 and some point close

to their upper bounds of the 95% credible intervals for partition 2.
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5.5.2 The plot of pivoted Cholesky errors and the scaled

conditional standard deviations

In this section, we consider the plots of pivoted Cholesky errors against the

pivoting order and the pivoted Cholesky errors against the scaled conditional

standard deviations for the stationary Gaussian process, TGP and the CGP

emulators. We calculated pivoted Cholesky errors by equation (3.4.16) where

PTV [y∗|y, δ]P = RTR . So GPC = PR and P is a permutation matrix.
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Figure 5.11: Plots of the pivoted Cholesky errors against the pivoting order and

the pivoted Cholesky errors against the scaled conditional standard deviations for

the stationary Gaussian process emulator of the modified borehole model based

on 100 training points and 24 validation points. Large conditional standard

deviations are seen in the plot.
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Figure 5.11 shows the plots of the pivoted Cholesky errors against the pivoting

order and the pivoted Cholesky errors against the scaled conditional standard

deviations for the stationary Gaussian process emulator of the modified borehole

model. The posterior mean, E[y∗|y, δ] , and the posterior variance, V [y∗|y, δ] ,

of the stationary Gaussian process emulator are given in equations (2.3.28) and

(2.3.29).

It can be shown that most of the pivoted Cholesky errors are small with only

two errors lying outside the bounds. The scaled conditional standard deviations,

however, can be considered slightly large since most of them are between 0.3 and

0.4.

Figure 5.12 shows the plot of pivoted Cholesky errors against the pivoting or-

der and the plot of pivoted Cholesky errors against the scaled conditional standard

deviations for the TGP and the CGP emulators. The posterior mean, E[y∗|y] ,

and the posterior variance of the TGP emulator obtained using the tgp package.

The posterior mean, E[y∗|y] , and the posterior variance of the CGP emulator

are given in equations (5.3.13) and (5.3.14).

It can be seen that most of the pivoted Cholesky errors for the TGP emulator

are small, but three pivoted Cholesky errors lie outside the bounds. The scaled

conditional standard deviations are small since most of them are close to zero.

The scaled conditional standard deviations are smaller than those from the sta-

tionary Gaussian process emulator. We can also notice that the scaled conditional

standard deviations for partition 1 are separated from the scaled conditional stan-

dard deviations for partition 2 (see the ranges of the scaled conditional standard

deviations for the partitions in Figure 5.13). The uncertainty in partition 2 is

larger than the uncertainty in partition 1 and this may be because there are fewer

design points in partition 1 than in partition 2. This confirms that the plot of
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the pivoted Cholesky errors against the scaled conditional standard deviations is

more informative than the plot of the pivoted Cholesky errors against the pivoting

order.
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Figure 5.12: The plot of the pivoted Cholesky errors, KPC(y∗), against the pivot-

ing order and the plot of the pivoted Cholesky errors against the scaled conditional

standard deviations, KCSD(y∗), for TGP and CGP emulators of model (5.5.1)

based on 100 training points and 24 validation points. The scaled conditional

standard deviations are small.
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For the CGP emulator, it can be shown that most of the pivoted Cholesky

errors are small, but three pivoted Cholesky errors lie outside the bounds. The

scaled conditional standard deviations are small and they are between 0.2 and

0.325, indicating also that the points are close to each other and have almost

the same level of uncertainty. The scaled conditional standard deviations are

also smaller than those from the stationary Gaussian process emulator. We can

also notice that the large pivoted Cholesky errors correspond to small scaled

conditional standard deviations. In addition, the pivoted Cholesky errors decrease

as the scaled conditional standard deviations increase.

We also considered the plot of pivoted Cholesky errors against the pivoting

order and the plot of pivoted Cholesky errors against the scaled conditional stan-

dard deviations for the emulators in each partition of the tree, Figure 5.13.

Most of the pivoted Cholesky errors in partition 1 are very small, but two

pivoted Cholesky errors lie outside the bounds. The scaled conditional standard

deviations are small. We can see that the pivoted Cholesky errors decrease as

the scaled conditional standard deviations increase. For partition 2, most of the

pivoted Cholesky errors are also small with only one pivoted Cholesky error lying

outside the bounds. The scaled conditional standard deviations are also small.

The scaled conditional standard deviations in partition 2 are smaller than those

for partition 1.
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Figure 5.13: The plot of the pivoted Cholesky errors against the pivoting order

and the plot of the pivoted Cholesky errors against the scaled conditional standard

deviations for the emulators in each of the tree partitions. The emulator in

partition 1 is based on 40 training points and 10 validation points whereas the

emulator in partition 2 is based on 60 training points and 14 validation points.

The scaled conditional standard deviations for partition 1 are larger than those

for partition 2.
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5.6 Conclusion

In this chapter, we have reviewed some complex Gaussian process models that can

be used for dealing with nonstationary models. In addition, we have investigated

the performance of diagnostic methods for these advanced emulators. We have

shown how coverage interval diagnostic can detect whether the Gaussian process

assumption is suitable for building both the TGP emulator and the CGP emulator

or not. We have also examined the performance of some diagnostic methods for

TGP and CGP emulators with an illustrative example.

The coverage interval diagnostic measures the coverage properties of (1 −

α)100% posterior credible intervals. Thus, it depends on the validation outputs,

the lower and the upper bounds of the (1 − α)100% posterior credible intervals

for the validation outputs. Moreover, the distribution of the coverage interval

diagnostic based on sampling simulated outputs from the posterior distribution

of f(·) and the coverage interval diagnostic for these samples. Hence, as long as

we can obtain the posterior emulator, calculating the coverage interval diagnostic

and obtaining its distribution will be straightforward with no matter how complex

the emulator is. So the coverage interval diagnostic and its distribution can be

applied for stationary Gaussian process emulator and advanced Gaussian process

emulators.



Chapter 6

Conclusions

In this chapter, the main contributions of this thesis are reviewed. The thesis was

concerned with diagnostic methods for validating Gaussian process emulators. In

Section 6.1, the summary and the main finding of the thesis chapters are reviewed.

Section 6.3 presents a number of recommendations based on the finding of our

results. Section 6.4 presents several possible ideas for the future work.

6.1 Summary of the thesis chapters and key de-

velopments

The present thesis consists of six chapters. In Chapter 1, an introduction to

computer models was given with a number of applications of computer models in

different areas of science. In addition, there was an explanation for the need of

surrogate models for tackling the computationally expensive problem of computer

models.
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In Chapter 2, the concept of Gaussian process emulators was introduced with

literature search for the components of Gaussian process emulators as well as ap-

plications for Gaussian process emulators in different fields. We reviewed several

possible choices for the mean and covariance functions that have been used in

building Gaussian process emulators. Methods that have been used in literature

for estimating the correlation parameters were also reviewed in this chapter. Fi-

nally, we presented several designs for training and validation inputs in building

Gaussian process emulators.

In Chapter 3, the concept of the overconfidence and underconfidence of Gaus-

sian process emulators was explained. The discussions concerned with situa-

tions when assumptions of Gaussian process emulators may not be well specified.

The concept of diagnostics for Gaussian process emulators was presented with

two different methods: separate validation sets and the cross-validation method.

Moreover, we reviewed two kinds of current diagnostics for validating Gaussian

process emulators: simple diagnostics and diagnostics that consider predictions

uncertainty. A modification of an existing diagnostic was developed in order to

make the plot of this diagnostic more informative. It was important to check

the performance of some diagnostic methods for examining assumptions used in

building Gaussian process emulators. Thus, we applied several current simple

diagnostics and diagnostics that consider uncertainty in emulator predictions on

different examples of simulators. The need for more than one diagnostic method

for validating Gaussian process emulators was explained.

The purpose of Chapter 4 was to develop the coverage interval diagnostic

that can be used to examine the Gaussian process assumption in building em-

ulators. This graphical diagnostic method investigated the coverage properties

of (1 − α)100% posterior credible intervals for the validation outputs. It was
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possible to compare the performance of the coverage interval diagnostic with the

QQ-plot and show that the coverage interval diagnostic is more informative. It

was clear that the distribution of the coverage interval diagnostic cannot be found

analytically. Thus, it was therefore necessary to develop a simulation-based pro-

cedure for obtaining the distribution of any diagnostic. The importance of this

method is that it can be used to obtain the reference distribution of diagnos-

tics which cannot be obtained analytically. This simulation-based procedure was

presented to obtain samples of the coverage interval diagnostic using both the

cross-validation method and separate validation set for validating emulators. We

also investigated the performance of our diagnostic with data exhibiting different

properties to that of a Gaussian process.

The final contribution was extending the diagnostic methods for validating

complex Gaussian process emulators, where diagnostics methods were applied

for validating nonstationary Gaussian process emulators. Thus, in Chapter 5, we

reviewed two kinds of complex Gaussian process emulators that can deal with

nonstationary functions. We described the idea of these complex Gaussian pro-

cess models and the process of constructing these emulators. We presented the

procedure of the coverage interval diagnostic and the procedure of the simulation-

based method for obtaining the distribution of the coverage interval diagnostic

for these complex Gaussian process emulators. The investigation of whether

the Gaussian process assumption is suitable in building these complex Gaussian

process emulators was assessed by the coverage interval diagnostic with a nonsta-

tionary simulator. Other diagnostic methods were also applied for these complex

Gaussian process emulators.
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6.2 The relationship between diagnostics

In this thesis, we have developed and reviewed a number of diagnostic methods

that are based on the comparison between the emulator predictions and the sim-

ulator outputs. These diagnostic methods are related to each other and there is

a correlation between these different diagnostics. Simple diagnostic methods are

based on the differences between the validation outputs and the emulator pre-

dictions. Diagnostic methods that take into account uncertainty in the emulator

predictions can be seen as extensions of simple diagnostic methods. They are

not only depend on differences between the simulator outputs and the emulator

predictions, but also consider the uncertainty in the emulator predictions.

The individual standardised errors, (3.4.10), are based on the differences be-

tween the validation outputs and the emulator predictions that are standardised

by the predictive standard deviation. Each individual standardised error can be

perceived as a diagnostic. The Mahalanobis distance, (3.4.13), can be seen as

an extension of the individual standardised errors that summarises them in a

single value. The Mahalanobis distance diagnostic measures the overall fit of the

emulator. When the observed value of the Mahalanobis distance is extreme from

its expected value, further investigation is needed. The individual standardised

errors can be used to investigate if there is a local problem for some validation

points. However, the individual standardised errors may be difficult to interpret

due to the correlation among them.

An alternative decomposition of the Mahalanobis distance is the pivoted

Cholesky decomposition which produces uncorrelated errors that are mapped

to emulator predictions. The sum of squares of the pivoted Cholesky errors is the

Mahalanobis distance. Each of the pivoted Cholesky errors can be liked with one
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of the validation outputs. This helps to investigate the individual large errors

and see whether there is a local problem only for some validation points.

In some cases, we may obtain many extreme large and small errors and the

value of the Mahalanobis distance is still acceptable. The coverage interval diag-

nostic is a supplement to the Mahalanobis distance in that it can detect this kind

of problems. The coverage interval diagnostic provides a direct assessment of the

coverage properties of the credible intervals and so we can investigate whether

these (1− α)100% credible intervals are meaningful or not.

However, when the number of training is large, the different diagnostics will be

efficient and show similar results where the emulator predictions will more likely

to be good approximations of the simulator outputs. Moreover, the uncertainty

in the emulator predictions will be very small.

6.3 Recommendations

In this section, we present a number of recommendations based on our results

and our search of the applications of Gaussian process emulators.

• In Table 2.1, most of the authors used simple diagnostics for validating

their emulators, so we recommend using diagnostic methods that consider

uncertainty in the emulator predictions.

• We propose using separate validation points, if they are available, rather

than the cross-validation method for validate Gaussian process emulators.

The cross-validation method can be unreliable with a small number of train-

ing inputs.
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• For the validation points, we suggest using two times the number of the

input variables, 2p . We have seen that increasing the number of validation

points has a minor impact on improving the diagnostic performance.

• We recommend using at least two diagnostic methods for validating Gaus-

sian process emulators, but not simply two related methods such as the

standardised root mean squared error and the predictivity coefficient.

• If the pivoted Cholesky errors are used as diagnostics, we recommend plot-

ting them against the conditional standard deviations rather than the piv-

oting order as they are more informative.

• In order to test the Gaussian process assumption for building emulators,

our recommendation is using the coverage interval diagnostic with separate

validation sets rather than the QQ-plot. The coverage interval diagnostic

measures the coverage properties of the (1 − α)100% posterior credible

intervals for the validation outputs. This allows us to investigate whether

the proportion of the credible intervals that contain the validation outputs is

as we expect it to be or not. Moreover, when using the QQ-plot, it is difficult

to investigate the overconfidence and the underconfidence of emulators.

• We recommend using the simulation-based method to obtain the distribu-

tion of diagnostics when their distribution may not be found analytically.

6.4 Future work

In Chapter 4, it was found that the coverage interval diagnostic with separate

validation points succeeded in detecting the behaviour of data from a multi-

variate Student-t distribution. The coverage interval diagnostic indicated that



184

the Gaussian process assumption is not suitable for multivariate Student-t data.

Moreover, it was indicated that the emulator of the nonstationary variance data

is underconfident. In order to make Gaussian process assumption suitable for

these data, it is necessary to consider transformations methods for these data. It

is then possible to build Gaussian process emulators on these transformed data

and examine the performance of diagnostics for Gaussian process emulators for

these transformed data.

Moreover, this study considered diagnostic methods for univariate (single-

output) Gaussian process emulators. Hence, future studies are possible to in-

vestigate validating multivariate Gaussian process emulators with separable and

nonseparable covariance functions and to examine the performance of diagnostic

methods for multivariate Gaussian process emulators.

The distribution of the emulator depends on the correlation parameters. In

this thesis, for several emulators, we used the given true values of the correlation

parameters to investigate the consequence of estimating the correlation parame-

ters. Moreover, for some other emulators, the plug-in method was considered for

the correlation parameters where an estimate δ̂ is considered as the true value

of the correlation parameters, δ , without taking into account the uncertainty.

However, a Markov Chain Monte Carlo (MCMC) algorithm can be used to ob-

tain samples from the posterior distribution of the correlation length parameters.

Thus, it is useful to employ a fully Bayesian analysis to account the uncertainty

about the unknown true value of the correlation parameters, δ . This can be sig-

nificant when the emulator predictions are not close to the simulator outputs or

when a small number of design points is used. Hence, it is possible to investigate

the performance of diagnostic methods for emulators that are based on samples

from the posterior distribution of the correlation length parameters.
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