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Abstract 

Manipulation of the expression of the epidermal patterning factor (EPF) family of secreted 

signalling peptides in order to regulate stomatal density has previously been demonstrated 

to improve water use efficiency in Arabidopsis thaliana (Franks et al., 2015). Following the 

sequencing of the barley genome an ortholog of EPF2 was identified and overexpressed. 

HvEPFL1 overexpression limits both entry into, and progression through, the stomatal 

lineage. Lines overexpressing HvEPFL1 showed significant increases over controls in terms 

of both water use efficiency and drought tolerance, without a detrimental effect on grain 

yield. This suggests that the manipulation of stomatal density could be utilised in order to 

futureproof crops against future climate change.   
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Chapter 1 – Introduction 

 

Over the course of the current century we collectively face a number of 

environmental and social crises that have collectively been described as the “perfect 

storm” (Beddington, 2008). The major concern is meeting the increased demand for food 

due to a growing population, particularly given the potential negative impacts on 

agricultural productivity as a result of global climate change (Godfray et al., 2010; Joshi et 

al., 2016).  

1.1 Food Security 

 

Current international policy is geared towards ensuring food security. Food 

security is defined as being “when all people, at all times, have physical and economic 

access to sufficient, safe and nutritious food to meet their dietary needs and food 

preferences for an active and healthy life” (FAO, 1996). Currently 52 countries have serious 

or alarming rates of hunger, according to the global hunger index, with the issue 

particularly acute in sub Saharan Africa (IFPRI, 2015). It has been estimated that 795 million 

people were undernourished globally in 2015 (FAO, 2015). The current population 

projections estimate that the global population will rise from 7.4 billion in 2015 to 9.7 

billion in 2050, reaching 11.2 billion by the end of the century (UNPD, 2015) including 

significant population rises in areas that already exhibit significant food insecurity, such as 

Africa where the population is expected to double (UNPD, 2007). The burgeoning 

population will significantly increase the demand for food, with an estimated requirement 

for global food production to increase by 70-100% by 2050 to meet food security standards 

(Defra, 2009, FAO, 2009), with a predicted rise in world cereals demand of 50% by 2030 
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(World Bank, 2008). Whilst there has been significant improvement in crop development 

over the last 50 years, with food crop yield per unit area doubling (Balmford et al., 2005), 

the rate of increase in agricultural productivity is projected to decline from 2.2% per 

annum in 2007 to 0.8% per annum by 2050 (Alexandratos and Bruinsma, 2012). This 

decline is largely due limitations in the supply of land for agriculture, since the 1960’s total 

area under cultivation has increased by only 11% (Pretty, 2008) and agricultural land is 

being lost due to urbanisation, desertification, salinization and soil erosion (Godfray et al., 

2010). The deterioration of agricultural land is likely to increase in the coming years as 

consequence of climate change which will increase heat, drought and salinity stress on 

crops, reducing yields and rendering some previously arable land unusable (IPCC, 2007). 

There will also be increasing demand for land on which to grow biofuels and restrictions on 

increasing cultivated area in order to protect biodiversity (Balmford et al., 2005). 

 

1.2 Climate Change   

1.2.1- Global CO2 concentration projections  

 

Climate change as a consequence of increased atmospheric CO2 is a significant 

challenge to ensuring food security. (IPCC, 2007). The IPCC has modelled the projected 

change in CO2 under different sets of assumptions about human activity, the 

representative concentration pathways (RCP). These models all predict a rise in global CO2 

concentration over this century. The least severe of the models, RCP2.6, predicts that the 

global CO2 concentration will rise from 379ppm in 2000 to 400ppm by 2100. The most 

severe projection, RCP8.5, predicts a staggering increase of atmospheric CO2 to over 

900ppm over the same time period (Van Vuuren et al., 2011; IPCC, 2014). 
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Figure 1.1 - The changes in atmospheric CO2 concentrations predicted by 

4 different RCPs over this century. (Taken from Van Vuuren et al., 2011) 

 

1.2.2 Projected changes to water availability in the future 

 

Climate change will have numerous effects on crop production, most notably the 

increased prevalence of drought as a consequence of more frequent water shortages. 

(IPCC, 2007)  

Agriculture is the most water intensive of all human activities, accounting for 70-

90% of all freshwater utilised by humans, mostly for crop production (FAO, 2007; Morison 

et al., 2008). Global water supply is expected to be constrained by climate change, with an 

increase in water stress of between 62.0 and 75.8% of total river basin area by 2050 

(Alcamo et al., 2007) 



9 

 

 

Figure 1.2- prediction the prevalence of water stress in the 2050s. Figure 

adapted by the BBC (http://news.bbc.co.uk/1/hi/sci/tech/7821082.stm) from 

Alcamo et al 2007. 

 

However water demand is expected to rise by 40-60% between 2000 and 2025 

(Shen, 2008, figure 3) with 1.2 billion people already living in areas where water is scarce 

(IWMI, 2007). As a consequence of increased water scarcity (figure 1.4) as a consequence 

of climate change as much as 66% of the global population will experience water stress 

(Wallace and Gregory, 2002). Decreased water availability is particularly problematic for 

irrigated agriculture, which accounts for just under 20% of total farmed land and provides 

40-45% of global food (Doll and Siebert, 2002). 

 

 

http://news.bbc.co.uk/1/hi/sci/tech/7821082.stm
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Figure 1.3 – Increase in water withdrawal as a percentage of total available water 

between 1995 and 2025. (obtained from UNEP vital water graphics, 2008) 

 

Figure 1.4- Map of changes to global water availability between the 

average from the period 1961-1990 and the predicted availability in 2050. 

(Obtained from UNEP vital water graphics, 2008) 

 

Drought has a significantly limiting effect on crop yield, more so than most other 

stresses (Boyer 1982). The increase in heat and drought stress as a consequence of climate 

change could severely reduce yields (IPCC 2007; Prasad et al., 2008). In response to this it is 
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apparent that we need to adapt our agricultural methods to reduced water availability and 

produce crops with increased productivity per unit of water, “more crop per drop”. (The 

Royal Society, 2009; UN, 2000) 

1.3- Ensuring more crop per drop: drought tolerance and water use efficiency 

The efficiency with which plants utilise water and their ability to withstand periods 

of drought has long been an area of active study due to the obvious agricultural 

implications of reduced water availability, particularly in light of the global shifts in water 

availability (see figure 1.4). 

1.3.1- Defining drought tolerance 

Drought tolerance is the ability for plants to survive, grow and reproduce in a 

satisfactory manner when water is limited either in the long term or periodically (Turner, 

1979; Fleury et al., 2010). Drought resistance adaptations to drought fall into two broad 

categories; dehydration avoidance and dehydration tolerance (Levitt, 1972).  

Dehydration avoidance is where the plant maintains high water status despite 

drought, thus avoiding or reducing tissue dehydration and the resultant stress on biological 

functions (Blum, 2005). Methods for avoiding dehydration include reducing water loss and 

enhancing uptake of soil water moisture (Blum, 2005). Crop plants bred for increased 

drought tolerance often exhibit reduced leaf area, reduced tillering and fewer leaves whilst 

flowering earlier (Blum, 2004). 

Dehydration tolerance is where the plant maintains its functions despite it being in 

a dehydrated state. Such adaptations are rare in crop plants. (Blum, 2004)   
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1.3.2- Defining Water Use Efficiency  

 

There are several ways of measuring and defining plant water use efficiency 

(WUE). These different methods vary in both the duration of time over which they 

measure (from minutes to whole plant life time) and also the scale at which analyse WUE 

(from single leaves to whole canopies and biomes) (Gago et al., 2014). Here individual 

plant and leaf measures of WUE will be considered. 

At the whole plant level it is the ratio of biomass accumulated to water used that 

provides a measure of WUE (Monteith, 1993). This integrated WUE can either be total 

biomass accumulated (WUEB) or yield (WUEY) per unit of water used (Yoo et al., 2009). As 

whole biomass or yield and total water used is required, this measure supplies an average 

WUE approximation across the entire plant life time.   

At the leaf level it is possible to measure WUE over a period of minutes or hours, 

using an infra-red gas analyser. It is therefore possible to obtain values of WUE throughout 

a plant’s life cycle. This allows the effects of environmental stimuli, and subsequent 

physiological and biochemical responses, on plant WUE to be gauged. 

The two commonly reported WUE measures collected from gas exchange 

measurements are instantaneous WUE and intrinsic WUE. 

Instantaneous WUE is defined as A/E where A is the rate of carbon assimilation 

and E is the rate of evapotranspiration (Penman and Schofield, 1951; Farquhar and 

Sharkey, 1982; Yoo et al., 2009; Morison et al.,2008). Instantaneous WUE is sometimes 

described as the assimilation transpiration rate (ATR) (Morison et al.,2008). Hence WUE 

can be improved either by increasing the rate of assimilation relative to transpiration or 

reducing transpiration relative to assimilation. 

Intrinsic WUE is defined as A/Gs where Gs is the stomatal conductance (Morison et 

al., 2008). This is a more conservative measure of WUE as it removes some of the influence 
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and hence variability introduced by the environment. E takes into account both the 

environmental changes, such as the effect of leaf temperature and humidity on gas 

properties, and Gs. By just using Gs in the calculation of the WUE, most of the 

environmental variation is cut out, although the environment still influences WUE through 

effects on Gs as a result of plant environmental responses (reviewed later) (Morison et al., 

2008).     

Finally, carbon isotope discrimination, specifically an increase in C13 incorporation 

(Δ), can be used as a proxy for WUE in C3 plants (Farqhuar et al., 1982; Farquhar and 

Richards, 1984). Carbon discrimination doesn’t show the relative contribution of 

assimilation versus stomatal conductance to WUE, but this can be determined by looking 

at oxygen 18 discrimination (Farqhuar and Richards, 1984; Barbour et al., 2004).   

1.3.3- The effect of altering Water Use Efficiency  

 

 As a general rule higher WUE correlates with reduced stomatal conductance, 

slower growth rate and lower assimilation (Flexas et al., 2004; Lawson and Blatt, 2014). As 

a general rule selection for higher WUE is often selection for low water use rather than 

improved assimilation and plant production, consequently selection for high WUE has 

often lead to the generation of small varieties with low yields (Condon et al., 2004, Blum, 

2005).  However it is theoretically possible to improve WUE without significant assimilation 

penalties (Yoo et al., 2009). 
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Figure 1.5- Graph demonstrating how A, E and instantaneous WUE vary 

with stomatal conductance. The differential responses to changes in stomatal 

conductance of A (linear increase followed by saturation at high stomatal 

conductance) and E (linear increase with no saturation at high stomatal 

conductance) means that a reduction in stomatal conductance from A to B will 

improve instantaneous WUE. This is because E is reduced from A″ to B″, whilst the 

reduction in A is negligible, as between A′ and B′ the rate of assimilation is at or 

near saturation. The line with closed squares shows how A varies with Gs, the line 

with open squares shows how E varies with Gs and the grey bars are the 

instantaneous WUE at a given Gs. (Taken from Yoo et al., 2009) 

 

As figure 1.5 shows the two components of instantaneous WUE 

(assimilation/transpiration) differ in their response to increasing stomatal conductance. 

Transpiration increases in a linear manner whereas assimilation initially increases in a 

linear manner before saturating at higher conductance values when CO2 availability is no 
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longer the limiting factor in photosynthesis. Consequently, any drop in stomatal 

conductance within the range where assimilation is saturated (such as from point A to B in 

figure 5) will yield significant WUE improvements without assimilation dropping 

significantly (Yoo et al., 2009). 

This suggests the possibility that reducing water use through reduction of stomatal 

conductance, for example by altering stomatal density, could be used to improve WUE, 

potentially without significant yield penalties if stomatal conductance remains sufficiently 

high to allow adequate CO2 uptake (Yoo et al., 2009).  Indeed some studies have provided 

evidence to support this assertion in crop species. In Hordeum Vulgare (Miskin et al.,1972) 

a correlation was found between stomatal density and the rate of evapotranspiration 

across a range of seven barley populations, but not between the rate of photosynthesis 

and stomatal density, i.e. reducing density could reduce water loss without negatively 

affecting assimilation. In poplar stomatal density was positively correlated with Δ, which is, 

as outlined above, negatively correlated with WUE, whilst there was no correlation 

between Δ and productivity (Farqhuar et al., 1982; Rae et al., 2004; Monclus et al., 2006).    

Moreover, in natural populations of both Oryza Sativa (Impa et al., 2005) and 

Triticum Aestivum (Van Boogaard et al., 1997) WUE is negatively correlated with the rate of 

evapotranspiration but not correlated with assimilation across the range of natural 

variation, i.e. assimilation is not necessarily effected by improved WUE, with changes in 

stomatal conductance accounting for the variation.  

It should be stressed however that early investigations demonstrated that 

assimilation correlated with stomatal conductance when other factors were not limiting 

photosynthesis (Wong et al., 1979) and under well-irrigated conditions Gs and Δ have been 

found to be positively correlated with higher yields in Triticum Aestivum (Fischer et al., 

1998). Potential explanations for the latter, positive correlation include the possibility of 

decreased stomatal sensitivity to vapour pressure deficit, the potential for minor water 
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stress events between irrigation events, extra evaporative cooling particularly at warmer 

temperatures (the study was carried out in Mexico), or increased sink strength (Fischer et 

al., 1998; Richards, 2000).  

1.4 – Stomata, a basic outline 

 

Stomata are microscopic pores in the epidermis of plants that provide a 

passageway between the external environment and the internal air spaces where gas 

exchange can occur between the air and the mesophyll tissue of the internal leaf, which 

lacks the epidermal tissue's impermeable cuticle and provides a large surface area for gas 

exchange. (Hetherington and Woodward, 2003)  

Individual stoma at their most basic consist of a pair of kidney shaped guard cells 

surrounding an aperture although more complex structures are found in some plant 

lineages, notably grasses (see section 3.2).(Stebbins and Jain, 1960; Sack, 1994; 

Hetherington and Woodward, 2003; Serna, 2011). 

Stomata respond to and integrate various environmental cues (for more details see 

section 1.7) and modulate gas exchange accordingly. Stomata regulate this gas exchange in 

both the short and the long term. 

In the short-term stomata alter the turgor of the guard cells to alter the size of the 

stomatal apertures. This enables stomata to actively respond to everyday fluctuations in 

conditions to optimise gas exchange and water use efficiency (Daszkowska-Golec and 

Szarejko, 2013).  

In the long term the stomatal density of the developing leaf can be modified. 

Plants, as sessile organisms, need to adapt their body plans to the conditions prevailing in 

the environment in which they are growing, requiring close, indeterminate, plastic control 

of their developmental processes. Like other traits stomatal density (and size) are modified 
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to better adjust the plant to the growth conditions found at the time and location where 

the plant is developing (Casson and Hetherington, 2010).   

1.5- How stomata function 

 

 The role of stomata in regulating gas exchange in photosynthetically active 

tissues of higher plants, via the closure response under conditions where water use 

efficiency is low i.e. low carbon assimilation with high water loss, is well elucidated. In 

response to a myriad of environmental signals including CO2 levels, light and temperature, 

as well as under drought conditions, the stomata close (Hetherington and Woodward, 

2003; Casson and Hetherington, 2010; Chater et al., 2014). Under drought the plant 

shoots, roots and guard cells produce a phytohormone, abscisic acid (ABA), which passes 

to the leaves via the phloem where it induces stomatal closure (Merilo et al., 2015; Bauer 

et al., 2013). In brief ABA binds to a group of 14 START proteins known as the PYROBACTIN 

RESISTANCE (PYR) or REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) proteins (Park 

et al., 2009). Upon binding ABA, the PYR/RCAR proteins can interact with a subset of 

protein phosphotases of the PP2C group, notably ABA INSENSITIVE 1 (ABI1) (Ma et 

al.,2009), preventing it from dephosphorylating and hence inactivating a group of SNF-

related kinase2 protein family members, including OPEN STOMATA 1 (OST1) (Merlot et al., 

2002; Mustilli et al., 2002; Cutler et al., 2010) . OST1 triggers a truly byzantine network of 

interactions between various membrane bound ion channels and transporters with 

resultant shifts in membrane potentials activating further channels in both the plasma 

membrane and vacuolar membrane. The net effect is ion efflux triggering the net 

movement of water out of the guard cells. These consequently lose turgor and cause the 

stomatal aperture to close, preventing further gas exchange between the internal and 
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external environments, reducing water loss. (Reviewed in Sirichandra et al., 2009; Kim et 

al., 2010; Cutler et al., 2010). 

1.6 -Stomatal Development in the model organism Arabidopsis Thaliana 

 

Stomatal development in Arabidopsis consists of a series of transitions through 

various cell fates commenced by a specialised subgroup of protodermal cells. The 

formation of the stomatal lineage is indeterminate, providing the flexibility for the 

modification of stomatal density in response to prevailing environmental conditions (see 

section 1.7) (Hetherington and Woodward, 2003) 

1.6.1- An overview of cell fate progression in the stomata lineage  

 

Leaf development consists of cell division at the base followed by cell expansion 

and differentiation towards the tip. The initial protodermal cells can differentiate into 

three main cell types; trichromes, epidermal pavement cells and stomatal lineage cells. 

Adrian et al., 2015 analysed the transcriptome of the various stages of Arabidopsis 

stomatal development and found enrichment of known trichrome patterning genes such as 

ENHANCER OF TRIPTYCON AND CAPRICE (ETC)2 and ETC3. This finding suggests that 

stomata and trichromes share a common pool of pluripotent progenitor cells, with a 

subsequent bifurcation down different developmental pathways.  

 The subset of the protodermal cells that enter the stomatal lineage do so 

by taking on meristemoid mother cell (MMC) fate, the first stage of stomatal development, 

with downstream events in the lineage's development controlling the density and 

distribution of stomata (Lau and Bergmann., 2012). MMCs undergo the first of the series of 

asymmetric divisions that typify the development of the stomatal lineage. This initial 

division, referred to as the entry division, forms a large stomatal lineage ground cell (SLGC) 
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and a smaller, triangular shaped cell called a meristemoid. Meristemoids have stem cell-

like characteristics, being capable of division with self-renewal (Nadeau and Sack, 2002; 

Bergmann and Sack, 2007).  

The meristemoid can undergo 1 to 3 further asymmetric divisions. These 

amplifying divisions conserve the meristemoid whilst generating additional SLGC sister cells 

that expand and further separate neighbouring stomata (Robinson et al., 2011). 

 The young SLGCs can either terminally differentiate into epidermal pavement cells 

or re-establish MMC identity and divide asymmetrically to produce a secondary (or 

satellite) meristemoid. These secondary meristemoids never form adjacent to the original 

meristemoid, hence these divisions are also referred to as the spacing divisions. This is the 

so called one cell spacing rule, which ensures stomata do not form immediately adjacent to 

one another, which would interfere with the closure response. The one cell spacing is 

important in order to optimise stomatal conductance and enable efficient response to 

environmental signals (Dow et al., 2013). There are a number of mutants in which the one 

cell spacing rule is broken (see figure 1.6). 

 

Figure 1.6- Stomatal mutants in which one cell spacing rule is broken. 

Mutations in the SDD1 signalling peptidase, TMM leucine rich repeat receptor-like 

protein and ERECTA family leucine rich repeat receptor like kinases cause the 

breakdown of the one cell spacing rule. The function of SDD1 Is discussed in 

section 1.6.10 whilst TMM and ERECTA are discussed in section 1.6.4  From 

Bergmann and Sack, 2007. 
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 It is the ability to significantly vary meristemoid number that provides the 

developmental plasticity to adapt to variable conditions. (Nadeau and Sack, 2002; Gray, 

2007; Lau and Bergmann, 2012; Pillitteri and Torii, 2012) 

 Meristemoids mature into guard mother cells (GMCs), round shaped cells 

that undergo a single symmetrical division to form the guard cells of the mature stomatal 

complex (Gray, 2007; Lau and Bergmann, 2012; Pillitteri and Torii, 2012). The transitions 

and divisions of stomatal development are summarised in figure 1.7. 
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Figure 1.7- Model of stomatal development in Arabidopsis. Scheme 

showing the stages through which the stomatal lineage progresses in both an 

isolated cell (top) and in the context of a developing leaf (bottom) in Arabidopsis. A 

protodermal cell undergoes an asymmetric entry division to produce a SLGC and a 

meristemoid (purple). The meristemoid can undergo additional asymmetric 

amplifying divisions that produce additional SLGCs whilst the SLGC can undergo an 

asymmetric spacing division that produces a secondary meristemoid distal to the 

original meristemoid. The meristemoid differentiates into a GMC (yellow) which 

divides symmetrically to produce the mature stoma (green). Bottom shows the 

scattered distribution of the subset of protodermal cells that enter the lineage and 

how meristemoids are spaced so that stomata don’t form adjacent to one another 

From Katsir et al., 2011. 
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1.6.2-Overview of the genetic components of the core stomatal development 

pathway 

 

 The core components of the stomatal development pathway in Arabidopsis are 

now well elucidated. This section will first provide a brief overview of the core stomatal 

development pathway, each of which will be further described in later sections. 

 Stomatal development is regulated by a peptide signalling pathway. 

Signalling peptides are small, secreted proteins that bind leucine rich repeat receptor like 

kinases (LRR-RLKs) in order to induce a signalling cascade. LRR-RLKs are a large family of 

receptors with over 200 members in Arabidopsis, several of which have been identified as 

binding to signalling ligands, notably the CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING 

REGION (CLE) peptides involved in meristem size regulation and the EPIDERMAL 

PATTERNING FACTOR LIKE (EPFL) family (Katsir et al., 2011). Some members of the EPFL 

family regulate stomatal density and patterning.  

The receptor complex for the EPF peptides consists of the TOO MANY MOUTHS 

(TMM) receptor-like protein (RLP) and members of the ERECTA family of LRR-RLKs. Upon 

the binding of the members of the EPFL family that negatively regulate stomatal density, 

the TMM-ERECTA complex activates a mitogen activated protein kinase (MAPK) cascade 

which transduces the EPFL signal and inhibits stomatal fate, via suppression of a 

transcription factor, SPEECHLESS (SPCH).   

   The transition between cell fates in Arabidopsis is controlled via sequential 

expression of a series of 3 basic helix-loop-helix (bHLH) transcription factors; SPCH, MUTE 

and FAMA (MacAlister et al., 2007; Ohashi-ito and Bergmann.2006; Pillitteri et al., 2007 see 

figure 1.8). SPCH, MUTE and FAMA heterodimerise with a second set of bHLH factors, 

INDUCER OF CBF EXPRESSION 1/SCREAM (ICE1/SCRM) and SCRM2 that are expressed 
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throughout the stomatal lineage and which are functionally redundant (Kanoaka et 

al.,2008).  

 

Figure 1.8- The role of bHLH transcription factors in stomatal 

development. SPCH, MUTE and FAMA promote asymmetric divisions, meristemoid 

to GMC transitions and GMC to mature stoma transitions respectively. 

SCRM/SCRM2 heterodimerise with the other factors and are required for SPCH 

MUTE and FAMA function. from Serna, 2009 

1.6.3-The EPFL family of signalling peptides regulate of stomatal development 

 

The EPFL family consists of 11 cysteine rich signalling peptides, only some of which 

are directly involved in stomatal development. These include two primary negative 

regulators, EPF1 and EPF2, as well as one positive regulator, EPFL9/STOMAGEN (Hara et al., 

2007; Hunt and Gray, 2009; Hara et al., 2009; Hunt et al.,2010; Kondo et al.,2010; Sugano 

et al., 2010).  The negative EPFLs are both expressed by stomatal lineage cells only (Hara et 

al., 2007; Hunt and Gray, 2009; Hara et al., 2009) whilst STOMAGEN is expressed by the 

cells that will go on to form the photosynthetic mesophyll tissue and diffuses to the L1 

layer where the STOMAGEN peptide competes with EPF2 for the ER receptor (Kondo et 

al.,2010; Sugano et al., 2010; Lee et al.,2015).  
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 EPF1 negatively regulates stomatal density and enforces the one cell 

spacing rule. The epf1 mutant exhibits a stomatal clustering phenotype as well as increased 

stomatal density, whilst overexpressing EPF1 reduces stomatal density and increases the 

prevalence of arrested stomatal precursors (Hara et al., 2007; Hara et al., 2009). EPF1 is 

expressed later on in the developmental series, by the late meristemoids, GMCs and guard 

cells (Hara et al., 2007). It represses meristemoid formation and in particular effects the 

asymmetric spacing divisions of SLGCs that re-enter the stomatal lineage, ensuring that 

when they divide they do not form the secondary meristemoid adjacent to the stomatal 

lineage cell expressing EPF1, hence enforcing the one cell spacing rule (Hara et al., 2007). 

 EPF2 is a negative regulator of stomatal density as well but possesses no 

clustering phenotype in the loss-of-function mutant, which exhibits increased stomatal and 

pavement cell density only. Similarly the overexpressor reduces stomatal density, 

consistent with EPF2 possessing a negative regulatory role. (Hunt and Gray, 2009; Hara et 

al., 2009). EPF2 is expressed in MMCs and early on in meristemoids and inhibits the 

formation of stomata. This inhibition is achieved by repressing MMC fate via both 

repressing entry divisions by protodermal cells that form the initial population of MMCs 

and by preventing the reacquisition of MMC fate by SLGCs, consequently repressing the 

formation of secondary stomata (Hara et al., 2009). It also represses the amplifying 

divisions, hence the high pavement cell density found in the epf2 mutant (Hara et al., 2009; 

Han and Torii, 2016). The EPF2 promoter has been found to be hypermethylated and 

consequently inactivated in ros1 mutants, leading to an accumulation of small, arrested 

stomatal precursors such as those seen in the epf2 mutant (Yamamuro et al., 2014). EPF2 

expression can be restored in ros1 mutants by mutations in the RNA-directed DNA 

methylation pathway, leading to the suppression of the small cells phenotype (Yamamuro 

et al., 2014). Whether alterations in the methylation state of the EPF2 promoter is used to 
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regulate stomatal density in adaptive response to environmental signals is unclear (Han 

and Torii, 2016).  

 The epf1epf2 double mutant has an additive phenotype, demonstrating 

that their negative regulatory roles are independent of one another. (Hunt and Gray, 2009; 

Hara et al., 2009) 

  These negative regulators are secreted from the stomatal lineage cells and 

diffuse over the surrounding area, suppressing stomatal development in the epidermal 

cells located adjacent and nearby. (Hara et al, 2007; Hunt and Gray, 2009; Hara et al., 

2009) 

 The positive regulator of stomatal density, STOMAGEN has a similar 

peptide sequence to EPF1 and EPF2 but has a reduced number of cysteine residues (Hunt 

et al.,2010; Kondo et al.,2010; Sugano et al., 2010). Overexpression of STOMAGEN 

increases stomatal density and produces clustered stomata whilst antisense transgenics 

possess a reduced stomatal density phenotype (Hunt et al., 2010; Sugano et al., 2010).  

 The structure of the EPFLs have been determined utilising NMR (Okhi et 

al., 2011, shown in figure 1.9). The EPFLs possess a distinctive knot structure scaffold that is 

formed as a result of 3 disulphide bonds between a set of conserved cysteine residues. 

EPF1 and EPF2 contain an additional pair of cysteines and form an additional disulphide 

bond.  The EPFL structure also contains a loop of residues (yellow coloured residues in 

figure 1.9 B). Swapping the EPF2 loop domain into the STOMAGEN scaffold is sufficient to 

produce a negative regulator of stomatal development whilst the reciprocal swap is 

sufficient to produce a positive regulator. This suggests that the loop structure confers 

specificity in the EPFLs. Meanwhile disrupting the disulphide bonds of the scaffold leads to 

inactivation of the peptides.  The similarities in the structure between EPF2 and 

STOMAGEN provided early support for the competition for receptors theory for explaining 
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how the antagonism between STOMAGEN and EPF2 is resolved (Ohki et al., 2011; Lau and 

Bergmann, 2012). 

 

Figure 1.9- the structure of STOMAGEN. (A) A stereoview of 20 NMR 

structures from STOMAGEN. Only the backbones are depicted. From Okhi et al., 

2011 (B) simplified, experimentally derived structure of stomagen showing 

conserved cysteine residues (blue) linked by disulphide bonds. The variable loop 

demain residues are shown in yellow. From Katsir et al., 2010   

1.6.4-The ERECTA family of LRR-RLKs are the receptors of the EPFL peptides and their 

stomatal roles are specified by the receptor-like protein TOO MANY MOUTHS 

 

TOO MANY MOUTHS (TMM) is a receptor-like protein (RLP) possessing a leucine-

rich repeat (LRR) receptor domain but lacking a C-terminal kinase domain necessary for the 

subsequent transmission of signalling (Torii, 2004). As with other RLPs it forms associations 

with LRR-receptor like kinases (LRR-RLKs) in order to bring about signal transduction (Torii, 

2004; Lee et al., 2012). The ERECTA family of LRR-RLKs, consisting of ERECTA, ERECTA LIKE1 

(ERL1) and ERL2, are the partners of TMM in stomatal development transduction. These 

ERECTA receptors act as inhibitors of the transition to stomatal lineage fate and are 

partially redundant. (Shpak et al., 2005) They do however show some separation of 
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function (Shpak et al., 2005; Lee et al., 2012). The ERECTA receptors also possess a wide 

variety of roles in regulating cell proliferation and the development of plant organs (Shpak 

et al., 2003, Shpak et al., 2004, van Zanten et al., 2009). 

 ERECTA is expressed in protodermal cells where, in response to EPF2, it represses 

entry divisions (Shpak et al., 2005; Lee et al., 2012). STOMAGEN competes with EPF2 for 

the ERECTA receptor (Lee et al., 2015). Both peptides bind to ER with similar affinities but 

only EPF2 activates downstream signalling and consequently inhibits stomatal 

development (Lee et al., 2015). It seems likely that this competition provides the means by 

which stomatal patterning is fine-tuned to prevailing requirements (see figure 1.10). 

 ERL1 and ERL2 are expressed later in the stomatal lineage (Shpak et al., 2005). The 

erl1 mutant possesses a stomatal clustering phenotype which, in conjunction with a 

coimmunoprecipitation study suggesting ERL1 is paired with EPF1, suggests ERL1 enforces 

the one cell spacing rule via orientating cell divisions. ERL1 also restricts meristemoid 

differentiation (Shpak et al., 2005; Lee et al., 2012). 

 The tmm mutant, the first stomatal phenotype mutant identified, 

possesses an increased number of stomata on leaves and abolishes the formation of 

stomata on stems (Yang and Sack, 1995). The orientation of spacing divisions is also 

affected, resulting in clustering (Geisler et al., 2000). TMM functions to specify stomatal 

signalling. Whilst the ERECTA family is a widely expressed set of receptors with diverse 

functions in growth and development, TMM is stomatal lineage specific (Nadeau and Sack, 

2002) and is required for the perception of stomatal interacting EPFLs (Hara et al., 2007; 

Hara et al., 2009; Hunt and Gray, 2009; Kondo et al., 2010; Sugano et al., 2010). However, 

TMM inhibits the interactions between the ERECTA receptors and other EPFLs involved in 

growth in other, internal tissues, such as EPFLs 4-6, known as the CHALLAH family ligands 

(Abrash and Bergmann, 2010; Abrash et al., 2011). These ligands are not expressed in the 

leaves and EPFL4 and EPFL6 have been identified as functioning in ERECTA-mediated 
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signalling pathways that determine aspects of inflorescence architecture (Uchida et al., 

2012). The CHALLAH ligands interact with ERECTA receptors to effect growth in the stems 

of plants but TMM prevents these ligands interfering with stomatal development in the 

stem epidermis, isolating the two distinct ERECTA functions (Abrash and Bergmann, 2010; 

Abrash et al., 2011). CHALLAH ligands freely interact with the ERECTA receptors in the 

absence of TMM, negatively regulating stomatal differentiation in the manner of EPF2, i.e. 

the mutant lacks the ability to discriminate between the different EPFL groups (Abrash et 

al., 2011). This is why tmm mutants lack stem stomata (Yang and Sack, 1995, Geisler et al., 

1998) Exogenous application of EPFL5 causes meristemoids to arrest and MUTE transcript 

levels to drop, i.e. produces a similar phenotype to EPF1 (Niwa et al., 2013).   

 

 

Figure 1.10- the EPF/TMM/ERECTA signalling module. ERECTA receptors 

perceive EPF signals in the presence of TMM. STOMAGEN competes with the EPFs 

for the receptor. Upon receipt of the EPF signal stomatal development is repressed 

(Lau and Bergmann 2012) 
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1.6.5-Signal transduction occurs via a MAPK cascade 

 

Once the EPF signal is perceived by the ERECTA/TMM complex it is transmitted by 

the YDA, MKK4/5 and MPK3/6 signalling cascade (Wang et al., 2007). Loss of function 

MKK4/5 and MPK3/6 results in disruption of cell fate specification leading to stomatal 

clustering whilst overexpression results in a lack of stomatal differentiation consistent with 

the role of the MAPK cascade in regulating SPCH (Wang et al., 2007; Lampard et al., 2008, 

see section 1.6.6). Similarly, yda mutants produce excess stomata whilst constitutive YDA 

expression abolishes stomatal formation entirely (Bergmann et al., 2004). This is consistent 

with the MAPK cascade transducing an inhibitory signal of stomatal development 

(Bergmann et al., 2004; Wang et al., 2007; Han and Torii, 2016).  

Overexpression of AP2C3, a MAPK phosphatase expressed in stomatal lineage cells, 

leads to an epidermis that is solely composed of stomata (Umbrasaite et al., 2010). This 

suggests it could function as a promoter of stomatal formation through disruption of 

stomatal signalling via dephosphorylation of the cascade components transducing the 

signal triggered by the EPFs, which are negative regulators of stomatal development 

(Umbrasaite et al., 2010; Hara et al.,2007; Hunt and Gray, 2009; Hara et al., 2009). 

 

1.6.6-SPCH regulates the initiation and proliferation of stomata  

 

SPCH is the first of the bHLH transcription factors in the series. Most of the spch 

mutants utilised in the original study (MacAlister et al., 2007) lack stomata entirely due to 

an absence of entry divisions, resulting in an epidermis formed entirely of pavement cells. 

However in the spch-2 mutant some MMCs undergo entry divisions, albeit at a reduced 

rate compared to wildtype.  spch-2 mutants also produce fewer secondary meristemoids 

and fewer SLGC sister cells than wildtype, indicative of a reduction in the asymmetric 
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spacing and amplifying divisions respectively. The meristemoids also prematurely 

differentiate into GMCs. Although the number of spacing divisions is reduced, the one cell 

spacing rule is still in effect. (MacAlister et al., 2007). Conversely, constitutive 

overexpression of SPCH results in increased asymmetric divisions in pavement cells and 

additional stomatal lineage cells (MacAlister et al., 2007; Pillitteri et al., 2007). 

SPCH expression is also required for the maintenance of meristemoid stem cell-like 

character, with SLGCs that regain SPCH expression also regaining the ability to undergo 

self-renewing divisions following an initial asymmetric division, i.e. forming new 

meristemoids (Robinson et al., 2011). 

Taken together this evidence demonstrates that the role of SPCH is to promote the 

asymmetric divisions within the stomatal lineage. SPCH induces the initial entry division 

and maintains the self-renewing character of the meristemoid as it undergoes amplifying 

divisions. Disrupting SPCH expression results in fewer protodermal cells entering the 

stomatal lineage and early loss of meristemoid character, resulting in a reduction in the 

number of SLGCs formed (MacAlister et al., 2007; Robinson et al., 2011). 

As might be expected, given its role in specifying the earliest events in the stomatal 

development pathway, SPCH is an important node in density regulation. SPCH is the 

primary target of the MAPK cascade induced by EPF2 signalling, and is targeted for 

degradation once phosphorylated by MPK3/6 (Lampard et al., 2008).   

 SPCH expression and consequently the stomata are specific to L1 layer, i.e. found 

on the epidermis. Interestingly, ectopic overexpression of the L1 layer specific homeobox 

transcription factors MERISTEM LAYER 1 (ATML1) and HOMEODOMAIN GLABOROUS 2 

(HDG2) induces SPCH expression and subsequent stomatal formation in non-epidermal 

tissues such as the mesophyll (Takada et al., 2013; Peterson et al., 2013). 

SPCH has been found to bind directly to the promoters of various genes involved in 

the stomatal lineage including both its heterodimeric partners (SCRM and SCRM2), TMM, 
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EPF2, ERL1, MUTE, BASL and POLAR (see respective sections for details on these genes’ 

functions) (Lau et al., 2014). 

SPCH can also be regulated via epigenetic mechanisms. In low humidity conditions 

SPCH is transcriptionally repressed via de novo cytosine methylation in Arabidopsis, which 

leads to a reduction in stomatal density (Tricker et al., 2012; Tricker et al., 2013). Plants 

with loss of function mutations in DNA methylation enzymes do not exhibit a reduction in 

stomatal density in low humidity (Tricker et al., 2012; Tricker et al., 2013). 

1.6.7- MUTE terminates the asymmetric division phase of the lineage and promotes 

meristemoid differentiation 

 

MUTE expression is required for the loss of stem cell-like character in 

meristemoids and the transition between meristemoid and guard mother cell fate. In the 

loss-of-function mute phenotype SPCH activity continues for an extended period leading to 

additional asymmetric cell divisions (Pillitteri et al., 2007). The meristemoid then aborts, 

failing to transition to a GMC and as a result no stomata are formed (Pillitteri et al., 2007).  

Ectopic overexpression of MUTE produces an epidermis composed solely of 

stomata and induces stomatal cell fate in cell types that do not normally enter the 

stomatal lineage, demonstrating that MUTE is sufficient to induce stomatal fate in 

pavement cells (Pillitteri et al., 2007; Pillitteri et al., 2008).  

MUTE expression appears in late stage meristemoids, coinciding with the decline in 

SPCH expression (Davies and Bergmann, 2014). A 175bp region of the MUTE promoter is 

necessary and sufficient for meristemoid-specific expression (Mahoney et al., 2016).  
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1.6.8- FAMA promotes guard cell fate and restricts stomatal lineage symmetric 

divisions 

      
FAMA regulates the final stage of stomatal development, the transition from GMC 

to the mature stoma via a single symmetric division (Ohashi-Ito and Bergmann, 2006). Loss 

of function mutants undergo additional symmetric divisions to produce collections of 

narrow epidermal cells in place of stomata, i.e. additional guard cell-like cells (Ohashi-Ito 

and Bergmann, 2006). FAMA alone is sufficient to induce guard cell fate with ectopic 

overexpression leading to an epidermis solely comprised of unpaired, kidney-shaped guard 

cells (Ohashi-Ito and Bergmann, 2006). 

More recent studies have demonstrated that FAMA has a role in guard cell identity 

stability. Notably FAMA maintains guard cell identity via the RETINOBLASTOMA-RELATED 

PROTEIN (RBR) dependent epigenetic repression of stomatal development genes. In 

transgenic lines that disrupt the ability of RBR to bind to FAMA, such as a fama mutant that 

lacks the RBR binding  LxCxE motif, stomatal lineage genes such as SPCH are not repressed, 

leading to new entry divisions in guard cells. This leads to stomata forming within 

previously formed stomata (Lee et al., 2014; Matos et al., 2014). 

FAMA can be regulated via epigenetic mechanisms. Like SPCH, FAMA is 

transcriptionally repressed in low humidity conditions via DNA methylation (Tricker et al., 

2013).  

1.6.9- Two additional bHLH transcription factors are required for SPCH, MUTE and 

FAMA activity 

 

 In order to function SPCH, MUTE and FAMA require the presence of 2 

paralogs that are widely expressed within the stomatal lineage, SCRM and SCRM2, with 

which they form heterodimers (Kanoaka et al., 2008). Progressive loss of these two 
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paralogs results in spch, mute and fama phenotypes, whilst the gain of function scrm-D 

mutant produces a stomata only epidermis such as that seen when MUTE is ectopically 

overexpressed (Kanoaka et al., 2008). 

SCRM and SPCH act together in the early protoderm to control the initiation of the 

stomatal lineage. Whilst both the SCRM and SPCH promoters are active to a similar degree 

across the protoderm, SPCH and SCRM protein accumulation is restricted to those 

protodermal cells that eventually give rise to the stomatal lineage. SCRM expression is 

upregulated by a positive feedback loop, wherein SCRM upregulates its own expression in 

the presence of SPCH. SPCH-SCRM also upregulates EPF2 and TMM which acts as a 

negative feedback loop, with secreted EPF2 inducing SPCH breakdown via phosphorylation 

(Lampard et al., 2008) and consequently causing SCRM expression to fall in neighbouring 

protodermal cells, causing them to not enter the stomatal lineage. These feedback loops 

are represented in figure 1.11. The net result is that the population of protodermal cells 

that become MMCs is restricted (Horst et al., 2015). The roles of the EPF/TMM/ERECTA 

signalling module, MAPK cascade and bHLH transcription factors are summarised in figure 

1.11.  

 

 

 



            34 

 

 

 

Figure 1.11- Stomatal development in Arabidopsis.  For description of 

lineage transitions see figure 1.8. SPCH, MUTE and FAMA, in conjunction 

with SCRM/SCRM2, mediate the lineage transitions. They are antagonised 

by the MAPK cascade triggered when EPF2 or EPF1 signalling peptides are 

perceived by the ERECTA/TMM receptor complex. EPF1 and EPF2 are 

perceived by different members of the ERECTA family.   

    

1.6.10- STOMATA DENSITY AND DISTRIBUTION 1 (SDD1) 

 

SDD1 encodes a subtilisin-like Ser protease that is expressed strongly in 

meristemoids and guard mother cells (Von Groll et al., 2002). The sdd1-1 mutant possesses 

clustered stomata and 2- to 4-fold increases in stomatal density (Berger and Altmann, 

2000) whilst the SDD1 overexpressor exhibits stomatal density reductions of around 2- 3- 

fold whilst also producing arrested stomatal precursors (meristemoids/GMC) (Von Groll et 

al., 2002). GFP fusions also demonstrated that the mature SDD1 peptide is exported to the 

apoplast and associated with the plasma membrane (Von Groll et al., 2002). Surprisingly, 

despite a likely role in the processing of signalling peptides, the known regulators of 

stomatal development EPF1, EPF2 and STOMAGEN are not substrates for proteolysis by 

SDD1 (Hara et al., 2007, Hara et al., 2009, Hunt and Gray, 2009, Hunt et al., 2010). Indeed, 

the substrate remains unknown. (Hunt et al., 2010) 



35 

 

The transcriptional regulator GT-2 LIKE 1 (GTL1) binds to the GT3 box of the SDD1 

promotor, repressing SDD1 and so increasing stomatal density in water replete conditions. 

(Yoo et al., 2010)   In contrast gtl1 mutant plants have lower stomatal densities and 

reduced transpiration relative to wild type individuals. (Yoo et al., 2010)  

 

1.6.11- BASL and POLAR 
 

A notable feature of stomatal development is the series of asymmetric divisions 

that occur to produce SLGCs and satellite meristemoids via amplifying and spacing divisions 

respectively (Bergmann and Sack, 2007; Lau and Bergmann, 2012). The principle intrinsic 

regulator of asymmetric cell division in Arabidopsis that has been identified is BREAKING 

OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) (Dong et al., 2009). BASL encodes a 

novel protein and was identified from the basl mutant which exhibits a high proportion of 

MMCs which divide symmetrically. BASL is notable for its distinctive, asymmetric 

distribution in MMCs prior to mitosis (Dong et al., 2009). It localises to both the nucleus 

and to a band of the cell cortex located opposite the future division plane, where it induces 

cell expansion. The cell then divides asymmetrically with the cortex BASL band being 

contained within the larger daughter cell, the SLGC (Dong et al., 2009). If the daughter 

meristemoid only possesses nuclear BASL it will differentiate into a GMC, if a new BASL 

cortex band is formed it will continue to divide asymmetrically, i.e. amplifying divisions will 

occur (Dong et al., 2009; Han and Torii, 2016). Similarly the fate of the SLGC is dependent 

upon whether nuclear and/or cortical localisation of BASL continues. If only cortical BASL is 

retained the cell terminally differentiates into an epidermal pavement cell. If both cortical 

and nuclear BASL is retained the SLGC transitions to MMC fate and undergoes a spacing 

division (Dong et al., 2009). Interestingly this process sees the reorientation of the cortical 

band, which reforms adjacent to the sister meristemoid and therefore distal to the future 
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division plane, ensuring the satellite meristemoid forms away from the primary stomatal 

lineage cell, enforcing the one cell spacing rule (Nadeau and Sack, 2002; Dong et al., 2009). 

BASL functions as a scaffold for MAPK signaling, with BASL being able to directly 

bind YDA (Zhang et al., 2015). As a result YDA is spatially concentrated at the cortex BASL 

band that is then segregated into the SLGC following the asymmetric division (Zhang et al., 

2015). This leads to increased repression of SPCH in the SLGC via phosphorylation from the 

MAPK cascade, inhibiting stomatal lineage identity (Zhang et al., 2015, Zhang et al., 2016). 

MAPK6 directly phosphorylates BASL in vitro and phosphorylation is necessary for BASL 

polarisation, suggesting the possibility of a positive feedback loop wherein phosphorylated 

BASL is asymmetrically distributed, taking the components of the MAPK cascade with it to 

the cell cortex where MAPK activity ramps up BASL polarity whilst promoting cell 

expansion and repressing stomatal cell fate (Zhang et al., 2015; Zhang et al., 2016; Han and 

Torii., 2016). 

POLAR is a coiled-coil protein that, like BASL, exhibits a polarised distribution prior 

to asymmetric division in meristemoids (Pillitteri et al., 2011). POLAR is distributed evenly 

in the meristemoid (when BASL is located only in the nucleus) until prior to asymmetric cell 

division when it relocalises to the distal end of the cell cortex, coinciding with the 

formation of the cortical BASL band there (Pillitteri et al., 2011). Indeed BASL is required 

for asymmetric POLAR localisation, suggesting POLAR functions downstream in a BASL-

dependent pathway (Pillitteri et al., 2011).  

 

1.7- Stomata and the environment 

 

 As stated in section 1.4, stomata respond to and integrate various environmental 

cues including light quantity and quality, vapour pressure deficit, soil water content, and 
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CO2 concentration (Chater et al., 2014). It response to these cues with both short-term and 

long-term responses. In the short term the stomata close in response to unfavourable 

conditions whilst in the long-term mature leaves detect these environmental cues and 

relay the information to developing leaves which adapt their development accordingly by, 

for example, modifying stomatal density (Lake et al., 2001; Lake and Woodward, 2008; 

Casson and Hetherington, 2010; Chater et al., 2014).   

Stomatal density changes under varying CO2 concentration and vapour pressure 

deficit correlate with the concentration of the phytohormone ABA whilst mutants in the 

ABA biosynthesis pathway exhibit reduced concentrations of ABA and increases in stomatal 

density (Lake et al., 2002; Tanaka et al.,2013). As a consequence of this evidence ABA has 

been proposed as the core regulator of environmental influence on stomatal development 

(Chater et al., 2014). In this section a brief overview is provided of the response of plants to 

different environmental stimuli, focusing primarily on stomatal development.  

 

1.7.1- Response to water stress 

 

In the short term, stomata respond to water stress by closing, whether as a 

consequence of ABA signalling or hydropassive closure (Chater et al., 2014; MacAdam and 

Brodribb, 2011),  to conserve water and increase water use efficiency (Daszkowska-Golec & 

Szarejko, 2013).  

In the long term both drought and osmotic stress do possess the capability to 

influence stomatal development, likely acting though ABA (Tanaka et al., 2013; Han and 

Torii., 2016), in order to improve WUE.  

It is possible for plants to respond to drought by reducing stomatal density, for 

example the reduction in stomatal density observed in wheat under drought (Quarrie and 

Jones, 1977) and the reduction in stomatal differentiation, potentially due to the 
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downregulation of a putative homologue of STOMAGEN, under drought conditions in 

Poplar (Hamanishi et al., 2012).   

 However, this is not necessarily a universal concept.  There have been studies in 

which stomatal density has been positively correlated with WUE and has increased in 

response to drought (Elias, 1995; Fraser et al., 2009) or has increased or decreased under 

drought, dependent on drought severity (Xu and Zhou, 2008). One suggested explanation 

is that under moderate drought stomatal density, and hence transpiration, may be 

increased in order to improve nutrient uptake, demonstrated in Vigna sinesis where 

stomatal density reduction under drought only occurs in phosphorous rich conditions 

(Sekiya and Yano, 2008; Yoo et al., 2009).  These studies indicate that the potential for 

modifying stomatal density as a means of crop improvement, but highlights that the 

degree and indeed the direction of change in the trait that is beneficial is highly context 

dependent. 

1.7.2- Response to light 

 

As light intensity increases stomatal density on developing leaves increases and the 

stomatal index (the ratio of the number of stomata divided the number of stomata and 

other epidermal cells in a given area) increases (Casson and Hetherington, 2010). Stomatal 

index was found to increase in higher intensity monochromatic red light relative to low red 

light conditions whilst exposure to far-red light at the end of the photoperiod was found to 

reduce stomatal index, suggesting that the receptor responsible for perceiving the change 

in light was a phytochrome, a red/far red light receptor (Casson et al., 2009; Boccalandro et 

al., 2009; Casson and Hetherington, 2010). Phytochrome B (phyB) was identified as the 

primary photoreceptor promoting stomatal differentiation in response to increased light, 

with phyB mutants showing reduced stomatal density and index relative to wild type 

(Casson et al., 2009; Boccalandro et al., 2009). PhyB, as a consequence of increasing the 
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stomatal density, reduces the water use efficiency of the plants (Boccalandro et al., 2009) 

but may increase drought tolerance due to it upregulating ABA signalling pathway 

components and increasing ABA sensitivity (González et al., 2012). The increase in stomatal 

density may also help mitigate the consequences of high light stress (González et al., 2012). 

The bHLH transcription factor phytochrome-interacting factor 4 (PIF4) was found 

to be involved in modulating stomatal density in a phyB dependent manner, with pif4 

mutants grown at high irradiances showing significantly reduced stomatal index and 

stomatal density relative to Col-0 (Casson et al., 2009). 

Whilst phyB modulates stomatal development in response to red light, 

cryptochrome (CRY) 1 and CRY2 modulates stomatal differentiation under blue light (Kang 

et al., 2009). Mutants in these photoreceptors all show reduced stomatal density and 

increases in arrest of immature stomatal lineage cells, suggesting a role for light signalling 

in regulating all aspects of stomatal development from the entry divisions to the final 

symmetric division (Kang et al., 2009) These photoreceptors are believed to act by stopping 

the negative regulation of stomatal development by CONSTITUTIVE PHOTOMORPHOGENIC 

1 (COP1) (Kang et al., 2009). It is theorised that COP1 interacts with and activates the 

YDA/MAPK signalling cascade, leading to the inhibition of stomatal development (Kang et 

al., 2009; Han and Torii, 2016).     

The EPF peptide STOMAGEN is also upregulated in high light, again contributing to 

the increase in stomatal differentiation in high light (Hronkova et al., 2015).        

1.7.3- Response to CO2 

 

Growth at elevated CO2 concentrations is commonly associated with reduced 

stomatal conductance and stomatal density (Woodward, 1987; Woodward and Kelly, 1995) 

albeit with some exceptions where stomatal conductance reduces but stomatal density 

does not (Woodward and Kelly, 1995; Ainsworth and Rogers, 2007). When CO2 
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concentration varies the stomatal conductance changes to reflect this, with stomata 

opening more in response to low CO2 concentrations and closing more in response to 

elevated CO2 (Casson and Gray, 2008; Casson and Hetherington, 2010). This reduces 

transpiration in mature leaves which in turn influences stomatal development in 

developing leaves, for example causing a reduction in stomatal density in plants grown at 

elevated CO2 (Miyazawa et al., 2006; Lake and Woodward, 2008; Chater et al., 2014).  

There are two known molecular mechanisms which influence stomatal density in 

response to altered CO2 concentration. 

Firstly, high carbon dioxide (HIC), which encodes a 3-keto acyl coenzyme A 

synthase involved in long chain fatty acid biosynthesis, acts as a negative regulator of 

stomatal density when CO2 is elevated (Gray et al., 2000). The hic mutants exhibited a 42% 

increase in stomatal density when CO2 concentrations were doubled (Gray et al., 2000). 

More recently two carbonic β-anhydrase genes, CA1 and CA4, have been shown to 

repress stomatal development in response to high CO2 (Engineer et al., 2014).The ca1 ca4 

double mutant exhibits increased stomatal development at elevated CO2 concentrations, 

i.e. demonstrates an inverse response to wildtype (Engineer et al., 2014). EPF2 expression 

is induced in response to high CO2 and is required for the CO2 response. The expression of 

CO2 RESPONSIVE SECRETED PROTEASE (CRSP), a subtilase that cleaves the EPF2, but not 

EPF1, pro-peptide to form the mature EPF2 signalling peptide is also upregulated, 

generating a positive feedback loop that represses stomatal development (Engineer et al., 

2014). 

Both the short term aperture closure and long term density reduction stomatal 

responses to increased CO2 require the presence of ABA, suggesting that ABA is the point 

of integration between the CO2 and ABA signalling pathways (Chater et al., 2015).   
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1.8- The Evolution of Stomata 

1.8.1 The ancient origins of stomata 

 

Plants colonised the terrestrial environment from an aquatic origin around 

450MYA (Peterson et al., 2010). This shift from aquatic to terrestrial habit presented a 

significant problem in terms of plant water relations, namely the dry atmosphere, and 

subsequent problems due to desiccation, inherent in life on the land (Kendrick and Crane, 

1997; Peterson et al., 2010). This led to the evolution of the waxy cuticle of the above 

ground organs that acts as an impermeable barrier to the passage of water (Kendrick and 

Crane, 1997; Peterson et al., 2010). However photosynthesis and respiration present a 

requirement for the ready exchange of gases between plant tissues and the environment, 

to which the cuticle also acts as a barrier (Kendrick and Crane, 1997; Peterson et al., 2010). 

The solution to this problem came about with the evolution of stomata, which provide a 

means of allowing gas exchange across an otherwise impermeable leaf epidermis but 

which can close to seal off the plant’s permeable exchange surfaces in the internal leaf 

spaces from the surrounding environment, preventing water loss in unfavourable 

conditions (Peterson et al., 2010). 

Stomata evolved over 420 MYA (Edwards et al., 1998; Berry et al., 2010) with 

Silurian and Devonian fossils of plants such as Cooksonia and Aglaophyton possessing 

recognisable stomatal structures (Edwards et al., 1998). Indeed the stomata observed are 

very similar in appearance to the stomata seen in extant fern and moss plant lineages 

(Edwards et al., 1998). The distribution of these stomata is evenly spread out on the 

epidermis and stomatal clustering has not been observed, suggesting the presence of a 

stomatal patterning system and ancient origin for the one cell spacing rule (Edwards et al., 

1998; Caine et al., 2016). 
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Stomata in mosses are restricted to a band around the base of the sporophyte 

spore capsule, leading to suggestions that early stomata evolved to allow for tissue drying 

as part of capsule dehiscence prior to been coopted for their canonical role in gas 

exchange after plants developed vasculature and started to grow vertically away from the 

damp soil surfaces favored by basal land plants (Duckett et al., 2009; Peterson et al., 2010).  

 

1.8.2 The deep conservation of the EPF/TMM/ERECTA signalling pathway 

 

A series of studies, primarily using the model moss Physcomitrella patens, has 

revealed deep conservation of the components of the stomatal development pathway that 

has been reviewed earlier in this chapter. 

Firstly two Physcomitrella patens orthologues of the Arabidopsis thaliana bHLH 1A 

subgroup, which includes SPCH, MUTE and FAMA were identified and used to attempt to 

complement Arabidospsis thaliana spch, mute and fama mutants (MacAlister and 

Bergmann, 2011). These transcription factors, PpSMF1 and PpSMF2, have a high degree of 

sequence similarity to SPCH, MUTE and FAMA relative to the other members of the 

Arabidopsis bHLH transcription factors (MacAlister and Bergmann, 2011). PpSMF1 and 

PpSMF2 could not rescue spch mutants but partially rescued mute and fama mutants, 

suggesting that the role of the 1A subgroup in the regulation of stomatal development is 

ancient and conserved (MacAlister and Bergmann, 2011). This was then demonstrated 

conclusively in the native Physcomitrella patens background (Chater et al., 2016). In 

Physcomitrella patens, PpSMF1 knockout mutants lack stomata as do PpSCRM1 knockout 

mutants, showing that these othologues possess roles similar to those of the bHLH 

transcription factors controlling stomatal development in Arabidopsis (Chater et al., 2016). 

Moreover, PpSMF1 and PpSCRM1 were found to directly interact suggesting that the 

heterodimerisation between the SCRM-like and SPCH-like bHLH transcription factors, 
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which is also required for Arabidopsis stomatal development, is highly conserved amongst 

land plants and is ancient (Kanoaka et al., 2008; Chater et al., 2016). 

Another recent study demonstrated further conservation of the molecular 

mechanisms of stomatal development between Physcomitrella patens and Arabidopsis 

thaliana. Single homologues of the EPFLs and TMM were found in Physcomitrella patens 

and named PpEPF1 and PpTMM respectively (Caine et al., 2016). Knockout mutants of 

these genes produce sporophytes with dysfunctional stomatal development, the knockouts 

of PpEPF1 possessing elevated stomatal density whilst PpTMM knockouts showed both an 

increase in stomatal numbers and a stomatal clustering phenotype (Caine et al., 2016). 

Furthermore, overexpression of PpEPF1 significantly reduced the number of stomata per 

sporophyte capsule (Caine et al., 2016). These findings demonstrate conservation of the 

role of EPFls and TMM in the negative regulation of stomatal density between the basal 

land plants and dicots (Caine et al., 2016). PpERECTA1 was also found to affect stomatal 

development, suggesting that the EPF/TMM/ERECTA signalling module is a highly 

conserved, universal aspect of stomatal development (Caine et al., 2016). 

The conservation of known components of stomatal development in grasses is 

discussed in detail in chapter 3 section 2. 

 1.8.3- Conservation of stomatal functional control 

 

Further to the evidence of the conservation of key stomatal development 

components, there is evidence that genes involved in stomatal aperture response are 

similarly conserved. Stomata were found to respond to ABA in both Physcomitrella patens 

and Selaginella unicata (Chater et al., 2011; Ruzsala et al., 2011).  PpOST1 has been found 

to mediate ABA and CO2 response in Physcomitrella patens in a dosage dependent manner, 

with stomatal closure impaired in knock outs (Chater et al., 2011; Chater et al., 2014). 

Furthermore, complementation of the Arabidopsis thaliana ost1 mutant with both PpOST1 
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and the OST1 homologue of the lycophyte Selaginella moellendorffii resulted in the rescue 

of stomatal aperture response to ABA (Chater et al., 2011; Ruzsala et al., 2011). However 

there is significant debate in the literature as to when active stomatal response to ABA and 

environmental cues evolved with some studies suggesting that stomatal closure in basal 

land plants, lycophytes and ferns occurs primarily via hydropassive mechanisms, with the 

lycophyte and fern species investigated not showing any response to ABA application 

(Brodribb and MacAdam, 2011; MacAdam and Brodribb, 2012). Moreover a study of 

several extant moss and hornwort species found no stomatal aperture or stomatal 

development response to changes in CO2 concentration (Field et al., 2015).  These studies 

would suggest that active stomatal aperture control evolved after the divergence of ferns 

360 MYA (Brodribb and MacAdam, 2011; MacAdam and Brodribb, 2012; Chater et al., 

2014; Field et al., 2015). However given the high conservation of molecular components 

and their ability to affect both stomatal aperture control and development it seems likely 

that either active control is an ancestral, monophyletic trait to the extant stomata bearing 

plants or, significantly less likely, that the same molecular components have been co-opted 

for the same/similar roles in regulating stomatal environmental responses through 

multiple origins of active control in different lineages (Chater et al., 2014).  

1.8.4- Response of stomatal development to CO2 over evolutionary time 

 

Over evolutionary time the atmospheric CO2 concentration has varied significantly. 

Studies of fossils have found that the stomatal density of plants tracks the predicted global 

CO2 concentration, with relatively high stomatal densities at times of low global CO2 and 

relatively low stomatal densities at times of high global CO2 (Beerling and Woodward, 

1997; Hetherington and Woodward 2003; Franks and Beerling, 2009).  
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This would suggest that the adaptation of stomatal characteristics to global CO2 is 

beneficial and that futureproofing crops by lowering stomatal density in anticipation of 

higher CO2 levels as a consequence of climate change has some merit.  

Stomatal size varies inversely with stomatal density and changes in stomatal size 

are also seen in the fossil record. Small stomata have shorter diffusion path lengths, 

facilitating CO2 uptake in low CO2 conditions (Franks and Beerling, 2009) and close faster in 

response to environmental cues, protecting against high water potential gradients (Drake 

et al., 2013; Raven, 2014). As a consequence of this inverse relationship the density and 

size phenotypes partially compensate on another, e.g. at low stomatal densities the 

stomatal aperture of individual stoma is larger (Büssis et al., 2006).     

         

1.9- The concept- modifying stomatal density to improve water use 

efficiency and/or drought tolerance 

 

The aim of the experiments contained within this thesis was to investigate two key 

ideas, the first being whether the role of EPFLs in the negative regulation of stomatal 

density was conserved between monocots and dicots. The second was whether reducing 

stomatal density in a crop plant could potentially be used to futureproof crops against the 

predicted rise in drought conditions due to climate change by improvements to water use 

efficiency and/or drought tolerance.  

Significant evidence exists to indicate that the conservation of the role of the EPFLs 

in stomatal regulation is likely. The evolutionary conservation of stomatal development 

components and aperture responses in both basal land plants and monocots, reviewed in 

sections 1.8 and chapter 3 respectfully, suggests that the EPF/TMM/ERECTA signalling 

module predates the divergence between monocots and dicots by a significant margin 
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(Chater et al., 2014; Caine et al., 2016), with the bHLH transcription factors retaining their 

role in guiding stomatal development progression in the monocots (Liu et al., 2009; Raissig 

et al., 2016).  

There is also significant evidence suggesting that reducing stomatal density can 

achieve significant improvements in WUE and drought tolerance. Examples of natural 

reductions in stomatal density leading to improvements in water use efficiency in barley 

and poplar are discussed in section 1.3.3. More recent transgenic work has added further 

evidence to the benefits to water relations of reducing stomatal density. Overexpressing 

EPF2 in Arabidopsis increased both instantaneous and long-term water use efficiency in 

Arabidopsis (Franks et al., 2015) whilst the reduction in stomatal density in Arabidopsis 

thaliana gtl1 mutants was also associated with increased water use efficiency and drought 

tolerance (Yoo et al., 2010; Yoo et al., 2011). Overexpressing PdEPF2 in Arabidopsis 

thaliana also lead to improved drought tolerance (Liu et al., 2016) whilst overexpressing 

ZmSDD1 in maize lead to reduced stomatal density and improved drought tolerance and 

water use efficiency (Liu et al., 2015).  

That plants naturally lowered stomatal density in geological time periods of high 

global CO2 concentration also supports the idea that lower stomatal densities could be 

beneficial in future crops under the elevated global CO2 concentration caused by climate 

change (Beerling and Woodward, 1997; Hetherington and Woodward 2003; Franks and 

Beerling, 2009). 

Following the publication of the barley genome (Mayer et al., 2012) we set out to 

investigate the role of EPFs in monocot stomatal development by overexpressing a 

putative barley homologue of EPF1 and EPF2 in both Arabidopsis thaliana and Hordeum 

vulgare backgrounds. Following an initial screen of the transgenic barley lines we analysed 

two single insert HvEPFL1 barley lines to ascertain the effect of this barley EPFL on 

stomatal development, gas exchange, water use efficiency and drought tolerance.    
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Chapter 2 – Materials and Methods 

2.1- General chemical reagents 

Unless otherwise specified, all chemicals and reagents utilised were obtained from 

New England Biolabs, Sigma-Aldrich, Thermo Fisher Scientific or Bio Rad. 

2.2-Plant material 
 

2.2.1- Hordeum vulgare 
 

The barley HvEPFL1 overexpressor construct was generated by Dr Lee Hunt. They 

were placed into the PBRACT214 gateway vector by LR recombination and transformed 

into the barley cultivar “Golden Promise” by the James Hutton Institute using a previously 

described method (Harwood et al., 2009). Empty vector lines, i.e. lines transformed with 

only the hygromicin resistance cassette, were also generated to act as controls. T0 plants 

were initially grown on selective medium and successful transformants were confirmed by 

PCR. T1 seed of the successfully transformed EPFL and empty vector lines was then sent to 

the University of Sheffield for analysis. Initial phenotype screens and copy number 

determination (section 2.17) were carried out in T1 generation plants, the rest of the 

experiments utilised one empty vector and two single insert transgenic lines (A and B) in 

the T2 generation. All transformants were confirmed by genotyping (see section 2.5). In all 

instances below a barley leaf is considered fully expanded when the ligule has formed.   
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Figure 2.1- Diagram of the construct insert. Gene of interest is HvEPFL1 

2.2.2-Arabidopsis thaliana 
 

The epf2 mutant has been described previously (Hunt and Gray., 2009). The 

HvEPFL2 OE was generated by Dr Lee Hunt. The predicted coding region of HvEPFL1 was 

amplified (see section 2.5) using primers that introduced flanking AscI and NotI restriction 

sites to the desired insert. Restriction digests of the amplified gene and the pENTR/dTOPO 

gateway entry vector were carried out using AscI and NotI restriction enzymes in CutSmart 

buffer (NEB). The cut products were run out on a 1% agarose gel (see section 2.6) and the 

relevant bands excised and purified using the PCR and Gel kit (Bioline). Then the insert was 

ligated into the pENTR/dTOPO backbone to generate an entry vector. This was 

transformed by freeze-thaw method into E.coli and grown up at 37oC for 2 days with 

selection (kanamycin 50mg/ml). The entry plasmid was then extracted and the insert 

recombined into cTapi destination vectors (Rohila et al., 2004). The overexpressor utilised 

the standard cTapi vector where the gene of interest was placed under the control of the 

constitutive CaMv 35S promoter whilst for the pEPF2 complementation vector a modified 

cTAPi vector was used where the 35s promoter had been replaced with the Arabidopsis 

pEPF2 native promoter. The destination vectors were transformed via freeze-thaw into 

agrobacterium strain C58, and Arabidopsis was then transformed using the floral dip 

method (Clough and Bent, 1998). Collected seeds were stratified and germinated as 

described in section 2.3.3 and then transformants selected by treatment with Basta 

herbicide (Liberty; Agrevo,Cambridge, UK). T2 plants were used in the experiments 

 

LB RB 

35s-Hyg-NOS Ubiquitin promoter attR1 attR2 Gene of Interest 
NOS 
Terminator 
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detailed in this thesis, following confirmation of transgene presence by PCR (see section 

2.5). 

2.3- Growth conditions 
  

2.3.1- Hordeum vulgare 
 

All barley growth and gas exchange experiments were carried out in a greenhouse. 

Conditions were set to a 20oC, 12 hour duration day and a 16oC, 12 hour duration night. 

CO2 and humidity were at ambient levels and supplementary lighting was utilised so the 

PAR did not fall beneath 180 µmolm-2s-1 at bench level. The consequences for experimental 

design of these conditions are discussed in detail in section 2.8.3. 

 Barley seeds were germinated on M3 compost in petri dishes sealed with 

micropore tape (3M). Successful germination was considered to have occurred if Zadoks 

stage 07 was achieved (see figure 2.2 for full details of the Zadoks growth scale). Once 

germinated, plants were transferred to pots containing M3 compost (Levington) and 

perlite in a ratio of 4:1. For the initial phenotypic screen and drought tolerance 

experiments (see section 2.12) plants were grown in 13cm diameter pots. For the plant 

initial growth experiment (see section 2.11) and for the plants used for gas exchange and 

yield (sections 2.8 and 2.10 respectively), 1 litre pots were used. Each of these pots was 

supplemented with 5g of Osmocote controlled release fertiliser (The Scotts Company, 

Marysville, OH).         

2.3.2- Soil water content specification 
 

For the experiments requiring soil water content to be controlled the following 

protocol was carried out. Firstly M3 Compost, Perlite and Osmocote in the required ratio 

and quantities for the experiment (see section 2.3.1) were mixed until homogeneous prior 

to being divided equally amongst individual pots.  
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 Five pots were subsequently watered to saturation to obtain the weight of 100% 

soil water content. The soil from a further five pots was transferred into five separate A4 

manilla envelopes and dried in an oven at 80oC for two days at which point their measured 

weight ceased to change. This weight was taken as the value for 0% soil water content. The 

60% and 25% values were then calculated utilising the following formula: 

Soil Water Content(%) =
x –  Dry Weight

Saturated Weight –  Dry Weight
 ∗ 100 

where x equals the soil weight at a given soil water content %. Once the soil 

weights for 25% and 60% soil water content were calculated, the remaining pots were 

maintained at the required weights, being watered to either 25% or 60% soil water content 

level every 2 days. 

2.3.3- Arabidopsis thaliana 
 

Arabidopsis seeds were stratified on wet M3 compost contained within 13cm 

diameter pots at 4oC in dark for 72 hours to synchronise germination. Seed pots were 

covered with cling film and transferred to a growth chamber (Conviron model MTPS120) 

set to ambient CO2 with a 22oC, 9 hour duration day and a 16oC, 15 hour duration night. 

Day time irradiance was set at 200 µmolm-2s-1. After germination and the formation of the 

cotyledons, plants were transferred to standard seed trays divided into 24 cells 

(dimensions 50x48x52mm), an individual plant being placed into each cell. Then the trays 

were covered with a propagator for an initial two weeks, following which the propagator 

was removed and the plants grown to maturity.  
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2.4- Extraction of nucleic acids and cDNA synthesis 
  

2.4.1- Tissue collection 
 

For nucleic acid extraction, tissue was collected from an individual leaf from each 

relevant plant. Young expanding leaves were selected and excised. Barley leaf tissue was 

collected at Zadoks stage 12.2. For barley samples collected for RNA extraction particular 

care was taken to ensure that the base of the leaf, located within the protection of the leaf 

sheath, was sampled. This was due to the fact that stomatal lineage progression primarily 

occurs at the base (Liu et al., 2009) and a rice homologue of EPF2 had previously been 

identified as been expressed in the early stages of leaf development (van Campen et al., 

2016). Once excised the leaf samples were placed into individual 1.5ml Eppendorf tubes 

and frozen in liquid nitrogen. The collected samples were stored at -80oC until such time as 

they could be processed (circa 1 week). For each sample the collected tissue was ground in 

liquid nitrogen with a pre-chilled micropestle until it was reduced to a fine powder prior to 

DNA (section 2.4.2) or RNA (section 2.4.3) extraction. 

2.4.2- DNA extraction  
 

In order to extract DNA 750µl of DNA extraction buffer (100mM tris-HCl pH8, 

50mM EDTA pH8, 500mM NaCl, 10mM β-mrecaptoethanol) was added to the Eppendorf 

tube containing powdered tissue and the contents vortexed for 30 seconds. 50µl of 20% 

(w/v) sodium dodecyl sulphate (SDS) was then added and the sample incubated at 65oC for 

10 minutes, with the tube contents being regularly mixed, again by inversion. 250µl of 

chilled, 5M potassium acetate pH4.8 was subsequently added, the tube mixed by inversion 

and the sample then incubated on ice for 20 minutes. The sample was then spun down in a 

microcentrifuge (12,000 rpm, 20 minutes) and the supernatant transferred to a second 

tube containing 0.6 vol of isopropanol. Following sufficient mixing by inversion the sample 

was incubated overnight at -20oC. The DNA was then pelleted using a microcentrifuge 
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(12,000 rpm, 10 minutes) and the supernatant carefully decanted. The DNA pellet was 

washed twice with 70% (v/v) ethanol with further centrifugation (12,000 rpm, 10 minutes) 

followed by the removal of the ethanol utilising a pipette. Any remaining fluid was 

removed by evaporation under a vacuum and the pellet was resuspended in sterile, 

deionised water.       

  

2.4.3- RNA extraction and cDNA synthesis 
 

RNA was extracted from the ground tissue using the Spectrum Plant total RNA kit 

(Sigma-Aldrich) in accordance with manufacturer’s instructions. Any DNA contamination 

was removed from the eluted RNA using the Ambion DNA-freeTM DNA removal kit (Thermo 

Fisher Scientific). The purified RNA was then used to produce cDNA using Maxima H minus 

Reverse Transcriptase (Thermo Fisher Scientific), again in accordance with manufacturer’s 

instructions. RNA was stored at -80oC and cDNA was stored at -20oC for short term use and 

at -80oC for long term storage.    

2.5 PCR  
 

PCR amplification was used in order to genotype plants, carry out expression 

analysis and in generating construct inserts. 2X BiomixTM Red Taq polymerase reaction mix 

(Bioline) was used for both genotyping and expression analysis. Each individual PCR 

reaction typically consisted of the following components: 

5μl BiomixTM Red 

2μl Primer F (0.5µM) 

2μl Primer R (0.5µM) 

1μl Template (DNA, plasmid or cDNA)  

Thermal cycling commenced with an initialisation step of 95oC for 5 minutes. 30-40 

cycles (dependent on template concentration) were then carried out to amplify the 
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specified target. Each cycle consisted of a denaturation step of 95oC for 15 seconds, 

followed by an annealing step of 57-63oC (dependent upon primers used) for 30 seconds 

which was in turn followed with an elongation step of 30-90 seconds (dependent upon 

product length) at 72oC. Once cycling was complete a final extension step at 72oC for 5 

minutes was applied.    

Construct inserts were amplified using KOD polymerase (Novagen) in accordance 

with manufacturer’s instructions. 

 

2.6 Agarose gel electrophoresis 
 

DNA fragments were separated using agarose gel electrophoresis. 50mg of agarose 

was added to 1X TAE buffer in a 250ml conical flask. The 1X TAE buffer was prepared from 

50X stock solution (2M Tris base ,1M glacial acetic acid, 50mM EDTA pH8). The flask 

contents were heated in a microwave for 75 seconds to dissolve the agarose. The flask was 

then left to cool to a temperature at which it could be held but the contents still be in a 

molten state. 5µl of ethidium bromide (10mg/ml) was added and the conical flask swirled 

to mix. The contents of the flask was then poured into a gel tank, with combs inserted to 

form the wells. The agarose gel was left to set for at least 30 minutes. Once set the gel was 

transferred into an electrophoresis cell (BioRad) and submerged in 1XTAE running buffer. 

The combs were removed and the wells loaded. Hyperladder1 (Bioline) was used to aid 

fragment size determination. Biomix Red prepared PCR products were loaded directly into 

the wells (the reaction mix is of sufficient density to sink to the bottom of the well) whilst 

other DNA products were mixed with 6X bromophenol blue loading dye (4g sucrose, 25mg 

bromophenol blue, dH2O to 10ml) prior to being loaded into wells. The gels were run at 

100V for 30 minutes and imaged on a UVitech transilluminator with attached digital 

camera.         
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2.7- Phenotyping 
  

2.7.1- Creating dental resin impressions 
 

In order to screen large numbers of barley and Arabidopsis transformants and to 

confirm phenotype presence prior to subsequent experiments where leaf removal was 

undesirable, a relatively high throughput, non-destructive phenotyping method was 

utilised. This involved applying dental resin (Coltene Whaledent) to the abaxial surface of 

fully expanded, still attached leaves.  In the case of Arabidopsis the resin was applied to the 

whole leaf surface whilst in barley it was applied to the full width of a 3-5cm strip midway 

along the proximodistal axis of the leaf. The resin, once it had set and been peeled away 

from the leaf tissue, provided an impression of the leaf epidermis. A coat of clear nail 

varnish was applied to these impressions, allowed to dry for 3-4 minutes and then 

transferred to a microscope slide using clear adhesive tape. Barley impressions were 

placed on the microscope slide in such a manner that the stomatal files ran parallel to the 

microscope slide, aiding counting (see section 2.7.4.2).  

  

2.7.2- Leaf clearing 
 

More detailed analysis of barley epidermal patterning was carried out on cleared 

leaves. At Zadoks stage 1.2 the second leaf was excised and a 3-5cm strip midway along the 

proximodistal axis of the leaf was cut out. These leaf samples were then submerged in 

Clarke’s solution (a 3:1 ratio of ethanol to glacial acetic acid, also referred to as Carnoy’s 1 

solution). Following 1 hour of vacuum infiltration the samples were left in Clarke’s solution 

for 24 hours for fixation.  Once fixed the samples were transferred into 100% ethanol for 

long term storage at 4oC (circa 2 weeks). Prior to imaging the leaf samples were cleared in 

50% bleach solution overnight. The midrib of each sample was excised and the remaining 

leaf sections mounted in deionised water on microscope slides for imaging. 
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 2.7.3- Microscopy 
 

The microscope slides produced by methods 2.7.1 and 2.7.2 were imaged on an 

Olympus BX51 microscope utilising the differential interference contrast functionality. 

 

 2.7.4- Analysing stomata 

  2.7.4.1- Arabidopsis thaliana  
 

Stomatal counts in Arabidopsis were taken from the widest point of the abaxial 

surface of the leaf, avoiding the midrib and the edges of the leaf. The stomatal density of 

three leaves each from five plants was counted for each genotype. 5 fields of view (FOV) 

were counted per leaf and averaged to provide plant stomatal density averages. 

  2.7.4.2- Hordeum vulgare 
 

Stomatal and arrested precursor counts in barley were taken from the abaxial 

surface of the leaf, avoiding the midrib and the edges of the leaf. The FOV was positioned 

such that the uppermost stomatal file aligned with the top edge of the FOV. The stomatal 

and arrested precursor density of one leaf (five FOV averaged) from 4-5 plants was 

counted for each genotype per treatment. Only one leaf was used as stomatal density 

differs on a leaf by leaf basis with stomatal density increasing as you go up the plant. 

Unless otherwise stated the leaf utilised for phenotyping the barley was the first leaf 

formed (Zadoks stage 11) with the leaves for clearing being excised (or the dental resin 

impressions being produced) when the plants developed beyond Zadoks stage 12.  

  2.7.4.3- Stomatal size 
 

Guard cell length in barley was measured using ImageJ. 30 stomata were measured 

on one cleared leaf apiece from at least four different individual plants per genotype. 

Stomatal size (S) was then calculated as the guard cell length (L) multiplied by the width of 

the guard cell pair, which was estimated as being L/8 (Franks and Beerling, 2009). 
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  2.7.4.4- Stomatal index 
 

Stomatal index (SI) of a given FOV was calculated utilising the following equation: 

 

 

Stomatal index (%) =
Number of stomata 

Number of stomata + Number of non − stomatal epidermal cells 
∗ 100 

 

2.8- Gas Exchange 
  

2.8.1- Introduction 
 

The gas exchange characteristics and stomatal conductance of control and 

transgenic barley plants were measured using an infra-red gas exchange analyser (IRGA) 

system, a Licor li6400 with a li6400-40 leaf chamber fluorimeter sensor head attached 

(Licor, Licoln, NE). For each reading a single, fully expanded and still attached leaf was 

clamped into the chamber (see section 2.8.2). For each experiment the leaf selected was 

standardised in terms of age and position to ensure a fair test. 

With a li6400 CO2 is scrubbed from the external air and reintroduced from a pure 

CO2 cartridge (12g CO2 cartridge, LISS) through an injector which allows for fine control of 

CO2 levels within the chamber (to within 1 µmol mol-1). PAR levels are altered by modifying 

the light intensity of light emitting diodes contained within the leaf chamber whilst 

temperature within the chamber is monitored with an inbuilt thermocouple and 

maintained at the desired temperature using inbuilt coolers.  

For the experiments outlined in this section humidity within the chamber was 

maintained between 60% and 75% using a self-indicating desiccant (Drierite, Hammond 



57 

 

Drierite Company). Flow rate was set at 300 µmol s-1. PAR, temperature and CO2 levels 

were altered according to experimental design (see sections 2.8.4, 2.8.5 and 2.8.6).       

  

2.8.2- Leaf chamber alignment 
 

The default calculations of photosynthetic parameters assume that the leaf 

chamber, which has a circular cross-sectional area of 2cm2, is entirely filled by the clamped 

leaf but this is rarely the case with barley leaves. It is therefore necessary to measure the 

total area of the leaf contained within the chamber in order to correct outputs. This was 

achieved by measuring the width of the leaf at the position on the leaf to which the leaf 

chamber was to be attached then clamping the leaf so that the midrib directly bisected the 

circular area of the chamber. The leaf area could then be calculated and the values 

inputted into the li6400-generated excel results file in order to correct obtained values.   

 

2.8.3- Ambient condition determination 
 

The first requirement for gas exchange experimental design is to measure ambient 

conditions to ensure later experiments, in particular steady state measurements (section 

2.8.4), accurately reflect the growth conditions in which the sample plants were grown. 

Ambient CO2 in the greenhouse was measured at between 470ppm and 485ppm (elevated 

over the global average largely due to its location in the centre of a large city) so CO2 was 

set to 500ppm for steady state gas exchange, light curves and the initial acclimation for A-

Ci curves. Due to the measurements being made early in the year (March-April 2016) the 

plants were mostly grown under the supplementary lighting outlined in section 2.3.1. As a 

consequence of this light levels were around 210-260 µmol m-2 s-1 at plant canopy height. 

PAR intensity for the steady state measurements was consequently set at 200 µmol m-2 s-1. 
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2.8.4- Steady state measurements 
 

Steady state measurements were taken to determine gas exchange parameters 

and stomatal conductance in ambient conditions. The 6th leaf of the primary tiller (Zadoks 

stage 16) was used for these readings. CO2 levels were set at 500ppm, PAR set at 200µmol 

m-2 s-1 and leaf temperature at 20oC. Plants were left to acclimate to leaf chamber 

conditions for 35-45 minutes. Once gas exchange was stabilised readings were taken every 

20 seconds over 5 minutes and then averaged to provide reported results. The reference 

and sample IRGAs were matched at least every 15 minutes. 

  

2.8.5- Light curves 
 

Light curves were generated using the flag leaf of the primary tiller (Zadoks stage 

39). The CO2 level was set at 500ppm, PAR initially set at 1900µmol m-2 s-1 and leaf 

temperature at 23oC. Plants were left to acclimate to leaf chamber conditions for 45 

minutes. Once gas exchange readings stabilised the initial reading was taken. Readings 

were taken at 1900, 1800, 1700, 1600, 1200, 800, 600, 400, 200, 100, 50 and 0µmol m-2 s-1. 

After each reading PAR intensity was dropped to the next light level and left 2-4 minutes 

until pre-programmed stability criteria were met and the next reading taken. The reference 

and sample IRGAs were matched at least every 15 minutes during acclimation and after 

every reading during curve acquisition. 

  

2.8.6 - A-Ci curves 
 

A-Ci curves were also generated using the flag leaf of the primary tiller (Zadoks 

stage 39). The CO2 level was initially set at 500ppm, PAR set at 1900µmol m-2 s-1 and leaf 

temperature at 23oC. Plants were left to acclimate to leaf chamber conditions for 45 

minutes. The A-Ci curve was collected in two halves. For the first half readings were taken 
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at 500, 300, 200,100 and 50ppm before being returned to 500ppm. 2-3 minutes were left 

between readings until preprogramed stability criteria were met and the next reading 

taken. After being left to reacclimate at 500ppm for 15 minutes the second half of the A-Ci 

curve was collected. Readings were taken at 500, 800, 1000, 1200, 1400, 1600, 1800 and 

2000ppm. 4-5 minutes were left between readings until preprogramed stability criteria 

were met and the next reading taken. The reference and sample IRGAs were matched at 

least every 15 minutes during acclimation and after every reading during curve acquisition.  

2.9 - Zadoks growth scale  
 

The Zadoks scale is a widely used cereal development scale and was used to as a 

means to standardise both the initiation of the withheld water experiment (section 2.12) 

and the gas exchange analysis (section 2.8). It is presented here for ease of reference. 

Zadok Scale 
 

Description 

 Germination 

00 Dry Seed 

01 Start of imbibition 

03 Imbibition complete 

05 Radicle emerged from seed 

07 Coleoptile emerged from seed 

09 Leaf just at coleoptile tip 

 Seedling Growth 
Count leaves on main stem only. Fully emerged 
= ligule visible. 

10 First leaf through coleoptile 

11 First leaf fully emerged 

12 Two leaves fully emerged 

13 Three leaves fully emerged 

14 Four leaves fully emerged 

15 Five leaves fully emerged 

16 Six leaves fully emerged 

17 Seven leaves fully emerged 

18 Eight leaves fully emerged 

19 Nine or more leaves fully emerged 

 Tillering 
Count visible tillers on main stem. 

20 Main stem only 

21 Main stem and one tiller 

22 Main stem and two tillers 

23 Main stem and three tillers 
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24 Main stem and four tillers 

25 Main stem and five tillers 

26 Main stem and six tillers 

27 Main stem and seven tillers 

28 Main stem and eight tillers 

29 Main stem and nine or more tillers 

 Stem elongation 

30 Pseudostem (youngest leaf sheath erection) 

31 First node detectable 

32 Second node detectable 

33 Third node detectable 

34 Fouth node detectable 

35 Fifth node detectable 

36 Sixth node detectable 

37 Flag leaf just visible 

39 Flag leaf ligule just visible 

 Booting 

41 Flag leaf sheath extending 

43 Boots just visible swollen 

45 Boots swollen 

47 Flag leaf sheath opening 

49 First awns visible 

 Ear emergence from boot 

51 Tip of ear just visible 

53 Ear quarter emerged 

55 Ear half emerged 

57 Ear three quarters emerged 

59 Ear emergence complete 

 Anthesis 

61 Beginning of anthesis (few anthers at 
middle of ear) 

65 Anthesis half-way (anthers occurring half 
way to tip and base of ear) 

69 Anthesis complete 

 Milk development 

71 Kernel water ripe (no starch) 

73 Early milk 

75 Medium milk 

77 Late milk 

 Dough development 

83 Early dough 

85 Soft dough 

87 Hard dough 

 Ripening 

91 Grain hard, difficult to divide 

92 Grain hard, not dented by thumbnail 

93 Grain loosening in daytime 

94 Over-ripe straw dead and collapsing 

95 Seed dormant 

96 Viable seed giving 50% germination 
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97 Seed not dormant 

98 Secondary dormancy induced 

99 Secondary dormancy lost 

 
Figure 2.2- Table showing all stages in the Zadoks scale. Seedling growth 

can be subdivided by rating the emergence of the youngest leaf in tenths 

e.g. Zadoks scale 14.4 means 4 leaves are fully emerged whist the 5th is 

40% emerged. Fully emerged means that the ligule is visible. Stage 

descriptions retrieved from the Department of Agriculture and Food, 

Government of Western Australia website 

(https://www.agric.wa.gov.au/grains/zadoks-growth-scale?page=0%2C0) 

2.10- Harvesting 
 

 2.10.1- Introduction 
 

Growth and yield under 60% and 25% watering regimes was assessed at the end of 

the lifecycle of control and transgenic barley plants. The plants used were the same 

individuals upon which gas exchange was carried out (section 2.8).  

 2.10.2 – Vegetative tissue  
 

For each plant the total number of tillers and leaves were counted. The primary 

tiller height was measured from the root-shoot interface to the apex of the rachis. The 

number of spike-bearing tillers and prematurely senescing tillers was recorded.  Ears were 

removed and the rest of the above ground tissue was sealed into an A4 manilla envelope, 

dried down at 80oC for 2 days and weighed to obtain the dry weight of the shoots and 

leaves.   

2.10.3- Assessing yield 
 

The grains were counted and weighed per ear and the sum of the number and 

weight of grain on all the ears of individual plants recorded as the total grain number and 

the yield respectively. The average weight of individual seeds for each plant was then 

calculated as was the harvest index (the ratio of grain yield to total above ground biomass).  

https://www.agric.wa.gov.au/grains/zadoks-growth-scale?page=0%2C0


            62 

 

 2.10.4- Δ C analysis 
 

ΔC analysis correlates with long term WUE (Farqhuar et al., 1982; Farqhuar and 

Richards 1984) and was used here as an alternative measure of WUE to the intrinsic and 

instantaneous WUE values generated using infra-red gas exchange analysis (see sections 

1.3 and 2.8.4).  Flag leaves were excised from the plants analysed by gas exchange and 

dried at 80oC for 2 days. The samples were then ground finely and 3-4mg of each sample 

was sealed into individual foil cups. These were combusted at 1800oC, the components 

separated by gas chromatography and the isotopes of carbon ionised and separated by 

mass using an ANCA GSL 20-20 mass spectrometer (Sercon PDZ Europa).  

 

2.11- Growth assessment  
 

The time taken to germinate and the germination success rate were assessed with 

successful germination being recorded when the individual plant reached Zadoks stage 07 

(N=40). Once the third leaf was fully expanded growth measurements were carried out 

every 3 days. This included counting the total number of fully expanded and expanding 

leaves as well as the total number of tillers and the height of the primary tiller. 

2.12- Assessing drought tolerance 
 

 2.12.1- Introduction 
 

In order to assess drought tolerance control and transgenic barley plants were 

grown until Zadoks stage 21. Half the plants of each line were then maintained at the initial 

watering level (60% soil water content) whilst water was withheld from the other half. The 

experiment continued for 19 days until the fluorescence levels measured reached 0 for all 

water withheld plants (see section 2.12.3). Drought tolerance was assessed by both 

monitoring the rate at which soil water was utilised to test for drought avoidance (see 
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section 2.12.2) and by monitoring plant stress using the light-adapted quantum yield of 

photosystem II (QY or Fv’/Fm’) as a proxy (see section 2.12.3).    

 2.12.2- Measuring water consumption 
 

Following the onset of the drought treatment the pots were weighed every day 

and used to calculate the percentage of initial soil water content remaining. Well-watered 

controls were maintained at 100% of the initial soil water content value (60% SWC) by daily 

watering.  

 2.12.3- Assessing drought stress 
 

QY readings were taken each day from the most recent, fully expanded leaf of the 

primary tiller at day 1 of the drought treatment. The same leaf was monitored throughout 

the experiment. Readings were taken using a FluorPen FP100 (Photon Systems 

Instruments).  

 2.12.4- Relative water content (RWC)   
  

Relative water content was measured on day 6 of the drought treatment. The 

second most recent, fully expanded leaf of the primary tiller was excised and a section 5cm 

long was cut out of the centre of the leaf. This was weighed to obtain the fresh weight. 

Samples were then placed into 20ml sample tubes containing 5ml of distilled water and left 

to hydrate overnight. The samples were then weighed to obtain the turgid weight of the 

leaf sections. Finally, the samples were dried at 80oC for two days and weighed to obtain 

the dry weight. RWC was then calculated using the equation: 

 

Relative Water Content(%) =
Fresh Weight –  Dry Weight

Turgid Weight –  Dry Weight
 ∗ 100 
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2.13- Graphing and data analysis 
 

All data were graphed and statistically analysed using GraphPad Prism 7 software. 

Variation was considered significant when p<0.05.  

 

2.14- Confocal microscopy 
 

For the confocal microscopy samples were prepared as described in Wuyts et al., 

2010 and viewed on an Olympus FV1000 confocal microscope using the 20x UPlan S-Apo 

N.A. 0.75 objective, 543nm laser, 555-655nm emission and Fluorview software. This work 

was carried out in collaboration with Dr Chris Hepworth. 

 

2.15- Bioinformatics 
 

Barley genomic and protein sequences used to produce primers and used in the 

alignment (section 3.4) respectively were obtained from Gramene (www.gramene.org) 

whilst Arabidopsis thaliana sequences were retrieved from TAIR (www.arabidopsis.org). 

The HvEPFL1 gene is annotated as MLOC_67484.1 on Gramene. The putative HvEPFL1 

protein sequence was identified using FGENESH (www.softberry.com).The sequence 

alignment between protein sequences and the subsequently generated phylogenetic tree 

were produced using MEGA7.    

2.16- Primer design 
 

Primers were designed using the PrimerQuest and OligoAnalyser tools supplied by 

Integrated 

DNA Technologies (www.idtdna.com).  

 

 

http://www.gramene.org/
http://www.arabidopsis.org/
http://www.softberry.com/
http://www.idtdna.com/
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2.17- Sequencing 
 

All produced constructs were sequenced to confirm that insert orientation and 

DNA sequence were correct. This service was carried out by the Core Genomic Facility 

(Faculty of Medicine, Dentistry and Health, University of Sheffield) using an M13 region 

reverse primer (CAGGAAACAGCTATGACC).  

2.18- Copy number analysis 
 

Single insert transgenic barley lines were identified by real time quantitative PCR 

carried out by iDNA Genetics (Norwich, UK) from leaf tissue samples collected from T1 

transgenic lines (4 individuals sampled per line).  

2.19- Stomatal patterning definitions and measurement 

 

Figure 2.3- Illustrative diagram of the epidermis of Hordeum 

vulgare.  

The length of spacing cells was measured (only when there was a single spacing 

cell present between consecutive stomata) in both transgenic and control lines and the 

results recorded in figure 3.21. The proportion of the spaces between consecutive stomata 

in rows that consisted of only a single intervening spacing cell was determined and 

recorded in figure 3.23. Finally, the distance between stomatal rows was determined as 

illustrated in figure 2.3 and recorded in figure 3.22. 
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Chapter 3- The effect of overexpressing 
HVEPFL1 on epidermal development in 

Hordeum vulgare 

 
3.1- Introduction 

This chapter focuses on the effect overexpressing HvEPFL1 has on stomatal development. 

This includes analysis of the sequence conservation between and projected evolutionary 

relation of HvEPFL1 and the Arabidopsis thaliana EPFLs that have been demonstrated to 

influence stomatal development as reviewed in chapter 1. The changes in stomatal 

characteristics as a consequence of HvEPFL1 overexpression in Hordeum vulgare are 

described and quantified, and the effects of HvEPFL1 expression in Arabidopsis thaliana 

analysed. Together this data presents an insight into the signalling pathway governing 

stomatal development in Hordeum vulgare and provides additional reinforcement of the 

concept that the regulation pathways controlling stomatal patterning are conserved 

throughout the land plants (Liu et al., 2009; Chater et al., 2016; Caine et al.,2016; Raissig et 

al; 2016. Discussed in depth in sections 1.8 and 3.2). 

3.2- The regulation of stomatal development in grasses 

Stomatal patterning in grasses is a significant departure from the ancestral, dicot like 

stomatal pattern. In grasses stomata are organised into files of cells running parallel to the 

leaf veins (Serna, 2011; Raissig et al., 2016). Moreover, the stomata themselves differ in 

structure, with the guard cells possessing a dumbbell like shape rather than the kidney 

shape of Arabidopsis guard cells (Sack, 1994). These unique stomata are able to respond 

significantly faster to environmental cues than the ancestral state and so prove to be more 

efficient (Franks and Farqhuar, 2007; Chen et al., 2017). Grass stomata possess two 

subsidiary cells of specialised function, one on each side of the stomatal complex (Stebbins 
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and Jain, 1960; Stebbins and Shah, 1960). They are formed when grass GMCs induce 

adjoining epidermal cells in neighbouring cell files to develop subsidiary mother cell (SMC) 

fate and divide asymmetrically such that the smaller daughter cell of the SMC, the 

subsidiary cell, is adjacent to the GMC (Stebbins and Jain, 1960; Cartwright et al; 2009). The 

GMC then divides symmetrically to produce guard cells, forming the complete stomatal 

complex (Stebbins and Jain, 1960; Sack, 1994).    

Unlike in Arabidopsis where stomatal development occurs at points scattered across the 

leaf, grasses demonstrate a base to tip gradient of stomatal differentiation with different 

zones of the developing leaf possessing stomatal lineage cells at different stages (Stebbins 

and Jain, 1960; Liu et al., 2009; Vaten and Bergmann, 2012). At the base stomatal rows are 

specified followed by asymmetric division within the stomatal rows to produce GMCs 

(Stebbins and Jain, 1960; Liu et al., 2009; Vaten and Bergmann, 2012). Further up the 

developing leaf subsidiary cells are seen to form whilst nearer the tip differentiated 

stomata are found (Stebbins and Jain, 1960; Liu et al., 2009; Vaten and Bergmann, 2012). 

The signalling involved in these asymmetric divisions to form subsidiary cells is one of the 

limited number of aspects of stomatal development regulation that is relatively well 

understood in grasses. Two LRR receptor like proteins called PANGLOSS 1 (PAN1) and PAN2 

have been identified in maize which, in response to an unknown signalling peptide 

released by GMCs, induce pre-mitotic polarity and subsequent asymmetric division in SMCs 

(Cartwright et al., 2009, Zhang et al., 2012). Two Rho family GTPases (ROPs), ROP2 and 

ROP9, act in conjunction with PAN1 and PAN2 to induce SMC asymmetric divisions 

(Humphries et al., 2011). The polar localisation of PAN1 and PAN2 requires the 

SCAR/WAVE complex which activates the actin-nucleating ARP2/3 complex that likely 

means the formation of actin structures is responsible for PAN polarisation and subsequent 

asymmetric division (Facette et al., 2015).  PAN1 and PAN2 have also been identified as 
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possessing broader roles in plant development, such as inducing cortical actin 

accumulation and cell expansion in diverse cell types (Sutimantanapi et al., 2014). 

Another interesting point to keep in mind when discussing asymmetric divisions in the 

stomatal lineage cells of grasses is the fact that grasses lack BASL and POLAR orthologues, 

as these arose after the divergence of monocots and dicots (see figure 3.1) (Vaten and 

Bergmann, 2012). This consequently means that induction of asymmetric divisions in the 

stomatal lineage of grasses must utilise a distinct mechanism (Vaten and Bergmann, 2012). 

 

 

Figure 3.1- Divergence of major land plant lineages with the appearance of key factors in 

the asymmetric divisions of stomatal development labelled. Numbers are multiples of 

millions of years whilst brackets indicate that appearance has been predicted. Adapted 

from Vaten and Bergmann, 2012. 
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Our current knowledge on the specifics of the components regulating stomatal lineage 

progression in grasses is relatively limited, restricted to the functions of Orthologues of the 

bHLH transcription factors that control stomatal lineage progression in Arabidopsis 

thaliana (Liu et al., 2009; Raissig et al., 2016). 

Liu et al., 2009 extensively profiled the orthologues of SPCH, MUTE and FAMA in rice 

(Oryza sativa) and the maize (Zea mays) MUTE orthologue. Maize and rice both possess 

one FAMA homologue each, the bHLH domains of which are highly similar to that of 

Arabidopsis thaliana FAMA (Liu et al., 2009). OsFAMA is expressed in the sheath and leaf 

blade expansion zones where the later stages of stomatal development occur in grasses i.e. 

consistent with OsFAMA having a role similar to AtFAMA (Liu et al., 2009). The osfama-1 

mutant sees guard cells forming in a box shape resembling the GMC rather than the 

canonical dumbbell shape suggesting OsFAMA is required for guard cell differentiation like 

it is in Arabidopsis thaliana (Ohashi-Ito and Bergmann, 2006; Liu et al., 2009). The extra 

symmetrical guard mother cell divisions seen in Arabidopsis fama mutants are absent in 

osfama-1 mutants however (Ohashi-Ito and Bergmann, 2006; Liu et al., 2009). 

Overexpressing OsFAMA in Arabidopsis results in the proliferation of unpaired guard cells, 

just like AtFAMA overexpression, whilst complementation of the Arabidopsis fama mutant 

with OsFAMA results in phenotypic rescue (Ohashi-Ito and Bergmann, 2006; Liu et al., 

2009). All in all, FAMA function appears to be highly conserved between grasses and 

Arabidopsis. 

There are two orthologues of SPCH in maize and rice the expression patterns of which 

could not be determined (Liu et al., 2009). OsSPCH2 is most similar to AtSPCH and the 

osspch2-1 mutant does show a reduction in stomatal density consistent with a role in early 

stomatal development in rice (Liu et al., 2009). Overexpressing OsSPCH2 in Arabidopsis 

does increase pavement cells divisions, however OsSPCH2 cannot complement the 
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Arabidopsis spch mutant, suggesting a degree of diversification in SPCH activity between 

grasses and Arabidopsis (Liu et al., 2009).  

OsMUTE is expressed earlier than OsFAMA suggesting that it has an earlier role in stomatal 

development consistent with lineage progression in Arabidopsis (Liu et al., 2009; Han and 

Torii, 2016). Unlike Arabidopsis MUTE OsMUTE expression is broad rather than restricted 

to the meristemoids, more closely resembling early Arabidopsis SPCH expression (Gray, 

2007; Liu et al., 2009; Davies and Bergmann, 2014). It is also expressed earlier on in the 

formation of stomatal files than one would expect if it purely functioned in the same role 

as Arabidopsis MUTE (Liu et al., 2009). Overexpressing OsMUTE and ZmMUTE in 

Arabidopsis produces a phenotype resembling the Arabidopsis MUTE overexpression 

phenotype and OsMUTE partially rescues the Arabidopsis mute mutant (Pillitteri et al., 

2007, Pillitteri et al., 2008; Liu et al., 2009). The Brachypodium distachyon otholog of 

Arabidopsis MUTE is necessary and sufficient to induce subsidiary cell formation (Raissig et 

al., 2017).       

The main conclusion that can be drawn from Liu et al., 2009 is that whilst the same bHLH 

factors are involved in controlling stomatal lineage progression their exact roles have 

somewhat diverged with both MUTE and SPCH showing distinct differences in terms of 

expression pattern (MUTE) and function (both). One notable change is that OsMUTE and 

ZmMUTE both contain multiple MAPK cascade phosphorylation sites, more similar to 

Arabidopsis SPCH than Arabidopsis MUTE, which has not been identified as a target for 

phosphorylation in stomatal development (Lampard et al., 2008; Liu et al., 2009). Whether 

the differences in roles between grasses and Arabidopsis are due to such differences in 

protein composition or whether it is due to the distinct differences in the manner in which 

grass leaves develop is presently unclear (Liu et al., 2009).   

More recent work in Brachypodium distachyon has demonstrated that the role played by 

SPCH and in initialling stomatal development is conserved between grasses and 
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Arabidopsis (Raissig et al., 2016). Like maize and rice, Brachypodium distachyon has two 

homologues of SPCH (Liu et al., 2009; Raissig et al., 2016). The bdspch1 and bdspch2 

mutants show weak and strong reductions in stomatal density whilst in the bdspch1 

bdspch2 double mutant stomatal development is entirely abolished with no stomatal cells 

files initiating (Raissig et al., 2016). This stomataless phenotype is consistent with the 

phenotype of the Arabidopsis spch mutant, suggesting that the role of SPCH in initiating 

entry into the stomatal lineage is conserved (MacAlister et al., 2007, Raissig et al., 2016).   

Overexpression of BdSPCH2 caused hair cell precursors to transition into stomata, resulting 

in ectopic stomatal cell fate (Raissig et al., 2016). This suggests that, unlike SPCH in 

Arabidopsis, BdSPCH2 can act to determine cell fate, in a manner more akin to Arabidopsis 

MUTE (Raissig et al., 2016). 

The same body of work also analysed a Brachypodium distachyon mutant called 

stomataless (stl) which completely lacks stomata like the bdspch1 bdspch2 double mutant 

(Raissig et al., 2016). The mutation was tracked to the BdICE1 gene, a homologue of 

Arabidopsis ICE1/SCRM, a known component of stomatal lineage progression (Kanoaka et 

al., 2008; Raissig et al., 2016). Like SCRM, BdICE1 has a duplicated variant called BdSCRM2, 

although the Arabidopsis and Brachypodium SCRMs underwent duplication after the 

divergence of dicots, i.e. are products of distinct duplication events (Raissig et al., 2016). 

Unlike Arabidopsis SCRM and SCRM2, BdICE1 and BdSCRM2 are not functionally redundant 

(Kanoaka et al., 2008; Raissig et al., 2016). BdSCRM2 is required only for late stage stomatal 

differentiation with guard cells failing to mature correctly in bdscrm2 mutants (Raissig et 

al., 2016).   

Raissig et al., 2016 shows that orthologues of the master regulators of stomatal lineage 

initiation in Arabidopsis are responsible for stomatal initiation in grasses, despite the 

significant change in the epidermal pattern of stomata in grasses, with only some 

divergence in the function and regulation of these bHLH transcription factors.   



            72 

 

This conservation of the roles seen in the SCRM and SPCH orthologues of Brachypodium 

distachyon and MUTE and FAMA in rice and maize suggests that components of the 

EPF/TMM/ERECTA signalling pathway are likely to have conserved roles as well.  

 3.3- Methods summary 

Prior to the author’s involvement in the project HvEPFL1 and HvEPFL2 

overexpression constructs were generated by Dr Lee Hunt and transformed into barley by 

the James Hutton Institute as described in chapter 2. The T1 seed of the resultant 

transgenic lines were germinated in 24 cell seed trays in a Conviron BDW growth chamber 

with conditions set to a 23oC, 12-hour day/ 16oC 12-hour night cycle with day time light 

intensity of 500µmolm-2s-1. Once the plants had grown to Zadox stage 1.2 dental resin 

impressions were made of the first, fully expanded leaf and these impressions were 

analysed to screen for stomatal density phenotypes. Plants were also genotyped and 

segregants were discarded.  

Once transgenic lines with significantly reduced stomatal density were identified a subset 

were grown under greenhouse conditions (see section 2.3.1) and analysed to ascertain the 

copy number of inserts in order to guide generation of single copy, homozygous lines. 

 More detailed analysis of the stomatal patterning and characteristics was carried out on 

cleared leaves of T3 individuals using images obtained by DIC microscopy. 

In the meantime, three Arabidopsis constructs, 35S::HvEPFL1, 35S::HvEPFL2 and 

pEPF2::HvEPFL1 were created and introduced into the Col-0 (35S constructs) and 

epf2(pEPF2) backgrounds.  

3.4- Bioinformatic analysis of HvEPFL1 

 
Following the sequencing of the barley genome 11 potential orthologues of 

Arabidopsis EPFL signalling peptides were identified. Of these one in particular showed 

close sequence homology to the negative regulators of stomatal development in 
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Arabidopsis, EPF1 and EPF2, and was consequently designated HvEPFL1. Figure 3.2 shows 

the alignment of the predicted amino acid sequence of HvEPFL1 against the mature 

peptide sequences of both EPF1 and EPF2. There is significant conservation of residues in 

this region and it is particularly important to note the conservation of the cysteine residues 

that have previously been reported as being vital for EPF function (Okhi et al., 2011). Not 

only does HvEPFL1 retain the 6 cysteines in the conserved positions found in all 

Arabidopsis EPFLs (marked by black arrows, figure 3.2) but it possesses the additional pair 

of cysteines found in EPF1 and EPF2 (marked by red arrows, figure 3.2), strongly suggesting 

that HvEPFL1 is likely to have a role in negatively regulating stomatal density, if function is 

conserved. 

 

Figure 3.2- HvEPFL1 shows close protein sequence conservation to the 

Arabidopsis Thaliana negative regulators of stomatal density. Alignment 

of the protein sequence of HvEPFL1 against Arabidopsis EPF1 and EPF2. 

The putative mature signalling peptide sequences were used to generate 

the alignment. Black arrows mark cysteine residues conserved throughout 

the Arabidopsis EPFLs. Red arrows mark conserved cysteine residues 

unique to negative density regulators. The Arabidopsis thaliana protein 

sequences were retrieved from TAIR and the Hordeum vulgare sequence 

from Gramene. The alignment was generated with Multalin using default 

parameters. 

 

That HvEPFL1 is a strong candidate for being a negative regulator of stomatal 

development is further supported by phylogenetic analysis based on the amino acid 
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sequences of HvEPFL1 and Arabidopsis EPFLs. HvEPFL1 groups with the negative regulators 

EPF1 and EPF2, not the CHALLAH or STOMAGEN groups which possess different roles in 

plant development as discussed in chapter 1. 

 

 

 

 

Figure 3.3- Phylogenetic analysis of the HvEPFL1 amino acid sequence 

groups it with known negative regulators of stomatal density. The amino 

acid sequence of the putative mature peptide of HvEPFL1 was aligned with 

the putative mature peptide sequences of the Arabidopsis thaliana 

negative regulators (EPF1, EPF2 and EPFL7), Challah group EPFLs (Challah, 

EPFL4 and EPFL5), and the positive regulator of stomatal density 

STOMAGEN, using MEGA7. The phylogenetic tree was generated using a 

maximum likelihood model. The numbers beneath the branches indicate 

bootstrap values. Branches with bootstrap values under 50%, i.e. poorly 

supported, were collapsed. Default MEGA7 values for model parameters 

were used when generating the tree with 1000 bootstrap replications run. 

 

HvEPFL1 
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3.5 – Overexpression and mutant complementation using HvEPFL1 in Arabidopsis 

thaliana  

3.5.1 – Introduction 

In order to understand whether HvEPFL1 functions in a manner similar to those 

EPFs known to regulate stomatal development in the model plant Arabidopsis thaliana, it 

was first necessary to ascertain whether HvEPFL1 produced similar effects to those EPFs 

when introduced into the same genetic background in which those genes’ functions were 

assayed. 

To do this a construct was produced to ectopically overexpress HvEPFL1 in 

Arabidopsis (schematic A, figure 3.4) and introduced into the Col-0 Arabidopsis thaliana 

ecotype as described in section 2.2.2. Two independent T2 lines were generated and their 

epidermal phenotype assessed (see section 3.5.2). The same process was carried out with 

a second putative barley EPFL orthologue, HvEPFL2. 

To further assess the ability of HvEPFL1 to play a role in regulating stomatal density 

in a manner similar to that of previously described EPFLs, a construct expressing HvEPFL1 

under the Arabidopsis thaliana native pEPF2 promoter was produced as described in 

section 2.2.2 and transformed into the Arabidopsis thaliana epf2 mutant background. 

Owing to poor germination rates, high seedling mortality rates and very poor seed set, it 

was not possible to generate T2 lines. However, the results obtained from 3 independent 

T1 individuals have been pooled and reported in section 3.5.3 below which, whilst not 

ideal, provide some potential insight into HvEPFL1 function.  
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Figure 3.4- Schematic showing construct design for HvEPFL1 

overexpression and complementation in an Arabidopsis thaliana 

background. (A) Construct for overexpressing HvEPFL1 in Arabidopsis 

thaliana Col-0 ecotype. (B) Construct for complementation of the epf2 

mutant in Arabidopsis thaliana. Both constructs were produced using the 

cTAPi plasmid (Rohila et al., 2004). Blue arrows indicate promoters, lilac 

arrows represent the attR sites used for LR clonase recombination and the 

green box shows the location of the HvEPFL1 gene. LB and RB label the left 

and right borders of the insert respectively. 

 

 

3.5.2 – Ectopic expression of HvEPFL1 in Arabidopsis produces a stomatal phenotype 

consistent with that found in ectopic overexpression lines of native EPFLs involved in 

the negative regulation of stomatal density 

When ectopically overexpressed both HvEPFL1 and HvEPFL2 caused a significant 

reduction in stomatal density compared to Col-0 controls (figure 3.5 A). This ranged from a 

reduction to 61.29% of mean wild type density in line 35s::HvEPFL1-A to a reduction to 

47.61% of mean wild type density in line 35s::HvEPFL1B. 

Similarly, stomatal index also significantly decreased in all lines investigated (Figure 

3.5 B). Stomatal index fell between approximately a third and a half, from a mean of 21% in 
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Col-0 controls to means ranging from 12.1% in line 35s::HvEPFL1-A to 14.0% in line 

35s::HvEPFL2-B. This drop in stomatal index occurred as a result of the significant drop in 

stomatal density as the density of epidermal pavement cells also dropping slightly, likely 

due to a reduction in amplifying divisions as a consequence of either the reduced number 

of stomatal lineage cells in total or as a consequence of meristemoid arrest (see figure 3.6 

and discussion thereof below).   

These findings are consistent with those seen when Arabidopsis EPFLs are 

overexpressed in their native background, wherein overexpressing EPF1 reduces stomatal 

density and increases the prevalence of arrested stomatal precursors (Hara et al., 2007; 

Hara et al., 2009) whilst the EPF2 overexpressor also reduces stomatal density (Hunt and 

Gray, 2009; Hara et al., 2009). These findings therefore suggested that the two HvEPFLs 

are, like EPF1 and EPF2, negative regulators of stomatal density. Owing to a lack of 

expression data available for HvEPFL2 a decision was taken at this point to focus on 

HvEPFL1 for the subsequent work in both Arabidopsis thaliana and in barley. 
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Figure 3.5- Overexpressing HvEPFL1 and HvEPFL2 in Arabidopsis thaliana 

significantly reduces stomatal density and stomatal index. (A) 

Comparison of the mean stomatal densities of HvEPFL1 and HvEPFL2 

transgenic lines with Col-0 mean stomatal density. (B) Comparison of the 

mean stomatal index of HvEPFL1 and HvEPFL2 transgenic lines with Col-0 

mean stomatal index. The stomatal densities and indices of two 

independent T2 transgenic lines reported for each construct. N=5. Error 

bars signify SE. Asterisk indicates significant reduction in the relevant 

stomatal trait compared to col-0 control values (Dunnett’s multiple 

comparisons test after one-way ANOVA, p<0.05). 

 



79 

 

Further analysis of the epidermis of the HvEPFL1 ectopic overexpression lines 

revealed an interesting phenotype for further evaluating its effect in the context of the 

Arabidopsis thaliana EPFLs. As can be seen in figure 3.6, whilst stomatal density decreases 

there is an increased prevalence of small triangular cells consistent in morphology with 

meristemoids. The ectopic expression of the native EPF1 gene leads to a similar phenotype 

of arrested meristemoids, which are not seen when Arabidopsis thaliana EPF2 is ectopically 

expressed (Hara et al., 2007; Hunt and Gray., 2009; Hara et al., 2009).  

This similarity between EPF1 and HvEPFL1 ectopic overexpression phenotypes in 

the Arabidopsis thaliana background suggested that the function of HvEPFL1 could be most 

similar to that of EPF1 i.e. a role primarily in the orientation of the asymmetric divisions in 

the lineage (Hara et al., 2007). This seems a reasonable hypothesis, given that the 

arrangement of the stomata in monocots requires only a single, correctly orientated 

asymmetric division to achieve the pattern within the file, namely two sequential stomata 

spaced apart by a single epidermal cell, with stomatal file identity having been specified in 

an earlier stage of development at the base of the leaf (Stebbins and Jain, 1960; Liu et al., 

2009; Vaten and Bergmann, 2012). The absence of amplifying divisions and secondary 

acquisition of MMC fate in grasses, which are regulated by EPF2 in Arabidopsis thaliana, 

would also suggest that HvEPFL function in barley is most likely to be similar to EPF1 (Hara 

et al., 2009; Han and Torii, 2016). 

 

 

 

Figure 3.6- Tracings of epidermal micrographs of the epidermis of col-0 

and the HvEPFL1 overexpressor Representative images of the epidermis 

taken from Hughes et al., 2017. Red ovals identify stomata, green triangles 

identify meristemoids. 
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3.5.3 – Complementing the epf2 mutant with HvEPFL1 results in only partial rescue of 

the phenotype 

The complementation of the epf2 mutant with the pEPF2::HvEPFL1 construct did 

result in an alteration to stomatal development (see figure 3.7), albeit not consistent with 

any known outcome in similar experiments in the literature. Unlike EPF1 (Hara et al., 

2009), HvEPFL1 does partially rescue the epf2 mutant, with the stomatal density in 

complementation lines being comparable to the stomatal density of Col-0 controls. The 

mean stomatal density of the pooled (see section 3.5.1 for explanation) pEPF2::HvEPFL1 

lines was 99.6mm-2, which was 42.3% of the mean stomatal density of the epf2 mutant 

(236mm-2) and 65.7% of the mean stomatal density of the control (151mm-2), with only the 

former being statistically significant (see figure 3.7 A). This is consistent with the 

complementation of the epf2 mutant with the native EPF2 gene, which restored wild type 

stomatal density (Hara et al., 2009).  

However, the stomatal index (the ratio of the number of stomata divided the 

number of stomata and other epidermal cells in a given area) of the complementation line 

remains similar to the epf2 mutant. The stomatal index of pEPF2::HvEPFL1 is 8.07% 

compared to 21.3% in the control and 12.2% in the epf2 mutant, with the difference 

between the control and complementation being statistically significant (see figure 3.7 B).     

The reason for this low stomatal index is very much apparent when observing the 

epidermis of the relevant genotypes. In epf2 mutants there is a proliferation of small cells 

due to the loss of the inhibitory effect EPF2 has on the amplifying divisions that produce 

additional SLGCs during the stomatal development pathway, as well as the increase in 

stomatal density due to the loss of EPF2-mediated suppression of entry divisions and MMC 

fate acquisition (Hunt and Gray, 2009; Hara et al., 2009; Han and Torii, 2016). In the 

pEPF2::HvEPFL1 complementation lines the stomatal density regulation was restored, with 

wild type density observed, but wild type total cell density levels were not re-established, 

with the continued proliferation of small cells suggesting that the regulation of amplifying 

divisions remained aberrant. This observation suggests that the functions of EPF2 are 

separable and explains the stomatal index data in figure 3.7 B, with the wild type stomatal 

density and mutant-like epidermal cell density of the pEPF2-HvEPFL1 complementation 

lines resulting in a stomatal index lower than both the epf2 mutant and the control, 

although only the latter difference is significant statistically. That HvEPFL1 cannot regulate 

amplifying divisions in these complementation lines is notable, given that grasses only 

undertake a single asymmetric entry division during their stomatal patterning process and 
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do not carry out amplifying divisions. It could be that HvEPFL1 is derived from an EPF2-like 

ancestral peptide and that the ability to carry out this function has been lost as a 

consequence of redundancy after the transition between stomatal patterns. Alternatively, 

HvEPFL1 may be derived from an EPF1-like ancestral peptide which would probably, like 

EPF1, have lacked the ability to substitute for EPF2, as has previously been observed in 

promoter swapping experiments in Arabidopsis thaliana (Hara et al., 2009). In this latter 

case the gain of the ability to rescue the stomatal density phenotype would most likely 

have to be ascribed to chance and given that the HvEPFL1 mature peptide is most similar 

to EPF2 in terms of structure (see figure 3.2) it is the former rather than the latter 

explanation that seems most likely. 
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Figure 3.7- Complementation of the Arabidopsis thaliana epf2 mutant 

with HvEPFL1 results in partial rescue of the phenotype. (A) Comparison 

of the mean stomatal density of HvEPFL1 complemented transgenic lines 

with the mean stomatal densities of Col-0 and the epf2 mutant. (B) 

Comparison of the mean stomatal index of HvEPFL1 transgenic lines with 

the mean stomatal index of Col-0 and the epf2 mutant. The stomatal 

densities and indices of three independent T1 transgenic lines were pooled 

to provide the reported result for HvEPFL1. N=3-5. Error bars signify SE. 

Different letters above the bars indicate significant differences between 

stomatal traits (Tukey’s HSD multiple comparisons test after one-way 

ANOVA, p<0.05).   

 



83 

 

3.6 – Overexpression of HvEPFL1 in native “Golden Promise” background 

3.6.1 – Introduction 

Having ascertained that HvEPFL1 functions in a similar manner to EPF1 and EPF2 

when expressed in the Arabidopsis thaliana genetic background the next step was to 

ectopically overexpress HvEPFL1 in its native Hordeum vulgare background. This provided a 

means to test whether the role of EPFLs in regulating stomatal patterning were conserved 

in grasses and to analyse whether these functions had diverged as the patterning 

transitioned from the basal scattered stomatal distribution to the highly-ordered file 

distribution seen in grasses. 

 

3.6.2 –  Screening transgenic lines 

Following receipt of the T1 seed of the HvEPFL1 ectopic overexpression lines 

generated by the JHI (as described in section 2.2.1), the lines were grown up and screened 

(see section 3.3) in order to identify whether HvEPFL1 overexpression affected stomatal 

characteristics and if so to identify lines to utilise in later experiments.   

Of the 19 transgenic lines generated, 13 showed a significant stomatal density 

reduction phenotype whilst the remaining 6 were undistinguishable from wild type. 

Amongst the 13 lines that possessed this reduced density phenotype there was a 

considerable range of mean densities exhibited, ranging from 21.9mm-2 to 0.2mm-2, 

compared to a mean control density of 32.2mm-2 (see figure 3.8). This represents a 

reduction to between 67.9% and 0.621% of wild type stomatal density. The mean stomatal 

density of the HvEPFL1 ectopic overexpression lines as a whole was 10.9mm-2, a reduction 

to 33.9% of the wild type density. 

This initial finding demonstrated that HvEPFL1 functions as a negative regulator of 

stomatal density when ectopically overexpressed in barley. This is consistent with the 

finding that HvEPFL1 functioned as a negative regulator of stomatal density when 

expressed in Arabidopsis thaliana and further supports the hypothesis that there is 

conservation of function in stomatal development amongst the EPFLs, with HvEPFL1 being 

a negative regulator of stomatal density in a manner similar to either EPF1 and EPF2.   
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Figure 3.8-Hordeum vulgare transgenic lines, transformed to ectopically 

overexpress HvEPFL1, demonstrate a range of reduced stomatal density 

phenotypes. Independent T1 HvEPFL1 overexpressor lines represented by 

white bars. The black bars represent two independent T1 empty vector 

control lines. 8 plants per line were initially grown with the stomatal 

densities of null segregants, identified via genotyping, removed. Therefore, 

in the reported lines n=3-8, dependent upon the number of individual 

plants harbouring the insert. Error bars represent SE. Asterisk indicates 

that the means of all lines differ significantly from both the first and the 

second empty vector control line (Two separate Dunnett’s multiple 

comparisons tests following one-way ANOVA, p<0.05). 

 

Prior to commencing more detailed physiological analyses work was undertaken to 

identify suitable lines for further study, with the ideal being single insert, homozygous 

lines. A subset of the 13 successful transgenic lines for which there were substantial seed 

stocks remaining were grown to maturity to supply the T2 seed required for further 

investigation. The lines selected for copy number analysis mainly consisted of those lines 

for which the observed stomatal density in the initial screen was moderately reduced 

relative to controls. This decision was taken as it seemed likely that higher reductions 
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would be a consequence of higher gene dosage. Moreover, as stomatal conductance 

increases, assimilation saturates due to biochemical limitations whilst transpiration 

continues to increase linearly, therefore decreases in conductance in the range in which 

assimilation has plateaued yields similar assimilation rates for significantly reduced water 

loss, which results in higher WUE (Yoo et al., 2009, see section 1.3.3 for discussion). It was 

therefore justified to focus on moderate density reduction lines as these were more likely 

to have stomatal conductance drops that remained within this “sweet spot” for 

assimilation and WUE.    

  Leaf tissue samples were taken and dispatched for copy number analysis as 

described in section 2.18. This identified a number of lines containing a single copy of the 

transgene including individual plants that were homozygous for the insert (see figure 3.9).  

Unfortunately, seed set from all lines was poor and so T2 seed stocks were limited. 

Only two lines, hereafter described as HvEPFL1OE-A and HvEPFL1OE-B, were both 

homozygous for the transgene and produced sufficient seed to support further study. 

These T2 seed were utilised for the gas exchange experiment described in chapter 4, with 

the T3 homozygous offspring of both lines then being utilised for further growth 

experiments described in chapter 5 and the detailed phenotyping described later in this 

chapter.    

 

 

Transgenic line Mean Stomatal Density 

(mm-2) 

Copy Number 

HvEPFLOE-A 5.7 1/2 

HvEPFLOE-B 11.3 1/2 

HvEPFLOE-C 7.83 1/2 

HvEPFLOE-D 1 5 

 

 

Figure 3.9- Table showing the variable insert copy number and stomatal 

density of the transgenic lines reported in figure 3.8. 1/2 indicates a mix 

of heterozygous and homozygous single copy inserts. Seed from 

homozygous individuals was selected for use in later experiments.  
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3.6.3 - Effect of HvEPFL1 OE on epidermal development 

Figure 3.10 compares an epidermal micrograph of a cleared section of the second 

true leaf an empty vector control to one obtained from an HvEPFL1OE-A individual. The 

overall arrangement of the stomatal pattern remains the same in the HvEPFLOE lines, with 

stomata being isolated into files that border the leaf veins with no sign of disruption to this 

organisational motif. This would suggest that HvEPFL1 functions downstream of the 

specification of stomatal file initiation. 

There are however a distinct number of changes between HvEPFL1 overexpressors 

and the control. Firstly, the stomatal density has decreased relative to controls as was 

previously described. Moreover, there was a significantly increased occurrence of ovoid-

shaped cells that occurred only in the stomatal files in positions where a stoma would be 

expected to form normally. The fact that they occurred only in stomatal files, along with 

additional evidence presented later in this chapter, suggested that they were arrested 

stomatal precursors. Notably EPF1, when overexpressed in Arabidopsis thaliana, also 

produces arrested stomatal precursors, namely meristemoids, as did HvEPFL1 (Hara et al., 

2007; Hara et al., 2009; see figure 3.6). This would suggest that HvEPFL1 might play a role 

in stomatal fate determination and maturation, in particular regulating the transition 

between the precursor state and the mature stoma. 

One other notable difference is that occasionally in the control line and in wild 

type barley there is the occurrence of a double row of stomata, in which two adjacent files 

of cells contain stomata in an alternating pattern, as can be seen in the third row of the 

control micrograph in figure 3.10. These double rows have not been observed in any of the 

HvEPFL1 overexpression lines analysed.  

The rest of this chapter, except for figure 3.15, concerns measurements various 

epidermal traits taken from epidermal micrographs of cleared leaves of the empty vector 

control, HvEPFL1OE-A and HvEPFL1OE-B, such as those seen in figure 3.10. This experiment 

is hereafter referred to as the epidermal phenotyping experiment.  
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Figure 3.10- Epidermal micrographs of an empty vector control and an 

HvEPFL1 overexpressor. Representative images taken from cleared leaf 

samples of the empty vector control and HvEPFL1OE-A. Red arrows mark 

stomatal rows, black arrows mark examples of arrested cells. Black scale 

bar represents a length of 200 µm. 

 

As expected the stomatal densities of the HvEPFL1OE-A and HvEPFL1OE-B lines 

were significantly lower than that of the empty vector control in the epidermal 

phenotyping experiment. HvEPFL1OE-A had a mean stomatal density of 10.1mm-2
 whilst 

HvEPFL1OE-B had a mean stomatal density of 12.4mm-2, representing 43.8% and 53.8% of 

the control mean stomatal density (23mm-2) respectively (see figure 3.11).  
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It is interesting to note here that during the course of this investigation the three 

lines (control and overexpressors) were grown under multiple different sets of growth 

conditions depending upon the experiment. Both the control and the overexpressors 

demonstrated different stomatal densities under different environmental conditions. 

Whilst these experiments were not designed with direct comparison in mind, it is possible 

to infer that the HvEPFL1OE lines retain the ability to alter their stomatal density in 

response to varying environmental conditions. Whether the degree of this responsiveness 

has been affected by the overexpression of a negative regulator, a potential concern if it 

limits the adaptability of these lines under varying environmental conditions, and which 

environmental conditions cause stomatal density responses in these lines, would be a good 

avenue of future investigation.  

 

 

 

 

 

Figure 3.11- The two transgenic lines selected for characterisation of the 

HvEPFL1 ectopic overexpression phenotype both show reduced stomatal 

density. Comparison of the mean stomatal density of two independent T3 

HvEPFL1 overexpressing transgenic lines with the mean stomatal density of 

an empty vector control line. N=4. Error bars signify SE. Asterisk indicates 

significant reduction in stomatal density relative to empty vector control 

(Dunnett’s multiple comparisons test after one-way ANOVA, p<0.05). 
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As mentioned in the discussion of figure 3.10, one of the most notable phenotypes of 

HvEPFL1 overexpression is the proliferation of arrested stomatal precursors, which are 

incredibly rare in the control and in wild type plants in general, where up to around 1 to 4% 

of stomatal precursors have been found to arrest (Stebbins and Shah, 1960). In the 

epidermal phenotyping experiment these arrested precursors occurred at a density of 

0.233mm-2 in the empty vector control compared to 7.03mm-2 in line HvEPFL1OE-A and 

5.1mm-2 in line HvEPFL1OE-B, a percentage increase of 2910% and 2090% respectively (see 

figure 3.12 A).  

An epidermal micrograph of an arrested precursor is shown in figure 3.12 B. These 

distinctive ovoid-shaped cells were only found in the stomatal files in both controls and 

HvEPFL1 overexpressors.  

The relative infrequency of these arrested precursors in controls suggests that the 

regulation of the transition between the precursor state and mature stomata is not the 

role of HvEPFL1. Indeed, cell fate arrest clearly isn’t the means by which stomatal density is 

regulated in either barley or Arabidopsis thaliana, occurring as a side effect of 

overexpression in the case of EPFL manipulation. 

However, the positioning of arrested cells in controls does suggest that there may be some 

role for this phenomenon and potentially a functional role for HvEPFL1. In general, those 

few arrested precursors that arose in controls did so in a distinct location. They occurred 

almost exclusively in the satellite file of a double row of stomata which, as mentioned 

above, did not form in the overexpression lines. This, coupled to the known ability of 

HvEPFL1 to generate arrested precursors, would seemingly suggest that HvEPFL1, or 

another HvEPFL, could play a role in regulating the occurrence of double rows and 

coordinating the spacing of stomata between adjacent rows such that they don’t cluster, 

although without observations from a knockout mutant this remains speculative.    
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    (A) 

(B)  

 

Figure 3.12- Arrested stomatal precursor frequency increases 

dramatically in the HvEPFL1 ectopic overexpression transgenic lines. (A) 

Comparison of the arrested stomatal precursor density of two 

independent T3 HvEPFL1 overexpressing transgenic lines with the arrested 

stomatal precursor density of an empty vector control line. N=4. Error bars 

signify SE. Asterisk indicates significant increase in arrested stomatal 

precursor presence relative to the empty vector control. (Dunnett’s 

multiple comparisons test after one-way ANOVA, p<0.05). (B) Epidermal 

micrograph of a section of cleared, HvEPFL1OE-A leaf showing a 

representative arrested stomatal precursor cell (scale bar beneath = 

50µm).  

 

In terms of epidermal development there was no significant effect on the density of 

epidermal cells typically found on the epidermis of wild type individuals, i.e. stomatal row 
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spacing cells and non-stomatal row cells (figure 3.13 A). Indeed, the range of the means of 

the genotypes was just 2.4mm-2. Even when the arrested stomatal precursors are factored 

in, there is no significant change to epidermal cell density, with a range of 7.2mm-2 

between the means (figure 3.13 B). In Arabidopsis thaliana there are differences in 

epidermal development when the EPFs are overexpressed, namely differences in the 

density of epidermal cells of different sizes (Hara et al., 2009). EPF1 overexpressors possess 

more small pavement cells as a consequence of meristemoid arrest whilst EPF2 

overexpressors are devoid of small pavement cells as a result of EPF2 blocking stomatal 

lineage entry and amplifying divisions with the result that the majority of pavement cells 

are generated directly from protodermal cells and are consequently larger (Hara et al., 

2009).  Given the absence of amplifying divisions in grass stomatal development it was 

unlikely that epidermal cell development would be significantly affected by 

overexpression. Instead, the phenotype most closely resembles that of Arabidopsis EPF1, 

with a significant increase in the number of small pavement cells (figure 3.12 A), although 

with no significant increase in total epidermal density (figure 3.13 B) as seen in Arabidopsis 

thaliana (Hara et al., 2009). 
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Figure 3.13- Ectopic overexpression of HvEPFL1 has no significant effect 

on epidermal cell numbers. (A) Comparison of the mean epidermal 

pavement cell density of two independent T3 HvEPFL1 overexpressing 

transgenic lines with the mean epidermal pavement cell density of an 

empty vector control line. (B) Comparison of the mean total epidermal cell 

density, including arrested stomatal precursors, of two independent T3 

HvEPFL1 overexpressing transgenic lines with the mean total epidermal 

cell density of an empty vector control line. N=4. Error bars signify SE. No 

significant differences were found between transgenic lines and the 

control for both pavement cell density and total epidermal cell density 

(one-way ANOVA, p>0.05). 

 



93 

 

The stomatal index (the ratio of the number of stomata divided the number of stomata and 

other epidermal cells in a given area as a percentage) is unsurprisingly significantly reduced 

in the HvEPFL1OE lines, with a mean reduction to 46.1% and 56.25% of control values 

(mean 21.8%) for HvEPFL1OE-A (mean 10.0%) and HvEPFL1OE-B (mean 12.2%) respectively 

(Figure 3.14). This change in the ratio is driven by the significant change in the stomatal 

density (see figure 3.11), rather than by the negligible change in epidermal density as a 

consequence of stomatal lineage cell arrest (see figure 3.13 B). 

 

Figure 3.14- Ectopic overexpression of HvEPFL1 significantly reduces the 

stomatal index relative to controls. Comparison of the mean stomatal 

index of two independent T3 HvEPFL1 overexpressing transgenic lines with 

the mean stomatal index of an empty vector control line. N=4. Error bars 

signify SE. Asterisk indicates significant decrease in stomatal index relative 

to the empty vector control. (Dunnett’s multiple comparisons test after 

one-way ANOVA, p<0.05). 

 

3.6.4 - Effect of HvEPFL1 OE on stomatal morphology 

Stomatal morphology, like stomatal density regulation, is significantly important in 

regulating stomatal response to environmental changes, in particular short-term 

fluctuations, and consequently it is important consideration when assessing the effects of 

the HvEPFL1OE lines in altering plant water relations. 

As can be seen in the cleared leaf image in figure 3.10 and in the confocal microscopy 

image in figure 3.15, the default structure of mature stomata remains the same in the 
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HvEPFL1OE, i.e. the stomatal pore flanked by the classic dumbbell-shaped guard cells 

which are in turn flanked by their respective subsidiary cell. This shows that the 

overexpression of HvEPFL1 does not affect the stomatal development pathway in its latter 

stages, beyond the precursor state at which it induces lineage arrest, and so suggests that 

HvEPFL1 doesn’t play a role in stomatal complex maturation.  

 

Interestingly, the confocal microscopy provides some detail on where in the stomatal 

developmental pathway the substomatal cavity, which is important for efficient gas 

exchange, forms. Substomatal cavities are found beneath the mature stomatal complexes 

but are not found located under the arrested precursor cells (see figure 3.15). Due to the 

absence of substomatal cavities beneath the arrested precursors it can be inferred that the 

formation of the cavity occurs as a consequence of a developmental signal issued later in 

the developmental sequence than the precursor state at which the lineage cells arrest in 

the HvEPFL1 overexpressor. This would suggest that the formation of the cavity occurs 

either following GMC formation/maturation when the subsidiary cells form or following 

the formation of the guard cells i.e. in the final stages of stomatal maturation.  



95 

 

 

Figure 3.15- Z-plane confocal micrographs of the abaxial epidermis and 

below the abaxial epidermis. Image taken of the epidermis (A) and the 

layer underlying the same area of epidermis (B) showing the presence of 

substomatal cavities beneath the stomata, which are absent beneath the 

arrested cells. White asterisks mark arrested meristemoids. Yellow 

asterisks mark substomatal cavity. From Hughes et al., 2017. 

 

Whilst the structure of the stomatal complex remained the same in the HvEPFL1OE lines 

the morphology did differ in one respect, the stomata were significantly smaller than those 

found in the control. As can be seen in figure 3.16, mean guard cell length declined by 
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approximately 20% and 25% of control mean guard cell length (56.4µm) in lines 

HvEPFL1OE-B (45.0µm) and HvEPFL1OE-A (41.9µm) respectively (Figure 3.16 A). Stomatal 

area, calculated from guard cell size as described in chapter 2, declined by approximately 

35% and 45% of control mean stomatal area (398µm2) in lines HvEPFL1OE-B (254 µm2) and 

HvEPFL1OE-A (221 µm2) respectively (Figure 3.16 B). 

    Possessing smaller stomata has previously been demonstrated to be advantageous for 

plant water relations due to smaller stomata being quicker to alter their apertures in 

response to fluctuations in environmental conditions such as light (Drake et al., 2013) and 

also possessing a smaller stomatal pore path length for diffusion (Franks and Beerling, 

2009).  
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Figure 3.16- Ectopic overexpression of HvEPFL1 significantly reduces 

stomatal area relative to controls. (A) Comparison of the mean guard cell 

length of two independent T3 HvEPFL1 overexpressing transgenic lines 

with the mean guard cell length of an empty vector control line. (B) 

Comparison of the mean stomatal area of two independent T3 HvEPFL1 

overexpressing transgenic lines with the mean stomatal area of an empty 

vector control line. The guard cell lengths of 30 stomata were measured 

and averaged per plant. Stomatal area was calculated using the reported 

raw guard cell lengths, then averaged per plant. N=4. Error bars signify SE. 

Asterisk indicates significant decrease in mean guard cell length or mean 

stomatal area relative to the empty vector control. (Dunnett’s multiple 

comparisons test after one-way ANOVA, p<0.05). 
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Figure 3.17 shows that there is a strong, positive correlation (Pearson’s rank correlation 

coefficient (r)= 0.8916) between stomatal density and stomatal area (a proxy for size). This 

is a relatively surprising finding given that stomatal density and stomatal size are usually 

found to be negatively correlated. This negative correlation has been demonstrated both 

within natural occuring variation (Franks and Beerling, 2009), including amongst barley 

cultivars (Miskin and Rasmusson, 1970), and within transgenic Arabidopsis thaliana 

modified for altered stomatal density through EPF peptide level manipulation (Doheny-

Adams et al., 2012).  

 

The discovery of a positive correlation suggests that if EPFs do influence stomatal size 

determination then they have the opposite effect in grass stomatal development to the 

effect seen in Arabidopsis thaliana.  Whether EPFs do directly influence stomatal size has 

not been demonstrated. It is possible that the difference in response seen between 

Arabidopsis thaliana and barley could be a consequence of the differences in how stomatal 

patterning occurs, i.e. the differences in how the cells divide in order to give rise to the 

stomatal lineage.  This positive correlation also means that unlike in Arabidopsis thaliana, 

where the reduction in stomatal conductance as a result of decreased stomatal density is 

partially compensated for by increased stomatal apertures, barley EPFs reduce stomatal 

conductance through both a density and an aperture reduction, the two traits work 

synergistically. Given the intention of producing low conductance plants in order to reduce 

water loss, this positive correlation is potentially beneficial.  
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Figure 3.17- There is a positive correlation between stomatal density and 

stomatal area. Scatterplot of mean stomatal area against mean stomatal 

density for the empty vector control and 2 ectopic overexpression lines. 

N=4. Black triangles represent controls, closed circles represent 

HvEPFL1OE-A and open circles represent HvEPFL1OE-B. For each individual 

plant N=5. Error bars represent SE. For linear regression and correlation 

N=12. There is a strong correlation between stomatal area and stomatal 

density (Pearson’s rank correlation coefficient (r)= 0.8916). This 

relationship is strongly supported when modelled using linear regression 

(modelled relationship shown by the black line, R2 = 0.7949) and the slope 

is significantly non-zero (linear regression, p<0.0001).     

 

In order to assess when the effect on stomatal size might occur within the lineage 

progression the mean length of the guard cells was compared to the length of the arrested 

stomatal precursors (see figure 3.18). This was only possible for the HvEPFL1OE lines, as 

arrested precursors are too rare in controls to provide a sample size sufficient for statistical 

analysis (see figure 3.12). The arrested precursors are the same size as the guard cells 

which would indicate that the process by which stomatal size is affected occurs prior to, 

and independent of, the precursor to mature stoma transition. This provides evidence that 

HvEPFL1 can influence stomatal development upstream of the transition which suggests 
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that there are multiple stages within the stomatal development pathway where HvEPFL1 

could function, i.e. it is not restricted to simply repressing stomatal maturation at the 

precursor to mature stoma transition.  

 

Figure 3.18- Arrested stomatal precursor cells are the same length as 

mature stomatal complex guard cells in HvEPFL1 ectopic overexpression 

lines. Comparison between the mean guard cell lengths and mean arrested 

stomatal precursor cell lengths of the independent T3 ectopic 

overexpression lines, HvEPFL1OE-A and HvEPFL1OE-B. Black bars display 

guard cell length data whilst white bars represent arrested stomatal 

precursor cell lengths. N=4. Error bars signify SE. There was no significant 

difference between the mean length of guard cells and the mean length of 

arrested stomatal precursors in either of the ectopic HvEPFL1 

overexpression lines. (Two-way ANOVA, p>0.05). 

 

Further evidence for an upstream role for HvEPFL1OE is supplied by Figure 3.19, a 

scatterplot comparing the arrested cell length and guard cell length of 20 FOV obtained 

from across 5 plants for each HvEPFLOE line. There was a strong correlation between 
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arrested cell length and guard cell length (Pearson’s rank correlation coefficient (r)= 0.84) 

with the length of the precursors in a given FOV being roughly equal to the length of the 

stomata. Indeed, a simple linear regression of the data supplies the regression equation y= 

1.053x + 0.8082, i.e. the equation of the line describing the data is not far removed from 

Y=X. This shows that final stomatal size is dependent upon and equal to the size of the 

precursor cell and that the size is effected irrespective of whether the lineage arrests, as a 

consequence of HvEPFL1 repressing the transition, or progresses to a mature stomatal 

complex. If HvEPFL1 only functioned at the transition between the precursor and the 

mature stoma then it would be expected that the arrested precursors, which are formed 

upstream of the transition, and consequently the mature stomata would have a wildtype 

size phenotype. The observation that size is effected by HvEPFL1 ectopic overexpression, 

coupled with the observation that the final size of the mature stoma is set prior to the 

precursor to stoma transition, demonstrates that HvEPFL1 effects the progression of the 

stomatal lineage at an additional, upstream point.    

Theoretically this reduction in precursor and hence stomatal size could be the result of 

either the alteration of the plane of division during the entry division that gives rise to the 

precursor or due to the suppression of precursor cell expansion, which occurs after the 

entry division (Stebbins and Shah, 1960, Raissig et al., 2016). 

 

 

 



            102 

 

 

Figure 3.19- There is a positive correlation between arrested stomatal 

precursor cell lengths and guard cell lengths in HvEPFL1 ectopic 

overexpression lines. Scatterplot of mean stomatal precursor cell lengths 

against mean guard cell lengths. 20 FOV averages for each HvEPFL1OE line, 

closed circles represent HvEPFL1OE-A and open circles represent 

HvEPFL1OE-B. For each individual mean N=5. For linear regression and 

correlation n=40. There is a strong correlation between stomatal precursor 

cell length and guard cell length (Pearson’s rank correlation coefficient (r)= 

0.84). This relationship is strongly supported when modelled using linear 

regression (R2 = 0.7055) and the slope is significantly non-zero (linear 

regression, p<0.0001).  

 

3.6.5 - Effect of HvEPFL1 OE on stomatal lineage identity 

As discussed above the stomatal index is significantly reduced in the HvEPFL1OE lines as a 

consequence of the significant change in the stomatal density (see figure 3.11), rather than 

the negligible change in epidermal cell density (see figure 3.13 B). In order to determine 

whether the cell arrest phenotype could entirely account for the differences observed in 

the stomatal density and stomatal index the stomatal lineage density and index were 

determined (see figure 3.20). The stomatal lineage density is the density of stomata and 
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arrested precursors combined whilst the stomatal lineage index is the percentage of all 

epidermal cells that are either stomata or arrested precursors. 

 

The stomatal lineage densities of the HvEPFL1OE-A and HvEPFL1OE-B lines were 

significantly lower than that of the empty vector control. HvEPFL1OE-A had a mean 

stomatal lineage density of 17.1mm-2
 whilst HvEPFL1OE-B had a mean stomatal lineage 

density of 17.5mm-2, representing 73.6% and 75.2% of the control mean stomatal lineage 

density (23.2mm-2) respectively (see figure 3.20 A). 

 

Similarly, the stomatal lineage indices of the HvEPFL1OE-A and HvEPFL1OE-B lines were 

significantly lower than that of the empty vector control. HvEPFL1OE-A had a mean 

stomatal lineage index of 17.0% whilst HvEPFL1OE-B had a mean stomatal lineage index of 

17.2%, representing 77.4% and 78.1% of the control mean stomatal lineage index (22.0%) 

respectively (see figure 3.20 B). 

 

These results demonstrate that even if all the arrested precursors transitioned into mature 

stomatal complexes the stomatal density and stomatal index would still be significantly 

reduced in HvEPFL1 ectopic overexpression lines. This means that HvEPFL1 must influence 

stomatal density through another interaction in addition to causing precursor arrest. There 

are 3 principal ways in which reduced density of stomatal lineage cells could occur within 

the confines of the file pattern of stomata in barley. 

 

1. Within the stomatal files the spacing cells, i.e. the epidermal cells between 

consecutive stomatal lineage cells, could be longer. 

2. The stomatal files could be further apart. 

3. Fewer entry divisions could occur.  

The rest of section 3.6.5 analyses these potential causes of reduced stomatal lineage 

density in sequence. Section 2.19 contains details of the terms used, how the distance 

between rows was measured and illustrates what is meant by spacing cell. 
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Figure 3.20- Ectopic overexpression of HvEPFL1 significantly reduces the 

stomatal lineage density and index relative to controls. Comparison of 

the mean stomatal lineage density (A) and stomatal lineage index (B) of 

two independent T3 HvEPFL1 overexpressing transgenic lines with the 

mean stomatal lineage density (A) and stomatal lineage index (B) of an 

empty vector control line. N=4. Error bars signify SE. Asterisk indicates 

significant decrease in stomatal lineage index relative to the empty vector 

control. (Dunnett’s multiple comparisons test after one-way ANOVA, 

p<0.05). 
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The mean spacing cell length of the HvEPFL1OE-A and HvEPFL1OE-B lines were not 

significantly different to that of the empty vector control. HvEPFL1OE-A had a mean 

spacing cell length of 128µm whilst HvEPFL1OE-B had a mean spacing cell length of 123µm, 

compared to a control mean spacing cell length of 123µm (see figure 3.21). This result 

demonstrates that HvEPFL1 ectopic overexpression does not influence the expansion of 

spacing cells. 
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Figure 3.21- Ectopic overexpression of HvEPFL1 does not affect the length 

of stomatal row spacing cells relative to controls. Comparison of the 

mean length of spacing cells between stomata and/or arrested stomatal 

precursors of two independent T3 HvEPFL1 overexpressing transgenic lines 

with the mean length of spacing cells between stomata of an empty vector 

control line. Only spacing cells where both within row neighbours were 

stomatal lineage cells were used in this analysis. N=4. Error bars signify SE. 

There was no significant difference between the spacing cell lengths of 

ectopic HvEPFL1 overexpression lines and controls (One-way ANOVA, 

p>0.05). 

 

The mean distance between adjacent stomatal rows of the HvEPFL1OE-A and HvEPFL1OE-B 

lines were not significantly to that of the empty vector control. HvEPFL1OE-A had a mean 

distance of 300µm whilst HvEPFL1OE-B had a mean distance of 313µm, compared to a 

control mean distance of 341µm (see figure 3.22). The distances reported in this analysis 

were measured between rows lacking an intervening vein. This result demonstrates that 
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HvEPFL1 ectopic overexpression does not affect the spacing of the stomatal rows, indeed 

the rows tend towards being closer together in the transgenic lines.  

 

 

Figure 3.22- Ectopic overexpression of HvEPFL1 does not affect the 

distance between rows of stomata relative to controls. Comparison of the 

mean distance between stomatal rows of two independent T3 HvEPFL1 

overexpressing transgenic lines with the mean distance between stomatal 

rows of an empty vector control line. The distances reported in this 

analysis were measured between rows lacking an intervening vein. N=4. 

Error bars signify SE. There was no significant difference in the distances 

between stomatal rows of ectopic HvEPFL1 overexpression lines and 

controls (One-way ANOVA, p>0.05). 

 

The stomatal files in wild type barley consist of stomatal lineage cells and epidermal 

spacing cells with consecutive stomatal lineage being separated from one another by lone 

spacing cells (Stebbins and Jain, 1960; Stebbins and Shah, 1960). This pattern arises as a 

result of each consecutive protodermal cell within the file undergoing an asymmetric entry 

division (Vaten and Bergmann, 2012).  It follows to reason that if HvEPFL1 were to inhibit 

entry divisions then some of the protodermal cells in the HvEPFL1 ectopic overexpression 
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lines would not undergo an asymmetric division, becoming epidermal cells instead. This 

would result in consecutive stomatal lineage cells being separated by multiple spacing 

cells. 

 

Figure 3.23 compares of the mean percentage of the spaces between consecutive stomatal 

lineage cells within rows that are comprised of a single, spacing cell in the HvEPFL1 ectopic 

overexpression lines and empty vector control. 96.6% of inter-stomatal spaces in the 

control contain only a single spacing cell, compared with 53.4% in HvEPFL1OE-A and 68.7% 

in HvEPFL1OE-B. From this it can be concluded that in addition to repressing the transition 

from precursor to stoma HvEPFL1 also represses entry into the stomatal lineage and that it 

is this additional regulatory interaction that causes differences in the stomatal lineage 

density and index of HvEPFL1 ectopic overexpression lines relative to the empty vector 

control (see figure 3.20).  
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Figure 3.23- Ectopic overexpression of HvEPFL1 significantly decreases 

the occurrence of single spacing cell presence between successive 

stomatal lineage cells within stomatal rows. Comparison of the mean 

percentage of the spaces between successive stomatal lineage cells (both 

mature stomata and arrested precursor cells) within rows that comprise of 

a single-spacing cell in two independent T3 HvEPFL1 overexpressing 

transgenic lines with the mean percentage of single spacing cell occurrence 

in an empty vector control line. N=4. Error bars signify SE. Asterisk 

indicates significant decrease in HvEPFL1 overexpressing transgenic lines of 

the mean percentage of gaps between successive stomatal lineage cells 

that are comprised of a single-spacing cell relative to the empty vector 

control (Dunnett’s multiple comparisons test after one-way ANOVA, 

p<0.05).   

 

3.7 – Conclusions 

• When ectopically overexpressed in Arabidopsis thaliana both HvEPFL1 and 

HvEPFL2 caused a significant reduction in both stomatal density and stomatal 

index compared to Col-0 controls. These findings are consistent with the 

phenotypes obtained when native Arabidopsis thaliana EPF1 and EPF2 are 

ectopically expressed (Hara et al., 2007; Hara et al., 2009 Hunt and Gray, 2009). 

Particularly notable is the increased prevalence of small triangular cells consistent 
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in morphology with meristemoids observed in the HvEPFL1 ectopic overexpression 

lines, which are also found when EPF1 is overexpressed, suggesting that the 

function of HvEPFL1 could be most similar to that of EPF1 (Hara et al., 2007; Hara 

et al., 2009). 

• Ectopic overexpression of HvEPFL1 in barley significantly reduces stomatal density. 

HvEPFL1 regulates stomatal development at two different stages. Firstly, HvEPFL1 

inhibits the asymmetric entry divisions that give rise to the stomatal lineage within 

the stomatal files. The mechanism by which this occurs is likely similar to the 

process by which it occurs in Arabidopsis thaliana, namely the repression of SPCH. 

HvEPFL1 overexpression also causes the stomatal lineage to arrest at a precursor 

stage, giving rise to distinctive, ovoid, arrested precursor cells, lacking subsidiary 

cells, within the stomatal files. This suggests that HvEPFL1 also regulates the 

transition to a mature GMC capable of inducing subsidiary cell formation and 

dividing symmetrically to form GCs. Given that in Brachypodium distachyon the 

otholog of Arabidopsis MUTE is necessary and sufficient to induce subsidiary cell 

formation (Raissig et al., 2017) and that the transition to GMC is regulated by 

MUTE in Arabidopsis thaliana, it seems possible that HvEPFL1 regulates the 

transition though MUTE, possibly via phosphorylation as, unlike Arabidopsis MUTE, 

grass othologs possess potential MAP kinase phosphorylation sites (Liu et al., 

2009). 

 

• The ovoid cells formed can be identified as arrested precursor cells as they are only 

found in the stomatal files in the same pattern as stomata. Furthermore, the 

length of the precursor cells is also positively correlated and approximately equal 

to the length of the guard cells of neighbouring mature stomatal complexes. 

 

• The absence of substomatal cavities beneath the arrested precursors infers that 

the formation of the cavity occurs due to a developmental signal issued later in the 

developmental sequence than the precursor state at which the lineage cells arrest 

in the HvEPFL1 overexpressor. This would suggest that the formation of the cavity 

occurs in the final stages of stomatal maturation, after GMC 

formation/maturation. 
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• Contrary to the majority of the literature, including an analysis of transgenic 

Arabidopsis thaliana modified for altered stomatal density through EPF peptide 

level manipulation (Doheny-Adams et al., 2012), there is a positive correlation 

between stomatal density and stomatal size in the HvEPFL1 ectopic overexpression 

lines. It is currently unknown if EPFs directly influence stomatal size as well as 

stomatal density but if this is the case then the discovery of a positive correlation 

suggests that EPFs have the opposite effect in grass stomatal development to the 

effect seen in Arabidopsis thaliana with regards to stomatal size determination. 
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Chapter 4 -The effect of overexpressing 
HVEPFL1 on gas exchange in Hordeum 

vulgare 
 
 

4.1- Introduction 

This chapter focuses on the effect that overexpressing HvEPFL1 has on gas exchange and 

water use efficiency. Considering that stomata are the principal means by which gas 

exchange is regulated the changes in stomatal density and size described in chapter 3 have 

obvious implications for gas exchange.  

The effect of altered stomatal density on gas exchange has been analysed in a number of 

studies. Franks et al., 2015 found that Arabidopsis thaliana plants constitutively 

overexpressing EPF2 had reduced rates of carbon assimilation and stomatal conductance 

relative to Col-0, as well as improved instantaneous and long-term water use efficiency. 

The reduction in stomatal density in Arabidopsis thaliana gtl1 mutants resulted in reduced 

stomatal conductance and increased instantaneous water use efficiency (Yoo et al., 2010; 

Yoo et al., 2011) whilst overexpressing ZmSDD1 in maize, which resulted in reduced 

stomatal density, also resulted in reduced stomatal conductance and improved water use 

efficiency (Liu et al., 2015). In the case of the last two studies the rate of CO2 assimilation 

was not significantly reduced despite the decline in stomatal density.  

Given the reduction in the number of stomata and the reduction in individual pore 

apertures seen in the ectopic overexpressors of HvEPFL1 it was fair to assume that gas 

exchange in these transgenics would be affected in a similar manner to what was observed 

in the studies highlighted. This chapter tests that hypothesis. 
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4.2- Method summary 

The gas exchange characteristics and stomatal conductance of control and transgenic 

barley plants were measured using an infra-red gas exchange analyser (IRGA) system, a 

Licor li6400 with a li6400-40 leaf chamber fluorimeter sensor head attached (Licor, Licoln, 

NE). 

Steady state measurements were taken to determine gas exchange parameters and 

stomatal conductance in ambient conditions. CO2 levels were set at 500ppm, PAR set at 

200µmol m-2 s-1 and leaf temperature at 20 oC.  

Light curves and A-Ci curves were generated using the flag leaf of the primary tiller.  For 

the light curves the CO2 level was set at 500ppm, PAR initially set at 1900µmol m-2 s-1 and 

leaf temperature at 23oC. Readings were taken at 1900, 1800, 1700, 1600, 1200, 800, 600, 

400, 200, 100, 50 and 0µmol m-2 s-1. For the A-Ci curves the CO2 level was initially set at 

500ppm, PAR set at 1900µmol m-2 s-1 and leaf temperature at 23oC. Readings were taken at 

500, 300, 200,100, 50, 500, 800, 1000, 1200, 1400, 1600, 1800 and 2000ppm. 

 

For all experiments plants were left to acclimate to leaf chamber conditions for at least 35 

minutes and the reference and sample IRGAs were matched at least every 15 minutes and 

after every reading during curve acquisition. 

A more detailed description of the gas exchange methodologies utilised is supplied in 

section 2.8.  

The A-Ci curves were fitted using an A-Ci curve fitting tool (www.landflux.org) which fits 

the C3 photosynthesis model (Farqhuar et al., 1980) following the method of Either and 

Livingston, 2004. Values for the maximum rate of rubisco carboxylation (Vmax), maximum 

rate of electron transport (Jmax) and maximum rate of assimilation (Amax), were obtained 

from the fitted data. The stomatal limitation on photosynthesis was described using the 

graphical method (Long and Bernacchi, 2003). The light curves were fitted using an excel 

spreadsheet utilising the model of Ye, 2007 obtained from Lobo et al., 2013.      

 

 

4.3- Steady-state gas exchange 

In order to ascertain how the reduction in stomatal density affected stomatal conductance, 

carbon assimilation rate, transpiration and water use efficiency of barley under natural 
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growth conditions, infra-red gas exchange analysis was carried out using ambient 

conditions as described in sections 2.8.4 and 4.2. 

 

The rate of carbon assimilation of the HvEPFL1OE-A and HvEPFL1OE-B lines were 

significantly lower than that of the empty vector control in the steady-state gas exchange 

experiment under well-watered conditions (Dunnett’s multiple comparisons test after one-

way ANOVA, p<0.05). HvEPFL1OE-A had a mean carbon assimilation rate of 11.9 µmolm-2s-1 

whilst HvEPFL1OE-B had a mean carbon assimilation rate of 12.4 mmolm-2s-1, representing 

88.8% and 92.5% of the control mean carbon assimilation rate (13.4 µmolm-2s-1) 

respectively (see figure 4.1 A). This is a rather modest decrease given the large reduction in 

stomatal density seen in the HvEPFL1 ectopic overexpression lines. This reduction in 

assimilation as a consequence of reduced stomatal density is similar to that observed in 

EPF overexpressors in Arabidopsis thaliana, albeit the data presented here was collected at 

ambient rather than high light (Franks et al., 2015). 

 

The stomatal conductance of the HvEPFL1OE-A and HvEPFL1OE-B lines was also 

significantly lower than that of the empty vector control in the steady-state gas exchange 

experiment under well-watered conditions (Dunnett’s multiple comparisons test after one-

way ANOVA, p<0.05). HvEPFL1OE-A had a mean stomatal conductance of 0.129 molm-2s-1 

whilst HvEPFL1OE-B had a mean stomatal conductance of 0.155 molm-2s-1, representing 

70.9% and 85.2% of the control mean stomatal conductance (0.182 molm-2s-1) respectively 

(see figure 4.1 B). This reduction in stomatal conductance is unsurprising considering that 

both stomatal density and stomatal size are significantly reduced in the HvEPFL1 

overexpression lines. 

 

Under drought conditions neither the rate of carbon assimilation nor the stomatal 

conductance of the HvEPFL1OE-A and HvEPFL1OE-B lines was statistically distinct from 

empty vector control values (one-way ANOVA, p>0.05) (see figure 4.1 C and 4.1 D). This 

would suggest that under the severe drought imposed, stomatal closure in response to 

drought is equalising the exchange area through which gas exchange can occur, resulting in 

a similar stomatal conductance and an equally constrained rate of CO2 assimilation in both 

the HvEPL1 ectopic overexpression lines and the empty vector control line.   
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Figure 4.1- Ectopic overexpression of HvEPFL1 significantly decreases 

carbon assimilation rate and stomatal conductance under well-watered 

conditions but not under drought conditions. Comparison of the mean 

rate of carbon assimilation and mean stomatal conductance in two 

independent T2 HvEPFL1 overexpressing transgenic lines with those of an 

empty vector control line using steady state gas exchange analysis. (A) and 

(B) are under well-watered conditions whilst (C) and (D) are under drought. 

N=5. Error bars signify SE. Asterisk indicates significant decrease in 

HvEPFL1 overexpressing transgenic lines of the mean rate of carbon 

assimilation or stomatal conductance relative to the empty vector control 

(Dunnett’s multiple comparisons test after one-way ANOVA, p<0.05).   
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The rate of carbon assimilation can be restricted by one of two sets of limitations, stomatal 

and non-stomatal (Brodribb, 1996). When stomatal conductance is reduced, the supply 

rate of CO2 is reduced as a consequence of the increased resistance to gas exchange. This 

supply limitation in turn reduces the internal CO2 concentration of the leaf (Ci) as the Ci is 

depleted by assimilation (Farquhar and Sharkey, 1982). Analysis of the ratio of Ci to 

atmospheric CO2 concentration can consequently be used to assess stomatal limitation, 

with a lower ratio suggesting that CO2 supply to the leaf is relatively constrained (Brodribb, 

1996).     

The ratio of Ci/Ca of the HvEPFL1OE-A line was significantly lower than that of the empty 

vector control under well-watered conditions (Dunnett’s multiple comparisons test after 

one-way ANOVA, p<0.05). HvEPFL1OE-A had a mean Ci/Ca ratio of 0.67 in comparison to a 

ratio of 0.735 for the control mean Ci/Ca ratio (see figure 4.2 A). This suggests that the 

drop in assimilation rate seen in the HvEPFL1 overexpression lines, in particular the severe 

density reduction line HvEPFL1OE-A, is as a consequence of stomatal limitation arising 

from the significantly reduced stomatal conductance.  

 

Under drought conditions the ratio of Ci/Ca of the HvEPFL1 ectopic expression 

lines was not statistically distinct from empty vector control values (one-way ANOVA, 

p>0.05) (see figure 4.2 B). This again suggests that an equalisation of the exchange area 

due to short term stomatal aperture adjustment is resulting in equalisation of gas 

exchange characteristics. 
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Figure 4.2- Ectopic overexpression of HvEPFL1 significantly decreases the 

Ci/Ca ratio in the lowest density line under well-watered conditions. 

Comparison of the mean Ci/Ca ratio in two independent T2 HvEPFL1 

overexpressing transgenic lines with the mean Ci/Ca ratio in an empty 

vector control line using steady state gas exchange analysis under well-

watered (A) and droughted (B) conditions. N=5. Error bars signify SE. 

Asterisk indicates significant decrease in HvEPFL1 overexpressing 

transgenic lines of the mean Ci/Ca ratio relative to the empty vector 

control (Dunnett’s multiple comparisons test after one-way ANOVA, 

p<0.05). 

 

The rate of transpiration of the HvEPFL1OE-A line was significantly lower than that of the 

empty vector control under well-watered conditions (Dunnett’s multiple comparisons test 

after one-way ANOVA, p<0.05). HvEPFL1OE-A had a mean transpiration rate of 0.839 
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mmolm-2s-1 representing 73% of the control mean carbon transpiration rate (1.15 mmolm-

2s-1) (see figure 4.3 A). Under drought conditions the rate of transpiration of the HvEPFL1 

ectopic expression lines was not statistically distinct from empty vector control values 

(one-way ANOVA, p>0.05) (see figure 4.3 B). Again, the reduction in the rate of 

transpiration is to be expected given the severity of the reduction in the stomatal density 

and consequently the stomatal conductance of the HvEPFL1OE-A line, whilst under 

drought it is stomatal aperture control, rather than stomatal density, that is constraining 

the upper bound of gas exchange. 

 

The principal concern of this project was to identify whether reducing stomatal 

density and subsequently reducing water loss could be used to produce crop plants that 

are more water use efficient. As discussed in section 1.3.2 there are two commonly 

reported WUE measures collected from gas exchange measurements, instantaneous WUE 

and intrinsic WUE, both of which are reported below. 

   

Instantaneous WUE is defined as A/E where A is the rate of carbon assimilation and E is the 

rate of evapotranspiration (Penman and Schofield, 1951; Farquhar and Sharkey, 1982; Yoo 

et al., 2009; Morison et al.,2008) with instantaneous water use efficiency being improved 

either by increasing the rate of assimilation relative to transpiration or reducing 

transpiration relative to assimilation. 

In contrast to the findings of Franks et al., 2015, Yoo et al., 2010 and Yoo et al., 2011 under 

both well-watered and drought conditions the instantaneous water use efficiency was not 

statistically distinct from empty vector control values in the low stomatal density lines 

(one-way ANOVA, p>0.05) (see figure 4.3 C and 4.3 D). The likely reason for this lack of 

improved instantaneous water use efficiency is the relatively low reduction in assimilation 

coupled with the error due to the variability of transpiration. There is a trend towards 

instantaneous WUE being higher in the HvEPFL1OE-A line, but it is not significant (see 

figure 4.3 C)(unpaired t-test, p=1.163).  
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Figure 4.3- Ectopic overexpression of HvEPFL1 significantly decreases the 

rate of transpiration in the HvEPFLOE-A line under well-watered 

conditions but otherwise does not significantly affect the rate of 

transpiration nor the instantaneous water use efficiency. Comparison of 

the mean rate of transpiration and mean instantaneous WUE in two 

independent T2 HvEPFL1 overexpressing transgenic lines with those of an 

empty vector control line using steady state gas exchange analysis. (A) and 

(C) are under well-watered conditions whilst (B) and (D) are under drought. 

N=5. Error bars signify SE. There was no significant difference between the 

overexpressors and the controls (one-way ANOVA, p>0.05) except in the 

case of the rate of transpiration of HvEPFL1OE-A under well-watered 

conditions (Dunnett’s multiple comparisons test after one-way ANOVA, 

p<0.05).   
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The intrinsic WUE is defined as A/Gs where Gs is the stomatal conductance (Morison et al., 

2008). This is a more conservative measure of WUE as it removes some of the influence 

and hence variability introduced by the environment by comparing photosynthetic 

parameters independent of evaporative demand (Seibt et al., 2008). 

The intrinsic water use efficiency of the HvEPFL1OE-A line was significantly higher than that 

of the empty vector control under well-watered conditions (Dunnett’s multiple 

comparisons test after one-way ANOVA, p<0.05). HvEPFL1OE-A had a mean intrinsic water 

use efficiency of 94.3 mmol CO2mol-1H2O, representing a percentage increase of 27.8% of 

the control mean intrinsic water use efficiency (73.8 mmol CO2mol-1H2O) (see figure 4.4 A). 

Under drought conditions the intrinsic water use efficiency of the HvEPFL1 ectopic 

expression lines was not statistically distinct from empty vector control values (one-way 

ANOVA, p>0.05) (see figure 4.4 B). The improvement in intrinsic water use efficiency in 

HvEPFL1OE-A occurs as a consequence of the small drop in assimilation in contrast to the 

larger drop in stomatal conductance. Assimilation initially increases in a linear manner as 

stomatal conductance before saturating at higher conductance values when CO2 

availability for assimilation (Ci) is no longer the limiting factor in photosynthesis. 

Consequently, any drop in stomatal conductance within the range of conductance values 

where Ci is not limiting and hence assimilation is saturated can yield significant WUE 

improvements without a large drop in assimilation (section 1.3.3, Yoo et al., 2009). 
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Figure 4.4- Ectopic overexpression of HvEPFL1 significantly increases the 

intrinsic WUE (WUEi) of the HvEPFLOE-A line under well-watered 

conditions. Comparison of the mean WUEi in two independent T2 HvEPFL1 

overexpressing transgenic lines with the mean WUEi in an empty vector 

control line using steady state gas exchange analysis under well-watered 

(A) and droughted (B) conditions. N=5. Error bars signify SE. Asterisk 

indicates significant decrease in HvEPFL1 overexpressing transgenic lines of 

the mean WUEi relative to the empty vector control (Dunnett’s multiple 

comparisons test after one-way ANOVA, p<0.05). 
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4.4- Light response curves 

In order to identify the light intensity required to achieve light saturation (the light 

saturation point) for A-Ci curves and to identify whether HvEPFL1 ectopic overexpression 

has an effect on photosynthetic rate under varying light intensity light response curves 

were generated as described in section 2.8.5. The resulting unfitted data is plotted in figure 

4.5. For the light intensities from 1600µmolm-2s-1 upwards HvEPFL1OE-A exhibited 

significantly reduced assimilation relative to the empty vector control (Dunnett’s multiple 

comparisons test following two-way ANOVA, p<0.05). Beneath 1600µmolm-2s-1 there was 

no significant difference in the rate of assimilation between the HvEPFL1 ectopic 

overexpressors and the empty vector control (Dunnett’s multiple comparisons test after 

two-way ANOVA, p<0.05). This would suggest that the effect of stomatal density on 

assimilation rate is dependent on light intensity. The assimilation rate at 200 µmolm-2s-1  is 

not significantly different here, in contrast to the previous finding in the steady state gas 

exchange experiment (see figure 4.1 A). This is likely due to the increased error as a 

consequence of single readings at each light intensity being used to form the light curve for 

each plant, instead of the averaged readings taken over 5 minutes for the steady state 

readings. Moreover each light intensity, with the exception of 1900 µmolm-2s-1  intensity at 

which the plants were initially acclimated, was only maintained for 2-4 minutes. This is 

insufficient time for the stomatal conductance to adapt fully to the diminishing light 

intensity, resulting stomata that are more open than they would be if they were allowed to 

completely adjust to the new light intensity.    
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Figure 4.5- Light curves demonstrating the positive correlation between 

PAR and the rate of assimilation. Control (black circle, red line), 

HvEPFL1OE-A (black square, blue line) and HvEPFL1OE-B (black triangle, 

green line) leaves were exposed to a descending series of light intensities 

at ambient CO2. N=5. Error bars signify SE.  

 

The light curves were fitted using an excel spreadsheet utilising the model of Ye, 2007 

obtained from Lobo et al., 2013 to identify a selection of parameters to further 

characterise the effect of HvEPFL1 overexpression on the light response.      

Neither the light compensation point nor the quantum yield of the HvEPFL1OE-A and 

HvEPFL1OE-B lines was statistically distinct from empty vector control values (one-way 

ANOVA, p>0.05) (see figure 4.6 A and 4.6 B). This suggests that the light-dependent 

processes are not disrupted as a consequence of HvEPFL1 ectopic overexpression. 
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Figure 4.6- Ectopic overexpression of HvEPFL1 does not significantly 

affect   the light compensation point (LCP) nor the quantum yield. 

Comparison of the LCP (A) and quantum yield (B) of two independent T2 

HvEPFL1 overexpressing transgenic lines with the LCP (A) and quantum 

yield (B) of an empty vector control line from fitted light curves. N=5. Error 

bars signify SE. There was no significant difference between the 

overexpressors and the controls (Dunnett’s multiple comparisons test after 

one-way ANOVA, p>0.05).   

 

The light saturation point of the HvEPFL1OE-A and HvEPFL1OE-B lines was not different 

from empty vector control values. (one-way ANOVA, p>0.05) (see figure 4.7 A). The light 

saturation point for the lines varied between 2009 µmolm-2s-1  in the control to 1830 

µmolm-2s-1  in the HvEPFL1OE-A line. As a consequence of this the light level for the A-Ci 
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curves was set at 1900 µmolm-2s-1, the closest achievable light intensity to the light 

saturation point for the li6400 unit being utilised. 

The theoretical maximum gross photosynthetic rate (Pgmax) at saturating light of the 

HvEPFL1OE-A line was significantly lower than that of the empty vector control (Dunnett’s 

multiple comparisons test after one-way ANOVA, p<0.05). HvEPFL1OE-A had a mean Pgmax 

of 29.5 mmolm-2s-1 representing 85.5% of the control mean Pgmax (34.5 mmolm-2s-1) (see 

figure 4.7 B). This confirms that the effect of stomatal density on assimilation is dependent 

on light intensity.   
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Figure 4.7- There is no significant effect of HvEPFL1 ectopic 

overexpression on the light saturation point (Isat), but the theoretical 

maximum gross photosynthetic rate (Pgmax) is significantly decreased in 

the HvEPFL1OE-A line. Comparison of the Isat (A) and Pgmax (B) of two 

independent T2 HvEPFL1 overexpressing transgenic lines with the 

corresponding Isat (A) and Pgmax (B) of an empty vector control line from 

fitted light curves. N=5. Error bars signify SE. Asterisk indicates significant 

decrease in HvEPFL1 overexpressing transgenic lines of the Pgmax relative to 

the empty vector control (Dunnett’s multiple comparisons test after one-

way ANOVA, p<0.05). 
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The stomata of the HvEPFL1 ectopic expression lines respond to light in the manner 

expected, with a positive correlation between stomatal conductance and PAR (see figure 

4.8). The maximum stomatal conductance of HvEPFL1OE-A line was significantly lower than 

that of the empty vector control (Dunnett’s multiple comparisons test after one-way 

ANOVA, p<0.05). HvEPFL1OE-A had a mean maximum stomatal conductance of 0.189 

molm-2s-1 representing 63.9% of the control mean maximum stomatal conductance (0.296 

molm-2s-1) (see figure 4.7 B). Also, the total range of stomatal conductance values was 

lower in the HvEPFL1 ectopic overexpression lines, 0.0664 molm-2s-1 for HvEPFL1OE-A and 

0.125 molm-2s-1 for HvEPFL1OE-B in contrast to a stomatal conductance range of 0.194 

molm-2s-1 for the empty vector control. The lower maximum conductance and reduced 

range are a consequence of the reduction in stomatal density and size observed in the 

HvEPFL1 ectopic expression lines, which reduces the maximum total leaf pore area over 

which gas exchange can occur.   
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Figure 4.8- Graph demonstrating the positive correlation between PAR 

and the stomatal conductance. Control (black circle), HvEPFL1OE-A (black 

square) and HvEPFL1OE-B (black triangle) leaves were exposed to a 

descending series of light intensities at ambient CO2. N=5. Error bars signify 

SE.  
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4.5- A-Ci curves 

Next the response to CO2 was assessed by subjecting the plants to a range of CO2 

levels at 1900µmol m-2 s-1 PAR and otherwise ambient conditions and recording the rate of 

assimilation. The method by which this was done is described in detail in section 2.8.6. The 

rate of assimilation is plotted against Ci in order to remove the effect of the varying 

stomatal conductances between the lines so that any differences observed between the 

lines is as a consequence of variation in underlying biochemistry. The resulting unfitted 

data for the A-Ci relationship is plotted in figure 4.9.   

 

 

  



            130 

 

 
 

Figure 4.9- The form of the CO2 response (A-Ci) curves does not differ 

between genotypes Control (black circle), HvEPFL1OE-A (black square) and 

HvEPFL1OE-B (black triangle) leaves were exposed to a series of CO2 

concentrations at 1900µmolm-2s-1 light intensity. N=5. Error bars signify SE. 
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The A-Ci curves were fitted using an A-Ci curve fitting tool (www.landflux.org) which fits 

the C3 photosynthesis model (Farqhuar et al., 1980) following the method of Either and 

Livingston, 2004. Values for the maximum rate of rubisco carboxylation (Vmax) (see figure 

4.10 A), maximum rate of electron transport (Jmax) (see figure 4.10 B) and maximum rate 

of assimilation (Amax) (see figure 4.10 C) were obtained from the fitted data, none of 

which differed significantly in the HvEPFL1 ectopic overexpressor lines. Moreover, the 

stomatal limitation on photosynthesis was assessed using the graphical method (Long and 

Bernacchi, 2003) and found to be significantly higher in the HvEPFL1 ectopic overexpressor 

lines compared to the empty vector control (Dunnett’s multiple comparisons test after 

one-way ANOVA, p<0.05) (see figure 4.10 D). Taken together these findings demonstrate 

that photosynthetic biochemistry has not been altered by HvEPFL1 overexpression and 

that the differences in CO2 response are as a consequence of stomatal rather than non-

stomatal limitations on photosynthesis.   
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Figure 4.10- Ectopic overexpression of HvEPFL1 does not significantly 

affect the underlying biochemistry of photosynthesis. Comparison of the 

maximum rate of carbon assimilation (A), maximum rate of ribulose‐1,5‐

bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation 

Vcmax (B), maximum rate of electron transport (C) and the calculated 

stomatal limitation (D) of two independent T2 HvEPFL1 overexpressing 

transgenic lines with those of an empty vector control line. N=5. Error bars 

signify SE. Asterisk indicates significant increase in HvEPFL1 overexpressing 

transgenic lines of the stomatal limitation on photosynthesis relative to the 

empty vector control (Dunnett’s multiple comparisons test after one-way 

ANOVA, p<0.05).   
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4.6- Conclusions 

• HvEPFL1 overexpression significantly reduces the rate of carbon assimilation and 

stomatal conductance under both ambient, well-watered conditions relative to 

controls. 

• The most severe stomatal density reduction line, HvEPFL1OE-A, shows improves 

intrinsic water use efficiency and reduced transpiration under ambient well-

watered conditions relative to controls.  

• The improvement in intrinsic water use efficiency in HvEPFL1OE-A occurs as a 

consequence of the small drop in assimilation in contrast to the larger drop in 

stomatal conductance. Assimilation initially increases in a linear manner as 

stomatal conductance before saturating at higher conductance values when CO2 

availability for assimilation (Ci) is no longer the limiting factor in photosynthesis. 

Consequently, any drop in stomatal conductance within the range of conductance 

values where Ci is not limiting and hence assimilation is saturated can yield 

significant WUE improvements without a large drop in assimilation (section 1.3.3, 

Yoo et al., 2009). 

• There is no effect of overexpressing HvEPFL1 on the underlying biochemistry of 

photosynthesis, with the changes in gas exchange observed occurring as a 

consequence of stomatal limitations on photosynthesis, i.e. reduced Ci supply. 

• There is no improvement in photosynthetic traits under drought suggesting that 

under the severe drought imposed, stomatal closure in response to drought is 

equalising the exchange area through which gas exchange can occur, resulting in a 

similar stomatal conductance and an equally constrained rate of CO2 assimilation 

in both the HvEPL1 ectopic overexpression lines and the empty vector control line. 
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Chapter 5- The effect of overexpressing 
HVEPFL1 on growth and drought tolerance 

in Hordeum vulgare 
 
 

5.1- Introduction 

In chapter 4 it was demonstrated that by reducing stomatal density in barley it is possible 

to produce plants with significantly increased water use efficiency. Whilst this is a useful 

trait in and of itself, increased water use efficiency and/or drought tolerance is often found 

to occur in tandem with other, less desirable traits such as slower growth rate and lower 

assimilation (Flexas et al., 2004; Lawson and Blatt, 2014, figure 4.1 A for assimilation) as 

well as reduced leaf area, reduced tillering, fewer leaves and earlier flowering with 

reduced yield (Blum, 2004). It is therefore necessary to assess the growth and yield in 

order to appraise whether or not reduced stomatal density could be used as an approach 

to future proof crops against climate change. A high WUE plant that yields poorly is of 

limited value in agricultural terms. Moreover, in terms of producing crop plants that are 

adapted to future, low water environments there are significant advantages to breeding 

for improved drought tolerance as well as improved water use efficiency. Given that the 

HvEPFL1 ectopic expression lines have significantly reduced stomatal conductance and so 

have reduced water loss, it seemed likely they would prove to be more drought tolerant as 

well. In this chapter, the early growth of the HvEPFL1 ectopic expression lines is described, 

as is their physiology at harvest, including appraisal of the yield. It ends with an appraisal of 

the drought tolerance in the transgenic lines.  

    

 

5.2- Methods summary 

5.2.1-Early growth and development 

The time taken to germinate and the germination success rate were assessed with 

successful germination being recorded when the individual plant reached Zadoks stage 07. 

Once the third leaf was fully expanded growth measurements were carried out every 3 

days. This included counting the total number of leaves, both fully expanded and 

developing, as well as the total number of tillers in order to assess growth. 
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5.2.2- Harvesting 

Growth and yield under 60% and 25% watering regimes was assessed at the end of the 

lifecycle of control and transgenic barley plants used for the gas exchange analysis 

discussed in chapter 4. For each plant, the total number of tillers, including the number of 

spike-bearing tillers and prematurely senescing tillers, as well as the total number of leaves 

were counted and the height of the primary tiller measured. The above ground vegetative 

tissue was dried down at 80oC for 2 days and weighed to obtain the dry weight of the 

shoots and leaves. The grains were counted and weighed per ear and the sum of the 

number and weight of grain on all the ears of individual plants recorded as the total grain 

number and the yield respectively. The average weight of individual seeds for each plant 

was calculated as was the harvest index (see section 2.10.3). ΔC analysis was carried out to 

assess life time WUE (see section 2.10.4).   

 

5.2.3- drought tolerance experiment 

In order to assess drought tolerance, control and transgenic barley plants were grown until 

Zadoks stage 21. Half the plants of each line were then maintained at the initial watering 

level (60% soil water content) whilst watering was withheld from the other half. Drought 

tolerance was assessed by both monitoring the rate at which soil water was utilised by 

water restricted plants via pot weighing in order to test for drought avoidance (see section 

2.12.2) and by monitoring plant stress using the light-adapted quantum yield of 

photosystem II (QY or Fv’/Fm’) as a proxy (see section 2.12.3). Relative water content of 

leaves excised from both droughted and well-watered plants was measured on day 6 of the 

drought treatment (see section 2.12.4). 

 

5.3- Effect of HvEPFL1 OE on early growth 

During the initial screen of transgenic lines it was apparent that germination rate in the 

HvEPFL1 ectopic overexpression lines was diminished in contrast to the germination rate in 

the controls. Therefore, once the lines HvEPFL1OE-A and HvEPFL1OE- B were selected their 

rate of germination was determined utilising the method outlined in section 2.11. Both 

ectopic overexpression lines showed a delayed and slower rate of germination compared 

to the empty vector control (see figure 5.1). Moreover, whilst 100% of the empty vector 

controls successfully germinated (here defined as reaching Zadoks stage 07) only 75% and 

87.5% of HvEPFL1OE-A and HvEPFL1OE-B seeds germinated respectively. HvEPFL1 is known 
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to be expressed in embryonic tissue (Mayer et al., 2012), so it is possible that it possesses 

an unknown function in the process of germination or early growth establishment that can 

be fatally disrupted by its overexpression. Interestingly, referring back to the initial screen, 

ectopic HvEPFL1 overexpression lines exhibiting the highest copy numbers and the lowest 

stomatal densities also exhibited the lowest seed viability, suggesting a connection 

between gene dosage and germination disruption. Alternatively, the reduced carbon 

assimilation in the ectopic overexpressors (see figure 4.1 A) could have reduced the supply 

of available photosynthate during seed development, producing grains with insufficient 

energy stores for germination.  

 

 

 
 

Figure 5.1- HvEPFL1 ectopic overexpression lines display delayed 

germination and reduced grain viability relative to the control line. 40 T3 

seeds each of the empty vector control (black circle), HvEPFL1OE-A (black 

square) and HvEPFL1OE-B (black triangle) lines were scored for 

germination.  

 

Following germination, the ectopic HvEPFL1 overexpression lines continue to display 

delayed development in comparison to the empty vector controls under well-watered and 

droughted conditions (60% and 25% maintained soil water content respectively). 

Development was assessed by monitoring two simple growth characters that are affected 

by plant water relations, leaf number and tiller number, as described in sections 2.11 and 

5.2.1.  
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Under well-watered conditions leaf number tended towards being lower in the ectopic 

overexpressors and was statistically significantly lower than the leaf number values of the 

empty vector control between 18 and 21 days post germination (Dunnett’s multiple 

comparisons test after one-way ANOVA, p<0.05) (see figure 5.2 A). Similarly, tiller number 

was initially significantly lower in the ectopic overexpressors compared to the empty 

vector control up until 21 days post-germination (Dunnett’s multiple comparisons test 

after one-way ANOVA, p<0.05) (see figure 5.2 C). In contrast under the 25% soil water 

content treatment both the control and the HvEPFL1 ectopic overexpression lines showed 

the same initial growth rates for both tiller and leaf number. However, from 18 days post-

germination the most severely reduced density line, HvEPFL1OE-A, demonstrated 

significantly delayed growth for both leaf number and tiller number in comparison to both 

the empty vector control and HvEPFL1OE-B (Tukey’s HSD multiple comparisons test after 

one-way ANOVA, p<0.05) (see figure 5.2 B and D). This delay in early growth could be the 

result of the lower rate of CO2 assimilation seen in the HvEPFL1OE ectopic expression lines, 

as demonstrated in the gas exchange experiment (see figure 4.1 A). 
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Figure 5.2- HvEPFL1 ectopic overexpression lines display altered patterns 

of growth in the early stages of development under well-watered and 

droughted conditions. Graphs of early growth in leaf number and tiller 

number against days post-germination for the empty vector control (black 

circle, red line), HvEPFL1OE-A (black square, blue line) and HvEPFL1OE-B 

(black triangle, green line). A and C measured under 60% soil water 

content, B and D under 25% soil water content. N=5. Error bars signify SE. 

 

 

 

5.4- Effect of HvEPFL1 OE on plant physiology and yield  

In order to ascertain the effect of ectopic HvEPFL1 overexpression on yield and total 

vegetative growth under both well-watered and droughted watering regimes the plants 

utilised for the gas exchange experiments described in chapter 3 were grown to seed set.  

Whilst the initial growth of the ectopic HvEPFL1 overexpression lines was delayed relative 

to the empty vector control (see figure 5.2), by the end of the barley life cycle there was no 

significant difference in most of the basic physiological measures of growth. For example 
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there was no significant difference in the final leaf number between the HvEPFL1 ectopic 

overexpressor lines and the empty vector control under either of the watering regimes 

(separate one-way ANOVA for each watering regime, in both cases p<0.05) (see figure 5.3 

A). Similarly, the maximum height of the primary tiller showed no significant change in the 

HvEPFL1 ectopic overexpressors in comparison to the empty vector control in either of the 

watering regimes (separate one-way ANOVA for each watering regime, in both cases 

p<0.05) (see figure 5.3 B).  For both traits in all lines there was a significant reduction under 

drought conditions (individual unpaired t-tests, p<0.05).   
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Figure 5.3- Final height and final leaf number at harvest do not 

significantly differ from controls in HvEPFL1 ectopic overexpression lines 

under both well-watered and droughted conditions. Black bars represent 

60% soil water content treatment, striped bars represent 25% soil water 

content. N=5. Error bars signify SE. There was no significant difference in 

final leaf number or final height of the primary tiller between the empty 

vector control and the HvEPFL1 ectopic overexpression lines within either 

watering regime. (one-way ANOVA, p>0.05). 
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Furthermore, there was no significant difference in total above ground biomass (the sum 

of the dry weight of the vegetative tissue and the grain) between the HvEPFL1 ectopic 

overexpressors and the empty vector control in either of the watering regimes (separate 

one-way ANOVA for each watering regime, in both cases p>0.05) (see figure 5.4 A) with the 

plants appearing superficially similar within treatments (see figure 5.4 B). The absence of a 

significant change in biomass, as well as the lack of change in leaf numbers and tiller height 

(figure 5.3) suggests that the reduction in photosynthetic rate observed at ambient 

conditions (see figure 4.1 A) does not translate into reduced growth as one might have 

hypothesised. This could be due to the reduced stomatal conductance and consequent 

reduction in water loss allowing the allocation of resources to grain filling and 

development of above ground biomass at the expense of root development as seen in 

Arabidopsis thaliana EPF transgenics i.e. there is a reduced requirement for roots when 

water losses are low with a positive correlation between stomatal density and root size 

(Hepworth et al., 2016). 
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Figure 5.4- Total above ground biomass at harvest does not significantly 

differ from controls in HvEPFL1 ectopic overexpression lines under both 

well-watered and droughted conditions. (A) Graph of above ground 

biomass at harvest for the empty vector control, HvEPFL1OE-A and 

HvEPFL1OE-B under both watering regimes. Black bars represent 60% soil 

water content treatment, striped bars represent 25% soil water content. 

N=5. Error bars signify SE. There was no significant difference in total 

above ground biomass at harvest between the empty vector control and 

the HvEPFL1 ectopic overexpression lines within either watering regime. 

(one-way ANOVA, p>0.05). 

(B) digital image of plants demonstrating the similar growth habit of the 

different lines within each watering regime. Ordered left to right: Control 

60%, Control 25%, HvEPFL1OE-A 60%, HvEPFL1OE-A 25%, HvEPFL1OE-B 

60%, HvEPFL1OE-B 25%. 
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One aspect of vegetative growth that is different in the ectopic HvEPFL1 

overexpressors is the degree to which tillering occurs. The total number of tillers formed in 

the HvEPFL1OE-A line was significantly lower than that of the empty vector control under 

well-watered conditions (Dunnett’s multiple comparisons test after one-way ANOVA 

p<0.05). HvEPFL1OE-A had a mean total tiller number of 45.75 tillers, approximately a third 

fewer than the control mean total tiller number (68.8 tillers) (see figure 5.5 A). Under 

droughted conditions there was no difference between any of the lines in terms of total 

number of tillers formed (one-way ANOVA p>0.05). As expected there was a significant 

decline in tiller numbers between watering treatments for all lines (individual unpaired t-

tests P<0.05)  

The tillers can be grouped into two distinct sets, those that produce an ear (spike-bearing) 

and those that prematurely senesce without producing an ear. Interestingly the number of 

spike-bearing tillers does not significantly differ in either of the ectopic HvEPFL1 

overexpression lines under either watering regime (one-way ANOVA p>0.05), despite the 

overall reduction in tillering seen in HvEPFL1OE-A (see figure 5.5 B). The difference in the 

total number of tillers is instead a consequence of the greater number of non-seed 

producing tillers found in the empty vector control line. The total number of non-ear 

bearing tillers formed in the ectopic HvEPFL1 overexpression lines was significantly lower 

than that of the empty vector control under well-watered conditions (Dunnett’s multiple 

comparisons test after one-way ANOVA p<0.05). HvEPFL1OE-A had a mean total non-ear 

bearing tiller number of 23 tillers whilst HvEPFL1OE-B had a mean total non-ear bearing 

tiller number of 32.75 tillers, representing 45.7% and 65.2% of the control mean total non-

ear bearing tiller number (50.25 tillers) (see figure 5.5 C).  Unlike in the case of the total 

number of tillers and the spike-bearing tillers, there is no significant decrease in ear 

bearing tiller numbers in the ectopic HvEPFL1 overexpression lines between watering 

treatments, i.e. the number of non-yielding tillers does not decrease under drought. 

It appears that under well-watered conditions there is increased investment in tillering in 

the empty vector control relative to the ectopic overexpressors but the additional tillers 

fail to produce ears. The maximum tiller number is important in that it is the primary 

determinant of maximum possible yield achievable (Garcia del Moral and Garcia del Moral, 

1995) so in the absence of other limitations, such as nutrients, the maximum yield of the 

control could be significantly greater than the HvEPFL1 overexpressors. However it appears 

that, under the conditions the experiment was carried out in, there were insufficient 

resources for the control plants to capitalise on the additional tillers to produce additional 



            144 

 

ears under well-watered conditions and no difference in the maximum tillering rate under 

drought. 

An additional observation was that both the HvEPFL1 ectopic overexpression lines 

exhibited delayed flowering relative to the control. Flowering time was recorded as the 

time the primary tiller achieved Zadoks stage 59, i.e. complete ear emergence, with the 

flowering time of the transgenic lines being recorded relative to the mean time for control 

flowering. HvEPFL1OE-A flowered on average 8.6 days after the control whilst HvEPFL1OE-

B flowered on average 6 days after the control. Whilst the growth cycle of barley in 

production is carried out in accordance to a tight schedule a delay of approximately one 

week does not constitute an agronomic problem. However, if the delay in flowering is 

greater under natural conditions than it is under the relatively controlled conditions that 

these plants were grown under then there could be issues in terms of field application. 
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Figure 5.5- HvEPFL1 ectopic overexpression reduces tillering and delays 

flowering. Comparison of the total number of tillers formed(A), the 

number of those tillers that give rise to an ear (B) and number of those 

tillers that do not (C). Black bars represent 60% soil water content 

treatment, striped bars represent 25% soil water content.  (D) number of 

days after the control had flowered that the ectopic overexpressors 

flowered. N=5. Error bars signify SE.  
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The most important aspect of physiological growth in terms of agricultural applications is 

of course the grain, especially the yield. There was no significant difference in seed 

number, average weight per seed, yield or harvest index (the ratio of yield to above ground 

biomass) between the HvEPFL1 ectopic overexpressors and the empty vector control in 

either of the watering regimes (one-way ANOVA, p>0.05) and as expected all traits 

diminished in all lines under drought in comparison to well-watered conditions (unpaired t-

tests, p<0.05) (see figure 5.6). That improvements in intrinsic and long-term WUE (see 

figure 4.4 A and figure 5.7) can be achieved though stomatal density reduction without 

deleterious effect on yield is a significant result. Although there was no significant 

difference in yield between the lines under drought conditions, which was quite severe in 

terms of water supply, it is conceivable that under more moderate drought stress HvEPFL1 

ectopic overexpressors could achieve superior yield to the controls due to this improved 

WUE. 

 

 

 

 

 

  



147 

 

 
 

Figure 5.6- Seed number, average weight, yield and harvest index do not 

significantly differ from controls in HvEPFL1 ectopic overexpression lines 

under both well-watered and droughted conditions. Graphs of seed 

number (A), average weight per seed (B), yield (C) and harvest index (D)  

for the empty vector control, HvEPFL1OE-A and HvEPFL1OE-B under both 

watering regimes. Black bars represent 60% soil water content treatment, 

striped bars represent 25% soil water content. N=5. Error bars signify SE. 

There was no significant difference between the empty vector control and 

the HvEPFL1 ectopic overexpression lines within either watering regime for 

any of the traits. (one-way ANOVA, p>0.05). 
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Carbon isotope discrimination analysis can be used as a proxy for water use efficiency in C3 

plants (Farqhuar et al., 1982; Farquhar and Richards, 1984) and provides an assessment the 

mean water use efficiency of the analysed tissue over the course of growth and 

development, in contrast to the snapshot assessment obtained from gas exchange analysis. 

The isotope analysis demonstrated that under well-watered conditions the HvEPFL1OE-A 

line was more water use efficient (see figure 5.7 A) as was observed for intrinsic water use 

efficiency in the gas exchange analysis (see figure 4.4) whilst both HvEPFL1 ectopic 

expression lines were more water use efficient under drought (see figure 5.7 B). This latter 

finding differs from the gas exchange analysis which found no increase in water use 

efficiency under drought, likely due to the different natures of the two methods of 

assessing WUE, which can occasionally disagree, or differences in sensitivity and scale 

(Medrano et al., 2015).   

 
 

 
Figure 5.7- Carbon isotope discrimination demonstrated that water use efficiency was 

significantly improved in HvEPFL1OE-A under well-watered conditions (A) and in both 

HvEPFL1 ectopic overexpressors under drought (B). Empty vector control (black circle), 

HvEPFL1OE-A (black square) and HvEPFL1OE-B (black triangle). N=5. Error bars signify SE. 

Asterisk indicates significant difference in carbon isotope discrimination between HvEPFL1 

overexpressing transgenic lines relative to the empty vector control (Dunnett’s multiple 

comparisons test after one-way ANOVA, p<0.05).   
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5.5- Effect of HvEPFL1 OE on drought tolerance 

As well as displaying superior long-term water use efficiency, the HvEPFL1 ectopic 

expression lines also displayed improved drought tolerance in the withheld water 

experiment, the method for which is described in section 2.12. Following the cessation of 

watering both ectopic HvEPFL1 overexpression lines retained significantly more soil water 

than the empty vector control from the second day after watering stopped until the 14th 

day (see figure 5.8).  This allowed for dehydration avoidance, where the plant maintains 

high water status despite drought, by conserving soil water to delay the onset of drought 

stress relative to the environmental commencement of drought (Blum, 2005). 

 
 

 
Figure 5.8- HvEPFL1 ectopic overexpression lines display improved soil water 

retention relative to controls when water is withheld. Graph of percentage soil 

water remaining against days post-watering for the empty vector control (circle), 

HvEPFL1OE-A (square) and HvEPFL1OE-B (triangle). N=5. Error bars signify SE. 

 

The light-adapted quantum yield of photosystem II (QY) declines under drought stress and 

consequently can be used as a proxy to monitor the onset of stress in plants exposed to 

drought (Genty et al., 1989; Baker and Rosenqvist, 2004). Following the cessation of 

watering both ectopic HvEPFL1 overexpression lines retained QY values at well-watered 

levels until 13 days after watering stopped whilst the QY values of the empty vector control 

began to decline 4 days earlier, indicating an earlier initiation of drought stress and 
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subsequent reduction in photosystem II efficiency in the controls, likely due to the 

significantly lower soil water availability (figure 5.8). QY declined to zero after 13 days in 

the empty vector control, with HvEPFL1OE-A reaching zero 4 days later, suggesting that 

once drought stress commences, the HvEPFL1 overexpressors are as susceptible to the 

effects of drought stress of photosystem II efficiency as the controls, they can just avoid it 

for longer (see figure 5.9).    

 

 

 
Figure 5.9- HvEPFL1 ectopic overexpression lines display improved drought stress 

tolerance relative to controls when water is withheld. Graph of quantum yield (a 

proxy for drought stress) against days post-watering for the empty vector control 

(black circle), HvEPFL1OE-A (square) and HvEPFL1OE-B (triangle). Closed symbols 

for well-watered conditions, open symbols for water withheld.  N=5. Error bars 

signify SE. 

 

6 days after the cessation of watering, the relative water content of leaf samples from 

plants under both well-watered and water withheld treatments was obtained as described 

in section 2.12.4. There was no no significant difference in leaf RWC between the ectopic 

HvEPFL1 overexpressors and the empty vector control under well-watered conditions (one 

way ANOVA, p>0.05). However, under water-withheld conditions, the relative water 

content of the leaf samples of both ectopic HvEPFL1 overexpressors were significantly 

higher than the relative water content of the controls (Dunnett’s multiple comparisons test 

following one-way ANOVA, p<0.05), demonstrating improved drought tolerance through 

maintaining a higher plant water status (see figure 5.10 A). Indeed, by day 6 the water 
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withheld controls were visibly wilting whilst the HvEPFL1 ectopic overexpressors 

maintained turgor (see figure 5.10 B).  

 
 
 

Figure 5.10- HvEPFL1 ectopic overexpression lines maintain leaf turgor for longer 

when water is withheld. (A)  Graph of leaf relative water content for the empty 

vector control, HvEPFL1OE-A and HvEPFL1OE-B under well-watered (black bars) 

and water withheld treatments (striped bars) after 6 days of the withheld water 

treatment. N=5. Error bars signify SE. There was a significant difference in RWC 

between the empty vector control and the HvEPFL1 ectopic overexpression lines in 

the water withheld teatment. (Dunnett’s multiple comparisons test after one-way 

ANOVA, p<0.05). (B) Digital image of a control and an HvEPFL1OE-B plant after 

water was withheld for 6 days.   
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5.6- Conclusions 

• Overexpression of HvEPFL1 reduces seed viability and delays germination, as well 

as slowing down initial vegetative development. 

 

•  There was no significant change in above ground biomass including both 

physiological traits (leaf number and primary tiller height) and seed yield, 

suggesting that the reduction in photosynthetic rate observed at ambient 

conditions does not translate into reduced growth or yield. This could be due to an 

increased availability of resources to dedicate to grain filling and shoot 

development as a consequence of reduced stomatal conductance and consequent 

reduction in water loss reducing the requirement for resource investment in roots.  

• The maximum number of tillers was reduced in the most severe density line 

(HvEPFL1OE-A), suggesting that maximum achievable grain yield could be reduced 

in HvEPFL1 ectopic overexpressors. 

 

• Long-term water use efficiency was significantly higher in HvEPFL1OE-A under well-

watered conditions and in both overexpression lines under drought. 

 

 

• The HvEPFL1 ectopic expression lines are both more drought tolerant than the 

empty vector control, displaying drought avoidance through retention of soil 

moisture with subsequent delayed onset of drought stress and turgor loss. 
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Chapter 6- Discussion 
 

As has been extensively covered in chapter 1 the role of the EPIDERMAL 

PATTERNING FACTOR LIKE (EPFL) family in regulating the development of stomata in 

Arabidopsis has been extensively researched over the past decade. However, until the 

completion of this current study it was unknown whether the functions of any of the EPF 

signalling peptides were conserved in grasses. With the discovery that overexpressing 

HvEPFL1 leads to reduced stomatal density there is now evidence that peptide function has 

been conserved between monocots and dicots. Added to evidence of EPF/TMM/ERECTA 

function in basal land plants (Caine et al., 2016) and evidence of conserved SPCH, MUTE 

and FAMA function in both the basal land plants (Chater et al., 2016) and in grasses (Liu et 

al., 2009; Raissig et al; 2016) this finding adds weight to the hypothesis that the underlying 

components of the EPF/TMM/ERECTA signalling module and stomatal lineage progression 

are truly universal. This suggests that a single molecular toolkit of ancient origins is being 

utilised across vast evolutionary distances. Stomata are found in a number of distinct 

patterns in nature, from the ring of stomata around the base of the sporophyte capsule of 

Physcomitrella patens (Caine et al., 2016) through the scattered distribution seen in dicots 

such as Arabidopsis thaliana to the highly ordered stomatal files of the grasses (Stebbins 

and Jain, 1960). That slight diversifications in their function can allow the same basic 

components to orchestrate stomatal development to such distinct outcomes is quite a 

surprising, if parsimonious, concept. This would also suggest that pathways that integrate 

into the stomatal development pathway, such as those that relay environmental signals, 

are likely to demonstrate high conservation of component functions as well. 

The fact that reducing stomatal density can improve both water use efficiency and 

drought tolerance without a negative impact on yield is an exciting finding. This study is the 

latest to demonstrate this possible means of crop improvement, with studies of gtl 
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mutants (Yoo et al., 2010; Yoo et al., 2011), EPF2 overexpression (Franks et al., 2015) and 

PdEPF2 overexpression (Liu et al., 2016) in the model plant Arabidopsis thaliana, as well as 

ZmSDD1 overexpression in maize (Liu et al., 2015), all showing a link between lower 

stomatal densities and higher water use efficiency and/or drought tolerance. This suggests 

that reduced stomatal density could be an ideal trait for targeted breeding for 

futureproofing crops against increased drought, particularly given the fact that higher 

atmospheric CO2 concentration will help to mitigate the negative effects of reduced gas 

exchange on carbon assimilation.  

The caveat to the results presented here is that they have been obtained under a 

particular, controlled  set of environmental conditions that, whilst good for barley, do not 

necessarily reflect the variation and stochasticity of the natural environmental conditions 

to which barley is exposed when it is grown in the field. Neither can it be assumed that the 

improvements in water relations seen here can be replicated in other crops with distinct 

growth habits, such as rice. Further to this, seeing as the plants utilised for gas exchange 

were grown in the early part of the year (January to June), most of their early growth and 

development, as well as the gas exchange analysis, was done under the constant light level 

of supplementary lighting. This period reflects the time of year spring barley is grown in the 

field in England. Therefore, whilst the light levels used are relatively low, they are similar to 

or exceed what would be found in a typical barley growth environment, albeit lacking the 

natural fluctuations present in the field.  Whilst it is possible that limiting light may have to 

some degree suppressed differences in carbon assimilation and yield between the control 

line and the low stomatal density lines, it is likely that any light limitation would also be 

present in the field. 
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6.1- future work     
 

The body of work presented here is far from exhaustive, with numerous avenues 

for advancement.  

Firstly, it is well documented that modifying stomatal density, and in so doing 

modifying stomatal conductance, affects the rate of evaporative cooling in the leaves 

(Doheny-Adams et al., 2012, see figure 6.1). 

 

 

 

Figure 6.1- the effect of stomatal density of evaporative cooling 

in Arabidopsis thaliana. As stomatal density increases, 

evapotranspiration increases which leads to increased evaporative 

cooling of the leaves. Images taken using an Infra-red thermal 

imaging camera. Percentages are the proportion of stomata 

relative to the Col-0 control (100%). The genotypes of the plants 

shown in order of increasing density are: EPF2OE, STOMAGEN 

RNAi, Col-0, epf2, epf1epf2 double mutant and 

epf1epf2STOMAGENOE. Adapted from Doheny-Adams et al., 2012. 

 

 

Temperature stress during grain filling has previously been demonstrated to result 

in reduced grain yield in crop plants, for example winter wheat (Gooding et al., 2003). The 

effects of high temperature growth conditions are likely to be exaggerated in plants with 

lower stomatal densities as their decreased ability to cool themselves will lead to higher 

plant body temperatures in comparison to plants with more normal densities. Given that 
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average global temperatures are on the rise, this reduction in cooling could significantly 

limit the benefits of using low stomatal density lines. It is therefore imperative that the 

growth of these low-density lines is analysed under a range of temperatures to determine 

whether the negative consequences of elevated plant body temperatures outweigh the 

benefits of reduced water loss. 

Continuing on the theme of climate change, the lines should be grown under 

elevated CO2 conditions to analyse whether the projected increases in atmospheric CO2 

(reviewed in chapter 1) will amplify the benefits of reduced stomatal density in terms of 

WUE. As WUE=A/E, and reducing stomatal density reduces E to improve WUE, conditions 

where assimilation is improved, i.e. high CO2 environments, should be expected to improve 

WUE significantly, relative to current ambient CO2 concentrations (Doheny-Adams et al., 

2012; Franks et al., 2015). 

Furthermore, evapotranspiration of water from the stomata drives the passage of 

water through the plant and the movement of water, and water-soluble nutrients by mass 

flow, through the soil towards the root (Barber, 1962). This is the transpiration stream. 

Evapotranspiration and nitrogen uptake have been found to correlate in studies such as 

Shimono and Bunce, 2009. Obviously, it would be undesirable to improve crop drought 

tolerance only to significantly curtail nutrient uptake. Hepworth et al., 2015 demonstrated 

that in Arabidopsis thaliana it is possible to reduce stomatal density utilising EPF2 

overexpression without negatively impacting the uptake of nitrogen but whether this 

result can be replicated in agronomically important plants, and whether reducing stomatal 

density through the manipulation of EPFLs effects the uptake of other nutrients, remains to 

be determined. In the experiments described in chapter 4 final grain yield did not differ 

between reduced density lines and the control which, in conjunction with the lack of 

difference in vegetative biomass, suggests nutrient uptake may not have been impaired. 

However, the rate of uptake of important nutrients wasn’t analysed, nor was the nutrient 
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content of the grain assessed. Therefore, a suitable strand of future investigation would be 

to carry out experiments in the same vein as Hepworth et al., 2015 using the HvEPFL1 lines 

to see whether the results of that study translate into crops. It would also be useful to 

analyse the nutrient content of the grains using mass spectrometry. 

Finally, there is a whole suite of molecular biology experiments that could be done 

to further the work presented here. Whilst the effect of HvEPF1 overexpression has been 

demonstrated here and the conservation of bHLH transcription factors previously 

described (Liu et al., 2009; Raissig et al., 2016), the biological role of the orthologues of 

many of the Arabidopsis thaliana stomatal patterning genes remains to be elucidated in 

grasses including the other EPFLs that were not investigated here, TMM, the ERECTA 

receptors and MAPK components.  The creation of overexpressors and mutants in these 

orthologues would seem to be the next logical step in investigating how stomatal 

patterning occurs in grasses. Moreover, it would be very desirable to create a reporter 

construct for the HvEPFL1 gene as knowing where HvEPFL1 is expressed during stomatal 

development would greatly help elucidate its natural biological role.  

Barley is an ideal model organism for carrying out these genetic analyses. The 

“Golden Promise” cultivar is relatively straight forward to transform (Harwood et al., 2009) 

and mutations can be generated using the CRISPR/Cas9 genome editing tool (Lawrenson et 

al., 2015). Barley, unlike Bachypodium distachyon , is a commercially important crop plant 

and as such the transition between theory and application in a real world context is 

significantly simplified. Moreover, discoveries in barley can be readily applied to other crop 

plants including wheat. Barley is a diploid, making it much easier to carry out investigations 

in barley than in hexaploid wheat. Furthermore, its epidermis is flat and smooth, making it 

very easy to rapidly and accurately analyse large numbers of stomatal impressions, unlike 

rice where the topography and the existence of abundant trichromes hinder this process. 

Currently stomatal research into the EPF/TMM/ERECTA signalling module and other 
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stomatal development regulators in grasses is been carried out in Hordeum vulgare, 

Triticum aestivum (J. Dunn, Gray lab, unpublished work), Oryza sativa ( R.Caine, Gray lab, 

unpublished work), Zea mays (Liu et al., 2015) and Brachypodium distachyon (Raissig et al., 

2016). It would perhaps be best to focus on a single organism to develop a complete model 

for the pathways controlling stomatal epidermal patterning in grasses.                     
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