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Abstract 

The microbial transformation of Fe (III) to Fe (II) can be coupled to the oxidation and 

reduction of organic contaminants in sub-oxic to anoxic environments. A multidisciplinary 

approach was adopted in this study to investigate the biogeochemical influences on the 

degradation of toluene (a representative of the class of aromatic hydrocarbons collectively 

known as BTEX) using experimental analogues of subsurface soil environments under 

predominantly iron-reducing conditions. The removal of toluene over the period of 

incubation indicated the soil-water mixture supported the degradation of toluene under 

predominantly iron-reducing conditions. Chemical sequential extractions showed the 

removal of toluene in the active mesocosms induced an increase in carbonate-bound iron 

fractions from 196.1 ± 11.4 mg/kg to 5,252.1 ± 291.8 mg/kg and a decrease in the reducible 

iron fraction from 2,504.4 ± 1,445.9 mg/kg to 375.6 ± 20.8 mg/kg. Analysis of the soil-

water mixture showed slight shifts in the pH of the control and active mesocosms at the start 

of the experiments however these shifts occurred to a lesser degree over the remainder of 

the incubation period. Further experiments analysed the degree of influence of differing soil 

matrices and extraneous sources of iron (hematite, goethite, magnetite, ferrihydrite and 

lepidocrocite) on toluene removal. With the exception of the lepidocrocite-amended 

mesocosms, all of the iron-amended mesocosms were shown to have supported toluene 

removal. The presence of hematite, goethite and magnetite did not produce a significant 

change in the pH or total iron concentrations of the soil-water mixture. However the 

presence of ferrihydrite in the ferrihydrite-amended mesocosms induced a decrease in pH to 

slightly acid values ranging between pH 6.5 at the start of the experiments and 5.2 at the end 

of the experiments. The lepidocrocite-amended mesocosms induced a change to slightly 

alkaline values ranging between pH 8.4 and 8.8 during the period of incubation. All of the 

soil-amended mesocosms supported the removal of toluene in the soil-water mixture. The 

mesocosms containing soils with a greater percentage clay fraction removed higher amounts 

of toluene, possibly an indication that the bulk of this removal was sorption-induced and not 

microbially-mediated. An experimental approach based on the standard stable carbon 

isotope analytical method made it possible to determine the source of carbon in the 

incubated mesocosm  material. The application of the mixed effects model approach to 

analyse the repeatedly measured experimental data demonstrated the possibility of 

producing predictive models for toluene removal in soil. 

Keywords: bioremediation, BTEX, iron reduction, mixed effect models, sequential chemical 

extractions, soil microcosms, stable carbon isotope analysis, toluene. 



- v - 

Table of Contents 

Acknowledgements ................................................................................................. iii 

Abstract ................................................................................................................. iv 

Table of Contents .................................................................................................... v 

List of Tables ........................................................................................................... x 

List of Figures ...................................................................................................... xiii 

List of Abbreviations ...........................................................................................xviii 

Chapter 1 Introduction ............................................................................................ 1 

1.1 Research background................................................................................ 1 

1.2 Research aims and objectives .................................................................... 3 

1.3 Research rationale .................................................................................... 5 

1.4 Thesis outline .......................................................................................... 5 

Chapter 2 Literature review ..................................................................................... 7 

2.1 Bioremediation ........................................................................................ 7 

2.1.1 Anaerobic biodegradation ................................................................. 8 

2.1.2 Anaerobic biodegradation of BTEX ................................................. 10 

2.2 Iron in soil environments ........................................................................ 16 

2.2.1 Iron (hydr)oxides ........................................................................... 16 

2.2.2 Biogeochemical cycling of iron ....................................................... 19 

2.2.3 Microbial iron reduction ................................................................. 20 

2.3 Chemical speciation ............................................................................... 21 

2.4 The isotope geochemistry of carbon cycling in soils ................................... 23 

2.4.1 Stable carbon isotopes in soil environments ...................................... 23 

2.4.2 Reactions of carbonates in soils ....................................................... 25 

2.5 Modelling repeated measures data ............................................................ 29 

2.5.1 Repeated measures experiment designs ............................................ 29 

2.5.2 General linear models .................................................................... 30 

2.5.3 Mixed effects models ..................................................................... 31 

Chapter 3 Materials and methods ........................................................................... 34 

3.1 Analytical method development ............................................................... 34 

3.1.1 Analysis of aqueous phase toluene ................................................... 34 

3.1.2 Analysis of iron-bound soil carbonates ............................................. 37 

3.2 Toluene degradation studies .................................................................... 39 



- vi - 

3.2.1 Soil mesocosms: design and considerations ...................................... 40 

3.2.2 Apparatus ..................................................................................... 45 

3.2.3 Chemicals and analytical grade reagents........................................... 45 

3.2.4 Analytical instrumentation: chemical and physical characterisation 

tests 46 

3.2.5 Analytical instrumentation: degradation experiments ......................... 49 

3.3 Statistical analysis .................................................................................. 53 

Chapter 4 Iron-mediated toluene degradation in batch mesocosms .......................... 64 

Introduction ................................................................................................... 64 

4.1 Results and discussions ........................................................................... 64 

4.1.1 Characterisation tests ..................................................................... 64 

4.1.2 Mesocosm experiments .................................................................. 65 

4.1.3 Chemical sequential extractions ...................................................... 67 

4.2 General discussion ................................................................................. 73 

4.3 Conclusion ............................................................................................ 78 

Summary ....................................................................................................... 78 

Chapter 5 The influence of iron mineral (hydr)oxides on iron-mediated toluene 

degradation .................................................................................................. 79 

Introduction ................................................................................................... 79 

5.1 Results and discussions ........................................................................... 79 

5.1.1 Comparing degradation in the un-amended and hematite-amended 

mesocosms ................................................................................... 79 

5.1.2 Comparing degradation in the un-amended and goethite-amended 

mesocosms ................................................................................... 81 

5.1.3 Comparing degradation in the un-amended and magnetite-amended 

mesocosms ................................................................................... 83 

5.1.4 Comparing degradation in the un-amended and ferrihydrite-

amended mesocosms ..................................................................... 85 

5.1.5 Comparing degradation in the un-amended and lepidocrocite-

amended mesocosms ..................................................................... 87 

5.2 General discussion ................................................................................. 89 

5.3 Conclusion ............................................................................................ 93 

Summary ....................................................................................................... 95 

Chapter 6 The influence of soil on iron-mediated toluene degradation ..................... 96 

Introduction ................................................................................................... 96 

6.1 Results and discussions ........................................................................... 96 

6.1.1 Comparing toluene degradation in the un-amended and amended 

mesocosms (Soil 1)........................................................................ 96 



- vii - 

6.1.2 Comparing toluene degradation in the un-amended and amended 

mesocosms (Soil 2)........................................................................ 98 

6.1.3 Comparing toluene degradation in the un-amended and amended 

mesocosms (Soil 3)...................................................................... 101 

6.2 General discussion ............................................................................... 103 

6.3 Conclusion .......................................................................................... 108 

Summary ..................................................................................................... 108 

Chapter 7 Stable carbon (
12

C/
13

C) isotopes as a tool for identifying soil 

carbonates– a method development ............................................................. 110 

Introduction ................................................................................................. 110 

7.1 Results and discussions ......................................................................... 110 

7.1.1 Carbonate reactions in the un-amended live control mesocosms ........ 111 

7.1.2 Carbonate reactions in the un-amended active control mesocosms ..... 113 

7.1.3 Carbonate reactions in the hematite-amended mesocosms ................ 114 

7.1.4 Carbonate reactions in the goethite-amended mesocosms ................. 115 

7.1.5 Carbonate reactions in the magnetite-amended mesocosms ............... 116 

7.1.6 Carbonate reactions in the ferrihydrite-amended mesocosms ............ 116 

7.1.7 Carbonate reactions in the lepidocrocite-amended mesocosms .......... 117 

7.1.8 Carbonate reactions in the soil-amended mesocosms (Soil 1) ............ 118 

7.1.9 Carbonate reactions in the soil-amended mesocosms (Soil 2) ............ 119 

7.1.10 Carbonate reactions in the soil-amended mesocosms (Soil 3) ... 120 

7.2 General discussion ............................................................................... 120 

7.3 Conclusion .......................................................................................... 124 

Summary ..................................................................................................... 124 

Chapter 8 Predicting the natural attenuation of toluene with mixed effects 

models ........................................................................................................ 126 

Introduction ................................................................................................. 126 

8.1 Results and discussions ......................................................................... 126 

8.1.1 Preliminary tests: Test for correlation ............................................ 126 

8.1.2 Preliminary tests: Test for normality .............................................. 128 

8.1.3 A predictive model for the natural attenuation of toluene in 

subsurface soil environments ........................................................ 130 

8.2 General discussion ............................................................................... 134 

8.3 Conclusion .......................................................................................... 137 

Summary ..................................................................................................... 137 

Chapter 9 Conclusion and recommendations ........................................................ 138 

Conclusion ................................................................................................... 138 



- viii - 

Recommendations for further studies .............................................................. 138 

List of references ................................................................................................. 140 

Glossary .............................................................................................................. 176 

Appendix A Presentations, publications and list of courses attended ...................... 180 

A.1  Publications currently submitted for publication and in press ..................... 181 

A.2  Conference and poster presentations ....................................................... 181 

A.3  Conference platform presentations ......................................................... 181 

A.4  Courses attended .................................................................................. 181 

Appendix B Laboratory apparatus ....................................................................... 183 

B.1 Degradation experiments ...................................................................... 184 

B.2 Sequential chemical extractions ............................................................. 185 

B.3 Mineral synthesis ................................................................................. 186 

B.4 Analysis of total Fe and δ
13

C ................................................................. 187 

Appendix C Supporting information .................................................................... 188 

C.1 Experiment matrix of mesocosm experiments and variables measured ........ 189 

C.2 Soil sampling locations ......................................................................... 190 

C.3 Instrument calibration curves ................................................................. 191 

C.4 Calculations and estimates .................................................................... 191 

C.4.1 Toluene removal (in mg) .............................................................. 191 

C.4.2 Relative sorption ......................................................................... 191 

C.5 Experimental procedures ....................................................................... 192 

C.5.1 Laboratory synthesis of lepidocrocite and 2-line ferrihydrite ............. 192 

C.5.2 Analysis of aqueous phase toluene (salting-out method) ................... 193 

C.5.3 Analysis of total iron (Fe
2+

 and Fe
3+

) in solution (ferrozine method) .. 194 

C.5.4 Sequential chemical extractions for operationally-defined iron 

pools 195 

C.5.5 Stable carbon isotope analysis (cryogenic distillation) ...................... 197 

C.5.6 Predictive modelling with the mixed effects models approach ........... 199 

Procedure for modelling toluene removal without level 1 and 2 predictors .. 200 

C.6 Analytical and experimental data ........................................................... 203 

C.6.1 Characterisation tests: soil amendments .......................................... 203 

C.6.2 Characterisation tests: mineral amendments .................................... 204 

C.6.3 Characterisation tests: moisture content analysis ............................. 204 

C.6.4 Characterisation tests: particle size distribution analysis ................... 204 

C.6.5 Degradation experiments .............................................................. 206 

C.6.6 Sequential chemical extractions .................................................... 212 



- ix - 

C.6.7 Stable carbon isotope analysis ....................................................... 212 

C.6.8 Reaction kinetics - zeroth and first order rate fittings ....................... 213 

C.6.9 BET surface areas of the starting and incubated soils ....................... 218 

C.7 Summary of observations and findings ................................................... 220 

C.8 Combined concentration-time profiles .................................................... 226 

C.9 Statistical analysis ................................................................................ 229 

C.9.1 Descriptive statistics .................................................................... 229 

C.9.2 Difference in means tests .............................................................. 248 

C.9.3 Model parameters (Model 1) ......................................................... 249 

C.9.4 Model parameters (Model 2) ......................................................... 252 

 



- x - 

List of Tables 

Table 1.1 Distillate and carbon range of common petroleum products (Dragun, 

1998; Atlas, R.M. , 1991; Atlas, M.T., 1981)...................................................... 2 

Table 1.2 Toxicological effects of common petroleum hydrocarbons .......................... 2 

Table 2.1  Electron acceptors in toluene degradation processes showing Gibbs 

free energy associated with each electron acceptor (Spence, M.J. et al., 

2005) .............................................................................................................. 9 

Table 2.2 Chemical and physical properties of BTEX (Source:(Weelink, 2010; 

Kermanshahi pour et al., 2005) )
2 ................................................................... 11 

Table 2.3 Iron oxides, hydroxides and oxyhydroxides (Cornell, R.M. and 

Schwertmann, 2003) ...................................................................................... 17 

Table 3.1 Summary of sample preparation methods for volatile compounds 

(VOCs) ......................................................................................................... 35 

Table 3.2 Yield measurements for FeCO3 precipitate from Fe-reducing 

microcosm (experiment performed by S. Bottrell in December 2007) .............. 39 

Table 3.3 Experimental matrix showing the amounts of soil, toluene, river water 

and amendments used in each mesocosm set .................................................. 40 

Table 3.4 Summary of mesocosm test design applied in this study ............................ 43 

Table 3.5 Properties analysed and instruments used in analyses .............................. 46 

Table 3.4 Temperature setting of the gas chromatography instrument ..................... 50 

Table 3.5 Summary of the sequential chemical extractions showing extractants 

and target phases (adapted from (Poulton and Canfield, 2005) ....................... 51 

Table 8.1 Test for correlation 
a ............................................................................. 127 

Table 8.2 Tests for normality................................................................................ 129 

Table 8.3 Parameter estimates for the level-2 mixed effects model of toluene 

removal without predictors.......................................................................... 131 

Table 8.4 Parameter estimates for the level-2 mixed effects model of toluene 

removal with predictors* ............................................................................. 133 

Table 8.5 Parameters for model selection .............................................................. 135 

Table C.1 Experimental matrices and variables measured ..................................... 189 

Table B.5.2 Standards for ferrozine assay ............................................................. 194 

Table C.6.1a  Physico-chemical properties of the soil amendments. Soil 1, Soil 2, 

and Soil 3 represent the individual soil amendments used ............................. 203 

Table C.6.1b BET surface area of iron mineral amendments ................................. 204 

Table C.6.1c Gravimetric moisture content analysis for the starting soil material ... 204 

Table C.6.1d Particle size distribution (PSD) of starting soil material and soil 

amendments ............................................................................................... 204 



- xi - 

Table C.6.3  Mean ± standard error for pH and total iron concentrations in 

mesocosms with soil and water only (un-amended live controls) .................... 206 

Table C.6.4 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with no amendment (un-amended active 

controls) ..................................................................................................... 206 

Table C.6.5 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with hematite amendment ............................... 207 

Table C.6.6 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with goethite amendment ................................ 208 

Table C.6.7 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with magnetite amendment ............................. 208 

Table C.6.8 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with ferrihydrite amendment .......................... 209 

Table C.6.9 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with lepidocrocite amendment ......................... 210 

Table C.6.10 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with Soil 1 amendment .................................... 210 

Table C.6.11 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with Soil 2 amendment .................................... 210 

Table C.6.12 Mean ± standard error for pH, total iron, and toluene 

concentrations in mesocosms with Soil 3 amendment .................................... 211 

Table C.6.13 Mean ± standard error of operationally-defined iron pools in the 

starting and incubated material in the un-amended live and active control 

mesocosms .................................................................................................. 212 

Table C.6.14 Mean ± standard error of δ
13

C and carbonate carbon (mg per g of 

sample) of the starting and incubated soil material (starting soil material 

was not analysed in triplicate) ...................................................................... 212 

Table C.6.15  Zeroth and first order rate fittings for mesocosms with no 

amendment (ST) .......................................................................................... 213 

Table C.6.16  Zeroth and first order rate fittings for mesocosms with hematite 

amendment ................................................................................................. 213 

Table C.6.17  Zeroth and first order rate fittings for mesocosms with goethite 

amendment ................................................................................................. 214 

Table C.6.18 Zeroth and first order rate fittings for mesocosms with magnetite 

amendment ................................................................................................. 214 

Table C.6.19 Zeroth and first order rate fittings for mesocosms with ferrihydrite 

amendment ................................................................................................. 215 

Table C.6.20 Zeroth and first order rate fittings for mesocosms with 

lepidocrocite amendment ............................................................................. 215 

Table C.6.21 Zeroth and first order rate fittings for mesocosms amended with 

Soil 1 .......................................................................................................... 216 



- xii - 

Table C.6.22 Zeroth and first order rate fittings for mesocosms amended with 

Soil 2 .......................................................................................................... 216 

Table C.6.23 Zeroth and first order rate fittings for mesocosms amended with 

Soil 3 .......................................................................................................... 216 

Table C.6.24 Mean ± standard error of zeroth and first order rate fittings ............. 217 

Table C.6.25 Toluene removal rates in the mesocosms (expressed per square 

metre of mesocosm soil  and obtained as the average of three replicates) ....... 217 

Table C.7.1 Summary of findings - un-amended active mesocosms ................. 220 

Table C.7.2 Summary of findings - un-amended vs. hematite-amended 

mesocosms .................................................................................................. 221 

Table C.7.3 Summary of findings - un-amended vs. goethite-amended 

mesocosms .................................................................................................. 221 

Table C.7.4 Summary of findings - un-amended vs. magnetite-amended 

mesocosms .................................................................................................. 222 

Table C.7.5 Summary of findings - un-amended vs. mesocosms with ferric 

citrate amendment ...................................................................................... 222 

Table C.7.6 Summary of findings - un-amended vs. ferrihydrite-amended 

mesocosms .................................................................................................. 223 

Table C.7.7 Summary of findings - un-amended vs. lepidocrocite-amended 

mesocosms .................................................................................................. 223 

Table C.7.8 Summary of findings -un-amended vs. mesocosms amended with 

Soil 1 .......................................................................................................... 224 

Table C.7.9 Summary of findings - un-amended vs. mesocosms with Soil 2 ............ 224 

Table C.7.10 Summary of findings - un-amended vs. mesocosms with Soil 3 ........... 225 

Table C.9.1 Descriptive statistics .......................................................................... 229 

Table C.9.2 Difference in means tests for mean toluene across mesocosm groups 
a.................................................................................................................. 248 

 



- xiii - 

List of Figures 

Figure 1.1 Summary of thesis structure .................................................................... 6 

Figure 2.1   Chemical structures of benzene, toluene, ethylbenzene, ortho-xylene, 

meta xylene and para-xylene (Weelink, 2010) ................................................. 13 

Figure 2.2 Anaerobic toluene degradation route, according to (Kube et al., 2004) 

BssABC, benzylsuccinate synthase; BbsEF, succinyl-CoA:(R)-

benzylsuccinate CoA-transferase; BbsG R)-benzylsuccinyl-CoA 

dehydrogenase; BbsH, phenylitaconyl-CoA hydratase; BbsCD, 2-

[hydroxy(phenyl)methyl]-succinyl-CoA dehydrogenase; BbsAB, 

benzoylsuccinyl-CoA thiolase (Weelink, 2010) ................................................ 14 

Figure 2.3 Mechanism of toluene activation by BSS. BSS takes a proton from 

toluene and donates it to benzylsuccinyl radical formed from toluene and 

fumarate and generates a BSS radical (Boll et al., 2002; Washer, 2004) ........... 15 

Figure 2.4 Overview of stable carbon isotopic composition of common organic 

and inorganic material showing relative positions on a δ
13

C scale .................... 24 

Figure 3.1 Reaction rates of pure carbonate minerals with phosphoric acid 

showing changes in  cumulative yields (expressed in percentage) with time 

at two temperatures - 25
o
C and 50

o
C (adapted from (Al-Aasm et al., 1990)) .... 38 

Figure 4.1 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the control and active mesocosms. Trend lines are 

separated according to time of addition of toluene spikes to the active 

mesocosms. Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 65 

Figure 4.2 Toluene removal in the active mesocosms during the first spike period 

(0-15 days), second spike period (18-33 days), third spike period (36-51 

days) and overall incubation period (0-51 days). Error bars represent the 

standard error of the mean of three replicates. ............................................... 67 

Figure 4.3 Total extractable iron fractions in replicate samples of the starting 

soil material (SS) and incubated material from the control mesocosms (SO) 

and active experiments (ST) ........................................................................... 68 

Figure 4.4 Total extractable and easily reducible iron fractions in replicate 

samples of the starting soil material (SS) and incubated material from the 

control mesocosms (SO) and active experiments (ST) ....................................... 69 

Figure 4.5 Total extractable and carbonate-bound iron fractions in replicate 

samples of the starting soil material (SS) and incubated material from the 

control mesocosms (SO) and active experiments (ST) ....................................... 70 

Figure 4.6 Total extractable and reducible iron fractions in replicate samples of 

the starting soil material (SS) and incubated material from the control 

mesocosms (SO) and active experiments (ST)) .................................................. 71 

Figure 4.7 Total extractable and magnetite fractions in replicate samples of the 

starting soil material (SS) and incubated material from the control 

mesocosms (SO) and active experiments (ST) ................................................... 72 



- xiv - 

Figure 4.8 Total extractable, easily reducible, carbonate-bound, reducible, and 

magnetite fractions in replicate samples of the starting soil material (SS) 

and incubated material from the control mesocosms (SO) and active 

experiments (ST) ............................................................................................ 73 

Figure 5.1 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and hematite-amended mesocosms. Error 

bars represent the standard error of the mean of three replicates. ................... 79 

Figure 5.2 Toluene removal in the un-amended and hematite-amended 

mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period 

(0-51 days). Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 80 

Figure 5.3 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and goethite-amended mesocosms. Error 

bars represent the standard error of the mean of three replicates. ................... 81 

Figure 5.4 Toluene removal in the un-amended and goethite-amended 

mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period 

(0-51 days). Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 82 

Figure 5.5 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and magnetite-amended mesocosms. 

Error bars represent the standard error of the mean of three replicates. ......... 83 

Figure 5.6 Toluene removal in the un-amended and magnetite-amended 

mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period 

(0-51 days). Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 84 

Figure 5.7 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and ferrihydrite-amended mesocosms. 

Error bars represent the standard error of the mean of three replicates. ......... 86 

Figure 5.8 Toluene removal in the un-amended and ferrihydrite-amended 

mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period 

(0-51 days). Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 87 

Figure 5.9 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and lepidocrocite-amended mesocosms. 

Error bars represent the standard error of the mean of three replicates. ......... 88 

Figure 5.10 Toluene removal in the un-amended and lepidocrocite-amended 

mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period 

(0-51 days). Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 89 



- xv - 

Figure 6.1 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended mesocosms and soil-amended (S1) 

mesocosms. Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 96 

Figure 6.2 Toluene removal in the un-amended (ST) mesocosms and soil-

amended (S1) mesocosms during the first spike period (0-15 days), second 

spike period (18-33 days), third spike period (36-51 days) and overall 

incubation period (0-51 days). Error bars represent the standard error of 

the mean of three replicates. .......................................................................... 97 

Figure 6.3 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended mesocosms and soil-amended (S2) 

mesocosms. Error bars represent the standard error of the mean of three 

replicates. ..................................................................................................... 99 

Figure 6.4 Toluene removal in the soil-amended (S2) mesocosms and un-

amended (ST) mesocosms during the first spike period (0-15 days), second 

spike period (18-33 days), third spike period (36-51 days) and overall 

incubation period (0-51 days). Error bars represent the standard error of 

the mean of three replicates. ........................................................................ 100 

Figure 6.5 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended mesocosms and soil-amended (S3) 

mesocosms. Error bars represent the standard error of the mean of three 

replicates. ................................................................................................... 101 

Figure 6.6 Toluene removal in the soil-amended (S3) mesocosms and un-

amended (ST) mesocosms during the first spike period (0-15 days), second 

spike period (18-33 days), third spike period (36-51 days) and overall 

incubation period (0-51 days). Error bars represent the standard error of 

the mean of three replicates. ........................................................................ 102 

Figure 6.7 Relationship between sorption, toluene removal, surface area 

and clay content in the soil-amended material .............................................. 106 

Figure 7.1 Bivariate δ
13

C / carbonate-carbon profile illustrating the effects of soil 

carbonate reactions on carbonate-carbon and δ
13

C showing ‘a’ - the 

incubated material following carbonate dissolution and ‘b’ - the incubated 

material after addition of carbon from respiration of 
13

C-depleted organic 

carbon ........................................................................................................ 110 

Figure 7.3 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

un-amended (ST) mesocosms. The δ
13

C signature of toluene is shown. ‘a’ 

and ‘b’ represent underlying reactions affecting the fast- and slow-reacting 

carbonate pools (dissolution and addition respectively). Error bars 

represent the standard error of the mean of three replicates. ........................ 113 

Figure 7.4 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

hematite-amended (HM) mesocosms. Error bars represent the standard 

error of the mean of three replicates. ........................................................... 114 



- xvi - 

Figure 7.5 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

goethite-amended (GE) mesocosms. Error bars represent the standard 

error of the mean of three replicates. ........................................................... 115 

Figure 7.6 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

magnetite-amended (MT) mesocosms. Error bars represent the standard 

error of the mean of three replicates. ........................................................... 116 

Figure 7.7 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

ferrihydrite-amended (FH) mesocosms. Error bars represent the standard 

error of the mean of three replicates. ........................................................... 117 

Figure 7.8 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

lepidocrocite-amended (LP) mesocosms. Error bars represent the standard 

error of the mean of three replicates. ........................................................... 118 

Figure 7.9 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

mesocosms amended with Soil 1. Error bars represent the standard error 

of the mean of three replicates. .................................................................... 119 

Figure 7.10 Bivariate δ
13

C / carbonate-carbon profile showing the changes in 

δ
13

C and mass of carbonate carbon following the degradation of toluene in 

the mesocosms amended with Soil 2. Error bars represent the standard 

error of the mean of three replicates. ........................................................... 120 

Figure 8.1 Changes in toluene with time for each mesocosm group over three 

periods A, B, and C, following the addition of toluene. The data is shown 

as the average of three replicates for each group .......................................... 126 

Figure C.2 Sampling locations of starting soil (SS) and soil amendments (Soil 1, 

Soil 2, Soil 3) (Image Source: GoogleImages) ................................................ 190 

Figure C.3 Initial calibration curves for A - toluene analysis on GC instrument 

and B - ferrozine tests (calibration performed in triplicate) on UV-VIS ......... 191 

Figure C.5.1 Experimental set up for ferrihydrite and lepidocrocite synthesis ........ 192 

Figure C.5.4.1 Illustration of apparatus for pyrite extraction step showing 

reaction vessel for chromous chloride distillation ......................................... 196 

Figure C.5.4.2 Illustration of filtration apparatus for AVS and pyrite precipitate ... 197 

Figure C.6.1 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) and iii) 

incubated material from the mesocosms with no amendment (ST) ................. 218 

Figure C.6.2 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms with hematite mineral 

amendment (HM) v) hematite mineral amendment (hm)................................. 218 



- xvii - 

Figure C.6.3 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms with goethite mineral amendment 

(GE) v) goethite mineral amendment (ge) ...................................................... 218 

Figure C.6.4 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms with magnetite mineral 

amendment (MT) v) magnetite mineral amendment (ge) ................................ 219 

Figure C.6.6 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms with ferrihydrite mineral 

amendment (FH) v) ferrihydrite amendment (fh) ........................................... 219 

Figure C.6.7 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms with lepidocrocite mineral 

amendment (LP) v) lepidocrocite amendment (lp) .......................................... 219 

Figure C.6.8 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms amended with Soil 1 (S1) v) soil 1 

sample (s1) .................................................................................................. 219 

Figure C.6.9 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms amended with Soil 2 (S2) v) soil 2 

sample (s2) .................................................................................................. 220 

Figure C.6.10 Results of BET analysis for i) the starting soil material (SS) ii) 

incubated material from the mesocosms with soil and water (SO) iii) 

incubated material from the mesocosms with no amendment (ST) iv) 

incubated material from the mesocosms amended with Soil 3(S3) v) Soil 3 

sample (s3) .................................................................................................. 220 

Figure C.8.1 Concentration-time profiles comparing toluene, total iron and pH 

in the un-amended mesocosms and mesocosms amended with the 

mesocosms amaended with natural iron minerals ......................................... 226 

Figure C.8.2 Concentration-time profiles comparing toluene, total iron and pH 

in the un-amended mesocosms and mesocosms amended with the 

synthesised iron minerals ............................................................................ 227 

Figure C.8.3 Concentration-time profiles comparing toluene, total iron and pH 

in the un-amended mesocosms and mesocosms amended with the soil-

amended mesocosms ................................................................................... 228 

 



- xviii - 

List of Abbreviations 

AAS  Atomic Absorption Spectrophotometer 

ANOVA Analysis Of Variance 

AVS  Acid Volatile Sulphates 

BTEX  Benzene Toluene Ethyhlbenzene Xylene 

BIC  Schwartz‟s Bayesian (Information) Criterion 

GC  Gas Chromatograph 

FID   Flame Ionisation Detector 

GLM  General Linear Model 

IRMS  Isotope Ratio Mass Spectrometer 

MNA  Monitored Natural Attenuation 

PDB  Pee Dee Belemnite 

SCIA  Stable Carbon Isotope Analysis 

TEA  Terminal Electron Acceptor 

TDR Fe Total Dissolved Reactive Iron 

UV-VIS Ultraviolet Visible Spectrophotometer 

XRD  X-ray Diffraction Spectroscope 

XRF  X-ray Fluorescence Spectroscope 



- 1 - 

Chapter 1 

Introduction  

1.1  Research background  

Section 78 A (2) of the Environment Protection Act (1990) defines contaminated 

land as „any land which appears to the local authority in whose area it is situated to 

be in such a condition, by reason of substances in or under the land, that significant 

harm is being caused or there is a significant possibility of such harm being caused; 

or pollution of controlled waters is being, or is likely to be caused’. Chemical 

pollutants are a major cause of contamination in the environment and are of two 

main groups namely inorganic (including heavy metals, nutrients and organic 

pollutants) and organic (including pesticide, detergents, petrol, crude oil and 

polycyclic aromatic hydrocarbons Bamforth and Singleton (2005). Organic chemical 

pollutants include pesticides, aliphatic hydrocarbons, alicyclic hydrocarbons, and 

aromatic hydrocarbons (Singh, 2016). Pesticides are compounds designed to protect 

plants products and wood from organisms that may cause them harm or to stop the 

growth of harmful organisms. Aliphatic hydrocarbons are chemicals with straight or 

branched chain structures that contain carbon and hydrogen atoms. Long chain 

aliphatics are usually waxy and of lower solubility in water. This property decreases 

the rate of biodegradation of these compounds. Aliphatic hydrocarbons are straight, 

branched or cyclic compounds that may be saturated or unsaturated. These 

compounds are generally subdivided into alkanes, alkenes and cycloalkanes. 

Heterocyclic hydrocarbons are also cyclic compounds but contain at least two 

different elements as members of its rings. These elements include nitrogen, sulphur, 

oxygen and metals Aromatic hydrocarbons are compounds which differ significantly 

from aliphatic hydrocarbons as a result of the presence of ring structures. Aromatic 

hydrocarbons are unsaturated due to the presence of two or more double bonds 

conjugated to form a ring-like structure. As they tend to be persistent in the 

environment, inducing increased toxicity in the process, they are the focus of many 

regulatory bodies.  

Petroleum hydrocarbons are comprised of a mixture of hydrocarbons obtained from 

reservoirs of crude petroleum. These hydrocarbons vary from simple aliphatic and 

aromatic compounds to complex, polycyclic, aromatic and heterocyclic compounds. 

Light crude oil mostly contains a higher proportion of aromatic hydrocarbons with a 

high molecular weight. Petroleum hydrocarbons are large mixtures of chemicals 

found in crude oil, petroleum products, coal tar and natural gas. Petroleum 
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hydrocarbon products are made up of blends of distillate fractions obtained from 

crude oil. These products range from highly refined gasoline to heavy fuel oils and 

asphalt.  The carbon and distillate range of some common petroleum hydrocarbons 

is given in Table 1.1 below: 

Table 1.1 Distillate and carbon range of common petroleum products (Dragun, 

1998; Atlas, R.M. , 1991; Atlas, M.T., 1981) 

 

Petroleum products 

 

Distillate range 

 

 

Carbon range 

 

Jet propulsion fuel (JP4 and JP5) 

 

190
o
C-260

o
C 

 

C3-C5 

BTEX  C4-C7 

Gasoline 60
o
C-170

o
C C6-C10 

Kerosene 190
o
C-260

o
C C10-C20 

Diesel fuel 260
o
C-360

o
C C10-C24 

   

   

 

The pollution of soil and water environments by petroleum hydrocarbons is 

considered a global concern. The increased reliance on crude oil and its products as 

a result of industrialization as well as technological innovations has set world 

demand for crude oil and crude oil derivatives to rise from 81 million barrels per day 

(bpd) to 121 million bpd in 2025 ((USEIA, 2014)). The release of  crude oil and 

derivatives of crude oil into the environment during the production and distribution 

is harmful to both micro and macro organisms as well as to humans. The impact of 

the release of these compounds is exacerbated when hydrocarbon compounds are 

volatile and thus mobile in the environment. Some major petroleum hydrocarbons 

and their effects on the environment are summarised in Table 1.2 below.  

Table 1.2 Toxicological effects of common petroleum hydrocarbons 

 

Components 

 

Effects 

 

 

References 

 

Jet propulsion fuel (JP4 

and JP5) 

 

Damage to pulmonary epithelial cells 

in rats 

Chronic exposure may lead to renal 

damage 

 

(Ritchie et al., 

2003) 

BTEX Lymphocytic leukemia in children 

Liver cancer in adults 

Damage of blood-forming cells 

 

(Enander, 1995) 

 

 

Kerosene Carcinogenicity in mice and rats 

Toxicity in soil fauna 

(Heath et al., 1993) 
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Iron is ubiquitous in the environment, and being the 5th most abundant metal in the 

biosphere, it can be found in a combined/oxidised state in most soils environments 

(Cornell, R. and Schwertmann, 1996). At least 16 different ferric iron oxides, 

hydroxides, or oxic hydroxides exist (Schwertmann, U., and Fitzpatrick, R.W., 

1992). In many environments, Fe (III) is the most abundant terminal electron 

acceptor (TEA) for the oxidation of organic matter. Biotic reduction occurs in 

natural sediments in which the reduction of iron oxides serve as the terminal 

electron accepting process of organic matter degradation and is usually catalysed by 

iron-reducing microorganisms (Lovley, D.R., 1997a). The process is referred to as 

dissimilatory iron reduction and involves the transfer of electrons from 

microorganisms to external Fe (III), reducing it to Fe (II), thereby acting as an aid to 

the assimilation of iron into the biomass (Lovley, D.R., 2000). Iron reduction is an 

important means of mineralisation of organic matter (Kostka, J.E., et al, 2002). This 

is especially true for anoxic or oxygen-deficient environments where the amount of 

sulphates and nitrates are inadequate to support sulphate- and nitrogen- reducing 

conditions (Paul, 2007). Many subsurface organic contaminants which are persistent 

under oxic conditions may undergo reductive transformation under anaerobic 

conditions achieved as a result of the redox change between Fe (II) and Fe (III). The 

electron transfers occurring during iron reduction may support biodegradation of 

contaminants long after oxygen and nitrates have been exhausted. 

1.2  Research aims and objectives 

A substantial portion of serious contamination incidents in England and Wales are 

hydrocarbon-related. The group of hydrocarbons collectively referred to as BTEX 

(benzene, toluene, ethylbenzene, and xylene) are one of the more common volatile 

hydrocarbon contaminant groups found in hydrocarbon (gasoline) spill sites and are 

regarded as contaminants of concern by the UK Environment Agency (Foght, 2008). 

Benzene in particular is a known carcinogen. BTEX compounds are components of 

gasoline and aviation fuels and have similar chemical structures which consist of 

one parent benzene ring (Lueders, 2017; Johnson et al., 2003). The presence of 

BTEX in hydrocarbon spill sites may be problematic as these compounds are 

moderately soluble in water. Benzene has been shown to be highly mobile as a result 

of its higher solubility relative to the other BTEX compounds and is known to be the 

most recalcitrant of the BTEX group (Johnson et al., 2003). {Policies on 

contaminated land in the United Kingdom can be found in Section 57 of the 

Environment Act (1995) (Pollard and Herbert, 1998). Guidelines for pollutant 

concentration limits can be found in the Interdepartmental Committee on 

Reclamation of Contaminated Land (ICRCL) of the Department of Environment 
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(DoE)}.The primary objective of this research was to investigate the mechanisms of 

intrinsic, iron-mediated degradation of volatile petroleum hydrocarbons in 

subsurface regions with toluene as a representative compound. Specific objectives  

of this study were: 

 

1. To assemble experimental analogues of subsurface soils under 

predominantly iron-reducing conditions using mesocosms consisting of live 

soil and water. 

  

2. To develop an analytical technique for measuring aqueous-phase toluene in 

water. 

 

3. To investigate the effect of iron-mediated toluene degradation on pH and 

total dissolved iron in experimental analogues of subsurface soil 

environments.  

 

4. To assess the effect of the presence of additional sources of Fe (III) on the 

rate and amount of toluene removal during the iron-mediated degradation of 

toluene. 

 

5. To evaluate the impact of soil texture on the amount and rate of toluene 

removal. 

 

6. To develop a method for determining  the source of carbon during  toluene 

removal using stable carbon isotope analysis. 

 

7. To develop a predictive model for the natural attenuation of toluene in soil. 

 

The following hypotheses were tested: 

Hypothesis 1: Indigenous soil microorganisms in a previously-contaminated soil 

may be able to respire anaerobically and couple the reduction of Fe (III) to the 

oxidation of a hydrocarbon contaminant (toluene). 

Hypothesis 2: The process of carbon cycling in soil may change as a result of 

addition of a hydrocarbon contaminant (toluene). 

Hypothesis 3: The addition of extraneous iron sources as terminal electron 

acceptors can increase the extent / amount of contaminant removal as well as the 

rate of the reaction. 
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1.3  Research rationale 

It was discovered in the early 1980s that microorganisms exist which are capable of 

conserving energy for growth from iron reduction (McCarty, 1994; Kuhn, E.P., 

Coldberg, P J, Schnoor, J L, Wanner, O, Zehnder, A J B & Schwarzenbach, R P, 

1985). In more recent times, it has been realised that biological iron redox 

transformation, rather than abiotic reactions, greatly influence the geochemistry and 

quality of many aquifer and groundwater environments (Loffler, 2006). The redox 

transition between the Fe
2+

 and Fe
3+

 ionic species via dissimilatory iron reduction 

therefore plays an essential role in the biogeochemistry of the subsurface 

environment. For this reason there is a growing interest in the effect of iron (iii) 

reduction in the bioremediation of aquifer systems contaminated with metals or 

hydrocarbons (Kielhorn, 2000; Bouwer, 1983). An interesting feature of iron-

reducing conditions is the ability to couple oxidation and reduction of organic 

contaminants, offering the possibility for the natural attenuation of various 

contaminant classes via different degradation pathways. Primary subsurface 

mechanisms (such as advection, volatilisation, dispersion, sorption and diffusion) 

which may influence the fate and transport of solutes in the vadose zone and 

groundwater, and ultimately contaminant concentrations in these regions, are not 

always accounted for during investigation of monitored natural attenuation on 

contaminated sites. The effect of these competing processes are difficult to isolate 

individually and may result in complications during bioavailability studies in the 

field. Laboratory-based mesocosm studies provide a means of avoiding these 

complications however most studies involve the use of laboratory-synthesised iron 

and/or incubations of isolated hydrocarbon-degrading microorganisms. This 

approach does not truly reflect the complex processes that occur in real soil 

environments. In this study iron-mediated toluene removal was investigated in 

mesocosms containing live sediment and water under anoxic conditions. The intent 

of this approach was for the mesocosms to serve as experimental analogues of 

subsurface environments.  

1.4  Thesis outline 

This thesis is made up of nine chapters, the content of which is summarised in 

Figure 1.1.  
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Figure 1.1 Summary of thesis structure 

 

The main objective of this study was to investigate the mechanisms of iron-mediated 

intrinsic bioremediation therefore a review of current literature related to iron-

mediated toluene degradation is provided in Chapter 2 and a documentation of 

experimental materials and methods used is provided in Chapter 3. The preceding 

chapters (Chapters 4, 5 and 6) contain a more detailed discussion of the results in the 

Preamble as well as results of supplementary experiments performed. The following 

chapters, Chapter 7 and 8 contain fairly novel experimental and analytical 

approaches relating to the main objectives of this study. In Chapter 7 an approach 

for analysing soil carbonates using stable carbon isotopes is presented and discussed. 

Chapter 8 contains a documentation of an analytical approach for creating predictive 

mathematical models using data obtained from experiments following a repeated 

measures design. 
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Chapter 2 

Literature Review 

2.1  Bioremediation 

Many techniques exist for the removal of contaminants and may be classified as 

physical, chemical and biological methods. Physical methods such as land filling, 

excavation and incineration are more commonly used however these methods are 

expensive and cause harm to the environment in the long term. The cleanup of 

contaminants may be performed ex-situ (also referred to as pump and treat methods) 

or in-situ. Ex-situ remediation involves pumping of contaminated water or sediment 

to the surface using a series of extraction wells followed by treatment and re-use/re-

injection into the soil. In-situ remediation, as the name implies, is the treatment of 

the pollutant in place. Remediation techniques currently in use are fully discussed in 

(Lu et al., 2011), (Megharaj et al., 2011), (Guimarães et al., 2010) and (Shukla et al., 

2010). They include rhizoremediation, bioremediation, bioaugmentation through the 

use of biosurfactants or genetically modified microorganisms, composting, electro-

bioremediation and microbe-assisted phytoremediation. 

Bioremediation techniques may be intrinsic or engineered. Engineered or enhanced 

bioremediation applies to contaminated land in which soil conditions are designed to 

accelerate bioremediation of contaminants. Intrinsic bioremediation (also known as 

monitored natural attenuation) refers to microbial degradation of soil without any 

human interference. Monitored natural attenuation is widely adopted for the 

management of dissolved hydrocarbon plumes, in part, because of the tremendous 

costs associated with active remediation of thousands of releases from underground 

storage tanks (USTs). MNA is a passive remedial approach and depends on natural 

processes to degrade and distribute degraded contaminants in soil and groundwater; 

it may occur by physical, chemical and biological processes (Kao et al., 2010). 

Natural attenuation offers a potentially effective and economic clean-up technique 

through the partial or complete biodegradation of contaminants. Microorganisms 

have the ability to oxidise, bind, immobilise, volatise or transform contaminants, 

therefore bioremediation offers an inexpensive, eco-friendly solution well suited to 

detoxify these contaminants in soil (George, 2010).  For this reason bioremediation 

is generally preferred over other forms of remediation. However, although it is 

known that many hydrocarbon plumes biodegrade under ambient conditions without 

any active remediation, the current understanding of the processes controlling the 
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intrinsic bioremediation of dissolved hydrocarbon plumes in aquifer systems is 

limited. 

Intrinsic bioremediation of both aromatic and saturated hydrocarbons under aerobic 

conditions has been well studied and documented for many years. However, the 

documentation of anaerobic conditions is relatively recent and is constantly 

generating new insights. There have, in fact, been fewer studies on anaerobic 

biodegradation of BTEX compounds and other aromatics, when compared to studies 

carried out under aerobic conditions (Gavrilescu, 2010). Hydrocarbon contaminants 

mostly migrate with the flow of groundwater forming contaminant plumes. In 

groundwater systems where organic pollutants accumulate, oxygen is depleted 

rapidly and the aquifers become anoxic, forming a redox gradient along the 

groundwater flow path (Christensen, H. et al., 1994; Lawrence, 2006). Intrinsic 

remediation of BTEX by anaerobic microbial degradation has been shown under 

sulphate- , nitrate-, and iron-reducing conditions (Kuhn, E.P. et al., 1985; Vogel and 

Grbic-Galic, 1986; Rabbus and Widdel, 1995; Ball et al., 1996; Hess et al., 1997; 

Meckenstock, R U, 1999; Rooney-Varga et al., 1999; Coates, J. et al., 2001). The 

studies showed that a major fraction of groundwater contaminants including BTEX 

can be degraded in the anoxic zone of plumes, implying anaerobic biodegradation 

plays an important role in intrinsic remediation of contaminated sites such as 

contaminated groundwater and deep soils and lake or marine sediments because 

anoxic conditions prevail in such sites (Christensen, H. et al., 1994; Rabbus and 

Widdel, 1995; Meckenstock, R U, 1999; Meckenstock, R U et al., 2004; Ramos et 

al., 2011; Farhadian et al., 2008; Margesin et al., 2003). Intrinsic bioremediation of 

contaminants is feasible in both field and laboratory studies under aerobic and 

anaerobic conditions. The experiments that make up the full body of this doctorate 

research encompass intrinsic bioremediation simulated under laboratory-controlled 

conditions. 

2.1.1 Anaerobic biodegradation 

The presence of an electron donor (the organic compound), electron acceptor and 

contaminant-degrading microorganisms are the main requirements for the 

bioremediation process. It is well known that microorganisms preferentially use 

electron acceptors that provide the maximum free energy during respiration. 

Geochemical evidence suggests that the primary terminal electron acceptors 

responsible for the decomposition of organic matter in anaerobic sediments are 

nitrate, Mn (IV), Fe (III), sulphate, and carbon dioxide (Reeburgh, 1983). It is 

frequently reported that there are distinct zones in sediments in which the 

metabolism of organic matter is coupled primarily to the reduction of one of these 

electron acceptors at any one time. The contribution of the electron acceptor is 
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dependent on the availability of the acceptor in the aquifer and how well the 

indigenous contaminant-degrading microorganisms are able to utilise it (Spence, 

M.J. et al., 2005). In these subsurface environments, oxygen is depleted rapidly and 

anoxic conditions set in quickly. When oxygen is diminished and nitrate is available, 

nitrate can be used as an electron acceptor by facultative denitrifiers to mineralise 

the hydrocarbons (Kao et al., 2010). When the available dissolved oxygen and 

nitrates are depleted, ferric iron-reducing bacteria becomes the next available 

electron acceptor, which is in turn replaced by sulphate-reducing bacteria when 

diminished (Nyer and Duffin, 1997). Therefore the redox cascade begins with 

aerobic conditions (see Table 2.1), followed by nitrate-reducing conditions, 

manganese-, iron- and sulphate-reducing conditions (Lovley, D.R., 1997b; 

Christensen, T.H. et al., 2000; Christensen, J.S. and Elton, 1996).  

Table 2.1  Electron acceptors in toluene degradation processes showing Gibbs free 

energy associated with each electron acceptor (Spence, M.J. et al., 2005) 

Microbial 

process 

Electron 

acceptor 

Reaction Free energy change (ΔG0) 

at pH 7 (kcal/equivalent) 

 

Aerobic 

respiration 

 

O2 

 

C7H8 + 9O2 → 7CO2 + 4H2O 

 

-29.9 

Denitrification 

(nitrate reduction) 

NO
3-

 5C7H8 + 36NO3
-
 + H

+
  → 35HCO3

- 

+ 3H2O + 18N2 

-28.4 

Mn (IV) reduction Mn (IV) C7H8 + 18MnO2 + 29H
+
  → 

7HCO3
-
 +18Mn

2+
 + 15H2O 

-23.3 

Fe (III) reduction Fe (III) C7H8 + 36FeOOH + 65H
+
 → 

7HCO3 + 36Fe
2+

 + 51H2O 

-10.1 

Sulphate reduction SO4 
2-

 2C7H8 + 9SO2 + 6H2O  → 14HCO3 

+ 5H2S + 4HS 

-5.9 

Methanogenesis CO2 2C7H8 + 10H2O → 5CO2 + 9CH4 -5.6 

    

 

The solubility of many petroleum hydrocarbons causes them to spread rapidly and 

form a plume of contamination that displays a redox gradient (Christensen, H. et al., 

1994; Lawrence, 2006). Although the idea of a system with defined biogeochemical 

zones is oversimplified as a result of the great deal of cross over in vertical 

stratification (Konhauser, K., 2007; Mortimer, R.J.G. et al., 2004), understanding of 

the biogeochemical redox processes in a contaminated system is crucial for 
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predicting the behaviour of contaminant fate and transportation in contaminated 

aquifer systems. This is because these regions of reduced sediment dominated by 

anaerobic processes may be difficult to remediate with aerobic bioremediation 

techniques as a result of the presence of the reduced products of anaerobic 

metabolism (Christensen, H. et al., 1994; Rabbus and Widdel, 1995; Meckenstock, 

R U, 1999; Meckenstock, R U et al., 2004; Ramos et al., 2011; Farhadian et al., 

2008; Margesin et al., 2003). Contaminants can be eliminated by stimulating the 

anaerobic community and adding alternative soluble electron acceptors 

(Christensen, T.H. et al., 2000).  

Anaerobic degradation of hydrocarbons in general was first described in (Kuhn, E.P. 

et al., 1985). Anaerobic bioremediation is slower in comparison to aerobic processes 

and is therefore most commonly used in the in-situ bioremediation of groundwater 

contamination, most frequently in monitored natural attenuation (MNA) or intrinsic 

bioremediation (Nyer and Duffin, 1997). Anaerobic degradation of petroleum 

hydrocarbons has long been established, including recalcitrant groups (Anderson, 

1997; Weiner, J M et al., 1998). The understanding and use of this method has 

increased rapidly over the past two decades. Contaminated aquifers and subsurface 

environments are typically anaerobic, many MNA projects demonstrating anaerobic 

degradation forms a significant part of preliminary assessments, as in (Gieg et al., 

2010). In highly anaerobic conditions, fermentation of organic contaminants to 

methane can occur. 

2.1.2  Anaerobic biodegradation of BTEX 

Gasoline is a product of many refinery streams composed of a non-specific mixture 

of hydrocarbons with molecular weights ranging from C4 to C17 hydrocarbons 

(Spence, K.H., 2005). Gasoline may contain additives which may be added in 

relatively small amounts to enhance certain performance characteristics. Common 

additives include methyl-tert butyl ether (MTBE) and benzene, toluene, 

ethylbenzene and o-, m- and p-xylenes (collectively called BTEX
1
 due to similarities 

in their chemical structures as well as their fate and transport properties). The 

proportion of BTEX compounds in gasoline varies quite significantly. The percent 

volume of benzene, toluene, ethyl benzene and mixed xylenes in gasoline are 1, 1.5, 

<1-1.5 and 8-10 respectively (An, 2004). (Vieira, 2007) state the percentage by 

weight ranges from about 10 to 59%. Gasoline spills from road accidents and 

                                            

1Benzene and ethylbenzene are IUPAC names. The IUPAC names of toluene and the xylenes are methylbenzene, 1,2 dimethylbenzene, 1,3 dimethylbenzene and 1,4 

dimethylbenzene respectively LAWRENCE, S. J. 2006. Description, 
2
Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water - 

A Review of Selected Literature. US Department of the Interior
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leaking underground storage tanks pose a threat to groundwater sources worldwide. 

BTEX compounds are of particular concern in the field of soil and groundwater 

contamination/remediation, as they are among the most abundant toxic organic 

pollutants in contaminated aquifers (USEPA, 1998; Van Hamme et al., 2003). 

BTEX compounds, due to their physical and chemical characteristics can be quite 

harmful when released in large amounts into the environment (see Table 2.2).  

Table 2.2 Chemical and physical properties of BTEX (Source:(Weelink, 2010; 

Kermanshahi pour et al., 2005) )
2 

 

Properties 

(unit) 

Benzene Toluene m-Xylene o-Xylene p-Xylene Ethylbenzene 

 

Chemical 

structure 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical 

Formula 

C6H6 C7H8 C8H10 C8H10 C8H10 C8H10 

Molecular 

Weight 

78.11 92.14 106.17 106.17 106.17 106.17 

Solubility 

in water 

(mg/L) 

1785.5 532.6 161.5 171.5 181.6 161.5 

Specific 

density (
o
C) 

 

0.8765 0.8669 0.8642 0.8802 0.8611 0.8670 

     
  

 

BTEX are mono-aromatic hydrocarbons and therefore possess higher solubilities 

than aliphatic, alicyclic and polycyclic hydrocarbons (Weelink, 2010). Furthermore, 

these compounds may comprise over 60% of the mass that goes into solution when 

gasoline is mixed with water (Kermanshahi pour et al., 2005). For this reason they 

are often the first breakthrough product seen when measuring petroleum 

contamination of water systems (Houghton and Hall, 2005).  

BTEX compounds are mobile and present in water found in aquifer systems as they 

are not adsorbed by soil (Zytner, 1994; Langwaldt and Puhakka, 2000). They are 
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known to have acute and long term effects and are toxic to humans when ingested or 

adsorbed through skin or inhaled (De Burca et al., 2009; Morgan et al., 2009; Mos, 

2010). The maximum level for monoaromatic compounds in potable water as 

stipulated by the USEPA are 0.05, 1, 0.7 and 10 mg/l for benzene, toluene, 

ethylbenzene and isomers of xylenes, respectively (USEPA, 2006). It is widely 

accepted that BTEX compounds are a major risk driver in contaminated sites. 

Benzene is the only known carcinogen in the group (Pohl et al., 2003; An, 2004; 

Reineke et al., 2006). (De Burca et al., 2009) state toluene has the ability to enhance 

carcinogenesis by other compounds. Thus BTEX compounds represent a significant 

environmental threat compared to other major hydrocarbon groups in petroleum-

contaminated water (Anderson, 1997; Chakraborty, R. and Coates, 2004). 

The ability of BTEX compounds to be degraded under anaerobic conditions and 

with the use of different electron acceptors has been shown by several studies 

including (Barbaro et al., 1992; Phelps and Young, 1999; Chakraborty, R et al., 

2005). The order of degradation has consistently been observed as toluene < 

ethylbenzene < o-xylene < benzene. Toluene is considered the least recalcitrant and 

benzene the most recalcitrant of the BTEX group. Toluene can be degraded 

relatively quickly, allowing rapid growth of microorganisms under various electron-

reducing conditions. This was first demonstrated in (Kuhn, E.P. et al., 1985) using 

nitrate as an electron acceptor. Anaerobic degradation of toluene has been studied in 

enriched microcosms and pure cultures using various electron acceptors (Lovley, 

D.R., Baedecker, M J, Lonergan, D J, Cozzarelli, M, Phillips E J P & Siegel, D, 

1989; Evans, P.J. et al., 1991; Fries et al., 1994; Beller, H.R. et al., 1996; Lagenoff 

et al., 1996).  

The three xylene isomers have also been studied under anaerobic conditions using 

various electron acceptors.  (Kuhn, E.P. et al., 1985; Kuhn, E.P. et al., 1988; Haner 

et al., 1995) carried out studies of p- and m-xylene under nitrate-reducing 

conditions, (Jahn et al., 2005; Botton and Parsons, 2006) studied p- and o-xylene 

under iron-reducing conditions and (Edwards and Grbic-Galic, 1992; Morasch et al., 

2004; Meckenstock, R U et al., 2004) studied all three isomers after a significant lag 

period under sulphate-reducing conditions. M-xylene has been found to be the most 

readily degraded xylene isomer in mixed cultures (Beller, H.R. et al., 1996) however 

its presence as a co substrate could inhibit p- and o-xylene degradation 

(Meckenstock, R U et al., 2004). Toluene has also been shown to inhibit o-xylene 

degradation in sulphidogenic sediment columns and pure cultures. (Meckenstock, R 

U et al., 2004; Rabbus and Widdel, 1995) report p-xylene as the most recalcitrant to 

degradation but (Haner et al., 1995) degraded the isomer in a mixture of denitrifying 

p-xylene selective culture and a sulphate-reducing enrichment culture.  
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Relatively little is known about ethylbenzene degradation. Its metabolism has been 

reported in situ and in enrichment cultures under sulphate-reducing (Elshahed et al., 

2001) nitrate-reducing (Reinhard et al., 1997) and iron-reducing  (Jahn et al., 2005).  

Benzene is of major concern as it is highly stable, toxic, and highly soluble. There 

have been very few studies on enrichment cultures and far less on pure strains 

(Foght, 2008; Weelink, 2010). Initial studies on anaerobic benzene degradation 

made use of 
14

CO2 -, 
14

CH4 - and 
18

O- labelled phenol-formation in methanogenic 

enrichment cultures that had been amended with 
14

C-benzene and 
18

H2O (Vogel and 

Grbic-Galic, 1986; Grbic-Galic and Vogel, 1987). The mass balance showed that 

less than 6% of 
14

C-labeled benzene was converted to 
14

CO2. More recent studies 

(Mancini et al., 2003; Chakraborty, R et al., 2005; Kasai, Y et al., 2007; Kasai, YM 

et al., 2006) have made use of carbon and hydrogen stable isotope fractionation, 16S 

rRNA gene-targeted real time PCR, and DNA as well as RNA -based stable isotope 

probing approaches in petroleum-contaminated aquifers and enrichment cultures 

from aquatic sediments. There have been studies on anaerobic degradation of 

benzene in enrichment cultures under methanogenic (Kazumi et al., 1997; Weiner, J 

M  and Lovley, 1998; Mancini et al., 2003) sulphate-reducing (Lovley, D R et al., 

1995; Coates, J.D. et al., 1996; Oka et al., 2008; Musat and Widdel, 2008; 

Kleinsteuber et al., 2008) ferric iron-reducing (Caldwell et al., 1999; Kunapuli et al., 

2007) and under nitrate-reducing conditions (Coates, J. et al., 2001; Mancini et al., 

2003; Kasai, Y et al., 2007).  

2.1.2.1 Pathways of anaerobic degradation: BTEX  

The aromatic ring of BTEX hydrocarbons (see Figure 2.1) are a very stable chemical 

structure that poses significant biochemical demands on contaminant-degrading 

microorganisms. The degradation of all BTEX compounds follow similar reaction 

pathways. Studies on metabolic pathways indicate that these compounds are 

degraded via at least one pathway leading to a substituted catechol; benzene is 

degraded to catechol, toluene and ethylbenzene to 3-methylcatechol and 3-ethyl 

catechol respectively, and the xylenes to mono-methylated catechol (Weelink, 

2010).  

 

Figure 2.1   Chemical structures of benzene, toluene, ethylbenzene, ortho-xylene, 

meta xylene and para-xylene (Weelink, 2010) 
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The benzoyl-CoA pathway for aromatic hydrocarbons is the central pathway that 

appears to be common in microorganisms (Ramos et al., 2011). The benzylsuccinate 

synthase involves an enzyme radical reaction that has been reported in denitrifying, 

sulphate-reducing, anoxygenic phototrophic bacteria, and a methanogenic 

consortium. The pathway leads to the formation of benzoyl-CoA, the central 

metabolite of aromatic compounds degraded under anaerobic conditions. This 

metabolite is formed before ring saturation and cleavage takes place (Field, 2002).  

The University of Minnesota Biocatalysis/Biodegradation Database and MetaPuter 

contains detailed information on the reaction pathways and products of 

biodegradation for specific hydrocarbons (Ellis, 1998; Pazos, 2004) and can be 

accessed on http://umbbd.ethz.ch/ 

2.1.2.2 Pathways of anaerobic degradation: toluene 

Toluene is a good model compound for anaerobic BTEX degradation because it is 

the most readily degraded of the group (Phelps and Young, 1999). Anaerobic 

biodegradation of toluene has been shown to occur in sub-surface environments 

where oxygen is a limiting factor. While aerobic degradation is well documented 

and proceeds at a faster rate, the complete pathway and organisms responsible for 

each of the steps in anaerobic biodegradation are yet to be fully understood. 

Anaerobic bacteria make use of toluene as an energy source and activator for 

proliferation. Elevated levels of toluene-degrading bacteria at a contaminated site 

may represent environmental exposure to aromatic hydrocarbons as well as the 

presence of naturally occurring bioremediation pathways (Chakraborty, R. and 

Coates, 2004). Toluene is a monocyclic aromatic hydrocarbon made up of a six-

carbon ring with a methyl group attachment. In anaerobic biodegradation, 

microorganisms make use of toluene as a source of energy in reactions where 

toluene acts as an electron donor and  other compounds act as electron acceptors 

(Ulrich, 2004). The pathway of toluene degradation is illustrated in Figure 2.2. 

 

Figure 2.2 Anaerobic toluene degradation route, according to (Kube et al., 2004) 

BssABC, benzylsuccinate synthase; BbsEF, succinyl-CoA:(R)-benzylsuccinate 

CoA-transferase; BbsG R)-benzylsuccinyl-CoA dehydrogenase; BbsH, 

phenylitaconyl-CoA hydratase; BbsCD, 2-[hydroxy(phenyl)methyl]-succinyl-

CoA dehydrogenase; BbsAB, benzoylsuccinyl-CoA thiolase (Weelink, 2010) 

http://umbbd.ethz.ch/
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The anaerobic toluene degradation pathway is initiated by the enzyme 

benzylsuccinate synthase (BSS). The BSS enzyme acts as the catalyst for the 

addition reaction between methyl carbon and toluene. This reaction occurs across 

the double bond of a fumarate co-substrate and gives rise to the first intermediate, 

benzylsuccinate (Biegert et al., 1996; Beller, H. and Spormann, 1997; Leutwein and 

J. Heider, 2001). The benzylsuccinate intermediate is activated to CoA-thioester by 

a succinyl-CoA-dependent CoA-transferase (bbsEF) and benzylsuccinyl-CoA is 

converted to succinyl-CoA and benzoyl-CoA, a recognised central intermediate of 

many aromatic compounds (Weelink, 2010). 

 

Figure 2.3 Mechanism of toluene activation by BSS. BSS takes a proton from 

toluene and donates it to benzylsuccinyl radical formed from toluene and 

fumarate and generates a BSS radical (Boll et al., 2002; Washer, 2004) 

 

The degradation of benzoyl-CoA is initiated by Benzoyle-CoA reductase 

(bcrCABD) which is further oxidised via reductive ring cleavage to carbon dioxide 

(Harwood et al., 1999). The benzylsuccinate synthase enzyme (BSS) was first 

characterised in Thauera aromatica. BSS is an enzyme-bound radical that is 

believed to displace a hydrogen atom from toluene, which forms a benzyl radical 

intermediate, allowing the addition of the fumarate. The benzyl radical can then be 

converted to benzylsuccinate by transferring a hydrogen atom from the enzyme (see 

Figure 2.3). As BSS is used in the first step of toluene degradation, it may be useful 

for the identification of organisms involved in the initial breakdown of toluene. The 

presence of a significant amount of RNA encoding the BSS enzyme may indicate 

enrichment of this culture for one specific organism.  
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2.2  Iron in soil environments  

2.2.1 Iron (hydr)oxides 

Iron (hydr)oxides occur in abundance in many soils and sediments and play an 

important role in microbial redox processes as redox cycling of iron is coupled to 

many other biogeochemical reactions (Weber et al., 2006). Iron (hydr)oxides or 

minerals are composed of iron (Fe) together with oxygen (O) and hydroxyl (OH) 

ions. They are usually collectively referred to as oxides but are actually oxides, 

hydroxides or oxyhydroxides. Iron oxides are present in several mineral forms, in 

most soils, as well as in many sediments and weathered materials of various climatic 

regions (Schwertmann, U., Taylor, R.M., 1989). The iron oxide present in soil is 

dependent on the moisture content, pH and oxygen content of the soil. Wet, oxic 

soils generally would have iron existing in the ferrous state while wet anoxic soils 

would contain iron oxides in the ferrous state. The concentration of Fe
3+

 oxides  is 

related to pH and will increase from 10
-8

 to 10
-20

 as pH increases from 4 to 8 

(Romheld, 1986). At circum-neutral pH, Fe (III) minerals are characterised by low 

solubility and detectable concentration whereas at neutral or alkaline pH, Fe (II) is 

stable only in anoxic environments within which it is oxidised to Fe (III) minerals by 

molecular oxygen and are more soluble at neutral pH, with dissolved concentrations 

reaching the µM range (Cornell, R.M. and Schwertmann, 2003; Schwertmann, U., 

1991). Processes that bring about the mobilisation and fixation of iron in soil will 

occur either under oxidising and alkaline conditions (to induce the precipitation of 

insoluble iron Fe
3+

 oxides) or under acidic and reducing conditions (to promote the 

Fe
2+

 compounds going into solution). The released iron may then precipitate as 

oxides and hydroxides, although it may also substitute for Mg and Al in other 

minerals or form complexes with organic ligands. Due to the general stability of the 

iron oxides, Fe (III) is found as solid phase Fe (III) in natural environments, and in 

the pH range 4 to 10. The concentration of Fe (III) in the absence of complexing 

agents is less than 10
6
M (Cornell, R.M. and Schwertmann, 2003). 

Currently there are seventeen iron (hydr)oxides known to exist, these (hydr)oxides 

differ in composition, valence of Fe and crystal structure (Cornell, R.M. and 

Schwertmann, 2003; Schwertmann, U. and Cornell, 2000). The crystal order of the 

oxides is variable and dependent upon the conditions under which the oxides were 

formed. Most iron oxides are crystalline with the exception of ferrihydrite and 

schwertmannite which are poorly crystalline. The iron oxides are Fe (III)-minerals 

except FeO and Fe(O)2 in which iron exists in its ferrous [Fe (II)] state. In terms of 

their occurrence in the environment, goethite and hematite are the most stable and 

frequently occurring Fe (III) oxides in soils while lepidocrocite, ferrihydrite and 

maghemite are common but occur less frequently. Akaganeite and feroxyhyte may 
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occur rarely or not at all (Schwertmann, U., 1991). Ferrihydrite is considered the 

most unstable form of Fe (III) while goethite and hematite are the most stable. 

Ferrihydrite has a high surface area and a structure that is thermodynamically 

metastable with respect to goethite and hematite. It has been speculated that the 

occurrence of the less of the stable forms of Fe (III) may be due to the slow 

formation kinetics of the more stable oxides (Schwertmann, U., 1991). In an 

oxidising environment, O2 is the dominant terminal electron acceptor (TEA) and 

iron will form goethite as the stable mineral or some other hydroxyl phases in a 

metastable form. In highly reduced environments in which iron is the predominant 

TEA, high concentrations of sulphur (S2) will yield pyrite (FeS2). Low S2 

concentrations in highly CO3 concentrated environments will yield siderite (FeCO3) 

however Fe
3+

 will remain in solution if both S2 and CO2 are low (Cornell, R.M. and 

Schwertmann, 2003).  

Table 2.3 Iron oxides, hydroxides and oxyhydroxides (Cornell, R.M. and 

Schwertmann, 2003) 

Oxides (hydroxides 

and oxyhydroxides) 

Oxides 

 

Goethite α-FeOOH 

 

Hematite α-Fe2O3 

Lepidocrocite  γ-

FeOOH 

Magnetite Fe3O4 

(Fe
II
Fe2

III
O4) 

Akagenieite β-FeOOH Maghemite -  γ-Fe2O3 

Schwertmannite 

Fe16O16(OH)y(SO4)z.n

H2O 

β-Fe2O3 

δ-FeOOH ε-Fe2O3 

Feroxyhyte δ-FeOOH Wustite FeO 

High pressure FeOOH  

Ferrihydrite 

Fe5H)8.4H2O 

 

Bernatite Fe(OH)3  

Fe (OH)2  
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Oxides (hydroxides 

and oxyhydroxides) 

Oxides 

Green rust 

Fex
III

Fey
II
(OH)3x+2y-z(A

-

)z; 

 

(A
-
 = Cl

-
; ½ SO4

2-
)  

  

 

In natural environments, iron oxides may be present as a mixture of several 

minerals; however ferrihydrite, lepidocrocite, goethite and hematite are considered 

the most common and may undergo phase transformations. (Zachara, J.M., Cowan, 

C.E., and Resch, C.T., 1991) showed the formation of lepidocrocite, goethite and 

hematite from ferrihydrite. The study demonstrated the formation of tiny partcles of 

lepidocrocite and goethite in the presence of a lower electron donor to electron 

acceptor ratio. When the ratio of electron donors was higher, ferrihydrite was 

transformed to fine-grained magnetite. (Hansel et al., 2003) observed the 

transformation of ferrihydrite to the more crystalline hematite and goethite during Fe 

(III) reduction. The study demonstrated that ferrous iron species formed initially 

during abiotic oxidation of Fe (II) transform into colloids subsequently forming 

precipitates of ferrihydrite particles. It was mentioned that further transformations 

may occur in which ferrihydrite is converted to hematite and subsequently to 

goethite. Another study (Kappler, 2004) observed declining pH values during the 

transformation of ferrihydrite to goethite by Fe (II) oxidising bacteria. The observed 

phase transformations were attributed to structural rearrangement of iron and the 

transfer of electrons between iron and oxygen. Iron oxides possess the ability to 

undergo phase changes between different phases due to their thermodynamically 

unstable nature.  It has been proposed that the presence of Fe
2+

 from Fe (III) 

reduction or some other source, may catalyse the transformation of ferrihydrite and 

lepidocrocite to the more crystalline-phase lepidocrocite and goethite (van 

Oosterhout, 1967; Schwertmann, U., and Taylor, R.M., 1973) or to the mixed 

valence Fe (II)-Fe (III) mineral magnetite (Sorensen and Thorling, 1991). The 

transformation of ferrihydrite and lepidocrocite to more crystalline phases or 

magnetite has been observed as far back as 1967 (van Oosterhout, 1967). The effect 

of this transformation could be that the Fe
2+

 initially produced during the reduction 

of ferrihydrite could cause a transformation of ferrihydrite and other iron oxides into 

less reactive phases. This transformation results in the decreased reactivity of the 

iron pool, decreasing or even terminating further bio reduction. Although Fe
3+

 is 
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generally known to be less soluble than Fe
2+

 at higher pH levels, it is possible for Fe 

(III) oxide to go into solution in the presence of a ligand. Fe
2+

 has been shown to 

catalyse the dissolution of Fe (III) oxides including ferrihydrite, and goethite 

(Hering, 1990; Ballesteros et al., 1998), hematite (Hering, 1990; Sulzberger, 1989) 

and magnetite (Hering, 1990). It was observed, in these studies, that the 

concentration of Fe
2+

 did not change however increases in the concentration of Fe
3+

 

were observed. This is of great significance, especially in the field where the 

production of Fe
2+

 in an anaerobic environment may catalyse further dissolution and 

mobilisation of Fe.  

Five iron minerals were used in this study namely hematite, goethite, ferrihydrite, 

lepidocrocite and magnetite. Hematite is blood red in colour and being one of the 

most thermodynamically stable iron minerals, is found widespread in rock and soil. 

Goethite is yellow in colour and also thermodynamically stable at ambient 

temperature. Ferrihydrite is reddish brown with a generally poorly ordered crystal 

structure and is commonly termed „amorphous iron oxide‟ or „hydrous ferric oxide‟. 

Lepidocrocite is an orange-coloured mineral that is a common product of the 

oxidation of Fe
2+

. Magnetite is a black coloured, ferromagnetic mineral oxide 

considered to be a mixed phase (Fe (II)/Fe (III)) iron mineral. These minerals are 

fully described  in (Schwertmann, U. and Cornell, 2000) and (Cornell, R.M. and 

Schwertmann, 2003).  

2.2.2 Biogeochemical cycling of iron 

The pathways in which chemical elements move through biotic and abiotic 

components of the earth are demonstrated by biogeochemical cycles. These cycles 

consist of a system of inputs, outputs, sources and sinks in which elements are 

moved, used, transformed and reused between the biotic and abiotic components of 

the environment (Perez-Guzman et al., 2012). Common element cycles include the 

carbon, nitrogen, oxygen, phosphorous, sulphur, and the water cycle However, the 

iron cycle is another important biogeochemical cycle. This is because iron as an 

element is critical for countless cellular processes and metabolic pathways in 

eukaryotic and prokaryotic organisms (Tobler, 2007). Furthermore iron, being a 

micronutrient is used by both macro and microorganisms in carrying out essential 

life processes such as respiration, photosynthesis, nitrogen-fixing and transportation 

of oxygen in the blood. Despite the important role iron can play in the natural 

environment, it may be in short supply for organisms because of the redox changes 

it undergoes that affect its availability. In soils the concentration of iron oxides 

ranges from less than 0.1% to over 50% and may be evenly distributed through the 

soil or occur as discrete concentrations. The crystal size of iron oxides range from 

very small (5 mm) to relatively large (150 mm). Iron may be released from Fe (III) 
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oxides as a result of three main reactions namely protonation, reduction and 

complexation (Schwertmann, U., 1991). Fe (III) oxides display low solubility, 

unlike under other oxidative regimes, reducing conditions lead to the dissolution of 

iron (Chuan et al., 1996; Tessier, A. et al., 1996). This results from the reduction of 

less mobile iron (iii) to mobile iron (ii) (Schwertmann, U., 1991; Schwertmann, U 

and Taylor, 1979). In reduced sediments or soils, iron (ii) is oxidised back to iron 

(iii), usually forming a solid precipitate due to its insolubility. Heavy metals that 

may have been liberated from other components will be co-precipitated with the 

metal oxides and become incorporated into the structure (Turner and Olsen, 2000; 

Calmano et al., 1993). Thus iron undergoes redox transformations as it is cycled in 

the environment (Stucki et al., 2007). In its pure state iron is a reactive metal that 

oxidizes readily in the presence of oxygen or water and thus elemental iron (Fe or 

Fe
0
) is not found in the natural environment. In its combined or oxidised state, it 

exists as reduced ferrous iron (Fe
2+

), or oxidized ferric iron, (Fe
3+

). These iron forms 

exist in nature as solids in the form of Fe (III) - and Fe (II)-bearing minerals or as 

ions (Fe
3+

 and Fe
2+

) dissolved in water. Iron is ubiquitous in sedimentary 

environments and can be found in a combined/oxidised state in clay minerals of 

most soils and sediments (Cornell, R.M.a.S., U., 1996). To a large extent, redox 

transformations of iron as well as dissolution and precipitation, mobilisation and 

redistribution are chemically-induced; however they may also be attributed to 

microbial processes. This would suggest that many of the Fe (II), Fe (III) and mixed 

Fe (II)-Fe (III) minerals found in nature occur as a result.  

2.2.3 Microbial iron reduction 

Microorganisms are able to reduce metals (Lovley, D. R., 1991), releasing electrons 

as a result of the oxidation of organic and inorganic compounds which are 

transferred to oxygen via an electron transport chain which generates energy in the 

form of adenosine-5‟-triphosphate (ATP). Several microorganisms have the ability 

to conserve energy through the dissimilatory reduction of iron. This process involves 

the use of Fe (III) as either the dominant or exclusive terminal electron acceptor. 

The process occurs mostly under anaerobic conditions with ferric iron being reduced 

to ferrous iron. Shewanella oneidensis (formerly Alteromonas putrefaciens) (Lovley, 

D.R., Baedecker, M J, Lonergan, D J, Cozzarelli, M, Phillips E J P & Siegel, D, 

1989) and Geobacter metallierducens (formerly strain GS-15) (Lonergan et al., 

1996) were the earliest organisms identified to grow through iron reduction. Many 

strains have consequently been identified as iron reducers most of which belong to 

the Geobacteraceae family (this family includes the genera Geobacter, 

Desulfuromonas, and Pelobacter) and are able to oxidise a range of compounds 

coupled to the reduction of Fe (II) (Lloyd 2003). Iron reduction plays an important 
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role in the remediation of higher valence contaminants, including radionuclides, and 

may potentially be reduced via biogenically produced Fe (II) (Lloyd et al., 2000).  

Dissimilatory Fe (III) reducing bacteria that gain energy by coupling the oxidation 

of hydrogen or organic compounds to the reduction of ferric iron oxides have been 

known for many years but their biogeochemical importance was only recently 

recognised. Dissimilatory iron reduction has been shown to occur in both fresh 

water (Lovley, D.R., 1997a) and marine environments (Poulton et al., 2004). 

Processes that bring about the mobilisation and fixation of iron in soil will occur 

either under oxidising and alkaline conditions (to induce the precipitation of 

insoluble iron Fe
3+

 oxides) or under acidic and reducing conditions (to promote the 

Fe
2+

 compounds going into solution). The released iron may then precipitate as 

oxides and hydroxides, although it may also substitute for Mg and Al in other 

minerals or form complexes with organic ligands (Kabata-Pendias, 1992).  

In contaminated sites, the reduction of iron may influence the geochemistry of a site 

through the release of metals bound to Fe (III) minerals (Zachara, John M. et al., 

2011; Zachara, J M et al., 2001). The potential for the biostimulaiton of microbial 

metal-reducing microoganisms in contaminated sites have been shown in several 

studies. Biostimulaiton was induced through the addition of different electron 

donors including acetate, glucose, yeast extract, lactate and H2 (Stucki et al., 2007; 

Lovley, D.R., 1997a; Vrionis et al., 2005).  Microbial iron rduction has been shown 

in a wide range of environments from natural high to low  pH environments (Pollock 

et al., 2007; Zhilina et al., 2009). 

2.3  Chemical speciation 

Chemical speciation is defined as „the distribution of an individual chemical element 

between different chemical species or groups of species’ (Tessier, A et al., 1994). 

Speciation may be defined functionally e.g. the plant-available fraction of a specific 

element extracted or quantified or operationally in which the extraction technique is 

used to extract an element associated with a particular element. Functional 

speciation is generally performed with a single extractant (Förstner, 1993) while 

operational speciation is performed with sequential extraction to provide an 

operational speciation scheme (Tessier, A. et al., 1979; Sahuquillo et al., 1999). The 

speciation of an element may be defined in terms of its i) physical attributes, ii) 

complex lability and size calculated indirectly from mass transport and iii) diffusion 

or free activity or potential concentration at equilibrium (Ure and Davidson, 2008). 

Speciation analysis is a multidisciplinary method which can be applied in studies of 

biogeochemical cycles of chemical compounds, quality control of food products, 

clinical analysis, and determination of toxicity of elements to mention a few (Kot 
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and Namiesnik, 2000). Speciation provides information that aids the understanding 

of processes such as mobilisation, transport and transformation of trace elements. 

The determination of the various mechanisms of binding provides insights into the 

mobility, availability or toxicity of the speciation of an element i.e. the distribution 

of its bound state in comparison with the total element content. Speciation of metals 

(including iron) in soils are controlled by several factors including pH, cationic 

exchange capacity (CEC), redox potential, and the presence of surfactants  

(Andersen and Engelstad, 1993; Lasat, 2002). 

When the main objective is to quantify the elements in specific phases of a soil or 

sediment matrix, a series of single extractants may be used in combination in a 

sequence of extractions. Speciation will involve subjecting a solid sample to 

successive attacks using reagents of varying chemical properties, in order to 

partition the trace element content, with each reagent added being more „vigorous‟ 

than the previous. The total or pseudo-total content of an element is not adequate to 

reliably predict the behaviour of elements in the environment however chemical 

extraction procedures can determine both bound and total content of element species 

(Tokalioglu, 2003). These procedures are important in speciation studies and are 

used in assessing availability of natural elements to plants, as well as in the study of 

contaminated soils and sediments. In contamination studies, heavy metals such as 

iron may act as both a sink and source particularly where there is heavy 

contamination or where environmental conditions undergo constant changes. In 

unpolluted soils or sediments iron and other trace metals can be found bound to 

silicates and minerals, forming immobile species. In polluted environments, iron 

may be more mobile and bound to other soil or sediment phases (Rauret, 1998). If 

soil is viewed as being comprised of pools of elements with different mobilities and 

solubilities that can be extracted by reagents with different strengths six pools may 

be distinguishable namely i) the water soluble fraction ii) the exchangeable and 

weakly adsorbed fraction iii) adsorbed, chelated or complexed ions exchangeable by 

other cations with high affinities for exchange sites (or extractable with strong 

chelating agents) iv) micronutrient cations in secondary clay minerals an insoluble 

metal oxides v) cations in primary minerals vi) the pools collectively held (i.e. the 

total amount of the element in the soil).  Therefore the first target species are those 

in solution or in sediment pore water, or loosely attached at cation-exchange sites in 

soil water medium. This is followed by the carbonate phases, the mineral bound 

phases and phases bound to organic matter (Rao et al., 2008).  Extractant reagents 

for single extractions may be classified as i) acid reagents of varying concentrations 

(HCI, HNO3, aqua-regia. acetic acid, acid mixtures etc.) used singly or with 

chelating agents (EDTA (ethylene diamine tetra-acetic acid), DTPA (diethylene tri-

amine penta-acetic acid) ii) buffered salt solutions) ii) weak neutral salt extractants 
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ii) aqueous solution iv) enzymes. Several sequential procedures exist, however the 

best known are the Tessier extraction procedure and the Community Bureau of 

Reference (BCR) scheme, a more recent methodology designed to create a 

sequential procedure that is universal to all scientific communities. Each scheme has 

its limitations and the choice of a reagent will depend largely on the type of soil and 

target element.  

2.4  The isotope geochemistry of carbon cycling in soils  

2.4.1  Stable carbon isotopes in soil environments 

The major elements associated with organic compounds include carbon, hydrogen, 

nitrogen, oxygen and sulphur. Each of these elements have at least two stable 

isotopes that can be distinguished with the use of mass spectrometry. The chemical 

and physical properties of stable isotopes are nearly identical, however slight 

differences sometimes arise as a result of the quantum mechanical effect which is 

also dependent on the zero-point energies of the heavy and light isotopes. The higher 

zero-point energy of the lighter isotope suggests the chemical bond formed by a 

lighter isotope is weaker than that formed by a heavier isotope (Meckenstock, R U et 

al., 2004). A lighter isotope will react more rapidly than the heavy one, thus the 

product will be depleted in the heavier isotope. This is known as the kinetic isotope 

effect (KIE). So, a kinetic isotope effect occurs when an isotope reacts more rapidly 

than another in an irreversible system or a system in which the products are quickly 

used up before the reactant have the opportunity to reach equilibrium. Greater 

energy is required to break bonds containing a heavier isotope in an isotopic 

fractionating process, therefore molecules containing a lighter isotope will react at a 

slightly faster rate than those with a heavier isotope. In most cases, the heavier 

isotope will be concentrated in the component with the stronger bond with the 

element in question. Therefore equilibrium isotope effects reflect the relative 

differences in the bond strengths of isotopes in various components of a reversible 

system in equilibrium. In the event that the heavier isotope concentrates in the 

component of interest, that component is referred to as enriched or heavier. 

Biodegradation often causes a substantial kinetic isotope effect (Day et al., 2002). 

Light isotopes possess weaker bonds resulting in preferential enrichment of these 

isotopes in the product of a reaction. Heavy isotopes on the other hand accumulate 

in the non-reacted material. Thus degradation of contaminants may produce an 

increase in the proportion of heavier isotopes (Day et al., 2002). Isotopic 

fractionation therefore controls the isotopic compositions of different carbon 

reservoirs in environmental systems (Newton and Bottrell, 2007). Volatile organic 

compounds, including BTEX are strongly fractionated during degradation 
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(Hunkeler, D et al., 2001). These fractionation processes make it possible to obtain 

information on processes affecting the contaminant as well as the extent of this 

effect.  

Isotopic fractionation of carbon makes it possible to distinguish between organic and 

inorganic carbon compounds. Using mass spectrometric analysis, these compounds 

can be differentiated by their isotope abundance relative to a standard. The isotope 

abundance of a compound may be indicated by an isotopically light (negative δ) or 

heavy (positive δ) signal. In stable isotope convention, a negative δ in an 

experimental observation is indicative of the sample being depleted in the less 

common isotope relative to the standard (usually Vienna Pee Dee Belemnite i.e. 

VPDB). A positive δ is indicative of a sample in which the less common isotope is 

in greater abundance compared to the standards (Schmidt et al., 2004). For example, 

crude oil possess a light isotope signature which, in stable isotope sign convention, 

is denoted by numerical values along the lower negative end of the δ
13

C scale (see 

Figure 7.1).  Marine carbonates on the other hand possess a heavier isotope 

signature in comparison denoted by numerical values closer to the positive end of 

the δ
13

C scale. 

 

Figure 2.4 Overview of stable carbon isotopic composition of common organic and 

inorganic material showing relative positions on a δ
13

C scale  

 

Samples for stable isotope analysis come in the form of organically-bound carbon, 

carbonate (inorganic) carbon, or CO2 gas. Organically-bound carbon is isotopically 

light i.e. it produces δ
13

C values on the lower negative end of the δ
13

C scale. 

Toluene for example  has δ
13

C values ranging between -25.8 and -29.0 ‰ (Dempster 

et al., 1997; Harrington et al., 1999). Inorganic carbon is isotopically heavier in 

comparison. Soil carbonates which have δ
13

C values ranging between single-digit 

negative figures to 0 ‰ and above (Boutton, 1991). A study by (Cerling et al., 1989) 
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demonstrate modern soil carbonates differ systematically from coexisting soil 

organic matter by 14 to 16‰ in undisturbed soils from humid regions. Generally, 

soil CO2 is approximately 5% more enriched in 
13

C than the associated vegetation 

and soil organic matter. This may be the result of differences in diffusion 

coefficients for 
12

CO2 and 
13

CO2 in air which allow more rapid diffusion of 
12

CO2 

from the soil than 
13

CO2 (Quade et al., 1989). Soil CO2 is derived from root 

respiration, decomposition of soil organic matter, and at least in the upper 30cm of 

the profile, diffusion of atmospheric CO2 in the soil (Quade et al., 1989). In 

freshwater systems, dissolved carbonates show variable isotopic composition, 

mainly due to the variety of carbonate species present in freshwaters. These include 

biogenic sources such as CO2 from bacterial oxidation of organic matter in soils or 

from freshwater plankton (Pawellek F, 1994; Cameron et al., 1995). In freshwater 

lakes and ponds the δ
13

C may vary depending on (i) the extent to which atmospheric 

CO2 is in equilibrium with the water mass (ii) seasonal rates of photosynthesis and 

respiration (iii) the input of CO2 from decomposition of 
13

C-depleted terrestrial 

detritus present in the lake (iv) the contribution from dissolution of 
13

C-enriched 

carbonate rock (Oana and Deevey, 1960). Freshwaters generally have lower total 

dissolved inorganic carbon in comparison to marine systems as a result of the 

presence of 
13

C-depleted CO
2 

derived from decomposition of terrestrial organic 

matter. Freshwaters have been shown to have a δ
13

C range of -15 to 0‰ while rivers 

have a range of -15 to -5‰ (Fry, 1984). Stable carbon isotope ratios of dissolved 

inorganic carbon (CO2, HCO3
-
, CO3

=
) in groundwater at the water table depend on 

the δ
13

C of soil CO2 and the δ
13

C of dissolved carbonate originating from parent 

materials (e.g. limestone, which is relatively enriched in 
13

C at 0‰), meaning 

groundwaters could range from approximately -30 to 0‰ but are mostly found in 

the -25 to -10‰ range (Fritz et al., 1978). The range of values obtained from the soil 

and river water used in the mesocosms are representative of freshwater 

environments. 

2.4.2 Reactions of carbonates in soils 

Carbonates are often found as limestones on the Earth‟s surface (Ehrlich, 1998). 

Thus a significant portion of these carbonates are of biogenic origin. Carbonate 

minerals tend to be one of the most common groups of non-silicate minerals and can 

be found in several rock types. At least 277 carbonate-containing minerals occur in 

nature and are broadly classified as shown below (Railsback, 1999): 

 Pure carbonate minerals 

 Carbonate-containing minerals with chlorides, sulphates or fluorides 

 Carbonate-containing minerals with phosphates or silicates 

 Carbonate-containing minerals with two or more other anions 
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Dolomite, calcite and the iron carbonate siderite are the most common carbonate 

minerals found in soil. Dolomite is the most abundant of the over fifteen R  

carbonates, five of which have the dolomite structure (Lackner, K.S. et al., 1995). 

Dolomite has a similar structure to that of calcite however with a lower degree of 

symmetry. The CO3 group is the fundamental building block of carbonate minerals 

with a constant basic configuration. Several chemical elements form chemical bonds 

with this oxyanion group however calcium (Ca) and magnesium (Mg) are the two 

most commonly available chemical elements that form stable, poorly soluble 

carbonate minerals i.e. calcite, magnesite and dolomite (Lackner, K.S. et al., 1995). 

A list of carbonate-containing minerals is available in 

http://www.gly.uga.edu/railsback/CO3mins_intro.html as well as an appendix in the 

paper by L B Railsback titled „Patterns in the Compositions, Properties, and 

Geochemistry of Carbonate minerals‟. Extensive reviews of the two major carbonate 

minerals, calcite and dolomite can be found in (Goldsmith, 1990; Reeder, 1990; 

Wenk et al., 1990). 

The total carbonate content in soil represents the organic and inorganic carbonate 

minerals consumed, produced and mobilised by biotic and abiotic processes. This 

carbonate fraction is mostly used in reference to the amount of carbonates in solid 

matter, however, a substantial proportion rapidly turned over through a soil solution 

ultimately becomes CO2 in gaseous phase (Manning, 2008). Generally, organic 

carbon is differentiated into labile (rapid turnover) and recalcitrant (slow turnover) 

pools, with differing chemical reactivity and residence times. Inorganic carbon is 

composed of Ca- and to a lesser extent Fe- and Mg-carbonates (Schlesinger, 1982). 

In aquifers, the direct contact of CO2 with groundwater lowers the pH of the 

environment. Carbon dioxide is a normal component of all natural waters, however 

it is typically introduced via absorption from the atmosphere. In the geologic 

sequestration of CO2, the naturally occurring carbonate minerals may provide a 

constant, inexhaustible source of alkalinity for converting CO2 to bicarbonate salts. 

Several microorganisms have the ability to deposit calcium carbonates (Verrecchia 

et al., 1990; Barua et al., 2012). Where carbonate precipitation is microbially-

mediated, the process is referred to as bio-precipitation or bio-mineralisation. Bio-

mineralisation is the removal of mobile contaminants from solution via the 

biological production of the precipitating chemical species. The process brings about 

the precipitation of a wide range of minerals including sulphates, phosphates, 

silicates and oxides (Barkay and Schaefer, 2001; Warren et al., 2001).  Four groups 

of microorganisms have been observed to be involved in the process of bio-

mineralisation (Hammes and Verstraete, 2002; Stocks-Fischer et al., 1999). These 

include (i) photosynthetic organisms, including cyanobacteria and algae, (ii) 

http://www.gly.uga.edu/railsback/CO3mins_intro.html
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sulphate-reducing bacteria (iii) organisms utilising organic acids (iv) organisms 

involved in the nitrogen cycle Microorganisms including cyanobacteria and 

ureolytic bacteria are capable of enabling mineral formation (Ferris et al., 2003). 

Most cynaobacteria are able to precipitate carbonate minerals by photosynthesis. 

Microbial photosynthesis accelerates carbonate mineral precipitation by generating 

an alkaline aqueous environment. As described above this alkaline environment is as 

a result of hydroxyl (OH
-
) ions which increase the pH of the solution and allow for 

more dissolution of CO3 in water, creating carbonate ions and increasing carbonate 

mineral saturation in the process. These carbonate minerals react with cations in 

solution to precipitate carbonate minerals.   

The earth is composed of many elements however only eight (Si, O, Al, Ca, Mg, K, 

Na and Fe) compose a significant part (98%) of its crust (Reimens and de Caritat, 

1998). During weathering processes of exposed silicate outcrops, the elemental 

components are released into the environment, transported or precipitated. Ca
2+

 and 

Mg
2+

 may be leached and transported in solution, with some of its content reacting 

with carbonate anions formed from CO2 dissolution in soil pore waters or in the 

surface ocean.  

Divalent cations including Mg
2+

 and Fe
2+

 are commonly found in phylosilicates such 

as glauconite and clinichlore. Ca
2+

 is commonly found in the plagioclase solid 

solution series (i.e. albite to anorthite). Silicates and carbonates tend to have a much 

higher abundance in nature. Silicates will react with CO2 by forming carbonates and 

bicarbonate salts in solution  (Lackner, K S, 2002). Silicate minerals are more 

effective than carbonate minerals for the reduction of atmospheric carbon dioxide. 

The weathering of some common silicate minerals is shown in Equations 2.1 and 2.2 

below: 

                                               
   Equation 2.1 

(feldspar) 

                                          Equation 2.2 

(calcite, magnesite, siderite) 

The theoretical reaction for the mineralisation of albite follows the reaction in 

Equation 2.3 below: 

                                                          

      
            Equation 2.3 

Gibbsite is the absolute end product of silicate mineral weathering. Equation 2.4 

shows the dissolution of albite and 2.5 depicts the subsequent equilibrium equation 

for gibbsite (Appelo et al., 1996). 
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                                          Equation 2.4 

                          Equation 2.5 

(gibbsite) 

The dissolution rate depends strongly on pH and is least soluble at neutral pH 

(Appelo et al., 1996). Elevated PCO2 in solution will lead to the dissolution of albite. 

A similar effect is observed for feldspars and other alumina-silicate minerals.  

Solid carbonates such as calcite (CaCO3), magnesite (MgCO3), siderite (FeCO3) and 

the sodium aluminium carbonate, dawnsonite (NaAl(OH)2CO3) are formed by 

slower precipitation processes that occur over long geological times. In geological 

formations, sediments and soil constitute an erosion-sedimentation-cycle composed 

of solid carbonate rock - soil -- fluviatile sediment - estuarine sediment -- 

marine sediment --- salt marsh. Calcium and magnesium can be precipitated as 

carbonate minerals calcite (CaCO3), aragonite (CaCO3), magnesite (MgCO3), or 

dolomite (CaMg (CO3)2). Carbonates formed in soils as a result of pedogenic 

processes occur as re-mobilised minerals from the bedrock (Goudie, 1996). These 

processes will lead to the precipitation of pedogenic and marine carbonates which 

aids the storage and capture of carbon (Berner et al., 1983). Equation 2.6 shows the 

precipitation of carbonates brought about by weathering of the silicate mineral 

wollastonite (CaSiO3). 

                                    Equation 2.6 

A breakdown of the reaction sequence is shown in Equations 2.7-2.9 below: 

                 
           

                      Equation 2.7 

                          
        

     Equation 2.8 

      
           

                  
     Equation 2.9 

Carbon dioxide reacts with water to form carbonic acid which then reacts with the 

carbonate mineral (in this case calcite) generating calcium and bicarbonate ions. The 

extent to which these reactions will occur is dependent on the equilibrium pH. A 

plot of the equilibrium concentrations of CO2, carbonate and bicarbonate species 

(known as a Bjerrum plot) demonstrates the effect of pH on carbon-bearing 

chemical species. Under acidic conditions (pH < 6), CO2 (aq) is the more dominant 

species however under strongly alkaline conditions (pH > 10.5), carbonate and 

bicarbonate species are more dominant (Mitchell and Ferris, 2006). The reaction for 

the silicate mineral above (wollastonite CaSiO3) induces an acidic environment as a 

result of the H
+
 ions produced. This acidic environment favours each of the 

reactions. Weathering processes are slow, with timescales at natural conditions of 

thousand to millions of years.  In weathering processes, eroded rock surfaces come 
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into contact with rainwater that has been saturated with dissolved atmospheric CO2. 

The alkali and alkaline earth elements (Na, K, Ca and Mg) subsequently dissolve 

into the water and eventually form carbonate mineral (Huijgen, 2007). Weathering 

processes have been shown to be accelerated by biological processes. (Manning, 

2008) state the mixing of calcium / magnesium-rich silicate minerals into the soil 

profile forms carbonate mineral precipitates where the carbon is dissolved CO2 in 

equilibrium with soil pore gas from either organic matter degradation or diffusion 

from the atmosphere. The precipitation of carbonates is therefore influenced by pH, 

CO2, partial pressure (PCO2), alkalinity, temperature, carbonate, bicarbonate and 

metal ion concentrations (Chou and Garrels, 1989; Dromgoogle and Walter, 1990; 

Pokrovsky and Golubev, 2009). Reviews on the chemistry / geochemistry of 

carbonate minerals can be found in (Railsback, 1999). 

2.5  Modelling repeated measures data 

2.5.1 Repeated measures experiment designs  

The act of planning or designing experiments allows the experimenter to take into 

account the influence of different parameters that may influence the main 

observation in the experiment (Ryan, 2006; Leik, 1997). Experiment designs fall 

into two broad categories namely i) screening designs, and ii) optimisation designs 

(Krauth, 2000; Verma, 2015). The most common screening design is the factorial 

and Placket-Burman design while the central composite design is considered  the 

most common optimisation method.  Full factorial designs are used in studies with a 

few number of variables and small number of experiments. The central composite 

design often finds application in response surface modelling and optimisation and is, 

in some cases, an extension of a previous factorial design for which response 

surfaces enable the optimum for value of each variable to be determined 

(Hinkelmann and Kempthorne, 2008). 

Statistical testing through the use of experiment designs involves one or more tests 

in which changes are made to input variables of a process or system in order to make 

conclusions about the reasons for change in output or to identify the sources of 

variability in the process (Montgomery, 2006; Gliner et al., 2009). Statistical tests 

may be performed on simple comparative designs,  single-factor experiments, or 

factorial design experiments (Ryan, 2006; Quinn and Keough, 2002). Simple 

comparative experiments compare two treatments or conditions to make inferences 

about the difference in means of two populations. This comparison is achieved using 

either a two sample t-test or a paired t-test (Blaikie, 2003; Marsh and Elliott, 2008). 

Single-factor experiments compare the effect of two treatments using two levels of 

the same factor or more than two levels in some cases. Factorial designs are used in 
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the study of the effects of two or more factors  and are considered the most effective 

for situations as they take account all possible interactions between factors. Two-

factor and 2
k
 factorial deigns are common factorial designs.  

Data obtained from experimental or observational studies in which data is collected 

over several points in time are referred to as repeated measures data (Taris, 2000; 

Verma, 2015; Nemec and Branch, 1996). Repeated measures data are of three main 

types namely i) Time series data which involve many observations (large t) on as 

few as one unit (small n), ii) Pooled cross sections which consist of two or more 

independent samples of many units (large n) drawn from the same population at 

different time periods, and iii) Panel data which consists of two or more independent 

samples of many units (large n) drawn from the same population at different time 

periods. (Verma, 2015; Crowder and Hand, 1990; Islam and Chowdhury, 2017). In 

statistics and econometrics, the term panel data (or longitudinal data) refers to multi-

dimensional data frequently involving measurements over time (Diggle, 2002; 

Singer and Willett, 2003). An alternative description of these three types of repeated 

measures data may be made in terms of the number of observations, individuals and 

time points over which observations are made. In this context, time series data may 

be regarded as a collection of observations (behaviors) for a single subject (entity) at 

different time intervals (generally equally spaced). Cross sectional data can be seen 

as a collection of observations (behaviour) for multiple subjects (entities) at a single 

point in time while panel data can be taken to be a combination of the above 

mentioned types i.e. collection of observations for multiple subjects at multiple 

instances . 

2.5.2 General linear models 

Classical general linear models (including regression analysis, analysis of variance 

or ANOVA, and analysis of covariance or ANCOVA) or GLMs are used as 

statistical tools for experiments with continuous variables and are naturally studied 

in the framework of the multivariate normal distribution. Correlated data arise 

frequently in statistical analysis. Correlation is a form of standardized covariance i.e. 

if the covariance is divided by the product of the two standard deviations (i.e. the 

square root of the variances), the correlation coefficient is obtained (Myers et al., 

2013). Correlation may arise due to grouping of subjects or repeated measures on 

each subject over time or space (as is the case in the repeated measures experiment 

design of the degradation experiments in this study) or due to multiple related 

outcome measures at one point in time. Classical methods capture some part of the 

estimated coefficient however the correlation in error terms are not adequately 

explored (Judd et al., 2011; Howitt and Cramer, 2003). 
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2.5.3 Mixed effects models 

Linear model estimation for panel data is based on the classical general linear model 

(West et al., 2014). Parameter estimation for these models are determined over two 

main steps that involve i) the estimation of parameters using ordinary least squares 

and ii) estimation of parameters using generalized least squares. Estimation of 

parameters using mixed models is performed over two or more steps which include 

modeling i) independently pooled panels, ii) fixed effects (first difference models), 

and iii) random effects. A mixed effect model incorporates the fixed effects 

assumption (i.e. that the individual specific effects are correlated with the individual 

variables) as well as the random effects assumption (i.e. that the individual specific 

effects are uncorrelated with the independent variables). With independently pooled 

panels it is assumed that there are no unique attributes of subjects within the 

measurement set and no universal effects across time (Myers et al., 2013). The fixed 

effect model assumes there are unique attributes of subjects that do not vary across 

time, these attributes may or may not be correlated with the individual dependent 

variables. The random effects model assumes the subjects have unique, time 

constant attributes which are not correlated with individual regressors. The term 

mixed model refers to the use of both fixed and random effects in the same analysis 

(Wu, 2009; Song and Song, 2007). In both experimental and observational studies, 

subject effects are mostly random while treatment levels are fixed effects. In 

repeated measures designs the mixed effects model is a more appropriate method for 

analysing repeatedly measured continuous data as it is based on less restrictive 

assumptions and so provides a generally more flexible approach by allowing a wide 

variety of correlation patterns (or variance-covariance structures) to be explicitly 

modeled (Bagiella et al., 2000; Wu, 2009). The correlation between observations is 

one assumption that may be relaxed with mixed models. In mixed models, the 

covariance structure of the data can adequately model data in which observations are 

not independent (Song and Song, 2007). This makes the mixed effects model 

approach particularly suitable for modeling repeatedly measured data. Mixed models 

are generally favored over classical GLMs as they i) can be extended to non-normal 

outcomes, ii) are often more interpretable than classical repeated measures, iii) 

handle uneven spacing of repeated measurements, and iv) handle missing 

measurements/data where other repeated measures approaches will discard results 

on subjects with missing measurements/data, v) can flexibly model time effects, and 

vi) allows the use of realistic variance and correlation patterns, which results in a 

more accurate treatment effect and standard error estimates and helps control Type I 

error (Gueorguieva and Krystal, 2004; Verbeke, 1997; Zeger et al., 1988). 
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Linear mixed effects models model fixed and random effects as having a linear form 

(see Equation 2.10). To obtain a two-level multilevel model where observations are 

nested within groups, (Woltman et al., 2012; Hershberger and Moskowitz, 2013; 

Tango, 2017; Huitema, 2011) recommend a two-step procedure beginning with a 

null model (without predictors) followed by a model in which the predictor variables 

are explicitly specified. The first model (Equation 2.10) reflects the relationship 

between lower-level units. The second model (Equation 2.11) demonstrates how the 

relationship within lower-level units varies between units.  

                           Equation 2.10 

                                                     Equation 2.11 

In Equation 2.10, 

Yij = dependent variable measured for the i
th

 level-1 unit nested within the j
th

 level-2 

unit 

Xij = value on the level-1 predictor 

Β0j = intercept for the j
th
 level-2 unit 

Β1j = regression coefficient associated with Xij for the j
th
 level-2 unit, and  

rij = random error associated with the i
th
 level-1 unit nested within the j

th
 level-2 unit 

 

In Equation 2.11 Β0j and Β1j  are re-written as                      and     

                 

where 

β0j = intercept for the j
th
 level-2 unit 

β1j = slope for the j
th
 level-2 unit 

Gj = value for the level-2 predictor 

ϒ00 = overall mean intercept adjusted for G 

ϒ10 = overall mean slope adjusted for G 

ϒ01 = regression coefficient associated with G relative to level-1 intercept 

ϒ11 = regression coefficient associated with G relative to level-1 slope 

U0j = random effects of the j
th
 level-2 unit adjusted for G on the intercept 

U1j = random effects on the j
th
 level-2 unit adjusted for G on the slope 

 

The two terms U0j and U1j demonstrate that there is dependency between level-1 

units nested within each level-2 unit. This two-level model estimates three types of 

parameters namely a)fixed effects (ϒ00, ϒ10, ϒ01, ϒ11); b) random level-1 
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coefficients, and c) variance-covariance components which include i) covariance 

between level-2 error terms (cov (U0j) or cov (U1j)); ii) variance in level-1 error 

terms (ie. The variance of rij denoted by ζ
2
); iii) variance in level-2 error terms (i.e. 

the variance of the U0j and U1j or β0j and β1j). 
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Chapter 3 

Materials and Methods 

3.1 Analytical method development 

3.1.1 Analysis of aqueous phase toluene  

3.1.1.1 Rationale 

One of the main objectives of this study was to design a method for analysing 

toluene concentrations in the mesocosms. Gas chromatography (GC), high 

performance liquid chromatography (HPLC) and gas chromatography combined 

with mass spectrometry (GC-MS) are commonly used analytical methods for the 

quantification of petroleum hydrocarbons in soil (Wang, Z. et al., 1998). A full 

review of other methods and their limitations can be found in (Parr et al., 1996; 

Whittaker et al., 1995). The most common detectors fitted to gas chromatography 

instruments include flame ionization detectors (FID), flame photometry detectors 

(FPD), electron capture detectors (ECD) and thermal conductivity detectors (TCD). 

The sensitivity of the detector is what translates electron signals to its mass from 

which concentrations are determined. The lower the concentration of a compound, 

the more difficult it is to determine its mass (Whittaker et al., 1995). GC-FID has 

been developed for the determination of gasoline and diesel range organics in 

petroleum and was used in all toluene analyses conducted in this study.  

The choice of an analytical method for a volatile organic compound such as toluene 

also calls for a compatible sampling method. Toluene is a volatile, aromatic 

hydrocarbon therefore, in sealed microcosms, sampling of the vapour phase is more 

advantageous than its aqueous phase. When working with volatile compounds, 

errors in experimentation may arise as a result of sorption to plastic surfaces such as 

the lids of containing vessels, volatilisation to air as a result of improper sealing of 

vessels, or sorption to solid media such as sediment. The key to obtaining consistent 

results during analysis of such compounds lies in the sample preparation. A review 

of sample preparation techniques for volatile organic compounds can be found in 

(Pawliszyn, 1995) and (Demeestere et al., 2007). A summary of conventional 

sample preparation methods for volatile compounds is given in Table 3.1.  
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Table 3.1 Summary of sample preparation methods for volatile compounds (VOCs) 

Sample preparation method Principle of technique 

Grab sampling The (gaseous) sample is pulled or pumped into an 

evacuated vessel (e.g. metal bulb, syringe, or plastic 

bag). Mainly suitable for sampling organic 

compounds in air. 

 

Solid-phase trapping (SPE) The sample is passed through an adsorbent (silica gel 

or activated carbon), trapped analytes are eluted with a 

strong solvent. Mainly suitable for semi-volatile 

organic compounds. 

 

Liquid trapping (Impinging) The sample is bubbled through a solution / solvent for 

which analytes of interest have a high affinity. 

 

Headspace sampling The sample is placed in a closed gas vial until it 

reaches a state of equilibrium i.e. where the analytes 

of interest partition between their gas phase and solid / 

liquid phase. The gas phase is then sampled and 

injected into a GC. The method is mainly for 

determining trace concentrations of VOCs in samples 

difficult to handle by conventional GC. 

Note: A shift in the equilibrium of the analytes in the 

sample matrix can be achieve by salting out, 

adjustment of the system pH or by increasing the 

temperature of the system.  

 

Purge & trap (dynamic headspace) 

 

The sample, in its solid or liquid phase, is placed in a 

closed container and the VOCs are purged by an inert 

gas and subsequently trapped by a sorbent followed 

by thermal desorption into GC. The method is mainly 

used for quantifying trace concentrations of VOCs in 

samples and also for analytes with unfavourable 

partition coefficient in static headspace sampling 
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Sample preparation method Principle of technique 

Thermal desorption Mainly used as an accompaniment with purge and trap 

and solid microphase extraction procedures to obtain a 

concentrated of the VOCs. The sorbent (e.g. Tanex 

TA, glass beads) is rapidly heated and the analytes of 

interest transferred to a GC. 

Used with purge & trap and SPME to concentrate 

VOCs; sorbent is rapidly heated and analytes are 

transferred to a GC 

Pyrolysis Mainly for non-volatile samples with large molecules 

e.g. polymers and plant fibres. Such samples usually 

have defined degradation mechanisms and predictable 

breakdown mechanisms which make it possible to 

identify the starting compound by its structural 

information and by fingerprinting methods. 

 

The choice of a sampling technique is dependent on the physical state of the sample 

in question i.e. whether it exists in solid, liquid, or gas phase. Solid phase micro-

extraction and headspace analysis of gaseous phase are two of the most commonly 

used methods for the measurement of toluene and other volatile, mono-aromatic 

hydrocarbons in water matrices (Hewitt, 1998). The headspace method was adopted 

in this study because i) it is known to be a suitable method for qualitative and 

quantitative analysis of volatile species in samples which can be efficiently 

partitioned into the headspace gas volume from either a solid or liquid matrix ii) it is 

suitable for „dirty‟ samples e.g. a soil-water mixture containing either a single 

hydrocarbon or a mixture of hydrocarbons, iii) it is a suitable method for cases 

where the analyte of interest is present in trace levels.  

3.1.1.2 Method  

Headspace gas chromatography involves the use of an indirect measure to estimate 

the amount of the analyte of interest (toluene in this case) in the liquid phase. When 

the content of the headspace in a closed system attains equilibrium, the amount of 

analyte in the headspace can be equated to the amount in the liquid phase. The 

„translation‟ between the headspace or gaseous phase and the liquid phase is referred 

to as the partition ratio, K (Kolb and Ettre, 2006). A high partition ratio implies it is 

more difficult for the analyte in question to elute or go into the gas phase. Similarly, 

compounds with low K values tend to partition more readily into the gas phase. 
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Partitioning of organic chemicals between water and other phases such as air, 

organic matter, and polymers is influenced by the salt content in the aqueous phase. 

Salts such as NaCl consist of small ions that enhance the structuring of aqueous 

phases due to their strong interactions with the dipoles of water molecules, giving 

the name „structure-making salts‟ (Bowen and Yousef, 2003). This structural 

increase can induce a shift of the partition equilibrium of neutral organic solutes 

toward non-aqueous phases. This effect is called the salting-out effect and is 

deliberately used to maximize the extraction efficiency in analytical procedures by 

adding salt to water samples (Jochman et al., 2007). The salting-out effect was 

adopted in this study for the analysis of toluene in the mesocosms. 10mL aliquots 

from the mesocosms were added to 25 mL Whattman™ vials containing 7.5 g of 

NaCl salt and subsequently sealed gastight with crimped Teflon-coated butyl rubber 

stoppers. Analysis of gas phase toluene released into the headspace was achieved by 

means of a syringe into which toluene was sampled and transferred to the GC. 

Where it was not possible for samples to be analysed immediately the sealed salted 

vials containing the samples were stored in an upturned positon at 20
o
C and 

analysed within 7-10 days. 

3.1.1.3 Instrument calibration 

Two sets of standards were prepared to calibrate the GC. The first set consisted of 

toluene stock solutions of equal concentrations but varying volumes (15 mL, 16 mL, 

17 mL, 18 mL, 19 mL, 20 mL) and the second set contained stock solutions of equal 

volumes but varying concentrations (25 mg/L, 50 mg/L, 75 mg/L, 100 mg/L, 150 

mg/L, 200 mg/L). The latter set was adopted for subsequent calibrations. A five-

point calibration curve was produced from the heights and areas of the peaks 

obtained (see section C.3 of Appendix C). This initial calibration curve was linear 

up to a concentration of 100mg/L, therefore the mesocosm experiments were 

designed such that the end concentrations of toluene in the vessels did not exceed 

this value. A spiking concentration of 200 mg/L permitted from a freshly prepared 

toluene stock solution met this requirement and also did not exceed the solubility 

range of toluene in water (i.e. 520 mg/L at room temperature). 

3.1.2 Analysis of iron-bound soil carbonates 

3.1.2.1 Rationale 

Field and laboratory studies such as (Mortimer, R.J. et al., 2011) and (Driese et al., 

2010) have reported the occurrence of carbonate build-up during biodegradation of 

hydrocarbon contaminants. It was therefore part of the research objectives of this 

study to propose a method to assess the effect of toluene degradation on iron-bound 
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carbonates in soil using a novel method that differentiates this carbonate pool from 

other carbonate pools that may be found in a typical soil system.  

3.1.2.2 Method 

The method proposed for identifying and distinguishing iron-bound carbonates from 

other carbonate pools was selected based on the reactivities of calcite, dolomite, 

siderite and magnesite in phosphoric acid published in (Al-Aasm et al., 1990). The 

study involved the use of a selective acid extraction procedure and revealed distinct 

differences in the reaction times of the minerals. Calcites, particularly the finer-

grained fractions, reacted faster than the other carbonate minerals. The results of the 

study showed approximately 60% of calcite reacted with the acid during the first 45 

minutes. The initial step in the protocol for the stable isotope procedure is the 

acidification of the sample with a strong acid, usually phosphoric acid. The results 

of the study therefore suggest an acidified soil sample would be stripped of its major 

calcite content after the first 45 minutes of reacting with the acid extractant. The 

reaction rates of calcite, dolomite, siderite and magnesite are shown in Figure 3.1 

below, with the open circles indicating the fine-sized fraction and the closed circles 

indicating the more coarse fractions. 

 

Figure 3.1 Reaction rates of pure carbonate minerals with phosphoric acid showing 

changes in  cumulative yields (expressed in percentage) with time at two 

temperatures - 25
o
C and 50

o
C (adapted from (Al-Aasm et al., 1990)) 

 

Another study conducted in the Cohen Laboratories at the School of Earth and 

Environment, University of Leeds showed iron carbonates underwent complete 

reaction after an acidification period of approximately 24 hours. The experiments 

revealed the formation of precipitates in experimental microcosms (Mortimer, R.J. 

et al., 2011). Analysis of the precipitate indicated it to be iron carbonates (FeCO3) 

likely a product of iron reduction occurring in the mesocosms. This precipitate was 

further analysed by initially freeze-drying and subsequently reacting the solid with 
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„wet‟ phosphoric acid over an extended period of time. The reaction resulted in the 

evolution of CO2 gas, the yields of which are shown in Table 3.2. It can be seen 

from the table that the maximum yield of FeCO3 occurred within the first 24 hours. 

Table 3.2 Yield measurements for FeCO3 precipitate from Fe-reducing microcosm 

(experiment performed by S. Bottrell in December 2007) 

        

 

Time 

(hours) 

 

2.5 

 

5.0 

 

7.5 

 

10.0 

 

12.5 

 

24.0 

 

26.0 

 

 

 

Yield 

(linear 

units) 

 

0.046 

 

0.121 

 

0.194 

 

0.266 

 

0.320 

 

0.411 

 

0.409 

        

 

The results of these two studies served as a basis for establishing time frames within 

which common soil carbonates may be expected to undergo complete reaction with 

phosphoric acid. On the basis of these time frames as well as the stable carbon 

isotope procedure used in this study, two operationally-defined soil carbonate pools 

are proposed namely the fast-reacting soil carbonate pool and slow-reacting 

carbonate pool. The fast-reacting pool will mainly comprise calcite and other similar 

calcium carbonates. This pool is expected to completely react with phosphoric acid 

over a 45-minute period. The soil carbonates of interest in this study (i.e. iron 

carbonates) will fall under the slower-reacting pool. This pool wold be expected to 

completely react with phosphoric acid over a 24-hour period. 

3.2  Toluene degradation studies 

A series of soil mescosm experiments were designed to address the key objectives of 

this study i.e. to investigate the degradation of toluene under predominantly iron-

reducing conditions. Mesocosm (or microcosm) experiments were chosen as the 

primary method for studying biodegradation because the experiments allow for i) 

the analysis of a contaminant and its ability to undergo degradation under ambient 

conditions ii) the evaluation of  the effect of environmental variables on the rate and 

extent of biodegradation  (Borden et al., 1997). 
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3.2.1 Soil mesocosms: design and considerations 

The experimental matrices for the soil mesocosms are presented in Table 3.3 below.  

Table 3.3 Experimental matrix showing the amounts of soil, toluene, river water and 

amendments used in each mesocosm set 

 

Mesocosm 

sets
┼ 

 

Soil 

(g) 

 

Soil/Mineral 

amendment (g) 

 

Groundwater 

(mL) 

 

Toluene 

(mL) 

 

Liquid 

amendment 

(mL) 

 

So 

 

80 

 

- 

 

500 

 

- 

 

- 

St 80 - 500 300 - 

Hm 80 2 500 300 - 

Ge 80 2 500 300 - 

Mt 80 2 500 300 - 

Fc 80 - 500 150 150 

Fh 80 2 500 300 - 

Lp 80 2 500 300 - 

Spc 50 30 500 300 - 

Ss 50 30 500 300 - 

Sl 50 30 500 300 - 

      

 

┼ So – Mesocosms with soil and water only 

St - Mesocosms with no amendment 

Hm – Mesocosms with hematite amendment 

Ge – Mesocosms with goethite amendment 

Mt – Mesocosms with magnetite amendment 

Fc – Mesocosms with ferric citrate amendment 

Fh - Mesocosms with ferrihydrite amendment 

Lp – Mesocosms with lepidocrocite amendment 

Spc – Mesocosms with previously contaminated soil amendment 

Ss – Mesocosms with sandy soil amendment 

Sl – Mesocosms with loamy soil amendment 



- 41 - 

Although the experiments conducted simulate anaerobic conditions, the mesocosms 

were designed in close accordance with the British Standards 7755 Subsection 

4.1.1., „Guidance on the selection and conduct of tests for determining the 

biodegradation of organic chemicals in soil under aerobic conditions‟, now 

replaced by ISO 11266:1994. As there is presently no generally agreed upon 

standard methodology, this international standard provides general guidance for soil 

mesocosm (or microcosm) studies on aerobic biodegradation. Reference was also 

made to the following studies, (Chaineau et al., 1995), (Huesemann, M.H., 1995), 

and (Hatzinger and Alexander, 1995), which made use of microcosms in their 

experimental methodology. A further consideration in the study design was the use 

of serially-sampled mesocosms as opposed to the smaller sacrificially-sampled 

microcosms, reason being that i) the soil-water medium in these types of mesocosms 

tend to be more stable over time in the sacrificially- sampled mesocosms and ii) the 

larger vessel size allows for more flexibility with sample volumes while maintaining 

the chemical equilibrium and iii) they tend to be less complicated than the larger 

batch-reactor type systems. 

Due to the toxic nature of toluene, safety precautions were required including the 

acquisition of material safety data sheets and the use of a chemical fume-hood 

during the spiking procedure. Blank mesocosms containing no toluene were 

prepared to assess the contribution of soil natural organic matter. Total dissolved 

iron concentrations and pH in the mesocosms were chosen as geochemical 

indicators of microbial degradation to be monitored along with toluene 

concentrations. 

3.2.1.1 Soil specifications  

The primary purpose of the mesocosm experiments was to demonstrate removal of 

toluene in a controlled anaerobic soil-water environment with iron as the 

predominant terminal electron acceptor. (Jin et al., 1994), in a study on the transport 

and degradation of toluene in an unsaturated soil, demonstrated the relationship 

between the rate of toluene degradation and the history of the contamination of the 

soil. Pre-exposed soil showed higher rates of toluene biodegradation in comparison 

to fresh soils. The river water and soil samples used in our study were obtained from 

an area of Leeds that receives run-off from a location in which a hydrocarbon 

(diesel) spill occurred. A full documentation of this incident can be found in 

(Reporter, 1999). The soil and water samples were therefore expected to contain a 

microbial population adapted to a hydrocarbon contaminant and as such support 

toluene degradation in the mesocosms. Furthermore, the chosen sampling location 

provided adequate access to required quantities of soil and water samples for the 

pilot (Chapter 4) and subsequent degradation studies (Chapters 5, 6 and 7).  
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3.2.1.2 Field collection 

Stainless-steel tools and plastic bags and buckets were used where possible to avoid 

contamination during sampling. A composite sample (ca. 10kg) of soil was collected 

using a spade at the subsurface horizon (about 0.6-0.9 m below surface) from the 

sampling point in Leeds. The soil samples were transported to the laboratory in 

plastic bags placed in sealed, sterile plastic containers. After collection the water 

samples were sealed in sterilised plastic bottles and placed in storage at 16
o
C.  

3.2.1.3 Soil preparation and preservation 

After being transported to the laboratory the soil sample was disaggregated and 

cleared of foreign material such as pebbles, metal objects, sticks, small stones and 

other unidentified objects. Pre-treatment procedures such as autoclaving were not 

conducted as it was intended for the soil to be as representative of its natural state as 

possible. After preparation, the sample was placed in a sealed inert (plastic) 

container with minimal headspace. The container was stored at 4
o
C temperature 

prior to its use in the mesocosm experiments. Subsamples (10 g) were taken for 

characterisation tests (see section 3.2.4). Water samples were stored under similar 

conditions after a 300mL subsample was taken for characterisation. 

3.2.1.4 Mesocosm preparation 

The mesocosms used in this study were constructed in acid-washed and autoclaved 

1,000mL Schott Bottles filled with the starting soil, iron and soil amendments and 

river water samples in a self-fabricated glove bag‟ supplied with nitrogen (see 

section B.1 of Appendix B). The solid amendments (iron minerals and soil samples) 

were added along with the soil and the liquid amendments (ferric citrate) with the 

water sample. The sealed environment required to establish anaerobic conditions 

was achieved with the use of VICI™ opti-cap assemblies with PEEK™ plug and 

fittings (VICI-Jour) attached to the 1,000mL-Schott™ bottle. The PEEK system 

consisted of twin valves with female luer fittings and Teflon tubing fitted with a nut 

and ferrule. The tubings attached to each valve were of differing lengths. The mid-

length and short-length design allowed for the sampling of air and liquid samples 

respectively. The opti-cap set up was particularly chosen as it meets the 

requirements in the ASTM Standard, „Guide for monitoring the fate of chemicals in 

site-specific sediment/water microcosms‟ (ASTM:E1624-94, 2008).  

After the mesocosms were filled, the O-rings on the screw cap and lip of the bottle 

were wiped clean with ethanol before sealing to eliminate residual soil and ensure a 

proper seal. With a nitrogen-filled ballast volume attached to the valve of the shorter 
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tube, toluene from a freshly prepared stock solution was added to the sealed vessels 

with the aid of a syringe (see section B.1 of Appendix B). This method was adopted 

to minimise errors that may have been caused by air entering the mesocosms during 

sampling and toluene addition (spiking). The soil-water mixture was homogenised 

by shaking and left to stand for half an hour to allow a clear partition between the 

soil and water. 10mL subsamples were obtained similarly (i.e. with the use of the 

syringe and ballast volume) and centrifuged at 2,000 rpm for 10 minutes prior to 

performing analysis for toluene, total aqueous iron concentrations and pH. A total of 

33 individual mesocosms were prepared for the degradation studies, 6 for the pilot 

study (Batch A), 18 for the studies on the effects of iron amendments (Batch B) and 

9 for the studies on the effects of soil amendments (Batch C) as shown in Table 3.4 

below.  

Table 3.4 Summary of mesocosm test design applied in this study 

 

Batch 

 

Treatment 

 

Amendments 

 

Mesocosm set up 

 

A 

 

 

Control 

(No toluene) 

 

 

None 

 

3 replicates 

containing 80g (wet 

soil), 500mL river 

water, 300mL 

toluene stock 

solution and 300mL 

headspace in 

1000mL Schott vial, 

VICI opti-cap 

assembly sealed 

 

A 

 

 

Active 

(Toluene added) 

 

 

None 

 

 

 

 

B 

 

Active with iron 

amendment 

 

Hematite, 

Goethite, 

Magnetite, Ferric 

citrate, 

Ferrihydrite, 

Lepidocrocite 

 

 

 

- 
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To ensure samples for toluene analysis did not exceed the linear range of the GC 

(see section 3.1.3), an initial toluene stock solution was prepared by adding 150uL 

of aqueous toluene to 1000mL of deionised water. This was judged to be low 

enough to avoid inhibition of soil microbial activity and high enough to allow 

changes to toluene concentrations to be clearly discerned through chemical analysis. 

After the removal of aqueous phase toluene in the liquid, the mesocosms were 

drained to the 500mL mark to accommodate the re-addition of 300mL of toluene 

from a freshly prepared toluene stock solution. The actual amount of toluene 

degraded (in mg) was therefore estimated as the product of the fraction of toluene 

removed and the amount of toluene (in mg/L) in the stock solution from which 

toluene was added to the mesocosms (see section B-4 of Appendix B).  

3.2.1.5 Mesocosm sampling 

A serial sampling method was employed in this study. Removal of liquid samples 

and addition of toluene stock solutions were both achieved with the aid of a 300mL 

FORTUNA® glass syringe with a luer tip style. The choice of a glass syringe as 

opposed to plastic was to minimise sorption or adhesion of toluene to the surface of 

the syringe during sampling and toluene addition. Mesocosms were shaken by hand 

to ensure proper mixing of toluene, soil and water and re-suspend any precipitates 

present in the soil-water mixture. In both instances of removal of liquid samples and 

addition of toluene stock, a nitrogen-filled ballast volume was always attached to the 

second valve to ensure anaerobic conditions within the vessel and minimise the 

introduction of oxygen while sampling and spiking. As previously mentioned, 

samples were taken over 3-day intervals. The sampling frequency was, in part, 

determined from the results of the pilot study (Batch A). The total incubation period 

for each mesocosm set was dependent on the point at which suppressed removal of 

toluene was observed. The proposed experiment design was that evidence of iron- 

mediated toluene degradation was to be inferred by changes in pH and total 

dissolved iron corresponding to toluene degradation. Therefore analysis of pH and 

total dissolved iron was performed along with the analysis of toluene concentrations. 

Analysis of toluene concentrations was achieved by gas chromatography. Inorganic 

anions were analysed at the beginning and end of the experiments and showed no 

competing terminal electron acceptors (particularly nitrates and sulphates) were 

present in appreciable levels. A summary of the mesocosms and analyses performed 

can be found in Appendix B.  
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3.2.2 Apparatus 

At the start of each mesocosm set up, all glassware were properly washed and rinsed 

with deionised water and left to dry in oven. After use, glassware were left to soak 

overnight in an acid bath before re-use. 

3.2.3 Chemicals and analytical grade reagents 

Laboratory-grade toluene obtained from Fluka™ was used in the preparation of 

toluene stock solutions for spiking and re-spiking procedures. The reagents for 

sequential extractions (purchased from Sigma Aldrich™) include nitric acid, 

hydrofluoric acid, perchloric acid, boric acid, ferrocene, HEPES, hydrochloric acid, 

chromium (ii) chloride, silver nitrate, ammonium oxalate monohydrate and sodium 

dithionite. Liquid nitrogen and solid carbon dioxide (dry ice) for stable isotope 

analysis were obtained from the University storage supply. Laboratory-grade 

phosphoric acid for stable carbon isotope analysis was obtained from Sigma 

Aldrich™ as well as reagents for ferrozine analysis which included ammonium 

acetate, hydroxylamine hydrochloride, and hydrochloric acid. 

Additional reagents and chemicals for the laboratory-prepared iron amendments 

include laboratory grade, ferric chloride tetrahydrate, FeCl2.4H2O, and ferrous 

nitrate nonahydrate, Fe (NO3)3.9H2O. These were purchased from Sigma Aldrich™. 

Ferric chloride tetrahydrate, FeCl2.4H2O, and ferrous nitrate nonahydrate, Fe 

(NO3)3.9H2O were used in the synthesis of lepidocrocite and ferrihydrite 

respectively. 2-line ferrihydrite was synthesized using Fe (NO3)3.9H2O solutions 

titrated with 1N NaOH following the method in (Parkman, R.H. et al., 1999) and 

lepidocrocite in fresh, unoxidised FeCl2.4H2O filtered and adjusted to pH 6.7 with 

freshly prepared 1M NaOH solution as described in (Yu, J.Y. et al., 2002). The 

mineralogical composition of the synthesized ferrihydrite and lepidocrocite samples 

were confirmed by x-ray powder diffraction. Laboratory-grade ammonium 

hydroxide and sodium hydroxide, used to adjust the pH during the mineral synthesis 

experiments, were obtained from Fluka™. The natural minerals, namely hematite, 

goethite and magnetite, were obtained as rock samples. Preparation of these samples 

followed a two-step procedure beginning with cutting with the aid a rotating saw 

followed by crushing to fine-sized particles in an automated pestle and mortar.  
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3.2.4 Analytical instrumentation: chemical and physical 

characterisation tests 

Subsamples (10 g) were taken and analysed for pH, initial moisture content, particle 

size distribution, surface area, total elemental concentration, mineralogical content, 

and dissolved ion concentrations (see summary in Table 3.5). Reference was made 

to methods described in (Page et al., 1982) and (Carter, 1993). 

Table 3.5 Properties analysed and instruments used in analyses 

 

Characteristic 

 

Method 

 

Colour 

 

Physical inspection 

 

 

Moisture content 

 

Gravimetric 

 

 

pH 

 

Potentiometric 

 

 

Texture 

 

Laser diffraction particle size 

analysis 

 

 

Surface area 

 

Brauner-Emmett-Teller (BET) 

analysis 

 

 

Total elemental concentration 

 

X-ray fluorescence (XRF) 

spectroscopy 

 

Mineralogy X-ray diffraction (XRD) 

 

  

 

3.2.4.1 pH measurement 

Before each reading was made, the pH electrode was calibrated over the appropriate 

range using standard buffers. The method for soil pH determination was based on 

(Henning, 2004) which involves the use of 5 g of crushed dried soil placed in a vial 

and thoroughly mixed with 5 mL of deionised water. Following mixing with 

deionised water, the solution was left to stand for 1-2 h with occasional stirring. A 

pH probe was then inserted for 5 minutes measurements were made in triplicate. 
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3.2.4.2 Determination of soil moisture content  

Soil moisture content was determined gravimetrically by the change in weight after 

drying at 105
o
C for 24 h (Braddock et al., 1997; Gogoi et al., 2003; ISO, 1993). 

Triplicate subsamples (10 g) were weighed on watch glasses and left overnight in an 

oven at 105
o
C. The weight after drying was taken and the weight of the soil in both 

cases adjusted by subtracting the weight of the watch glass. Gravimetric moisture 

content, M was then calculated from the equation below and the weight of soil (see 

Equation 3.1) 

                              
  

   
 …………………… Equation 3.1 

 

where  

mw = weight of moist or air-dried soil 

and mod = weight of oven dried-soil 

 (All masses were measured in grammes) 

 

The gravimetric moisture content was expressed as a percentage of the total weight 

of sample dry solids.  

3.2.4.3 Texture  

Particle size analysis was performed on a Mastersizer 2000™ laser diffraction 

instrument fitted with a pump system. Analysis was carried out at a laser obscuration 

range of between 7.5 and 15% and mid-range obscuration of 9-11% to minimise 

errors that could arise due to the formation of floccs from sample particles within the 

pump system. The data on the size distribution of the samples was generated using 

the Tabsmastersizer software and exported in excel spreadsheet format. 

3.2.4.4 Brunauer emmet teller (BET) surface area 

BET analysis works by the principle of adsorption of nitrogen gas on a solid surface 

to determine the surface area of the sample, with the BET surface area is determined 

by the extent of nitrogen adsorption to an outgassed sample. To begin the 

experiments, sub-samples weighing 10 g were measured into tube holders to which a 

nitrogen line was inserted. The tubes were capped and the degasser switched on and 

left overnight. BET analysis was performed on a micron II™ Braunner Emmett 

Teller (BET) instrument. Data acquisition was with the aid of Gemini VII 2390™ 

software.  
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3.2.4.5 Total elemental concentration 

X-ray Fluorescence spectroscopy (XRF) was performed on a portable 

PANanalytical Axios Advanced X-ray Fluorescence (XRF) spectrometer. The 

analysis involved grinding and sieving to 2mm, freeze dried soil samples. Samples 

were inserted into the instrument in a loose powder mount covered with Mylar film 

(Evans, J.R. et al., 2003; Shefsky, 1997). A palladium x-ray source was used as the 

primary radiation with helium gas. The instrument was pre-calibrated with two 

settings - mining plus and soil plus modes; soil plus mode did not cover % levels 

and did not include Mg, Al or Si. The analysis was conducted for 2h and the total 

elemental concentration  of the soil samples determined. This analysis was also 

performed in the School of Earth and Environment by Lesley Neve.  

3.2.4.6 Mineralogical analysis 

The freeze-dried soil sample was crushed in a mortar and pestle and a small amount 

placed on the centre of a silicon holder. X-ray diffraction analysis of the samples on 

the side was carried out on a Bruker D8™. For data acquisition, a Cu anode was 

supplied with 40 kV and a current of 40 mA to generate Cu-Kα radiation (l = 

1.54180 Å) or Cu-Kα1 (l = 1.54060 Å). The data was collected over a range of 2-

90
o
2θ with a nominal step size of 0.009

o
2θ and nominal time per step of 1.00 

seconds. Fixed anti-scatter and divergence slits of 1/4
o
 were used together with a 

beam mask of 10mm. All scans were carried out in „continuous‟ mode using the 

X‟Celerator RTMS detector. Data interpretation was achieved using the X'Pert 

accompanying software program High Score Plus® in conjunction with the ICDD 

Powder Diffraction File 2 database (1999) and the Crystallography Open Database 

(October 2010; www.crystallography.net). 

Quantitative or Rietvield analysis was performed on the Philips PW1015™ 

configured to use Cu K alpha radiation with the power set to 50 kV and 40 mA. The 

scan parameters were 3-70
 o

2θ scan range at a speed of 0.6
o
 per minute and a step 

size of 0.01
o
. The samples were prepared by spray-drying with the addition of a 20 

% corundum spike giving spherical particles which are randomly oriented in the 

XRD.  Data interpretation was initiated using a method called RIR (relative intensity 

ratio) on the whole pattern. The analysis was performed in the School of Earth and 

Environment by Lesley Neve. 

http://www.crystallography.net/
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3.2.4.7 Dissolved anion and cation concentrations 

The analysis of inorganic anions (sulphate – SO4
2-

, nitrate - NO3
-
 and chloride - Cl

-
) 

in the water sample was performed on a Metrohm™ 850 Professional ion 

chromatograph (IC), consisting of an auto-sampler equipped with a conductivity 

detector. The instrument consisted of a Dionex DX-600 with AS50 auto-sampler 

using a 2mm AS11 analytical column, designed for gradient elution to 15mM 

potassium hydroxide. Samples for analysis were further diluted to a 1 in 1000 

dilution by taking 0.1mL of supernatant and making up to 9.9 mL with DI H20 and 

then transferred into falcon tubes and loaded onto the Dionex auto-sampler for 

analysis at a sample injection volume of 10µL. In-between loading samples, the 

column was flushed with deionised water for 1.5minutes. Individual runs were made 

over a 25-minute period with detection times at 6.2 minutes for chlorides, 9.6 

minutes for nitrates, 14.9 minutes for sulphates and 13.3 minutes for phosphates. 

3.2.5 Analytical instrumentation: degradation experiments 

3.2.5.1 Toluene concentrations 

Analysis by gas chromatography was performed on an Agilent™ J & W DB-5 

column (30m length, 0.25 line and 0.25 µm film) coupled to a flame ionisation 

detector (FID) (hydrogen flow 30 mL/min and air flow 400 mL/min) with an 

injector (temperature 270C, split ratio of 100:1). The DB5 column is commonly 

used for analysis of petroleum hydrocarbons (Gough and Rowland, 1990) and is the 

low temperature equivalent of the aluminium-clad diphenyl:disiloxane carborane (5 

% : 95 %) column (SGE HT5) with a 0.53 mm i.d. and 0.15 micron film thickness. 2 

µl aliquots were injected in splitless mode. A linear temperature gradient was 

employed. The GC oven temperature was 190
o
C isothermal for 3minutes then 

7
o
C/minute to 150

o
C and 20

o
C per minute to 220

o
C (see Table 3.4). A nitrogen 

carrier gas was used at a flow rate of 2.5 ml/min. gas samples from salting out vials 

(see Appendix C) were injected into the instrument. Identification of toluene peaks 

was achieved by comparing peak characteristics of analysed samples with calibrated 

standards. During each run, toluene was detected at approximately 6.2 minutes. This 

analysis was to determine toluene concentrations in the mesocosms and was 

performed by David Elliott in the School of Civil Engineering. 
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Table 3.4 Temperature setting of the gas chromatography instrument 

  

Target 

Temperature 

 

 

Rate 

 

Hold Time 

 

Initial 

 

40
o
C 

 

N/A 

 

3mins 

 

Ramp 1 150
o
C 7

o
C/min N/A 

 

Ramp 2 220
o
C 20

o
C/min N/A 

 

    

 

3.2.5.2 Total (aqueous) iron 

Total dissolved aqueous iron concentrations were analysed using the ferrozine assay 

following the protocol in Viollier 2000. The test makes use of three reagents namely 

ferrozine solution, a reducing agent (1.4M hydroxylamine hydrochloride) and a 

buffer solution (5 M ammonium acetate). The ferrozine solution consisted of 0.01 M 

ferrozine in a 0.1M-ammonium acetate (CH3COONH4) solution prepared by 

dissolving 0.5077 g of ferrozine and 0.7708g of ammonium acetate in DI water. The 

solution was stored away from light in a refrigerator at 14
o
C and was used within a 

month of preparation, as it oxidises over the time. The 1.4 M hydroxylamine 

hydrochloride solution (H2NOH.HCl) reducing  agent acts to reduce aqueous Fe (III) 

to Fe (II) and was prepared by dissolving 9.728g of hydroxylamine hydrochloride in 

50 mL of DI water, followed by 17 mL of concentrated HCl made up to 100 mL 

with DI water. Hydroxylamine hydrochloride is hygroscopic, and was prepared 

immediately before use and stored in a closed container. The 5 M ammonium 

acetate buffer solution was prepared by dissolving 38.54 g of ammonium acetate 

(CH3COONH4) in DI water followed by the addition of 28-30 % ammonium 

hydroxide (NH4OH) to adjust the pH to 9.5. 

1000µL of standards, centrifuged samples and blank solution (deionised water) were 

pipetted into each cuvette followed by 100 µL of ferrozine reagent and 200 µL of 

hydroxylamine hydrochloride. The content of the cuvettes was homogenised by 

shaking and left to stand for 10minutes to allow for complete reduction of Fe (III) to 

Fe (II). 50 µL of ammonium hydroxide buffer solution was added to complete the 

reaction and the solution re-homogenised by shaking. The blank was first measured 

to zero the instrument, followed by the standards and samples.  



- 51 - 

3.2.5.3 Operationally-defined extractable iron phases 

The most commonly used techniques for the determination of trace metals in soil are 

based on atomic spectroscopy. Two common techniques include atomic absorption 

spectroscopy (AAS) and atomic emission spectroscopy (AES). In this study, soil 

samples (10 g) were subjected to sequential extraction by isolating operationally-

defined iron-bound fractions in soil as put forward by (Poulton and Canfield, 2005). 

The chemical extractions targeted the following iron fractions: 

(a) Carbonate Fe (including siderite and ankerites) extracted with Na acetate 

adjusted to pH 4.5 for 24 h;  

(b) Easily reducible oxides (including ferrihydrite and lepidocrocite) with 

Hydroxylamine-HCl for 48h;  

(c) Reducible oxides (including goethite, hematite and akaganeite) with Dithionite 

for 2h;  

(d) Magnetite with Oxalate for 6h;  

(e) Pyrite Fe with Boiling 12N HCl; 

(f) Unreactive silicate with Chromous chloride distillation and  

(g) Total Fe (II) and Fe (III) fractions with Perchloric, HF and boric acid 

treatment.  

A summary of the extractions sequence is given in Table 3.5, the experimental 

protocol is documented in section C.6.6 of Appendix B. 

Table 3.5 Summary of the sequential chemical extractions showing extractants and 

target phases (adapted from (Poulton and Canfield, 2005) 

Extraction Target iron phase Terminology 

 

 

Sequential Fe extractions 

 

Na acetate pH 4.5, 24 h Carbonate Fe, including 

siderite and ankerite 

 

Fe carb 

Hydroxylamine-HCl, 48h Easily reducible oxides 

(including ferrihydrite and 

lepidocrocite) 

 

Fe ox1 

Dithionite, 2h Reducible oxides (including 

goethite, hematite and 

akaganeite) 

 

Fe ox2 

Oxalate, 6h Magnetite Fe mag 
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Extraction Target iron phase Terminology 

 

Sulphate extractions 

 

Boiling 12N HCl Pyrite Fe Fe py 

Chromous chloride distillation Unreactive silicate Fe U 

 

Total Fe extractions 

 

Perchloric, HF and boric acid 

treatment 

Total Fe (II) and Fe (III) 

fractions 

Fe T 

 

Bioavailable fraction 

 

Fe = (Total Fe-(sum of first 5 stages + pyrite Fe)) 

   

 

After each fraction was extracted, the supernatant was separated via centrifugation 

and vacuum filtration, made up to a 2 % HNO3 solution and stored at 10
o
C for 

radiochemical analysis. This analysis was performed by Romain Guildbald in the 

School of Earth and Environment on a ContrAA 600 ™ automated absorption 

spectrophotometer (AAS) instrument. Further dilution and re-analysis was 

performed for samples with excessively high concentrations (over the range of the 

calibration curve i.e. 10 ppm). Concentrations were converted to weight percentages 

using the formula below: 

                                                                                         
      

                      
       

where  

ppm concentration is the concentration of Fe in ppm, and 

original sample weight is the weight of the soil sample in mg 

3.2.5.4 δ
13

C signatures 

Isotope ratios are expressed in terms of δ
13

C values, which are reported in per mil 

and calculated relative to the standard Pee Dee belemnite (PDB), according to the 

relationship. 

          
                  

         
          Equation 3.2 

GC-IRMS is generally adopted for stable isotope analysis as it allows for the 

measurement of small but significant variations in stable isotope ratios with high 

precision (Boutton, 1991). The protocol for the stable isotope analyses in this study 

was a two-step procedure of acidification followed by cryogenic distillation of 

evolved gas as documented in (McCrea, 1950). Combustion tubes containing the 

samples and CuO were sealed under vacuum by a standard glass-blowing torch. 
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Sample CO2 isolation and purification was accomplished on a vacuum system by 

vacuum line manipulation and cryogenic distillation. 10g of the freeze-dried soil 

sample was placed in the sample holder and reacted with „wet‟ phosphoric acid 

(H3PO4) acid slowly released from an acid dispenser. Gas volumes were monitored 

with the use of the capacitance manometer to which a gauge displaying readings was 

attached. After passing through the silica CuO combustion chamber, individual 

compounds were detected on a dedicated SIRA II Triple Collector isotope ratio mass 

spectrometer. Sample isotope ratios are, by standard procedure, evaluated initially 

relative to a reference CO2 stream calibrated relative to the standard PDB carbonate 

formation. Final sample δ
13

C were reported relative to the standard PDB with 

corrections made for 
17

O contributions. The instrument was calibrated with an 

internal strontium carbonate standard (APB-2) and the change in the ratio of 
13

C to 
12

C (δ
13

C) was obtained from raw data derived from measurements of m/e ion beams 

44, 45, 46 as described in (Craig, 1957).  

As described in section 3.1.2, we propose a study for distinguishing between iron-

bound soil carbonates using stable carbon measurements on the basis of their 

reaction times with phosphoric acid. Therefore the first gas fraction released within 

the first 45 minutes of acidification and the second gas fraction released after a 24-

hour period were taken to be representative of the fast (e.g. calcium carbonates) and 

slow reacting soil carbonates respectively (e.g. iron carbonates). Both fractions were 

analysed separately on the GC-IRMS instrument. 

3.3  Statistical analysis 

IBM SPSS Statistics® 23 was used for statistical hypothesis testing. Except 

otherwise stated all statistical tests were performed on a .05 alpha level. 
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Preamble 

Results of degradation experiments 

 

P-1 Mesocosms with soil and water only (SO) 

The mesocosms containing soil and water only served as live control experiments. 

Analysis of the liquid fraction of the soil-water mixture showed no traces of toluene 

in the mixture. The total iron in this mesocosm group was consistent among 

replicates (see Figure P-1). There was however a gradual decline in total iron 

concentrations at the start of the experiments during the first three days of the 

incubation period. Between the third and twelfth day, the total iron concentrations 

did not vary appreciably however a gradual rise in total iron occurred after the 

twelfth day and continued over the period of incubation. 

 

Figure P-1 Concentration-time courses for total dissolved reactive (TDR) iron and 

pH in mesocosms with soil and water 
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P-2 Mesocosms with soil, water, and toluene (ST) 

The mesocosms containing soil, water and toluene were set up as active control 

experiments and contained the same soil-water matrix successively spiked with 

toluene. The plot of toluene concentrations with time show toluene removal 

occurred with each successive spike made to the soil-water mixture (see Figure P-2). 

These concentrations did not show much variation among replicates during the 

period following the addition of the initial toluene spike (0-15 days). Toluene 

concentrations however varied more significantly among the replicates during the 

period following the addition of the second spike (18-33 days). Each toluene spike 

was made from stock solutions of similar concentrations however the data obtained 

shows slightly higher concentrations for the points at which each spike was added. 

These differences in concentrations were either due to errors during GC analysis or 

residual toluene present in the soil-water at the time at the time of spiking. Toluene 

removal was less pronounced from day 45 onwards. Suppressed removal of toluene 

was observed from this point onwards i.e. no further toluene removal was observed. 

Toluene removal did not have a noticeable effect on total iron concentration in the 

soil-water mixture as total iron concentrations did not vary significantly during the 

period of incubation. The total iron in the system remained in a 0.2-0.4 mM range 

over the period of incubation. The pH of the soil-water environment increased 

gradually during the period after the addition of the second spike and remained in a 

7.2-7.6 range over the incubation period. 

 

Figure P-2 Concentration-time courses for total dissolved reactive iron and pH in 

mesocosms with soil and toluene 
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P-3 Mesocosms with hematite amendment (HM) 

The mesocosms hematite amendement contained the same water and soil mixture 

amended with hematite and successively spiked with toluene. The experimental 

results show these mesocosms supported the removal of toluene with each 

successive spike (see Figure P-3). The point at which suppressed toluene removal 

was induced in the soil-water mixture occurred during the period after the third 

spike, around the day 48 time point. The total iron concentrations in the mesocsoms 

varied between 0.1-0.5 mM during the period of incubation. A slight decline in pH 

was observed after the initial spike and remained between 7.1-7.7 over the course of 

the experiments. 

 

Figure P-3 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms amended with the hematite 
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P-4 Mesocosms with goethite amendment (GE) 

The goethite-amended mesocosms also supported toluene removal with each 

successive spike. The addition of each new spike resulted in higher toluene 

concentrations at the start of each period after spiking (see Figure P-4). Suppressed 

removal of toluene was induced in the period after the addition of the third toluene 

spike. The total iron concentrations in the soil-water mixture indicate the presence of 

goethite increased this content. After the initial spike a decrease of about 0.4 units in 

pH was observed however the pH in all replicates remained in the 7.2-7.7 range 

during the period of incubation.  

 

Figure P-4 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms with the goethite amendment 
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P-5 Mesocosms with magnetite amendment (MT) 

The soil-water mixture amended with magnetite supported toluene removal with the 

addition of each successive spike (see Figure P-5). After the initial spike, toluene 

removal was observed by the sixth day in two replicates. A similar trend was 

observed during the period after the second spike. Suppressed removal of toluene 

was observed after the addition of the third toluene spike. The total iron in the soil-

water mixture was in the 0.1-0.7 mM range over the period of incubation.. A slight 

decline in pH was observed after the initial toluene spike however no appreciable 

changes in pH occurred during the periods after the second and third spikes. The 

mesocosm pH ranged between 7.2 and 7.8 over the period of incubation. 

 

Figure P-5 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms with the magnetite amendment  
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P-6 Mesocosms with ferrihydrite amendment (FH) 

The ferrihydrite-amended mesocosms supported toluene removal with a significant 

portion of toluene removed shortly after the initial spike (see Figure P-7). Complete 

toluene removal occurred by the sixth day in all replicates. Suppressed removal of 

toluene was observed at a time point during the period after the second spike was 

made. In two replicates the total iron remained in the 0.2-0.4 mM range over the 

period of incubation. A decline in pH was observed from 6.5 at the start of the 

experiments to 5.2 at the end of the period of incubation. 

 

Figure P-6 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms with the ferric citrate amendment  
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P-7 Mesocosms with lepidocrocite amendment (LP) 

The soil-water mixture amended with lepidocrocite did not support toluene removal. 

as toluene concentrations in the mesocosms did not vary significantly (see Figure P-

7). These concentrations remained between 0.4 mM and 0.6 mM throughout the 

fifteen-day period after the introduction of the initial toluene spike. No further 

analysis was made due to time constraints. Total iron concentrations were found in 

the 0.2-0.6 mM range in all replicates. The pH readings obtained suggest the 

presence of lepidocrocite in the mesocosms induced alkaline conditions as the pH 

remained between 8.4 and 8.8 during the period of incubation.  

 

Figure P-7 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms with the lepidocrocite amendment 

  

0 3 6 9 12 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 3 6 9 12 15
7.0

7.5

8.0

8.5

9.0

9.5

0 3 6 9 12 15

0.0

0.2

0.4

0.6

0.8

1.0

 Replicate 1

 Replicate 2

 Replicate 3

T
D

R
 F

e 
(m

M
)

Time (days)

 Replicate 1

 Replicate 2

 Replicate 3

pH

Time (days)

Mesocosms with lepidocrocite amendment

 Replicate 1

 Replicate 2

 Replicate 3
T

ol
ue

ne
 (m

M
)

Time (days)



- 61 - 

P-8 Mesocosms with soil 1 amendment (S1) 

The mesocosms with the soil 1 amendment were the first of the soil-amended 

mesocoms which contained the starting soil material mixed with a soil sample 

identified as „Soil 1‟. Toluene removal was supported by the mixture of the starting 

soil and Soil 1 amendment (see Figure P-8). Complete toluene removal was 

observed in all replicates on the fifteenth day after the addition of the initial toluene 

spike. The replicates showed suppressed removal during the period after the second 

spike. The analysis of toluene concentrations show appreciably lower concentrations 

at the start of the period following the addition of the first spike when compared to 

the concentrations at the start of the period after the second spike. An increase in 

total iron was observed after the first spike, continuing till the ninth day at which 

point a gradual decline occurred as the experiments progressed. It is likely the 

presence of the soil amendment induced this increase. The soil-water pH remained 

between 7.0 and 7.5 all through the period of incubation.  

 

Figure P-8 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms with the contaminated soil amendment 
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P-9 Mesocosms with soil 2 amendment (S2) 

The mesocosms with the soil 2 amendment supported the removal of toluene (see 

Figure P-9). Suppressed removal was observed during the period after the second 

spike. An increase in total iron concentrations in the mesocoms was observed during 

the period after the first spike and continued to the ninth day after which these 

concentrations remained unchanged. A decline in mesocosm pH from 7.4 to 6.9 was 

observed between the first and last day of the incubation period.  

 

Figure P-9 Concentration-time courses for toluene, total dissolved reactive iron and 

pH in the mesocosms with the sandy soil amendment 
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P-10 Mesocosms with soil 3 amendment (S3) 

The last group of the soil-amended mesocosms contained the sample identified as 

„Soil 3‟ and was seen to have also supported toluene removal after spiking (see 

Figure P-10). Similar initial toluene concentrations were observed after the addition 

of the first and second spikes. Suppressed removal of toluene occurred during the 

period after the second spike. Total iron concentrations did not show appreciable 

variations over the period of incubation however the pH was found to have 

increased slightly during the period after each spike. Lower initial pH readings were 

observed after the addition of the second spike. 

 

Figure P-10 Concentration-time courses for toluene, total dissolved reactive iron 

and pH in the mesocosms with the loam soil amendment 
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Chapter 4 

Iron-Mediated Toluene Degradation in Batch Mesocosms 

Introduction  

The main objective of the mesocosm experiments was to demonstrate the removal of 

toluene under predominantly iron-reducing conditions. Replicate 1,000mL vessels 

containing 80g of uncontaminated soil and 500mL of river water sealed under 

oxygen-free conditions served as experimental analogues of subsurface soils 

constructed for the purpose of assessing toluene removal under predominantly iron-

reducing conditions. In this chapter the initial study for the active and control 

mesocosms is reported.  

4.1  Results and discussions 

4.1.1 Characterisation tests  

Characterisation tests were performed on the river water sample specifically to 

assess its pH and dissolved anion composition. Analysis of the ion concentrations of 

the river water sample detected nitrates at 56 mg/L, sulphides at 137 mg/L and 

chlorides at 69 mg/L. Fluorides, bromides, nitrites, and phosphates were not 

detected in the water sample. The sample pH was found to be near-neutral at pH 7.5. 

Similarly the tests conducted on the soil sample were to assess specific 

physicochemical properties namely  pH, particle size distribution, moisture content, 

elemental composition and mineralogy. The soil pH was near neutral at pH 7.5. Soil 

particle size analysis indicated a clay content (particles < 0.002 microns) of 0.5 %, a 

silt content (particles 0.002 – 0.063 microns) of 50.4% and a total sand content 

(particles 0.063 microns to 2.000 mm) of 49.2% w/w. Soil moisture content was 

determined by the difference in weights before and after drying the soil (at 105
o
C for 

24hours) and was found to have a value of 31.7% (see section B-5 of Appendix B). 

Determination of the BET (Braunner-Emmett-Teller) surface area by nitrogen gas 

adsorption produced a value of 14.9m
2
/g.  The major elements identified in the 

starting soil material were sodium, magnesium, aluminium, potassium, iron and 

silicon. X-ray fluorescence spectroscopy (XRF) indicated high levels of elemental 

concentrations of silicon (Si) at 24%, aluminium (Al) at 6% and iron (Fe) at 3% with 

magnesium, sulphur and potassium at concentrations approximately 0.1%. Other 

trace elements such as Cr, Ni, Ba, Nb, Zr, Y, Sr, Rb, and Co were identified in more 

minute amounts (0.01% or less). Analysis of mineral composition by x-ray 
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diffraction (XRD) revealed the dominant minerals present were silicate and 

phyllosilicate minerals. The analysis revealed the predominant minerals as quartz – 

SiO2 with some percentage of kaolinite (orthoclase), illite and smectite (feldspar). 

Quartz was identified by Rietveld analysis at 61.5% and feldspars (or 

aluminosilicates) were detected in smaller amounts and include kaolinite (7%), 

albite (5.8%), and microcline (4.8%). The clay mineral illite was found at 2%. Other 

common soil minerals such as dolomite, siderite and pyrite were not detected in the 

sample. The soil pH was found to be near-neutral at 7.5. 

4.1.2 Mesocosm experiments 

The concentration-time profiles for toluene, total iron and pH in the active and 

control mesocosms is shown in Figure 4.1.  

 

Figure 4.1 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the control and active mesocosms. Trend lines are separated 

according to time of addition of toluene spikes to the active mesocosms. Error 

bars represent the standard error of the mean of three replicates. 

 

A comparison of the total dissolved iron concentration and pH  in the active and 

control mesocosms show similarities in the pH of the soil-water mixture of both 

mesocosm sets however the total iron concentrations were not similar. There was a 

gradual increase in total iron concentrations in the control mesocosms as described 

in the Preamble (section P-1). The control mesocosms (i.e. the mesocosms 

containing soil and water only) contained 1.5 ± 0.19 mM of total dissolved iron at 
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the start of the experiments, however a decline in this concentration was observed as 

it was found to be at 0.2 ± 0.07 mM on the third day. Although the total dissolved 

concentrations did not vary significantly over the following 9-day period, a gradual 

rise in total dissolved iron concentrations was observed by day 12, and continued 

over the period of incubation. Under neutral conditions of pH, Fe
2+

 is more soluble 

than Fe
3+

 therefore the total dissolved iron concentrations in the active and control  

mesocosms were likely to be more representative of the amount of Fe
2+

 in solution. 

The gradual increase in total dissolved iron concentrations in the control mesocosm 

from day 21 onwards suggests the mesocosms may have, at that point, been under 

the influence of an on-going process that contributed to the overall total dissolved 

iron concentrations in the liquid. The total dissolved concentrations in the active 

mesocosms were found to be at 0.4 ± 0.04 mM after the addition of the first toluene 

spike and remained within this range after the addition of the second and third 

toluene spikes (see Figure 4.1). The amount of dissolved iron concentrations in the 

active mesocosms remained unchanged during the three periods following the 

addition of toluene. The characterisation tests did not reveal significant amounts of 

competing terminal electron acceptors (i.e. nitrates and sulphates). Therefore, under 

the assumption that toluene degradation occurred under predominantly iron-reducing 

conditions, the electron transfer process between toluene (the electron donor) and 

Fe
3+

 (the terminal electron acceptor) occurred with iron in the micro- and nanomolar 

range as opposed to the processes occurring in the control mesocosms which 

induced a build-up in dissolved iron concentrations in the millimolar range. The pH 

in the control mesocosms were initially at 7.3 ± 0.01 and remained within a 7.3-7.6 

range all through the period of incubation. Similarly the initial pH in the active 

mesocosms, initially at 7.5 ± 0.01, remained within the range of 7.1-7.6. The 

concentration-time profile suggests the activities occurring in the control and active 

mesocosms produced no significant effects on the pH in these mesocosms.  

A concentration of 0.6 ± 0.10 mM was observed in the mesocosms after the first 

toluene spike (see Figure 4.1). The starting concentrations mesocosms after the 

addition of the second and third spike were 0.6 ± 0.12 mM and 0.9 ± 0.10 mM 

respectively. The concentration-time profile indicates a gradual suppressing of 

toluene removal was observed during the period following the addition of the third 

spike. Analysis of the time series experimental data showed 96.7 ± 10.4 mg of 

toluene was degraded in the active mesocosms at the end of the first spike period 

(see Figre 4.2). Slightly lower amounts of removal occurred at the end of the period 

following the addition of the second and third spikes (71.7 ± 15.8mg and 69.1 ± 2.8 

mg respectively).  
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Figure 4.2 Toluene removal in the active mesocosms during the first spike period 

(0-15 days), second spike period (18-33 days), third spike period (36-51 days) 

and overall incubation period (0-51 days). Error bars represent the standard 

error of the mean of three replicates. 

 

When fitted to zeroth order rate kinetics, the rates of toluene degradation were 3.05 

± 0.5 mg
-1

l
-1

day
-1

, 1.95 ± 0.76 mg
-1

l
-1

day
-1

, and 3.60 ± 0.57 mg
-1

l
-1

day
-1

 for the first, 

second and third periods after spiking. When fitted to first order rate kinetics the 

degradation rates were 0.09 ± 0.02 day
-1

, 0.06 ± 0.02 day
-1

, and 0.06 ± 0.01 day
-1

 for 

the respective time periods (see section B-6 of Appendix B). The rate fittings show 

the rate of toluene removal did not vary significantly during each spike period.  

4.1.3 Chemical sequential extractions 

Each mesocosm was drained to the 500 mL mark at the end of the spiking period to 

accommodate the subsequent 300 mL re-spike from a prepared toluene stock 

solution. The process of draining the liquid may have removed a portion of the solid 

and dissolved constituents in the soil-water matrix. It is therefore likely that the total 

dissolved aqueous concentrations in the active mesocosms during the second and 

third spike periods were not a true representation of the total dissolved iron fraction 

in the system. For a more accurate estimation of iron content, a sequential extraction 

method was applied. This method was used to analyse iron in the solid phase 

according to operationally-defined fractions or pools (see section 3.3.4 of the 

methods chapter) and was performed on material from the starting soil, control 

mesocosms and active mesocosms. The results of the single-step extraction for the 

total extractable iron content showed the total extractable iron content was 10,181.7 

± 370.5 mg/kg in the starting soil material (SS), 9,023.6 ± 1,454.2 mg/kg in the 
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incubated material from the control (SO) mesocosms, and 10,702.8 ± 918.0 mg/kg, 

in the active (ST) mesocosms respectively (see Figure 4.3). From Figure 4.3 it can be 

seen that the a smaller total iron pool was present in the incubated material from the  

control mesocosms when compared to the starting soil material as well as the 

incubated material from the active mesocosms. 

 

Figure 4.3 Total extractable iron fractions in replicate samples of the starting soil 

material (SS) and incubated material from the control mesocosms (SO) and 

active experiments (ST) 

 

The results for the amount of the easily reducible pool in the starting soil material 

and incubated material from the control and active mesocosms were 6,736 ± 270.7 

mg/kg, 4,711.6 ± 579.7 mg/kg, and 4,387.7 ± 557.5 mg/kg respectively. A 

comparison of the total extractable iron pool with the easily reducible iron pool 

indicates the easily reducible pool made up approximately 75% of the total 

extractable pool in the starting material as well as the incubated material from the 

control and active mesocosms (see Figure 4.4). The results suggest the period of 

incubation in both control and active mesocosms induced a decline in the amount of 

the easily reducible iron pool present in the soil material. 
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Figure 4.4 Total extractable and easily reducible iron fractions in replicate samples 

of the starting soil material (SS) and incubated material from the control 

mesocosms (SO) and active experiments (ST) 

 

The extractions for the carbonate-bound iron showed the starting material, control 

mesocosm material and active mesocosm material contained 196.1 ± 11.4 mg/kg, 

196.1 ± 11.4 mg/kg, and 5,252.1 ± 291.8 mg/kg of this fraction respectively. The 

comparatively higher content of the carbonate pool found in the material from the 

active mesocosms suggests the degradation of toluene in this material may have led 

to an increase in this carbonate pool in the soil. A comparison of the carbonate-

bound iron pool and the total extractable iron pool show the carbonate-bound pool 

comprised about 34% of the total extractable iron in the soil material (see Figure 

4.5). 



- 70 - 

 

Figure 4.5 Total extractable and carbonate-bound iron fractions in replicate samples 

of the starting soil material (SS) and incubated material from the control 

mesocosms (SO) and active experiments (ST) 

 

The results showed the reducible iron fraction in the starting soil material, material 

from the control mesocosms and the material from the active mesocosms in 

quantities  2,504.4 ± 1,445.9 mg/kg, 2,308.1 ± 343.3 mg/kg, and 375.6 ± 20.8 mg/kg 

in respectively. The results obtained may be an indication that iron-mediated toluene 

degradation occurred in the active mesocosms with the reducible pool acting as a 

source of Fe
3+

 for iron-mediated toluene degradation or a source of Fe
2+

 for a 

different mechanism. A comparison of the reducible iron fraction and the total 

extractable iron fraction shows this pool consisted approximately 7% of the total 

extractable iron in the starting material. 

The amount of the magnetite fraction in the starting starting soil material, incubated 

material from the control mesocosms and the incubated material from the active 

mesocosms was 275.7 ± 24.4 mg/kg, 238.9 ± 45.0 mg/kg, and 253.2 ± 32.3 mg/kg 

respectively (see Figure 4.6). 
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Figure 4.6 Total extractable and reducible iron fractions in replicate samples of the 

starting soil material (SS) and incubated material from the control mesocosms 

(SO) and active experiments (ST)) 

 

The results indicate the magnetite pool made up  about 1% of the total extractable 

iron. The results also show this pool was not affected by toluene degradation in the 

active mesocosms. It can also be seen that the magnetite pool was largely similar in 

the replicate samples for the starting soil material and material from the control and 

active mesocosms. This may be attributed to the low reactivity of magnetite as an 

iron mineral and its relatively low abundance in typical soil systems. 
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Figure 4.7 Total extractable and magnetite fractions in replicate samples of the 

starting soil material (SS) and incubated material from the control mesocosms 

(SO) and active experiments (ST) 

 

The results of the extraction experiments indicate the degradation of toluene induced 

a build-up in carbonate content and a decrease in the more crystalline reducible 

oxide pool. These may have occurred concomitantly with toluene degradation or via 

separate mechanisms influenced by the presence of toluene degradation. The 

protocol for the sequential extraction includes iron minerals such as goethite, 

hematite, and akageneite as part of the reducible oxide pool (refer to table 3.5). 

Crystalline phases which possess less stable structures that are more accessible to 

these organisms and are, as a result, more readily degraded than poorly crystalline or 

amorphous phases. Therefore it is possible that the lower concentrations of the 

reducible oxide pool in the material from the active mesocosm may have been due to 

a separate mechanism occurring in the active mesocosms. The combined results of 

the extraction can be seen in Figure 4.8 below. 
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Figure 4.8 Total extractable, easily reducible, carbonate-bound, reducible, and 

magnetite fractions in replicate samples of the starting soil material (SS) and 

incubated material from the control mesocosms (SO) and active experiments 

(ST) 

 

The two-step extraction procedure for sulphate-bound iron gave no indication of the 

presence of pyrites or acid volatile sulphates in the analysed samples. 

4.2  General discussion 

Soil is generally composed of a mixture of carbonates, clay minerals, hydrous oxides 

of Fe, Mn, and Al, sand, silt, and organic matter. Soil type plays an important role in 

the fate of hydrocarbon contaminants (Semple, K.T. et al., 2003). The breakdown of 

hydrocarbons is influenced by the soil environment and its physical, chemical and 

microbiological components (Scherr et al., 2007). A typical mineral soil is 

comprised of approximately 45% mineral material (i.e. sand, silt and clay in varying 

proportions), 25% air and 25% water (i.e. 50% pore space, commonly half saturated 

with water) and 5% organic matter (variable).  The ratio of sand to clay and silt in 

the starting material indicate the sample to be a suitable environment for microbial 

activity as soils of a high clay content tend to restrict the flow of oxygen and limit 

biotransformation (Sims, 1990; BSI, 1995). XRF analysis revealed the major 

elements were silicon (Si) at 24.4 %, aluminium (Al) at 5.5%, and iron (Fe) at 2.7% 

and was in agreement with the findings of the XRD analysis which showed the soil 

material was predominantly composed of quartz and phyllosilicate minerals. The 
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results of the characterisation tests demonstrated the suitability of the chosen soil 

sample for the biodegradation experiments in this study. 

Soil water is a catalyst for many microbial reactions, however an excess of water 

can limit oxygen availability and reduce microbial activity (Sims, 1990). The 

analysis showed the soil moisture content determined by gravimetric analysis was 

31.7% (at 0.05 bar). This moisture content is in a range known to be suitable for soil 

microbial activities. The soil had a pH of 7.5, a range also suitable for microbial 

activities as the most common heterotrophic bacteria are active at soil pH near 

neutral (Leahy and Colwell, 1990). During the course of the experiments, this pH 

was monitored to ensure it remained in a range suitable for soil microorganisms. 

Soil microorganisms (bacteria, fungi) are known to play an important role in the 

biodegradation of contaminants (Bastiaens et al., 2000; Johnsen et al., 2002; Ho et 

al., 2000). They are however more tolerant to neutral or basic pH, therefore the 

bacterial population in the soil in the mesocosms may be expected to be greater at 

neutral and basic pH. The results showed the active and control mesocosm 

environment to be predominantly circum-neutral (i.e. between pH 6.5 and 7.5) 

during the period of incubation.  

Although the active mesocosms supported toluene removal, the results suggest the 

total iron concentrations in the soil-water mixture was not significantly affected 

during the period of incubation. In contrast, a build-up of total iron was observed in 

the control mesocosms and was possibly indicative of iron cycling processes 

occurring as a result of soil microbial processes. This build up was not observed at 

the start of the experiments. It may be speculated that this was due to the soil 

microbes being in their adaptation or lag phase over that period.   

The main objective of the degradation experiments reported in this chapter was to 

investigate toluene degradation in subsurface soil systems having iron reduction as 

the dominant electron accepting process. It is widely accepted that under anaerobic 

conditions, nitrate-reduction is the most energetically-favourable terminal electron 

accepting process, followed by manganese reduction, iron reduction, sulphate 

reduction and methanogenesis (Lovley, D.R., 1997b; Lawrence, 2006). Analysis of 

the dissolved ion content in the starting soil material and river water samples in the 

mesocosms (see section 4.1) revealed both samples contained trace amounts of 

nitrates and sulphates (from IC analysis) as well as trace amounts of manganese 

(from XRF and XRD analysis). The absence and / or low concentration of these 

competing electron acceptors confirmed the dominant terminal electron-accepting 

process in the mesocosms was iron reduction. Furthermore, no sulphide was 

detected in the mesocosms, indicating significant sulphate reduction did not occur. 
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The results of the time-series experiments indicated initial toluene concentrations in 

the mesocosms at the time of spiking were in the 0.3–0.7 mM range (the equivalent 

of 28-64 mg/L). It is possible for losses in the concentration of the volatile 

contaminant to occur as a result of sorption to solids such as soil particles and 

volatilisation in air (Reid et al., 2000). The mesocosms contained 500 mL of river 

water and 300 mL of toluene at the end of each spike (i.e. the end toluene 

concentration in the mesocosm was 0.8 mM or 75 mg/L). Therefore it is possible 

that losses due to sorption to soil may have takne place aftter the initial toluene spike 

was made. Vaporisation losses may also have occurred The soil-water mixture was 

shown to have supported toluene removal over the period of incubation. Suppressed 

toluene removal was observed during the period after the addition of the third 

toluene spike. Studies have shown and it is well documented that organic 

contaminants may be accumulated within the soil, the soil biota, or retained within 

the soil‟s mineral organic matter fractions during biodegradation. The decline in 

toluene removal during the period after the addition of the third spike may have been 

brought about by any one of these processes. It is also possible this decline in 

toluene removal was induced by the toxic inhibition of bacterial cells or toluene-

degrading microorganism in the sealed soil-water environment of the mesocosms 

during the period after the addition of the third spike. The effect of toxic inhibition 

of microbial cells has been demonstrated by several studies. A study by (Lovley, 

D.R.  and Lonergan, 1990) investigated the degradation of toluene, phenol, and p-

cresol under anaerobic conditions with Fe (III) as the sole electron acceptor using 

the bacterial strain GS-15, isolated from soil. During the growth on toluene (92 

mg/L, dark, 100 mM iron oxide), GS-15 had mineralised 55% of toluene after 60 

weeks of incubation however toluene degradation was inhibited at concentrations 

higher than 920mg/L. In (Sikkema et al., 1995) prolonged interaction of 

hydrocarbons with microbes (including iron-metabolising microorganisms) was 

shown to produce a resultant decrease in microbial activity due to the toxic effect on 

microbial membranes. Although increased toxicity brought about by degradation is 

disadvantageous to soil biota, it is an indication of the success of bioremediation as 

the production of metabolites which are more toxic than the parent compound may 

serve as an index for toluene degradation occurring in a system (Watson et al., 

1999). 

Zeroth and first order rate fittings obtained from the toluene time-series data provide 

an indication of the rate at which toluene removal occurred during the periods after 

the addition of the first, second and third spikes to the soil-water mixture. A zero 

order biodegradation implies the contaminant concentration is high relative to 

available contaminant-degrading microbes. A first order biodegradation, on the 

other hand, implies the concentration is not high enough to saturate the ability of the 
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contaminant-degrading microbes. Therefore, first order kinetics apply where 

contaminant concentration is low relative to soil biological activity, meaning at any 

given time the rate of contaminant degradation is proportional to its concentration 

Under certain conditions, increasing contaminant concentrations may induce a 

change in the relationship between concentration and degradation from being 

proportional to being independent of one another. Michaelis Menten kinetics may 

apply under such conditions (Riser-Roberts, 1998). An average initial toluene 

concentration of 0.57 mM was observed in the active mesocosms after the first and 

second spike. Toluene removal during both periods occurred at 0.09 d
-1

. In the 

period following the third toluene spike an initial concentration of 0.94 mM was 

observed on average and removed at a rate of 0.06 d
-1

 over the period. Similar 

findings are reported in (Søvik et al., 2002)  in which first order degradation 

coefficients for toluene were obtained in the range of 0.19 – 0.21 d
-1

. The results 

obtained show toluene removal did not increase after the re-addition of toluene. 

These results may be attributed to the complexities that may arise as a result of 

conducting experiments using live soil as opposed to microbial cultures grown under 

laboratory conditions. A study by (Mathura and Majumder, 2010) reported an 

increase in specific degradation rates of BTEX degradation at initial concentrations 

within the range of 10 to 400 mg L
-1

 (0.11- 4.34 mM) in the presence of a pure 

microbial culture. Similarly (Lee et al., 2002) report increased rates in degradation at 

initial concentrations within the range of 23 to 70 μM (0.023-0.07 mM). It may be 

concluded that the degradation experiments in this study demonstrate toluene 

removal in laboratory-constructed soil systems and suggest the rate of removal did 

not change significantly with the re-introduction of toluene into the mesocosms. 

The results of the chemical  sequential extractions provided an indication of the 

amount of the solid iron content in the starting soil material and incubated 

mesocosm material from the active and control mesocosms. In anoxic freshwater 

habitats, ferric iron is usually the dominant electron acceptor for the mineralisation 

of carbon (Thamdrup, 2000). The results showed toluene degradation affected two 

iron fractions namely the carbonate-bound iron fraction and the reducible iron 

fraction. The two fractions were seen to vary between the starting and incubated 

material however the total iron fraction in the control and active mesocosms were 

the same. This was likely an indication of the mass balance effect of iron cycling in 

which Fe (II) and Fe (III) remain in equilibrium. The carbonate-bound iron fractions 

targeted by the extraction procedure include ankerites and siderite, while the 

reducible iron fractions include goethite, hematite and akageneite. The carbonate-

bound iron fraction is therefore representative of iron in the Fe
2+

 oxidation state 

while the reducible fraction includes iron in the Fe
3+

 oxidation state. The underlying 

reaction for iron cycling is given by the equilibrium reaction (Equation 4.1) below: 
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                      Equation 4.1 

As Fe
2+

 and Fe
3+

 remain in constant equilibrium, the effect of the incubation period 

on both fractions may be taken to be a reflection of this mass balance effect in which 

the build-up of Fe (II) minerals induces the removal of Fe (III) minerals. The 

reducible iron fraction is composed of the more crystalline iron hydr (oxides) in 

contrast to the easily reducible fraction which contain less crystalline and 

amorphous iron (hydr) oxides. Crystalline iron phases are known to be harder to 

degrade due to their stable structures (Dollhopf et al., 2000; Luu and Ramsay, 2003). 

Therefore the observed decrease in the reducible phase in preference to the easily 

reducible phase is a deviation from the wider literature. The increase in carbonate 

fractions was likely due to carbonate precipitation which may have occurred during 

the period of incubation. Soil environments are made up of a vast array of macro and 

micro living organisms. The mesocosms used in this study may be regarded as 

experimental analogues of subsurface soil environment. At subsurface levels, 

bacteria, protozoa and phytoplankton are the dominant microrganisms in soil 

environments. Bacteria are one of the smallest living organisms but possess the 

largest surface area to volume ratio and therefore are able to sorb metal cations 

forming more concentrated solutions in comparison to the surrounding 

environments. These organisms are therefore able to precipitate metals in quantities 

equal to or exceeding their own weight and are thought to be responsible for mineral 

transformations in soils induced by iron cycling processes (Schultze-Lam et al., 

1996). Several studies have reported the formation of dissolved Fe
2+

 (or its 

precipitation as goethite, green rust, vivianite or siderite) during microbial Fe (III) 

reduction. The formation of these compounds was dependent on Fe (III) reduction 

rates and on geochemical conditions such as the presence of anions, mineral 

nucleation sites and humic substances. An extensive review of Fe (II) formation 

induced by Fe (III) reduction can be found in (Konhauser, K.O., 1998) and (Fortin 

and Langley, 2005).  Field and laboratory studies citing instances of siderite 

precipitation during iron cycling and contaminant degradation can be found in 

(Driese et al., 2010; Langmuir, 1997; Renard et al., 2017). The sequential 

extractions provided information on the solid iron content in the sample soil 

material. In anoxic freshwater habitats, ferric iron is usually the dominant electron 

acceptor for the mineralisation of carbon (Thamdrup, 2000). The concentration of Fe 

(II) from Fe (III) reduction / Fe cycling in natural environments is controlled by the 

adsorption or precipitation of Fe (II). Dissolved Fe (II) may adsorb to soil particles, 

cell surfaces or to the surface of iron oxides (Liu, C. et al., 2001). The experimental 

results in this study suggest solid Fe (II) may play a more significant role than Fe 

(II) in the dissolved phase.  
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4.3  Conclusion 

The experiments conducted demonstrate toluene removal in sealed, anaerobic 

mesocosm environments. Changes in selected geochemical factors affected by iron-

mediated toluene degradation were observed over the period of incubation. These 

were rate and amount of toluene removal, solid and dissolved iron concentrations, 

pH and surface area. The starting soil and water sample in the mesocosms were pH 

neutral. No significant changes in pH or total iron was observed however changes in 

operationally-defined iron fractions in the soil gave evidence for the occurrence of 

iron carbonate precipitation. It may be concluded from the experiments that the 

input of hydrocarbons into soils had a direct influence on microbial Fe (III) 

reduction and indirectly (via Fe (II) formation) on microbial Fe (II) oxidation. BSI 

Guidelines suggest the presence of an active microbial population in soil may be 

determined through the use of a biodegradable reference mixture. In this study, the 

use of control systems with no toluene may be considered to be a satisfactory means 

of confirming biological activity of the soil. In addition, the focus of this study was 

the geochemical changes of toluene in soil, therefore a full speciation of the soil‟s 

microbial consortia was considered unnecessary. 

Summary 

In this chapter, toluene degradation was assessed in analogues of subsurface soil 

environments. The removal of toluene over the period of incubation indicated the 

soil-water mixture supported toluene degradation under predominantly iron-

reducing conditions. Chemical sequential extractions performed on the mesocosm 

soil material suggested the degradation of toluene in the active mesocosms induced 

an increase in carbonate-bound iron from 196.1 ± 11.4 mg/kg to 5,252.1 ± 291.8 

mg/kg and a decrease in the reducible iron fraction from 2,504.4 ± 1,445.9 mg/kg to 

375.6 ± 20.8 mg/kg. Shifts in pH were observed in the control and active 

mesocosms at the start of the experiments however the pH of both mesocosms 

showed little variation during the incubation period(see section C.7 of Appendix C). 
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Chapter 5 

The Influence of Iron Mineral (Hydr)Oxides On Iron-Mediated 

Toluene Degradation 

Introduction  

The results of the previous chapter showed the active and control mesocosms 

supported anaerobic toluene degradation. The effect of iron amendments on toluene 

removal was investigated with the use of additional, serially-sampled batch 

mesocosms. The results of these experiments are discussed in this chapter. 

5.1 Results and discussions 

5.1.1 Comparing degradation in the un-amended and hematite-amended 

mesocosms 

A comparison of the experimental results for the un-amended and hematite-amended 

mesocosms show both groups had similar total dissolved iron concentrations at the 

time of spiking (see Figure 5.1). 

 

Figure 5.1 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and hematite-amended mesocosms. Error bars 

represent the standard error of the mean of three replicates. 
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The values for total iron concentrations at the start of the experiments were 0.4 ± 

0.03 mM in the hematite-amended mesocosms and 0.4 ± 0.04 mM in the un-

amended mesocosms. Similarly, both mesocosm groups did not show significant 

variation in initial pH as initial mesocosm pH was measured at 7.6 ± 0.04 in both 

groups The similarity in the concentration-time profile for pH and total iron 

concentrations in the un-amended and hematite-amended mesocosms suggest the 

presence of hematite did not significantly affect the pH and total dissolved iron 

concentrations of the soil-water mixture.  

A comparison of toluene concentrations also showed similarities in toluene 

concentrations at the start of the experiments (0.7 ± 0.02 mM in the hematite-

amended and 0.6 ± 0.10 mM in the un-amended mesocosms respectively). The 

experimental results show toluene was removed in both the amended and un-

amended mesocosms over similar periods however the amount of toluene removed 

over the incubation period was appreciably higher in the hematite-amended 

mesocosms compared to the un-amended mesocosms (see Figure 5.2). A difference 

in means test (see section C.9.3 of Appendix C) showed the difference in mean 

toluene concentrations in the un-amended and amended mesocosms were not 

statistically significant (p=.021). This suggests the comparatively larger amount of 

toluene removal observed in the hematite-amended mesocosms may not have been 

due to the presence of hematite.  

 

Figure 5.2 Toluene removal in the un-amended and hematite-amended mesocosms 

during the first spike period (0-15 days), second spike period (18-33 days), 

third spike period (36-51 days) and overall incubation period (0-51 days). 

Error bars represent the standard error of the mean of three replicates. 
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The zeroth order rate fittings for toluene in the hematite-amended mesocosm were 

4.98 ± 0.19 mg
-1

L
-1

day
-1

, 3.94 ± 0.50 mg
-1

L
-1

day
-1

 and 4.13 ± 0.45 mg
-1

L
-1

day
-1

 

during the periods after the first, second and third toluene spikes respectively. These 

rate fittings were similar to those obtained for the un-amended mesocosms (3.05 ± 

0.54 mg
-1

L
-1

day
-1

, 1.95 ± 0.76 mg
-1

L
-1

day
-1

, and 3.60 ± 0.57 mg
-1

L
-1

day
-1

 for the 

respective periods). The first order rate fittings for the hematite-amended 

mesocosms were 3.20 ± 0.05 day
-1

, 0.18 ± 0.06 day
-1

, and 0.17 ± 0.03 day
-1

 for the 

three respective periods. Both zeroth and first order rate fittings suggest the rate of 

toluene removal was not significantly affected by the presence of hematite.  

5.1.2 Comparing degradation in the un-amended and goethite-amended 

mesocosms 

A comparison of the concentration-time profiles of the goethite-amended 

mesocosms and un-amended mesocosms showed similarities in the trend for toluene 

removal, total dissolved iron concentrations and pH in both groups (see Figure 5.3).  

 

Figure 5.3 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and goethite-amended mesocosms. Error bars 

represent the standard error of the mean of three replicates. 

 

A slight decline in total iron concentrations was observed as toluene removal 

occurred following the addition of the first toluene spike. The results show the pH in 

the amended and un-amended mesocosms remained in the 7.2-7.4 range over the 

period of incubation. These results suggest the presence of magnetite in the soil-
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water mixture did not significantly affect its pH and total dissolved iron 

concentration. 

The goethite-amended mesocosms had initial toluene concentrations of 0.5 ± 0.01 

mM, 0.7 ± 0.06 mM, and 0.5 ± 0.02 mM after the addition of the first, second and 

third spikes respectively. These concentrations were mostly similar to what was 

observed in the un-amended mesocosms (0.6 ± 0.10 mM, 0.6 ± 0.12 mM, and 0.9 ± 

0.10 mM). The removal of toluene ceased gradually on day 45 and suppressed 

toluene removal can be observed to have occurred from that time point onwards. A 

total of 108.5 ± 0.01 mg, 109.5 ± 0.01 mg, and 60.4 ± 1.0 mg of toluene was 

removed in the goethite-amended mesocosms at the end of the first, second and third 

period after spiking (see Figure 5.4). 

 

Figure 5.4 Toluene removal in the un-amended and goethite-amended mesocosms 

during the first spike period (0-15 days), second spike period (18-33 days), 

third spike period (36-51 days) and overall incubation period (0-51 days). 

Error bars represent the standard error of the mean of three replicates. 

 

It can be seen from Figure 5.4 thtat toluene removal was notably higher in the 

amended mesocosms than in the un-amended mesocoms which removed 95.7 ± 10.4 

mg, 71.7 ± 15.8 mg, 69.1 ± 2.8 mg over the respective periods. Pairwise 

comparisons (see section C.9.3 of Appendix C) showed the differences in toluene 

concentrations in the amended and un-amended mesocosms were not statistically 

significant (p = .001). This suggests the differences in the amount of toluene 

removed may not have been entirely due to the presence of the goethite amendment. 

The zeroth order rate fittings for the goethite-amended mesocosms were 2.33 ± 

0.003 mg
-1

L
-1

day
-1

, 4.37 ± 0.280 mg
-1

L
-1

day
-1

, and 1.84 ± 0.089 mg
-1

L
-1

day
-1

 for the 



- 83 - 

first, second and third periods after spiking. A comparison of this data to  the zeroth 

order rate data for the un-amended mesocosms (3.05 ± 0.5 mg
-1

L
-1

day
-1

, 1.95 ± 0.76 

mg
-1

L
-1

day
-1

, and 3.60 ± 0.57 mg
-1

l
-1

day
-1

) show it was likely the presence of 

goethite did not significantly alter the rate of toluene removal in the goethite-

amended mesocosms. Similarly, the first order rate fittings for the goethite-amended 

mesocosms (0.07 ± 0.003 day
-1

, 0.25 ± 0.0075 day
-1

, and 0.08 ± 0.003 day
-1

) did not 

differ significantly from the un-amended mesocosms (0.09 ± 0.02 day
-1

, 0.06 ± 0.02 

day
-1

 and 0.06 ± 0.01 day
-1

). This may also be taken to be an indication that the 

presence of goethite did not significantly alter the rate at which toluene was 

degraded in the soil-water mixture. 

5.1.3 Comparing degradation in the un-amended and magnetite-

amended mesocosms 

A comparison of the experimental results for the un-amended and magnetite-

amended mesocosms show both mesocosm groups contained similar total iron 

concentrations (0.1 ± 0.02 mM and 0.4 ± 0.01 mM respectively) at the time of 

spiking (see Figure 5.5).  

 

Figure 5.5 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and magnetite-amended mesocosms. Error bars 

represent the standard error of the mean of three replicates. 
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No discernible change in pH was observed as a result of the presence of the 

magnetite amendment as both mesocosm groups had similar profiles for pH. The 

initial pH in the magnetite-amended mesocosms was 7.7 ± 0.02 on average. This 

was similar to the un-amended mesocosms in which the initial pH was found to be at 

7.5 ± 0.01. These results suggest the presence of magnetite did not significantly 

affect the mesocosm pH or total dissolved iron concentrations.  

The magnetite-amended mesocosms also had similar initial toluene concentrations 

of 0.6 ± 0.05 mM and 0.6 ± 0.10 mM respectively. The initial toluene concentrations 

after the second and third toluene spikes were also similar. The initial toluene 

concentrations after the second and third toluene spikes were 0.6 ± 0.12 mM and 0.9 

± 0.10 mM respectively in the un-amended mesocosms and 0.5 ± 0.05 mM, and 0.7 

± 0.02 mM respectively in the magnetite-amended mesocosms. Suppressed toluene 

removal was also observed over the same period in both groups. A comparison of 

the amount (in mg) of toluene degraded by both groups after each addition of 

toluene shows the magnetite-amended mesocosms removed more toluene (at 100.0 

± 0.01 mg) after the first toluene spike when compared to the un-amended 

mesocosms in which 96.7 ± 10.4 mg of toluene was degraded over the same period 

(see Figure 5.6). 

 

Figure 5.6 Toluene removal in the un-amended and magnetite-amended mesocosms 

during the first spike period (0-15 days), second spike period (18-33 days), 

third spike period (36-51 days) and overall incubation period (0-51 days). 

Error bars represent the standard error of the mean of three replicates. 

 

Similarly the magnetite-amended mesocosms also degraded a greater amount of 

toluene in the period after the second toluene spike (111.0 ± 0.01 mg) in comparison 

to the un-amended mesocosms (71.7 ± 15.8 mg). The results for the third spike 



- 85 - 

period however show the un-amended and amended mesocosms degraded similar 

amounts of toluene (65.9 ± 4.6 mg and 69.1 ± 2.8 mg respectively). The difference 

in means test (see section C.9.3 of Appendix C) indicate toluene concentrations for 

the magnetite-amended and un-amended mesocosms were statistically significant (p 

= .0001). This may be indicate the comparatively larger amount of removal in the 

amended mesocosms was likely to have been due to the presence of magnetite. 

The rate of toluene degradation in the magnetite-amended mesocosms when fitted to 

zeroth order rate kinetics was 3.48 ± 0.48 mg
-1

L
-1

day
-1

, 2.63 ± 0.56 mg
-1

L
-1

day
-1

 and 

2.56 ± 0.19 mg
-1

L
-1

day
-1

 for the period after the first, second and third spikes 

respectively. As the rates in the un-amended mesocosms were similar at 3.05 ± 0.5 

mg
-1

L
-1

day
-1

, and 1.95 ± 0.76 mg
-1

L
-1

day
-1

, and 3.60 ± 0.57 mg
-1

L
-1

day
-1

, it may be 

concluded that the magnetite amendment did not greatly affect the rate of toluene 

removal in the magnetite-amended mesocosms. A comparison of the first order rate 

fitting for the three spike periods in the magnetite-amended mesocosms (0.14 ± 0.01 

day
-1

, 0.14 ± 0.01 d day
-1

 and 0.08 day
-1

) and un-amended mesocosms (0.09 ± 0.02 

day
-1

, 0.06 ± 0.02 day
-1

 0.07 ± 0.01 day
-1

) also leads to this conclusion.  

5.1.4 Comparing degradation in the un-amended and ferrihydrite-

amended mesocosms 

A comparison of the concentration-time profile for toluene, total dissolved iron and 

pH in the ferrihydrite-amended and un-amended mesocosms indicate the presence of 

ferrihydrite in the soil-water mixture induced changes in the system pH and also in 

toluene usage (see Figure 5.7).  
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Figure 5.7 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and ferrihydrite-amended mesocosms. Error 

bars represent the standard error of the mean of three replicates. 

 

In the early stages after spiking, the pH was found to be at 6.5 ± 0.07 in the amended 

mesocosms 1-unit lower than the pH in the un-amended mesocosms (7.5 ± 0.01). 

The total iron concentrations were slightly lower (0.3 ± 0.06 mM) in in comparison 

to the un-amended mesocosms (0.6 ± 0.10 mM). The results suggest the presence of 

the ferrihydrite amendment may have induced an increase in total iron concentration 

to 0.6 ± 0.12 mM after the addition of the second toluene spike. The pH was 

however not affected by the re-addition of toluene as shown by the similar 

concentration-time profiles of both groups. 

The gradual decrease in toluene removal (or suppressed removal) observed in 

previous mesocosms was also observed in the ferrihydrite-amended mesocosms on 

day 27 in contrast to the un-amended mesocosms in which suppressed removal was 

observed from day 45 onwards. The soil-amended mesocosms removed a 

comparatively larger amount of toluene (at 112.0 ± 0.01 mg after the initial toluene 

spike) in comparison to the un-amended mesocosms in which 96.7 ± 10.4 mg of 

toluene was degraded over the same period (see Figure 5.8). The difference in 

means test (section C.9.3 of Appendix C) indicate mean toluene concentrations in 
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the un-amended in comparison to the amended mesocosms were statistically 

significant (p = .0001). 

 

Figure 5.8 Toluene removal in the un-amended and ferrihydrite-amended 

mesocosms during the first spike period (0-15 days), second spike period (18-

33 days), third spike period (36-51 days) and overall incubation period (0-51 

days). Error bars represent the standard error of the mean of three replicates. 

 

During the period after the second toluene spike both mesocosm groups degraded 

similar amounts of toluene (16.1 ± 5.5 mg in the ferrihydrite-amended and 71.7 ± 

15.8 mg in the un-amended mesocosms). The lower amounts observed for the period 

after the second spike may have been due to the suppression of toluene removal 

observed from day 27 onwards. Zeroth order rate fittings for the period after the first 

and second spike were 1.1 ± 0.12 mg
-1

L
-1

day
-1

 and 0.70 ± 0.37 mg
-1

L
-1

day
-1

 

respectively for the ferrihydrite-amended mesocosms. The first order fitting rate 

fittings were 0.25 ± 0.02 day
-1

 and 0.04 ± 0.02 day
-1

for the periods after the first and 

second toluene spikes. These results differ from those obtained for the un-amended 

mesocosms and show the presence of ferrihydrite affected the rate of toluene 

removal in the mesocosms. 
 

5.1.5 Comparing degradation in the un-amended and lepidocrocite-

amended mesocosms 

A comparison of the concentration-time profiles of the lepidocrocite-amended 

mesocosms and the un-amended mesocosms show the the initial total dissolved iron 

concentrations in the lepidocrocite-amended mesocosms (0.3 ± 0.06 mM) did not 

differ significantly from that in the un-amended mesocosms (0.4 ± 0.04 mM) (see 

Figure 5.9). 
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Figure 5.9 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended and lepidocrocite-amended mesocosms. Error 

bars represent the standard error of the mean of three replicates. 

 

The results suggest the presence of lepidocrocite in the amended mesocosms may 

have induced alkaline conditions as the mesocosm pH after the initial toluene spike 

was appreciably higher at 8.4 ± 0.04 in comparison to the un-amended mesocosms 

which had a pH of 7.5 ± 0.01. 

In contrast to the un-amended mesocosms in which complete degradation occurred 

by the fifteenth day, no significant changes in toluene concentrations were observed 

in the lepidocrocite-amended mesocosms during the period after the introduction of 

the initial spike (Figure 5.9)  
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Figure 5.10 Toluene removal in the un-amended and lepidocrocite-amended 

mesocosms during the first spike period (0-15 days), second spike period (18-

33 days), third spike period (36-51 days) and overall incubation period (0-51 

days). Error bars represent the standard error of the mean of three replicates. 

 

The un-amended mesocosms removed a total of 96.7 ± 10.4 mg of toluene over the 

same period (see Figure 6.2).The difference in means test for the amended and un-

amended mesocosms (see section C.9.3 of Appendix C) show the mean toluene in 

the amended and un-amended mesocosms were not statistically significant (p = -

.445) and suggest the 24.7 ± 7.2 mg of toluene removed in the lepidocrocite-

amended mesocosms was not due to the presence of lepidocrocite. Lepidocrocite is 

not known to be a readily available iron source to iron reducers in soil, due to its 

highly crystalline structure hence the lower amount of removal in the amended 

mesocosms over the sampling period. Time constraints did not allow for continued 

sampling of the amended mesocosms after the initial fifteen-day period.The toluene 

time series data could only be fit to zeroth order kinetics and show toluene removal 

over the period proceeded at a rate of 0.55 ± 0.22 mg
-1

L
-1

day
-1

. This rate is 

considerably lower than the observed rate in the un-amended mesocosms (3.05 ± 0.5 

mg
-1

L
-1

day
-1

) and further supports the proposition that the presence of the 

lepidocrocite amendment did not support toluene removal in the soil-water mixture.  

5.2 General discussion 

The mesocosm experiments presented in this chapter were conducted to assess the 

effect of iron amendments on toluene degradation under predominantly iron-

reducing conditions. The results of the degradation experiments indicate a total of 

290 ± 16.1 mg, 278.4 ± 1.0 mg, and 276.9 ± 4.6 mg of toluene was removed in the 
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hematite-, goethite- and magnetite-amended mesocosms respectively over the 

incubation period. The un-amended mesocosms were shown to have removed a total 

of 236.5 ± 18.0 mg over the same period.  Toluene removal was not observed in the 

lepidocrocite-amended mesocosms over the period of incubation. The results 

therefore indicate the removal of toluene in the presence of these three minerals 

(hematite, goethite, and magnetite) was of the order HM > GE > MT. A comparison 

of the rate of toluene removal in the iron-amended and un-amended mesocosms 

indicated the ferrihydrite-amended mesocosms removed toluene more quickly in 

comparison to the other iron-amended mesocosms. Conversely the magnetite-

amended mesocosms removed toluene at slower rates. Ferrihydrite is known to be 

one of the most widespread and most active iron hydroxides in soils with a 

distinctive colour thought to be responsible for pigments observed in certain soils 

(Schwertmann, U. and Fitzpatrick, 1992). Ferrihydrite rarely occurs as a chemically-

pure compound but as admixtures of oxyanions SiO4
4-

, PO4
3-

 as well as cations Al
3+

 

(Vodyanitskii, Yu N. and Shoba, 2016). Ferrihydrite has a large specific area and 

high proportion of reactive sites, therefore a small amount present may contribute 

largely to the overall properties of a soil and may be responsible for its involvement 

in organic transformations (Childs, 1992). Ferrihydrite has been shown to interact 

strongly with organic molecules in soils and may contribute to the stability of 

aggregates and to soil structure (Schwertmann, U.  and Taylor, 1989). A study by 

(Thamdrup, 2000) showed ferrihydrite remained the primary source of microbial Fe 

(III) oxide reduction even when it constituted less than 20% of the Fe (III)-pool in 

the sediment. (Larsen and Postma, 2001) investigated the kinetics of dissolution of 

2-line ferrihydrite, 6-line ferrihydrite, lepidocrocite and goethite and report 2-line 

ferrihydrite as the fastest dissolving iron (III) (hydr)oxide. The findings in this 

chapter are therefore in agreement with the general literature on the reactivity of 

ferrihydrite. 

The first order rate fittings show the rate of toluene removal per square meter of 

mesocoms soil per day (see section C.6 of Appendix C) proceeded following the 

order FH > GE > MT ≥ HM  for the period after first spike, FH > GE > MT ≥ HM for the 

period after second spike, and HM > MT ≥ GE for the period after third spike (where 

FH, GE, MT, HM represent the mesocosms amended with ferrihydrite, goethite, 

magnetite and hematite respectively). Hematite therefore had the least influence on 

the rate of toluene removal and ferrihydrite the highest. These results are in 

agreement with a similar study (Larsen and Postma, 2001) in which lepidocrocite 

was found to be less reactive in comparison to other common iron oxides. The 

zeroth and first order rate fittings suggest the magnetite amendment induced the 

least effect on toluene removal rates in the soil-water system. In (Sweeton and Baes, 

1970) magnetite dissolution was observed to occur faster in comparison to the other 
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pure ferric oxides studied. The rate of chemical and microbial transformations of 

iron minerals has been shown to be influenced by the number of available reactive 

surface sites e.g. –OH functional groups in ferric hydroxides (Roden, 2003). Mineral 

grains of natural and experimentally-altered soils provide a means of demonstrating 

the dependence of dissolution processes on soil surface area because distinct 

proportions of mineral surfaces dissolved with different kinetics. The crystal size of 

ferric iron oxide is inversely proportional to its surface area. Iron minerals (as well 

as samples of the same iron mineral) which differ in crystal size will vary 

significantly in surface area and therefore stability and reactivity as well as 

dissolution kinetics, transformation reactions and adsorption of organic and 

inorganic compounds. Surface areas determined by the BET as extent of N2-

adsorption to an outgassed sample of the respective mineral span from a few m
2
/g 

(e.g. 8-16m
2
/g for highly crystalline goethite) to a few hundred m

2
/g (e.g. 100-400 

m
2
/g for poorly crystalline ferrihydrite) (Cornell, R.M. and Schwertmann, 2003). 

Characterisation tests performed on the mineral samples  suggest the lepidocrocite 

and hematite mineral samples had the smallest surface area (see Table C.6.1b of 

Appendix C) while the ferrihydrite amendment had the largest surface area. The 

comparatively larger surface area of the ferrihydrite sample used in this study likely 

contributed to the faster rate of toluene removal observed in the ferrihydrite-

amended mesocosms. Likewise, the smaller surface area of the magnetite 

amendment may have contributed to the smaller effect on toluene removal rates 

observed. The dissolution rate of a mineral is not only dependent on the availability 

of surface but also on the nature of surface area. This is because the availability of 

reactive surface area is arguably more important than the amount of available 

surface area. The mineral surface areas actively involved in dissolution reactions 

have been termed effective surface area (Helgeson et al., 1984) or reactive surface 

area (Hochella and Banfield, 1995). The reactive surface area has been said to be 

made up of high-energy surface sites however experiments have shown this to be a 

somewhat ambiguous term (Casey et al., 1988; Oelkers, 2002; Murphy, 1989). 

Magnetite has been shown to serve as an electron acceptor for Fe (III)-reducing 

microorganisms (Kostka, J.E. and Nealson, 1995; Brown et al., 1997). Natural and 

synthesised magnetite crystals are not porous and have metallic lustre with an 

opaque, jet black colour (Cornell, R. and Schwertmann, 1996). The typical surface 

area of magnetite is 6 m
2
/g however its effective surface area is believed to vary 

depending on its texture i.e. whether its particles are coarse or fine (Mannweiler, 

1966). The magnetite sample used in this study was jet black in colour, of fine-

grained texture and with a surface area of 9 m
2
/g (see Table C.6.1b of Appendix C). 

The magnetite-amended mesocosms supported toluene removal however removal 

occurred at lower rates in comparison to the un-amended mesocosms as well as the 
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other four groups of iron-amended mesocosms. It may be speculated that the low 

removal rates in the magnetite-amended mesocosms may have been due to the 

limited availability of surface sites as well as a lack of reactive surface sites. 

The presence of the iron amendments induced no significant changes in the total 

iron concentrations in the magnetite-, ferrihydrite- and lepidocrocite-amended 

mesocosms. Total iron concentrations in the hematite-amended mesocosms 

decreased gradually over the period of toluene removal following the introduction of 

the initial toluene spike. In the goethite-amended mesocosms, increasingly higher 

concentrations were observed after the initial spike. With the exception of the 

ferrihydrite- and lepidocrocite-amended mesocosms, toluene removal in the 

presence of the iron amendments occurred at circum-neutral pH. Several studies 

(Madden, A.S.  and Hochella, 2005; Madden, A.S. et al., 2006; Yan, 2008) have 

shown the high crystallinity and low solubility of iron hydroxides at circum-neutral 

pH account for the low reactivity of macro-particulate iron hydroxides. Hematite, 

goethite and magnetite minerals are highly crystalline in comparison to ferrihydrite 

and lepidocrocite. Thus the differences in the behaviour of the amended mesocosms 

may be attributed to the crystallinity of these minerals. 

A comparison of the pH in the un-amended and amended mesocosms indicated the 

presence of the mineral amendments hematite, goethite, and magnetite did not 

induce a significant change in pH over the experimental period. The presence of 

ferrihydrite imposed slightly acidic conditions in the soil-water mixture. Conversely, 

the presence of lepidocrocite induced slightly alkaline conditions. Goethite, 

ferrihydrite, and lepidocrocite are Fe (III) minerals. Hematite is an  Fe (II) mineral 

and magnetite an Fe(II) / Fe(III) mineral known as a spinel. Fe (III) mineral oxides 

are barely soluble at circum-neutral pH and exist in hardly detectable concentrations 

in the range of 10
-9

M of Fe (III) in solution (Cornell, R.M. and Schwertmann, 2003; 

Kraemer, 2004). Fe (III) mineral oxides display amphoteric characteristics which 

make them soluble at strongly alkaline or strongly acidic pH. In contrast, Fe (II) 

mineral oxides (such as siderite or ferrous mono-sulphides) are considerably more 

soluble at neutral pH and may, as a result, exist in solution at concentrations in the 

micromolar range, even in the presence of bicarbonate or sulphide. The study 

documented in this chapter was conducted with the use of laboratory-synthesised 

ferrihydrite and lepidocrocite. Although the presence of ferrihydrite in the soil-water 

mixture induced slightly higher total iron concentrations in the soil-water mixture 

(see Figure 5.7) the presence of lepidocrocite did not affect the total iron 

concentrations (see Figure 5.8). It is possible the slightly acidic environment 

induced by ferrihydrite improved its solubility and accessibility to iron reducers 

during the incubation period and may have aided the quicker removal rates observed 
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in the ferrihydrite-amended soils as well as the comparatively larger amount of 

toluene removed in these mesocosms during the period following the first spike.  

The results of the experiments conducted show all of the iron-amended mesocosms 

supported anaerobic toluene degradation with the exception of lepidocrocite. 

Suppressed toluene removal was observed in the un-amended mesocosms after the 

introduction of the third toluene spike. Suppressed toluene removal also occurred in 

the hematite-, goethite- and magnetite-amended mesocosms after the addition of the 

third spike. In the ferrihydrite-amended mesocosms however suppressed toluene 

removal was observed after the second spike was introduced into the soil-water 

mixture. Anaerobic degradation is a complex process that usually requires more than 

one species of anaerobes for complete mineralization to occur (Alexander, 1999). A 

number of microorganisms have a high affinity for metal cations, as their cell walls 

have a net negative charge at physiological pH values (Beveridge, 1989). Metal ions 

in solution undergo hydrolysis with increases in pH. A metal will change from the 

divalent to monovalent hydroxylated cation depending on the pH range (this is 

referred to as charge reversal). A 1-unit increase in pH will precipitate iron 

hydroxides (as well as hydroxides of Cu, Ni, Zn) at lower pH values while 

hydroxides of hydroxides of calcium (as well as Mg, Hg and Pb) precipitate at pH 9 

or above (Collins and Stotzky, 1992). The amount of metal adsorbed by the 

microorganism increases from almost 0 to 100%. The process of hydrolysis of a 

metal ion followed by precipitation of a metal hydroxide onto the negative surface 

of microbial cells reverses its electro-kinetic potential. Depending on the amounts of 

metal cations present, the reversal in charge might affect physiological functions of 

the cell or its interactions with other cells and inanimate particulates in soil. Thus the 

toxic inhibition of iron-reducing microorganisms was also likely to be the reason for 

suppressed levels of toluene removal observed in the iron-amended mesocosms after 

the third spike as in the un-amended (ST) mesocosms. The slightly acidic conditions 

induced by the presence of ferrihydrite during toluene removal may have 

contributed to the ferrihydrite-amended mesocosms showing suppressed removal at 

a point earlier than observed in the other iron-amended mesocosms. This may either 

have been as a result of die-off of iron reducers induced by the change in pH or by 

the process described above. 

5.3 Conclusion 

The experiments reported in this chapter were conducted to assess the effect of five 

selected ferric oxides (hematite, α-Fe2O3 and magnetite, α-Fe3O4, goethite, α-

FeOOH, lepidocrocite, γ-FeOOH and ferrihydrite) on toluene removal. The presence 

of the amendments in the soil-water mixture supported the removal of toluene and 



- 94 - 

also enhanced the rates and amounts of toluene removal. All of the iron minerals 

used were ferric (hydr) oxides with the exception of magnetite, an Fe
2+

/Fe
3+

 oxide. 

Hematite, goethite, and magnetite are crystalline minerals and were obtained as 

natural, hard rock minerals. Ferrihydrite and lepidocrocite are poorly crystalline and 

were laboratory-synthesised. The experimental results demonstrate anaerobic 

toluene removal in the presence of these crystalline and amorphous iron minerals. 

From the results, the rate and extent of toluene removal in the presence of these 

minerals (hydr) oxides is a function of their surface area and crystallinity. The 

results obtained may provide information for further studies on the behaviour of iron 

(hydr) oxides in soils.  

The iron-mediated degradation of toluene is given by Equation 5.1 below: 

                        
               Equation 5.1 

In the iron-amended mesocosms, FeOOH is replaced by the iron amendments 

hematite (Fe2O3), goethite (FeOOH), magnetite (Fe3O4), ferrihydrite and 

lepidocrocite. The chemical formula of ferrihydrite has remained uncertain as its 

chemical composition depends on the size of the domains in its chemical structure 

which consists of anions on the surface represented by OH-groups bound to H2O 

molecules which change the O: OH: H2O ratio depending on the volume of the 

particles. As a result there is a disagreement in the literature on the actual chemical 

formula of the mineral (Vodyanitskii, Y.N., 2008). The half reactions for the 

dissolution of the iron amendments in the soil-water mixture of the mesocosms are 

given below (ferrihydrite and lepidocrocite are taken to be the chemical equivalent 

of amorphous iron (Fe (OH)3): 

 
 ⁄          ⁄                      Equation 5.2 

(hematite)  

                             Equation 5.3 

(goethite) 

                            Equation 5.4 

(magnetite) 

                          Equation 5.5 

(amorphous Fe (OH) 3) 
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Summary  

With the exception of the lepidocrocite-amended mesocosms, all of the iron-

amended mesocosms were shown to have supported toluene removal. The presence 

of hematite, goethite and magnetite did not produce a significant change in the pH or 

total iron concentrations of the soil-water mixture. However the presence of 

ferrihydrite in the ferrihydrite-amended mesocosms induced a decrease in pH to 

slightly acid values ranging between pH 6.5 at the start of the experiments and 5.2 at 

the end of the experiments. The lepidocrocite-amended mesocosms induced a 

change to slightly alkaline values ranging between pH 8.4 and 8.8 during the period 

of incubation. A summary of these findings is presented in section C.7 of Appendix 

C.  
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Chapter 6 

The Influence of Soil on Iron-Mediated Toluene 

Degradation 

Introduction  

A discussion of the results of biodegradation experiments conducted with the soil-

amended mesocosms is presented in this chapter. The main aim of these experiments 

was to assess the effect of particle size distribution and surface area of soils on the 

rate and amount of toluene degradation. Details of the sampling location and 

sampling depths from which the soils were obtained can be found in section C.2 of 

Appendix C.  

6.1 Results and discussions 

6.1.1 Comparing toluene degradation in the un-amended and amended 

mesocosms (Soil 1) 

A comparison of the concentration-time profiles of the amended and un-amended 

mesocosms groups shows the presence of the soil amendment may have affected the 

total initial iron concentration of the soil-water mixture (see Figure 6.1). 

 

Figure 6.1 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended mesocosms and soil-amended (S1) mesocosms. 

Error bars represent the standard error of the mean of three replicates. 
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At the start of the experiments the soil-amended mesocosms total dissolved iron 

concentrations detected in the soil-amended mesocosms were slightly lower (at 0.2 ± 

0.02 mM) when compared to the results for the un-amended mesocosms (0.4 ± 0.04 

mM). Initial pH values in both mesocosm groups show the soil amendment may 

have induced a change in mesocosm pH as the soil-amended mesocosms were found 

to be at a pH of 6.7 ± 0.06 after the initial toluene spike and the un-amended 

mesocosms at 7.1 ± 0.09. 

A comparison of the initial concentration of toluene in the amended and un-amended 

mesocosms show the un-amended mesocosms contained significantly higher toluene 

concentrations (0.6 ± 0.10 mM) on the day of spiking in comparison to the soil-

amended mesocosms (0.2 ± 0.03 mM) (see Figure 6.1).The difference in initial 

concentrations suggests the presence of the soil amendment induced lower toluene 

concentrations possibly as a result of toluene sorbing to the added amendment. 

Suppressed removal of toluene was observed in the soil-amended mesocosms during 

the period following the addition of the second toluene spike. In contrast to the un-

amended mesocosm which showed suppressed removal occurring during the period 

after the third spike. A comparison of the amounts degraded show the soil-amended 

mesocosms degraded 113.5 ± 0.01 mg of toluene at the end of the period after the 

initial toluene spike. This was a significantly higher amount in comparison with the 

un-amended mesocosms which degraded 96.7 ± 10.4 mg (see Figure 6.2). 

 

Figure 6.2 Toluene removal in the un-amended (ST) mesocosms and soil-amended 

(S1) mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period (0-

51 days). Error bars represent the standard error of the mean of three 

replicates. 
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Similarly, in the period after the second spike, the soil-amended mesocosms 

removed a comparatively larger amount of toluene (79.8 ± 17.3 mg) compared to the 

amended mesocosms (71.7 ± 15.8 mg). These differences were statistically 

significant (p = .0001) and suggest the higher removal observed was due to the 

presence of the soil amendment (see section C.9.3 of Appendix C).  

The rate of toluene degradation in the soil-amended mesocosms when fitted to 

zeroth order rate kinetics showed the rate of removal for the period after the first 

spike was 0.72 ± 0.135 mg
-1

L
-1

day
-1

 and 2.13 ± 0.815 mg
-1

L
-1

day
-1

 for the second 

spike. The data suggests toluene degradation was faster during the period after the 

second spike was made. The first order fitting showed toluene removal occurred at 

2.13 ± 0.81 day
-1

 after the first spike and 0.09 ± 0.01 day
-1

 after the second spike 

(see section B-10 and B-11 of Appendix B). The first order fitting therefore suggests 

toluene was degraded at a comparatively slower rate after the second spike was 

made. The un-amended mesocosms were shown to remove toluene at a zeroth order 

rate of 3.05 ± 0.5 mg
-1

L
-1

day
-1

, and 1.95 ± 0.76 mg
-1

L
-1

day
-1

, for both respective 

periods and a first order rate of 0.09 ± 0.02 day
-1

 and 0.06 ± 0.02 day
-1

 for both 

respective periods. From both sets of rate data it may be concluded that the presence 

of the soil amendment resulted in slower rates of toluene removal in the soil-water 

mixture.  

6.1.2 Comparing toluene degradation in the un-amended and amended 

mesocosms (Soil 2) 

A comparison of the experimental results of the un-amended and amended 

mesocoms is presented in Figure 6.3. The results show the amended and un-

amended mesocosms had similar concentration-time profiles for pH and total 

dissolved iron concentrations. The initial dissolved iron concentrations after the 

addition of the first and second toluene spike were 0.4 ± 0.04 mM 0.1 ± 0.02 mM in 

the un-amended mesocosms and 0.2 ± 0.01 mM and 0.4 ± 0.04 mM in the soil-

amended mesocosms (see Figure 6.3). The pH and total iron concentrations in the 

amended mesocosms did not vary significantly over the incubation period.  
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Figure 6.3 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended mesocosms and soil-amended (S2) mesocosms. 

Error bars represent the standard error of the mean of three replicates. 

 

The results show within the first few hours after the addition of the first toluene 

spike, toluene concentrations were 0.3 ± 0.09 mM in the soil-amended mesocosms 

and 0.6 ± 0.10 mM in the un-amended mesocosms. The toluene concentrations in 

the amended and un-amended mesocosms (see Figure 6.3) suggest losses in toluene 

may have occurred at the time of spiking, possibly by sorption. The results show the 

removal of toluene stalled gradually during the period after the addition of the 

second spike.  The gradual slowing down of toluene observed after day 27 may have 

been due to the increase in the toxicity induced by the degradation of toluene. It is 

likely the presence of the soil played a contributing role as this trend was not 

observed in the un-amended mesocosms. A comparison of the amount of toluene 

removal (Figure 6.4) that occurred during the period after the first and second spikes 

show the soil-amended mesocosms degraded a larger amount of toluene (at 92.7 ± 

12.3 mg and 70.4 ± 5.0 mg in the first and the second spike periods).  
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Figure 6.4 Toluene removal in the soil-amended (S2) mesocosms and un-amended 

(ST) mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period (0-

51 days). Error bars represent the standard error of the mean of three 

replicates. 

 

The difference in means test performed on the time series data suggest the 

differences in toluene concentrations in the un-amended and amended mesocosm 

were statistically significant (p = .0001).Therefore it is likely the presence of the soil 

amendment induced higher toluene removal in the amended mesocosms.  

Zeroth order rate fittings showed toluene was degraded at a rate of 3.05 ± 0.5 mg
-1

L
-

1
day

-1
 and 1.95 ± 0.76 mg

-1
L

-1
day

-1
 after the first and second spikes respectively in 

the un-amended mesocosms. In the soil-amended mesocosms however the zeroth 

order rate fittings were 1.27 ± 0.31 mg
-1

L
-1

day
-1

 and 2.25 ± 0.25 mg
-1

L
-1

day
-1

for the 

respective periods. The differences in the zeroth order rate fittings for both groups 

suggest the presence of the soil amendment induced slower removal rates. The first 

order rate fitting showed toluene degradation after the first and second spikes 

proceeded at a rate of 0.13 ± 0.06 day
-1

 and 0.17 ± 0.07 day
-1

 respectively. These 

rates were significantly lower than observed in the un-amended mesocosms (3.98 ± 

0.19 day
-1

 and 3.94 ± 0.50 day
-1

 for the periods after the first and second toluene 

spikes respectively). The first order rate fittings therefore also suggest the presence 

of the soil amendment induced slower rates of toluene removal. 
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6.1.3 Comparing toluene degradation in the un-amended and amended 

mesocosms (Soil 3) 

A comparison of the time-series data for the un-amended and amended mesocosms 

show the presence of the soil amendment did not increase the total dissolved iron 

concentrations in the soil-water mixture (see Figure 6.5). 

 

Figure 6.5 Concentration-time profiles showing toluene, total dissolved reactive 

iron and pH in the un-amended mesocosms and soil-amended (S3) mesocosms. 

Error bars represent the standard error of the mean of three replicates. 

 

The total dissolved iron concentrations in the un-amended and soil-amended 

mesocosm groups at the time of spiking were 0.3 ± 0.03 mM and 0.4 ± 0.04 mM 

respectively. The total iron concentrations after the addition of second toluene spike 

were also similar (0.6 ± 0.0 3mM and 0.6 ± 0.12 mM for the soil-amended and un-

amended mesocosms respectively). A comparison of the pH in the mesocosms show 

there was an increase in mesocosm pH as a result of the presence of the soil 

amendment. The profile shows a progressive increase in pH from the beginning to 

the end of the period after the first spike. A decline in pH was observed after the re-

addition of toluene and increased over a comparatively lower range of pH values.  

The amended and un-amended mesocosms had similar initial toluene concentrations 

at the time of adding the first and second toluene spikes. However the soil-amended 

mesocosms contained a slightly higher initial concentration of 0.8 ± 0.02 mM in 

comparison to the un-amended mesocosms which contained initial concentrations of  
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0.6 ± 0.10 mM (see Figure 6.5). Suppressed removal was observed during the period 

following the addition of the second toluene spike. The presence of the soil 

amendments induced the removal of 93.0 ± 0.1 mg of toluene during the first spike 

period and 78.1 ± 1.5 mg during the second spike period). The un-amended 

mesocosms removed a higher 95.7 ± 10.4 mg during the period after the addition of 

the first toluene spike and a lower 71.7 ± 15.8 mg during the period after the 

addition of the second spike (see Figure 6.6). 

 

Figure 6.6 Toluene removal in the soil-amended (S3) mesocosms and un-amended 

(ST) mesocosms during the first spike period (0-15 days), second spike period 

(18-33 days), third spike period (36-51 days) and overall incubation period (0-

51 days). Error bars represent the standard error of the mean of three 

replicates. 

 

The test for differences in means (see section C.9.3 of Appendix C) indicate the 

differences in mean toluene concentrations were statistically significant (p = .0001) 

and suggest the higher amount of removal observed in the soil-amended mesocosms 

was due to the presence of the soil. The rate of toluene degradation in the soil-

amended mesocosms when fitted to zeroth order rate kinetics showed the rate of 

removal for the period after the first spike was 1.27 ± 0.31 mg
-1

l
-1

day
-1

 and 1.78 ± 

1.16 mg
-1

l
-1

day
-1

 for the second spike. The zeroth order kinetics indicate toluene 

removal in the amended mesocosms was slower in comparison to the un-amended 

mesocoms as the un-amended mesocosms were shown to remove toluene at a zeroth 

order rate of 3.05 ± 0.5 mg
-1

L
-1

day
-1

, and 1.95 ± 0.76 mg
-1

L
-1

day
-1

, for both 

respective periods. The first order fittings showed toluene removal in the soil-

amended mesocosms occurred at 0.33 ± 0.01 day
-1

 after the first spike and 0.83 ± 
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0.06 day-1 after the second spike. The first order rates in the un-amended 

mesocosms were 0.09 ± 0.02 day
-1

and 0.06 ± 0.02 day
-1

for both respective periods.  

6.2 General discussion 

All of the experimental soil-amended mesocosms in this study supported the 

removal of toluene in the soil-water mixture. At the start of the experiments, lower 

initial concentrations were observed in the mesocosms containing Soils 1 and 2 

when compared with the un-amended mesocosms. This may have been due to the 

sorption of toluene to soil amendments in these mesocosms. It is well known that in 

addition to losses due to biodegradation, leaching or volatilisation, sorption of 

organic contaminants to soil may also inhibit the complete bioremediation of these 

contaminants in soil. In contaminated soil environments, organic contaminants tend 

to accumulate in the pores between soil particles, which results in reduced oxygen 

and water permeability through the soil. Furthermore the low solubility of 

hydrophobic organic compounds in water results in residual organic phases of these 

compounds being a source of long-term contamination in soil and groundwater. This 

is as a result of the tendency of organic contaminants to bind tightly to soil particles. 

Therefore organic chemicals which have been in contact with the soil matrix for 

prolonged periods may be unavailable however the length of time over which the 

residual fraction exists. As a result, many contaminants that have been weathered 

and sequestered in soil are not necessarily available for biodegradation although 

freshly added compounds are biodegradable (Alexander, 1995).  

The results of the degradation experiments showed toluene removal in the soil-

amended mesocosms lessened during the period following the addition of the second 

spike. This pattern of toluene removal was not observed in the un-amended (ST) 

mesocosms as suppressed levels of toluene concentrations were observed during the 

period following the addition of the third spike. These dissimilarities may be 

attributed to the presence of the soil amendments. The results also showed the soil-

amended mesocosms degraded a larger amount of toluene at the end of each period 

of spiking in comparison to the un-amended mesocosms. The amount of toluene 

removed in the soil-amended mesocosms was of the order S1 > S3 > S2 for the period 

after the first and second toluene spikes (where S1, S3 and S2 represent the 

mesocosms amended with Soil 1, Soil 3, and Soil 2 respectively). Soil is generally 

composed of a mixture of carbonates, clay minerals, hydrous oxides of iron, 

manganese, and aluminium, sand, silt, and organic matter. A typical mineral soil is 

comprised of approximately 45% mineral material (i.e. sand, silt and clay in varying 

proportions), 25% air and 25% water (i.e. 50% pore space, commonly half saturated 

with water) and 5% organic matter (variable). Characterisation tests assessed four 
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soil properties namely particle size distribution, surface area, moisture content and 

pH. The results of these tests can be found in Table C.6.1a of Appendix C. Soil 

particle size analysis indicated Soil 1 had a clay content (particles < 0.002 microns) 

of 0.5 %, a silt content (particles 0.002 – 0.063 microns) of 50.4% and a total sand 

content (particles 0.063 microns to 2.000 mm) of 49.2% w/w. Soil 2 had a 19.7% 

clay content, 77.8% silt content and 2.5% sand content and Soil 3 was composed of 

83.1% clay, 16.3% silt and 0.6% sand. Determination of the BET (Braunner-

Emmett-Teller) surface area by nitrogen gas adsorption produced values 8 m
2
/g, 4 

m
2
/g and 21 m

2
/g for Soil 1, Soil 2 and Soil 3 respectively. The measurement of soil 

pH showed Soil 1 was of pH 7.6, Soil 2 pH 7.7, and Soil 3 pH 7.7. The analysis of 

particle size distribution indicates Soil 2 had the least percentage clay fraction and 

Soil 3 the highest while Soil 1 had an equal ratio of the silt and clay fractions (see 

section C.6.1 of Appendix C). The three soils (Soils 1, 2 and 3) may therefore be 

described as clayey, silty and mixed. Clayey soils are generally more plastic and 

sticky and prone to swelling and shrinkage. This is because clayey soils have smaller 

pore sizes and therefore retain more water (Hammel et al., 1981). The presence of 

petroleum products in clay soils makes them stickier and increases binding and 

clogging. The clay fractions in soils bind molecules more strongly than silt or sand, 

therefore the bioavailability of contaminants is lower in soils with higher clay 

content. The order of toluene removal in the amended mesocosms suggests Soils 1 

and 3 induced higher removal of toluene in comparison to Soil 2. It is possible this 

removal was not microbially-induced but may have been due to sorption of toluene 

to the soil amendments. (Schwarzenbach and Westall, 1981) define sorption as „the 

process in which chemicals become associated with solid phases (either adsorption 

onto a two-dimensional surface or absorption onto a three-dimensional matrix)’. 

The solid-water distribution (sorption) coefficient Kd (Equations 6.1-6.5) may be 

used as an index for measuring sorption. 

    
  

  
        Equation 6.1 

cs = 
  

  
         Equation 6.2 

cw = 
  

  
        Equation 6.3 

                   Equation 6.4 

              
 

 
         Equation 6.5 

where cw and cs denote the constituent concentration in the soil-water and solid 

respectively 

sm = total soil mas (kg) 
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ms = constituent mass in soil (g) 

va and vw denote the total system air and water volume respectively 

C = measured constituent concentration in the headspace of the batches (g/L) 

H = Henry‟s law constant (dimensionless) 

 

The parameters above were not measured during the experiments therefore sorption 

of toluene in the mesocosms was determined by simple proportion (see Equation 

6.5). From this equation sorption indices for the materials amended with Soils 1, 2 

and 3 were obtained as 0.333, 0.500 and 1.333 respectively.  

                
                                                

                                                   
  

Equation 6.5 

S1:  
   

   
          

S2:   
   

   
         

S3:   
   

   
         

where S1, S2 and S3 represent mesocosms amended with Soil 1, Soil 2 and Soil 3 

respectively 

 

The Kd  of toluene in the soil-amended, incubated material will be inversely 

proportional to the estimate of sorption index shown above. The soil-amended 

material with a smaller sorption coefficient will have a comparatively higher relative 

sorption index i.e. it will sorb toluene more strongly. The relative sorption of toluene 

in the amended material was of the order S3>S2>S1 therefore Kd soil 1 and Kd soil 2 > 

Kd un-amended > Kd soil 3. Thus it may be concluded that the lower initial concentrations 

observed in the mesocosms amended with Soils 1 and 2 were due to sorptive 

processes and not enhanced microbial degradation brought about by the presence of 

the two soils. Similarly, the higher amount of removal induced by Soil 3 was 

biologically induced and not as a result of physical processes including sorption. 

The sorption index of a soil will depend on its surface area and percentage clay 

fraction. These properties will in turn influence the degree to which it can degrade a 

contaminant. The relationship between the surface area, percentage clay fraction, 

sorption index and toluene removal observed in the incubated, soil-amended 

mesocosm material is illustrated in Figure 6.7. 
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Figure 6.7 Relationship between sorption, toluene removal, surface area and 

clay content in the soil-amended material  

 

It can be seen from the figure that the sorption of toluene in the amended material 

relative to the un-amended material was not influenced by the surface area or 

percentage clay fraction of the soil amendments. A sorbed compound may exist in a 

soil environment in four states namely i) bioavailable, rapidly reversible and 

temporarily constrained, ii) bioavailable, slowly reversible and temporarily 

constrained, iii) bioaccessible and physically constrained and iv) non-bioaccessible 

or occluded (Semple, K. T. et al., 2004). The experimental results suggest i) all 

sorption was dominantly on to bio-accessible sites, and ii) stronger sorption was not 

to inaccessible sites.  

The sorption and/or sequestration of organic contaminants can be influenced by pH, 

organic matter content, temperature and nature of the contaminant in question. The 

bioavailability of electron acceptors also influences microbial activity. Soil pH 

determines the type of microorganism involved in degradation processes. Most 

studies investigating the influence of pH on degradation report increasing 

degradation of a hydrocarbon contaminant with increasing pH, with optimum 
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degradation occurring under slightly alkaline conditions (Atlas, R.M., 1981). 

Slightly alkaline conditions are generally more conducive for biodegradation 

compared to acidic conditions (Bossert and Barther, 1984). The pH in all mesocosm 

sets remained in the circum-neutral range during the period of toluene removal after 

each spike however the pH in the mesocoms containing Soils 1 and 2 could be seen 

to have declined gradually towards the end of the period following the addition of 

the second toluene spike. (Bauder et al., 2005) report an increase in pH in crude oil-

contaminated soil. Chemical reactions between petroleum hydrocarbons and soil 

elements may induce changes in soil pH (Sun and Zhou, 2007). A decrease in pH 

was observed in the mesocosms containing Soils 1 and 2 towards the end of the 

incubation period. It is likely the gradual change in pH contributed to the gradual 

decrease in toluene removal during the period after the addition of the second 

toluene spike. 

The breakdown of hydrocarbons in soils is influenced by the soil environment and 

soil properties including surface area as surface area is known to affect the rate of 

chemical reactions in soil (Scherr et al., 2007). The range of particle sizes for clay, 

silt and sand fractions are < 0.002 microns, 0.002 – 0.063 microns, and 0.063 

microns – 2.000 mm respectively. Biodegradation rates are known to be affected by 

the fraction of fines (0.75mm) in soil. The increased sorptive surface area of soil 

with larger fines may affect the bioavailability of hydrocarbons. Therefore soils with 

a greater percentage fines are believed to support greater contaminant degradation 

due to the larger surface area provided for degradation reactions. For example (Lee 

et al., 2002) showed sandy soils were able to recover larger amounts of toluene 

(73%) when tested in batch experiments. Although this is generally true, reaction 

rates are thought to be enhanced by the availability of reactive surface areas, not 

necessarily the availability of large surface areas. The analysis of BET surface area 

showed Soil 3 had the largest surface area. This may be attributed to its larger 

percentage clay fraction. Similarly, the lower surface area of Soil 2 may be a 

reflection of its predominantly silty composition. Using the first order rate fittings 

derived from the toluene time series data, the rate of toluene removal expressed per 

square metre per day is given in Table C.6.26 (see section C.6 of Appendix C). 

From the table, the rate of toluene removal per square metre of soil mesocosm was 

of the order S2 > S3 > S1 for both the period after first spike and after second spike 

(where S2, S3 and S1 represent the mesocosms amended with Soil 2, Soil 3, and Soil 

1 respectively). Soil 2 therefore induced the highest rate of toluene removal in the 

soil-water mixture. Soil texture plays an important role in biodegradation rates of 

hydrocarbon contaminants in soil. Although clay soils provide a large surface area 

for degradation reactions, clay soils contain more micro pores and are therefore 

more susceptible to water logging which adversely affects microbial activity. 
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Therefore a water logged or clayey soil will show low degradation rates and activity. 

In (Huesemann, M. et al., 2004) soils with low percentages of fine silt and clay 

degraded hydrocarbons at higher rates. The higher rates observed were attributed to 

the aeration porosity of the soils. The Soil 2 amendment induced toluene removal at 

faster rates in comparison to the Soil 1 and 3 amendments. It is likely this was due to 

the predominantly silty texture of Soil 2 which provided an adequate amount of 

surface area as well as adequate pore size for the activities of toluene-degrading and 

iron-reducing microorganisms in the soil-amended material. 

6.3 Conclusion 

Petroleum hydrocarbons generally display hydrophobic and lipophilic characteristics 

and may be retained within soil and persist for long periods. Soils therefore present a 

major sink for organic contaminants in the environment. The three soils used in this 

experimental study were representative of three different environmental matrices 

with varying physicochemical properties and demonstrate toluene removal in these 

soil environments. Characterisation tests showed the three soils differed on the basis 

of texture, pH, and mineralogy. Soil physical properties such as texture and structure 

affect microbial activities and consequently the degree of remediation potential of 

the soil. The aim of the experiments reported in this chapter was to assess the effect 

of specific physicochemical properties on the amount and rate of toluene removal. 

The experimental results of the experiments reported suggest toluene removal was 

higher in the soils with a greater percentage clay fraction. The bulk of this removal 

was however due to sorption and not microbial degradation. The rate of removal was 

found to have been enhanced by soils with a lower clay fraction. The results 

therefore demonstrate the effect of contaminant sorption on the rate and amount of 

toluene removal. While studies have investigated the impact of soil type on 

biodegradation under both aerobic and anaerobic conditions, there is no data that 

expresses degradation rates as a function of surface area. This data has been 

provided in this chapter. 

Summary  

In this chapter the findings of a laboratory investigation of toluene removal in 

controlled batch mesocosm experiments under predominantly iron-reducing 

conditions are reported. All of the soil-amended mesocosms supported the removal 

of toluene in the soil-water mixture. The total dissolved iron concentrations were 

unaffected by the presence of the soil amendments although there was a slight 

increase in the total iron concentrations of the mesocosms containing Soils 1 and 2 
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during the period following the addition of the first toluene spike. The mesocosms 

containing Soil 3 did not show this trend. A decline in total iron concentrations in 

these mesocosms was observed during the first three days after the initial toluene 

spike. The mesocosm pH although initially unaffected after the addition of the first 

toluene spike, decreased gradually in the mesocosms containing Soils 1 and 2 during 

the period after the addition of the second toluene spike. The results indicated a 

large fraction of toluene was degraded after the first toluene spike in the mesocosms 

containing Soil 1 and Soil 2 samples. In the mesocosms amended with Soil 3 a 

significant amount of toluene was removed at the end of the incubation period. 

Toluene removal was higher in the soils with a greater percentage clay fraction 

therefore the bulk of this removal was attributed to sorption and not microbial 

degradation of toluene. The rate of toluene removal was higher in the soils with 

lower percentage clay fractions. These findings are presented in section C.7 of 

Appendix C.  
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Chapter 7 

Stable Carbon (
12

C/
13

C) Isotopes as a Tool for Identifying 

Soil Carbonates– A Method Development 

Introduction  

The sequential chemical extractions showed there was an increase in the carbonate-

bound iron pool of the incubated material which supported toluene degradation (see 

section 4.1.3). The results of further experimental analysis of this material with 

stable carbon isotope analysis are discussed in this chapter.  

7.1 Results and discussions 

The build-up in carbonate-bound iron phases in the active mesocosms (see section 

4.1.3) suggests the period of incubation in the mesocosms induced changes in the 

overall carbonate composition of the incubated material. A method was proposed to 

determine the source of carbon i.e. whether it was as a result of addition or 

dissolution of carbonates. The effects of carbonate dissolution and addition are 

illustrated in the bivariate δ
13

C / carbonate-carbon profile below. 

 

Figure 7.1 Bivariate δ
13

C / carbonate-carbon profile illustrating the effects of soil 

carbonate reactions on carbonate-carbon and δ
13

C showing „a‟ - the incubated 

material following carbonate dissolution and „b‟ - the incubated material after 

addition of carbon from respiration of 
13

C-depleted organic carbon 
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The stable isotope procedure used in this study provides the δ
13

C signature and mass 

of carbonate carbon in analysed samples. From Figure 7.1, carbonate dissolution 

will result in decreasing carbonate concentration with little change in δ
13

C between 

the starting and residual carbonate while addition will lead to increased carbonate 

concentrations. Addition of carbonates results in a change in δ
13

C of the carbonate 

pool towards the source of carbon. If the source of carbonates added is from the 

respiration of organic carbon either from indigenous soil organic matter or toluene, 

negative values will be derived (see Figure 7.1). The methodology proposed in this 

study identifies two groups of soil carbonates that may have been involved in the 

removal of toluene in the mesocosms. These operationally-defined pools are the 

fast-reacting carbonates and the slow-reacting carbonate pools. The fast-reacting 

pool is composed mainly of calcium carbonates (e.g. calcite, aragonite and vaterite). 

The slow-reacting pool is composed mainly of slower-reacting dolomite and iron-

bound carbonates such as siderite and ankerite (see setion 3.1.2). 

7.1.1 Carbonate reactions in the un-amended live control mesocosms  

The results for the un-amended live controls (see Figure 7.3) show there was an 

increase in the mass of carbonate carbon (0.005 mg/g in the starting soil material 

and 0.03 ± 0.002 mg/g in the incubated material). 

 

Figure 7.2 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

mesocosms with soil and water only. The δ
13

C signature of soil organic matter 

is shown. „b‟ represents the underlying carbonate reaction carbonate addition 

in the fast-reacting carbonate pool (subscript -45m and slow-reacting pool 

(subscript -24h). Error bars represent the standard error of the mean of three 

replicates. 
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With respect to Figure 7.1, the bivariate δ
13

C / carbonate-carbon profile suggests the 

period of incubation induced the addition of carbonates to both the fast-reacting 

(subscript 45m) and slow-reacting (subscript 24h) pools. The isotope signatures 

indicate this added carbonate to be isotopically-light carbon, possibly the by-product 

of soil microbial respiration. The reaction for the dissolution of calcium carbonates 

(calcite) in the fast-reacting carbonate pool is given in Equation 7.1. 

                              
            

      Equation 7.1 

A breakdown of Equation 7.1 is shown in Equations 7.2-7.5.  

                        Equation 7.2 

                             Equation 7.3 

                   
        

        Equation 7.4 

        
          

         
       Equation 7.5 

The dissolution of CO₂ into water forms carbonic acid (Equation 7.3 and 7.4). 

Carbonic acid dissociates to form HCO₃⁻ and CO₃⁻ ions (Equation 7.5). The 

dissolution of calcite induces the release of an equivalent amount of calcium ions as 

well as bicarbonate as shown in Equation 7.6. 

           
                 

       Equation 7.6 

Bicarbonate (        
   released in solution increases the alkalinity of the solution 

which results in an increase in hardness (Sawyer et al., 1994) and the precipitation of 

new carbonates. Therefore the dissolution of carbonates will be followed by the re-

addition of newly-formed carbonates. The precipitation of solid carbon (carbonate 

addition) therefore requires alkalinity and a cation source. In the presence of a 

hydroxyl ion bicarbonate will form calcite (Equation 7.7). This is an example of 

carbonate addition to the fast-reacting carbonate pool. Similarly Equation 7.8 

illustrates carbonate addition to the slow-reacting carbonate pool. 

              
                      Equation 7.7 

(calcite) 

              
                     Equation 7.8 

(siderite) 

The isotope signatures of the starting material (Figure 7.2) suggest isotopically light 

carbon was added to the fast-reacting pool and that isotopically heavy carbon was 

added to the slow-reacting pool. The similar isotope signatures of both materials 

suggest the carbon added to the slow pool originated from the fast pool. It may be 

speculated that the period of incubation induced a transfer of carbonates from the 
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fast pool to the slow pool as a result of the addition of solid carbonates occurring 

during the period. The mesocosms were not spiked with toluene, therefore iron 

reduction occurred with soil organic matter as a substrate (Equation 7.9).  

                
               Equation 7.9 

    
                                 Equation 7.10 

 This solid carbonate added from the new, isotopically light HCO3
-
 (Equation 7.9), 

resulted in the addition of new carbonate to the fast and slow-reacting pools 

(Equation 7.10). 

7.1.2 Carbonate reactions in the un-amended active control mesocosms 

The results obtained for the un-amended live control show the period of incubation 

and toluene degradation did not affect the mass of carbonate carbon in the fast-

reacting pool (see Figure 7.3).  

 

Figure 7.3 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the un-

amended (ST) mesocosms. The δ
13

C signature of toluene is shown. „a‟ and „b‟ 

represent underlying reactions affecting the fast- and slow-reacting carbonate 

pools (dissolution and addition respectively). Error bars represent the standard 

error of the mean of three replicates. 

 

In the slow pool however the mass of carbonate carbon was observed to have 

increased as the experimental results yielded values 0.005 mg/g to 0.03 ± 0.002 
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precipitated during the period of toluene removal in the mesocosms. The reaction of 

iron-mediated toluene removal is given by Equation 7.11 below. 

                        
                Equation 7.11 

From this equation, toluene removal under iron-reducing conditions will produce 

HCO3
-
 and OH

-
. The addition of solid carbon requires alkalinity and a cation source 

(Equations 7.1-7.6), therefore on-going toluene removal induces on-going 

precipitation or addition of solid carbonate. With respect to Figure 7.2 dissolution 

and addition were the underlying reactions affecting the fast- and slow-reacting 

pools respectively. The values obtained show large similarities in the results for the 

fast and slow pools in the incubated material (see Figure 7.3). It is therefore likely 

that the carbonates added to the slow pool were derived from the newly formed 

carbonates produced by carbonate dissolution in the fast pool.  

7.1.3 Carbonate reactions in the hematite-amended mesocosms 

The bivariate δ
13

C / carbonate-carbon profile suggests the period of incubation in the 

hematite-amended material induced carbonate addition to both the fast-reacting 

carbonate pool and slow-reacting carbonate pool (see Figure 7.4). 

 

Figure 7.4 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

hematite-amended (HM) mesocosms. Error bars represent the standard error of 

the mean of three replicates. 
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The results suggest toluene removal in the presence of hematite induced the addition 

of isotopically light carbon to the fast pool and isotopically heavy carbon to the slow 

pool. The similarity in the values obtained for the δ
13

C and the mass of carbonate-

carbon for the fast and slow pools in the incubated material  suggest the carbon 

added to the slow pool originated from the fast pool (see Table C.6.14 of Appendix 

C). The differences in isotope signatures of the starting and incubated material 

suggest isotopically light carbon was added to the fast pool after dissolution and 

isotopically heavy carbon was added to the slow pool. These changes were likely to 

have been induced by toluene removal. 

7.1.4 Carbonate reactions in the goethite-amended mesocosms 

Carbonate addition to the fast- and slow-reacting carbonate pool occurred over the 

period of incubation in the goethite-amended mesocosms as shown in Figure 7.5. 

 

Figure 7.5 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

goethite-amended (GE) mesocosms. Error bars represent the standard error of 

the mean of three replicates. 

 

The experimental results suggest the period of incubation induced the addition of 

isotopically light carbon to the fast-reacting carbonate pool and heavy carbon to the 

slow-reacting carbonate pool. The similarities of the isotope data for the starting 

material and goethite-amended material suggest this addition did not occur to a great 

extent as observed in previous mesocosms. 
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7.1.5 Carbonate reactions in the magnetite-amended mesocosms 

In the magnetite-amended mesocosms (shown in Figure 7.6), carbonate addition to 

the fast- and slow-reacting carbonate pool occurred during the period of incubation. 

 

Figure 7.6 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

magnetite-amended (MT) mesocosms. Error bars represent the standard error 

of the mean of three replicates. 

 

The results indicate the incubation period induced the addition of light carbon to the 

fast-reacting pool and heavy carbon to the slow-reacting pool. The bivariate δ
13

C / 

carbonate-carbon profile suggests the goethite- and magnetite-amended material 

behaved similarly during the period of incubation. This is in agreement with the 

results of the degradation experiments which showed similarities in concentration 

time profiles as well as amounts of removal that occurred in these mesocosms (see 

section 5.1). 

7.1.6 Carbonate reactions in the ferrihydrite-amended mesocosms 

The profile for the incubated material in the ferrihydrite-amended material indicates 

the period of incubation induced carbonate addition to both the fast- and slow-pools 

(see Figure 7.7). 
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Figure 7.7 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

ferrihydrite-amended (FH) mesocosms. Error bars represent the standard error 

of the mean of three replicates. 

 

The experimental results show there was carbonate addition to the fast- and slow-

reacting carbonate pools over the period of incubation. Isotopically heavier carbon 

was added to the slow-reacting pool. This is consistent with the previous 

amendments.  

7.1.7 Carbonate reactions in the lepidocrocite-amended mesocosms 

The profile for the lepidocrocite-amended mesocosms show there was carbonate 

addition to the slow-reacting pool (see Figure 7.8).  
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Figure 7.8 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

lepidocrocite-amended (LP) mesocosms. Error bars represent the standard error 

of the mean of three replicates. 

 

The results showed the starting and amended material contained a similar mass of 

carbonate carbon and suggest isotopically light carbon was added to the fast-reacting 

pool during the period of incubation. Isotopically heavy carbon was added to the 

slow-reacting pool of the incubated material. 

7.1.8 Carbonate reactions in the soil-amended mesocosms (Soil 1)  

The results for the mesocosms containing the Soil 1 amendment suggest there was 
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(see Figure 7.9). 
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Figure 7.9 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

mesocosms amended with Soil 1. Error bars represent the standard error of the 

mean of three replicates. 

 

With respect to Figure 7.2 the results for the incubated material amended with Soil 1 

showed there was carbonate dissolution and re-addition of isotopically light carbon 

to the fast-reacting pool. Isotopically heavy carbon was added to the slow-reacting 

pool. The results show the behaviour of the mesocosms amended with Soil 1 was 

similar to the un-amended (ST) mesocosms.  

7.1.9 Carbonate reactions in the soil-amended mesocosms (Soil 2) 

The experimental results for the incubated (S2) material suggest the period of 

incubation induced carbonate addition to both the fast- and slow-reacting carbonate 
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Figure 7.10 Bivariate δ
13

C / carbonate-carbon profile showing the changes in δ
13

C 

and mass of carbonate carbon following the degradation of toluene in the 

mesocosms amended with Soil 2. Error bars represent the standard error of the 

mean of three replicates. 

 

Isotopically heavy carbon was added to the slow-reacting pool and may have been 

derived from the fast pool similar to the un-amended (ST) mesocosms (see Figure 

7.4). The results showed the soil-amended material contained a comparatively larger 

mass of carbonate carbon. The isotope procedure was not performed on the soil 

amendment, however the comparatively large values may be an indication the 

organic content of the soil 3 amendment was higher in comparison. 

7.1.10 Carbonate reactions in the soil-amended mesocosms (Soil 3) 

The incubated material from the mesocosms containing Soil 3 affected the normal 

functioning of the GC-IRMS during analysis. Further analysis was discontinued as a 

result and there is no available stable carbon isotope data for this mesocosm set. 

7.2 General discussion 
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a common example of which is siderite. Siderite is an iron carbonate mineral which 

occurs in several geological environments and may dissolve, releasing iron that 

becomes oxidised and precipitated in the form of iron oxides and oxy-hydroxides 

with a high affinity for pollutants Siderite commonly occurs in sedimentary rocks 

along with calcite and dolomite (Appelo et al., 1996). Siderite is formed under 

reducing conditions and often occurs as a solid with substitutions of the Fe ion by 

Mg
2+

, Mn
2+

, Zn
2+

 and Ca
2+

 (Renard et al., 2017). Although time constraints did not 

allow for sequential extractions to be performed on the amended material, it is well 

known that the precipitation of siderite may be induced by iron reduction processes. 

Several studies have shown that siderite precipitates under shallow and deep soil 

conditions (Romanov et al., 2015). In sub-oxic to highly-reduced anoxic aqueous 

environments, Fe (II) is known to combine with CO2 species and will form a siderite 

precipitate (Langmuir, 1997). Potential sources of Fe (II) in aquifer systems may 

also include Fe (II)-bearing minerals such as magnetite, biotite and smectite. Siderite 

in natural environments can be found in highly concentrated Fe
2+

 environments. 

(Romanov et al., 2015) show siderite is a key component in a range of mineral 

reactions that occur during reactive transport in groundwater. Siderite precipitation 

in aqueous systems occurs in typically highly alkaline environments rich in 

dissolved Fe (II) (Bruno et al., 1992). 

In this study a methodology was proposed to differentiate between carbonate-bound 

iron and carbonates bound to other elements found in soil on the basis of their 

reaction time with „wet‟ phosphoric acid (section 3.1.2). With this approach it was 

possible to determine the source of carbon in the mesocosms during the period of 

incubation i.e. whether there was carbonate addition or dissolution. The results for 

the un-amended, active (ST) mesocosms and the mesocosms amended with Soil 1 

suggest toluene degradation in the mesocosms induced the dissolution of carbonates 

associated with the fast-reacting pool. This dissolution was followed by the re-

addition of newly-formed carbonates to the slow-reacting pool. The results for the 

other soil-amended and iron-amended mesocosms gave evidence for (only) 

carbonate addition to the fast- and slow-reacting pools.  

Carbonate minerals tend to be the most reactive minerals in subsurface 

environments. Their occurrence in geological formations is influenced by 

dissolution and precipitation (or addition) reactions. Calcite, dolomite and siderite 

are the most common carbonate minerals, with calcite being the most reactive and 

dolomite least reactive of the three minerals. Carbonate dissolution may occur in 

three steps, the first of these is leaching followed by dissolution of CO2 and 

subsequent conversion of (bi) carbonate species. Addition may occur in the form of 

nucleation and growth of the new carbonate species. The dissolution reactions of 
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these three carbonate minerals are shown in Equations 7.12-14 below (André et al., 

2007): 

               
           

         
       Equation 7.12 

(calcite) 

                     
            

         
       Equation 7.13 

(dolomite) 

               
           

         
       Equation 7.14 

(siderite) 

Precipitation reactions are influenced by the alkalinity of the water medium and the 

reactions of divalent cations. A solution that has become saturated with a cation will 

have further cation contribution exceeding the rate at which it is removed from 

solution. When this happens the solution will no longer support the formation of 

carbonates. As the mesocosms were anaerobically sealed, the dissolution of 

carbonates will lead to the re-addition of newly formed carbonates. Carbonate 

dissolution and re-addition may be likened to precipitation reactions. The 

precipitation of carbonates is influenced by pH, CO2, partial pressure (PCO2), 

alkalinity, temperature, carbonate, bicarbonate and metal ion concentrations (see 

section 2.4.2).  

The pH of the mesocosms amended with Soil 1 declined during the period after the 

addition of the second toluene spike. A decline in pH may enhance the dissolution of 

fast-reacting calcium carbonates. This is because a decline in pH increases the 

concentration of H
+
 ions by forming carbonic acid and other complex acid species 

(see section 2.4.2). The formation of carbonic acid from the dissolution of calcite 

induces the formation of calcium bicarbonate Ca (HCO3)2 and will increase the 

solubility of CaCO3. Bicarbonate formation promotes the precipitation of 

carbonates. Increased precipitation may create supersaturated conditions in the soil-

water environment. The pH in the amended and un-amended mesocosms fluctuated 

over a circum-neutral range during the period of incubation (see sections 4.1, 5.1 

and 6.1) with the exception of the ferrihydrite- and lepidocrocite-amended 

mesocosms in which the mesocosm pH varied over acidic and alkaline ranges 

respectively. The precipitation of carbonates is increased by bicarbonate formation 

however to promote on-going precipitation, this reaction must be buffered by a weak 

acid solution. Therefore variations in pH / buffering activity can be expected to have 

a complex effect on soil carbonates. 

The presence of the soil and iron amendments may have been responsible for 

carbonate addition being the only process observed in these mesocosms. The 
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reactions of divalent cations affect the precipitation of carbonates (or carbonate 

addition). Iron (Fe) is one of a few chemical elements that forms stable, poorly 

soluble carbonate minerals. Divalent iron reacts to form siderite, a poorly soluble 

carbonate. Dissolved divalent metals can react with dissolved CO2 to precipitate 

carbonate minerals (see section 2.4.2). Trivalent iron, the most abundant form of 

iron in nature cannot form carbonate however minerals with suitable amounts of 

MgO, CaO, and FeO in the presence of CO2 may experience carbonation reactions 

depending on external conditions in the system under consideration. Iron 

(hydr)oxides are known to dissolve faster under sub-oxic conditions as oxic 

conditions induce coating of mineral surfaces with FeOOH layers. Complexes 

formed as a result of bi-carbonate induced dissolution are responsible for the 

enhanced solubility of iron minerals. For example hematite has been shown to 

dissolve faster in bi-carbonate rich environment (Bruno et al., 1992). Iron (iii) 

reduction to iron (ii) promotes further dissolution of iron-bearing minerals by 

lowering the Fe
3+

 saturation levels. The subsequent utilisation of Fe
2+

 to form 

siderite will help drive the dissolution of iron minerals. The (iron-mediated) 

degradation of toluene in the presence of the iron amendments (hematite, goethite, 

magnetite, ferrihydrite and lepidocrocite) will induce a change in the amount of 

divalent cations in the mesocosms therefore the predominance of carbonate addition 

was likely to be a reflection of increased siderite precipitation induced by the 

presence of the iron amendments in the soil-water mixture.  

Biodegradation is a uni-directional reaction and is often accompanied by significant 

kinetic isotope effects (Vieth and Wilkes, 2010). The decomposition of organic 

matter in sediments consumes oxygen, releasing isotopically-light CO2 to the pore 

water in the process. Carbonate addition to the slower-reacting carbonate pool in the 

mesocosm with soil and water only (SO) was found to have produced isotopically 

light carbon. Furthermore the isotope signatures obtained for mesocosms with soil 

and water only (SO) and mesocosms with soil and toluene (ST) correlate with the 

isotope signatures of soil organic matter and toluene respiration respectively. The 

results are therefore in agreement with the literature. The experimental results show 

that regardless of the soil and mineral amendment used, the δ
13

C changed over a 

limited range over the incubation period. 
13

C and 
12

C in the degradation process is 

determined by several factors including  the type and amount of substrate degraded, 

species of bacteria as well as whether the  environment is aerobic or anaerobic 

(Hunkeler, Daniel and Aravena, 2000; Morasch et al., 2004; Meckenstock, Rainer 

U. et al., 2002). Stable carbon isotopes have been used widely in the study of the 

mechanisms of carbonate dissolution and precipitation (Nordt et al., 1996; Mermut 

et al., 2000). Information so obtained is useful in soil management as well as in the 

elucidation of processes associated with the carbon cycle. The results of the stable 
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carbon isotope experiments illustrate the inter-relationship of soil carbonates and 

hydrocarbon contaminants and may be applicable to iron-mediated contaminant 

degradation in sub-oxic to anoxic environments. 

7.3 Conclusion 

In this work, method development results indicate that GC-IRMS can be used to 

assess the distribution of soil carbonate pools. Stable carbon isotope analysis of 

toluene in the samples during the period of incubation demonstrated the validity of 

GC-IRMS in the analysis of toluene in soil samples and provided bench-mark 

isotopic fingerprints in the un-amended and amended incubated material obtained 

from the mesocosms. The large error bars in the experimental results were due to 

variations in the data obtained from replicates as well as the number of replicate 

samples. These errors may also have been a reflection of the heterogeneity of the 

analysed samples as the method used is originally designed for pure carbon samples, 

and not soil samples. The results indicate the period of incubation induced carbonate 

addition to the slow-reacting carbonate pool of the soil in the un-amended and 

amended mesocosms. This pool was made up of less reactive carbonates including 

iron-bound carbonates such as siderite. The addition of heavy carbonates provides 

supporting evidence that siderite precipitation in the un-amended (ST) mesocosms 

(section 4.1.3) was as a result of iron-mediated toluene degradation. The differences  

in the amount of carbonate carbon in the starting material and incubated mesocosm 

material provide evidence of the overall carbonate composition of the soil being 

affected by toluene degradation. Most carbonate reactions are thought to occur over 

relatively larger time scales, however the results of the isotope experiments show the 

indigenous carbonate pool in the soil material used is reactive on a 10-day time 

scale. 

Summary  

Identifying two groups of soil carbonates (broadly classified as the faster-reacting 

carbonate pool e.g. calcium carbonates and the slower-reacting carbonate pool e.g.  

dolomite and siderite) on the basis of their reaction times with „wet‟ phosphoric acid 

made it possible to determine the source of carbon during toluene removal in the 

incubated mesocosm material (i.e. whether there was carbonate addition or 

dissolution during the period of incubation). The results of the experiments gave 

evidence for carbonate dissolution in the fast-reacting carbonate pool of the un-

amended active mesocosms and the active mesocosms amended with the soil sample 

Soil 2. The experimental results from the un-amended control mesocosms and 



- 125 - 

mesocosms amended with Soil 3 indicated there was carbonate addition to the fast- 

and slow-reacting pools in the incubated, mesocosm material. Similarly, there was 

carbonate addition to the fast- and slow-reacting carbonate pools of the hematite-, 

goethite-, magnetite-, and ferrihydrite--amended mesocosms. The results obtained 

for the fast-reacting pool in the lepidocrocite-amended mesocosms gave no evidence 

for carbonate dissolution or addition. This may have been due to the alkaline 

environment in these mesocosms during the incubation period affecting the chemical 

reactivity of the calcium carbonate pool in the lepidocrocite-amended, incubated 

material. Overall the experimental results provide evidence for changes in the 

carbonate content of the incubated material induced by the period of incubation and 

toluene removal in all of the experimental mesocosms with the exception of the 

lepidocrocite-amended mesocosms. 
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Chapter 8 

Predicting the Natural Attenuation of Toluene with Mixed 

Effects Models 

Introduction  

The previous chapters focus on the analysis of the results obtained from the 

degradation experiments. The time-series data generated from these experiments are 

further analysed in this chapter with the use of inferential statistical tools. A 

mathematical model for toluene removal is proposed using the mixed effects model 

approach. 

8.1  Results and discussions  

The combined concentration-time profiles of the un-amended (ST), soil-amended 

and iron-amended mesocosms are presented in Figure 8.1.  

 

Figure 8.1 Changes in toluene with time for each mesocosm group over three 

periods A, B, and C, following the addition of toluene. The data is shown as 

the average of three replicates for each group 

 

The mixed effects model procedure was run separately for the data for each period 

after spiking (i.e. Periods A, B and C). This approach made the data more 

representative of longitudinal (panel_ data (see section 2.5.3), making it more 

suitable for the mixed model approach. 

8.1.1 Preliminary tests - test for correlation 

Panel data consist of observations of multiple phenomena obtained over multiple 

periods for the same subjects/entities (see section 2.5.3). As data collection involves 

carrying out repeated measures on single or multiple subjects over time, a 
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correlation coefficient is obtainable. A test for correlation was performed on the data 

using the Pearson test of correlation (see Table 8.1). 

Table 8.1 Test for correlation 
a 
 

(Period A) 

   
Toluene Fe pH 

Toluene Period A Pearson Correlation 
(r) 

1 -.158* .407** 

  p-value  .035 .000 

  Interpretation* 

 
r indicates weak 

correlation 

r indicates 

moderate 

correlation 

 Period B Pearson Correlation 
(r) 

1 .330** -.287** 

  p-value  .000 .000 

  Interpretation* 
 

r indicates 
moderate 

correlation 

r indicates 
moderate 

correlation 

 Period C Pearson Correlation 
(r) 

1 -.036 .153 

  p-value  .748 .168 

  Interpretation* 
 

p > .05, no 
correlation 

p > .05, no 
correlation 

Fe Period A Pearson Correlation 

(r) 
-.158* 1 -.370** 

  p-value .035  .000 

  Interpretation* r indicates 

weak 
correlation 

 

r indicates 

moderate 
correlation 

 Period B Pearson Correlation 

(r) 
.330** 1 -.628** 

  p-value .000  .000 

  Interpretation* r indicates 

moderate 
correlation 

 

r indicates 

strong 
correlation 

 Period C Pearson Correlation 

(r) 
-.036 1 -.233* 
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Toluene Fe pH 

  p-value 

 

.748  .034 

  Interpretation* 
p > .05, no 
correlation 

 

r indicates 

moderate 

correlation 

pH Period A Pearson Correlation 

(r) .407** -.370** 1 

  p-value .000 .000  

  Interpretation* r indicates 

moderate 
correlation 

r indicates 

moderate 
correlation 

 

 Period B Pearson Correlation 

(r) -.287** -.628** 1 

  p-value .000 .000  

  Interpretation* r indicates 

moderate 

correlation 

r indicates 

strong 

correlation 

 

 Period C Pearson Correlation 

(r) .153 -.233* 1 

  p-value .168 .034  

  Interpretation* r indicates 

weak 
correlation 

r indicates 

moderate 
correlation 

 

      

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 0<r<0.2 = weak correlation, 0.2<r<0.5 = moderate correlation, 0.5<r<1.0 = strong correlation 

 

Longitudinal data naturally show correlation among observations in repeated 

measures. The results above show there is a moderate to strong correlation between 

the three variables over the three periods. The mesocosms amended with synthesised 

iron amendments and the soil amendments were not sampled beyond the second 

spike period (Period B). The results for this period showed there was either no 

correlation or a weak correlation between the variables.  This may therefore be 

attributed to the comparatively large number of missing observations in the data for 

this period. 

8.1.2 Preliminary tests - test for normality 

The correlation among observations in repeated measures data occur as a result of 

shared, unobserved variables and can be represented by an appropriate probability 

distribution. There are several tests of normality broadly categorized as graphical 

and traditional tests (Argyrous, 2011; Howitt and Cramer, 2003). It is often 
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recommended that both graphical and traditional tests be performed when assessing 

the normality of a data set. Kolmogorov-Smirnov and Shapiro-Wilk tests are the 

most common traditional tests of normality. The results of both tests (Table 8.2) 

show the data for Periods A and B are normally distributed (p<.05). The test results 

however show the data set for Period C is not normally distributed (p>.05), possibly 

as  a result of the large number of missing values in the data set. 

Table 8.2 Tests for normality 

 Period  Kolmogorov-Smirnova Shapiro-Wilk  

  Statistic p-value Statistic p- value 

Toluene Period A 

Period B 

Period C 

.184 

.164 

.119 

.0001 

.0001 

.006 

.859 

.913 

.929 

.0001 

.0001 

.0001 

      

Fe Period A 

Period B 

Period C 

 

.169 

.172 

.095 

 

.0001 

.0001 

.060 

 

.895 

.796 

.939 

 

.0001 

.0001 

.001 

 

pH Period A 

Period B 

Period C 

 

.187 

.200 

.088 

 

.0001 

.0001 

.167 

 

.863 

.829 

.981 

 

.0001 

.0001 

.255 

 

      

a. Lilliefors Significance Correction 

 

 

Q-Q plots (Figures 8.2 – 8.4) were used as graphical tests for normality. The spread 

of the data for toluene removal, total iron concentrations and pH over the three 

periods indicate the data follows a normal distribution.  
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Figure 8.2 Normal Q-Q plots for toluene, Fe and pH across the un-amended and 

soil-amended mesocosm groups (Period A) 

 

Figure 8.3 Normal Q-Q plots for toluene, Fe and pH in the un-amended and soil-

amended mesocosm groups (Period B) 

 

 

Figure 8.4 Normal Q-Q plots for toluene, Fe and pH across the un-amended and 

soil-amended mesocosm groups (Period C) 

 

8.1.3 A predictive model for the natural attenuation of toluene in 

subsurface soil environments 

The main objective of the analysis in this chapter is to determine if toluene removal 

can be predicted by total iron concentration and pH with a two-level multilevel 

model. Modelling of hierarchical data is achieved as a two-stage process with the 

use of two models (see section 2.5.3). The two-level model estimates three sets of 

parameters namely i) fixed effects (ϒ00, ϒ01, and ϒ10), ii) random level-1 

coefficients (β0j and β1j), and iii) variance-covariance components expressed as 
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covariance between level-2 error terms (cov (U0j) or cov (U1j) which demonstrate 

the dependency between level-1 units nested within each level-2 unit), variance in 

level-1 error terms (ie. the variance of rij denoted by ζ
2
) and variance in level-2 error 

terms (i.e. the variance of the U0j and U1j or β0j and β1j).  

In this analysis, the first equation (Equation 8.1) models toluene removal without 

predictors.  
                                    Equation 8.1 

In Equation 8.1, 

Tolueneij = toluene concentration for a sampling occasion i in a sampling period j (in mM) 

Periodij = value of toluene concentration on a sampling occasion i in a sampling period j (in 

days) 

Β0j = intercept for a sampling period j  

Β1j = regression coefficient associated with a sampling occasion i during a sampling period j 

rij = random error associated with a sampling occasion i in sampling period j 

 

The model parameters to be determined are Β0j, Β1j, and rij. An unstructured 

covariance structure was specified during the analysis with sampling occasions 

(coded „Time‟) as random effects. The estimates of these parameters can be found in 

SPSS output data showing the estimates of fixed effects and the estimates of 

covariance parameters in section C.9 of Appendix C. These parameters are 

estimated using the z and t test statistic (Lomax and Hahs-Vaughn, 2013). The 

values of the parameters of interest are given in Table 8.3 below.  

Table 8.3 Parameter estimates for the level-2 mixed effects model of toluene removal 

without predictors 

 

Parameter 

 

Period 

 

Estimate 

 

 

Value of test 

statistic 

 

p-value 

 

Intercept (Β0j) 

 

Period A 
Period B 

Period C 

 

.329 

.796 

1.48 

 

 

t = 8.096 
t = 6.875 

t = 5.515 

 

p = .0001 
p =.0001 

p = .0001 

Time (Β1) Period A 

Period B 

Period C 

-.055 

-.062 

-.078 

t = 5.467 

t = 5.186 

t = 5.326 

p = .0001 

p =.0001 

p = .0001 
     

Residual (rij) Period A 

Period B 
Period C 

.009 

.012 

.008 

 

z = 7.746 

z = 7.122 
z =5.263 

p = .0001 

p =.0001 
p = .0001 

     

 All tests were performed at the .05 alpha level 
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From these parameters, the model for toluene removal without predictors may be re-

written as Equations 8.1a, 8.1b and 8.1c for the Period A, B and C data respectively: 

                                          Equation 8.1a 

                                          Equation 8.1b 

                                         Equation 8.1c 

 

The concentration-time profiles for Fe and pH showed Fe concentrations remained 

constant regardless of the amendment used however the pH in the mesocosms varied 

over a wide range in the amended and un-amended groups of mesocosms (see 

sections 4.1, 5.1 and 6.1). In addition, the tests of correlation showed the correlation 

between toluene and pH was comparatively stronger than the correlation between 

toluene and Fe. In this model Fe is regarded as a level 1 (i
th

 level) predictor and pH a 

level 2 (j
th

 level) predictor. In this model, the level-1 regression coefficients (Β0j and 

Β1j) are used as outcome variables and are related to each of the level-2 predictors. 

The fixed effect parameters become                             and     

                      (where β0j = intercept for the j
th

 sampling period and β1j = 

slope for the j
th

 sampling period). A combined model for toluene removal with Fe as 

a predictor at the sampling period level and pH as a predictor at the sampling 

occasion level will therefore be given by Equation 8.2: 

                                                                   

         Equation 8.2 

where  

Tolueneij = toluene concentration for a sampling occasion i in a sampling period j (in mM) 

Fej = total iron concentrations in sampling period j (in mM) 

ϒ00 = overall mean intercept adjusted for pH 

ϒ10 = overall mean slope adjusted for pH 

ϒ01 = regression coefficient associated with pH relative to level-2 intercept 

ϒ11 = regression coefficient associated with pH relative to level-2 slope 

U0j = random effects of the j
th
 level-2 unit adjusted for pH on the intercept 

U1j = random effects on the j
th
 level-2 unit adjusted for pH on the slope 

rij = random error associated with a sampling occasion i in sampling period j 
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In this model, Tolueneij may be regarded as an effect size parameter dependent on 

the value of the level-2 predictor. The results of the parameter estimates are 

presented in Table 8.4. 

Table 8.4 Parameter estimates for the level-2 mixed effects model of toluene removal with 

predictors* 

 

Parameter 

 

Period 

 

Estimate 

 

 

Value of test 

statistic 

 

p-value 

 

FIXED EFFECTS PARAMETERS 

 

ϒ00 Period A 

Period B 
Period C 

1.610 

1.773 
15.2 

 

t = -3.305 

t = -1.028 
t = -1.696 

p = .001 

p =.283 
p = .096 

ϒ10 Period A 
Period B 

Period C 

.261 

.309 

2.23 

t = 4.132 
t = 1.415 

t = 1.854 

p = .0001 
p =.160 

p = .069 

     
ϒ01 Period A 

Period B 

Period C 

.259 

.332 

.985 

t = 2.140 

t = 1.865 

t = 1.691 

p = .035 

p =.065 

p = .097 
     

ϒ11 Period A 

Period B 
Period C 

.041 

.048 

.413 

t = -2.615 

t = -2.141 
t = -1.810 

p = .010 

p =.035 
p = .076 

     

VARIANCE-COVARIANCE PARAMETERS 

 

U0j Period A 

Period B 
Period C 

.047 

.294 

.853 

z = 3.368 

z = 2.904 
z = 2.269 

p = .001 

p =.004 
p = .023 

     

U1j Period A 
Period B 

Period C 

.294 

.003 

.002 

z = 2.904 
z = 2.640 

z = 2.093 

p = .004 
p =.008 

p = .036 

     

rij Period A 

Period B 

Period C 

.008 

.012 

.008 

z = 7.612 

z = 7.000 

z = 5.049 

p = .0001 

p =.0001 

p = .0001 
     

     

*All tests were performed at the .05 alpha level 

 

An unstructured covariance was also specified for this model (see model dimensions 

in section C.9 of Appendix C). The results show a large number of p-values for the 

fixed effect parameters were not statistically significant at the 0.05 alpha level (see 

underlined and italicised values in Table 8.4) however the Wald Z statistic were 

significant at the 0.05 alpha level. This was mainly for the Period B and C data and 

may be an indication that Fe and pH are not suitable predictors of toluene removal 

during these periods. It was stated in chapter 4 that the draining of the mesocosms 

may have resulted in loss of soil material and as such the measured total iron 

concentrations in the mesocosms after the first spike period may not have been true 

representations of the actual concentrations (see section 4.1.3). The results for the 

parameter estimates for the Period A and B data may be a reflection of this 

misrepresentation.   
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8.2  General discussion  

In field observations, the fate of petroleum hydrocarbons in the unsaturated zone is 

best assessed through a complete natural attenuation monitoring process. Sorption, 

diffusion, evaporation and biodegradation are the main processes affecting the 

presence of VOC contaminants (Atlas, R. M.  and Philip, 2005). Repeated measures 

experiments are a common design in experiments assessing the biodegradation of 

hydrocarbon contaminants. The analysis refers to multiple measurements made on 

the same experimental unit observed over either time or space. The usual practice in 

these designs is to apply treatments to experimental units in a completely 

randomized design and make measurements sequentially over time. The repeated 

measures design incorporates two fixed effects (treatment and time) and two sources 

of random variation (between and within replicates of treated and untreated 

experiments (Wang, L.A. and Goonewardene, 2004). The degradation experiments 

in this study provided repeated measurements of toluene, total iron concentrations 

and pH on replicates of soil mesocosms randomly allocated to fixed treatment 

effects. A model for toluene removal in anoxic soil environments was therefore 

proposed using the mixed effects model approach by analysing the time series 

experimental data as a 2-level hierarchical data set. As measurements were made on 

the same soil-water mixture, the measurements are more likely to be correlated than 

two measurements taken on different soil and / or water mixtures. In addition 

measurements taken closer to time are likely to be more correlated than those taken 

further apart in time. The analysis of repeated measures data therefore accounts for 

correlations between the observations made on the same subject, making them more 

suitable for repeated measures than other classical methods (Wang, L.A. and 

Goonewardene, 2004). 

Mixed effects modelling and hierarchical modelling are viewed in the same context 

and sometimes used interchangeably (Bell and Jones, 2015; Woltman et al., 2012). 

The use of mixed effects in the same model can be thought of hierarchically as a 

close relationship exists between mixed models and the class of models referred to 

as hierarchical linear models (Huitema, 2011). In this hierarchy one level may be 

regarded as being for subjects and another level as being for measurements within 

subjects. A factor is fixed when it has levels that are of primary interest and would 

be used again were the experiment to be repeated. A random factor will have levels 

that are not of primary interest but rather are thought of as being a random selection 

from a much larger set of levels. In this study toluene removal was modeled with the 

use of the mixed effects approach. The approach for two-level multilevel mixed 

effects models is to first produce a model without predictors. This model determines 

the appropriate starting values for modeling toluene removal (see section 2.5.3). The 
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fixed effect and covariance parameters in the first model were statistically 

significant. Equations modeling toluene removal over these three periods were 

obtained with these parameters. Recall that the mixed effects model approach avoids 

violations caused by missing observations (see section 2.5.3). Therefore although 

the number of observations in the three periods differ (see data set in section C.6.5 

of Appendix C), a choice can be made between these three models to obtain the 

model that best represents toluene removal in the mesocosms. Penalised methods 

estimate the likelihood of the observed data using a particular method. Although 

SPSS provides five options for the estimates of penalised likelihood, the three 

commonly used parameters are the 2-Restricted Log Likelihood, Akaike‟s 

Information Criteria and Schwarz‟s Bayesian Criterion (BIC) the values of which 

are given in Table 8.5.  

Table 8.5 Parameters for model selection 

 

Period 

 

-2 Restricted Log 

Likelihood 

 

Akaike's Information 

Criterion (AIC) 

 

Schwarz's Bayesian 

Criterion (BIC) 

 

Period A 

Period B 
Period C 

 

-205.257 

-128.319 
-100.663 

 

-197.257 

-120.319 
-92.663 

 

-184.530 

-108.249 
-83.085 

 

    

 

The most basic idea concerning model development is to find the model that uses 

the least number of parameters (freeing up the largest number of data items or 

degrees of freedom) along with the best fit (Liu, H., 1995; Judd et al., 2011). 

Defining parameters as fixed effect parameters means only a single value is 

estimated (a point estimate), the degree of dependency between any two repeated 

measures pairs mean is not defined. This results in the estimate of a fixed parameter 

(i.e. covariance / correlation) value for each pair using up a large number of degrees 

of freedom. Thus, the model with a lower BIC value gives a better balance between 

complexity and good fit and is most likely to be closest to the true model of the data 

under study (Doncaster and Davey, 2007; Raykov and Marcoulides, 2012). The 

approach for model selection is therefore to use the „smaller is better‟ rule of thumb 

of which the BIC provides the smallest value as it penalises the likelihood based on 

both the total number of parameters in a model and the number of subjects studied.  

From Table 8.2, the Period C data gives the smallest BIC value therefore the 

mathematical model for the monitored attenuation of toluene, based on the 

mesocosm data, is given by Equation 8.3. 

                                       Equation 8.3 

where  
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Tolueneij = toluene concentration for a sampling occasion i in a sampling period j (in mM) 

Periodij = value of toluene concentration on a sampling occasion i in a sampling period j (In 

days) 

Β0j = intercept for a sampling period j  

Β1j = regression coefficient associated with a sampling occasion i during a sampling period j 

rij = random error associated with a sampling occasion i in sampling period j 

 

The equation modelling toluene removal with the use of level-2 predictors did not 

yield statistically significant values for the parameter estimates of the Period B and 

C data. The addition of interactions Fe*Time and pH*Time (see section C.9.3 of 

Appendix C) demonstrate how the mixed effects model allow for cross-level 

interactions between higher-level (level 2) and lower-level (level 1) variables in 

hierarchical data. These interactions give an indication of whether the time-varying 

predictor varies by time-invariant predictors (Fe) and vice versa. The interaction 

effects show the changes in pH with time occur to a larger extent in comparison to 

the changes between Fe and time (see section C.9.3 of Appendix C). These 

relationships are of interest when analysing treatment effects over time. In repeated 

measures data, measurement occasions are nested within entities. In this study 

measurements of toluene, Fe and pH per sampling occasions in individual replicates 

of amended and un-amended mesocosms are nested within the sampling periods 

representing each period after spiking. The results show mixed effects models are a 

good exploratory tool for the analysis of repeated measures data from 

biodegradation experiments. Using the parameters for Period A, the model for 

toluene removal with Fe and pH as predictors is given by Equation 8.4: 

                                                                            

         Equation 8.4 

where  

Tolueneij = toluene concentration for a sampling occasion i in a sampling period j 

Fej = total iron concentrations in sampling period j 

 

The equation above serves as a model for toluene removal with Fe as a level 1 (i
th

 

level) predictor and pH a level 2 (j
th

 level) predictor based on the time series data for 

toluene removal after the addition of the first toluene spike.   
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8.3  Conclusion 

 Mixed effects models are a rapidly growing application of basic multilevel 

modelling of longitudinal data. Mixed effects models avoid violations due to 

missing data and unequal spacing. It is therefore recommended that the mixed model 

be used for the analysis of repeated measures in biodegradation studies.  

Summary 

The experimental data for the toluene degradation experiments showed toluene 

concentrations, total dissolved iron and pH differed across the amended and un-

amended mesocosms therefore the use of statistical inferential tools were employed 

to estimate the effect sizes for the various treatments by using a difference in means 

test (see C.9.1of Appendix C) reported in the discussion of results in chapters 5 and 

6. With the mixed effects model, the main objective was to produce an equation for 

modelling toluene removal over time on the basis of the time series data obtained 

from the un-amended and amended mesocosm groups. This equation was to 

incorporate the three variables Toluene, Fe and pH. Specifying Fe and pH as 

predictors made it possible to test the suitability of these variables as predictors of 

toluene removal in toluene-contaminated subsurface soil environments. This model 

was achieved by a simple regression analysis using the mixed effects modelling 

approach. Therefore the equation modelling toluene removal is a regression line 

fitted across the data obtained from the un-amended mesocosms as well as the iron- 

and soil-amended mesocosms. The choice of the mixed effects model approach lay 

in its main features which make it more suitable for the analysis of repeated 

measures data, particularly those with missing observations. The p-values indicated 

that the differences in the test parameters were statistically significant at p = .0001. 

The inclusion of Fe and pH as additional fixed effects gave p-values which were 

only statistically significant (p<0.05) for the Period A data. 
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Chapter 9 

Conclusion and Recommendations 

Conclusion 

The primary objective of this research was to investigate the mechanisms of 

intrinsic, iron-mediated degradation of volatile petroleum hydrocarbons in 

subsurface regions with toluene as a representative compound. This thesis has 

explored several disciplines and analytical approaches that may offer additional 

insight to aid the understanding of  geochemical influences affecting the 

biodegradation of petroleum hydrocarbons in subsurface soil environments. The 

experiments conducted tested three main hypotheses namely i) indigenous soil 

microorganisms in a previously-contaminated soil may be able to respire 

anaerobically and couple the reduction of Fe (III) to the oxidation of a hydrocarbon 

contaminant (toluene), ii) the process of carbon cycling in a soil environment may 

change as a result of addition of a hydrocarbon contaminant (toluene), iii) the 

addition of extraneous iron sources as a terminal electron acceptor can increase the 

extent / amount of contaminant removal as well as the rate of the reaction. The main 

conclusions from the experimental findings are:  

 Indigenous microbial soil organisms will degrade toluene in soil 

environments prepared under laboratory conditions. 

 Indigenous microorganisms in soil  will degrade toluene in the presence of 

hematite, goethite, magnetite and ferrihydrite under laboratory conditions. 

The rate and amount of removal will be a function of the crystallinity of 

these iron mineral (hydr) oxides. 

 The texture of soils will affect the rate and amount of toluene removal in 

subsurface environmental conditions. Microbially-mediated removal will be 

a function of the percentage clay fraction and surface area of these soils. 

 Stable carbon isotope analysis can be used to differentiate between common 

carbonates found in soil on the basis of the reactivities of these carbonates in 

soil. 

 Given the right experimental variables, mixed effects models may offer a 

means of predicting toluene removal by natural attenuation in subsurface soil 

environments. 

Recommendations for further studies 

1. The analysis of operationally-defined iron pools in the iron- and soil-

amended mesocosm material was not performed due to time constraints. If 

this analysis was performed it would have enabled comparisons to be made 



- 139 - 

between the amended and incubated material to assess the effect of the 

amendments on th operationally-defined iron pools. The results of such 

analysis may allow for inferences to be made about carbonate precipitation 

during iron-mediated toluene removal.  

 

2. The influence of soil on toluene removal may be further explored with the 

use of soils ranging from highly organic (e.g. peat) to highly inorganic (e.g. 

chalk or limestone aquifer material) to provide additional information on the 

influence of the percentage clay fraction and surface area on toluene 

removal. These experiments may be designed with control mesocosms 

consisting of successively-spiked mesocosms containing water and the soil 

amendments only (i.e. mesocosms without starting soil material) to further 

investigate the influence of soil processes such as sorption and diffusion as 

well as to monitor the effect and extent of losses due to volatilisation using 

the parameters in Equations 6.1 to 6.5.  

 

3. Further experimentation with the use of batch mesocosms may generate time 

series data that may serve as more suitable predictors of toluene removal and 

produce predictive models of greater complexity incorporating three or more 

factor levels. Suitable predictors may include factors known to affect 

biodegradation rates such as temperature, pH, amount (in mg) of 

amendments, volume of toluene stock for spiking.  
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 Glossary 

Bioavailability 

The capacity of a particular compound or group of compounds to participate in biological reactions. 

 

Biodegradation 

The conversion of an organic compound, ultimately to carbon dioxide and water, by microbiological catalysis. 

 

Bioremediation 

A managed process for removing soil contaminants through the enhancement of natural microbiological processes. 

 

Characterisation 

The process through which the physical, chemical and/or biological properties of a particular compound or product are 

distinguished. 

 

Confidence interval 

A 95% confidence interval is the range of values which would not be rejected by a test of the null hypothesis at the 5% level 

 

Covariate 

A variable that may influence our DV but which we cannot control experimentally is called a covariate. Usually, especially in 

the context of ANCOVA, it is a continuous variable. 

 

Degrees of freedom 

Degrees of freedom are usually used as the denominator in calculating an average where there is some constraint on the values 

in the numerator. 

 

Dependent variable 

A dependent variable is a variable that measures the outcome of the experiments i.e. it is a phenomenon we want to study 

 

Effect 

The difference made to the DV by a change in the IV. Estimating the statistical significance and the size of an effect are 

usually tasks of ANOVA. 

 

Factor 

In ANOVA the IVs are usually referred to as factors.  

 

Factorial design 

In a factorial design, each level of each independent variable is paired with each level of each other independent variable, a 2 x 

3 factorial design consists of the 6 possible combinations of the levels of the independent variables. 

 

Factor levels 

The values taken by the factors (IVs). 

 

General Linear Model 

A class of models including ANOVA, ANCOVA, MANOVA and regression (simple and multiple). 

 

Generalised Linear Model 

An extension of the General Linear Model that includes (among others) logistic regression and log-linear models. 

 

Goodness of fit 
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Various statistics, known collectively as measures of goodness of fit or goodness-of-fit statistics, are used to determine how 

well a model fits the data.  

 

Heteroscedasticity 

Refers to the circumstance in which the variability of a variable (variance)  is unequal across the range of values of a second 

variable that predicts i.e. residuals. Called heterogeneity of variance in ANOVA context, heteroscedascity in regression 

analysis. 

 

Homoscedasticity 

Refers to the circumstance in which the variability of a variable (variance) is the same across the range of values of a second 

variable that predicts i.e. residuals. Called homogeneity of variance in ANOVA context, homooscedascity in regression 

analysis. 

 

Hydrocarbons 

Compounds consisting solely of hydrogen and carbon. 

 

Independent variable  

An independent variable is a variable that is manipulated by the experimenter i.e. it is a phenomenon that when it changes 

makes another phenomenon change 

 

Intrinsic bioremediation 

The management of natural microbial processes to reduce the amount of contaminant in soil or groundwater. 

 

Ion chromatogram 

In GC-El MS, the set of peaks produced by ions possessing one particular mass-to-charge ratio. 

 

Isotope ratio 

A representation of the ratio of C-13 to C-12 within a particular compound or mixture of compounds (in the context of this 

study). 

 

Isotopic composition 

In this study, the relative amounts of C-13 and C-12, as shown by the Isotope Ratio. 

 

Independence 

Observations or variables are independent if the value on one of them does not affect the probabilities for values on the other. 

Interaction 

Two factors in an ANOVA interact if the effect of one differs at different levels of the other (plots will show non-parallel 

lines). 

 

Intercept 

The values at which a straight line graph intersects the vertical (DV) axis, so it is the constant a in the equation y = a + bx. 

With more than one IV it is the constant in the linear equation that predicts the DV. 

 

Independent variable  

An independent variable is a variable that is manipulated by the experimenter i.e. it is a phenomenon that when it changes 

makes another phenomenon change 
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Level (of a factor i.e. variable) 

When a factor consists of various treatment conditions, each treatment condition is considered a level of that factor. For 

example, if the factor were drug dosage, and three doses were tested, then each dosage would be one level of the factor and the 

factor would have three levels. 

 

Likelihood 

The likelihood of a hypothesis or parameter value, given our data, is proportional to the probability of our data with that 

hypothesis or parameter values.  

 

Main effect 

If we have more than one factor in an ANOVA, the main effect of a factor is the effect of that factor averaged over all the other 

factors. 

 

Mediating effects 

An indirect effect of an IV on a DV via its effect on a variable intermediate between the IV and DV in a hypothesised causal 

chain.  

 

Microcosm/Mesocosm 

Pertains in this study to the experimental apparatus through which microbial activity was studied in the laboratory 

 

Missing observations 

If observations that are required by an experimental design are not obtained, perhaps because a participant is ill or drops out, 

then we have missing observations. Analysis may be considerably more difficult if there are missing observations. 

 

Mineralisation 

The complete microbially-induced conversion of an organic compound to carbon dioxide and water. 

 

Model 

The model is an equation that predicts or accounts for the observed values of the DV in terms of the values of the IV(s) and 

some random variation. A linear model predicts the DV as a sum of multiples of the IVs plus a constant and some random 

variation. 

 

Multiple correlation coefficient 

The correlation between the observed and predicted values of the DV in a regression analysis. 

 

Natural Attenuation 

Synonymous in this case with Intrinsic Bioremediation 

 

Null hypothesis 

In hypothesis testing, the null hypothesis is the one we test. 

 

Paired comparisons 

In an ANOVA, if the difference in the DV is tested for every pair of values taken for an IV, we call these pair comparisons. 

 

Parameter 

A numerical value that has to be estimated for a model. 

 

Parametric assumptions 

The assumptions that the DV is (at least approximately) normally distributed and has a variance that is the same for all values 

of the IV(s) in the study.  
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Petroleum products 

Individual fossil fuel products obtained from the atmospheric and vacuum distillation of crude oil. 

 

Planned comparisons 

Comparisons or contrasts that are planned when the experiment is designed. 

 

Post hoc tests 

Tests that are done after viewing the data, or multiple tests that are not based on specific planned comparisons. 

 

Probability plot 

A method for checking whether data are likely to be from a normal distribution. 

 

Remediation 

The process through which contaminants in soil are removed or transformed to a less harmful form. 

 

Residuals 

The difference between an observed value of the DV and the value predicted by a model. 

 

Replicates 

In statistical terms, observations with the same combination of factor levels. 

 

Saturated zone 

The area of the soil subsurface below the permanent water table mark (i.e. below the groundwater level). 

 

Sediment  

Sediments may be described as a material deposited in either air or water or near the surface of the earth. Sediments may be 

compacted, cemented or altered to form sedimentary rocks.  

 

Soil 

Soils may be regraded as a heterogeneous mixture of air, water, inorganic and organic solids and microorganisms. 

 

Type I error 
Rejecting a null hypothesis that is true. 

 

Type II error 

Failing to reject a null hypothesis that is false. 

 

Unsaturated zone 

The area of the soil subsurface above the highest permanent water table mark (i.e., above the level of soil groundwater. 
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Appendix A 

Presentations, Publications and List of Courses Attended 
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A.1  Publications currently submitted for publication and in press 

 

A.2  Conference and poster presentations 

Orlu, R.N., Stewart, D.I., and Bottrell, S.H Geochemical controls during the biodegradation of petroleum hydrocarbons in 

soils. School of Civil Engineering Post Graduate Researchers (PGR) Conference. University of Leeds. September 2013 

 

Orlu, R.N., Stewart, D.I., and Bottrell, S.H. Harnessing iron mineralogy and bioavailability in contaminated aquifers. 13th 

International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources 9–12 

June 2015, Copenhagen, Denmark. 

 

A.3  Conference platform presentations 

Orlu, R.N., Stewart, D.I., and Bottrell, S.H. Anaerobic toluene degradation in contaminated aquifers. School of Civil 

Engineering Post Graduate Researchers (PGR) Conference. University of Leeds. September 2014 

 

A.4  Courses attended  

(University of Leeds 2012-2015)  

An Introduction to Effective Research Writing     22/07/2015 

5th Postgraduate Researcher Conference      04/12/2014 

Matlab and Simulink        24/06/2014 

Excel for Research 'Absolute Beginner'      07/05/2014 

How Vital Are Your Statistics: Part 2      11/04/2014 

How Vital Are Your Statistics: Part 1      07-08/04/2014 

SPSS Beginners        04/04/2014 

A-Z of Publication        27/03/2014 

Labview Introductory Hands-on Workshop      19/03/2014 

LaTeX Beginners        19/03/2014 

Preparing for Your Transfer       19/11/2012 

Effective Learning, Teaching and Assessment for Tutors and Demonstrators    23/10/2012 
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Project Managing Your Research Degree      31/05/2012 

Writing for Research Students in the Sciences     30/05/2012 

Digital Images Theory       16/05/2012 

Digital Images Theory       10/05/2012 

Introduction to C++        02-04/04/2012 

Introduction to Programming       28/03-12/04/2012 

CIEH Level 2 Health and Safety       28/03/2012 

Starting Your Research Degree - Engineer      26/03/2012 

Researcher @ Leeds        20/03/2012 

Welcome Induction: Faculty of Engineering      13/03/2012 

A Balancing Act        09/03/2012 

Talking about your Research to Non-Specialists     27/02/2012 

Working with Literature        16/02/2012 

Endnote - Online webinar       15/02/2012 

Search and Save         14/02/2012 

Finding PhD dissertations and theses      13/02/2012 

RSS and publication alerts: online web      08/02/2012 

Word for Thesis Part 1       06/02/2012 
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Appendix B 

Laboratory Apparatus 
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B.1 Degradation experiments 

 

Figure B.1  Laboratory apparatus showing A - VICI cap assembly and PEEK fittings attached to a  Schott bottle, B - 

Nitrogen-filled ballast volume and syringe used during spiking and sampling procedures, C - Mesocosms with soil-water 

mixture under anoxic conditions, D – Self fabricated anaerobic glove box, E – Sealed salted vials containing toluene stock 

solutions for GC calibration, F – Sealed salted vials containing liquid samples from sealed mesocosms and G – Components of 

VIC-CAP assembly 

A B

C D

E F

G

1/8” Teflon tubing

Female luer 

fittings

1/8” nut and ferrule

Completely assembled 

mesocosm

Polypropylene screw collar with 

standard DIN  45mm threads 

Valves

Opticap body constructed from PTFE

TFE / polypylene o-ring
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B.2 Sequential chemical extractions 

 

Figure B.2  Laboratory apparatus for pyrite and AVS extraction showing A – Condenser columns for extraction by 

chromous chloride distillation and B – Illustration of initial stage of the extraction process showing reaction vessel attached to 

the condenser column in which the extractant and sample are reacted to release H2S(g) precipitated as Ag2S  

A

B



- 186 - 

B.3 Mineral synthesis 

 

Figure B.3 Apparatus for mineral synthesis showing A – Glassware, B – Illustration of experimental set up and apparatus for 

mineral synthesis, C – Freeze-dried lepidocrocite mineral sample from the synthesis experiments and D- Experimental set up 

and apparatus for synthesis experiments  

 

  

A B

C

D
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B.4 Analysis of total Fe and δ13C  

 

Figure B.4 Apparatus for total Fe test (ferrozine assay) and stable carbon isotope analysis showing A – Samples for ferrozine 

assay and B - Sealed vacuum line for sample preparation for 12C and 13C  isotope analysis  

 

 

A

B



- 188 - 

Appendix C 

Supporting Information 
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C.1 Experiment matrix of mesocosm experiments and variables measured 

Table C.1 Experimental matrices and variables measured  

 

Meso

cosm 

 

Content 

 

Variables measured 

 

 

SO 

 

Soil, Water 

 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios, operationally-defined Fe mineral 
fractions 

ST Soil, water, 
toluene 

pH, toluene, total dissolved aqueous Fe, 
carbonate carbon, 13C/12C ratios, operationally-defined Fe mineral 

fractions 

HM Soil, water, 

toluene, hematite 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 

GE Soil, water, 

toluene, goethite 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 

MT Soil, water, 
toluene, goethite 

pH, toluene, total dissolved aqueous Fe, 
carbonate carbon, 13C/12C ratios 

FC Soil, water, 

toluene, ferric citrate 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 

FH Soil, water, 
toluene, ferrihydrite 

pH, toluene, total dissolved aqueous Fe, 
carbonate carbon, 13C/12C ratios 

Lp Soil, water, 

toluene, lepidocrocite 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 

S1 Original 

sediment, , sediment amendment 

, water, toluene 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 
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Meso

cosm 

 

Content 

 

Variables measured 

 

S2 Original 

sediment, sediment amendment, , 

water, toluene 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 

S3 Original 

sediment, sediment amendment, , 
water, toluene 

 

pH, toluene, total dissolved aqueous Fe, 

carbonate carbon, 13C/12C ratios 

   

C.2 Soil sampling locations  

 

Figure C.2 Sampling locations of starting soil (SS) and soil amendments (Soil 1, Soil 2, Soil 3) (Image Source: 

GoogleImages) 

  

Soil 1

Sampling location: Four Ashes, 

Staffordshire, United Kingdom 

Sampling depth: 10-15m

:

Soil 2

Sampling location: Mansfield, 

Nottinghamshire, United Kingdom 

Sampling depth: 25.50 - 25.75 m

Soil 3

Sampling location: Bramham, West 

Yorkshire, United Kingdom

Sampling depth: 10 – 15 m

:

Starting soil

Sampling location: Meanwood, 

Leeds, West Yorkshire, United 

Kingdom 

Sampling depth: 1-2m

A

B

A

D

C

B

C

D
N
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C.3 Instrument calibration curves 

 

Figure C.3 Initial calibration curves for A - toluene analysis on GC instrument and B - ferrozine tests (calibration performed 

in triplicate) on UV-VIS 

C.4 Calculations and estimates 

C.4.1 Toluene removal (in mg)  

Toluene removed =                   
      

  
   Equation C.4-1 

where 

„mass of toluene‟  is the amount of toluene in stock solution (in mg) 

C0 is the total concentration of dissolved / aqueous phase toluene (in mg/L) at the time of spiking † 

Ct is the total concentration of dissolved / aqueous phase toluene (in mg/L) at the end of a given spike period † 

      

  
 represents the fraction of toluene removed during the spiking period 

 

† C0 and Ct concentrations represent the theoretical concentrations expected under the assumption that all of the added toluene 

went into solution 

C.4.2 Relative sorption  

The amount of sorption that may have occurred is given by the relationship below:  

                   
                                                

                                                   
 

         Equation C.4-2 

S1:  
   

   
 =  0.333 
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S2:   
   

   
 = 0.500 

S3:   
   

   
 = 1.333 

where S1, S2 and S3 represent mesocosms amended with Soil 1, Soil 2 and Soil 3 respectively 

C.5 Experimental procedures 

C.5.1 Laboratory synthesis of lepidocrocite and 2-line ferrihydrite 

by Simon Bottrell and Rosemary Orlu  

The procedure for synthesis of ferrihydrite and lepidocrocite adopted from (Navarro, 2008) (Yu, J.-Y., Park, Misun, Kim, 

Jinhwan, 2002) (Parkman, R.H., Charnock, J.M., Bryan, N.D., Livens, F.R., and Vaughan, D.J., 1999) is described below. 

Materials 

Schlenk vessel 

Gas scrubber 

pH metre 

Magnetic stirrer 

Burette attachment for schlenk vessel 

Connector tubes (2) 

Reagents 

1M NaOH (sodium hydroxide or caustic soda) 

0.1M FeCl2.4H2O (iron (ii) chloride tetrahydrate) 

0.2M Fe (NO3)3.9H2O (iron (iii) nitrate nonahydrate) 

 

Figure C.5.1 Experimental set up for ferrihydrite and lepidocrocite synthesis 
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Procedure for lepidocrocite 

Fill schlenk vessel with deionised water 

Connect the nitrogen line to schlenk vessel and leave over night 

Put flea bar in schlenk vessel, set on magnetic stirrer and switch on instrument 

Add solid 19.9g FeCl2.4H2O to 300mL of degassed water, stir and dissolve 

Fill the second vessel with NaOH and connect tubes, one to the inlet (air), the other to the outlet (NaOH) 

Pour NaOH solution in burette 

Place pH probe in schlenk vessel 

Release NaOH into schlenk vessel until pH goes between 6.7-6.9 

Start air flow through gas scrubber 

Switch on N2 flow from clean air flow (outlet from gas scrubber) 

Monitor pH change – should start to fall 

Add more NaOH solution to burette to keep pH ~ 6.8 

Reaction is finished when pH stops changing (pH = 9) 

Centrifuge, wash severally with DIW and freeze-dry 

Confirm mineral with XRD analysis 

Procedure for 2-line ferrihydrite 

Repeat procedure using 0.2M Fe (NO3)3.9H2O (40.4g in 500mL degassed water) 

Precautions 

Care must be taken when handling sodium hydroxide, the reagent is corrosive and also may permanently adhere glass 

components 

The gas scrubber unit will be under pressure due to the in-filling of air, care must be taken by releasing air at a slow rate and by 

the use of a containing vessel such as a plastic bucket. 

 

C.5.2 Analysis of aqueous phase toluene (salting-out method) 

 

Procedure 

1. Weigh out 7.5g of NaCl into a 15ml Whattman vial 

2. Anaerobically seal this vial by crimping the vial  

3. With the aid of a syringe insert 10ml of liquid sample for analysis 

4. Store at room temperature in an upturned position to minimise losses by volatilisation 
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C.5.3 Analysis of total iron (Fe2+ and Fe3+) in solution (ferrozine method) 

Theory 

The determination of iron is based on the reaction of Fe(II) with Ferrozine agent in solution, forming a stable magenta coloured 

complex between pH 4 and 9.  At 562nm the complex yields the maximum absorbance.   

Analysis of Total Fe Fe(II)+Fe(III)  is only achieved after reduction of Fe(III) to Fe(II) under strong acidic conditions. 

The method applies for concentrations between ~0.010 mg/L and ~ 3mg/L. 

 Reagents   (Use volumetric flasks for preparation) 

 Ferrozine  (0.01M ferrozine prepared in an 0.1M ammonium-acetate (CH3COONH4) solution) 

Make 100ml of ferrozine solution by diluting 0.5077g of ferrozine and 0.7708g of ammonium-acetate in DI water.  Keep only 

for a month as this solution oxidises over the time. 

 Reducing Agent   (1.4M hydroxylamine hydrochloride (H2NOH.HCl) in an 2M hydrochloric acid solution) 

Make 100ml dissolving 9.728g of hydroxylamine hydrochloride in 50mL of DI water and 17ml of concentrated HCl (aristar), 

complete the solution with DI water.  Hygroscopic reagent, weight rapidly and keep container closed. 

 Buffer ( 5M ammonium acetate adjusted to pH 9.5 with a 28-30% ammonium hydroxide (NH4OH) 

Make 100ml dissolving 38.54g of ammonium acetate in DI water and adjusted to pH 9.5. 

Standards 

1000 ppb Stock Solution 

Take 1mL of 100ppm Fe standard solution and make up to 100mL. 

Standards 10ppb-250ppb 

Take the aliquots (below) of 1000ppb Fe stock solution and make up to 25 mL of DI water. Please bear in mind that you need 

to adjust the matrix of your samples (e.g. acid concentration, ionic strength, etc). 

Table B.5.2 Standards for ferrozine assay 

 

Std Fe (ppb) 

 

µL of 1000 ppb Fe Std 

10 250 

50 1250 

100 2500 

150 3750 

200 5000 

250 6250 

  

To make different sets of standards, please follow the equation: 

Concentration std. x 25 mL = Concentration stock std. solution x Vol. needed 
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 Procedure  

Total Fe [Fe(II)+Fe(III)] determination 

Switch on the instrument 15 minutes before the measurements and set up to 562nm. 

Add the following volumes of reagents to the samples, standards and the blank (DI water instead of sample) in the 

spectrophotometric cells.  

1000 µL of sample (standard or water for the blank) 

100 µL of reagent A 

200 µL of reagent B 

Wait 10 minutes for complete reduction of Fe(III) to Fe(II) 

Add 50 µL of reagent C to each sample, standard and blank 

Put the spectrophotometric cell with the blank solution into the spectrophotometer and push the zero key. 

Measure the standards and samples and write down the absorbance. 

Note: Measure ASAP to avoid Fe oxidation 

 

C.5.4 Sequential chemical extractions for operationally-defined iron pools 

       by Simon Poulton 

Step 1: Iron Carbonates, Fe carb 

The extractant sodium acetate (C2H3NaO2) targets iron carbonate phases (including siderite and ankerite), evolving CO2 in the 

process. To prevent excess build-up of pressure in centrifuge tubes, samples were degassed as a precaution by unscrewing the 

tube caps and re-tightening after 1 hour and subsequently after 8hours.  

Sodium acetate solution was prepared from 82.03g of sodium acetate added per litre of solution using 400-500mL DI H2O. 

This solution was adjusted to the desired pH while adding deionised water (DI H2O) to reach the correct volume of solution 

without altering the pH of the solution. 10mL of the solution was added to each sample, and placed on the shaking table for 

48hours at 50oC. After centrifuging, the liquid was then analysed for Fe content by automatic absorption spectrophotometry 

(AAS) while the semi-solid was stored for the next extraction step. 

Step 2: Easily reducible iron oxides, Fe ox1 

Sodium dithionite targets reducible iron oxide phases (including ferrihydrite and lepidocrocite). This solution was prepared 

from 50.0g of sodium dithionite, 58.82g of tri-sodium citrate and 20mL of glacial acetic acid in DI H2O. 10mL of the solution 

was added to the semi-solid samples from the previous extraction step, and placed on the shaking table for 2hours at room 

temperature. After shaking, the samples were centrifuged, the liquid analysed for iron content by AAS and solid used in the 

next step. 

Step 3: Reducible iron oxides Fe ox2 
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The extraction for the reducible iron oxide was performed in two steps. The first was performed for Fe (II) / Fe (III) mineral 

phases using a solution of hydroxylamine HCl. 10 mL of the solution was added to each sample from the previous extraction 

and placed on the shaking table for 2 hours at room temperature and centrifuged. A portion of this was stored for analysis by 

AAS. The second step was the analysis of a 1 mL aliquot for Fe (II) by UV-VIS following the ferrozine-HEPES method. The 

difference between the concentrations of iron in both fractions (expressed as percentage weights) was taken to be 

representative of the reducible oxide fraction in the sample. 

Step 4: Magnetite, Fe mag 

As stated in Table 3.5, the extractant ammonium oxalate targets the magnetite iron phase. An ammonium oxalate solution was 

prepared from 28.42g of ammonium oxalate dissolved in DI H2O. 10mL of the final solution was added to each sample from 

the previous step and placed on the shaking table for 6 hours at room temperature. After centrifuging, the liquid was then 

analysed for Fe content by AAS. 

Sulphate extractions 

The two-step sulphate extraction sequence and one-step total iron extraction sequence began with an extraction of the acid-

volatile sulphates (AVS) followed by a second step targeting iron sulphates in the form of pyrites. 

Step 1: Acid-volatile sulphates (Fe AVS) 

The extraction for AVS was performed on 6g of sample weighed out in reaction vessels. The pyrite line with traps was 

prepared by adding 0.5mL silver nitrate (prepared by dissolving 17g in 100 mL water).  

After all parts of the set up were checked and heating elements switched on, the reaction was commenced by adding 8mL of 

50% HCl to the reaction vessel drop-wise until bubbling ceased. The stopper was then placed on the vessel and the heat source 

switched on for 10 minutes. Significant precipitation of Ag2S (see Figure 3.3) was an indication of the presence of acid-volatile 

sulphur (AVS).  To ensure complete reaction the samples were left to react for 45 minutes after which new traps were prepared 

for the subsequent extraction of pyrites.  

Step 2: Iron pyrites Fe PY 

The extraction for pyrites was performed using a volume of chromous chloride added to the samples and left for 1hour to 

complete reaction. The formation of a dark or opaque precipitate in the test tubes containing silver nitrate within the first 

10minutes indicated excess pyrite content.  

 

Figure C.5.4.1 Illustration of apparatus for pyrite extraction step showing reaction vessel for chromous chloride distillation 
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In the absence of this precipitate, the solution was to be mixed with silver nitrate until a transparent liquid was formed, which 

occurs because silver nitrate traps pyrite in solution. The precipitates from the AVS and pyrite extractions were filtered and 

dried using the suction-based filtering system. The mass of iron present as both fractions (pyrite and AVS) was obtained by a 

simple stoichiometric mass balance.  

 

Figure C.5.4.2 Illustration of filtration apparatus for AVS and pyrite precipitate 

 

Total Fe, Fe T 

This analysis was performed in the School of Earth and Environment by Romain Guildbald. 100 mg of the freeze-dried 

samples were prepared for the total Fe extraction by first “ashing” in a muffle-oven at 550oC overnight. The procedure was 

continued by adding HF acid and perchloric acid to each sample, and finally 2 mL boric acid for 2 hours at 130oC, followed by 

cooling in a fumehood. 5mL of 50% HCl was added and heated on hot plate to dissolve the sample without boiling. The 

solution was made up to 100 mL in a volumetric flask and diluted by adding 1 mL of the 100 mL solution to 4 mL DI H2O 

(prepared in test tubes). This solution was analysed by automated absorption spectrophotometry.  

 

C.5.5 Stable carbon isotope analysis (cryogenic distillation) 

Safe system of work: CO2 vacuum line preparation  

      by Simon Bottrell 

Procedure: 

1) Fill the dropper with appropriate amount of phosphoric acid  

Place dry ice/solvent trap onto spiral glass trap as per training. 

2) Weigh out sample (observing all assessed risk minimization procedures) onto foil.  

Record in logbook and label a reaction tube.  

Use a funnel to place sample into a reaction tube. 

Ensure there are no drips of acid on the dropper and place tube onto the cone. 
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3) When sample tube is attached, OPEN LB (do this carefully if sample is > ~1 g) – observe low vac vacuum gauge.  

IF gauge falls as expected, CLOSE LB then OPEN PB.  

If not, either determine cause of leak and rectify or seek advice. 

4) Observe fall in pressure on high-vac gauge – when threshold mark is passed CLOSE H1.  

Check that P2 is closed!  

Then use tap to add acid to sample (volume will depend on type of sample). Note time in logbook. 

Reaction times are: 

SrCO3 standard – 10 minutes; 

SrCO3 sample – 25 minutes; 

Rock powders – variable dependant on mineralogy, but usually at least 45 min. 

5) When reaction is complete TOP UP DRY ICE, place liquid nitrogen dewar on “measuring finger”.  

CLOSE H2 then OPEN P1.  

Allow gas to transfer for three minutes - MOVE LABEL.  

CLOSE PB then top-up or raise liquid nitrogen dewar and wait a few seconds, then OPEN H1.  

Watch Hi Vac gauge and wait for it to stop falling quickly, then CLOSE P1 and remove liquid nitrogen dewar. 

6) Allow cold finger to warm to room temperature and take YEILD READING. 

[NB: once proficient, the next sample can be attached at this stage – See 10 below]. 

7) Place liquid nitrogen dewar on an empty sample finger with its valve open. CLOSE H3 then OPEN P2.  

Allow gas to transfer for two minutes MOVE LABEL, then top-up or raise liquid nitrogen dewar and wait a few seconds, then 

OPEN H2.   

Watch Hi Vac gauge and wait for it to stop falling quickly, then CLOSE SAMPLE FINGER VALVE (be sure to support 

sample finger!) and remove liquid nitrogen dewar. 

8) If all sample fingers are full: 

- IF you have already attached another sample, CLOSE LB and OPEN PB (= 3) above)   

– CLOSE P2, change sample fingers, OPEN L3, continue with next sample (4) above),  wait for Low Vac gauge to fall, 

CLOSE L3, OPEN H3.  

9) If empty fingers remain  – CLOSE P2, OPEN H3. Continue with next sample . . . .  

10) To continue with next sample . . . .  use air inlet valve to fill used sample reaction tube with air and shut 

immediately.  

Remove used reaction tube, check for acid drips, place new reaction tube on cone and begin procedure again from 3) above. 
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In some cases rock powder samples need to be recovered by filtration – in which case dilute acid with distilled water and move 

to that procedure  

NB - this will need to be assessed for each group of samples. 

ELSE dispose/collect sample and acid as appropriate for samples being run.  

Clean reaction tubes, rinse 3 times in tap water, once with distilled water and place in glassware drying oven. 

 

C.5.6 Predictive modelling with the mixed effects models approach 

Using mixed effects model, there are two approaches to model within- and between-subjects variability. The first approach is 

the correlation (covariate type) model in which variation among subjects is estimated through residual correlations. The second 

approach estimates the subjects‟ variation as a random effect. In order to fit a mixed model on SPSS using this approach, the 

random and fixed effects must be specified. These are determined by the outcome and explanatory variables to be used. In the 

context of the mesocosm experiments, the quantitative outcome is „toluene‟ (representing toluene concentration at a measured 

time point) and the explanatory variables „group‟ (mesocosm group of the subject under study i.e. the soil-water mixture) and 

„time‟ (which represents the times at which toluene concentrations in the mesocosms were observed). The corresponding 

parameters estimated from the explanatory variable or interaction represents the mean relations if there is a corresponding 

random effect. When specifying a random effect for a variable, the fixed effect must also be included because the fixed effects 

represent the average value around which the random effect varies. On SPSS more than one random effect may be specified, 

for example a random intercept and a random slope may be specified as random effects. Where more than one random effect is 

being considered in the model, the covariance structure type must be changed from the default „identity‟ type structure in the 

Covariance type drop box. Options for covariance structure for multiple random effects include unstructured, which assumes 

correlation among random effects, or diagonal, which assumes no correlation between the random effects. 

Parameter estimates are needed for interpretation of the results. There are two methods available in SPSS for estimating 

parameter values, namely the maximum likelihood and restricted maximum likelihood (REML); the default method in SPSS is 

the restricted maximum likelihood. In this analysis reported in this chapter, attention is given to the following output data: 

Model dimension: The model dimensions show the number of parameters used in the analysis including the subject variables. 

Estimates of fixed effects: The estimates of fixed effects compare the fixed effects of the reference category / group to the 

other groups in the data. 

Estimates of covariance parameters: The model dimensions shows the model in terms of which variables (and their number 

levels) are fixed and / or random effects and the number of parameters being estimated. 

On SPSS the data was entered in long format with five variables specified namely „ID‟, „Toluene‟, „Fe‟, „pH‟ and „Group‟. The 

variable „ID‟ represents each replicate and the grouping variables („Group‟) are used to identify each variable as belonging to a 

particular level of the data hierarchy. The time-related variable („Time‟) was  coded „0‟ for Day 0, „1‟ for Day 3, „2‟ for Day 6, 

„3‟ for Day 9… „17‟ for Day 51. This pattern identifies the intercept in the model as initial (Time 0) toluene concentrations. 

Group, time and ID are entered as categorical variables while the dependent variables toluene, Fe and pH are continuous 

variables.  



- 200 - 

In SPSS the fixed effects dialog box specifies the structural model for the typical subject. By this command, the explanatory 

variable (or interaction) specified has a parameter estimated. The estimate demonstrates the relationship between the 

explanatory variable and the outcome (if there is no corresponding random effect) or the mean relationship (if there is a 

corresponding random effect). The random effects dialog box specifies model parameters which demonstrate the fixed effects 

are means around which individual subjects (replicate mesocosms) vary randomly. The intercept for a given subject is equal to 

the fixed effect plus a random deviation from that fixed effect (which is zero on average) and as a magnitude controlled by the 

size of the random effect. It should be noted that this random effect is a variance while the fixed effects are essentially means. 

On SPSS a separate intercept for each subject random effect is specified.  

Procedure for modelling toluene removal without level 1 and 2 predictors 

Step 1 

Specify the upper level of the hierarchy by moving the identifier for that level into the „subjects‟ box. The subject is ID (our 

individual replicates) 

 

Step 2 

Enter „Toluene‟ in the dependent variable box (it is the quantitative outcome variable). Enter „Time‟ in the covariate box. 
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Step 3 

Enter „Time‟ as the fixed effect to be modeled, choose the Factorial option. 

 
 

Step 4 

Enter „Time‟ as the random effect to be modeled, choose „Main Effects‟. 

 
 

Step 5 

Choose the restricted maximum likelihood method under Estimation tab. 
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Step 6 

Tick „Parameter estimates‟, „Tests for covariance estimates‟ and „Covariances of random effects‟ in the Statistics option. 

 
 

 

Procedure for modelling toluene removal with Fe and pH as level 1 and 2 predictors 

Step 1 

The upper level hierarchy is specified as in the previous model. 

 

 
 

 

 

Step 2 

Predictor variables are specified. In this model, Fe, pH and Time. 

 

 
 

 

Step 3 
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The predictor variables are entered as fixed effects. Two interactions - Fe*Time and pH*Time are also included as fixed 

effects. 

 

 
 

 

Step 4 

Time is entered as random effect as in the previous model. 

 

C.6 Analytical and experimental data 

C.6.1 Characterisation tests: soil amendments 

Table C.6.1a  Physico-chemical properties of the soil amendments. Soil 1, Soil 2, and Soil 3 represent the individual soil 

amendments used 

 

Physico-chemical 
property 

 

Results per sample 

  

  

Soil 1 

 

Soil 2 

 

Soil 3 

 

Particle size 

distribution 

 
0.6% sand 

48.0% silt 

51.4% clay 
 

 
2.5% sand 

77.8% silt 

19.7% clay 
 

 
0.6% sand 

16.3% silt 

83.1% clay 
 

 

Surface area (m2/g) 

 

8 

 

4 

 

21 

 

pH 

 

7.6 

 

7.7 

 

7.7 
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C.6.2 Characterisation tests: mineral amendments 

Table C.6.1b BET surface area of iron mineral amendments 

      

Mineral 

 

 

 

Hematite 

 

 

Goethite 

 

 

Magnetite 

 

 

Ferrihydrite 

 

 

Lepidocrocite 

 

Surface area 

(m2/g) 

3 10 9 37 0.1 

      

C.6.3 Characterisation tests: moisture content analysis 

The moisture content of the starting soil was calculated as shown below and summarised in Table B-4: 

                                        

= 30 x 0.3171 

= 9.513 g 

                          

= 22.86 + 9.513 

= 32.373 g 

Table C.6.1c Gravimetric moisture content analysis for the starting soil material 

Sample no. and Ref. Label (g) Value obtained 

Mass of empty container M1 29.84 

Mass of wet soil + container M2 59.95 

Mass of dry soil + container M3 52.7 

Mass of moisture loss in soil M2 - M3 7.25 

Mass of dry soil M3 - M1 22.86 

Moisture content W (%) 31.71% 

   

C.6.4 Characterisation tests: particle size distribution analysis 

Table C.6.1d Particle size distribution (PSD) of starting soil material and soil amendments 

 

Textural group 

 

Starting 

Soil (%) 

 

Soil 1 (%) 

 

Soil 2 

Soil (%) 

 

Soil 3 

Soil (%) 

 

Clay 

 
0.5 

 
51.4 

 
19.7 

 
83.1 
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Textural group 

 

Starting 

Soil (%) 

 

Soil 1 (%) 

 

Soil 2 

Soil (%) 

 

Soil 3 

Soil (%) 

( less than 0.002 

microns) 

 

 

Total clay 

fraction 

0.5 % 51.4 % 19.7 % 0.6 % 

     

 

Very Fine Silt 

 

(0.002-0.004 

microns) 

 

 

2.8 

 

29.2 

 

29.4 

 

2.5 

 

Fine Silt 

(0.004 – 0.008 

microns) 

 

 

5.0 

 

9.6 

 

28.3 

 

4.0 

 

Medium Silt 

(0.008 – 0.016 

microns) 

 

 
7.3 

 
5.0 

 
11.6 

 
4.8 

 

Coarse Silt 

(0.016 – 0.031 

microns) 

 

 
12.6 

 
3.0 

 
4.8 

 
3.2 

 

Very Coarse Silt 

(0.031 – 0.063 

microns) 

 

 

22.7 

 

1.2 

 

3.7 

 

1.7 

Total silt fraction 50. 4 % 48.0 % 77.8 % 16.3 % 

     

 

Very Fine Sand 

(0.063 – 0.0135 

microns) 

 

 
26.4 

 
0.6 

 
2.1 

 
0.6 

 

Fine Sand 

(0.0135 – 0.250 

microns) 

 

 

15.4 

 

0.0 

 

0.4 

 

0.0 

 

Medium Sand 

(0.250 – 0.500 

microns) 

 

 

5.2 

 

0.0 

 

0.0 

 

0.0 

 

Coarse Sand 

(0.500 microns – 

1.000 mm) 

 

 
2.2 

 
0.0 

 
0.0 

 
0.0 

 

Very Coarse Sand 

(1.000– 2.000 mm) 

 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

Total sand 

fraction 

49.2 % 0.6 % 2.5 % 0.6 % 

     

     

┼ Interpretation of data from particle size distribution analysis was performed using the GRADISTAT® software 
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C.6.5 Degradation experiments 

Table C.6.3  Mean ± standard error for pH and total iron concentrations in mesocosms with soil and water only (un-amended 

live controls) 

 

Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

- 

- 

- 

- 

- 

- 

1.5 ± 0.19 

0.2 ± 0.07 

0.1 ± 0.03 

0.2 ± 0.03 

0.4 ± 0.05 

0.8 ± 0.21 

7.3 ± 0.00 

7.6± 0.03 

7.0 ± 0.00 

7.5 ± 0.05 

7.5 ± 0.05 

7.6 ± 0.03 

18  

21 

24 

27 

30 

33 

- 

- 

- 

- 

- 

- 

0.5 ± 0.06 

0.8 ± 0.11 

1.0 ± 0.24 

1.0 ± 0.24 

1.4 ± 0.24 

1.4 ± 0.31 

7.5 ± 0.03 

7.4 ± 0.05 

7.4 ± 0.08 

7.4 ± 0.08 

7.4 ± 0.03 

7.3 ± 0.00 

36 

39 

42 

45 

48 

51 

- 

- 

- 

- 

- 

- 

1.9 ± 0.36 

2.2 ± 0.21 

3.0 ± 0.13 

3.2 ± 0.25 

1.9 ± 0.20 

2.9 ± 0.46 

7.6 ± 0.03 

7.6 ± 0.07 

7.6 ± 0.05 

7.4 ± 0.05 

7.4 ± 0.05 

7.4 ± 0.05 

    

Table C.6.4 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with no amendment (un-

amended active controls) 

 

Time (days) 

 

Total Fe (mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.4 ± 0.04 

0.3 ± 0.04 

0.3 ± 0.02 

0.3 ± 0.01 

0.3 ± 0.01 

0.3 ± 0.10 

0.6 ± 0.10 

0.4 ± 0.04 

0.4 ± 0.02 

0.4 ± 0.00 

0.2 ± 0.03 

0.0 ± 0.03 

7.5 ± 0.00 

7.2± 0.02 

7.3 ± 0.03 

7.3 ± 0.01 

7.3 ± 0.04 

7.1 ± 0.00 
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Time (days) 

 

Total Fe (mM) 

 

Toluene (mM) 

 

pH 

18  

21 

24 

27 

30 

33 

0.1 ± 0.02 

0.2 ± 0.03 

0.2 ± 0.02 

0.2 ± 0.01 

0.1 ± 0.01 

0.2 ± 0.02 

0.6 ± 0.12 

0.4 ± 0.20 

0.4 ± 0.10 

0.5 ± 0.08 

0.4 ± 0.03 

0.2 ± 0.08 

7.2 ± 0.03 

7.6 ± 0.04 

7.4 ± 0.03 

7.5 ± 0.05 

7.6 ± 0.05 

7.5 ± 0.05 

36 

39 

42 

45 

48 

51 

0.3 ± 0.36 

0.3 ± 0.21 

0.2 ± 0.13 

0.2 ± 0.25 

0.3 ± 0.20 

0.3 ± 0.46 

0.9 ± 0.10 

0.8 ± 0.12 

0.6 ± 0.09 

0.4 ± 0.03 

0.4 ± 0.04 

0.4 ± 0.04 

7.4 ± 0.03 

7.5 ± 0.03 

7.4 ± 0.01 

7.5 ± 0.04 

7.2 ± 0.05 

7.3 ± 0.04 

    

Table C.6.5 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with hematite amendment 

 

Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.4 ± 0.03 

0.3 ± 0.03 

0.3 ± 0.026 

0.3 ± 0.04 

0.3 ± 0.05 

0.3 ± 0.05 

0.7 ± 0.02 

0.4 ± 0.01 

0.3 ± 0.02 

0.2 ± 0.01 

0.1 ± 0.04 

0.0 ± 0.03 

7.6 ± 0.04 

7.3 ± 0.03 

7.3 ± 0.03 

7.3 ± 0.06 

7.2 ± 0.06 

7.2 ± 0.02 

18  

21 

24 

27 

30 

33 

0.1 ± 0.06 

0.2 ± 0.02 

0.2 ± 0.02 

0.2 ± 0.02 

0.1 ± 0.01 

0.2 ± 0.00 

0.6 ± 0.10 

0.5 ± 0.03 

0.5 ± 0.05 

0.2 ± 0.06 

0.1 ± 0.05 

0.0 ± 0.03 

7.4 ± 0.03 

7.7 ± 0.03 

7.6 ± 0.03 

7.6 ± 0.03 

7.6 ± 0.02 

7.7 ± 0.03 

36 

39 

42 

45 

0.3 ± 0.03 

0.3 ± 0.02 

0.2 ± 0.01 

0.2 ± 0.03 

0.8 ± 0.11 

0.6 ± 0.10 

0.6 ± 0.09 

0.2 ± 0.08 

7.5 ± 0.03 

7.5 ± 0.02 

7.7 ± 0.01 

7.5 ± 0.02 
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Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

48 

51 

0.3 ± 0.01 

0.3 ± 0.01 

0.2 ± 0.03 

0.2 ± 0.05 

7.3 ± 0.03 

7.4 ± 0.01 

    

Table C.6.6 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with goethite amendment 

 

Time (days) 

 

Total Fe (mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.1 ± 0.02 

0.3 ± 0.02 

0.3 ± 0.01 

0.3 ± 0.01 

0.3 ± 0.04 

0.4 ± 0.02 

0.5 ± 0.01 

0.4 ± 0.01 

0.2 ± 0.07 

0.4 ± 0.03 

0.2 ± 0.02 

0.0 ± 0.03 

7.7± 0.04 

7.6 ± 0.01 

7.3 ± 0.03 

7.5 ± 0.02 

7.3 ± 0.02 

7.6 ± 0.00 

18  

21 

24 

27 

30 

33 

0.3 ± 0.03 

0.2 ± 0.04 

0.3 ± 0.03 

0.3 ± 0.04 

0.3 ± 0.03 

0.3 ± 0.01 

0.7 ± 0.06 

0.5 ± 0.07 

0.4 ± 0.05 

0.1 ± 0.08 

0.1 ± 0.06 

0.0 ± 0.00 

7.3 ± 0.02 

7.4 ± 0.01 

7.4 ± 0.01 

7.5 ± 0.02 

7.5 ± 0.01 

7.4 ± 0.03 

36 

39 

42 

45 

48 

51 

0.3 ± 0.05 

0.3 ± 0.01 

0.5 ± 0.04 

0.3 ± 0.05 

0.4 ± 0.01 

0.3 ± 0.07 

0.5 ± 0.02 

0.4 ± 0.03 

0.3 ± 0.01 

0.3 ± 0.05 

0.2 ± 0.01 

0.2 ± 0.00 

7.3 ± 0.06 

7.3 ± 0.07 

7.2 ± 0.02 

7.3 ± 0.01 

7.6 ± 0.00 

7.5 ± 0.01 

    

 

Table C.6.7 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with magnetite amendment 

 

Time (days) 

 

Total Fe (mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

0.2 ± 0.06 

0.3 ± 0.05 

0.2 ± 0.01 

0.2 ± 0.03 

0.6 ± 0.05 

0.3 ± 0.10 

0.1 ± 0.07 

0.1 ± 0.04 

7.7 ± 0.02 

7.7 ± 0.01 

7.5 ± 0.00 

7.5 ± 0.00 
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Time (days) 

 

Total Fe (mM) 

 

Toluene (mM) 

 

pH 

12 

15 

0.3 ± 0.01 

0.3 ± 0.01 

0.0 ± 0.10 

0.0 ± 0.00 

7.4 ± 0.01 

7.6 ± 0.03 

18  

21 

24 

27 

30 

33 

0.4 ± 0.00 

0.4 ± 0.00 

0.3 ± 0.01 

0.3 ± 0.03 

0.2 ± 0.01 

0.3 ± 0.05 

0.5 ± 0.05 

0.2 ± 0.17 

0.2 ± 0.07 

0.2 ± 0.03 

0.0 ± 0.03 

0.0 ± 0.00 

7.4 ± 0.01 

7.6 ± 0.08 

7.5 ± 0.02 

7.4 ± 0.01 

7.4 ± 0.02 

7.5 ± 0.01 

36 

39 

42 

45 

48 

51 

0.3 ± 0.01 

0.3 ± 0.05 

0.6 ± 0.02 

0.2 ± 0.0 

0.3 ± 0.01 

0.3 ± 0.01 

0.7 ± 0.02 

0.5 ± 0.05 

0.4 ± 0.08 

0.4 ± 0.09 

0.3 ± 0.07 

0.3 ± 0.04 

7.4 ± 0.02 

7.3 ± 0.03 

7.3 ± 0.01 

7.4 ± 0.01 

7.4 ± 0.01 

7.4 ± 0.04 

    

 

Table C.6.8 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with ferrihydrite amendment 

 

Time (days) 

 

Total Fe (mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.4 ± 0.10 

0.5 ± 0.10 

0.4 ± 0.13 

0.4 ± 0.14 

0.5 ± 0.13 

0.5 ± 0.12 

0.2 ± 0.01 

0.1 ± 0.13 

0.0 ± 0.00 

0.0 ± 0.00 

0.0 ± 0.00 

0.0 ± 0.00 

6.5 ± 0.07 

6.3 ± 0.09 

6.2 ± 0.08 

6.1 ± 0.17 

5.6 ± 0.32 

5.5 ± 0.15 

18  

21 

24 

27 

30 

33 

0.4 ± 0.10 

0.6 ± 0.13 

0.5 ± 0.13 

0.5 ± 0.14 

0.5 ± 0.16 

0.5 ± 0.12 

0.3 ± 0.06 

0.5 ± 0.02 

0.5 ± 0.03 

0.5 ± 0.03 

0.5 ± 0.04 

0.4 ± 0.05 

6.4 ± 0.09 

6.2 ± 0.07 

6.3 ± 0.05 

6.0 ± 0.05 

6.6 ± 0.08 

5.9 ± 0.08 
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Table C.6.9 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with lepidocrocite amendment 

 

Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.3 ± 0.06 

0.4 ± 0.05 

0.3 ± 0.01 

0.3 ± 0.03 

0.3 ± 0.01 

0.0 ± 0.00 

0.3 ± 0.01 

0.4 ± 0.02 

0.4 ± 0.02 

0.4 ± 0.02 

0.4 ± 0.04 

0.4 ± 0.03 

8.4 ± 0.04 

8.3 ± 0.03 

8.2 ± 0.05 

8.5 ± 0.07 

8.4 ± 0.05 

8.3 ± 0.04 

    

 

Table C.6.10 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with Soil 1 amendment 

 

Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.2 ± 0.02 

0.3 ± 0.01 

0.4 ± 0.01 

0.5 ± 0.02 

0.2 ± 0.02 

0.3 ± 0.01 

0.2 ± 0.03 

0.1 ± 0.04 

0.1 ± 0.04 

0.1 ± 0.04 

0.1 ± 0.07 

0.0 ± 0.00 

7.6 ± 0.03 

7.1 ± 0.03 

7.5 ± 0.02 

7.1 ± 0.02 

7.5 ± 0.06 

7.6 ± 0.03 

18  

21 

24 

27 

30 

33 

0.4 ± 0.03 

0.4 ± 0.02 

0.4 ± 0.01 

0.3 ± 0.03 

0.3 ± 0.01 

0.3 ± 0.01 

0.7 ± 0.04 

0.4 ± 0.05 

0.4 ± 0.09 

0.2 ± 0.03 

0.3 ± 0.03 

0.3 ± 0.04 

7.1 ± 0.09 

7.0 ± 0.03 

7.0 ± 0.03 

7.0 ± 0.03 

6.8 ± 0.05 

6.7 ± 0.06 

    

 

Table C.6.11 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with Soil 2 amendment 

 

Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

0.2 ± 0.01 

0.2 ± 0.03 

0.3 ± 0.01 

0.4 ± 0.01 

0.3 ± 0.09 

0.2 ± 0.10 

0.1 ± 0.05 

0.1 ± 0.06 

7.7 ± 0.01 

7.4 ± 0.12 

7.5 ± 0.02 

7.3 ± 0.00 
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Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

12 

15 

0.2 ± 0.05 

0.2 ± 0.02 

0.1 ± 0.03 

0.1 ± 0.03 

7.5 ± 0.05 

7.4 ± 0.04 

18  

21 

24 

27 

30 

33 

0.4 ± 0.04 

0.4 ± 0.02 

0.3 ± 0.00 

0.3 ± 0.04 

0.3 ± 0.01 

0.3 ± 0.02 

0.6 ± 0.08 

0.4 ± 0.07 

0.1 ± 0.06 

0.2 ± 0.07 

0.2 ± 0.07 

0.1 ± 0.06 

7.2 ± 0.06 

7.3 ± 0.04 

7.0 ± 0.01 

7.0 ± 0.03 

6.9 ± 0.04 

6.8 ± 0.05 

    

 

Table C.6.12 Mean ± standard error for pH, total iron, and toluene concentrations in mesocosms with Soil 3 amendment 

 

Time (days) 

 

Total Fe 

(mM) 

 

Toluene (mM) 

 

pH 

0 

3 

6 

9 

12 

15 

0.3 ± 0.03 

0.2 ± 0.00 

0.2 ± 0.01 

0.2 ± 0.01 

0.2 ± 0.02 

0.2 ± 0.01 

0.8 ± 0.02 

0.5 ± 0.02 

0.4 ± 0.02 

0.1 ± 0.01 

0.0 ± 0.00 

0.0 ± 0.00 

7.7 ± 0.02 

7.6 ± 0.02 

7.7 ± 0.06 

7.8 ± 0.09 

7.9 ± 0.07 

8.0 ± 0.12 

18  

21 

24 

27 

30 

33 

0.2 ± 0.03 

0.2 ± 0.01 

0.2 ± 0.01 

0.2 ± 0.01 

0.2 ± 0.02 

0.1 ± 0.02 

0.6 ± 0.03 

0.4 ± 0.06 

0.2 ± 0.06 

0.2 ± 0.01 

0.1 ± 0.07 

0.2 ± 0.02 

7.3 ± 0.01 

7.4 ± 0.02 

7.5 ± 0.02 

7.5 ± 0.03 

7.6 ± 0.00 

7.6 ± 0.01 
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C.6.6 Sequential chemical extractions 

Table C.6.13 Mean ± standard error of operationally-defined iron pools in the starting and incubated material in the un-

amended live and active control mesocosms 

 

Mesocosms 

 

Operationally-defined iron pool 

  

Fe total (mg/kg) 

 

Fe er (mg/kg) 

 

Fe carb (mg/kg) 

 

Fe red (mg/kg) 

 

Fe mag (mg/kg) 

 

Starting soil   
10,181.7 ± 370.5 

 
6,736.3 ± 270.7 

 
196.1 ± 11.4 

 
2,504.4 ± 

1,445.9 

 
277.7 ± 24.4 

 

Un-amended 

soil (live 

control) 

 

 
9,023.3 ± 

1,454.2 

 
4,711.6 ± 579.7 

 
196.1 ± 11.4 

 
2,308.1 ± 343.3 

 
238.9 ± 45.0 

 

Un-amended 

(active control) 

 

10,702.8 ± 918.0 

 

4,387.7 ± 557.5 

 

5,252.1 ± 291.8 

 

375.6 ± 20.8 

 

253.2 ± 32.3 

 

      

 

C.6.7 Stable carbon isotope analysis 

Table C.6.14 Mean ± standard error of δ13C and carbonate carbon (mg per g of sample) of the starting and incubated soil 

material (starting soil material was not analysed in triplicate) 

 

Mesocosms 

 

Fast-reacting soil carbonate pool 

 

 

 

Slow-reacting soil carbonate pool 

  

Carbonate carbon 

(mg/g) 

 

 

δ13C (‰) 

 

Carbonate carbon 

(mg/g) 

 

 

δ13C (‰) 

Starting soil  

 

0.04 -9.06 0.005 -19.49 

Un-amended soil 

(live control) 

 

0.04 ± 0.009 -15.20 ± 0.990 0.03 ± 0.002 -16.10 ± 0.759 

 

Un-amended 

(active control) 

 

0.02 ± 0.004 -17.71 ± 0.375 0.03 ± 0.002 -21.53 ± 3.590 

Hematite-amended 

soil 

 

0.04 ± 0.018 -22.70 ± 2.829 0.03 ± 0.010 -14.13 ± 4.250 

Hematite mineral 

 

0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 0.00 ± 0.000 

Goethite-amended 

soil 

 

0.04 ± 0.002 -14.30 ± 0.173 0.02 ± 0.006 -16.85 ± 0.087 

Goethite mineral 

 

0.005 ± 0.001 -17.50 ± 0.000  0.004 ± 0.001  

Magnetite-

amended soil 

 

0.06 ± 0.002 -10.90 ± 0.072 0.03 ± 0.003 -13.40 ± 3.434 

Magnetite mineral 

 

0.98 ± 0.161 -4.60 ± 0.144 0.05 ± 0.016 -11.15 ± 3.666 

Ferrihydrite-

amended soil 

 

0.13 ± 0.086 -9.40 ± 1.830 0.09 ± 0.027 -11.33 ± 1.544 

Lepidocrocite-

amended soil 

 

0.04 ± 0.001 -13.10 ± 3.360 0.03 ± 0.000 -15.50 ± 1.328 
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Mesocosms 

 

Fast-reacting soil carbonate pool 

 

 

 

Slow-reacting soil carbonate pool 

S1 soil-amended 

material 

 

0.01 ± 0.000 -11.60 ± 0.346 0.01 ± 0.000 -13.65 ± 0.144 

S2 soil-amended 

material 

0.59 ± 0.108 -5.70 ± 0.098 0.44 ± 0.019 -1.43 ± 0.054 

     

C.6.8 Reaction kinetics - zeroth and first order rate fittings 

Table C.6.15  Zeroth and first order rate fittings for mesocosms with no amendment (ST) 

Mesocosm Zeroth order rate 

constant, 

k1 (mg-1l-1day-1) 

First order rate 

constant, 

k2 (day-1) 

 

ST -1 1.76 0.04 

ST -2 3.95 0.12 

ST -3 3.43 0.11 

MEAN 3.05 ± 0.54 0.09 ± 0.02 

 

Second Spike Period 

ST -1 3.45 0.05 

ST -2 2.17 0.01 

ST -3 0.24 0.11 

MEAN 1.95 ± 0.76 0.06 ± 0.02 

 

Third Spike Period 

 

ST -1 4.29 0.08 

ST -2 2.19 0.06 

ST -3 4.31 0.08 

MEAN 3.60 ± 0.57 0.06 ± 0.01 

   

Table C.6.16  Zeroth and first order rate fittings for mesocosms with hematite amendment 

Mesoco

sms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 HM -1 4.05 ST -1 0.04 HM-1 0.16 

ST -2 3.95 HM -2 3.54 ST -2 0.12 HM -2 0.13 

ST -3 3.43 HM -3 4.35 ST -3 0.11 HM -3 0.31 

MEAN 3.05 ± 0.54  3.98 ± 0.19  0.09 ± 0.02  0.20 ± 0.05 
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Mesoco

sms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

 Second Spike Period 

 

Second Spike Period 

 

ST -1 3.45 HM -1 5.06 ST -1 0.05 HM-1 0.32 

ST -2 2.17 HM -2 3.81 ST -2 0.01 HM-2 0.09 

ST -3 0.24 HM -3 2.96 ST -3 0.11 HM-3 0.13 

MEAN 1.95 ± 0.76  3.94 ± 0.50  0.06 ± 0.02  0.18 ± 0.06 

        

 Third Spike Period 

 

Third Spike Period 

 

ST -1 4.29 HM -1 4.85 ST -1 0.08 HM-1 0.13 

ST -2 2.19 HM -2 4.50 ST -2 0.06 HM-2 0.14 

ST -3 4.31 HM -3 3.05 ST -3 0.08 HM-3 0.23 

MEAN 3.60 ± 0.57  4.13 ± 0.45  0.07 ± 0.01  0.17 ± 0.03 

 
       

Table C.6.17  Zeroth and first order rate fittings for mesocosms with goethite amendment 

Mesocos

ms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 GE -1 2.33 ST -1 0.04 GE-1 0.07 

ST -2 3.95 GE -2 2.32 ST -2 0.12 GE -2 0.06 

ST -3 3.43   ST -3 0.11   

MEAN 3.05 ± 0.54  2.33 ± 0.003  0.09 ± 0.02  0.07 ± 0.003 

        

 Second Spike Period 

 

Second Spike Period 

 

ST -1 3.45 GE -1 4.85 ST -1 0.05 GE -1 0.12 

ST -2 2.17 GE -2 3.88 ST -2 0.01 GE -2 0.38 

ST -3 0.24   ST -3 0.11   

MEAN 1.95 ± 0.76  4.37 ± 0.280  0.06 ± 0.02  0.25 ± 0.0075 

        

 Third Spike Period 

 

Third Spike Period 

 

ST -1 4.29 GE -1 1.99 ST -1 0.08 GE -1 0.07 

ST -2 2.19 GE -2 1.68 ST -2 0.06 GE -2 0.08 

ST -3 4.31   ST -3 0.08   

MEAN 3.60 ± 0.57  1.84 ± 0.089  0.07 ± 0.01  0.08 ± 0.003 

        

Table C.6.18 Zeroth and first order rate fittings for mesocosms with magnetite amendment 

Mesocos

ms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 MT-1 4.66 ST -1 0.04 MT-1 0.15 

ST -2 3.95 MT-2 2.88 ST -2 0.12 MT -2 0.13 

ST -3 3.43 MT-3 2.89 ST -3 0.11 MT -3 0.15 
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Mesocos

ms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

MEAN 3.05 ± 0.54  3.48 ± 0.48  0.09 ± 0.02  0.14 ± 0.01 

        

 Second Spike Period 

 

Second Spike Period 

 

ST -1 3.45 MT-1 4.00 ST -1 0.05 MT -1 0.15 

ST -2 2.17 MT-2 1.85 ST -2 0.01 MT -2 0.13 

ST -3 0.24 MT-3 2.03 ST -3 0.11 MT -3 0.15 

MEAN 1.95 ± 0.76  2.63 ± 0.56  0.06 ± 0.02  0.14 ± 0.01 

        

 Third Spike Period 

 

Third Spike Period 

 

ST -1 4.29 MT -1 2.37 ST -1 0.08 MT -1 0.04 

ST -2 2.19 MT -2 2.28 ST -2 0.06 MT -2 0.07 

ST -3 4.31 MT -3 3.02 ST -3 0.08 MT -3 0.12 

MEAN 3.60 ± 0.57  2.56 ± 0.19  0.07 ± 0.01  0.08 ± 0.02 

        

Table C.6.19 Zeroth and first order rate fittings for mesocosms with ferrihydrite amendment 

Mesoco

sms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 FH -1 0.81 ST -1 0.04 FH-1 0.19 

ST -2 3.95 FH -2 1.19 ST -2 0.12 FH -2 0.27 

ST -3 3.43 FH -3 1.29 ST -3 0.11 FH -3 0.28 

MEAN 3.05 ± 0.54  1.1 ± 0.12  0.09 ± 0.02  0.25 ± 0.02 

        

 Second Spike Period 

 

Second Spike Period 

 

ST -1 3.45 FH -1 0.11 ST -1 0.05 FH -1 0.01 

ST -2 2.17 FH -2 1.60 ST -2 0.01 FH -2 0.09 

ST -3 0.24 FH -3 0.39 ST -3 0.11 FH -3 0.02 

MEAN 0.95 ± 1.76  0.70 ± 0.37  0.06 ± 0.02  0.04 ± 0.02 

        

Table C.6.20 Zeroth and first order rate fittings for mesocosms with lepidocrocite amendment 

Mesocosms Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 LP-1 0.07 ST -1 0.04 LP-1 - 

ST -2 3.95 LP-2 1.02 ST -2 0.12 LP-2 - 

ST -3 3.43 LP -3 0.56 ST -3 0.11 LP -3 - 

MEAN 3.05 ± 0.54  0.55 ± 0.22  0.09 ± 0.02   
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Table C.6.21 Zeroth and first order rate fittings for mesocosms amended with Soil 1 

Mesoco

sms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 S1-1 0.98 ST -1 0.04 S1-1 0.20 

ST -2 3.95 S1-2 0.44 ST -2 0.12 S1-2 0.01 

ST -3 3.43 S1-3 0.75 ST -3 0.11 S1-3 0.07 

MEAN 3.05 ± 0.54  0.72 ± 0.13  0.09 ± 0.02  0.09 ± 0.05 

        

 Second Spike Period 

 

Second Spike Period 

 

ST -1 3.45 S1-1 3.54 ST -1 0.05 S1-1 0.12 

ST -2 2.17 S1-2 2.62 ST -2 0.01 S1-2 0.07 

ST -3 0.24 S1-3 0.22 ST -3 0.11 S1-3 0.08 

MEAN 1.95 ± 0.76  2.13 ± 0.81  0.06 ± 0.02  0.09 ± 0.01 

        

Table C.6.22 Zeroth and first order rate fittings for mesocosms amended with Soil 2 

Mesocos

ms 

Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  

First Spike Period 

 

First Spike Period 

 

ST -1 1.76 
S2-1 1.73 

ST -1 
0.04 S2-1 0.1 

ST -2 3.95 
S2-2 0.51 

ST -2 
0.12 S2-2 0.02 

ST -3 3.43 
S2-3 1.58 

ST -3 
0.11 S2-3 0.28 

MEAN 3.05 ± 0.54  1.27 ± 0.31  0.09 ± 0.02  0.13 ± 0.06 

        

 Second Spike Period 

 

Second Spike Period 

 

ST -1 3.45 
S2-1 2.78 

ST -1 
0.05 S2-1 0.1 

ST -2 2.17 
S2-2 1.71 

ST -2 
0.01 S2-2 0.06 

ST -3 0.24 
S2-3 2.25 

ST -3 
0.11 S2-3 0.34 

MEAN 1.95 ± 0.76  2.25 ± 0.25  0.06 ± 0.02  0.17 ± 0.07 

        

Table C.6.23 Zeroth and first order rate fittings for mesocosms amended with Soil 3 

Mesocosms Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

  
First Spike Period 

 
First Spike Period 

 

ST -1 
1.76 S3-1 4.7 

ST -1 
0.04 S3-1 0.32 

ST -2 
3.95 S3-2 4.84 

ST -2 
0.12 S3-2 0.34 

ST 3 3.43 
  

ST -3 
0.11   

MEAN 3.05 ± 0.54  1.27 ± 0.31  0.09 ± 0.02  0.33 ± 0.01 

        

 Second Spike Period 

 

Second Spike Period 

 

ST -1 
3.45 S3-1 2.93 

ST -1 
0.05 S3-1 0.94 

ST -2 
2.17 S3-2 0.62 

ST -2 
0.01 S3-2 0.72 
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Mesocosms Zeroth order rate constant, k1 

(mg-1 l-1 day-1) 

 

 

First order rate constant, k2 

(day-1) 

St-3 0.24 
  

ST -3 
0.11   

MEAN 1.95 ± 0.76  1.78 ± 1.16  0.06 ± 0.02  0.83 ± 0.06 

        

Table C.6.24 Mean ± standard error of zeroth and first order rate fittings 

 

Meso

cosm 

 

Zeroth order 

rate constant,  

k1 (mg-1l-1day-1) 

 

First order 

rate 

constant,  

k2 (day-1) 

 

Zeroth order 

rate constant,  

k1 (mg-1l-1day-1) 

 

First order 

rate constant,  

k2 (day-1) 

 

Zeroth 

order rate 

constant,  

k1 (mg-1l-

1day-1) 

 

First order 

rate constant,  

k2 (day-1) 

 First Spike 

 

Second Spike Third Spike 

ST 3.05 ± 0.54 0.09 ± 0.02 

 

1.95 ± 0.76 0.06 ± 0.02 

 

3.60 ± 0.57 0.06 ± 0.01 

HM 3.98 ± 0.19 0.20 ± 0.05 3.94 ± 0.50 0.18 ± 0.06 4.13 ± 0.45 0.17 ± 0.03 

GE 2.33 ± 0.003 0.07 ± 0.003 4.37 ± 0.280 0.25 ± 0.0075 1.84 ± 0.089 0.08 ± 0.003 

MT 3.48 ± 0.48 0.14 ± 0.01 2.63 ± 0.56 0.14 ± 0.01 2.56 ± 0.19 0.08 ± 0.02 

FH 1.1 ± 0.12 0.25 ± 0.02 0.70 ± 0.37 0.04 ± 0.02 - - 

LP 0.55 ± 0.22 - - - - - 

S1 0.72 ± 0.13 0.09 ± 0.05 2.13 ± 0.81 0.09 ± 0.01 - - 

S2 1.27 ± 0.31 0.13 ± 0.06 2.25 ± 0.25 0.17 ± 0.07 - - 

S3 1.27 ± 0.31 0.33 ± 0.01 1.78 ± 1.16 0.83 ± 0.06 - - 

       

† This is with the exception of the GO and SD 3 mesocosms which only had two replicates due to blockage of tubings during 

sampling 

Table C.6.25 Toluene removal rates in the mesocosms (expressed per square metre of mesocosm soil  and obtained as the 

average of three replicates) 

 

Mesocosms 

 

First Spike Period 

(m-2day-1) 

 

Second Spike 

Period 

(m-2day-1) 

 

Third Spike Period 

(m-2day-1) 

HM 

 

 

2.4 x 10-4 

 

 

2.4 x 10-4 

 

 

2.2 x 10-4 

GE 

 

 

4.2 x 10-4 

 

 

4.2 x 10-4 

 

 

1.3 x 10-4 

MT 

 

 

2.8 x 10-4 

 

 

2.8 x 10-4 

 

 

1.6 x 10-4 

 

 

FH 

 

 

5.7 x 10-5 

 

 

5.7 x 10-4 

 

 

- 

LP 

 

 

- 

 

 

- 

 

 

- 

S1 

 

 

1.6 x 10-4 

 

 

1.6 x 10-4 

 

 

- 
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Mesocosms 

 

First Spike Period 

(m-2day-1) 

 

Second Spike 

Period 

(m-2day-1) 

 

Third Spike Period 

(m-2day-1) 

 

 

S2 

 

 
6.8 x 10-4 

 

 
8.9 x 10-4 

 

- 

S3 

 

 
2.0 x 10-4 

 

 
4.9 x 10-4 

 

 
- 

    

 

C.6.9 BET surface areas of the starting and incubated soils 

 

Figure C.6.1 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) and iii) incubated material from the mesocosms with no amendment (ST) 

 

Figure C.6.2 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms with hematite mineral amendment (HM) v) hematite mineral amendment (hm) 

 

Figure C.6.3 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms with goethite mineral amendment (GE) v) goethite mineral amendment (ge) 
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Figure C.6.4 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms with magnetite mineral amendment (MT) v) magnetite mineral amendment (ge) 

 

Figure C.6.6 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms with ferrihydrite mineral amendment (FH) v) ferrihydrite amendment (fh) 

 

Figure C.6.7 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms with lepidocrocite mineral amendment (LP) v) lepidocrocite amendment (lp) 

 

Figure C.6.8 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms amended with Soil 1 (S1) v) soil 1 sample (s1) 
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Figure C.6.9 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms amended with Soil 2 (S2) v) soil 2 sample (s2) 

 

 

Figure C.6.10 Results of BET analysis for i) the starting soil material (SS) ii) incubated material from the mesocosms with soil 

and water (SO) iii) incubated material from the mesocosms with no amendment (ST) iv) incubated material from the 

mesocosms amended with Soil 3(S3) v) Soil 3 sample (s3) 

C.7 Summary of observations and findings 

Table C.7.1 Summary of findings - un-amended active mesocosms 

 

Parameters observed  

 

Findings 

 

Rates of toluene degradation 

 

Fastest during the third spike period and slowest 

during the second spike period 
 

Amounts of toluene degraded Highest during the first spike period. The second and 

third spike periods showed similar amounts of 
toluene removal 

 

Time at which mesocosms were 
completely saturated with toluene 

Occurred after the third toluene spike 

 

Total dissolved iron concentrations 

 

Progressively higher in control mesocosms; 

unchanged in the toluene-spiked mesocosms 

 

Solid-phase iron Similar total iron content found in the starting 

material as well as material from the control 
mesocosms and active/toluene-spiked mesocosm 

 

The easily reducible, magnetite, pyrite and acid 
volatile sulphur fractions unaffected by incubation 

period in both control and active/toluene-spiked 

mesocosms 
 

A decrease in reducible oxide content was observed 

in the active/toluene-spiked material in comparison 
to the material from control mesocosms and starting 

soil material 
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Parameters observed  

 

Findings 

 

Similarly an increase in the carbonate-bound iron 
fraction was observed in the active/toluene-spiked 

material in comparison to the material from control 

mesocosms and starting soil material 
 

pH after addition of first toluene spike A 0.5-unit increase and 0.5-unit decrease in the pH 

of the control and active/toluene-spiked mesocosms 
respectively was observed. The pH however 

remained largely unchanged during the incubation 

period 
 

Surface area at the end of incubation 

period 

The toluene-spiked material was slightly lower in 

comparison to the material from the blank 
mesocosms however both mesocosm material had 

lower surface areas than the starting soil material 

 

  

Table C.7.2 Summary of findings - un-amended vs. hematite-amended mesocosms 

 

Parameters observed 

 

Findings 

 

Rates of toluene degradation 

 

Faster rates were observed in hematite-amended 
mesocosms compared to un-amended mesocosms 

 

Amounts of toluene degraded A higher amount of toluene was degraded in the 
hematite-amended mesocosms 

 

Time at which mesocosms were 

completely saturated with toluene 

Both the un-amended and hematite-amended 

mesocosms were completely saturated after the 
addition of the third toluene spike 

 

Total dissolved iron concentrations after 

addition of first toluene spike 

Progressively lower total dissolved iron 

concentrations were observed during the first 

spike period, and were likely to be due to the 

presence of the hematite amendment 
 

pH after addition of first toluene spike The hematite-amended mesocosms showed 

slightly higher pH levels (+0.1 units) 
 

Surface area at the end of incubation 

period 

The surface area of the hematite-amended soil 

material was significantly lower than the staring 

soil material but slightly higher in hematite-
amended soil material compared to soil material 

from un-amended mesocosms 

 

  

Table C.7.3 Summary of findings - un-amended vs. goethite-amended mesocosms 

 

Parameters observed 

 

Findings 

 
Rates of toluene degradation 

 
There were no significant differences in rates of 

toluene degradation in both mesocosms 

 
Amounts of toluene degraded A higher amount of toluene was degraded in the 

goethite-amended mesocosms  

 
Time at which mesocosms were 

completely saturated with toluene 

Both the un-amended and goethite-amended 

mesocosms were completely saturated after the 

addition of the third toluene spike 
 



- 222 - 

 

Parameters observed 

 

Findings 

Total dissolved iron concentrations after 

addition of first toluene spike 

Higher dissolved iron concentrations in goethite-

amended mesocosms compared to the un-amended 

mesocosms 
 

pH after addition of first toluene spike Goethite-amended mesocosms showed slightly 

higher pH levels (+0.5 units)  
 

Surface area at the end of incubation 

period 

The surface area of the goethite-amended soil 

material was significantly lower than staring soil 
material but similar in comparison to soil material 

from un-amended mesocosms 

 

  

Table C.7.4 Summary of findings - un-amended vs. magnetite-amended mesocosms 

 

Parameters observed 

 

Findings 

 

Rates of toluene degradation 

 

There were no significant differences observed in 
the rates of toluene degradation in both mesocosms 

 

Amounts of toluene degraded A higher amount of toluene was degraded in the 

magnetite-amended mesocosms  

 

Time at which mesocosms were 

completely saturated with toluene 

Both the un-amended and magnetite-amended 

mesocosms were completely saturated after the 

addition of the third toluene spike 
 

Total dissolved iron concentrations after 
addition of first toluene spike 

Similar iron concentrations were observed in the 
un-amended and magnetite-amended mesocosms 

 

pH after addition of first toluene spike The magnetite-amended mesocosms showed 
slightly higher pH levels (+0.2 units)  

 

Surface area at the end of incubation 

period 

The surface area of the magnetite-amended soil 

material was significantly lower than staring 
material and also lower in comparison to soil 

material from un-amended mesocosms 

  

 

Table C.7.5 Summary of findings - un-amended vs. mesocosms with ferric citrate amendment 

 

Parameters observed  

 

Findings 

 

Rates of toluene degradation 

 

There were no significant differences observed in 

the rates of degradation in both mesocosms  

 
Amounts of toluene degraded A higher amount of toluene was degraded in the 

mesocosms with the ferric citrate amendment after 

the addition of the first toluene spike however a 
lower amount was degraded in these mesocosms 

after the addition of the second spike 

 
Time at which mesocosms were 

completely saturated with toluene 

The mesocosms with the ferric citrate amendment 

were saturated with toluene in less time (after the 

addition of the second toluene spike) in comparison 
with the un-amended mesocosms 
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Parameters observed  

 

Findings 

Total dissolved iron concentrations after 
addition of first toluene spike 

Higher total dissolved iron concentrations were 
observed in the mesocosms amended with ferric 

citrate (+1.0 units), reflective of additional 

dissolved iron from the added ferric citrate solution  
 

pH after addition of first toluene spike Higher pH levels were observed in the mesocosms 

amended with ferric citrate (+1.0 units)  

 

Surface area at the end of incubation 

period 

 

The surface area of the ferric citrate-amended soil 

material was significantly lower than staring 
material but similar in comparison to soil material 

from un-amended mesocosms 

 

  

Table C.7.6 Summary of findings - un-amended vs. ferrihydrite-amended mesocosms 

 

Parameters observed 

 

Findings 

 

Rates of toluene degradation 

 

Significantly lower rates were observed in 
mesocosms with the ferrihydrite amendment 

 

Amounts of toluene degraded A significantly higher amount of toluene was 

degraded in the mesocosms with the ferrihydrite 

amendment after the addition of the first toluene 
spike however a lower amount was degraded, in 

comparison, after the addition of the second spike 

Time at which mesocosms were 
completely saturated with toluene 

The mesocosms with the ferrihydrite amendment 
were saturated with toluene in less time (after the 

addition of the second toluene spike) in 

comparison with the un-amended mesocosms 
 

Total dissolved iron concentrations after 

addition of first toluene spike 

Similar iron concentrations were observed in both 

mesocosms 

pH after addition of first toluene spike Higher pH levels were observed in the mesocosms 

with the ferrihydrite amendment (+0.5 units)  

however a progressive decline in pH was observed 
as toluene was degraded 

 

Surface area at the end of incubation 
period 

The surface area of the ferrihydrite-amended soil 
material was significantly lower than staring 

material but higher in comparison to soil material 

from un-amended mesocosms 
 

  

Table C.7.7 Summary of findings - un-amended vs. lepidocrocite-amended mesocosms 

 

Parameters observed  

 

Findings 

 

Rates of toluene degradation 

 

Significantly lower rates were observed in the 
mesocosms with the lepidocrocite amendment 

 

Amounts of toluene degraded The mesocosms with the lepidocrocite amendment 
did not support toluene degradation 

 

Time at which mesocosms were 
completely saturated with toluene 

N/A 
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Parameters observed  

 

Findings 

Total dissolved iron concentrations after 
addition of first toluene spike 

Similar iron concentrations were observed in both 
mesocosm sets  

 

pH after addition of first toluene spike Higher pH levels were observed in the mesocosms 
with the ferrihydrite amendment (+1.0 unit) 

   

Surface area at the end of incubation 
period 

The surface area of the lepidocrocite-amended soil 
material was significantly lower than staring 

material but similar to  the material from un-

amended mesocosms 
 

  

Table C.7.8 Summary of findings -un-amended vs. mesocosms amended with Soil 1 

 

Parameters observed 

 

Findings 

 

 

Rates of toluene degradation 

 

Significantly lower rates were observed in 
mesocosms with the contaminated soil amendment 

 

Amounts of toluene degraded A significantly higher amount of toluene was 
degraded in the mesocosms with the contaminated 

soil amendment after the addition of toluene 

 
Time at which mesocosms were 

completely saturated with toluene 

The mesocosms with the contaminated soil 

amendment were saturated with toluene in less time 

(after the addition of the second toluene spike) in 
comparison with the un-amended mesocosms 

 

Total dissolved iron concentrations after 
addition of first toluene spike 

Slightly lower total dissolved iron concentrations 
were observed in the mesocosms with the 

contaminated soil amendment, these concentrations 

were seen to increase progressively over the course 
of the experiments 

 

pH after addition of first toluene spike Similar pH levels were observed in both mesocosm 

sets 

 

Surface area at the end of incubation 
period 

The surface area of the soil-amended material was 
significantly lower than staring material but similar 

to soil material from un-amended mesocosms 
 

  

Table C.7.9 Summary of findings - un-amended vs. mesocosms with Soil 2 

 

Parameters observed 

 

Findings 

 

 
Rates of toluene degradation 

 
The two mesocosm sets were observed to have 

degraded toluene at similar rates during the period 

of incubation 
 

Amounts of toluene degraded Both mesocosm sets degraded similar amounts of 

toluene during individual spike periods 
 

Time at which mesocosms were 

completely saturated with toluene 

The mesocosms with the soil amendment were 

saturated with toluene in less time (after the addition 
of the second toluene spike) in comparison with the 

un-amended mesocosms 

 
Total dissolved iron concentrations after 

addition of first toluene spike 

Slightly lower total dissolved iron concentrations 

were observed in the mesocosms with the soil 

amendment, these concentrations were seen to 
increase progressively over the course of the 

experiments 
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Parameters observed 

 

Findings 

 

pH after addition of first toluene spike Similar pH levels were observed in both mesocosm 

sets at the start of the experiments however the pH 

in the soil-amended mesocosms declined steadily 
over the course of the experiments 

 

Surface area at the end of incubation 
period 

The surface area of the soil-amended material was 
significantly lower than both the starting soil 

material and soil material from un-amended 

mesocosms 
 

  

Table C.7.10 Summary of findings - un-amended vs. mesocosms with Soil 3 

 

Parameters observed 

 

Findings 

 

 

Rates of toluene degradation 

 

The two mesocosm sets were observed to have 

degraded toluene at similar rates after the first 

toluene spike  however the soil-amended 
mesocosms degraded toluene at higher rates after 

the addition of the second toluene spike 

 
Amounts of toluene degraded Both mesocosm sets degraded similar amounts of 

toluene after the addition of the first toluene spike 

however a slightly higher amount of toluene was 
degraded in the soil-amended mesocosms after the 

addition of the second spike 
 

Time at which mesocosms were 

completely saturated with toluene 

The mesocosms with the soil amendment were 

saturated with toluene in less time (after the 
addition of the second toluene spike) in comparison 

with the un-amended mesocosms 

 
Total dissolved iron concentrations after 

addition of first toluene spike 

Similar total dissolved iron concentrations were 

observed in both mesocosm sets 

 

pH after addition of first toluene spike Similar pH levels were observed in both mesocosm 

sets at the start of the experiments however the pH 

in the soil-amended mesocosms increased steadily 
over the course of the experiments 

 

Surface area at the end of incubation 
period 

The surface area of the soil-amended material was 
significantly lower than both the starting soil 

material and soil material from un-amended 

mesocosms 
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C.8 Combined concentration-time profiles 

 

Figure C.8.1 Concentration-time profiles comparing toluene, total iron and pH in the un-amended mesocosms and mesocosms 

amended with the mesocosms amaended with natural iron minerals 
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Figure C.8.2 Concentration-time profiles comparing toluene, total iron and pH in the un-amended mesocosms and mesocosms 

amended with the synthesised iron minerals 
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Figure C.8.3 Concentration-time profiles comparing toluene, total iron and pH in the un-amended mesocosms and mesocosms 

amended with the soil-amended mesocosms 
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C.9 Statistical analysis 

C.9.1 Descriptive statistics 

Table C.9.1 Descriptive statistics  

(Period A) 

 

Group  Statistic Std. Error 

Toluene Fh-amd Mean .0467 .01918 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0062 

   Upper Bound .0871 

  Variance .007  

  Std. Deviation .08139  

  Skewness 1.393 .536 

  Kurtosis .301 1.038 

 Ge-amd Mean .2767 .04112 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1899 

   Upper Bound .3634 

  Variance .030  

  Std. Deviation .17446  

  Skewness -.313 .536 

  Kurtosis -1.052 1.038 

 Hm-amd Mean .2933 .05737 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1723 

   Upper Bound .4144 

  Median .2200  

  Variance .059  

  Std. Deviation .24341  

  Skewness .722 .536 

  Kurtosis -.424 1.038 
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Group  Statistic Std. Error 

 Lp-amd Mean .4039 .01336 

  95% Confidence Interval for 

Mean 

Lower Bound 

.3757 

   Upper Bound .4321 

  Variance .003  

  Std. Deviation .05669  

  Skewness .340 .536 

  Kurtosis -.852 1.038 

 Mt-amd Mean .1728 .05833 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0497 

   Upper Bound .2958 

  Variance .061  

  Std. Deviation .24748  

  Skewness 1.235 .536 

  Kurtosis .192 1.038 

 S1-amd Mean .0928 .02246 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0454 

   Upper Bound .1402 

  Variance .009  

  Std. Deviation .09529  

  Skewness .459 .536 

  Kurtosis -.942 1.038 

 S2-amd Mean .1472 .03377 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0760 

   Upper Bound .2185 

  Variance .021  
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Group  Statistic Std. Error 

  Std. Deviation .14327  

  Skewness 1.077 .536 

  Kurtosis .638 1.038 

 S3-amd Mean .1517 .04558 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0555 

   Upper Bound .2478 

  Variance .037  

  Std. Deviation .19340  

  Skewness 2.471 .536 

  Kurtosis 6.034 1.038 

 Unamd2 Mean .3294 .04736 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2295 

   Upper Bound .4294 

  Variance .040  

  Std. Deviation .20092  

  Skewness .082 .536 

  Kurtosis -.181 1.038 

Fe Fh-amd Mean .4389 .05432 

  95% Confidence Interval for 

Mean 

Lower Bound 

.3243 

   Upper Bound .5535 

  Variance .053  

  Std. Deviation .23044  

  Skewness .533 .536 

  Kurtosis -1.148 1.038 

 Ge-amd Mean .2750 .02122 

  95% Confidence Interval for Lower Bound .2302 
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Group  Statistic Std. Error 

Mean 

   Upper Bound .3198 

  Variance .008  

  Std. Deviation .09005  

  Skewness .030 .536 

  Kurtosis .372 1.038 

 Hm-amd Mean .2850 .02296 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2366 

   Upper Bound .3334 

  Variance .009  

  Std. Deviation .09739  

  Skewness -.472 .536 

  Kurtosis -.653 1.038 

 Lp-amd Mean .2611 .03347 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1905 

   Upper Bound .3317 

  Variance .020  

  Std. Deviation .14200  

  Skewness -.738 .536 

  Kurtosis .177 1.038 

 Mt-amd Mean .2472 .01884 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2075 

   Upper Bound .2870 

  Variance .006  

  Std. Deviation .07991  

  Skewness .386 .536 
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Group  Statistic Std. Error 

  Kurtosis .978 1.038 

 S1-amd Mean .3111 .02542 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2575 

   Upper Bound .3647 

  Variance .012  

  Std. Deviation .10786  

  Skewness .073 .536 

  Kurtosis -.273 1.038 

 S2-amd Mean .2611 .02160 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2155 

   Upper Bound .3067 

  Variance .008  

  Std. Deviation .09164  

  Skewness .405 .536 

  Kurtosis -.883 1.038 

 S3-amd Mean .2000 .01143 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1759 

   Upper Bound .2241 

  Variance .002  

  Std. Deviation .04851  

  Skewness .000 .536 

  Kurtosis 2.444 1.038 

 Unamd1 Mean .3072 .02092 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2631 

   Upper Bound .3514 
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Group  Statistic Std. Error 

  Variance .008  

  Std. Deviation .08877  

  Skewness -.507 .536 

  Kurtosis 2.792 1.038 

 Unamd2 Mean .3072 .02092 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2631 

   Upper Bound .3514 

  Variance .008  

  Std. Deviation .08877  

  Skewness -.507 .536 

  Kurtosis 2.792 1.038 

pH Fh-amd Mean 6.0567 .11918 

  95% Confidence Interval for 

Mean 

Lower Bound 

5.8052 

   Upper Bound 6.3081 

  Variance .256  

  Std. Deviation .50564  

  Skewness -.789 .536 

  Kurtosis -.668 1.038 

 Ge-amd Mean 7.4978 .03817 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.4172 

   Upper Bound 7.5783 

  Variance .026  

  Std. Deviation .16196  

  Skewness -.478 .536 

  Kurtosis -1.206 1.038 

 Hm-amd Mean 7.3200 .03849 
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Group  Statistic Std. Error 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.2388 

   Upper Bound 7.4012 

  Variance .027  

  Std. Deviation .16331  

  Skewness .993 .536 

  Kurtosis .739 1.038 

 Lp-amd Mean 8.3172 .03271 

  95% Confidence Interval for 

Mean 

Lower Bound 

8.2482 

   Upper Bound 8.3862 

  Variance .019  

  Std. Deviation .13877  

  Skewness .526 .536 

  Kurtosis .860 1.038 

 Mt-amd Mean 7.5683 .02789 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.5095 

   Upper Bound 7.6272 

  Skewness -.053 .536 

  Kurtosis -.628 1.038 

 S1-amd Mean 7.4483 .03077 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3834 

   Upper Bound 7.5132 

  Variance .017  

  Std. Deviation .13053  

  Skewness .690 .536 

  Kurtosis -.453 1.038 
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Group  Statistic Std. Error 

 S2-amd Mean 7.4483 .03077 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3834 

   Upper Bound 7.5132 

  Variance .017  

  Std. Deviation .13053  

  Skewness .690 .536 

  Kurtosis -.453 1.038 

 S3-amd Mean 7.7900 .04980 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.6849 

   Upper Bound 7.8951 

  Variance .045  

  Std. Deviation .21130  

  Skewness .644 .536 

  Kurtosis -.429 1.038 

 Unamd1 Mean 7.2772 .03622 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.2008 

   Upper Bound 7.3536 

  Variance .024  

  Std. Deviation .15365  

  Skewness .152 .536 

  Kurtosis -.635 1.038 

 Unamd2 Mean 7.2772 .03622 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.2008 

   Upper Bound 7.3536 

  Variance .024  
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Group  Statistic Std. Error 

  Std. Deviation .15365  

  Skewness .152 .536 

  Kurtosis -.635 1.038 

     

 

(Period B) 

 

Group  Statistic Std. Error 

Toluene Fh-amd Mean .4528 .02765 

  95% Confidence Interval for 

Mean 

Lower Bound 

.3944  

   Upper Bound .5111  

  Variance .014  

  Std. Deviation .11731  

  Skewness -1.387 .536 

  Kurtosis 1.978 1.038 

 Ge-amd Mean .3313 .06649 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1887  

   Upper Bound .4739  

  Variance .066  

  Std. Deviation .25751  

  Skewness .078 .580 

  Kurtosis -.946 1.121 

 Hm-amd Mean .3333 .05876 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2094  

   Upper Bound .4573  

  Variance .062  

  Std. Deviation .24928  

  Skewness .224 .536 
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Group  Statistic Std. Error 

  Kurtosis -.982 1.038 

 Mt-amd Mean .2044 .05174 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0953  

   Upper Bound .3136  

  Variance .048  

  Std. Deviation .21950  

  Skewness .755 .536 

  Kurtosis -.677 1.038 

 S1-amd Mean .3861 .04407 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2931  

   Upper Bound .4791  

  Variance .035  

  Std. Deviation .18696  

  Skewness .777 .536 

  Kurtosis -.564 1.038 

 S2-amd Mean .2533 .04704 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1541  

   Upper Bound .3526  

  Variance .040  

  Std. Deviation .19956  

  Skewness .623 .536 

  Kurtosis .245 1.038 

 S3-amd Mean .0400 .01206 

  95% Confidence Interval for 

Mean 

Lower Bound 

.0135  

   Upper Bound .0665  
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Group  Statistic Std. Error 

  Variance .002  

  Std. Deviation .04178  

  Skewness .000 .637 

  Kurtosis -2.444 1.232 

 Unamd2 Mean .4189 .05699 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2986  

   Upper Bound .5391  

  Variance .058  

  Std. Deviation .24180  

  Skewness .165 .536 

  Kurtosis -.061 1.038 

Fe Fh-amd Mean .5111 .05595 

  95% Confidence Interval for 

Mean 

Lower Bound 

.3931  

   Upper Bound .6291  

  Variance .056  

  Std. Deviation .23736  

  Skewness .535 .536 

  Kurtosis -1.191 1.038 

 Ge-amd Mean .2687 .01650 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2333  

   Upper Bound .3041  

  Variance .004  

  Std. Deviation .06390  

  Skewness -.184 .580 

  Kurtosis -.852 1.121 

 Hm-amd Mean .1828 .01450 
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Group  Statistic Std. Error 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1522  

   Upper Bound .2134  

  Variance .004  

  Std. Deviation .06153  

  Skewness 1.392 .536 

  Kurtosis 1.936 1.038 

 Mt-amd Mean .2967 .01669 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2615  

   Upper Bound .3319  

  Variance .005  

  Std. Deviation .07079  

  Skewness -.582 .536 

  Kurtosis -1.190 1.038 

 S1-amd Mean .3167 .01213 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2911  

   Upper Bound .3423  

  Variance .003  

  Std. Deviation .05145  

  Skewness .324 .536 

  Kurtosis .923 1.038 

 S2-amd Mean .3389 .01432 

  95% Confidence Interval for 

Mean 

Lower Bound 

.3087  

   Upper Bound .3691  

  Variance .004  

  Std. Deviation .06077  
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Group  Statistic Std. Error 

  Skewness 1.362 .536 

  Kurtosis 1.126 1.038 

 S3-amd Mean .2000 .01231 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1729  

   Upper Bound .2271  

  Variance .002  

  Std. Deviation .04264  

  Skewness .000 .637 

  Kurtosis 5.500 1.232 

 Unamd1 Mean .1717 .01091 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1486  

   Upper Bound .1947  

  Variance .002  

  Std. Deviation .04630  

  Skewness .372 .536 

  Kurtosis -.551 1.038 

 Unamd2 Mean .1717 .01091 

  95% Confidence Interval for 

Mean 

Lower Bound 

.1486  

   Upper Bound .1947  

  Variance .002  

  Std. Deviation .04630  

  Skewness .372 .536 

  Kurtosis -.551 1.038 

pH Fh-amd Mean 6.2367 .06764 

  95% Confidence Interval for 

Mean 

Lower Bound 

6.0939  
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Group  Statistic Std. Error 

   Upper Bound 6.3794  

  Variance .082  

  Std. Deviation .28699  

  Skewness .185 .536 

  Kurtosis -.741 1.038 

 Ge-amd Mean 7.3967 .01791 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3583  

   Upper Bound 7.4351  

  Variance .005  

  Std. Deviation .06935  

  Skewness -.165 .580 

  Kurtosis -.285 1.121 

 Hm-amd Mean 7.6011 .02928 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.5393  

   Upper Bound 7.6629  

  Variance .015  

  Std. Deviation .12423  

  Skewness -1.152 .536 

  Kurtosis 1.041 1.038 

 Mt-amd Mean 7.4811 .01817 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.4428  

   Upper Bound 7.5194  

  Variance .006  

  Std. Deviation .07707  

  Skewness 2.305 .536 

  Kurtosis 7.409 1.038 
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Group  Statistic Std. Error 

 S1-amd Mean 7.0411 .04671 

  95% Confidence Interval for 

Mean 

Lower Bound 

6.9426  

   Upper Bound 7.1397  

  Variance .039  

  Std. Deviation .19819  

  Skewness .411 .536 

  Kurtosis -.769 1.038 

 S2-amd Mean 7.0411 .04671 

  95% Confidence Interval for 

Mean 

Lower Bound 

6.9426  

   Upper Bound 7.1397  

  Variance .039  

  Std. Deviation .19819  

  Skewness .411 .536 

  Kurtosis -.769 1.038 

 S3-amd Mean 7.4625 .03205 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3919  

   Upper Bound 7.5331  

  Variance .012  

  Std. Deviation .11104  

  Skewness -.371 .637 

  Kurtosis -.980 1.232 

 Unamd1 Mean 7.4661 .03764 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3867  

   Upper Bound 7.5455  

  Variance .026  
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Group  Statistic Std. Error 

  Std. Deviation .15971  

  Skewness -.632 .536 

  Kurtosis -.409 1.038 

 Unamd2 Mean 7.4661 .03764 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3867  

   Upper Bound 7.5455  

  Variance .026  

  Std. Deviation .15971  

  Skewness -.632 .536 

  Kurtosis -.409 1.038 

     

 

 

(Period C) 

 

Group  Statistic Std. Error 

Toluene Ge-amd Mean .3017 .03503 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2246  

   Upper Bound .3788  

  Variance .015  

  Std. Deviation .12134  

  Skewness .729 .637 

  Kurtosis -.467 1.232 

 Hm-amd Mean .4372 .06978 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2900  

   Upper Bound .5844  

  Variance .088  

  Std. Deviation .29605  
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Group  Statistic Std. Error 

  Skewness .513 .536 

  Kurtosis -.827 1.038 

 Mt-amd Mean .4276 .04585 

  95% Confidence Interval for 

Mean 

Lower Bound 

.3305  

   Upper Bound .5248  

  Variance .036  

  Std. Deviation .18903  

  Skewness .441 .550 

  Kurtosis -.883 1.063 

 Unamd2 Mean .5922 .06017 

  95% Confidence Interval for 

Mean 

Lower Bound 

.4653  

   Upper Bound .7192  

  Variance .065  

  Std. Deviation .25526  

  Skewness .751 .536 

  Kurtosis -.787 1.038 

Fe Ge-amd Mean .3525 .03146 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2833  

   Upper Bound .4217  

  Variance .012  

  Std. Deviation .10897  

  Skewness -.127 .637 

  Kurtosis -1.214 1.232 

 Hm-amd Mean .2561 .01768 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2188  
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Group  Statistic Std. Error 

   Upper Bound .2934  

  Variance .006  

  Std. Deviation .07500  

  Skewness .529 .536 

  Kurtosis -.104 1.038 

 Mt-amd Mean .3465 .03189 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2789  

   Upper Bound .4141  

  Variance .017  

  Std. Deviation .13148  

  Skewness .935 .550 

  Kurtosis .171 1.063 

 Unamd1 Mean .2650 .01964 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2236  

   Upper Bound .3064  

  Variance .007  

  Std. Deviation .08333  

  Skewness .557 .536 

  Kurtosis -.467 1.038 

 Unamd2 Mean .2650 .01964 

  95% Confidence Interval for 

Mean 

Lower Bound 

.2236  

   Upper Bound .3064  

  Variance .007  

  Std. Deviation .08333  

  Skewness .557 .536 

  Kurtosis -.467 1.038 
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Group  Statistic Std. Error 

pH Ge-amd Mean 7.3792 .05064 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.2677  

   Upper Bound 7.4906  

  Variance .031  

  Std. Deviation .17542  

  Skewness .284 .637 

  Kurtosis -1.194 1.232 

 Hm-amd Mean 7.4878 .02989 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.4247  

   Upper Bound 7.5508  

  Variance .016  

  Std. Deviation .12680  

  Skewness -.142 .536 

  Kurtosis .075 1.038 

 Mt-amd Mean 7.3835 .01770 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3460  

   Upper Bound 7.4210  

  Variance .005  

  Std. Deviation .07297  

  Skewness -.721 .550 

  Kurtosis .675 1.063 

 Unamd1 Mean 7.3783 .02563 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3243  

   Upper Bound 7.4324  

  Variance .012  
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Group  Statistic Std. Error 

  Std. Deviation .10875  

  Skewness -.599 .536 

  Kurtosis -.169 1.038 

 Unamd2 Mean 7.3783 .02563 

  95% Confidence Interval for 

Mean 

Lower Bound 

7.3243  

   Upper Bound 7.4324  

  Variance .012  

  Std. Deviation .10875  

  Skewness -.599 .536 

  Kurtosis -.169 1.038 

     

 

C.9.2 Difference in means tests 

Table C.9.2 Difference in means tests for mean toluene across mesocosm groups a 

   

(I) Group  Mean Difference  p-value  

     

Fh-amd  .197* .000  

Ge-amd  .145* .001  

Hm-amd  .092* .021  

Lp-amd  .043 .445  

Mt-amd  
.174* .000  

S1-amd  
.207* .000  

S2-amd  
.247* .000  

S3-amd  
.340* .000  

Unamd1  
.447* .000  

     

a. The un-amended (ST) mesocosm groups served as the baseline  
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C.9.3 Model parameters (Model 1) 

Table C.9.5 Model dimension a (Model 1) 

(Period A) 

  Number of 

Levels Covariance Structure Number of Parameters 

Subject Variables 

Fixed Effects Intercept 1  1  

 Time 1  1  

Random Effects Intercept + Time b 2 Unstructured 3 ID 

Residual   1   

Total 4  6   

      

 

 (Period B) 

  

Number of Levels Covariance Structure Number of Parameters 

Subject Variables 

Fixed Effects Intercept 1  1  

 Time 1  1  

Random 

Effects 

Intercept + Time b 
2 Unstructured 3 

ID 

Residual    1  

Total 4 4  6  

      

 

 

(Period C) 

  

Number of Levels Covariance Structure Number of Parameters 

Subject Variables 

Fixed Effects Intercept 1  1  

 Time 1  1  

Random 

Effects 

Intercept + Time b 
2 Unstructured 3 

ID 

Residual    1  

Total 4 4  6  

      

a. Dependent Variable: Toluene. 
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Table C.9.6 Estimates of fixed effects a (Model 1) 

(Period A) 

Parameter Estimate t 

 

p-value 

Intercept .329206 8.096 .000 

    

Time -.055105 -5.467 .000 

    

(Period B) 

Parameter Estimate t 

 

p-value 

Intercept .795826 6.875 .000 

Time -.061377 -5.186 .000 

    

(Period C) 

Parameter Estimate t 

p-value 

Intercept 1.481808 5.515 .000 

Time -.077669 -5.326 .000 

    

a. Dependent Variable: Toluene. 
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Table C.9.7 Estimates of covariance parameters a (Model 1) 

(Period A) 

 
Parameter Estimate Wald Z p-value 

Residual .008750 7.746 .000 

Intercept + Time [subject = ID] UN (1,1) .045022 3.452 .001 

Intercept + Time [subject = ID] UN (2,1) -.008893 -3.000 .003 

 UN (2,2) .002548 3.173 .002 

     

 

(Period B) 

 

Parameter Estimate Wald Z p-value 

Residual .011523 7.122 .000 

Intercept + Time [subject = ID] UN (1,1) .296399 3.013 .003 

Intercept + Time [subject = ID] UN (2,1) -.028287 -2.868 .004 

 UN (2,2) .002931 2.849 .004 

     

  

(Period C) 

 
Parameter Estimate Wald Z p-value 

Residual .007838 5.263 .000 

Intercept + Time [subject = ID] UN (1,1) .007838 5.263 .000 

Intercept + Time [subject = ID] UN (2,1) -.047751 -2.233 .026 

 UN (2,2) .002510 2.156 .031 

     

a. Dependent Variable: Toluene. 
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C.9.4 Model parameters (Model 2) 

Table C.9.8 Model dimension a (Model 2) 

(Period A) 

  

Number of Levels 

Covariance 

Structure 

Number of 

Parameters 

Subject 

Variables 

Number of 

Subjects 

Fixed Effects Intercept 1  1   

 Fe 1  1   

 pH 1  1   

 Time 1  1   

 Fe * Time 1  1   

 pH * Time 1  1   

Random 

Effects 

Intercept + Timeb 
2 Unstructured 3 

ID  

Residual Timeb      

Total 8   10   

       

 

 

(Period B) 

  

Number of Levels 

Covariance 

Structure 

Number of 

Parameters 

Subject 

Variables 

Number of 

Subjects 

Fixed Effects Intercept 1  1   

 Fe 1  1   

 pH 1  1   

 Time 1  1   

 Fe * Time 1  1   

 pH * Time 1  1   

Random 

Effects 

Intercept + Timeb 
2 Unstructured 3 

  

Residual    1   

Total  7  9   
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(Period C) b 

  

Number of Levels 

Covariance 

Structure 

Number of 

Parameters 

Subject 

Variables 

Number of 

Subjects 

Fixed Effects Intercept 1  1   

 Fe 1  1   

 pH 1  1   

 Time 1  1   

 Fe * Time 1  1   

 pH * Time 1  1   

Random 

Effects 

Intercept + Timeb 
2 Unstructured 3 

ID  

Total  8  10   

       

a. Dependent Variable: Toluene. 

b. Parameter estimates obtained using maximum likelihood 

Table C.9.9 Estimates of fixed effects a (Model 2) 

(Period A) 

Parameter Estimate t statistic 

 

 

p-value 

Intercept 1.610196 -3.305 .001 

Fe .59492 -.365 .715 

pH .260823 4.132 .000 

Time .259396 2.140 .035 

Fe * Time .010197 -.218 .828 

pH * Time .040981 -2.615 -.010 

    

 

(Period B) 

Parameter Estimate t statistic 

 

p-value 

Intercept 1.773124 -1.078 .283 

Fe 1.201205 1.889 .062 
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Parameter Estimate t statistic 

 

p-value 

pH .308800 1.415 .160 

Time .331798 1.865 .065 

Fe * Time .114236 -1.607 .112 

pH * Time .049993 -2.141 .035 

    

 

(Period C) 

Parameter Estimate t statistic 

 

p-value 

Intercept 15.207728 -1.696 .096 

Fe .763769 .655 .515 

pH 2.225823 1.854 .069 

Time .984682 1.691 .097 

Fe * Time .057688 -.733 .467 

pH * Time .141366 -1.810 .076 

    

a. Dependent Variable: Toluene. 

b. Parameter estimates obtained using maximum likelihood 

 

Table C.9.10 Estimates of covariance parameters a (Model 2) 

(Period A) 

Parameter  
Estimate 

z statistic p-value 

Residual  .007872 7.612 .000 

Intercept + Time [subject = ID] UN (1,1) .046779 3.368 .001 

 UN (2,1) -.010751 -3.079 .002 

 UN (2,2) .003038 3.115 .002 
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 (Period B) 

Parameter  
Estimate 

z statistic p-value 

Residual  .011534 7.000 .000 

Intercept + Time [subject = ID] UN (1,1) .294104 2.904 .004 

 UN (2,1) -.026989 -2.747 .006 

 UN (2,2) .002578 2.640 .008 

     

 

 (Period C) 

Parameter  

Estimate 

z statistic p-value 

Residual  .007675 5.049 .000 

Intercept + Time [subject = ID] UN (1,1) .853430 2.269 .023 

 UN (2,1) -.044404 -2.184 .029 

 UN (2,2) .002319 2.093 .036 

     

a. Dependent Variable: Toluene. 

b. Parameter estimates obtained using maximum likelihood 
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Dedication 

I would like to dedicate this thesis in memory of the recent passing of my aunts Dr Juliet Orlu and Josephine Orlu, and 

grandparents Chief London Ihunwo, Selina Ihunwo, Mary Orlu and Chief (Sir) Isaac Orlu, Paramount Ruler of Okporowo-

Ogbakiri Kingdom. Also to, the one whom ɪ was privileged to call sister over the brief 14-year period of her life. Your memory 

lives on. 

 

Rest… in  peace. 

 

 

 


