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Abstract 

 

Sugar beet (Beta vulgaris L. subsp. vulgaris) is an economically important crop 

for the production of dietary sucrose. Breeding efforts towards crop improvement 

traditionally aim to increase sugar yield as well as in field performance. However, 

more recently the sugar beet pulp, a by-product of sucrose extraction, has been 

identified as a potential resource for additional industrial applications. Therefore 

breeding efforts could be directed towards the improved composition of sugar 

beet pulp for efficient use in these industries. Plant cell wall composition is integral 

to both crop performance as cell walls play a role in root growth, development 

and sucrose accumulation. In addition, plant cell walls make up the majority of 

sugar beet pulp and therefore cell wall composition influences post extraction 

applications. A developmental study of three Beta vulgaris varieties, utilising a 

monoclonal antibody directed to xylan, has allowed the visualisation of the xylem 

vessels within the successive cambial arrangement seen in beet roots. 

Importantly, a novel monoclonal antibody (LM26) directed towards phloem sieve 

elements has been characterised as part of this project (Torode et al., 2018). This 

mAb has allowed the visualisation of the relative location and abundance of 

phloem sieve elements in situ and how this could translate to sucrose 

accumulation. Monoclonal antibodies directed to several different cell wall 

polysaccharides were used to screen field grown commercial sugar beet (Sophia) 

using immunoassay techniques (Enzyme-linked immunosorbent assay (ELISA) 

and for the first time compared against the cell wall polysaccharide screening 

technique Comprehensive microarray polymer profiling (CoMPP)) on the same 

samples to compare the best use of these techniques. These screens indicated 

that sugar beet cell wall composition is modified throughout development and is 

influenced by environmental factors. The CoMPP technique was manipulated as 

a high throughput method to compare the cell wall composition of a unique 

population of recombinant inbred lines (RILs). Cell wall characteristics were 

identified which can influence the physiological properties such as sugar yield to 

aid the phenotyping of the varied population. From this analysis candidate lines 

have been selected from the RILs that have the potential to be used to direct 

breeding efforts towards crop improvement.  
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1.1 Sugar beet 

Sugar beet is a member of the Beta vulgaris L. species which is a highly variable 

species with many agriculturally significant groups including: garden beets 

(beetroot), fodder beet, leafy beets (chard) and sugar beet (Beta vulgaris subsp. 

vulgaris). The Beta vulgaris species is a member of the Amaranthaceae (formerly 

Chenopodiaceae) family. Other members of this diverse family include species 

such as spinach (Spincia oleracea) (Elliott and Weston, 1993, Lange et al., 1999).  

1.1.1 Sugar beet history  

Sugar beet as it is known today has been selectively bred for high sucrose 

content along with improved agricultural practice, sucrose concentration can be 

up to 20% fresh weight and 75% of dry weight. Sugar beets were grown initially 

as a garden vegetable and as animal fodder before they were used for sugar 

production. Sucrose was extracted experimentally from beets in the mid-

eighteenth century by chemist Andreas Magraff; however at the time cane sugar 

was freely available and therefore the process did not take off (Draycott, 2006a). 

However, interest in sugar beet sugar grew during the Napoleonic wars when the 

British blocked cane sugar imports. Napoleon encouraged sugar beet research 

and sugar beet processing factories were built across France. By 1880 the 

industry had become well established across Europe. The industry expanded 

from there, with Britain introducing the crop as a bid to become more self-

sufficient during the shortages experienced during World War I (Harveson, 2016).  

Sugar beet is one of only two crops that provides sucrose (sugar) to the world 

food industry (Van der Poel, 1998). Sugar beet is grown in temperate regions 

including; the UK, many countries across Europe, USA and China providing about 

a 20% of the world sugar production and sugar cane in tropical regions providing 

the remaining 80%. Both crops produce chemically identical sugar. In the UK, all 

sugar beet is processed by British Sugar plc in one of four processing plants in 

the South East of England producing around 1.4 million tonnes of sugar per year 

(British Sugar, 2010).  
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1.1.2 Sugar beet biology and physiology 

Sugar beet is a biennial plant, where sucrose produced by photosynthesis is 

accumulated in the storage root in the first year (Artschwager, 1926). Commercial 

sugar beet is usually harvested at the end of this first year when sucrose is at its 

highest concentration. A mature sugar beet consists of the vegetative storage 

organ the tap root (Fig 1.1A), usually white in colour and a rosette of leaves. While 

the storage organ is usually called the root about 10% of the “root” forms the 

crown and is derived from the hypocotyl (Hanson and Wyse, 1982). If allowed to 

continue into the second year of growth the plants will vernalise through the winter 

with stem elongation (bolting), flower production and seed set occurring through 

the second year (Fig 1.1B) (Elliott and Weston, 1993). Bolting in sugar beet for 

commercial sugar production is selected against as stem elongation utilises the 

stored sucrose in the root within the first year of growth and therefore reduces 

sucrose yield (El-Mezawy et al., 2002, Mutasa-Göttgens et al., 2010). 

 

Sugar beet root anatomy 

Current understanding of the vascular anatomy of the sugar beet storage root is 

that it is derived from a series of active concentric cambia which develop in the 

very early stages of growth at the peripheral of the primary root (Artschwager, 

1926, Zamski and Azenkot, 1981). Each cambium is responsible for the 

production of secondary xylem inwards and secondary phloem outwards, 

resulting in a succession of rings visible with the naked eye (Fig 3.2). This cambial 

arrangement is referred to as a supernumerary successive cambium and is 

typical for members of the Amaranthaceae family and a few other species 

(Carlquist, 2007, Fahn and Zimmermann, 1982, Tamaio et al., 2009, Carlquist, 

2003). There is little understanding of the development of these cambial rings 

and the evolutionary advantage of this vascular arrangement.  

 

There have been previous studies looking at the relationship of cell size and 

structure to concentration of sugar in mature sugar beet roots discussed by 

Milford (1973), as well as sucrose concentration in cells relative to distance from 

the phloem (Milford, 1973, Geiger et al., 1973), however very little is known about 

the development of the root in detail and how this effects sucrose yield. The yield 

of sugar from sugar beet storage roots is determined by the root weight and the 



 

4 

 

concentration of sugar within it (Milford, 1973). Despite sugar yield being the most 

important factor for a sugar beet grower, very little is known about sugar 

assimilation and the factors that affect this. Sucrose is transported to the root via 

the phloem; however, the impact of development of the vascular anatomy of the 

root has been uncertain.  

 

 

 

Figure 1.1 Sugar beet anatomy A; A mature sugar beet at the end of 

the first year of growth, as the plant would be at harvest for sugar 

production B; A flowering sugar beet with stem elongation (bolting). 

(Taken from Elliott and Weston (1993)) 
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Physiology of sucrose transportation 

An important factor in the success of the sugar beet to store relatively high 

levels of sucrose within its storage root is sucrose transportation from leaf to 

root. Higher plants accumulate sugars such as glucose, fructose and sucrose 

as a source of energy to drive metabolism as well as an energy store for future 

growth and develop or in times of stress.  

Sucrose synthesised in the leaves is the most commercially valuable and the 

accumulation of this disaccharide in the vacuoles of sugar beet taproots makes 

sugar beet an important cash crop. Sucrose transport out of the leaves is 

facilitated by “SWEET-type transporters” which are involved in sucrose loading 

into phloem sieve elements and corresponding companion cells (Chen et al., 

2010). The majority of sucrose that enters the root is destined for the vacuole 

however the molecular mechanisms for this in roots is poorly characterised. 

Many vacuolar transporters reported for movement of sucrose across the 

tonoplast have been described in leaves (Schulz et al., 2011, Eom et l., 2011, 

Klemens et al., 2013). In 2015 Jung et al described a sugar beet specific 

vacuolar sucrose transporter (BvTST 2.1) with a key role in sucrose 

accumulation in the sugar beet taproot.  

It is clear that phloem have an important role in sucrose accumulation and it 

has been suggested that transportation of photosynthate and amino acids 

through the phloem can be a limiting factor in both sucrose accumulation and 

biomass yield (Zhang et al., 2014). In addition, it has been suggested to 

increase sugar yield in sugar cane that improvements to translocation from 

leaves to phloem and from phloem to sink to prevent negative feedback 

would be one of the most successful endeavours into yield increase 

(Shrivastava et al., 2015) 

1.2 Sugar beet industries 

Sugar beet is a summer crop usually grown as part of a rotation with maize or 

wheat to lessen the effects of crop specific diseases. Sugar beets have a growing 

period between 170 and 200 days and require a mild growing season with a well 
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distributed precipitation, as they suffer readily from water deficiency effecting 

sucrose assimilation (Camposeo and Rubino, 2003, Draycott and Farley, 1971).  

Modern day farming practice for sugar beets have been adopted with deep 

plough after the preceding crop to produce a seed bed with good tilth (Baver and 

Farnsworth, 1941) and precision drilling of the pre-treated seeds. Fertilisers and 

herbicides applied to the crop at sowing and germination occurs about 10 days 

after (Tzilivakis et al., 2005). Fertilisers are applied throughout the growing period 

to increase root yield. Mature sugar beets can grow to be around 1-2 kg with 8-

22% sucrose of fresh weight (Scott et al., 1973, Cooke and Scott, 2012).  

Sugar beets are subject to a number of insect pest and diseases many of which 

effect sucrose concentrations in various ways. Foliage diseases such as leaf spot 

(Cercospora sp.), powdery mildew (Erysiphe betae) and sugar beet rust 

(Uromyces betae), where leaves become infected and this interferes with 

photosynthesis therefore reducing sucrose production (Draycott, 2006b, Cooke 

and Scott, 2012). Whereas, root borne pest and diseases such as root rots, 

rhizomania and nematodes reduce sucrose concentrations through root 

damages and stress (Buhre et al., 2009).  

1.2.1 Sugar beet breeding and commercial seed production 

Higher sucrose content and disease resistance are constantly sought after by 

sugar beet growers and in response sugar beet breeders produce new 

commercial varieties every year. Four main seed houses (KWS UK, Strube, 

Syngenta and SES vanderHave), provide sugar beet seed to the UK market with 

the BBRO (British Beet Research Organisation) providing a recommended list 

each year based on growth trials. The list recommends varieties based on 

sucrose concentration for various soil types and resistance to disease threats 

(BBRO, 2017).  

 

Current sugar beet varieties are the result of over 100 years selective breeding 

for high sucrose content and improved performance in the field. As well as high 

sucrose yield the main objectives for sugar beet breeders are: to reduce yield 

losses from abiotic and biotic pressures, early bolting resistance, and particularly 

resistance to root diseases such as rhizomania (Biancardi et al., 2002, Lewellen 
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et al., 1987). The sugar beet seed that is planted is actually derived from the 

whole flower which has become woody, so for commercial use the seed is 

polished, primed and coated with fertilisers and fungicides (McQuilken et al., 

1990, Duan and Burris, 1997) (Fig 1.2).  

Sugar beet breeding has relied on mass selection of favourable traits. This 

strategy works well for traits that are easily scored, such as sucrose 

concentrations. Recurrent selection has also been used to some extent. With this 

method, selections are made and crossed with a common parent. The progeny 

is evaluated, and the best-performing families or lines are identified. Those seed 

parents whose progeny showed high performance are then inter-crossed and 

advanced to another round of selection. Frequently, progeny testing occurs with 

a promising pollinator crossed with a series of cytoplasmic male sterility (CMS) 

tester lines (Reif et al., 2010). Commercial varieties grown in the UK are 

monogerm, a recessive trait of the current breeding programmes along with CMS 

which has been developed over the last 60 years and is now slowing down future 

population improvement. The CMS lines (pollen sterile) are used to harvest seed 

and are planted in a population of pollen donors and the seed exclusively 

harvested from the CMS plants to maintain the monogerm traits (Richardson, 

2010). 

  



 

8 

 

1.2.1.1 Genetic modification of sugar beets  

Commercialised genetically modified (GM) sugar beets are cultivated outside of 

the EU, with 95% of all sugar beets in the USA being GM. GM sugar beets have 

been produced by Monsanto and KWS SAAT for glyphosate-resistance 

(Mannerlof et al., 1997). These “RoundUp ready” sugar beets have been grown 

in the USA and Canada since 2007 (KWS, 2005).  

Sugar beet is considered one of the best candidates as a wide spread GM crop 

as the likelihood of becoming a pest plant is significantly reduced due to the 

cultivation practices within the industry (Khan, 2010). With selection against 

sugar beet entering reproductive growth to maximise sucrose yield, cross-

pollination with other species’ is unlikely to occur (Bennett et al., 2004).  In 

addition, sugar for GM sugar beets cannot be classed as GM as there is no 

genetic material in the products. Sugar and pulp from GM sugar beets is 

approved for human and animal consumption in many countries, including the UK 

(ISAAA, 2016). However, it may be some time until approval is granted to grow 

herbicide tolerant sugar beet in the UK (May, 2003) 

 

Figure 1.2. Sugar beet seed. From left to right: Sugar beet seed as harvested, 

polished sugar beet seed, coated sugar beet seed (blue). (Image from Strube 

(2017)) 
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1.2.2 Sugar beet processing for sugar production 

Sugar beet processing occurs from field to factory and requires specialised 

factories; in the UK there are four sugar beet processing plants owned by British 

Sugar which process sugar beet and produce white sugar among other co-

products (Fig 1.3).  

Harvest 

In the UK, the sugar beet harvest or ‘campaign’ takes place between September 

and March when the sugar content of the beet is at its highest. During this time, 

the leaves are cut off in the field (topped) where they are either ploughed back 

into the land as a fertiliser or used as animal feed. The beets are harvested and 

delivered immediately to the factory or stored in clamps for later delivery.  Due to 

its bulk, transport distances are kept to a minimum with the average distance 

being 28 miles in Britain from field to factory British Sugar (2010).  

 

Extraction 

Upon arrival at the factory the beet is cleaned in large tanks to remove debris and 

then chopped into slices known as cossettes. The cossettes increase the surface 

area to ease the extraction process. The cossettes are mixed with hot water for 

about an hour at 70ᵒC causing the sucrose and other components of the sugar 

beet to diffuse from the plant cells into the surrounding water, this produces a 

brown liquid “Juice” (Koelsch, 1969). 

 

Pressing 

As the cossettes come to the end of the extraction step they still contain water 

with some sucrose therefore they are pressed with a screw press to ensure the 

maximum sucrose is extracted from the sugar beet. The pressed beet is now 

referred to as pulp and is usually dried and used as the main component of many 

animal feeds. 
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Carbonation  

This process is used to clean the juice before sugar is produced. For this calcium 

hydroxide is added and carbon dioxide is bubbled through the mixture, while the 

pH and temperature of the reaction are carefully monitored. The carbon dioxide 

and the calcium hydroxide react to form solid calcium carbonate crystals which 

occlude the solids from the juice.  This mixture is now passed through a filter or 

allowed to settle to remove the solids for the next phase.  

 

Boiling 

The liquid mixture is then boiled under vacuum to produce a thick syrup in which 

crystals appear. ‘Seed’ crystals are added to promote crystallisation. Sucrose 

naturally forms pure sucrose crystals expelling non-sugars, therefore throughout 

the process the remaining liquid becomes less pure. The crystallisation is 

repeated several times with the yield reducing each time until no more sucrose 

crystals can be produced. Using centrifugation, the crystals are separated from 

the syrup and dried to produce commercial white crystal sugar (Van der Poel, 

1998).  

 

Products 

The sugar is now read to be packaged and used. In addition, the remaining juice 

which has been exhausted for crystal sugar production and is now used as 

molasses, used for animal feed (Huhtanen, 1988) or distilled for alcohol 

production (Ergun and Mutlu, 2000). As mentioned the pulp is a by-product of 

sugar production from sugar beet that is mostly composed of the plant cell walls. 

Downstream uses of this resource include - for example nutrition for animal feed 

(Brouns et al., 1997, Longland and Low, 1989)or alternative uses in the bio 

economy such as bioethanol (Dodić et al., 2009).  
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1.2.3 Sugar beets for the production of biofuels 

A renewed interest in renewable energy has occurred since the mid-1990s due 

to the pursuit to reduce greenhouse gas emissions and reduce climate change 

(Berndes et al., 2003) Currently about 10% of the world’s energy demand is 

delivered using biomass. 

Biofuels and bioenergy are seen as one of the options as a substitute for fossil 

fuels. The use of biomass as an energy source on a large scale can contribute to 

sustainable energy production as well as have positive social and economic 

advantages (Turkenburg and et al., 2000). However biomass energy potential is 

limited by resource, land use competition for other crops and other uses for the 

biomass , additionally other energy sources are available for less cost to the 

consumer (Berndes et al., 2003). Limitations also exist in that the techniques 

required to efficiently utilise crop residue biomass for energy are underdeveloped 

(Kim and Dale, 2004). 

1.2.3.1 Bioenergy production 

Combustion  

Combustion is the most traditional use for biomass as an energy source is use of 

firewood for heating and cooking - a technique that has been used for centuries 

in open fires. The advancement of technologies has allowed for improve 

efficiency for domestic scale heating using combustion of diverse biomass with 

the development of heating systems catalytic gas cleaners and the use of the fuel 

in a standardised form (i.e. pellets). Biomass has also been utilised via 

combustion on an industrial scale to efficiently produce heat and electricity. Co-

combustion of biomass in coal-fired power plants has been introduced in some 

European countries therefore increasing biomass based power with minimal 

investment as existing power plants are utilised for this purpose, with advantages 

over purely coal based power plants due to high efficiency combined with lower 

sulphur dioxide (SO2) and nitrogen oxide (NOx) emissions (Turkenburg and et al., 

2000). 
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Fermentation  

Fermentation is a well-known route for the conversion of sugar cane and maize 

on a large scale into ethanol. Conversion of sucrose to ethanol is simple and 

involves fermentation by yeast, however ethanol from cereal grains is slightly 

more complex is this first requires enzymes for the conversion of starch to sugars. 

Despite this, cereal grains were the feedstock for more than 50% of the ethanol 

produced in Europe in 2009. Sugar beet, was the next most common feedstock 

but is harder to store than cereal grains (Panella, 2010). The biological process 

for the conversion of lignocellulose biomass in to ethanol occurs as follows: A 

pre-treatment to remove lignin or hemicellulose and release cellulose, use of 

cellulases to produce free sugars from the polysaccharide polymers, fermentation 

of hexoses and pentoses to produce ethanol followed by distillation of ethanol. 

Bioethanol is an attractive alternative to non-renewable fuels as it can be readily 

utilised successfully in any combustion engine that require gasoline and therefore 

reduces air pollution and therefore eases climate change by reducing 

greenhouse gas emissions (Canilha et al., 2012) 

Anaerobic digestion 

Biogas produced by anaerobic microbial digestion of waste products can also be 

used to produce renewable energy. The gas, mostly methane and carbon dioxide 

can be produced from a wide range of substrates including plant material, crops 

and green waste. The gases produced can be combusted with oxygen and 

therefore can be used as a fuel, for example heating or cooking. Biogas can also 

be utilised in a similar way to natural gas, compressed and used in vehicles and 

has the potential to replace present motor fuels; however, these cannot be used 

in traditional combustion engines and require specialist vehicles to be able to 

utilise the fuel (Andrews, 2008).  

Despite sugar beet being predominately grown for sugar, with breeding focused 

on high sucrose content and low impurities, there has been research into the use 

of fermentable sugars in the production of bioethanol to offer an alternative to 

fossil fuels in which case traditional breeding could be diverted to select solely for 

fermentable sugars (Draycott, 2006a). 
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At present ethanol can be easily produced as a first generation biofuel from sugar 

beet. This simply uses yeast fermentation to convert sucrose from the storage 

root in to ethanol. This is efficient compared to conversion of starch to sugars in 

cereal grains as no enzymes are required as a pre-treatment (Antoni et al., 2007). 

Per hectare sugar beet is one of the most efficient sources of bioalcohols, 

producing over 5000l/ha (fresh weight) of ethanol through fermentation. (Elbehri 

et al., 2013) For the aforementioned reasons sugar beet is the second most 

common ethanol feedstock after cereal grains.  

It has been suggested that sugar beet is a good candidate for use as a substrate 

for anaerobic digestion to produce bio-methane by co-digestion with the waste 

water from sugar beet processing (Alkaya and Demirer, 2011). This process 

could also use the entire beets including the crown, which is currently unused 

when refining for sucrose extraction. (Weiland, 2003). As well as whole roots it is 

possible that sugar beet pulp, a co-product of sugar processing, could be used 

as a substrate for recombinant bacteria to produce ethanol as a second 

generation biofuel (Sutton and Doran Peterson, 2001).  

Currently second generation biofuels from waste and lignocellulose feedstocks 

are limited (Kumar et al., 2009). The cell walls of the sugar beet make up the 

majority of the pulp that remains after sucrose extraction, this pulp is generally 

used to make animal feed but has potential to be processed as a second 

generation biofuel increasing the value of the pulp (Rezic et al., 2013). With the 

introduction of an anaerobic digestion (AD) plant at the British sugar factory in 

Bury St Edmunds in 2016, producing renewable electricity by processing pressed 

pulp from the factory, it is clear that the industry is moving towards increasing 

added-value to the products of sugar production. An improved understanding of 

the biochemical interactions and fundamental biology controlling sugar beet cell 

wall composition would allow for the opportunity to increase yield and efficiency 

of the processes involved in the production of economically valuable products.  
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1.2.4 Additional uses for sugar beet by-products 

In addition to utilising the by-products produced from sucrose extraction from 

sugar beets for animal feed and biofuel production there have been many other 

studies into alternative uses for these resources. One example is the use of sugar 

beet pulp as a source of human dietary fibre. Nordic sugar has produced Fibrex® 

as a dietary fibre product from sugar beet. This product is marketed as a dietary 

additive for the promotion of improved bowel health and maintenance of healthy 

cholesterol levels. Cell wall composition of sugar beet pulp is described as 

beneficial, with lower levels of lignification as other sources (cereal bran), 

therefore providing a “unique fibre composition” with interesting physical 

properties, making this product superior to other fibre products on the market 

(Nordic Sugar, 2012). There have also been many studies into utilising sugar beet 

pulp in the dietary industry; as a source of phenolic compounds as a natural 

antioxidant (Mohdaly et al., 2010) and a source of betaine as a supplement 

(Ueland, 2011). A recent study by Modelska et al. (2017)  developed a concept 

for utilising sugar beet pulp and leaves for the chemical and biotechnical 

industries. They describe acidic hydrolysis to produce furfurayl alcohols to be 

converted into propylene glycol.  
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1.3 Plant cell walls 

Plant cell walls are important structures for a plant, giving rigidity and shape to 

individual cells is a key feature in the success of the whole organism by allowing 

structural strength and large size (Cosgrove, 1993). Plant cell walls are important 

in terms of biological research, as the functions of the plant cell walls extend much 

further than just strength and shape to include; cell expansion, protection, cell 

signalling and intercellular transport, among others (Vorwerk et al., 2004, 

McMahon and Gallop, 2005). This breadth of functions explains why the plant cell 

wall is such a complex structure whose biosynthesis is so well controlled 

(Cosgrove, 2005). 

  

The plant cell wall is formed in a series of stages starting during cell division with 

the deposition of callose followed by cellulose at the cell plate (Chen and Kim, 

2009, Amor et al., 1995). The cellulose forms a network of associations with non-

cellulosic polysaccharides including, xylan, xyloglucan and mannans (Hosoya et 

al., 2007). This is embedded in a pectic network to provide flexibility (Moore et 

al., 2008, Caffall and Mohnen, 2009). The cell wall is usually described in three 

layers, with the middle lamella laid down initially between the cell plate and the 

plasma membrane, composed mostly of pectin this layer is thought to play a large 

part in cell adhesion (Carpita and Gibeaut, 1993, O'Neill et al., 1990, York et al., 

1986). The middle lamella is often very thin between adjacent cells as the cell 

plate is stretched during cell growth. The primary cell wall is deposited during cell 

growth and the thickness is maintained at 0.1-1.0 µm and develops between the 

middle lamella and the plasma membrane. While relatively thin the primary cell 

wall structure confers strength against turgor pressure while being elastic enough 

to allow growth and expansion of the cell (Carpita and Gibeaut, 1993).  

 

In flowering plants the primary cell wall is categorised based on composition, type 

I and type II. Type I primary cell walls are characterized by a framework of 

cellulose-xyloglucan at approximately equal amounts embedded in a pectic 

network and are found in dicotyledonous plants. While type II primary cell walls 

contain less xyloglucan and predominately have glucuronoarabinoxylan linking to 

the cellulose microfibrils contain less pectin and develop in non-commelinid 

monocotyledonous plants (Harris, 2006). In some cells the cell wall does not 



 

17 

 

develop any further than the primary cell wall however some specialised cells, 

e.g. xylem,  deposit a secondary cell wall during differentiation (Brown et al., 

2005, Wightman and Turner, 2008). Thicker than the primary cell wall, the 

secondary wall develops between the primary wall and the plasma membrane. 

The secondary cell wall is strong and restricts cell expansion thus maintaining the 

cell shape and size (Turner and Somerville, 1997). The secondary cell wall varies 

both biochemically and in its morphology, depending on cell function. 

The major components of plant cell walls are cellulose, pectin, heteroxylans, 

xyloglucan, mannans, mixed-linkage glucans and proteins (Fry, 1988). The 

amount of each cell wall component varies between species, tissue, cell type and 

even areas within an individual cell (McCann et al., 1992). The plant cell wall is 

involved in the transportation of many molecules and ions and forms the 

apoplastic pathway (Schreiber et al., 1999, Steudle and Peterson, 1998). Cells 

will adapt their cell wall composition to meet their associated function whether it 

is to be porous to allow movement of nutrients or like xylem vessels being 

impermeable water for transport throughout the plant (De Boer and Volkov, 

2003). The composition of plant cell walls is not fixed and can change in response 

to environmental and developmental stimuli to ensure that they have the 

appropriate physical and chemical composition for their required purpose 

(Brummell, 2006, Peaucelle et al., 2011).  
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1.3.1 Cellulose 

Cellulose is the most abundant polysaccharide of plant cell walls making it the 

most abundant biological polymer on earth (Jarvis, 2003), and is produced by a 

taxonomically diverse group of organisms including vascular and lower plants, 

some algae, fungi and several bacterial species (Richmond, 2000). Cellulose is 

a homopolymer with a repeating unit of two β1, 4 linked D-glucose residues 

(cellobiose), each glucose molecule is rotated 180˚ allowing the chain to remain 

flat (Fig 1.4). Neighbouring chains will form intermolecular hydrogen bonds and 

Van der Waals interactions. These bonds between cellulose chains forms 

cellulose microfibrils, as they are found functionally in the plant cell walls at about 

3 nm in thickness (Taylor, 2008). Cellulose biosynthesis is a coordinated process 

by the action of cellulose synthases. Cellulose synthases have been visualised 

in plasma membranes as cellulose synthases complexes (CSC) (Kimura et al., 

1999, Richmond and Somerville, 2000). The CSCs consist of six synthase 

isoform (CesA) subunits which are arranged in a rosette formation, with each of 

these complexes then arranged again in a larger rosette formation. It is 

hypothesised that each of the CesA subunits can produce a single glucan chain 

and therefore each CSC produces six glucan chains. The coordinated production 

of glucan chains by the six CSC working together synthesises the 36-glucan 

chain microfibril (Fig 1.4) (Taylor, 2008, Beeckman et al., 2002) 

Cellulose microfibrils play an essential structural role in plant structure, being 

strong and inflexible (Brett, 2000). These properties protect the plant cells from 

bursting due to osmotic pressure creating turgor pressure allowing plants to stand 

upright. The cellulose frame work consisting of microfibrils, with differing 

orientations that vary between cell type and species (Kerstens and Verbelen, 

2002), is embedded in a gel matrix. The matrix consists of various 

polysaccharides which interact with the cellulose microfibrils, in muro. 

Interactions of pectin (Zykwinska et al., 2005), xylan (Busse-Wicher et al., 2014) 

and xyloglucan (Lima et al., 2004) with cellulose microfibrils by hydrogen bonds. 

Side chains and acetylation patterning play a role in the extent of cellulose 

polysaccharide interaction which contributes to the differing strength and rigidity 

of the cell wall and overall properties of different plant tissues (Kabel et al., 2007, 

Lima et al., 2004).   
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Figure 1.4. Structure and biosynthesis of cellulose. A. Chemical schematic 

of the repeating unit (Cellobiose) of a cellulose chain. B. Diagrammatic 

representation of the biosynthesis of cellulose microfibrils by cellulose 

synthases complexes (CSC), showing the assembly of the rosette formation 

from individual subunits. (Taken from Cosgrove (2005)) 
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1.3.2 Pectic polysaccharides 

Pectins are a group of polysaccharides that can be distinguished into four groups 

of molecules containing galacturonic acid residues; homogalacturonan (HG), 

xylogalacturonan (XGA), rhamnogalacturonan I (RGI) and rhamnogalacturonan 

II (RGII) (Willats et al., 2001). Current understanding states that the different 

groups of polysaccharides are not separate molecules but exist as covalently 

bonded domains of the pectic supramolecule as shown in Figure 1.5 (Yapo, 2011, 

Voragen et al., 2009, Caffall and Mohnen, 2009, Burton et al., 2010). Typically, 

HG is the most abundant of these polysaccharides accounting for about 65% of 

pectin, with RGI making up 20 to 35% (Mohnen, 2008) and the remaining 10% 

made up of RGII and XGA (Harholt et al., 2010, Zandleven et al., 2007), but the 

ratios of the polysaccharides varies between species. Pectin is essential to plant 

cell wall function and play a key role in cell adhesion and cell expansion (Caffall 

and Mohnen, 2009).  
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Figure 1.5 Generalised structure of the pectin supramolecule. A 

schematic representation of the different groups of polysaccharides within the 

pectin supramolecule structure. Key pectic domains are indicated by dashed 

circles, homogalacturonan (HG), rhamnogalacturonan I (RGI) and 

rhamnogalacturonan II (RGII). Substitutions of homogalacturonan with xylose 

and apiose are indicated by the dashed ellipses. A, indicates acetylation and 

M, indicates methylation (Perez et al., 2000) 

(HG) 
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1.3.2.1 Homogalacturonan 

Homogalacturonan (HG) is made up of a backbone of α (1,4) linked galacturonic 

acid (GalA) of which some GalA may be methyl esterified at the C-6 and/or have 

acetyl groups attached at the O-2 and O-3. The methyl esterification distribution 

throughout the molecule affects the qualities of the pectin gel matrix with longer 

regions of unesterified HG more susceptible to interaction via Ca2+ ion bridges 

(Daas et al., 2001).  GalA in HG can be substituted with xylose at O-3 to form 

xylogalacturonan (XGA), xylosylation can vary greatly between species from 20% 

to 75% (Schols et al., 1995) and, like HG XGA can also be methyl esterified (Fig 

1.6) 

While the mechanisms behind pectin biosynthesis are poorly understood the 

production of these long chain polysaccharides for the cell wall is hypothesised. 

Studies suggest synthesis in the Golgi apparatus and transportation via vesicles 

to the cell surface and assembled at the plasma membrane forming new cell wall 

material or incorporation into the existing cell wall. The degree of methylation can 

be selectively altered by wall-bound pectin methylesterases, the de-esterification 

in muro allows Ca2+cross-linkage with existing HG. Due the complexity of pectin 

synthesis the identification of the enzymes involved in the mechanism did not 

occur until much after HG synthesis was observed for the first time by (Lin et al., 

1966). The process involves a large number of enzymes including 

galacturonosyltransferases, galactosyltransferases, methyltransferases and 

acetyltransferases. The complexity of the pectin structure confers the necessity 

of a large number of different enzymes to give the structure its differing properties.  
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1.3.2.2 Rhamnogalacturonan I 

Rhamnogalacturonan I (RGI) is a major component of the primary cell wall of 

dicotyledonous plants. The back bone of this molecule is made up of a repeating 

unit of  α1,4-linked galacturonic acid (GalA) alternating with α1,2-linked rhamnose 

(Rha), this molecule can be made up of  more than 100 of these repeating units 

(McNeil et al., 1980).  RGI can have a number of neutral sugars substituted at 

the O-4 position of the Rha and acetyl groups can be present on the O-2 and O-

3 of GalA. The branching of Rha residues can vary significantly depending on the 

source, from 20% to 80%. Side chains can be single unit (1,4) Gal or polymeric 

for example arabinan or arabinogalactan I (AGI) (Ridley et al., 2001). Arabinans 

can be highly branched molecules which have α(1,5)-linked arabinose backbone. 

Side chains can either be the addition of a single arabinose as linked via α(1,2) 

or α(1,3) bonds to the backbone or α(1,5)-linked arabinose oligosaccharides. 

Arabinogalactans are made up of β(1-4)-linked galactan chains commonly 

attached to the Rha residues in the RGI back bone, the galactosyl residues have 

arabinan attached to the O-3 position (Liwanag et al., 2012). The complex formed 

between RGI, AGI and arabinan lead to these being referred to as pectic hairy 

regions with the AGI and arabinan representing the ‘hairs’ (Fig 1.7). These side 

chains can form connections with other chains forming hydrogen bonds.  

The composition of RGI can vary not only between species and cell type but 

spatially within a single cell. The variations are associated with function and these 

can include, cell expansion, cell adhesion, cell signalling and cell development 

(Verhertbruggen and Knox, 2006, Lee et al., 2011)  
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Figure 1.6. Structure of homogalacturonan. A schematic representation of 

the homogalacturonan. The galacturonic acid (GalA) are linked via an α (1,4) 

bond. Shown by Me is the potential methyl esterification of the GalA subunits. 

Adapted from (Joseleau and Perez, 2017) 

Figure 1.7 Structure of rhamnogalacturonan I. Schematic structure of 

rhamnogalacturonan I (RGI) showing associated chain substitutions. 

Substitutions of the RGI shown are; arabinan, chains of arabinose which can 

be linear or branched and arabinogalactan, chains of galactose with 

arabinose substitutions. Adapted from (Joseleau and Perez, 2017) 
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1.3.2.3 Rhamnogalacturonan II 

Rhamnogalacturonan II (RG II) has a linear back bone of β(1-4) GalA, similar to 

HG but in contrast to RGI (Fig 1.8). RG II makes up about 1-4% of the primary 

walls of most dicots (O'Neill et al., 2004) and has been found to be a complex 

molecule containing 12 different glycosyl residues and several rare sugars 

(Melton et al., 1986). RG II molecules form cross links between each other via 

borate-diol ester links. It has been suggested that borate deficiency causes 

abnormal plant cell wall morphology due to lack of these links (O'Neill et al., 2001, 

Ishii et al., 1999), therefore making borate-diol links and RG II fundamental for 

plant development.  

Figure 1.8 Structure of rhamnogalacturonan II. Schematic structure of 

two molecules of RGII connected via a borate- diol ester link. Adapted from 

O'Neill et al. (2004) 



 

26 

 

1.3.3 Non-cellulosic/non-pectic polysaccharides 

Non-cellulosic polysaccharides (also known as hemicellulose) represent the 

remaining polysaccharides present in plant cell walls. These polysaccharides are 

responsible for cross-linking with cellulose to form a strong network. This group 

of polysaccharides includes; xylans, xyloglucans and mannans and are present 

in varying abundance in the cell walls of all terrestrial plants (Scheller and 

Ulvskov, 2010) 

1.3.3.1 Heteroxylan 

Heteroxylan (Xylan) is the main type of matrix polysaccharide in primary cell walls 

of monocotyledons and the secondary walls of dicotyledons and is a polymer of 

D-xylose (D-Xyl) connected via β(1-4) linkages (Fig 1.9). However in muro the 

xylan backbone is usually substituted in different ways depending on the species. 

Substitutions at O-2 and/or O-3 positions of the xylosyl backbone with α-

arabinofuranosyl chain result in arabinoxylans (AX). An alternative substitution of 

α-glucosyluronic acid (sometimes methylated) results in glucuronoxylan (GX) and 

in some cases both substitutions can occur resulting in the nomenclature 

glucuronoarabinoxylans (GAX) (Fig 1.8) (Mazumder et al., 2012). 

Xylan is a major component of both primary and secondary plant cell walls in 

monocot plants as AX and GAX. In dicots however, xylan is less abundant in the 

primary cell wall but still a major component in the secondary cell wall mostly in 

the form of GAX. It has been established that dicot xylans have unique sequences 

of glycosyl residues at their reducing ends required for xylan synthesis (Peña et 

al., 2007). In the secondary cell wall xylan is essential to the structure of xylem 

and is required to maintain shape and cope with water transportation via 

transpiration and the associated pressures. Xylan biosynthesis occurs mostly in 

the Golgi along with the addition of side chains (Rennie and Scheller, 2014). The 

enzymes associated with the synthesis of the xylan backbone are nominated as 

IRX9, IRX10 and IRX14. The addition of side chains to xylan have been shown 

to include; GUX1 and GUX2 which transfer glucuronic acid to the C-2 position of 

the xylosyl (Bromley et al., 2013), and glycosyl transferases which mediate the 

addition of arabinofuranose to the xylan backbone (Anders et al., 2012).  
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1.3.3.2 Xyloglucan 

Xyloglucan is formed of a backbone of β(1-4) linked glucose like cellulose, 

however there is the addition of xylosyl residues attached at the O-6 position, 

hence the name xyloglucan (Fry, 1989) (Fig 1.10). The xylose residues can be 

further substituted with a galactose and occasionally by a fructose residue. The 

glucan backbone of xyloglucan forms hydrogen bonds with the cellulose 

microfibrils as well as forming covalent bonds to pectic polysaccharides and thus 

linking the pectin matrix with the cellulose microfibrils (Park and Cosgrove, 2015).  

This polysaccharide is present in the cell walls for all land plants and plays a role 

in many cell functions including cell elongation regulation (Pauly et al., 2001), 

structural functions (Anderson et al., 2010)  and energy storage in tamarind seeds 

(Meier and Reid, 1982, Edwards et al., 1988). The synthesis of xyloglucan is 

restricted to the Golgi and is deposited early on in cell wall formation (Moore and 

Staehelin, 1988) 
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Figure 1.9 Structure of heteroxylan. Schematic of xylan structure and the 

associated substitutions which result in glucuronoxylan (GX), arabinoxylan (AX) 

and glucuronoarabinoxylan (GAX). Adapted from (Joseleau and Perez, 2017) 

Figure 1.10 Structure of xyloglucan. Xyloglucan has a backbone of glucose 

(blue circles) substituted with xylose residues (orange stars). The xylose can be 

further substituted with galactose residues (yellow circles) and a fructose 

residue (red triangle). Adapted from (Joseleau and Perez, 2017) 
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1.3.3.3 Heteromannan 

The mannan backbone is usually formed of β(1,4) linked mannosyl residues with 

α(1,6) galactosyl side chains (galactomannan) (Fig 1.11). However, mannans 

with a back bone containing glucosyl as well as mannosyl residues are referred 

to as glucomannans or galactoglucomannans if these also have galactosyl 

substitutions (Fig 1.11) 

Mannans are commonly found in high abundance in the cell walls of early land 

plants including mosses and Charophytes (Pauly and Keegstra, 2008). Mannans 

are less abundant in the angiosperms where they have been replaced by other 

non-cellulosic polysaccharides through evolution. However, they have been in 

some dicot species (Scheller and Ulvskov, 2010, Rodríguez-Gacio et al., 2012). 

Mannans have been reported to be involved in oligosaccharide signalling and cell 

elongation (Hernandez-Gomez et al., 2015) 
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Figure 1.11 Structure of heteromannan. The structure of heteromannan varies, 

mannan has a back bone composed solely of mannose whereas glucomannan 

has some mannose replaced with glucose. When these backbones are 

substituted with a galactose residue on the mannose subunits they are known as 

galactomannan and galactoglucomannan respectively.  Adapted from (Joseleau 

and Perez, 2017)  
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1.3.4 Cell wall proteins 

In addition to polysaccharides plant cell walls contain proteins. These can have 

structural functions or be enzymes (Lamport, 1966). These proteins have various 

functions in cell wall architecture, signalling and defence (Showalter, 1993). Most 

of these proteins are only expressed in response to specific stimuli such as 

wounding and have been found to have specific spatial variations. The cell wall 

proteins are classified into groups according to their amino acid sequences; 

glycine-rich proteins (GRPs), proline-rich proteins (PRPs) and hydroxyproline-

rich proteins (HRGPs). Some cell wall proteins are referred to arabinogalactan-

protein to reflect their glycosylation and this group contains both PRPs and 

HRGPs.  

1.3.4.1 Arabinogalactan-proteins 

Arabinogalactan-proteins (AGPs) have a relatively low protein content compared 

to the glycan portion of the molecule with the ratio being about 10% protein (rich 

in hydroproline) to 90% glycan. The key characteristics of AGPs have been 

collected in a list by Lamport et al. (2014). According to this list AGPs are usually 

about 120 kDa in size, with 87 to 739 amino acids. The majority of AGPs (80%) 

are localised in the cell wall with the remaining 20% at the plasma membrane. 

The glycan portion of the AGPs are highly variable indicating that the composition 

of the glycan reflects it function. They have roles in various functions including, 

cell differentiation and tissue development, they are expressed in large amounts 

in response to wounding as well as having a role in plant-pathogen interactions 

(Fincher et al., 1983, Showalter, 2001).  

1.3.4.2 Extensins 

Extensins are specific type of HRGP which are highly conserved throughout the 

plant kingdom (Lamport, 1966). As their name would suggest extensins are 

thought to be one of the key components involved cell extension as they are 

known to have a role in wall rigidity (Cosgrove, 2000). It has also been 

demonstrated that extensins respond to stress such as wounding, pathogen 

attack and water deficiency by becoming insoluble (Showalter, 1993).  
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1.4 Sugar beet root cell walls 

The cell wall components of the Amaranthaceae family, and sugar beet 

specifically, exhibit differences in abundance, ratios and substitutions thereof to 

other plant species, with sugar beet pectin exhibiting several differing structural 

characteristics (Fig 1.8) (Ralet et al., 2003).  

Sugar beet cell walls contain feruloylated arabinose and galactose pectic side 

chains (Ralet et al., 1994). Feruloylation occurs on the O-2 of arabinose residues 

attached to the backbone of α(1-5) linked arabinan chains and the O-6 of 

galactose residues attached to the backbone of β(1-4) linked galactan chains 

(Colquhoun et al., 1994, Oosterveld et al., 2000). In muro ferulate monomers 

couple to form dehydrodimers or cyclodimers (Oosterveld et al., 1997) enabling 

covalent cross linkages between polysaccharide chains within the plant cell walls 

to form via diferulate bridges (Levigne et al., 2004a, Saulnier and Thibault, 1999). 

These cross-linkages dramatically alter the mechanical properties of the cell wall 

and have been known to decrease digestibility by bacterial and fungal enzymes. 

However reduction of this key cross-linkage could have impacts on cell wall 

strength and therefore in field and harvest performance.  

It has been shown that the release of these ferulic acids greatly increases the 

degradation of arabinoxylans by xylanases in grasses (Kroon et al., 1999a, 

Molinari et al., 2013), however, the effect of ferulic acid removal from pectin has 

on the digestibility of sugar beet cell walls is undemonstrated. Therefore, the 

ferulic acids are of interest to the biofuel industry as a potential target to improve 

the application of sugar beet pulp as a feedstock (Levigne et al 2004). 

Acetylation of pectin in the sugar beet occurs abundantly on HG, whereas in the 

cell walls of most other plant species acetylation is mostly concentrated on the 

RGI backbone (Bonnin et al., 2002a, Ralet et al., 2005, Fares et al., 2001). 

Acetylation occurs on galacturonic acid (GalA) groups, 90% of which in sugar 

beet are HG derived with only the remaining 10% associated with RGI (Rombouts 

and Thibault, 1986). Reduced acetylation of beet pectin would significantly 

improve applications for the food industry, such as for gelling and emulsification 

properties. In comparison to other species used for cell wall research sugar beet 

have a relatively large percentage of pectin (Huang et al., 2017, Ma et al., 2013) 
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and therefore can be used as an abundant source of pectin for research; however 

structural differences between species should be noted.  

There is some debate over the abundance levels of xyloglucan in sugar beet pulp, 

Oosterveld et al. (2000) extracted xyloglucans from sugar beet pulp and 

characterised the xyloglucan similar to that of apple xyloglucans in terms of 

substitution with Fructose (Fuc) and Galactose (Gal). However this study 

disagreed with Renard and Jarvis (1999) who concluded that the amounts of 

xyloglucan are insufficient for them to have a significant role in the architecture of 

the sugar beet cell walls.  
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Figure 1.12. Sugar beet pectin. Generalised structure of sugar beet pectin. 

A, Backbone of alternating residues of Galacturonic acid and Rhamnose 

(RGI), B, α -(1-4) linked galacturonic acid residues (HG), C, Diferuloyl group 

attached to C-2 of arabinose, indicated by the red box an example of a 

diferulate bridge linking polysaccharides, D: Feruloyl group attached to C-2 of 

arabinose, E: 2-O-acetyl group, F: 3-O-acetyl group, G: Feruloyl group 

attached to C-6 of galactose, H: β -(1-4) linked galactose, I: α -(1,5) linked 

arabinan chains. (Mathew and Emilia Abraham, 2004)  
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1.5 Studying plant cell walls  

Studying the architecture and composition of the plant cell wall polysaccharides 

requires several differing techniques based on the specific information required. 

A combination of methodologies is usually required to construct a meaningful 

interpretation of the composition of discrete cell wall components and their impact 

relative to the cell wall as a whole. 

To identify the monosaccharide composition and linkage within a component of 

the cell wall a combination of techniques can be used. For example, by coupling 

gas chromatography and mass spectrometry (GC/MS) it is possible to quantify 

and identify the monomers which make up the polymer (Pettolino et al., 2012). 

Additionally, chemical structures can be deduced using Fourier Transformed 

Infra-Red Spectroscopy (FTIR) and Nuclear Magnetic resonance (NMR) (Him et 

al., 2001, Thomas et al., 2013).  

To understand the molecular linkages between components of the cell wall it is 

possible to use specific enzymatic action to degrade plant materials at selected 

sites. Using analytic techniques such as polysaccharide gel electrophoresis 

(PACE) or High Pressure Liquid Chromatography (HPLC) on the degraded plant 

material can identify the oligosaccharides which make up the plant cell walls 

(Goubet et al., 2002).  

Knowledge on the composition and interactions of the cell wall sometimes 

requires the analysis of the plant material without the complete destruction of the 

polysaccharides. Monoclonal antibodies (mAbs) are a powerful tool to analyse 

the composition of the plant cell wall (Knox et al., 1990b, Pattathil et al., 2010) . 

Highly specific sets of mAbs have been produced directed to a large array of cell 

wall polysaccharides (Andersen et al., 2016, Verhertbruggen et al., 2009b, 

McCartney et al., 2005b, Verhertbruggen et al., 2009a). These mAbs can be used 

on fixed and sectioned plant material to image the cell wall glycans in situ using 

fluorescence and electron microscopy to identify tissue locate cell wall 

polysaccharides (Jones et al., 2003, Marcus et al., 2008). In addition, these can 

be used in combination with other techniques to quantify cell wall polysaccharides 

using ELISA techniques, or to identify the interactions between different 

polysaccharides in muro. A recently developed technique termed, Epitope 
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Detection Chromatography (EDC) utilises the sensitivity of mAbs and the 

separating power of anion exchange chromatography to identify epitopes of cell 

wall polysaccharides and indicate interactions occurring within the cell wall 

structure (Cornuault et al., 2014).  

 

1.6 Project aims and objectives 

Knowledge of the sugar beet root cell wall composition is a driving power for the 

improvement of this important commercial crop. The plant cell wall dictates the 

overall structure and characteristics of the sugar beet root down to a cellular level, 

meaning that the cell wall influences how well the crop performs during both 

growth in the field and processing at the factory. The cell wall structure in specific 

tissues and cells within the root contributes to the sucrose accumulation within 

the cells of the root, with the anatomy and relative positioning of cell types playing 

a part in the potential sucrose yield.  

Understanding the properties and structure of sugar beet cell walls is also key in 

identifying the alternative uses for the abundant sugar beet pulp available. Sugar 

beet pulp is comprised of up to 30% pectin (Levigne et al., 2002) and is therefore 

a good resource of pectin for many industries. Pulp is also a source of agricultural 

cellulose, which is currently not being used to its full potential (Kumar et al., 2009). 

Sugar beet cell walls have been identified as a potential source of biofuels 

(Draycott, 2006a) for second generation production. To utilise this resource for 

secondary biofuel production an improved understanding of the biochemical 

interactions and fundamental biology controlling sugar beet cell wall composition 

will need to be obtained through careful and detailed analysis.  

This project utilises monoclonal antibodies which have emerged as a powerful 

tool to detect the relative abundance of cell wall components including pectic 

elements and non-cellulosic polysaccharides (McCartney et al., 2005a). 

Increasing the initial sugar yield potential and the diversity of valuable co-products 

of sugar production has the potential improve the economic value of the sugar 

beet crop.  
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The main project objectives followed and described in this thesis were: 

 The comparative analysis of three strategic Beta vulgaris lines through 

development, including cell wall composition and anatomical variances.  

 Characterisation and use of a phloem specific monoclonal antibody to 

study the development and relative position of phloem vessels within the 

root anatomy of three Beta vulgaris lines.   

 Identify variation in cell wall composition from a Recombinant Inbred Line 

of Beta vulgaris, to demonstrate a correlation with performance 

parameters and to identify candidate genetic regions for use in crop 

improvement.  
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Chapter 2 

Materials and Methods 
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2.1 Plant materials 

The plant materials used in this project were: 

1. A commercial sugar beet variety, Sophia (KWS) (Beta vulgaris L. subsp. 

vulgaris var. altissima) 

2. A seed parent sugar beet variety, C869 (Beta vulgaris L. subsp. vulgaris 

var. altissima) 

3. A red garden beet variety, W357B (Beta vulgaris L. subsp. vulgaris var. 

vulgaris) 

4. Garlic bulbs (Allium sativum) 

For light and electron microscopy (Chapter 3 and Chapter 4) Beta vulgaris seeds 

(Sophia, W357B and C869) were steeped overnight in Thiram solution (22°C in 

darkness with gentle shaking) prior to sowing in compost (Levington’s F2+sand) 

in greenhouses at Rothamsted Research. Greenhouse temperature was 

maintained at approximately 22°C with natural lighting. Sugar beet plants were 

harvested in triplicate at the appropriate developmental stage for the study. Plants 

were recorded and sample material was excised and fixed immediately as 

described below 

In Chapter 4, sugar beet (Sophia) were grown in the greenhouses at the 

University of Leeds under the same growth conditions as above for light 

microscopy. Garlic bulbs, Allium sativum, were sourced locally for the EDC 

analysis. 

A field plot of the commercial sugar beet variety, Sophia, was grown for cell wall 

analysis through development (Chapter 3). Sugar beet plants were grown from 

establishment through to vegetative maturity then overwintered for flowering and 

seed production at Rothamsted Research – Broom’s Barn (Higham, Suffolk). This 

growth season was replicated with sowing occurring in April 2009, 2010 and 2011 

with field management as a commercial crop with appropriate applications of 

fertilisers, pesticides, fungicides and irrigation. Six individual roots were 

harvested and processed at throughout the growing seasons beginning at 

seedling development (4WAE) followed by two harvests at 3 week intervals which 

incorporated rapid root expansion (harvest 2 and 3). The next 10 harvests were 

taken at 4 week intervals until the final 3 harvest which were timed to correspond 
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with developmental points, early bolting, late bolting and flowering. At each 

harvest three biological replicates were taken.  

A population of recombinant inbred lines (RIL) were developed by J. Mitchell 

McGrath of the USDA Sugar beet and bean research unit. The population 

was derived from a cross between a USDA sugar beet breeding line (C869) and 

a garden beet (W357B) via single seed descent (McGrath et al., 2005) .Seed of 

the F7 generation were kindly provided for this study by J. Mitchell McGrath. Field 

grown plants were grown for the recombinant inbred lines (RIL) study (Chapter 

5) at Rothamsted Research – Brooms Barn and subject to appropriate agricultural 

practises. 172 sugar beet RILs, the parent C869 (C), the parent W (a red garden 

beet, W357B) and the commercial variety Sophie (S) as an independent control 

were grown in a randomised block design with 400 plots in total. Six plants were 

grown per plot, and the two central plants were taken for measurement as 

technical replicates. Biological replication of the RILs was afforded by an 

independent plot of each RIL per block. 

2.1.1 Preparation of cell wall materials 

For the study of cell wall components by enzyme linked immunosorbent assay 

(ELISA) and epitope chromatography (EDC) plant material was collected frozen 

in liquid nitrogen, freeze dried and lysed using a TissueLyser LT (Qiagen).  

Alternatively plant material for RIL analysis was collected coarsely cut using a 

food processor, frozen in liquid nitrogen and freeze dried. These were 

powdered using a Genogrinder (SpexPrep) for 90 seconds at 1500 rpm with 

three 9.5 mm steel balls, freeze dried again, and further powdered with a coffee 

grinder and sieved to a uniform 150-250 microns.  

Garlic bulb material (25 g) was prepared by chopping a garlic bulb into small 

pieces which were frozen and freeze dried. This material was then ground to a 

powder using a TissueLyser (Qiagen, http://qiagen.com) for 10 min at 50 

oscillations s-1.  
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2.1.1.1 Preparation of alcohol insoluble residue 

Plant samples prepared into powder as above were washed with 70% (v/v) 

ethanol for 1 h at room temperature (RT) with rocking, the pellet was collected by 

centrifugation (10 min at 1300 x g) and supernatant removed and discarded. The 

pellet was then subjected to successive washes with 80%, 90% and 100% (v/v) 

ethanol. Then the resulting pellet was washed with 100% acetone followed by 

methanol: chloroform (2:3 v/v) to produce an alcohol insoluble residue (AIR) pellet 

which was air dried overnight under a fume hood. 

2.1.1.2 Cell wall extractions 

For ELISA analysis AIR powder (10 mg) was placed into Eppendorf tubes with 

two 5 mm diameter stainless steel balls and ground using the TissueLyser for 2 

min at 50 oscillations s-1, 2 ml of dH2O was added to the tube and ground again 

in the TissueLyser for 20 min at the same speed. After centrifugation at 1300 x g 

for 10 min the supernatant was removed and the pellet re-suspended in 50 mM 

CDTA (cyclohexanediamine tetraacetic acid) for pectin extraction. Following 

lysing and centrifugation the final extraction with 4M KOH + 1% (w/v) NaBH4 was 

collected in the same way. The resulting supernatant was neutralized with 80% 

acetic acid (v/v). All cell wall extracts were stored at -20°C.  

To prepare a water extract for EDC freeze-dried garlic bulb material was ground 

to a powder using a TissueLyser (Qiagen, http://www.qiagen.com) for 10 min at 

50 oscillations s-1 and the powder stored at -20˚C until use. The powder (15 mg) 

was used to produce AIR which was air-dried overnight. AIR (8 mg) was placed 

into Eppendorf tubes with two ball bearings and ground using the TissueLyser for 

2 min at 50 oscillations s-1 followed by 2 ml of water in the TissueLyser for 20 

min at the same speed. After centrifugation at 1300 x g for 10 min the supernatant 

was collected and used for analysis.  
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2.1.2 Preparation of plant materials for sectioning for light microscopy. 

2.1.2.1 Resin embedding 

For light microscopy excisions were made from 2 cm below the widest diameter 

of the root into 0.5 cm3 blocks. Immediately after collection the blocks were 

submerged in 4% (v/v) paraformaldehyde in PEM buffer (0.1 M PIPES 

(piperazine - ethanesulfonic acid), 2 mM EGTA (ethylene glycol- tetraacetic acid), 

2 mM MgSO4) for 1 h at RT with vacuum infiltration.  

For electron microscopy 16 week old sugar beet plants (Sophia variety) were 

harvested and the crown removed. Samples were taken from the widest part of 

the root, between the second and third cambial ring and trimmed to a maximum 

diameter of 6 mm and thickness of 200 µm ensuring that each sample contained 

both vascular and parenchyma regions. Samples were high pressure frozen 

using a Leica Microsystems EM HPM100 and stored in liquid nitrogen before 

freeze substitution using dry ethanol in a Leica Microsystems EM AFS.  Following 

freeze substitution, samples were stored at -20°C for 24 h, then 4°C until resin 

infiltration.  Samples were infiltrated with a dry ethanol: LR White resin series and 

polymerised under nitrogen at 60°C.  70 nm ultrathin sections were cut using a 

Leica Microsystems UC7 ultra microtome and collected on nickel grids coated 

with formvar and carbon.   

2.1.2.2 Wax embedding 

Excisions were made from 2 cm below the widest diameter; these 1 cm3 blocks 

of root material were sliced transversely to roughly 2 mm thick blocks and fixed 

in PEM buffer (0.1M PIPES, 5mM EGTA, 2mM MgSO4) containing 4% 

paraformaldehyde for 1 h at RT with an initial vacuum infiltration. Following this 

the sections were washed with phosphate-buffered saline (PBS) twice. After 

fixation the sections were dehydrated in an ethanol series of 30%, 50%, 70%, 

90% and 97% ethanol, each at 4˚C for 30 min. Samples were then moved to 37˚C 

and allowed to warm. At 37˚C the sections were transferred into Steedmans wax 

and ethanol 1:1 and left at 37˚C O/N. The sections were transferred into 100% 

wax for 1 h (2x at 37˚C). The sections were then placed into sample moulds filled 

with molten wax (ensuring the sections are at the correct orientation) and left to 
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solidify at RT (12 h minimum). The sections were then cut to a thickness of 10 

µm using a microtome and placed on poly-L-lysine coated microscope slides. The 

sections were then dewaxed and rehydrated through an ethanol series consisting 

of; 97% ethanol (3x 10 min), 90% ethanol (10 min), 50% ethanol (10 min), water 

(10 min), water (90 min) and immunolabelled as described below.  

2.1.3 Calculation of sucrose concentrations for RIL study 

The quantification of sucrose in RILs was conducted by Dr Belinda Townsend at 

Rothamsted research using an enzymatic method as described here (Spackman 

and Cobb, 2002).   
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2.2 Monoclonal antibodies 

A range of monoclonal antibodies were used throughout this project (Table 2.1) 

 

*LM26 is an unpublished monoclonal antibody which has been characterised 

during this project. The LM26 rat hybridoma cell line was isolated from a screen 

Table 2.1. List of monoclonal antibodies to cell wall polysaccharides 

 
mAb Specificity Reference 

Anti-Homogalacturonan 

LM18 Partially Me-homogalacturonan (Verhertbruggen et al., 2009a) 

LM19 Non-Me-homogalacturonan (Verhertbruggen et al., 2009a) 

JIM7 Partially Me-homogalacturonan (Knox et al., 1990a) 

JIM5 Partially Me-homogalacturonan (Knox et al., 1990a) 

Anti-Rhamnogalacturonan I 

LM5 β(1,4) galactan (Jones et al., 1997) 

LM6 α(1,5) arabinan (Willats et al., 1998) 

LM13 Linearised α(1,5) arabinan (Moller et al., 2008) 

LM16 Processed arabinan (Verhertbruggen et al., 2009b) 

LM9 Feruloylated β(1,4) galactan (Clausen et al., 2004) 

LM12 Feruloylated pectin (Pedersen et al., 2012) 

LM26 Phloem sieve elements * 

LM6-M α(1,5) arabinan (Cornuault et al., 2017) 

Anti-Xyloglucan 

LM15 XXXG motif of xyloglucan (Marcus et al., 2008) 

LM25 Galactosylated xyloglucan (Pedersen et al., 2012) 

Anti- Xylan 

LM10 (1,4)-β-D-xylan (McCartney et al., 2005b) 

LM11 (1,4)-β-D-xylan/arabinoxylan (McCartney et al., 2005b) 

LM28 Glucoronoxylan (Cornuault et al., 2015) 

Anti-mannan 

LM21 Heteromannan (Marcus et al., 2010) 

Anti-AGP 

LM2 β-linked-GlcA in AGP glycan (Yates et al., 1996) 

JIM4 AGP glycan (Knox et al., 1989) 

JIM13 AGP glycan (Knox et al., 1991) 

JIM16 AGP glycan (Knox et al., 1991) 

Anti-Extensin 

LM1 Extensin (Smallwood et al., 1995) 

JIM20 Extensin (Smallwood et al., 1994) 
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of cell lines derived subsequent to immunizations that led to the isolation of the 

pectic homogalacturonan MAb LM7 (Willats et al. 2001). It was cloned by 

standard limiting dilution procedures as described (Willats et al. 2001). The 

isotype of LM26 is rat IgG1 and in all analyses it was used in the form of un-

purified hybridoma cell culture supernatant. This work was conducted by Sue 

Marcus (University of Leeds) 
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2.3 Immunolabeling of plant material for microscopy 

2.3.1 Indirect immunofluorescence labelling for light microscopy  

Wax-embedded sections were used for developmental studies. Wax sections 

were prepared on to glass slides using a microtome followed by a dewaxing 

procedure were the slides were immersed in 100% (v/v) ethanol, then rehydrated 

in dilutions of ethanol, 90% (v/v), 70% (v/v), 50% (v/v), 30% (v/v), 100% dH2O. 

Resin embedded sections were sectioned using an ultramicrotome onto 

Vectabond coated glass slides and did not require rehydration before use.  

Resin and wax embedded samples were prepared the same way for light 

microscopy detection of cell wall epitopes. Slides were blocked with PBS with 5% 

(w/v) milk protein was added at RT for 30 min. Primary antibodies were added at 

a 1:5 dilution in 5% milk/PBS for 90 min. Following a wash with PBS, anti-rat FITC 

(anti-rat IgG linked to fluorescein isothiocyanate) was added as a secondary 

antibody at a 1:100 dilution in 5% milk/PBS for 60 min. Calcofluor White (Sigma-

Alderich) was added at 0.02 mg/ml in PBS for 5 min to stain cellulose in all cell 

walls. Toluidine Blue O (TBO) 1% (w/v) was added for 2 min to remove auto-

fluorescence and excess was thoroughly washed with PBS. Anti-fade reagent 

Citifluor glycerol/PBS (Agar scientific) was added before a coverslip was placed. 

Slides were stored at 4°C in the dark prior to analysis.  

Microscopy imaging was performed using an Olympus BX61 microscope with 

epifluorescence irradiation. Images were captured using a Hamamatsu 

ORCA285 camera and Velocity software (PerkinElmer). Micrographs for 

comparative analysis were captured using calibrated settings and processed in 

an equivalent manner.  

2.3.2 Immunogold labelling for TEM 

Nickel grids containing ultra-thin sections were blocked with 1% BSA in 0.01M 

PBS-tween, 30 min. After blocking, sections were incubated with the LM26 

monoclonal antibody (undiluted), 60 min at 37°C and blocked again for 30 min. 

The grids were then labelled with a secondary goat polyclonal antibody to rat IgG 

conjugated to 10 nm gold particles (1:10 dilution in PBS, Sigma), for 60 min at 
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37°C. The grids were then washed thoroughly with PBS-Tween and then dH2O 

before staining. The sections were post stained with uranyl acetate, 15 min and 

lead citrate, 2 min to increase contrast.  Images were obtained using a JEOL 

2011 transmission electron microscope at 200kV and a Gatan Ultrascan CCD 

camera. This work was conducted by Rebecca Lauder (Rothamsted Research). 
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2.4 Monoclonal antibody characterisation 

2.4.1 Carbohydrate microarrays of polysaccharides for epitope 

characterisation 

Glycan synthesis has been previously described (Andersen et al., 2016b, 

Pedersen et al., 2012). Carbohydrate screening was performed as described 

(Andersen et al., 2016a, Andersen et al., 2016b). In brief, functionalised 

oligosaccharides were printed onto NHS-activated Slide-H microarrays (Schott, 

Mainz, Germany) using the ArrayJet Sprint microarray printer (ArrayJet, Roslin, 

UK). The microarrays were blocked with 50 mM ethanolamine in 50 mM sodium 

phosphate buffer pH 9.2. After blocking the slides were covered with the 

antibodies LM5 or LM26 at a 1:100 dilution of hybridoma supernatant in PBS for 

2 h. Mab binding was detected using the AlexaFluor 488 goat anti-rat IgG 

antibody (ThermoFisher Scientific, Waltham, USA) at a 1:500 dilution in PBS for 

2 h. Microarrays were scanned with a GenePix 4400A microarray scanner and 

quantified using Array-Pro Analyser 6.3 (Media Cybernetics, Rockville, USA). 

This work was conducted at the Technical University of Denmark by Mads 

Clausen. 
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2.5 In vitro analysis of monoclonal antibody binding 

2.5.1 Enzyme linked immunosorbent assay (ELISA) 

ELISAs were performed using 96-well microtitre plates Nunc, Fisher Scientific, 

Denmark). Firstly, these were coated O/N (4˚C) with up to 50 µg/ml of antigen in 

PBS, 100 µl per well.  Plates were washed with tap water 3x. A blocking solution 

of 5% Milk/PBS (200 µl per well) was added for 2 h at RT. After vigorous washing 

(9X with tap water) the primary antibody was added at a dilution of 1 in 10 in 5% 

Milk/PBS (100 µl per well). After an hour incubation the plates were washed 

vigorously with tap water (9X) and the secondary antibody, anti-rat IgG HRP, (100 

µl per well of 1 in 1000 dilution with 5% Milk/PBS) was added for an hour. The 

plates were washed thoroughly and antibody binding was detected with the 

addition of the HRP substrate (18 ml water, 2 ml 1 M sodium acetate buffer pH 

6.0, 200 µl tetramethyl benzidine, 20 µl 6% hydrogen peroxide). After 5 minutes 

the reaction was stopped by the addition of 2.5 M sulphuric acid. The absorbance 

at 450 nm was read on the Thermo scientific Multiscan FC ELISA reader. 

 

2.5.2 Comprehensive microarray polymer profiling (CoMPP) for high 

throughout analysis of cell wall polysaccharides.  

CoMPP was used to identify cell wall polysaccharides at the University of 

Copenhagen. Samples were prepared as AIR and initially extracted with 50 mM 

CDTA (diamino-cyclohexane-tetraacetic acid) at 300 µl/10 mg of sample. A glass 

bead was added to each tube and shaken for 2 min at 30 oscillations/s followed 

by 120 min at 6 oscillations/s using a Qiagen TissueLyser II. Samples were then 

centrifuged for 10 min at 2700 g and supernatant removed and kept for analysis. 

The pellet was then re-suspended in 300 µl/10 mg of 4 M NaOH (+ 0.1% NaBH4) 

and shaken then centrifuged as before. The supernatant was collected from this 

extraction and kept for analysis.  

Both the CDTA and NaOH extractions were pipetted onto 128 well plates, diluted 

50% (v/v) with ArrayJet buffer (46% glycerol (v/v), 1.4% 69.5 mM Triton X (v/v)) 

then with three further serial dilutions of 1:5. The plates were and placed into an 

ArrayJet Sprint microarray printer (ArrayJet, Roslin, UK) O/N for printing onto 
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nitrocellulose sheets. Nitrocellulose sheets were blocked with 5% milk/PBS and 

then incubated with primary monoclonal antibodies at 1:10 dilution in 5% 

milk/PBS with shaking for 2 h. These were thoroughly washed with PBS and 

incubated with the secondary antibody, alkaline phosphatases anti-rat, at 1:5000 

dilution in 5% milk/PBS with shaking for 2 h. The nitrocellulose was rinsed 

thoroughly with PBS then rinsed in dH2O. The nitrocellulose was developed using 

the development solution (10 mL AP buffer (100 mM NaCl, 5 mM MgCl2 and 100 

mM Tris-HCl), 82.5 µl BCIP and 66 µl NBT) for 2-10 min until dot are visible, these 

were then washed in dH2O to stop over development. After drying O/N the 

nitrocellulose were scanned using a flatbed scanner and the spots analysed using 

ArcSoft PhotoStudio and Array-Pro Analyser software where spot density is 

calculated.  

CoMPP analysis for developmental study in Chapter 3 was conducted by Julia 

Schückel (University of Copenhagen).  

2.5.3 Epitope detection chromatography (EDC) 

12 µl aliquots of the garlic bulb water extract (diluted in 2.5 ml of 20 mM sodium 

acetate buffer, pH 4.5) was injected into an anion-exchange column (1 ml Hi-Trap 

ANX FF, GE Healthcare) using a Bio-Rad BioLogic LP system. A step elution 

gradient was used as follows: 20 mM sodium acetate buffer, pH 4.5 at a flow rate 

of 1 ml/min from 0-20 min with a step change to 20% 0.6 M NaCl at 20 min. 

Followed by step increases of 0.6 M NaCl at 30 min to 20%, 40 min to 30%, 50 

min to 40% and 60 min to 100%. Ninety-six 1 ml fractions were collected. The 

collected fractions were adjusted to pH 7 by adding 50 µl of 1 M Na2CO3 before 

100 µl of each fraction were incubated overnight at 4˚C in microtitre plates for 

detection with mAbs using ELISA. For pre-treatment with sodium carbonate the 

aliquots of water extract were mixed with an equal volume of 0.1 M sodium 

carbonate and left at room temperature for 3 h prior to EDC analysis.  
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2.6 Data handling 

Analysis of CoMPP data for the field development in Chapter 3 was conducted 

using a programme developed at the University of Copenhagen where data was 

normalised and ranked based on density with the highest density assigned 100. 

Densities below 5 were removed and shown as 0. This analysis was completed 

by Julia Schückel (University of Copenhagen) according to methods described in 

Sørensen and Willats (2011) and (Moller et al., 2007) 

For the analysis of RIL samples, the CoMPP data was used as raw density 

values. Principal coordinates analysis (PCO) were applied to the data for each of 

the monoclonal antibodies and extracts plus the physiological trait data was 

included: fresh root weight (g), average root diameter (cm), % dry matter, root dry 

weight (g), % sucrose of dry matter, % sucrose of fresh weight and sugar yield 

(kg/ha). This work was conducted by Stephen Powers (Rothamsted Research) 

using The GenStat statistical package (2014, 17th edition, © VSN International 

Ltd., Hemel Hempstead, UK). 
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Chapter 3 

Sugar beet storage root anatomy and cell wall 

composition through development
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3.1 Introduction 

The internal anatomy of sugar beet storage roots have not been studied in detail 

for many decades with Artschwager (1926) detailing the internal anatomy of 

mature sugar beet storage roots with a few observations from young seedlings . 

These anatomical studies outlined the relative positioning of the cambial rings 

describing these as being “more or less equidistant” with the rings often not 

comprising of a complete ring. This study utilised staining practises in 

combination with light microscopy and many observations were recorded with 

hand drawings. Shortly after these the studies the scientific papers that followed 

focused on physiological development field studies in relation to root growth 

(Milford, 1973), sucrose accumulation (Watson and Baptiste, 1938, Watson and 

Selman, 1938, Giaquinta, 1979), fertilisation (Brentrup et al., 2001, Hergert, 

2010), crop protection (Esau and Hoefert, 1972, Williams and Asher, 1996) and 

weather variables (Ulrich, 1952, Kenter et al., 2006) as the crop became more 

economically important 

For the purpose of this project it was important to produce a detailed anatomical 

study of the internal anatomy of young sugar beet seedlings. Focusing on the 

development of young seedlings allows identification of when the successive 

cambia development begins and how this can impact sucrose accumulation and 

downstream processing of mature sugar beet roots. In this study three Beta 

vulgaris lines were selected with differing sucrose concentrations; Sophia KWS, 

a commercial sugar beet variety (KWS, 2011), C869, a sugar beet seed parent 

line and W357B, a garden beet (McGrath et al., 2005). The work described in this 

chapter provides information on the sugar beet storage root anatomy and the 

formation of important tissues through development.  

In this project there has been several approaches to widen understanding of 

sugar beet root development including; microscopy, immunochemistry and high 

throughput approaches. The information collected in this chapter has 

underpinned the work collated in the chapters following. Visualisation of the 

internal structures using histochemistry techniques combined with 

immunolabelling with monoclonal antibodies has provided a novel view of the 
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structures and anatomy of the roots, including the successive supernumerary 

cambia, a cambial formation limited to a few genera but is characteristic of Beta 

vulgaris.  It has been previously identified that the sucrose content and sugar beet 

root yield are controlled by cambial formation and the distance between rings of 

vascular tissue is a key parameter involved in this control (Wyse, 1979). In 

addition to microscopy analysis a study of sugar beet cell wall composition 

throughout development has allowed the understanding of how storage root cell 

walls adapt and change in response to changing developmental, environmental 

and mechanical signals.  

3.1.1 Sugar beet development 

Sugar beet is a biennial with a two year development from germination to seed 

production. The vegetative phase (year 1) includes establishment and the main 

biomass production of the plant with this being the stage where most commercial 

crops are harvested. Year 2 is the reproductive phase which occurs following a 

period of vernalisation in the field during the winter months, this would only 

usually occur in sugar beet seed production.  

Sugar beets emerge with two cotyledons which usually turn yellow and die upon 

the growth of the first two true leaves. During this period of canopy development 

photosynthate is utilised for new leaf production and rapid canopy growth starts 

after the production of the first six true leaves. Once the canopy closes light 

interception is at its maximum and from this stage energy from photosynthesis is 

stored in the root as sucrose for the next growing season. At the end of the 

vegetative stage the roots would be harvested before the sucrose is relocated to 

support the period of stem elongation and flower production during the second 

year of growth. Flowers reach anthesis five to six weeks after initiation of 

reproductive development and continues for several weeks. Pollen is transmitted 

from mature anthers mostly by wind.  

Over the years there have been many improvements of how to assess the 

development stage of a sugar beet root. Due to the harvestable material being 

concealed underground it has been necessary to conclude the development of 

the root by the stage of the visible part of the crop, i.e. the leaves. Therefore most 
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scales for the identification infer root developmental stage from the development 

of the leaves. One example of such a scale is the BBCH-scale 

(Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) (Meier 

et al., 1993), this allows the identification of developmental stage of an individual 

plant by studying the leaf development and assigning a growth stage code to the 

plant. The scale begins at the different stages of germination: growth stage 0, 

with additional codes 0-9 depending on the stage of germination the seeds is 

currently at, for example when the radicle has emerged from the seed this is 

assigned the code 05. The growth stages included on this scale are; 0: 

Germination, 1: Leaf development (youth stage), 2: Rosette growth (crop cover), 

3: Principal growth stage, 4: Development of harvestable vegetative plant parts, 

5: Inflorescence emergence (2nd year of growth), 6: Flowering, 7: Development 

of fruit, 8: Ripening, 9: Senescence. A summary of this scale is shown in Fig. 3.1. 

This scale is especially useful when harvesting plants for experimental purposes 

that require roots of similar size/developmental stage, in this project work has 

mostly concentrated on the vegetative development of sugar beets with one 

exception in this chapter.  
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Figure 3.1 Summary of the BBCH-scale for sugar beet. The BBCH-scale 
showing the vegetative stages of sugar beet development and the associated 
development stages. Adapted from (Jensen and Spliid, 2003) 
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3.1.2 Supernumerary successive cambia 

Successive cambia are responsible for the familiar concentric rings seen in beet 

species. The production of secondary phloem associated with secondary xylem 

in bands surrounded by conjunctive tissue are agreed to be the product of a 

successive cambium (Stevenson and Popham, 1973). This vascular plan where 

secondary growth occurs at more than one vascular cambium. The tell-tale ringed 

patterning can be seen in the stems and roots of several other well-known plant 

species, many being members of the Amaranthaceae family along with sugar 

beets. Well known genera which also have this successive cambial arrangement 

include Amaranthus (Bhambie and Sharma, 1985), Chenopodium (Fahn and 

Zimmermann, 1982), Avicennia (Robert et al., 2011) and surprisingly the 

gymnosperm, Welwitshia (Carlquist and Gowans, 1995). Terminology of this 

multiple cambia has in the past been an issue as the ontogeny and adaptive 

values of the successive cambia are unknown, however some studies have 

suggested that the distribution of phloem in this was play a role in survival in 

harsh environments (Robert et al., 2011). In this study Robert et al. (2011) 

observed that the majority of species with a successive cambial arrangement 

originate from dry or saline environments. This includes sugar beet having been 

selected from sea beets, Beta vulgaris subsp. maritima (Draycott, 2006b), which 

grow in coastal areas.  

A series of stages of cell production are required for secondary vascular cambium 

to become differentiated from the master cambium (Carlquist, 2007). Differing 

from ‘interxylary phloem’ where a single cambium is present and secondary 

phloem are distributed within the secondary xylem, successive cambia results in 

secondary phloem external to secondary xylem separated by what is known as 

conjunctive tissue (Stevenson and Popham, 1973). This vascular growth is then 

repeated by individual cambia each separated by storage parenchyma producing 

rings of xylem and phloem associated with each cambia. This feature is of interest 

for crop improvement in sugar beet as this cambial arrangement could contribute 

to the root storing higher concentrations of sucrose in the roots. Having phloem 

dispersed throughout the root shortens diffusion pathways from phloem sieve 
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elements and storage tissue allowing more effective assimilation of sucrose 

(Giaquinta, 1979, Saftner et al., 1983, Wyse, 1979).   

3.2 Materials and methods 

Plants for the early development series for three Beta vulgaris were grown in 9 x 

9 cm pots until cotyledons emerged and transferred to 9 L pots to allow root 

expansion. These plants were grown in green houses at Rothamsted Research 

(Harpenden, UK) and planted by Belinda Townsend on behalf of the author. 

Harvesting was conducted by the author and the samples were fixed at the time 

of harvest and transported to the University of Leeds where the samples were set 

in wax as described in chapter 2. Microscopy and further analysis of these 

samples was completed by the author.  

Field development plants were grown and harvested by staff at Broom’s barn. 

These samples were dried and ground to a powder and stored at Rothamsted 

research before being made available for the author for ELISA analysis as 

described in chapter 2. Weather data was collected at Brooms barn and graphical 

presentation produced by Aiming Qi. 

CoMPP analysis in this chapter was completed by Julia Schückel at the University 

of Copenhagen and the raw data was provided to the author for tabulation and 

interpretation.  

3.3 Results 

3.3.1 Sugar beet storage roots have successive supernumerary cambia 

To understand the details of the supernumerary cambia in mature sugar beet 

storage roots microscopy was used to form a compound image of the overall 

internal anatomy (Fig 3.2).  
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Figure 3.2 Structure of a sugar beet root in transverse sections. a; 
Transverse image of a topped mature sugar beet stained with phloroglucinol-
HCl, xylem vessels (pink) indicate position of cambial rings. Black box 
indicates the relative position of section detailed in figure 3.1b. Scale bar = 5 
cm b; Transverse image of mature sugar beet central stele, a composite of 
multiple bright field micrographs stained with Toluidine blue O to give an 
overview of cambial formation. x; xylem, easily identified by the secondary cell 
wall formation, p, parenchyma cells, identifiable by their comparatively large 
size. Black arcs detail hypothesised position of cambia. Scale bar = 100 µm 
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Initial studies of sugar beet storage roots clearly show that they have a 

specialised vascular system which give beets the familiar ringed pattern when 

they are topped (rosette and crown removed). This ringed pattern (Fig 3.1a) 

which can be seen with the naked eye in mature beets is the result of xylem 

vessels developing in concentric rings throughout the root. The development of 

the cambium throughout the root is not uniform through all regions of the root with 

areas where the cambium is more pronounced. When studied using bright field 

microscopy (Fig 3.1b) there is clear distinction between the rings of vascular 

tissue with bands of parenchyma between each consecutive ring. While it is clear 

by the secondary cell wall where xylem cells are located due to secondary cell 

wall thickening, the phloem cells are less easily identified. This is an issue for 

studying this species as it is commercially used to accumulate and store sucrose. 

It is clear that a tool is required to locate phloem cells in order to study the sugar 

beet vascular anatomy in more detail.  

 

3.3.2 Development of the successive supernumerary cambia in sugar beet 

roots. 

The three Beta vulgaris lines were harvested at 7 points throughout the early 

development; 1 week after emergence (WAE), 2 WAE, 3 WAE, 4 WAE, 6 WAE, 

8 WAE and 10 WAE. Their developmental stages were recorded according to the 

BBCH-scale described in Figure 3.1. Table 3.1 outlines the conversion between 

WAE and BBCH-scale for each of the three lines.  

 

  

  

Sophia C869 W357B

1 11 11 11

2 12 12 12

3 13 13 13

4 15 14 14

6 20 18 18

8 26 24 25

10 30 28 28

Weeks after 

emergence (WAE)

BBCH-scale

Table 3.1 Conversion of developmental stage from WAE to 

BBCH-scale for three Beta vulgaris lines. 
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Initially the Sophia variety was used to study the cambial formation in sugar beet 

root as this has the most direct link to industrial applications. The focused study 

of the Sophia variety (Fig 3.3) shows the early stage development using the 

combination of fluorescence microscopy and a monoclonal antibody, LM11, 

which is specific to xylan which allows the in situ identification of the xylem 

vessels (McCartney et al., 2005). By tracking the very early stages of 

development, from one week after emergence (1WAE) through to ten weeks after 

emergence (10WAE), it has been possible to identify the development of new 

vasculature as well as development in terms of root diameter and inter ring-

distance. At 1WAE primary xylem has developed and the cortical cells are still 

intact which is similar to 2WAE where there is increased primary growth and an 

increase in parenchyma between the vascular tissue and the endodermis. By 

3WAE the secondary cambium develops in a similar way to the primary, at the 

pericycle, this development produces the second ring of vasculature outside the 

relative position of the initial primary cambium as there is now a band of 

parenchyma separating this new development and the initial vasculature. This 

process is repeated throughout the seedling development resulting in the 

concentric rings which make up the successive supernumerary cambia. As more 

rings are added the diameter of the root increases leading to the vasculature no 

longer creating complete rings but rather separating and forming in zones of 

vasculature radiating round the root at the same distance from the centre creating 

an interrupted ring. These interrupted rings can be seen at 6 WAE where the root 

has become so large that a singular zone of vasculature has been imaged as a 

representative for its given ring. These vascular rays continue to form at both the 

8WAE and 10WAE stage where the ring number is at its maximum for this line. 

While the rings are being formed the parenchyma band between the rings also 

increases contributing to the overall increase in root diameter through 

development.  

3.3.3 Comparison of different Beta vulgaris lines 

There is an understanding that ring number and distance between the rings can 

be connected with root sucrose content (Wyse, 1979, Milford, 1973). In order to 

look into this hypothesis the same developmental investigation was undertaken 
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on two other Beta lines, W357B – a red garden beet and C869 – a sugar beet 

representative used for breeding studies (McGrath et al., 2005). The red garden 

beet is known to have a lower sucrose concentration than that of a sugar beet 

therefore it was necessary to study the internal anatomy of the storage roots of 

the W357B as a comparison to the Sophia line to investigate if the number of 

cambial rings is an indicator of sucrose content. In addition, Sophia is a 

commercial sugar beet, it is hypothesised that an increased cambial ring number 

contributes to increased sucrose content, therefore conducting the same analysis 

on a sugar beet line which is used as a parent line in breeding programmes rather 

than for sucrose production could indicate if this hypothesis is correct.  

While the development of the additional cambial rings in the W375B (Fig 3.4) and 

C869 (Fig 3.5) storage roots is similar to that of the Sophia storage root (Fig 3.3), 

there are some differences. Due to the diameter of Sophia being much larger 

than the other two lines the xylem vessels are much more separated where only 

one cluster of xylem vessels can be viewed within the micrograph. In addition, 

the shape of the xylem clusters also differs between lines. Where the Sophia and 

C869 lines show extended rays of xylem vessels the W357B has much shorter 

clusters of relatively smaller xylem vessels. The binding patterning of LM11 in the 

C869 line differs from the other two lines with the cells between the large circular 

shaped xylem vessels also being bound by the LM11 antibody.  

These comparative studies show in detail how cambial rings develop to give rise 

to the successive ring anatomy that is familiar in this genus. Cambial rings 

develop very early in development starting within three weeks after emergence 

of the cotyledons from the soil. The commercial variety Sophia develops more 

cambial rings than the lines with lower sucrose concentration and the xylem 

vessels become more spread out as the root develops. 
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Figure 3.3 Seedling development of the Beta vulgaris line Sophia. Overall plant morphology and transverse 

sections (TS) showing development of the commercial variety Sophia from 1 week after emergence (WAE) through to 

10 WAE. Gaps between micrographs indicate a section of parenchyma with no vasculature present. Xylem vessels 

are indicated in green by fluorescence microscopy using the monoclonal antibody LM11 which detects xylan. 

Calcofluor White (Blue) staining has been used to highlight all cell types.  
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Figure 3.4 Seedling development of the Beta vulgaris line W357B. Overall plant morphology and transverse 

sections (TS) showing development of the W357B line of Beta vulgaris from 1 week after emergence (WAE) through 

to 10 WAE. Gaps between micrographs indicate a section of parenchyma with no vasculature present. Xylem 

vessels are indicated in green by fluorescence microscopy using the monoclonal antibody LM11 which identifies 

xylan. Calcofluor White (Blue) staining has been used to highlight all cell types.  
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Figure 3.5 Seedling development of the Beta vulgaris line C869. Overall plant morphology and transverse 

sections (TS) showing development of the C869 line of Beta vulgaris from 1 week after emergence (WAE) through 

to 10 WAE. Gaps between micrographs indicate a section of parenchyma with no vasculature present. Xylem 

vessels are indicated in green by fluorescence microscopy using the monoclonal antibody LM11 which identifies 

xylan. Calcofluor White (Blue) staining has been used to highlight all cell types.  
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A 

C 

B 

Figure 3.6 Comparison of storage root morphology of three Beta vulgaris lines at 6 weeks after emergence. 

Comparative transverse sections (TS) of A. Sophia line of Beta vulgaris. B. W357B line of Beta vulgaris. C. C689 

line of Beta vulgaris. Images taken from Figure 3.3, Figure 3.4 and Figure 3.5 respectively to give a clear view of 

differences in development at this representative stage. Xylem vessels are indicated in green by fluorescence 

microscopy using the monoclonal antibody LM11 which identifies xylan. Calcofluor White (Blue) staining has been 

used to highlight all cell types.  
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3.3.4 Link between sugar beet storage root size, cambial ring number and 

sucrose content 

The link between root size, ring number and sucrose content has long been a 

topic of discussion for sugar beet breeders. There is seemingly an inverse 

relationship between sucrose content and root yield (biomass), in that agronomic 

practises that increase root yield decrease relative sucrose yield and vice versa. 

With the increase of sucrose yield of novel commercial cultivars slowing there is 

a need for new selection criteria. One of these selection criteria to be considered 

is an increase in cambial ring number.  

In order to study this hypothesis, the mean diameter and interring distances have 

been calculated for three Beta lines; a commercial sugar beet line (SOPHIA), the 

seed parent line (C869), and a red garden beet (W357B). The mean diameter 

has been measured throughout the first 10 weeks after emergence (WAE) as an 

indicator of overall root size (Fig 3.7). For all three Beta lines the average root 

diameter increases through development with the SOPHIA line having the 

greatest diameter of 56 cm at 10 WAE. Initially the C869 line has a larger mean 

diameter than the W357B line however at 6 WAE the W375B line mean diameter 

increases beyond C869. By 8 WAE and 10 WAE the W357B and C869 line’s 

mean diameter were not significantly different with 31 (± 2.4 SEM) and 29 (± 1.6 

SEM) mean diameters at 10 WAE respectively. To assess the relationship 

between sucrose content, root yield and cambial ring number the mean cambial 

rings for each of the three Beta lines have been recorded (Fig 3.8) along with the 

inter ring distances (Fig 3.9) 

The Sophia line develops an additional cambial rings to the central stele at 2 WAE 

whereas the C869 and W357B lines do not start to develop one additional 

cambial rings until 3 WAE where the ring number of the Sophia line has increased 

to two. All three lines have the same ring number at 4 WAE with two additional 

cambial rings. All three lines increase at 6 WAE where both C869 and W357B 

have four cambial rings and Sophia has increased its additional ring number to 

five. Both the Sophia and C869 lines have an increase in cambial ring number to 

six and W357B remains unchanged with four cambial rings. The Sophia line 
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cambial ring number increases to eight at 10 WAE as does the W375B line to five 

cambial rings. The C869 line cambia ring number remains the same as 8 WAE 

at six rings.  

Measurement has been taken for the relationship between individual cambium 

rings throughout development (Fig 3.9). Throughout the weeks studied cambial 

rings are established at varying times in each Beta vulgaris line, as the root 

develops the distance between successive rings increases. The Sophia line 

develops cambial rings earlier than the other two lines at 2WAE. At 3WAE all 

three lines have at least one additional cambial ring with C869 and Sophia having 

their ring at similar distance from the central stele, in addition at this stage the 

Sophia line has a second ring. The distance from the central stele to the first 

cambial ring increases for all three of the lines at 4WAE. For both Sophia and 

C869 the distance nearly doubles between this stage and the previous. 

Development has continued through to 6WAE with W357B showing five 

additional cambial rings where C869 has only added one more ring to the 

previous developmental stage. At 6WAE the distance between rings is still 

increasing with distances between the first, second and third additional rings 

equalising in the Sophia line. Additional rings are continuing to be developed at 

8WAE with W357B and C869 with five rings and Sophia having six rings. The 

distances between rings are continuing to increase at 8WAE from the previous 

stage. In the final developmental stage studied 10WAE, C869 and W357B both 

have the same number of rings with six, whereas the Sophia line has added 

another four additional rings to increase the total number to 10 cambial rings. The 

additional cambial rings contribute to an increase in diameter (Fig 3.7). The 

Sophia line shows that the rings move away from each other as cell division 

occurs in the regions between the rings, the distance between the rings that 

developed earlier shows equalising distances between them at just under 5mm. 

Cambial rings which have developed later are relatively closer together towards 

the epidermis.   
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Figure 3.7 Storage root diameters of three Beta vulgaris lines. Mean 
storage root diameters of Sophia, C869 and W357B Beta vulgaris lines 
through the first 10 weeks after emergence (WAE). Bars: SEM, n=3.  
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Figure 3.8 Number of cambial rings within three Beta vulgaris lines. The 
mean number of successive cambial rings of Sophia, C869 and W357B lines 
of Beta vulgaris through the first 10 weeks after emergence (WAE). Bars: 
SEM, n=3.  

 



 

71 

 

1 2 3 4 5 6 7 8 9
1
0

0 .0

0 .2

0 .4

0 .6

2  W A E

1 2 3 4 5 6 7 8 9
1
0

0 .0

0 .2

0 .4

0 .6

0 .8

3  W A E

1 2 3 4 5 6 7 8 9
1
0

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

4  W A E

S o p h ia

C 8 6 9

W 3 5 7 B

1 2 3 4 5 6 7 8 9
1
0

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

6  W A E

1 2 3 4 5 6 7 8 9
1
0

0

1

2

3

4

5

8  W A E

1 2 3 4 5 6 7 8 9
1
0

0

1

2

3

4

5

1 0  W A E

C a m b ia l r in g  n u m b e r

In
te

r
-r

in
g

 d
is

ta
n

c
e

 (
m

m
)

  

Figure 3.9 Inter-ring distances of cambial rings within three Beta vulgaris lines. 
The distances between each cambial ring throughout the first 10 weeks after 
emergence (WAE) of three Beta lines, SOPHIA, C869 and W357B. Bars: SEM, n=3  
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3.3.5 Change in sugar beet cell wall composition throughout development 

Assessment of cell wall components is important in understanding how the sugar 

beet storage root partitions assimilated carbon between dry matter as sucrose 

and non-sucrose dry matter 

Identifying changes in cell wall composition throughout plant development can be 

a challenge as the genes responsible for modification and biosynthesis if cell wall 

components are expressed at differing levels throughout cells and tissues. As an 

alternative approach monoclonal antibodies (mAbs) directed to distinct cell wall 

polysaccharides, were used for the study of plant cell wall structures throughout 

the growing season. Due to the sensitivity of the mAbs structural heterogeneity 

of plant cell wall polysaccharides can be detected with mAbs directed to specific 

epitopes of structures within polysaccharides relatively quickly. The plant cell wall 

specific mAbs have also been utilised for the quantitative detection of the relative 

abundance of major cell wall polysaccharides at differing time points throughout 

development. The field grown material was grown as described in Chapter 2 at 

Brooms Barn (Rothamsted Research). There were a total of 16 harvests and 

specific harvests were selected for the polysaccharide analysis (Table 3.2) 

 

 

Table 3.2 Developmental stages of sugar beet plants used for the 
detection of cell wall polysaccharides. Developmental stages of sugar beet 
plants harvested for the quantitative detection of cell wall glycans. 
Observations for triplicate field experiments have been averaged. (Data 
provided by Belinda Townsend, Rothamsted Research) 
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The analysis of the plant material collected form the three growing seasons was 

initially assessed by enzyme linked immunosorbent assay (ELISA) using nine 

mAbs directed at different cell wall glycans. The same samples were then sent to 

the University of Copenhagen to be assessed using the comprehensive 

microarray polymer profiling (CoMPP) method. The same nine antibodies were 

used in this assay as well as an additional 16 mAbs due to the CoMPP technique 

being a semi-automated high-through put process.  

Due to being a field experiment run over three different growing seasons the 

sugar beets were subject to differing weather condition these are outlined in 

Figure 3.10. Overall the season beginning in 2010 was subject to lower 

temperatures and increases rainfall compared to the 2009 and 2011 seasons.  

  

  

Figure 3.10 Summary of weather conditions during developmental 
growth seasons. Outline of weather conditions, air temperature and rainfall 
in the three growth seasons for the developmental study used for glycan 
analysis. Data and figure collated by Aiming Qi (Rothamsted Research) 
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3.3.5.1 Enzyme linked immunosorbent assay (ELISA) for the detection of 

sugar beet root cell wall glycans through development 

 

In order to be able to efficiently assess the field grown plant material using the 

ELISA technique it was essential to reduce the antigen dilution usually used in an 

ELISA protocol. Under normal circumstances it is common to use a serial dilution 

of the sample to ensure that the plate wells are not overloaded and showing 

unreliable results. In this case to do this with each sample would only allow one 

harvest point to be assessed on each plate. Not only would analysing the material 

in this way take a long time it would also allow plate to plate variation between 

samples. Therefore a series of optimisation steps were undertaken to determine 

an appropriate dilution for the samples so that all samples of a single growing 

season, extraction and mAb could be plated on a single microtitre plate. 

The initial experiment (Fig. 3.11) analysed both dry powdered (freeze dried and 

tissue lysed) plant material (Un-treated) and alcohol insoluble residues (AIR) 

prepared from the same dry powdered samples. This experiment was conducted 

using a few monoclonal antibodies which identified key polysaccharide groups; 

LM19 (homogalacturonan), LM25 (xyloglucan), LM13 and LM6 (arabinan). Both 

the commercial sugar beet variety (Sophia) and the red garden beet variety 

(W357B) were extracted with both CDTA and KOH and screened with the mAbs. 

From this initial experiment is was decided that the AIR preparation was required 

to maintain high epitope detection signals in both the CDTA and KOH fractions. 

In addition it was concluded that 0.1mg/ml was a sufficient concentration of the 

extract to use in subsequent ELISAs to screening of all of the field development 

samples. This concentration gave good absorbance readings and did not show 

evidence of over loading of the wells. This work allowed for the plates to be set 

up in such a way that there would be no technical variance between samples 

assessed by a single monoclonal antibody. The microtitre plant plan shown in 

Figure 3.12 shows how this method included three biological replicates of each 

sample, three technical replicates and negative control wells. 
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Figure 3.11 Initial detection of cell wall polysaccharides. Initial ELISA 
showing absorbance at 450nm for four monoclonal antibodies; Blue: LM19, 
Red: LM25, Purple: LM13 and Green: LM6. The results shown include 
absorbance detected when the sample has been prepared by alcohol 
insoluble residue (AIR), and when the dry powdered sample has been used 
without any preparation (Un-treated). Two lines of Beta have been used, the 
commercial sugar beet line (SOPHIA) and the garden beet line (W357B) to 
identify concentration of sample to use for further analysis.  

 

Extract concentration mg/ml 
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After the initial experiments had been concluded the ELISA could be conducted 

on all samples for each of the three growing seasons. These samples were 

assayed using nine monoclonal antibodies which detect a variety of epitopes 

within cell wall polysaccharides. The results of these in Figure 3.13 show the 

mean of the technical and biological replicates as a heat map which indicated the 

relative abundance of the epitopes detected by the mAbs at the different stages 

of development.  

Over all the results from the ELISA show good correlation between the three 

growing seasons with small variations year to year. The 2009 season and 2011 

season show the most similar results with the 2010 season having the anomalies 

in most cases.  

 

In the CDTA fraction there were two mAbs which showed consistently high 

relative abundance levels in all three growing seasons JIM7 (partially methylated 

homogalacturonan) and LM12 (feruloylated pectin). In addition to these LM19 

(non-esterified homogalacturonan) remained constant at a slightly lower level to 

Figure 3.12 Plate layout to maximise analysis efficiency. Example 
microtitre plate allowing all samples of a growing season to be assessed using 
a single monoclonal antibody at the same time. In this example H2-16 is the 
harvest number and the decimal .1, .2, .3 refers to the biological replicate. This 
arrangement allows for the reduction in technical variation and running three 
technical replicates per biological replicate.  
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the JIM7 and LM12 epitope detection, with the exception of the 2010 growing 

seasons when there was a slight decrease in relative abundance of epitope 

detection at harvest 5 followed by an increase to levels seen at harvest 15. Other 

notable mAbs in the CDTA fraction included LM13 and LM6, which both detect 

arabinan, showed an initial higher level of relative abundance in harvest 2 and 3 

in all seasons however, the relative abundance of this epitope differed between 

seasons with 2009 having the highest relative abundance followed by 2011 then 

the 2010 season at a much lower level. LM13 and LM6 epitope detection declined 

during the growth period however arabinan detection by LM6 began to increase 

back to initial levels at harvest 15 and harvest 16 for 2009 and 2001 respectively.  

 

The detection of the xyloglucan epitope by LM25 showed a slight increase in 

relative abundance in the final harvest stage (harvest 16) in all seasons. In 

season 2009 and 2010 the LM16 MAb detected a slight increase in arabinan at 

the 12 harvest stages with where the 2009 growth season showed an increase in 

relative abundance at harvest 12 and 13 followed by a slight decrease at harvest 

15 and then another increase at harvest 16. In season 2011 there was a slight 

increase of the relative abundance of the LM16 epitope detected at harvest 7 

followed by a decrease for the following harvests until harvest 16 where there 

was a peak in the relative abundance. LM26 (unpublished MAb, phloem specific) 

showed no signal through at three seasons with the exception of harvest 2 in the 

2011 season where there was a small peak of 0.35. LM11 showed no detection 

for the xylan epitope in the CDTA fraction in all three seasons.  

 

The KOH fractions showed less consistent relative abundance of epitopes 

throughout the growing seasons with the relative abundances fluctuating 

throughout. The most notable of these fluctuations is the relative abundance of 

the LM11 epitope, xylan. This shows peaks of relative abundance at both ends 

of the growing season with 2009 having the highest relative abundance at 1.12. 

The abundance of the xylan epitope decreases with subsequent harvests 3 and 

5. Both 2009 and 2011 show a slight increase in relative abundance at harvest 7 

then a  drop at harvest 12 followed by a continued increase of the LM11 epitope 

to a peak at harvest 16 which in all three seasons has the highest relative 
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abundance of the LM11 epitope of the whole growing season.  The most 

consistent relative abundance throughout development in the KOH fraction is the 

LM19 epitope which is detected at all harvest throughout development in all three 

seasons.  

Figure 3.14 gives an indication of the statistical variance between biological 

replicates utilised in this study for the analysis of cell wall epitope abundance 

throughout the growing season. The initial observation from the standard 

deviations (SD) displayed in Figure 3.14 is that SD was low for a biological field 

study. This indicates that despite the replicates growing in different areas in the 

field the cell wall architecture varies very little. The SD’s which are highlighted in 

more intense green show a larger SD and could indicate that these points may 

not be statistically significant. For example, the LM25 epitope abundance at 

harvests 15 and 16 in the KOH fraction for 2011 showed a higher SD and upon 

inspection shows that the difference in abundance seen in Figure 3.13 is in fact 

not statistically significant. Similarly there is a highlighted SD at harvest 16 for the 

LM13 epitope in 2011 however in this case this was not indicated in Figure 3.13 

as a difference in epitope abundance at this point. In addition an SD of 0.343 is 

shown at harvest 2 for the LM26 epitope in 2011. In figure 3.13 a higher 

abundance of this epitope was displayed by a more intense green, in this case 

the SD is not great enough to remove statistical significance of this result and this 

variance of LM26 epitope can be considered significant.  

Analysis of the SD across the cell wall analysis found that, other than those 

discussed above, the heat map in Figure 3.13 accurately shows the significant 

variance of cell wall epitopes detected utilising the ELISA technique.  
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Figure 3.13 Heat map of ELISA analysis of cell wall polysaccharides 
throughout a field development study. The relative abundance of nine cell 
wall polymer epitopes detected by monoclonal antibodies throughout 
development over three growing seasons as identified by ELISA. Two 
extraction fractions have been assessed CDTA 
(Cyclohexanediaminetetraacetic Acid) and KOH (Potassium hydroxide). 
Intensity of green indicates relative abundance. Each point on the heat map is 
shown as the absorbance at 450 nm and represents the mean of three 
biological replicates each of which is the mean of three technical replicates. 

 

2 3 5 7 12 13 15 16 2 3 5 7 12 13 15 16

JIM7 1.19 1.21 1.22 1.19 1.14 1.15 1.27 1.27 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06

LM19 0.47 0.46 0.46 0.41 0.41 0.44 0.51 0.66 0.55 0.57 0.61 0.51 0.43 0.52 0.46 0.43

LM6 0.82 0.78 0.65 0.65 0.66 0.65 0.78 0.91 0.22 0.18 0.13 0.10 0.08 0.10 0.13 0.16

LM12 1.17 1.19 1.22 1.18 1.16 1.18 1.20 1.16 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06

LM26 0.07 0.06 0.06 0.06 0.09 0.09 0.07 0.09 0.09 0.07 0.06 0.06 0.07 0.08 0.07 0.10

LM13 0.88 0.79 0.42 0.32 0.23 0.29 0.30 0.30 0.82 0.74 0.49 0.36 0.18 0.25 0.36 0.29

LM16 0.17 0.14 0.11 0.11 0.39 0.42 0.25 0.43 0.15 0.11 0.11 0.11 0.20 0.26 0.22 0.26

LM11 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.07 1.12 0.77 0.45 0.57 0.42 0.48 1.36 1.37

LM25 0.19 0.20 0.17 0.18 0.18 0.20 0.28 0.47 0.58 0.51 0.57 0.53 0.54 0.67 0.83 1.03

JIM7 0.92 0.75 0.88 0.76 0.80 0.76 0.93 1.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05

LM19 0.55 0.63 0.42 0.32 0.43 0.43 0.49 0.66 0.85 0.40 0.60 0.62 0.69 0.69 0.57 0.46

LM6 0.29 0.21 0.21 0.19 0.20 0.20 0.23 0.25 0.14 0.06 0.07 0.06 0.07 0.07 0.06 0.07

LM12 0.61 0.44 0.58 0.59 0.57 0.57 0.62 0.68 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05

LM26 0.06 0.05 0.05 0.05 0.09 0.08 0.07 0.10 0.10 0.05 0.05 0.05 0.11 0.09 0.06 0.06

LM13 0.29 0.12 0.12 0.10 0.11 0.12 0.12 0.15 0.30 0.13 0.14 0.12 0.13 0.13 0.10 0.08

LM16 0.08 0.06 0.05 0.07 0.14 0.11 0.10 0.18 0.09 0.05 0.06 0.06 0.17 0.13 0.08 0.10

LM11 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.55 0.41 0.19 0.13 0.29 0.42 0.78 0.96

LM25 0.13 0.11 0.08 0.09 0.10 0.10 0.13 0.25 0.24 0.14 0.18 0.16 0.24 0.25 0.25 0.34

JIM7 0.95 0.84 0.84 0.85 0.85 0.94 0.90 0.90 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.11

LM19 0.58 0.51 0.42 0.40 0.46 0.50 0.45 0.48 0.85 0.78 0.85 0.90 0.93 0.78 0.83 1.01

LM6 0.47 0.36 0.34 0.30 0.29 0.35 0.35 0.39 0.16 0.12 0.08 0.09 0.10 0.09 0.09 0.15

LM12 0.93 0.83 0.91 0.91 0.91 0.91 0.92 0.93 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05

LM26 0.35 0.06 0.08 0.06 0.07 0.06 0.07 0.08 0.10 0.10 0.06 0.07 0.10 0.08 0.11 0.13

LM13 0.62 0.37 0.30 0.31 0.24 0.27 0.21 0.22 0.82 0.53 0.50 0.43 0.52 0.43 0.35 0.48

LM16 0.17 0.11 0.09 0.27 0.16 0.12 0.19 0.49 0.12 0.16 0.08 0.11 0.30 0.16 0.18 0.36

LM25 0.19 0.12 0.15 0.15 0.13 0.14 0.14 0.21 0.40 0.41 0.45 0.46 0.53 0.41 0.86 1.07

LM11 0.07 0.05 0.05 0.06 0.05 0.05 0.05 0.08 0.36 0.17 0.30 0.48 0.34 0.38 0.85 1.21

2011

CDTA KOH

2010

Season
Harvest number Harvest number

MAb

2009
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3.3.5.2 Comprehensive microarray polymer profiling (CoMPP) for the 

detection of sugar beet root cell wall glycans through development 

The comprehensive microarray polymer profiling (CoMPP) techniques is a high 

throughput method of identifying the relative abundance of cell wall glycans 

developed at the University of Copenhagen (Kračun et al., 2017). Using this semi-

automated method has allowed for the same developmental samples to be 

screened using a larger number of mAbs than have been used for the ELISA 

protocol.  

The CoMPP method has been used to screen the developmental samples with 

the same nine mAbs as the ELISA protocol (Fig 3.15) as well as an additional 16 

2 3 5 7 12 13 15 16 2 3 5 7 12 13 15 16

JIM7 0.072 0.019 0.030 0.013 0.018 0.046 0.030 0.084 0.006 0.003 0.002 0.002 0.003 0.003 0.003 0.003

LM19 0.014 0.081 0.010 0.033 0.029 0.045 0.052 0.082 0.164 0.124 0.062 0.021 0.020 0.052 0.047 0.085

LM6 0.069 0.053 0.048 0.043 0.057 0.066 0.064 0.060 0.118 0.064 0.039 0.018 0.005 0.015 0.009 0.047

LM12 0.061 0.038 0.040 0.019 0.044 0.037 0.030 0.018 0.002 0.002 0.001 0.002 0.003 0.003 0.004 0.008

LM26 0.003 0.005 0.001 0.008 0.012 0.015 0.002 0.010 0.019 0.009 0.003 0.003 0.003 0.010 0.007 0.011

LM13 0.072 0.045 0.038 0.069 0.027 0.058 0.019 0.068 0.219 0.109 0.141 0.117 0.017 0.058 0.082 0.167

LM16 0.014 0.012 0.025 0.016 0.095 0.059 0.031 0.097 0.071 0.027 0.020 0.027 0.025 0.053 0.078 0.056

LM11 0.002 0.005 0.003 0.003 0.002 0.003 0.039 0.009 0.067 0.183 0.178 0.012 0.029 0.141 0.212 0.150

LM25 0.008 0.046 0.037 0.019 0.020 0.034 0.038 0.053 0.072 0.055 0.119 0.116 0.068 0.079 0.042 0.114

JIM7 0.046 0.051 0.014 0.050 0.022 0.058 0.035 0.044 0.001 0.002 0.002 0.002 0.003 0.002 0.000 0.015

LM19 0.011 0.098 0.027 0.016 0.039 0.052 0.021 0.043 0.062 0.041 0.079 0.055 0.081 0.032 0.044 0.073

LM6 0.017 0.009 0.019 0.007 0.022 0.002 0.004 0.013 0.022 0.004 0.008 0.003 0.012 0.003 0.007 0.002

LM12 0.007 0.032 0.022 0.027 0.017 0.013 0.023 0.030 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003

LM26 0.008 0.001 0.001 0.001 0.003 0.015 0.008 0.047 0.026 0.002 0.003 0.002 0.019 0.027 0.010 0.004

LM13 0.038 0.003 0.016 0.007 0.015 0.020 0.010 0.010 0.016 0.010 0.009 0.011 0.025 0.019 0.024 0.011

LM16 0.005 0.001 0.002 0.005 0.005 0.025 0.013 0.101 0.020 0.004 0.004 0.007 0.024 0.030 0.011 0.018

LM11 0.002 0.001 0.001 0.002 0.001 0.001 0.008 0.016 0.108 0.040 0.030 0.048 0.078 0.091 0.098 0.088

LM25 0.015 0.009 0.010 0.009 0.014 0.003 0.021 0.078 0.022 0.010 0.023 0.017 0.037 0.009 0.007 0.033

JIM7 0.023 0.012 0.107 0.035 0.047 0.038 0.078 0.004 0.001 0.002 0.023 0.000 0.002 0.001 0.000 0.095

LM19 0.070 0.051 0.097 0.031 0.086 0.028 0.049 0.019 0.210 0.300 0.042 0.040 0.149 0.155 0.194 0.080

LM6 0.080 0.012 0.041 0.017 0.047 0.078 0.022 0.020 0.043 0.022 0.020 0.010 0.020 0.005 0.022 0.031

LM12 0.019 0.058 0.041 0.053 0.040 0.055 0.035 0.017 0.003 0.003 0.002 0.001 0.002 0.002 0.002 0.003

LM26 0.343 0.013 0.049 0.005 0.005 0.001 0.010 0.013 0.034 0.045 0.007 0.001 0.012 0.013 0.048 0.028

LM13 0.082 0.135 0.055 0.157 0.021 0.114 0.050 0.014 0.177 0.020 0.121 0.059 0.053 0.024 0.127 0.062

LM16 0.063 0.050 0.015 0.165 0.024 0.045 0.081 0.486 0.039 0.140 0.019 0.011 0.013 0.078 0.094 0.105

LM11 0.011 0.002 0.004 0.005 0.003 0.003 0.003 0.037 0.193 0.031 0.115 0.182 0.027 0.105 0.024 0.061

LM25 0.057 0.005 0.003 0.046 0.018 0.030 0.020 0.064 0.066 0.203 0.055 0.084 0.058 0.101 0.442 0.428

2010

2011

2009

Harvest number

CDTA

MAbSeason
Harvest number

KOH

Figure 3.14 Heat map of the standard deviations associated with the 
analysis of cell wall polysaccharides throughout a field development 
study in Figure 3.13. The standard deviations between the biological 
replicates analysed for the detection of nine cell wall polymer epitopes 
detected by monoclonal antibodies throughout development over three 
growing seasons as identified by ELISA. Two extraction fractions have been 
assessed CDTA (Cyclohexanediaminetetraacetic Acid) and KOH (Potassium 
hydroxide). The intensity of the green indicates larger standard deviations 
between biological replicates. 
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mAbs (Fig 3.17). This has given the opportunity to compare the two protocols as 

well as gather more information about change in cell wall composition throughout 

development.  

Looking at the nine mAbs also screened by the ELISA protocol shown in Figure 

3.15 it is clear that the overall epitope detection over the three seasons was 

similar using both the CoMPP and ELISA methods. The CDTA fraction showed 

the same high relative abundance of JIM7 and LM12 detection throughout all 

eight harvests over the three seasons as well as the consistent slightly lower 

detection of LM19 epitope throughout all harvests. In addition, there was a similar 

pattern of epitope detection for the arabinan mAbs, LM13 and LM6, these showed 

a relatively high abundance at the beginning of the growing season (harvest 2 

and 3) for all three seasons. However, the difference with this CoMPP analysis 

was that the relative abundance of LM13 and LM6 epitopes decrease throughout 

the growing season without the increase in the later stages of growth reported by 

the ELISA protocol in the 2009 and 2011 growing seasons.  The stark difference 

between the ELISA and CoMPP protocols in the CDTA fraction is that there was 

less difference between the growing seasons, as seen by the very similar relative 

abundance of the 2010 season for LM13 and LM6 where the relative abundance 

was much lower for this year.  

The KOH fraction for the CoMPP analysis again showed similarities to the ELISA 

results, with a few notable differences. The detected LM19 epitope signal in the 

KOH fraction was relatively high in the ELISA results where for the CoMPP 

protocol there was very little signal for the LM19 epitope. In addition to this 

difference there was a good signal for the LM6 epitope throughout all three 

growing seasons in the CoMPP KOH fraction where there was very little signal 

for this mAb using the ELISA protocol.  

The LM6 epitope detection was strong in the first harvest and gradually 

decreased through the growing seasons to a relatively low level at harvest 16, 

the LM13 epitope showed a very similar pattern with all three seasons showing a 

strong detection in the initial harvest and a decrease through development. The 
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LM13 epitope detection differs from detection using the other arabinan mAb LM6 

in that it was also detected in small amounts using the ELISA protocol.  

There was a stronger signal for the LM25 epitope using the CoMPP protocol 

which was at a mid-range level from harvest 2-13 for all three seasons with an 

increase in the relative abundance for the final two harvests (harvest 15 and 16), 

this increase was delayed in the 2011 season where there was only an increase 

in the final harvest and the increase was not as large as the 2009 and 2010 

growing seasons.  

The LM25 epitope detection was similar to the ELISA protocol with the highest 

relative abundance occurring in the final two harvests (harvest 15 and 16) after a 

mid-range signal throughout the rest of the earlier harvests. There was very little 

difference between the relative abundance of the LM25 epitope between the 

three growth seasons with the abundance at a slightly lower level in the 2011 

season. The detection of the LM11 epitope using the CoMPP protocol showed a 

decrease throughout the first half of the growing seasons followed by an increase 

at harvest 12 through to a peak in the final harvest, this is the case in all growing 

season except 2009 where the harvest 16 did not show a higher relative 

abundance of the LM11 epitope in this harvest than harvest 2.  

Figure 3.16 denotes the standard deviations (SD) associated with the analysis 

displayed in Figure 3.15. Using these SD the significance of the data in Figure 

3.15 can be assessed. SDs with high intensity green highlight potential 

discrepancies between the apparent increase or decrease of epitope detection 

shown in Figure 3.15.  The majority of the highlighted SDs are in the NaOH 

fraction of the 2009 season and some of these reject the apparent fluctuation of 

detected epitopes as significant. LM11 in this fraction suggests that there is no 

fluctuation in the LM11 epitope across the growing season. Similarly, the levels 

of LM25 are not significantly different until the final two harvest points where the 

increase in epitope detection is significant. On the other hand, the SD for LM13 

and LM6 do not disagree with the fluctuation in epitope detection shown by color 

intensity across the growing season. Across the rest of the seasons and both 
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fractions the epitope detection shown in Figure 3.15 remain significant according 

to the calculated SD in Figure 3.16.  

 

 

  

2 3 5 7 12 13 15 16 2 3 5 7 12 13 15 16

JIM7 85.10 88.80 86.00 84.50 82.50 83.80 74.90 74.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM19 20.70 22.80 21.80 22.00 20.60 24.20 20.90 28.60 12.00 4.20 3.60 2.80 4.00 6.90 6.60 8.20

LM6 46.70 50.10 40.40 37.40 36.90 39.00 30.60 26.90 41.90 31.40 18.30 24.40 18.70 18.80 15.70 14.10

LM12 76.20 90.60 87.40 79.80 75.30 82.40 54.80 38.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM26 0.00 0.00 0.00 0.00 0.00 1.70 0.00 0.00 7.40 0.00 0.00 0.00 9.30 5.90 0.00 4.60

LM13 49.40 47.60 22.70 18.90 12.60 16.60 8.20 4.40 48.80 29.20 12.50 19.60 10.20 11.00 9.60 5.90

LM16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.10 33.20 29.10 23.00 31.20 33.00 29.10 23.00

LM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.60 31.30 27.60 34.20 34.90 32.90 56.50 51.20

JIM7 81.60 68.30 82.10 78.90 79.00 76.00 73.70 70.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM19 21.20 43.40 27.10 22.00 18.80 17.70 16.00 16.50 3.90 0.00 4.00 0.00 8.60 8.40 4.20 4.90

LM6 52.70 37.90 45.20 40.30 43.20 41.70 36.00 29.00 37.50 17.50 30.60 20.10 28.10 25.50 15.70 14.10

LM12 85.60 45.90 87.10 90.00 80.80 82.70 71.60 71.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM26 0.00 0.00 0.00 0.00 1.90 3.10 0.00 0.00 0.00 3.70 0.00 0.00 21.90 17.90 6.80 6.20

LM13 60.80 18.70 23.80 21.40 22.60 20.80 17.30 14.60 46.40 14.90 23.00 15.30 18.60 17.60 10.40 8.60

LM16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.60 33.30 25.80 25.30 26.70 36.60 53.50 60.20
LM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.20 32.10 26.10 25.10 26.70 35.50 54.40 60.10

JIM7 79.10 79.50 74.30 74.90 79.20 77.00 74.30 71.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM19 28.00 20.80 22.50 19.70 22.50 17.80 19.00 22.10 0.00 3.10 0.00 3.60 6.00 5.70 7.80 8.50

LM6 49.70 44.10 39.30 38.60 40.50 40.80 37.80 33.30 27.40 21.50 16.10 17.50 17.70 17.60 16.20 13.30

LM12 79.00 81.80 83.90 87.50 81.30 80.50 76.60 64.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.90 2.90 0.00 1.80 6.10 5.20 4.40 4.00

LM13 54.90 36.30 23.60 19.00 22.10 25.30 15.40 13.20 35.10 21.40 14.90 14.60 13.10 14.40 12.20 8.80

LM16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.00 32.30 32.80 29.30 29.20 34.40 36.60 44.90

LM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.70 31.70 30.60 28.00 28.00 34.10 36.10 44.90

Season

2009

CDTA KOH

2011

Harvest number Harvest number
MAb

2010

Figure 3.15 heat map of CoMPP analysis of cell wall polysaccharides 
throughout a field development study. The relative abundance of nine cell 
wall polymer epitopes detected by monoclonal antibodies throughout 
development over three growing seasons as identified by CoMPP. Two 
extraction fractions have been assessed CDTA 
(Cyclohexanediaminetetraacetic Acid) and NaOH (Sodium hydroxide). 
Intensity of green indicates relative abundance. This study replicates the 
previous study shown in Fig 3.13. Each point on the heat map is shown as the 
normalised value of spot density (the highest density is assigned 100 and 
other values assigned relative to this). Each value on the heat map is the result 
of the mean of three biological replicates. 
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An additional 16 mAbs were selected which covered a wide range of cell wall 

polymers (Fig 3.17) and were used for a screen using the CoMPP protocol gave 

an opportunity to learn more about the sugar beet storage root cell wall 

composition throughout development. JIM4 (AGP) and LM9 (feruloylated 

galactan) mAbs gave no detection signal across the two fractions in all three 

seasons. The LM9 antibody was recently showing discrepancies in functionality 

over several different studies in different systems therefore this could have 

accounted for the lack of signal in this instance.   

In the CDTA fraction; JIM5 detects the same epitope as LM19 

(Homogalacturonan with no esterification) and therefore showed a similar 

2 3 5 7 12 13 15 16 2 3 5 7 12 13 15 16

JIM7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM19 0.419 2.162 1.856 1.963 2.163 0.851 0.973 0.697 0.698 3.604 3.094 3.271 3.605 1.418 1.622 1.161

LM6 2.887 6.660 3.541 8.672 1.058 2.913 1.371 1.094 4.811 11.101 5.901 14.454 1.763 4.855 2.286 1.823

LM12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM26 0.449 0.000 0.000 0.000 1.119 3.069 0.000 2.582 0.749 0.000 0.000 0.000 1.865 5.115 0.000 4.303

LM13 3.265 7.343 2.636 7.213 0.546 1.828 1.298 0.429 5.441 12.238 4.394 12.022 0.910 3.046 2.163 0.716

LM16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM11 2.051 2.447 2.491 12.008 5.365 0.883 8.796 5.613 3.419 4.079 4.152 20.014 8.941 1.472 14.660 9.354

LM25 1.788 2.867 2.834 11.875 5.353 0.280 8.940 5.697 2.980 4.779 4.724 19.791 8.922 0.466 14.899 9.495

JIM7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM19 0.102 0.000 0.104 0.000 0.011 0.041 0.108 0.132 3.415 0.000 3.471 0.000 0.370 1.361 3.614 4.399

LM6 0.262 0.034 0.122 0.055 0.035 0.145 0.081 0.065 8.721 1.122 4.061 1.834 1.171 4.832 2.684 2.175

LM12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM26 0.000 0.096 0.000 0.000 0.005 0.355 0.065 0.024 0.000 3.198 0.000 0.000 0.177 11.845 2.159 0.793

LM13 0.326 0.043 0.082 0.055 0.072 0.072 0.028 0.080 10.869 1.438 2.748 1.845 2.404 2.392 0.939 2.655

LM16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM11 0.117 0.067 0.119 0.072 0.113 0.058 0.170 0.055 3.914 2.223 3.954 2.416 3.782 1.929 5.662 1.843

LM25 0.122 0.074 0.115 0.074 0.136 0.047 0.176 0.035 4.062 2.456 3.821 2.480 4.546 1.577 5.859 1.158

JIM7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM19 0.000 6.401 0.000 3.722 0.497 6.084 1.492 1.290 0.000 5.334 0.000 3.102 0.414 5.070 1.244 1.075

LM6 4.472 1.243 3.814 1.325 0.780 0.620 1.735 0.186 3.727 1.036 3.178 1.104 0.650 0.517 1.446 0.155

LM12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM26 4.146 6.122 0.000 3.726 0.865 5.629 4.688 4.162 3.455 5.102 0.000 3.105 0.720 4.691 3.907 3.469

LM13 9.593 8.067 4.352 0.116 2.330 3.070 2.183 2.052 7.994 6.722 3.627 0.097 1.942 2.558 1.820 1.710

LM16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM11 1.920 6.824 5.630 1.787 2.314 8.795 6.624 3.000 1.600 5.687 4.692 1.489 1.929 7.329 5.520 2.500

LM25 2.162 7.881 4.088 1.099 1.267 7.854 6.707 3.076 1.802 6.567 3.406 0.916 1.056 6.545 5.589 2.564

2009

2010

2011

MAbSeason

CDTA NaOH

Harvest number Harvest number

Figure 3.16 Heat map of the standard deviations associated with the 
analysis of cell wall polysaccharides throughout a field development 
study in Figure 3.15. The standard deviations between the biological 
replicates analysed for the detection of nine cell wall polymer epitopes 
detected by monoclonal antibodies throughout development over three 
growing seasons as identified by CoMPP. Two extraction fractions have been 
assessed CDTA (Cyclohexanediaminetetraacetic Acid) and NaOH (Sodium 
hydroxide). The intensity of the green indicates larger standard deviations 
between biological replicates. 
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detection pattern with a slightly higher mid-range detection across the whole 

season for all three years with the exception of harvest 3 in 2010 where there 

was a spike in the relative abundance of the JIM5 epitope. LM18 again detects a 

similar homogalacturonan epitope and therefore showed the same consistent 

detection in the CDTA fraction across the whole season in all three years with the 

2010 season showing a slight reduction in relative abundance towards the end of 

the growing season.  

LM5 detecting galactan showed the same pattern in all three growing seasons in 

the CDTA fraction with a high relative abundance of the epitope in harvest 2, 

gradually reducing over the growing season with the lowest level of relative 

abundance detected in harvest 16. A similar pattern of relative abundance of the 

LM5 epitope was detected in all three seasons for the KOH fraction with a slightly 

reduced relative abundance level than that detected in the CDTA fraction.  

The LM21 epitope (heteromannan) was detected in both the CDTA and KOH 

fraction with a fairly consistent relative abundance level across all harvests in all 

seasons for the CDTA fraction. However, the KOH fraction showed a slightly 

reduced relative abundance of the LM21 epitope in the 2009 season and a much 

reduced detection of the epitope in the 2010 and 2011 seasons.  

The LM15 (xyloglucan) epitope was only detected in the KOH fraction just as the 

LM25 epitope was in the previous set of mAbs. However, in the case of LM15 the 

relative abundance levels remained consistent across all the harvest for all three 

growing seasons.  

LM10 (xylan) was also only detected in the KOH fraction in all three seasons 

where there was a similar pattern in relative abundance detection to LM11 but at 

a lower level of detection. There was higher detection of the LM10 epitope at the 

beginning and the end of the growing seasons with a reduction at harvest 5 and 

7 followed by an increase with the highest level of detection at harvest 15 and 16 

for all seasons.  

LM1 and JIM20 both detect extensin and therefore showed similar detection 

patterning throughout the growing seasons. There was seasonal variation in the 
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detection of extensin in the CDTA fraction with the 2009 season showing a rise 

in relative abundance between harvest 2 and 3 followed by a slight reduction at 

harvest 5 and then an increase at harvest 7 then a decrease over the rest of the 

season with very low levels detected at harvest 15 and 16. Initially 2010 showed 

a similar rise and fall pattern in the epitope detection however the relative 

abundance levels dropped off after harvest 7 with low levels detected from 

harvest 13 onwards. The 2011 seasons showed variation in LM1 and JIM20 

epitope detection with a steady reduction in relative abundance from harvest 2 

through to harvest 5 followed by an increase back to harvest 2 levels at harvest 

7 with another fall in relative abundance and a rise at harvest 12 and 13 

respectively. However season 2011 showed the same very low levels of epitope 

abundance in the final two harvest points.  

LM2 and LM16 (AGP) detected their epitope at low levels throughout all harvests 

of all three seasons in the CDTA fraction with the highest relative abundance 

detected in harvest 2 and decreasing over the growing season. There was a slight 

peak in the detection of the LM2 epitope at harvest 12 and 13 in the KOH fraction 

for each of the three growing seasons. JIM13 (AGP) indicated a consistent 

detection of epitope in both the CDTA and KOH fractions across all harvest 

points, with CDTA having a higher relative abundance level than KOH throughout. 

LM28 (glucuronoxylan) was only detected in the final two harvests of the CDTA 

fraction in all growing seasons with 2009 and 2010 showing a peak at harvest 15 

followed by a large decrease at harvest 16, the detected levels were relatively 

very low in the 2011 season.  

The LM28 epitope of glucuronoxylan was detected throughout all harvests for all 

growing seasons with detection being at a consistent level until an increase in the 

final two harvests, this increase was the largest in 2009 and 2010 with the 

increase being less in the 2011 growing season.  

LM6-M (arabinan) detected similarly to LM6 but showed a higher level of relative 

abundance than LM6. The detection of the LM6-M epitope is fairly level 

throughout the harvest points in the CDTA fraction in all three growing seasons 

with a slight decrease in relative abundance in harvest 15 and 16. A similar 
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pattern of LM6-M epitope detection is identified in the KOH fraction for all seasons 

with the detection being at a slightly reduced level of relative abundance. LM30 

epitope detection was at very low levels throughout both the CDTA and KOH 

fraction at all harvests in all growing seasons.  

The standard deviations (SD) associated with the data displayed in Figure 3.17 

are shown in Figure 3.18. Using these SD the significance of the data in Fig 3.17 

can be assessed. As in the SDs of the previous antibodies used in Fig 3.15 the 

largest SD are seen in the 2009 season. However, there is only one instance of 

where the SD alters the results significance in Figure 3.17. LM5 in the CDTA 

fraction in the 2009 season does not fluctuate as indicated by the reduction of 

green intensity towards the end of the season The SD for the detecton of LM5 

across the growing season show that there is not significant difference in the 

detect levels across the growing season. Other than this example, the fluctuations 

of detected epitope levels shown in Fig 3.17 are significant.   
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Figure 3.17 Heat map of additional CoMPP analysis of cell wall 
polysaccharides throughout a developmental field study. The relative 
abundance of 16 additional cell wall polymer epitopes detected by monoclonal 
antibodies throughout development over three growing seasons using the 
CoMPP method. Two extraction fractions have been assessed CDTA 
(Cyclohexanediaminetetraacetic Acid) and NaOH (Sodium hydroxide). 
Intensity of green indicates relative abundance. Each point on the heat map is 
shown as the normalised value of spot density (the highest density is assigned 
100 and other values assigned relative to this). Each value on the heat map is 
the result of the mean of three biological replicates each of which is the mean 
of three technical replicates. 

 

2 3 5 7 12 13 15 16 2 3 5 7 12 13 15 16

JIM5 31.30 29.40 29.00 25.60 24.70 29.80 27.20 34.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM18 19.10 18.20 17.60 16.50 17.30 19.90 16.90 22.90 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM5 42.50 39.60 30.40 28.10 20.90 23.60 15.50 10.70 41.70 25.20 15.00 22.80 17.30 15.10 12.40 11.90

LM21 36.30 32.80 35.30 36.50 43.00 46.20 37.50 34.80 23.40 19.50 17.60 23.30 24.80 22.00 21.90 18.70

LM15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.00 33.00 28.70 30.40 32.70 33.90 32.30 30.50

LM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.90 29.40 26.30 30.60 30.70 29.40 46.20 39.80

LM1 15.10 24.20 19.30 26.10 19.00 14.60 5.90 4.30 8.70 9.80 9.60 13.30 12.30 9.30 5.10 5.30

JIM20 18.20 32.00 24.10 32.10 22.20 17.60 5.60 4.20 11.10 12.50 12.00 13.50 13.70 11.20 8.50 8.90

LM2 31.60 21.30 12.20 10.10 9.20 12.50 8.70 9.40 7.40 0.00 0.00 0.00 9.30 5.90 0.00 4.60

JIM4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JIM13 35.80 32.90 35.30 36.60 41.90 46.10 37.50 35.00 23.30 19.60 17.60 23.20 24.60 22.30 21.80 18.70

JIM16 18.30 10.70 5.80 9.10 10.90 9.20 2.30 1.90 0.00 3.90 0.00 0.00 0.00 0.00 0.00 0.00

LM9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM28 0.00 0.00 0.00 0.00 0.00 0.00 31.00 12.10 44.80 41.50 37.80 45.90 42.40 41.10 74.70 73.10

LM6-M 61.00 70.00 62.30 55.10 54.80 57.80 41.00 34.80 49.70 40.00 29.10 39.70 35.30 33.40 26.80 24.90

LM30 0.00 0.00 0.00 0.00 0.00 0.00 2.20 1.70 4.30 1.80 4.10 0.00 6.70 5.60 4.60 4.10

JIM5 28.80 71.50 31.70 26.90 23.70 23.20 20.70 22.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM18 19.20 39.20 20.30 16.20 14.60 13.10 11.60 12.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM5 43.70 23.40 29.80 29.40 18.30 19.30 18.90 16.00 32.50 15.10 29.50 20.50 16.80 16.00 11.90 12.80

LM21 35.90 38.60 37.90 44.30 46.80 44.80 38.60 28.10 10.80 13.40 18.40 21.60 28.50 23.60 17.30 17.50

LM15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.60 36.90 33.90 28.10 30.40 34.90 30.70 33.50

LM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.50 27.00 22.20 19.20 24.20 31.50 44.50 43.30

LM1 26.60 10.80 27.10 23.80 11.20 10.40 9.80 5.40 7.10 8.20 10.00 11.60 11.00 10.90 9.70 1.90

JIM20 38.80 13.40 38.80 31.20 14.90 13.60 13.10 6.50 8.30 8.00 9.70 11.10 11.30 11.30 10.20 4.10

LM2 29.80 24.70 17.50 15.70 14.50 13.80 13.30 9.00 0.00 3.70 0.00 0.00 21.90 17.90 6.80 6.20

JIM4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JIM13 35.80 38.40 37.90 44.40 46.70 44.70 38.60 28.20 10.90 13.50 18.80 21.40 29.20 26.30 20.30 20.50

JIM16 24.20 8.00 8.20 8.90 7.50 6.10 6.30 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM28 0.00 0.00 0.00 0.00 0.00 0.00 36.00 4.80 41.50 44.80 37.50 32.60 35.30 42.10 75.90 86.20

LM6-M 66.80 45.90 62.70 63.00 59.40 58.10 49.60 46.80 45.80 26.30 46.00 36.80 42.40 40.00 25.90 25.50

LM30 0.00 0.00 0.00 0.00 8.90 5.90 0.00 0.00 0.00 0.00 3.60 0.00 16.00 11.60 4.60 2.50

JIM5 32.50 29.00 29.30 24.10 30.00 24.50 26.10 27.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM18 20.30 15.50 16.90 15.20 16.80 12.80 14.30 16.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM5 41.20 29.00 27.00 25.30 21.20 24.20 20.70 16.40 27.40 20.70 16.40 17.70 15.50 16.00 14.80 13.00

LM21 33.70 35.60 34.30 36.70 42.40 39.90 42.10 38.60 9.80 15.50 14.70 17.30 24.30 20.00 20.20 17.90

LM15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.00 31.80 30.60 31.50 31.60 30.30 31.30 28.80

LM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.20 26.00 25.70 26.70 21.50 27.00 30.40 32.40

LM1 28.40 22.00 19.80 31.90 19.00 22.10 7.90 6.50 9.20 11.40 7.80 12.20 11.20 14.70 9.90 10.20

JIM20 43.80 32.80 29.30 46.50 26.80 33.30 11.40 8.90 8.50 10.10 7.60 10.10 10.40 12.90 9.50 9.60

LM2 32.10 21.20 13.90 13.20 10.00 16.10 12.10 13.60 3.90 2.90 0.00 1.80 6.10 5.20 4.40 4.00

JIM4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JIM13 33.70 35.50 34.30 36.50 42.30 39.70 42.00 38.30 11.90 16.60 15.10 17.30 24.30 19.90 20.20 17.90

JIM16 26.20 13.60 9.30 9.50 10.40 10.80 9.20 8.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LM28 0.00 0.00 0.00 0.00 0.00 0.00 2.50 4.50 36.60 36.70 35.90 39.80 34.40 41.80 44.40 64.20

LM6-M 62.20 59.70 57.60 58.40 57.70 57.00 52.50 45.10 35.60 33.20 28.50 31.20 31.60 29.70 27.90 23.20

LM30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 0.00 3.50 0.00 0.00 0.00 3.60 0.00 2.50

2009

2010

2011

CDTA KOH

Season MAb
Harvest number Harvest number
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2 3 5 7 12 13 15 16 2 3 5 7 12 13 15 16

JIM5 6.257 0.000 2.390 0.000 0.000 0.000 0.000 0.000 3.476 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM18 8.258 19.676 6.170 24.010 3.418 7.891 2.238 2.234 4.588 10.931 3.428 13.339 1.899 4.384 1.243 1.241

LM5 1.761 5.081 3.375 24.235 1.555 7.259 13.609 5.320 0.979 2.823 1.875 13.464 0.864 4.033 7.561 2.955

LM21 3.244 3.387 5.104 31.924 2.564 1.561 3.030 3.591 1.802 1.881 2.836 17.736 1.424 0.867 1.684 1.995

LM15 3.761 3.338 5.695 31.865 13.383 5.415 18.878 10.815 2.089 1.855 3.164 17.703 7.435 3.008 10.488 6.008

LM10 0.667 3.082 0.612 13.797 3.155 0.779 8.196 8.657 0.371 1.712 0.340 7.665 1.753 0.433 4.553 4.809

LM1 0.197 4.259 1.349 14.012 2.638 1.313 3.144 2.702 0.109 2.366 0.749 7.784 1.465 0.730 1.747 1.501

JIM20 1.347 0.000 0.000 0.000 3.357 9.207 0.000 7.745 0.749 0.000 0.000 0.000 1.865 5.115 0.000 4.303

LM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JIM4 1.618 5.177 3.234 24.083 1.770 7.305 13.698 5.329 0.899 2.876 1.797 13.379 0.983 4.058 7.610 2.961

JIM13 0.000 6.165 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.425 0.000 0.000 0.000 0.000 0.000 0.000

JIM16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM9 7.536 6.850 15.314 47.718 19.953 3.070 39.439 25.140 4.187 3.805 8.508 26.510 11.085 1.706 21.911 13.967

LM28 7.433 23.612 11.529 41.455 4.147 13.050 6.287 5.133 4.129 13.118 6.405 23.030 2.304 7.250 3.493 2.851

LM6-M 6.739 5.618 12.667 0.000 1.810 8.807 14.215 12.772 3.744 3.121 7.037 0.000 1.006 4.893 7.897 7.095

LM30 0.000 11.019 0.000 0.000 0.000 11.278 0.000 7.801 0.000 6.122 0.000 0.000 0.000 6.266 0.000 4.334

JIM5 0.000 0.000 0.000 0.000 1.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM18 6.502 4.875 1.877 3.630 9.773 5.505 2.116 3.705 4.645 3.482 1.341 2.593 6.981 3.932 1.511 2.647

LM5 2.134 1.144 1.549 2.175 4.746 2.738 3.482 3.626 1.524 0.817 1.106 1.553 3.390 1.956 2.487 2.590

LM21 0.950 3.419 5.648 2.298 4.321 3.893 3.068 1.282 0.678 2.442 4.034 1.641 3.087 2.781 2.191 0.915

LM15 1.797 6.178 4.542 5.171 5.097 2.282 10.539 4.261 1.284 4.413 3.244 3.694 3.640 1.630 7.528 3.044

LM10 0.843 0.449 1.441 1.477 0.595 3.003 2.193 4.554 0.602 0.321 1.030 1.055 0.425 2.145 1.567 3.253

LM1 1.592 1.107 2.063 1.470 0.619 2.748 1.570 5.036 1.137 0.790 1.474 1.050 0.442 1.963 1.122 3.597

JIM20 0.000 4.477 0.000 0.000 0.248 16.582 3.022 1.110 0.000 3.198 0.000 0.000 0.177 11.845 2.159 0.793

LM2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JIM4 1.946 0.994 1.652 1.764 5.114 3.967 3.813 4.101 1.390 0.710 1.180 1.260 3.653 2.833 2.724 2.929

JIM13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JIM16 0.000 0.000 0.000 0.000 0.000 0.000 2.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM9 8.956 3.227 3.565 4.489 8.005 3.672 6.038 14.325 6.397 2.305 2.546 3.207 5.718 2.623 4.313 10.232

LM28 10.677 3.471 5.483 5.052 6.104 7.771 3.077 4.176 7.626 2.480 3.916 3.609 4.360 5.551 2.198 2.983

LM6-M 0.000 0.000 8.789 0.000 10.312 21.610 11.236 5.996 0.000 0.000 6.278 0.000 7.366 15.436 8.026 4.283

LM30 0.000 8.571 0.000 0.000 0.000 8.772 0.000 6.068 0.000 6.122 0.000 0.000 0.000 6.266 0.000 4.334

JIM5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM5 1.035 0.959 1.168 0.515 0.681 0.624 0.279 0.067 3.451 3.197 3.895 1.717 2.269 2.080 0.929 0.224

LM21 0.170 1.715 0.281 0.133 0.290 1.427 0.324 0.233 0.567 5.718 0.938 0.444 0.965 4.756 1.079 0.778

LM15 0.045 0.551 0.552 0.393 0.784 0.337 0.436 0.409 0.151 1.836 1.841 1.310 2.614 1.122 1.453 1.363

LM10 0.444 1.780 0.995 0.824 0.551 1.691 0.917 0.472 1.482 5.932 3.317 2.746 1.836 5.638 3.056 1.575

LM1 0.282 0.827 0.611 0.253 0.909 0.131 0.712 0.406 0.941 2.757 2.038 0.842 3.030 0.435 2.374 1.352

JIM20 0.045 0.518 0.175 0.220 0.530 0.132 0.579 0.324 0.151 1.728 0.582 0.734 1.767 0.439 1.930 1.080

LM2 1.036 1.531 0.000 0.932 0.216 1.407 1.172 1.041 3.455 5.102 0.000 3.105 0.720 4.691 3.907 3.469

JIM4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JIM13 0.157 2.291 0.400 0.124 0.359 1.403 0.346 0.221 0.524 7.637 1.333 0.415 1.195 4.677 1.152 0.738

JIM16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LM28 0.686 2.868 1.148 0.436 1.069 3.245 3.475 2.471 2.286 9.560 3.828 1.452 3.562 10.818 11.584 8.235

LM6-M 1.418 0.887 1.562 0.709 0.371 0.879 0.344 0.190 4.727 2.957 5.207 2.362 1.238 2.930 1.148 0.635

LM30 0.000 1.837 0.000 0.000 0.000 1.880 0.000 1.300 0.000 6.122 0.000 0.000 0.000 6.266 0.000 4.334

2010

2011

2009

MAbSeason

CDTA NaOH

Harvest number Harvest number

Figure 3.18 Heat map of the standard deviations associated with the 
analysis of cell wall polysaccharides throughout a field development 
study in Figure 3.17. The standard deviations between the biological 
replicates analysed for the detection of 16 additional cell wall polymer epitopes 
detected by monoclonal antibodies throughout development over three 
growing seasons as identified by CoMPP. Two extraction fractions have been 
assessed CDTA (Cyclohexanediaminetetraacetic Acid) and NaOH (Sodium 
hydroxide). The intensity of the green indicates larger standard deviations 
between biological replicates. 
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3.4 Discussion 

3.4.1 Sugar beet storage root anatomy is connected to relative sucrose 

content 

The results of the successive cambium study expanded on the findings of 

Artschwager (1926). Root diameter increases due to cell division and cell 

expansion taking place between cambial rings increasing the distance between 

the rings until they are more or less equidistant, with the exception of the rings 

closest to the periphery of the root. This study also showed that the vascular rings 

in a mature root are lain down during the early seedling development discussed 

in this chapter. The number of cambial rings is also a contributing factor in 

sucrose concentration as lines of Beta with higher sucrose content have an 

increased number of cambial rings, the SOPHIA line has up to eight additional 

cambial rings whereas the garden beet (W375B) has a maximum of 6 showing 

that an increased cambial ring number is a feature of storage root which the 

potential for increased sugar beet sucrose yield. Using C869 as a representative 

of sugar beet that isn’t a commercial variety shows that the selective breeding 

programmes that have produced the Sophia line for increased sucrose 

concentrations in the storage root have led to the addition of cambial rings.  

3.4.2 Detection of cell wall polysaccharides throughout development 

The cell wall is not a static structure and can therefore change composition in 

response to developmental stimuli, this has been shown clearly in the field 

development study where the relative abundance of certain epitopes either 

fluctuates over the growth period or maintains at a specific level of relative 

abundance, in addition seasonal variation demonstrates that the cell wall can also 

respond to environmental signals. The epitopes which had little fluctuation in the 

relative abundance throughout the harvest points are those involved in the 

general wall structure and are required for cell division and expansion, for 

example the homogalacturonan (HG) epitopes detected the back bone of the 

pectin macromolecule and are required for general plant growth and allows 

primary cell wall expansion, therefore this would be a polysaccharide key to the 

maturation of the root as cells expand to increase root yield. In addition the 

epitope which detects feruloyation of pectin (LM12) are also involved in the 
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structural integrity of the cells and cell adhesion (Oosterveld et al., 2000, 

Oosterveld et al., 1997) and therefore are necessary to ensure the overall 

strength and shape of the root throughout all developmental stages. These 

structural epitopes will remain with the same relative abundance throughout 

harvest points as more of the polysaccharide is produced to accommodate root 

growth.  

Some epitopes are associated with pectin but have a role in cell wall flexibility 

and adhesion (Moore et al., 2008, Ralet et al., 2008). These epitopes are usually 

associated with rhamnogalacturonan I (RGI) and form branches of galactan 

(LM5) or arabinan (LM6, LM13, LM16, LM6-M). Flexibility is important while the 

root is expanding and accumulating sucrose as the cells need to withstand the 

turgor pressure associated with high sucrose concentrations. After bolting 

(harvest 15 and 16) the turgor pressure within the storage root is reduced and 

the cells become more rigid. This is echoed by the fall in galactan and arabinan 

epitope relative abundance in the final two harvests.  

The xylan antibodies (LM10, LM11 and LM28) have shown high epitope detection 

throughout the growing season, especially at either end of the growing season. 

This epitope detection patterning supports the cambial work in the previous 

section where vasculature is lain down in the early stages of development. Higher 

abundance of the xylan epitope in the early stages is due there being a higher 

abundance of vasculature in comparison to other tissue types as demonstrated 

in early seedling development in this Chapter. As the root develops cell division 

and expansion occurs between the cambial rings to increase root size and 

accommodate sucrose reducing the abundance of the xylan epitope in the 

storage root.  After vegetative maturity, the root switches into the reproductive 

phase where some of the biomass in the storage root is converted to produce the 

elongated stem to allow flower production and therefore once again the relative 

abundance of the xylan epitope in relation to other cell types is increased.  

The relative abundance of extensin epitopes (LM1 and JIM20) show higher 

signals throughout the vegetative half of the growing season. It would be 

expected that extensin would be abundant during these stages due to the storage 
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root expanding during this time to accommodate the accumulating sucrose 

(Carpita and Gibeaut, 1993, Taiz, 1984). After this expansion the relative levels 

of extensin drop at harvest point 15 where the root is no longer increasing in size. 

These epitopes showed the most seasonal variation which the 2010 season 

showing variation in abundance throughout the harvest points, the 2010 season 

was colder and had increased rainfall compared to the other two experimental 

seasons (Fig 3.9), resulting in reduced fresh weight of the sugar beets which grew 

during this season. The beets for the 2010 season had reduced root yield and 

therefore did not expand as much as the beets grown in the other two seasons, 

explaining the variation in relative abundance of the extensin epitopes.  

 

3.4.2.1 A comparison of using ELISA and CoMPP for the analysis of cell wall 

polysaccharides 

Comprehensive microarray polymer profiling, or CoMPP and enzyme linked 

immunosorbent assay, or ELISA are both widely used in conjunction with cell wall 

component specific monoclonal antibodies (mAbs) for the analysis of the 

occurrence and relative abundance of plant cell wall glycans. Until now no 

comparison between the two methods has been made using the same samples 

for both methods of analysis. In this study sugar beet cell wall material collected 

throughout a growing season has been analysed using both of the methods. The 

comparative merits of both procedures have been evaluated as methods of cell 

wall component detection and ability to profile cell wall structures and changes 

throughout the growing season. 

An advantage of using CoMPP as a tool for profiling cell wall glycans is that is it 

possible to screen large sample groups many mAbs at the same time, due to the 

semi-automated method of the procedure. When conducting ELISAs for the 

samples discussed in this study the number of mAbs used was limited to about 

twelve due to time and space restraints, however up to thirty mAbs can be probed 

in one run of CoMPP (Fig 3.13). The larger screen has allowed for the 

assessment of interesting epitope abundance changes throughout the growing 

season.  
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Doing a large initial screen of antibodies is a useful way to utilise the high 

throughput nature of CoMPP. When conducting an ELISA protocol it is the norm 

to select the mAbs considered to be of most interest, however this could lead to 

missing interesting results which can be obtained through a larger screen.  

While being able to using a larger screen has its advantages it is clear that the 

two protocols produce comparable results which have higher and lower affinity to 

the epitopes. The CoMPP method uses a cut-off point of 5% where any signal 

below this point is regarded as no signal and reported as 0.00. The ELISA 

protocol does not usually use a cut off and any signal above the background level 

is considered a true result, this could allow for subtle results to be picked up where 

they may have not been using the CoMPP method where background is removed 

before the 5% cut off is applied.  

The CoMPP method is a very useful tool if a large number of samples need to be 

analysed as it is very easy to screen many samples with many mAbs in a 

relatively short timeframe. This method allows the user to identify interesting 

results very quickly so that they could then be assessed further. The ELISA 

method is much slower and less high throughput than the CoMPP method, 

however it is much easier to pick up subtle differences within an analysis making 

this useful to use if you need a more sensitive analysis of samples.  
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Chapter 4 

Characterisation of a phloem sieve element specific 

antibody (LM26) 

 

  



 

95 

 

4.1 Introduction 

To assess the potential sucrose yield of sugar beet storage roots this project has 

identified key structures within the storage root anatomy utilising the previously 

characterised mAb LM11. However in this analysis it is difficult to identify the 

tissues responsible for the translocation of sucrose to the root, the phloem. The 

ability to identifying these cell types is important in the understanding of phloem 

tissue location and cellular structure in situ, and how this dictates sucrose yield. 

There are currently no known markers for phloem sieve elements and therefore 

the identification of phloem cells and the positioning of these has previously been 

a challenge.  This was an important challenge to overcome in this project as the 

abundance and positioning of phloem in sugar beet storage roots is an indicator 

of potential sucrose yield and an identifier for breeding targets to increase 

sucrose yield.  

The study of plant developmental anatomy requires analyses which leave plant 

material in-tact allowing visualisation and tracking of anatomical changes over 

time. While chemical analysis of plant material can give insight into the 

composition and relative abundance of cell wall polysaccharides of plant cell walls 

over time these analyses relies on the complete destruction of any anatomical 

structures and therefore cannot give insight into the spatial positioning of these 

polysaccharides in muro. Monoclonal antibodies (mAbs) in combination with 

immunofluorescence microscopy allow the detection of cell wall polysaccharides 

in situ and in context of the associated tissue. Although this is an effective and 

widely used technique for the analysis of plant cell walls it relies on the availability 

of appropriate mAbs directed to specific epitopes of interest. Once mAbs are 

characterised and their binding specificities known they can be used in the 

assessment of the function and location of their respective specific cell wall 

structures. Currently there is a wide range of mAbs available for the detection of 

a diverse range of cell wall polysaccharides including those described in Fig 1.1. 

Despite the vast number of mAbs available, use to identify specific cell types is 

uncommon, this is due to cell wall polysaccharides being rarely limited to one cell 

type and binding patterning varying between species and taxonomic groups. An 
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exception are mAbs directed to heteroxylan which bind specifically to xylem 

vessels due to the heteroxylan rich secondary cell walls (McCartney et al., 2005).  

The identification, characterisation and use of the monoclonal antibody 

designated LM26 are described in this chapter. The use of several analytic 

techniques described here show LM26 as a novel tool for the study of plant 

vascular anatomy with specificity to phloem sieve elements. 

4.2 Materials and methods 

Fluorescence microscopy of sugar beet and garlic blubs was conducted by the 

author as described in chapter 2. TEM microscopy and images of LM26 binding 

in sugar beet were supplied by Rebecca Lauder at Rothamsted research.   

Glycan microarrays were provided by Mads Clausen at the technical university 

of Copenhagen. 

Epitope detection chromatography was conducted as described in chapter 2 by 

the author using shop bought garlic bulb material extracted at the University of 

Leeds. 
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4.3 Results 

4.3.1 Monoclonal antibody LM26 binds specifically to phloem sieve 

elements in a range of plant organs including sugar beet roots 

The antibody designated LM26 which was secreted by a cell line arising from the 

immunization which led to the pectic homogalacturonan directed Mab LM7 

(Willats et al., 2001), was found to bind to plant cell walls. Specifically LM26 

bound to phloem sieve elements (Fig 4.1). Shown in Fig 4.1 specificity to phloem 

sieve elements can be identified by the presence of ‘filled’ companion cells with 

high cytoplasmic content which are associated with the cells which are bound by 

LM26.  A range of plant species other than sugar beet show phloem specific 

binding of LM26 including Arabidopsis thaliana stems, tomato petiole and 

Miscanthus stems (Fig 4.2). The LM26 antibody was used to probe mature sugar 

beet storage root cross sections to identify binding specificity. Calcofluor White 

was applied to all antibody labelled sections, labelling all β-glycan linkages in 

plant cell walls to produce blue fluorescence when UV is applied. The Calcofluor 

white stain provides a structural over view of all cell walls in the sections allowing 

the positioning of the bound cells to be identified. The combination of monoclonal 

antibody binding specificity and Calcofluor white staining allows a clear view of 

the sugar beet storage root supernumerary cambial arrangement (Fig 4.3). In this 

arrangement the phloem sieve elements highlighted in the green  are situated 

outside of its associated xylem tissue, as identified by the thickened cell walls 

stained with Calcofluor white coloured blue, under UV radiation. Using 

immunogold labelling in combination with transmission electron microscopy 

(TEM) (Fig 4.4)   indicates that the LM26 epitope is located adjacent to the plasma 

membrane, as shown by the black particles restricted to the inner surface of the 

cell wall. 
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Figure 4.1 in situ analysis of LM26 binding to Beta vulgaris L. (sugar beet).  In situ indirect immunofluorescence analysis 
of LM26 binding to transverse sections of resin embedded sugar beet storage root. A) Combined bright field and indirect 
immunofluorescence (green FITC) detection of LM26 binding to phloem sieve elements. B) Immunofluorescence (green 
FITC) of LM26 binding. Arrows indicate associated companion cells. Scale bars = 20 µm 
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Figure 4.2 in situ analysis of LM26 binding patterns. In situ indirect 
immunofluorescence analysis of LM26 binding to transverse sections of resin 
embedded; A1) Arabidopsis thaliana inflorescence stem, B) Miscanthus x 
giganteus stem, C) Tomato leaf petiole. In all cases LM26 binds specifically to 
phloem sieve elements, indicated by single headed arrows. A2) 
immunolabelling of LM5 in A. thaliana shown for comparison, binding to all cell 
types (including phloem sieve elements). For M. x giganteus LM26 binding has 
been combined with bright field to show all cell types with a double 
magnification insert showing the absence of LM26 binding in companion cells. 
In the case of tomato Calcofluor White (blue fluorescence) is used to stain all 
cell types. Scale bars = 100 µm. (Images provided by Paul Knox and Sue 
Marcus, University of Leeds). 

 

A1 A2 
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Figure 4.3 Overall vascular 
anatomy in sugar beet 
storage root.  Combined 
indirect immunofluorescence 
(green FITC) detection of 
LM26 binding to, p; phloem 
sieve elements in a transverse 
section of a resin embedded 
sugar beet storage root with 
Calcofluor White staining 
(blue) highlights all cell types 
with x; xylem vessels 
highlighted most strongly. 
Scale bar = 400 µm. 
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Figure 4.4 Transmission electron microscopy of sugar beet phloem 
sieve elements. Transmission electron microscopy and immunogold 
labelling of LM26 binding to phloem sieve elements in sugar beet storage 
roots. Gold particles (indicated with arrows) are restricted to the inner cell 
wall adjacent to the plasma membrane of the phloem sieve elements (se). 
Gold particles are not present in cell walls of neighbouring companion cells 
(cc). Scale bar = 1.0 µm. Image supplied by Rebecca Lauder (Rothamsted 
research, Harpenden, UK) 

 

se

 
 se 

se 

cc 



 

102 

 

4.3.2 LM26 binds to a β-1,6-galactosyl substitution of pectic β-1,4-galactan 

LM26 was used against sets of microarrays of synthetic cell wall associated 

oligosaccharides, produced at the Technical University of Copenhagen, to 

determine the epitope recognised by the antibody. The LM26 antibody was found 

to bind to three related β-1,4-galactosides (Fig 4.5), with the most effective 

recognition of 6-O-(β-Gal)-β-1,4-galactohexose (oligo 12, Fig 4.5). Weaker 

recognition was identified in oligosaccharides with a longer substitution or a 

shorter β-1,4-galactan backbone (oligos 10 and 5 respectively, Fig 4.5).  

Binding of LM5 was conducted as a comparison to the recognition of LM26, and 

shows to have recognition specificity restricted to linear β-1,4-galactosides 

without the substitutions recognised by LM26 and has been previously reported 

(Andersen et al., 2016a).  

  



 

103 

 

 

 

  

Figure 4.5 Summary of glycan microarray analysis of LM26 the binding 
specificities of mAbs LM5 and LM26 to synthetic 1,3-galacto-
oligosaccharies are shown. The three structures bound by LM26 are shown 
(Oligos-12, 10 and 5) with the proposed LM26 epitope highlighted in the 
yellow shaded area. Values are the % of the maximal detectible signal. 
(Figure provided by Mads Clausen, Technical University Denmark). 
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4.3.3 LM26 binding occurs in most cell walls of garlic bulbs: an abundant 

source of the epitope for the characterisation of LM26 

 

The structure identified as the LM26 epitope, β-1,6-galactosyl substitution of β-

1,4-galactan, is rare in pectin (Ridley et al., 2001), however it has been identified 

in garlic bulbs (Das and Das, 1977). Using LM26 to probe garlic bulbs sections 

indicated that the LM26 epitope is present in most cell walls and not exclusively 

phloem sieve elements (Fig 4.6). This has provided an abundant source of the 

LM26 epitope for additional analyses where sufficient material could not be 

extracted from sugar beet root due to sparsity of the epitope. This source of the 

LM26 epitope from garlic bulbs has been used to further confirm that the epitope 

is linked to pectic glycans.  

 

 

 

 

 

  

Figure 4.6 LM26 binding in garlic bulbs. A, Bright field micrograph of a 
transverse section of a wax embedded garlic bulb showing all cells B, Indirect 
immunofluorescence (green FITC) detection of LM26 binding to most cell walls 
s in the same section. Scale bar = 300 µm 
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Further analysis was conducted using LM26 and other cell wall directed mAbs in 

combination with anion-exchange chromatography to detect the biological 

associations of cell wall epitopes within the cell wall, a technique developed 

previously and called epitope detection chromatography (EDC) (Cornuault et al., 

2014). After extraction of the garlic bulb AIR, extractions were analysed for 

relative abundance of the LM26 epitope by ELISA, the first extraction, water was 

found to have the highest relative abundance of the LM26 epitope and was used 

for EDC analysis. Fractions were eluted from the anion exchange column using 

an increasing step salt gradient producing several co-eluting peaks detected 

using LM26, LM5 and JIM7 (Fig 4.7). The LM26 and LM5 detection show highly 

similar outputs supporting that the LM26 epitope is associated with a linear 

galactan backbone as shown in the microarray analysis (Fig 4.5). JIM7 binds to 

methyl-esterified HG (Clausen et al., 2003), co-elution of LM5 and LM26 with the 

JIM7 peak suggests that the epitopes are associated with pectic RG-I. LM19 

binds to un-esterified HG (Verhertbruggen et al., 2009) an epitope that only elutes 

at highest salt concentrations, producing one single peak, showing a distinct 

group of un-esterified HG (Fig 4.6). Running the same EDC protocol after a pre-

treatment of an alkali (sodium carbonate, Na2CO3) shows the loss of the JIM7 

epitope and an increase in the LM19 peak (Fig 4.7), the alkali pre-treatment 

removes methyl esterification and therefore increases the relative abundance of 

un-esterified HG. After the de-esterification both the LM26 and LM5 traces 

showed a shift with a higher elution with the LM19 epitope. However, not all the 

LM5 and LM26 epitopes co-eluted after the alkali treatment suggesting that not 

all are associated with HG domains. From this analysis it is clear that the LM26 

MAb binds to a substitution of 1,4-galactan with associations to pectic RG-I.  

 



 

106 

 

 

Figure 4.7 Epitope detection chromatography (EDC) of garlic bulb cell 
wall material. Epitope detection in water-soluble extract of garlic bulb cell 
walls using LM26, LM5. Including detection of pectic HG epitopes using JIM7 
(methyl esterified HG) and LM19 (un-esterified HG). Samples were treated 
with a sodium carbonate pre-treatment (+Na3CO2) or without (-Na3CO2) in 
each case the traces shown are the mean of three chromographic runs. The 
stepped gradient used is shown for the anion exchange chromatography is 
shown as a dashed line.  
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4.4 Use of LM26 to identify phloem development in sugar beet storage root. 

LM26 is an addition to a variety of cell wall marker which aid the study of vascular 

development and have been used to track the early development of sugar beet 

(Beta vulgaris) storage roots (Fig 4.7) In this case LM26 has the capability to 

indicate phloem cells within the supernumerary successive cambial anatomy at 

differing time points to identify the potential link between phloem abundance and 

position to overall sucrose yields in the commercial crop.  

4.4.1 Study of phloem developmental anatomy in sugar beet storage roots 

Using the LM26 MAb the development of the phloem vessels has been tracked 

through the early development of the storage root in three different Beta vulgaris 

lines; commercial sugar beet variety Sophia, a sugar beet variety used for 

breeding programmes C869 and a red garden beet variety W357B.  After 3 weeks 

of growth after emergence (3 WAE) there is clear successive rings of phloem 

vessels visible in all three lines, these are interspersed with parenchyma tissue 

and xylem tissue, with the phloem vessels developing anterior to the xylem 

vessels. While the roots are still small the phloem vessels appear to be laid down 

in an unbroken circle, whereas with increased root size the space between rings 

increases and vascular tissue is detected with parenchyma separating areas of 

vasculature within the same vascular ring giving the vasculature a more clustered 

appearance with rays of xylem and phloem dispersed around the arc of each 

vascular ring. 

In Chapter 3 the anatomy of the same three lines were assessed using LM11 to 

identify the xylem vessels. The binding patterning shown by LM26 in Figures 4.8, 

4.9 and 4.10 show that each of the rings of xylem is associated with phloem sieve 

elements. The outer rings appeared to contain phloem sieve elements at a lower 

abundance than the more central rings. However, the Sophia line had a higher 

abundance of phloem sieve elements, detected by LM26, in the more outer rings 

than the other two lines. The W357B line showed the lowest abundance of 

phloem sieve elements as highlighted by the binding of LM26.  
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Figure 4.8 Overall plant morphology and developmental study of phloem vasculature in the 

sugar beet line Sophia. The developmental anatomy of phloem sieve elements tracked by using the 

monoclonal antibody LM26 (green FITC) as a probe for phloem sieve elements. Sugar beet plants of 

increasing age are shown as weeks after emergence (WAE). As the root increase in age the dimeter 

increases as does the number of vascular rings. At 4 WAE each ring of vasculature is represented by 

an individual image where parenchyma tissue between the rings has been removed. Calcofluor White 

(blue UV) is used to show all cell types as reference. Scale bar = 200 µm (unless otherwise stated) 
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Figure 4.9 Overall plant morphology and developmental study of phloem vasculature in the 

sugar beet line C869. The developmental anatomy of phloem sieve elements tracked by using the 

monoclonal antibody LM26 (green FITC) as a probe for phloem sieve elements. Sugar beet plants of 

increasing age are shown as weeks after emergence (WAE). As the root increase in age the dimeter 

increases as does the number of vascular rings. At 4 WAE each ring of vasculature is represented by 

an individual image where parenchyma tissue between the rings has been removed. Calcofluor White 

(blue UV) is used to show all cell types as reference. Scale bar = 200 µm (unless otherwise stated) 
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Figure 4.10 Overall plant morphology and developmental study of phloem vasculature in the red 

garden beet variety W357B. The developmental anatomy of phloem sieve elements tracked by using 

the monoclonal antibody LM26 (green FITC) as a probe for phloem sieve elements. Sugar beet plants 

of increasing age are shown as weeks after emergence (WAE). As the root increase in age the dimeter 

increases as does the number of vascular rings. At 4 WAE each ring of vasculature is represented by 

an individual image where parenchyma tissue between the rings has been removed. Calcofluor White 

(blue UV) is used to show all cell types as reference. Scale bar = 200 µm (unless otherwise stated) 
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4.5 Discussion  

The monoclonal antibody designated LM26 binds to a β-1,6-galactosyl 

substitution of pectic β-1,4-galactan, which is specific in phloem sieve elements 

in many species. A cell wall epitope specific to phloem sieve elements is an 

interesting discovery. Since the theory was first proposed by Münch (1930) it has 

become widely accepted that mass flow through phloem sieve elements is driven 

by the pressure gradient generated by the accumulation of photosynthate at the 

source (e.g. leaves) and the unloading of these at the sinks (e.g. roots and fruits). 

The higher solute content of the phloem sieve elements produces a higher turgor 

pressure due to water entering from surrounding cells via osmosis (De Schepper 

et al., 2013, Gould et al., 2005). While phloem cell walls are usually thicker to 

accommodate the relatively increased turgor pressure associated with mass flow, 

the cell walls of phloem are not thickened to the extent of xylem vessels with their 

secondary cell walls (Heo et al., 2014). Therefore indicating that the detected 

branching of the 1,4-galactan plays some role in the mechanical properties of the 

cell wall. While the role of RG-I glycans is not completely resolved there is 

evidence that 1,4-galactan rich domains of pectic polysaccharides are associated 

with increased cell wall firmness, and conversely cell walls have increased 

elasticity where 1,4-galactan is less abundant (McCartney et al., 2000).  The 

substitution recognised by the LM26 antibody may contribute to a modification of 

the 1,4-galactan to increase the elasticity in these regions of phloem vasculature 

enabling the cell walls to withstand higher turgor pressure (Torode et al., 2017). 

Structural modifications of galactosyl side chains are synonymous with their 

capacity to cross link with other cell wall components as areas with higher 

frequency of unsubstituted blocks are more able to interact with other cell wall 

components (Dea et al., 1986). Therefore the addition of the substitution detected 

by LM26 contributes to altering the overall mechanical properties of the cell walls 

which make the phloem tissue fit for function 

Understanding the internal anatomy of sugar beet storage roots in respect to 

phloem development is key to increasing sugar yield.  It has been long known 

that sucrose is deposited in sugar beet roots through diffusion from phloem cells 

to parenchyma cells down a concentration gradient (Draycott, 2006). Therefore it 
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is hypothesised that an increase in phloem number would increase the sucrose 

content of the storage root and increase overall sugar yield for the sugar beet 

industry.  This work for the first time shows an in situ representation of the 

anatomy of the sugar beet vasculature to provide reference for the improvement 

of the sugar beet crop.  
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Chapter 5 

Assessment of recombinant inbred lines of Beta 

vulgaris to identify candidate lines for future breeding 

targets
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5.1 Introduction 

When sucrose was discovered in the roots of red and white beets those with 

higher sugar levels were selectively bred to give rise to a majority of today’s 

modern sugar beet varieties (Francis, 2006), which mostly trace back to these 

early selections. Beta vulgaris not only includes sugar beet (Beta vulgaris 

subsp. vulgaris) but also Swiss chard (Beta vulgaris subsp. vulgaris), red beet 

(Beta vulgaris subsp. vulgaris), fodder beet (Beta vulgaris subsp. vulgaris) and 

many wild varieties including sea beet (Beta vulgaris subsp. maritima). Cross 

fertilisation between these types has enabled breeders and scientists to tap 

into genetic diversity within the species, contributing to many favourable traits 

of commercial sugar beet such as disease resistant hybrid varieties, for 

example Rhizomania resistance (McGrath, 2010). Now modern conventional 

breeding methods such as marker assisted breeding are routinely used to 

produce novel sugar beet lines (Francia et al., 2005, Grimmer et al., 2007, 

Schondelmaier et al., 1996), supported by the adoption of genetic modification 

to introduce specific desirable traits that do not exist in the available breeding 

germplasm However, currently only three varieties of genetically modified 

sugar beet are approved, all of which convey herbicide resistance and are 

cultivated in USA, Canada and Japan (ISAAA, 2016). The adoption of 

genetically modified sugar beet in Europe is unlikely to occur in the near future 

(European Commission, 2009, European Commission, 2015).  

Due to traditional breeding efforts involving backcrosses to remove deleterious 

traits the genome of commercial sugar beets are relatively similar. In this study 

a population of recombinant inbred lines (RILs) produced by McGrath et al. 

(2005) have been used in an effort to identify traits or genetic combinations 

which wouldn’t otherwise rise from commercial sugar beet breeding 

programmes. The RILs used are the result of a cross between a sugar beet 

parent line (C869) and a red garden beet parent (W357B) produced by Mitchell 

McGrath at Michigan State University as part of a gene discovery study 

(McGrath et al., 2005). The principal behind this cross was that these two lines, 

while the same species, have contrasting physiological traits. The goal of this 

cross was to develop RILs from genetically divergent germplasm to examine 
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trait genetics. This resulting RIL has been utilised to assess the cell wall 

components and interactions of sugar beet storage roots and how these could 

have an effect on crop successes. The results can be used to identify potential 

candidate lines to be investigated and beneficial genes identified.  

5.2 Materials and methods 

The RIL population used in this chapter was provided by Michell McGrath, 

Michigan State University and grown at Broom’s Barn on behalf of the author 

in preparation for the start of this project in October 2013. The RIL population 

were harvest by the author and staff at Broom’s barn when measurements 

were taken at time of harvest and root material was coarsely cut before 

freezing with liquid nitrogen and storing at 80°C. After storage the samples 

were freeze dried and ground by the author at Rothamsted research, 

Harpenden.  

Ground samples were prepared as alcohol insoluble residue by the author at 

University of Leeds and then prepared in sample tubes to be transported to 

University of Copenhagen. The author attended the University of Copenhagen 

for a research visit to conduct the CoMPP analysis and data handling for the 

RIL population in this chapter.  

Raw data from the CoMPP analysis was provided to Stephen Powers 

(Rothamsted research) for statistical analysis, where groups were analysed 

for the effect of genotype and growing area. Some data was disregarded at 

this stage as being statistically unreliable and is not included in final analysis. 

Statistical data provided in the form of the multivariant analysis is shown in 

Figure 5.1 in this chapter. Statistically relevant data was utilised to perform 

univariate analysis by the author (Figure 5.1 – Figure 5.15)  



 

116 

 

5.3 Results 

The resulting RILs from the cross between the C869 sugar beet parent and 

the W357B red garden beet parent produced distinct genetic lines which were 

used for this analysis in combination with the parent lines and a commercial 

variety Sophia. These lines were harvested with four individual plants 

representing each RIL. With potentially 800 samples including controls and 

replicates for the RIL population it was important to use a high throughput 

method to analyse the cell wall polysaccharides across the population. 

Therefore, comprehensive microarray polymer profiling (CoMPP) was used to 

identify the relative abundance of call wall polysaccharides in the roots 

collected from the RIL population. After processing losses from field related 

diseases such as violet root rot or low yield 175 lines each of which had its cell 

wall material extracted twice sequentially (CDTA and NaOH extractions) were 

analysed using CoMPP at the University of Copenhagen. This analysis utilised 

30 monoclonal antibodies (mAbs), to complete a large screen of the 

polysaccharide epitopes across the population.  

The raw data of the spot densities from the arrays were used for correlation 

analysis because using the adjusted values as described in chapter 3 (setting 

100% as a standardised maximum) would interfere with the statistical analysis 

of the results. A multivariate correlation was conducted to deduce any general 

trends of polysaccharide epitope abundance, the correlation results included 

both the mAb detection and physiological traits (root fresh weight, root 

diameter, root dry weight, percentage dry matter, percentage sucrose of dry 

matter, percentage sucrose of fresh weight and sugar yield) that had been 

previously collected (Fig 5.1). Correlation between physiological traits were as 

anticipated with sugar yield having a strong positive correlation with fresh root 

weight, diameter, dry weight and % sucrose of dry matter. Therefore, large 

roots with high sucrose concentration of the dry matter confers higher overall 

sugar yield.  
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5.3.1 Verification of the method by correlations between monoclonal 

antibodies of the same class 

Where antibodies detect similar epitopes this can serve as an internal control. 

Examples of these internal controls have the highest positive correlations; 

LM15 and LM25 which both bind to xyloglucan had a positive correlation of 

0.954, LM11 and LM10 which both bind to xylan had a positive correlation of 

0.945, LM18 and LM19 which both bind to homogalacturonan had a positive 

correlation of 0.949, LM1 and JIM20 which both bind to extensin showed a 

positive correlation of 0.985. These strong positive correlations show that the 

methods used for this analysis are reliable.  

5.3.2 Correlations of different monoclonal antibodies indicate in muro 

interactions between polysaccharide groups.  

The correlation between different cell wall polysaccharides gives insight in to 

the interactions of the polysaccharides within the wall. LM6-M detection of 

arabinan positively correlated with LM12 epitope abundance which was similar 

to the positive correlation shown by LM6 which also detects arabinan. To a 

lesser extent there was a positive correlation between detection of LM6-M and 

the detection of the JIM7 epitope (homogalacturonan). In general across the 

correlation matrix there was a positive correlation between mAbs which detect 

HG epitopes and those which detect arabinan epitopes. For example there 

was a strong positive correlation between detection of the LM13 epitope and 

JIM7 detection of at 0.583 and 0.560 for the CDTA and NaOH extractions 

respectively. This positive correlation occurred with the exception of LM13 

detection where there was negative correlation between this epitope and those 

detected by LM18 and LM19 in the NaOH extraction, however there was a 

positive correlation between these detected epitopes in the CDTA extraction. 

The JIM16 and JIM13 epitope detection of AGPs had positive correlation with 

arabinan detection by LM6 and LM6-M as well as a positive correlation with 

detection of HG by LM19 and LM18.  

Detection of galactan epitopes by the mAb LM5 showed a positive correlation 

with HG epitopes identified by JIM5 and LM19. AGP epitopes detected by 

JIM13 and LM2 also showed a positive correlation with the detection of 
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galactan. However there was a negative correlation between detection of 

galactan and the detection of arabinan by LM13. The anti-xylan antibodies 

LM11 and LM10 indicated a positive correlation with detection by several other 

antibodies including those detecting HG (JIM5), AGP (JIM13 and LM2) and 

galactan (LM5).  

Detection by LM1 and JIM20 for epitopes of extensin had a positive correlation 

with the JIM7 epitope (homogalacturonan). With JIM20 also showed positive 

correlation with the anti-AGP epitopes identified by the mAb JIM16 as well as 

arabinan detection by LM6. The detection of xyloglucan by LM25 only showed 

a positive correlation with two of the anti-HG antibodies, LM19 and LM18. 

5.3.3 Correlation between physiological traits and cell wall epitope 

detection in RIL population 

The correlation between economically important physiological traits and cell 

wall polysaccharides can give an insight in to how the composition of sugar 

beet storage root cell walls can impact the overall sucrose yield from the crop. 

Highlighted on the correlation matrix in Figure 5.1 there are some specific 

mAbs epitope detections which showed correlation, both positive and 

negative, with physiological traits. For example, the JIM13 epitope detected in 

the NaOH fraction showed a negative correlation with both fresh and dry root 

weight. Detection of LM10 and LM11 epitopes, which both detect xylan, 

showed a negative correlation with fresh and dry weight. Importantly LM11 

epitope detection had a negative correlation with sugar yield and to a lesser 

extent the LM10 epitope showed the same negative correlation. LM5 detection 

of a galactan epitope in the CDTA fraction had a positive correlation with both 

percentage of root composed of dry matter and percentage sucrose of the 

fresh weight. Detection of arabinan by LM13 showed positive correlation with 

several physiological traits; fresh weight, diameter, root dry weight and to a 

lesser extent sugar yield. The glucoronoxylan antibody LM28 detection 

showed a positive correlation with percent of root dry matter. 
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Diameter Average cm 0.871

% dry matter 0.003 0.047

Root Dry Weight g 0.986 0.865 0.145

% Sucrose Of Dry Matter 0.428 0.354 0.303 0.469

% Sucrose Of Fresh Weight 0.230 0.227 0.864 0.352 0.731

Sugar Yield kg/ha 0.984 0.859 0.161 0.992 0.533 0.397

LM6-M CDTA 0.092 0.120 -0.085 0.087 0.064 -0.028 0.085

LM6-M NaOH -0.118 -0.029 0.188 -0.101 0.089 0.173 -0.077 0.653

JIM5 CDTA 0.158 0.228 0.114 0.179 -0.161 0.001 0.149 0.175 0.008

JIM5 NaOH -0.317 -0.255 0.145 -0.299 -0.015 0.084 -0.284 0.077 0.465 0.007

JIM7 CDTA 0.151 0.212 0.076 0.173 -0.120 -0.011 0.141 0.458 0.225 0.653 0.001

JIM13 CDTA -0.130 -0.085 -0.108 -0.149 0.012 -0.064 -0.132 0.355 0.326 -0.165 0.299 -0.148

JIM13 NaOH -0.406 -0.306 -0.025 -0.427 -0.118 -0.076 -0.396 0.236 0.638 -0.244 0.535 -0.192 0.669

JIM16 CDTA -0.008 -0.077 0.030 0.000 -0.032 0.003 -0.004 0.483 0.372 0.107 0.116 0.334 0.223 0.220

JIM20 CDTA 0.330 0.321 0.106 0.347 0.020 0.088 0.329 0.322 0.142 0.385 -0.101 0.701 -0.085 -0.227 0.427

JIM20 NaOH 0.149 0.152 -0.197 0.120 0.005 -0.134 0.109 0.119 0.199 0.001 0.224 0.169 0.208 0.257 0.216 0.232

LM1 CDTA 0.357 0.341 0.098 0.373 0.013 0.079 0.352 0.277 0.115 0.400 -0.094 0.705 -0.127 -0.249 0.390 0.985 0.265

LM2 CDTA -0.054 -0.021 -0.126 -0.079 0.027 -0.073 -0.064 0.191 0.163 0.121 0.117 0.010 0.451 0.316 0.262 0.007 0.057 -0.006

LM2 NaOH -0.384 -0.291 -0.011 -0.391 -0.106 -0.059 -0.373 0.139 0.370 -0.032 0.397 -0.041 0.385 0.641 0.251 -0.196 0.091 -0.205 0.674

LM5 CDTA -0.012 -0.022 0.417 0.047 0.281 0.439 0.073 0.079 0.219 0.025 0.345 -0.164 0.429 0.248 0.143 -0.230 -0.114 -0.249 0.235 0.173

LM5 NaOH -0.246 -0.254 0.236 -0.220 0.121 0.227 -0.187 0.018 0.401 -0.174 0.486 -0.314 0.467 0.590 0.293 -0.297 0.033 -0.322 0.294 0.439 0.790

LM6 CDTA 0.006 -0.019 -0.227 -0.019 -0.086 -0.207 -0.027 0.823 0.452 0.293 0.078 0.485 0.327 0.182 0.639 0.406 0.194 0.363 0.211 0.107 0.026 0.042

LM6 NaOH -0.136 -0.050 0.106 -0.125 -0.052 0.043 -0.117 0.624 0.878 0.159 0.449 0.335 0.201 0.564 0.356 0.210 0.248 0.200 0.115 0.378 0.027 0.226 0.482

LM10 NaOH -0.425 -0.309 0.283 -0.390 -0.134 0.135 -0.378 -0.061 0.312 0.086 0.469 -0.073 0.160 0.442 0.216 -0.142 0.093 -0.146 0.237 0.447 0.297 0.477 -0.024 0.287

LM11 NaOH -0.458 -0.357 0.303 -0.418 -0.162 0.133 -0.409 -0.037 0.322 0.061 0.469 -0.078 0.231 0.480 0.270 -0.110 0.057 -0.126 0.294 0.500 0.326 0.508 -0.011 0.295 0.945

LM12 CDTA -0.120 -0.070 0.020 -0.105 0.001 0.014 -0.108 0.892 0.654 0.057 0.238 0.349 0.436 0.357 0.480 0.190 0.112 0.139 0.176 0.270 0.189 0.180 0.682 0.602 0.074 0.124

LM13 CDTA 0.407 0.454 -0.055 0.404 0.004 -0.037 0.377 0.461 0.112 0.572 -0.206 0.583 -0.151 -0.307 -0.100 0.295 0.005 0.313 0.039 -0.210 -0.117 -0.443 0.318 0.213 -0.286 -0.343 0.259

LM13 NaOH 0.148 0.289 0.194 0.167 -0.037 0.111 0.160 0.303 0.410 0.461 0.087 0.560 -0.226 -0.007 -0.043 0.306 0.026 0.322 -0.022 0.025 -0.163 -0.245 0.155 0.538 0.009 -0.041 0.178 0.697

LM15 CDTA -0.227 -0.270 -0.177 -0.247 -0.182 -0.216 -0.251 0.104 -0.019 -0.082 0.099 -0.059 0.074 0.059 -0.006 -0.096 -0.164 -0.118 0.064 0.113 -0.142 -0.051 0.143 0.001 -0.001 0.010 0.206 -0.024 -0.076

LM15 NaOH -0.263 -0.393 -0.083 -0.276 -0.115 -0.126 -0.274 -0.180 -0.085 -0.072 0.125 -0.111 -0.070 0.065 -0.054 -0.105 -0.078 -0.113 -0.010 0.172 -0.119 0.007 -0.154 -0.046 0.152 0.217 -0.070 -0.264 -0.179 0.269

LM18 CDTA 0.067 0.135 0.055 0.080 -0.215 -0.068 0.048 -0.017 -0.191 0.841 0.040 0.441 -0.102 -0.293 -0.121 0.239 -0.054 0.252 0.093 -0.040 0.042 -0.201 0.088 -0.068 0.069 0.057 -0.073 0.407 0.242 -0.040 0.043

LM18 NaOH -0.379 -0.300 -0.133 -0.398 -0.136 -0.162 -0.391 -0.250 0.103 -0.186 0.432 -0.278 0.217 0.464 -0.056 -0.264 0.268 -0.274 -0.030 0.235 0.084 0.394 -0.086 0.034 0.342 0.325 -0.169 -0.432 -0.264 0.089 0.109 -0.114

LM19 CDTA 0.123 0.185 -0.028 0.115 -0.233 -0.134 0.090 -0.019 -0.211 0.820 -0.019 0.455 -0.129 -0.291 -0.162 0.262 -0.014 0.276 0.050 -0.069 -0.061 -0.289 0.105 -0.086 0.036 0.002 -0.118 0.452 0.287 0.016 0.050 0.949 -0.084

LM19 NaOH -0.368 -0.308 -0.097 -0.389 -0.041 -0.089 -0.366 -0.079 0.238 -0.195 0.461 -0.339 0.333 0.530 0.028 -0.315 0.129 -0.333 0.084 0.323 0.232 0.537 0.001 0.145 0.382 0.381 0.017 -0.403 -0.258 0.081 0.101 -0.110 0.831 -0.139

LM21 CDTA 0.081 0.054 -0.291 0.042 -0.095 -0.251 0.035 -0.108 -0.390 0.185 -0.142 0.073 0.088 -0.270 -0.189 0.078 0.096 0.068 -0.026 -0.293 -0.027 -0.215 0.195 -0.396 -0.261 -0.307 -0.262 0.151 -0.145 0.030 -0.088 0.327 0.063 0.370 -0.028

LM21 NaOH 0.006 0.071 0.023 0.001 0.080 0.059 0.013 0.163 0.317 -0.033 0.182 0.043 -0.049 0.183 -0.279 0.023 0.173 0.019 -0.186 -0.009 -0.146 -0.096 -0.023 0.299 -0.020 -0.074 0.058 0.114 0.228 0.003 0.058 0.029 0.166 0.077 0.150 0.132

LM25 CDTA -0.347 -0.357 -0.205 -0.382 -0.213 -0.262 -0.375 -0.043 0.034 0.026 0.156 -0.003 0.051 0.217 0.221 -0.145 0.119 -0.159 0.026 0.165 0.023 0.244 0.149 0.054 0.172 0.179 0.008 -0.218 -0.096 0.087 0.151 -0.085 0.407 -0.077 0.423 0.012 -0.110

LM25 NaOH -0.252 -0.374 -0.002 -0.253 -0.089 -0.055 -0.251 -0.160 -0.063 -0.036 0.108 -0.053 -0.127 0.013 -0.057 -0.076 -0.132 -0.084 -0.098 0.089 -0.095 -0.012 -0.162 -0.032 0.173 0.222 -0.052 -0.207 -0.117 0.250 0.954 0.045 0.081 0.038 0.089 -0.113 0.046 0.158

LM28 NaOH -0.383 -0.326 0.432 -0.332 -0.136 0.230 -0.320 -0.301 0.090 0.117 0.336 -0.115 0.075 0.275 0.041 -0.121 -0.098 -0.126 0.208 0.363 0.324 0.370 -0.270 0.078 0.731 0.813 -0.143 -0.305 -0.019 -0.060 0.330 0.172 0.173 0.115 0.195 -0.232 -0.080 0.030 0.323
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Figure 5.1 Correlation matrix of RIL population. Correlation of the relative abundance of monoclonal antibody detection of cell wall polysaccharides including 

economically important physiological traits of the RIL population. Correlations between cell wall polysaccharide abundance and physiological traits are highlighted in blue. 

Green = positive correlation greater than 0.5, Yellow = positive correlation between 0.4 and 0.5, Red = Negative correlation >-0.4 
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To be able to successfully identify lines from the recombinant population that 

may be suitable for further analysis to push forward sugar beet breeding efforts 

candidates need to be chosen using the information from the correlation matrix 

(Fig 5.1). The most obvious way to improve the crop for the sugar industry is 

to identify lines with the highest sugar yield, as shown in Figure 5.2. The lines 

all show a lower sugar yield than the commercial variety and the sugar beet 

parent. The red beet parent shown in red is low sugar yielding. The most 

relevant physiological traits to use were root diameter, % dry matter and % 

sucrose of dry matter. Root diameter was used because this accounted for the 

size of the root regardless of water content as is the case with fresh root 

weight. Shown in Figure 5.3 the RILs are ranked in order of root diameter with 

the Sophia line being the highest ranked with the largest diameter. The sugar 

beet parent also shows a large diameter with only one line with a larger 

diameter. Again the W357B line was recorded at the opposite end of the 

spectrum. Percentage dry matter is a useful analysis to assess dry matter 

partitioning, how much energy is assigned to the root. The dry matter is 

majority composed of sucrose, cell wall polysaccharides (Milford et al., 1988). 

Figure 5.4 shows the relative percentages of dry matter in all of the lines with 

the commercial Sophia line having the highest percentage of dry matter 

followed by C869. W357B has the second lowest % dry matter value from all 

of the lines. Assessing percentage sucrose of dry matter indicated partitioning 

to sucrose rather than cell wall production. Figure 5.5 showed the commercial 

variety had a much higher percentage sucrose of dry matter than any of the 

RILs, however 15 RILs had higher percentage sucrose of dry matter than the 

C869 line. The red garden beet showed the lowest percentage sucrose of dry 

matter.   

In addition to physiological traits the correlation matrix identified potentially 

beneficial cell wall characteristics which could lead to an increased sugar yield 

(LM5, LM13 and LM28). The relative detection levels of these epitopes has 

been analysed further.  

Figure 5.6 showed the relative detection levels of the LM5 epitope of galactan, 

the commercial variety had a high relative abundance of LM5 detection as did 
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the sugar beet parent C869. LM13 detection of arabinan in Figure 5.7 showed 

that unlike previous traits analysed the high yielding Sophia and C869 did not 

have the highest levels of detection with LM13. Detection of glucuronoxylan 

with LM28 (Fig 5.8) showed that the sugar beet parent C869 had a high 

relative abundance of LM28 detection with the Sophia line having a mid-range 

detection.  

Relevant cell wall detection levels of epitopes which indicated a negative 

correlation with physiological traits in Figure 5.1 (LM10, LM11, JIM13, LM25, 

LM18 and LM19) were also analysed to identify lines with high relative 

abundance of these traits.  

Analysis of the relative abundance of xylan detection with LM10 (Fig 5.9) and 

LM11 (Fig 5.10) indicated that the high yielding sugar beet parent C869 

actually had a relatively high level of xylan detection as did line 325 which was 

one of the higher sugar yielding lines. According to work conducted in Chapter 

3 and 4 of this thesis, which indicated that an increase in vasculature could 

contribute to an increase in sucrose concentration this epitope detection will 

be assessed further for indication of lines showing traits which align with this 

hypothesis.  

Figure 5.11 indicated that the two parent lines had similar detection of the AGP 

epitope of JIM13 with the high yielding commercial line Sophia having a slightly 

higher detection level of JIM13.  

LM25 also indicated a negative correlation with sugar yield in the correlation 

matrix and further analysis indicated that the red garden beet parent line had 

a much higher level of epitope detection of xyloglucan with LM25 than the 

sugar beet parent C869 and the commercial line Sophia (Fig 5.12).  

HG detection with LM18 (Fig 5.13) and LM19 (Fig 5.14) showed that detection 

of Lm18 epitope was higher in the red garden beet than the sugar beet parent 

C869 and Sophia showed a much lower detection of the LM18 epitope. 

However, for LM19 the detection of the HG epitope was higher in the sugar 
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beet parent than the red garden beet parent but the high sugar yielding Sophia 

still had the lowest level of detection from the three.  

In addition the detection of these cell wall polysaccharides identified by the 

correlation matrix as being either positively or negatively correlated with sugar 

yield LM12 epitope has also been considered as an interesting factor for its 

potential effect on downstream pulp processing (Bonnin et al., 2002b).  

Detection of the LM12 epitope (Fig 5.15) shows that the C869 parent line has 

a relatively low detection of feruloylated pectin compared to the W357B parent 

line. 
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Figure 5.2. Recombinant inbred lines ranked by sugar yield. Recombinant inbred lines (RILs) shown in order of 

sugar yield (kg ha-1). Parent lines are indicated by coloured bars; C869 (sugar beet parent) - blue, W357B (red garden 

beet parent) - red. The commercial variety Sophia is indicated by the black bar. Values are displayed as Log.  
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Figure 5.3. Recombinant inbred lines ranked by mean root diameter. Recombinant inbred lines (RILs) shown in 

order of mean root diameter (cm). Parent lines are indicated by coloured bars; C869 (sugar beet parent) - blue, W357B 

(red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.4. Recombinant inbred lines ranked by percentage dry matter. Recombinant inbred lines (RILs) shown 

in order of percentage dry matter (%) Parent lines are indicated by coloured bars; C869 (sugar beet parent) - blue, 

W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.5. Recombinant inbred lines ranked by percentage sucrose of dry matter. Recombinant inbred lines 

(RILs) shown in order of percentage sucrose of dry matter (%) Parent lines are indicated by coloured bars; C869 (sugar 

beet parent) - blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black 

bar.  
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  Figure 5.6. Recombinant inbred lines ranked by LM5 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM5 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.7. Recombinant inbred lines ranked by LM13 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM13 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.8. Recombinant inbred lines ranked by LM28 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM28 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.9. Recombinant inbred lines ranked by LM10 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM10 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.10. Recombinant inbred lines ranked by LM11 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM11 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.11. Recombinant inbred lines ranked by JIM13 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative JIM13 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet 

parent) - blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.12. Recombinant inbred lines ranked by LM25 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM25 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.13. Recombinant inbred lines ranked by LM18 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM18 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.14. Recombinant inbred lines ranked by LM19 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM19 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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Figure 5.15. Recombinant inbred lines ranked by LM12 epitope detection. Recombinant inbred lines (RILs) shown 

in order of relative LM12 epitope detection (Log).  Parent lines are indicated by coloured bars; C869 (sugar beet parent) 

- blue, W357B (red garden beet parent) - red. The commercial variety Sophia is indicated by the black bar.  
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5.3.4 Identifying candidate lines  

In order to identify lines which should be investigated further the physiological 

traits and relative cell wall polysaccharide detection levels should be compared 

to find line which have desirable characteristics for both the sugar industry and 

downstream processing of pulp. In Figure 5.16 the 20 lines with the highest 

sugar yield per hectare have been used to identify candidates which may 

contain genetic when used for breeding purposes may produce beneficial 

traits. Comparing the line whose roots have the largest diameter many of the 

highest yielding lines have this trait however, none of the high yielding roots 

have both large diameters and high percentage dry matter. There is one line, 

106, which has both high percentage dry matter and a large root diameter, this 

line was ranked 21 for highest sugar yielding lines.  

It was important to deduce the allocation of sucrose to other dry matter such 

as cell walls and therefore a comparison was made for percentage sucrose of 

dry matter. Several of the lines with the highest sugar yields also displayed a 

high percentage of sucrose of dry matter. Lines; 483, 422 and 395, showed 

higher percentage of their dry matter being sucrose than the parent line, C869.  

Discussed earlier was the negative correlation between xylan detection and 

sucrose yield however it has been decided to include this analyses with high 

yielding lines to identify any lines which have both high yield and high xylan 

detection. In Figure 5.16 it was shown that one of the RILs 325 had both a high 

relative abundance of xylan as well as a high sugar yield. In addition the C869 

parent also had one of the highest detected levels of xylan by LM10 and LM11. 

In addition to high xylan detection line 325 also had the highest galactan 

detection out of all the lines including the commercial variety and sugar beet 

parent line. One other line, 797, has shown high galactan detection by LM5 as 

well as relatively high xylan detection by LM10. No other high sugar yielding 

lines showed high galactan or xylan detection. In contrast LM28 detection of 

glucoronoxylan indicated a positive correlation with percentage dry matter. 

The lines, 325 and 366 both showed a high detected level of glucoronoxylan 
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and a high percentage dry matter. In addition the sugar beet parent line C869 

also showed this correlation.  

Arabinan detection by LM13 showed a positive correlation with larger roots 

and increased sugar yield. Therefore a comparison was made with LM13 

detection and high sugar yield. Several of the highest yielding lines showed to 

have the highest arabinan detection. With the commercial variety and the 

sugar beet parent line not appearing in the top ranked 22 lines. Line 533 

showed the highest arabinan detection, this line was also included in the lines 

with the highest root diameters. Other lines which also had high arabinan 

detection by LM13 and larger root diameters were 422 and 370.  

Pectic feruloyation was also analysed within the comparison in Figure 5.3. 

However this comparison was made with lines with the lowest feruloyation 

rather than the highest. Three high yielding lines were found to have some of 

the lowest levels of detection by LM12 for feruloylated pectin; 524, 104 and 

325.  

It is important to also identify traits which could be detrimental to sugar yield 

so that these traits can be selected against during breeding programmes. 

Several detected epitopes indicated a negative correlation with sugar yield and 

therefore were assessed to identify low sugar yielding lines which also 

exhibited these cell wall traits.  

Figure 5.17 shows the correlation between the lowest yielding RILs and the 

negative cell wall polysaccharide detection. Here it was shown that several of 

the lowest sugar yielding lines had high abundance of detection of these cell 

wall polysaccharides. Notably line 62 had a high detection of all the negatively 

correlated cell wall polysaccharides, this line was also the lowest sugar 

yielding line of all the RILs.  
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Line Value (log) Line Value (cm) Line Value (%) Line Value  (%) Line Value (log) Line Value (log) Line Value (log) Line Value (log) Line Value (log) Line Value (log)

Sophia 9.5 Sophia 10.3 Sophia 23.9 Sophia 80.6 287 9.5 287 9.7 287 10.2 325 10.0 533 9.9 830 10.5

C869 9.2 385 9.9 C869 22.9 483 76.6 464 9.5 62 9.6 62 10.2 Sophia 9.9 162 9.8 231 10.5

385 8.9 C869 9.3 338 22.4 422 76.5 62 9.5 464 9.6 325 10.1 797^ 9.8 298 9.8 524 10.5

395 8.7 807 9.0 274 22.3 395 76.2 512 9.5 512 9.6 114 10.1 C869 9.8 91 9.8 285 10.5

422 8.7 342 8.9 242 22.0 262 76.0 325 9.4 325 9.5 274 10.1 338 9.8 331 9.7 303 10.5

342 8.7 370 8.8 366 22.0 530 75.9 114 9.4 C869 9.4 464 10.1 56 9.7 315 9.7 242 10.5

366 8.7 235 8.6 325 21.9 223 75.9 C869 9.4 421 9.4 283 10.1 463 9.7 159 9.7 113 10.5

524 8.7 422 8.6 400 21.8 394 75.9 223 9.4 490 9.4 C869 10.1 225 9.7 71 9.7 226 10.6

533 8.6 113 8.6 329 21.8 101 75.9 163 9.3 114 9.4 112 10.1 163 9.7 360 9.7 104 10.6

817 8.6 524 8.4 306 21.8 527 75.9 822 9.3 363 9.4 822 10.1 252 9.7 422 9.6 793 10.6

235 8.6 288 8.4 104 21.8 838 75.7 496 9.3 406 9.4 256 10.1 94 9.6 299 9.6 112 10.6

273 8.6 353 8.4 416 21.7 493 75.7 490 9.3 496 9.4 295 10.1 361 9.6 370 9.6 269 10.6

370 8.6 817 8.3 106* 21.6 158 75.7 421 9.3 163 9.4 366 10.1 421 9.6 82 9.6 283 10.6

303 8.6 304 8.2 109 21.6 85 75.6 283 9.3 283 9.4 496 10.1 54 9.6 68 9.6 88 10.6

325 8.6 533 8.2 94 21.5 236 75.5 296 9.3 256 9.4 319 10.1 327 9.6 66 9.6 325 10.6

243 8.5 449 8.2 270 21.4 368 75.4 264 9.3 225 9.4 225 10.0 363 9.6 324 9.6 61 10.6

423 8.5 162 8.2 304 21.4 C869 75.4 280 9.3 264 9.4 512 10.0 289 9.6 807 9.6 288 10.6

60 8.5 106* 8.1 362 21.4 361 75.4 797^ 9.3 329 9.4 490 10.0 287 9.6 423 9.6 449 10.6

807 8.5 60 8.1 268 21.3 91 75.3 101 9.3 105 9.4 113 10.0 438 9.6 496 9.6 342 10.6

104 8.5 292 8.1 302 21.2 327 75.3 274 9.3 223 9.4 51 10.0 78 9.6 407 9.6 296 10.6

353 8.5 824 8.1 264 21.2 807 75.3 92 9.3 822 9.4 403 9.9 306 9.6 449 9.6 C869 10.6

483 8.5 487 8.0 256 21.2 104 75.2 383 9.3 383 9.4 242 9.9 347 9.6 366 9.5 318 10.6

106* 8.5 Sophia 9.1 Sophia 9.1

Sucrose yield kg/ha Root Diameter % dry matter % sucrose of dry matter
LM28 NaOH

Glucuronoxylan

LM10 NaOH LM11 NaOH

Xylan detection

LM13 CDTA

Arabinan detection Feruloyation detection

LM12 CDTALM5 CDTA

Galactan detection

Figure 5.16 Comparison of the highest sugar yielding recombinant inbred lines. The 20 highest sugar yielding lines 

(kg ha-1) compared to other significant physiological and detected cell wall characteristics identified by the correlation 

matrix in Figure 5.1. High yielding lines have been assigned a colour code to allow cross referencing across different traits. 

The commercial variety Sophia and the sugar beet parent have been included where appropriate as the highest yielding 

lines. All traits are ordered from highest to lowest except of feruloyation detection where this is lowest to highest.  

Lowest to highest  
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Line Value (log) Line Value (log) Line Value (log) Line Value (log) Line Value (log)

62 6.5 278 7.1 278 9.1 264 8.0 62 10.0

274 6.7 812 7.0 830 9.0 406 8.0 163 9.9

464 6.8 449 7.0 318 9.0 105 8.0 50 9.9

249 7.0 830 7.0 483 8.9 163 8.0 401 9.9

512 7.1 62 7.0 363 8.8 62 7.9 464 9.9

160 7.2 163 7.0 163 8.8 255 7.9 487 9.8

406 7.2 332 6.9 62 8.8 72 7.8 351 9.8

112 7.2 386 6.9 421 8.8 236 7.8 264 9.8

46 7.3 295 6.9 496 8.8 289 7.8 46 9.8

72 7.3 512 6.9 105 8.8 401 7.8 72 9.8

264 7.3 105 6.9 445 8.8 46 7.7 115 9.8

421 7.3 318 6.9 369 8.8 363 7.7 223 9.8

801 7.3 394 6.9 438 8.8 94 7.7 325 9.8

51 7.3 264 6.9 449 8.8 438 7.7 394 9.8

511 7.3 236 6.9 237 8.8 160 7.7 56 9.8

333 7.4 438 6.8 361 8.8 512 7.7 512 9.8

108 7.4 445 6.8 386 8.8 515 7.7 830 9.8

299 7.4 413 6.8 112 8.8 82 7.7 249 9.8

287 7.4 421 6.8 527 8.8 242 7.7 413 9.8

386 7.4 511 6.8 801 8.8 158 7.6 232 9.8

363 7.4 412 6.8 511 8.8 347 7.6 236 9.8

78 7.4 113 6.8 383 8.7 225 7.6 353 9.8

322 7.5 363 6.8 109 8.7 280 7.6 85 9.8

W357B 7.5 112 6.8 464 8.7 394 7.6 412 9.8

Xyloglucan detection

LM25 CDTA

AGP detection

JIM13 NaOH
Sucrose yield kg/ha

LM18 NaOH LM19 NaOH

HG detection

Figure 5.17 Comparison of the 

lowest sugar yielding recombinant 

inbred lines. The lowest sugar yielding 

lines (kg ha-1) compared to significant 

detected cell wall characteristics 

identified by the correlation matrix in 

Figure 5.1.  Low yielding lines have 

been assigned a colour code to allow 

cross referencing across different traits. 

The red garden beet parent (W357B) 

has been included as one of the lowest 

yielding lines.  
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5.4 Discussion 

5.4.1 Physiological trait analysis 

Candidate lines with beneficial traits could be used to identify markers for genetic 

regions of interest. An ideal variety for sugar production is a sugar beet with a 

high sugar yield, which has a high percentage of dry matter and therefore does 

not contain relatively high amount of water. In addition this individual would have 

a high percentage of sucrose of dry matter, demonstrating its potential to allocate 

a higher proportion of carbon resources to sucrose rather than other sugars such 

as cell wall components. This line would also produce relatively large roots with 

these characteristics to allow a high per hectare sugar yield. These are traits that 

were illustrated to have positive correlation in Figure 5.1. Therefore finding line 

which indicate one or more of these traits could provide targets for breeding 

programmes.  

Work described in Chapter 4 concluded that in order for a sugar beet root to 

accumulate high levels of sucrose it would be important for there to be abundance 

phloem to deposit sucrose into the root, and therefore an increase in cambial 

rings. From the correlation analysis it was clear that higher relative abundance of 

the xylan epitopes had a negative correlation with sugar yield. However as 

correlation is based on the relative abundance of xylan detected, very small roots 

which confer low sugar yield on a field scale, would indicate a high relative 

abundance of xylan. In Chapter 3 with was demonstrated that vasculature 

develops early in growth before expansion, therefore if a root grew very little 

during the expansion stage xylan would account for a higher proportion of the 

root composition and therefore skew the correlation. Using the analysis in Figure 

5.11 it is clear that a high xylan detection does not always confer to low sugar 

yield as demonstrated by RIL 325. Line 325 has one of the highest detected 

relative abundances of the LM10 and LM11 epitope (Fig 5.2) with an average 

sugar yield of 5705 kg/ha which is the 13th highest sugar yield of the RILs. 

However this high yield was achieved in smaller root as this was not one of the 

lines with the largest root diameter. Therefore, this supports the hypothesis that 

combining increased vasculature with smaller cells contributes to higher 

concentrations of sucrose. 
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Xylan detection is an indicator of relative abundance of vasculature, both xylem 

and phloem, within the root. Further to this, increased galactan detection 

indicated a positive correlation with percentage of dry matter and percentage 

sucrose of fresh weight and to a lesser extent an increase of percentage of 

sucrose of dry matter. Work in Chapter 4 indicated that the epitope of the LM26 

antibody which identifies phloem sieve elements was associated with the 

galactan backbone, therefore this positive correlation could indicate an increase 

in phloem vessels in lines which have an increased percentage. An increased 

abundance of galactan can also have mechanical implications in the root, 

increasing cell wall firmness (McCartney et al., 2000), giving the whole root more 

strength and resistance to mechanical stress. However in this case the special 

deposition of galactan is unknown. The comparison analysis in Figure 5.3 

identified two lines which had both high xylan detection as well as high galactan 

detection; 325 and 797. While 797 was not one of the highest yielding lines, 325 

was ranked as the 13th highest yielding line. This result makes line 325 an 

interesting candidate for further work as it has been identified to have an 

increased amount of detection of epitopes associated with vasculature. Traits 

which could have allowed this line with smaller roots to accumulate relative high 

concentrations of sugar.  

Arabinan detection has also shown a positive correlation with physiological traits 

involved with root size (fresh root weight, diameter and root dry weight). Like 

galactan arabinan has a structural role in plant cell walls, increased relative 

arabinan content has been identified as conferring flexibility in cell walls as well 

as cell to cell adhesion. Arabinan In sugar beet specifically has been indicated as 

cross linking through ferulic acids (Ralet et al., 2006, Levigne et al., 2004c, 

Levigne et al., 2004b) and therefore a higher relative abundance of these could 

provide the tensile strength for a root to grow larger. However this type of 

interaction could have implications in downstream processing of sugar beet pulp 

by industries other than sugar production. The comparison analysis in Figure 5.3 

has confirmed that many of the highest sugar yielding lines has also got some of 

the highest levels of detection of arabinan suggesting that higher levels of 

arabinan give the roots beneficial mechanical properties for accumulating 

increased concentrations of sugar. In addition the analysis of the feruloyation 
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detection by LM12 indicated that some of the lines had reduced levels of 

feruloyation of their pectin. These lines are interesting candidates as they could 

show reduced cross-linking while still accumulating relatively large 

concentrations of sucrose. These traits are of interest to downstream processors 

of sugar beet pulp as a reduction in these strong interactions could make 

digestion more efficient.  

As discussed earlier it is clear that the storage root needs to expand to 

accumulate sugar while maintaining high levels of dry matter rather than water. 

Ideally rather than cells expanding to increase diameter cells would undertake 

cell division and increase cell wall content, this would combat the issue of large 

cells contain lower concentrations of sucrose due to water uptake (Draycott, 

2006b). The lines identified as have higher percentage of dry matter are not 

included in the 20 lines with the largest diameter. However these lines do not 

have the largest root have the highest sugar yields per hectare. This indicates 

that these roots may have smaller cells containing a high concentration of 

sucrose and therefore these are ideal candidates breeding targets towards 

increasing sucrose concentration.  Line 104 is especially interesting in this 

regards as this line is also included in the 20 lines with the highest percentage 

sucrose from dry matter.  

It is also important during breeding to be able to identify negative traits which 

could lead to a decrease in sugar yield. The correlation matrix (Fig 5.1) indicated 

four epitopes which could have a negative effect on sugar yield; JIM13, LM25, 

LM18 and LM19.  

The correlation of high JIM13 detection with sucrose yield could indicate that the 

increased abundance of AGP could be effecting growth. AGPs have been 

identified as having a role in suppressing development and cell proliferation 

(Basile and Basile, 1993, Basile et al., 1986). Therefore a line with high levels of 

AGP detection would indicate repressed growth and reduced cell number and 

therefore affecting sucrose assimilation. There were several lines identified as 

having high detection of JIM13 with line 62 having the highest detection (Fig 

5.17).  
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LM25 detects an epitope of xyloglucan (Pedersen et al., 2012) which is a factor 

in the mechanical strength of cell walls (Peña et al., 2004, Hayashi, 1989) due to 

interactions with cellulose microfibrils. There are many studies on the role of 

xyloglucan in reducing cell expansion and elongation (Takeda et al., 2002, 

Labavitch and Ray, 1974), and increase in xyloglucan could reduce cell 

expansion and cell wall flexibility and therefore could reduce sucrose 

assimilation. Again line 62 had a high detection of LM25 as did line 264 and 406.  

Increased HG detection by LM18 and LM19 also indicated a negative correlation 

with sugar yield. These mAbs identify HG which is partially methylated or have 

no methyl esterification (Verhertbruggen et al., 2009a). Homogalacturonan is a 

key polysaccharide in the pectin supramolecule. The de-methyl-esterified (de-

Me) portions of HG are responsible for the ionic interactions with Ca2+ to form the 

pectic gel (Caffall and Mohnen, 2009) contributing to wall strength. An increase 

of these interactions has been attributed to decreased cell wall expansion and 

increased wall stiffening (Stolle-Smits et al., 1999). In this study Stolle-Smits et 

al. (1999), found that at maturation pea pod cell wall degraded RGI components 

but increased de-Me-HG which prevented further expansion or growth. This 

increased detection of de-Me-HG in the low sugar yielding lines could be due to 

reduced expansion reducing accommodation of increased turgor pressure due to 

sucrose assimilation. Again, line 62 was found to have high detection of both the 

LM18 and LM19 epitope. Other lines which also showed high detection of LM19 

were 363 which also detected relatively high levels of xyloglucan and 421 which 

showed high detected levels of both LM18 and LM19.  

Interestingly it has also been found that reducing the amount of de-methyl- 

esterified HG has been found to increase the efficiency of enzymatic 

saccharification of plant cell wall material (Lionetti et al., 2010). This is an 

interesting note for utilising sugar beet pulp for biomass saccharification.  

 

5.4.2 In muro interactions 

Positive correlation between the detection of arabinan epitopes by mAbs (LM6-

M, LM6, LM13, and LM16) and the detection of homogalacturonan (JIM5, JIM7, 
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LM18, LM19) indicates that these are associated with each other within the wall. 

From current understanding of the structure of in muro pectin these associations 

should be expected, with RGI and HG making up the pectin supramolecule where 

arabinan side chains are located on the RGI portion of the molecule.  

Arabinan epitopes showing positive correlation with LM12 detection of 

feruloylated pectic confirms that feruloyation occurs on the arabinose residues of 

arabinan chains in sugar beet pectin (Ralet et al., 2006). Therefore, the higher 

the abundance of arabinan in the cell walls the higher the abundance of 

feruloyation. This is potentially an important consideration for the downstream 

processing of sugar beet pulp as these diferulic cross-bridges are known to 

decrease digestibility in grasses (Kroon et al., 1999b), although the implications 

in sugar beet are still unknown.  
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5.5 Conclusion 

 

From the work in this Chapter a group of candidate lines for further study can be 

collated in Table 5.1 and Table 5.2. These have been chosen based on their 

individual traits, both physiological and cell wall related.  

  

Line Traits

325
High percentage dry matter, high xylan detection, high glucuronoxylan 

detection, high galactan detection, low feruloylation detection

104
High % dry matter, high % sucrose of dry matter, low feruloylation 

detection

524 Large root diameter, low feruloyation detection

807
Large root diameter, high % sucrose of dry matter, high arabinan 

detection

422 Large root diamter, high % sucrose of dry matter

395 High % sucrose of dry matter

483 High % sucrose of dry matter

533 Large root diameter, high arabinan detection

366
High % dry matter, high glucoronoxylan detection, high arabinan 

detection

106 Large root diameter, high % dry matter

370 Large root diameter, high arabinan detection

Table 5.1 Selected candidate recombinant inbred lines for 

further study for crop improvement.  

Table 5.2 Selected candidate recombinant inbred lines for 

further study into decreased sugar yield. 

Line Traits

62
High homogalacturonan detection, high xyloglucan detection, high AGP 

detection

264
High homogalacturonan detection, high xyloglucan detection, high AGP 

detection

363 High homogalacturonan detection, high xyloglucan detection

512
High homogalacturonan detection, high xyloglucan detection, high AGP 

detection

46 High xyloglucan detection, high AGP detection

464 High homogalacturonan detection, high AGP detection

511 High homogalacturonan detection

249 High AGP detection

160 High xyloglucan detection
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Chapter 6 

General discussion 
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This project involved an extensive analysis of Beta vulgaris root anatomy 

regarding relative positioning of the vascular tissues, xylem and phloem, in 

context of supernumerary successive cambium. In addition, cell wall analysis has 

provided key information regarding the relative abundance of a range of cell wall 

epitopes throughout crop development. Key candidate lines from the RIL 

populations have also been identified to steer future sugar beet breeding for crop 

improvement, for both agronomically important and accompanying cell wall 

components. 

The study of the internal anatomies of three Beta vulgaris lines has indicated that 

the successive cambial arrangement, which is hypothesised to contribute to 

sucrose concentrations, is established in early stages of development. The 

development of successive cambial rings is highly conserved across all three 

lines studied (Sophia, W357B and C869) and is a contributing factor to overall 

root size. The commercial sugar beet line Sophia showed the highest number of 

cambial rings as well as the largest root diameter, both factors appear to 

contribute to a higher sucrose concentration and overall sugar yield. 

Utilising the newly characterised mAb LM26 it was possible to identify the relative 

positioning of the phloem sieve elements to the xylem vessels within the cambial 

arrangement. This indicates why increasing the number of cambial rings 

increased sucrose concentration by reducing the length diffusion pathway from 

phloem sieve elements to storage parenchyma.  

The increased number of cambial rings in the commercial variety, Sophia, is the 

result of traditional breeding techniques where selection has been based on 

potential sucrose concentrations rather than root anatomy. This work provides an 

understanding of the basis of sugar yield and suggests that breeding for sugar 

beets with an increased number of cambial rings could lead to a higher potential 

for sucrose accumulation in commercial sugar beets. 

This understanding of root anatomy allowed the analysis of the relative 

abundance of xylan epitope detection in relation to sugar yield within the RIL 

population. This detection gave the indication that an increase in vasculature can 

lead to high sugar yield ha-1 without excessive root expansion. 
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Knowing that root vasculature develops early in the growth period informed the 

decision to discount xylan detection as detrimental to increased sugar yield when 

found to be negatively correlated with sugar yield in the correlation matric (Fig 

5.1). This negative correlation was caused by a number of low sugar yielding lines 

showing a high relative abundance of xylan detection, however, these lines also 

showed high relative abundance of epitopes which can suppress development 

(AGPs and xyloglucan) preventing effective sucrose accumulation. These roots 

were small and had undergone very little expansion and therefore the relative 

abundance of vascular tissue (shown by xylan detection) in comparison to 

parenchyma was high. However lines were identified which had high sugar yield 

and high xylan detection suggesting that these lines potentially contain the 

genetic information for increased number of cambial rings.  

The characterisation of the LM26 monoclonal antibody (mAb) was important for 

this project during the developmental study of cambial arrangement. This mAb is 

directed to phloem sieve elements and its epitope has been identified as a β-1,6-

galactosyl substitution of pectic β-1,4-galactan, which we now know occurs 

discretely in the phloem sieve elements of sugar beet and other key species 

including Miscanthus and Arabidopsis. The identification of the epitope gives an 

insight into the cell wall modifications associated with this specific type of tissue 

and its related function. 

For studying sugar beet this novel monoclonal antibody has been a valuable tool 

for the further assessment of the internal anatomies of the Beta vulgaris lines. 

This sugar storage crop relies on phloem vessels to accumulate sucrose in its 

root parenchyma cells and the microscopic visualisation of these tissues enables 

an increased understanding of the mechanisms involved in the success of this 

process. Using the LM26 antibody in situ has given in insight into the successive 

cambial arrangement within the storage root and the spatial relationships 

between the xylem, the phloem and the parenchyma cells. Sugar beet phloem 

sieve elements have never been assessed in this way before and the 

developmental work has provided a valuable opportunity to visualise the spatial 

variation of phloem abundance in the cambial rings throughout growth in different 

Beta vulgaris lines. It is now possible to pinpoint at what stage of seedling 
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development phloem develop and when new rings are added. This information 

shows that this early development is the most important part of the sugar beet 

growth period in terms of sugar yield potential.  

Utilising the LM26 antibody for quantitative studies such as ELISA, CoMPP or 

EDC has been difficult due to the low relative abundance of the LM26 epitope in 

the sugar beet root. Due to the epitope being so localised to the phloem sieve 

elements in sugar beet roots there is such a low level of the epitope in a 

homogenised sample it has not been possible to use the antibody for quantitative 

developmental analysis of cell wall composition as shown in chapter 4 where 

convincing levels of the epitope were not detected. During the CoMPP analysis 

of the RIL population in chapter 5 the LM26 signal was so low that it was found 

to be statistically unreliable. The rarity of this epitope in a homogenised sample 

is a limitation to the use of this mAb for quantitative studies, this issue could 

potentially be limited by selective sampling rather than holistic. Selective 

sampling in sugar beet was tempted through the duration of this study however, 

the microscopic nature of the phloem sieve elements made efforts unsuccessful, 

therefore requiring the use of the garlic samples to provide a sufficient source of 

the epitope for analysis during characterisation of LM26. Despite these limitations 

the characterisation of the LM26 mAb it can now be used as a tool for identifying 

phloem sieve elements, useful for various studies across many species to study 

how vasculature develops and changes in response to developmental and 

environmental stimuli.  

Studying sugar beet cell walls beyond early seedling stage has allowed an 

assessment of changes in cell wall composition throughout development.  It is 

uncertain if plant development drives cell wall modification or cell wall 

composition drives development. However, a combination of biotic and abiotic 

factors will effect crop performance (Atkinson and Urwin, 2012), including cell wall 

properties (Cosgrove, 1997). Looking into cell wall composition in sugar beet 

throughout three different growing seasons has allowed the investigation of the 

effect environmental factors have upon cell wall composition and how this effects 

the overall success of the crop. This work contributes to efforts to tease apart the 

function of the cell wall in growth and development. It is clear from several studies 
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that cell wall mechanics is greatly affects by cell wall composition. Many of these 

studies have stated that cell turgor has a role in altering cell wall composition, an 

important consideration for sugar beet study due to high turgor of cells with high 

levels of sucrose held within. Ali and Traas (2016) described how load bearing 

cell walls undergo polymerisation to increase cellular matrix (pectin components) 

when exposed to increases in turgor pressure. This expansion of cell walls has 

been again described in other species where mechanic stress has induced elastic 

extensibility (Peters et al., 2001, Braybrook and Jönsson., 2016) Work on 

characterisation of LM26 in this project also showed that cell wall structures are 

key in the physical properties of the cell, as shown by Torode et al. (2017) where 

the LM26 epitope (6-O-(β-Gal)-β-1,4-galactohexose) showed to increase 

elasticity of the walls identified to contain this rare modulation. The analysis 

described in this thesis can be used to support these hypotheses, that the cell 

wall composition can be altered in response to a variety of stresses both abiotic 

and biotic (e.g. environment, soil type and growing season).  In addition, field 

studies conducted in this project provide important insight into and how 

modifications in cell walls could impact crop performance. 

The list of candidate lines can now be used for gene discovery or further analysis. 

Combining the results from this work into ongoing work in collaboration with the 

University of Michigan the search for a gene for crop improvement can be 

directed. The sugar beet genome (Dohm et al., 2014) and the ongoing 

sequencing of the RIL parental lines (C869 and W357B) by McGrath and 

Townsend (unpublished) will make the identification of SNPs via genotyping by 

sequencing possible. This work will lead to the identification of QTLs (Quantitative 

Trait Locus) to provide causal genes or mutations an early step in identifying and 

sequencing actual genes which can cause trait variation. This information can be 

fed into current breeding efforts and marker assisted breeding for crop 

improvement. 

Utilising monoclonal antibodies to assess the cell wall composition of the RIL 

population has allowed the identification of potential gene pools for crop 

improvement. This is a valuable asset to any breeding programme and has clear 

economic importance. The genetic diversity between sugar beet and garden beet 
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has been exploited to develop RILs where novel mutations become fixed via 

sequential self-fertilisation (McGrath et al., 2005). This makes it is possible to 

capture novel genetic variation outside of the current germplasm widely used for 

sugar beet breeding. Through the assessment of the Beta vulgaris RIL population 

a set of candidate lines have been identified for further investigation. These lines 

have been selected based on factors identified to increase overall sugar yield 

with a correlated cell wall epitope level. In addition, those lines which expressed 

traits detrimental to sugar yield have also been selected for further study into 

genetic markers to select against to prevent low sugar yield. 

For the sugar industry it is important to focus on increased sugar yield as this is 

the priority income from the crop. This work has indicated that in addition to 

traditional physiological traits, it has identified that some cell wall characteristics 

may contribute to increase sugar yield. Cell wall characteristics are not usually 

considered during variety development, however, the cell wall analysis of the RIL 

population has shown that cell wall properties could potentially be scored using 

tools such as mAbs in combination with high throughput methods such as 

CoMPP.  

In addition to the sugar industry there is an interest in the properties of sugar beet 

storage root cell walls for downstream processes such as those involved in 

biofuels. Some RILs from this study have been identified to have lower amounts 

of feruloyation, something that is hypothesised to increase saccharification of 

second generation biofuel feed stocks (Reem et al., 2016, Grabber et al., 1998). 

The lines selected for this trait also had some of the highest sugar yields therefore 

making these and exciting avenue to follow up. 

 

6.1 Conclusion 

In conclusion, this project has confirmed Beta vulgaris storage root internal 

anatomies in regard to vascular tissues with the assistance of cell wall directed 

monoclonal antibodies including the newly characterised monoclonal antibody 

LM26. This work utilised CoMPP as a high throughout method for the first time in 

this type of system to collate cell wall characteristics throughout a population. By 
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correlating the detected levels of cell wall polysaccharides with physiological 

traits, lines with potentially beneficial traits have been identified for future work to 

identify genes of interest for the improvement of the sugar beet crop. Potential 

improvements include, increased sugar yield, in field performance and 

downstream processing of sugar beet pulp as a lignocellulosic biomass source.  

6.2 Future perspectives 

This thesis has outlined several promising areas for future work and impactful 

publication:  

 A technical report and analysis of two quantitative techniques for the 

analysis of plant cell walls. Both CoMPP and ELISA are widely used in the 

plant cell wall research community to detect specific cell wall epitopes which 

translate to cell wall traits. However, these two techniques have never been 

directly compared using the same samples as in this project. There is now 

an opportunity to report the differences and similarities of detection 

sensitivity as well as practicality of utilising these techniques for a variety of 

sample sizes and extraction methods.  

 

 The novel antibody LM26 developed as part of this project provides a new 

addition to the tools available for the analysis of multiple species 

physiology. The use of this antibody has been invaluable as part of this 

project and this example can be used to direct research into vasculature in 

future work. Work outlined in this project can be expanded utilising LM26 

during the next stages in the analysis of the RIL population described in 

chapter 5. Candidate lines can be analysed in situ to deduce if their 

vasculature hold the key to potentially more successful plants whether 

increased sugar yield or additional uses downstream. This will provide even 

more detail into sugar beet vasculature and further inform efforts towards 

crop improvement.  
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