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Thesis abstract 

White matter (WM) deterioration is increasingly being recognised as a 

hallmark of Huntington disease (HD) and is correlated to disease severity. 

Environmental experience has also been shown to alter white matter 

structure and function, and microbiota-gut-brain bidirectional communication 

has been implicated in the regulation of oligodendrocyte differentiation and 

myelination. This suggests that environmental and microbiota manipulations 

can be used as assays to interrogate white matter plasticity in HD. This could 

provide new insights into the mechanisms and role of white matter changes 

in HD pathogenesis, and inform discovery of novel biomarkers and 

therapeutic approaches in the disorder. 

This thesis describes three studies that address this question directly. In the 

first study, we examined the effects of environmental enrichment on white 

matter characteristics and behaviour in the YAC128 mouse model of HD and 

wild-type (WT) controls. This was followed by a second study in which the 

same outcomes were examined in response to environmental deprivation 

through social isolation in identical mouse genotypes. Finally, we examined 

the effect of microbiota on white matter in BACHD mouse models of HD and 

WT controls, housed under germ-free (GF) and specific pathogen free (SPF) 

conditions. White matter plasticity was examined using a range of techniques 

including transmission electron microscopy, immunohistochemistry, and 

immunoblotting, and behaviour and motor function evaluated using a battery 

of targeted tests.   

Our findings provide evidence that environmental and microbiota 

manipulation has differential and complex effects on white matter in WT and 

HD mice, including alterations in axonal diameter, myelin thickness, as well 

as oligodendrocytes cell populations. The work described herein therefore 

offers new insights into white matter plasticity and abnormalities in HD and 

lays the foundation for future studies. 
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1.1. Huntington Disease 

Huntington disease (HD) is a fatal autosomal-dominant neurodegenerative 

disorder that affects approximately 5-10 in 100,000 individuals, and is 

particularly prominent amongst those of Caucasian European descent  

(Fisher & Hayden, 2014; Morrison, 2012; Wexler et al., 2016). HD was first 

characterised by George Huntington in the late 19th century (Huntington, 

1872), and it is now well established to be associated with a triad of 

clinical features such as progressive motor, cognitive, and psychiatric, 

decline. Disease onset is inferred from the manifestation of perceptible 

motor signs, such as chorea, dystonia and bradykinesia, and occurs on 

average at 40 years of age, with death normally following within 15-20 

years (Ross & Tabrizi, 2011). The period prior to a formal diagnosis of 

manifest HD is normally referred to as the pre-manifest, or pre-

symptomatic, period, although these terms may be somewhat of a 

misnomer, given that neuropathological changes, particularly in the 

striatum, and cognitive and psychiatric disturbances, may precede motor 

onset by several years (Cha et al., 1998; Gutekunst et al., 1999; Hobbs et 

al., 2010; Marder et al., 2000; Tabrizi et al., 2013). HD is caused by the 

expansion of the cytosine-adenine-guanine (CAG) triplet repeat in the 

huntingtin (HTT) gene, located on the short arm of chromosome 4, that 

encodes the 350kDa huntingtin (HTT) protein with a polyglutamine (polyQ) 

stretch located at the N-terminus (Macdonald, 1993). HD is associated 

with CAG repeats greater than 36, with HTT CAG repeat length being 

inversely correlated to age of motor onset (Andrew et al., 1993; Duyao et 

al., 1993; Snell et al., 1993).This relationship accounts for approximately 

50-70% of the observed variance in clinical onset, with greater onset 

variance associated with lower CAG repeats, potentially due to a greater 

influence of genetic and environmental modifiers, and lower variance with 

larger repeat sizes greater than 44 (Langbehn et al., 2004). A parametric 

survival model predicts that a 40-year old individual with 42 CAG repeats 

has a 91% chance to present with motor symptoms by the age of 65 (i.e 

the disease is essentially fully penetrant), whilst that with 36 repeats has a 
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14% chance of onset before the age of 75 (Langbehn et al., 2004). 

Importantly, many patients possessing CAG repeats less than 41 may not 

present with clinical symptoms during their lifetime (i.e. the disease is 

partially penetrant) (Langbehn et al., 2004). 

The HTT protein is composed of approximately 50 recurring amino-acids, 

known as HEAT (Huntingtin, Elongation factor 3 (EF3), protein 

phosphatase 2A (PP2A), yeast kinase TOR1) repeats, that form a 

superhelical structure with a hydrophobic core (Andrade & Bork, 1995;  Li 

et al., 2006). HTT is predominantly cytoplasmic, normally palmitoylated at 

cysteine 218 (Yanai et al., 2006), and is expressed in cells throughout the 

human body, although more preponderantly in the brain and testes 

(DiFiglia et al., 1995). HTT appears to be important for early embryonic 

development (Ross & Tabrizi, 2011) and is thought to play a key role in 

neurogenesis (Nguyen et al., 2013). It is considered to be a scaffolding 

protein that can coordinate complexes of other proteins.  

While the pathogenesis of HD is still poorly understood, it is well 

established that the presence of a polyQ expansion forms an abnormal 

conformation of mutant HTT (mHTT) and confers a so-called gain in toxic 

function (Poirier, Jiang, & Ross, 2005; Ross & Tabrizi, 2011). Mutant HTT 

is also more susceptible to proteolysis, relative to the wild-type HTT 

protein, and its truncation is known to promote generation and aggregation 

of N-terminal fragments (Lunkes & Mandel, 1998; Walker, 2007; 

Wellington, Leavitt, & Hayden, 2000). These fragments may be generated 

via a variety of proteases such as caspase-3 and 6 (Wellington et al., 

2002), calpains (Kim et al., 2001) and matrix metalloproteinase-10 (Miller 

& Bezprozvanny, 2010), and/or abnormal splicing of HTT (Sathasivam et 

al., 2013). Accumulation and aggregation of N-terminal fragments in 

neuronal nuclei has been shown to be promoted by phosphorylation of the 

N-terminal S16 in HTT (Havel et al., 2011). Furthermore, polyQ expansion 

in HTT is associated with reduced palmitoylation, which promotes the 

formation of intra-nuclear inclusion bodies (i.e. large abnormal HTT 

aggregates (Yanai et al., 2006). Intra-cellular mutant HTT aggregates, a 

https://en.wikipedia.org/wiki/Protein_phosphatase_2
https://en.wikipedia.org/wiki/Protein_phosphatase_2
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pathological signature of HD, are not only confined to cell nuclei, but have 

also been observed in dendrites, axonal terminals, in addition to the 

cytoplasm (DiFiglia, 1997; Gutekunst et al., 1999; Ross & Tabrizi, 2011). 

However, whether mutant HTT aggregation, in of itself, promotes 

cytotoxicity, or provides neuroprotection, or is simply an epiphenomenon, 

remains a topic of intense debate (Hackam et al., 1998; Bjørkøy et al., 

2005). Moreover, the effect of cellular location of these inclusions has only 

recently been revealed, suggesting that nuclear inclusions are well 

tolerated, but cytoplasmic peri-nuclear inclusions are correlated with cell 

death ( Liu et al., 2014).  

1.1.1. Neurodegeneration and pathogenic mechanisms in 

HD  

HD is associated with profound and selective loss of striatal cells, 

particularly GABAergic medium spiny neurons (MSNs), which project to 

the globus pallidus (GP) and substantia nigra (SN). Of these, enkephalin-

containing MSNs that project to the external area of the GP (GPe) appear 

to be particularly susceptible to degeneration compared to substance P-

containing MSNs that project to the internal area of the GP (GPi); in turn, 

the latter neurons projecting to the pars reticulata portion of the SN (SNr) 

are more vulnerable than those which project to the compacta portion of 

the SN (SNc) (Reiner et al., 1988; Sapp et al., 1995). Interestingly, large 

interneurons are spared from degeneration. These neuropathological 

changes are consistent with the observation of chorea in the early stages 

of HD due to dysregulation of basal ganglia-thalamocortical circuitry. Other 

areas that undergo atrophy in HD include the cerebral cortex, thalamus, 

hypothalamic lateral tuberal nuclei, and notably, sub-cortical white matter, 

and can be even more widespread in cases of juvenile HD onset (Ross & 

Tabrizi, 2011).  

Mutant HTT disrupts normal (i.e. wild-type HTT regulated) vesicle 

transport and recycling (Caviston & Holzbaur, 2009), partly through 

interaction with Huntingtin-Associated Protein 1 (Hap1), leading to 
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inhibition of cortical trafficking/release of pro-survival brain derived 

neurotrophic factor (BDNF), and thus diminished neurotrophic support for 

striatal cells (Gauthier et al., 2004). Mutant HTT also disrupts fast axonal 

transport of organelles (Gunawardena et al., 2003; Szebenyi et al., 2003), 

and can reduce mitochondrial trafficking to synapses, affecting production 

of ATP (Orr et al., 2008; Shirendeb et al., 2011). Furthermore, mutant HTT 

also disrupts the mitochondrial protein import complex TIM23, to impair 

transport of proteins into mitochondria, leading to mitochondrial 

dysfunction and neuronal cell death (Yano et al., 2014). 

Mutant HTT may also impair the autophagy-lysosome and ubiquitin-

proteasome systems (UPS) that form two of the major pathways of 

degradation of intracellular proteins. Specifically, mutant HTT was found to 

diminish the ability of autophagic vacuoles to recognise cytosystolic cargo, 

thus compromising autophagic clearance (Martinez-Vicente et al., 2010). 

In turn, dysfunctional proteasome activity, possibly due to sequestration of 

UPS components into inclusion bodies, was also reported by early studies 

(Bence, 2001; Bennett et al., 2005). However, other work did not report a 

dysfunctional UPS in HD (Maynard et al., 2009), although this was later 

reconciled by UPS impairment being found to be restricted to a time-

window preceding the presentation of inclusion bodies (Mitra, Tsvetkov, & 

Finkbeiner, 2009). Dysregulation of these protein degradation pathways 

may therefore lead to impaired clearance and toxic intra-cellular protein 

accumulation. 

Another aspect believed to play a key role in HD pathogenesis pertains to 

the effect of mutant HTT on gene transcription. Microarray studies have 

demonstrated that several genes exhibit altered expression patterns in HD 

(Hodges, 2006; Luthi-Carter, 2000; Sipione et al., 2002). Mutant HTT has 

been shown to interact with a number of regulators of transcription, 

including cyclic adenosine monophosphate (cAMP) response element 

binding (CREB) protein, and CREB-binding protein (CBP) ( Nucifora, 

2001; Steffan et al., 2001), associated with cell proliferation and survival, 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
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(PGC-1α) (Cui et al., 2006), associated with energy metabolism, and 

others such as Sp1 transcription factor (Dunah et al., 2002) and basal 

transcription factors (Ross & Tabrizi, 2011). Importantly, decreased 

transcription of brain derived neurotrophic factor (BDNF) in HD may 

underpin the increased relative susceptibility of the striatum to 

neurodegeneration (Zuccato & Cattaneo, 2009).  

Since MSNs are innervated by glutamatergic axons, a long-standing 

hypothesis is that over-stimulation of glutamate, particularly N-methyl-D-

aspartate (NMDA), receptors may lead to excitotoxicity and death in these 

cells (Coyle & Schwarcz, 1976; Flint Beal, 1994; Zeron et al., 2002). 

Changes in NMDA receptor subunits early in HD (Ali & Levine, 2006); 

(Benn et al., 2007), as well as impaired trafficking of NMDAR due to 

mutant HTT (Fan et al., 2007), may thus selectively predispose MSNs to 

excitotoxicity. Alternatively, glutamate clearance by glia may also be 

diminished in the presence of mutant HTT, that could also result in 

excitotoxicity (Shin et al., 2005).  

1.1.2. The role of glial cells in HD pathogenesis 

Little is known about the role of glia, comprising of astrocytes, microglia 

and oligodendrocytes, on HD pathogenesis. However, reactive gliosis has 

been observed in a number of HD animal models as well as patients 

(Reddy et al., 1998). Expression of mutant HTT in astrocytes was 

correlated to disease severity, reduced the expression of the glutamate 

transporters, GLT-1 and GLAST, in HD mouse models and patients, thus 

decreasing glutamate uptake, and suggesting this mechanism could play 

a key role in HD neurodegeneration through promotion of excitotoxicity 

(Bradford et al., 2009; Faideau et al., 2010; Shin et al., 2005). A recent 

study has highlighted the likely causal role for glia in HD, by demonstrating 

striatal transplantation of normal glia in transgenic HD mice slowed patho-

progression and increased survival (Benraiss et al., 2016). Expression of 

mutant HTT in astrocytes was also seen to suppress release of BDNF, 

vital for cell proliferation and survival (Hong et al., 2016; Wang et al., 
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2012). Kir4.1 K+ ion channel expression was found to be decreased in a 

HD mouse model, and associated with increased MSN excitability; viral 

delivery of Kir4.1 channels to striatal astrocytes subsequently diminished 

MSN dysfunction, decreased motor deficits, and increased survival (Tong 

et al., 2014). In addition, neuroinflammation may also play a key role in 

HD neuro-degeneration, since microglia have been demonstrated to be 

robustly activated in pre-symptomatic and early stages of HD (Sapp et al., 

2001; Tai et al., 2007), in a manner correlated to disease severity, and 

leading to increased release of pro-inflammatory cytokines and 

chemokines (Björkqvist et al., 2008; Wild et al., 2011). Furthermore, 

expression of mutant HTT in microglia was shown to facilitate pro-

inflammatory transcriptional activation, and that such microglia were more 

predisposed to inducing neurodegeneration (Crotti et al., 2014).  

Lastly, recent studies have begun to elucidate the effect of mutant HTT on 

oligodendrocytes, and the roles of such glia on HD pathogenesis; this 

forms a central theme to this thesis, and is described in detail in the 

following sections.  

1.1.3. Current treatment for HD 

HD is a single-gene disease and as such is an ideal model to study 

neurodegenerative diseases as a whole, and test for possible therapeutic 

interventions that can slow or suppress disease onset. However, despite 

this, and numerous clinical trials, there are currently no disease-modifying 

drugs available to stop or reverse HD. Therapeutic strategies are limited to 

ameliorating motor, behavioural and psychiatric symptoms only, for which 

there are only two FDA-approved pharmacological agents available. 

These consist of tetrabenazine, also licensed in the UK, and its deuterium 

altered milder cousin deutetrabenazine, to treat chorea, a common 

symptom in HD. Neuroleptics, also, may be beneficial in patients that have 

concurrent psychosis, and selective serotonin reuptake inhibitors (SSRIs) 

may help to manage depression and suicidal ideation - symptoms that can 

be compounded by identical side-effects of tetrabenazine. Furthermore, as 

described earlier, not all the variability in onset and progression of HD can 
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be explained by CAG repeat length and much of this variability may be 

underpinned by environmental factors. This suggests that disease onset, 

progression, and symptomatology, can be modulated, to some extent, by 

lifestyle factors and multi-disciplinary interventions. Accordingly, this 

possibility forms another central theme to this thesis. 

1.1.4. Mouse models of HD 

Much of the knowledge we have on the pathogenesis of HD has derived 

from the use of model systems, the most common of which being that of 

the mouse. Mouse models of HD are generated using knock-in or 

transgenic approaches (see Table 1.1 for a summary of common mouse 

models of HD).  

Knock-in mouse models probably recapitulate the genetic insult more 

faithfully than transgenic models, have normal life-span, and display a 

relatively slow and mild behavioural and neurodegenerative phenotype. 

Full-length mutant HTT knock-in mouse models, which include the 

CAG140, HdhQ111 and HdhQ150 lines, have been largely generated 

through knock-in of a CAG tract-expanded HTT exon 1 into the 

endogenous Htt gene locus, with CAG repeat sizes ranging 5-200, and 

can be homozygous or heterozygous for the mutation (Pouladi, Morton, & 

Hayden, 2013a). 

Another class of genetic mouse models includes transgenic lines, which 

express N-terminal fragments of human HTT and include the R6/2 (the 

first transgenic mouse of HD), R6/1 and N171-Q82 lines. These mice are 

associated with a fast disease onset, motor, cognitive and behavioural 

deficits, and loss of body weight and reduced life-span. The N171-82Q 

shows motor deficits from 11 weeks of age, while in the R6/1 model 

behavioural deficits appear around 6-8 weeks of age and in the juvenile 

R6/2 HD model, deficits were seen as early as 3.5 weeks (Lione et al., 

1999). 
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Finally, and of direct relevance to this thesis, transgenic models have 

been created that express the full-length mutant HTT using yeast artificial 

chromosome (YAC) (Hodgson et al., 1999) and bacterial artificial 

chromosome (BAC) (Gray et al., 2008) technology. BACHD and YAC128 

models express the entire human HTT locus with 125 and 97 CAG 

repeats, respectively (Hodgson et al., 2008; Gray et al., 2008). These 

models are well known to display progressive motor, cognitive and 

psychiatric abnormalities, increases in body weight, as well as relatively 

late-onset selective striatal atrophy. 
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Table 1.1 Commonly used mouse models of HD  

 
Model 

 
Transgene 

Product 

 
Promoter 

 
CAG 

Length 

 
Behavioural 
Phenotype 

 
Neuropathology 

Phenotype 
 

Full length knock-in models 
CAG140 Full-length 

chimeric 
human HTT 

exon 
1:mouse Htt 

Endogenous 
mouse Htt 
promoter 

140 Hyperactivity 
at 4 weeks 
then hypo- 

activity by 12 
weeks. Gait 

deficits by 48 
weeks. Body 
weight loss. 

Neuronal loss. 
Intra-nuclear 

inclusions and 
neuropil 

aggregates by 8 
months. 

HdhQ111 As above As above 111 Gait deficits 
by 24 months. 

Nuclear inclusions 
at 48 weeks, 

neuropil 
aggregates at 68 

weeks. 
Astrogliosis by 96 

weeks.  

HdhQ150 As above As above 150 & 200 

Gait and 

locomotor 
deficits, 
clasping, 

between 4-10 
months 

Intra-nuclear 
aggregates, 

gliosis, axonal 
dysfunction at 14 

months. 

Hdh4/Q72 

& 

Hdh4/Q80 

As above As above 72 & 80 Aggressive 
behaviour. 
Impaired 
rotarod 

performance 

Aggregates by 28 
weeks with 

nuclear inclusions 
by 96 weeks 

zQ175 As above As above 188 Hypo-activity 
at 8 weeks 

and impaired 
rotarod 

performance 
at 30 weeks 

Decreased cortico-
striatal volume, 
and neuronal 
density at 4 

months. 

Truncated N-terminal fragment models 
R6/1 

67 amino 

acids of N-

terminal 

fragment 

(human 

HTT) 

Human HTT 
promoter 

116 Body weight 
loss at 22 

weeks. Motor 
deficits at 4-5 

months 

Neuronal atrophy 
and loss. 

Aggregates at 2 
months. 

Decreased brain 
volume by 18 

weeks. 

R6/2 As above As above 144-150 Rotarod 
impairments 
by 5 weeks. 

Dystonia with 
clasping by 6 

Gross brain 
atrophy by 60 

days with neuronal 
loss and 

astrogliosis by 90 
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weeks. Body 
weight loss by 

9 weeks.  

days. Aggregates 
from day 1 

N171-Q82 171 amino 
acids of N-

terminal 
fragment 
(human 

HTT cDNA) 

Mouse Prp 
promoter 

82 Motor deficits 
and clasping 
at 11 weeks. 
Body weight 

loss. 

Gross brain 
atrophy with 

striatal neuron 
loss. Aggregates 

at 16 weeks 

Full length transgenic models 
YAC128 Full-length 

human HTT 
Human HTT 

promoter 
and 

regulatory 
elements 

128 Motor 
performance 
abnormalities 
at 3 months 
and rotarod 

impairment by 
6 months. 
Increase in 
body weight 
at 2 months.  

Striatal and 
cortical neuron 

loss and 
decreased cortical 
and striatal volume 

by 12 months. 
Macroaggregates 

at 12 months.  

YAC72 As above As above 77 Hyperactivity 
at 7 months. 
Body weight 

loss. 

Selective striatal 
neurodegeneration 

at 12 months. 

BACHD As above As above 97 Rotarod 
impairment at 

8 weeks. 
Gain in body 

weight. 

Decreased cortico-
striatal volume and 

gross brain 
atrophy at 12 

months. Cortical 
inclusions 12-18 

months.  

Prp, prion protein; HTT, huntington. 
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1.2. Oligodendroglial populations dynamics and adaptive 

myelination  

1.2.1. Overview of glial cells in the central nervous system 

Four major types of glial cells populate the central nervous system (CNS): 

astrocytes, microglia, oligodendrocytes, and oligodendrocytes precursor cells 

(OPCs) or neuron-glia 2 (NG2) cells. Historically, glial cells were viewed as 

forming the glue or connective tissue of the brain. However, more recent 

work has demonstrated each type of glial cell to be highly specialized and 

plays supportive roles in the function and plasticity of the CNS, including 

response to injury, homeostatic function and trophic support, as well as 

modulation of signal propagation along axons (Domingues et al., 2016; 

Zuchero & Barres, 2015). Astrocytes have critical roles in supporting the 

blood-brain barrier, contributing to neuronal survival and synapse 

maintenance (Barres, 2008; Graeber, Li, & Rodriguez, 2011). Microglia, in 

turn, are the principal resident immune cells of the brain, and are involved in 

defense against pathogens and clearance of dead cells (Chan, Kohsaka, & 

Rezaie, 2007). NG2 cells are oligodendrocyte precursor cells (OPCs), and 

generate myelinating oligodendrocytes in the post-natal brain, and participate 

in maintaining CNS homeostasis and tissue repair (Hughes et al., 2013; 

Nishiyama et al., 2016; Raff, Miller, & Noble, 1983). Critical roles for 

oligodendrocytes include myelination (Tomassy, Dershowitz, & Arlotta, 

2016), trophic (Bankston, Mandler, & Feng, 2013), and metabolic, support for 

axons (Fünfschilling et al., 2012; Lee et al., 2012), and modulation of 

neuroplasticity (Bechler, Swire, & Ffrench-Constant, 2017; Osso & Chan, 

2017).  
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1.2.2. Oligodendroglial lineage – from OPCs to mature 

myelinating oligodendrocytes 

Oligodendrocytes precursor cells (OPCs) 

OPCs, also known as polydendrocytes, or as neuron-glia 2 (NG2) cells, are 

bipolar, highly proliferative cells that have the ability to migrate and 

differentiate into oligodendrocytes (Nishiyama et al., 2009; Nishiyama et al., 

2016). Adult OPCs remain in a constant and slow proliferative state (Clarke 

et al., 2012; Hughes et al., 2013; Kang et al., 2010) and generate 

oligodendrocytes continuously throughout life (Yeung et al., 2014). This 

process takes place at a much slower rate in adulthood relative to 

development (Dimou et al., 2008; Rivers et al., 2008). However, it is still 

unclear whether all OPCs cells differentiate into oligodendrocytes, or whether 

a proportion of these lose their capacity to do so with age (Nishiyama et al., 

2016). OPCs are homogenously distributed throughout the brain, in both 

gray and white matter regions, such as the corpus callosum, the cerebellum, 

the cortex and the optic nerve (Clarke et al., 2012; Hughes et al., 2013;  

Levine, Stincone, & Lee, 1993; Shi, Marinovich, & Barres, 1998). The 

capacity for OPCs to generate oligodendrocytes in the adult brain is greater 

and faster in white, compared to gray, matter, where they also exhibit faster 

differentiation and high proliferation rate, as well as a faster cell cycle (Dimou 

et al., 2008; Hill et al., 2013; Rivers et al., 2008; Viganò & Dimou, 2016; 

Viganò et al., 2013; Yeung et al., 2014; Young et al., 2013; Zhu et al., 2011). 

These regional differences in OPC proliferation and differentiation could 

therefore explain the observed variation in myelination in the adult brain 

(Osso & Chan, 2017). 

Oligodendrocytes development 

Cell-intrinsic, extrinsic, and environmental, factors regulate oligodendrocyte 

differentiation from OPCs (reviewed in Mitew et al. (2014) and Viganò et al. 

(2013)). When cells become committed to oligodendroglial lineage, the 

transcription factor Olig2 (oligodendrocyte lineage transcription factor 2) is 

expressed (Lu et al., 2002; Novitch, Chen, & Jessell, 2001). This is followed 
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by the onset of Sox10 (SRY (sex determining region Y)-box 10) expression, 

a transcription factor that precedes PDGFRα (platelet-derived growth factor 

receptor A) and NG2 expression (Noble et al., 1988; Stolt et al., 2002; Stolt, 

2004; Takada, Kucenas, & Appel, 2010). Sox10 is expressed throughout all 

developmental stages (Küspert et al., 2011), whereas Olig2 was shown to be 

downregulated with oligodendrocyte maturation (Ligon et al., 2006). Olig2 is 

established to have an important role in differentiation, but its potential role in 

modulating myelination in the long-term remains unclear (Mei et al., 2013; 

Mitew et al., 2014). Myelin Regulatory Factor (Myrf) is a recently discovered 

membrane-associated transcription factor, which is not only critical for 

mediating oligodendrocytes differentiation, mature oligodendrocyte identity, 

and promotion of new oligodendrocytes in adulthood, but also for myelin 

generation, and myelin related gene maintenance (Bujalka et al., 2013; 

Emery et al., 2009; Koenning et al., 2012; Liu & Zhou, 2013; McKenzie et al., 

2014). Other transcription factors required for oligodendrocyte differentiation 

(reviewed by Mitew et al., (2014)) are Olig1 (Xin et al., 2005), Nkx2.2 (Qi et 

al., 2001), Zfp191 (Howng et al., 2010)) and Ascl1/Mash1 (Nakatani et al., 

2013; Parras et al., 2007; Sugimori et al., 2008).  

Extracellular cues such as chemotactic proteins, growth factors, nuclear 

receptor ligands, and intracellular signaling, are also required for OPC 

differentiation into oligodendrocytes (Nave & Werner, 2014; Valny et al., 

2017). Other mechanisms revealed to regulate different stages of 

oligodendrocyte differentiation and maturation include chromatin remodeling 

and histone modification (Copray et al., 2009; Marin-Husstege et al., 2002; 

Shen, Li, & Casaccia-Bonnefil, 2005), DNA methylation (Coelho et al., 2009), 

and post-translational-modifications through regulation of microRNAs 

(Svaren, 2014).  

Oligodendroglial lineage markers 

Several immunohistochemical markers are used for identification of each 

stage of oligodendroglial development. OPCs express high levels of 

gangliosides, which bind to PDGFRα (Pringle & Richardson, 1993) and 
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proteoglycan NG2 (Levine et al., 1993; Nishiyama et al., 1996), whereas 

these markers are not expressed in neural stem cells. As OPCs mature and 

undergo differentiation they can be detected by the oligodendrocyte antigen 

O4 and O1 (Sommer & Schachner, 1981), and cease to express NG2 and 

PDGFRα. As they begin to differentiate into premyelinating, or immature, 

oligodendrocytes, 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNP) and the 

myelin lipid galactocerebroside are amenable to detection (Pfeiffer, 

Warrington, & Bansal, 1993; Zhang & Jiao, 2015). Premyelinating 

oligodendrocytes further mature into myelinating oligodendrocytes that 

express Glutathione S-transferase (GST-pi), and myelin membrane proteins, 

such as myelin basic protein (MBP), proteolopid protein (PLP), myelin-

oligodendrocyte glycoprotein (MOG), and myelin-associated glycoprotein 

(MAG) (Nishiyama et al. (2009); Figure 1.1) 

 

 

 

Figure 1.1 Development stages of oligodendrocytes 

Adapted from Nishiyama et al. (2009), Nature Reviews Neuroscience  
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Multiple roles of oligodendrocytes 

Newly developed fate-mapping techniques investigate proliferation and 

differentiation of oligodendrocytes from OPCs using transgenic mice 

expressing inducible Cre, under the regulation of OPC or oligodendrocyte 

specific genes, including Ng2, Pdgfrα, Plp, Cnp, Myrf (Clarke et al., 2012; 

Kang et al., 2010; Rivers et al., 2008; Young et al., 2013; Zhu et al., 2011). 

Recent studies from the Richardson lab have provided evidence that 

production of new myelinating oligodendrocytes and active myelination is 

required during adulthood for skill learning (McKenzie et al., 2014; Xiao et al., 

2016). Other work has recently revealed that oligodendrocytes also provide 

crucial trophic support through the production of brain derived neurotrophic 

factor (BDNF), glial-derived neurotrophic factor (GDNF), insulin-like growth 

factor (IGF-1), nerve growth factor (NGF) and neutrotrophin-3 (NT-3) (Dai et 

al., 2003; Nave, 2010; Wilkins et al., 2003). Finally, oligodendrocytes also 

provide metabolic support via the lactate monocarboxylate transporter 1 

(MCT1) which maintains axonal mitochondrial energy metabolism 

(Fünfschilling et al., 2012; Lee et al., 2012; Saab, Tzvetanova, & Nave, 

2013). 

1.2.3. Myelin and adaptive myelination 

Structure of myelin  

Approximately 70-85% of myelin membrane by dry-weight is composed of 

lipids, while the remaining 15-30% being protein. Lipid composition is not 

myelin specific, and consists of a high content of cholesterol, galactolipids, 

and other lipids, such as glycosphingolipids, and plasmalogens (Chrast et al., 

2011). The compact myelin proteins MBP and PLP are among the most 

abundant specific myelin related proteins (Boggs, 2006). MBP is localized on 

the intracellular surface of the membrane, and is critical for myelin formation, 

compaction and stability (Min et al., 2009). PLP, in turn, is a more 

preponderant transmembrane protein, and is involved in consolidating 

adjacent myelin layers during the myelin wrapping process (Klugmann et al., 

1997), as well as the enrichment of cholesterol in myelin (Werner et al., 
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2013). The uncompacted myelin proteins, MOG, MAG, and CNP account for 

most of the remaining proteins. In the myelin membrane, MAG is located in 

the periaxonal layer, while MOG is present on the external surface; however, 

both proteins are also expressed in oligodendrocytes (Pham-Dinh et al., 

1993). MOG is believed to play a key role in modulating stability of 

microtubules (Johns & Bernard, 1999), while MAG is crucially involved in 

myelinated axon maintenance (Yin et al., 1998). Myelin lipids are critical for 

regulating conduction along axons, whereas proteins have important roles in 

production and maintenance of myelin itself, as well as mediating axon-glial 

interaction (Simons & Nave, 2015).  

Transcription factors of myelination 

In terms of transcription factors required for myelination, OLIG1 was shown 

to be critical for the initial myelination onset, since Olig1 knock out (KO) mice 

were capable of generating highly branched CNP+O4+ oligodendrocytes (Li 

et al., 2007; Xin et al., 2005). SOX10 is also critical for myelination as it acts 

at the MBP promoter (Li et al., 2007; Stolt et al., 2002) similarly to OLIG1, 

and interacts directly with Myrf (Hornig et al., 2013). MYRF drives immature, 

premyelinating oligodendrocytes to a maturation and myelination stage 

(Emery et al., 2009), whereas absence of Myrf leads to loss of myelin genes, 

and subsequent demyelination (Koenning et al., 2012). Additional 

transcription factors for myelin gene expression and myelination include the 

zinc finger proteins, ZFP488 (Soundarapandian et al., 2011) and ZFP191 

(Howng et al., 2010), although their mechanisms of action have not yet been 

elucidated (Mitew et al., 2014). 

Axonal cues to myelin formation and OPCs differentiation 

Myelin thickness, and length between each myelin segment (i.e. internode), 

varies markedly within a single axon, and across axons (Micheva et al., 

2016; Tomassy et al., 2014). Axonal diameter (i.e. caliber), which also varies 

greatly across axons in the CNS, has been identified as a key property 

influencing myelin sheath length, thickness and internode length 

characteristics (Butt, Ibrahim, & Berry, 1998; Hildebrand et al., 1993; Almeida 
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et al., 2011), all of which play a crucial role is shaping the conduction velocity 

of each axon (Rushton, 1951). This variability in myelin organization 

suggests there to be an inherently wide range of axonal conduction velocities 

in the CNS, which may be important to the timing and regulation of neuronal 

networks (Bechler et al., 2017; de Hoz & Simons, 2014).  

Oligodendrocytes have been shown, using microfiber cultures, to have an 

intrinsic program for generation of myelination, where newly generated 

myelin sheaths exhibited similar properties to myelin sheaths present in the 

brain. These properties included increased sheath length with increased 

axonal fiber diameter, generation of compact and multilamellar membranes 

of similar lengths to those observed in vivo, and, notably, a minimal axonal 

diameter threshold of 300nm for myelination to be initiated (Bechler, Byrne, & 

Ffrench-Constant, 2015; Lee et al., 2012; Rosenberg et al., 2008). 

Additionally, Pten knock-out (KO) from cerebellar granule cells, and thus 

ablation of PTEN signaling inhibition, led to altered gene expression in-vivo, 

and an increase in diameter size of axons previously under this myelination 

threshold, resulting in these axons being myelinated (Goebbels et al., 2017). 

Increased proliferation and differentiation of OPCs was also observed, 

suggesting newly differentiated oligodendrocytes may have contributed to 

this myelination (Goebbels et al., 2017). Taken together, these studies 

suggest a minimal axonal diameter required for oligodendrocytes to sense 

and initiate myelination, but fall short of explaining why many axons in the 

CNS with supra-threshold diameters for myelination remain unmyelinated 

(Almeida et al., 2011). This could be partly due to a cell-type specific 

dependency in myelination-related characteristics, with recent work in the 

mouse showing parvalbumin-expressing cells to be the only GABAergic 

interneuron population to be myelinated in the cortex (Micheva et al., 2016). 

Interestingly, differential cell-type specific myelination could represent a 

trade-off between space and energy demands with signal transduction 

benefits of myelination (Harris & Attwell, 2012; Osso & Chan, 2017). 

OPCs and oligodendrocytes can also be receptive of axonal cues and 

promote selection of that axon through differentiation and myelination, 
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respectively (Osso & Chan, 2017). OPCs express a number of 

neurotransmitter receptors, including glutamate and GABA receptors, and 

receive synaptic input from neurons (Larson, Zhang, & Bergles, 2016; 

Maldonado & Angulo, 2015). In turn, increased neuronal activity promotes 

OPC proliferation and oligodendrocytes differentiation (Gibson et al., 2014), 

and modulates myelin sheath characteristics (Hines et al., 2015; Gautier et 

al., 2015; Gibson et al., 2014; Wake et al., 2015). Furthermore, 

oligodendrocytes processes that enwrap non-active axons are more likely to 

retract their processes compared to those enveloping highly active axons 

(Hines et al., 2015).  

Adaptive and plastic myelination 

Elegant studies have demonstrated that myelination is a highly adaptive and 

plastic process, and undergoes substantial remodeling throughout life as a 

result of combination between intrinsic and extrinsic factors (Bechler et al., 

2017; Bercury & Macklin, 2015; Snaidero & Simons, 2014). Most of the 

evidence available to support adaptive myelination is from studies 

investigating myelination during brain development (Wake, Lee, & Fields, 

2011; Hines et al., 2015; Mensch et al., 2015). In humans, intra-cortical 

myelination persists until the third decade of life, and is stable until the fifth 

decade of life, after which it begins to decline (Grydeland et al., 2013). 

Contrastingly, in mice, most of the myelination process takes place during 

the first two postnatal months, although it also occurs later in life (Young et 

al., 2013). A newly proposed property of adult myelination in the CNS is that 

myelin synthesized in adulthood is associated with thinner sheaths relative to 

axon diameter and shorter internodes, compared to myelin synthesized in 

adolescence (Young et al., 2013). However, others have suggested that this 

observation may be more simply explained by the protracted and on-going 

process of myelin production (Karttunen et al., 2017).  

An interesting model for CNS myelination proposed by (Bechler et al., 2017) 

suggests that initiation of myelin is enacted by an oligodendrocyte intrinsic 

program, while later adaptations and alterations are driven by environmental 

cues and neuronal activity. In keeping with this, optogenetic activation of 
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neurons has been shown to promote increased myelination (Gibson et al., 

2014). Furthermore, neuronal signaling related factors such as matrix 

receptors of the integrin family, Neuregulin-1 (NRG1), or NMDA glutamate 

receptors in the myelin sheath, all contribute to myelination and its 

maintenance, and, while these may not be required for its initiation, they may 

serve important roles in adaptive myelination (Brinkmann et al., 2008; 

Câmara et al., 2009; Saab et al., 2013); also discussed in (Bechler et al., 

2017). Neuronal NRG1 is a member of the NRG superfamily of epidermal 

growth factor-like ligands and it binds to the cell surface ErbB receptor on 

oligodendrocytes (Taveggia et al., 2007). Conditional KO mice lacking 

neuronal NRG1 were not associated with differences in myelination 

formation, but overexpression of neuronal NRG1 led to thicker myelination, 

particularly in small diameter axons that are not usually myelinated 

(Brinkmann et al., 2008; Taveggia et al., 2007). Interestingly, reduced 

expression of NRG1 during social isolation in juvenile mice was shown to 

result in hypomyelination and thinner myelin sheaths in axons of the PFC 

(Makinodan et al., 2012). These findings suggest that while NRG1 signaling 

may not be required for establishing myelination in CNS, it likely plays an 

important role in behavioural-dependent myelination. 

Interestingly, several new findings suggest a small window of time for newly 

differentiated oligodendrocytes to myelinate, such as ~5 hours in the 

zebrafish, and ~12 hours in rodent-derived myelinating cultured cells 

(Watkins et al., 2008; Czopka, Ffrench-Constant, & Lyons, 2013). A window 

of myelination was also described in relation to the capacity of myelin to 

respond to environmental manipulation and behavioural experience, with 

more flexibility during adolescence, but not young adulthood, in rodents 

(Makinodan et al., 2012). Others, however, have demonstrated myelin 

alterations in adulthood with longer periods of environmental manipulation 

(Liu et al., 2012). Further effects of environmental manipulation on 

myelination are described in greater detail in the following sections. 
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1.2.4. Imaging tools for myelin characterisation 

Myelination can be visualized and characterised through high-resolution 

imaging of ultra-thin sections of brain tissue using electron microscopy (EM). 

Properties such as myelinated and unmyelinated axonal population 

distribution, myelin thickness, and ultrastructure, can be obtained using EM. 

Myelin thickness can be quantified and compared using the g-ratio measure, 

which is calculated as the inner axonal diameter divided by the outer 

diameter (axonal diameter plus myelin lamellae; Friede & Miyagishi, 1972). 

Accordingly, smaller g-ratios are associated with thicker myelin sheaths and 

the g-ratio of unmyelinated axons is equal to unity. The optimal g-ratio for the 

rat CNS has been suggested to be around 0.77 (Chomiak & Hu, 2009), 

although values can vary in the literature.  

Imaging white matter microstructure in humans is achieved using diffusion-

weighed imaging (DWI) and diffusion-tensor imaging (DTI) magnetic 

resonance imaging (MRI) (Bihan et al., 1986). These imaging techniques rely 

on fractional anisotropy (FA) to infer axonal fiber density, axonal diameter 

and myelination. Several studies have reported myelination plasticity by 

observing increased FA values, associated with an increase in axonal 

diameter and myelin thickness, as a result of skill training (Scholz et al., 

2009). 

1.2.5. White matter of the CNS – with focus on the corpus 

callosum (CC) and prefrontal cortex (PFC) 

The white matter of the CNS consists of myelinated and unmyelinated axons, 

and glial cells. Axons are most abundant, followed by oligodendrocytes, 

astrocytes, OPCs, and microglia (Walhovd, Johansen-Berg, & Káradóttir, 

2014). Myelination in white matter tracts is not homogenous and not all 

axons are myelinated (Dangata, Findlater, & Kaufman, 1996; Sturrock, 1980; 

Young et al., 2013). Furthermore, as described previously, many axons are 

known to possess non-uniform myelin distributions along their length, termed 

‘intermittent myelination’ (Micheva et al., 2016; Tomassy et al., 2014). 
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Human white matter volume increases during childhood, adolescence, and 

into adulthood (Westlye et al., 2010). 

Myelinated tracts ensheathe the axons of the cortex, and the inter- and intra-

hemispheric connecting fibres of the corpus callosum (CC), internal and 

external capsule, the cingulum, and the anterior commissure (Zatorre, Fields, 

& Johansen-Berg, 2012). The CC is the largest white-matter structure of the 

brain, and it facilitates inter-hemispheric communication, playing a critical 

role in the relay of cognitive, motor and sensory information between cortical 

regions. Callosal fibers arise from cortical pyramidal neurons and are 

topographically structured as they project through the CC (Innocenti, 1994). 

The human CC is segmented into five regions based on functional and 

anatomical connectivity: the lamina rostralis, the genu, the body, the isthmus, 

and the splenium, from frontal to caudal (Hofer & Frahm, 2006; Raybaud, 

2010). In rodents, however, different regions of the CC are typically classified 

according to three main areas, the genu, mid-body and splenium. The genu 

and the body of the CC transfer information from the prefrontal cortex, the 

premotor, primary motor and supplemental motor cortex, whereas the 

splenium integrates connections from posterior parietal cortex, and the 

temporal and occipital lobes (Raybaud, 2010). Interestingly, despite the CC 

being one of the most highly myelinated structures in the brain, it also 

contains a high proportion of unmyelinated axons following the 

developmental peak in myelination (Sturrock, 1980; Young et al., 2013). 

Some of these unmyelinated axons become myelinated in adulthood, 

possibly leaving room for plasticity required for skill learning (Fields, 2008; 

Zatorre et al., 2012). Indeed, of the total number of oligodendrocytes in the 

CC of 8 month old mice, about 30% are generated after 7 weeks of age 

(Rivers et al., 2008; Zhu et al., 2011).  

In addition, the PFC is also highly enriched in myelinated fibres, and 

myelinates late into adulthood in both humans and animals (Fuster, 1996; 

McKenzie et al., 2014; Miller et al., 2012). The PFC has been linked to higher 

cognitive functions, such as planning, executive tasks and working memory, 

and plays a key role in personality expression and social behaviour 
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(McEwen, 2013; Miller & Cohen, 200); Yang et al., 2009; Yuan & Raz, 2014). 

Interestingly, the rate of OPCs differentiation into oligodendrocytes is faster 

in the cortex than other white matter regions, such as the spinal cord and 

optic nerve (Young et al., 2013), highlighting the potential importance of 

myelination in this brain region. Particularly during development, myelination 

in the PFC is more plastic and sensitive than other regions, to experience, 

environmental and social factors (Hoban et al., 2016a; Liu et al., 2012; 

Makinodan et al., 2012; Tomlinson, Leiton, & Colognato, 2016a). 

1.2.6. White matter abnormalities in Huntington disease  

Oligodendrocytes and myelin are vital for axonal function and survival, while 

dysfunction of this population, along with defects in myelination, may play 

important roles in the development and severity of neurodegenerative 

diseases (NDDs) such as HD (Ettle, Schlachetzki, & Winkler, 2016; Huang et 

al., 2015a; Liu & Zhou, 2013).  

Accompanying the well-studied neuronal degeneration in the basal ganglia, 

white matter (WM) atrophy and myelination defects have been identified as 

an early feature of the HD phenotype in both patients and animal models 

(Bartzokis et al., 2007; Ciarmiello et al., 2006; Fennema-Notestine et al., 

2004; Novak et al., 2014; Rosas et al., 2003; Tabrizi et al., 2009; Xiang et al., 

2011). Progressive reduction in WM volume and alterations in WM tracts 

have been reported by longitudinal studies in pre-symptomatic HD gene 

carriers (Tabrizi et al., 2009; Tabrizi et al., 2013; Shaffer et al., 2017), and 

indicate loss of connectivity between cortical and sub-cortical regions, which 

may underpin early clinical symptoms. White matter alterations were found in 

the corpus callosum (CC) and prefrontal cortex (PFC) of pre-symptomatic 

and symptomatic HD gene carriers (Bourbon-Teles et al., 2017; Matsui et al., 

2013; Matsui et al., 2015; Rosas et al., 2006). Furthermore, striatal cell death 

follows a dorsal-to-ventral progression in HD (Hedreen, 2003; Vonsattel, 

2007), and, similarly, altered diffusivity in WM of the dorsal PFC-striatal 

pathway was observed in a pre-symptomatic HD group (Matsui et al., 2015). 
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HD animal models recapitulate WM related alterations in humans. Our group 

has explored the molecular and ultrastructural features of WM abnormalities 

in HD mouse and rat models (Garcia-Miralles et al., 2016; Teo et al., 2016). 

Using diffusor tensor imaging (DTI) imaging, WM microstructural 

abnormalities were revealed prior to neuronal loss in the CC of the YAC128 

mouse model and the BACHD rat model (Teo et al., 2016). In addition, 

thinner myelin sheaths and lower levels of myelin related gene transcripts 

were seen in these animals compared to healthy animals (Teo et al., 2016). 

Others have also reported microstructural abnormalities in the R6/2 and 

HdhQ250 mouse model, and reduction in myelin sheaths thickness, as well 

as decreased expression of myelin related genes in the BACHD and 

HdhQ250 mouse models (Jin et al., 2015; Xiang et al., 2011).  

While HTT expression in glial cells has long been recognised (Hebb, 

Denovan-Wright, & Robertson, 1999), more recent studies have observed 

mutant HTT aggregates in glial cells, including astrocytes, in addition to 

neuronal cells (Faideau et al., 2010; Shin et al., 2005). Myrf knock-out in 

adult mice, and selective expression of mutant HTT in oligodendrocytes of 

transgenic mice, led to similar oligodendroglia related impairments, such as 

demyelination, reduction in myelin gene expression, along with progressive 

motor impairments, seizures, metabolic impairments and reduced survival 

(Koenning et al., 2012; Huang et al., 2015a). Furthermore, mutant HTT was 

found to be spatially restricted to oligodendrocyte-rich brain regions such as 

the CC (Huang et al., 2015a). 

 

1.3. Environmental manipulation 

Through molecular, cellular, structural and functional alterations, the plastic 

brain responds to cognitive, sensory, physical or social stimulation, in 

interaction with the enriched or deprived environment (Galani et al., 2007; 

Keiner et al., 2017; Okuda et al., 2009; Qiu et al., 2012; Segovia et al., 2008; 

Viola et al., 2009). Environmental manipulation by either enrichment or 

deprivation was shown to be involved in modulation of myelination and 
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oligodendroglia population and precursor cells (Komitova et al. 2006; Liu et 

al., 2012; Liu et al., 2016; Magalon et al., 2007; McKenzie et al., 2014; 

Tomlinson, Leiton, & Colognato, 2016a; Wang & Young, 2014). 

1.3.1. What is a standard housing condition in rodents 

Laboratory animals, with particular reference to rodents, are generally kept in 

what is referred to as ‘standard housing’ conditions. Standard housing can 

vary between laboratories, and are often poorly described in literature. In 

general, standard cages are one level, relatively small (~ 30cm x 20cm x 

15cm), and usually include sparse bedding material, and in some cases 

small plastic shelter boxes, with free access to water and food pellets 

(Nithianantharajah & Hannan, 2006). These conditions restrict rodents from 

natural exploratory behaviours, and could have detrimental effects and 

interfere with treatment effects, especially when a neurodegenerative 

disease model is investigated. Mice housed in cages containing wheels run 

between 4-10km per day (Ransome & Hannan, 2013), illustrating the 

potential impact of a simple running wheel were it to be added to a standard 

cage. Animals in standard housing are usually held in groups of two to five 

per cage, but can on some occasions find themselves as the last and single 

animal in the cage during experimental studies. This leads to other issues, 

such as social isolation, which have been shown to be detrimental to normal 

development and behaviour (Liu et al., 2012; Makinodan et al., 2012; 

Makinodan et al., 2016; Potter et al., 2010). As a result, housing of animals in 

‘standard’ cages was previously suggested to be equivalent to ‘deprived’ 

housing, whereas the ‘enriched’ housing is closer to natural environments 

(Mo, Renoir, & Hannan, 2015b). However, others argue that standard 

housing can be considered a form of mild enrichment, since it can promote 

exercise, play and social interactions (Crofton, Zhang, & Green, 2015). 

1.3.2. How to create an enriched environment for laboratory 

rodents 

Enrichment in animal studies has been defined by several components such 

as: (1) larger than standard housing conditions, often built on several levels; 



  

 

47 

(2) enhanced housing conditions, by introduction of objects of different 

shapes, and materials; (3) appropriate sheltering and complex bedding 

material; (4) increased social housing; and (5) exercise stimulating objects 

such as running wheels, platforms or stairs (Olsson & Dahlborn, 2002; 

Nithianantharajah & Hannan, 2006; Singhal et al., 2014). Additionally, 

cognitive or physical training were also included in some study designs 

(Keiner et al., 2017; Pang et al., 2008; Van Dellen et al., 2008). Unless 

investigating aging or late progressive neurodegeneration, most rodents 

have been allocated to enriched housing immediately post-weaning, and 

were maintained in such from 1 day to several months, depending on the 

interest of the researcher. Benefits were shown to usually be augmented with 

more complex EE interventions, such as those that combine sensory, 

cognitive, physical and social stimulation, and eliminate stress (Hannan, 

2014; Mo, Hannan, & Renoir, 2015a; Mo, Renoir, & Hannan, 2015b). The 

strength of such effects are also dependent on the duration of the enrichment 

paradigm, the animal’s age at intervention onset, the genetic background, 

and the sex of the animals (Hannan, 2014; Leger et al., 2015; Pang & 

Hannan, 2012; Singhal et al., 2014; Tomlinson, Leiton, & Colognato, 2016a). 

Enrichment protocols vary greatly between laboratories, and there is no 

standardised paradigm used. Thus, the enrichment components described 

above used either individually, or combination, and to different complexities, 

have sometimes yielded inconsistent or conflicting results. 

1.3.3. Beneficial effects of enrichment in rodents 

Long-lasting effects of animals weaned in enriched environments, as well as 

enrichment of middle-aged, old or diseased animals, were shown to have 

beneficial effects on behavioural performance by multiple studies 

(Nithianantharajah & Hannan, 2006). Early studies pioneering environmental 

manipulation research demonstrated the susceptibility of the adult brain to 

enrichment or deprivation. Rats allocated to enriched housing had greater 

cognitive abilities, thicker cortical layers and a more complex dendritic 

arborisation compared to isolated rats (Diamond, Krech, & Rosenzweig, 

1964; Renner & Rosenzweig, 1987). Another early study showed that spatial 
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memory was enhanced concomitantly with increased neurogenesis in the 

dentate gyrus of the hippocamus as an effect of enrichment (Kempermann, 

Kuhn, & Gage, 1997), an effect subsequently confirmed by later studies 

(Doulames et al., 2015; Lazic et al., 2006; Novkovic, Mittmann, & Manahan-

Vaughan, 2015; Okuda et al., 2009). A more recent study demonstrated that 

young rats held in enriched cages for 10 weeks post-weaning showed long-

lasting improvements in several behavioural tests, indicating better stress-

coping strategies, increased motor activity and improved information 

processing and vigilance (Mosaferi et al., 2015). Performance of middle-aged 

rats was improved in the Morris Water Maze Task after 4 months of enriched 

housing (Zhao et al., 2011). In addition, EE was used as rehabilitation 

therapy following brain injury in rodents, and was demonstrated to positively 

influence motor, cognitive and psychiatric recovery. For example, enriched 

rats following experimental stroke exhibited improved functional recovery 

(Komitova et al., 2006), attenuated cognitive deficits (Hicks et al., 2007), and 

reversed learning impairment (Dahlqvist et al., 2004), compared to standard 

housing animals. Both enriched housing and reaching training improved 

sensorimotor capabilities in the impaired forelimb of rats with induced stroke 

(Keiner et al., 2008). Furthermore, enhanced performance in learning and 

memory tasks was observed in enriched middle-aged and aged rats (Zhao et 

al., 2012), and Alzheimer Disease (AD) mouse models (Arendash et al., 

2004; Herring et al., 2010; Jankowsky et al., 2005; Mirochnic et al., 2009; 

Valero et al., 2011). Motor function recovery also improved in enriched 

mouse models of Parkinson Disease (PD) (Faherty et al., 2005; Jadavji, 

Kolb, & Metz, 2006; Tajiri et al., 2010; Tillerson et al., 2003). Exploratory 

behaviour improved in young and old PD mice after 3 weeks of exposure to 

EE (Goldberg, Haack, & Meshul, 2010). Therefore, enrichment effects have 

been explored as a possible preventive, non-drug based therapy, or in other 

cases, as an ameliorative therapy during disease progression. 
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1.3.4. Enrichment effects on myelin plasticity and 

oligodendroglial population dynamics in humans and 

rodents 

There is evidence to suggest that the majority of axons in the cortex and 

corpus callosum remain unmyelinated into adulthood, indicating that such 

axons can be myelinated during later stages in life (Sturrock, 1980; Tomassy 

et al., 2014; Waly et al., 2014). The plastic properties of myelination, and its 

sensitivity to behavioural and environmental experience, have been 

observed in humans through use of magnetic resonance imaging (MRI). For 

example, DTI MRI revealed microstructural white matter (WM) changes 

following balance training in both healthy young adults (Taubert et al., 2011), 

and young adults with traumatic brain injury (Drijkoningen et al., 2015). Other 

imaging studies demonstrated plasticity of myelination through increased 

fractional anisotropy (FA) as a result of juggling (Scholz et al., 2009), abacus 

training (Hu et al., 2011), extensive piano practice (Bengtsson et al., 2005; 

Han et al., 2009), long-life musical training (Schmithorst & Wilke, 2002), 

working memory training (Takeuchi et al., 2010), reasoning training (Mackey, 

2012), and meditation training (Tang et al., 2012). However, to be noted, that 

decreased FA has been observed in balancing skills training (Taubert et al., 

2011).  

Recent work using animal models has revealed promising effects of 

behavioural experience, enriched housing and voluntary exercising on 

adaptive myelination and oligodendroglial population dynamics in several 

regions of the brain (Tomlinson, Leiton, & Colognato, 2016a). 

Oligodendrocyte precursor cells (OPCs), such as NG2-positive cells, were 

also shown to respond to environmental manipulation. In a recent study, 

(Keiner et al., 2017) assigned 10-12 weeks old male rats to 3 experimental 

conditions (standard housing, enriched housing, and standard housing with 

daily skilled reaching training of the dominant forelimb) for either 10 or 42 

days. Injections of the proliferation marker, BrdU, were given to all animals 

from days 2-6 of the experimental condition. Interestingly, young rats 
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exhibited a shift in the distribution of oligodendroglial population in 

sensorimotor cortex, but not in the CC, between short- and long-term 

enrichment. Compared to standard housing, short-term enriched rats showed 

differentiation of OPCs into mature oligodendrocytes; however, after long-

term enrichment, OPCs and mature GST-pi positive oligodendrocyte 

populations appeared comparable to the standard housing condition. 

Additionally, the number of myelinating CNP-positive cells increased in the 

motor cortex after short-, as well as, long-term enrichment (Keiner et al., 

2017). These findings suggest regional differences in myelin and 

oligodendroglial population exposed to enrichment. Effects of enrichment 

have also been observed in older rats. Four months of enrichment of middle-

aged and old-aged male and female rats led to increased axon volume, 

myelin sheath volume and the length of myelinated fibres, although no 

changes were observed in mean axonal diameter or myelin sheath thickness 

in white matter tracts (Yang et al., 2013). The authors ascribed the increase 

in myelinated fibres as a result of enrichment to ongoing remyelination (Yang 

et al., 2013). Consistently, no differences were observed after 1-2 months of 

enrichment in the numbers of myelinated axons of the CC in 4 months old 

rats (Markham et al., 2009). A 10% increase in the splenium of the CC was 

observed after enrichment, but this was attributed to increase in the number 

of astrocytes branching rather than thicker myelin sheaths (Markham et al., 

2009). Increased total corpus callosum (CC) volume, increased myelinated 

fibre and myelin sheath volume, as well as increased total length of 

myelinated fibres, were observed specifically in the CC of enriched aged rats 

(Zhao et al., 2012). Oligodendroglial population related changes were also 

observed in middle-aged enriched rats, such as an increased number of 

myelinating CNP-positive oligodendrocytes in the CC (Zhao et al., 2011). 

The same period of enrichment in middle-aged rats was also shown to 

increase the total volume of myelinated fibres in sub-cortical, grey matter 

areas, such as the hippocampus, which was significantly correlated with 

improvements in spatial learning (Qiu et al., 2012). 

In contrast, few studies have provided support for oligodendrogenesis in 

many cortical regions, or the amygdala, although evidence for increased 
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numbers of OPCs have been reported (Ehninger & Kempermann, 2003; 

Ehninger et al., 2011; Makinodan et al., 2012). In adult mice enriched for 40 

days, increased number of proliferative OPCs, but no differences in 

CNPase+ labelled cells (i.e. myelinating oligodendrocytes), were observed in 

the amygdala compared to control mice (Ehninger et al., 2011). Similarly, no 

changes in oligodendrocyte density or morphology, nor myelin transcript 

levels, were found in the prefrontal cortex (PFC) of juvenile male mice which 

expressed green fluorescent protein (GFP) under the proteolipid protein 

promoter (PLP) and were enriched for 1.5 months (Makinodan et al., 2012). 

Besides the effects observed under physiological conditions, EE was also 

demonstrated to drive post-insult oligodendroglial differentiation (Keiner et 

al., 2008; Klaissle et al., 2012; Komitova et al., 2006; Simon, Götz, & Dimou, 

2011; Steiner et al., 2006). For example, following induction of local cortical 

infarcts, rats placed for ten days in EE showed a small transient increase in 

immature oligodendrocytes proliferation; however, no differences were 

observed in MBP positive cells within the perilesional region (Keiner et al., 

2008). 

1.3.5. Enrichment effects in HD animal models 

Environmental enrichment was first demonstrated to have a positive 

influence in delaying motor symptoms in a genetic mouse model of HD (van 

Dellen et al., 2000). Enrichment for 18 weeks in post-weaning R6/1 mice 

increased novel object exploration, delayed motor coordination impairments, 

suppressed seizures, and increased striatal and cortical volume by 22 weeks 

of age, compared to R6/1 mice allocated to standard housing (van Dellen et 

al., 2000). Since this pioneering study, physiological and cognitive 

improvements as a result of environmental enrichment have been also 

demonstrated in several others HD mouse models, including the R6/2 and 

N171-82Q lines (Hockly et al., 2002; Schilling et al., 2004; Wood et al., 

2010). For example, R6/1 mice were associated with ameliorated motor 

symptoms and rescue of decreased body weight, specific brain-derived 

neurotrophic factors (BDNF) in the striatum and hippocampus, and the 

dopamine signaling cortical regulator, DARP-32, after four months of 
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enrichment (Spires, 2004). The same period of enrichment also showed 

improved levels of the presynaptic marker synaptophysin, in frontal cortex 

and hippocampus, and elevated levels of the postsynaptic glutamatergic 

signaling protein density 95 (PSD-95) in the hippocampus of the R6/1 mouse 

(Nithianantharajah et al., 2008). Longer life expectancy, along with improved 

hippocampal neurogenesis and longer neurites in newly born neurons, were 

observed in the 25 weeks-old enriched R6/1 group compared to control 

(Lazic et al., 2006). Behavioural and cognitive enrichment-driven 

improvements in the R6/1 HD model also included reduced spatial memory 

deficits and delayed cognitive deficits (Nithianantharajah et al., 2008), and 

amelioration of depressive- (Du et al., 2012a) and emotion- related 

phenotypes (Renoir et al., 2012). Although complex enrichment provides 

enhanced benefits, minimal improvements in housing conditions have also 

been shown to have some positive effects in other models. Indeed, addition 

of nesting materials and tunneling areas (Hockly et al., 2002), and improving 

access to food (Carter, Hunt, & Morton, 2000), has also been demonstrated 

to be beneficial for juvenile R6/2 mice models of HD.  

Interestingly, negative outcomes of enrichment have also been reported in a 

handful of studies. Post-symptomatic 8-week-old R6/2 male mice exposed to 

a playground overnight, while spending daytime hours in standard cages, 

had a lower rate of survival than control animals (Skillings, Wood, & Morton, 

2014; Wood, Glynn, & Morton, 2011). This could be related to the 

accelerated HD mouse model employed in these studies. On the other hand, 

the stress caused by daily transfer from home to playground may also be a 

potential confound, a point acknowledged by both the authors and others 

(Mo, Renoir, & Hannan, 2015b). 

1.3.6. Enrichment inspired therapies in HD patients 

Although animal studies have shown positive and exciting results in terms of 

the beneficial effect of enrichment and exercise, it is important to note that 

these animal models do not fully recapitulate the human disease phenotype. 

In addition, humans already live in what can be considered an ‘enriched 

environment’, making the extrapolation and translation from cage to the clinic 
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a difficult task. Nevertheless, multi-disciplinary long-term interventions have 

highlighted the positive returns of rehabilitation and occupational therapies in 

neurodegenerative disease (Quinn et al., 2017; Reetz, Werner, & Schiefer, 

2015). Several studies have now demonstrated that combining active 

lifestyle, including physical, social and cognitive stimulation factors could 

protect against dementia and Alzheimer Disease (Baker et al., 2010a; Baker 

et al., 2010b; Fratiglioni, Paillard-Borg, & Winblad, 2004). Furthermore, both 

short- and long-term multidisciplinary rehabilitation may benefit patients 

suffering of multiple sclerosis (Asano & Finlayson, 2014; Khan et al., 1996; 

Khan, Amatya, & Turner-Stokes, 2011), Parkinson Disease (Frazzitta et al., 

2015; van der Marck & Bloem, 2014; van der Marck et al., 2013), and 

Huntington Disease (Cruickshank et al., 2015; Piira et al., 2013; Thompson 

et al., 2013; Zinzi et al., 2007).  

To date, reports of multi-disciplinary rehabilitation interventions to slow and 

improve symptoms in HD patients have been sparse and mostly exploratory, 

many of them lacking a control group altogether. In addition, most, if not all, 

interventions have targeted early- to mid-stage HD patients, with little known 

of the impact at pre-symptomatic and late-stages of the disease. The first 

evaluation of multi-disciplinary rehabilitation in HD patients was carried out 

only ten years ago, and examined the effects of a two-year high-intensity 

program at an early- to mid-stage of the disease, and involved three 

sessions per year, each including six in-patient days (Zinzi et al., 2007). 

Despite the high dropout rate (approximately 1/3rd of patients), the 

intervention improved both physical function, such as gait, balance, and 

swallowing, as well as social function, such as better mood and social 

relations (Zinzi et al., 2007). The few studies of this type that followed also 

looked at the therapeutic potential of long-term interventions in early- to mid-

stage HD patients. A nine-month program in a small cohort showed HD 

intervention patients to exhibit reduced motor and posture deficits, as well as 

increased fat-free mass and strength, relative to controls (Thompson et al., 

2013). In addition, minor improvements in cognition, depression and quality 

of life were also observed (Thompson et al., 2013). A second, more 

extensive and carefully designed program, consisted of a one year 
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intervention, including three admissions of three weeks each, and focused on 

a combination of physical exercise, teaching sessions and social activities 

(Piira et al., 2013). The study revealed improved motor function, related to 

gait and balance, as well as improved general physical quality of life, and 

Body Mass Index (BMI) (Piira et al., 2013). Additionally, these patients 

showed decreased anxiety and depressive symptoms. However, a significant 

decline was identified in the Symbol Digit Modalities Test (SDMT; Smith, 

1982), which measures patient attention, concentration and speed of 

information processing (Piira et al., 2013). These findings highlight the 

importance of targeted cognition related tests when applying these types of 

interventions, and raise the possibility that certain types of processing-related 

deficits may be improved by non-pharmacological methods alone. A further 

exploratory long-term rehabilitation intervention, consisting of supervised 

clinical exercise (aerobic and strength exercises), home-based exercise (fine 

motor training and strength exercise) and occupational therapy sessions, in 

patients with manifest HD, revealed increased grey matter volume in the 

dorsolateral PFC and right caudate through MR imaging, which was 

accompanied by improvements in memory and verbal learning (Cruickshank 

et al., 2015). Finally, 18 months of individualised outpatient multidisciplinary 

intervention, prescribed after consultation with a team of specialists, was 

well-tolerated and found to be feasible and beneficial by HD patients and 

their carers (Veenhuizen et al., 2011). Therefore, this study indicates that, 

besides the efficacy of such interventions, HD patients are likely to engage 

and be highly appreciative of such multi-disciplinary programs. 

1.3.7. How to create a socially deprived environment for 

laboratory animals 

Social deprivation in the laboratory involves housing animals individually in 

standard cages with minimal or no enrichment (Heidbreder et al., 2000). 

Once isolated, minimal contact or handling is made, with the exception of 

when bedding requires changing. Although studies have examined the 

effects of isolation in adult and aged rodents, isolation has more prominent 
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and long-term effects during the critical period of brain development, in 

adolescence (Fone & Porkess, 2008).  

1.3.8. Social isolation effects on rodent models of health 

and disease  

Rodents are social creatures, similar to humans, such that post-weaning 

social isolation leads to significant behavioural, cognitive and neurochemical 

abnormalities. Behavioural and cognitive effects of social isolation in rodents 

include increased depressive-like behaviour (Brenes, Rodríguez, & 

Fornaguera, 2008a), aggressive-like behaviour (Matsumoto et al., 2005), 

anxiety-like behaviour (Ieraci, Mallei, & Popoli, 2016), irritability and 

hyperactivity (Ieraci et al., 2016), impaired spatial attention and long-term 

memory  (Okada et al., 2015; Ouchi et al., 2013), and reduced social 

affiliation and conditioned fear (Okada et al., 2015). Detrimental effects of 

isolation on the central nervous system (Fone & Porkess, 2008) include 

shrinkage of hippocampal volume (Pereda-Pérez et al., 2013), decreased 

neurogenesis (Stranahan, Khalil, & Gould, 2006), altered synaptic plasticity 

(Djordjevic et al. , 2009), and down-regulation of transcription factors related 

to synaptic plasticity, such as Egr-1, c-Fos and Arc (Ieraci et al., 2016; 

Matsumoto et al., 2012; Okada et al., 2015). Furthermore, social isolation 

was also associated with decreased PFC and hippocampal BDNF levels 

(Ieraci et al., 2016; Scaccianoce et al., 2006), reduced levels of 

norepinephrine in the ventral striatum (Brenes, Rodríguez, & Fornaguera, 

2008a), abnormal GABAergic and glutamatergic activity (Harte et al., 2007; 

Ieraci et al., 2016; Levine et al., 2007; Matsumoto et al., 2003; Melendez et 

al., 2004), alteration of the dopaminergic and cholinergic system (Okada et 

al., 2015), and altered electrophysiological properties of neuronal activity 

(Peters & O'Donnell, 2005; Roberts & Greene, 2003).  

Negative effects of social isolation have also demonstrated in animal models 

of neurodegenerative disease although the literature is sparser. For example, 

in the aged APP/PS1 Alzheimer Disease (AD) mouse model, three months of 

isolated housing enhanced cognitive deficits, and promoted Aβ plaque 
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accumulation in the hippocampus (Huang et al., 2015b). In turn, social 

isolation of young adult mice led to early onset of the disease-like phenotype 

(Hsiao, Chen, Chen, & Gean, 2011; Hsiao, Kuo, Chen, & Gean, 2012). 

Similarly, in the N17182Q transgenic mouse model, of HD which presents 

with motor deficits from 11 weeks of age, showed early disease onset, 

impairments in motor behaviour, and a reduction in striatal volume when 

housed individually in standard cages with a running wheel from pre-

symptomatic age (Potter et al., 2010). On the other hand, past studies 

demonstrated that the combination of physical stress and corticosterone 

administration can accelerate onset of specific deficits in HD mice (Mo et al., 

2014a; Mo, Renoir, & Hannan, 2014b; 2014c; Mo, Renoir, Pang, & Hannan, 

2013). Therefore in the Potter et al. (2010) study, because of the 

manipulation of two factors, exercise and isolation, which can both impact 

disease progression, it is unclear which one of the two, or whether the 

combination of both, contributed to the effects reported.  

1.3.9. Social isolation effects on myelin plasticity and 

oligodendroglial population 

One of the earliest studies linking white matter abnormalities with 

behavioural experience demonstrated that male rhesus monkeys, raised 

individually from 2-12 months of age, had significantly decreased corpus 

callosum (CC) sizes compared to monkeys raised in groups, as shown by 

MRI (Sánchez, Hearn, Do, Rilling, & Herndon, 1998). This decrease was 

most evident in the posterior CC, and was significantly correlated with the 

several cognitive deficits observed in these animals. The CC reduction 

persisted 6 months after animals were socially reintegrated, whereas no 

differences were identified in the anterior comissure, cerebellum or 

hippocampus (Sánchez, Hearn, Do, Rilling, & Herndon, 1998). In healthy 

rodents, social isolation was demonstrated to induce alterations in 

oligodendroglial population development and maturation, as well as in myelin 

sheaths characteristics, with many studies focusing on the known inherent 

plasticity of the prefrontal cortex (PFC) with respect to environmental 

manipulation (Forbes & Gallo, 2017; Liu et al., 2012; Liu et al., 2016; 
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Makinodan et al., 2012; Makinodan et al., 2016; Mount & Monje, 2017). 

Interestingly, a critical window for oligodendrocyte maturation and capacity 

for myelination was identified as a result of social isolation studies. These 

demonstrated that atypical oligodendroglial morphology and myelination 

deficits, along with long-term abnormal mPFC-mediated behaviour, occurred 

in healthy mice exposed to social isolation from pn21, for only two weeks, 

after which they were returned to standard housing until pn65 (Makinodan et 

al., 2012). The same effect was observed in mice kept in isolation from pn21 

for four weeks, but not in mice where isolation was initiated after pn35. 

Furthermore, the complexity of oligodendrocytes morphology was shown to 

be mediated by neuregulin through ErbB3 receptors on oligodendrocytes 

(Makinodan et al., 2012). These findings highlight the importance of social 

interaction during juvenile periods when oligodendrocytes undergo 

maturation and further axonal myelination (Makinodan et al., 2012). 

Reduction of myelin sheath thickness in the PFC of healthy juvenile mice 

was observed following two, four or eight weeks of post-weaning isolation 

(Cao et al., 2017; Liu et al., 2012; Makinodan et al., 2012).Two weeks of 

social deprivation was sufficient to cause thinning of myelin sheaths, and 

was paralleled by decreased expression of myelin basic protein (MBP) and 

myelin-associated glycoprotein (MAG), but not alterations of axonal 

diameters, in the medial PFC (mPFC); in contrast, no myelin related 

differences were identified in the motor cortex of juvenile mice (Makinodan et 

al., 2012). Additionally, isolation led to alteration of oligodendrocytes 

morphology, including shorter processes, fewer branches and fewer 

internodes per cell (Makinodan et al., 2012). Moreover, isolation-induced 

changes in myelin were observed in sub-cortical areas of juvenile male CD1 

mice reared in isolation for 8 weeks post-weaning, such as thinner myelin 

sheaths in the hippocampus, as well as decreased heterochromatin 

formation and reduced levels of MBP expression (Cao et al., 2017). 

Adaptive myelination was suggested to be highly sensitive to environmental 

manipulation particularly during infancy and adolescent periods, with several 

studies finding no changes in myelin sheath thickness of adult mice. Nine-
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week old mice exhibited no alterations in myelin thickness within layer V of 

the mPFC after 4 weeks of isolation (Makinodan et al., 2016), while 24-week 

old mice also showed no differences in myelin sheaths of the anterior 

commissure, the nucleus accumbens, or the cerebellum, after 2 or 8 weeks 

of isolation, when compared to standard housing controls (Liu et al., 2012). 

However, following 8 weeks of isolation, 24 week old adult mice exhibited 

hypomyelination, paralleled by decreased myelin related gene transcripts in 

the PFC, and reduction in the expression of some oligodendrocyte specific 

paranodal genes, while nodal length was not affected (Liu et al., 2012). In 

addition, oligodendrocytes in isolated mice were associated with immature 

nuclear chromatin and decreased nuclear heterochromatin, associated with 

decreased transcripts for enzymes regulating histone acetylation and 

repressive histone methylation (Liu et al., 2012). This was ascribed to 

reduced oligodendrocyte differentiation in socially isolated mice (Wang & 

Young, 2014). In contrast, a shorter period of 2 weeks of social deprivation 

had mild effects on myelin sheath thinning in this region of the brain, but a 

notable decrease in the proportion of heterochromatin in oligodendrocytes 

(Liu et al., 2012). Interestingly, social reintegration reversed the negative 

effects observed as a result of social deprivation when isolation took place in 

adulthood (Liu et al., 2012), but not in juvenile mice (Makinodan et al., 2012). 

Detrimental effects were also partially reversed, in selective regions of the 

brain, such as the hippocampus, but not the PFC, of juvenile isolated 

animals concurrently exposed to an enriched housing (Cao et al., 2017). 

1.3.10. Detrimental effects of social isolation in humans 

The translational value of investigating social isolation in preclinical models 

lies in the fact that social interaction in humans is a critical factor for 

development of normal social and cognitive function, while childhood social 

isolation or neglect can cause long-term alterations in normal adult behavior, 

cognition and neurophysiology (Bos et al., 2011; Chugani et al., 2001; 

Egeland, Sroufe, & Erickson, 1983; Polak & Saini, 2015). Notably, neglect, 

social isolation or rejection in children and adolescents can lead to long-term 

alterations in myelination of prefrontal cortex (PFC) (Chugani et al., 2001; 
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Egeland et al., 1983; Eluvathingal et al., 2006), and reduced corpus callosum 

area (Mehta et al., 2009; Teicher et al., 2004). Furthermore, individuals 

experiencing isolation, or loneliness, are more susceptible to cognitive 

decline (Badcock et al., 2015; Cacioppo & Hawkley, 2009), depression 

(Cacioppo et al., 2006), stroke (Avendano et al., 2006), faster progression 

and greater risk of late-life Alzheimer disease (AD) or other forms of 

dementia (Dong & Csernansky, 2009; Holwerda et al., 2014; Wilson et al., 

2007), and faster onset of schizophrenia (Jiang et al., 2013). In PD, for 

example, progressive symptoms were shown to impact quality of life, which 

in turn had an effect on social interaction, leading to social isolation from 

society (Pell, Cheang, & Leonard, 2006; Schrag, Jahanshahi, & Quinn, 

2001). In individuals with diagnosed mild AD, social isolation and loneliness 

experiences were significantly correlated with increased hallucinations 

experiences, and were more prevalent compared to elderly, healthy controls 

(Haj et al., 2016). These studies show how social isolation can not only 

hasten disease onset, but also be a by-product and catalyst of the disease 

progression itself, and emphasize the importance of investigating social 

isolation in controlled animal models of neurodegenerative disease. 

Interestingly, the effect of social isolation in individuals with Huntington 

disease (HD), as in animal models, remains unclear, and may be significant 

given that isolation was previously reported as being one of the features that 

arise with the diagnosis of the disease, along with avoidance, anxiety and 

depression (Silva, Lindau, & Giacheti, 2015).  

 

1.4. Microbiota manipulation and the gut-brain axis 

The human diet has changed drastically over the last several decades due to 

rise in global urbanization (Drewnowski & Popkin, 1997; Popkin, 2001). 

Developed, as well as developing countries, have changed the way they eat, 

drink and produce their food (Kearney, 2010; Popkin, Adair, & Ng, 2012). 

Urbanization has brought changes in the living environment, and large 

swathes of the population are not exposed to the same microbes as they 
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were in the past (Round & Mazmanian, 2009). Changes in diet and 

environment have had a direct negative influence on our health, including 

increased preponderance of diabetes (Aune, Ursin, & Veierød, 2009; Hu, 

2011), obesity (Bäckhed et al., 2007; Popkin et al., 2012), risk of developing 

allergies (Kim & Sampson, 2012; Penders et al., 2007), chronic disease 

(Nishida et al., 2004), chronic fatigue syndrome (Lakhan & Kirchgessner, 

2010), and anxiety (Ohland et al., 2013). Furthermore, emerging evidence 

has begun to elucidate the impact of environmental and dietary factors on 

neurodevelopmental, neuropsychiatric and neurodegenerative disorders 

(Lauer, 2010). Although the interaction between the central nervous system 

(CNS) and the gastrointestinal (GI) tract has been explored and discussed 

since the mid-1800s (Aziz & Thompson, 1998), research on these two 

systems have been mostly conducted independently of each other. However, 

an intriguing bi-directional communication between both systems was 

recently revealed and has become a topic of intense research (Cryan & 

O’Mahony, 2011; Mayer, Tillisch, & Gupta, 2015; McLean et al., 2012; 

Stilling, Dinan, & Cryan, 2013). Interestingly, recent findings have suggested 

that dietary and environmental interventions in combination with 

pharmacological treatments can significantly ameliorate and even prevent 

aging related disorders (Fontana & Partridge, 2015; Ghosh, Sinha, & 

Raghunath, 2016; Holzer et al., 2015). 

1.4.1. The microbiome and microbiota 

The mammalian GI tract is home to between 10-100 trillion microbes 

(Whitman, Coleman, & Wiebe, 1998). These microbial communities, known 

collectively as the gut microbiota (Frank & Pace, 2008; Turnbaugh et al., 

2007) predominantly include bacteria, but also viruses, (eukaryotic, bacterial 

(bacteriophages), and archaeal viruses), fungi and other eukaryotic 

organisms (Frank & Pace, 2008; Minot et al., 2011; Qin et al., 2010). 

Microbiota form several types of relationships with their host, including 

symbiosis, parasitism, mutualism or commensal (Gevers et al., 2012; Lloyd-

Price, Abu-Ali, & Huttenhower, 2016; Round & Mazmanian, 2009; Stilling et 

al., 2013). There are over 1,800 genera and about 40,000 species of gut 
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bacteria (Forsythe & Kunze, 2012; Frank & Pace, 2008). The main bacterial 

phyla in the human gut are Bacteroidetes and Firmicutes; whereas less 

dominant phyla include Cyanobacteria, Proteobacteria and Actinobacteria 

(Qin et al., 2010). Approximately 25-33% of microbiota phylotypes are 

believed to be shared between individuals, although estimations vary 

between studies due to technical and biological variability (Qin et al., 2010; 

Salonen et al., 2012). 

The population of genes associated with the gut microbiota is known as the 

microbiome, and thought to number about 3.3 million genes (Zhu, Wang, & 

Li, 2010); over 100 to 150 times more genes than the human genome  

(Bäckhed et al., 2005; Ley, Peterson, & Gordon, 2006; Qin et al., 2010). The 

gut microbiota contributes to pathogen defense (Artis, 2008; Chow & 

Mazmanian, 2010; Rakoff-Nahoum et al., 2004), synthesis of vitamins 

(Hooper, Midtvedt, & Gordon, 2002), breakdown and absorption of nutrients 

(Besten et al., 2013), fortification of intestinal epithelial barriers (Banati et al., 

2013; Hooper et al., 2001; Maes et al., 2012; Severance et al., 2013), and 

intestinal permeability (Camilleri, Lasch, & Zhou, 2012; Matricon et al., 2012), 

and motility (Cani, Everard, & Duparc, 2013). In addition, they play an 

important role in host physiology (Forsythe & Kunze, 2012; Marchesi & 

Shanahan, 2007; Sudo et al., 2004) and immune system development 

(Hughes et al., 2014; Mazmanian et al., 2005; Ringel & Maharshak, 2013; 

Round & Mazmanian, 2009). 

Initial research suggested that first contact with microbiota occurs at birth, 

during which the digestive tract of the newborn is colonised by 

microorganisms from within the birth canal and the environment where the 

birth takes place (Hooper et al., 2001; Vallès et al., 2014). More recent work 

(Lauder et al., 2016) has, however, provided evidence supporting prenatal 

microbiota contact via placental and/or amniotic fluid (Aagaard et al., 2014; 

DiGiulio, 2012; Gomez de Agüero et al., 2016; Kuperman & Koren, 2016; 

Vallès et al., 2012; Zheng et al., 2017). Bifidobacteria is the most 

preponderant microbiota phyla within healthy individuals during early life 

(Bäckhed et al., 2015), although microbiota make-up undergoes significant 
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and more complex changes throughout life and can swell to between 1100 to 

3100 phylotypes (Claesson et al., 2011). Various internal and external 

factors (Moya & Ferrer, 2016), such as host genetics (Goodrich et al., 2016), 

diet (David et al., 2014), hygiene (Wang & Kasper, 2014), antibiotics (Bercik, 

Collins, & Verdu, 2012; Gacias et al., 2016; Minter et al., 2017), infections 

and disease, as well as age (Claesson et al., 2011; Salazar et al., 2014), all 

play an important role on GI microbiota variability, stability and health. 

1.4.2. Bi-directional microbiota-gut–brain communication 

Communication and influence between the microbiota, the GI tract and the 

CNS is bidirectional and reciprocal, and several systems, as well as direct 

and indirect pathways, have been revealed (reviewed in Wang and Kasper, 

2014). The interaction takes place between the CNS, the hypothalamic-

pituitary axis (HPA) axis, the autonomic nervous system (ANS), including the 

sympathetic and parasympathetic divisions, the enteric nervous system 

(ENS), and the immune system. The CNS exerts its influence on the gut and 

its microbial community through the sympathetic and parasympathetic 

pathway via efferent neurons, through the endocrine pathway via the HPA 

axis, and through satiation signaling peptides. Indirect control is also 

obtained through activation of the immune pathway. The reverse 

communication, from microbiota and gut to the CNS, also involves several 

pathways: neural, metabolic, endocrine and immune. The neural pathway 

works through activation of vagal afferent nerves (de Lartigue, La Serre, & 

Raybould, 2011; Perez-Burgos et al., 2013) and neurons of the ENS, which 

in turn, are stimulated by microbially associated molecular patterns 

(MAMPs), and cytokines. The metabolic pathway involves synthesis by gut 

microbes of neuro-active molecules (such as GABA, tryptophan metabolites 

etc.) (Holmes et al., 2011). MAMPs, such as lipopolysaccharides (LPS), 

short-chain fatty acids (SCFA), and bacterial lipoprotein (BLP) also contribute 

to the metabolic pathway. Endocrine influence is gained, in part, via 

enteroendocrine cells (EEC), present in the gut epithelium, which secrete 

signaling peptides and neurotransmitters. The immune pathway is mediated 
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by the effect of microbes, and MAMPS on the auto-reactivity of peripheral 

immune cells to the CNS, and by systemic circulation. 

The gut microbiota produces a diverse range of metabolites, 

neurotransmitters and neuromodulators, which act on the gut-brain axis via 

the metabolic pathway. Among them, generated short-chain fatty acids 

(SCFAs) are metabolites produced in large amounts by Bacteroidetes 

through microbial fermentation of non-digestible carbohydrates. SCFAs 

include acetate, butyrate and propionate and make up between 90-95% of 

the total population. The remaining population consists of branch-chained 

SCFAs produced by proteins that are not absorbed in the small intestine. 

SCFAs are involved in multiple functions related to the immune system 

(reviewed by (Corrêa-Oliveira et al., 2016), which include provision of 

energetic substrates for epithelial cells in the gut (Donohoe & Bultman, 

2012), regulation of epithelial cell signaling (Iraporda et al., 2015), alteration 

of neutrophil differentiation, recruitment and survival (Rodrigues et al., 2016), 

modulation of T lymphocytes (Arpaia et al., 2013; Gurav et al., 2015), 

dendritic cells (Millard et al., 2002; Singh et al., 2010) and macrophages 

(Cox et al., 2009; Vinolo et al., 2011), and contribution to epithelium 

homeostasis (Kelly et al., 2015). In addition, gut-brain communication is 

influenced by SCFAs via several mechanisms, including altered 

catecholamine (Nankova et al., 2014), dopamine, serotonin and GABA levels 

(Bravo et al., 2011; El-Ansary, Ben Bacha, & Kotb, 2012), and regulation of 

microglia maturation and function (Erny et al., 2015; Sampson et al., 2016), 

glial homeostasis (Huuskonen et al., 2004), and tyrosine hydroxylase gene 

expression (DeCastro et al., 2005; Parul Shah et al., 2006).  

Among neuroactive substances produced by gut microbes, GABA is 

synthesized by specific strains of Bifidobacterium and Lactobacillus (Hiraga 

et al., 2008; Komatsuzaki et al., 2008). Other neuroactive products include 

catecholamines (such as dopamine (Asano et al., 2012) and noradrenaline), 

histamine, serotonin (Desbonnet et al., 2014), melatonin, and acetylcholine. 

GI bacteria can also synthesize tryptophan metabolites (such as kynurenine, 

5-hydroxytreptamine (5-HT), indole and tryptamine) and precursors, as well 
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as cytokines released during the immune response (Bailey et al., 2011; Lyte, 

2013). These microbiota-derived substances can signal either via cells and 

receptors in the gut lumen, or via neurocrine or endocrine pathways and 

mechanisms. Release of endocrine factors, such as 5-HT, and peptides, 

including leptin, gastrin, orexin and galanin, which modulate the endocrine 

pathway, have been suggested to play a key role in stress, depression, 

addiction, anxiety, arousal and circadian rhythms, and act at the border of 

the blood brain barrier (BBB) in the area postrema (reviewed in Wang & 

Kasper, 2014).  

1.4.3. Experimental approaches to investigate the influence 

of the microbiota on the brain 

Antibiotic treatment 

Treatments using a combination of antibiotics can partially decrease the 

microbial population in the gut (Reikvam et al., 2011), and alter microbiota 

make-up and diversity (Bercik et al., 2011; Puhl et al., 2012). The time-scale 

of the effect of antibiotic treatment on microbiota appears to be dependent on 

the age of the subject, and produces transient effects on adult mice, but 

long-term effects on neo-natal mice (Cho et al., 2012; Cox et al., 2014). 

Recent studies have revealed complex effects of antibiotic treatments on 

metabolism (Cox et al., 2014), as well on behavioural changes in diabetic 

mice (Gacias et al., 2016), neuro-inflammation and amyloidosis in an AD 

mouse model (Minter et al., 2017), and susceptibility to experimental 

autoimmune encephalomyelitis (Yokote et al., 2010). 

Germ-free animal model 

Germ-free environments provide a method to deplete gut microbiota to a 

greater degree than antibiotic treatments. Although the concept of germ-free 

animals was first proposed and debated in the late 1880’s, by Louis Pasteur 

and Marceli Nencki, it was not until the 1950s that the tools required for 

laboratory investigations were made commercially available (Luckey, 1963). 

Several approaches are available to interrogate host-microbe interactions in 

animal models, including germ-free (GF), ex-germ free (exGF), gnotobiotic, 
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specific pathogen free (SPF), or conventional (CON) environments. Germ-

free animals are born and live in aseptic isolated units, where food water and 

air are sterilised, such that these animals are free of all ‘detectable’ microbes 

and microorganisms (Luckey, 1963; Wostmann, 1981; Yi & Li, 2012). Ex-

germ-free animals are born, and live in GF conditions for a limited time, after 

which they are ‘conventionalised’ by being introduced to microbe-populated 

environments. Gnotobiotic animals, in turn, are GF animals colonised with 

one or more known strains of bacteria (Fritz et al., 2013; Smith, McCoy, & 

Macpherson, 2007). Similarly, SPF animals are those colonised with a 

mixture of eight bacterial strains, known as Schaedler flora (Dewhirst et al., 

1999). Finally, conventional animals are those born and housed under 

normal, or conventional, laboratory conditions (Norin & Midtvedt, 2010). 

Importantly, the effects observed as a result of an absence of microbiota are 

partially reversed through targeted pathogen recolonization of the microbiota 

(Braniste et al., 2014; Sudo et al., 2004). 

1.4.4. Microbiota modulation of CNS plasticity 

Both physical and psychological stress induces changes in normal gut 

function (Porter & Rettger, 1940), and alters microbiota composition (Bailey 

& Coe, 1999). Conversely, commensal microbiota is involved in the 

development of the HPA axis through its interaction with the serotonergic 

system. The HPA axis, part of the limbic system, regulates anxiety and 

stress responses to environmental stimuli (Tsigos & Chrousos, 2002). The 

link between brain plasticity and microbiota was first demonstrated in a 

seminal study where GF animals had different HPA responses to stress 

compared to SPF animals, whereas re-colonization of the gut with microbes 

partially reversed the effects (Sudo et al., 2004). Subsequent studies 

confirmed and extended this finding, by demonstrating an increased HPA 

axis response and reduced anxiety related behaviours in GF animals (Clarke 

et al., 2013; Gareau et al., 2011; Neufeld et al., 2011). Furthermore, anxiety-

related behaviours induced by Lactobacillus rhamnosus were reduced in 

vagotomised mice, revealing a key role for the vagal pathway in mediating 

the effect of microbiota on stress (Bravo et al., 2011). 
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Other behavioural effects of a germ-free environment include modulation of 

risk-taking ( Clarke et al., 2013), social (Desbonnet et al., 2014), hyperactivity 

(Heijtz et al., 2011), depressive-like, and anxiety-like, behaviours (Bercik et 

al., 2011; Bravo et al., 2011; Clarke et al., 2012; Heijtz et al., 2011; Neufeld 

et al., 2011; Savignac et al., 2014). Reduced memory, as measured using a 

novel object test, has also been ascribed to GF relative to SPF animals 

(Gareau et al., 2011). 

In terms of brain neurochemistry, GF mice exhibit changes in neurotrophic 

factors (such as BDNF) (Bercik et al., 2011; Heijtz et al., 2011; Sudo et al., 

2004), GABAA and GABAB receptor subunits (Bravo et al., 2011), NMDA 

receptor subunits, and serotonin (Neufeld et al., 2011) and tryptophan, the 

precursor of serotonin (Clarke et al., 2013).  

The contribution of a healthy BBB is essential for normal brain development. 

However, a recent study revealed increased BBB permeability in GF animals 

that manifested in intrauterine life and persisted throughout their lives. This 

was associated with reduced levels of endothelial tight junction proteins, 

occludin and claudin-5, in the frontal cortex, striatum and hippocampus of GF 

mice compared to SPF (Braniste et al., 2014). Interestingly, when GF 

animals were colonised with Clostridium tyrobutyricum or B. thetaiotaomicron 

(SPF microbiota) BBB permeability properties were restored to SPF levels 

and occludin and claudin-5 levels were upregulated. This study suggests that 

early dysbiosis in the gut could lead to neurodegeneration, through 

extravasation of neuro-inflammatory substances as a result of increased 

BBB permeability.  

1.4.5. Microbiota effects on myelination  

Genome-wide transcriptome profiling of the prefrontal cortex showed 

upregulation of genes linked to myelination and myelin plasticity, as well as 

upregulation of genes related to neural activity induced-pathways in germ 

free animals compared to SPF control (Hoban et al., 2016b). In addition, 

increased mRNA levels of several myelin related gene transcripts and 

regulatory factors (MBP, Mobp, MAG, MOG, PLP1) were reported in the 
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PFC, but not in the frontal cortex, hippocampus, cerebellum, amygdala or 

striatum of GF mice compared to SPF (Hoban et al., 2016b). Increased 

expression levels of myelin related genes (MAG, MOG, MBP, PLP1, and 

MOBP) were also reported in the medial PFC in antibiotic treated compared 

to vehicle treated non-obese diabetic mice. However, this increase was not 

observed in healthy controls following antibiotic treatment (Gacias et al., 

2016). Interestingly, only oral administration of antibiotics showed this effect, 

whereas subcutaneous administration failed to induce changes in microbiota 

composition or myelin differences related to it (Gacias et al., 2016). 

Transcriptional changes in myelin related genes were confirmed by 

hypermyelination of prefrontal cortex axons in GF animals compared to 

conventional animals (Hoban et al., 2016b). Increased myelin thickness was 

also seen in the mPFC of healthy mice recipients of the microbiota of 

diabetic mice treated with antibiotics, as opposed to recipients of the 

microbiota of non-treated diabetic mice (Gacias et al., 2006). 

1.4.6. Microbiota in neurodegenerative disease 

Emerging evidence suggests that neurodegenerative, psychiatric, or 

autoimmune brain disorders can be directly influenced by the microbiota-gut-

brain axis. Levels of probiotic bacteria, such as Fecalibacterium and 

Butyricoccus, associated with the SCFA butyrate production and 

inflammation inhibition, were found to be lower in a group of cognitively 

impaired elderly subjects (Bajaj et al., 2016). In addition, levels of 

Lactobacillales (comprising of Streptoccaceae, Carnobacteriaceae and 

Lactobacillaceae) were correlated with better performance on memory tests 

in elderly patients (Bajaj et al., 2016). The Alzheimer Disease (AD) mouse 

model of Aβ amyloidosis showed alteration in the composition of microbiota 

during long-term antibiotic treatment, which coincided with a reduction in 

amyloid plaque deposition and increased levels of soluble Aβ (Minter et al., 

2016). Analysis of the fecal microbiome showed that the 5xFAD aggressive 

AD mouse model exhibited 10-15% lower levels of Firmicutes, and 2-15% 

greater levels of Bacteroidetes when compared to healthy controls 
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(Brandscheid et al., 2016). Motility abnormalities associated with bacterial 

overgrowth have also been observed in Parkinson disease (PD) patients 

(Fasano et al., 2015; Gabrielli et al., 2010).  

Several studies have recently found altered microbiota in the gut of 

individuals suffering from multiple sclerosis (MS), one of the most prevalent 

human demyelinating inflammatory disorders (Cantarel et al., 2015; Chen et 

al., 2016; Jangi et al., 2016). Interestingly, outside of the gut, microbiota 

composition in white matter of MS patients was found to exhibit reduced 

diversity of the most preponderant phylum, Proteobacteria (Branton et al., 

2016). MS was suggested to be caused by the interaction between complex 

environmental and genetic factors, and often follows a relapsing-remitting 

pattern. The relapsing–remitting (RR) mouse model of spontaneously 

developing Experimental Autoimmune Encephalomyelitis (EAE), 

recapitulates the main characteristic of this disorder (Baxter, 2007; 

Constantinescu et al., 2012; Pöllinger et al., 2009). The SPF RR-EAE mouse 

model is known to develop EAE within 3 to 8 months, but mice bred in a 

germ free environment were protected from the disease throughout their 

lives, although ex-GF RR animals developed EAE immediately after they 

were re-colonised with microbiota (Berer et al., 2011). Moreover, GF animals 

mono-colonised with the gut microbe, Segmented Filamentous Bacterium 

(SFB), showed increased severity of EAE (Ivanov et al., 2009; Lee et al., 

2011), and a cocktail of the probiotic Lactobacillus strains given to C57BL/6 

mice prevented and delayed EAE (Lavasani et al., 2010).  

Epsilon toxin (ε-toxin) is secreted in the intestinal lumen by Clostridium 

perfringens, and thought to play a key role in MS. 10% of MS diagnosed 

patients were found to harbour ε-toxin in their CSF as opposed to 1% of 

control individuals (Rumah et al., 2013). This toxin targets oligodendrocytes 

in the CNS, causing selective death of these cells, while sparing other cell 

types, such as neurons, glia or astrocytes, and inducing demyelination in a 

dose and time dependent manner (Linden et al., 2015). Raised levels of 

hormones of the gut-brain-axis, such as leptin, have been observed in CNS 

lesions (Sanna et al., 2003) and CSF (Matarese, Moschos, & Mantzoros, 
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2005) of MS patients, and leptin deficient mice did not go develop EAE 

(Matarese et al., 2001).  

Notably, despite the compelling evidence supporting a key role for microbiota 

in debilitating neurodegenerative diseases, including myelination-related 

disorders such as MS, research into the role of microbiota in Huntington 

disease is sparse. The work presented herein will endeavor to address this 

research gap.  

 

1.5. Thesis aim, structure and summary of findings  

There is growing evidence for white matter (WM) deterioration early in 

Huntington disease (HD) that is correlated to disease progression. However, 

little is known about the mechanisms and dynamics of WM changes and their 

precise role in HD pathogenesis. Elucidating these unanswered questions 

can provide novel insights into the pathophysiology and clinical manifestation 

of the disease, and help identify possible treatment strategies. This thesis 

describes three studies whose aims were to employ environmental and 

microbiota manipulations to perturb and interrogate white matter plasticity, 

and examine behavioural changes, in the YAC128 and BACHD mouse 

models of Huntington disease, and wild-type (WT) controls. These aims were 

accomplished through use of a battery of behavioural tests, and a range of 

techniques to examine white matter changes in structure and function, 

including transmission electron microscopy, immuno-histochemistry, and 

immunoblotting.  

Chapter 2 provides details of the methodologies employed in the studies 

described in this thesis. Chapters 3 and 4 describe the effects of 

environmental enrichment and deprivation, respectively, on behaviour and 

motor performance, and white matter structure and function in the posterior 

corpus callosum (CC) of the YAC128 mouse model of HD, and WT controls. 

In turn, Chapter 5 reports our findings with respect to the most novel aspect 

of this thesis, namely, the effects of microbiota manipulation on white matter 
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structure and function in the prefrontal cortex (PFC) and CC of the BACHD 

mouse model of HD, and WT controls. Finally, Chapter 6 endeavours to 

provide a detailed discussion and overarching interpretation of all results, 

with reference to available, and occasionally limited, literature, before 

concluding with an overview of possible future work.  

Of note, environmental enrichment was associated with slight improvements 

in behaviour and motor performance across WT and HD mice, while 

environmental deprivation elicited minor deficits. Interestingly, a reduction in 

myelin thickness was observed in WT mice independently exposed to both 

forms of environmental manipulation, while in YAC128 animals this effect 

was only seen in response to environmental enrichment. Environmental 

enrichment was associated with a higher number of small and mid-range 

diameter axons across genotypes, while environmental deprivation was 

associated with higher number of large diameter axons in WT animals, but a 

decrease in YAC128 mice. Both forms of environmental manipulation had no 

effect on mature oligodendrocyte numbers across genotypes. Germ-free 

(GF) BACHD mice exhibited an increase in number of regular-shaped 

myelinated axons, a decrease in irregular shaped myelinated axons, and an 

overall increase in myelin sheath thickness, relative to BACHD mice raised 

under control specific pathogen free (SPF) conditions. Myelin basic protein 

(MBP) expression levels were also associated with a significant decrease in 

the prefrontal cortex (PFC) of wild-type (WT) GF mice, with a similar, albeit 

non-significant, effect in BACHD mice. In turn, a reduction in number of 

mature myelinating oligodendrocyte cells in PFC and CC of WT GF mice was 

also observed, compared to WT SPF mice. Furthermore, a reduction in 

mature myelinating oligodendrocyte cells was also seen in the PFC only of 

BACHD GF animals compared to BACHD SPF controls. Intriguingly, we 

found that both germ-free WT and BACHD mice exhibited a significant 

decrease in overall brain weight compared to their SPF housed counterparts. 

These findings, and others, suggest that environmental and microbiota 

manipulation induce complex effects on white matter structure, function and 

development in wild-type and HD mice, which provide novel insights into 

white matter plasticity and white matter abnormalities in HD. 
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2.1. Environmental manipulation studies 

2.1.1. Experimental groups 

All animals were bred and housed in the Biological Resource Centre, at the 

Biomedical Science Institute, A*STAR, Singapore. All experimental 

procedures were approved by and conducted in accordance with the ethical 

guidelines of the animal care committee at our institution. 

A total of 67 YAC128 transgenic (HD model) and wild-type (WT, control) 

mice were used in this study (Table 2.1). Both males and females were 

included in all experimental groups, unless stated otherwise. Sexing and 

genotyping of animals were carried out at 3 weeks of age. Mice were 

weighed on a bi-weekly basis. Animals were sacrificed and their brains 

harvested at 18 weeks of age. 

Table 2.1 Total number of animals used for the environmental 
manipulation studies 

Number of animals per experimental group categorised per sex (WT=Wild Type, 

YAC128-HD transgenic model, F=female, M=male, EH=enriched housing, 

SH=standard housing, DH=deprived housing). 

 WT YAC128 

Sex F M Total F M Total 

EH 5 5 10 5 5 10 

SH 7 6 13 5 6 11 

DH 5 6 11 4 8 12 
 

 

2.1.2. Housing manipulation details  

Mice were housed under standard conditions with food ad libitum, in an 

inverted light-dark cycle until 4 weeks of age. Subsequently, they were 

placed into their allocated caging conditions, consisting of enriched 

environment housing (EH), standard housing (SH) or deprived housing (DH). 

Animals were kept in their allocated condition for a total of 14 weeks (Figure 

2.1).  
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Figure 2.1 Experimental timeline for environmental manipulation 
studies 

Animals were sexed and genotyped at post-natal day (pn) 21, and allocated to 
experimental conditions at pn day 28. Behavioural testing was started after 12 
weeks in their allocated housing conditions, when animals were 112 days old. Tests 
were carried out for 2 weeks, after which tissue was harvested. Animals were 126 
days (i.e. 18 weeks) old when sacrificed.  

 

2.1.3. Behavioural tests description  

Behavioural tests were carried for the environmental manipulation 

(environmental enrichment and deprivation) studies. Mice were subjected to 

a battery of behavioural tests following 12 weeks of housing according to 

their experimental condition. All behavioural tests were started at least one 

hour after the start of a new dark cycle. All animals were moved to the testing 

room and left to acclimatize for one hour before the start of the experiment. 

All testing was conducted under dim white-light illumination (about 150 lux) in 

a sound attenuated room. All behavioural tests run over the course of this 

study are described below and listed in Table 2.2. 

Table 2.2 List of behavioural tests and their interpretation 

Behavioural test: Analysis of: 

Spontaneous activity Motor function and habituation 

Open field activity Anxiety and habituation 

Elevated plus maze Anxiety 

Climbing test Neuromuscular function 

Rotarod training 

Rotarod test 

Motor function / 

learning / cognitive 
 

 

pn112 pn126 pn28 pn21 pn0 

Behavioural testing 

Environmental manipulation 
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Spontaneous activity (SA) 

The spontaneous activity (SA) test was used to measure both gross and fine 

locomotive movements in mice (Figure 2.2A). Four animals were tested 

simultaneously in a Mouse Open Field Arena (Med Associates, USA) with 

the 48 Channel IR Controller for Open Field Activity. The arena dimensions 

were 27.3cm L x 27.3cm W x 20.3cm H, and consisted of four separated 

arenas. One mouse at a time was placed in the centre of one of the four 

arenas, which was automatically activated, and activity started being 

monitored. Each arena was activated independently of each other. Animals 

were allowed to explore their allocated arena during this test for 30 minutes. 

The Activity Monitor software (Med Associates, USA) was used to record 

horizontal activity (distance travelled, ambulatory counts, ambulatory 

episodes, velocity), vertical activity (rearing, jumping) and stereotypy in 

activity. 

Open field (OF) activity  

The open field (OF) test was used to measure each animal’s habituation to a 

new environment, as well as levels of anxiety, and consisted of measuring 

the time spent by animals in the centre versus outer area of an arena (Figure 

2.2B). An in-house built open field arena, measuring 50cm L x 50cm W x 

50cm H, was used. Four animals were tested simultaneously in the arena 

and their activity was recorded using EthoVision (Noldus, Singapore) video 

tracking software. Animals were allowed to explore the arena for 10 minutes 

during which the time spent in the centre of the arena relative to the time 

spent in the periphery was noted and recorded. 

Elevated plus maze (EPM) 

The EPM is a well-established test of anxiety (Figure 2.2C). The testing 

arena is shaped like a “+”, with two open arms and two arms having tall 

enclosing walls. One animal was tested per trial and allowed 5 minutes in the 

EPM. Recordings were again made using the EthoVision video tracking 

software. The number of entries into, and time spent, in the open and 
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enclosed arms, as well as the total number of arm entries, for each animal 

were noted and recorded. 

Climbing test  

The climbing test was used to assess motor impairment in mice (Figure 

2.2D). Four mesh cylinders were placed on a table and separated by a 

plastic board so animals were not visible to each other. One animal was 

placed in each cylinder sequentially. Each trial was video recorded using 

Sony HDR-CX130 camera for 6 minutes, with the first minute excluded from 

subsequent analysis The number of times each animal attempted to climb 

(defined as having placed all four paws onto the mesh) was noted and 

recorded, as was the latency to the first climbing attempt, and each attempt’s 

climbing time (until any paw was rested back onto the table-top). An animal 

was excluded from the test if it remained stationary on the table-top during 

the duration of test, whereas if the animal was mobile but did not attempt to 

climb, the latency to climb was scored as the maximum duration of the test 

(i.e. 300s), and climbing time was set to null (i.e. 0s). 

Rotarod test (RR) 

The rotarod (RR) test was used to assess motor co-ordination and balance in 

mice, by testing their ability to remain on a rotating rod (Figure 2.2E). The 

test consisted of 3 days constant-speed rotarod training and one day of 

testing on an accelerating rotarod. For training, mice were placed on the 

rotarod in the direction of motion whilst the rotarod turned at 18 revolutions 

per minute (rpm). Each rotarod contained four lanes that enabled four 

animals to be trained simultaneously (i.e. one per lane). Animals were 

returned to the rotarod after each fall during the 300s training period, and 

every animal underwent two training trials for the first day, and three training 

trails for the subsequent two days, separated by 2hour intervals. The latency 

for each mouse to first fall off the rotarod, and the number of falls during 

training, was noted and recorded. For testing, animals were placed in their 

respective lanes and allowed to walk on the rotarod (rotating at 5rpm) for a 
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few seconds in order to gain stability. The rotarod then increased in speed 

from 5-40rpm over the course of the 300s test duration. 

The latency for each mouse to the first fall off the accelerating rotarod was 

noted and recorded, and the mouse returned back to its home cage after its 

first fall. Each mouse underwent three test trials on the same day with a two-

hour rest-time in between each. Overall performance in the accelerating 

rotarod test was calculated as the mean of the latency to first fall across the 

three test trials.  



 78 

  

Figure 2.2 Illustrations of behavioural tests 

(A) Spontaneous activity (SA); (B) Open field activity (OF); (C) Elevated plus maze 
(EPM); (D) Climbing test; (E) Rotarod test (RR). 
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2.2. Microbiome manipulation study 

2.2.1. Experimental groups 

All mice were bred and housed in the animal facility of the Singapore 

General Hospital Unit (SGH), Singapore. All experimental procedures were 

approved by, and conducted in accordance with the ethical guidelines of the 

animal care committee at our institution. Mice were housed under standard 

laboratory housing conditions with food ad libitum, in an inverted light-dark 

cycle. 

Wild-type (WT) and BACHD transgenic mouse models of HD were raised 

under specific pathogen free (SPF) and germ-free (GF) laboratory conditions 

(Figure 5.1). Each experimental group (N=4) included between 10-13 

animals per condition per sex (Table 2.3).  

Table 2.3 Total number of animals used for the microbiome study 

Number of animals per experimental group categorised per sex (WT=wild type, 

BACHD=transgenic model of HD, GF=germ free, SPF=specific pathogen free, 

F=female, M=male). 

 WT BACHD 

Sex F M Total F M Total 

GF 11 12 23 10 14 24 

SPF 11 13 24 10 13 23 
 

 

Animals were genotyped at 3 weeks of age. All animals were weighed at 3 

months of age, prior to being sacrificed. Brains were harvested, and weighed 

comparisons were carried out for both males and females, however, due to 

cost and time constraints, only males were included in subsequent 

investigation for the study described in this thesis.  
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2.3. Tissue harvesting and processing  

For all three studies, all brains were segmented through the mid-sagittal 

plane, and the left hemisphere used for immunohistochemical procedures, 

while the right hemisphere was microdissected into cortex, prefrontal cortex, 

striatum, hippocampus, cerebellum and olfactory bulb, and placed in cryo-

tubes on dry ice to be used for immunoblotting procedures.  

In addition to the brains harvested for immunostaining and immunoblotting, 

three to four animals in each experimental condition were perfused and 

harvested, to investigate axonal and myelin related characteristics (i.e. 

axonal shape and size, and myelin thickness) using transmission electron 

microscopy (TEM) (Section 2.4). 

 

2.4. Transmission electron microscopy (TEM)  

2.4.1. Tissue extraction fixation and storage 

Mice were anesthetized with Ketamine (150mg /Kg) and Xylazine (10 

mg/Kg), and then transcardially perfused via a catheter inserted through the 

left ventricle and connected to a pump set to 0.1ml /min. Perfusion was 

performed with 25ml of ice cold phosphate buffer solution (PBS, made in-

house, Table 2.8), followed by transmission electron microscopy (TEM) 

fixative solution comprising of 25ml of ice cold 2.5% paraformaldehyde (PFA, 

Sigma-Aldrich, USA, see Appendix A) and 2.5% glutaraldehyde (GlutAH). 

Following perfusion, all brains were segmented through the mid-sagittal 

plane, and the right hemisphere placed in 5ml of TEM fixative solution in 

preparation for TEM. The tissue was stored at 4oC overnight. The following 

day, brains were washed 3 times in 1xPBS (5-10min per wash; Table 2.8) 

and stored in 5ml sucrose (5% sucrose, 1st Base, Singapore, & 0.1% sodium 

azide (NaN3, Merck, Germany) at 4oC. 



  

 

81 

2.4.2. Pre-processing and microdissection 

The corpus callosum (CC) was microdissected one day before sample 

preparation for TEM. The mid-sagittal sectioned brain was placed in a 

mouse-specific stainless steel matrix (Roboz Surgical Instrument Company, 

Inc. Gaithersburg, MD), and the intersection between the CC and fornix used 

to determine the region where a 1mm coronal section would be segmented 

using a commercial blade. For the environmental manipulation studies, the 

posterior CC (splenium) was microdissected (~Bregma -1.82 to -2.70mm, the 

equivalent of region 5 as described by Barazany et al. (2009) (Figure 3.11 

and Figure 4.9); whereas, for the microbiome study, the anterior mid-body 

region of the CC was microdissected (~Bregma -0.8 to 0 mm) (Figure 5.2). 

The microdissection was carried out in a petri dish filled with 1xPBS (Table 

2.8), and visualised under a dissecting microscope (Figure 2.3). The samples 

were cut in the shape of a rectangular cuboid in order to determine the 

direction of the fibres for TEM. Tissue samples were washed in 1xPBS and 

left overnight at 4oC before sample preparation the next day. 
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Figure 2.3 Corpus callosum microdissection for TEM 

(A) Microdissection of the posterior (splenium) CC viewed under the microscope. 
(B) Sagittal map (adapted from Paxinos and Franklin, 2012) indicating (red circle) 

splenium, and (blue circle) anterior mid-body of the CC. 
 

 

2.4.3. Sample processing and embedding 

On the first day, samples were post fixed in 1% osmium tetroxide (OsO4, 1g 

of osmium in 100ml PBS (Table 2.8), pH 7.4) for 1 hour at room temperature 

under a fume hood, and then washed twice in deionised water for 5-10min. 

The next process was dehydration through an ascending ethanol series, at 

room temperature: 

a) 25% ethanol (Merck, Germany)– 5 minutes; 

b) 50% ethanol – 10 minutes; 

c) 75% ethanol – 10 minutes; 

d) 95% ethanol – 10 minutes; 

B 

A 
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e) 100% ethanol – 10 minutes; 

f) 100% acetone – 10 minutes – 2 changes. 

The final process on day 1 was infiltration, using acetone and resin. Resin 

was prepared from Araldite (90g), DDSA (80g) and DMP-30 (2.4g) (all 

purchased from Sigma Aldrich, Singapore). The following two steps were 

followed: 

a) 100% acetone:resin (1:1) for 30 minutes at room temperature; 

b) 100% acetone:resin (1:6) overnight at room temperature; 

On the second day, three incubation sessions with resin were used: 

a) First change of fresh resin – for 20 minutes at room temperature; 

b) Transfer to oven (40 OC – 50 OC) for 30 minutes;  

c) Two changes of fresh resin for 1 hour each (45 OC and 50 OC 

respectively); 

d) Finally, samples were aligned and placed in a cavity embedding 

mould (1 or 2 samples per block, Zivic Instruments, USA), and 

embedded in fresh resin to polymerise at 60O C for 24 hours. 

2.4.4. Ultramicrotome trimming and sectioning  

Cavity embedding mould was removed from the oven after 24 hours and 

samples were taken for sectioning. 

Each sample was isolated from the resin by trimming prior to ultra-thin 

cutting. The samples were visualised through the resin due to their black 

colour as a result of osmication. Samples were revealed by trimming the 

resin manually using a commercial razor blade and subsequently aligned 

and positioned in the ultra-microtome (Reichert-Jung ultracut E) block holder 

for further trimming using an in-home built glass knife. Glass knives were 

obtained by cutting glass strips under a Leica EM KMR2 microscope. Cutting 

speed was set to 1.5 mm/sec and cutting thickness was set to 0.5μm. Semi-

thin sectioning was performed and several sections stained with toluidine 
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blue dye so as to visualise tissue network under the microscope, and confirm 

target region and viability of the sample.  

Following confirmation of the target region, ultra-thin sectioning was 

performed using a diamond knife with a boat (Diatome, Ultra45, 3mm length, 

USA). Cutting speed was set to 1.5 mm/sec and cutting thickness was set to 

90nm. At this thickness the samples, which form a ribbon, are seen as a gold 

colour when visualised under the microscope. The golden colour indicates an 

appropriate thickness (see figure of colour band – ultra-microtome). After 

securing the ribbon on a 200-mesh grid (Ellipsiz DSS Pte Ltd, Singapore), it 

was left to dry and placed in a plastic capsule.  

2.4.5. Axonal (fibre) staining 

When enough grids were collected (5-6 per animal), fibres were stained at 

room temperature using lead citrate (Reynolds lead citrate, composed of 

lead nitrate and sodium citrate, 3%) for 8 minutes, followed by thorough 

washing in deionised water. The grids were dried with filter paper, placed on 

a different filter paper and left to dry for several minutes before being 

returned to the plastic capsules housing. 

2.4.6. TEM viewing, image capturing, and analysis 

Samples were viewed using a Tecnai G2 Spirit Twin/ Biotwin model (FEI, 

USA) trasnimission electron microscope. Representative micrograph of 

callosal axons is illustrated below, in Figure 2.5A. Two grids were chosen 

based on the quality of the ribbons and 10-12 images were taken from each 

grid. A total of 12 images per animal were chosen to be analysed using 

ImageJ software (version 2.0.0, National Institutes of Health, USA). An 

unbiased frame was randomly selected using the rectangular tool and 

superimposed on each image. Conversion of image magnification was 

performed using the line tool in ImageJ. Axonal myelin thickness was 

calculated using g-ratio analysis, in which the inner and outer diameter of 

regular shaped axons were measured using the line tool in ImageJ, and the 

ratio between both values calculated (Friede, 1972; Figure 2.4). Between 25-
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40 axons per image, giving a total of 300 to 480 values per animal, were 

measured. The results were exported to Matlab (Matlab, USA), where the g-

ratios were calculated.  

 

 

Figure 2.4 Calculation of g-ratio diagram 

The g-ratio, used as measure of myelin thickness, was calculated as the inner 
diameter over the outer diameter (i.e. higher g-ratios are associated with reduced 
myelin thickness). 

 

For axonal counting, all unmyelinated axons within the selected unbiased 

frame were counted. In addition, myelinated axons were classified as 

‘regular’ or ‘irregular’ shaped axons based on their circular properties. Thus, 

axons with quasi-, circular or elliptical shapes were counted as ‘regular’ 

axons, whereas remaining axons were categorised as ‘irregular’ shaped 

(Figure 2.5B). 

 

Myelin 

Axon 

g =  
ID 

OD 

ID OD 

Higher g-ratio = thinner myelin sheath 
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Figure 2.5 Representative micrographs of myelinated and 
unmyelinated axons in the posterior corpus callosum of the 
mouse brain 

(A) Representative micrograph of callosal axons as viewed using transmission 
electron microscopy (Tecnai G2 Spirit Twin microscope). Scale bar at 10μm. 

(B) Myelinated axons were classified as regular (filled circles) and irregular (black 
crosses). Unmyelinated axons are denoted by triangles. 

 
 

2.5. Immunohistochemistry and immunofluorescence  

2.5.1. Tissue extraction, fixation and storage  

Mice were placed in a CO2 gas chamber for 5 minutes after which they were 

euthanized by cervical dislocation. Brains were carefully extracted, 

segmented through the mid-sagittal plane, and the left hemisphere placed in 

5ml of 4% PFA solution (4g in 100ml 1xPBS; see Appendix for PFA recipe) 
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x 

x 

x 

x 

B 

A 
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at 4oC overnight. The next day, brains were washed 3 times in 1xPBS (5-

10min per wash) and stored in 5ml sucrose (30% sucrose & 0.1% NaN3 in 

1xPBS) at 4o C until further processing.  

2.5.2. Cyrosectioning 

Left hemispheres were removed from the sucrose solution and dried on filter 

paper. Prior to cryosectioning, brains were cryopreserved in dry ice and 

isopentane (2-methylbutane) to preserve structurally intact cells and tissues. 

The cryopreserved brains were embedded onto chucks using optimum 

cutting temperature (OCT) compound (VWR, USA). Coronal slices were 

sectioned at a thickness of 25µm, at -20o C using a cryostat (Thermo 

Scientific, USA). Collection began when the forceps minor of the corpus 

callosum (fmiCC) became visible during sectioning. Following sectioning, 

brain slices were placed in 1xPBS and 0.1% NaN3 solution in a 24 well plate. 

The slice corresponding to the location where the fmiCC from each 

hemisphere meet to form the genu (gCC) of the corpus callosum (~ 

Interaural 4.98-4.90 mm and ~Bregma 1.18-1.10 mm) was visually identified. 

A mark was made on the well where this section was placed. 

2.5.3. Immunohistochemistry staining  

The well to be stained was chosen based on the mark of the gCC on the well 

plate. All sections (4-5 per well) were removed from each of the selected 

wells and placed into 12-well plate in NetWell inserts (one well per animal 

and one well for as a negative control for each condition) and placed in 

1xPBS. Brain sections were then: 

1) Incubated in 2ml/well phenylhydrazine solution (Sigma-Aldrich, USA, 

10µl phenylhydrazine / 1ml 1xPBS) and left for 45 minutes at room 

temperature (RT) on a rocker to block endogenous expression of 

peroxidase. This was followed by 3 washes in 1xPBS for 10 minutes 

per wash. 
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2) Incubated in blocking solution (1xPBS: 5% Normal Goat Serum - 

NGS, Sigma-Aldrich, USA; 5% BSA, GE Lifesciences, USA; 0.1% 

Triton, OmniPur, USA) for 30 minutes at RT on a rocker.  

3) Immersed in the primary antibody and incubated with 5% NGS and 

0.2% Triton, in 1xPBS overnight at 4ºC.  

4) The following day, sections were washed 3 times in 1xPBS for 10 

minutes per wash. This was followed by incubation in biotinylated 

secondary antibody for 1.5 hours at RT. Secondary Antibody Solution 

was prepared in 1xPBS: 1% NGS, 0.2% Triton and 1:200 ABC 

Vectastain Kit solution (rabbit kit, Vector Laboratories, USA). Post-

incubation, sections were washed 3 more times in 1xPBS for 10 

minutes per wash.  

5) Incubated in ABC solution for 2 hours at RT on the rocker. ABC 

reagent was prepared in 1xPBS: 1:100 of solution A and 1:100 of 

solution B. Post-incubation, sections were washed 3 times in 1xPBS 

for 10 minutes per wash.  

6) Finally, sections were stained using DAB (1:40, chromogen:buffer; 

Vector Laboratories, USA,). After staining, sections were returned to 

1XPBS, mounted on a glass slide (Biomedia, Singapore) and allowed 

to dry. Once dry, a coverslip with DPx Mountant (Sigma-Aldrich, USA) 

was placed over the brain section. 

2.5.4. Immunofluorescence staining 

Immunofluorescence (IF) staining was performed using platelet-derived 

growth factor receptor alpha (PDGFRα) antibodies. The well to be stained 

was chosen based on the mark of the gCC on the well plate. All sections (4-

5) were removed from each of the selected wells and placed into 12-well 

plates in NetWell inserts (one well per animal and one well as a negative 

control for each condition) and placed in 1xPBS. Sections were first pre-

treated in hydrochloric acid (HCl) based solution (stock of 1N and 2N was 

prepared from 37% HCl solution), an antigen retrieval reagent, to break 

protein cross-links formed by formalin fixation and uncover hidden antigenic 
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sites, was conducted. Sections were subsequently incubated in the following 

manner whilst being agitated using an orbital shaker: 

1) 10 min on ice in 1N HCl in pre-cooled wells  

2) 10 min at RT in 2N HCl  

3) 20 min at 37o C in 2N HCl in pre-warmed wells 

4) 10 min at RT in 0.1M borate buffer solution, (pH 9) 

A standard staining protocol was then followed where sections were 

sequentially: 

5) Washed 3 times in 1xPBS for 10min per wash. 

6) Incubated for 90-120 min in blocking solution (5% normal donkey 

serum - NDS, Sigma-Aldrich, USA; 0.2% Triton; in PBS) 

7) Incubated in primary antibody solution (1% NDS, 0.2% Triton, in PBS) 

overnight at room temperature. 

8) Washed 3 times in 1xPBS for 10min per wash the following day 

9) Incubated in secondary antibody 1:500 in PBS (0.2% Triton in PBS) 

for 2 hours, and well plates covered with aluminium foil to prevent 

fluorochrome bleaching. 

10)  Washed 3 times in 1xPBS for 10min per wash. 

11)  Finally mounted on a glass slide and allowed to dry.  

2.5.5. Stereology  

Cell counting was blind to the experimental conditions, as new IDs were 

randomly assigned to all animals prior to the start of staining. An upright 

microscope (Olympus, Japan) was used to view the stained brain sections 

and Stereo Investigator software (MBF Bioscience, USA) was used for 

imaging and analysis. Section cut thickness was set to 25 µm, whereas the 

section evaluation interval was 12 (since each section was 12 wells apart 

from the next). The coronal navigation of the mouse brain atlas (Paxinos and 

Franklin, 2001) was used as reference to draw contours for the regions of 

interest: prefrontal cortex (PFC, Bregma 1.18 to -0.94 mm), corpus callosum 

(CC, Bregma 1.18 to 0.86 mm). The grid size was set to 100 for the PFC, 
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and 50 for the CC. A total of 15 counting frame sites were selected for 

counting cells in both regions. Areas that contained no cell bodies or were 

outside the contour were omitted. After counting from all the selected sites 

for each specific region, a results file containing several variables was 

generated by the software. The Gundersen and Schmizh-Hof coefficient of 

errors were used to decide whether enough sites were counted for each 

section. 

The estimated cell population was exported to excel and each animal was re-

assigned to its corresponding experimental group. Statistical analysis was 

performed in Prism (see Section 2.7). 

 

2.6. Western blot processing     

2.6.1. Tissue extraction, fixation and storage  

The right hemisphere of each brain was microdissected into cortex, 

prefrontal cortex, striatum, hippocampus, cerebellum and olfactory bulb, and 

placed in cryo-tubes on dry ice. The cryo-tubes were stored at -80oC to be 

later used for immunoblotting procedures.  

2.6.2. Tissue lysis 

Microdissected cortex tissue was removed from -80° C and placed on dry 

ice. The first step of the protocol involved preparing the lysis buffer on ice 

(see Table 2.4). 

Table 2.4 Lysis buffer recipe for western blot 

Solutions Stock Final Vol to add to 
1ml 

Company 

RIPA NA NA 944 Sigma-
Aldrich 

PMSF 100mM 1mM 10 Sigma-
Aldrich 

PI cocktail 25x 1x 40 Roche 

Z-VAD 5mM 5µm 1 Promega 

NaVan 700mM 1mM 5 Sigma 
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The steps below were followed for the tissue lysis process:  

1) Tissue was lysed in the prepared buffer using a tissue homogenizer 

glass. 

2) Tissue lysates were incubated on ice for 20 minutes. 

3) After incubation, tissue lysates was spun in a 4°C pre-cooled 

centrifuge at 15,000rpm, for 20 minutes, to remove cell debris. 

4) Supernatant was transferred into newly labeled 1.7mL tubes and kept 

on ice. 

2.6.3. Bradford and protein quantification 

Bradford Standards was prepared using bovine serum albumin (BSA) (Table 

2.5). BSA stock was prepared by dissolving BSA Fraction V powder in sterile 

PBS to a final concentration of 2mg/mL (Table 2.8) and syringe filter (0.2μm).  

Table 2.5 Bradford standards for western blot 

 PBS 
(µL) 

BSA standard 
(µL) 

Final concen-tration 
µg/ml 

Final volume 
(µL) 

A 400 - 0 400 

B 325 325 of C 125 325 

C 375 375 of D 250 375 

D 325 325 of F 500 325 

E 175 175 of G 750 350 

F 325 325 1000 325 

G 125 375 1500 325 

H 0 300 2000 300 

In addition, 1xBradford dye (Bio-Rad, USA) was prepared in deionised water 

from stock (Table 2.7A) and stored on ice. 

The following steps were then followed: 

1) Samples were diluted in strip tubes up to 10-fold in RIPA buffer (9µL 

of RIPA buffer: 1µL of protein sample) and vortexed. 

1µL of Bradford standards and 1µL of diluted protein samples were aliquoted 

in triplicate into 96-well clear flat bottom plates (Table 2.6). 
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Table 2.6 Plate reader format for the Microplate Reader 

 

2) 1x Bradford dye was added into the reagent reservoir. 200µL of 1x 

Bradford dye was added to each well using a multichannel pipet. 

3) The plates were incubated in the dark for 15 minutes and agitated 

using a rotary shaker. 

4) The plates were then placed in the Microplate Reader (BMG Labtech, 

Germany) 

5) Omega MARS (BMG Labtech, Germany) software was used to 

measure absorbance of the samples. 

6) The obtained results were then exported to excel where the protein 

concentration was calculated. See Table 2.7B for protein calculation 

formulas.  

7) An amount of desired protein was chosen – between 30µg and 20µg. 

A final volume of 20µL of sample was chosen.  

8) The following items were calculated for the gel sample preparation: 

a. The volume of protein (Vp) sample to be loaded (Table 2.7C). 

b. The Loading Dye (NuPAGE LDS Sample Buffer, Novex, USA) 

and reducing buffer (NuPAGE Sample Reducing Agent, Novex, 

USA) volume (Table 2.8). 

c. Volume of lysis buffer (Vlb) to be added (Table 2.7D). 
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Table 2.7 Western blot calculations 

 Calculations Abbreviations and notes 

A) Bradford 
dye 

𝑉𝑏𝑑 = (𝑠𝑡 + 𝑠𝑝) 𝑥 3 𝑥 200µ𝐿 Vbd = volume Bradford dye; st = no. of 
Bradford standards; sp = no. samples; 3 = 

triplicates. 

 
 

B) Protein 
concentration 

𝑦 = 𝑚 × 𝑥 + 𝑐 →  𝑥 =

(𝑦 − 𝑐) ÷ 𝑚 ; 

Final 𝐶 = 𝑥 ∗ 10 

y = absorbance measurement, m = 
gradient of curve; x = concentration; c = 
the y-intercept; 10 is the dilation factor. 

 
C) Volume 

protein 
sample to be 

loaded 

 
 

𝑉𝑝 = 𝑆𝑝 ÷ 𝐶 

 
Vp = volume protein; Sp = amount of 
desired protein; C = concentration of 

protein sample. 
 

 
D) Final 

volume of 
lysis buffer 

𝑉𝑙𝑏 = 𝑉𝑠 − 𝐿𝐷𝑆 𝑆𝐵 − SRA −

Vp  

 

 
Vlb = volume lysis buffer; Vs = volume 
sample, LDS SB = LDS sample buffer; 
SRA = sample reducing agent; Vp = 

volume protein. 

 

2.6.4. Sample preparation and gel running 

The final volume per sample was 20µL and included protein samples, 

NuPAGE LDS Sample Buffer, NuPAGE Sample Reducing Agent and lysis 

buffer. This was aliquoted into strip tubes according to the Bradford Sheet 

calculations. The strip tubes were vortexed and spun, followed by 10 minutes 

boiling at 70°C.  

While samples were boiling, the Precision Plus Protein All Blue Standards 

ladder (Bio-Rad, USA) was thawed at room temperature and a 20X MES 

Running Buffer (Novex, USA) was prepared. A 10 well, 12% Bis-Tris protein 

gel (Novex, USA) was used. The protein gel tank (Novex, USA) was 

configured and the gel comb carefully removed without disrupting the wells. 

MES Running Buffer was poured into the tank. 

10µL of protein ladder was first loaded in the first well, and 5µL added to the 

tenth well. Once boiled, samples were vortexed and spun and then loaded 

into the gel (20µL per well). Finally, the gel tank was plugged into PowerPac 

and the gel was run for 3-4 hours at 100V.  
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2.6.5. Western transfer 

1X Western Transfer Buffer (1L) was prepared using 10X Transfer Buffer 

(100mL), 100% Methanol (200mL, Merck, Germany) and deionised water 

(700mL), and cooled at 4°C before use. 

Transfer tank was set up using the following steps: 

1) Transfer buffer was poured into the assembly tray. 

2) 1x gel holder cassette, two foam pads and four filter papers were 

soaked in the transfer buffer. 

3) Transfer membrane was then activated. Nitrocellulose (Bio-Rad, USA) 

– Transfer Buffer; PVDF – 100% Methanol. 

4) The gel holder cassette was placed in the assembly tray with the 

black side facing down and the transparent side against the slope of 

the assembly tray. 

5) A pre-soaked foam pad was placed on the black side of the gel holder 

cassette and the roller used to remove any bubbles. 

6) Two pre-soaked filter papers were placed on top of the foam pad and 

removed of any bubbles. 

7) The protein gel cassette was opened to release gel. 

8) The end of the gel was trimmed off. 

9) The gel was placed on top of filter paper from step 6.  

10) Transfer membrane was soaked in transfer buffer before placing over 

the gel. 

11)  Two pieces of pre-soaked filter paper were placed on top of transfer 

membrane and any bubbles gently rolled out using the roller. 

12)  Another foam pad was placed on top of the filter papers in step 11 

and any bubbles gently rolled out using the roller. 

13)  The clamp on the transparent side of the gel holder cassette was 

locked to secure all components. 

14)  The gel holder cassette was placed into trans-blot central core. 

15)  Trans-blot central core was placed into mini trans-blot cell. 

16)  A frozen ice-pack was placed in the trans-blot cell. 

17)  The gel was run at 120V for 1.5hours. 



  

 

95 

Table 2.8 Agents concentrations 

Agent Stock 
concentration 

Final 
concentration 

Company 

BSA  2 mg / ml  
Bradford Dye 5X 1X Bio-Rad 

NuPAGE LDS Sample Buffer 4X 1X Novex 
NuPAGE Sample Reducing 

Agent 
10X 1X Novex 

NuPAGE MES SDS Running 
Buffer 

20X 1X Novex  

Tris-Glycine Transfer Buffer 10X 1X Made in-
house 

PBS 10X 1X  
Tween (PBS-T) 100% 0.1% In-house 

 

2.6.6. Western blot – LiCor System 

1X PBS-T was prepared from 10X in-house made PBS in deionised water 

and adding 100% Tween-20 (OmniPur, USA) for a final concentration of 

0.1%. Endogenous control used for primary antibodies were rabbit anti-

Calnexin (90kDa) or mouse anti-β-actin (42kDa). Primary antibodies included 

MBP (Millipore, USA), MAG (Millipore, USA), PLP (Abcam, USA) and Ermin 

(Merck, Germany) (Table 2.x). 

Secondary antibodies were diluted at a concentration of 1:10,000, and 

included: Alexa-Fluor goat anti-rabbit 680 (Life Technologies, USA) Alexa-

Fluor goat anti-mouse 800 (Life Technologies, USA) and Alexa-Fluor goat 

anti-rat 800 (Life Technologies, USA). 

The following steps were involved: 

1) Approximately 10mL of LiCor Blocking Buffer (LiCor, USA) were 

added to containers labelled with their corresponding ID. 

2) Membrane from transfer cassette was placed into the container with 

Blocking Buffer and incubated for 1 hour shaking at RT. 

3) Blocking buffer was removed and primary antibody was added to the 

container containing the membrane. This was placed at 4°C on the 

shaker overnight. 
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4) The next day the membrane was washed 1x30 minutes, 1x15minutes, 

1x10min and 1x5min at room temperature. 

5) All subsequent steps were conducted in the dark to prevent the 

fluorophore from degrading. The membrane was incubated in 

secondary antibody for 1 hour at RT. 

6) The membrane was then washed 1x15minutes and 3x5minutes in 

PBS-T. 

7) A LiCor Imaging System (LiCor, USA) was used to scan and visualize 

the blots. 

2.6.7. Membrane imaging 

The membrane was imaged using the LiCor Imaging System and Odyssey 

V3.0 software (LiCor, USA). LiCor system can only detect 700 and 800 

wavelengths. The intensity was adjusted for the 700 and 800 channels 

individually. The image curves were adjusted after the membrane was 

scanned. The image was then saved and exported as TIF files.  

2.6.8. Western blot analysis 

Scanned images of the blots were imported to Image Studio Lite (ver 5.2). 

The image intensity was adjusted using the software adjust tool. Relevant 

channels were selected based on the secondary antibodies used. A 

rectangle was drawn over the largest band representing one of the samples 

tested, and the same rectangle was copied and pasted over the other bands 

for each of the samples. Thus, the area of interest for each sample was 

equal within one gel. This was followed by drawing a rectangle over the 

control bands (i.e. Calnexin). The background average was selected 

overlying, or adjacent to, the bands, or both. Each band was then labeled 

with its corresponding condition name. Signal intensity and background 

values for each band was then automatically calculated and exported to 

Excel (Microsoft, USA). Here, the total signal of the protein of interest (i.e. 

MBP) was normalised to the corresponding total signal of the control protein 

(i.e. Calnexin) for each sample. The resulting values were then normalised to 

the average of all the values of the control condition for that comparison. For 
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example, in the case where SPF animals were compared to GF animals, the 

SPF group was used as control, and GF data normalised to that of SPF. 

Results were then exported to Prism (GraphPad, USA) for statistical 

analysis. 

Table 2.9 Primary antibodies details 

Antibodies Isotope 
MW 

(kda) Application 
Dilution DAB 

(min) 
Source 

GST-π rabbit  IHC 1:3000 2.5 
Scientific Hub 

Services 

Olig2 rabbit  IHC 1:300 6.5 Merck Milipore 

Olig2 rabbit  IF 1:750 - Merck Milipore 
MBP rat 18-20 WB 1:1000 - Milipore 
PLP rabbit 26.3 WB 1:1000 - Abcam 

 

 

2.7. Statistical analysis 

All statistical analysis was run using GraphPad Prism (version 6.07). 

Student’s t-test, two-way ANOVA with Sidak’s correction for multiple 

comparisons, and repeated measures ANOVA with Tukey’s correction for 

multiple comparisons were used to observe whether differences between the 

groups were statistically significant. Any p-values above 0.05 were not 

considered statistically significant. Variables are reported as mean ± SEM 

unless otherwise stated. 
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3.1. Summary 

Enriched laboratory environments (EE) have been shown to improve, or 

delay, motor and cognitive deficits in several neurodegenerative animal 

models. It is becoming increasingly apparent that environmental conditions 

are closely linked to myelination and oligodendrogenesis. White matter 

abnormalities have been revealed to be dysfunctional starting from early 

stages of Huntington disease (HD). Therefore, in the current study we 

investigated the extent to which the status of the environment could 

modulate myelination in the posterior corpus callosum (CC) of the early 

manifest YAC128 mouse model of HD. Animals of mixed genotype were 

allocated to either enriched housing (EH) or standard housing (SH) 

conditions from 4 to 18 weeks of age. Results revealed an overall reduction 

in myelin thickness, and a larger number of small diameter axons in both EH 

groups, regardless of genotype, compared to their corresponding SH 

controls. As previously reported, no changes in the number of mature 

oligodendrocytes were observed in the CC. We propose that environmental 

enrichment could conceivably prolong the ‘window of myelination’, and 

thinner myelin sheaths could be explained by an increase in number of newly 

myelinated axons, a previously suggested possible property of adult 

myelination. Furthermore, on a battery of behavioural tests, we observed, 

first, that animals housed in enriched conditions, regardless of genotype, 

exhibited decreased overall locomotor activity. Second, our findings suggest 

a marginal effect of an enriched environment on motor learning and motor 

performance in the WT group, and minor beneficial effects on motor learning, 

but not motor performance in the YAC128 mouse. And third, we observed an 

evident effect of enrichment on female body weight in the YAC129 mouse 

model, and a minor effect on the body-weight of WT females and males. Our 

findings indicated a lack of profound effects of enrichement on behavioural 

performance in this HD model, possibly due to the mild disease phenotype 

associated with the YAC128, which may have not progressed significantly 

over the course of this study.  
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3.2. Introduction 

Recent studies have demonstrated the beneficial effects of enriched 

environments (EE) on both healthy and disease animal models. These pre-

clinical insights have been partially translated to the clinic in patients 

suffering from psychiatric or neurodegenerative disorders. While Huntington 

disease (HD) is an autosomal-dominant genetic disorder, other highly 

prevalent human neurodegenerative disorders arise from the complex 

interaction between environmental and genetic factors. Thus, animal models 

of HD have become important tools to investigate the interplay between 

progressive physical, cognitive and psychiatric decline, and environmental 

components (Mo, Hannan, & Renoir, 2015a).  

Environmental enriching was first found to have a positive influence in 

delaying motor symptoms in a genetic mouse model of HD (van Dellen et al., 

2000). Since then, physiological and cognitive improvements with 

environmental enrichment have been demonstrated in several HD models, 

including the R6/1, R6/2 and N171-82Q (Hockly et al., 2002; Schilling et al., 

2004; Wood et al., 2010). These improvements have included reduced brain 

atrophy (Spires, 2004), improved spatial memory deficits (Nithianantharajah 

& Hannan, 2006), improved hippocampal neurogenesis (Lazic et al., 2006), 

delayed cognitive deficits (Nithianantharajah et al., 2008), and amelioration 

of depressive- (Du et al., 2012b) and emotion-related phenotypes (Renoir et 

al., 2012).  

Additionally, myelination has been demonstrated to be a plastic process and 

to undergo remodeling throughout adult life (Waly et al., 2014), with several 

animal studies demonstrating the effects of behavioural experience, enriched 

housing and voluntary exercising on adaptive myelination and 

oligodendroglial population dynamics in a variety of brain regions (Forbes & 

Gallo, 2017; Mount & Monje, 2017; Tomlinson, Leiton, & Colognato, 2016a). 

After four months of enrichment, middle-aged and old-aged rats showed 

increased axon and myelin sheath volume (Yang et al., 2013), while middle-

aged rats had an increased number of myelinating CNPase+ 

oligodendrocytes in the corpus callosum (CC) (Zhao et al., 2011). 
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Interestingly, young rats exhibited a shift in the distribution of oligodendroglial 

population in sensorimotor cortex between a short-term (10 days) and long-

term (42 days) period of enrichment (Keiner et al., 2017). Specifically, 

compared to standard housing, rats showed a decreased number of 

oligodendrocyte precursor cells (OPCs; labeled BrdU+NG2+) and an 

increase in the number of mature oligodendrocytes (labeled 

BrdU+NG2+GST-pi+) cells after 10 days of enrichment reflecting 

differentiation of OPCs into mature oligodendrocytes (Keiner et al., 2017). 

However, after 42 days of enrichment, OPCs and mature oligodendrocyte 

populations appeared comparable to the standard housing condition. 

Additionally, the number of newly differentiated myelinating 

oligodendrocytes, as labeled by BrdU+CNPase+, was increased after 10 

days, and remained increased following 42 days of enriched housing, relative 

to the standard housing condition (Keiner et al., 2017). However, other 

studies have provided little support for oligodendrogenesis in some cortical 

regions, or the amygdala, although evidence for increases in OPC 

populations was found (Ehninger et al., 2011; Ehninger & Kempermann, 

2003; Makinodan et al., 2012). In adult mice enriched for 40 days, increased 

number of proliferative OPCs (BrdU+NG2+S100b- labeled) were observed in 

the amygdala, but no differences were seen in CNPase+ labelled cells (i.e. 

myelinating oligodendrocytes) in this region compared to control mice 

(Ehninger et al., 2011). Similarly, no changes in oligodendrocyte density or 

morphology, or myelin transcript levels were found in prefrontal cortex (PFC), 

of young mice housed for 1.5 months in an EE setup (Makinodan et al., 

2012). 

In this study we aimed to investigate the effects of environmental enrichment 

on myelin plasticity and mature oligodendrocytes in the white matter tracts of 

the posterior corpus callosum of the early manifest YAC128 HD mouse 

model, and healthy littermates (as control). We also evaluated motor function 

and habituation, as well as anxiety- and depressive-like behaviour using a 

battery of behavioural tests. In addition, body weight over time, and brain 

weight were compared between groups.  
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3.3. Methods 

3.3.1. Experimental groups and housing conditions 

A total of 67 YAC128 transgenic (HD model) and wild-type (WT, control) 

mice were used in this study. Both males and females were included in all 

experimental groups. Sexing and genotyping of animals were carried out at 3 

weeks of age. Mice were housed under standard conditions with food ad 

libitum, in an inverted light-dark cycle until 4 weeks of age. Subsequently, 

they were placed into their allocated caging conditions under the same 

inverted light-dark cycle: enriched housing (EH), or standard housing (SH). 

Animals were housed in their allocated condition for a total of 14 weeks. At 

18 weeks (4.5 months) of age, animals were sacrificed, and their brains were 

harvested. Animals were weighed on a bi-weekly basis.  

 

Figure 3.1 Experimental groups for standard and enriched condition 

Four groups were used for these experiments: wild type (WT) groups – standard 
housing (SH) and enriched housing (EH), and YAC128 groups – also SH and EH. 

 

 

WT SH 

YAC128 SH YAC128 EH 

WT EH 

  

mHTT mHTT 
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Figure 3.2 Typical enriched housing 

Enriched cages contained objects, which offered various tactile and visual stimuli in 
terms of material, texture and shape. Objects included a small plastic box (‘my lego 
house’) filled with shredded paper, plastic and carton tunnels, wooden stairs, metal 
and ceramic bowls, cotton play balls, wooden stairs, and plastic toys (‘bear-buddy’ 
and plastic letters). 

 

Several factors were taken into consideration in the design of a suitable 

enriched housing environment (Figure 3.3). Animals allocated to the EH 

group were housed in larger than standard cages (48 × 26 × 21 cm). Five 

animals were housed in a single cage in order to stimulate social interaction. 

Additionally, novelty items that varied in shape, size, and texture were placed 

in the cage (Figure 3.2). This allowed for sensory, cognitive and motor 

stimulation through interaction with the environment. Three mice per cage 

were allocated to the SH condition and were housed in standard mouse 

cages (39 x 19 x 16 cm; Techniplast, Greenline, sealsafe plus mouse, 

GM500). To note that these animals were used as control SH for the 

deprivation study (Chapter 4). 

Plastic 
 shelter 
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Figure 3.3 Study design for an enriched housing conditions in 
laboratory animals 

Several factors were considered for the design of an ideal enriched housing 
condition (adapted from Singhal et al., 2014). Red crosses indicate environmental 
enrichment factors not implemented in the study. 

3.3.2. Overview of behavioural tests 

After 12 weeks of housing in their experimental conditions, several 

behavioural tests (Table 2.2) were carried out. This included evaluation of 

motor function and habituation (spontaneous activity test (SA)); anxiety and 

habituation (open field test (OFT)); anxiety (elevated plus maze (EPM)); 

motor function (climbing test); motor function and motor learning (rotarod test 

(RR)). Details of the behavioural tests are described in Chapter 2 - Materials 

and Methods (Section 2.1.3).  

3.3.3. Tissue harvesting and processing 

All brains were segmented through the mid-sagittal plane, and the left 

hemisphere was used for immunohistochemical procedures (Section 2.5). 

Sections were immunostained for the mature oligodendrocyte marker, 

Glutathione S-transferase (GST)-pi (Table 2.9). Stereo Investigator software 

was used for cell counting in the corpus callosum (Section 2.5.5). 
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Prior to cryosectioning for IHC procedures, the left hemisphere, of both 

males and females, was weighed. Brain weights were recorded and 

compared between the experimental groups. 

In addition to the brains harvested for immunostaining, three to four animals 

in each experimental condition were perfused and their brains harvested, for 

investigation of myelin ultrastructural analysis (i.e. axonal shape and size, 

and myelin thickness). For this study, posterior region (splenium) of the CC 

(~Bregma -1.82 to -2.70, according to the Mouse Brain Atlas, Paxinos and 

Franklin, 2001) was microdissected (Figure 2.3A) to be processed and 

imaged for TEM (Section 2.4). 

3.3.4. Statistical analysis 

The 2x2 factorial design (genotype x housing condition) of the study was 

statistically analysed using two-way independent ANOVA with Sidak’s 

correction for multiple comparisons, and repeated measures ANOVA 

statistical tests with Tukey’s correction for multiple comparisons. P-values 

equal to or greater than 0.05 were not considered statistically significant. P 

values and n values were indicated in the associated figure legends for each 

figure, while mean values are stated in the results section. Variables are 

reported as mean ± SEM unless otherwise stated.  

 

3.4. Results 

3.4.1. Behavioural tests results 

3.4.1.1. Spontaneous activity results  

Over the 30 minutes duration of the SA test, comparisons in the distance 

travelled using two-way ANOVA revealed no significant interaction between 

genotype and housing condition (F (1, 40) = 0.11, p > 0.05), significant main 

effect of housing condition (F (1, 40) = 12.81, p < 0.001), but no effect of 

genotype (F (1, 40) = 2.5, p > 0.05). Sidak’s correction for multiple 
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comparisons post-hoc tests revealed that wild-type enriched-housed (WT 

EH) animals (6240±522.9 cm) travelled less than wild-type standard-housed 

(WT SH) (10377±1793 cm, p < 0.05; Figure 3.4A). YAC128 EH (4926±207.4 

cm) mice also showed a trend towards decreased activity levels compared to 

their SH controls (8344±502.2 cm). Additionally, over the 10 minutes duration 

of the OF test, total distance travelled was compared using two-way ANOVA 

showing no significant interaction between genotype and housing condition 

(F (1, 40) = 3.97, p > 0.05), however, a significant main effect of housing 

condition (F (1, 40) = 6.46, p < 0.001), but no effect of genotype (F (1, 40) = 

0.35, p > 0.05). Sidak’s correction for multiple comparisons post-hoc tests 

revealed reduced distance travelled in WT EH animals (5995±721.8 cm) 

compared to SH controls (10509±1586 cm, p < 0.05; Figure 3.4F). Other 

measures of activity levels taken during the SA test included resting time, 

vertical (rearing) and jump counts, and average velocity. For all these 

measures, two-way ANOVA revealed no significant interaction between 

genotype and housing condition, a significant main effect of housing 

condition, but no effect of genotype. Sidak’s correction for multiple 

comparisons post-hoc tests revealed that EH mice of both genotypes 

showed increased levels of mean resting time (WT: 1010±28.24 s; YAC128: 

1066±17.51 s) when compared to their SH control group (WT: 846.6±48.96 

s; p < 0.01; YAC128: 880.6±24.57 s; p < 0.001; Figure 3.4B). Additionally, 

averaged vertical counts (Figure 3.4C), jump counts (Figure 3.4D), and 

velocity (Figure 3.4E) were significantly decreased in the YAC128 EH group 

compared to its SH control (vertical counts: EH 461.5±20.44, SH 

659.2±37.76, p < 0.01; jump counts: EH 499±48.42, SH 754.3±82.1, p ≤ 

0.05; average velocity: EH 34.16±0.75, SH 37.94±0.98, p ≤ 0.05).  
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Figure 3.4 Comparison of spontaneous activity measures in YAC128 
and WT mice under standard and enriched housing conditions 

(C) Total distance travelled during the SA test was lower in EH groups compared to 
SH groups, regardless of genotype. 

(D) Resting time was significantly higher in the EH groups compared to their SH 
controls, regardless of genotype. 

(E) Vertical counts were significantly lower in the YAC EH group compared to YAC 
SH controls, and a similar non-significant trend was observed in the WT groups’ 
comparison. 

(F) Number of jumps were also significantly lower in the YAC EH group compared 
to YAC SH control, but no significant differences were seen in WT SH/EH 
comparisons. 

(G) Average velocity was significantly lower in YAC EH group compared to YAC SH 
control. 

(H) Distance travelled during the OFT test was significantly lower in the YAC EH 
compared to YAC SH control, but no significant differences were seen in the WT 
EH compared to WT SH. 

 
The SA test was run over 30 minutes, while OFT was run for 10 minutes. All readouts were 
obtained from the video tracking software associated with each test. n = 10-12 animals of 
mixed sex per condition; bar graphs represent mean ± SEM. Two-way ANOVA, with Sidak’s 
correction for multiple comparisons. *p < 0.05; **p < 0.01. Abbreviations: SA, spontaneous 
activity; OF, open field test. 

 

3.4.1.2. Anxiety-like behaviour results  

When comparing the total time spent in the centre of the arena during the 10 

minutes OF test of anxiety, two-way ANOVA revealed no significant 

interaction between genotype and housing condition (F (1, 39) = 0.09, p > 

0.05), no significant main effect of housing condition (F (1, 39) = 0.14, p > 

0.05), and no effect of genotype (F (1, 39) = 0, p > 0.05) between 

experimental groups (Figure 3.5A). Additionally, no significant differences 

were seen between any of the groups of interest in the total time spent in the 

open arms of the maze during 5 minutes of the EPM test of anxiety (two-way 

ANOVA, interaction (F (1, 36) = 3.2, p > 0.05); housing condition (F (1, 36) = 

0.16, p > 0.05); genotype (F (1, 36) = 0.4, p > 0.05); Figure 3.5B).   
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Figure 3.5 Comparison of anxiety-like behaviour in YAC128 and WT 
mice housed under standard and enriched conditions 

(A) No significant differences were observed between groups in percentage time 
spent in the centre of the arena in the OFT. 

(B) No significant differences were observed between groups in percentage time 
spent in the open arms during the EPM test. 
 

The OFT had a duration of 10 minutes, the EPM test was run for 5 minutes. Readouts for 
the OFT and EPM were obtained from the EthoVision, video tracking software. Percentage 
(%) of total time was calculated for each condition. n = 10-12 animals of mixed sex per 
condition; bar graphs represent mean±SEM. Two-way ANOVA. Abbreviations: OFT, open 
field test; EPM, elevated plus maze. 

 

3.4.1.3. Motor function results 

When comparing the latency to climb two-way ANOVA revealed no 

significant interaction between genotype and housing condition (F (1, 40) = 

0.95, p > 0.05), no significant main effect of housing condition (F (1, 40) = 

1.05, p > 0.05), and no effect of genotype (F (1, 40) = 0.01, p > 0.05) (Figure 

3.6A) across experimental conditions. For time spent climbing, two-way 

ANOVA revealed no significant interaction between genotype and housing 

condition (F (1, 40) = 0.31, p > 0.05), however a significant main effect of 

housing condition (F (1, 40) = 9.05, p < 0.05), but no effect of genotype (F (1, 

40) = 0.4, p > 0.05). Sidak’s correction for multiple comparisons post-hoc test 

revealed a significant difference in time spent climbing between YAC128 SH 
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and EH groups (p < 0.05), and a similar non-significant trend was observed 

between WT SH and EH (p > 0.05; Figure 3.6B). For number of climbing 

attempts, two-way ANOVA revealed no significant interaction between 

genotype and housing condition (F (1, 40) = 0.005, p > 0.05), however a 

significant main effect of housing condition (F (1, 40) = 11.62, p < 0.01), but 

no effect of genotype (F (1, 40) = 3.4, p > 0.05). Sidak’s correction for 

multiple comparisons post-hoc test revealed differences in the number of 

climbing attempts between WT EH (8.8±2.08) and WT SH controls 

(15.33±2.05; p < 0.05), and between YAC128 EH (5±1.01) and YAC128 SH 

controls (11.83±2.19, p < 0.05). Both WT and YAC128 animals in the EH 

condition were associated with a lower number of climbing attempts than 

their corresponding SH controls (Figure 3.6C). 

3.4.1.4. Motor function and motor learning evaluation 

The latency to first fall (Figure 3.7) and the number of falls (Figure 3.8) were 

recorded as measures of motor learning performance on the fixed speed 

rotarod training over three days, with three trials per day, except the first day 

when only two trials were recorded. For the latency to fall, repeated 

measures ANOVA revealed a significant main effects of time (F (7,280) = 

2.557, p < 0.05), but no effect of genotype and housing condition (F (3, 40) = 

1.533, p > 0.05), and no effect of the interaction between the two (F (21,280) 

= 0.673, p > 0.05). No significant differences in latency to fall were found 

between experimental groups when corrected for multiple comparisons (p 

>0.05). However, YAC128 EH mice were able to remain on the rotarod for 

longer (increased latency to fall) compared to YAC128 SH mice, during trials 

2-6, although this difference was not significant (Figure 3.7C). When 

averaged over training days, WT EH mice showed a trend towards a slightly 

longer latency to fall compared to the other groups on the first two training 

days, however this also was not significant (two-way ANOVA for each 

training day; p > 0.05, Figure 3.9A). The number of falls, and latency to fall 

was similar across all animal groups and plateaued by trial 6-7 (p > 0.05; 

(Figure 3.7C). 
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Figure 3.6 Comparison of climbing characteristics of YAC128 and WT 
controls housed under standard and enriched conditions  

(A) No significant differences were observed between the latency for the first 
climbing attempt, although there was a trend for WT EH to take longer before 
attempting climbing compared to its SH control. 

(B) No significant differences were observed between the total time spent climbing, 
although there was a trend for both the WT EH and YAC EH to spend less time 
climbing compared to their SH controls. 

(C) Both WT EH and YAC EH performed less climbing attempts compared to their 
corresponding SH controls.  

 
The climbing test had a total duration of 6 minutes, and videos were examined manually. n = 
10-12 animals of mixed sex per condition; bar graphs represent mean±SEM. Two-way 
ANOVA, with Sidak’s correction for multiple comparisons; *p < 0.05. 

 

In terms of number of falls, repeated measures ANOVA revealed significant 

main effects of time (F (7,280) = 3.66, p < 0.001), but no effect of the 

genotype and housing condition (F (3, 40) = 1.952, p > 0.05), and no effect of 

the interaction between the two (F (21,280) = 1.095, p > 0.05). On the first 

trial of training, WT EH mice showed a trend towards falling less (0.1±0.1) 

than YAC128 EH (1±0.39) animals, and WT SH mice also fell less 

(0.33±0.14) than YAC128 SH animals (1.16±0.6). Although, no statistical 

differences were seen between the groups in the number of falls, WT EH 

animals exhibited the smallest number of falls over all training trials (red 

squares), followed by WT SH (black squares) and YAC EH mice (red 

triangles; Figure 3.8A, B, and C). In addition, from trial 1 to 5, the YAC128 
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EH group showed a slightly smaller, non-significant, number of falls 

compared to YAC128 SH controls (p > 0.05; Figure 3.8C). 

The proportion of mice in each experimental group that fell off the rotarod in 

each session was calculated, and averaged over trials for each training day 

(Figure 3.9B). Although not statistically significant, the WT EH group showed 

a trend towards smaller proportion of mice falling off the rotarod compared to 

all the other groups. During the first day of training (2 trials) 10% (±0%) of 

WT EH mice consistently fell off the rotarod compared to 20.83% (±12.50%) 

of WT SH mice, 40% (±20%) of YAC128 EH mice, and 37.5% (±4.17%) of 

YAC128 SH mice. On the second training day (3 trials), as little as 3.33% 

(±3.33%) WT EH mice had fallen off the rotarod, 13.89% (±5.5%) WT SH, 

and 16.67% (±3.33%) YAC128 EH and 27.78% (±2.78%) YAC128 SH mice 

fell off the rotarod. Finally, on the third training day, only 6.67% (±3.33%) WT 

EH mice fell off the rotarod, compared to 13.89% (±2.78%) of WT SH mice, 

23.33% (±3.33%) of YAC128 EH, and 16.67% (±4.81%) of YAC128 SH.  

After three days of training, on the fourth day, the rotarod test was run over 

three trials, at an accelerated speed, and the latency to first fall was taken as 

a measure of motor performance. Repeated measures ANOVA revealed no 

significant main effects of time (F (2,80) = 0.56, p > 0.05), but a main effect 

of genotype and housing condition (F (3,40) = 2.87, p < 0.05), and no effect 

of the interaction between the two (F (6,80) = 0.54, p > 0.05). Tukey’s 

correction for multiple comparisons post-hoc test revealed on the first trial, 

the WT EH group showed longer latency to fall (286.7±8.02 s) compared to 

all the other groups, but significantly different only to YAC128 EH 

(194.2±30.13 s, p < 0.05; Figure 3.10B). When averaged over all three 

testing trials, two-way ANOVA revealed a significant interaction between 

genotype and housing condition (F (1, 40) = 4.19, p > 0.05), no significant 

main effect of housing condition (F (1, 40) = 0.35, p > 0.05), and significant 

effect of genotype (F (1, 40) = 4.83, p > 0.05) between experimental groups. 

WT EH (276.7±10.33 s) animals took significantly longer to fall compared to 

YAC128 EH (215.9±14.72 s, p < 0.05) mice, and a non-significant trend 

towards a higher latency to fall relative to WT SH was also notable 

(238.9±16.02 s, p > 0.05; Figure 3.10A). 
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Figure 3.7 Comparison of latency to fall during fixed speed rotarod 
training for YAC128 and WT mice in SH and EH conditions  

(A) Latency to fall over 8 trials of training in all groups. 
(B) Slightly better performance in WT EH compared to WT SH for several sessions. 
(C) Faster motor learning performance in YAC128 EH mice compared to SH control. 
Latency to fall illustrated in seconds (s). Training was run over 3 days with 2-3 trial sessions 
per day. n = 10-12 animals of mixed sex per condition; error bars represent mean±SEM. 
Repeated measures ANOVA. 
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Figure 3.8 Comparison of number of falls of YAC128 and WT mice 
housed under standard and enriched conditions during fixed speed 
rotarod training  

(A) Number of falls over the 8 trials of training for all groups. 
(B) WT EH had similar number of falls to WT SH with the exception of several trials. 
(C) YAC128 EH mice had less number of falls over 4 trials compared to SH control. 
Error bars represent mean±SEM. Repeated measures ANOVA.  
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Figure 3.9 Session averages of latency to fall and percentage of mice 
fallen for YAC128 and WT mice housed under standard and enriched 
conditions 

(A) Average latency to fall for each day of training shows some trends towards EH 
groups performing slightly better, although no significant differences were found. 

(B) Percentage of mice that fell off the rotarod was (non-statistically significant) 
smaller in the WT EH group compared to the other groups. 

 
Testing was run over 2-3 trials within the same day. n = 10-12 animals of mixed sex per 
condition; bar graphs represent the mean±SEM. Two-way ANOVA, with Sidak’s correction 
for multiple comparisons. Latency to fall illustrated in seconds (s) (A). Proportion of mice that 
fell off the rotarod averaged over trials for each training day (B). 
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Figure 3.10 Comparison of latency to fall in YAC128 and WT mice 
housed under standard and enriched conditions during accelerated 
rotarod test 

(A) WT EH mice outperformed all groups over 3 trials of accelerated rotarod testing 
session. 

(B) Latency to fall was significantly higher in the WT EH group compared to YAC 
EH, and (non-statistically significant) higher than all the other groups over all 3 
trials.  

 
Latency to fall illustrated in seconds (s). Testing was run over 3 trials within the same day. n 
= 10-12 animals of mixed sex per condition; bar graphs represent mean±SEM (A); and, error 
bars represent ±SEM (B). Two-way ANOVA, with Sidak’s multiple comparisons test (A), and 
repeated measures ANOVA, with Tukey’s multiple comparisons test (B). *p < 0.05. 
Comparison symbols: * WT EH vs YAC128 EH. 

 

3.4.2. Ultrastructural analysis of myelin  

The inner (axoplasm) and outer (axoplasm and myelin sheath) diameters of 

regular-shaped axons in the posterior part (splenium) of the CC were 

measured (Figure 2.3). Representative micrographs of callosal axons for 

each experimental group are illustrated below, in Figure 3.11. G-ratios were 

calculated as the inner diameter divided by the outer diameter, and used as 

a measure of myelin thickness (Figure 2.4). 
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G-ratios were first evaluated against inner diameter for each axon to 

examine the variability of myelin thickness at different ranges of axonal 

diameters. WT EH mice exhibited qualitatively higher g-ratios, suggestive of 

thinner myelin sheath, at small axonal diameters (ID < 500nm), and smaller 

g-ratios, suggestive of thicker myelin sheath, at large axonal diameter (ID ≥ 

1000nm) compared to WT SH animals (Figure 3.12A). Cumulative frequency 

analysis confirmed a shift towards overall larger g-ratios, in WT EH animals 

compared to WT SH mice (Figure 3.12B). Similarly, YAC128 EH animals 

showed a trend towards overall larger g-ratios relative to YAC128 SH, 

although not to the same extent as that seen in WT groups (Figure 3.12C 

and D).  

When the g-ratio was averaged over all axonal diameters, two-way ANOVA 

revealed no significant interaction between genotype and housing condition 

(F (1, 2635) = 1.54, p > 0.05), significant main effect of housing condition (F 

(1, 2635) = 37.21, p < 0.0001), and no main effect of genotype (F (1, 2635) = 

2.51, p > 0.05). Both WT and YAC128 EH groups showed higher g-ratios, 

suggestive of thinner myelin sheaths, compared to their respective SH 

controls (Figure 3.13A). Specifically, Sidak’s correction for multiple 

comparisons post-hoc test revealed WT EH (0.798±0.002) animals 

possessed a significantly greater mean g-ratio compared to WT SH 

(0.779±0.003, p < 0.0001), and YAC128 EH (0.798±0.002) showed 

significantly higher g-ratios compared to YAC128 SH (0.786±0.002, p < 

0.0001). 

In addition, g-ratio values were classified, averaged and compared according 

to three inner diameter ranges: small diameter axons (ID < 500nm), mid-

range diameter axons (500 ≤ ID < 1000nm), and large diameter axons (ID ≥ 

1000nm) (Figure 3.13B). At small diameter ranges, two-way ANOVA 

revealed significant interaction between genotype and housing condition (F 

(1, 939) = 18.6, p < 0.0001), significant main effect of housing condition (F 

(1, 939) = 24.45, p < 0.0001), but no main effect of genotype (F (1, 939) = 

0.24, p > 0.05). Sidak’s correction for multiple comparisons post-hoc test 

revealed WT EH (0.765±0.003) showed a significantly higher mean g-ratio, 
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suggestive of thinner myelin sheath, compared to both WT SH (0.727±0.004, 

p < 0.0001), and YAC128 EH animals (0.749±0.004, p < 0.01). In addition, 

YAC128 SH (0.747±0.004) also showed a significantly larger mean g-ratio, 

suggestive of thinner myelin sheath, compared to WT SH (p < 0.01). At mid-

range axonal diameters, two-way ANOVA revealed no significant interaction 

between genotype and housing condition (F (1, 1420) = 0.54, p > 0.05), 

significant main effect of housing condition (F (1, 1420) = 57.05, p < 0.0001), 

and no main effect of genotype (F (1, 1420) = 1.21, p > 0.05). Sidak’s 

correction for multiple comparisons post-hoc test revealed g-ratio of WT EH 

(0.814±0.002) and YAC128 EH (0.819±0.003) animals were significantly 

larger than that of WT SH (0.793±0.003, p < 0.0001), and YAC128 SH 

(0.794±0.002, p < 0.0001) mice, respectively. No differences were observed 

at the mid-diameter range between WT and YAC128, regardless of housing 

condition (p > 0.05). Finally, at large axonal diameters, two-way ANOVA 

revealed significant interaction between genotype and housing condition (F 

(1, 271) = 13.38, p < 0.001), significant main effect of housing condition (F 

(1, 271) = 11.34, p < 0.001), but no main effect of genotype (F (1, 271) = 

0.48, p > 0.05). Sidak’s correction for multiple comparisons post-hoc test 

revealed YAC128 EH (0.883±0.004) showed a significantly higher average g-

ratio compared to both YAC128 SH (0.844±0.005, p < 0.0001), and WT EH 

(0.859±0.005, p < 0.05). However, no significant differences were seen 

between WT SH (0.860±0.005) and WT EH (p > 0.05) at this range.  
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Figure 3.11 Representative TEM images of callosal axons in YAC128 
and WT mice housed under standard and enriched conditions  

Representative micrographs of axons from the posterior (splenium) region of the 
corpus callosum for each experimental group. Scale bar at 2µm. 

WT SH 

YAC128 SH YAC128 DH 

WT DH 

2 μm 2 μm 
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Figure 3.12 G-ratios and axonal diameters of YAC128 and WT mice 
housed under standard and enriched conditions  

(A) Scatter plot of g-ratio values against inner axonal diameter showed higher g-
ratios at small ID (ID < 500nm), and smaller g-ratio at mid-range and large ID 
(ID ≥ 500) for the WT EH (red) compared to SH group (black). 

(B) Cumulative frequency plot of g-ratios showed an overall shift towards larger g-
ratios for WT EH mice compared to WT SH. 

(C) Scatter plot indicating lower g-ratio values at smaller to mid-range axonal 
diameters (ID < 700 nm), and higher values for mid-range to large axonsal 
diameters (ID > 700nm) for YAC128 EH (red) compared to SH (black).  

(D) Cumulative frequency of g-ratio showed a close overlap of the two curves 
representative of the YAC128 groups, although a small overall shift towards 
larger g-ratios can be observed. 
 

n = 474 - 916 axons per condition (WT SH, n = 474 axons; WT EH, n = 843 axons; YAC128 
SH, n = 782 axons; YAC128 EH, n = 556 axons). 2-4 animals per condition. 
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Figure 3.13 Average g-ratio for YAC128 and WT mice housed under 
standard and enriched conditions 

(A) The EH groups showed significantly smaller g-ratio values for both the WT and 
the YAC128 groups, when compared to their respective SH controls. 

(B) G-ratio values were classified and compared based on their corresponding inner 
diameter ranges (small diameter axons, ID < 500nm; mid-range diameter axons, 
500 ≤ ID< 1000nm; large diameter axons, ID ≥ 1000nm). Note the overall 
increase in g-ratio with increasing axonal diameter, as well as increased g-ratios 
of EH mice compared to SH mice, for both WT and YAC128 groups, at small 
and medium diameter ranges (IDs).  
 

Bar graphs represent mean±SEM. SEM comes from axonal variance. n = 474 - 916 axons 
per condition (WT SH, n = 474 axons; WT EH, n = 843 axons; YAC128 SH, n = 782 axons; 
YAC128 EH, n = 556 axons); 2-4 animals per condition. Two-way ANOVA, with Tukey’s 
multiple comparisons test. *p < 0.05; **p < 0.01; ****p < 0.0001. Inner diameter shown in 
nanometres (nm). Abbreviations: ID, inner diameter, SH, standard housing, EH, enriched 
housing, WT, wild type. 
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shift towards smaller g-ratios, driven by the aforementioned larger number of 

smaller axonal diameters, for the WT EH group (Figure 3.14B). In addition, 

when the means of the axonal diameters were compared, WT EH animals 

(614.6±8.7) showed significantly higher number of axons with smaller inner 

diameters compared to their WT SH control (652.5±12.6, p < 0.05, (Figure 

3.14C). A higher number of axons with small diameters (100 to 500nm), and 

a smaller number of axons at mid-range axonal diameters (600 to 700nm) 

were observed in the YAC128 EH animals compared to SH controls (Figure 

3.15A). The YAC128 EH cumulative frequency curve also showed a shift 

towards the left, driven by a larger number of small-to mid-range axonal 

diameters, compared to the SH group (Figure 3.15B). In addition, the mean 

axonal diameter of YAC128 EH mice (626.7±11.8) was significantly smaller 

than that of YAC128 SH animals (672.7±10.7, p < 0.01, Figure 3.15C). 
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Figure 3.14 Axonal diameters of WT mice house under standard and 
enriched conditions 

(A) Higher number of axons with a small diameter (300 to 600nm), and a smaller or 
similar number of axons with a large diameters (≥700nm), in WT EH animals 
compared to their WT SH controls. 

(B) Cumulative frequency of axonal diameters showed a small shift towards smaller 
diameters in WT EH mice (red) compared to WT SH (black). 

(C) WT EH animals showed smaller average axonal diameter myelinated axons 
compared to WT SH.  

 
n = 474 - 916 axons per condition (WT SH, n = 474 axons; WT EH, n = 843 axons; YAC128 
SH, n = 782 axons; YAC128 EH, n = 556 axons); 2-4 animals per condition. Relative 
frequency histogram (A) and cumulative frequency (B), bin width = 100nm (A). Unpaired, 
two-tailed t-test, 95% confidence intervals, *p < 0.05; bar graphs represent mean ± SEM (C). 
Abbreviations: ID, inner diameter. 
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Figure 3.15 Axonal diameters of YAC128 mice housed under standard 
and enriched conditions 

(A) Higher number of axons with a small diameter (100 to 500nm), and a smaller 
number of mid-range diameter axons (600 to 700nm), in YAC128 EH animals 
compared to their YAC128 SH controls. 

(B) Cumulative frequency of axonal diameters exhibiting a small shift towards 
smaller diameters for YAC128 EH mice (red) compared to YAC128 SH (black). 

(C) Myelinated axons of YAC128 EH animals possessed a smaller average 
diameter compared to YAC128 SH.  

 
n = 474 - 916 axons per condition (WT SH, n = 474 axons; WT EH, n = 843 axons; YAC128 
SH, n = 782 axons; YAC128 EH, n = 556 axons); 2-4 animals per condition. Relative 
frequency histogram (A) and cumulative frequency (B), bin width = 100nm (A). Unpaired, 
two-tailed t-test, 95% confidence intervals, **p ≤ 0.01; bar graphs represent mean±SEM (C). 
Abbreviations: ID, inner diameter. 
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3.4.4. Mature oligodendrocyte numbers  

Mature oligodendrocytes, as identified by GST-pi staining, were counted in 

all regions of the corpus callosum. No differences were seen between any of 

the four groups (two-way ANOVA, p > 0.05, Figure 3.16).  

 

Figure 3.16 Number of GST-pi positive cells in the CC of YAC128 and 
WT mice housed under standard and enriched conditions 

No significant differences were seen in callosal GST-pi positive cell population 
between the four experimental groups. 
  
Bar graphs represent the average of a total of 7-10 animals per condition; bar graphs 
represent mean±SEM. Two-way ANOVA. Abbreviations: CC, corpus callosum; Glutathione 
S-transferase (GST)-pi.  
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Figure 3.17 Brain weight comparison in YAC128 and WT mice housed 
under standard and enriched conditions 

(A) Mixed sex animals showed similar brain weights regardless of experimental 
condition. 

(B) Female mice had similar brain weights across experimental conditions. 
(C) Male mice also showed similar brain weights across experimental conditions. 
 
Animals’ brains were weighed at 18 weeks (4.5 months) of age. Left hemisphere weight 
shown in milligrams (mg). n = 5-7 males per condition, and 5-7 females per condition; bar 
graphs represent mean±SEM. Two-way ANOVA. 
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other experimental groups between pn50-126. Female YAC128 EH body 

weights (24.72±0.45) at pn64 were significantly larger (p < 0.05) than those 

of WT EH females (21.34±0.46g), and remained so until the day of sacrifice 

(p < 0.0001) (Tukey’s correction for multiple comparisons). The difference in 

YAC128 EH and WT EH body weight increased over time (pn78: WT EH 

22.8±0.72g, YAC128 EH 26.58±0.75g, p < 0.01; pn92: WT EH 22.24±0.79g, 

YAC128 EH 28.80±1.32g, p < 0.0001; pn106: WT EH 22.32±0.83g, YAC128 

EH 27.48±10.4g, p < 0.0001; pn126: WT EH 24.06±0.67g, YAC128 EH 

28.48±0.82g, p < 0.001). Additionally, YAC128 EH (26.58±0.75g) females 

showed increased body weights compared to YAC128 SH (23.16±1.16g) at 

pn78 (p < 0.05), and pn106 (YAC128 EH: 27.48±1.04g; YAC128 SH: 

24.46±1.03g; p < 0.05); whereas YAC128 SH (23.16±1.16g) females showed 

increased body weights when compared to WT SH (20.21±0.54g) at pn78 (p 

≤ 0.05), and pn92 (YAC128 SH: 23.46±1.32g; WT SH: 20.57±0.4g; p < 0.05).  

When comparing male body weights (Figure 3.18B), repeated measures 

ANOVA also revealed significant main effects of time (F (5,90) = 129, p < 

0.0001), and experimental group (genotype and housing condition) (F (3,18) 

= 3.52, p < 0.05), as well as an effect of the interaction between the two (F 

(15,90) = 2.846, p < 0.05). YAC128 SH (29.71±0.8g) males had increased 

body weights compared to WT SH (26.92±1.03g) males at pn92 (p < 0.05), 

and 106 (YAC128 SH: 30.93±0.9g; WT SH: 27.2±1.08g; p < 0.05). 

Additionally, YAC128 EH (32.14±0.65g) males showed increased body 

weight compared to WT EH (29±0.7g) males at pn126 (p < 0.05).  

At the final time point, 18 weeks of age, when weight was taken prior to 

sacrifice, for female mice, two-way ANOVA revealed a significant interaction 

between genotype and housing (F (1, 18) = 5.6, p < 0.05), a main effect of 

housing condition (F (1, 18) = 19.12, p < 0.001), and a main effect of 

genotype (F (1, 18) = 13.42, p < 0.01). Female YAC128 EH mice showed 

significantly increased body weights compared to both WT EH, and YAC128 

SH (with Sidak’s correction for multiple comparisons, p < 0.01; Figure 3.19). 

For male mice, two-way ANOVA revealed no significant interaction between 

genotype and housing (F (1, 18) = 0.6, p > 0.05), no main effect of housing 
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condition (F (1, 18) = 0, p > 0.05), but a main effect of genotype (F (1, 18) = 

8.04, p < 0.05). Sidak’s correction for multiple comparisons revealed that 

YAC128 EH male mice (29±0.69g) showed a trend towards increased body 

weight compared to WT EH mice (32.14±0.65g; p < 0.05).  
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Figure 3.18 Body weight over time for female and male YAC128 and WT 
mice housed under standard and enriched conditions 

(A) YAC128 EH female mice showed increased body weights compared to the other 
groups throughout all time points. 

(B) Male body weights were similar between groups with the exception of later time 
points (>pn92). 
 

Animals were weighed fortnightly: pn 50 (~7weeks) to 126 (18weeks). Body weight 
in grams (g). n = 5-7 mice per sex per condition; error bars as mean±SEM. 
Repeated measures ANOVA, with Tukey’s corrections for multiple comparisons. *p 
< 0.05; **p< 0.01; ***p < 0.001; ****p < 0.0001. Symbols: # WT SH vs WT EH; * WT 
EH vs YAC128 EH; #WT SH vs YAC128 SH; * YAC128 SH vs YAC128 EH. 

female

male

50 64 78 92 106 126
18

23

28

33

Age (days)

B
o

d
y
 w

e
ig

h
t 
(g

) WT SH

WT EH

YAC128 SH

YAC128 EH
*

#

**
*

#

****
****

****
* ***

***

50 64 78 92 106 126
18

23

28

33

Age (days)

B
o

d
y
 w

e
ig

h
t 
(g

)

#
# *

A 

B 



 130 

 

 

Figure 3.19 Final body weight of female and male YAC128 and WT mice 
housed under standard and enriched conditions 

(A) Female YAC128 mice in the EH condition showed increased body weight 
compared to all the other groups. 

(B) Male body weights were similar across conditions although slightly larger in the 
YAC128 SH/EH groups compared to WT. 

 
Average body weight on sacrifice day, pn 126 (18 weeks). Body weight shown in grams (g). 
n = 5-7 animals of each sex per condition; bar graphs represent mean±SEM. Two-way 
ANOVA, with Sidak’s multiple comparisons test. *p < 0.05; **p < 0.01.  
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was observed across genotypes, somewhat consistent with earlier WT 

rodent studies (Brenes, Rodríguez, & Fornaguera, 2008a; Peña et al., 2006; 

Peña et al., 2009), but at variance with others (Galani et al., 2007; Hellemans 

et al., 2004). Increased anxiety-like behaviour was previously seen in 7 

months’ old YAC128 mice (Southwell et al., 2009), raising the possibility that 

our younger YAC128 animals (4.5 months) could have been yet to manifest 

this phenotype. Similarly, climbing characteristics were found to be 

approximately equivalent across genotypes and housing conditions, roughly 

in keeping with a previous report of no changes in climbing performance in 

standard housed YAC128 FVB mice compared to WT controls, across most 

age groups (Menalled et al., 2009). Finally, YAC128 animals housed under 

standard conditions were associated with the weakest rotarod training 

performance, consistent with previous studies reporting motor learning 

deficits in YAC128 SH mice (Franciosi et al., 2012; Lawhorn, Smith, & 

Brown, 2008; Slow et al., 2003; Van Raamsdonk et al., 2005). Furthermore, 

a non-significant improvement in rotarod performance was seen, to a small 

extent, during training and testing in enriched WT mice compared to other 

experimental groups, and, to a greater degree, during rotarod training in 

enriched YAC128 animals, compared to their SH counterparts. These results 

suggest that enrichment marginally improved motor learning in both 

genotypes, and motor function in WT animals. Interestingly, enrichment was 

previously reported to improve rotarod test (i.e. motor) performance in the 

early onset and aggressive R6/2 mouse model of HD (Hockly et al., 2002). 

This disparity in results, as well as the mild effects of enrichment on 

behaviour we observed, may be due to the late onset phenotype associated 

with our YAC128 model, as well as the early stage of disease manifestation 

at which these tests were conducted. 

Enrichment effects on myelination and mature oligodendrocytes 

We observed an overall reduction in average myelin thickness across all 

axons in enriched versus standard-housed animals, across both genotypes. 

Furthermore, enriched mice of both genotypes were associated with an 

increased number of small diameter axons relative to standard-housed 
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counterparts. Environmental enrichment was associated with a decrease in 

average axonal diameter across genotypes. These observations are 

consistent with a previous study reporting an increase in number of small-

diameter axons in enriched aged rats, and that these were associated with a 

decreased myelin thickness (Yang et al., 2013). Since large diameter axons 

are the first axons to become myelinated (Almeida et al., 2011; Hahn et al., 

1987; Matthews & Duncan, 1971), we speculate that myelination may have 

been ongoing (Karttunen, 2017; Powers et al., 2013), such that at the time of 

our analysis smaller diameter axons were still undergoing myelination, with 

these freshly myelinated axons being associated with an intrinsically thinner 

myelin sheath.  

A further notable observation was that of a significantly thinner myelin sheath 

in small diameter axons in YAC128 animals housed under standard 

conditions relative to WT controls. However, while a trend towards thinner 

myelin in YAC128 SH animals, relative to WT SH, was observed across all 

diameter axons, this was not found to be significant. Previous work by our 

laboratory has demonstrated that thinner myelin sheaths in the same brain 

region (i.e. posterior CC) in standard housed YAC128 mice only becomes 

evident after 6 months of age (Teo et al., 2016). Furthermore, our group has 

also previously shown thinner myelin sheaths in the anterior mid-body of the 

CC in the standard housed YAC128 mouse from 1.5 months of age (Teo et 

al., 2016). This suggests that development of myelin-related pathology in the 

posterior region of the CC may be more protracted than in the anterior to 

mid-region, and that our observation at 4.5 months of age took place prior to 

this becoming severe and significant.  

Enrichment was not found to influence the number of GST-pi positive cells 

(i.e. mature myelinating oligodendrocytes) in posterior CC. This observation 

is in keeping a previous report of unchanged oligodendrocyte density or 

morphology, nor in myelin transcript levels, in the PFC of enriched young 

mice (Makinodan et al., 2012). A further study showed that a decrease in 

OPC number, and increase in mature oligodendrocyte number, observed 

after ten days in sensorimotor cortex of enriched rats became absent after 42 
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days (Keiner et al., 2017). Therefore, it is possible that the differentiation of 

OPCs into mature oligodendrocytes, driven by enrichment and behavioural 

experience, could take place within the first week of manipulation, and would 

not be detected at later points (such as those used in our study). 

Enrichment effects on brain and body weight  

Brain weights were comparable in animals across genotypes and housing 

conditions, which may be due to the early recording time point since a 

previous study has demonstrated a 5-10% decrease in the brain weight of 9 

and 12 months old YAC128 mice (Slow et al., 2003). Interestingly, we found 

enriched females of both genotypes to weigh more than their standard 

housed counterparts, an effect which was not as evident in males, although 

reports into the effects of enrichment on body weight are notoriously 

inconsistent, and are sensitive to a variety of factors such as sex, strain and 

enrichment protocol (Tsai et al., 2016). 
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4.1. Summary 

Social isolation has been revealed to contribute to cognitive decline, and 

have negative effects on development and aging. Furthermore, emerging 

evidence supports an association between social isolation and myelination-

related abnormalities. White matter abnormalities have also been recently 

observed during the early stages of Huntington disease (HD) in patients and 

animal models. This suggests that social deprivation could exacerbate these 

pathological features, which could have important implications for the design 

of experimental protocols using animal models of HD, as well as inform on 

factors that could contribute to the clinical progression of the disease. We 

therefore investigated the impact of 14 weeks of social deprivation on 

myelination and mature oligodendrocytes population in the corpus callosum 

of the early manifest YAC128 mouse model of HD. Animals were allocated 

post-weaning to either standard housing (SH) or socially deprived housing 

(DH). Ultrastructural characterization of myelin sheaths and axonal diameter, 

using electron microscopy, revealed thinner myelin sheaths in the deprived 

wild-type (WT) mice compared to their standard housing control; however, no 

change in myelin sheath thickness was observed in YAC128 deprived 

relative to animals reared in standard conditions. No significant differences in 

mature oligodendrocyte numbers, habituation, general locomotor activity or 

anxiety-like behaviour were observed as a result of isolation, regardless of 

genotype. Modest signs of depressive-like behaviour were detected in 

deprived animals compared to their SH controls for both genotypes. 

Deprivation had a minor impact on motor learning and motor performance on 

the early manifest YAC128 mouse at 18 weeks of age. These findings, 

supported by past studies, suggest that isolation alters myelination in healthy 

mice. However, YAC128 mice fail to respond to environmental deprivation in 

the same way as WT animals, pointing to possible dominant effects of the 

disease. 
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4.2. Introduction 

Environmental manipulation in Huntington disease (HD) patients and animal 

models, as described in the previous chapter, has primarily focused on the 

impact of enrichment (Mo et al., 2015b). In contrast, there appears to be little 

research, investigating the effects of environmental and social deprivation on 

the pathological progression of HD. HD patients and animals models exhibit 

myelination related abnormalities that in of themselves can be induced by 

deprivation and isolation. Indeed, emerging evidence indicates that 

myelination is adaptive to environmental and behaviorally-driven experiences 

(Forbes & Gallo, 2017; McKenzie et al., 2014; Mount & Monje, 2017; 

Tomlinson, Leiton, & Colognato, 2016a; Xiao et al., 2016). This suggests that 

environmental or social deprivation could exacerbate HD-driven myelination 

deficits (Mo, Hannan, & Renoir, 2015a; Potter et al., 2010), which could 

hasten the clinical progression of the disease, and be an important 

consideration when employing animal models of HD. 

Social isolation of healthy mice has been shown to induce alterations in 

oligodendroglial population development and maturation, and capacity to 

myelinate axons, particularly in the prefrontal cortex (PFC) (Forbes & Gallo, 

2017; Liu et al., 2012; Liu et al., 2016; Makinodan et al., 2012; Makinodan et 

al., 2016; Mount & Monje, 2017). Two weeks of social isolation was sufficient 

to cause thinning of myelin sheaths and alteration of oligodendrocyte 

morphology, paralleled by decreased expression of myelin basic protein 

(MBP), in the medial PFC (mPFC), but not in the motor cortex, of socially 

deprived juvenile mice (Makinodan et al. 2012). Additionally, decreased 

myelin sheath thickness and MBP expression was also observed in sub-

cortical regions of juvenile mice subjected to 8 weeks of social deprivation 

(Cao et al., 2017). Delayed oligodendrocytes precursor cell (OPC) 

differentiation and abnormal chromatin structure in oligodendrocytes were 

shown to precede disturbances in behavior (Cao et al., 2017; Liu et al., 

2012). Isolated housing was also demonstrated to affect myelination in adult 

mice. Following 8 weeks of isolation, 24 weeks old adult mice exhibited 

hypomyelination, paralleled by decreased myelin related gene transcripts in 
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the PFC; whereas a shorter period of only 2 weeks of social deprivation had 

mild effects on myelin sheath thinning (Liu et al., 2012). However, others 

found no alterations in myelin thickness in the mPFC (Makinodan et al., 

2016), the white matter tracts of the anterior commissure, the nucleus 

accumbens, or the cerebellum of adult mice placed kept in 2-8 weeks 

isolation (Liu et al., 2012).  

Similarly, reduction in myelin sheaths thickness, and lower levels of 

expression of myelin related genes and transcripts have been reported in 

several animal models of HD, reared in standard housing conditions (Garcia-

Miralles et al., 2016; Gatto et al., 2015; Jin et al., 2015; Teo et al., 2016; 

Xiang et al., 2011). Surprisingly, these alterations were reported prior to 

motor deficit onset or neuronal loss in the anterior region of CC of juvenile 

YAC128 mouse (Teo et al., 2016). Additionally, mice expressing mutant 

huntingtin (htt) selectively in oligodendrocytes exhibited locomotor deficits, 

along with progressive demyelination and decreased expression of myelin 

related proteins (Huang et al., 2015a). Such reports of early myelination 

abnormalities in pre-symptomatic HD mouse models underscore the 

importance of understanding how behavioural experience modulates the 

influence of mutant HTT on oligodendrocytes myelination.  

The main focus of the current study was to understand the effects of a 

deprived environment on axonal myelination in the posterior corpus callosum 

of the young, early manifest, YAC128 mouse model of HD, as well as healthy 

controls. In addition, we investigated behavioural alteration and physiological 

effects of deprivation in these animals. 

 

4.3. Methods 

4.3.1. Experimental groups 

The YAC128 transgenic mouse model of HD and wild-type (WT) control 

littermates were used in this study. Both males and females were included in 

all experimental groups. Sexing and genotyping of animals were carried out 
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at 3 weeks of age. Mice were weighed on a bi-weekly basis. Mice were 

housed under standard conditions with food ad libitum, in an inverted light-

dark cycle until 4 weeks of age. Subsequently, they were placed into their 

allocated caging conditions, under the same inverted light-dark cycle: 

standard housing (SH) or deprived housing (DH). Animals were kept in their 

allocated condition for 14 weeks in total. At 18 weeks of age, animals were 

sacrificed and their brains harvested. 

 

Figure 4.1 Experimental groups for standard and deprived housing 
conditions 

Four groups were used for these experiments: wild type (WT) groups – standard 
housing (SH) and deprived housing (DH), and YAC128 groups – also SH and DH. 

Four groups were used for these experiments: wild type (WT) groups – 

standard housing (SH) and deprived housing (DH), and YAC128 groups – 

also SH and DH (Figure 4.1). Mice allocated to the SH condition were 

housed in standard mouse cages (39 x 19 x 16 cm; Techniplast, Greenline, 

sealsafe plus mouse, GM500) with 3 mice per cage. These animals were 

used as SH controls in the enrichment study presented earlier in this thesis 

(Chapter 3). DH condition mice were single housed housed in the same type 

of cage as animals in standard housing. No novelty items were added for 

WT SH 

YAC128 SH YAC128 DH 

WT DH 

  

mHTT mHTT 
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either of these groups; however, cages included bedding material (i.e. 

shredded paper).  

4.3.2. Overview of behavioural testing 

After 12 weeks of housing in their experimental conditions, several 

behavioural tests were carried out: the spontaneous activity test (SA), a 

motor function and habituation test; the open field activity (OF), an anxiety 

test; the elevated plus maze (EPM), also an anxiety test; the climbing test, a 

motor function test; the rotarod (RR) test, a motor function, learning and 

cognition test. Details of behavioural tests were described in Chapter 2 - 

Materials and Methods (Section 2.1.3). 

4.3.3. Tissue harvesting and processing 

Three to four animals in each experimental condition were perfused and their 

brains harvested, to investigate axonal and myelin related characteristics (i.e. 

axonal shape and size, and myelin thickness). For this study, splenium of the 

CC (~Bregma -1.82 to -2.70, Mouse Brain Atlas, Paxinos and Franklin, 2001) 

was microdissected (Figure 2.3A) to be processed and imaged for 

transmission electron microscopy (TEM). Details of TEM processing were 

described in Chapter 2 - Materials and Methods (Section 2.4). 

All brains were segmented through the mid-sagittal plane, and the left 

hemisphere used for immunohistochemical (IHC) procedures. Sections were 

immunostained for the Glutathione S-transferase (GST)-pi Stereo 

Investigator software was used for cell counting in the corpus callosum. 

Details of IHC processing and analysis were described in Chapter 2 - 

Materials and Methods (Section 2.5). Prior to cryosectioning for IHC 

procedures, the left hemisphere of the brain was weighed. Brain weights 

were recorded and compared between the experimental groups. 

4.3.4. Statistical analysis 

The 2x2 factorial design (genotype x housing condition) of the study was 

statistically analysed using two-way independent ANOVA with Sidak’s 
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correction for multiple comparisons, and repeated measures ANOVA 

statistical tests with Tukey’s correction for multiple comparisons. P-values 

equal to or greater than 0.05 were not considered statistically significant. P 

values and n values were indicated in the associated figure legends for each 

figure, while mean values are stated in the results section. Variables are 

reported as mean ± SEM unless otherwise stated.  

 

4.4. Results 

4.4.1. Behavioural tests 

4.4.1.1. Spontaneous activity results  

No housing condition x genotype interaction effect (p > 0.05), housing 

condition effect (p > 0.05), or genotype effect (p > 0.05) was found during the 

spontaneous activity (SA) test or open field (OF) tests (two-way ANOVA, 

Sidak’s correction for multiple comparisons; Figure 4.2). In the SA test, WT 

groups (SH: 10377±1793 cm; DH: 10335±1826 cm) showed a non-significant 

trend towards increased distance travelled compared to YAC128 groups 

(SH: 8344±502 cm; DH: 8652±622 cm; Figure 4.2A). No significant 

differences were observed in the mean resting time (Figure 4.2B), mean 

vertical counts (Figure 4.2C), mean jump counts (Figure 4.2D), or average 

velocity (p > 0.05; Figure 4.2E). In the OFT, no significant differences in 

mean distance travelled were observed between the groups (Figure 4.2F). 
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Figure 4.2 Comparison of spontaneous activity measures in YAC128 
and WT mice under standard and deprived housing  

(A) Total distance travelled over the duration of the SA test was similar between the 
groups, but a non-significant higher travel distance was observed in the WT 
groups. 

(B) No significant differences were found in resting time between groups. 
(C) Mean vertical counts were similar between all groups compared. 
(D) Mean number of jumps was also similar between all the groups. 
(E) Average velocity was comparable between all groups. 
(F) No significant differences were found in distance travelled in the OF test across 

groups. 
 
The SA test was run over 30 minutes, while OFT was run for 10 minutes. All readouts were 
obtained from the video tracking software associated with each test. n = 10-12 animals of 
mixed sex per condition; bar plots and error bars represent the mean±SEM. Two-way 
ANOVA. Abbreviations: SA, spontaneous activity; OFT, open field test. 

 

4.4.1.2. Anxiety-like behaviour results  

There were no significant differences between experimental groups in the 

total time spent in the centre of the arena during the 10 minutes OF test of 

anxiety (two-way ANOVA; p > 0.05; Figure 4.3A). However, there was a non-

significant trend towards decreased proportion of the time spent in the centre 

of the OF arena for WT DH mice (2.56±0.37%) compared to WT SH controls 

(3.709±0.67%). This trend was not seen in the YAC128 groups. Additionally, 

no significant differences were seen in the total time spent in the open arms 

of the maze during 5 minutes of the EPM test of anxiety (two-way ANOVA; p 

> 0.05; Figure 4.3B). WT SH mice spent a decreased proportion of time in 

the open arm of the EPM maze (34.59±4.76%) compared to WT DH animals 

(43.11±4.75%).  
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Figure 4.3 Comparison of anxiety-like behaviour in YAC128 and WT 
mice housed under standard and deprived housing 

(A) No significant differences were observed between the groups in the time spent 
in the centre of the arena of the OFT. 

(B) No significant differences were observed between the groups in the time spent 
in the open arm of the EPM test. 

 
The OFT had a duration of 10 minutes, the EPM test was run for 5 minutes. Readouts for 
the OFT and EPM were obtained using EthoVision video tracking software. Percentage (%) 
of total time was calculated for each condition. n = 10-12 animals of mixed sex per condition; 
bar graphs represent mean±SEM. Two-way ANOVA. Abbreviations: OFT, open field test; 
EPM, elevated plus maze. 

 

4.4.1.3. Motor function results 

When comparing latency to climb, time spent climbing and number of 

climbing attempts two-way ANOVA revealed no significant interaction 

between genotype and housing condition (p > 0.05), however a significant 

main effect of housing condition (latency to climb: F (1, 42) = 7.11, p < 0.05; 

time spent climbing: F (1, 42) = 5.75, p < 0.05; number of climbing attempts: 

F (1, 42) = 4.45, p < 0.05), but no effect of genotype (p > 0.05). Sidak’s 

correction for multiple comparisons post-hoc for the housing effects revealed 

no significant differences in climbing characteristics during the climbing test, 

although both DH groups (WT and YAC128) were associated with an 

increased latency to climb, reduced climbing time, and lower number of 

SH DH SH DH
0

2

4

6

O
F

T
 %

 t
im

e
 s

p
e
n
t 
in

 t
h
e
 c

e
n
tr
e

WT YAC128

SH DH SH DH
0

20

40

60

E
P

M
 %

 t
im

e
 s

p
e
n
t 
in

 o
p
e
n
 a

rm

WT YAC128

SH DH SH DH
0

2

4

6

8

F
S

T
 %

 t
im

e
 s

p
e
n
t 
im

m
o
b
il
e

WT YAC128

A B 



 144 

climbing attempts compared to their corresponding SH controls (p > 0.05; 

Figure 4.4). Specifically, both WT (96.5±27.9s) and YAC128 (117.3±22.3s) 

animals in the DH group exhibited a higher mean latency to climb than their 

respective SH controls (WT SH: 35.0±16.1s; YAC128 SH: 63.1±20.3s; 

Figure 4.4A). Both DH groups (WT DH: 25.1±3.4s; YAC128 SH: 24.6±4.1 s) 

spent, on average, less time climbing compared to SH controls (WT SH: 

38.2±5.0s; YAC128SH: 37.5±7.5s; Figure 4.4B), regardless of genotype. And 

finally, both DH groups (WT DH: 9.6±1.2; YAC128 DH: 9.3±1.9) had a lower 

mean number of climbing attempts than SH controls (WT SH: 15.3±2.0; 

YAC128 SH: 11.8±2.1; Figure 4.4C).  

  

 

Figure 4.4 Comparison of climbing characteristics of YAC128 and WT 
controls housed under standard and deprived housing  

(A) No significant differences were observed between the latency for the first 
climbing attempt, although there was a trend for both WT DH and YAC DH to 
take longer before attempting to climb compared to their SH controls. 

(B) No significant differences were observed between the total time spent climbing, 
although there was a trend for both DH groups to spend less time climbing 
compared to their SH controls. 

(C) Consistently, both WT DH and YAC128 DH groups attempted climbing to a 
lesser extent than their corresponding SH controls.  

 
The climbing test had a total duration of 6 minutes, and videos were scored manually. n = 
10-12 animals of mixed sex per condition; bar graphs represent mean±SEM. Two-way 
ANOVA, with Sidak’s correction for multiple comparisons post-hoc. 
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4.4.1.4. Motor function and motor learning evaluation 

The latency to first fall (Figure 4.5) and the number of falls (Figure 4.6) were 

recorded as measures of performance on the fixed speed rotarod training 

over three days, with three trials per day, except the first day when only two 

trials were recorded. For the latency to fall, repeated measures ANOVA 

revealed significant main effects of time (F (7,301) = 4.751, p < 0.0001), but 

no effect of the group (genotype and housing condition) (F (3,43) = 1.629, p 

> 0.05), and no effect of the interaction between the two (F (21,301) = 0.975, 

p > 0.05). The significant effect of time reflects improved rotarod 

performance with increased training (Figure 4.5A). Nevertheless, several 

non-significant trends were observed. Firstly, YAC128 DH mice (trial 1: 

65.25±14.77s; trial 2: 68.33±12.16s) remained on the rotarod for the least 

time compared to all the other groups (trial 1: WT DH: 88.81±13.18s; 

YAC128 SH: 84.75±14.26s; WT SH: 93.66±11.54s; trial 2: WT DH: 

100.45±10.4s; YAC128 SH: 91.5±13.92s; WT SH: 110.58±9.41s) during the 

first two training sessions on the first day of the training (Figure 4.5A). 

Secondly, when averaged together over training trials for each day, YAC DH 

mice spent less time on the rotarod on the first and final day of training (day 

1 (trials 1-2): 71.25±13.03; day 3 (trials 6-8): 99.33±8.48) compared to the 

other groups (day 1 (trials 1-2): WT DH: 94.64±10.89; YAC128 SH: 

88.13±12.67; WT SH: 102.1±6.64; day 3 (trials 6-8): WT DH: 115.6±2.41; 

YAC128 SH: 109±5.23; WT SH: 113.1±4.29), although this difference did not 

reach significance (two-way ANOVA, p > 0.05, Figure 4.7A). Thirdly, WT DH 

animals also spent marginally less time on the rotarod compared to WT SH 

animals during most training trials (with the exception of trials 4 and 8). 

In terms of the average number of falls, repeated measures ANOVA 

revealed significant main effects of time (F (7,301) = 3.57, p < 0.001), but no 

effect of group (genotype and housing condition) (F (3,43) = 1.514, p > 0.05), 

and no effect of the interaction between the two (F (21,301) = 0.768, p > 

0.05). The significant effect of time again reflects the effect of more training 

on increased performance (Figure 4.6A). Several non-significant trends were 

observed: firstly, WT SH mice fell the least number of times over most 
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training trials compared to all the other groups, while YAC128 SH mice were 

associated with the most number of falls, compared to all the other groups, 

over the majority of trials (Figure 4.6). 

The proportion of mice in each experimental group that fell off the rotarod 

was calculated and averaged over trials for each training day (Figure 4.7B). 

Two-way ANOVA calculated for each of the training days to identify any 

group differences revealed no significant effect of interaction for day 1 and 3 

(day 1: F (1,4) = 0.36, p > 0.05; day 2: F (1,8) = 6, p < 0.05; day 3: F (1,8) = 

1.36, p > 0.05), no effect of the housing condition (day 1: F (1,4) = 3.83, p > 

0.05; day 2: F (1,8) = 2.66, p > 0.05; day 3: F (1,8) = 0.71, p > 0.05) and no 

effect of genotype (day 1: F (1,4) = 7.07, p > 0.05; day 2: F (1,8) = 2.66, p > 

0.05; day 3: F (1,8) = 2.79, p > 0.05). Interestingly, although not statistically 

significant, YAC128 DH animals fell more often than other groups during the 

first and last day of training. During the first day of training (2 trials), 

58.33±8.33% of YAC128 DH mice fell off the rotarod compared to 

37.5±4.16% of YAC128 SH mice, 31.82±4.54% of WT DH mice, and 

20.83%±12.5% of WT SH mice. On the second day of training, only 25% of 

YAC128 DH mice fell of the rotarod, compared to 27.78%±2.77% of YAC128 

SH mice, and the same proportion of WT DH mice. WT SH mice fell less 

often off the rotarod (13.89±5.56%). Finally, on the last day of training, 

YAC128 DH mice had the highest number of falls (27.78±7.34%) compared 

to YAC128 SH (16.67±4.81%) of mice, WT DH (12.12%±6.06%) and WT SH 

mice (13.89%±2.77%).  

The accelerated rotarod test was performed after three days of training on 

the fixed speed rotarod, and the latency to first fall was recorded as a 

measure of motor performance (Figure 4.8). No significant differences were 

observed between the groups (p > 0.05; two-way ANOVA). However, 

YAC128 DH mice (216.6±21.24 s) showed a trend towards a shorter latency 

to fall compared to other groups, when averaged over all test trials (YAC128 

SH: 236.8±14.19s; WT DH: 242.3±17.63s; WT SH: 238.9±16.02s), although 

variability in this group was relatively high (Figure 4.8A). Latency to fall was 

lowest in YAC128 DH mice during each of the three test trials (Figure 4.8B). 
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Figure 4.5 Comparison of latency to fall during fixed speed rotarod 
training for YAC128 and WT mice housed under SH and DH 

(A) Latency to fall over 8 trials of training in all groups. 
(B) WT DH mice performed poorly compared to WT SH animals on most trials. 
(C) YAC128 DH mice performed poorly or comparably to YAC128 SH animals. 
Latency to fall illustrated in seconds (s). Training was run over 3 days with 2 trials on first 
day and 3 trial sessions on last two days. n = 10-12 animals of mixed sex per condition; 
error bars are ±SEM. Repeated measures ANOVA. 
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Figure 4.6 Comparison of number of falls of YAC128 and WT mice from 
SH and DH conditions during fixed speed rotarod training 

(A) Number of falls over the 8 training for all groups. 
(B) WT DH had increased number of falls compared to WT SH during most trials. 
(C) YAC128 DH showed slight increased number of falls compared to YAC128 SH. 
Training was run over 3 days, with 2 trials on first day and 3 trials on second and third days. 
n = 10-12 animals per condition; Error bars represent ±SEM. Repeated measures ANOVA.  
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Figure 4.7 Session averages of latency to fall and percentage of mice 
fallen for YAC128 and WT mice housed under standard and deprived 
conditions 

(A) Average latency to fall for each day of training showed a trend towards 
decreased performance by the YAC128 DH group, although no significant 
differences were found. 

(B) YAC128 DH mice were more likely to fall off the rotarod compared to any of the 
other groups on the first and last day of training. 

  
Testing was run over 2-3 trials within the same day. n = 10-12 animals of mixed sex per 
condition; Bars graphs represent mean±SEM. Two-way ANOVA, with Sidak’s multiple 
comparisons test. Latency to fall illustrated in seconds (s) (A). Proportion of mice that fell of 
the rotarod averaged over trials for each training day (B). 
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Figure 4.8 Comparison of latency to fall in YAC128 and WT mice 
housed under standard and deprived conditions during accelerated 
rotarod test 

(A) All groups had a similar mean latency to fall over the 3 trials of the testing 
session, although YAC128 DH mice were associated with a shorter time spent 
on the accelerated rotarod compared to other groups. 

(B) No significant differences in latency to fall were found between groups across 
the 3 testing trials, although WT DH animals consistently spent less time on the 
rotarod during each of the testing trials compared to other groups. 

 
Mean latency to fall illustrated in seconds (s). Testing was run over 3 trials within the same 
day. n = 10-12 animals of mixed sex per condition; bar graphs represent mean±SEM (A); 
error bars represent ±SEM (B). Two-way ANOVA, with Sidak’s multiple comparisons test 
(A), and repeated measures ANOVA (B). 
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WT DH mice exhibited qualitatively larger g-ratios at small axonal diameters 

(ID < 500nm), and smaller g-ratios at large axonal diameter (ID > 1000nm), 

compared to WT SH animals (Figure 4.10A). Cumulative frequency analysis 

confirmed a shift towards overall larger g-ratios for WT DH mice compared to 

WT SH mice (Figure 4.10B). In contrast, YAC128 DH animals showed 

qualitatively smaller g-ratios at small and mid-range diameter (ID < 1000nm) 

compared to SH controls, while no differences were seen at large diameters 

(Figure 4.10C). Cumulative frequency analysis showed a closer overlap of 

the two curves representative of the YAC128 groups (Figure 4.10D). 

G-ratios were averaged over all axonal diameters for quantitative comparison 

between groups (Figure 4.11A). Two-way ANOVA revealed significant 

interaction between genotype and housing condition (F (1, 2995) = 63.91, p 

< 0.0001), significant main effect of housing condition (F (1, 2995) = 29.65, p 

< 0.0001), and significant main effect of genotype (F (1, 2995) = 28.4, p < 

0.0001). Sidak’s correction for multiple comparisons post-hoc tests revealed 

WT DH animals (0.814±0.002) exhibited a significantly larger mean g-ratio 

compared to all the other groups (WT SH: 0.779±0.003; YAC128 SH: 

0.786±0.002). In contrast, the mean g-ratio in YAC128 DH mice 

(0.779±0.002) was comparable to that of YAC128 SH controls. 

Finally, g-ratios were classified according to their respective inner axonal 

diameter: small diameter axons (ID < 500nm), mid-range diameter axons 

(500 ≤ ID < 1000nm), and large diameter axons (ID ≥ 1000nm) (Figure 

4.11B). There was an overall increase in g-ratio with increasing axonal 

diameter. At small axonal diameters, two-way ANOVA revealed significant 

interaction between genotype and housing condition (F (1, 1007) = 27.98, p 

< 0.0001), significant main effect of housing condition (F (1, 1007) = 13.57, p 

< 0.001), but no significant main effect of genotype (F (1, 1007) = 0.377, p > 

0.05). Sidak’s correction for multiple comparisons post-hoc tests revealed 

WT DH mice possessed larger g-ratio (0.765±0.004) relative to both WT SH 

(0.727±0.004; p < 0.0001) and YAC128 DH (0.740±0.003, p > 0.05) animals. 

Additionally, YAC128 SH mice showed slightly higher g-ratios (0.747±0.004; 

p > 0.05) compared to that of WT SH control. At mid-range inner diameters, 
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two-way ANOVA revealed significant interaction between genotype and 

housing condition (F (1, 1592) = 22.66, p < 0.0001), significant main effect of 

housing condition (F (1, 1592) = 25.06, p < 0.0001), and significant main 

effect of genotype (F (1, 1592) = 19.14, p < 0.0001). Sidak’s correction for 

multiple comparisons post-hoc tests revealed WT DH mice also exhibited 

larger g-ratios (0.821±0.002) than both WT SH (0.793±0.003; p < 0.0001) 

and YAC128 DH (0.795±0.002; p < 0.0001) animals. In contrast, YAC128 DH 

and SH (0.794±0.002) mice had comparable g-ratios. Finally, at large axonal 

diameters, two-way ANOVA revealed no significant interaction between 

genotype and housing condition (F (1, 386) = 1.7, p > 0.05), a significant 

main effect of housing condition (F (1, 386) = 13.52, p < 0.001), and no 

significant main effect of genotype (F (1, 386) = 3.58, p > 0.05). Sidak’s 

correction for multiple comparisons post-hoc tests for housing effect revealed 

both WT and YAC128 DH groups showed an increased mean g-ratio 

compared to corresponding SH groups, regardless of genotype. However, 

only the mean g-ratio of YAC128 DH animals (0.869±0.004) was significantly 

larger than that of YAC128 SH animals (0.844±0.005; p < 0.001), whereas 

the mean g-ratio of WT DH mice (0.872±0.004) was not significantly greater 

than that of WT SH mice (0.860±0.005). 
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Figure 4.9 Representative TEM images of callosal axons in YAC128 and 
WT mice housed under standard and enriched conditions 

Representative micrographs of axons from the posterior (splenium) region of the 
corpus callosum for each experimental group. Scale bar at 2µm. 

 

WT SH 

YAC128 SH YAC128 DH 

WT DH 
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Figure 4.10 G-ratios and axonal diameters of YAC128 and WT mice 
housed under standard and deprived housing  

(A) Scatter plot of g-ratio values against inner axonal diameter (ID) showed higher 
g-ratios at small IDs (< 500nm), and smaller g-ratios at large IDs (> 1000nm) for 
WT DH (red) animals relative to WT SH (black). 

(B) Cumulative frequency plot of g-ratios showed an evident shift towards larger g-
ratios in the WT DH condition compared to WT SH. 

(C) Scatter plot showing lower g-ratio values at small and mid-range axonal 
diameters (IDs < 1000 nm), and higher g-ratios at large axonal diameters (ID > 
1000nm) for YAC128 DH animals (red) compared to YAC128 SH mice (black).  

(D) Cumulative frequency plot of g-ratios showed a close overlap of the two curves 
representative of both YAC128 SH and DH groups. 
 

n = 474 - 916 axons per condition (WT SH, n = 474 axons; WT DH, n = 916 axons; YAC128 
SH, n = 782 axons; YAC128 DH, n = 841 axons); 2-4 animals per condition. 
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Figure 4.11 Average g-ratio for YAC128 and WT mice housed under 
standard and deprived housing 

(A) The WT DH group showed a significantly higher mean g-ratio compared to 
YAC128 DH animals and WT SH controls. 

(B) G-ratio values were classified according to their corresponding inner axonal 
diameter (ID, small diameter axons, ID≤500nm; mid-range diameter axons, 
500<ID≤1000nm; large diameter axons, ID≥1000nm). Overall, there was an 
increase in g-ratio with increasing axonal diameter, as well as an increased g-ratio 
in DH mice compared to SH mice, for WT groups, but not YAC128 groups at small 
and medium axonal diameter ranges. A larger mean g-ratio value was observed at 
large diameters in YAC128 DH animals compared to YAC128 SH controls. 
 

Bar graphs represent mean±SEM. SEM comes from axonal variance. n = 474 - 916 axons per 
condition (WT SH, n = 474 axons; WT DH, n = 916 axons; YAC128 SH, n = 782 axons; 
YAC128 DH, n = 841 axons); 2-4 animals per condition. Two-way ANOVA, with Sidak’s 
multiple comparisons test. *p < 0.05; ****p < 0.0001. Inner diameter shown in nanometres 
(nm). Abbreviations: ID, inner diameter. 
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large axonal diameters in the WT DH group (Figure 4.12B). Additionally, the 

mean inner axonal diameter was significantly greater in WT DH animals 

(685.6±9.39nm) compared to WT SH (652.5±12.67nm; p < 0.05). On the 

other hand, YAC128 DH animals possessed a larger number of small 

diameter axons (200-500nm), and a similar or smaller number of mid-range 

diameter axons (600-1000nm), compared to YAC128 SH mice (p < 0.001). 

Cumulative frequency analysis of inner diameters revealed a close overlap of 

the two curves representative of both YAC128 SH and DH groups. 

Additionally, the mean axonal diameter of YAC128 DH mice (618.2±9.66nm) 

was significantly smaller than that of YAC128 SH animals (672.7±10.76nm). 
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Figure 4.12 Axonal diameters of WT mice housed under standard and 
deprived conditions 

(A) Smaller number of axons with a small diameter (200-400nm), and a higher or 
similar number of axons with a large diameter (500-1300nm) in WT DH animals 
compared to WT SH controls. 

(B) Cumulative frequency of IDs showed a close overlap of the two curves 
representative of both WT groups. 

(C) WT DH animals were associated with a significantly larger mean axonal 
diameter in myelinated axons compared to WT SH mice.  

 
Average of 2-4 animals per condition; n = 474 - 916 axons per condition (WT SH, n = 474 
axons; WT DH, n = 916 axons; YAC128 SH, n = 782 axons; YAC128 DH, n = 841 axons). 
Relative frequency histogram (A) and cumulative frequency (B), bin width = 100nm (A). 
Unpaired, two-tailed t-test, 95% confidence intervals, *p < 0.05; Bars graphs represent 
mean±SEM (C). Abbreviations: ID, inner diameter 
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Figure 4.13 Axonal diameters of YAC128 mice housed under standard 
and deprived conditions 

(A) Higher number of axons with small diameters (200-500nm), and a smaller or 
similar number of axons at mid-range axonal diameters (600 to 1000nm) in the 
YAC128 DH animals compared to YAC128 SH controls. 

(B) Cumulative frequency of IDs showed a close overlap of the two curves 
representative of the YAC128 groups. 

(C) YAC128 DH animals showed significantly smaller diameter average for 
myelinated axons compared to SH control.  

 
Average of 2-4 animals per condition; n = 474 - 916 axons per condition (WT SH, n = 474 
axons; WT DH, n = 916 axons; YAC128 SH, n = 782 axons; YAC128 DH, n = 841 axons). 
Relative frequency histogram (A) and cumulative frequency (B), bin width = 100nm (A). 
Unpaired, two-tailed t-test, 95% confidence intervals, ***p < 0.001; bar graphs represent 
mean±SEM (C). Abbreviations: ID, inner diameter. 
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4.4.4. Quantification of mature oligodendrocytes  

Mature oligodendrocytes, as identified by GST-pi staining, were counted in 

the corpus callosum. No significant differences in number of GST-pi positive 

cells were seen between any of the four groups (two-way ANOVA, p > 0.05, 

Figure 4.14). However, a trend towards an increased number of GST-pi 

positive cells was observed in WT DH (35,726±4,265) mice compared to WT 

SH (29,406±2,498), and YAC128 DH (32,692±2,420) compared to YAC128 

SH (29,766±4,065), mice. 

 

Figure 4.14 Number of GST-pi positive cells in the posterior corpus 
callosum of YAC128 and WT mice housed under standard and 
deprived conditions 

No significant differences in number of GST-pi cells were seen between any of the 
four experimental groups. Bar graphs represent the average of a total of 8-10 
animals per condition, 6-8 sections per animals; bar graphs represent mean±SEM. 
Abbreviations: CC, corpus callosum; Glutathione S-transferase (GST)-pi. 
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ANOVA, p > 0.05). However, left hemisphere brain weights for WT and 

YAC128 animals in the DH condition were consistently larger than their SH 

counterparts, regardless of sex (Figure 4.13A-C). 

  

 

Figure 4.15 Brain weight (left hemisphere) in YAC128 and WT mice 
housed under standard and deprived conditions 

(A) No significant differences were seen in the brain weights of mixed sex groups 
across conditions. 

(B) No significant differences were seen in the brain weights of female mice across 
conditions. 

(C) No significant differences were seen in the brain weights of male mice across 
conditions. 

 
Animals’ left cerebral hemisphere were weighed at 18 weeks (4.5 months) of age. Left 
hemisphere weight shown in milligrams (mg). n = 5-8 males per condition, and 5-7 females 
per condition; Bar graphs represent mean±SEM. Two-way ANOVA. 
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condition) (F (3,17) = 1.567, p > 0.05), although a significant effect of the 

interaction between the two was observed (F (15,85) = 2.87, p < 0.01). WT 

SH female mice consistently possessed the lowest mean body weight at all 

time-points, followed by WT DH mice, although no significant differences 

were observed between both groups. In turn, YAC128 SH female mice were, 

on average, generally heavier than other groups at most time-points; 

however this only reached statistical significance when compared to WT SH 

at pn78 (YAC128 SH: 23.16±1.165g; WT SH: 20.21±0.54g; p < 0.05). When 

compared at the last time point, no significant differences were observed 

between groups (two-way ANOVA), although a trend towards lower body 

weights for WT SH (22.59±0.52g) compared to all the other groups was 

observed (WT DH: 23.86±0.52g; YAC128 SH: 23.54±0.95g; YAC128 DH: 

24.23±1.09g; Figure 4.17A). On the other hand, in the male comparisons 

(Figure 4.16B), repeated measures ANOVA revealed significant main effects 

of time (F (5,110) = 77.39, p < 0.0001), of animal group (genotype and 

housing condition) (F (3,22) = 4.952, p < 0.01), and a significant effect of the 

interaction between the two (F (15,110) = 2.006, p < 0.05). Significantly 

increased body weights at most time-points were observed in YAC128 DH 

male mice (pn50: 26.21±0.84g; pn78: 28.65±1.03g; pn92: 29.62±1.09g; 

pn106: 30.23±1.18g; pn126: 30.71±1.04g) compared to WT DH male 

animals (pn50: 22.76±0.5g; pn78: 24.78±0.7g; pn92: 25.63±0.86g; pn106: 

25.81±0.74g; pn126: 27.21±0.52g). A further significant difference was seen 

between YAC128 SH (30.92±0.9g) and WT SH (27.2±1.08g) males at 

pn106. Overall, WT DH male mice had the lowest body weights at all time-

points recorded, followed by WT SH mice. The body weights of YAC128 DH 

and SH groups were approximately similar at all-time points. At the final time-

point, two-way ANOVA revealed no significant interaction between genotype 

and housing (F (1, 22) = 0.8, p > 0.05), no main effect of housing condition (F 

(1, 22) = 2.61, p < 0.05), but a main effect of genotype (F (1, 22) = 7.79, p > 

0.05). WT DH male mice (27.22±0.53g) were associated with the lowest 

body weight of all the groups at the final time-point, but this was only 

statistically different to YAC DH mice (30.71±1.04g; Sidak’s multiple 

comparisons, p < 0.05; Figure 4.17B).  
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Figure 4.16 Body weight over time for female and male YAC128 and WT 
mice housed under standard and deprived conditions 

(A) WT SH females had generally lower mean body weights compared to all other 
groups, while YAC128 SH females showed the opposite at most time-points. 

(B) WT DH males had overall lower mean body weights compared to all other 
groups, whereas YAC128 groups were comparable.  

 
Animals were weighed fortnightly starting from pn50 (~7 weeks) until sacrificed at pn126 (18 
weeks). Body weight shown in grams (g). n = 5-8 animals of each sex per condition; Error 
bars represent ±SEM. Two-way ANOVA, with Tukey correction. *p < 0.05; **p<0.01. 
Comparison symbols: * WT DH vs YAC128 DH; #WT SH vs YAC128 SH. 
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Figure 4.17 Final body weight of female and male YAC128 and WT mice 
housed under standard and deprived housing 

(A) No significant differences were observed in female body weights between 
conditions when weighed at the final time point.  

(B) No significant differences were seen in male body weights at the final time point.  
 

Average body weight on sacrifice day, pn126 (18 weeks). Body weight shown in grams (g). n 
= 5-8 animals of each sex per condition; bar graphs represent mean±SEM. Two-way 
ANOVA, with Sidak’s multiple comparisons test.  
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although this was not found to be significant. Socially isolated YAC128 mice 

were associated with the weakest rotarod performance during training and 

testing across groups, and deprived WT animals were slightly more 

predisposed to falls during the initial stages of rotarod training. These 

observations indicate that environmental deprivation and social isolation had 

a mild negative influence on motor learning and function in both WT and 

YAC128 mice. While our results provide support for the notion that 

environmental deprivation likely confers negative effects on, at least some, 

behaviours in WT rodents, it is challenging to contextualise this with respect 

to HD models, since the associated research is limited.  

Social isolation effects on myelination and mature oligodendrocytes 

Socially isolated WT mice were associated with significantly thinner myelin 

sheaths in the posterior corpus callosum (CC) relative to all other groups, 

and this effect persisted across all axonal diameters when compared to 

standard-housed WT mice. Additionally, environmental deprivation was 

associated with an increase in axonal diameter in WT animals, but a 

decrease in YAC128 mice. This finding is in keeping with an early study 

demonstrating white matter abnormalities in the posterior CC of socially 

isolated male rhesus monkeys (Sánchez et al., 1998). It is also consistent 

with other reports of thinner myelin sheaths in the medial prefrontal cortex of 

juvenile (Cao et al., 2017; Liu et al., 2012; Makinodan et al. 2012), and adult 

mice subjected to social isolation (Liu et al., 2012), and which was lessened 

with shorter periods of isolation. Axonal diameters of WT deprived mice 

were, on average, significantly larger than standard housed WT mice. In 

contrast, social isolation was not seen to have an effect on axonal diameter 

in the medial prefrontal cortex (mPFC) of juvenile mice (Makinodan et al., 

2012), suggesting that the effect of isolation on myelination may be brain 

region and/or age dependent. Interestingly, no differences in myelin sheath 

thickness were observed between socially isolated and standard housed 

YAC128 mice, which suggest a dominant effect of this disease phenotype. 

Finally, we found no significant differences in mature oligodendrocyte 

population in both genotypes as a result of social isolation, in keeping with 
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other work reporting the same in the mPC of juvenile mice (Makinodan et al., 

2012). 

Social isolation effects on brain and body weight  

Brain weights across animals were comparable across genotypes and 

housing condition, as observed during environmental enrichment. 

Furthermore, while social isolation did not significantly affect body weight 

across experimental groups, socially isolated female mice were associated 

with a mild increase in body weight relative to their standard house 

counterparts, with males exhibiting the reverse trend. These observations 

are supported by other studies showing socially isolated female rats to weigh 

approximately 10% more than standard-housed females (Hermes et al., 

2011), and socially isolated male mice to have a decreased body weight 

relative to their standard controls (Lander et al., 2017). However, these 

trends were not observed in YAC128 mice, which is suggestive of an over-

riding effect of the disease phenotype. 
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5.1. Summary 

Structural and molecular myelination deficits occur in the early stages of 

Huntington disease (HD). Recent evidence from germ-free (GF) and 

antibiotic-treated animal models has suggested that gut microbiota 

influences brain development and function. Specifically, microbiota-gut-brain 

bidirectional communication has been shown to be involved in the regulation 

of oligodendrocyte differentiation and myelination. However, little is known 

about the effect of microbiota on white matter in HD. In this study, therefore, 

we aimed to investigate the impact of microbiota on myelination plasticity and 

oligodendroglial populations in the early manifest stage of the BACHD 

mouse model of HD. Three months old specific-pathogen-free (SPF) and GF 

male mice of mixed genotype of each genotype (wild type and BACHD) were 

used here. Ultrastructural analysis of myelin in the anterior mid-body region 

of the corpus callosum indicated contrasting alterations in myelin thickness at 

different axonal diameters in the WT GF group compared to SPF control, 

whereas alterations of myelin thickness particularly at small and mid-range 

axonal diameter were evident in the BACHD GF group. In addition, WT 

animals placed in a germ-free environment exhibited reduction of 

premyelinating and myelinating, cortical and callosal, oligodendrocytes, and 

decreased levels of mature myelin related proteins in the prefrontal cortex. 

Further reductions were observed in cortical myelinating oligodendrocytes 

and callosal oligodendrocytes precursor cells (OPCs) in the BACHD GF 

animals compared to their SPF control. Finally, in a germ-free environment, 

the characteristic body weight gain of BACHD animals is normalised to the 

body weight of WT animals, whereas both genotypes showed decreased 

overall brain weight. Therefore, our results indicate complex effects of 

microbiota on myelin-related characteristics, revealing, further, the adaptive 

properties of myelination in both the BACHD and wild-type animal. 
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5.2. Introduction 

White matter (WM) atrophy has been widely identified as an early feature of 

Huntington disease (HD) in both patients and animal models (Bartzokis et al., 

2007; Ciarmiello et al., 2006; Fennema-Notestine et al., 2004; Novak et al., 

2014; Rosas et al., 2003; Tabrizi et al., 2009; Xiang et al., 2011). Previous 

work in our laboratory explored the molecular and ultrastructural features of 

WM abnormalities in HD mouse and rat models (Garcia-Miralles et al., 2016; 

Teo et al., 2016). Diffusion tensor imaging (DTI) imaging revealed WM 

microstructural abnormalities prior to neuronal loss in the CC of the YAC128 

mouse model and the BACHD rat model (Teo et al., 2016). In addition, 

thinner myelin sheath and lower levels of myelin-related gene transcripts 

were seen in these animals compared to wild-type controls (Teo et al., 2016). 

Others also reported microstructural abnormalities and reduction in myelin 

sheath thickness, as well as decreased expression of myelin related genes in 

the BACHD, HdhQ250 and R6/2 mouse models (Gatto et al., 2015; Jin et al., 

2015; Wade, Jacobs, & Morton, 2008; Xiang et al., 2011). In addition, 

transgenic mice that expressed mHTT selectively in oligodendrocytes 

showed impaired myelination with thinner myelin thickness in the striatum, 

reduction of myelin basic protein gene expression, along with progressive 

motor impairments, metabolic deficits and reduced survival (Huang et al., 

2015).  

Emerging evidence suggests the microbiota-gut-brain axis to be involved in 

modulation of adaptive myelination, and myelin-related characteristics, in the 

rodent brain. An upregulation of genes linked to myelination and myelin 

plasticity was described in the wild-type GF mouse (Hoban et al., 2016b). 

Increased mRNA levels of myelin related genes and transcript factors were 

identified, specifically in the prefrontal cortex (PFC), of wild-type animals 

(Hoban et al., 2016b), as well as in antibiotic treated non-obese diabetic mice 

(Gacias et al., 2016). These transcriptional changes were consistent with 

hypermyelination of PFC axons in GF animals, compared to animals raised 

in conventional laboratory conditions (Hoban et al., 2016b).  
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The PFC and the CC are highly enriched in myelinated fibres, and both 

regions were shown to be affected by environmental manipulation and 

behavioural experience (Hoban et al., 2016b; Liu et al., 2012; Makinodan et 

al., 2012; Sánchez et al., 1998; Tomlinson, Leiton, & Colognato, 2016a). On 

the other hand, the PFC and CC are two of the most affected regions by 

disease pathology in HD patients and animal models (Gatto et al., 2015), and 

several studies reported white matter alterations in the PFC and CC of pre-

symptomatic and symptomatic HD gene carriers (Bourbon-Teles et al., 2017; 

Di Paola et al., 2012; Dumas et al., 2011; Matsui et al., 2013; Phillips et al., 

2014; Poudel et al., 2015; Rosas et al., 2006; Tomassy et al., 2014). 

The findings described above indicate the need for further investigation into 

possible modulating environmental factors of plastic and adaptive 

myelination in HD, particularly with respect to white matter-related 

abnormalities. Therefore, the purpose of our study was to use microbiome 

manipulation as an assay to understand myelination plasticity and 

oligodendroglial population changes in the BACHD mouse model and WT 

controls. Using transmission electron microcopy (TEM), we investigated 

ultrastructural characteristics of myelin in the anterior mid-body region of the 

CC. Cortical myelin-related proteins, such as MBP and PLP, were also 

compared between experimental groups, and oligodendroglial populations in 

the CC and PFC were examined at different stages of maturity in their 

development.  

 

5.3. Methods 

5.3.1. Experimental groups 

Wild-type (WT) and BACHD transgenic mice on the FVB background were 

raised either under normal laboratory conditions (SPF) or in a germ-free 

environment (GF) (Figure 5.1). Every experimental group included between 

10 to 13 animals per condition per sex.  
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Figure 5.1 Experimental groups used for microbiota manipulation study 

Four groups were used for these experiments: wild type (WT) groups – specific 
pathogen free (SPF) and germ free (GF), and BACHD groups – also SPF and GF. 

GF animals were born through caesarean section in aseptic conditions, 

where all incoming air, water and food were sterilised. These animals were, 

therefore, free of all ‘detectable’ microbes and microorganisms. GF pups 

were housed in gnotobiotic isolators with the same strain GF adoptive 

mothers. SPFs were conventional laboratory animals, whose strains of 

bacteria were allowed to acquire microbiota naturally, and were known to this 

specific animal unit.  

Animals were genotyped at 3 weeks of age. All animals were weighed at 3 

months of age, prior to being sacrificed. Brains were harvested from both 

males and females, however, due to time and cost constraints, only males 

brains were included for investigation in the current study.  

5.3.2. Tissue processing 

All brains were segmented through the mid-sagittal plane, and the left 

hemisphere placed in 4% PFA solution to be used for immunohistochemical 

procedures (Section 2.5). Sections were immunostained for the 

oligodendroglia precursor marker, platelet derived growth factor receptor 

alpha (PDGFR), the oligodendroglial lineage marker, Olig2, and the mature 

oligodendrocyte marker, Glutathione S-transferase (GST)-pi (Table 2.9). 

WT SPF  

BACHD SPF  BACHD GF 

WT GF 

mHTT mHTT 
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Stereo Investigator software was used for PFC, CC and striatum cell 

counting and area estimation (Section 2.5.5). 

The right hemisphere was microdissected, and protein extracted from PFC 

tissue and processed for western blot. The samples were probed for myelin 

basic protein (MBP), myelin proteolipid protein (PLP), and Ermin. The blots 

obtained were quantified using Image Studio Lite, and values obtained were 

normalised in Excel (Chapter 2. Materials and methods. Section 2.6). 

Concentration of protein of interest (i.e. MBP) was first normalised to control 

(i.e. Calnexin), and then expressed relative to its experimental control 

condition. The SPF group was taken as the control condition for all 

comparisons between GF and SPF and described in the results section 

below. Each blot included comparisons between two of the four experimental 

conditions, and contained 8 samples (one per animal) in total (Figure 5.11A, 

Figure 5.12A). Box and whiskers plots represent quantification of samples 

from 4 animals per condition (Figure 5.11 and Figure 5.12).  

In addition to the brains harvested for immunostaining and immunoblotting, 

three to four animals in each experimental condition were perfused and 

harvested, to investigate axonal and myelin related characteristics (i.e. 

axonal shape and size, and myelin thickness) using TEM. For this study, 

anterior mid-body of the CC (~Bregma -0.80 to 0 mm, according to the 

Mouse Brain Atlas, Paxinos and Franklin, 2001; Figure 2.3) was 

microdissected (Figure 5.2A) to be processed and imaged for TEM (Chapter 

2. Materials and methods. Section 2.4). 

Prior to cryosectioning for IHC procedures, the left hemisphere, of both 

males and females, was weighed. The brains were weighed again following 

removal of the olfactory bulb (OB) and cerebellum. For the purpose of 

simplicity, the remaining brain is henceforth referred to in the text as 

‘forebrain’ (Figure 5.13D-F). Brain weights were recorded and compared 

between the experimental groups (Figure 5.13). 
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5.3.3. Statistical analysis 

Pairwise comparisons were generated using Student’s two-tailed t tests. 

Two-way ANOVA with Sidak’s correction for multiple comparisons was used 

for the 2x2 study design (genotype x microbiota presence) to observe 

whether differences between the groups were statistically significant, as 

appropriate. P-values equal to or greater than 0.05 were considered not 

statistically significant. P-values and n-values were indicated in the 

associated figure legends for each figure, while mean values were stated in 

the results section. Bar graphs were built based on mean ± SEM unless 

otherwise stated.   

 

5.4. Results 

5.4.1. Ultrastructural analysis of myelin  

Representative micrographs of callosal axons for each experimental group 

are illustrated below, in Figure 5.2. G-ratio values were plotted against inner 

diameter, for each axon, using scatter plots to exhibit variability of myelin 

thickness at different ranges of axonal diameters. Comparison of WT groups 

showed similar g-ratios over all diameter ranges for SPF and GF animals 

(Figure 5.3A). In addition, the cumulative g-ratio frequency plot of both WT 

groups showed a close overlap (Figure 5.3B). In contrast, small axons (ID < 

500 nm) displaying lower g-ratios, and large axons (ID > 1000nm) displaying 

higher g-ratios, were observed in BACHD GF animals compared to BACHD 

SPF animals (Figure 5.3C). Cumulative frequency analysis of g-ratios 

showed an evident shift towards smaller values for BACHD GF compared to 

BACHD SPF (Figure 5.3D).  

G-ratio values were subsequently classified, averaged and compared 

according to three inner diameter ranges: small diameter axons (ID < 

500nm), mid-range diameter axons (500 ≤ ID < 1000nm), and large diameter 

axons (ID ≥ 1000nm) (Figure 5.4B). For small diameter ranges two-way 

ANOVA revealed significant interaction between genotype and microbiota 
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presence (F (1, 1869) = 105.1, p < 0.0001), significant main effect of 

microbiota presence (F (1, 1869) = 6.96, p < 0.01), as well as of genotype (F 

(1, 1869) = 62.15, p < 0.0001). For mid-range diameter axons, two-way 

ANOVA revealed significant interaction between genotype and microbiota 

presence (F (1, 2601) = 17.56, p < 0.0001), significant main effect of 

microbiota presence (F (1, 2601) = 13.36, p < 0.001), as well as of genotype 

(F (1, 2601) = 45.22, p < 0.0001). Whereas, for large diameter axons, two-

way ANOVA revealed no significant interaction between genotype and 

microbiota presence (F (1, 402) = 0.77, p > 0.05), significant main effect of 

microbiota presence (F (1, 402) = 14.52, p < 0.001), as well as of genotype 

(F (1, 402) = 45.22, p < 0.01). Sidak’s correction for multiple comparisons 

post-hoc tests revealed at small diameter ranges WT GF (0.805±0.002) 

animals showed higher mean g-ratio, suggestive of thinner myelin, compared 

to WT SPF (0.782±0.002; p < 0.001), whereas at mid-range diameter no 

significant differences were seen (p > 0.05). On the other hand, when 

comparing between the BACHD groups, the same difference persisted at 

both small (BACHD GF: 0.752±0.003; BACHD SPF: 0.789±0.002) and mid-

range diameters (BACHD GF: 0.824±0.002; BACHD SPF: 0.841±0.001), 

with a smaller mean g-ratio, suggestive of thicker myelin sheath, observed in 

BACHD GF animals compared to BACHD SPF (p < 0.001), which diminished 

at large diameter values, although the same trend was still observed (p > 

0.05). Additional differences in mean g-ratio were seen between WT GF and 

BACHD GF animal at both small (WT GF: 0.805±0.002; BACHD GF: 

0.752±0.003) and mid-range (WT GF: 0.847±0.002; BACHD GF: 

0.825±0.002) axonal diameters, with a smaller mean g-ratio values for 

BACHD GF (p < 0.001). At large diameter ranges, no significant interaction 

between genotype and microbiota presence was observed, however, WT GF 

animals (0.875±0.005) showed a trend towards smaller mean g-ratio, 

suggestive of thicker myelin, compared to WT SPF (0.895±0.002), whereas 

BACHD SPF animals (0.878±0.003) showed a trend towards reduced g-ratio 

compared to WT SPF (0.895±0.002) (p < 0.001). 
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Figure 5.2 Representative TEM images of callosal axons in BACHD and 
WT mice housed under SPF and GF conditions 

Representative micrographs of axons from the anterior mid-body region of the 
CC for each experimental group. Scale bar at 2µm. 

 

2 μm 

WT SPF  

BACHD SPF  BACHD GF 

WT GF 
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Figure 5.3 Axonal g-ratios in BACHD and WT mice housed under SPF 
and GF conditions 

(A) Scatter plot of g-ratio values against inner axonal diameter showed similar g-
ratios at all diameter ranges for WT SPF and GF. 

(B) Cumulative frequency plot of g-ratios showed a close overlap of the two curves 
representative of the WT groups. 

(C) Scatter plot indicating lower g-ratio values at small axonal diameters (ID < 500 
nm), and higher values for large axonal diameters (ID > 1000nm), in BACHD GF 
animals (red) compared to BACHD SPF (black).  

(D) Cumulative frequency analysis of g-ratios showed a robust shift towards smaller 
g-rations in the case BACHD GF (red) relative to BACHD SPF (black). 
 

n = 775 - 1440 axons per condition (WT SPF, n = 1440 axons; WT GF, n = 775; BACHD 
SPF, n = 1133; BACHD GF, n = 1028); 3-4 animals per condition.  

 

When averaged over all axons, two-way ANOVA revealed significant 

interaction between genotype and microbiota presence (F (1, 4374) = 121.7, 

p < 0.0001), significant main effect of microbiota presence (F (1, 4374) = 

72.3, p < 0.0001), as well as of genotype (F (1, 4374) = 175.8, p < 0.0001). 

Sidak’s correction for multiple comparisons post-hoc tests revealed WT 
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groups presented with a similar g-ratio (p > 0.05), while the mean g-ratio in 

BACHD GF animals (0.786±0.002) was significantly reduced compared to 

both WT GF (0.834±0.001; p < 0.0001), as well as, when compared to 

BACHD SPF (0.824±0.001; p ≤ 0.0001; Figure 5.4A).  

              

 

Figure 5.4 Mean g-ratio across all axons and different axonal diameters 
in BACHD and WT animals housed under SPF and GF conditions 

(A) BACHD GF animals were associated with a significantly smaller mean g-ratio 
compared to both WT GF, and to BACHD SPF. WT groups had similar mean g-
ratios (p>0.05).  

(B) G-ratios were classified according to inner axonal diameter (small diameter axons, 
ID<500nm; mid-range diameter axons, 500≤ID<1000nm; large diameter axons, 
ID≥1000nm). 
 

Bar graphs represent mean±SEM. Error bars represent SEM from axonal variance. n = 775 - 
1440 axons per condition (WT SPF, n = 1440 axons; WT GF, n = 775; BACHD SPF, n = 1133; 
BACHD GF, n = 1028); 3-4 animals per condition.  Two-way ANOVA, with Sidak’s correction 
for multiple comparisons. ***p < 0.001; ****p < 0.0001. Inner diameter shown in nanometres 
(nm). Abbreviations: ID, inner diameter. 

 

5.4.2. Differences in axonal characteristics 

Axons in the anterior mid-body region of the CC for each animal were 

examined using TEM (Figure 5.2B). Regular and irregular myelinated axons 

were visually categorised based on their shape. Circular or elliptical 

myelinated axons were classified as ‘regular shaped axons’, whereas those 

that deviated from this were classified as ‘irregular shaped axons’ (Figure 
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2.5B). On the other hand, unmyelinated axons were not classified based on 

shape, and are simply referred to as ‘unmyelinated axons’.  

The total number of myelinated axons was similar across conditions (WT 

SPF: 86.38±3.12; WT GF: 82.26±3.02; BACHD SPF: 81.86±4.84; BACHD 

GF: 88.38±1.78; Figure 5.5A). Two-way ANOVA revealed no significant 

interaction between genotype and microbiota presence (F (1, 129) = 2.62, p 

> 0.05), no main effect of microbiota presence (F (1, 129) = 0.13, p > 0.05), 

and no main effect of genotype (F (1, 129) = 0.05, p > 0.05). However, 

further investigation revealed differences in axonal shapes between groups. 

When comparing the number of regular myelinated axons two-way ANOVA 

showed significant interaction between genotype and microbiota presence (F 

(1, 129) = 14.84, p < 0.001), significant main effect of microbiota presence (F 

(1, 129) = 6.04, p < 0.05), but no main effect of genotype (F (1, 129) = 0.76, 

p > 0.05). Sidak’s correction for multiple comparisons post-hoc test revealed 

the number of regular myelinated axons was reduced in the BACHD SPF 

(32.62±2.71) compared to WT SPF (44.18±2.49; p < 0.01). However, no 

significant differences were observed between GF groups, although BACHD 

GF animals were associated with a marginally higher number of axons 

(48.06±1.82) than WT GF controls (40.77±2.62; p > 0.05). No main effect of 

genotype was found however, BACHD GF showed a trend towards a higher 

number of regular myelinated axons compared to BACHD SPF (Figure 

5.5B). When comparing irregular myelinated axons, two-way ANOVA 

showed significant interaction between genotype and microbiota presence (F 

(1, 128) = 4.66, p < 0.05), significant main effect of microbiota presence (F 

(1, 128) = 6.27, p < 0.05), but no main effect of genotype (F (1, 128) = 1.36, 

p >0.05). Sidak’s correction for multiple comparisons post-hoc test revealed 

that WT groups showed similar numbers (SPF, 42.21±1.77; GF 41.48±1.62). 

In contrast, the BACHD SPF group (49.24±3.45) was associated with higher 

numbers of irregular myelinated axons compared to all the other groups, but 

this difference was only significant when compared to BACHD GF 

(39.39±1.33; p < 0.01; Figure 5.5C). Interestingly, unmyelinated axon 

number was comparable across all groups (Figure 5.5D).  
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Figure 5.5 Average number of unmyelinated and myelinated axons per 
selected area in BACHD and WT mice under SPF and GF conditions 

(A) Total number of myelinated axons was similar across all groups. 
(B) Number of regular myelinated axons in the BACHD SPF was smaller 

compared to WT SPF, whereas the BACHD GF group was associated with a 
larger number relative to BACHD SPF. 

(C) Number of irregular myelinated axons was comparable between WT groups. 
The BACHD SPF group possessed a greater number compared to all the 
other groups, but was only significant in comparison to BACHD GF.  

(D) Unmyelinated axon number was similar between all the groups, although GF 
animals were associated with a larger number compared to SPF 
counterparts, regardless of genotype. 

 
Selected area for axonal counting was equivalent to 7.35x10

7
 nm

2
. Bar graphs represent the 

average of a total of 6-12 images per animal, from 3-4 animals per condition; n = 21-39 
images per condition; Bar graphs represent mean±SEM. Error bars represent. Two-way 
ANOVA, with Sidak’s correction for multiple comparisons. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Inner axonal diameter was measured for regular shaped axons using ImageJ 

software (line tool). Relative frequency, cumulative frequency, and bar 

graphs, were plotted to illustrate the differences between inner axonal 

diameters in the four groups. When comparing between WT groups, relative 

frequency distribution showed similar number of axons at all diameter ranges 

(Figure 5.6A). Cumulative frequency plot of inner diameters showed a close 

overlap of the two curves representative of the WT groups (Figure 5.6B). In 

addition, no significant difference was found between WT groups when 

averaging over all inner axonal diameters (p > 0.05; Figure 5.6C). The 

BACHD comparisons, however, showed differences in the relative frequency 

distribution graph. Higher number of axons with small diameter (200 to 

400nm), and smaller number of axons with large diameter (700 to 1000nm), 

was observed in the BACHD GF animals compared to its SPF control (Figure 

5.7A). Cumulative frequency plot of inner diameters showed an evident shift 

towards smaller diameters in BACHD GF compared to BACHD SPF (Figure 

5.7B). Additionally, when all diameter ranges were pooled and averaged for 

each group, BACHD GF animals were associated with a smaller mean 

axonal diameter (525.1nm±7.33) compared to both BACHD SPF 

(647.7nm±7.11; p < 0.0001; Figure 5.7C), and WT GF (619nm±8.9; p < 

0.0001; data not shown). 
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Figure 5.6 Inner axonal diameter in SPF and GF WT animals 

(A) Distribution of inner axonal diameters was similar in WT SPF and GF animals. 
(B) Cumulative frequency plot of inner diameters showed a close overlap of the two 

curves representative of the WT groups. 
(C) No significant difference in mean axonal diameter between WT SPF and WT GF 

groups (p>0.05).  

 
Inner diameter shown in nanometres (nm). n = 775 - 1440 axons per condition (WT SPF, n = 
1440 axons, WT GF, n = 775); 3-4 animals per condition. Relative frequency histogram (A) 
and cumulative frequency (B), bin width = 100 (A). Unpaired two-tailed t-test, 95% 
confidence intervals; Bar graphs represent mean±SEM (C). Abbreviations: ID, inner 
diameter. 
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Figure 5.7 Inner axonal diameter in SPF and GF BACHD animals 

(A) Greater number of axons with a small diameter (200 to 400nm), and a smaller 
number of axons with a large diameter (700 to 1000nm), in BACHD GF animals 
compared to BACHD SPF. 

(B) Cumulative frequency analysis of IDs showed a robust shift towards smaller 
diameters in BACHD GF (red) animals compared to BACHD SPF (black). 

(C) BACHD GF animals possessed a significantly smaller mean axonal diameter 
compared to BACHD SPF.  

 
Inner diameter shown in nanometres (nm). n = 1028 - 1133 axons per condition (BACHD 
SPF, n = 1133; BACHD GF, n = 1028); 3-4 animals per condition. Relative frequency 
histogram (A) and cumulative frequency plot (B), bin width = 100 (A). Unpaired, two-tailed t-
test, 95% confidence intervals, ****p < 0.0001; bar graphs represent mean±SEM (C). 
Abbreviations: ID, inner diameter. 
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5.4.3. Oligodendroglial cell differences in the prefrontal 

cortex and corpus callosum 

No significant differences were observed as a result of microbiota 

manipulation in the number of cortical oligodendrocytes precursor cells 

(OPCs), as labeled by the platelet-derived growth factor receptor α 

(PDGFRα). When comparing groups in the corpus callosum region, two-way 

ANOVA showed no significant interaction between genotype and microbiota 

presence (F (1, 40) = 1.79, p > 0.05), significant main effect of microbiota 

presence (F (1, 40) = 4.15, p < 0.05), but no main effect of genotype (F (1, 

40) = 0.47, p > 0.05). Additionally, when comparing groups in the PFC 

region, two-way ANOVA showed no significant interaction between genotype 

and microbiota presence (F (1, 40) = 0.33, p > 0.05), no significant main 

effect of microbiota presence (F (1, 40) = 1.62, p > 0.05), and no main effect 

of genotype (F (1, 40) = 0.36, p > 0.05). A non-significant trend towards 

increased number of cells was seen in the PFC of WT GF (1,647±248) 

compared to the other experimental groups (WT SPF: 1,283±194; BACHD 

GF: 1,414±177; p > 0.05; Figure 5.8C). In contrast, BACHD SPF (1,133±113) 

showed a non-significant increased number of OPCs in the CC compared to 

the other groups, which was normalised to wild-type levels in the BACHD 

animals held in GF conditions (BACHD GF: 818±64; WT SPF: 941±110; 

Figure 5.8D). 

The number of oligodendrocytes, as labeled by the oligodendroglial lineage 

marker, Olig2, in the PFC and CC region showed no significant differences 

between the groups. When comparing groups in the corpus callosum region, 

two-way ANOVA showed significant interaction between genotype and 

microbiota presence (F (1, 41) = 10.67, p < 0.01), no significant main effect 

of microbiota presence (F (1, 41) = 0.84, p > 0.05), and no main effect of 

genotype (F (1, 41) = 0.58, p > 0.05). Additionally, when comparing groups in 

the PFC region, two-way ANOVA also showed significant interaction 

between genotype and microbiota presence (F (1, 42) = 4.31, p < 0.05), but 

no significant main effect of microbiota presence (F (1, 42) = 0.62, p > 0.05), 

and no main effect of genotype (F (1, 42) = 1.38, p > 0.05). Olig2 population 
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showed a trend towards reduced population in WT GF animals compared to 

SPF controls (WT GF: 8,228±805.9, WT SPF: 8,228±805.9). In addition, WT 

GF also showed a decreased number of Olig2-positive cells compared to 

BACHD GF (13,575±2,283; Figure 5.9B). A similar non-statistically 

significant trend to that in the PFC was observed when comparing the Olig2 

population in the CC of WT GF and SPF animals. The number of Olig2-

positive cells was slightly decreased in WT GF compared to WT SPF 

controls (WT GF, 23,263±2,261; WT SPF, 38,460±4,630; Figure 5.9C). In 

addition, BACHD SPF (23,812±2,632) exhibited a reduced number of Olig2-

positive cells compared to WT SPF. As in the PFC, BACHD GF and SPF 

animals showed a similar number of Olig2-positive cells in the CC.  

When comparing GST-pi positive cells in the corpus callosum region, two-

way ANOVA showed no significant interaction between genotype and 

microbiota presence (F (1, 38) = 3.64, p > 0.05), no significant main effect of 

microbiota presence (F (1, 38) = 0.03, p > 0.05), and no main effect of 

genotype (F (1, 38) = 0.47, p > 0.05). A trend for a decreased GST-pi 

positive cell population was seen in the WT GF compared to its SPF control 

(WT GF, 21,027±2,570, WT SPF, 31,360±5,445; Figure 5.10C). When 

comparing groups in the PFC region, two-way ANOVA also showed no 

significant interaction between genotype and microbiota presence (F (1, 35) 

= 0.68, p > 0.05), but a significant main effect of microbiota presence (F (1, 

35) = 24.46, p < 0.0001), however no main effect of genotype (F (1, 35) = 

0.15, p > 0.05). The GST-pi-positive population was decreased in the PFC of 

both GF groups compared to SPF controls (Figure 5.10B). Sidak’s correction 

for multiple comparisons post-hoc tests for microbiota main effect revealed 

WT GF had significantly less GST-pi positive cells compared to WT SPF (WT 

GF, 3,318±412; WT SPF, 8574±1291; p < 0.001), while BACHD GF GST-pi-

positive population was reduced relative to BACHD SPF (BACHD GF, 

4,430±352; BACHD SPF, 8,180±720; p < 0.05). When comparing within the 

same genotype and between microbiota conditions, both the WT and 

BACHD groups were similar in terms of GST-pi cell numbers (p > 0.05; 

Figure 5.10B).  



 184 

 

Figure 5.8 PDGFRα positive cell populations in the PFC and CC of 
BACHD and WT mice housed under SPF and GF conditions 

(A) 2.5x magnification of representative image of coronal section labelled for 
PDGFRα.  

(B) 20x magnification of representative image of coronal section of PFC and CC 
labelled for PDGFRα.  

(C) Minor non-significant increase in number of PDGFRα positive cells in the PFC of 
WT GF group compared to the other groups. 

(D) Number of PDGFRα positive cells was significantly decreased in the CC of 
BACHD GF compared to its SPF control.  

 
Bar graphs represent the average of a total of 9-12 animals per condition, and 8-12 sections 
per animal; bar graphs represent mean±SEM. Two-way ANOVA. Abbreviations: CC, corpus 

callosum; PFC, prefrontal cortex. PDGFRα, platelet derived growth factor receptor 
alpha.  
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Figure 5.9 Olig2 positive cell populations in the PFC and CC of BACHD 
and WT mice housed under SPF and GF conditions 

(A) 2.5x magnification of representative image of coronal section labelled for Olig2.  
(B) 20x magnification of representative image of coronal section of PFC and CC 

labelled for Olig2.  
(C) Decreased number of Olig2 positive cells in the PFC of WT GF group compared 

to the other groups. 
(D) Number of Olig2 positive cells was also decreased in the CC of WT GF 

compared to its SPF control. BACHD SPF also showed smaller number of 
Olig2-positive cells compared to WT SPF. 
 

Bar graphs represent the average of a total of 9-12 animals per condition, and 8-12 sections 
per animal; bar graphs represent mean±SEM. Two-way ANOVA. Abbreviations: CC, corpus 
callosum; PFC, prefrontal cortex.  
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Figure 5.10 GST-pi positive cells in PFC and CC of BACHD and WT 
mice housed under SPF and GF conditions 

(A) 2.5x magnification of image of coronal section labelled for GST-pi.  
(B) 20x magnification of representative image of coronal section of PFC and CC 

labelled for GST-pi.  
(C) Decreased number of GST-pi positive cells in the PFC of both WT and BACHD 

GF groups compared to their SPF controls. 
(D) No significant differences in GST-pi positive cells observed in the CC. 
 
Bar graphs represent the average of a total of 9-12 animals per condition, and 8-12 sections 
per animal; bar graphs represent mean±SEM. Two-way ANOVA, with Sidak’s correction for 
multiple comparisons. *p < 0.05. Abbreviations: GST-pi, Glutathione S-transferase; CC, 
corpus callosum; PFC, prefrontal cortex. 
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5.4.4. Expression of myelin related proteins 

Myelin basic protein (MBP) expression levels were decreased in the PFC of 

WT GF (0.547±0.068) compared to WT SPF animals (1±0.132; p < 0.05; 

Figure 5.11B). A similar trend was found in BACHD GF animals 

(0.716±0.149) when compared to SPF controls (1±0.261), however, this did 

not reach statistical significance (p > 0.05; Figure 5.11C).  

Lower levels of PLP expression in the PFC of WT GF animals (0.738±0.050) 

compared to SPF controls (1±0.193) did not reach significance (p > 0.05; 

Figure 5.12B). A similar trend, and absence of significance, was also 

observed between the BACHD groups (SPF: 1±0.382; GF: 0.790±0.213, p > 

0.05; Figure 5.12C).  
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Figure 5.11 MBP levels in the PFC of BACHD and WT mice housed 
under SPF and GF conditions 

(A) Representative western blots of PFC homogenates, immunostained with MBP 
(and Calnexin) in WT groups. 

(B) Representative western blots of PFC homogenates, immunostained with MBP 
(and Calnexin) in BACHD groups. 

(C) MBP levels decreased significantly in the PFC of WT GF compared to SPF 
controls. 

(D) MBP levels decreased in the PFC of BACHD GF compared to SPF controls, but 
was not statistically significant. 
 

Quantification of MBP protein (18-20kDa) concentration was normalised to Calnexin 
(75kDa), and expressed relative to control; SPF was taken as control for each blot. Box and 
whiskers represent quantification of samples from 4 animals per condition; n = 4; whiskers 
represent min to max. Unpaired two-tailed t-test, 95% confidence intervals; *p < 0.05. 
Abbreviations: MBP, myelin basic protein. 
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Figure 5.12 PLP levels in the PFC of BACHD and WT mice housed 
under SPF and GF conditions 

(A) Representative western blots of PFC homogenates, immunostained with PLP 
(and Calnexin) in WT groups. 

(B) Representative western blots of PFC homogenates, immunostained with PLP 
(and Calnexin) in BACHD groups. 

(C) Non-significant lower levels of PLP in the PFC of GF WT compared to SPF WT.  
(D) Non-significant difference between the BACHD groups, but similar trend to the 

WT groups. 
 

Quantification of PLP protein (26.3kDa) concentration was normalised to Calnexin (75kDa), 
and expressed relative to control; SPF was taken as control for each blot. Box and whiskers 
represent quantification of samples from 4 animals per condition; n = 4; whiskers represent 
min to max. Unpaired two-tailed t-test, 95% confidence intervals. Abbreviations: PFC, 
prefrontal cortex; PLP, (myelin) proteolipid protein. 
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(212.7±3.08 mg) GF mice showed significantly smaller brain weight when 

compared to SPF controls (WT SPF, 243.6±4.14 mg; BACHD SPF, 

236.5±4.47 mg; p < 0.0001; Figure 5.13A). When grouped by sex, two-way 

ANOVA showed no significant interaction between genotype and microbiota 

presence (F (1, 16) = 0.68, p > 0.05), no significant main effect of microbiota 

presence (F (1, 16) = 4.39, > 0.05), and no main effect of genotype (F (1, 16) 

= 0.38, p > 0.05). Female BACHD GF mice showed a trend towards smaller 

brain weights (222.4±5.57 mg) compared to SPF controls (246.1±9.39 mg; p 

< 0.05), whereas WT groups looked fairly similar in terms of brain weight 

(Figure 5.13B). When comparing males, two-way ANOVA showed no 

significant interaction between genotype and microbiota presence (F (1, 44) 

= 1.02, p > 0.05), but a significant main effect of microbiota presence (F (1, 

44) = 48.69, p < 0.0001), and a main effect of genotype (F (1, 44) = 6.32, p < 

0.05). Sidak’s correction for multiple comparisons post-hoc tests revealed the 

same trends of significance were seen as when comparing mixed sex groups 

(Figure 5.13C), in which WT GF (214±4.18 mg) animals had significantly 

smaller brains than WT SPF animals (246.4±4.27 mg; p < 0.0001), and 

BACHD GF (207.9±2.91 mg) brain weights were significantly smaller than 

those of BACHD SPF (232.1±4.63 mg; p < 0.001). In addition, BACHD SPF 

showed smaller brain weight compared to WT SPF animals (p < 0.05).  

For forebrain weight, two-way ANOVA showed no significant interaction 

between genotype and microbiota presence (F (1, 64) = 0.04, p > 0.05), but 

a significant main effect of microbiota presence (F (1, 64) = 21.62, p < 

0.0001), however no main effect of genotype (F (1, 64) = 3.87, p > 0.05). 

Sidak’s correction for multiple comparisons post-hoc tests revealed 

significantly decreased forebrain weight in the mixed sex GF group 

compared to SPF controls (p < 0.01; Figure 5.13D). When comparing male 

forebrains, two-way ANOVA showed no significant interaction between 

genotype and microbiota presence (F (1, 44) = 0.05, p > 0.05), but a 

significant main effect of microbiota presence (F (1, 44) = 17.91, p < 0.0001), 

however no main effect of genotype (F (1, 44) = 4.4, p > 0.05). Sidak’s 

correction for multiple comparisons post-hoc tests revealed significantly 

smaller forebrains in male WT GF animals (165.7±3.98 mg) and BACHD GF 
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animals (159.9±2.36 mg) compared to SPF controls (WT SPF, 179.5±2.72 

mg; BACHD SPF, 172.3g±3.08 mg; p < 0.05; Figure 5.13F). However, when 

comparing female forebrains, two-way ANOVA showed no significant 

interaction between genotype and microbiota presence (F (1, 16) = 0.08, p > 

0.05), no significant main effect of microbiota presence (F (1, 16) = 3.06, p > 

0.05), and no main effect of genotype (F (1, 16) = 0, p > 0.05; Figure 5.13E). 

5.4.6. Lack of microbiota affects body weight of GF BACHD 

animals  

Two-way ANOVA showed significant interaction between genotype and 

microbiota presence (F (1, 88) = 36.05, p < 0.0001), significant main effect of 

microbiota presence (F (1, 88) = 76.98, p < 0.0001), and significant main 

effect of genotype (F (1, 88) = 71.99, p < 0.0001). Sidak’s correction for 

multiple comparisons post-hoc tests revealed BACHD SPF (36.68±0.91g) 

bodyweights significantly exceeded those of WT SPF (27.16±0.75g) 

littermates (p < 0.0001). A significant difference in bodyweight was also seen 

between BACHD SPF and BACHD GF (26.97±0.45g, p < 0.0001). The 

BACHD GF body weight was comparable to that of WT groups (Figure 

5.14A). Female body weight characteristics across groups were similar to 

that observed for mixed sex (Figure 5.14B). When comparing the body 

weight of males, a similar effect of a GF environment on BACHD animals 

was also observed, with an additional significant effect (p < 0.05) of WT GF 

animals possessing a decreased body weight (25.84±0.46g) compared to 

WT SPF (29.27±0.80g) (Figure 5.14C).  
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Figure 5.13 Comparison of brain weight (left hemisphere and forebrain) 
in BACHD and WT mice housed under SPF and GF conditions 

(A) Both WT and BACHD GF mice were associated with significantly smaller brain 
weights compared to their SPF controls. 

(B) Female WT and BACHD GF mice were associated with smaller brain weights 
compared to their SPF controls, although this was only significant in the case of 
BACHD animals.  

(C) When comparing males only, the same trends of significance were seen as 
when comparing mixed sex groups (Fig. 2A). WT GF showed significantly 
smaller brain weights than WT SPF, and BACHD GF showed significantly 
smaller brain weights than BACHD SPF. 

(D) Forebrain weight was also significantly reduced in GF groups compared to SPF 
controls. 

(E) No significant differences in forebrain weight was observed when comparing 
females, although GF animals were associated with smaller forebrain weights 
compared to SPF animals, regardless of genotype.  
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(F) Significantly smaller forebrain weights were seen in male WT GF and BACHD 
GF animals compared to their SPF controls. 

 
Animals’ brains were weighed at 3 months of age. Weight shown in milligrams (mg). n = 11-
13 males per condition, and 4-6 females per condition; Bars represent mean±SEM. Two-way 
ANOVA, with Sidak’s correction for multiple comparisons. *p < 0.05; **p < 0.01; ***p < 0.001. 
For figures E, F and G, ‘Forebrain*’ refers to the left hemisphere, not including the olfactory 
bulb and cerebellum. 

 

   

Figure 5.14 Body weight of BACHD and WT mice housed under SPF 
and GF conditions 

(A) Expected significant difference in body weight between WT SPF and BACHD 
SPF animals. BACHD GF animals’ body weight was significantly reduced 
relative to BACHD SPF animals and similar to both WT groups.  

(B) Differences in body weight in females showed the same trend as when 
comparing mixed sex groups in figure 1(A). 

(C) When comparing males only, an additional difference was seen within the WT 
group, with WT GF animals showing significantly decreased body weight 
compared to WT SPF. 
 

Animals were weighed at 3 months of age. Body weight shown in grams (g). n = 10-13 
animals of each sex; Bar graphs represent mean±SEM. Two-way ANOVA, with Sidak’s 
correction for multiple comparisons.  *p < 0.05; ****p < 0.0001. Abbreviations: SPF, specific 
pathogen free; GF, germ free; WT, wild type; BACHD, bacterial artificial chromosome (BAC) 
mouse model of Huntington Disease (HD). 
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5.5. Discussion  

Myelination and axonal diameter differences as a result of microbiota 

manipulation 

Contrary to that in wild-type (WT) mice, we found that a germ-free (GF) 

environment markedly altered axonal and myelination-related characteristics 

in BACHD mice. This included an increase in population of regular-shaped 

myelinated axons, and a decrease in number of irregular shaped myelinated 

axons compared to BACHD animals housed under specific pathogen free 

(SPF) conditions. Furthermore, we found that germ-free BACHD mice were 

associated with a larger number of small-to-medium diameter axons, and 

that these possessed thicker myelin sheaths (i.e. with reduced g-ratio 

values), than BACHD SPF mice. Our results are at variance with a previous 

report that reported thicker myelin sheaths, or hypermyelination, in axons of 

the prefrontal cortex (PFC) of WT GF animals (Hoban et al., 2016b). This 

disparity may be due to differences in brain region investigated (anterior CC 

here vs PFC), age of the animals (12 weeks here vs 10 weeks), or the 

mouse genetic background (FVB/N here vs Swiss Webster).  

Myelin-related protein differences 

Myelin basic protein (MBP) expression levels were found to be significantly 

reduced in the PFC of WT GF mice compared to their SPF counterparts, with 

an analogous, albeit non-significant, decrease in proteolipid protein (PLP) 

expression also observed in the same animals as a result of germ-free 

conditions. In turn, BACHD GF animals were associated with a non-

significant decrease in MBP and PLP levels in PFC. Our finding in WT 

animals is in keeping with our observation (described in the next section) of a 

reduction in mature oligodendrocyte number in the PFC of WT GF animals, 

but in contrast to a recent study demonstrating increases in MBP levels in 

the same brain region and animals (Hoban et al., 2016b). This disparity may 

once again be due to differences in age and genetic background of wild-type 

mice used in both our and their studies.  
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Regulation of oligodendroglial population by microbiota 

Germ-free conditions were associated with a significant reduction in mature 

myelinating oligodendrocyte (GST-pi+) cells in the prefrontal cortex (PFC) of 

animals regardless of genotype. However, in the corpus callosum (CC) 

region, a small non-significant reduction was observed only for WT GF 

animals compared to SPF control, but not for BACHD GF compared to SPF 

control. A minor reduction was also observed in the number of 

oligodendrocyte lineage (Olig2+) of WT GF mice compared to SPF mice in 

both brain regions investigated. Olig2+ cell numbers of BACHD mice were 

comparable across housing conditions and brain regions. In contrast, there 

were no significant differences in number of oligodendrocyte precursor cells 

(OPCs / PDGFRα+) cells in either the CC or PFC of WT GF mice relative to 

WT SPF mice. In summary, these findings suggest that a proportion of OPC 

cells might lose their capacity to differentiate into mature oligodendrocytes 

when placed in a germ-free environment, which we found to be consistent in 

the PFC region of both WT and BACHD animals.   

Differences in brain weight 

We only found brain weights to differ significantly between WT and BACHD 

animals when comparing males. Brain and forebrain weights were fairly 

similar between WT and BACHD animals when males and females were 

grouped together and compared, or when females only were compared. This 

may be due to the early age at which measurements were taken (3 months) 

since a previous study demonstrated decreased forebrain weights at 12, but 

not at 6 months of age, in BACHD mice relative to WT animals (Gray et al., 

2008). Interestingly, we did find that both germ-free WT and BACHD mice 

exhibited a significant decrease in overall brain weight compared to their 

SPF housed counterparts. This effect was significant when examining male 

germ-free mice only, and also discernible in females, although only 

significant between female BACHD and BACHD SPF mice. 
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Differences in body weight 

BACHD animals housed under SPF conditions were associated with a 

significant increase in body weight relative to WT counterparts, as previously 

observed by us, and others (Hult et al., 2011; Pouladi, Morton, & Hayden, 

2013a; Slow et al., 2003). Interestingly, this weight gain was absent, and 

comparable to WT controls, in BACHD animals housed under germ-free 

conditions. We also found that male WT GF mice displayed a decrease in 

body weight relative to male WT SPF mice, while female weights remained 

unchanged. This appears to roughly consistent with early studies which 

reported germ-free WT animals to weigh either less, or the same, as SPF 

counterparts despite the former being associated with an increase in food 

intake (Bäckhed et al., 2004; Wostmann, 1981).  

 

  



  

 

197 

 

 

 

 

 

 

 

 

 General discussion and Chapter 6.

conclusions 

 

 

  



 198 

6.1. Overview of findings 

The research presented in this thesis employed environmental and 

microbiota manipulations as assays to interrogate white matter and 

behavioural abnormalities in two mouse models of Huntington disease 

(YAC128 and BACHD), as well as wild-type control animals. The 

environmental manipulation studies investigated the posterior (splenium) 

region of the corpus callosum (CC), whereas the microbiota manipulation 

study investigated the anterior mid-body region of the CC and the prefrontal 

cortex (PFC). Overall, the key findings presented here are as following; 

firstly, environmental enrichment (EE) of YAC128 and wild-type (WT) mice 

was associated with an increase in the number of small and mid-range 

diameter axons, which possessed thinner myelin in the posterior (splenium) 

region of the corpus callosum. Secondly, social deprivation was associated 

with reduced myelin sheath thickness across all axonal diameters in WT 

mice, but no clear myelination-related effects in YAC128 animals. Thirdly, in 

a germ-free environment (GF), BACHD mice were seen to have a larger 

number of small to mid-range diameter axons, and they possessed thicker 

myelin sheaths. Increases in the number of myelinated axons, and 

decreases in the number of unmyelinated axons, were observed in BACHD 

GF mice, compared to diseased controls housed under specific pathogen 

free (SPF) conditions. Myelin basic protein (MBP) and proteolipid protein 

(PLP) levels in WT and BACHD mice were generally reduced under germ-

free conditions. We further observed a reduction in mature myelinating 

oligodendrocytes (GST-pi+) in the PFC and CC of WT germ-free mice, but 

only a reduction of myelinating oligodendrocytes in the prefrontal cortex of 

BACHD germ-free animals. Additionally, oligodendrocyte precursor 

(PDGFRα+) cell numbers were fairly similar across groups in both regions 

investigated. Therefore, our findings suggested that myelination in the CC 

region of YAC128 mice was relatively insensitive to social deprivation, but 

responded to enrichment in a similar manner to wild-type mice. In contrast, 

manipulation of microbiota had complex effects on myelin-related 

characteristics, oligodendroglial populations, body and brain weight, 
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revealing a wide ranging influence of a germ-free environment in both the 

BACHD mouse model of Huntington disease, as well as wild-type animals. 

 

6.2. Environmental enrichment manipulation effects on 

the YAC128 mouse and WT control  

Enriched housing effects on behavioural performance 

Several behavioural tests have been established to assess HD specific 

phenotypes in the YAC128 mouse model and WT littermates (Brooks & 

Dunnett, 2009; Slow et al., 2003). These tests assess the habituation and 

acclimatization to a new environment, anxiety- and depressive-like 

behaviour, locomotor ability and motor learning. 

In the spontaneous activity and open field tests, habituation is measured 

during exposure to the testing chambers, whereas general locomotor activity 

is recorded throughout the duration of testing (Zhu et al., 2007). Here, we 

demonstrate that several measures of activity levels resulting from these 

behavioural tests indicated decreased overall locomotor activity in animals 

housed in an enriched environment, regardless of genotype. Specifically, 

YAC128 and WT animals allocated to an EH condition travelled less, and 

rested for longer compared to their respective SH controls during the 

spontaneous activity test. Other measures, such as vertical and jump counts, 

and average velocity, were also decreased in enriched YAC128 mice 

compared to healthy controls. On the other hand, in the open field test, WT 

EH mice travelled less in comparison to WT SH. Our findings are thus 

consistent with past studies where rats and mice reared in enriched 

conditions also explored less in spontaneous or open field activity tests 

compared to control animals reared in standard housing conditions (Brenes, 

Rodríguez, & Fornaguera, 2008a; Brenes, Padilla, & Fornaguera, 2009; 

Hellemans et al., 2004; Leger et al., 2015; Makinodan et al., 2012; Mosaferi 

et al., 2015; Segovia et al., 2008). This could be ascribed to decreased 

motivation of animals to explore, as enrichment could lead to faster 
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habituation since animals are exposed to complex stimuli in their home 

cages, while the open field and spontaneous activity tests lack object 

novelty. Although grooming time was not recorded in our study, it was also 

previously demonstrated that enriched rats exhibited prolonged grooming 

behaviour compared to rats housed in standard conditions (Brenes, 

Rodríguez, & Fornaguera, 2008a; Mosaferi et al., 2015). Additionally, 

another study showed that the proportion of area travelled was greater in 

early-enriched pups, although total distance travelled was comparable to 

standard housing mice (Simonetti et al., 2009). These two studies, then, 

could be a contributing factor for the low level of activity observed in our 

behavioural tests. Finally, we did not observe any difference in overall activity 

and exploratory behaviour between YAC128 mice and their WT control 

groups across housing conditions. This finding is consistent with previous 

studies, which found early manifest YAC128 mice to exhibit the same levels 

of general locomotion as their WT counterparts (Van Raamsdonk et al., 

2005). 

The OFT and EPM were used to test for anxiety-like behaviour and reduced 

time spent in the centre of the open field or the open arm of the EPM 

suggests increased anxiety-like behaviour in mice (Southwell, Ko, & 

Patterson, 2009). We found no differences between the four experimental 

groups in either of the two tests of anxiety. Moreover, animals, regardless of 

genotype or experimental condition, spent a similar proportion of time in the 

centre of the OFT arena, and in the open arms of the EPM. Although not 

commonly reported in studies, anxiety-like behaviour, as inferred by reduced 

time spent in the centre of the open field arena, was previously detected in 

the YAC128 mouse at 7 months of age (Southwell et al., 2009). However, we 

did not observe a similar phenotype manifest in the YAC128 SH group, 

possibly as a result of age differences between our mice (4.5 months of age) 

and those of the aforementioned study. In addition, previous reports related 

to the effect of enrichment on anxiety-like behaviour have been inconsistent. 

Some studies, like ours, found no effects of enrichment on anxiety-like 

behaviour (Brenes, Rodríguez, & Fornaguera, 2008a; Peña et al., 2006; 

2009). Others, however, reported reduced anxiety as an effect of enrichment 
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(Galani et al., 2007; Hellemans et al., 2004). Interestingly, in a study 

investigating the effects of different durations of enrichment (24hrs, 1, 3, 5 

and 6 weeks), anxiety-like behaviour in mice was only reduced by a 3-week 

exposure to enrichment, but not by any of the other enrichment durations 

(Leger et al., 2015).  

The climbing test is often used as a measure of motor ability in HD mouse 

models (Menalled et al., 2009; Southwell et al., 2009). No differences in any 

of the climbing measures (latency to fall, time spent climbing or number of 

climbing attempts) were found between YAC128 and WT at 18 weeks of age, 

regardless of housing condition. Elsewhere, decreased latency to climb was 

only observed at 16 weeks of age in the YAC128 FVB (as used here) 

compared to WT, but not at other preceding or succeeding age groups 

(Menalled et al., 2009). Decreased climbing time in YAC128 FVB animals 

compared to WT littermates was also previously reported at 7 months of age 

(Southwell et al., 2009). In addition, we observed no differences in latency to 

climb, or time spent climbing, in the climbing test between any of the 

experimental groups regardless of genotype. Interestingly, both YAC128 and 

WT mice from the EH groups had fewer number of climbing attempts 

compared to animals from the SH groups. Enriched cages contained stairs, 

tunnels and objects offering the possibility for climbing. Therefore, it is 

possible that enriched animals were less motivated, and habituated faster to 

the climbing mesh cylinders compared to standard housing animals, leading 

to reduced climbing activity, similarly to the reduction in exploratory activity 

observed in the spontaneous activity test. Thus, this test, and that of 

spontaneous activity, could be susceptible to confounds relating to the 

animal’s motivation to climb and explore.  

The rotarod is a commonly used test of motor performance in animal models 

of HD (Garcia-Miralles et al., 2016; Pouladi et al., 2008; Slow et al., 2003). In 

our study, the YAC128 SH group remained the least time on the fixed 

rotarod, and had the highest number of falls and the highest percentage of 

animals that fell off the rotarod, for the first 6 out of 8 training trials. However, 

statistically significant differences were only observed between YAC128 SH 
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and WT SH mice on the first trial of the first training day only. This suggests 

that YAC128 SH mice exhibit minor motor learning deficits in this behavioural 

test. Consistent with our findings, motor learning deficits were seen at 2 

months of age in the YAC128 HD model housed under standard conditions, 

as well as minor locomotor deficits from the age of 4 months, which 

worsened progressively and reached statistical significance after 6 months of 

age (Franciosi et al., 2012; Lawhorn et al., 2008; Slow et al., 2003; Van 

Raamsdonk et al., 2005). 

In addition, our study revealed that WT animals housed in enriched housing 

(EH) marginally outperformed other groups on fixed speed rotarod training 

sessions, as well as the accelerated rotarod test. Although not statistically 

significant, this group had an overall smaller number of falls compared to the 

other groups. In addition, WT EH animals also performed better on the 

accelerated rotarod testing session, showing a higher latency to fall 

compared to all the other groups. Furthermore, despite the YAC128 EH 

group starting the first training trial at a similar level to YAC128 SH controls, 

the YAC128 EH group consistently outperformed the YAC128 SH group over 

the next four training trials, remaining a greater time on the rotarod until the 

first fall, and a succumbing to a smaller number of falls. However, these 

differences in performance did not reach statistical significance. YAC128 EH 

animals attained the same performance as WT SH and WT EH animals after 

2 training trials, while YAC128 SH animals required 6 trials to learn the test 

and reach similar performance levels. Thus, the YAC128 EH animals learnt 

the rotarod task more quickly than the YAC128 SH control group. In contrast, 

no advantages were conferred to YAC128 EH animals compared to YAC128 

SH controls in the accelerated rotarod test. Taken together, these findings 

suggest a marginal effect of an enriched environment on motor learning and 

motor performance in the healthy WT group, and minor beneficial effects on 

learning, but not motor performance, on this task in the YAC128 HD mouse 

model at the tested age of 18 weeks (~4.5 months). In contrast, a previous 

study reported improvements in rotarod test performance in another HD 

model as a result of enrichment. Specifically, at 8 weeks of age, the R6/2 

mouse, an HD model with accelerated phenotype and impairments beginning 
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at 5-6 weeks and a life-span of about 12-14 weeks (Mangiarini et al., 1996), 

showed improvements in the latency to fall during the rotarod test after 4 

weeks of enriched housing (Hockly et al., 2002). On the other hand, no effect 

of post-weaning enrichment was found on the rotarod test at 10 or 25 weeks 

of age in the R6/1 mouse, an HD model with an aggressive onset and a 

shortened life-span of about 9 months (Lazic et al., 2006). An important 

caveat to this report, however, is that the R6/1 mouse performed relatively 

poorly relative to WT controls, regardless of housing condition (Lazic et al., 

2006). However, other studies showed that enrichment did have beneficial 

effects on the R6/1 mice in the performance on the horizontal rod test (very 

similar to rotarod test; van Dellen et al., 2000, Nature) and on the rotarod test 

(Spires, 2004). 

Overall, our results are roughly in keeping with the notion that environmental 

enrichment confers some beneficial effects on laboratory mice. While we did 

not observe clear and consistent positive effects of enrichment on behaviour 

and motor function in YAC128 HD mice above and beyond that seen in WT 

mice – which might be expected due to the background pathology - this may 

be due to this particular HD model being a late-onset phenotype, and/or the 

early manifest stage at which tests were conducted. Mouse models of HD 

with accelerated onset phenotypes, such as those described above, may 

therefore be more predisposed to displaying more overt behavioural and 

motor improvements due to environmental enrichment. Notwithstanding, and 

as described, the available literature examining behaviour and motor function 

in mouse models of HD has several inconsistencies, and underscores the 

need for standardization of relevant protocols across laboratories (Ross & 

Tabrizi, 2011).  

Impact of environmental manipulation on myelination and mature 

oligodendrocytes in the corpus callosum 

Myelination in the brain begins during development and continues into adult 

life (Miller et al., 2012), and it has been recently shown that myelin is 

adaptive and plastic to environmental and behaviorally driven experiences 
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(Forbes and Gallo, 2017; McKenzie et al., 2014; Mount and Monje, 2017; 

Tomlinson et al., 2015). Our study aimed to understand enrichment driven 

effects on adaptive myelination in the white matter tracts of the posterior 

region (splenium) of the corpus callosum in WT and YAC128 mice. By 

examining the variability of myelin thickness at different ranges of axonal 

diameters, we identified similar trends between the WT and YAC128 animals 

exposed to enrichment. Firstly, in the WT enriched animals, small and mid-

range axons exhibited thinner myelin thickness compared to SH controls, but 

no differences were seen for large axons. Furthermore, in enriched YAC128 

mice, mid-range and large axons had thinner myelin compared to YAC128 

SH mice, while no differences were observed in small axons. However, when 

g-ratios were averaged together across all axonal diameters, both enriched 

groups, regardless of genotype, showed increased g-ratio values, thus 

thinner myelin, compared to their corresponding standard housing controls. 

In addition, by analysing the distribution of myelinated axonal diameters, we 

revealed that both enriched groups, regardless of genotype, exhibited an 

overall larger number of small diameter axons, compared to their 

corresponding standard housing controls. Thus, EH animals in both 

genotypes were associated with a significantly reduced axonal diameter 

compared to their SH counterparts, and which was more pronounced in 

YAC128 animals.  

Interestingly, it has been established that the first axons to be myelinated 

both in the brain and spinal cord are those with the largest diameter within 

the population (Almeida et al., 2011; Hahn et al., 1987; Matthews & Duncan, 

1971). If this occurred in our animals during the time spent in the allocated 

environment, or prior to environmental manipulation, possibly at the peak of 

myelination (Matthieu et al., 1973; Wiggins, 1986), small and mid-range 

axons might still be in the process of being myelinated at the time of our 

analysis. This would support our observation of comparable g-ratios between 

WT SH and WT EH in large diameter axons, as well as a greater number of 

small diameter axons in EH animals relative to SH, regardless of genotype. A 

previous study has reported an increase in the number of myelinated axons 

of small and mid-range diameter (ID ≤ 1000) in aged rats after four months of 
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enriched housing, and showed that these newly myelinated axons had 

thinner myelin sheath (Yang et al., 2013). The authors suggested that the 

observed increased axon and myelin sheath volume in these animals was 

not due to increase in axonal size or increase myelin sheath thickness but, 

rather, could be explained by an increase in number of newly myelinated 

axons (Yang et al., 2013). Thus, it is possible that small axons get 

myelinated later as a result of an enriched environment, and these newly 

myelinated axons have thinner myelin compared to axons myelinated prior to 

allocation to experimental condition, resulting in overall thinner myelin 

sheaths in WT EH animals compared to WT SH, as we observed. Therefore, 

we speculate that myelination was on going, and had not reached the end 

point of this process, at the time of our analysis (Karttunen, 2017; Powers et 

al., 2013).  

Myelination in standard housed mice was reported to be achieved in almost 

all brain regions by p60 (Baumann & Pham-Dinh, 2001). However, others 

have shown that myelin continues to be synthetized later into adult life 

(Dimou et al., 2008; Rivers et al., 2008; Waly et al., 2014). In addition, 20% 

of oligodendrocytes are generated in the mouse CC after 7 weeks of age, 

whereas mature myelin producing oligodendrocytes continued to be 

generated until at least 8 months of age (Psachoulia et al., 2009; Rivers et 

al., 2008). In an interesting study using Cre-Lox fate mapping in mice, it was 

observed that myelin synthesized in adulthood (after p120) was associated 

with larger g-ratios (i.e. thinner myelin sheaths) compared to myelin that was 

synthetized earlier in life (Young et al., 2013). Our mice were placed in their 

allocated condition from p28 to p126; therefore, it is possible that EE used 

here could prolong the ‘window of myelination’, and thinner myelin sheaths 

could be a property of myelination in the adult CNS, as previously suggested 

(Franklin & Ffrench-Constant, 2008; Franklin & Hinks, 1999; Waly et al., 

2014; Young et al., 2013). Unfortunately, due to sparse literature 

investigating on the effects of enrichment on myelination, and the absence of 

further myelin-related measurements, such as total number of myelinated 

and unmyelinated axons, or total myelin sheath or axonal volume, it is 

difficult for this study to draw a clear conclusion on these findings. 
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Additionally, YAC128 SH mice had significantly thinner myelin at small 

axonal diameters, whereas a trend towards a minor decrease in g-ratio, thus 

thicker myelin, was observed in large diameter axons, compared to WT SH 

controls. However, since small diameter axons outnumber large ones, when 

averaged across all axonal diameters, a minor, non-significant, higher g-

ratio, suggestive of thinner myelin, was observed in YAC128 SH animals 

compared to WT SH. Previous work in our laboratory has demonstrated WM 

microstructural abnormalities in the anterior mid-body region of the CC of the 

YAC128 mouse from 1.5 months of age, and that these differences were 

accompanied by thinner myelin sheaths in the same region (Teo et al., 

2016). However, differences in the posterior region (splenium) of the CC 

were only detected from 6 months of age (Teo et al., 2016). Our current 

study has investigated the posterior region of the CC, thus it is possible that 

myelin pathology in the posterior region of the YAC128 HD mouse model is 

less severe compared to the anterior region, and/or or becomes manifest at 

a later age. Consistent with this possibility, curprizone-induced demyelination 

in mice induced regional differences in demyelination along the CC (Binder 

et al., 2008; Steelman, Thompson, & Li, 2012). Taken together, these results 

provide further evidence into the complex effects of enrichment on axonal 

and myelin-related characteristics, which may underpin the observed 

beneficial effects of enrichment on specific behaviours and motor function.  

Finally, no significant differences were observed in GST-pi positive cells in 

the corpus callosum between any of our experimental groups. This finding 

suggests that 14 weeks of post-weaning enrichment does not have an effect 

on the number of mature myelinating oligodendrocytes in the corpus 

callosum. Similarly, others have also found no differences in CNPase+ cells 

in the amygdala of mice after 40 days of enrichment, although an increase in 

number of OPCs was observed (Ehninger et al., 2011); while 28 days of 

enriched housing was linked to higher number of oligodendrocytes in the 

substantia nigra (Klaissle et al., 2012). However, no changes were found in 

PFC oligodendrocyte density or morphology, or in myelin transcript levels of 

young mice that spent 1.5 months in an enriched setting (Makinodan et al., 

2012). On the other hand, decreased number of OPCs and increased 
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number of mature oligodendrocytes were observed after 10 days, but not 42 

days (~1.4 months), in sensorimotor cortex, but not the CC, of enriched 

young rats compared to standard housing (Keiner et al., 2017). Therefore, it 

is possible that the differentiation of OPCs into mature oligodendrocytes, 

driven by enrichment and behavioural experience, could take place within the 

first week of manipulation, and would not be detected at later points (such as 

those used in our study). A caveat to this observation is that our use of 

oligodendrocyte counts might be considered a crude measure, and as such it 

is insensitive to myelin-related changes at the sub-cellular level (internode 

distance, number of branches, etc.). 

Brain and body weight changes as an effect of enriched housing 

No differences in brain weight between any of the groups were found at 4.5 

months of age, regardless of genotype or housing manipulation. Previous 

work in YAC128 mice (line 53), demonstrated a 5% and 10% decrease in 

mean brain weight at 9 and 12 months of age, respectively, compared to WT 

controls (Slow et al., 2003). In addition, a 10-15% decrease in striatal volume 

was also previously observed at 9 months of age and persisted at 12 

months, whereas a 7-8% decrease in cortical volume was only observed at 

12 months of age (Slow et al., 2003; van Oostrom et al., 2007; Van 

Raamsdonk et al., 2005). No differences in brain weight between YAC128 

mice and WT littermates were previously reported before 9 months of age. 

Interestingly, in terms of the effect of enrichment, global brain volume of adult 

rats was decreased after 6 weeks of enrichment compared to 1.5 weeks of 

enrichment (Keiner et al., 2017). 

Increased body weight is a known phenotype of the YAC128 mouse due to 

the influence of full-length mutant huntingtin levels in this HD model (Pouladi 

et al., 2010; Slow et al., 2003; Van Raamsdonk et al., 2006). Animals in the 

current study were weighed fortnightly from 7 weeks (50 days) to 18 weeks 

of age (126 days), and comparisons were made separately for females and 

males. A significant main effect of time indicated all groups gained weight 

over the duration of the study. In the standard housing conditions, YAC128 
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females and males weighed more than WT SH controls at two of the 

recorded time-points. In addition, comparison between the two enriched 

groups revealed that YAC128 EH females weighed more than WT EH at all 

time-points recorded with the exception of the first.  

Reports into the effects of enrichment on body weight are inconsistent, and 

vary with sex, strain or animal model, as well as duration or complexity of 

enrichment (Tsai et al., 2016; Tsai et al., 2003). With minimal enrichment 

containing a nest box, a wood bar and nesting material, no differences were 

found in body weights of three strains of mice: BALB/c, C57BL and A/J, at 

any recorded time-points between enrichment onset to 10 weeks later (Tsai 

et al., 2003). In 10 weeks old C3H/eB mice, 6 weeks of enrichment also did 

not have a significant effect on body weight (Benaroya-Milshtein et al., 2004). 

In the R6/1 HD mouse model, 4 months of enrichment was shown to partially 

rescue characteristic weight loss, eliminating the differences between WT 

and the disease model at 5 months of age (Spires, 2004). However, another 

study showed no effect of enrichment on body weight in the R6/1 model after 

4.5 months in their allocated condition (van Dellen et al., 2002). Interestingly, 

in our study, both enriched female groups, regardless of genotype, weighed 

more compared to their standard housing control. Enriched YAC128 female 

mice weighed significantly more than standard housing YAC128, between 

11-18 weeks of age. A non-significant trend was observed for increased 

body weight in WT EH females compared to WT SH females. In contrast, the 

effect of enrichment on male body weight was not as clear, although a trend 

of increased body weight in the WT EH group compared to WT SH was 

observed at several time points (11-15 weeks). These findings suggest a 

larger effect of enrichment on female body weight in the HD mouse model, 

and only a minor effect on the body weight of WT females and males. 
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6.3. Social deprivation effects on the YAC128 mouse and 

WT control  

Isolation effects on behavioural performance 

No significant patterns in measures of activity level were observed during 

spontaneous activity test in standard housed (SH) and socially isolated WT 

and YAC128 mice. Animals from all groups showed comparable resting time, 

mean vertical counts, mean jump counts, as well as average velocity. A trend 

was, however, observed in the mean distance travelled during this test, with 

both YAC128 groups travelling less than their WT counterparts, regardless of 

housing condition. This non-significant trend was replicated in the open field 

test, but only in the SH group, where YAC128 SH mice travelled less than 

WT SH mice. These findings indicate that general locomotor activity in WT 

controls and YAC128 mice was not affected by social isolation. This is 

consistent with previous studies in wild-type rodents, where four and eight 

weeks of social isolation in juvenile (Makinodan et al., 2012) and adult (Liu et 

al., 2012) mice, respectively, did not affect mean distance travelled in the OF 

test. Likewise, three weeks of social deprivation in adolescent or adult mice 

did not affect total distance travelled in the OF test (Lander et al., 2017). 

Being reared in social isolation also does not appear to affect the 

performance of healthy male rats in the OFT (Brenes, Rodríguez, & 

Fornaguera, 2008b), although others studies have reported hyperactivity 

(decreased resting time; Fone & Porkess, 2008). 

Furthermore, no clear trends in standard housed and socially isolated WT 

and YAC128 mice were distinguished in the two tests of anxiety. In contrast, 

a recent study found that three weeks of social deprivation caused male mice 

to spend less time in the centre of the open field arena regardless of whether 

they were allocated to isolation at adolescence or adulthood (Lander et al., 

2017). Additionally, male mice of the CD1 strain, after being socially isolated 

post-weaning for 8 weeks, besides showing decreased heterochromatin 

formation and MBP expression, also spent less time in the open arm, and 

entered the open arm less times, than standard controls (Cao et al., 2017), 
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suggesting that social isolation induced anxiety-like behaviour. However, 

anxiety-like behaviour in rats was also found to be highly variable, and 

somewhat dependent on the time spent in isolation (e.g. Butler, Carter, & 

Weiner, 2014; Mosaferi et al., 2015; Hermes et al., 2011). Therefore, our 

observation of a lack of an effect of social isolation anxiety-like behaviour 

may be due to differences in experimental protocol that were unable to 

unearth significant effects.  

Several measures, such as latency to climb, time spent climbing and number 

of climbing attempts, were recorded during the climbing test to assess motor 

ability. Although we found no statistically significant differences between 

groups related to any of these measures, socially deprived groups, 

regardless of genotype, took longer to attempt their first climb, spent less 

time climbing, and attempted climbing, on average, less than their respective 

standard-housing controls. Therefore, our results indicate a modest negative 

effect of isolation on climbing performance, and possibly motivation to climb, 

regardless of genotype. Furthermore, deprived housing appeared to have a 

slight negative effect on YAC128 mice motor learning, as this group 

performed worse than all the other groups on the first two trials of the fixed 

speed rotarod training, with a shorter latency to fall, more number of falls and 

a higher proportion of mice that fell off the rotarod. Subsequent sessions, 

however, showed comparable rotarod performance between all the groups. 

The YAC128 deprived animals also showed the lowest latency to first fall on 

all three trials of the accelerated rotarod testing, however, this was not found 

to differ statistically from the other groups. In addition, WT deprived animals 

were more likely to fall off the rotarod during the first two days of training, and 

these animals showed slightly decreased performance both in terms of 

latency to fall and number of falls during the first two training trials, compared 

to standard housing controls. Therefore, the rotarod test revealed that 

environmental deprivation had a mild impact on motor learning and motor 

performance on the early manifest YAC128 mouse at 18 weeks of age, and 

a minimal impact on WT deprived animals with regards to motor learning, but 

not performance, during testing.  
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Taken together, our observation of only minor negative behavioural and 

motor effects as a result of social isolation, across WT and YAC128 animals, 

is intriguing, since we expected this to be more pronounced, particularly in 

the YAC128 mouse model of HD. However, it is important to note that the 

available literature with which to contextualise our results is limited, and that 

there is lack of standardization between deprivation protocols across studies. 

A likely explanation is that HD pathology is such a dominant factor that social 

deprivation does not worsen it sufficiently to detect an effect with the 

measures used. Additionally, it is possible that the short time window, 

immediately after weaning (3 weeks of age), when deprivation seems to 

affect the mice more severely, could have been missed in our study, since 

mice were weaned and placed in their allocated condition at 4 weeks of age 

rather than 3 weeks. Nevertheless, we cannot exclude that our 

environmental deprivation protocol may not have been sufficiently severe to 

induce significant effects. One way to make deprivation conditions more 

severe for the current study would involve removing the bedding material 

altogether.   

Isolation effects on myelination and mature oligodendrocytes in the 

corpus callosum  

The current study aimed to understand social deprivation driven effects on 

adaptive myelination in the white matter tracts of the posterior (splenium) 

corpus callosum in the early manifest YAC128 mouse model of HD, as well 

as WT controls. Socially deprived WT animals exhibited significantly higher 

g-ratios, suggestive of thinner myelin sheaths, compared to all the other 

groups in our study. Higher g-ratios in socially deprived WT animals, 

compared to WT SH mice, persisted across all axonal diameter ranges. 

Consistent with our findings, an early study examining the relationship 

between white matter abnormalities and behavioural experience 

demonstrated that male rhesus monkeys raised in isolation from 2 to 12 

months of age had significant decreased corpus callosum (CC) size, which 

was particularly evident in the posterior region, when compared to monkeys 

raised in social groups (Sánchez et al., 1998)). Thinner myelin sheaths have 
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also been reported in the medial prefrontal cortex (mPFC) of healthy juvenile 

mice following 2, 4 or 8 weeks of post-weaning isolation (Cao et al., 2017;  

Liu et al., 2012; Makinodan et al., 2012). Moreover, juvenile male CD1 mice 

reared in isolation for 8 weeks post-weaning exhibited thinner myelin sheaths 

in the hippocampus, as well as decreased heterochromatin formation and 

MBP expression (Cao et al., 2017). Additionally, adult mice were also seen 

to exhibit hypomyelination in the PFC following 8 weeks of social deprivation, 

whereas myelin sheath thinning was milder after only 2 weeks of isolation 

(Liu et al., 2012). In contrast, other reported no differences in layer V of the 

mPFC myelin thickness of adult mice placed in social isolation for 4 weeks 

(Makinodan et al., 2016). Furthermore, no differences in myelin sheath 

thickness or myelin gene transcripts were found in the white matter tracts of 

the anterior commissure, the nucleus accumbens or the cerebellum, between 

isolated and standard house adult mice, placed in their allocated condition at 

16 weeks of age, regardless of the period of isolation (2 or 8 weeks) (Liu et 

al., 2012). These studies confirm that the predominant effect of social 

isolation is a thinning of myelin sheaths, but that that the variability in 

observations may be underpinned by brain-region, age dependencies, or 

duration of isolation paradigm employed.  

In terms of axonal diameter, our study revealed that WT deprived mice had 

fewer smaller diameter, and more mid-range to large diameter, myelinated 

axons compared to their WT standard housed control. Thus, on average, 

myelinated axons in deprived WT mice were of a significantly larger diameter 

compared to WT SH controls. This finding is at variance with a previous 

report of no differences in axonal diameter in juvenile mice after 4 weeks of 

deprivation, however, this was observed in a different region of the brain, the 

mPFC (Makinodan et al., 2012), suggesting that the duration of deprivation, 

age of the animal, and region of the brain investigated, could be important 

factors in determining the effect of social isolation on axonal characteristics.  

On the other hand, socially deprived YAC128 mice had comparable myelin 

sheath thickness to YAC128 and WT mice housed under standard 

conditions. However, at large axonal diameters, YAC128 DH animals 
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showed increased g-ratios, thus thinner myelin, compared to their standard 

house YAC128 controls. This difference, although considerable, did not 

influence the overall g-ratio average, because the population of large 

diameter axons was much smaller relative to mid-range and small axons, 

which make up the majority of axons in this region of the CC, as shown by 

our findings. In addition, socially deprived YAC128 mice were associated 

with, on average, a smaller axonal diameter compared to their standard 

housed YAC128 controls. These results indicate that social isolation does 

not appear to negatively influence myelination in YAC128 mice in the same 

manner as was observed in WT animals, possibly due to the dominant effect 

of the disease phenotype. However, mean axonal diameter changes due to 

social isolation in WT and YAC128 mice were diametrically opposed, which 

might suggest that the (currently unknown) environmental deprivation 

mechanism(s) leading to increases in axonal diameter in WT animals is 

reversed by the YAC128 disease phenotype. Regardless of mechanism, our 

results indicate that signal conduction velocities in deprived YAC128 mice 

may be decreased as a result of decreased axonal diameter (Waxman, 

1980), which could tentatively suggest that social isolation may exacerbate 

the development of symptoms in HD models.  

Finally, our study revealed no significant differences in mature 

oligodendrocyte population, labeled by GST-pi positive cells, to 14 weeks of 

social deprivation in 18-week-old mice. This observation appears in keeping 

with a previous report of no change in oligodendrocyte density in mPFC after 

a 2 or 4-week period of social deprivation in juvenile mice, although shorter 

processes, fewer branches and fewer internodes per cell in oligodendrocytes 

were also described (Makinodan et al., 2012). Also of note, 8 weeks of social 

isolation in adult mice (16 weeks old) did not affect nodal length in the PFC, 

however, the expression of some oligodendrocyte specific paranodal genes 

were lower compared to standard house control (Liu et al., 2012). Taken 

together, and in combination with our environmental enrichment study, these 

findings suggest that environmental manipulation in both directions has little 

effect on mature oligodendrocyte numbers, at least at the time points 

studied, and on this mouse background.  
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Brain and body weight changes as an effect of social deprivation 

No significant differences in brain weight between any of the groups were 

found at the age of 4.5 months regardless of genotype or housing 

manipulation. All groups gained in body weight over the duration of the study. 

No significant differences were observed between any of the female groups 

as a result of social deprivation, although the WT deprived female mice 

exhibited slightly increased body weights compared to WT females in 

standard housing conditions. This observation is consistent with a previous 

study that reported isolated female rats (7 weeks post-weaning) to weigh 

approximately 10% more than their standard housing counterparts (Hermes 

et al., 2011). In addition, our study showed no significant effect of deprivation 

on male groups either, although WT DH males were consistently of a lower 

body weight compared to WT SH males. A recent study has similarly shown 

that socially isolated juvenile C57BL/6 male mice (3 weeks of isolation) 

exhibited a decreased body weight, whereas isolated adult mice exhibited no 

alterations in body weight (Lander et al., 2017). Conflicting results related to 

the effect of social deprivation on body weight in animals have been ascribed 

to a number of factors, including paradigm duration, sex, strain or species of 

animal (Sakakibara et al., 2012; Sun et al., 2014). As for the reason for 

gender specific differences in body weight in deprived WT mice, it is possible 

that this is due to known difference in food intake in different sexes as a 

result of the potential chronic stress induced by the experimental condition 

(Sun et al., 2014). On the other hand, the body weights of YAC128 mice 

closely overlapped, regardless of sex or housing condition, suggesting that 

while social deprivation has minor effects on the body weights of WT 

animals, it does not affect YAC128 mice, at least at the time-points studied. 

This again would be consistent with a dominant effect of the disease as seen 

for myelin-related characteristics, as described earlier. 
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6.4. Microbiota manipulation effects on the BACHD mouse 

and WT control  

Myelination and axonal diameter differences as a result of microbiota 

manipulation 

Overall, ultrastructural analyses indicated that a germ free (GF) environment 

had a greater effect on the number, diameter size, and extent of myelination 

of axons in the anterior mid-body region of the corpus callosum (CC) in 

BACHD animals compared to WT controls. More specifically, overall 

myelination thickness in WT animals showed relatively little response to GF 

manipulation, and the number of regular and irregular myelinated axons was 

also not affected in these animals. In contrast, BACHD mice raised and 

maintained under GF conditions showed a larger number of small to mid-

range diameter axons associated with thicker myelin sheaths (lower g-ratios) 

compared to both BACHD SPF, as well as WT GF controls, and exhibited a 

higher number of regular shaped myelinated axons, and a lower number of 

irregular shaped myelinated axons compared to BACHD controls housed in 

SPF conditions. Thus, based on the literature presented in the introduction 

chapter, we speculate that a germ-free environment could promote 

myelination of small diameter axons through one or a combination of 

mechanisms. This may happen through facilitation of an increase in axonal 

myelination diameter of previously under-threshold diameter axons to above 

the required threshold for myelination, such that supra-threshold axons 

would then become new candidates for possible myelination, as previously 

observed in cerebellar granule cells (Goebbels et al., 2017). Alternatively, 

already myelinated axons could receive further ensheathment, and thus, 

become hypermyelinated, possibly through alterations in intrinsic 

oligodendrocytes programs (Bechler et al., 2017), or modifications of axonal 

cues (Brinkmann et al., 2008; Hines et al., 2015). Indeed, axonal signaling 

has been recently demonstrated to modulate myelin sheath characteristics 

(Gautier et al., 2015; Gibson et al., 2014; Hines et al., 2015; Wake et al., 

2015). Furthermore, increased neuronal activity, induced through 

optogenetic stimulation, was associated with thicker myelin sheaths in the 
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projection fibres arising from the premotor cortex and entering the CC 

(Gibson et al., 2014). Thus, although this remains to be demonstrated by 

future studies, it is possible that neuronal activity may be increased in 

BACHD animals raised in a germ-free environment, and lead to 

hypermyelination in small and medium-sized axons. On the other hand, an 

interesting follow-up would be to determine whether the hypermyelination 

observed, using g-ratio calculation, translates into thicker myelin, or whether 

the observation is rather due to decreased compactness of the myelin 

sheaths which could make the myelin sheaths appear thicker. Compactness 

can be easily determined in electron micrographs by calculating the ratio 

between myelin thickness and number of myelin lamellae. 

Hypermyelination was previously reported in wild-type GF animals, where 

male GF mice presented with thicker myelin sheaths in PFC axons, but no 

difference in axonal diameter, compared to SPF controls (Hoban et al., 

2016b). In contrast, our study indicates overall similar myelin sheath 

thickness between wild-type GF and SPF animal, although with small 

variations, such as hypomyelination at small diameter axons, and a trend 

towards hypermyelination at large diameter axons, while similar myelination 

was observed at mid-range diameter axons. The overall g-ratio in our 

findings is reflective of the fact that mid-range axons represent the majority of 

the axonal population in this anterior region of the CC investigated. Possible 

reasons for discrepancy in findings between our study and (Hoban et al., 

2016b) are the brain region investigated (anterior CC here vs PFC), the age 

of the animals (12 vs 10 weeks), or the mouse genetic background (FVB/N 

vs Swiss Webster). It is also possible that the PFC might be particularly 

susceptible to microbiota-driven changes in a way that the CC is not, since 

myelination in the PFC was previously speculated to be particularly plastic 

and susceptible to adaptation due to environmental, as well as social factors 

(Forbes & Gallo, 2017; Mount & Monje, 2017; Tomlinson, Leiton, & 

Colognato, 2016b). This possibility is further supported, by observations of 

no differences in relative myelin-related protein expression in other brain 

regions, such as the frontal cortex (rather than specifically the prefrontal 

region of the cortex), amygdala, cerebellum, hippocampus or striatum, as 
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result of a GF environment, although ultrastructural myelin characteristics in 

these regions were notably not investigated (Hoban et al., 2016b).  

Another method frequently used to deplete animals of gut microbiota, with 

similar effects of a germ-free environment, is through the use antibiotic 

treatment (Reikvam et al., 2011). The use of a cocktail of antibiotics, aimed 

at different bacterial strains, was shown to have transient alteration effects 

on the diversity and composition of the gut microbiota (Bercik et al., 2011; 

Minter et al., 2017; Puhl et al., 2012). Alternatively, alteration of microbiota 

composition can be obtained by transplant of faecal or cecal content from 

one subject to that of another. A combination of both methods, by first 

depleting existing host microbiota with antibiotics, followed by faecal / cecal 

transplant of microbiota from another host, can be used to examine the 

effects of certain strains of microbiota on the recipient host, and the impact of 

microbiota from a diseased donor to a healthy donor, or vice-versa. Using 

this combination of microbiota manipulation methods Gacias et al. (2016) 

initially depleted wild-type C57BL/6 mice of their own microbiota, followed by 

transplant of microbiota from diabetic mice, which were either treated with 

antibiotics or treated with a vehicle. They reported increased myelin 

thickness, in the medial region of the PFC (mPFC), but not nucleus 

accumbens, of 13 weeks old wild-type mice recipients of microbiota from 

antibiotic-treated diabetics, compared to recipients of microbiota from 

vehicle-treated diabetics (Gacias et al., 2016). This effect was ascribed to 

exposure of oligodendrocytes to raised levels of the metabolite cresol, the 

synthesis of which modified by gut microbiota, prevented myelin gene 

expression and differentiation (Gacias et al., 2016). It is therefore tempting to 

speculate that the effects of GF conditions on myelination in BACHD mice 

may also reflect intrinsic changes in HD oligodendroglia and their response 

to similar microbiota-derived metabolites.  

Therefore, our results, and the sparse available literature, suggest that gut 

microbiota can regulate myelination of cortical and callosal axons, and can 

exert this influence to different extents in different brain regions, and which 

could also be modulated, in part, by the health status of the animal. 
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Additionally, it is possible that the intrinsic pathological characteristics of HD 

animal models confers these animals with a higher susceptibility to 

myelination alterations in response to certain environmental manipulations, 

such as microbiota manipulation, but not others, such as social isolation (see 

previous chapter). 

Myelin-related protein differences 

Both MBP and PLP are compact myelin proteins, and among the most 

abundant specific myelin-related proteins in the CNS (Boggs, 2006). Our 

findings showed a general decrease in both MBP and PLP expression levels, 

in WT GF animals compared SPF controls. Notably, MBP expression levels 

were significantly lower in the PFC of WT GF animals compared to SPF 

controls, and a similar non-significant trend of lower levels of PLP expression 

was also identified in WT GF mice compared to SPF controls. This finding is 

consistent with a reduction of mature oligodendrocytes identified in the PFC 

of WT GF animals compared to WT SPF, but at variance to a previous study 

that found increased MBP levels in the PFC of wild-type GF animals (Hoban 

et al., 2016b). Again, differences in mouse genetic background (FVB/N here 

vs Swiss Webster), or possibly the age of the animals (12 vs 10 weeks) may 

underpin differences in findings.  

Interestingly, BACHD GF animals also showed a non-significant trend 

towards lower levels of MBP and PLP in the prefrontal cortex, compared to 

BACHD SPF animals. However, it is important to note that our findings 

related to hypermyelination in the BACHD GF mouse described earlier were 

identified in the anterior corpus callosum, which limits an overarching 

interpretation of our myelin-related measures. As a result, we cannot exclude 

that a germ-free environment produced differential myelin-related effects on 

the CC and PFC of the BACHD mouse.  

Regulation of oligodendroglial (OLs) population by microbiota 

We further used several markers to identify oligodendrocytes at different 

stages of development in the CC and PFC of our experimental groups. We 

used the following markers to identify oligodendrocyte precursor cells 
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(PDGFRα+), oligodendrocyte lineage population (Olig2+), and mature 

myelinating oligodendrocytes (GST-pi+).  

The comparison between wild-type groups revealed comparable numbers of 

oligodendrocyte precursor cells (OPCs) in both brain regions investigated, 

however, a minor reduction in number of oligodendroglial lineage, and a 

significant reduction of mature oligodendrocytes cells in the PFC of WT mice 

reared in GF conditions compared to SPF controls was also observed. The 

comparison between BACHD groups revealed OPC numbers in the PFC 

region to be comparable, while Olig2+ cell numbers were similar in both the 

PFC and CC regions. In addition, similarly to WT groups, a reduction in 

mature oligodendrocytes was identified in the PFC of BACHD GF animals 

compared to SPF controls. Analysis of microbiota influence on 

oligodendrocytes populations in the CC region of the WT mouse showed 

similar, statistically non-significant, trends to that in the PFC, although some 

variance was observed in BACHD animals. These findings suggest that while 

OPC numbers may not be affected by a germ-free environment, a proportion 

of these in the PFC region of both WT and BACHD animals might lose their 

capacity to differentiate into mature oligodendrocytes when placed in a germ-

free environment. Past studies observed that the rate of OPC differentiation 

into oligodendrocytes was faster in the cortex than other white matter regions 

(Young et al., 2013), while myelination in this region was previously 

demonstrated to be highly plastic and malleable, particularly in response to 

environmental manipulation (Forbes & Gallo, 2017; Mount & Monje, 2017). 

These findings highlight the possibility that cortical oligodendroglia may be 

more vulnerable to germ-free environments than populations in other regions 

of the brain. Thus, gut microbiota may be indirectly involved in the regulation 

of oligodendroglial development (Nishiyama et al., 2009), particularly the 

maturation of oligodendrocytes, in a regionally dependent manner in the 

mouse brain. The mechanisms by which microbiota regulate oligodendroglial 

differentiation of adult mouse brain remains to be fully elucidated. 

Finally, the possible hypermyelination observed in the corpus callosum of 

BACHD mice under GF conditions was not underpinned by an increase in 
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the number of mature oligodendrocytes, as we did not observed this increase 

in the CC region. Possibly other mechanisms, such as axonal-related factors 

or signaling, as discussed earlier, or an altered capacity for oligodendrocytes 

to myelinate, were the cause of this possible hypermyelination. This is 

supported by recent evidence suggesting that the extent of axonal 

myelination is independent of the number of newly formed and matured 

oligodendrocytes (Young et al., 2013).  

Differences in brain weight 

We only found brain weights to differ between WT and BACHD animals 

when comparing males only. Brain and forebrain weights were fairly similar 

between WT and BACHD animals when males and females were grouped 

together and compared, or when females only were compared. Others have 

previously shown decreased forebrain weights at 12, but not 6 months of 

age, in BACHD animals compared to WT controls (Gray et al., 2008). 

Interestingly, in our study, both WT and BACHD showed a reduction in 

overall brain weight when placed in a germ-free environment. We also found 

a decrease in total brain weight in both WT and BACHD GF male mice 

compared to their respective SPF controls, whereas female mice brain 

weight reductions were only statistically significant in the BACHD GF 

condition compared to female BACHD SPF, although a similar trend was 

observed in WT GF animals compared to WT SPF.  

GF animals are born through caesarian, and reared by adoptive mothers. As 

a result, early developmental influence of maternal rearing, which was seen 

to play a significant effect in brain weight (Henderson, 1973), could 

potentially lead to the differences we observed between our GF and SPF 

animals, across both genotypes. However, both environmental and genetic 

aspects have also been demonstrated to influence brain weight (Kruska, 

2005). Thus, while it is difficult to link our finding to a particular factor, our 

observation does suggest that a lack of microbiota can have significant 

effects on the rodent brain weight. 
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Differences in body weight 

The findings of our study revealed that BACHD animals had reduced body 

weights, comparable to that of WT animals, when placed in a germ-free 

environment. Under normal environmental conditions, BACHD mice have 

been reported to display significant increases in body weight compared to 

WT littermates (Hult et al., 2011; Pouladi, Morton, & Hayden, 2013b). 

Healthy mice also expressed exaggerated metabolic phenotypes of the 

BACHD model when mutant HTT was selectively expressed in the 

hypothalamus (Hult et al., 2011). In addition, inactivation of mutant HTT in 

1/4th of hypothalamic neurons in the BACHD mouse was sufficient to prevent 

the metabolic phenotype (Hult et al., 2011). Furthermore, gut microbiota was 

shown to be involved in the development of the HPA axis (Clarke et al., 

2013; Sudo et al., 2004). Gut microbiota was associated with the regulation 

of HPA via the endocrine pathway, which involves microbiota acting on 

peptides released by enteroendocrine cells (EEC), present in the gut 

epithelium, such as orexin, galanin and ghrelin (Merlino et al., 2014; Yi & 

Tschöp, 2012). Altered orexin receptor levels were shown in BACHD mice 

(Hult et al., 2013). Therefore, gut microbiota may alter hypothalamus-related 

mechanisms and pathways, and contribute to the overweight and obesity 

related phenotype seen in BACHD animals. However, it is important to note 

that the transcriptional profile of the healthy GF mouse showed almost no 

differential alteration in hypothalamus gene expression (Heijtz et al., 2011). 

Hence, it is possible that the presence of mutant HTT is a requirement for 

metabolism-related effects of gut microbiota.  

In addition, our study indicated a decrease in body weight of WT GF male 

mice, while female mice showed very similar weights to animals reared in 

SPF conditions. Initial studies looking at body weight in GF animals, reported 

GF to weigh less, or about the same as SPF despite consuming more food 

(Bäckhed et al., 2004). However, it was later found that differences in body 

weight were dependent on the type of dietary interventions (Fleissner, 2010).  
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6.5. Potential future work  

Taking into consideration recent findings on the oligodendroglial population 

capacity to myelinate during certain windows of time, assigning the animals 

to several periods of enrichment or deprivation, such as short-term, mid-term 

and long-term manipulations, could reveal transient changes that might have 

been missed by our long-term manipulation. Furthermore, and as described 

earlier, a potential reason for our lack of observation of wide-ranging 

behavioural changes to environmental manipulation may be due to our 

choice of a relatively slow onset mouse model of HD (i.e. YAC128), at an 

early-manifest stage of the disease. Therefore, a potential avenue for further 

investigation may be to extend the work presented here to more aggressive 

models of HD, such as the R6/1 and R6/2 mouse lines, or to use the 

YAC128 model at a later stage in the disease progression. In addition, from a 

less technical perspective, future work to help standardise environmental 

manipulation and behavioural test protocols would be invaluable to 

minimising inconsistencies in findings across studies further down the line. 

An immediate follow-up to our own microbiota manipulation study would be 

to determine the microbiome profiling of BACHD and wild-type animals, and 

identify any shifts in relative abundance of gut microbial taxa at phylum or 

genera levels. Identifying certain bacteria strains previously correlated to 

neurodegeneration, inflammation, or myelin related abnormalities could aid 

to the understanding of the gut-microbiota-brain communication, and the 

potential effects of commensal bacteria on the brain.  

Furthermore, to examine the interaction between gut microbiota and 

oligodendroglial population on an HD background, future studies could 

repeat our experiments in a germ-free setting using recently developed 

transgenic models that selectively express mutant huntingtin in 

oligodendrocytes (e.g. PLP-150Q). Another interesting avenue for potential 

research would be to first deplete existing host microbiota with antibiotics, 

followed by faecal transplant of microbiota from another host (HD affected 

mouse or human). These combined methods can be used to examine the 
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effects of certain strains of microbiota on the recipient host, and the impact of 

microbiota from a diseased donor to a healthy donor, or vice-versa.  

Considering Huntington disease is an autosomal-dominant disorder, it would 

be of interest to determine whether human carries of the mutant HTT gene 

show any major or minor shifts in gut commensal bacteria at a pre-, early- 

and late-manifest stage. Correlating bacterial genera to symptoms severity, 

could aid to the understanding of whether certain populations of bacteria in 

combination with a diseased carrier could exacerbate symptoms. Moreover, 

it is now well known that for HD, a greater disease onset variance was 

associated with lower CAG repeats, potentially due to a greater influence of 

genetic and environmental modifiers (Langbehn et al., 2004).  In addition, 

treatments using combinations of antibiotics can partially decrease the 

microbial population in the gut (Reikvam et al., 2011), and alter microbiota 

make-up and diversity (Bercik et al., 2011; Puhl et al., 2012). Thus, a 

longitudinal study following mutant HTT gene carriers could determine 

whether the use of antibiotics at different stages of life could also contribute 

to the variance in disease onset which cannot be explained by the number of 

CAG repeats. Finally, other techniques to examine the effect of 

environmental and microbiota manipulations on white matter changes in HD, 

such as diffusion tensor imaging, might also be valuable, and would have the 

added benefit of ‘bench-to bedside’ appeal, given that this technique can be 

conducted in pre-clinical models and validated in HD patients.  
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Appendix 

Appendix A. Solutions 

Paraformaldehyde (PFA) 

1L of 1xPBS was placed in a 65oC water bath for 20-30min. For tissue 

staining purposes, 4% PFA, 40g of PFA and 3 pieces of NaOH (to aid 

clarification) was added to 1L of PBS. Otherwise, for TEM purposes, 2.5% 

paraformaldehyde (PFA, see Appendix xxxx) and 2.5% glutaraldehyde 

(GlutAH), and 3 pieces of NaOH were added to 1L of PBS.  The solution was 

stirred for ~30min under a fume hood until solution temperature reached 

60oC. The solution was then placed on ice for 15 minutes, after which the pH 

is measured and adjusted to 7.4 using HCl. Finally, the PFA solution was 

filtered using a filter pump.  

Hydrochloric acid (HCl) 

Using a normality and molarity calculator, the stock solution of HCl was 

calculated to be 12.178 N based on a density of 1.2 g/mL, a formula weight 

of 36.46 g/mol, and a concentration of 37% w/w. Depending on the desired 

concentration (1N or 2N) the stock solution (8.212 mL for 1N, and 16.423 mL 

for 2N) was slowly added to 25 mL deionized water. The final volume of 

solution was adjusted to 100 mL with deionized water.  
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Appendix B. Western blots 

 

 

 
 

With reference to figure 5.11. 
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With reference to figure 5.12 
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“When it all goes quiet behind my eyes, I see everything that made me lying 

around in invisible pieces. When I look too hard, it goes away. And when it all 

goes quiet, I see they are right here. I see that I'm a little piece in a big, big 

universe. And that makes things right. When I die, the scientists of the future, 

they're gonna find it all.” - Hushpuppy, Beasts of the Southern Wild (Benh 

Zeitlin, 2012) 

       

 

 


