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Abstract 

Growth and development in plants displays genetic complexity differently controlled by 

discrete environmental stimuli. The Arabidopsis thaliana hypocotyl is a useful model 

system for studying growth due to its simplicity. The hypocotyl elongates in response to 

a wide range of stimuli, including the phytohormone auxin. Auxin is a major regulator of 

growth and development with a role in every stage of a plant’s life cycle. Previous work 

has shown that exogenous auxin can increase hypocotyl length in some cases, but 

decrease it in others. In this dissertation, I wanted to investigate the growth response to 

auxin in two ways. I added exogenous auxin, and increased auxin levels naturally by 

growing plants at warm temperatures. I also investigated the effect of the mutation 

hsp90.2-3 on hypocotyl growth. This mutation increases hypocotyl length and reveals 

cryptic genetic variation within a plant. I studied the effect of auxin and the mutation on 

growth using a quantitative genetic approach. 

I investigated growth using QTL analysis. This technique uses naturally occurring 

variation in a population to detect regions of the genome which influence a certain trait. 

It is useful for studying a trait like growth, which is controlled by many genes of small 

effect. I detected many QTL using this technique, including one which has a role in 

controlling growth and variation under several tested conditions. I also detected QTL 

that work through epistatic interactions. Some QTL control a change in hypocotyl length 

in response to a specific stimulus. Overall, I have studied the genetic basis of growth in 

several conditions and examined the change in hypocotyl length and variation in 

hypocotyl length due to changes in temperature and exogenous auxin. I envisage that 

the genetic architecture I reported will aid future studies into the way warmth and 

auxin affect growth and variation in plants. 
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Chapter 1: Introduction 

 

1.1 Overview 

In this dissertation, I aim to investigate the genetics controlling the growth of 

Arabidopsis thaliana with special regard to the role of warmth and the phytohormone 

auxin. I will first use QTL mapping to determine which regions of the genome are 

important in this process. I will then compare my results from different environmental 

conditions and populations to find similarities and differences. I hope to better 

understand how differences in genotype and environment can result in similar 

phenotypes. 

 

1.2 Growth of Arabidopsis thaliana 

Research into why plants grow the way they do has been going on for hundreds of years 

(Darwin and Darwin 1880, Leonelli et al 2012). The process is extremely complex, 

involving many different genes and environmental factors (Scheel and Wasternack 

2002, Davies 2004). This research has increased in scope and detail during the 20th 

century due to new genetic and molecular approaches (Leonelli et al 2012). In recent 

years, an expanding world population and a changing climate has made this research 

more important (Grieson et al 2011). The hope is that by understanding plant growth in 

greater detail we can improve crop yields and protect the forces that lead to 

biodiversity. I used quantitative genetic analysis to build an understanding of the 

genetic regions involved in growth that is driven by the phytohormone auxin. 

Arabidopsis thaliana is the model species for plant research because it is quick and easy 

to grow, is available all over the world and has a relatively simple genetic structure. The 

growth of one specific organ, the hypocotyl, is established as a useful model system for 

plant growth. The hypocotyl has a very simple structure (only about 20 cells) and these 
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cells grow by expanding rather than dividing (Gendreau et al. 1997). Hypocotyl growth 

is affected by all known phytohormones (Davies 2004), all environmental conditions 

that affect growth of an adult plant including light (Arsovski et al. 2012) and 

temperature (Wigge 2013, Quint et al. 2016) and many genes not directly related to 

growth such as the circadian clock (Nusinow et al. 2011, Lu et al. 2012). Combined with 

the ease and speed of hypocotyl growth and the many mutants that are readily 

available, the Arabidopsis thaliana hypocotyl is an ideal model for investigating plant 

growth. 

 

1.3 Auxin 

In this dissertation, I focus on the effect of auxin on growth. Auxin, specifically indole-3-

acetic acid (IAA), was the first phytohormone to be discovered. In the 1800s Darwin 

hypothesised that bending in grass coleoptiles was caused by a substance synthesised in 

the tip of the plant that moved to other regions to cause a change in growth (Darwin 

and Darwin 1880). The chemical was isolated much later (Went 1927) and was 

eventually identified as IAA (Wildman 1997). IAA is not the only auxin – there are others 

that occur naturally in plants and several synthetic auxins have commercial or research 

application. Auxin has a role in every stage of a plant’s life cycle: patterning in the 

embryo (Chasan 1993), root and shoot growth (Boerjan et al. 1995), tropic responses to 

light and gravity (Friml 2003), flowering (Salisbury 1955) and senescence (Ellis et al. 

2005). However, its main role is in cell growth and division, so it is most often found in 

growing regions of the plant or at wounds. Auxin can act on its own, but often works 

with in feedback loops with other hormones, including cytokinin (Coernen and Lomax 

1997), ethylene (Chadwick and Burg 1970) and gibberellins (Fu and Harberd 2003, 

Frigerio et al. 2006). I focused on the effect of auxin on growth, specifically cell 

elongation in the hypocotyl. 

Responses to environmental, hormonal or developmental stimuli often involve a change 

in auxin biosynthesis or auxin transport. Auxin is synthesised mainly in growing parts of 

a plant, such as young leaves and the tip of shoots and roots (Ljung et al. 2001), but is 
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transported to nearly all areas of a plant (Goldsmith 1977). There are several different 

auxin biosynthesis pathways (Zhao 2010). Some synthesise auxin from the amino acid 

tryptophan but tryptophan-independent pathways are also known. These signalling 

pathways are extremely complex due to auxins place at an intersection between many 

signalling pathways. There is also a high degree of redundancy, which has made 

characterising these pathways difficult. Once synthesised, auxin can be transported 

through the phloem (Hoad 1995) or between individual cells through transmembrane 

proteins. There are three main families of auxin carrier proteins: the influx carriers of 

the AUX1/LAX carriers (Bennett et al. 1996, Swarup et al. 2008), the efflux carriers of 

the PIN family (Vieten et al. 2007, Zazimalova et al. 2007) and another family of efflux 

carriers called ABCB proteins (Geisler et al. 2005, Santelia et al. 2005, Terasaka et al. 

2005). These proteins use the polarity of IAA and other naturally occurring auxins to 

ensure that auxin only flows one way – towards the sink tissues where it is needed. This 

prevents auxin from causing unregulated growth in other areas. For this reason, it was 

important that I used a non-polar synthetic auxin, picloram, in my experiments. This 

auxin can be taken up from growth media and will flood all areas of the plant, making it 

easier for me to see the effect of auxin on hypocotyl growth. Similar experiments have 

been done with naturally occurring auxins, but these must be applied directly to the tip 

of the hypocotyl (Yang et al. 1996) or applied to isolated sections (Evans 1985). Using 

quantitative genetic analysis, I hoped to understand the genetics involved in the auxin 

response in the hypocotyl. 

The effect of auxin on the Arabidopsis hypocotyl has been studied in great depth but is 

still not fully understood due to the complexity of auxin signalling. Generally, auxin 

stimulates growth. Applying a naturally-occurring polar auxin to isolated section of 

plants (Evans 1985), plants grown on nutrient deficient media (Smalle et al. 1997) or 

auxin-deficient mutants (Collett et al. 2000) will result in a rapid increase in growth. This 

growth is almost all cell elongation, not cell division (Evans 1985). However, applying 

auxin to a normal, healthy plant often has no effect and in some cases can inhibit 

growth (Collett et al. 2000). This has led to the hypothesis that auxin levels in the 

hypocotyl are naturally at their optimum level and adding more auxin inhibits growth. 

The effect of auxin seems to depend heavily on the dose, type of auxin and method of 
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application used. A very high dose of auxin will upset the balance between the many 

signalling pathways it is a part of which will inhibit growth, but a low concentration of 

auxin can stimulate growth, even in a healthy plant. The polarity of the auxin used and 

the method of application will determine which tissues the auxin acts in. I chose to 

introduce a non-polar auxin in to the growth media to flood the whole plant with a low 

concentration of auxin. This resulted in an increase of hypocotyl growth that was useful 

for my research. 

 

1.4 Warmth 

Auxin-driven changes in growth can be triggered naturally by any environmental 

condition that increases auxin levels. One of these is warmth. Arabidopsis thaliana 

grows optimally at temperatures between 12 and 27⁰C (Griffing and Langridge 1963, 

Samach and Wigge 2005, Salinas and Sanchez-Serrano 2006). Temperatures lower than 

this range trigger cold-tolerance mechanisms while at higher temperatures plants start 

to go into heat shock (Levitt 1980). Warm temperatures at the upper end of this normal 

range produce changes in morphology, but do not harm the plant. Although there is 

some uncertainty about the precise signalling pathway, it is thought that changes in 

temperature are perceived by cell membranes through a change in fluidity (Kamada et 

al. 1995, Orvar et al. 2000, Penfield 2008). The signalling pathway up-regulates auxin 

production and transport to drive a change in growth (Gray et al. 1998, Stavang et al. 

2009, Wigge 2013, Quint et al. 2016). These changes include elongation of the 

hypocotyl and petioles, changes in plant architecture with longer internodes, upward 

bending of the cotyledons and leaves known as hyponasty and early flowering (Wigge 

2013, McClung et al. 2016, Quint et al. 2016). There is evidence that these changes in 

architecture aid in cooling the plant and preventing heat damage (Crawford et al. 2012). 

I was interested in the similarities and differences in genetic activity that cause similar 

changes in growth when auxin is increased naturally by warmth and artificially. 
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1.5 HSP90.2-3 

Growth and hypocotyl length is under the control of many factors and can be increased 

by more than just an increase in auxin. One of these factors is a family of chaperone 

proteins called heat shock proteins. Chaperone proteins fold proteins into their proper 

shape so that they function properly (Thirumalai and Lorimer 2001, Young et al. 2004). 

Heat shock proteins (also called stress proteins) are chaperones induced by various 

types of stress including increases in temperature (Lindquist and Craig 1988, Vierling 

1991, Hendrick and Hartl 1993, Parsell and Lindquist 1993, Kregel 2002). The study of 

heat shock proteins and their roles was helped greatly by the discovery of a mutation in 

one particular allele of one heat shock protein, HSP90.2-3 (Hubert et al. 2003). When 

this protein is mutated, it prevents the action of all proteins in an important family of 

heat shock proteins called the HSP90 family. Plants carrying this mutation have many of 

the same changes in growth caused by an increase in auxin, including increased growth, 

early flowering and increased variation within a population (Sangster and Quietsch 

2005, Sangster et al. 2008). 

The mutation is useful in QTL mapping studies as it can reveal cryptic genetic variation 

(Sangster et al. 2007). In wild-type plants, some variation is hidden because unusual 

proteins are forced into their proper shapes by heat shock proteins. The hsp90.2-3 

mutation allows this previously hidden variation to have an effect, often resulting in 

more QTL. I wanted to use this mutation to make my QTL mapping more effective, but I 

also wanted to investigate the changes in growth caused by the mutation. 

 

1.6 QTL mapping 

Quantitative genetic analysis, in particular QTL mapping, is a useful technique for 

studying genetics. Many methods used to study genetics are not suitable for studying 

very complex traits such as growth and variation. These traits are under the control of 

many different genes. Individual genes may only have a small effect which is difficult to 

detect using other methods. I aimed to study two of these complex traits. As discussed 

previously, the genetic control of growth is extremely complex. A greater understanding 



16 

 

of plant growth and the processes underpinning it is essential for issues such as food 

security, energy security and conservation. I also wanted to study variation, a trait that 

affects a population level as a whole. This was possible because of the plant population I 

used in QTL mapping (section 2.1). A difference in the variation of growth between two 

populations could reflect a difference in the consistency, reliability or rigidity of the 

genetic processes underlying growth. This in turn can provide information about how an 

entire population may behave in a natural environment, as opposed to an “average” 

individual in a controlled experiment. It is just as important to build up an 

understanding of variation as an aspect of growth as it is to know what drives or 

constrains growth in an individual plant. 

QTL mapping is also useful for finding epistatic interactions. Some genes only have an 

effect when certain other genes are also present. These interactions can be additive, 

where two genes have an effect by simply coexisting, or synergistic, where the effect of 

two genes together is greater than the sum of each gene alone. The term “epistasis” 

can refer to either the concept of two genes needing to both be present to show their 

effect or specifically a synergistic interaction (Phillips 2008). QTL mapping, specifically 

two-dimensional, two-QTL scans, can detect both additive and synergistic interactions. 

This gives QTL mapping several advantages over other methods when studying a trait as 

complex as growth (Borevitz et al. 2002). 

QTL mapping uses statistical analysis of the genotypes and phenotypes in a mapping 

population. There are several types of population which can be used, such as backcross 

or intercross. My mapping population is derived as a recombinant inbred line (RIL) 

collection. My population consists of 96 unique genetic lines descended from a cross 

between Col-0 and WS-2 parents for several generations (Young 1994, Collard et al. 

2005). Each line has been genotyped at a number of markers. At each marker, each 

plant can be either homozygous for the Col-0 allele, homozygous for the WS-2 allele, or 

heterozygous. There is also a marker at the site of the hsp90.2-3 mutation, which is 

present is half of the lines. I then gathered phenotypic information about each line. 

Specifically, I measured hypocotyl length in a range of conditions. QTL mapping 

compares the genotypic data to the phenotypic data to determine whether individuals 

with one genotype at a certain marker are significantly different from individuals with 
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another genotype at the same marker (Broman and Sen 2009). By repeating this for all 

markers each point on the genome is given a LOD score which represents how much 

influence that position has over the trait in question (Tanksley 1993, Young 1996). 

Single-QTL mapping considers each point on the genome independently. A 2-QTL scan 

considers each possible pair of points on the genome to find epistatic interactions in 

what is known as a two-dimensional genome scan. This can be done using either an 

additive model, where QTL simply coexist without changing each other’s effect, or a full 

model, which considers synergistic interactions between QTL. Both models use 

differences in phenotypic and genotypic data to assess the likelihood that each possible 

pair of loci are linked QTL (Broman and Sen, 2009). However, detecting interactions 

between QTL is difficult. High statistical power is needed to avoid type-1 errors, and if 

the pattern of interaction controlling a trait is very complex, as with growth, then false 

identification becomes more likely (Laurie et al. 2014). Despite this, both single- and 2-

QTL scans are powerful methods, and each can reveal important information. 

There are various statistical methods that can be used in QTL mapping, but I chose to 

use composite interval mapping (CIM) and the multiple imputation method (Sen and 

Churchill 2001). I chose these methods because of their greater precision, especially 

when performing 2-QTL scans for epistatic relationships between markers (Jansen 1993, 

Zeng 1993, Jansen and Stam 1994, Zeng 1994). Using a permutation test (Churchill and 

Doerge 1994) I can determine how high a LOD score must be to consider that point on 

the genome as significant to the trait. This method can be used for both single- and 2-

QTL scans. By using this technique, I hoped to understand which regions of the genome 

are important in hypocotyl growth under a range of conditions. 

 

1.7 Aims and hypotheses 

I have three main aims for this project: 

1. Investigate hypocotyl growth in a range of conditions. This includes two 

genotypes, wild type and hsp90.2-3, and three environmental conditions, 

standard, warm and with added auxin. I expect all changes in condition to result 



18 

 

in an increase in hypocotyl length compared to wild-type plants in standard 

conditions, but I am interested to see whether a natural rise in auxin 

concentration as a result of increased temperature or artificially increasing auxin 

concentrations by adding it to growth media will result in the greatest increase 

in hypocotyl length. 

2. Find QTL for hypocotyl growth and variation in all conditions tested. I expect to 

find at least one QTL in every condition since hypocotyl length is controlled by 

many genes. 

3. Compare the results of QTL mapping between genotypes and environmental 

conditions to determine which QTL are for general growth and which are 

specific to growth in a certain condition. I expect that growth in warmth and 

with auxin will have some QTL in common since both use the auxin signalling 

pathway. I also expect most conditions to have some QTL in common with the 

wild-type genotypes in standard conditions, since some genes are needed for 

growth in any condition. 
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Chapter 2: Materials and methods 

 

2.1 Plant material 

The Recombinant Inbred Line (RIL) I used for QTL mapping was previously derived from 

Col-0 and WS-2 genetic backgrounds. The full map can be seen in appendix 1. The Col-0 

parent contained the hsp90.2-3 mutation (Hubert et al. 2003) on chromosome 5. The 

WS-2 parent contained a luciferase transgene in a CCR2:LUC construct. The first 

generation progeny of these parents (F1) was crossed with WS-2 CCR2:LUC to generate 

the first generation backcross population (BC1-F1). From BC1-F1, sixteen seeds 

heterozygous for hsp90.2-3 and hemizygous for CCR2:LUC were chosen and self-

fertilized. Three seeds from each genetic line were chosen, all heterozygous for 

hsp90.2-3 and hemizygous for CCR2:LUC. This population of 48 unique genetic lines was 

BC1-F2. The population was bred by single-seed descent, maintaining heterozygosity for 

hsp90.2-3, until generation BC1-F7. From population BC1-F7, one individual 

homozygous for hsp90.2-3 and one wild-type individual from each unique line were 

selected to create the final RIL, containing 96 unique genotypes. 

I used a RIL because it carries several advantages in QTL mapping over other types of 

mapping populations. Each genotype is almost completely homozygous. This means 

that genetically identical plants can be used in different experiments. This was 

important as I wanted to test the effect of different environmental stimuli on the same 

plants. Furthermore, since I could grow groups of genetically identical plants I could 

map the standard deviation of a population of a population of plants. This was essential 

for studying variation (section 1.6). However, the RIL I used has an unusual structure 

because of the presence of hsp90.2-3 in only half the genotypes. The population is 

effectively made up of 48 genotypes, each of which has a wild-type and mutant form, to 

make a total of 96 genotypes. This allowed me to map traits in the presence and 

absence of the mutation. Without this characteristic in my mapping population, I could 

have assessed the effect of the mutation by assigning it as a co-factor. However, in 

some types of population co-factor analysis has been shown to increase the likelihood 
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of type-1 errors, especially in low-power experiments (Sahana et al. 2006). As my 

mapping population was relatively small, and therefore had low statistical power, the 

benefits of co-factor analysis were outweighed by the risk of false positives. I decided to 

instead to investigate the effect of hsp90.2-3 using this unusual RIL which allowed me to 

map wild-type and mutant populations separately. 

 

2.2 Chemicals 

Growth media for collecting seed: 

33% COIR compost – Melcourt Profressional Growing Media 

33% F2 + S compost with sand – Levington Advance 

33% Vermiculite compost additive – Sinclair Pro 

0.07% osmocote NPK fertiliser – Keith Singleton Horticultural Products 

Chemicals for sterilising seed: 

Ethanol absolute – VWR Chemicals 

33% Bleach in sterile H2O 

0.01g/100ml Select agar water in sterile H2O - Invitrogen 

Growth media for hypocotyl length assays (MS3): 

4.4 g/L Murashige & Skoog (MS) medium basal salt mixture without vitamins – 

Duchefa Biochemie 

30 g/L sucrose – Fisher Scientific UK 

0.5 g/L MES free acid buffer – Melford Biolaboratories Ltd 

15 g/L phyto agar – Duchefa Biochemie 

pH adjusted to 5.7 with KOH 

To create MS3 + hygromycin media: 0.1% 30mg/ml hygromycin B – Duchefa 

Biochemie 

To create MS3 + 3μM picloram media: 0.3 ml/L picloram stock solution 

Solvent: sterile H2O 
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Picloram stock solution (10mM): 

2.4 mg/ml picloram – Duchefa Biochemie 

Solvent: Dimethyl sulfoxide (DMSO) – Fisher Scientific UK 

 

2.3 Software 

R in RStudio, including packages R/qtl (Broman et al. 2003) and pylr, used to analyse 

data and perform qtl mapping. 

ImageJ (Schneider et al. 2012) used to measure seedling hypocotyls after imaging. 

MS Excel used to analyse data. 

Corel Paintshop Pro used to process seedling images. 

 

2.4 Collecting seed 

I grew 10 plants of each of the RIL genotypes and harvested their seed to use in 

hypocotyl assays. I also harvested seed from Col-0 and WS-2 parental plants, both with 

and without the hsp90.2-3 mutation. Before growing I sterilised seeds by washing once 

with 70% ethanol, once with 33% bleach with triton and twice with sterile water. I 

washed seeds by suspending them in 400μL of solution. I then suspended the seeds in 

sterile agar water and plated them onto MS3 media. I stratified the plates by storing 

them at 4⁰C for two days. After stratification, I germinated the seeds at room 

temperature in a 12-hour light/12-hour dark cycle. After 10 days the seedlings were 

large enough to be handled with tweezers. I transferred them to pots containing damp 

compost. The plants were grown in greenhouses with regular watering until mature 

siliques formed. After this, watering was stopped and the siliques were dried. Seeds 

were harvested from the dried siliques, cleaned of debris and stored at room 

temperature until use. 
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2.5 Hypocotyl length assay 

I sterilised seeds by washing them in a series of solutions. I suspended seeds in 400μL of 

each solution. I washed the seeds once with ethanol, once with bleach and twice with 

sterile water. I then suspended the seeds in sterile agar water and plated individual 

seeds onto the correct growth media for each treatment. All genotypes in the RIL were 

grown on media containing hygromycin B to reduce the risk of contamination. The Col-0 

and WS-2 genotypes are not resistant to this antibiotic, so they were grown on basic 

MS3. I spaced all seeds evenly with approximately 1cm of clear space around each seed. 

I grew 20 seeds from each genetic line. I stratified the seed by storing them at 4⁰C for 

two days. After stratification, I moved the plates to growth cabinets with the following 

conditions for each treatment: 

 

Treatment Temperature (⁰C) Media 

Control 22 MS3 

Warmth 27 MS3 

Auxin 22 MS3 + picloram 

 

All conditions took place under a 12-hour photoperiod. I sealed the agar plates with 

parafilm to maintain humidity. 

I grew the plants for 10 days. I then pushed the seedlings flat and scanned the agar 

plate using a flatbed scanner. I obtained an image of the seedlings with a ruler next to 

them. Using ImageJ, I compared the length of a line traced over each hypocotyl to the 

known length of the ruler to find the length of each hypocotyl. 
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2.6 Analysis 

I used Microsoft Excel to perform statistical analysis. This included finding the mean 

hypocotyl length, standard deviation, standard error and change in growth due to a 

certain condition of each genotype. I calculated the change in growth using the formula: 

hypocotyl length with treatment-hypocotyl length without treatment

hypocotyl length with treatment
 

Using this metric allowed me to map the change in hypocotyl length due to the 

treatment applied (Reymond et al. 2006). Once I had collected this phenotypic data I 

used Microsoft Excel to create a file containing phenotypic data about a single trait, 

marker locations and the genotype of each RIL at each marker location. 

I imported the file containing phenotype and genotype data into R for analysis. I used 

the package R/qtl to perform interval mapping (IM) using the multiple imputation 

method (Sen and Churchill 2001). The multiple imputation method has an advantage 

over alternative IM methods since it can consider the spaces between markers as well 

as the markers themselves. During IM each position on the genome is considered as the 

possible location of a QTL. H1 is the likelihood of a QTL being at that location. H0 is the 

likelihood of there being no QTL at that location. Using both H1 and H0 a likelihood of 

odds (LOD) score is calculated for each position on the genome. The higher a positions 

LOD score is, the more likely it is that there is a QTL at that position. The output of 

single-QTL analysis is a set of LOD scores for each position on the genome that can be 

described graphically. 

As well as the single-QTL scans described above, I analysed my data using two-QTL 

scans. This type of analysis has the advantage of detecting epistatic interactions – loci 

that are only QTL if another QTL is in the same genome. The method for two-QTL scans 

is similar to single-QTL scans. I used IM and the multiple imputation method, but 

instead of considering the possibility of a QTL at each position, the analysis considered 

to possibility of two QTL at each possible pair of positions. My analysis used two 

models: the additive model, which considers each pair of positions as QTL that coexist 

but do not interact, and the full model, which considers each pair of positions as QTL 

that have an epistatic interaction. The output of this analysis is two sets of LOD scores 
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(one set from each model) for each pair of positions in the genome reflecting the 

likelihood that there is a pair of QTL there. 

To interpret my data, I calculated the genome-wide significance thresholds using 

permutation tests. These tests randomly shuffle the phenotypic data while keeping the 

genotype data intact and perform QTL mapping on each permutation using the method 

described above. After 10,000 permutations for a single-QTL scan or 1000 permutations 

for a two-QTL scan, the genome-wide maximum LOD scores for each permutation were 

collected and compared. This data reflects the LOD scores that can be expected by 

random chance if there is no QTL. Using this data, I calculated thresholds for 20% 

significance levels to help me interpret my data. 

2.7 Validity of tests 

For every QTL analysis I performed, I first investigated the variation and distribution of 

my trait data to ensure that QTL analysis was appropriate. The calculations used are 

explained here and the results are displayed in the Validity of Test sections in chapters 

4, 5 and 6. 

Firstly, I investigated the variation in my data using ANOVA as a wide range of 

phenotypes in the trait being mapped improves QTL analysis. ANOVA is a simple yet 

powerful way to estimate how much variation exists in a certain trait. Some QTL analysis 

use heritability to estimate genetic control of a trait, and therefore how likely it is that 

QTL will be detected. However, this can be inconsistent (Huang et al. 2007). 

Furthermore, since growth and variation are both subject to a complex combination of 

genetic and environmental control, heritability would be insufficient. I decided that 

ANOVA was a more appropriate statistical test. If there was a significant amount of 

variation in the trait being mapped and that variation was affected by genotype, I was 

confident that QTL mapping would yield some useful results. 

Secondly, I investigated the distribution of my trait data because one of the 

assumptions of QTL mapping is that the trait data are normally distributed. If the data 

were normally distributed, they were appropriate for QTL mapping. Once I confirmed 

that my data met the assumptions of the test, I proceeded with my analysis. 
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Chapter 3: Growth of Arabidopsis thaliana 

 

3.1 Overview 

I wanted to understand the effect of auxin and the hsp90.2-3 mutation on hypocotyl 

growth. My experimental system employed the parental genotypes of my RIL, Col-0 and 

WS-2. Using these genotypes meant that, as well as understanding the behaviour of the 

hypocotyl generally, I could learn how effective QTL analysis would be. If the hypocotyl 

length of Col-0 and WS-2 were different from each other I would expect more variation 

in a mapping population generated from these parents. This is because growth is a 

complex trait controlled by many genes. If the parents were different from each other 

they provided a greater number of possible combinations of alleles in my mapping 

population. This led to greater variation in the mapping population which increased the 

power of QTL analysis. QTL mapping works by comparing differences in phenotype to 

differences in genotype, so more variation makes the analysis more powerful. I 

examined the effects of warmth, auxin and the mutation hsp90.2-3. To examine the 

effect of warmth I grew seedlings at 27⁰C. I examined a range of concentrations of auxin 

between 0.3μM and 50μM. I studied the concentration 3μM in more detail. Auxin 

application increased hypocotyl length in both parental genotypes. In contrast warmth 

and hsp90.2-3 increased hypocotyl length in one genotype, but not the other. These 

results are displayed in figure 1 and illustrated further in figure 2. The full data can be 

seen in appendix 2. The results presented in this chapter show that warmth, auxin and 

hsp90.2-3 all share a similar phenotype. They also provided a good base for QTL 

mapping, as the differences between Col-0 and WS-2 meant that the population 

generated from these parents would have a wide range of alleles. This created more 

variation in the mapping population which made QTL analysis more powerful and lead 

to the identification of QTL. 
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Figure 1: Mean hypocotyl length of parental genotypes, both wild type and with 

hsp90.2-3 mutation, in standard conditions, at 27°C and with 3µM picloram media. 
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Figure 2: The effect of genotype, the hsp90.2-3 mutation, warmth and exogenous 

auxin on Arabidopsis thaliana seedlings. All seedlings were grown using the method 

in section 2.5. 
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3.2 General and auxin-driven growth of WS-2 and Col-0 

I investigated the differences in growth between the parents of my mapping population 

to examine whether the genotypes were different from each other. This would provide 

a wide range of alleles in my mapping population, which would make QTL mapping 

more powerful. The mapping population I used in my QTL mapping experiments was 

generated from these genetic backgrounds (section 2.1). I wanted to know if QTL 

analysis of hypocotyl length in my population would be effective. 

Standard growth 

The hypocotyl length of WS-2 was greater than Col-0 in standard conditions. The mean 

hypocotyl length of 20 seedlings after 10 days was 1.4 mm for Col-0 and 2.7 mm for 

WS-2. The hypocotyl length of WS-2 seedlings was also more variable than Col-0 

seedlings. WS-2 had a standard deviation of 0.520, compared to a standard deviation of 

0.224 for Col-0.  WS-2 was significantly taller than Col-0 (ANOVA: F = 93.58, d.f = 1, 38, p 

= 8.51e-12). Because the parents displayed phenotypic differences, I could expect to 

find genetic differences underlying these phenotypes. This would provide a range of 

alleles in my mapping population that would be helpful for finding QTL. 

Warmth and auxin 

The hypocotyl of WS-2 was longer than the hypocotyl of Col-0 both at warm 

temperatures and in the presence of exogenous auxin. After 10 days at 27⁰C, the mean 

hypocotyl length of 20 WS-2 seedlings was 2.7 mm, while the mean hypocotyl length of 

Col-0 was 2.1 mm. The genotypes seemed to have roughly equal variation in height. The 

standard deviation of WS-2 was 0.445 and the standard deviation of Col-0 was 0.508. I 

found this to be a significant difference in height (ANOVA: F = 17.55, d.f = 1, 37, p = 

0.000167). At 22⁰C with picloram added to the growth medium, the mean hypocotyl 

length of WS-2 seedlings was 4.2 mm. The mean hypocotyl length of Col-0 was 3.1 mm. 

With added auxin, there was more variation in the hypocotyl length of WS-2 than Col-0. 

The standard deviation of hypocotyl length for WS-2 was 1.101, while it was 0.812 for 

Col-0. This was also a significant difference in height (ANOVA: F = 15.03, d.f = 1, 38, p = 
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0.000406). Since I found phenotypic differences between the parent genotypes of my 

mapping population, I could expect to find QTL at warm temperatures and with 

exogenous auxin. 

 

3.3 The effect of the mutation hsp90.2-3 

My mapping population consisted of pairs of genotypes with and without hsp90.2-3. 

This mutation is known to increase hypocotyl length and variation (section 1.5). I next 

investigated the effect of this mutation in warmth and with added auxin and its 

relationship to other genes using QTL mapping. Before proceeding with QTL mapping, I 

wanted to examine the effect of this mutation on hypocotyl growth. I used Col-0 and 

WS-2 seedlings containing the mutation to understand its effect in both parental 

genetic backgrounds. 

Standard growth 

The effect of hsp90.2-3 on growth seemed to depend on what genetic background it 

was in. The mean hypocotyl length of Col-0 was 1.4 mm in standard conditions. This 

increased to 1.9 mm in Col-0 hsp90.2-3. The mutation also appeared to increase 

variation, as standard deviation increased from 0.224 in Col-0 to 0.306 in Col-0 hsp90.2-

3. This was a significant increase in hypocotyl length (ANOVA: F = 25.12, d.f = 1, 37, p = 

1.36e-05). The mutation appeared to have less effect in a WS-2 background. The mean 

hypocotyl length of 20 WS-2 seedlings in standard conditions was 2.7 mm, increasing to 

2.9 mm in WS-2 hsp90.2-3. The standard deviation in WS-2 was 0.520, while the 

standard deviation in WS-2 hsp90.2-3 was only 0.298. I found that this was not a 

statistically significant increase in height (ANOVA: F = 2.287, d.f = 1, 38, p = 0.139). The 

decrease in standard deviation was similar to the way standard deviation in WS-2 was 

reduced in higher temperatures. The fact that the mutation seems to behave differently 

in different genetic backgrounds suggests that QTL mapping will be a powerful tool for 

investigating its effect. The effect of the mutation would depend on which alleles from 

the parent lines it combined with, which would lead to variation in the mapping 
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population. I reasoned that QTL mapping would be a powerful tool for investigating the 

role of the mutation, especially two-dimensional scans to search for QTL that HSP90.2-3 

interacts with. 

Warmth 

The mutation hsp90.2-3 had a reduced effect at 27⁰C in both Col-0 and WS-2 

backgrounds. The mean hypocotyl length of Col-0 seedlings at 27⁰C was 2.1 mm. In   

Col-0 hsp90.2-3 seedlings the mean hypocotyl length was 2.4 mm. There was a slight 

increase in standard deviation, from 0.508 in Col-0 to 0.584 in Col-0 hsp90.2-3. This was 

not a statistically significant difference in hypocotyl length (ANOVA: F = 3.437, d.f = 1, 

36, p = 0.072). The results in the WS-2 seedlings were similar. Mean hypocotyl length 

was 2.7 mm in WS-2 seedlings and 2.9 mm in WS-2 hsp90.2-3 seedlings. Standard 

deviation increased from 0.445 in WS-2 to 0.523 in WS-2 hsp90.2-3. This was also not a 

significant increase in height (ANOVA: F = 1.835, d.f = 1, 38, p =0.183). These results 

suggested that the hsp90.2-3 mutation has less of an effect at warm temperatures. This 

could have been due to hypocotyls approaching their maximum possible lengths under 

the conditions and further growth being inhibited by something else such as the plant’s 

capacity for auxin biosynthesis. Since the parents had similar phenotypic responses, it 

could be expected that fewer QTL would be detected in QTL mapping. 

Auxin 

The mutation hps90.2-3 increased growth in the presence of exogenous auxin in the 

WS-2 genetic background but not in the Col-0 genetic background. The mean hypocotyl 

length was 4.2 mm in WS-2 seedlings and 5.4 mm in WS-2 hsp90.2-3 seedlings. There 

was a slight increase in standard deviation, from 1.010 in WS-2 to 1.063 in WS-2 

hsp90.2-3. This was a significant increase in height (ANOVA: F = 12.93, d.f = 1, 38, p = 

0.00092). In contrast, there was no significant increase in height in the Col-0 

background. The mean hypocotyl length was 3.1 mm in Col-0 and 3.3 mm in Col-0 

hsp90.2-3. There was a slight decrease in standard deviation, from 0.812 in Col-0 to 

0.726 in Col-0 hsp90.2-3. This was not a significant increase in height (ANOVA: F = 

0.804, d.f = 1, 38, p = 0.376). The mutation appeared to have a greater effect on growth 
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and variation in a WS-2 genetic background when auxin is added. This could have been 

due to Col-0 approaching its maximum possible height, or the WS-2 background could 

be more sensitive to auxin in general, enhancing the effect of the mutation. 

 

3.4 The effect of warmth on growth 

Temperatures of about 27⁰C, at the upper limit of the range Arabidopsis thaliana can 

grow at without obvious damage, increase hypocotyl length and variation (Gray et al. 

1998). Interestingly, my results showed that warmth has a greater effect on Col-0 than 

on WS-2. The mean hypocotyl length of Col-0 seedlings was 1.4 mm in control 

conditions and 2.1 mm at 27⁰C. Warmth also increased standard deviation in Col-0, 

from 0.224 in control conditions to 0.508 in warmth. This was a significant increase in 

hypocotyl length (ANOVA: F = 28.21, d.f = 1, 37, p = 5.38e-06). In contrast, there was no 

significant increase in the growth of WS-2 seedlings. Mean hypocotyl length was 2.7 

mm in control conditions and 2.7 mm at 27⁰C. There was a slight decrease in standard 

deviation, from 0.520 in control conditions to 0.445 in warmth. This was not a 

significant increase in growth (ANOVA: F = 0.251, d.f = 1, 38, p = 0.619). This could have 

been due to a natural reduction in temperature sensitivity in WS-2, or it could have 

been that WS-2 was close to its maximum height after 10 days and something else was 

limiting growth, such as the plant’s natural capacity for auxin biosynthesis. These results 

suggested that effect of warmth on growth depends on genotype, increasing growth in 

Col-0 but having little effect in WS-2, but this deserves further research as my 

experimental design may have been flawed. 

 

3.5 The effect of auxin on growth 

Auxin is an important phytohormone known to be capable of increasing growth (Jouve 

et al. 1999, Collett et al. 2000). In experiments, adding exogenous auxin has been 

shown to increase or decrease hypocotyl length, depending on the type of auxin and 

the method of application. Some people have hypothesised that natural levels of auxin 
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in the hypocotyl are at their optimum and adding more inhibits growth by destabilising 

the balance between different signalling pathways (Evans 1985, Smalle et al. 1997, 

Collett et al. 2000). I added a range of concentrations of the non-polar synthetic auxin 

picloram to growth media and carried out my normal hypocotyl-length assay. I found 

that low concentrations of picloram resulted in a dramatic increase in growth, but very 

high concentrations inhibited growth (figure 3). Because of this, I decided to use 3μM 

picloram when I carried out further studies on the effect of auxin on growth. This 

concentration produced an increase in growth, but not the maximum increase possible. 

I reasoned that at this concentration, a small change in auxin sensitivity could result in a 

large difference in hypocotyl length. This wider range of phenotypic response could 

increase the power of QTL analysis to reveal more QTL. 

Adding the synthetic non-polar auxin picloram to growth media increased hypocotyl 

length in all genotypes tested. The mean hypocotyl length of Col-0 seedlings increased 

from 1.4 mm in control conditions to 3.1 mm with exogenous auxin. Standard deviation 

increased from 0.224 in control conditions to 0.812 with exogenous auxin. This was a 

significant increase in growth due to auxin (ANOVA: F = 78.94, d.f = 1, 38, p = 8.2e-11). 

The mean hypocotyl length of WS-2 seedlings increased from 2.7 mm in control 

conditions to 4.2 mm with added auxin. Standard deviation increased from 0.520 in 

control conditions to 1.010 with exogenous auxin. This was a significant increase in 

hypocotyl length (ANOVA: F = 38.28, d.f = 1, 38, p = 3.16e-07). In all genotypes tested, I 

found the greatest hypocotyl length when I added exogenous auxin to the growth 

media. This could mean that in other conditions where plants appeared to reach their 

maximum possible height, such as warmth, the factor limiting their growth could have 

been the amount of auxin available to them through their own biosynthesis pathways. 
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Figure 3: Mean hypocotyl length of Arabidopsis thaliana seedlings after 10 days 

grown on a range of picloram concentrations. Error bars show 1 standard error. 
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3.6 Summary of results 

The results presented in this chapter confirm some previously existing hypotheses and 

add detail to others. Firstly, warm temperatures, exogenous auxin and the mutation 

hsp90.2-3 often had the effect on growth that I expected. Each increased hypocotyl 

length and standard deviation. However, warmth and hsp90.2-3 had reduced effects on 

certain genotypes. Warmth only produced a significant increase in hypocotyl length in 

Col-0 plants. The mutation increased growth only in Col-0 plants in standard conditions 

but increased growth only in WS-2 plants with exogenous auxin. The mutation did not 

increase the hypocotyl length of either genotype at warm temperatures. In many cases, 

a non-significant increase in growth was accompanied by a decrease, or a marginal 

increase, in standard deviation. This consistency in height suggested to me that these 

plants are reaching their maximum possible length under the conditions. These results 

highlighted a flaw in my experimental design. Measuring the plants at more time points, 

especially earlier than 10 days, may have revealed differences in growth that may have 

evened out after 10 days. 

Secondly, I investigated the effect of a range of auxin concentrations on hypocotyl 

growth. The effect of auxin on the hypocotyl was complex. Adding auxin increased 

growth in some cases but decreased it in others. This was consistent with previous 

hypotheses (Evans 1985, Collett et al. 2000). Some people have hypothesised that auxin 

levels are naturally at their optimum and adding more inhibits growth. I found that 

adding low concentrations of auxin to the growth media resulted in a dramatic increase 

in growth, but high concentrations inhibited growth. I used the non-polar synthetic 

auxin picloram. Non-polar auxins are able to “flood” every area of the plant, in contrast 

to naturally occurring polar auxins which are transported to sink tissues (section 1.3). 

My results suggest that the effect of adding exogenous auxin to a plant relies heavily on 

the concentration used. It is also possible that the type of auxin used and the method of 

application could have affected these results, which could be tested in further research. 

These results provided a good base to begin QTL mapping. I found differences in growth 

between Col-0 and WS-2, the parent genotypes of my mapping population. This led me 

to expect a wide range of hypocotyl lengths in the mapping population, which makes 
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QTL detection more likely. I also found differences in hypocotyl length due to warmth 

and auxin. This is important as I am interested in QTL for changes in growth due to 

these conditions. The changes in growth described in this chapter meant that QTL 

mapping was an appropriate analysis and was likely to yield useful results. 
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Chapter 4: QTL analysis of general growth and variation 

 

4.1 Overview 

This chapter presents the results of my analysis of growth and variation in standard 

conditions. I looked for QTL for two traits, hypocotyl length and the standard deviation 

of hypocotyl length, in three mapping populations: the full mapping population, the 

wild-type half of the mapping population and the half of the mapping population 

containing the hsp90.2-3 mutation. I performed single-QTL and two-QTL scans to search 

for QTL that act on their own and those that act through epistatic interactions (section 

2.6). I found several QTL using these methods, including one on chromosome 5 that 

controls both growth and variation through interactions with several different genes. 

The results presented in this chapter provide an idea of what regions of the genome are 

important in regulating growth in normal conditions. 

 

4.2 QTL mapping of hypocotyl length 

I investigated QTL for growth. I used hypocotyl length, collected using the method in 

section 2.5, as a convenient measure of growth in each genotype in my mapping 

population. These data are presented in appendix 3. By using hypocotyl length as a trait 

in QTL mapping, I found QTL that are important in increasing or decreasing the growth 

of a seedling. 

Results of analysis 

QTL analysis of the general growth of the mapping population revealed one QTL. I 

mapped the average hypocotyl length of 20 individuals from 89 genotypes in standard 

conditions using the method in section 2.6. Figure 4 displays the QTL map obtained 

from this analysis. I found one peak located on chromosome 5 at position 13.5 with a 

LOD score of 3.17. This peak is a possible QTL for growth under control conditions. 
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My analysis also yielded some inconclusive results. I found one other peak on 

chromosome 5 at position 95.28. This peak had a LOD score of 2.5, which put it very 

close to the significance threshold (2.85) but did not quite cross it. It is difficult to tell 

whether this is due to a lack of statistical power or a genuinely negative result. This 

position should be noted as it is important in several other QTL maps I made. 

Validity of test 

Variation: 

Figure 5 displays the mean hypocotyl length of each genotype in my mapping 

population in standard conditions. 

ANOVA: F = 8.868, d.f = 86, 1611, p = <2e-16 

Distribution: 

Figure 6 displays the distribution of mean hypocotyl length under control conditions. 

Shapiro-Wilks: W = 0.979, p = 0.172 

See section 2.7 for a full explanation of these statistics. 
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Figure 4: QTL map of mean hypocotyl length in standard conditions using the 

multiple-imputation method. The dotted line indicates the 20% significance 

threshold. 
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Figure 6: Histogram of mean hypocotyl length in the mapping population in standard 

conditions. 
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Discussion 

There are no known strong candidate genes for a QTL near position 13.5 on 

chromosome 5. It is likely to be a gene with a role in general growth and development, 

which would create variation in hypocotyl length if altered. However, I am hesitant to 

make guesses about what the gene may be. 

There are some possibilities as to what may be under the peak at position 95.28. This 

peak is close to the mutation hsp90.2-3, which was used as a genetic marker in the 

map. The mutation makes seedlings grow taller (section 1.5) so it is reasonable to find it 

as a QTL when hypocotyl length is mapped. However, the mutation often produces a 

QTL even when the mutation does not affect the trait in question due to the unusual 

structure of the mapping population. The population is made of pairs of similar 

genotypes in which one genotype contains the mutation and the other is wild type. 

Because the marker is present in half the population, it is likely that there will be 

differences between genotypes with the mutation and wild-type genotypes. This leads 

to QTL analysis registering the mutation as a QTL. In combination with the physiological 

effect of hsp90.2-3, it is likely that the possible QTL on chromosome 5 has something to 

do with the mutation. 

It should be noted that although the peak is close to the mutation, it is not at the 

marker hsp90.2-3 (position 83.09). Under normal circumstances the two positions are 

close enough to expect them to be tightly linked. However, because the population was 

constructed to retain heterozygosity for the mutation, the areas around it are not linked 

to it. At the position of the possible QTL, 34 out of 89 lines have genetic material from 

the Col-0 parent and 51 have genetic material from the WS-2 parent. Four lines are 

heterozygous. There does not appear to be a disproportional influence from one parent 

at this position. Because of this I think it is very unlikely that the peak is due to the 

mutation. I think that this possible QTL is due to a gene that controls growth that 

happens to be close to the hsp90.2-3 mutation. I found this QTL in several other QTL 

maps, and will refer to it as QTL-A. 
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4.3 Two-QTL scan of hypocotyl length 

My single-QTL analysis did not detect every QTL that is relevant to growth in my 

mapping population. Single QTL mapping considers all possible QTL in isolation. 

Although this is a powerful and useful analysis, there is always the possibility that some 

important areas of the genome were not given a high LOD score. There are various 

reasons for this. Some QTL exist in pairs that only show their effect when both are 

present in the same organism. Other pairs only seem relevant if they are allowed to 

interact with each other. A two-dimensional, two-QTL scan considers all possible pairs 

of QTL (section 2.6). I analysed my data this way to reveal QTL with epistatic 

interactions that were invisible to a single-QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data used in my 

previous analysis using the method in section 2.6. Figure 7 displays the results of this 

analysis. The high LODfv1 scores in the lower right triangle show evidence for pairs of 

QTL if interaction is allowed, particularly on chromosome 5. The high LODi scores in the 

upper left triangle show clear evidence for interactions between QTL rather than a 

purely additive relationship. 

I found three pairs of QTL with LOD scores high enough to be considered statistically 

significant. One pair is on chromosome 1 position 44.4 and chromosome 5 position 

99.5. These positions can only be considered QTL in a model that allows interaction. The 

second pair is on chromosome 3 position 58.4 and chromosome 5 position 99.5. These 

positions can only be considered QTL in a model that allows interaction. The third pair is 

on chromosome 5 position 14.5 and chromosome 5 position 99.5. Although there is 

some evidence for this pair when an additive model is used, LOD scores are maximized 

by allowing interaction. All of these positions are likely to be pairs of QTL which only 

show their effect when they are allowed to interact with each other. 
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Figure 7: LOD scores from a two-QTL scan using the multiple-imputation method of 

mean hypocotyl length in standard conditions. The lower right triangle contains 

LODfv1 scores showing the probability of one half of a pair of epistatic QTL existing at 

that position. The right side of the key indicates the magnitude of LODfv1 scores.  The 

upper left triangle contains LODi scores showing the probability of synergistic 

interactions as opposed to an additive relationship. The left side of the key indicates 

the magnitude of LODi scores. 
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Discussion 

The results from my two-QTL scan give a clearer picture of QTL-A. In my single-QTL 

scan, chromosome 5 position 95.28 had a high LOD score but was not statistically 

significant, so I was unsure whether I should consider it as a QTL. In a two-dimensional 

model where interaction is allowed it becomes clear that there is a QTL at this position, 

but its effect depends upon epistatic interactions. All three pairs of QTL with significant 

LOD scores include QTL-A. I am confident in concluding that all three pairs include the 

same QTL, even though positions in two-QTL scans are only estimated. Although the 

positions in the single-QTL and two-QTL models are not exactly the same, their close 

proximity and the fact that positions in two-QTL scans are only estimated makes me 

confident in assuming that the underlying QTL is the same in each case. It is possible 

that QTL-A is the hsp90.2-3 mutation since the estimated position is very close, but as 

discussed previously (section 4.2), it is unlikely that this is the case. It is now clear that 

there is a QTL on chromosome 5 that affects growth through epistatic interactions. 

 

4.4 Growth QTL present in mutant population only 

Results of analysis 

To examine the effect of the hsp90.2-3 mutation on growth, I mapped wild-type and 

mutant populations separately. The mapping population I used is made up of pairs of 

genotypes that were almost identical to each other. One genotype in the pair is wild 

type and the other contains the hsp90.2-3 mutation. I used this to divide the full 

mapping population in half, producing two smaller populations – mutant and wild type. 

I then performed QTL analysis on each separately. Each population contained 44 

genotypes. I mapped the average hypocotyl length of 20 individuals from each 

genotype in standard conditions using the method in section 2.6. Figure 8 displays the 

QTL maps obtained from this analysis layered over one another for easy comparison. I 

found no significant peaks in the wild-type population. I found one significant peak in 
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the mutant population on chromosome 5 at position 95.28 with a LOD score of 3.39. 

These peaks are possible QTL for general growth under control conditions. 

  

Figure 8: QTL map of mean hypocotyl length of wild-type and mutant populations in 

standard conditions using the multiple-imputation method. The solid line shows LOD 

scores of the wild-type population. The horizontal solid line shows the 20% 

significance threshold for the wild-type population. The dotted line shows LOD 

scores of the hsp90.2-3 mutant population. The horizontal dotted line shows the 

20% significance threshold for the mutant population. 
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Validity of test 

Wild-type population 

Variation: 

Figure 9A displays the mean hypocotyl length of each genotype in the wild-type 

population in standard conditions. 

ANOVA: F = 6.19, d.f = 43, 818, p = <2e-16 

Distribution: 

Figure 9B displays the distribution of mean hypocotyl length in standard conditions in 

the wild-type population. 

Shapiro-Wilks: W = 0.950, p = 0.056 

This data is approximately normally distributed. I used a p-value of 0.05 as my threshold 

for significance, but this is arbitrary. It could easily be argued that the distribution of the 

trait data for the wild-type population is not appropriate for QTL mapping. I decided to 

proceed using this data, but its distribution could explain why I found negative results. 

 

Mutant population 

Variation: 

Figure 10A displays the mean hypocotyl length of each genotype in the mutant 

population under control conditions. 

ANOVA: F = 11.76, d.f = 42, 793, p = <2e-16 

Distribution: 

Figure 10B displays the distribution of mean hypocotyl length in standard conditions in 

the mutant population. 
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Shapiro-Wilks: W = 0.975, p = 0.475 

See section 2.7 for a full explanation of these statistics.  
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Figure 9: Validity of wild-type population hypocotyl length data in standard 

conditions for QTL mapping. 

A: Mean hypocotyl length of each genotype in the population. Error bars show 1 

standard deviation. 

B: Histogram of mean hypocotyl length of each genotype in the population. 

A 

B 
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A 

B 

Figure 10: Validity of hsp90.2-3 mutant population hypocotyl length data in standard 

conditions for QTL mapping. 

A: Mean hypocotyl length of each genotype in the population. Error bars show 1 

standard deviation. 

B: Histogram of mean hypocotyl length of each genotype in the population. 
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Discussion 

The lack of any significant QTL in the wild-type population for hypocotyl length could 

have been due to the statistical test. One possibility is that the smaller population (half 

the size of the full mapping population) created a lack of statistical power. This would 

mean that some of the non-significant peaks are actually QTL, but more data was 

needed to increase their LOD scores. However, I do not think the size of the population 

was a problem as the similarly sized mutant population provided positive results. An 

alternative explanation is that the wild-type population could have contained many QTL 

of small effect. Difficulty detecting QTL of small effect is a common problem with QTL 

analysis but would have been made worse by a smaller mapping population. QTL of 

small effect often show their effect more clearly when a certain combination of QTL is 

present in the same organism. For this reason, a two-QTL scan could reveal QTL that did 

not appear to be significant in a single-QTL scan. A third explanation is that that QTL in 

the wild-type population are being hidden by the action of heat shock proteins, and the 

wild-type population contains QTL similar to the mutant population. Another 

explanation is that the test did not work as it should due to the distribution of the wild-

type population. This would also mean that QTL that exist were not detected. This 

possibility could be investigated further by transforming the trait data and creating a 

new QTL map. It is possible that there were simply no QTL for this trait in the wild-type 

population. I find this unlikely due to the significant amount of variation in the trait, and 

the fact that this variation is due in part to genotype, but it is worth considering. I think 

it is likely that the QTL analysis did not detect any QTL due to unsuitable data and there 

are significant QTL in the population. 

The QTL in the mutant population is QTL-A, which was detected when the hypocotyl 

length of the full population was mapped. QTL-A was especially important in a model 

that allowed epistasis. It is interesting that QTL-A was detected in a single-QTL scan of 

growth in the mutant population but not the wild-type population. One explanation is 

that QTL-A is either the mutation itself or a gene linked to it, but I explained why I think 

this is unlikely in section 4.2. I think that QTL-A is a gene close to the mutation. Its 
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presence in the mutant population but not the wild-type population could be due to the 

effect that hsp90.2-3 has on QTL mapping (section 1.5). 

 

4.5 Two-QTL scan for epistatic interactions in mutant population 

My single-QTL analysis did not detect every QTL relevant to growth in my mapping 

population. As discussed previously (section 4.3) single-QTL mapping rarely reveals 

every significant QTL, making further analysis using two-QTL scans necessary. I analysed 

my data this way to reveal QTL with epistatic interactions that were invisible to a single-

QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data used in my 

previous analysis using the method in section 2.6. I found no significant QTL in the wild- 

type population. Figure 11 displays the results of my analysis for the mutant population. 

The high LODfv1 scores in the lower right triangle show evidence for pairs of QTL if 

interaction is allowed, especially on chromosome 5. The high LODi scores in the upper 

left triangle show clear evidence for epistatic interactions rather than an additive 

relationship. 

I found two pairs of QTL in the mutant population with LOD scores high enough to be 

considered statistically significant. The first pair is on chromosome 3 position 56.4 and 

chromosome 5 position 95.5. These positions can only be considered as QTL in a model 

that allows interaction.  The second pair is on chromosome 5 position 15.5 and 

chromosome 5 position 95.5. These positions can only be considered as QTL in a model 

that allows interaction. All of these positions are likely to be pairs of QTL which only 

show their effect when they are allowed to interact with each other. 
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Figure 11: LOD scores from a two-QTL scan using the multiple-imputation method of 

mean hypocotyl length of a population containing the hsp90.2-3 mutation in 

standard conditions. The lower right triangle contains LODfv1 scores showing the 

probability of one half of a pair of epistatic QTL existing at that position. The right 

side of the key indicates the magnitude of LODfv1 scores. The upper left triangle 

contains LODi scores showing the probability of synergistic interactions as opposed 

to an additive relationship. The left side of the key indicates the magnitude of LODi 

scores. 
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Discussion 

The pairs of QTL found in the mutant population make it clear that QTL-A has epistatic 

interactions with several other QTL. This supports my results from section 4.3. It is 

interesting that there are fewer epistatic pairs in the mutant population than there 

were in the full population. This could be a natural result of using a smaller population, 

but it could also mean that one or more of the genes that QTL-A interacts with is part of 

the HSP90 family, which is inactivated by the mutation. 

 

4.6 QTL mapping of standard deviation 

I wanted to investigate QTL that affected variation. I used the standard deviation of the 

mean hypocotyl length of each genotype as a measure of how consistent the growth of 

seedlings was. By using standard deviation as a trait in QTL mapping I found QTL that 

were associated with regulating growth. 

Results of analysis 

QTL analysis of the variation of the mapping population in standard conditions revealed 

one possible QTL. I mapped the standard deviation of the mean hypocotyl length of 20 

individuals from each of 89 genotypes in standard conditions using the method in 

section 2.6. Figure 12 displays the QTL map obtained from this analysis. I found one 

peak located on chromosome 5 at position 96.52 with a LOD score of 2.90. This puts it 

close to the significance threshold (2.99) but not crossing it. This peak is a possible QTL 

for growth under control conditions. 

Validity of test 

Variation: 

Figure 13 displays the standard deviation of the mean hypocotyl length of each 

genotype in my mapping population in standard conditions. 
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Distribution: 

Figure 14 displays the distribution of the standard deviation of the mean hypocotyl 

length in standard conditions. 

Shapiro-Wilks: W = 0.978, p = 0.144 

See section 2.7 for a full explanation of these statistics.  
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Figure 12: QTL map of the standard deviation of mean hypocotyl length in standard 

conditions using the multiple-imputation method. The dotted line indicates the 20% 

significance threshold. 
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Figure 14: Histogram of the standard deviation of hypocotyl length of the full 

mapping population in standard conditions. 
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Discussion 

The possible QTL on chromosome 5 is QTL-A, which I found in several other QTL maps 

(sections 4.2 and 4.3). A peak at this position appeared when growth of the whole 

population and mutant population was mapped under control conditions and with 

exogenous auxin. Two-QTL scans of the same populations revealed that this QTL exerts 

its effect through epistatic interactions with several other QTL. The positions are close 

enough for me to assume that these peaks all represent QTL-A. I concluded that QTL-A 

is a gene close to the hps90.2-3 mutation and may interact with other heat shock 

proteins (section 4.2). The QTL in this new analysis of standard deviation is close enough 

to QTL-A for me to assume that they represent the same gene or genes. This new 

evidence suggests two things to me.  Firstly, the QTL affects variation as well as growth. 

Secondly, its effect on variation may be similarly reliant on epistatic interactions, as the 

peak does not quite reach statistical significance in a way similar to when I mapped 

growth for the whole population. It is clear that QTL-A plays a significant role in growth 

and development. 

 

4.7 QTL for standard deviation in wild-type population only 

Results of analysis 

As explained previously (section 4.4), I examined the effect of the hsp90.2-3 mutation 

on standard deviation by performing QTL analysis on the wild-type and mutant 

populations separately. Each population contained 44 genotypes. I mapped the 

standard deviation of the mean hypocotyl length of 20 individuals from each genotype 

in the wild-type population in standard conditions using the method in section 2.6. I 

also mapped the log-transformed standard deviation of mean hypocotyl length in the 

mutant population. Figure 15 displays the QTL maps obtained from this analysis layered 

over one another for easy comparison. I found no significant peaks in the mutant 

population. I found one peak with a high LOD score in the wild-type population on 
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chromosome 2 at position 35.51 with a LOD score of 2.296. This peak is a possible QTL 

for variation in standard conditions in the wild-type population. 

Validity of test 

Wild-type population 

Variation: 

Figure 16B displays the standard deviation of the mean hypocotyl length of each 

genotype in the wild-type population in standard conditions. 

Distribution: 

Figure 16A displays the distribution of standard deviation of the mean hypocotyl length 

in standard conditions in the wild-type population. 

Shapiro-Wilks: W = 0.981, p = 0.686 

Mutant population 

Distribution: 

Figure 17 displays the distribution of the standard deviation of the mean hypocotyl 

length in standard conditions in the mutant population. 

Shapiro-Wilks: W = 0.934, p = 0.014 

These data were not normally distributed so were not suitable for QTL mapping. I 

transformed the mutant population data using log(x +1). 

Figure 18A displays the distribution of the transformed data. 

Shapiro-Wilks: W = 0.948, p = 0.048 

Variation: 

Figure 18B displays the log-transformed standard deviation of the mean hypocotyl 

length of each genotype in the mutant population in standard conditions. 
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See section 2.7 for a full explanation of these statistics. 

 

 

  

Figure 15: QTL map of the standard deviation of mean hypocotyl length in standard 

conditions using the multiple-imputation method. The solid line shows LOD scores of 

the wild-type population. The horizontal solid line shows the 20% significance 

threshold for the wild-type population. The dotted line shows LOD scores of the 

hsp90.2-3 mutant population. The horizontal dotted line shows the 20% significance 

threshold for the mutant population. 
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Figure 16: Validity of wild-type population standard deviation of hypocotyl length 

data for QTL mapping. 

A: Histogram of standard deviation of hypocotyl length of each genotype in the 

population. 

B: Standard deviation of hypocotyl length of each genotype in the population. 

 

A 

B 
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Figure 17: Histogram of the standard deviation of hypocotyl length in the hsp90.2-3 

mutant population in standard conditions. 
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Figure 18: Validity of hps90.2-3 mutant population log-transformed standard 

deviation of hypocotyl length data for QTL mapping. 

A: Histogram of log-transformed standard deviation of hypocotyl length of each 

genotype in the population. 

B: Standard deviation of log-transformed hypocotyl length of each genotype in the 

population. 

A 

B 
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Discussion 

There are several possible explanations for why the peak on chromosome 2 in the wild-

type population falls short of statistical significance. These explanations are discussed in 

detail in section 4.4. In short, there are three possibilities for this population. They are a 

lack of statistical power caused by a relatively small population size, many QTL of small 

effect which could be detected by a two-QTL scan, or a false positive result. All of these 

explanations also apply to the mutant population. If the possible QTL in the wild-type 

population is a genuine result, it appears to be a QTL unique to this trait, condition and 

population, as it is not seen in any other QTL map. Although it is impossible to be sure, 

this position on chromosome 2 may be a QTL for variation in the wild-type population. 

 

4.8 Summary of results 

The most interesting result presented in this chapter is the QTL on chromosome 5 near 

position 95, which I have called QTL-A. It is clear through mapping hypocotyl length and 

standard deviation in the full mapping population that QTL-A is important for both 

growth and variation. Further discussion of QTL-A can be found in chapter 7. 

Two-QTL scans revealed that QTL-A interacts with several others. These other QTL were 

only detected in a full model that allowed QTL to truly interact, as opposed to an 

additive model where QTL simply co-exist. QTL-A appears to play a major role in growth 

and a more minor role in regulating variation, as seen by its reduced LOD score when 

standard deviation was mapped. Any effect QTL-A has on variation appears to be 

through its own action alone, as two-QTL scans returned negative results. It is unknown 

what may be under QTL-A, but its role in growth is clear. 
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Chapter 5: QTL analysis of growth and variation with 

exogenous auxin 

 

5.1 Overview 

This chapter presents the results of my analysis of growth and variation in the presence 

of exogenous auxin, specifically the non-polar synthetic auxin picloram. I looked for QTL 

for two traits, hypocotyl length and the standard deviation of hypocotyl length, in three 

mapping populations: the full mapping population, the wild-type half of the mapping 

population and the half of the mapping population containing the hsp90.2-3 mutation. I 

performed single-QTL and two-QTL scans to search for QTL that act on their own and 

those that act through epistatic interactions. I also analysed a third trait, the change in 

hypocotyl length found by comparing hypocotyl length with exogenous auxin to the 

same genotype in standard conditions. I found several QTL using these methods. Some 

were not found in any other QTL map and may be unique to growth with exogenous 

auxin. I found some QTL that have a role in regulating variation in the presence of 

exogenous auxin. The role of QTL-A, found as a growth QTL in standard conditions, is 

supported and made more detailed by the results in this chapter. The results presented 

in this chapter build on the results presented previously and identify QTL important to 

growth with exogenous auxin. 

 

5.2 QTL mapping of hypocotyl length with exogenous auxin 

I wanted to investigate QTL for auxin-induced growth. Exogenous auxin increases 

hypocotyl length at certain concentrations (Evans 1985, Collett et al. 2000). I measured 

the hypocotyl length of each genotype in my mapping population with 3μM picloram 

added to the growth medium using the method in section 2.5. The full data are 

presented in appendix 4. By using hypocotyl length as a trait in QTL mapping I found 

QTL that control seedling growth when exogenous auxin is present. 
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Results of analysis 

QTL mapping of growth with exogenous auxin revealed one QTL. I mapped the mean 

hypocotyl length of 20 individuals from 85 genotypes grown on media containing 3μM 

picloram using the method in section 2.6. Figure 19 displays the QTL map obtained from 

this analysis. I found one significant peak on chromosome 5 at position 95.3 with a LOD 

score of 2.85. This peak is a possible QTL for growth with exogenous auxin. 

Validity of test 

Variation: 

Figure 20 displays the mean hypocotyl length of each genotype in my mapping 

population when grown with exogenous auxin. 

ANOVA: F = 22.82, d.f = 8, 1644, p = <2e-16 

Distribution: 

Figure 21 displays the distribution of mean hypocotyl length when grown with 

exogenous auxin. 

Shapiro-Wilks: W = 0.988, p = 0.587 

See section 2.7 for a full explanation of these statistics. 
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Figure 19: QTL map of mean hypocotyl length with exogenous auxin using the 

multiple-imputation method. The dotted line indicates the 20% significance 

threshold. 
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Figure 21: Histogram of mean hypocotyl length in the full mapping population with 

3µM picloram media. 
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Discussion 

The significant peak on chromosome 5 at position 95.3 is shared between several of my 

QTL maps. I previously called it QTL-A. As well as this map, QTL-A is present in the QTL 

maps for growth in standard conditions (although it does not quite pass the significance 

threshold) and growth in standard conditions in the mutant half of the population. Two-

QTL scans of growth in standard conditions revealed that QTL-A interacts with several 

other QTL. QTL-A appeared to have a small effect on variation as well as growth (section 

4.). I previously hypothesised that QTL-A was a general growth QTL which exerted its 

effect through epistatic interactions. This new evidence suggests that the effect of QTL-

A can be enhanced using exogenous auxin. QTL-A may be part of an auxin signalling 

pathway. It is also possible that one of the QTL that QTL-A can interact with is part of an 

auxin signalling pathway. This could be further investigated by a two-QTL scan. If QTL-A 

is part of an auxin signalling pathway, I would expect to see it not only in the results of 

this chapter, but also in the QTL maps for growth at warm temperatures, as warmth 

naturally increases auxin levels within the plant (Stavang et al. 2009, Wigge 2013). The 

role of QTL-A is complex and involves many different genes, but it appears to be linked 

to an auxin signalling pathway in some way. 

 

5.3 Two-QTL scan of hypocotyl length with exogenous auxin 

As discussed previously (section 4.8) single-QTL mapping rarely reveals every significant 

QTL, making further analysis using two-QTL scans necessary. This is especially important 

in the case of QTL-A, which has already been shown to interact with several other QTL 

in standard conditions. I analysed my data using a two-dimensional, two-QTL scan to 

investigate interactions between QTL-A and other loci in the presence of exogenous 

auxin. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data using the 

method in section 2.6. Figure 22 displays the results of this analysis. The high LODfv1 
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scores in the lower right triangle show evidence for pairs of QTL if interaction is allowed, 

particularly on chromosome 2. The high LODi scores in the upper left triangle show clear 

evidence for epistatic interactions rather than an additive relationship. 

I found four pairs of QTL with LOD scores high enough to be considered statistically 

significant. One pair is on chromosome 1 position 1.38 and chromosome 1 position 

9.38. These positions can only be considered QTL in an additive model. The second pair 

is on chromosome 1 position 44.4 and chromosome 2 position 36.5. These positions can 

only be considered QTL in a model that allows interaction. The third pair is on 

chromosome 1 position 43.4 and chromosome 3 position 35.4. These positions can only 

be considered QTL in a model that allows interaction. The final pair is on chromosome 2 

position 35.5 and chromosome 3 position 36.4. These positions can only be considered 

QTL in a model that allows interaction. All of these positions are likely to be pairs of QTL 

which only show their effect when they are allowed to interact with each other. 
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Figure 22: LOD scores from a two-QTL scan using the multiple-imputation method of 

mean hypocotyl length with exogenous auxin. The lower right triangle contains 

LODfv1 scores showing the probability of one half of a pair of epistatic QTL existing at 

that position. The right side of the key indicates the magnitude of LODfv1 scores. The 

upper left triangle contains LODi scores showing the probability of synergistic 

interactions as opposed to an additive relationship. The left side of the key indicates 

the magnitude of LODi scores. 
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Discussion 

Most of the QTL found in this analysis seem to be unique to growth with exogenous 

auxin. The only position seen in another analysis is chromosome 1 position 44.4, which 

was part of an epistatic pair for growth in standard conditions. The QTL found in this 

analysis are likely to be genes with a role in auxin production or signal transduction, as 

changes to these genes would result in variation in hypocotyl length with exogenous 

auxin. 

One notable absence is QTL-A. Since it seemed to have an effect on growth with 

exogenous auxin, and in standard conditions it exerted its effect through epistatic 

interactions, I expected QTL-A to be part of at least one epistatic pair in this analysis. 

This unexpected result could be due to three things. Firstly, QTL-A could have a strong 

effect on growth through its own action alone. Secondly, the effect of the genes QTL-A 

interacts with could be much smaller with exogenous auxin, while the action of other 

genes is enhanced. This would lead to the pairs including QTL-A not being detected by 

the analysis while others were. Finally, the genes QTL-A was previously interacting with 

could now be interacting with other QTL, as seems to be the case with the QTL on 

chromosome 1 position 44.4. In reality, all three elements in combination probably 

produced this result. QTL-A must still have a significant effect on its own or it would not 

have been detected in the single-QTL scan, while the change in conditions could have 

altered the action of other genes. 

 

5.4 QTL for growth with exogenous auxin in mutant population 

only 

Results of analysis 

As explained previously (section 4.4), I examined the effect of the hsp90.2-3 mutation 

on growth in the presence of exogenous auxin by mapping the wild-type and mutant 

populations separately. Each population contained 44 genotypes. I mapped the mean 
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hypocotyl length of 20 individuals from each genotype grown on media containing 3μM 

picloram using the method in section 2.6. Figure 23 displays the QTL maps obtained 

from this analysis layered over one another for easy comparison. I found no significant 

QTL in the wild-type population. I found two regions of high LOD score in the mutant 

population that did not quite cross the significance threshold. The peaks were both on 

chromosome 5. One is at position 0.52 and has a LOD score of 2.26. The other is at 

position 95.28 with a LOD score of 2.24. The significance threshold in this population is 

a LOD score of 2.39. It is possible that the two peaks on chromosome 5 are QTL with a 

role in growth in the presence of exogenous auxin. 
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Figure 23: QTL map of mean hypocotyl length in wild-type and mutant populations 

with exogenous auxin using the multiple-imputation method. The solid line shows 

LOD scores of the wild-type population. The horizontal solid line shows the 20% 

significance threshold for the wild-type population. The dotted line shows LOD 

scores of the hsp90.2-3 mutant population. The horizontal dotted line shows the 

20% significance threshold for the mutant population. 
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Validity of test 

Wild-type population 

Variation: 

Figure 24A displays the mean hypocotyl length of each genotype in the wild-type 

population with exogenous auxin. 

ANOVA: F = 23.05, d.f = 43, 818, p = <2e-16 

Distribution: 

Figure 24B displays the distribution of mean hypocotyl length in the wild-type 

population with exogenous auxin. 

Shapiro-Wilks: W = 0.961, p = 0.140 

Mutant population 

Variation: 

Figure 25A displays the mean hypocotyl length of each genotype in the mutant 

population with exogenous auxin. 

ANOVA: F = 22.83, d.f = 43, 826, p = <2e-16 

Distribution: 

Figure 25B displays the distribution of mean hypocotyl length in the mutant population 

with exogenous auxin. 

Shapiro-Wilks: W = 0.968, p = 0.265 

See section 2.7 for a full explanation of these statistics. 
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Figure 24: Validity of wild-type population hypocotyl length data with 3µM picloram 

media for QTL mapping. 

A: Mean hypocotyl length of each genotype in the population. Error bars show 1 

standard deviation. 

B: Histogram of mean hypocotyl length of each genotype in the population. 

A 

B 
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Figure 25: Validity of hsp90.2-3 mutant population hypocotyl length data with 3µM 

picloram media for QTL mapping. 

A: Mean hypocotyl length of each genotype in the population. Error bars show 1 

standard deviation. 

B: Histogram of mean hypocotyl length of each genotype in the population. 

A 

B 
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Discussion 

Both regions of high LOD score in the mutant population are similar to the QTL I found 

when I mapped the whole population under control conditions. The peak at position 

95.28 is QTL-A, which has been seen in several other maps. This result is similar to QTL 

map of hypocotyl length in standard conditions. It was also the case there that QTL-A 

appeared in single-QTL scans of the full population and the mutant population, but not 

the wild-type population. QTL-A appears to have similar effects with exogenous auxin as 

it did in standard conditions. 

The region of high LOD score at position 0.52 is close to the QTL I found at position 3.17 

in the QTL map for growth under control conditions. I think that these two peaks are 

too far apart to consider that they may indicate the same candidate gene. I think it is 

more likely that the peak at position 0.52 is a new QTL not yet seen in the QTL maps of 

any other condition. 

It is worth noting that there have been no QTL in the wild-type population under any 

conditions. I previously laid out several explanations for this (section 4.4). The data used 

in this particular analysis met all the assumptions of the test, removing the possibility of 

the test failing due to it being invalid. It is unlikely that there is a genuine lack of QTL as I 

tested for variation in growth linked to genotype and found a positive result, but it 

should still be considered. QTL of small effect or those that work through epistatic 

interactions may be detectable using a two-QTL scan. I performed a two-QTL scan using 

the same data and received negative results. I think it is most likely that cryptic variation 

in the wild-type population is being hidden by heat shock proteins. If cryptic QTL are 

being hidden by the action of heat shock proteins, it is unlikely that any QTL scan of the 

wild-type population could detect them. The absence of QTL in the wild-type population 

deserves further research, particularly into what effect heat shock proteins are having 

on the population. 
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5.5 QTL mapping of standard deviation with exogenous auxin 

I wanted to investigate QTL that affected variation. I used the standard deviation of the 

mean hypocotyl length of each genotype as a measure of how consistent the growth of 

seedlings was. By using standard deviation as a trait in QTL mapping I found QTL that 

are involved in regulating growth with exogenous auxin. 

Results of analysis 

QTL mapping of standard deviation revealed one QTL. I calculated the standard 

deviation of the mean hypocotyl length of 20 individuals from 85 genotypes grown on 

media containing 3μM picloram. I created a QTL map using standard deviation as a trait 

using the method in section 2.6. Figure 26 displays the QTL map obtained from this 

analysis. There was one significant peak on chromosome 5 at position 20.5 with a LOD 

score of 4.72. This peak could be a compound peak made up of lots of smaller peaks; 

the highest LOD score occurs at position 20.5, but the entire region from position 0.52 

to position 22.52 has a LOD score well above the significance threshold. Given the width 

of the peak, it is likely that multiple QTL for variation in the presence of exogenous 

auxin are within this region. 
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Figure 26: QTL map of the standard deviation of mean hypocotyl length with 

exogenous auxin using the multiple-imputation method. The dotted line indicates 

the 20% significance threshold. 
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Validity of test 

Variation: 

Figure 27 displays the standard deviation of the mean hypocotyl length of each 

genotype in my mapping population when grown with exogenous auxin. 

Distribution: 

Figure 28 displays the distribution of the standard deviation of the mean hypocotyl 

length when grown with exogenous auxin. 

Shapiro-Wilks: W = 0.979, p = 0.198 

See section 2.7 for a full explanation of these statistics.  
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Figure 28: Histogram of the standard deviation of hypocotyl length in the full 

mapping population with 3µM media. 
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Discussion 

The QTL, or multiple QTL, I found in this analysis were similar to those found in other 

maps using different traits. I found possible QTL within this region of chromosome 5 

when I mapped growth in standard conditions (position 3.17) and growth of the mutant 

population in the presence of exogenous auxin (position 0.52). There was also a QTL 

that is part of an epistatic pair for growth in standard conditions in this region (position 

14.5). It is possible that this region of the genome contains multiple genes that affect 

growth and variation. I think it is very likely that this peak is a compound peak, 

representing several different QTL. It is difficult to know whether the QTL mentioned 

previously could have an effect on variation, or the peak could represent new QTL not 

seen in any other analysis. It is important to note that the point of highest LOD score 

occurs far away from the position of any QTL seen previously. In previous research that 

cloned and isolated QTL the genetic bases that affected the trait have always occurred 

very close to the point of maximum LOD score (Price 2006). I think it is most likely that 

this peak represents a combination of new QTL unique to this trait and QTL I found in 

other QTL maps. 

 

5.6 Two-QTL scan of standard deviation with exogenous auxin 

My single-QTL analysis did not reveal all significant QTL in my mapping population. As 

discussed previously (section 4.3) single-QTL mapping rarely reveals every significant 

QTL, making further analysis using two-QTL scans necessary. I analysed my data this way 

to reveal QTL with epistatic interactions that were invisible to a single-QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data using the 

method in section 2.6. Figure 29 displays the results of this analysis. The high LODfv1 

scores in the lower right triangle show evidence for pairs of QTL if interaction is allowed, 

particularly on chromosomes 1, 4 and 5. The high LODi scores in the upper left triangle 

show clear evidence for epistatic interactions rather than an additive relationship. 
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I found four pairs of QTL with LOD scores high enough to be considered statistically 

significant. The first pair is on chromosome 1 position 45.4 and chromosome 1 position 

95.4. These positions can only be considered QTL in a model that allows interaction. The 

second pair is on chromosome 3 position 63.4 and chromosome 5 position 21.5. There 

is evidence for these QTL in both an additive model and a full model, but LOD scores are 

maximized by allowing interaction. The third pair is on chromosome 4 position 42.5 and 

chromosome 5 position 21.5. These positions can only be considered QTL in a model 

that allows interaction. The final pair is on chromosome 5 position 20.5 and 

chromosome 5 position 60.5. There is evidence for these QTL in both an additive model 

and a full model, but LOD scores are maximized by allowing interaction. All of these 

positions are likely to be pairs of QTL which only show their effect when they are 

allowed to interact with each other. 
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Figure 29: LOD scores from a two-QTL scan using the multiple-imputation method of 

the standard deviation of mean hypocotyl length with exogenous auxin. The lower 

right triangle contains LODfv1 scores showing the probability of one half of a pair of 

epistatic QTL existing at that position. The right side of the key indicates the 

magnitude of LODfv1 scores. The upper left triangle contains LODi scores showing the 

probability of synergistic interactions as opposed to an additive relationship. The left 

side of the key indicates the magnitude of LODi scores. 
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Discussion 

There are some similarities between the pairs of QTL found in this analysis and the QTL 

found in the single-QTL scan. The QTL in the single-QTL scan is on chromosome 5 

around position 21.5. The two-QTL scan found a QTL on chromosome 5 at position 20.5. 

The proximity of the two positions and the fact that a two-QTL merely estimates 

positions makes it likely that these are in fact the same QTL. This QTL easily falls within 

the region of high LOD score on chromosome 5 found in my single-QTL scan for 

variation with exogenous auxin. I previously hypothesised that this region of high LOD 

score was a compound peak containing multiple QTL. It now seems that at least one 

QTL under the peak has an epistatic interaction with at least one other QTL. The QTL it 

interacts with seem to be unique to affecting variation through exogenous auxin. They 

could be elements of an auxin signal transduction pathway or a growth regulatory 

pathway that can be altered by the action of auxin. These unique QTL build up the 

picture of interacting genes impacting growth and development. 

 

5.7 QTL for standard deviation in wild-type and mutant populations 

Results of analysis 

As explained previously (section 4.4), I investigated the effect of the hsp90.2-3 mutation 

on variation in the presence of exogenous auxin by mapping the wild-type and mutant 

populations separately. Each population contained 44 genotypes. I mapped the 

standard deviation of the mean hypocotyl length of 20 individuals from each genotype 

grown on media containing 3μM picloram using the method in section 2.6. Figure 30 

displays the QTL maps obtained from this analysis layered over one another for easy 

comparison. The wild-type population contains a region of high LOD score on 

chromosome 5 from position 0.52 to position 20.52. The width of this region and the 

pattern of LOD scores within it makes me believe that this is a compound peak 

composed of many smaller peaks. The mutant population contains a single peak within 

the same region, on chromosome 5 at position 14.5. It is possible that these regions of 
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high LOD score on chromosome 5 are QTL with a role in variation in the presence of 

exogenous auxin. 

Validity of test 

Wild-type population 

Variation: 

Figure 31A displays the standard deviation of the mean hypocotyl length of each 

genotype in the wild-type population with exogenous auxin. 

Distribution: 

Figure 31B displays the distribution of the standard deviation of the mean hypocotyl 

length in the wild-type population with exogenous auxin. 

Shapiro-Wilks: W = 0.983, p = 0.769 

Mutant population 

Variation: 

Figure 32A displays the standard deviation of the mean hypocotyl length of each 

genotype in the mutant population with exogenous auxin. 

Distribution: 

Figure 32B displays the distribution of the standard deviation of the mean hypocotyl 

length in the mutant population with exogenous auxin. 

Shapiro-Wilks: W = 0.955, p = 0.099 

See section 2.7 for a full explanation of these statistics. 
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Figure 30: QTL map of the standard deviation of mean hypocotyl length in wild-type 

and mutant populations with exogenous auxin using the multiple-imputation 

method. The solid line shows LOD scores of the wild-type population. The horizontal 

solid line shows the 20% significance threshold for the wild-type population. The 

dotted line shows LOD scores of the hsp90.2-3 mutant population. The horizontal 

dotted line shows the 20% significance threshold for the mutant population. 
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Figure 31: Validity of wild-type population standard deviation of hypocotyl length 

data with 3µM picloram media for QTL mapping. 

A: Standard deviation of hypocotyl length of each genotype in the population. 

B: Histogram of standard deviation of hypocotyl length of each genotype in the 

population. 

A 

B 
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Figure 32: Validity of hsp90.2-3 mutant population standard deviation of hypocotyl 

length data with 3µM picloram media for QTL mapping. 

A: Standard deviation of hypocotyl length of each genotype in the population. 

B: Histogram of standard deviation of hypocotyl length of each genotype in the 

population. 

A 

B 
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Discussion 

Although both populations have regions of high LOD scores, the peaks in both 

populations are not statistically significant. The reasons why a QTL may not be 

statistically significant are discussed in section 4.4. In the case of the mutant population, 

the lack of significance could be due to the unsuitability of the data for QTL analysis. I 

concluded that the data are approximately normally distributed, but since the p-value 

comes close to my chosen significance threshold it could easily be argued that my data 

are unsuitable for the QTL mapping model I used. However, I think that both peaks 

represent QTL for variation with exogenous auxin and the relatively small population 

size and the low statistical power it caused are the reason for the low LOD scores. 

The peaks in both populations fall within the region of high LOD score found when 

standard deviation in the whole population was mapped. This region contains QTL that 

were found in other QTL maps. I previously concluded that the compound peak in the 

standard deviation map represented several QTL and that some of them could be QTL 

from the other maps. These new results add more detail. The peak in the wild-type 

population is likely a compound peak – the pattern of high and low LOD scores is clear. 

The peak in the mutant population could be several QTL, but looking at the LOD scores I 

think it is more likely to only be one QTL. I think that the QTL from both the wild-type 

and mutant populations were under the single wide peak in the standard deviation 

map. However, the position of the highest LOD scores makes me think that they are not 

the same QTL as were found when growth was mapped. These results have built up a 

complex picture of several QTL important to growth and variation on chromosome 5. 

 

5.8 Two-QTL scan of standard deviation with exogenous auxin in 

mutant population 

My single-QTL analysis did not reveal all significant QTL in my mapping population. As 

explained previously (section 4.3) single-QTL mapping rarely reveals every significant 
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QTL, making further analysis using two-QTL scans necessary. I analysed my data this way 

to reveal QTL with epistatic interactions that were invisible to a single-QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data using the 

method in section 2.6. I found no significant QTL in the wild-type population. Figure 33 

displays the results of the analysis of the hsp90.2-3 mutant population. The high LODfv1 

scores in the lower right triangle show evidence for pairs of QTL if interaction is allowed, 

particularly on chromosome 5. The high LODi scores in the upper left triangle show clear 

evidence for epistatic interactions rather than an additive relationship. 

I found two pairs of QTL with LOD scores high enough to be considered statistically 

significant in the mutant population. One pair is on chromosome 3 position 67.3 and 

chromosome 5 position 21.5. These positions can only be considered QTL in a model 

that allows interaction. The other pair is on chromosome 5 position 21.5 and 

chromosome 5 position 58.5. These positions can only be considered QTL in a model 

that allows interaction. All of these positions are likely to be pairs of QTL which only 

show their effect when they are allowed to interact with each other. 
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Figure 33: LOD scores from a two-QTL scan of standard deviation with 3µM picloram 

in a population containing the hsp90.2-3 mutation using the multiple-imputation 

method. The lower right triangle contains LODfv1 scores showing the probability of 

one half of a pair of epistatic QTL existing at that position. The right side of the key 

indicates the magnitude of LODfv1 scores. The upper left triangle contains LODi 

scores showing the probability of synergistic interactions as opposed to an additive 

relationship. The left side of the key indicates the magnitude of LODi scores. 
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Discussion 

All of the QTL found in this analysis are shared with other QTL maps, specifically the 

two-QTL analysis of variation with exogenous auxin in the whole mapping population. 

Additionally, the QTL on chromosome 5 at position 21.5 looks similar to the QTL was 

found in the mutant population when standard deviation with exogenous auxin was 

mapped. Although the positions are not exactly the same, two-QTL scan positions are 

only estimates, and the two QTL look reasonable close together. It is not unreasonable 

to think that the same gene may be responsible, but in my opinion the positions are too 

far apart to argue this case strongly. I think that the QTL found in this analysis is not the 

same as any QTL found previously. It is clear that the QTL found in this analysis have an 

effect on variation in the presence of exogenous auxin. 

The lack of QTL in the wild-type population in the two-QTL scan is an interesting result. 

There was a region of high LOD score in the single-QTL scan, although it was not a 

statistically significant QTL. Because of the lack of QTL in the two-QTL scan, it appears 

that the gene under this peak acts independently of any other QTL. It is also possible 

that the peak in the single-QTL scan was a false positive and there were no QTL in this 

population for this trait. However, the data was suitable for this analysis and there was 

variation in the trait. I think it is more likely that the peak did not reach statistical 

significance due to a small sample size. Possible reasons for negative results are 

discussed in more detail in section 4.4. This result makes me think that there is only one 

QTL for variation in the wild-type population. 

 

5.9 QTL mapping of change in growth due to auxin 

When mapping growth in two different conditions, some QTL could be QTL for general 

growth and not related to the effect of the condition. I wanted to investigate QTL 

specific to an increase in growth with added auxin. To do this I calculated the change in 

hypocotyl length due to auxin using the method described in section 2.6 and used this 

value as a trait in QTL mapping. Using this method, I found QTL that have a role in 

changing growth in response to increased auxin levels, rather than general growth QTL. 
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Results of analysis 

I calculated the difference in height due to added auxin and used this value as a trait in 

QTL mapping. I mapped the change in mean hypocotyl length due to auxin of 20 

individuals from 85 genotypes at using the method in section 2.6. Figure 34 displays the 

QTL map obtained from this analysis. I found one significant peak on chromosome 5 at 

position 95.28 with a LOD score of 4.48. This peak is a possible QTL for the change in 

growth due to exogenous auxin. 

Validity of test 

Distribution: 

Figure 35A displays the distribution of the change in mean hypocotyl length due to 

auxin. 

Shapiro-Wilks: W = 0.857, p = 9.977e-08 

It is easy to see visually that the data were not normally distributed, and this is 

confirmed statistically. This distribution is due to some anomalous results in which 

seedlings grown with exogenous auxin were shorter than the same genotype grown in 

control conditions. On examining my raw data more closely, I found that certain 

genotypes had an unusually large number of sick and dead seedlings or seedlings that 

had failed to germinate, and the living seedlings were all unusually short. This could be 

due to contamination on the agar plate. I decided to exclude these anomalous results 

from my analysis. 

The distribution of the corrected data are displayed in figure 35B. 

Shapiro-Wilks: W = 0.975, p = 0.101 

Variation: 

Figure 36 displays the change in mean hypocotyl length due to auxin of each genotype 

in my mapping population. The data used for this figure does not include any anomalies. 
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ANOVA: F = 10.67, d.f = 81, 1502, p = <2e-16 

See section 2.7 for a full explanation of these statistics. 

 

  

Figure 34: QTL map of the difference in mean hypocotyl length with exogenous 

auxin compared to control conditions using the multiple-imputation method. The 

dotted line indicates the 20% significance threshold. 
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Figure 35: Distribution of the change in mean hypocotyl length due to exogenous 

auxin. 

A: Distribution of all genotypes in the mapping population. 

B: Distribution after anomalous results are removed from the data. 

A 

B 
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Discussion 

The QTL found in this analysis is QTL-A, seen in several other QTL maps. It is surprising 

to see this results in an analysis designed to eliminate general growth QTL. Although 

QTL-A had an effect on growth with exogenous auxin, I assumed that its action was not 

specific to the condition because of its effect on growth in standard conditions. It is 

possible that this QTL not only affects growth generally, but affects the way growth 

changes under various conditions. Another possibility is that QTL-A interacts with other 

QTL specific to auxin-induced growth. The two-QTL scan of growth with exogenous 

auxin did not reveal any epistatic interactions involving QTL-A, but by focusing only on 

QTL that result in a change in growth new QTL may be revealed. This interesting result 

needs more investigation before conclusions can be drawn. 

 

5.10 Two-QTL scan of change in growth due to auxin 

My single-QTL analysis did not reveal all significant QTL in my mapping population. As 

discussed previously (section 4.3) single-QTL mapping rarely reveals every significant 

QTL, making further analysis using two-QTL scans necessary. I analysed my data this way 

to reveal QTL with epistatic interactions that were invisible to a single-QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data using the 

method in section 2.6. Figure 37 displays the results of this analysis. The high LODfv1 

scores in the lower right triangle show evidence for pairs of QTL if interaction is allowed, 

particularly on chromosome 1. The high LODi scores in the upper left triangle show clear 

evidence for epistatic interactions rather than an additive relationship. 

I found two pairs of QTL with LOD scores high enough to be considered statistically 

significant. One pair is on chromosome 1 position 1.38 and chromosome 1 position 

8.38. There is some evidence for these QTL in both an additive and a full model, but 

LOD scores are maximized in the additive model. The other pair is on chromosome 1 
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position 100.38 and chromosome 4 position 1.47. There is some evidence for these QTL 

in both an additive model and a full model, but LOD scores are maximized in the 

additive model. All of these positions are likely to be pairs of QTL which only show their 

effect when they are allowed to interact with each other. 
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Figure 37: LOD scores from a two-QTL scan using the multiple-imputation method. 

The trait used was the difference in mean hypocotyl length with exogenous auxin 

compared to control conditions. The lower right triangle contains LODfv1 scores 

showing the probability of one half of a pair of epistatic QTL existing at that position. 

The right side of the key indicates the magnitude of LODfv1 scores. The upper left 

triangle contains LODi scores showing the probability of synergistic interactions as 

opposed to an additive relationship. The left side of the key indicates the magnitude 

of LODi scores. 
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Discussion 

There are some similarities and some differences between this analysis and others. 

Firstly, it should be noted that the QTL-A does not appear in the two-QTL scan despite 

being significant in the single-QTL scan. This means that QTL-A is likely to drive a change 

in growth due to increased auxin levels through its own action. One of the pairs of QTL 

seen in the two-QTL scan (chromosome 1 position 1.38 and chromosome 1 position 

8.38) is also seen in the two-QTL scan for hypocotyl length with exogenous auxin 

(section 5.3). These QTL appear to be genes specific to auxin-induced growth, but only 

have an effect when both are present. The other pair from the two-QTL scan is unique 

to that analysis. These similarities and differences build up a picture of the roles of each 

QTL in growth. 

 

5.11 Summary of results 

The results in this chapter provide further evidence of the role of QTL-A. QTL-A still 

impacts growth when auxin levels are increased but no epistatic interactions ca be 

detected. Further discussion about QTL-A can be found in chapter 7. 

There appears to be at least one, and probably multiple, QTL regulating variation in 

hypocotyl length in the presence of exogenous auxin. The QTL found when standard 

deviation was mapped was easily wide enough to assume that multiple QTL lie under it. 

It is likely that multiple genes work to regulate variation in the presence of exogenous 

auxin. 

  



105 

 

Chapter 6: QTL analysis of growth and variation at warm 

temperatures 

 

6.1 Overview 

This chapter presents the results of my analysis of growth and variation at warm 

temperatures. I examined the mapping population at 27⁰C, the upper limit of the range 

of temperatures Arabidopsis thaliana can grow at without obvious damage. I looked for 

QTL for hypocotyl length in three mapping populations: the full mapping population, 

the wild-type half of the mapping population and the half of the mapping population 

containing the hsp90.2-3 mutation. I performed single-QTL and two-QTL scans to search 

for QTL that act on their own and those that act through epistatic interactions. I also 

analysed the change in hypocotyl length by comparing hypocotyl length at warm 

temperatures to the same genotype in standard conditions. I found several QTL using 

these methods, including QTL-A which is involved in growth in other conditions, and 

several QTL which appear to be unique to growth at warm temperatures. The results 

presented in this chapter provide an idea of what regions of the genome are important 

in regulating growth at warm temperatures. 

 

6.2 QTL mapping of hypocotyl length at warm temperatures 

I wanted to investigate QTL for growth at warm temperatures. I used hypocotyl length 

as a convenient way to measure growth in each genotype in my mapping population. I 

measured the hypocotyl length of each genotype in my mapping population at 27°C 

using the method in section 2.5. The full data can be seen in appendix 5. By using 

hypocotyl length as a trait in QTL mapping, I found QTL that are important in increasing 

or decreasing the growth of a seedling at the upper limit of the range of temperatures 

that Arabidopsis thaliana can grow normally at. 
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Results of analysis 

QTL mapping of growth at warm temperatures detected two significant QTL. I mapped 

the mean hypocotyl length of 20 individuals from 85 genotypes at 27⁰C using the 

method in section 2.6. Figure 38 displays the QTL map obtained from this analysis. I 

found two significant QTL. One is on chromosome 1 at position 27.38 with a LOD score 

of 3.45. The other is on chromosome 4 at position 68.37 with a LOD score of 2.78. I 

concluded that these peaks are QTL for growth at warm temperatures. 

Validity of test 

Variation: 

Figure 39 displays the mean hypocotyl length of each genotype in my mapping 

population at 27⁰C. 

ANOVA: F = 17.82, d.f = 41, 767, p = <2e-16 

Distribution: 

Figure 40 displays the distribution of mean hypocotyl length at 27⁰C. 

Shapiro-Wilks: W = 0.987, p = 0.571 

See section 2.7 for a full explanation of these statistics. 
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Figure 38: QTL map of mean hypocotyl length at 27°C using the multiple-imputation 

method. The dotted line indicates the 20% significance threshold. 
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Figure 40: Histogram of mean hypocotyl length in the full mapping population at 

27°C. 
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Discussion 

Previous work makes it possible to suggest what genes might be under the peaks on the 

QTL map. A study on Arabidopsis growth at 27⁰C found a similar peak on chromosome 4 

and attributed it to the phytochrome PHYE (Box et al. 2015). Phytochromes have a role 

in perceiving temperature (Penfield 2008) and are key to thermomorphogenesis (Wigge 

2013, Quint et al. 2016). A change in a phytochrome gene could lead to variation in 

temperature sensitivity, which in turn would lead to variation in growth at warm 

temperatures. PHYE is not the only candidate gene for this QTL. It is possible that 

multiple genes lie under the peak; its jagged appearance means it could be a compound 

peak made up of several individual peaks. It is more difficult to propose candidate genes 

for the peak on chromosome 1. Although no conclusions can be drawn, I think it is likely 

that QTL I found are phytochrome genes or other genes with a role in temperature 

perception and signalling. 

 

6.3 Two-QTL scan of hypocotyl length at warm temperatures 

My single-QTL analysis did not detect every QTL relevant to growth at warm 

temperatures in my mapping population. As discussed previously (section 4.3) single-

QTL mapping rarely reveals every significant QTL, making further analysis using two-QTL 

scans necessary. I analysed my data this way to reveal QTL with epistatic interactions 

that were invisible to a single-QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data using the 

method in section 2.6. Figure 41 displays the results of this analysis. The high LODfv1 

scores in the lower right triangle show evidence for pairs of QTL if interaction is allowed, 

particularly on chromosomes 1 and 5. The high LODi scores in the upper left triangle 

show clear evidence for epistatic interactions rather than an additive relationship. 
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I found three pairs of QTL with LOD scores high enough to be considered statistically 

significant. One pair is on chromosome 1 position 37.4 and chromosome 1 position 

76.38. There is significant evidence for this pair of QTL in both a full model and an 

additive model. The second pair is on chromosome 1 position 41.4 and chromosome 5 

position 99.5. These positions can only be considered QTL in a model that allows 

interaction. The third pair is on chromosome 4 position 53.5 and chromosome 5 

position 6.52. These positions can only be considered QTL in a model that allows 

interaction. All of these positions are likely to be pairs of QTL which only show their 

effect when they are allowed to interact with each other. 
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Figure 41: LOD scores from a two-QTL scan using the multiple-imputation method of 

mean hypocotyl length at 27°C. The lower right triangle contains LODfv1 scores 

showing the probability of one half of a pair of epistatic QTL existing at that position. 

The right side of the key indicates the magnitude of LODfv1 scores.  The upper left 

triangle contains LODi scores showing the probability of synergistic interactions as 

opposed to an additive relationship. The left side of the key indicates the magnitude 

of LODi scores. 
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Discussion 

There are some key similarities between this two-QTL scan and other single-QTL scans. 

The first is the QTL on chromosome 5 at position 95.5, which I have called QTL-A. I 

found this QTL in several other QTL scans, including maps for growth in standard 

conditions with exogenous auxin. This new evidence supports my hypothesis that QTL-A 

is a QTL for general growth that has an enhanced effect when auxin levels are 

increased. The QTL that formed the other half of the pair, chromosome 1 position 41.4, 

was also significant in the two-QTL scan of growth in standard conditions interacting 

with its partner. This pair of QTL are likely to have a role in general growth and may be 

part of an auxin pathway. 

The other pairs of QTL found in this analysis involve QTL near to those found in the 

single-QTL scan for growth at 27⁰C. The positions are not exactly the same but since 

positions in a two-QTL scan are estimated, it could be argued that they represent the 

same gene. However, I think that the positions are too far apart to assume this, even 

knowing that they are an imperfect estimate. If the peaks do represent the same loci, 

both of the QTL found previously can have an increased effect by interacting with other 

QTL. 

 

6.4 QTL for growth at warm temperatures in mutant population 

only 

Results of analysis 

As explained previously (section 4.4), I examined the effect of the hsp90.2-3 mutation 

on growth in the presence of exogenous auxin by mapping the wild-type and mutant 

populations separately. Each population contained 42 genotypes. I mapped the average 

hypocotyl length of 20 individuals from each genotype at 27⁰C using the method in 

section 2.6. Figure 42 displays the QTL maps obtained from this analysis layered over 

one another for easy comparison. I found no significant peaks in the wild-type 
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population. I found two significant peaks in the mutant population. One is on 

chromosome 1 at position 27.38 with a LOD score of 2.99. The other is on chromosome 

4 at position 68.37 with a LOD score of 2.46. These peaks are possible QTL for growth at 

warm temperatures. 

Validity of test 

Wild-type population 

Variation: 

Figure 43A displays the mean hypocotyl length of each genotype in the wild-type 

population at 27⁰C. 

ANOVA: F = 14.53, d.f = 431, 776, p = <2e-16 

Distribution: 

Figure 43B displays the distribution of mean hypocotyl length in the wild-type 

population at 27⁰C. 

Shapiro-Wilks: W = 0.982, p = 0.727 

Mutant population 

Variation: 

Figure 44A displays the mean hypocotyl length of each genotype in the mutant 

population at 27⁰C. 

ANOVA: F = 17.82, d.f = 41, 767, p = <2e-16 

Distribution: 

Figure 44B displays the distribution of mean hypocotyl length in the mutant population 

at 27⁰C. 

Shapiro-Wilks: W = 0.980, p = 0.668 
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See section 2.7 for a full explanation of these statistics. 

  

Figure 42: QTL map of mean hypocotyl length in wild-type and mutant populations 

at 27°C using the multiple-imputation method. The solid line shows LOD scores of 

the wild-type population. The horizontal solid line shows the 20% significance 

threshold for the wild-type population. The dotted line shows LOD scores of the 

hsp90.2-3 mutant population. The horizontal dotted line shows the 20% significance 

threshold for the mutant population. 
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Figure 43: Validity of wild-type population hypocotyl length data at 27°C for QTL 

mapping. 

A: Mean hypocotyl length of each genotype in the population. Error bars show 1 

standard deviation. 

B: Histogram of mean hypocotyl length of each genotype in the population. 

A 

B 
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Figure 44: Validity of hsp90.2-3 mutant population hypocotyl length data at 27°C for 

QTL mapping. 

A: Mean hypocotyl length of each genotype in the population. Error bars show 1 

standard deviation. 

B: Histogram of mean hypocotyl length of each genotype in the population. 

A 

B 
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Discussion 

The lack of any significant peaks in the wild-type population could be due a variety of 

reasons. These reasons are discussed in detail in section 4.4. It is worth noting that 

mapping hypocotyl length of the wild-type population has returned negative results 

under all conditions tested. It is not certain that the cause of these similar results is the 

same, especially as the suitability of the data for QTL analysis has varied. As the quality 

of the data should have yielded positive results, I think it is fairly likely that growth at 

warm temperatures in the wild-type population is affected by several QTL of small 

effect, or QTL that are hidden by the action of HSP90 family proteins. 

It is interesting to note the positions of the QTL found in the mutant mapping 

population. The QTL are in exactly the same positions as the QTL in the whole mapping 

population, although they have slightly lower LOD scores. The lower LOD scores are 

most likely a natural result of analysing only 44 genotypes instead of 85. As the QTL are 

in the same positions, it is likely that the genes under the peaks are also the same. The 

fact that these QTL do not appear when a wild-type population is mapped presents an 

interesting question. It is possible that the candidate genes, which I previously 

hypothesised are part of a temperature perception and signalling pathway, are cryptic 

variation in a wild-type population due to the action of heat shock proteins. 

 

6.5 QTL mapping of change in growth due to warmth 

When mapping growth in two different conditions, some QTL could be QTL for general 

growth and not related to the specific condition. I wanted to investigate QTL specific to 

an increase in growth when temperatures are raised. To do this I calculated the change 

in hypocotyl length due to warmth using the method described in section 2.6 and used 

this value as a trait in QTL mapping. Using this analysis, I found QTL that have a role in 

changing in growth in response to warmth, rather than general growth QTL. 
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Results of analysis 

I calculated the difference in height due to increased temperature and used this value 

as a trait in QTL mapping. I mapped the change in mean hypocotyl length due to 

warmth of 20 individuals from 85 genotypes at using the method in section 2.6. Figure 

45 displays the QTL map obtained from this analysis. Although there are some regions 

of high LOD score, there are no peaks that are statistically significant. 
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Figure 45: QTL map of the difference in mean hypocotyl length at 27°C compared to 

control conditions using the multiple-imputation method. The dotted line indicates 

the 20% significance threshold. 
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Validity of test 

Distribution: 

Figure 46A displays the distribution of the change in mean hypocotyl length due to 

warmth. 

Shapiro-Wilks: W = 0.919, p = 6.163e-05 

It is easy to see visually that the data were not normally distributed, and this is 

confirmed statistically. This distribution is due to some anomalous results in which 

seedlings grown at warm temperatures were shorter than the same genotype grown at 

control temperatures. Upon careful examination of my raw data, I found that certain 

groups of genotypes grown on the same agar plate had reduced growth. This could be 

due to a number of environmental factors. I decided to exclude these anomalous results 

from my analysis. 

The distribution of the corrected data are displayed in figure 46B. 

Shapiro-Wilks: W = 0.985, p = 0.453 

Variation: 

Figure 47 displays the change in mean hypocotyl length due to warmth of each 

genotype in my mapping population. The data used for this figure does not include any 

anomalous results. 

ANOVA: F = 7.14, d.f = 80, 1468, p = <2e-16 

See section 2.7 for a full explanation of these statistics. 
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Figure 46: Distribution of the change in mean hypocotyl length due to warmth. 

A: Distribution of all genotypes in the mapping population. 

B: Distribution after anomalous results are removed from the data. 

A 

B 
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Discussion 

The lack of significant QTL in this analysis was a surprising result. It is possible that there 

are relevant QTL that were not found, either because they only have a small effect or 

because they only seem relevant in a model which allows interaction between QTL. QTL 

like this would be found using a two-QTL scan. A more detailed discussion of why QTL 

mapping may yield no results can be found in section 4.4. Further analysis, including a 

two-QTL scan, is needed to fully understand this result. 

 

6.6 Two-QTL scan of change in growth due to warmth 

My single-QTL analysis did not detect every QTL relevant to growth in my mapping 

population. As discussed previously (section 4.3) single-QTL mapping rarely reveals 

every significant QTL, making further analysis using two-QTL scans necessary. I analysed 

my data this way to reveal QTL with epistatic interactions that were invisible to a single-

QTL scan. 

Results of analysis 

I performed a two-dimensional, two-QTL scan on the same mapping data using the 

method in section 2.6. Figure 48 displays the results of this analysis. The high LODfv1 

scores in the lower right triangle show evidence for pairs of QTL if interaction is allowed, 

particularly on chromosomes 1 and 5. The high LODi scores in the upper left triangle 

show clear evidence for epistatic interactions rather than an additive relationship. 

I found four pairs of QTL with LOD scores high enough to be considered statistically 

significant. One pair is on chromosome 1 position 37.4 and chromosome 1 position 

72.38. There is significant evidence for this pair of QTL in both a full model and an 

additive model, although the evidence is stronger if interaction is allowed. The second 

pair is on chromosome 1 position 66.4 and chromosome 2 position 20.51. These 

positions can only be considered QTL in a model that allows interaction. The third pair is 

on chromosome 1 position 61.4 and chromosome 5 position 98.52. These positions can 
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only be considered QTL in a model that allows interaction. The final pair is on 

chromosome 2 position 20.5 and chromosome 5 position 9.52. These positions can only 

be considered QTL in an additive model where no interaction is allowed. All of these 

positions are likely to be pairs of QTL which only show their effect when they are 

allowed to interact with each other or when both exist at the same time. 
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Figure 48: LOD scores from a two-QTL scan using the multiple-imputation method. 

The trait used was the difference in mean hypocotyl length with at 27°C compared 

to control conditions. The lower right triangle contains LODfv1 scores showing the 

probability of one half of a pair of epistatic QTL existing at that position. The right 

side of the key indicates the magnitude of LODfv1 scores. The upper left triangle 

contains LODi scores showing the probability of synergistic interactions as opposed 

to an additive relationship. The left side of the key indicates the magnitude of LODi 

scores. 
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Discussion 

This analysis found several QTL not seen in any other analysis as well as some QTL 

whose role in growth was established by my previous results. Among the established 

QTL was QTL-A. QTL-A has previously been seen to have an effect both on its own and 

in epistasis with other loci, as it does here. It was also established as having an 

important role in driving a change in growth due to exogenous auxin. This is supported 

by this result, as QTL-A appears to be important in auxin-driven growth whether the 

auxin is added artificially or produced naturally by the plant as a response to increased 

temperature. It seems likely that QTL-A is part of an auxin pathway with a possible role 

in detection, sensitivity or response pathways. 

One of the pairs found in this analysis is the same as the pair found in the two-QTL scan 

of growth at warm temperatures. These QTL appear to be specific to driving the change 

in growth at warm temperatures, as opposed to general growth QTL. 

This analysis found several QTL not seen in any of my other QTL maps. The QTL unseen 

before are likely to be genes which have a role in temperature perception or auxin 

signal transduction, since these pathways are the driving force behind the increase in 

growth seen at warm temperatures (McClung et al. 2016). 

 

6.7 Summary of results 

The results presented in this chapter provide a complex picture of the genetic basis of 

growth at warm temperatures. Many of the QTL involved seem to be unique to this 

condition, unshared by QTL maps for growth in standard conditions or growth with 

exogenous auxin. An increase in the complexity of signalling pathways is likely to lead to 

different genes having increased importance. This is discussed in more detail in chapter 

7. 

One QTL that appears to be important to many aspects of growth is QTL-A. QTL-A has 

previously been seen to have a role in general growth (section 4.8) and growth with 

exogenous auxin (section 5.11). The results in this chapter suggest that it is also 
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important for increasing growth in warm temperatures. The importance of QTL-A has 

been well established by my results, and its action and relationship with other QTL 

deserve more research. A full discussion of QTL-A can be found in chapter 7. 

  



129 

 

Chapter 7: Discussion 

 

7.1 The effect of hsp90.2-3 on growth 

I studied the effect of heat shock proteins through the mutation hsp90.2-3, which 

deactivates all other proteins in the HSP90 family (Hubert et al. 2003, Sangster and 

Quietsch 2005, Sangster et al. 2008). Plants with the mutation have a similar phenotype 

to plants growth at warm temperatures, including increased growth, early flowering 

and greater variation within a population (Sangster and Quietsch 2005, Sangster et al. 

2008). I wanted to study the effect of the mutation on hypocotyl growth. 

In my preliminary experiments I found that the effect of the mutation seems to vary 

depending on genetic background and environment (section 3.3). In standard 

conditions, Col-0 plants with the mutation were significantly taller than wild-type Col-0 

plants, but there was no significant difference in WS-2 plants. This effect was reversed 

when auxin was added to the growth media. WS-2 mutants were significantly taller than 

wild-type WS-2 plants but the mutation had no significant effect on Col-0 plants. To 

complicate things further, at warm temperatures the mutation had no significant effect 

on either genotype. These results seem strange at first glance, but studying the 

standard deviation can provide some insight. In each case where the mutation 

increased growth, it also increased standard deviation. In each case where the mutation 

had no significant effect, the standard deviation was either very similar or decreased. I 

think that the reason for the decrease in standard deviation was that all the plants in 

the population were approaching their maximum possible height under the 

circumstances which led them to be quite similar. This is not the maximum possible 

height for an Arabidopsis seedling, so something must have been limiting further 

growth. 

If this hypothesis is true, it may indicate a flaw in my method. Differences in hypocotyl 

length could be seen if seedlings were measured earlier than 10 days. Examining my 

results under this hypothesis, it appears that the mutation has no effect in Col-0 when 
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auxin levels increase, either naturally by warmth or by adding auxin to the growth 

media. Both of these conditions increase the growth of Col-0 and appear to do so to the 

point where the mutation cannot increase growth any further. In contrast, the mutation 

only has an effect on WS-2 seedlings when auxin in added to the growth media. It may 

be that after 10 days of growth with natural auxin levels WS-2 is at its maximum height 

whether it contains the mutation or not, and this can only be increased further by 

providing additional auxin. Future experiments could test this hypothesis by measuring 

hypocotyl length at a range of time points (Gendreau et al. 1997). There may be 

differences in growth earlier than 10 days that could provide additional insights into the 

part HSP90 proteins play in controlling growth. 

 

7.2 The effect of auxin on growth 

The phytohormone auxin is a major regulator of cell enlargement and cell division 

(Evans 1985), so it can have a dramatic effect on the hypocotyl (Smalle et al. 1997, 

Collett et al. 2000). However, this effect depends on a few things. Firstly, there are 

several different types of auxin. Auxins that occur naturally in the plant, most notably 

IAA, are polar. This means that they can only move one way through auxin transporters 

(Blakeslee et al. 2005) which prevents auxin from “flooding” the whole plant – it is 

localized in sink tissues which are actively growing such as the tips of the roots and stem 

(Ljung et al. 2001). This matters less in the hypocotyl, as nearly the whole seedling is 

actively growing when it is so small. However, a non-polar auxin like picloram will 

generally have a greater effect than IAA as picloram can be present in all cells. Secondly, 

the auxin signalling pathway is only one element in a very complex web of 

phytohormones and other factors controlling hypocotyl growth (Scheel and Wasternack 

2002, Davies 2004). Natural auxin levels are at an optimum concentration (Collett et al. 

2000). Although increasing auxin levels by a small amount results in an increase in 

growth, high concentrations of auxin will inhibit growth (Collet et al. 2000) due to the 

balance between different signalling pathways being disrupted. At the right 

concentration, adding auxin to growth media will increase hypocotyl length and 

standard deviation (section 3.5). 
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I chose to study the effect of auxin on growth in two ways. Firstly, I added synthetic 

auxin to the growth media, as shown previously. Secondly, I studied the role of auxin in 

a more natural process by increasing the temperature. Warm temperatures naturally 

increase auxin levels within the plant, so it is a useful way of observing the effect of 

auxin in nature. I found that warmth increased the hypocotyl length and standard 

deviation of Col-0 seedlings but not WS-2 seedlings. This could mean that WS-2 plants 

are naturally less sensitive to warmth. However, there is a decrease in standard 

deviation in WS-2 seedlings in warmth compared to control conditions. I think that this 

decrease means WS-2 seedlings are approaching their maximum possible height under 

the conditions, which makes all seedlings fairly similar to each other. Seedlings can grow 

taller than this if auxin is added to the growth media, suggesting that the seedlings 

capacity for auxin biosynthesis is limiting its growth. If this hypothesis is true, then 

measuring hypocotyl length before 10 days would reveal a difference between 

seedlings grown at warm temperatures and those grown in control conditions. 

 

7.3 QTL for growth and variation 

I aimed to find QTL for growth and variation in a range of conditions, and in this regard, 

I succeeded. Table 1 summarises all the QTL I detected. I found QTL for general growth 

and variation by performing QTL mapping under standard conditions. Interestingly, 

there were QTL for growth in the population containing the hsp90.2-3 mutation but not 

a purely wild-type population. The mutation is used in QTL mapping studies to reveal 

cryptic variation (Sangster et al. 2007), which may be why there are no QTL in a wild-

type population. The QTL for growth often acted through epistatic interactions. This is 

in contrast to QTL for variation in standard conditions, which only appeared in single-

QTL scans. This suggests that the control of hypocotyl growth involves a complex 

network of interactions while the control of variation is relatively simple. 

QTL mapping in warm temperatures and with added auxin produced broadly similar 

results. I found QTL for growth in the full mapping population and the population 

containing the hsp90.2-3 mutation, but not a purely wild-type population. 2-QTL scans 
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suggest that these QTL for growth at warm temperatures act through epistatic 

interactions. Most of these growth QTL act through synergistic interactions, but there 

are some that have simple additive interactions. However, there are some differences 

in the QTL found in these two conditions. The QTL for growth with added auxin are 

similar to the general growth QTL in standard conditions, while the QTL for growth at 

warm temperatures tend to be different. Many of the QTL involved in growth at warm 

temperatures seem to be unique to this condition, unshared by QTL maps for growth in 

standard conditions or growth with exogenous auxin. Although warmth naturally 

increases auxin levels within the plant (Gray et al. 1998, Stavang et al. 2009, Quint et al. 

2016), growth with exogenous auxin seems to have more in common at a genetic level 

with growth in standard conditions than growth at warm temperatures. This could be 

due to differences in the way the conditions are perceived and the signals needed to 

turn this perception into an increase in growth (Kamada et al. 1995, Orvar et al. 2000, 

Penfield 2008). Growth with exogenous auxin likely involves genes governing auxin 

sensitivity, while growth at warm temperatures involves a more complex web of 

temperature perception, auxin biosynthesis and multiple signal transduction pathways 

(Penfield 2008, Wigge 2013, Quint et al. 2017). This increase in complexity is likely to 

lead to different genes having increased importance. My results suggest that the 

pathways controlling growth in standard conditions mostly involve auxin, while the 

pathways active at warm temperatures involve different elements. 

I found a difference when mapping variation in warmth and with added auxin. I found 

no QTL for variation at warm temperatures in any population, but I found several 

interesting results when I mapped variation with added auxin. There was a wide region 

of high LOD score which is likely to be a compound peak containing several QTL. There 

appears to be at least one, and probably multiple, QTL regulating variation in hypocotyl 

length in the presence of exogenous auxin. The QTL found when standard deviation was 

mapped was easily wide enough to assume that multiple QTL lie under it. This region 

was present in both the wild-type and mutant populations. This region encompasses 

loci where QTL were found on different maps and a region where very few QTL have 

been seen in my other analyses. This makes it difficult to draw any conclusions as to 

what genes might be under the peak and what action they may have. However, it is 
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clear that multiple genes work to regulate variation in the presence of exogenous auxin. 

2-QTL scans revealed multiple pairs of epistatic QTL controlling variation in the full 

population and the mutant population. It is possible that increasing auxin levels 

activated a signalling pathway that influences variation. 

One of my aims was to understand which QTL were needed to drive a change in growth 

due to auxin. To do this I calculated the change in growth using growth in standard 

conditions as a control and mapped the change as a trait. When I mapped the change in 

growth due to both warmth and added auxin I found that epistatic interactions are very 

important. Single-QTL scans produced limited results, but two-QTL scans were more 

detailed. The change due to warmth is mostly controlled by pairs of QTL with synergistic 

interactions, although there is one pair with an additive interaction. In contrast, the 

change due to added auxin appears to happen mostly through additive interactions. 

QTL-A has a role in both responses but otherwise not many QTL are shared between the 

two maps. Although warmth and picloram produce very similar phenotypes, they 

appear to do so through different genetic pathways.  
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Chromosome 1 

Population Treatment 1.4 8.4 27.4 37.4 41.4 43.4 44.4 45.4 61.4 66.4 72.4 76.4 95.4 100.4 

Full Control               

Wild-type Control               

Mutant Control               

Full Auxin + +            Х 

Wild-type Auxin               

Mutant Auxin               

Full Warmth   ✓             

Wild-type Warmth               

Mutant Warmth   ✓            

 

 Chromosome 2 Chromosome 3 Chromosome 4 

Population Treatment 20.5 35.5 36.4 56.4 58.4 63.4 67.3 1.5 42.5 53.5 68.4 

Full Control            

Wild-type Control  ✓          

Mutant Control            

Full Auxin        Х    

Wild-type Auxin            

Mutant Auxin            

Full Warmth +          ✓ 

Wild-type Warmth            

Mutant Warmth           ✓ 

Table 1 continued on next page 
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 Chromosome 5 

Population Treatment 0.5 6.5 9.5 13.5 14.5 15.5 20.5 58.5 60.5 95.5 96.5 99.5 

Full Control    ✓      ✓ ✓  

Wild-type Control             

Mutant Control          ✓   

Full Auxin       ✓   ✓ ✓   

Wild-type Auxin ✓ ✓ ✓ ✓ ✓ ✓ ✓      

Mutant Auxin ✓    ✓     ✓   

Full Warmth   +          

Wild-type Warmth             

Mutant Warmth             

 

 

Table 1: Summary of all QTL found. QTL for hypocotyl length are coloured green. QTL for standard deviation of hypocotyl length are coloured 

blue. QTL for change in hypocotyl length are coloured pink. QTL detected by single-QTL analysis are denoted by a tick mark. Pairs of QTL found 

in two-QTL analysis are denoted by matching symbols. Pairs of QTL found using a full model that allows interaction are denoted by star-shaped 

symbols. Pairs of QTL found using an additive model that does not allow interaction are denoted by cross-shaped symbols. 
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7.4 QTL-A and its role in growth 

I produced QTL maps of hypocotyl length for three populations in three conditions. One 

QTL, which I have called QTL-A, appeared in more of these QTL maps than any other. 

The QTL is on chromosome 5 at approximately position 95. QTL-A is located very close 

to the hsp90.2-3 mutation, which can appear as a QTL itself due to its role in growth. 

However, if QTL-A were the mutation, I would expect the highest LOD score to be either 

at the mutation or on one of the markers immediately next to it. At the position of QTL-

A, there is no obvious linkage to the mutation, so I think QTL-A is a gene close to the 

mutation that is not linked to it. 

By mapping different populations and conditions in different ways, the role of this QTL 

can be studied. In standard conditions, it is clear through mapping hypocotyl length and 

standard deviation in the full mapping population that QTL-A is important for both 

growth and variation. Two-QTL scans in standard conditions revealed that QTL-A 

interacts with several others. These other QTL were only detected in a full model that 

allowed QTL to truly interact, as opposed to an additive model where QTL simply co-

exist. It is possible that QTL-A interacts with some heat shock proteins as I detected 

fewer pairs of QTL in a two-QTL scan of only mutant genotypes, which have deactivated 

heat shock proteins, compared to a two-QTL scan of the full population. QTL-A appears 

to play a major role in growth and a more minor role in regulating variation, as seen by 

its reduced LOD score when standard deviation was mapped. Any effect QTL-A has on 

variation appears to be through its own action alone, as two-QTL scans returned 

negative results. 

With auxin added to the growth media, QTL-A still impacts growth but appears to do so 

independently, without any epistatic interactions. QTL-A also appears to impact growth 

at warm temperatures, although in this condition it appears to function mainly through 

epistatic interactions. QTL-A could be a gene whose action is altered or enhanced by 

auxin, leading its mode of action to change when exogenous auxin is added. Its role as a 

general growth QTL is challenged by analysing only the change in growth due to auxin, 

instead of overall growth. QTL-A appears to have a role in increasing growth in the 

presence of auxin. It is possible that QTL-A is part of an auxin pathway with a role in 
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perception or signal transduction. This would allow it to regulate growth and variation 

under standard conditions, as auxin is a major growth phytohormone (Collet et al. 

2000), and have an enhanced effect when auxin levels increase. It appears to be able to 

drive growth through its own action as well as interacting with other QTL, depending on 

the environmental conditions. 

I can draw three main conclusions about the nature of QTL-A from my data. 

Firstly, QTL-A frequently appears in QTL maps for hypocotyl length but is only present in 

one map for standard deviation: the map of standard deviation in standard conditions. 

In this map there is a visible peak in LOD score at the position of QTL-A, but the LOD 

score does not pass the significance threshold calculated by a permutation test. QTL-A 

may have some role in regulating variation, but this role appears to be small and only 

relevant if no other factors, such as auxin, are controlling variation more strongly. The 

main role of QTL-A appears to be in growth. 

Secondly, QTL-A is more commonly seen in 2-QTL scans than single-QTL scans. It 

interacts with a wide variety of other QTL. QTL-A only has a significant effect in a full 

model that allows synergistic interactions between QTL, not an additive model where 

QTL simply coexist. This suggests that QTL-A has a role in regulating the action of 

several genes. QTL-A could be a component of a signalling pathway that activates or de-

activates other genes. 

Thirdly, the role of QTL-A in growth is linked to auxin. As well as appearing in QTL scans 

for general growth, QTL-A appears in QTL scans for changes in hypocotyl length due to 

warmth and auxin. At warm temperatures, QTL-A acts through an epistatic interaction. 

With added auxin QTL-A appears in a single-QTL scan but not a 2-QTL scan, so it may 

also have an effect on its own. These results suggest that QTL-A is a component of an 

auxin signalling pathway, or is strongly regulated by auxin. 

Overall, I can conclude that QTL-A may be part of an auxin signalling pathway that 

regulates growth through epistatic interactions. This hypothesis could be investigated 

further by using a bioinformatics approach to examine what genes are present in the 

region of QTL-A (Arcade et al. 2004). It is also possible to isolate a QTL through selective 
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breeding (Alonso-Blanco and Kornneef 2000). This approach would narrow the range of 

possible candidate genes (Paran and Zamir 2003). Additional information about the role 

of QTL-A and its effect on growth could be gained by mapping QTL in more 

environmental conditions that increase auxin, such as shade (Vandenbussche et al. 

2003). No firm conclusions about QTL-A can be drawn from my current data, but there 

are many possibilities for further study. 

 

7.5 Conclusions 

I set out three aims at the beginning of this dissertation. I am satisfied that my results 

have accomplished these aims, although not all of my expectations were met. 

Firstly, I aimed to investigate hypocotyl growth in a range of conditions. I have gained a 

greater understanding of the effect of warmth, the synthetic auxin picloram and the 

mutation hsp90.2-3. I would like to study these conditions further by measuring 

hypocotyl length at different time points as my experimental design seems limited in 

this regard. However, I have concluded that although warmth and the mutation 

increase growth, a plant’s natural capacity for auxin biosynthesis may limit its growth 

after a certain point. 

Secondly, I aimed to map QTL for growth and variation in three conditions: standard, 

warmth and with added auxin. I have accomplished this and produced QTL maps for all 

three conditions using three populations: the full RIL, a wild-type population and a 

population containing the hsp90.2-3 mutation. I found several QTL, most notably one 

on chromosome 5 which I have called QTL-A. This QTL appears to have a role in growth 

in all three conditions and acts through epistatic interactions with other QTL. I have 

hypothesised that it is a component of an auxin signalling pathway. QTL-A could be 

studied further using bioinformatics or by cloning the QTL. 

Thirdly, I aimed to investigate the similarities and differences between QTL maps for 

different conditions. I did this by mapping the change in growth due to warmth or auxin 

as a trait. Using this method, I have found that QTL-A is needed to produce a change in 
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growth in both warm temperatures and with added auxin, but that many other QTL 

involved are different. 

It must be noted that due to a small population size, the statistical power of my QTL 

analysis is low. Therefore, care must be taken when interpreting the results. It is 

possible that any positive results seen are statistical artefacts resulting from the natural 

stochastic variation in my data. It would be unwise to draw firm conclusions or 

hypothesise in too much detail about what may lie under any particular QTL. The small 

population size and lack of statistical power is the main flaw in my experimental design. 

This is especially true of the results of 2-QTL mapping, which requires especially high 

power to produce reliable results. This work could be built on and improved in the 

future by repeating experiments using a larger mapping population. 

Overall, I am satisfied that I have accomplished the aims I set out with. My results 

confirm and provide additional details of previous hypotheses on auxin and hypocotyl 

growth, as well as providing new information into similarities and differences between 

QTL maps of different conditions. My results provide several new hypotheses and 

possibilities for further research. 
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Appendix 1: Graphical representation of mapping population 

Graphical representation of the mapping population used for QTL analysis. Each column 

is an individual RIL. Each row is a genetic marker. WS-2 alleles are in blue, Col-0 alleles 

are in orange, heterozygotes are green and missing genotype information is white. 
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Chromosome 4 
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Appendix 2: Marker information for mapping population 

 

Marker % WS-2 % Col-0 % heterozygous % missing 

AtMSQTsnp2 59.6 37.2 0.0 3.2 

AthACSmod 33.0 67.0 0.0 0.0 

AtMSQTsnp4 60.6 37.2 1.1 1.1 

NT7 123 61.7 38.3 0.0 0.0 

AtMSQTsnp15 67.0 30.9 0.0 2.1 

JV28/29 71.3 28.7 0.0 0.0 

W9W i5 70.2 25.5 1.1 3.2 

F20D23ext 72.3 25.5 1.1 1.1 

AtMSQTsnp31; assum. G-w 71.3 24.5 0.0 4.3 

AtMSQTsnp40; assump. G-w 73.4 23.4 2.1 1.1 

F12K8 73.4 23.4 2.1 1.1 

AtMSQTsnp47 64.9 25.5 2.1 7.4 

ciw12 66.0 26.6 6.4 1.1 

AthSO392mod 70.2 29.8 0.0 0.0 

nga63mod 70.2 28.7 1.1 0.0 

AtMSQTsnp60 70.2 26.6 0.0 3.2 

msat1.4modB 75.5 21.3 0.0 3.2 

AtMSQTsnp67 72.3 24.5 0.0 3.2 

ciw1 72.3 27.7 0.0 0.0 

UA1.20.2 77.7 21.3 1.1 0.0 

UA1.20.1 74.5 20.2 1.1 4.3 

AtMSQTsnp76; assum. C-w 77.7 21.3 0.0 1.1 

AtMSQTsnp88 84.0 13.8 0.0 2.1 

AtMSQTsnp91 80.9 16.0 0.0 3.2 

AtMSQTsnp92 80.9 16.0 0.0 3.2 

AtMSQTsnp97 81.9 17.0 0.0 1.1 

msat1.13mod 84.0 16.0 0.0 0.0 

AtMSQTsnp100 78.7 14.9 1.1 5.3 

W9W i10 73.4 23.4 3.2 0.0 

W9W i12 70.2 19.1 3.2 7.4 

W9W i11 74.5 21.3 2.1 2.1 

UA1.30.3 73.4 25.5 0.0 1.1 

AtMSQTsnp114 72.3 23.4 2.1 2.1 

W9W ii1 88.3 10.6 0.0 1.1 

W9W ii2 86.2 10.6 2.1 1.1 

AtMSQTsnp123 86.2 8.5 1.1 4.3 

LUGSSLP41 89.4 9.6 1.1 0.0 

AtMSQTsnp128; assum. G-w 86.2 11.7 1.1 1.1 
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Marker % WS-2 % Col-0 % heterozygous % missing 

AtMSQTsnp129 86.2 9.6 0.0 4.3 

AtMSQTsnp130 79.8 13.8 1.1 5.3 

W9W ii4 67.0 30.9 1.1 1.1 

W9W ii3 68.1 29.8 2.1 0.0 

AtMSQTsnp145 63.8 28.7 3.2 4.3 

AtMSQTsnp159 69.1 29.8 1.1 0.0 

AtMSQTsnp164 67.0 28.7 1.1 3.2 

UA2.15.1 70.2 27.7 2.1 0.0 

nga168ext 66.0 33.0 1.1 0.0 

AtMSQTsnp173 64.9 29.8 1.1 4.3 

UA3.1.1 88.3 10.6 1.1 0.0 

nga172mod 89.4 10.6 0.0 0.0 

AtMSQTsnp194 100.0 0.0 0.0 0.0 

nga162mod 100.0 0.0 0.0 0.0 

W9W iii2 100.0 0.0 0.0 0.0 

ciw11a 95.7 4.3 0.0 0.0 

msat3.23mod 91.5 8.5 0.0 0.0 

AtMSQTsnp220 80.9 17.0 0.0 2.1 

W9W iii6 83.0 17.0 0.0 0.0 

W9W iii7 83.0 17.0 0.0 0.0 

AtMSQTsnp237 70.2 19.1 1.1 9.6 

F27K19 68.1 25.5 4.3 2.1 

SD4-12 64.9 31.9 3.2 0.0 

SD4-13 64.9 33.0 2.1 0.0 

AtMSQTsnp249 73.4 25.5 1.1 0.0 

nga8 79.8 18.1 2.1 0.0 

AtMSQTsnp263; assum. T-w 77.7 18.1 3.2 1.1 

AtMSQTsnp266; assum. G-w 75.5 20.2 3.2 1.1 

AtMSQTsnp278 76.6 20.2 3.2 0.0 

SD3-1 78.7 20.2 1.1 0.0 

G3883 70.2 0.0 0.0 29.8 

AtMSQTsnp286 71.3 20.2 3.2 5.3 

AtMSQTsnp288 72.3 21.3 3.2 3.2 

F26K10 70.2 27.7 2.1 0.0 

F6E21 67.0 27.7 3.2 2.1 

AtMSQTsnp304 69.1 23.4 3.2 4.3 

AtMSQTsnp306 70.2 26.6 1.1 2.1 

AtMSQTsnp310 74.5 22.3 0.0 3.2 

AtMSQTsnp315; assum. T-w 84.0 11.7 3.2 1.1 

W9W v1 55.3 31.9 7.4 5.3 

AtMSQTsnp331 61.7 33.0 2.1 3.2 

MOJB 63.8 34.0 2.1 0.0 

SD5-4 68.1 30.9 0.0 1.1 

nga151a 68.1 29.8 1.1 1.1 



145 

 

Marker % WS-2 % Col-0 % heterozygous % missing 

AtMSQTsnp355 71.3 27.7 1.1 0.0 

AtMSQTsnp361 68.1 24.5 4.3 3.2 

nga139modB 70.2 24.5 5.3 0.0 

SO191ext 77.7 22.3 0.0 0.0 

AtMSQTsnp373; assum. G-w 70.2 27.7 1.1 1.1 

ciw9 71.3 27.7 1.1 0.0 

AtMSQTsnp388 54.3 35.1 4.3 6.4 

AtMSQTsnp390 55.3 37.2 5.3 2.1 

AtMSQTsnp392 53.2 36.2 6.4 4.3 

AtMSQTsnp395 55.3 34.0 9.6 1.1 

AtMSQTsnp398 54.3 41.5 4.3 0.0 

AtMSQTsnp399 51.1 46.8 2.1 0.0 

2022_6 51.1 48.9 0.0 0.0 

hsp90.2-3 - - - - 

MNC17 53.2 43.6 3.2 0.0 

AtMSQTsnp408; assum. G-w  57.4 35.1 5.3 2.1 

AtMSQTsnp409; assum. T-w 54.3 36.2 4.3 5.3 

AtMSQTsnp415 55.3 36.2 5.3 3.2 

W9W v13 79.8 18.1 2.1 0.0 

W9W v11 79.8 18.1 2.1 0.0 

 

Total number of markers: 102  
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Appendix 3: Parental genotypes growth data 

Genotype Col-0 
 

Col-0 hs90.2-3 

Treatment Standard Warmth Auxin 
 

Standard Warmth Auxin 

Hypocotyl Length (mm) 1.29 1.9703 2.549 
 

2.148 2.5412 2.551  
1.581 1.9949 2.226 

 
2.125 2.3583 3.315  

1.754 2.3076 3.994 
 

1.772 2.2608 2.854  
1.638 2.0151 5.646 

 
1.909 2.5915 2.39  

1.809 2.7272 3.177 
 

2.159 3.1577 4.392  
1.344 1.6383 3.272 

 
1.892 1.9176 3.879  

1.748 1.4862 2.164 
 

2.535 1.6467 4.374  
1.369 2.4079 3.746 

 
2.173 2.2191 3.114  

1.055 1.6462 2.383 
 

1.668 2.4446 2.94  
1.368 3.0459 2.495 

 
1.603 2.1116 3.35  

1.415 1.4142 3.546 
 

1.719 1.925 4.797  
1.243 1.6388 3.24 

 
1.845 2.2072 2.439  

1.206 2.282 2.661 
 

2.118 2.5386 4.287  
1.269 1.8596 3.265 

 
1.576 2.6403 2.826  

1.327 1.3669 3.116 
 

1.875 4.363 3.835  
1.27 2.1401 3.374 

 
1.313 2.5015 2.822  

1.744 3.0206 2.439 
 

1.322 1.8558 2.881  
1.167 2.5691 3.21 

 
1.758 2.1487 3.35  

1.627 2.1736 3.371 
 

1.77 2.5301 3.506  
1.338 - 2.141 

 
- - 2.48 

Genotype WS-2 
 

WS-2 hsp90.2-3 

Treatment Standard Warmth Auxin 
 

Standard Warmth Auxin 

Hypocotyl length (mm) 2.659 3.0258 6.051 
 

3.236 3.2676 4.311  
2.588 2.8407 4.454 

 
2.755 3.1893 6.521  

2.457 2.9063 6 
 

2.784 3.0871 6.299  
2.378 2.2986 4.006 

 
3.116 3.1774 4.701  

2.866 2.4556 4.626 
 

2.215 3.1857 6.063  
1.72 2.8003 3.085 

 
2.567 3.6812 7.077  

3.26 3.0904 5.115 
 

3.134 2.4697 6.592  
3.321 3.0455 5.014 

 
2.419 3.1343 5.663  

2.459 2.2809 5.697 
 

2.659 3.0501 5.932  
3.437 2.1084 5.067 

 
2.969 2.6897 5.46  

2.976 3.0115 4.038 
 

2.776 2.3617 3.861  
3.36 2.3433 3.313 

 
3.323 2.6327 4.28  

3.022 3.3808 3.177 
 

2.429 3.6241 5.666  
1.825 2.9023 2.959 

 
3.026 3.1471 3.65  

2.585 1.6011 3.64 
 

2.766 1.7614 4.854  
2.831 2.4612 2.662 

 
2.808 2.8751 4.72  

2.044 2.7506 3.69 
 

2.795 3.6014 6.206  
1.782 2.8097 4.336 

 
3.039 3.2483 3.664  

2.626 3.2493 3.778 
 

3.122 2.6494 6.342  
2.854 3.2197 3.776 

 
3.166 1.9098 6.201 
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Appendix 4: Hypocotyl length of RIL set in standard conditions 

Genotype 1 2 3 4 5 6 

Hypocotyl length (mm) 1.55 2.51 1.43 2.82 1.46 2.52 

1.58 1.63 1.90 2.59 1.45 2.31 

1.31 2.51 2.45 1.57 2.04 2.64 

2.07 1.53 1.50 2.60 2.31 2.51 

1.59 1.72 1.76 1.99 2.12 1.84 

2.35 1.57 1.92 3.25 1.91 2.60 

2.27 2.15 2.40 2.50 1.63 2.08 

1.82 1.68 1.75 1.81 1.95 2.53 

1.52 2.04 2.03 2.41 2.14 2.04 

2.26 1.50 2.13 1.63 1.79 1.93 

2.03 2.12 1.76 1.52 2.54 1.76 

1.25 2.59 1.83 2.02 2.16 2.13 

1.37 1.92 1.60 1.09 2.31 2.20 

1.61 2.21 1.61 1.52 1.59 2.13 

1.93 1.55 2.36 2.25 1.98 1.53 

0.67 1.74 1.67 2.39 1.99 2.33 

2.14 1.59 1.54 2.31 1.82 2.39 

2.10 2.17 1.98 1.87 2.10 1.76 

2.07 1.52 2.10 2.38 2.19 2.90 

1.78 1.59 - 2.00 - 2.99 

      

Genotype 7 8 9 10 11 12 

Hypocotyl length (mm) 2.08 1.41 1.86 1.94 2.12 1.66 

1.29 1.20 1.55 2.15 1.97 1.80 

1.71 1.49 1.60 1.91 1.65 1.74 

1.65 2.24 1.96 1.57 1.46 1.23 

1.77 1.65 1.88 1.89 1.72 1.44 

1.65 1.49 1.89 1.61 2.05 2.13 

1.29 1.40 2.57 1.84 1.96 1.64 

2.27 1.63 1.96 2.05 1.85 2.08 

1.61 1.88 2.31 1.65 1.58 1.90 

1.74 1.74 1.70 2.88 2.05 2.31 

1.38 1.74 1.47 1.58 1.77 1.75 

1.84 1.25 2.34 1.73 1.30 2.03 

1.36 1.66 1.54 1.94 2.40 1.80 

1.46 1.85 2.30 1.67 1.80 1.57 

1.43 1.61 1.60 1.56 2.26 2.20 

1.31 2.08 1.76 1.94 1.68 2.50 

1.53 1.42 1.41 1.21 2.37 2.33 

1.41 2.31 1.54 1.70 2.27 2.23 

1.54 1.79 2.07 2.36 1.93 1.74 
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Genotype 13 14 15 16 17 18 

Hypocotyl length (mm) 2.23 1.79 1.83 2.00 1.72 1.90 

1.24 2.18 1.90 1.70 1.64 1.78 

1.66 1.55 1.43 1.56 1.90 1.80 

2.04 1.56 1.54 1.52 2.15 1.67 

1.88 1.71 1.75 1.82 2.14 2.21 

2.18 1.94 2.25 1.73 2.19 1.46 

1.62 1.65 2.21 1.96 2.87 1.68 

1.99 2.32 1.49 1.80 1.76 1.91 

1.76 1.60 0.88 1.49 1.92 1.48 

1.65 1.27 1.23 1.64 1.95 1.69 

1.91 1.55 1.57 1.88 2.05 1.95 

1.61 1.95 1.63 1.46 2.32 1.87 

1.28 1.68 2.18 1.66 1.99 2.00 

1.94 1.46 1.75 1.85 2.16 2.16 

1.97 1.65 1.51 2.13 2.56 1.58 

1.47 1.84 1.50 1.56 2.10 1.61 

1.82 1.98 1.66 2.25 1.83 2.03 

1.54 1.66 1.26 1.48 1.69 1.58 

1.64 1.64 2.00 2.24 1.83 1.53 

2.50 1.25 1.32 - 2.42 - 

       

Genotype 19 20 21 22 23 24 

Hypocotyl length (mm) 1.77 1.81 1.78 1.62 2.00 1.32 

1.61 1.33 1.35 1.60 1.82 1.40 

1.09 1.47 1.72 1.53 1.87 1.85 

2.11 1.88 1.89 1.65 1.76 1.42 

1.63 1.17 2.04 1.87 1.59 1.09 

1.76 1.48 1.92 1.30 1.46 1.39 

1.34 1.32 1.98 1.34 1.99 1.22 

1.83 1.66 1.50 1.78 1.47 1.65 

2.60 1.27 1.40 1.61 1.41 1.51 

2.01 1.62 1.35 1.55 1.56 1.48 

1.84 1.91 1.60 1.31 2.09 1.73 

2.14 1.57 1.42 1.52 1.24 1.43 

2.10 1.53 1.65 2.11 1.50 1.23 

1.97 1.53 1.81 1.78 1.85 1.26 

2.92 1.72 1.72 1.62 1.81 1.50 

1.46 1.93 1.89 1.63 1.42 1.22 

2.17 1.51 1.69 1.44 1.36 1.60 

1.46 1.41 2.15 1.91 1.21 1.48 

1.87 1.40 0.77 1.90 1.49 1.74 

- 1.47 2.09 1.46 1.00 1.27 
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Genotype 25 26 27 28 29 30 

Hypocotyl length (mm) 1.35 1.92 0.95 1.53 1.49 1.43 

1.35 1.63 1.31 1.91 1.18 1.30 

1.33 1.40 1.58 1.68 1.67 1.26 

1.24 1.77 1.31 1.62 1.51 0.89 

1.55 1.44 1.30 1.00 1.55 1.63 

1.46 1.99 1.20 1.59 1.49 1.60 

1.02 2.44 1.20 1.46 1.26 2.14 

1.13 2.01 1.41 1.64 1.28 1.42 

1.00 1.46 1.23 1.70 1.31 1.77 

1.44 1.34 1.20 1.43 1.33 1.30 

0.76 1.47 1.71 1.87 1.47 2.19 

1.28 1.23 0.96 1.95 1.40 1.26 

1.67 2.13 1.14 1.26 1.59 1.33 

1.25 0.81 1.55 0.87 1.69 1.03 

1.53 1.89 2.15 1.25 1.76 1.30 

1.34 1.26 1.09 2.23 1.27 1.73 

1.41 1.77 1.49 1.12 1.34 1.07 

1.22 1.29 - 1.47 1.53 1.67 
- 2.30 - - 1.31 1.42 
- 1.56 - - 1.50 2.05 

       

Genotype 31 32 33 34 35 36 

Hypocotyl length (mm) 1.53 1.98 1.62 1.04 1.59 2.16 

1.50 1.68 0.94 1.36 2.37 1.64 

1.68 1.74 1.76 2.34 1.13 1.79 

1.70 2.10 1.48 1.24 1.67 2.36 

1.71 1.77 1.35 1.50 1.74 1.73 

1.76 1.44 2.01 1.46 1.56 1.32 

1.54 1.55 1.81 1.15 1.28 2.09 

1.49 1.62 1.61 1.90 1.88 2.13 

1.50 1.51 1.71 2.57 1.79 1.67 

1.16 1.34 2.31 0.90 2.63 1.43 

1.14 1.42 1.65 1.92 2.50 1.83 

1.44 1.06 1.52 1.89 1.50 1.68 

1.30 1.18 1.21 1.00 1.70 1.77 

2.11 1.54 1.74 1.27 1.30 2.46 

1.56 1.34 1.51 1.45 1.79 1.55 

1.28 1.56 1.87 1.75 1.42 1.62 

1.35 0.85 2.45 1.46 1.40 1.50 

2.10 1.21 2.22 2.22 1.77 1.88 

1.24 1.53 1.97 1.40 1.72 0.91 

1.12 1.01 - 1.71 1.58 1.40 
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Genotype 37 38 39 40 41 42 

Hypocotyl length (mm) 2.09 1.50 1.82 2.41 1.83 1.68 

1.82 1.26 1.54 2.31 1.78 1.95 

1.98 1.61 1.94 2.42 2.03 1.60 

1.68 1.55 1.62 1.58 1.94 1.94 

1.60 1.68 1.04 1.90 2.00 1.50 

1.33 1.31 1.46 1.42 1.53 2.24 

1.70 1.56 1.56 1.76 0.76 2.08 

1.97 1.61 1.63 1.53 1.50 1.97 

2.02 2.31 1.95 1.65 1.46 1.36 

1.72 1.35 2.18 1.71 1.45 1.42 

1.59 1.99 1.55 2.09 1.28 1.72 

1.48 1.78 2.00 1.83 2.41 1.47 

1.46 1.49 1.73 1.65 1.40 2.14 

1.55 1.63 1.51 2.80 1.71 1.67 

1.77 1.54 1.67 2.27 1.93 1.92 

2.76 1.46 1.51 1.84 2.01 1.97 

2.00 1.09 1.62 1.39 2.26 1.83 

1.68 1.51 2.17 1.88 2.16 1.96 

1.55 1.36 1.95 1.37 1.79 1.66 
- 1.75 1.16 1.92 2.01 1.97 

       

Genotype 43 44 45 46 47 48 

Hypocotyl length (mm) 1.40 1.88 2.39 1.70 1.32 1.32 

1.99 1.58 1.66 2.59 1.89 1.75 

1.57 1.63 2.20 1.50 1.48 2.12 

1.67 1.52 0.87 1.81 1.89 1.76 

1.86 1.29 1.68 2.29 1.07 1.75 

1.59 1.65 2.82 2.16 1.10 1.29 

1.71 1.75 1.74 2.02 1.45 1.76 

1.61 1.60 1.79 2.22 1.59 1.81 

1.96 1.94 2.23 2.56 1.80 1.72 

1.75 1.31 1.48 2.18 1.81 2.01 

1.76 1.71 1.68 2.15 1.96 1.97 

0.93 2.15 1.55 1.61 1.23 1.58 

1.52 1.78 1.69 1.65 1.44 2.09 

1.67 1.36 1.72 1.92 1.43 1.81 

1.47 2.86 2.46 1.49 1.46 2.05 

1.48 1.26 2.21 2.14 1.71 1.60 

1.87 1.78 2.00 2.09 1.83 1.41 

1.30 2.05 1.60 1.63 1.39 1.88 

1.98 - 1.63 1.94 1.45 1.72 

1.25 - 2.06 1.68 1.59 2.02 
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Genotype 49 50 51 52 53 54 

Hypocotyl length (mm) 2.14 2.86 2.05 2.40 1.85 1.79 

1.96 2.25 2.22 1.93 1.72 2.03 

2.11 1.71 1.84 1.75 1.97 2.32 

2.07 2.84 1.88 2.18 1.88 1.96 

1.69 2.57 1.71 2.43 1.31 2.05 

2.51 2.82 2.04 1.87 1.91 1.94 

2.74 2.12 2.48 1.82 1.93 1.62 

2.33 1.87 1.86 1.99 1.77 2.03 

2.09 2.40 1.61 2.15 1.73 2.34 

2.30 2.36 1.63 1.87 1.59 2.01 

1.42 2.81 1.82 2.52 1.77 2.08 

2.42 3.07 1.88 2.26 1.96 2.12 

2.15 1.90 1.86 2.60 1.54 2.32 

3.03 1.71 1.54 2.35 1.61 2.50 

2.06 2.38 1.54 2.48 1.70 2.20 

1.95 2.55 2.40 1.22 2.11 1.82 

1.92 2.57 1.67 2.22 1.81 1.67 

1.86 2.23 - 2.05 1.52 2.09 

2.38 - - 2.00 1.85 1.73 

2.05 - - 2.66 1.52 2.52 

       

Genotype 55 56 57 58 59 60 

Hypocotyl length (mm) 1.28 1.71 1.97 1.46 2.17 2.09 

1.34 2.69 2.86 2.11 2.31 1.65 

1.52 1.55 2.30 1.83 1.38 1.80 

1.15 2.18 1.90 1.22 1.24 1.50 

1.39 1.65 2.52 2.13 2.18 1.22 

1.42 1.59 1.73 2.08 1.33 1.90 

0.88 1.87 1.24 1.21 2.09 1.23 

1.15 1.86 2.12 1.90 1.38 1.68 

1.97 1.99 1.79 1.68 1.96 1.77 

1.72 2.19 1.69 1.44 2.25 1.50 

2.54 1.98 1.77 1.76 1.38 1.76 

1.76 1.71 2.02 1.90 1.63 1.65 

1.55 1.79 1.80 1.90 2.06 2.06 

1.71 2.02 1.96 2.39 1.53 2.80 

1.54 2.59 1.14 2.72 1.31 1.51 

1.40 1.92 1.53 2.51 1.74 1.58 

1.45 1.69 1.22 3.07 1.89 1.08 

1.77 1.81 1.38 2.32 1.72 2.05 

1.41 1.80 2.25 - 1.44 2.27 

1.21 - 2.49 - 1.51 1.67 
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Genotype 61 62 63 64 65 66 

Hypocotyl length (mm) 1.49 1.51 1.04 1.39 2.19 1.99 

1.39 1.73 1.19 1.69 2.03 0.98 

1.37 1.33 1.41 1.36 1.93 1.45 

2.15 1.62 1.30 1.15 1.80 1.60 

1.60 2.11 1.06 1.64 1.88 1.62 

1.49 2.19 1.43 1.54 2.26 1.39 

1.62 1.55 1.96 0.99 1.14 1.86 

1.85 2.61 2.10 1.51 1.69 1.50 

1.44 1.47 1.72 1.54 1.74 1.29 

1.68 1.86 1.52 0.97 1.83 1.34 

1.37 0.96 1.43 1.20 1.95 1.39 

1.12 1.56 2.07 1.14 1.82 1.87 

1.54 1.52 1.25 1.09 1.69 1.67 

1.67 1.49 1.81 1.88 2.08 1.42 

1.27 1.72 1.39 1.32 2.50 1.52 

1.16 1.50 1.57 1.51 1.44 1.61 

1.76 1.88 1.38 1.93 1.89 1.67 

2.01 1.57 1.40 - 1.60 1.50 

1.24 1.79 1.93 - 1.60 1.34 

1.50 1.83 1.27 - 1.74 - 

       

Genotype 67 68 69 70 71 72 

Hypocotyl length (mm) 1.34 1.72 1.96 1.28 1.57 2.06 

1.20 1.49 1.69 2.32 1.18 2.84 

1.81 2.02 1.46 2.48 0.96 1.92 

0.94 1.78 1.29 1.63 1.57 1.86 

1.18 1.53 1.15 1.62 1.43 2.20 

1.30 1.17 1.37 1.60 1.52 2.69 

1.45 1.62 1.83 1.92 1.22 2.62 

1.22 1.97 1.78 1.80 1.16 2.04 

1.74 2.15 1.74 1.80 1.39 1.92 

1.21 1.80 1.71 1.98 1.50 1.64 

1.58 1.48 1.65 2.13 1.08 3.18 

1.41 1.18 1.89 1.63 1.38 2.33 

1.40 2.12 1.33 2.12 2.25 1.95 

1.50 1.61 1.26 2.15 1.19 2.22 

0.75 1.39 1.22 1.57 1.51 2.88 

1.35 1.43 1.23 2.44 1.31 1.98 

1.37 1.40 1.18 1.47 1.12 1.67 

0.81 1.25 1.50 - 1.96 2.19 

1.12 1.32 2.02 - - 1.90 

- 1.89 1.75 - - - 
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Genotype 73 74 75 76 77 78 

Hypocotyl length (mm) 2.24 1.75 1.82 1.76 1.56 1.83 

2.04 1.60 1.73 2.09 1.90 1.64 

1.45 1.86 1.72 1.91 1.81 1.52 

1.81 1.86 1.79 2.31 1.41 2.34 

2.03 1.57 1.70 2.54 1.48 1.09 

2.78 1.46 1.42 1.71 1.99 1.40 

1.92 1.72 2.32 1.94 2.06 2.19 

3.21 1.30 1.74 1.40 1.69 1.36 

2.06 1.58 1.74 1.61 1.90 1.17 

2.30 1.74 1.97 1.81 2.30 1.48 

2.48 1.36 1.87 2.00 2.12 1.67 

2.08 1.80 1.73 1.95 2.12 1.54 

2.78 1.55 2.39 1.80 2.06 1.25 

2.10 1.55 2.32 2.02 1.84 1.10 

3.27 1.08 1.65 2.03 2.27 1.22 

2.27 1.56 2.25 1.61 1.98 2.27 

2.13 1.88 1.68 2.24 2.01 1.64 

1.79 1.89 1.43 1.26 1.97 1.56 

2.02 2.20 1.78 1.78 - - 

3.30 1.18 2.31 1.78 - - 

       

Genotype 79 80 81 82 83 84 

Hypocotyl length (mm) 1.18 2.13 2.11 1.34 1.70 1.36 

1.28 2.03 1.61 1.16 2.09 1.99 

1.83 1.67 1.48 1.52 2.07 1.23 

1.67 1.64 1.74 2.43 1.57 1.52 

1.58 1.95 1.84 1.56 1.71 2.21 

1.99 1.60 1.88 2.06 1.59 1.50 

1.66 1.77 1.87 1.35 2.05 1.28 

1.95 1.66 1.71 1.89 2.04 1.40 

1.81 2.11 2.03 1.18 1.12 2.36 

1.77 1.81 1.63 1.87 1.80 1.30 

1.82 2.24 2.39 2.42 1.29 1.37 

1.74 1.35 1.80 1.20 1.35 1.45 

2.57 2.08 2.45 1.37 1.65 2.07 

1.80 1.88 2.15 1.86 1.51 1.95 

2.08 1.93 1.70 1.91 1.33 1.69 

1.66 1.73 1.67 1.25 1.45 1.47 

2.11 1.30 1.91 1.24 1.43 1.31 

1.44 1.82 1.84 1.23 1.59 1.44 

- 1.28 1.95 2.06 2.35 1.56 

- 1.65 2.29 - 1.33 1.60 
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Genotype 85 86 87 

Hypocotyl length (mm) 1.69 1.87 1.36 

1.60 1.40 1.98 

1.38 1.59 1.38 

1.38 1.68 1.49 

1.39 1.35 1.90 

0.91 2.13 1.67 

1.34 1.87 1.87 

1.94 1.85 1.26 

1.23 1.63 1.37 

1.59 1.55 1.50 

1.56 2.68 1.63 

0.92 1.50 1.77 

1.15 1.49 1.89 

1.30 1.74 1.41 

1.59 1.52 1.79 

0.99 1.25 2.00 

1.12 1.67 1.65 

1.57 1.86 1.70 

1.67 1.84 0.91 

1.56 1.90 1.88 
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Appendix 5: Hypocotyl length of RIL set with exogenous auxin 

Genotype 1 2 3 4 5 6 

Hypocotyl length (mm) 4.95 3.49 4.33 4.25 3.36 2.01 

2.96 3.06 4.68 4.06 2.64 2.32 

3.13 3.08 4.98 4.43 2.90 1.14 

4.31 3.43 4.54 3.43 3.21 3.39 

2.34 3.39 4.16 2.90 2.66 3.57 

3.77 1.47 4.03 5.42 2.62 2.82 

4.13 2.55 4.36 4.52 3.20 3.18 

2.42 2.91 5.11 5.30 3.41 3.36 

2.83 3.42 4.82 3.34 3.37 2.64 

3.51 3.18 4.79 4.30 1.63 2.85 

2.86 3.07 5.45 4.18 2.53 3.80 

2.91 3.27 4.28 3.87 3.61 3.28 

2.94 2.04 4.37 4.34 2.83 4.51 

2.37 2.94 2.71 4.03 3.32 3.82 

2.74 2.19 3.94 3.41 3.58 2.88 

2.90 2.69 3.95 2.98 3.78 2.98 

3.29 3.75 4.81 4.69 3.20 3.45 

2.44 2.82 3.66 5.84 2.93 3.64 

4.15 2.28 4.38 4.27 2.65 2.95 

2.85 3.42 4.39 3.55 - 4.18 
      

Genotype 7 8 9 10 11 12 

Hypocotyl length (mm) 3.13 3.96 5.05 2.56 4.54 2.87 

4.58 3.24 4.03 3.27 2.56 3.02 

4.36 3.25 4.14 2.22 2.64 2.10 

2.40 4.85 4.52 3.23 3.44 2.79 

3.42 3.49 4.51 2.75 2.64 2.41 

2.66 3.85 4.34 2.96 4.25 2.67 

3.20 4.79 3.99 3.49 3.01 3.47 

4.25 3.47 4.28 5.11 3.50 3.84 

2.17 5.17 4.06 3.90 3.70 3.45 

4.05 3.38 3.96 4.05 3.96 2.94 

2.79 3.77 4.21 4.00 2.79 3.38 

2.10 3.20 3.48 3.68 3.39 2.97 

2.05 2.37 4.07 3.25 2.69 2.37 

3.30 3.14 3.72 4.45 3.97 3.52 

2.02 3.89 3.78 2.94 2.65 3.21 

2.77 2.42 3.57 3.38 3.06 2.41 

2.61 2.60 3.90 3.50 3.32 2.80 

1.99 3.21 3.92 2.67 3.34 3.02 

2.54 2.99 2.64 2.80 - 2.68 
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Genotype 13 14 15 16 17 18 

Hypocotyl length (mm) 4.10 2.26 1.57 3.08 3.90 3.11 

4.49 4.13 3.16 2.85 2.92 3.15 

3.67 3.90 2.18 3.36 2.94 2.23 

4.28 2.93 2.47 2.30 3.25 2.91 

2.77 4.94 1.81 2.33 2.99 2.85 

4.17 3.99 2.03 3.05 3.68 3.46 

4.03 3.49 2.17 2.50 2.60 3.30 

3.94 3.69 2.43 3.41 3.55 2.44 

4.19 2.78 2.05 2.53 1.60 2.31 

4.49 3.13 2.06 3.28 2.10 2.68 

4.88 4.32 2.08 3.28 2.73 2.05 

3.90 2.99 2.31 2.23 2.27 2.41 

4.46 2.82 2.17 3.46 2.24 1.97 

4.03 3.59 1.98 3.25 3.93 2.00 

3.34 4.02 2.52 1.46 2.77 2.97 

2.54 3.53 2.71 2.52 2.67 1.87 

3.31 3.81 2.38 2.48 4.17 3.61 

4.33 2.50 2.08 3.36 2.26 2.10 

3.59 3.89 - 2.68 2.80 2.17 

4.12 3.26 - 2.91 3.09 2.89 
       

Genotype 19 20 21 22 23 24 

Hypocotyl length (mm) 2.73 4.74 4.07 3.40 4.21 3.41 

2.19 3.93 4.09 4.93 4.65 3.25 

2.49 5.24 3.33 4.57 3.95 3.49 

3.67 4.50 5.47 3.76 3.93 1.58 

1.86 3.34 3.49 3.90 5.72 1.58 

2.50 4.52 3.92 4.67 3.64 2.89 

2.81 3.26 4.48 4.45 3.94 2.54 

2.98 5.40 4.56 4.32 3.65 2.50 

2.55 2.67 4.72 4.96 4.69 2.56 

3.88 3.50 5.89 3.15 4.26 2.09 

2.35 4.25 4.84 3.33 3.88 2.88 

2.69 4.21 5.34 3.46 4.23 2.38 

2.58 4.20 5.46 4.09 3.31 2.61 

2.97 5.71 3.20 4.10 3.84 2.74 

4.17 4.20 5.25 3.06 4.22 1.72 

2.52 4.77 5.34 3.37 4.05 1.90 

2.61 4.56 5.27 4.78 5.47 2.03 

1.82 4.30 4.07 3.33 3.38 1.92 

1.97 4.01 5.13 3.66 4.78 1.83 

2.14 2.87 - 3.40 4.71 - 
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Genotype 25 26 27 28 29 30 

Hypocotyl length (mm) 3.15 2.80 1.82 3.79 3.03 3.90 

1.87 2.33 1.61 4.08 4.00 5.13 

2.87 1.51 1.87 5.64 4.08 3.95 

2.41 1.84 1.37 5.04 5.82 4.15 

2.80 1.21 3.51 5.33 3.92 4.15 

3.44 1.77 2.47 4.74 1.71 4.30 

3.29 2.09 2.53 4.22 3.96 4.59 

1.51 1.92 1.84 2.54 4.36 4.11 

2.57 2.00 1.82 5.60 4.39 4.55 

4.09 2.70 1.64 4.21 3.09 5.12 

4.24 1.65 1.50 5.49 3.22 3.97 

1.91 2.09 2.03 4.55 3.55 3.64 

2.94 2.57 1.53 3.87 2.56 3.81 

4.66 1.93 1.33 4.68 3.23 3.32 

2.74 1.79 1.98 5.07 4.53 4.40 

2.58 1.73 1.48 3.33 3.09 4.96 

3.93 0.67 1.45 3.65 3.29 4.10 

3.20 1.49 2.04 5.09 3.99 2.60 

3.18 - - - 4.59 4.48 

3.50 - - - 4.68 4.57 
       

Genotype 31 32 33 34 35 36 

Hypocotyl length (mm) 3.76 4.66 2.92 2.59 2.82 4.00 

4.08 3.07 3.12 3.33 3.32 4.05 

3.78 3.31 2.28 4.85 2.74 3.50 

4.25 2.69 2.89 3.04 1.69 4.68 

3.56 2.48 3.83 0.83 2.64 4.69 

3.45 2.36 3.68 3.57 1.76 3.72 

4.76 3.60 2.75 3.42 2.05 2.98 

5.36 2.58 3.46 4.70 3.16 3.81 

5.31 3.81 2.41 3.66 4.05 3.82 

2.95 3.14 3.34 2.86 3.45 3.05 

3.97 3.87 3.95 2.67 3.26 3.79 

3.81 3.50 2.69 4.48 3.86 4.24 

3.63 3.03 2.38 4.92 2.89 3.04 

2.98 3.43 2.95 2.77 2.53 2.63 

4.20 3.10 3.80 4.55 2.48 4.09 

4.58 2.90 2.02 3.07 3.97 2.63 

4.05 3.22 3.01 1.89 2.70 2.71 

4.93 3.08 3.02 3.80 2.42 3.41 

4.98 3.82 2.74 3.95 4.35 3.19 

5.82 4.81 3.31 3.85 - 2.52 
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Genotype 37 38 39 40 41 42 

Hypocotyl length (mm) 4.30 4.41 2.44 3.34 3.67 2.22 

2.79 2.79 3.37 2.26 1.58 1.44 

3.85 4.12 1.93 3.47 2.69 1.38 

2.30 5.31 2.70 2.05 1.49 2.03 

3.31 2.40 3.48 2.24 3.09 1.86 

3.07 3.09 5.13 3.23 4.47 1.33 

2.84 4.23 2.85 3.50 2.50 3.37 

4.25 3.40 3.92 1.81 3.58 3.28 

3.79 4.92 3.43 2.60 1.96 1.76 

2.77 3.20 4.81 3.78 3.11 2.08 

4.52 3.67 2.76 3.06 3.66 2.45 

3.31 3.38 4.83 2.28 2.49 4.16 

3.78 2.34 3.36 6.04 2.96 1.85 

2.62 4.24 4.99 4.77 5.98 1.95 

4.35 3.67 3.59 4.02 2.73 1.96 

3.16 4.39 2.49 3.69 3.48 1.97 

3.83 2.45 3.75 3.43 4.29 4.67 

2.73 3.33 3.75 5.77 2.01 2.41 

4.71 3.59 4.62 2.85 2.68 2.53 

4.38 2.55 3.06 3.70 - 2.43 
       

Genotype 43 44 45 46 47 48 

Hypocotyl length (mm) 3.32 1.87 4.64 1.53 2.99 1.73 

2.96 1.98 2.94 2.02 1.15 1.15 

3.89 1.71 2.90 3.20 2.26 1.32 

3.12 1.70 3.67 1.45 1.13 1.58 

2.33 2.76 2.18 2.81 3.92 1.76 

3.77 1.12 2.80 2.57 1.21 1.52 

2.69 2.17 4.42 2.59 1.71 1.62 

1.90 1.77 3.11 3.18 2.12 1.03 

2.52 1.60 2.55 2.48 2.34 3.04 

3.65 3.49 2.29 3.01 0.72 3.40 

2.19 2.67 2.66 3.09 1.34 1.19 

2.42 1.47 2.81 2.41 0.85 2.14 

2.80 2.90 2.59 2.79 0.97 1.45 

2.13 1.86 2.78 2.11 1.18 1.80 

4.24 1.93 2.91 1.63 3.26 1.52 

1.58 2.61 2.17 1.85 2.41 2.28 

2.96 1.21 1.93 2.21 0.93 1.85 

2.94 - 2.22 1.76 0.78 2.22 

2.93 - 2.61 2.36 0.60 1.89 

2.09 - 2.43 - - 1.77 
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Genotype 49 50 51 52 53 54 

Hypocotyl length (mm) 1.75 3.68 1.27 2.90 3.51 3.84 

1.51 1.62 1.66 3.24 4.04 4.08 

1.97 1.78 1.65 5.05 3.71 4.46 

1.38 1.86 1.41 3.70 2.86 3.61 

1.42 1.26 1.27 4.10 3.22 5.33 

1.89 1.22 1.64 4.44 3.04 3.97 

2.11 4.25 1.29 4.64 2.61 2.59 

2.20 1.94 1.41 3.42 4.44 4.23 

1.71 2.39 2.33 3.11 3.11 4.67 

3.48 1.61 1.27 3.38 2.56 2.86 

1.41 3.37 2.09 3.87 2.99 3.31 

1.30 0.94 1.77 4.53 3.32 3.07 

2.14 1.85 0.91 2.41 3.06 3.33 

1.31 1.07 1.01 3.62 2.89 3.27 

1.70 1.27 1.66 3.36 3.08 3.72 

2.49 3.20 0.98 3.86 3.80 2.60 

1.83 1.60 1.14 3.12 3.40 4.21 

1.75 1.22 1.45 3.20 2.96 3.23 

1.33 2.17 1.20 2.57 4.14 2.83 

2.38 - - 3.54 - 3.38 
       

Genotype 55 56 57 58 59 60 

Hypocotyl length (mm) 3.84 3.94 3.39 3.22 3.51 2.40 

2.84 2.69 1.90 4.18 2.52 3.18 

4.01 2.50 2.17 4.35 2.84 2.14 

2.87 2.36 2.92 4.41 1.85 3.30 

4.01 2.61 3.20 3.96 3.21 2.16 

3.73 2.48 2.15 3.23 3.28 3.01 

3.97 2.36 2.96 3.68 2.66 2.00 

5.27 2.12 2.39 3.68 2.60 4.19 

2.34 3.52 2.71 2.88 3.87 3.32 

5.16 2.89 3.05 4.33 4.38 2.44 

4.46 3.35 1.67 2.74 3.26 2.70 

3.15 3.45 3.05 3.76 2.64 1.64 

4.68 1.95 2.46 3.44 3.37 2.75 

4.00 1.82 2.01 4.41 4.08 3.13 

5.05 1.83 2.26 2.01 2.08 2.13 

4.85 3.15 3.26 3.61 2.93 2.96 

3.88 3.10 2.83 3.51 2.94 2.43 

2.59 2.78 3.76 3.72 3.94 3.54 

3.14 2.89 2.77 4.34 2.82 - 

2.76 2.84 2.06 2.08 3.46 - 
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Genotype 61 62 63 64 65 66 

Hypocotyl length (mm) 3.29 4.38 1.85 3.89 3.35 2.64 

3.12 2.94 2.48 4.28 3.79 2.95 

3.08 2.47 2.86 3.29 3.30 3.53 

3.96 2.64 2.24 4.46 2.79 2.19 

3.40 2.71 2.11 2.91 3.20 3.14 

2.94 3.67 2.61 3.22 2.60 2.48 

2.04 2.33 3.26 2.46 2.12 2.59 

3.98 3.03 3.12 3.21 2.69 2.89 

3.58 2.58 1.94 4.00 3.02 3.26 

1.80 3.89 3.04 4.67 2.74 3.20 

2.38 4.39 3.85 4.28 3.78 2.82 

2.52 2.96 2.79 2.95 2.45 3.72 

2.98 3.24 2.97 3.60 2.92 3.28 

3.45 3.65 2.91 3.01 3.25 3.36 

2.76 3.02 2.99 2.56 2.28 3.54 

2.60 2.54 2.68 3.06 3.63 3.44 

3.11 3.28 2.45 3.64 2.58 1.98 

3.08 2.84 3.41 2.30 4.14 3.24 

2.70 3.07 2.60 3.28 3.13 2.31 

3.67 2.57 1.58 4.66 1.82 3.21 
       

Genotype 67 68 69 70 71 72 

Hypocotyl length (mm) 3.70 2.52 5.02 4.05 3.07 3.46 

3.38 2.44 3.78 4.30 3.21 3.11 

3.03 3.59 4.07 3.68 2.12 3.21 

4.12 3.60 4.64 4.05 3.74 2.68 

3.97 3.70 4.84 4.12 3.88 3.92 

2.62 2.35 3.69 3.99 3.50 3.59 

2.86 2.33 5.26 5.93 2.77 2.77 

3.21 2.44 2.88 4.38 2.74 2.90 

3.67 3.18 3.70 3.31 1.22 3.41 

3.45 2.17 4.72 3.04 4.05 1.52 

3.96 3.39 4.81 2.34 1.94 2.86 

3.65 2.16 4.51 3.51 2.50 2.57 

3.50 3.63 4.65 3.42 3.00 2.70 

3.43 3.73 3.89 4.35 2.89 2.54 

4.19 3.60 4.08 3.85 3.23 3.09 

3.47 2.73 3.53 3.36 4.20 1.48 

3.99 3.12 4.87 3.71 1.87 1.73 

3.33 3.86 3.46 5.11 2.85 2.94 

3.04 3.29 4.28 4.23 2.88 3.50 

- 2.62 3.56 - 3.11 4.64 
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Genotype 73 74 75 76 77 78 

Hypocotyl length (mm) 3.44 4.17 4.03 3.31 3.02 2.39 

4.09 4.49 3.07 1.53 2.05 2.36 

3.14 3.06 2.74 2.74 1.79 2.23 

2.37 3.43 3.84 3.26 1.97 2.85 

2.82 3.65 2.53 2.70 2.38 2.93 

3.41 4.33 3.91 2.05 2.73 2.33 

3.67 4.76 2.39 3.19 2.03 1.97 

2.72 2.35 3.18 2.43 1.64 2.34 

4.60 2.89 2.79 2.35 2.71 3.14 

4.79 3.79 2.90 3.81 2.11 2.37 

3.89 3.04 3.63 2.49 1.85 3.00 

2.99 4.63 3.82 3.48 2.16 1.93 

3.68 2.66 3.97 2.09 2.46 3.23 

3.35 4.05 3.91 3.71 2.09 2.54 

3.06 3.23 2.80 2.56 2.28 2.66 

3.36 3.83 3.72 2.77 3.18 2.36 

2.77 3.33 3.99 1.71 2.30 2.69 

3.38 3.45 4.07 3.40 2.01 2.56 

4.05 4.52 4.18 1.99 2.47 2.59 

4.03 3.99 4.09 3.15 1.95 2.71 
       

Genotype 79 80 81 82 83 84 

Hypocotyl length (mm) 2.23 2.30 3.09 2.99 2.74 2.11 

1.98 1.48 4.03 3.34 2.53 3.19 

2.12 2.08 3.37 3.02 2.33 1.83 

2.49 1.86 4.42 2.37 2.51 2.78 

1.83 2.27 3.90 3.18 2.65 2.60 

1.47 1.37 4.14 3.15 3.17 2.20 

2.36 2.11 3.52 2.87 3.31 2.50 

1.98 2.04 2.92 2.73 2.41 3.31 

2.08 1.69 2.97 3.33 2.13 3.33 

2.80 2.20 4.55 3.25 2.66 2.55 

1.88 2.72 2.96 3.69 3.44 2.50 

1.81 1.82 3.81 2.52 2.78 3.01 

2.04 2.38 2.94 3.62 2.31 3.27 

1.95 2.33 3.12 4.14 2.35 2.37 

1.82 2.12 4.04 2.85 2.08 3.17 

2.97 1.77 4.46 2.68 2.47 2.92 

2.83 2.59 2.52 2.82 3.56 2.77 

1.61 3.35 3.06 2.65 3.23 3.13 

2.73 2.14 2.93 2.86 2.22 2.39 

1.70 1.63 4.42 2.89 2.97 2.54 



162 

 

       

       

       

Genotype 85 86 87 88 

Hypocotyl length (mm) 3.02 1.59 1.62 1.95 

2.12 0.58 2.03 2.06 

1.73 0.84 2.26 2.72 

1.81 1.38 2.74 2.30 

2.26 0.93 1.66 1.71 

2.62 1.38 2.25 2.45 

2.37 2.15 2.21 2.62 

3.05 1.13 2.13 2.09 

2.54 0.61 2.14 2.38 

1.70 1.96 2.05 2.63 

0.85 1.13 3.08 3.11 

2.99 1.39 1.37 2.44 

2.39 2.43 2.79 1.97 

0.82 1.38 1.94 2.36 

3.17 2.03 3.33 1.91 

1.88 1.79 2.47 2.19 

0.89 1.68 2.50 2.11 

1.10 0.58 3.07 2.36 

1.70 0.75 2.04 2.22 

2.80 - 2.27 1.80 
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Appendix 6: Hypocotyl length of RIL set at 27°C 

Genotype 1 2 3 4 5 6 

Hypocotyl length (mm) 2.66 1.36 2.62 1.36 2.07 2.70 

1.72 3.58 3.25 2.18 2.17 2.05 

2.54 1.86 2.43 3.07 2.43 2.41 

2.69 2.10 3.10 1.26 2.18 2.55 

3.29 1.49 2.19 1.90 1.81 2.62 

2.50 2.48 2.40 2.63 2.46 1.48 

2.21 2.48 2.61 1.53 2.37 2.66 

2.92 1.85 1.41 2.30 1.99 3.31 

2.39 2.64 3.18 1.77 1.62 4.17 

2.16 3.32 3.78 2.86 1.49 3.43 

2.28 1.38 2.07 2.51 2.13 2.68 

2.65 1.91 2.10 2.48 2.84 2.57 

3.21 2.28 3.10 1.82 1.54 3.36 

2.15 3.02 2.11 2.32 3.11 2.32 

2.52 1.75 2.64 2.15 2.80 2.92 

2.43 2.54 2.21 2.47 2.68 2.84 

3.54 3.69 2.25 3.74 2.50 2.96 

2.55 2.62 2.38 2.30 1.71 3.02 

2.76 2.93 3.69 3.34 2.56 3.33 

2.91 2.13 1.71 2.31 2.56 - 

      

Genotype 7 8 9 10 11 12 

Hypocotyl length (mm) 2.68 2.39 2.61 3.06 4.46 2.49 

2.58 2.73 3.72 2.10 2.23 2.67 

3.01 2.26 2.31 2.89 3.24 2.41 

2.70 2.48 2.92 2.86 3.26 3.54 

2.68 2.29 2.53 3.50 4.32 3.23 

2.50 2.19 2.45 3.50 2.94 2.92 

2.35 1.97 2.96 2.72 2.79 2.36 

2.45 2.25 2.62 2.71 3.41 3.01 

2.79 2.65 2.94 2.87 3.51 2.89 

2.41 2.07 3.12 2.90 3.11 2.97 

2.25 2.63 3.10 2.50 3.01 2.73 

2.49 2.66 3.12 3.09 2.41 2.86 

3.04 2.08 2.46 2.01 2.70 2.39 

2.32 3.09 2.94 2.59 3.21 1.71 

1.91 2.88 2.36 3.68 3.14 2.46 

1.55 1.92 2.30 3.80 1.76 3.39 

2.31 3.09 1.81 2.55 2.42 2.44 

2.82 2.56 2.53 2.66 2.21 3.15 

2.89 2.19 2.06 2.18 3.62 2.27 

2.85 - 3.25 2.94 3.25 - 
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Genotype 13 14 15 16 17 18 

Hypocotyl length (mm) 3.29 2.80 2.01 1.82 2.80 2.71 

3.28 2.03 1.85 2.77 2.65 3.17 

2.72 2.82 2.74 1.80 2.19 2.10 

3.16 2.87 2.71 2.44 3.89 2.33 

3.35 2.79 2.53 2.43 2.43 3.71 

2.98 4.00 3.57 1.70 3.46 2.79 

3.99 3.60 2.26 1.57 2.61 2.41 

3.55 2.25 2.44 2.25 3.10 2.73 

3.61 2.30 3.44 2.25 1.47 1.68 

3.29 3.63 2.44 2.38 2.64 2.78 

3.50 2.54 3.30 1.85 2.28 2.35 

2.23 3.57 2.32 1.96 1.91 2.89 

3.42 2.65 2.73 2.51 3.71 2.25 

2.75 3.38 2.68 2.10 2.50 2.95 

3.51 2.96 2.51 3.01 3.33 2.60 

2.88 3.48 2.08 1.97 2.38 2.24 

3.16 3.74 2.18 2.19 2.00 2.71 

2.91 4.53 2.09 2.54 2.64 3.16 

3.45 3.04 2.16 2.83 3.29 - 

2.48 3.48 2.42 1.92 - - 
       

Genotype 19 20 21 22 23 24 

Hypocotyl length (mm) 3.37 2.50 2.98 2.89 2.37 5.06 

2.35 2.81 2.60 2.73 2.90 3.57 

2.73 2.94 2.54 2.25 2.44 1.61 

4.04 2.63 3.24 3.20 2.67 2.26 

4.55 2.84 2.42 3.95 4.32 3.90 

2.51 3.16 2.48 1.66 3.69 2.73 

3.34 3.35 2.39 3.21 2.58 3.63 

2.82 3.76 2.95 3.37 2.40 3.38 

2.42 2.66 2.72 2.59 3.63 3.14 

3.12 3.32 3.11 2.02 3.05 3.80 

3.26 2.88 3.89 4.07 4.49 3.99 

2.06 3.52 2.55 2.26 2.63 3.48 

3.51 3.38 2.98 3.66 3.16 3.96 

2.81 3.30 1.74 3.14 3.42 3.87 

2.96 2.42 2.55 2.36 3.94 4.79 

1.90 2.71 3.02 3.04 4.27 2.67 

2.21 2.31 2.64 1.85 3.00 3.01 

2.53 3.33 1.98 3.62 3.93 3.92 

2.18 2.68 2.20 2.60 3.27 5.04 

3.40 - - 2.48 2.66 4.04 
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Genotype 25 26 27 28 29 30 

Hypocotyl length (mm) 3.81 4.35 2.99 2.40 1.53 3.20 

2.94 4.91 5.87 1.46 1.70 3.46 

4.60 3.52 3.41 2.81 1.92 2.75 

4.20 4.26 3.15 2.14 1.90 2.35 

3.27 3.75 3.38 1.96 3.35 1.98 

2.42 3.74 2.74 2.43 2.07 2.48 

2.31 3.45 3.99 2.38 2.31 2.79 

3.87 3.43 5.05 3.98 2.52 2.89 

3.67 3.05 3.71 2.41 1.87 2.18 

2.89 3.72 3.67 3.13 3.25 2.43 

3.20 3.31 3.21 1.56 2.21 1.92 

3.54 3.57 3.91 2.07 2.47 2.15 

2.97 3.02 3.03 2.64 1.47 1.85 

2.67 3.06 3.59 2.82 2.13 1.81 

3.20 2.67 4.14 2.50 2.28 2.36 

3.82 2.93 5.20 2.08 1.51 1.47 

2.89 2.83 3.43 2.62 3.62 2.89 

4.14 3.92 3.33 2.30 3.28 2.39 

- 3.09 - 1.80 - 2.64 

- 2.15 - 2.53 - - 
       

Genotype 31 32 33 34 35 36 

Hypocotyl length (mm) 3.13 2.57 3.24 2.55 3.27 3.26 

2.20 2.96 3.95 3.34 3.03 4.76 

2.41 1.95 3.05 1.66 4.41 2.30 

1.60 3.51 4.61 2.86 2.82 2.50 

2.04 3.85 4.48 2.73 3.10 2.04 

1.83 3.88 3.48 2.49 4.01 3.93 

2.16 3.95 4.76 3.32 3.92 3.19 

1.80 3.11 5.12 3.04 4.55 3.29 

2.55 2.97 5.44 3.69 3.86 3.09 

2.42 3.79 2.87 4.14 3.75 3.41 

1.95 3.12 4.39 3.31 2.79 3.45 

2.21 3.48 2.99 2.78 3.00 3.16 

1.46 3.25 4.59 2.42 3.35 2.52 

1.70 2.48 4.30 3.95 3.88 2.40 

1.93 2.69 3.97 3.89 3.30 4.03 

1.90 2.58 4.24 3.11 3.18 3.10 

3.09 4.35 3.46 1.74 3.32 2.49 

2.38 3.62 3.11 3.21 2.91 3.39 

2.46 3.72 4.45 3.56 4.60 1.78 

- 3.96 4.61 - 4.21 2.16 
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Genotype 37 38 39 40 41 42 

Hypocotyl length (mm) 2.20 2.79 2.70 3.41 4.23 4.48 

3.11 2.68 2.43 4.53 2.15 3.91 

3.58 3.07 2.55 2.87 2.99 3.48 

2.20 3.18 2.38 3.75 3.60 4.26 

2.32 3.41 1.25 3.91 2.55 2.87 

2.74 2.51 3.17 3.44 4.12 2.30 

3.17 3.38 2.06 4.19 3.49 2.80 

2.96 2.90 2.74 2.89 4.16 3.65 

3.26 1.61 2.26 4.20 4.31 3.89 

2.64 2.93 3.16 3.57 3.39 3.21 

2.66 2.62 2.30 2.91 3.23 3.88 

2.64 2.52 2.17 2.57 3.97 3.17 

3.79 2.84 1.99 2.39 3.48 3.33 

2.35 3.42 2.12 4.84 3.58 3.53 

2.52 2.73 2.31 2.92 3.30 3.38 

3.14 2.62 2.80 3.77 3.51 3.00 

3.24 2.83 2.30 3.27 3.29 3.29 

3.51 3.26 3.51 3.27 3.29 3.71 

2.56 3.26 2.65 5.38 3.92 3.20 

2.50 - 2.55 - - - 
       

Genotype 43 44 45 46 47 48 

Hypocotyl length (mm) 2.26 4.22 4.46 4.08 3.27 3.32 

3.20 3.35 3.33 4.06 3.56 3.30 

4.86 3.48 3.34 2.73 4.04 2.82 

3.48 2.48 3.50 2.98 2.67 2.18 

3.66 3.55 2.88 3.57 5.24 3.00 

3.35 3.69 1.53 3.86 3.27 3.56 

2.40 3.56 2.28 2.14 3.17 3.25 

3.66 3.82 2.48 2.22 3.05 1.81 

2.83 2.82 3.19 4.40 3.55 2.22 

2.10 3.49 2.75 4.16 4.09 3.21 

3.75 2.93 3.82 3.60 3.43 3.70 

3.41 3.00 3.26 4.99 4.31 3.27 

3.49 3.85 2.43 2.71 4.26 2.42 

3.57 2.53 2.81 4.48 3.79 3.60 

3.94 3.80 2.89 1.46 3.68 4.16 

2.93 3.56 3.58 3.46 3.51 2.91 

3.38 2.73 3.92 3.25 4.19 - 

3.60 3.71 3.04 3.53 3.64 - 

3.80 - 2.95 4.53 - - 

- - 3.21 - - - 
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Genotype 49 50 51 52 53 54 

Hypocotyl length (mm) 2.93 4.25 4.08 2.38 3.08 3.39 

3.62 3.58 4.29 2.68 2.92 3.23 

3.37 3.00 5.16 2.16 2.21 3.40 

3.35 3.58 4.41 2.00 3.32 3.33 

3.17 3.64 3.94 3.84 2.90 2.55 

3.09 4.75 4.58 2.14 1.98 3.45 

2.73 3.56 4.29 2.22 2.56 3.19 

4.29 4.63 3.77 2.12 2.00 5.13 

2.85 3.48 3.78 1.51 1.70 3.67 

3.69 4.13 3.52 3.00 2.48 3.38 

3.27 3.22 3.79 2.52 2.82 4.35 

6.01 5.51 4.64 3.27 2.87 3.43 

3.05 4.58 4.83 2.38 2.66 2.83 

3.37 4.10 4.00 3.02 2.43 3.85 

2.89 5.34 4.48 2.77 2.70 3.09 

3.72 2.87 3.26 2.93 2.46 4.64 

2.51 3.17 3.18 2.75 3.48 3.00 

3.14 3.56 3.55 3.06 3.24 3.00 

3.86 3.98 4.02 2.90 - 2.58 

- 3.46 - - - 3.75 
       

Genotype 55 56 57 58 59 60 

Hypocotyl length (mm) 3.80 2.00 3.05 2.44 3.20 3.24 

3.42 2.71 3.18 3.73 2.89 2.14 

3.88 1.90 2.46 3.47 2.34 2.47 

2.58 2.63 3.26 3.94 2.92 1.89 

5.16 2.39 3.47 4.04 3.84 1.70 

4.13 1.99 2.95 2.77 2.45 1.84 

3.34 2.31 2.82 3.17 2.07 1.75 

2.18 2.72 3.12 3.76 2.99 2.25 

3.19 2.78 2.42 3.87 3.00 1.46 

2.86 1.65 3.96 3.47 2.79 1.82 

2.47 2.20 4.67 3.26 2.85 1.54 

3.14 3.19 3.28 2.48 3.02 2.26 

3.85 3.46 3.95 4.31 3.67 2.33 

2.59 1.81 4.37 4.77 2.04 1.44 

3.22 2.08 4.07 1.88 4.03 1.56 

3.46 1.82 3.22 3.30 3.17 1.51 

2.76 3.32 2.58 3.29 2.89 1.55 

3.51 - 3.33 3.47 2.41 2.51 

3.48 - 4.50 2.92 3.81 2.11 

- - - - - - 
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Genotype 61 62 63 64 65 66 

Hypocotyl length (mm) 1.48 3.16 2.24 2.58 2.55 1.71 

1.28 2.74 2.21 2.32 2.83 1.91 

1.47 2.84 1.31 1.33 2.48 1.62 

1.19 2.31 1.33 1.95 2.73 1.39 

2.27 3.01 0.95 2.47 2.90 2.59 

1.75 2.43 1.50 2.17 2.00 1.38 

1.48 1.94 1.78 2.38 2.02 2.96 

1.55 2.18 2.32 1.59 1.95 2.27 

2.02 1.73 1.56 2.57 2.09 2.51 

2.09 2.85 1.98 2.50 2.10 2.82 

2.31 3.08 1.68 2.75 2.21 1.98 

2.63 2.41 0.81 2.28 2.13 2.42 

1.12 3.55 2.11 1.81 1.87 2.89 

1.30 3.18 2.39 2.67 2.08 1.96 

1.41 3.27 1.98 2.22 2.09 1.29 

2.45 3.21 2.85 2.47 2.35 2.37 

- 1.73 1.88 1.64 2.11 2.75 

- 2.50 3.45 2.19 1.54 2.87 

- 2.38 - 3.01 2.31 2.60 

- 3.70 - - 2.16 2.62 
       

Genotype 67 68 69 70 71 72 

Hypocotyl length (mm) 0.88 1.94 4.33 3.90 2.88 2.31 

1.03 1.41 3.35 3.31 2.84 3.09 

0.75 1.09 3.88 4.24 2.90 2.45 

2.02 1.59 3.30 2.91 2.23 2.82 

0.93 0.67 2.13 2.90 2.52 2.67 

1.06 0.82 2.82 2.45 2.52 2.99 

2.40 2.81 4.16 3.25 3.31 2.95 

1.87 1.43 3.94 3.63 3.44 1.93 

2.00 1.19 2.56 2.49 2.38 2.43 

1.21 2.31 3.29 3.50 4.54 2.43 

2.80 1.55 4.20 2.56 2.94 2.96 

1.24 1.91 3.76 5.02 4.97 2.55 

2.14 1.71 3.50 2.49 3.17 3.72 

1.43 1.44 3.22 2.91 2.27 2.50 

1.78 2.21 2.55 2.53 2.84 2.59 

1.75 1.78 4.55 2.73 2.15 2.67 

1.72 2.17 3.85 3.37 3.06 2.61 

2.26 2.58 3.53 2.60 3.14 2.35 

1.18 - 2.47 2.42 2.66 2.04 

1.74 - 5.31 6.38 4.25 3.41 
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Genotype 73 74 75 76 77 78 

Hypocotyl length (mm) 2.55 2.11 2.32 2.05 3.97 3.85 

3.25 2.42 2.88 2.92 3.24 4.95 

3.45 3.50 1.71 2.13 3.15 2.20 

2.77 3.69 1.95 1.76 4.03 3.58 

4.62 2.20 2.58 1.88 3.31 4.50 

2.10 2.92 1.90 2.10 4.20 4.75 

2.63 3.71 1.93 2.33 5.61 4.02 

2.43 3.01 3.03 2.23 3.22 3.73 

3.58 2.39 2.89 2.71 4.09 3.55 

2.44 3.19 2.14 2.56 4.03 3.15 

3.00 3.40 1.84 2.51 3.37 3.80 

2.03 3.47 2.40 2.73 4.43 3.53 

3.11 3.17 1.79 2.44 3.97 4.94 

2.88 2.62 2.21 3.55 4.62 3.70 

2.39 2.28 4.12 2.19 3.53 4.49 

2.28 3.83 1.71 1.87 4.08 4.92 

3.15 3.41 1.40 1.67 4.52 4.72 

3.34 3.10 1.81 2.53 3.13 3.33 

2.29 3.37 2.48 3.36 3.12 3.60 

1.97 2.45 2.40 2.65 3.92 3.82 
       

Genotype 79 80 81 82 83 84 

Hypocotyl length (mm) 3.85 4.25 2.47 2.32 3.77 2.60 

4.16 3.20 2.79 1.58 2.73 2.02 

3.98 3.04 4.38 2.35 3.11 2.51 

3.77 2.75 2.93 2.32 3.50 2.32 

4.04 2.87 2.41 2.13 5.45 3.35 

3.56 3.31 2.20 2.40 3.27 2.67 

3.33 2.77 2.80 3.13 3.15 4.13 

2.64 3.52 4.53 3.62 2.39 3.38 

2.85 3.42 2.91 0.93 3.51 1.94 

2.84 3.64 1.25 1.15 4.56 2.41 

3.27 2.39 1.79 2.28 2.13 3.42 

4.03 3.39 2.68 2.02 3.43 4.24 

2.66 2.46 2.66 2.75 2.15 3.50 

3.35 3.43 4.07 3.75 3.00 2.81 

3.10 4.29 2.34 4.17 3.78 3.21 

2.96 3.00 2.08 3.01 2.18 3.02 

3.96 3.73 2.03 3.82 3.06 2.76 

4.95 4.64 2.44 1.97 2.92 3.86 

2.77 2.69 2.65 2.01 2.93 2.65 

3.60 4.48 1.71 3.68 2.73 2.44 
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Genotype 85 86 87 88   

Hypocotyl length (mm) 3.02 1.59 1.62 1.95   
 2.12 0.58 2.03 2.06   
 1.73 0.84 2.26 2.72   
 1.81 1.38 2.74 2.30   
 2.26 0.93 1.66 1.71   
 2.62 1.38 2.25 2.45   
 2.37 2.15 2.21 2.62   
 3.05 1.13 2.13 2.09   
 2.54 0.61 2.14 2.38   
 1.70 1.96 2.05 2.63   
 0.85 1.13 3.08 3.11   
 2.99 1.39 1.37 2.44   
 2.39 2.43 2.79 1.97   
 0.82 1.38 1.94 2.36   
 3.17 2.03 3.33 1.91   
 1.88 1.79 2.47 2.19   
 0.89 1.68 2.50 2.11   
 1.10 0.58 3.07 2.36   
 1.70 0.75 2.04 2.22   
 2.80 - 2.27 1.80   

 

  



171 

 

References list 

ALONSO-BLANCO, C., KOORNNEEF, M. 2000. Naturally occurring variation in 

Arabidopsis: an underexploited resource for plant genetics. Trends in Plant Science, 5, 

22-29. 

ARCADE, A., LABOURDETTE, A., FALQUE, M., MANGIN, B., CHARDON, F., CHARCOSSET, 

A., JOETS, J. 2004. BioMercator: integrating genetic maps and QTL towards discovery of 

candidate genes. Bioinformatics, 20, 2324-2326. 

ARSOVSKI, A. A., GALSTYAN, A., GUSEMAN, J. M., NEMHAUSER, J. L., 2012. 

Photomorphogenesis. The Arabidopsis Book. The American Society of Plant Biologists. 

BENNETT, M. J., MARCHANT, A., GREEN, H. G., MAY, S. T., WARD, S. P., MILLNER, P. A., 

WALKER, A. R., SCHULZ, B. & FELDMANN, K. A. 1996. Arabidopsis AUX1 gene: A 

permease-like regulator of root gravitropism. Science, 273, 948-950. 

BLAKESLEE, J. J., PEER, W. A., MURPHY, A. S. 2005. Auxin transport. Current Opinion in 

Plant Biology, 8, 494-500. 

BOERJAN, W., CERVERA, M. T., DELARUE, M., BEECKMAN, T., DEWITTE, W., BELLINI, C., 

CABOCHE, M., VANONCKELEN, H., VANMONTAGU, M. & INZE, D. 1995. SUPERROOT, A 

RECESSIVE MUTATION IN ARABIDOPSIS, CONFERS AUXIN OVERPRODUCTION. Plant Cell, 

7, 1405-1419. 

BOREVITZ, J. O., MALOOF, J. N., LUTES, J., DABI, T., REDFERN, J. L., TRAINER, G. T., 

WERNER, J. D., ASAMI, T., BERRY, C. C., WEIGEL, D. & CHORY, J. 2002. Quantitative trait 

loci controlling light and hormone response in two accessions of Arabidopsis thaliana. 

Genetics, 160, 683-696. 

BOX, M. S., HUANG, B. E., DOMIJAN, M., JAEGER, K. E., KHATTAK, A. K., YOO, S. J., 

SEDIVY, E. L., JONES, D. M., HEARN, T. J., WEBB, A. A. R., GRANT, A., LOCKE, J. C. W. & 

WIGGE, P. A. 2015. ELF3 Controls Thermoresponsive Growth in Arabidopsis. Current 

Biology, 25, 194-199. 



172 

 

BROMAN, K. W., WU, H., SEN, S. & CHURCHILL, G. A. 2003. R/qtl: QTL mapping in 

experimental crosses. Bioinformatics, 19, 889-890. 

BROMAN, K. W. S., SAUNAK 2009. A guide to QTL mapping with R/qtl, London, Springer. 

CHADWICK, A. V. & BURG, S. P. 1970. REGULATION OF ROOT GROWTH BY AUXIN-

ETHYLENE INTERACTION. Plant Physiology, 45, 192-&. 

CHASAN, R. 1993. EMBRYOGENESIS - NEW MOLECULAR INSIGHTS. Plant Cell, 5, 597-

599. 

CHURCHILL, G. A. & DOERGE, R. W. 1994. EMPIRICAL THRESHOLD VALUES FOR 

QUANTITATIVE TRAIT MAPPING. Genetics, 138, 963-971. 

COENEN, C. & LOMAX, T. L. 1997. Auxin-cytokinin interactions in higher plants: old 

problems and new tools. Trends in Plant Science, 2, 351-356. 

COLLARD, B. C. Y., JAHUFER, M. Z. Z., BROUWER, J. B. & PANG, E. C. K. 2005. An 

introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted 

selection for crop improvement: The basic concepts. Euphytica, 142, 169-196. 

COLLETT, C. E., HARBERD, N. P. & LEYSER, O. 2000. Hormonal interactions in the control 

of Arabidopsis hypocotyl elongation. Plant Physiology, 124, 553-561. 

CRAWFORD, A. J., MCLACHLAN, D. H., HETHERINGTON, A. M. & FRANKLIN, K. A. 2012. 

High temperature exposure increases plant cooling capacity. Current Biology, 22, R396-

R397. 

DARWIN D., DARWIN, C. F. 1880. The Power of Movement in Plants, London, J Murray. 

DAVIES, P. J. 2004. Plant Hormones: Biosynthesis, Signal Transduction, Action!, 

Dorcrecht, The Netherlands, Kluwer Academic Publishers. 

SCHEEL, D., WASTERNACK, C. 2002. Plant Signal Transduction, New York, Oxford 

University Press Inc. 



173 

 

ELLIS, C. M., NAGPAL, P., YOUNG, J. C., HAGEN, G., GUILFOYLE, T. J. & REED, J. W. 2005. 

AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and 

floral organ abscission in Arabidopsis thaliana. Development, 132, 4563-4574. 

EVANS, M. L. 1985. THE ACTION OF AUXIN ON PLANT-CELL ELONGATION. Crc Critical 

Reviews in Plant Sciences, 2, 317-365. 

FRIGERIO, M., ALABADI, D., PEREZ-GOMEZ, J., GARCIA-CARCEL, L., PHILLIPS, A. L., 

HEDDEN, P. & BLAZQUEZ, M. A. 2006. Transcriptional regulation of gibberellin 

metabolism genes by auxin signaling in arabidopsis. Plant Physiology, 142, 553-563. 

FRIML, J. 2003. Auxin transport - shaping the plant. Current Opinion in Plant Biology, 6, 

7-12. 

FU, X. D. & HARBERD, N. P. 2003. Auxin promotes Arabidopsis root growth by 

modulating gibberellin response. Nature, 421, 740-743. 

GEISLER, M., BLAKESLEE, J. J., BOUCHARD, R., LEE, O. R., VINCENZETTI, V., 

BANDYOPADHYAY, A., TITAPIWATANAKUN, B., PEER, W. A., BAILLY, A., RICHARDS, E. L., 

EJENDA, K. F. K., SMITH, A. P., BAROUX, C., GROSSNIKLAUS, U., MULLER, A., HRYCYNA, C. 

A., DUDLER, R., MURPHY, A. S. & MARTINOIA, E. 2005. Cellular efflux of auxin catalyzed 

by the Arabidopsis MDR/PGP transporter AtPGP1. Plant Journal, 44, 179-194. 

GENDREAU, E., TRAAS, J., DESNOS, T., GRANDJEAN, O., CABOCHE, M. & HOFTE, H. 1997. 

Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiology, 114, 295-

305. 

GOLDSMITH, M. H. M. 1977. POLAR TRANSPORT OF AUXIN. Annual Review of Plant 

Physiology and Plant Molecular Biology, 28, 439-478. 

GRAY, W. M., OSTIN, A., SANDBERG, G., ROMANO, C. P. & ESTELLE, M. 1998. High 

temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. 

Proceedings of the National Academy of Sciences of the United States of America, 95, 

7197-7202. 



174 

 

GRIERSON, C. S., BARNES, S. R., CHASE, M. W., CLARKE, M., GRIERSON, D., EDWARDS, K. 

J., JELLIS, G. J., JONES, J. D., KNAPP, S., OLDROYD, G., POPPY, G., TEMPLE, P., WILLIAMS, 

R. & BASTOW, R. 2011. One hundred important questions facing plant science research. 

New Phytologist, 192, 6-12. 

HENDRICK, J. P. & HARTL, F. U. 1993. MOLECULAR CHAPERONE FUNCTIONS OF HEAT-

SHOCK PROTEINS. Annual Review of Biochemistry, 62, 349-384. 

HOAD, G. V. 1995. TRANSPORT OF HORMONES IN THE PHLOEM OF HIGHER-PLANTS. 

Plant Growth Regulation, 16, 173-182. 

HUANG, S., BALLARD, D., ZHAO, H. 2007. The role of heritability in mapping expression 

quantitative trait loci. BMC Proceedings, 1 (Suppl 1), S86 

HUBERT, D. A., TORNERO, P., BELKHADIR, Y., KRISHNA, P., TAKAHASHI, A., SHIRASU, K. & 

DANGL, J. L. 2003. Cytosolic HSP90 associates with and modulates the Arabidopsis 

RPM1 disease resistance protein. Embo Journal, 22, 5679-5689. 

JANSEN, R. C. 1993. INTERVAL MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI. 

Genetics, 135, 205-211. 

JANSEN, R. C. & STAM, P. 1994. HIGH-RESOLUTION OF QUANTITATIVE TRAITS INTO 

MULTIPLE LOCI VIA INTERVAL MAPPING. Genetics, 136, 1447-1455. 

JOUVE, L., GASPAR, T., KEVERS, C., GREPPIN, H. & AGOSTI, R. D. 1999. Involvement of 

indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis. Planta, 

209, 136-142. 

JULIO SALINAS, J. J. S.-S. 2006. Arabidopsis Protocols, New Jersey, USA, Humana Press 

Inc. 

KAMADA, Y., JUNG, U. S., PIOTROWSKI, R. & LEVIN, D. E. 1995. THE PROTEIN-KINASE C-

ACTIVATED MAP KINASE PATHWAY OF SACCHAROMYCES-CEREVISIAE MEDIATES A 

NOVEL ASPECT OF THE HEAT-SHOCK RESPONSE. Genes & Development, 9, 1559-1571. 



175 

 

KREGEL, K. C. 2002. Heat shock proteins: modifying factors in physiological stress 

responses and acquired thermotolerance. Journal of Applied Physiology, 92, 2177-2186. 

LAURIE, C., WANG, S., CARLINI-GARCIA, L. A., ZENG, Z. B. 2014. Mapping epistatic 

quantitative trait loci. BMC Genetics, 15, 112-124. 

LEONELLI, S., CHARNLEY, B., WEBB, A. R. & BASTOW, R. 2012. Under one leaf: an 

historical perspective on the UK Plant Science Federation. New Phytologist, 195, 10-13. 

LEVITT, J. 1980. Responses of Plants to Environmental Stresses, London, Academic Press 

Inc. 

LINDQUIST, S. & CRAIG, E. A. 1988. THE HEAT-SHOCK PROTEINS. Annual Review of 

Genetics, 22, 631-677. 

LJUNG, K., BHALERAO, R. P. & SANDBERG, G. 2001. Sites and homeostatic control of 

auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal, 28, 465-474. 

LU, S. X., WEBB, C. J., KNOWLES, S. M., KIM, S. H. J., WANG, Z. Y. & TOBIN, E. M. 2012. 

CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in 

Arabidopsis. Plant Physiology, 158, 1079-1088. 

MCCLUNG, C. R., LOU, P., HERMAND, V. & KIM, J. A. 2016. The Importance of Ambient 

Temperature to Growth and the Induction of Flowering. Frontiers in Plant Science, 7, 7. 

NUSINOW, D. A., HELFER, A., HAMILTON, E. E., KING, J. J., IMAIZUMI, T., SCHULTZ, T. F., 

FARRE, E. M. & KAY, S. A. 2011. The ELF4-ELF3-LUX complex links the circadian clock to 

diurnal control of hypocotyl growth. Nature, 475, 398-U161. 

ORVAR, B. L., SANGWAN, V., OMANN, F. & DHINDSA, R. S. 2000. Early steps in cold 

sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant 

Journal, 23, 785-794. 

PARAN, I. & ZAMIR, D. 2003. Quantitative traits in plants: beyond the QTL. Trends in 

Genetics, 19, 303-306. 



176 

 

PARSELL, D. A. & LINDQUIST, S. 1993. THE FUNCTION OF HEAT-SHOCK PROTEINS IN 

STRESS TOLERANCE - DEGRADATION AND REACTIVATION OF DAMAGED PROTEINS. 

Annual Review of Genetics, 27, 437-496. 

PENFIELD, S. 2008. Temperature perception and signal transduction in plants. New 

Phytologist, 179, 615-628. 

PHILLIPS, P. C. 2008. Epistasis - the essential role of gene interactions in the structure 

and evolution of genetic systems. Nature Reviews Genetics, 9, 855-867. 

PRICE, A. H. 2006. Believe it or not, QTLs are accurate! Trends in Plant Science, 11, 213-

216. 

QUINT, M., DELKER, C., FRANKLIN, K. A., WIGGE, P. A., HALLIDAY, K. J. & VAN ZANTEN, 

M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 

2, 9. 

REYMOND, M., SVISTOONOFF, S., LOUDET, O., NUSSAUME, L., DESNOS, T. 2006. 

Identification of QTL controlling root growth response to phosphate starvation in 

Arabidopsis thaliana. Plant, Cell and Environment, 29, 115-125. 

SAHANA, G., DE KONING, D. J., GULDBRANDSTEN, B., SORENSEN, P., LUND, M. S. 2006. The 

efficiency of mapping of quantitative trait loci using cofactor analysis in half-sib design. Genetics 

Selection Evolution, 38, 167-182. 

SALISBURY, F. B. 1955. THE DUAL ROLE OF AUXIN IN FLOWERING. Plant Physiology, 30, 

327-334. 

SAMACH, A. & WIGGE, P. A. 2005. Ambient temperature perception in plants. Current 

Opinion in Plant Biology, 8, 483-486. 

SANGSTER, T. A., BAHRAMI, A., WILCZEK, A., WATANABE, E., SCHELLENBERG, K., 

MCLELLAN, C., KELLEY, A., KONG, S. W., QUEITSCH, C. & LINDQUIST, S. 2007. Phenotypic 

Diversity and Altered Environmental Plasticity in Arabidopsis thaliana with Reduced 

Hsp90 Levels. Plos One, 2, 15. 



177 

 

SANGSTER, T. A. & QUEITSCH, C. 2005. The HSP90 chaperone complex, an emerging 

force in plant development and phenotypic plasticity. Current Opinion in Plant Biology, 

8, 86-92. 

SANGSTER, T. A., SALATHIA, N., UNDURRAGA, S., MILO, R., SCHELIENBERG, K., 

LINDQUIST, S. & QUEITSCH, C. 2008. HSP90 affects the expression of genetic variation 

and developmental stability in quantitative traits. Proceedings of the National Academy 

of Sciences of the United States of America, 105, 2963-2968. 

SANTELIA, D., VINCENZETTI, V., AZZARELLO, E., BOVET, L., FUKAO, Y., DUCHTIG, P., 

MANCUSO, S., MARTINOIA, E. & GEISLER, M. 2005. MDR-like ABC transporter AtPGP4 is 

involved in auxin-mediated lateral root and root hair development. Febs Letters, 579, 

5399-5406. 

SCHNEIDER, C. A., RASBAND, W. S. & ELICEIRI, K. W. 2012. NIH Image to ImageJ: 25 

years of image analysis. Nature Methods, 9, 671-675. 

SEN, S. & CHURCHILL, G. A. 2001. A statistical framework for quantitative trait mapping. 

Genetics, 159, 371-387. 

SMALLE, J., HAEGMAN, M., KUREPA, J., VANMONTAGU, M. & VANDERSTRAETEN, D. 

1997. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proceedings 

of the National Academy of Sciences of the United States of America, 94, 2756-2761. 

STAVANG, J. A., GALLEGO-BARTOLOME, J., GOMEZ, M. D., YOSHIDA, S., ASAMI, T., 

OLSEN, J. E., GARCIA-MARTINEZ, J. L., ALABADI, D. & BLAZQUEZ, M. A. 2009. Hormonal 

regulation of temperature-induced growth in Arabidopsis. Plant Journal, 60, 589-601. 

SWARUP, K., BENKOVA, E., SWARUP, R., CASIMIRO, I., PERET, B., YANG, Y., PARRY, G., 

NIELSEN, E., DE SMET, I., VANNESTE, S., LEVESQUE, M. P., CARRIER, D., JAMES, N., 

CALVO, V., LJUNG, K., KRAMER, E., ROBERTS, R., GRAHAM, N., MARILLONNET, S., PATEL, 

K., JONES, J. D. G., TAYLOR, C. G., SCHACHTMAN, D. P., MAY, S., SANDBERG, G., BENFEY, 

P., FRIML, J., KERR, I., BEECKMAN, T., LAPLAZE, L. & BENNETT, M. J. 2008. The auxin 

influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 10, 946-954. 



178 

 

TANKSLEY, S. D. 1993. MAPPING POLYGENES. Annual Review of Genetics, 27, 205-233. 

TERASAKA, K., BLAKESLEE, J. J., TITAPIWATANAKUN, B., PEER, W. A., BANDYOPADHYAY, 

A., MAKAM, S. N., LEE, O. R., RICHARDS, E. L., MURPHY, A. S., SATO, F. & YAZAKI, K. 

2005. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in 

Arabidopsis thaliana roots. Plant Cell, 17, 2922-2939. 

THIRUMALAI, D. & LORIMER, G. H. 2001. Chaperonin-mediated protein folding. Annual 

Review of Biophysics and Biomolecular Structure, 30, 245-269. 

VANDENBUSSCHE, F., VRIEZEN, W. H., SMALLE, J., LAARHOVEN, L. J. J., HARREN, F. J. M., 

STRAETEN, D. V. D. 2003. Ethylene and Auxin Control the Arabidopsis Response to 

Decreased Light Intensity. Plant Physiology, 133, 517-527. 

VIERLING, E. 1991. THE ROLES OF HEAT-SHOCK PROTEINS IN PLANTS. Annual Review of 

Plant Physiology and Plant Molecular Biology, 42, 579-620. 

VIETEN, A., SAUER, M., BREWER, P. B. & FRIML, J. 2007. Molecular and cellular aspects 

of auxin-transport-mediated development. Trends in Plant Science, 12, 160-168. 

WENT, F. W. 1927. On growth-accelerating substances in the coleoptile of Avena sativa. 

Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam, 30, 10-19. 

WIGGE, P. A. 2013. Ambient temperature signalling in plants. Current Opinion in Plant 

Biology, 16, 661-666. 

WILDMAN, S. G. 1997. The auxin-A, B enigma: Scientific fraud or scientific ineptitude? 

Plant Growth Regulation, 22, 37-68. 

YANG, T., DAVIES, P. J. & REID, J. B. 1996. Genetic dissection of the relative roles of 

auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. 

Plant Physiology, 110, 1029-1034. 

YOUNG, J. C., AGASHE, V. R., SIEGERS, K. & HARTL, F. U. 2004. Pathways of chaperone-

mediated protein folding in the cytosol. Nature Reviews Molecular Cell Biology, 5, 781-

791. 



179 

 

YOUNG, N. D. 1994. Constructing a plant genetic linkage map with DNA markers. In: 

PHILLIPS, R. L. & VASIL, I. K. (eds.) DNA-based markers in plants. Dordrecht: Springer 

Netherlands. 

YOUNG, N. D. 1996. QTL mapping and quantitative disease resistance in plants. Annual 

Review of Phytopathology, 34, 479-501. 

ZAZIMALOVA, E., KRECEK, P., SKUPA, P., HOYEROVA, K. & PETRASEK, J. 2007. Polar 

transport of the plant hormone auxin - the role of PIN-FORMED (PIN) proteins. Cellular 

and Molecular Life Sciences, 64, 1621-1637. 

ZENG, Z. B. 1993. THEORETICAL BASIS FOR SEPARATION OF MULTIPLE LINKED GENE 

EFFECTS IN MAPPING QUANTITATIVE TRAIT LOCI. Proceedings of the National Academy 

of Sciences of the United States of America, 90, 10972-10976. 

ZENG, Z. B. 1994. PRECISION MAPPING OF QUANTITATIVE TRAIT LOCI. Genetics, 136, 

1457-1468. 

ZHAO, Y. D. 2010. Auxin Biosynthesis and Its Role in Plant Development. In: MERCHANT, 

S., BRIGGS, W. R. & ORT, D. (eds.) Annual Review of Plant Biology, Vol 61. Palo Alto: 

Annual Reviews. 

 


