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Abstract

This thesis is concerned with the dynamics and rheology of polymers, and in

particular on the influence of entanglements and supramolecular “sticky” groups.

The text is organised as follows:

In Part I, we consider these effects in isolation. We begin with an introductory

chapter detailing established theory for unentangled polymers, unentangled sticky

polymers, and entangled polymers. In Chapter 2, we develop a stochastic model

for linear rheology of un-entangled polymers with stickers along the backbone

that we then compare with experimental data and the “classic” sticky Rouse

model. In Chapter 3, we explore the nonlinear rheology of a mixture of entangled

polymeric chains of various lengths (polydisperse) based on coupled equations of

similar form the to Rolie-Poly model [Likhtman and Graham, J. Nonnewton. Fluid

Mech. 114, 1–12 (2003)].

Part II of this thesis describes the development and testing of a “toy” nonlin-

ear rheology model for entangled supramolecular polymeric materials. We de-

scribe three stages in development and testing of this model [Boudara and Read,

J. Rheol. 61, 339–362 (2017)]: Chapter 4, presents a simplified stochastic model

for the rheology of entangled telechelic star polymers. In both linear and non-

linear regimes, we produce maps of the whole parameter space, indicating the

parameter values for which qualitative changes in response to the applied flow

are predicted. Preaveraging the stochastic equations described above, we obtain

a set of non-stochastic coupled equations that produce very similar predictions.

This is detailed in Chapter 5. Finally, in Chapter 6, we use the preaveraged

model to explore complex flow behaviour. In Chapters 4 and 5, we observed that

for some parameter values, the steady state stress versus shear rate curve is non-
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monotonic, which is a signature of shear banding [Fielding, J. Rheol. 60, 821–834

(2016)]. Our simulations confirm shear banding. Surprisingly, for some parameter

values, the system never reaches a steady state but instead it oscillates in time

between homogeneous state and recoil (coexistence of positive and negative shear

rates). We investigate the mechanism behind this oscillatory behaviour.
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Chapter 1

Introduction: Polymers and their

rheology

1.1 Overview

1.1.1 A brief history of polymeric materials

Ink in ancient Egypt (3000 B.C.) was made by mixing carbon black with Ara-

bic gum; Amazonian Indians collected sap from the hevea tree to make their

gummy boots [de Gennes & Badoz (1994; 1996)]. A little more recently, Charles

Goodyear (1800-60) boiled a mixture of sap from hevea tree and sulphur: rubber

for automobile tyres was invented. However, he did not know that the sap was in

fact latex, nor what latex was. It was in 1920 that the macromolecular nature of

polymeric materials was suggested by Hermann Staudinger [Staudinger (1920)].

He hypothesised that polymers were composed of long molecules made from the

repetition of chemical groups linked by covalent bonds.

The architecture and sequence of polymers are crucial to understanding their

properties. Some biological polymers like DNA or RNA contain a huge amount

3



1. POLYMERS AND THEIR RHEOLOGY

of information. They are linear molecules, i.e. no branching; information is con-

tained in the very sequence of the monomers. Some natural polymers and most

synthetic polymers are linear and with the same repeating unit (homopolymers).

Three of the most used polymers are shown in Figure 1.1. All information is

contained in the architecture of the polymer, i.e. branching and linear portions.

Intermediate between the above are copolymers. Their sequence contains a few

different type of monomers.

NN N

Figure 1.1: Common polymers. Left to right: polyethylene (PE), polystyrene
(PS), and polyvinylchloride (PVC). The degree of polymerisation, N , typically
ranges from 102 to 106.

Polymers are essential and ubiquitous in everyday life and, even though they

have been known for less than a century, worldwide production outpaced that

of metal. Some factors can explain why. First, plastics can be formed easily.

Due to their relatively low melting point and high malleability compared to other

materials, they can be shaped in any complex geometry. Additionally, unlike

metals, they can be painted or tainted prior to fabrication, which suppresses the

need for a post-treatment. And finally, we can mention the chemical resistance

of plastics (no oxidation or rusting), light weight compared to metals, and, on

equal weight basis, they can be up to 10 times stronger than stainless steel, e.g.

Kevlarr1, Dyneemar2, or M5r3 high-performance fibres. The common feature of

1DuPont Product information brochure: dupont.com
2DSM Product information brochure: dsm.com
3see Ref. [Northolt et al. (2002)]
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1.1 Overview

these fibres is that they all are made of polymer chains which are highly oriented

and stretched. This feature was remarkably well anticipated by Ref. [Carothers

& Hill (1932)], decades before their actual fabrication. Understanding, from a

theoretical standpoint, the orientation and stretching of polymer chains is key to

predicting their material properties.

Other than orienting and stretching the polymeric chains, recent developments

explored the possibility to build supramolecular polymers [de Greef & Meijer

(2008); Rubinstein & Dobrynin (1999); Rubinstein & Semenov (1998)]. While

classical polymers, as those mentioned above, are long chains of repeating units

connected by covalent (chemical) bonds, supramolecular polymers add a “layer”

of complexity by allowing polymer chains to be held together by reversible, i.e.

non-covalent (physical), and highly directional interactions, e.g. hydrogen bonds

or metal-ligands. Reversible networks can be self-healing [Bergman & Wudl

(2008); Binder (2013); Cordier et al. (2008); Williams et al. (2008)]. Restoration

of the initial material properties after an external stimulus is achieved thanks to

the presence of a dynamical structure. This new type of polymer architecture is

the focus of Chapter 2 and Part II of this thesis.

1.1.2 Polydispersity

It is practically impossible for chemists to make large polymer molecules which are

identical in their mass and branching; there will always be a distribution of these

quantities in real polymeric materials. Polydispersity is the degree of dispersion

of the mass distribution of the molecules synthesised. Most of the time, chemists

wish for a polydispersity as low as possible, but sometimes a larger polydispersity

is desirable for easy polymer processing.

Calling M0 the molar mass of the monomer unit, and N the degree of poly-

merisation of the chain, then M = NM0 is the molar mass of that polymer chain.
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Due to synthesis methods, the polymers chains obtained have different degrees of

polymerisation N , and therefore different molar masses M . Calling pi the prob-

ability that, if one chooses a molecule at random, it will be a polymer of size Ni,

then the number-average degree of polymerisation is

Nn ≡
∑
i

Ni pi, (1.1)

where
∑

i is a shorthand notation for a sum over all possible values of N . The

weight-average degree of polymerisation is defined as

Nw ≡
∑

iN
2
i pi∑

iNi pi
. (1.2)

We also define, wi, the probability that, if one chooses a monomer at random, it

will belong to a polymer of size Ni

wi ≡
Ni pi
Nn

, (1.3)

and Equation (1.2) can be written as

Nw =
∑
i

Niwi, (1.4)

which defines the weight-average degree of polymerisation. Finally, we define the

number-average and weight-average molar mass as

Mn ≡
∑
i

Mi pi, and Mw ≡
∑
i

Mi wi, (1.5)

respectively, being Equations (1.1), and (1.4) multiplied by M0. The ratio be-

tween these two quantities defines the polydispersity index (PDI) of the sample,
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1.1 Overview

it is written D:

D ≡ Mw

Mn

=
Nw

Nn

. (1.6)

A perfectly monodisperse sample has D = 1 and, the greater D, the more poly-

disperse the sample is.

1.1.3 Rheology

Stress and deformation

Rheology is the study of mechanical and flow properties of materials. It aims at

understanding the stress within a material and how this relates to its history of

deformation. We may imagine (virtually) dividing a material into two parts, with

a surface S in between (see Figure 1.2 left). The top part of the material applies

a force F on the lower half, through the surface S, while the bottom part applies

an opposite force −F on the upper half. We define σ(t) = F/S to be the force

acting between the layers of material, per unit surface, measured in Pascal (Pa).

The schematic representations described above, and in Figure 1.2, are an over-

simplification of the reality. Indeed, σ is a local quantity which can vary through

the material if the deformation is not uniform – which means that S is infinites-

imal. Additionally, the surface S can be chosen in the three different directions

(perpendicular to each of the axes), and given the three possible components of

the force F , we need to define stress to be a tensorial quantity with, in principle,

nine components. The strain (deformation) of the material, γ, is also a tensorial

quantity where each component relates to the amplitude of deformation between

two points (relative displacement) per unit distance between them. When the

displacement is perpendicular to the line joining these points, it is called shear

deformation; when it is parallel, it is called elongational deformation, though in

generality deformations can be of mixed character between shear and elongation.
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�F

F

S

�x

�y

Figure 1.2: Left: Shear stress is the force F divided by the surface S. Right: Shear
deformation, relative displacement ∆x of two points separated by a distance ∆y,
γ = ∆x/∆y.

The local rate of deformation is found from gradients of the velocity field,

v(r, t), and is called the velocity gradient tensor, or deformation rate tensor

κ(r, t) ≡ (∇v)T . (1.7)

The symmetric part of equation Equation (1.7) represents deformation: the strain

rate tensor

D ≡ 1

2
(κ+ κT ). (1.8)

The antisymmetric part of equation Equation (1.7) represents rotation: the vor-

ticity tensor

Ω ≡ 1

2
(κ− κT ). (1.9)

From these definitions, we see that κ = D + Ω.

Linear viscoelasticity

In a purely viscous fluid, also called Newtonian fluid, the stress is proportional

to the derivative of strain with respect to time, known as the strain rate. For a
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1.1 Overview

pure shear deformation, the (Newtonian) shear stress is

σN = 2ηD, (1.10)

where η is the fluid viscosity. Likewise, for small strains, a purely elastic material

(rubber) is characterised by a proportionality constant, G, called the elastic mod-

ulus, that relates stress and strain. For a pure shear deformation, the (rubbery)

shear stress is given as:

σR = GB, (1.11)

where B ≡ F ·F T is the Finger tensor, and F is the deformation gradient tensor

that defines the relationship between a vector r0 connecting any two material

points P and Q before, and vector r linking the same material points after the

deformation as r = F · r0 (cf. Chapter 1.4 of Ref. [Macosko (1994)]).

Under a simple shear deformation the xy-component of Equations (1.10) and

(1.11) reduce to

σN(t) = η
dγ

dt
, and σR(t) = Gγ(t), (1.12)

with γ the strain.

In reality, for an elastic material under strong deformation, the proportion-

ality “constant” varies with the deformation. Similarly, non-Newtonian viscous

fluids often have a viscosity which is dependant on the rate of deformation. Most

real materials are intermediate between viscous liquids and elastic solids. To

characterise a material, we can consider a small constant shear deformation ap-

plied at t = 0, such that γ(t) = γ0 for t ≥ 0. In general, the stress response will

depend on the time following the initial deformation. Defining the scalar shear
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stress response to be σ(t), we define the relaxation modulus G(t) as

G(t) ≡ σ(t)

γ0

. (1.13)

For a more general and non-constant shear strain which depends on time, but in

which the stress response remains linear in the applied strain (i.e. small deforma-

tions), the Boltzmann superposition principle may be formulated as follows: the

action on a material (stress or strain) can be decomposed in many sub-actions;

the total response of the material is the sum of its responses to the sub-actions.

Consequently, the integral form of the stress response to a strain is in general

σ(t) =

∫ t

−∞
G(t− t′)2D(t′) dt′, (1.14)

and in one dimension (simple shear)

σ(t) =

∫ t

−∞
G(t− t′)dγ(t′)

dt′
dt′. (1.15)

In the particular case leading to Equation (1.13), the deformation, γ(t′), is a

Heaviside function, giving a Dirac function of weight γ0 as its derivative. However,

the more general Equation (1.14) allows us to compute the stress related to any

history of deformation, once we know the relaxation modulus G(t).

Oscillatory rheology

Small strain oscillatory shear is an important and common experiment. The

sample is deformed sinusoidally at a frequency ω, and within a few cycles of

start-up and often much less, the stress will also oscillate sinusoidally at the same

frequency but in general will be shifted by a phase angle, δ, with respect to the
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strain wave. This is expressed as follows: the strain takes the form

γ(t) = γ0 sinωt, (1.16)

and the stress

σ(t) = σ0 sin(ωt+ δ). (1.17)

Such data are analysed by decomposing the stress wave into two waves of the

same frequency, one in phase with the strain wave and one 90◦ out of phase with

this wave. Hence, we write

σ = σ′ + σ′′

= σ′0 sinωt+ σ′′0 cosωt, with tan δ ≡ σ′′0/σ
′
0, (1.18)

which suggests, using Equation (1.13), two dynamic moduli

G′ ≡ σ′0/γ0, and G′′ ≡ σ′′0/γ0, with tan δ = G′′/G′. (1.19)

G′ is the in-phase component, called elastic modulus or storage modulus, while

G′′ is the out-of-phase component, called viscous modulus or loss modulus.

Using Equations (1.15), (1.16) and (1.19) and trigonometric formulae, one

obtains

G′(ω) = ω

∫ ∞
0

G(t′) sinωt′ dt′, and G′′(ω) = ω

∫ ∞
0

G(t′) cosωt′ dt′. (1.20)

Typically, the experiment is done at a range of different frequency, ω, and is hence

called a frequency sweep experiment.

Now, suppose that G(t) is an exponential decay with characteristic time τ ,
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i.e.

G(t) = G0 exp(−t/τ), (1.21)

which is the so-called Maxwell model. Then, Equation (1.20) yields the storage

and loss modulus as

G′(ω) = G0
ω2τ 2

1 + ω2τ 2
, and G′′(ω) = G0

ωτ

1 + ω2τ 2
. (1.22)

A logical improvement on this model in treating real materials is to try sev-

eral relaxation times, τi. The relaxation modulus can be written as a series of

exponential decays multiplied by weighting constants gi as

G(t) =
∑
i

gi exp(−t/τi), (1.23)

where the sum runs over all the modes. When substituted in Equation (1.20),

this gives the general viscoelastic model

G′(ω) =
∑
i

gi
ω2τ 2

i

1 + ω2τ 2
i

, and G′′(ω) =
∑
i

gi
ωτi

1 + ω2τ 2
i

. (1.24)

Note that most real materials can be modelled as a sum of a set of Maxwell modes

in their small strain response, however the non-uniqueness of {τi, gi} required to

describe a given material can be an issue [Baumgaertel & Winter (1992); Friedrich

et al. (1996); Honerkamp (1989)].
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1.2 Modelling polymeric materials

1.2.1 Universality

The chain conformation, i.e. the structure of the polymer chain in space, is obvi-

ously dependent on the chemical properties of the chain elements, but also on the

interaction with the surrounding media (other chains, solvent) and with itself.

At small scale, the structure of the polymer is more or less simple and regu-

larly organised. Nevertheless, consecutive segments of the chain have some degree

of freedom, which depends on the chemical nature of the chain. On larger scale,

the effect is universal, and flexible polymeric chains all adopt a similar distribu-

tion of shapes. This large scale conformation distribution is the static effect of

the large number of monomers, each having some degrees of freedom. Despite

the fact that the local structure differs from one polymer to another, the typi-

cal set of conformations adopted by all flexible polymers is the same, as Flory

showed [Flory (1969)]. Static properties common to all polymers and the theoret-

ical link between the physics of polymers and critical phenomena are the support

for the scaling law approach adopted by de Gennes1.

1.2.2 Gaussian chain

Properties

Polymer molecules are long chains composed from repeat units linked together.

As a consequence of the rotational flexibility of these links, the orientation corre-

lation between neighbouring units in flexible polymers decays over a small number

of monomeric units. This decay length is called the persistence length. For in-

stance, it is equal to roughly four carbon-carbon bonds in polyethylene. On length

1see chapter X of Ref. [de Gennes (1979)]
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scales larger than the persistence length, the polymer chain may be modelled as

a freely-jointed chain.

Considering a polymeric chain made of N freely-jointed segments of effective

bond length b, the spatial configuration of the chain can be modelled by a random

walk in which each neighbouring segment has uncorrelated orientation. Therefore,

the average end-to-end vector, R, of a freely-jointed polymer chain is

〈R〉 = 0, (1.25)

where 〈 · 〉 is the average over the chain configurations. The mean square end-

to-end distance of a freely-jointed polymer chain is

〈
R2
〉

= Nb2. (1.26)

The probability distribution of the end-to-end vector, R, of an ideal random walk

of N steps of length b is

p(N,R) =

(
3

2πNb2

)3/2

exp

(
− 3R2

2Nb2

)
, |R| � Nb. (1.27)

Note that the Gaussian probability is non-zero for end-to-end vectors larger than

the maximum length, Nb, of the chain, which is unphysical, so Equation (1.27)

only applies for |R| � Nb.

Entropic force

One can derive the free energy, F, of the polymer chain from the Gaussian prob-

ability density function [McLeish (2002)]

F(R) = U − TS, (1.28)
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Figure 1.3: Contribution of a single chain segment to the stress tensor. The poly-
mer carries a tension across the surface of normal j. Adapted from Ref. [McLeish
(2002)].

where U is the internal energy (U = 0 here as there is no source of internal

energy), T is the temperature, and S = const. + kB ln p(N,R) is the entropy

of the system, with p given by Equation (1.27). The thermodynamic force, f ,

(Brownian tension) on the chain end-to-end vector is given by

f(R) = −∇F(R)

= −3kBT

Nb2
R

= −kR. (1.29)

We recognize a linear elastic spring law: a random walk is a Hookean spring with

spring constant k = 3kBT/Nb
2. The change in entropy in a polymer chain causes

it to exert a force when deformed.
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Polymeric stress

In Figure 1.3, a polymer chain with end-to-end vector R, is in an elementary

volume L3, and the chain carries a tension, f(R), described by Equation (1.29).

Given that:

(i) according to Equation (1.29), the ith component of the force transmitted by

this chain across the plane is fi = 3kBTRi/Nb
2;

(ii) a chain will cross a plane with normal in the j-direction with probability

Rj/L;

(iii) a box of size L3 contains nM/N polymer chains, where nM is the number of

monomers per unit volume1 (i.e. there are nML
3/N polymer chains in L3);

the total stress tensor reads

σij =
nM
N
〈fiRj〉

=
3kBT

N2b2
nM 〈RiRj〉 , (1.30)

where 〈 · 〉 denotes the configurational average. Note that equilibration below the

largest length scale of the chain should be achieved for the above expression to

hold, i.e. all modes apart from end-to-end vector are equilibrated.

1.2.3 The dumbbell model

The dumbbell model is one of the simplest models used to describe the nonlinear

rheology of a dilute solution of polymer chains. We will illustrate, at the end

of this Section, how we can use it to predict nonlinear rheology in simple flow

(uniaxial extension and shear), and use a multi-mode version of that model in

1Notation “nM” according to Ref. [Larson et al. (2003)]
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Figure 1.4: Dumbbell model. Two beads in position r1 and r2 are linked with a
spring of stiffness k, and R ≡ r1 − r2.

Section 2.6 to predict, from the linear rheology data, the elongational viscosity

of a supramolecular polymeric material.

Derivation of the model

The dumbbell model considers a real polymer ofN monomers of length b, and that

all drag forces are acting at the ends of the polymer chain. As presented in Figure

1.4, the polymer is then modelled as two beads linked with a spring of stiffness

k = 3kBT/Nb
2, see Equation (1.29). Considering that the fluid surrounding the

polymer moves with a velocity u(ri) at the point ri, each bead experiences a drag

force proportional to the difference between its velocity vi = dri
dt

and u(ri), with

constant of proportionality given by the friction coefficient, ζ. We also consider

the thermal force on each bead, fth, which arises from the random collision of the

(small) beads with the molecules of the solvent. This thermal force is considered

as a Gaussian white noise. We apply the fundamental principle of dynamics to

find the coupled equations of motion of the two beads, and neglect inertia effects,

to find

ζ

(
dr1
dt
− u(r1)

)
= k (r2 − r1) + fth,1, (1.31)

ζ

(
dr2
dt
− u(r2)

)
= k (r1 − r2) + fth,2. (1.32)
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We define the end-to-end vector R ≡ r1 − r2, see Figure 1.4.

Using the dimensionless tensor A ≡ 3 〈RR〉 /Nb2, the dumbbell model re-

duces to
DA

Dt
= κ ·A+A · κT − 1

τ
(A− I). (1.33)

The tensor A is modified by the flow κ and relaxes with a characteristic time τ =

ζ/4k. The derivative D/Dt is the Lagrangian derivative, or convective derivative,

∂/∂t+ (u ·∇).

The polymeric stress, σ, is related to the dimensionless conformation tensor,

A, through Equation (1.30), as

σ =
3kBT

N2b2
nM〈RR〉

=
kBT

N
nMA

= GA, (1.34)

where G ≡ nMkBT/N .

If we assume multiple relaxation modes, τi, then there is an equation of form

Equation (1.34) for each mode, with relaxation time τi, and then the stress is a

weighted sum of the A tensors for each mode multiplied by the modulus, i.e.

σ =
∑
i

giAi. (1.35)

In the linear rheology regime, this reduces to Equation (1.23).

The above Equation (1.34) together with Equation (1.33) is known as the

upper convected Maxwell model. Equation (1.33) is solvable analytically for some

particular flows. We will derive the solutions for uniaxial elongation flow and

simple shear flow in the following sections, and use a multi-mode version of that

model in Section 2.6 to predict, from the linear rheology data, the elongational
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1.2 Modelling polymeric materials

viscosity of a supramolecular polymeric material.

Uniaxial elongation

We consider a uniaxial elongational flow in the x -direction, with a constant

stretch rate ε̇. The velocity gradient tensor is written

κ =


ε̇ 0 0

0 −ε̇/2 0

0 0 −ε̇/2

 . (1.36)

We solve the differential equations Equation (1.33) with the initial condition

A (t = 0) = I, to find

A(t) =


Axx(t) 0 0

0 Ayy(t) 0

0 0 Azz(t)

 , (1.37)

with

Axx(t) =
1− 2ε̇τ exp (− (1− 2ε̇τ) t/τ)

1− 2ε̇τ
, (1.38)

Ayy(t) = Azz(t) =
1 + ε̇τ exp (− (1 + ε̇τ) t/τ)

1 + ε̇τ
. (1.39)

The two components Ayy and Azz always converge to (1 + ε̇τ)−1. However, the

convergence of Axx depends on how 2ε̇τ compares to 1. We study the linear/slow-

stretch-rate regime, i.e. ε̇τ � 1, in the following paragraph.

Linear regime: If we place the system in a linear regime, i.e. we consider the

limit ε̇τ � 1, then the above expressions of Axx, Ayy, Azz can be approximated
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1. POLYMERS AND THEIR RHEOLOGY

to the first order in ε̇τ as

Axx(t) ≈
1− 2ε̇τ exp (−t/τ)

1− 2ε̇τ
, ε̇τ � 1, (1.40)

Ayy(t) = Azz(t) ≈
1 + ε̇τ exp (−t/τ)

1 + ε̇τ
, ε̇τ � 1. (1.41)

We can compute the first normal stress difference N1, defined as N1 ≡ σxx− σyy,
to the first order in ε̇τ

N1(t) = G
(
Axx(t)− Ayy(t)

)
≈ G

[
1− 2ε̇τ exp (−t/τ)

1− 2ε̇τ
− 1 + ε̇τ exp (−t/τ)

1 + ε̇τ

]
, ε̇τ � 1

≈ 3Gε̇τ
(
1− exp (−t/τ)

)
, ε̇τ � 1. (1.42)

Hence, the expression of the tensile stress growth coefficient, η+
E , (also known as

transient extensional viscosity) in the linear regime

η+
E (t) ≡ N1(t)/ε̇

≈ 3Gτ
(
1− exp (−t/τ)

)
, ε̇τ � 1. (1.43)

The viscosity does not depend on the elongation rate ε̇ as long as the condi-

tion ε̇τ � 1 is verified. It depends only on the modulus G and relaxation time

τ . Equation (1.43) is known as the linear viscoelastic envelope (LVE) – for this

dumbbell model – as it describes the evolution of the transient extensional vis-

cosity in the linear regime.

Simple shear

We place our dumbbell model into a simple shear flow. For a simple shear flow

with velocity in the x -direction and shear gradient in the y -direction, the velocity
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gradient tensor is

κ =


0 γ̇ 0

0 0 0

0 0 0

 , (1.44)

where γ̇ ≡ dγ/dt is the constant applied shear rate. We find the analytic solution

of Equation (1.33) by solving the differential equations with the initial condition

A (t = 0) = I. We obtain

A(t) =


Axx(t) Axy(t) 0

Axy(t) 1 0

0 0 1

 , (1.45)

with

Axx(t) = 1 + 2γ̇2τ 2
(
1− exp (−t/τ)

)
− 2γ̇2τt exp (−t/τ), (1.46)

Axy(t) = γ̇τ
(
1− exp (−t/τ)

)
. (1.47)

Note that here the two components Axx and Axy are convergent, independently of

the value of the shear rate γ̇. The model predicts a first normal stress difference

N1(t) = 2Gγ̇2τ 2
(
1− exp (−t/τ)

)
− 2Gγ̇2τt exp (−t/τ), (1.48)

and a shear stress growth coefficient, η+, (also known as transient shear viscosity)

η+(t) ≡ σxy(t)

γ̇

= Gτ
(
1− exp (−t/τ)

)
. (1.49)
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We note that similarly to the elongation case, the transient shear viscosity only

depends on the modulus G and the characteristic relaxation time τ . We also

note that η+ is three times smaller than η+
E , cf. Equation (1.43). Hence, the

Trouton ratio [Trouton (1906)], defined as the ratio of extensional viscosity to

shear viscosity, is 3 in the linear regime.

1.2.4 The Rouse model

Description of the Rouse model

The Rouse model first appeared in a 1953 paper by P. E. Rouse [Rouse (1953)],

and it describes the conformational dynamics of an ideal chain. In this model, the

single chain diffusion is represented by Brownian motion of beads connected by

harmonic springs, i.e. “multiple dumbbells”. There are no excluded volume inter-

actions between the beads and each bead is subjected to a random thermal force

and a drag force as in Langevin dynamics [Langevin (1908)]. We can summarize

the model’s ideas as follows [de Gennes (1971)]:

(i) ideal chain: bead-springs obeying Gaussian statistics;

(ii) phantom chain: the chain can “cross itself”;

(iii) locality: each bead experiences forces from its two neighbours.

Figure 1.5 is a schematic view of the Rouse model with N beads, and springs

connecting them. The average distance between them is b (see Section 1.2.2).

In the following, we present scaling arguments to derive the expression of the

dynamic modulus, G(t). One should refer to, e.g., [Doi & Edwards (1988)], for

an exact solution that we briefly outline at the end of this Section.
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Scaling in the Rouse model

To move a distance R, the red bead, see Figure 1.5, has to drag with it all other

connected beads in the “sphere” of size R. Since the beads undergo a random

walk of step length b, it follows that the number, n, of beads correlated with the

movement of the red one over a distance R is

n =
R2

b2
. (1.50)

Figure 1.5: Schematic view of the Rouse model with N beads and springs con-
necting them. The average distance between them is b.

The total total friction involved is ζ ′ = nζ, where ζ is the friction experienced

by one monomer. The diffusion coefficient of one bead is given by the Einstein

relation D = kBT/ζ. Now, the effective diffusion coefficient of the red bead when

moving a distance R is

D′ =
kBT

ζ ′
=
kBT

nζ
. (1.51)

Calling t the time needed by the red bead to move a distance R, we have the
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1. POLYMERS AND THEIR RHEOLOGY

relation R2 = D′t, which, using Equation (1.51), gives

R2 =
kBTb

2

R2ζ
t

R4 = b4 t

τbead

, (1.52)

where τbead ≡ b2ζ/kBT . Given that R2 = nb2, it follows that the number of beads

correlated with the motion of the red bead over time, t, is

n(t) =

(
t

τbead

)1/2

. (1.53)

Using the definition of G(t) [Doi & Edwards (1988)]:

G(t) ≈ nM
N
kBT × (number of stress carrying objects in chain), (1.54)

we obtain, using Equation (1.53),

G(t) ≈ nM
N
kBT

N

n(t)

∝ t−1/2. (1.55)

Figure 1.6 sketches the characteristic shape of the dynamic modulus as a function

of time in a log-log scale. The prediction is that the dynamic modulus decays

over time with a slope of −1/2. After a time τR, defined in the next paragraph,

the entire chain relaxes, hence the final decay of G(t).

Exact solution of the Rouse model

Having outlined the scaling argument above, we present succinctly the exact

solution of the Rouse model [Doi & Edwards (1988)]. It gives a set of “modes”
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1.2 Modelling polymeric materials

Figure 1.6: Dynamic modulus function of time in log-log scale from the Rouse
scaling argument Section 1.2.4.

of relaxation, with timescales τp = τR/p
2, with

τR =
ζN2b2

3π2kBT
, (1.56)

the longest relaxation time, also called Rouse time. It is the time for relaxation of

the overall shape of the molecule. The Rouse time has a special significance. On

timescales shorter than τR, the chain exhibits viscoelastic modes (see Equation

(1.57)). However, on timescales longer than τR, the stress response of the chains

to flow is simply viscous.

In nonlinear flow, each Rouse mode acts like a “dumbbell”, so that the stress

is a sum over dumbbell modes (of form Equation (1.33)) with different relaxation

times but equal modulus. For polymer melts, at long times, the Rouse chains

can be regarded as being composed of N flexible segments, referred to as Rouse

segments, and the Rouse relaxation modulus can be written as [Barlow et al.

(1964); Ferry (1980)]

G(t) =
ρRT

M

N∑
p=1

exp
(
−p2t/τR

)
, (1.57)
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with RT the thermal energy per mole of material, ρ the polymer density, M the

chain molecular mass. Note that this equation gives exactly the form of G(t)

sketched in Figure 1.6.

The Rouse model gives a first insight on the spectrum of relaxation times that

arises due to the connectivity of polymer chains. It is regarded as an appropriate

model for short, unentangled, chains in a polymer melt (no solvent), but not for

dilute solutions because it neglects hydrodynamic interactions, unlike the Zimm

model1 – not discussed here.

1.2.5 Entanglements

So far we have not considered the chain-chain interactions that arise at high chain

concentration, i.e. topological constraints or entanglement effects. As thread-like

objects, polymer chains are subject to entanglements. However, due to their

small size, thermal agitation plays a crucial role on polymer chains. Hence, the

properties of entangled polymers are more complex than those of macroscopic

objects where thermal fluctuations are negligible.

The models presented in the previous Sections 1.2.3 and 1.2.4 are valid for a

single chain in solution. When one increases the number of such dumbbells or

Rouse chains, interactions will occur due to the very nature of the polymer: they

cannot cross each other. This topological constraint is known as the entanglement

effect. For linear polymers and simple branched polymers (as compared to rings),

this does not affect the static properties since all configurations are accessible [Gay

(1997)]. On the other hand, the dynamical properties will be highly perturbed

as entanglements provide constraints on the motion of polymers. While a precise

definition of an entanglement has not been generally agreed upon, we consider

that an entanglement is a topological interaction between one polymer molecule

1see section 4.2 of Ref. [Doi & Edwards (1988)]
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and its neighbours that greatly impedes its motion and thus its ability to relax

after a deformation is imposed [Dealy & Larson (2006)].

Reptation

To account for entanglement effects, the most successful theoretical approach

is the “tube model” of de Gennes and Doi & Edwards [de Gennes (1971); Doi

& Edwards (1988)]. The main idea of the tube theory is that polymers cannot

move perpendicular to their own contour as this motion would involve the motion

of several other of their neighbours at the same time (to avoid chain crossing).

However, the motion of a polymer along its own contour is much easier and

does not require crossing other chains. This gives rise to the idea that each

polymer is confined within a tube-like region where the major mode of motion is

reptation [de Gennes (1971)], i.e. random thermal motion along the tube.

The tube follows the coarse-grained conformation of the polymer chain, the

primitive path. In molecular dynamics simulations of polymers, the primitive path

is (virtually) obtained by taking the average over configurations of chains over

short times [Bisbee et al. (2011); Kremer & Grest (1990); Likhtman (2014)], or

via chain-shrinking methods [Everaers et al. (2004); Kröger (2005); Tzoumanekas

& Theodorou (2006); Zhou & Larson (2005)] – see chapter 6 of Ref. [Dealy &

Larson (2006), second edition], or Ref. [Masubuchi et al. (2008)] for more details.

Therefore, the tube has a random walk (or random flight) configuration but the

tube diameter, a0, is much larger than the diameter of the polymer molecule,

and also larger than the effective segment length, b, of the polymer chain. For

a flexible polymer molecule, the diameter of the tube, a0, is taken to be equal

to the random walk step length of the tube, and a single random walk step of

the tube is called a tube segment. It can be shown that the tube diameter, a0, is
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related to the average distance between entanglements (at equilibrium) as

a2
0 = Neb

2, (1.58)

where Ne ≡Me/M0 is the average number of chain segments of length b between

two entanglements, Me is the entanglement molar mass, i.e. average molar mass

between two entanglements, and M0 is the molar mass of a chain segment of

length b. Note that the details of the chain structure and dynamics at length

scales smaller than a0 are described by the Rouse model, Section 1.2.4, since

entanglement effects are then irrelevant.

The motion of a chain, composed of N segments, inside its tube is analogous

to a unidimensional diffusion. The friction constant, ζtube, is proportional to the

chain length: ζtube = Nζ, where ζ is the monomer friction coefficient. Hence,

the diffusion coefficient is inversely proportional to N : Dtube = kBT/ζtube ∝ 1/N .

The characteristic time needed for the chain to renew its primitive path (new

tube), i.e. the time needed for the chain to move a distance equal to its length,

is called reptation time, or disengagement time, τd. Since the tube length is

Ltube = Za0, with Z ≡ N/Ne the entanglement number, we have

τd ≈
L2

tube

Dtube

=
(Za0)2

kBT/Nζ

=
N3b2ζ

kBTNe

∝ N3. (1.59)

This simple argument shows that entangled polymers can have huge characteristic

relaxation times. We can compare this expression of the reptation time with the
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Rouse time, Equation (1.56). The ratio is

τd

τR

≈ N3b2ζ

kBTNe

3π2kBT

ζN2b2

≈ N/Ne = Z. (1.60)

The reptation time becomes much larger than the Rouse time for large degree of

polymerisation N .

Doi and Edwards [Doi & Edwards (1988)] derived the exact expression for

τd. In reptation the molecule escapes from its tube by sliding back and forth in

it, gradually protruding more and more of its mass outside of the tube. Every

time a portion of the tube is vacated by the chain, that portion of the tube is

“forgotten”. The survival fraction, P (t), is the fraction of the tube that remains

occupied by the molecule at time t, assuming that the whole chain is in the tube

at time zero. An analysis of the reptation process leads to [Doi & Edwards (1988)]

P (t) =
8

π2

∑
iodd

i−2 exp
(
−i2t/τd

)
, (1.61)

with

τd =
ζN3b4

π2kBTa2
0

, (1.62)

where ζ is the monomeric friction coefficient. The exact form of the ratio Equation

(1.60) is thus
τd

τR

= 3Z. (1.63)

Limitations and other relaxation mechanisms

Despite the success of the initial tube theory of de Gennes and Doi & Ed-

wards [de Gennes (1971); Doi & Edwards (1988)] in capturing several aspects

of the rheological properties of monodisperse melt of linear chains, some predic-
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tions are not in agreement with experimental data. For instance

(i) Experimentally, the zero shear viscosity scales as the molecular weight, Mw,

of the chain to the power 3.4, while an exponent 3 is predicted by the model;

(ii) The dependence of the reptation time, τd, with the degree of polymerisation,

N , of the chain is more complex than Equation (1.59);

To address these issues, the tube theory has been refined to predict quantita-

tively the linear rheology [Likhtman & McLeish (2002); Milner & McLeish (1998)]

and the nonlinear rheology [Graham et al. (2003); Marrucci (1996); Mead et al.

(1998); Read et al. (2008)] of a monodisperse melt of linear entangled polymers

with considerations such as constraint release (CR), contour length fluctuations

(CLF) – plus chain stretch and convective constraint release (CCR) in the non-

linear regime. “Toy models” for nonlinear rheology that include these effects

have been developed recently. Examples are the Rolie-Poly model [Likhtman &

Graham (2003)] (that we use extensively in this thesis), the Mead-Larson-Doi

model [Mead et al. (1998)], or models by Ianniruberto & Marrucci [Ianniruberto

& Marrucci (2002a)]. Finally, we must mention the slip-link based models that,

with the progress of computing power, have become a formidable predicting tool,

especially in the linear regime [Doi & Takimoto (2003); Likhtman (2005); Schieber

et al. (2007)].

Industrial polymers embody a broad range of molar masses (chain lengths).

Recently, a detailed tube theory for bidisperse melt of entangled polymers (long

chains blended with short chains) has been developed by Read and co-workers

[Read et al. (2012)], which successfully describes experiments on bidisperse blends.

Building on this work, in Chapter 3, we propose a simplified tube model, based

on the Rolie-Poly model [Likhtman & Graham (2003)], for a polydisperse melt

of entangled polymers that aims at predicting nonlinear rheology, whilst being
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consistent with the “double reptation” theory [des Cloizeaux (1988)] in linear

rheology.

1.2.6 Supramolecular polymers

Definition

Amongst the first scientific articles in the field of supramolecular chemistry, we

can mention Donald Cram [Cram (1988)], Charles Pedersen [Pedersen (1967)] or

Jean-Marie Lehn [Lehn (1995)] who introduced the term “supramolecular chem-

istry” defined as the chemistry of molecular assemblies and of the intermolecular

bonds. In the Nobel prize lecture Lehn gave in 1987 he declared [Lehn (1988)]:

“Supramolecular chemistry may be defined as ‘chemistry beyond the molecule’,

bearing on the organized entities of higher complexity that result from the asso-

ciation of two or more chemical species held together by intermolecular forces”.

In that definition, he distinguishes the “classic” chemistry (i.e. chemistry of co-

valent bonds) from the more complex supramolecular chemistry which concerns

the organisation of molecules.

Supramolecular chemistry allows for the design of novel materials. Compared

to classic polymeric materials (of large molecular mass), supramolecular poly-

mers can be composed of low molar mass polymers that bind together through

directional and non-covalent interactions, which are reversible and tunable via

external stimuli (e.g. temperature, pH, counter-ion).

“Stickers”

There are several different inter- and intramolecular interactions covering binding

energies ranging from 1 to 120 kJ/mol with van der Waals forces at the weak-

end and coordinate bonds at the strong-end of the scale [Friese & Kurth (2009)],
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Table 1.1: Strength of different types of intra- and intermolecular binding ener-
gies, adapted from [Friese & Kurth (2009)].

Type of “force” Strength (kJ/mol)

RT at room temperature 2.5

Van der Waals 1–5

Π-donnor-acceptor 7–20

Hydrogen bonding 10–20

Hydrophobic/hydrophilic 12–15

Ion pairing 12–20

Coordinate bond 40–120

Covalent bond 150–1000

see Table 1.1. We can compare the magnitude of these binding energies to the

thermal energy (per mole) RT = kBTNA, with NA the Avogadro constant.

Hydrogen bonds are the most commonly used supramolecular link [Sijbesma

& Meijer (1999)] due to their ubiquitous presence in both synthetic and biolog-

ical systems (e.g. DNA double helix structure or molecular recognition [Brienne

et al. (1989); Johnson & Lam (2010)]). Also, hydrogen bonding is directional,

temperature controlled (RT is of comparable strength at “high” temperature),

and relatively strong compared to other type of non-covalent bonds presented

Table 1.1 [Brunsveld et al. (2001); Grzybowski et al. (2009)].

Since non-covalent bonding can be integrated in any place of the polymer

chain, the architecture of supramolecular polymers is versatile. For example,

linear polymers can incorporate non-covalent bonding at the chain extremities or

as side groups [Feldman et al. (2009)].

Rheological models describing some supramolecular systems have been es-

tablished. The key parameters of these models are (i) the reversible-bond life-

time, (ii) their density or concentration and (iii) structure, i.e. placement of the

supramolecular groups, length, and architecture of the polymer chains. We now
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summarise a few relevant models in the literature:

Sticky-Rouse model: The dynamics of unentangled reversible networks formed

by (usually linear) polymers with many associating groups per chain are de-

scribed by a modified Rouse model, called the “sticky-Rouse model”. Chains

move via multiple breaking and reforming of reversible bonds connecting them

to each other. These bonds act as effective friction centres of the sticky-Rouse

model [Chen et al. (2013); Colby et al. (1998); Green & Tobolsky (1946); Leibler

et al. (1991)]. We discuss this model in more detail in Chapter 2, and extend it

by proposing a “stochastic” sticky-Rouse model that incorporates (i) the random

placement of the stickers along the backbone, (ii) the intrinsic distribution of the

number of stickers along the chain, and (iii) a finite size “hop” of the sticker when

it detaches and changes partner.

Nonlinear models for unentangled telechelic polymers: Tripathi and co-

workers [Tripathi et al. (2006)] derived a nonlinear constitutive model for unen-

tangled linear telechelic chains. It is a two-species network model which incor-

porates mechanisms for the creation and destruction of elastically active chains

and account for the contributions of both the bridging chains (those between mi-

celles) and the dangling chains (chains not connected at both ends) to the final

stress tensor. The model also quantitatively captures both the shear thickening

and subsequent shear thinning observed in the rheology at high deformation rates

and predicts transient extensional stress growth curves in close agreement with

those measured using a filament stretching rheometer on telechelic polymers.

Similar nonlinear models for unentangled telechelic polymers have been pro-

posed by Tanaka and Edwards [Tanaka & Edwards (1992a;b;c;d)], Vaccaro and

Marrucci [Vaccaro & Marrucci (2000)] (inspired partially by the simulation re-

sults of van den Brule and Hoogerbrugge [van den Brule & Hoogerbrugge (1995)]),
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and more recently, molecular dynamics/Monte Carlo simulations were proposed

by Amin and co-workers [Amin et al. (2016)].

Sticky reptation model: Leibler and co-workers developed a theory of “sticky

reptation” to model the linear rheology and dynamics of entangled solutions of as-

sociating entangled polymers with many stickers per chain [Leibler et al. (1991)].

At times shorter than the lifetime of a cross-link, such networks behave as elas-

tic rubbers (gels). On longer time scales, the successive breaking of only a few

cross-links allows the chain to diffuse along its confining tube. Rubinstein & Se-

menov [Rubinstein & Semenov (2001)] argued that at high degree of association,

there are very few unassociated stickers. It is therefore very difficult for a sticker

to find a new partner to associate with after breaking the bond with an old one.

In the sticky reptation model, the search for a new partner is restricted to a part

of the tube confining the entangled chain.

Entangled telechelic stars: van Ruymbeke and co-workers developed a tube

model for the linear rheology of entangled telechelic stars and linear telechelic

chains [van Ruymbeke et al. (2010)] based on the time-marching algorithm [van

Ruymbeke et al. (2005)], where they incorporate the association status of the

chains via the sticker interactions at each time step. There is good agreement

of the predictions with the experimental data which they report, using two ad-

justable parameters: the average times when two stickers remain associated or

free.

To this author’s knowledge, nonlinear rheology models for entangled telechelic

star polymers are nonexistent in the literature. In Part II, we develop such a

model. In Chapter 4, we propose a stochastic model where the evolution of

thousands of chains is monitored and the attachment/detachment is a stochastic

process, and entanglements are handled using the Rolie-Poly model [Likhtman
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& Graham (2003)]. In Chapter 5, we propose a preaveraged version of that

model, i.e. we get rid of the stochastic character of the model, based on two

tensors (attached and detached chains) and a scalar (instantaneous fraction of

attached chains). The predictions of the resulting model closely resembles those

of the stochastic one, but it is less demanding computationally and therefore

suitable for flow computation. Finally, in Chapter 6, we explore the shear banding

properties of the preaveraged constitutive model, demonstrating that it is suitable

for nonlinear flow computations.

1.3 Structure of this thesis

In summary, the structure of this thesis is as follows: In Part I we consider two

separate rheology models, one (the sticky-Rouse model, in Chapter 2) which is

dominated by the sticker dynamics in unentangled chains, and another (poly-

disperse entangled linear polymers, in Chapter 3) where entanglements govern

rheology. In Part II, we develop a nonlinear model which combines the effects

of entanglements and stickers, through a stochastic model (Chapter 4), a preav-

eraged model (Chapter 5), and finally nonlinear flow computation in a shear

banding study (Chapter 6). We conclude, in Part III, with a summary of the

main achievements of this thesis.
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Chapter 2

Stochastic sticky-Rouse model

2.1 Introduction

In this Chapter, we present a model aiming at predicting the linear rheology of

a melt of unentangled linear polymer chains with stickers along the backbone.

Figure 2.1 presents the cartoon of the system we are considering.

This work was initially constructed to model the data obtained by G. Cui on

a novel linear polymer composed of a Poly-N-hydroxyethylacrylamide (PEHA)

backbone where 2-ureido-4[1H]-pyrimidinone (UPy) monomers were randomly

grafted along the backbone as side groups. The UPy groups act as reversible

Figure 2.1: Cartoon of the system. Ns stickers are randomly placed along the
backbone, separated by chains strands of molar masses Mi, i = {1, . . . , Ns + 1}.
M1 and MNs+1 are the molar masses of the two chain-ends.

37



2. STOCHASTIC STICKY-ROUSE MODEL

crosslinks (stickers): they associate pair-wise through hydrogen bonds [Brunsveld

et al. (2001); de Greef & Meijer (2008); Feldman et al. (2009)]. The resulting

polymeric system exhibits complex dielectric and viscoelastic properties. In this

Chapter, we propose a rheological model that is able to match, at a quantitative

level, the experimental linear rheology data (frequency sweep). The entanglement

effect is negligible for this system as the chains are “short” (Mn < Me). The

model we propose is based on the established sticky-Rouse model, presented in

Section 2.2.1, that we modify to account for specific details of the chain structure

and its anticipated motion, as discussed in Section 2.2.2.

2.2 Sticky-Rouse model

2.2.1 Presentation of the existing model

The idea of the sticky-Rouse model is to take into account the effect of the

breaking and reformation of the reversible crosslinks (stickers) on the viscoelastic

response of the system. At time scales longer than the sticker timescale, τas, the

system behaves in a Rouse-like way [Baxandall (1989); Rouse (1953)]. However, it

is clear that the stickers delay the terminal response of the stress relaxation when

compared to their non-functionalised counterpart, i.e. short linear chain without

the “sticky” side groups. The stickers can be seen as an additional drag (or

friction) at times shorter that τas, and therefore can delay the terminal relaxation

time [Green & Tobolsky (1946); Leibler et al. (1991)].

At this point, we should mention that the relevant sticker lifetime (from a

rheological standpoint), called τas in the rest of the chapter, is the “effective”

lifetime of the bond, and not the bare breaking and reformation time of the bond.

This “effective” bond lifetime has been described theoretically by Rubinstein &

Semenov, see Ref. [Rubinstein & Semenov (1998; 2001)]. The argument for using
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2.2 Sticky-Rouse model

an effective lifetime and not the bare chemical bond lifetime (i.e. the average time

during which a sticker stays attached) is the following: a sticker that breaks and

reforms a bond with the same partner will not relax any stress (or very little)

because the chain configuration is essentially unchanged. Thus, if the system has

a high degree of association, as is the case in “sticky systems”, i.e. most of the

stickers have a partner, a sticker will not find a new partner easily. In fact, the

stickers are more likely to attach and detach to the same “old” partner many

times before finding a new partner. Hence, only after a time much longer than

the bare lifetime of the sticky bond it will find a new partner to attach to and,

only then, stress relaxation occurs. In the rest of this Chapter, τas refers to the

“effective” bond lifetime.

In the sticky-Rouse model, the stress relaxation is split-up into two contri-

butions: from the transient network arising from the stickers, and the Rouse

motion of the chain strands between stickers. The relaxation modulus is written

as [Baxandall (1989); Chen et al. (2013); Leibler et al. (1991)]

Gs(t) =
∑
i

ρwiRT

Mi

Ns,i∑
p=1

exp
(
−tp2/τasN

2
s,i

)
(2.1)

+

Ni∑
p=Ns,i+1

exp
(
−tp2/τ0N

2
i

) ,
where the first sum sets the polydispersity of the sample, wi is the weight fraction

of the chain of massMi in the ith fraction; the first sum in brackets accounts for the

sticky modes where Ns,i = Mi/Mstrand is the number of strands between sticky

groups on the ith chain with Mstrand the average chain mass between stickers;

finally, the last sum accounts for the Rouse modes, see Section 1.2.4, where Ni =

Mi/M0 is the number of Rouse monomers per chain, with M0 the molar mass of a

Rouse monomer, and τ0 is the characteristic relaxation time of a Rouse monomer.
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2.2.2 Limitations of the sticky-Rouse model

A limitation of the sticky-Rouse model resides in the fact that it considers all

chains to have the same number of stickers, and the stickers to be placed uniformly

along the chain backbone. Additionally, it treats the sticky groups as having

increased friction, rather than considering finite sized hops of the chain. In real

polymers, like the ones synthesised by G. Cui, we expect that:

(i) the number of stickers per chain follows a certain probability distribution

characterised by an average number, Ns, of stickers, i.e. some chains have

more stickers or less stickers than Ns;

(ii) the stickers are placed randomly along the backbone;

(iii) a sticker finding a new partner will undergo a finite size hop in space.

In the following Sections, we develop a stochastic model based on the existing

sticky-Rouse model, whose aim is to address the above mentioned limitations.

Firstly, we explain how we generate a population of chains with the features (i)

and (ii). Then, we propose a “hop” mechanism to address (iii). Subsequently,

we propose a way to compute the stress relaxation function, and thus the elastic

and loss moduli, of a system composed by a polydisperse mixture of such chains,

and finally we compare our model with frequency-sweep experimental data of

PEHA-UPy polymer melts with various sticker concentrations, i.e. samples with

different Ns.
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2.3 Initialisation of the chains

2.3 Initialisation of the chains

2.3.1 Placement of stickers on a chain

As a starting point, we consider a linear polymer chain of molar mass M . From

rheology and NMR, we can estimate the average number, Ns, of stickers in each

chain. The chemical synthesis process suggests that we need to place stickers at

random positions along each chain.

From any chosen point on a chain, the molar mass, Mi, to the next sticker

follows an exponential distribution (this also gives the distribution of molar mass

stickers). The expected value of the molar mass between stickers is given by

Mstrand = M/Ns. The probability distribution function of Mi is1

p(Mi) =
1

Mstrand

exp

(
− Mi

Mstrand

)
. (2.2)

Therefore, from uniformly distributed (pseudo) random numbers, 0 < θi < 1, we

generate the molar masses Mi of the strands of chain between stickers and of the

dangling chain-ends, that follow the above probability distribution, by using

Mi = −Mstrand ln(θi). (2.3)

Hence, the first sticker is placed after after a chain length M1, then another sticker

is placed after a chain length M2, etc., until we exceed the given molecular weight

of the considered chain, i.e. we stop when
∑

iMi > M , see Figure 2.1.

We generate Nc chains according to this process. Each chain, k, has Ns,k

stickers distributed along the chain according to the set of strand molar masses

connecting them: {Mk,i}, i = {1, 2, . . . , Ns,k}, see Figure 2.2. It is anticipated

that the number of stickers per chain will follow a Poisson distribution with

1see Chapter VIII of Ref. [Flory (1953)]
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2. STOCHASTIC STICKY-ROUSE MODEL

Figure 2.2: Illustrations of a set of Nc chains. On each chain k the stickers (black
circles) are placed via Equation (2.3).

mean Ns.

In the following Section 2.3.2, we present the method used to initialise the

spatial configuration of each of the Nc chains, now that we have fixed the stickers

(randomly) on the chains.

2.3.2 Spatial configuration

This Section is only relevant for the computation of the “sticky” relaxation func-

tion, Gsticky, which is presented in Section 2.4.2. We do not need to define a

spatial configuration to compute the “fast” stress relaxation function, Gsticky, in

Section 2.4.1.

Each of the Nc chains is initialized to have a Gaussian configuration (cf.

Section 1.2.2). We start by positioning the first sticker at an arbitrary position,

R0, (e.g. R0 = 0) and define the position of the following sticker, i, (relative to

the previous sticker) by subsequently generating a random vector, ∆Ri, sampled

from the Gaussian probability distribution (adapted from Equation (1.27))

p(∆Ri) =

(
3

2πb2Ni

)3/2

exp

(
−3(∆Ri)

2

2b2Ni

)
, (2.4)

where Ni ≡ Mi/M0 is the number of Rouse monomers on the strand connecting

the stickers (i − 1, i), and M0 the molar mass of a Rouse monomer. Then, we
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2.4 Stress relaxation

place the sticker i at the position Ri such that

Ri = Ri−1 + ∆Ri. (2.5)

2.4 Stress relaxation

We assume that the stickers stay attached, on average, for a time, τas, much

longer than the longest Rouse mode that the chain between stickers would have

if relaxing subject to monomer friction alone, i.e. (N/Ns)
2τ0 � τas. Consequently,

we assume that during the Rouse relaxation process, all stickers stay attached.

This allows us to decouple the relaxation due to the internal Rouse motion of the

chain segments (delimited by the stickers) from the relaxation due to the motion

of the stickers. The total stress relaxation function, G(t), is then split into two

contributions

G(t) = Gfast(t) +Gsticky(t). (2.6)

The first term, Gfast, is the contribution of the portions of chain “trapped” be-

tween stickers, and that of the dangling ends. It closely resembles the “fast”

modes of the sticky-Rouse model of Equation (2.1). We slightly modify it to

account for the non-uniform distribution of the stickers, and the dangling ends.

We detail the model for Gfast in Section 2.4.1. The second term, Gsticky, is the

contribution of the sticker “motion”. The ‘hop” model we propose is different

from the treatment of the “sticky” modes of Equation (2.1). We detail our model

for Gsticky in Section 2.4.2.

2.4.1 “Fast” Rouse modes – Gfast

Let us consider that the number of chains per unit volume is nM/N , where N is

the degree of polymerisation of the chain, and nM = ρNA/M0 is the number of
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Rouse monomers per unit volume, with ρ the polymer density, NA the Avogadro

constant and M0 the Rouse monomer molar mass. Thus, the “unit of modulus”

per chain is

G0
chain =

nMkBT

N

=
ρRT

M
, (2.7)

where we used the relation between the gas constant R and the Boltzmann con-

stant kB, R = NAkB, T is the temperature, and M = NM0 is the chain molar

mass.

We have to consider the Rouse relaxation process of the segments “trapped”

between two stickers, and that of the “dangling ends” (chain extremities). For

each chain k, of molar mass M , we write the relaxation modulus of the “fast”

Rouse modes as

Gfast,k(t) =
ρRT

M

(
Gtrapped,k(t) +Gends,k(t)

)
, (2.8)

which then yields the relaxation modulus of the “fast” Rouse modes, averaged

over the Nc chains

Gfast(t) =
1

Nc

Nc∑
k=1

Gfast,k(t)

=
ρRT

NcM

Nc∑
k=1

(
Gtrapped,k(t) +Gends,k(t)

)
. (2.9)

Polydispersity

The above Equation (2.9) assumes a perfectly monodisperse system, i.e. all chains

have the same molar mass M : the relaxation functions Gtrapped,k and Gends,k in
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2.4 Stress relaxation

Equation (2.9) are specifically defined for a chain of molar mass M .

We can generalise to the polydisperse case. If we assume that the molecular

mass distribution is discretised into a set of q modes, {(w`,M`)}, ` = {1, . . . , q},
and that, for the mode `, Nc,` chains are generated as described in Section 2.3.1,

then relaxation modulus of the “fast” Rouse modes is written

Gfast(t) =

q∑
`=1

ρw`RT

M`

1

Nc,`

Nc,`∑
k=1

Gfast,k,`(t). (2.10)

In the following paragraphs, we omit, for simplicity, the subscript `.

Trapped chain segments: For each chain k of molar mass M , the strand of

chain of molar mass Mk,i, “trapped” between two stickers, (i− 1) and i, behaves

as a Rouse chain with both ends fixed, and so relaxes via Rouse modes with

relaxation times τk,i = N2
k,iτ0/p

2, with p = {1, 2, 3, . . . }, and Nk,i ≡ Mk,i/M0

the number of Rouse monomers in the ith strand (of molar mass Mk,i) of the kth

chain. Hence,

Gtrapped,k(t) =

Ns,k∑
i=2

Nk,i∑
p=1

exp

(
− tp2

N2
k,iτ0

)
. (2.11)

Note that the first sum excludes the chain ends. The second-sum cut-off, Nk,i, is

chosen such that the fastest Rouse mode corresponds to the relaxation time of a

Rouse monomer, τ0.

Chain ends: For each chain k of molar mass M , the two chain-ends of molar

masses Mk,1 and Mk,(Ns,k+1), cf. Figure 2.1, behave as a Rouse chain with one end

free and one end fixed, and so relax with the same Rouse spectrum corresponding

to the “odd” modes of a chain twice as long. Thus, the Rouse relaxation times

are τk,i = (2Nk,i)
2 τ0/p

2, with p = {1, 3, 5, . . . }. The corresponding relaxation
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function is

Gends,k(t) =
∑

i={1,Ns,k+1}

Nk,i∑
p=1, podd

exp

(
− tp2

4N2
k,iτ0

)
. (2.12)

Storage and loss moduli: The expressions for the (dimensionless) storage

and loss moduli, for each chain k of molar mass M , are obtained by transforming

the sum of Equations (2.11) and (2.12), using Equation (1.20). This gives

G′fast,k(ω) =

Ns,k∑
i=2

Nk,i∑
p=1

(ωN2
k,iτ0p

−2)2

1 + (ωN2
k,iτ0p−2)2

(2.13)

+
∑

i={1,Ns,k+1}

Nk,i∑
podd

(4ωN2
k,iτ0p

−2)2

1 + (4ωN2
k,iτ0p−2)2

,

G′′fast,k(ω) =

Ns,k∑
i=2

Nk,i∑
p=1

ωN2
k,iτ0p

−2

1 + (ωN2
k,iτ0p−2)2

(2.14)

+
∑

i={1,Ns,k+1}

Nk,i∑
podd

4ωN2
k,iτ0p

−2

1 + (4ωN2
k,iτ0p−2)2

.

The expressions of the total elastic and loss moduli from the contribution of the

“fast Rouse” motion is obtained by summing over the Nc chains of identical molar

mass M

G′fast(ω) =
ρRT

M

1

Nc

Nc∑
k=1

G′fast,k(ω), (2.15)

G′′fast(ω) =
ρRT

M

1

Nc

Nc∑
k=1

G′′fast,k(ω). (2.16)
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2.4 Stress relaxation

Finally, in the polydisperse case we have, according to Equation (2.10),

G′fast(ω) =

q∑
`=1

ρw`RT

M`

1

Nc,`

Nc,`∑
k=1

G′fast,k,`(ω), (2.17)

G′′fast(ω) =

q∑
`=1

ρw`RT

M`

1

Nc,`

Nc,`∑
k=1

G′′fast,k,`(ω). (2.18)

2.4.2 “Sticky” modes – Gsticky

We now describe a stochastic algorithm, which we use to model the motion of

chains on long times scales, and which we can use to obtain the relaxation spec-

trum for the slow chain modes.

Sticker “hop”

We made the assumption that the average time during which the stickers stay

attached is much longer than any of the internal Rouse relaxation times of the

segments of chain delimited by the stickers. We consider that once a sticker,

i, detaches, it takes a “hop” to a new position which is a vector ∆R from a

mean position R̄i, where it re-attaches, see Figure 2.3. As described in the

introduction of this Chapter, this “hop” motion is the result of the change of

partner that a sticker undergoes, on average, every τas. Here we assume that

between detachment and reattachment, the sticker is able to explore the full

configurational space available to it, given that it is constrained by the chain and

its neighbouring stickers do not move, see Figure 2.3. The mean position R̄i,

around which the sticker re-attaches, is defined by the molecular weight of the

strands (Mi,Mi+1) that are connected to the sticker and by the position of the

neighbouring stickers (Ri−1,Ri+1) as the weighted average position,

R̄i =
Mi+1Ri−1 +MiRi+1

Mi +Mi+1

. (2.19)
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Additionally, we obtain the probability distribution function of the “hop standard

deviation”, ∆Ri, (i.e. how far from the average position, R̄i, the sticker will

attach) as

p(∆Ri) =

(
1

2πσ2
i

)3/2

exp

(
−(∆Ri)

2

2σ2
i

)
, (2.20)

where σ2
i = kBT/keff,i, with keff,i the effective spring constant associated to the

sticker i, which depends on the neighbouring chain segments

keff,i =
3kBT

b2Ni

+
3kBT

b2Ni+1

, (2.21)

with b the length of a Rouse monomer, and Ni the number of Rouse monomers

segments in a chain of molar mass Mi.

Assuming isotropy of the “hop”, each coordinate (∆xi,∆yi,∆zi) of ∆Ri fol-

lows the same probability distribution

p(∆xi) =

(
1

2πσ2
i

)1/2

exp

(
−(∆xi)

2

2σ2
i

)
. (2.22)

Therefore, when a sticker detaches and reattaches, its new position, Rnew
i is given

by

Rnew
i = R̄i + ∆Ri. (2.23)

For the stickers first sticker (i = 1) and last sticker (i = Ns), we use

R̄1 = R2, and R̄Ns = RNs−1, (2.24)

and for the effective spring constants Equation (2.21), we use

keff,1 =
3kBT

b2N2

, and keff,Ns =
3kBT

b2NNs

, (2.25)
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2.4 Stress relaxation

Figure 2.3: Sticker i detaches (dashed circle), takes a local “hop”, and reattaches
to a new position: Rnew

i = R̄i + ∆Ri, (circle).

where N2 = M2/M0 and NNs = MNs/M0, see Figure 2.1.

The above rules ensure that the chains continue to obey the correct equilib-

rium Gaussian chain distribution upon hopping. We assume the time between

detachment and reattachment is negligible.

Sticker detachment dynamics

For a given molar mass M , we have Nc chains having a certain amount of stickers

on them – which were generated according to Equation (2.2). The total amount

of stickers over the Nc chains is Ns,tot =
∑Nc

k=1Ns,k.

For a given sticker, the cumulative distribution function for the detachment

time td of that sticker (time after which an associated sticker detaches) is

p(td ≤ t) = 1− exp

(
− t

τas

)
. (2.26)

Therefore, the probability that a sticker did not detach after a time t is p(t ≤
td) = exp(−t/τas). Hence, the probability that none of the Ns,tot stickers have
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detached after a time t is

[
p(t ≤ td)

]Ns,tot
= exp

(
−Ns,tot t

τas

)
. (2.27)

We conclude that the probability density function of the detachment time of the

first sticker to detach amongst the Ns,tot stickers is

p(td,first) =
Ns,tot

τas

exp

(
−Ns,tot td,first

τas

)
. (2.28)

Given a uniformly distributed (pseudo) random number 0 < θ < 1, we gen-

erate from Equation (2.28) a time, td,first, after which a first sticker detaches:

td,first = −τas ln(θ)/Ns,tot. (2.29)

Then, we choose a sticker randomly amongst the Ns,tot stickers and allow it to

make a “hop” as described by Equation (2.23). We then repeat this process many

times to find the next detachment time amongst the stickers, selecting a random

sticker to move each time.

Stress tensor from the Nc chains

A microscopic expression for the stress tensor is [Doi & Edwards (1988)]

σαβ =
1

V

∑
springs,m

FmαRmβ, (2.30)

where the summation is made over all the springs in the system, the Greek letters

are the Cartesian coordinates, Fm = 3kBTRm/Nmb
2 is the entropic spring force

acting in the mth strand, Rm is the vector connecting the two beads neighbouring

the strand m, and V = NcN/nM is the volume occupied by the Nc chains.

Equation (2.30) can be written in terms of a sum over the Nc chains and, for
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each chain, a sum over the number of chain strands between stickers

σαβ =
1

V

Nc∑
k=1

Ns,k∑
i=2

3kBT

Nib2
Ri,αRi,β

=
ρRT

MNc

Nc∑
k=1

Ns,k∑
i=2

3

Nib2
Ri,αRi,β, (2.31)

where M is the molar mass of the chain. Note that the two end segments (poly-

mers ends) are excluded from this stress expression as we consider that they

are relaxed and their contributions were already accounted for in Gfast, cf. Sec-

tion 2.4.1.

Stress autocorrelation function

In computer simulations, the most convenient way of evaluating the stress au-

tocorrelation function, Gsticky(t), is by using the fluctuation-dissipation theo-

rem [Likhtman (2012); Ramirez et al. (2010)]. It is written

Gsticky(t) =
V

kBT

1

tsim − t

∫ tsim−t

0

σxy(t+ τ)σxy(τ) dτ

=
V

kBT

〈
σxy(t+ τ)σxy(τ)

〉
=

MNc

ρRT

〈
σxy(t+ τ)σxy(τ)

〉
(2.32)

where xy is any two orthogonal directions, and tsim the total simulation time.

Since our system is isotropic, one can average over different directions defining

the pair of perpendicular axis (xy). In isotropic systems there are two arbitrary

angles to select the direction of x axis and one more angle to select the direction of

y-axes perpendicular to it. Averaging over these three angles gives the following

51



2. STOCHASTIC STICKY-ROUSE MODEL

Figure 2.4: Sticker “hop” projected on the x-axis. Upon detachment its new
position (circle) is defined, on average, as xnew = x̄i + σi, which is, on average,√

2σi away from its current position (dashed circle).

result [Likhtman (2012); Ramirez et al. (2010)]

Gsticky(t) =
MNc

5ρRT

(〈
σxy(t)σxy(τ)

〉
+
〈
σyz(t)σyz(τ)

〉
+
〈
σzx(t)σzx(τ)

〉)
(2.33)

+
MNc

30ρRT

(〈
Nxy(t)Nxy(τ)

〉
+
〈
Nxz(t)Nxz(τ)

〉
+
〈
Nyz(t)Nyz(τ)

〉)
,

where Nαβ = σαα − σββ. Using the latter expression instead of Equation (2.32)

improves the statistical accuracy of the results.

In order to evaluate correlation functions in simulations, we use a multiple-tau

correlator algorithm proposed by Ramirez et al. [Ramirez et al. (2010)].

Polydispersity

If we assume that the molecular mass distribution is discretised into a set of q

modes, {(w`,M`)}, ` = {1, . . . , q}, then we compute Gsticky as

Gsticky =

q∑
`=1

w`Gsticky,M`
, (2.34)

where Gsticky,M`
is computed using Equation (2.33) for a chain of molar mass M`.

Comparison of the sticker times

In what follows, we will show that, to compare the values of the sticker time τas

in the “classic” sticky-Rouse model defined by Equation (2.1) with the stochastic
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sticky-Rouse model developed in this Chapter in a fair way, we need to multiply

the former by a factor π2.

We take the special case where the stickers are equally spaced along the chain.

Therefore, the number of Rouse monomers between stickers is fixed to Nm =

N/Ns, and so Equation (2.21) reduces to

keff =
3kBT

b2Nm

+
3kBT

b2Nm

=
6kBT

b2Nm

. (2.35)

In Equation (2.22), σi represents the standard deviation around the mean position

defined by R̄. Figure 2.4 illustrates this process, projected on the x-axis. Upon

detachment, a sticker “hops” to its new position defined, on average, as

xnew = x̄i + σi. (2.36)

This new position is, on average, at a distance
√

2σi away from its current position

(because σi is measured from the centre position x̄i, and we add the variance).

Therefore, the actual mean square displacement of the sticker 〈x2〉, is

〈x2〉 = 2σ2
i

= 2kBT/keff

=
b2Nm

3
. (2.37)

In one dimension, the effective diffusion coefficient, D, is of form

〈x2〉 = 2Dt, (2.38)
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where here t ≡ τas. Hence, we have

D =
b2Nm

6τas

, (2.39)

and we can define the effective sticker friction coefficient as

ζsticker ≡ kBT/D

=
6τaskBT

b2Nm

. (2.40)

Now, we can use the definition of the Rouse time, Equation (1.56), to find the

Rouse time of a chain composed of Ns “springs” of effective length (Nmb
2)1/2. We

therefore make the following substitutions in Equation (1.56):

N → Ns, b2 → Nmb
2, ζ → ζsticker,

to obtain the Rouse relaxation time of a Rouse chain composed of Ns springs

τR =
ζstickerN

2
s Nmb

2

3π2kBT

=
2N2

s τas

π2
. (2.41)

Finally, the relaxation modulus for such chain is

G(t) =
ρRT

M

∑
p

exp

(−2p2t

τR

)
. (2.42)

The reason for the factor of two appearing in the exponential is that there is a

factor of two difference between the relaxation time for the stress contribution of

the pth mode and the relaxation time of molecular orientation from the pth mode
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2.5 Comparison with experimental data

(τR) [Dealy & Larson (2006)]. Using Equation (2.41), we obtain

G(t) =
ρRT

M

∑
p

exp

(−π2p2t

N2
s τas

)
. (2.43)

Comparing the latter expression for the relaxation modulus with Equation (2.1),

we see that there is a factor π2 difference. This factor π2 is included in the values

of the sticker time for the “classic” sticky-Rouse model (Equation (2.1)) reported

in Table 2.1, i.e. we used Equation (2.1), but reported π2 × τas in Table 2.1.

2.5 Comparison with experimental data

Four samples of PEHA-UPy polymers with various UPy-content aiming for (2%,

6%, 9%, and 14% UPy weight fraction) were synthesised by G. Cui, and analysed

by gel permeation chromatography (GPC) to determine their respective molecu-

lar weight distributions. One should be cautious about the absolute meaning of

the GPC results. Indeed, such devices are calibrated with precisely known poly-

mer chains (e.g. polystyrene standards in THF solvent) but the topology (and

stickyness) of the PEHA-UPy might alter and bias the results. Hence, the molec-

ular weight distribution inferred from a GPC run should be taken into account

with this caveat in mind. Nevertheless, in our model, we use a molecular weight

distribution that closely resemble the GPC curves.

Our model contains three parameters, similarly to the “classic” sticky-Rouse

model: the effective sticker lifetime, τas, the Rouse monomer relaxation time τ0,

and the average molar mass between stickers, Mstrand. We summarise, in Ta-

ble 2.1, the best-fit parameters that we used in our stochastic sticky-Rouse model

to fit the data. To account for the polydispersity of the systems, we extract the

PDI and weight-average molecular weight (Mw) from the GPC measurements and
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Figure 2.5: Weight-average molar mass distribution used to produce the model
predictions Figure 2.8.

we assume that the molecular weight distribution follows a log-normal distribu-

tion [Weßlau (1956)].

2.5.1 Log-normal distribution

In the log-normal distribution, the number biased distribution of molecular weight,

n, is

n(lnM) =
1

(2πS2)1/2
exp

(
−(lnM − lnM)2

2S2

)
, (2.44)
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where M is the median value, and S the standard deviation. Hence, the number-

average molar mass is

Mn ≡
∫
M × n(lnM) d(lnM)

= exp
(
lnM + S2/2

)
, (2.45)

and similarly, the weight-average molecular weight is obtained as

Mw ≡ 1

Mn

∫
M2 × n(lnM) d(lnM)

= exp
(
lnM + 3S2/2

)
. (2.46)

Thus, using Equations (2.45) and (2.46), the two parameters, M and S, that

characterise the log-normal distribution can be related to the number-average

molar mass (Mn) and weight-average molar mass (Mw) through

S2 = ln(MwM
−1
n ), (2.47)

M = ln(M3/2
n M−1/2

w ). (2.48)

Finally, the weight biased distribution of molecular weight, w, is obtained as

w(lnM) =
1

(2πS2)1/2
exp

(
−
(
lnM − (lnM + S2)

)2

2S2

)
. (2.49)

We use 19 molar masses, equally spaced in the log-space, to accurately de-

scribe the molar mass distribution. We generate the corresponding weight-average

molecular weights (wi) using Equation (2.49) in order to span the width of the

molecular mass distribution. The resulting molecular weight distributions corre-

sponding to the 2%, 6%, 9%, and 14% UPy are presented in Figures 2.5a–2.5d,

respectively.
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2. STOCHASTIC STICKY-ROUSE MODEL

Table 2.1: Characteristics of the PEHA-UPy samples.

%UPy PDI Mn (kg/mol) Ns τas (µs) τ0 (ns)

NMR Models Stocha Classic†

2% 1.24 16.6 1 0.2 5 25 0.70

6% 1.38 22.0 7 3 29 65 1.0

9% 1.71 23.7 13 8 56 100 2.5

14% 2.38 24.6 17 21 83 200 500
†Includes the factor π2

2.5.2 Data fit

The parameter Mstrand, which describes the average “chain-length” between stick-

ers, fixes the value of the plateau modulus of G′sticky. Best agreements with rhe-

ology data are found for Mstrand values that are reported in Table 2.1, which

are of the same order of magnitude as the values suggested by nuclear magnetic

resonance (NMR) experiments.

We present the experimental elastic and loss moduli together with our stochas-

tic sticky-Rouse model fits and “classic” sticky-Rouse model (Equation (2.1)) for

the 2%, 6%, 9%, and 14% UPy sample in Figure 2.8.

The slopes at low frequency are very well captured by the stochastic model

and the sticky-Rouse model, which indicates that the “hop” picture, described

above in Section 2.4.2, for the large scale chain motion is meaningful, and that the

polydispersity of the system is well captured in both models. However, the value

of the relevant fitting parameter, the sticker time τas, is substantially different

for the two models. The reason for this discrepancy is that the stochastic model

considers finite distance hops of the discrete sticker groups, which are randomly

placed along the chain, whereas the sticky-Rouse model, Equation (2.1), considers

continuous motion of a chain with distributed friction. We consider that the

stochastic model is closer to the physical reality.
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2.5 Comparison with experimental data

The stochastic model improves intermediate frequency predictions as a conse-

quence of the use of polydisperse strands between stickers and because dangling

ends relaxation is treated separately. This can be seen in Figure 2.6 where we

detailed, for the 6% UPy sample, the contributions to the elastic and loss moduli

of the trapped chain strands, the dangling chain ends, and of the chains without

stickers. At low frequency, the dangling chain ends contribution dominates Gfast.

In Figure 2.7, we justify the importance of the use of molar mass polydisper-

sity. It can be seen that the data for the polydisperse sample does not match the

predictions for any of the monodisperse samples, but rather appears to be an av-

erage over the responses of the various monodisperse samples. We also note that,

as the molecular mass increases from 10 kg/mol to 100 kg/mol, a clear power

law emerges corresponding to the sticky Rouse motion of the chains before the

terminal relaxation is reached. We also note that polydispersity does not change

significantly the Gfast predictions, therefore we restricted Figure 2.7 to the low

frequencies only, and did not represent Gfast.

It is evident that some discrepancies still remain in the intermediate frequency

regime, especially in G′′. Possible additions to the model will be discussed in the

concluding remarks, Section 2.7.

On the “effective” sticker lifetime

One feature of the fitted value of the sticker time, τas, true for both models, is

that it increases with increasing concentration of stickers, see Figure 2.9. It has

been pointed out by Rubinstein and Semenov [Rubinstein & Semenov (1998)]

that the effective sticker time in the model is not the bare sticker lifetime, since

a dissociated sticker will many times return to the same partner, before finally

finding another free partner with which to associate. Since returns to the same

partner do not result in a chain rearrangement, they do not relax the stress.
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Figure 2.6: Detailed contribution of the trapped chain strands, dangling chain
ends, and chains without stickers (free) to Gfast for the 6% UPy sample. The
black dashed lines are the sum of the three contributions. The pink lines are the
experimental G′ and G′′. We present separately the elastic modulus (a) and loss
modulus (b) for clarity.
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Figure 2.7: Comparison of the G′sticky predictions for various monodisperse molec-
ular masses in 10, 31, 63, 100 kg/mol. The pink lines represent the experimental
data. We present separately the elastic modulus (a) and loss modulus (b) for
clarity.
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Figure 2.8: Experimental data for the four samples of various UPy content (sym-
bols) together with the models retro-fitting for the stochastic sticky-Rouse (lines)
and “classic” sticky-Rouse model, Equation (2.1), (dashed lines). Some curves
are shifted vertically for clarity.
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2. STOCHASTIC STICKY-ROUSE MODEL

Consequently, the sticker time, τas, should be interpreted as the time to find a

new partner.

While it may be that the fundamental sticker dissociation time changes with

UPy content, it is appealing to suggest that the differences in sticker time, τas,

might be attributed to the relative difficulty of finding a new partner as UPy

content is increased, i.e. stickers return more often to the same “old” partner

before swapping for a new partner. This suggestion can be supported with a

scaling argument showing that an increase of the number of UPy group per chain

implies a decrease of the number of stickers present in a “search” volume of

detached sticker.

Calling the volume of a sticker or monomer b3, and the average number of

monomers between stickers Nm ≡ N/Ns, then the number of stickers per unit

volume, ns, is defined as

ns =
number of stickers per chain

volume occupied by a chain
≈ Ns

NsNmb3
= (Nmb

3)−1. (2.50)

When a sticker is free, it explores its neighbourhood in a volume limited by

the typical dimensions of the chain between stickers which obeys random walk

statistics. Hence the explored volume, Vsearch, is of order

Vsearch ≈ (N1/2
m b)3. (2.51)

Therefore, the number of stickers, Npartner, in the exploration volume, Vsearch,

defined by Equation (2.51) scales as

Npartner ≈ nsVsearch

≈ N1/2
m

∝ N−1/2
s . (2.52)
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Figure 2.9: Sticker time, τas, and Rouse monomer relaxation time, τ0, used to
model the experimental data, as a function of the UPy content.

Npartner represents the number of potential partners available to a sticker, and

it decreases as the number of stickers per chain, Ns, increases. Consequently,

we expect the effective sticker time, τas, to increase with increasing number of

stickers per chain.

2.6 Nonlinear rheology

It is important to emphasise that in this section we are not using “sticky” physics,

which is in contrast with the main body of this chapter. Indeed, independently of

the sticky-Rouse and stochastic sticky-Rouse models presented before, we use the

“simple” upper-convected Maxwell (UCM) model, Equations (1.34) and (1.33),

to predict the extensional rheology of the 6% UPy sample. Note that the UCM

model does not contain any description of the stickers.

The set of weights and relaxation times {(gi, τd,i)} are taken from a multi-mode

UCM fit of the linear rheology data, Equation (1.24): we allow two relaxation

modes per decade and use a least-square method to find the “best” values. This
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2. STOCHASTIC STICKY-ROUSE MODEL

procedure used on the linear rheology data of the 6% UPy sample leads to a

set of 32 relaxation modes {(gi, τi)}. Figure 2.10a presents the linear rheology

data, together with the multi-mode Maxwell fit. Note that both the linear and

nonlinear experiments were performed at 70◦C.

The experimental data and the prediction for the nonlinear rheology, in ex-

tension, are shown Figure 2.10b. The excellent description of the data, capturing

the extension hardening up to the point of sample fracture or termination of the

experiment, is a demonstration that the chain motion is governed by Rouse-like

chain motion, because the Rouse model is predicted to obey a multi-mode UCM

model in nonlinear flow. However, we note that the multi-mode UCM model only

predicts successfully the initial start-up of the nonlinear rheology in extension,

but it does not predict the point of fracture or transition towards steady state

(this physics is not contained in the UCM model). Similarly, although we do

not have experimental data to compare with, we anticipate that the nonlinear

shear predictions of the UCM model would be successful in predicting the initial

start-up behaviour of the shear stress. Nevertheless, it is very likely that the

behaviour at larger shear strains, and the transition to steady state under shear,

would not be well captured by the UCM model. One feature of the UCM model

is that the steady state shear viscosity is the same at any flow rate; we suspect

that real systems, such as the UPy systems considered in this Chapter, exhibit

more complex shear rheological behaviour. It may also be that finite extensibility

of the chains give rise to shear hardening, in a similar manner to our predictions

for a different model in Chapters 4 and 5. Therefore, more work needs to be done

to model the nonlinear rheology of this class of sticky materials.
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Figure 2.10: Left: Experimental linear rheology data of the 6% UPy sample at
70◦C (symbols) together with a multi-mode Maxwell fit (black lines). Right:
Tensile stress growth coefficient for ε̇ ={0.003, 0.01, 0.03, 0.1, 0.3, 1}. Experi-
mental data (symbols) together with predictions (lines) of the multi-mode upper-
convected Maxwell model, Equation (1.33), obtained from the set of relaxation
modes {(gi, τi)} extracted from the linear rheology data. The dashed line is the
LVE prediction.

2.7 Concluding remarks

We proposed a new model for the linear rheology of linear polymeric chains with

functionalized groups (stickers) along the backbone. Our stochastic sticky-Rouse

model is based on a similar assumption to the sticky-Rouse model [Baxandall

(1989); Chen et al. (2013); Leibler et al. (1991)] that the sticker timescale and

the characteristic relaxation time of Rouse monomer are well separated, allowing

us to write the stress relaxation function, G(t), as the sum of a stress relaxation

related to the motion of the Rouse monomers at fixed sticker position and a stress

relaxation function related to the sticker motion.

We noted however that the original sticky-Rouse model does not account

for the distribution of the number of stickers along polymer chains, and random

spacing of the stickers along the chain, nor does it account for the finite sized hops

when a sticker detaches and reattaches. To address these issues we developed a
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2. STOCHASTIC STICKY-ROUSE MODEL

computational model, the stochastic sticky-Rouse model, which produces many

chains of a precise molar mass with stickers randomly distributed along the chain

according to a probability distribution. The resulting number of stickers per chain

effectively follows a Poisson distribution, and the distance between stickers follows

an exponential distribution. Then, we defined the relaxation modes undergone

by the dangling ends (of various length) and strands of chain (of various length)

trapped between stickers as well as a “hopping” mechanism for the sticker motion

leading to delayed relaxation.

The “effective” lifetime of the stickers, τas, appears to increase with increasing

UPy content, i.e. it seems that the search for a new partner is more difficult when

the density of stickers grafted on the chain increases. We supported this statement

with a scaling argument.

Finally, we exemplified the use of the multi-mode upper-convected Maxwell

model, Equation (1.24), by predicting the extensional rheology data of the 6%

UPy sample, from the linear rheology data.

Our stochastic sticky-Rouse model is fully defined by physical parameters.

Some are fixed a priori by the chemistry: the average number of stickers per

chain Mstrand, the molecular weight distribution Mn and the polydispersity index

D. Other physical parameters: the “effective” lifetime of a sticker, τas, and

the characteristic relaxation time of a Rouse segment, τ0, are left as best fit

parameters.

Both models were applied to experimental data provided by G. Cui. The

resulting best fits to the linear rheology data of various UPy content samples are

shown in Figure 2.8, where it is clear that our stochastic model improves the

intermediate frequency predictions as compared to the “standard” sticky-Rouse

model (Equation (2.1)) while matching it at low frequencies. However improved,

the stochastic model still fails at accurately predicting the intermediate frequency
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regime. Some ideas that could be considered to further develop the stochastic

model include:

(i) The associated state may be quite complex. There could be a distribution of

association lifetimes leading to a broadening of the low frequency relaxation

peak;

(ii) The “hopping distance” Figure 2.3 could be set to depend upon the time

the sticker stays free before reattaching which would be drawn from a dis-

tribution, akin to Equation (2.26). There would then be narrower moves

associated with short free time.

(iii) We could replace the log-normal distribution of the molecular weight (Equa-

tion (2.44)) by a more complex one, such as a bi-modal distribution.

One should keep in mind that the above propositions all result in additional model

parameters, resulting in an improved fit at the expense of our purpose to keep

the model simple. We therefore did not feel that such modification would result

in greater insight.
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Chapter 3

Toy model for blends of linear

polymers

Industrial polymers are typically polydisperse, i.e. they contain a broad range of

molecular weight. A detailed tube theory for bidisperse melt of entangled poly-

mers has been developed by Read and co-workers [Read et al. (2012)] that success-

fully describes nonlinear rheology experiments on bidisperse blends. In this Chap-

ter, we propose a simplified tube model, based on the Rolie-Poly model [Likhtman

& Graham (2003)], for polydisperse melts of entangled polymers that aims at pre-

dicting nonlinear rheology, whilst being consistent with the “double reptation”

theory [des Cloizeaux (1988)] in linear rheology. We first briefly present the dou-

ble reptation theory, then detail the simplified model in case of a bidisperse blend,

before generalising to the polydisperse case.

3.1 Double reptation

For polydisperse melts, discrepancies exist between the theoretical prediction

of the Doi-Edwards theory [Doi & Edwards (1988)] (“simple reptation”) and
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3. BLENDS OF LINEAR POLYMERS

experimental data for the stress relaxation function, G(t). One cause of this is

constraint release (CR), specifically the fact that reptation of short chains relaxes

some of the entanglements on the long chains, hence relaxing stress. The process

of constraint release is in general very complex, and a completely general, rigorous,

theory has not yet been developed. Nevertheless, there is a simple description

of constraint release called double reptation that is reasonably accurate for many

cases of practical importance [Dealy & Larson (2006)]. Building on (and to an

extent simplifying) Rubinstein & Colby’s idea [Rubinstein & Colby (1988)], the

double reptation approximation of des Cloizeaux [des Cloizeaux (1988)] shows

that the predictions of reptation theory for polydisperse melts can be greatly

improved, without introducing additional parameters.

Double reptation is based on a “binary” picture of entanglements, in which

each entanglement is an interaction between two chains. If reptation of a chain

causes the release of an entanglement, then the entanglement is lost to both the

chain which reptates, and the chain with which it is entangled. If the unrelaxed

stress at time t is assumed to be proportional to the fraction of surviving entangle-

ment points at that time, and if the two chains participating in the entanglement

reptate independently, then it follows that the relaxation modulus should be pro-

portional to the square of the tube survival probability, F (t), for a single chain.

The relaxation modulus is then written as [Dealy & Larson (2006); des Cloizeaux

(1988)]

G(t) = G0
N

(
F (t)

)2
. (3.1)

Calling τd the longest stress relaxation time of chain in a monodisperse melt, with

constraint release effects included via double reptation (i.e. τd is half the reptation

time), then we may approximate the stress relaxation as a single exponential

decay:

G(t) = G0
N exp(−t/τd). (3.2)
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Combining the latter equation with Equation (3.1), we have that the survival

probability takes the form

F (t) = exp(−t/2τd). (3.3)

For binary blends comprising a volume fraction φS of chains of mass MS and

volume fraction φL = 1− φS of chains of mass ML, the tube survival probability

for the whole melt is the weighted average over the two types of chain

F (t) = φS exp(−t/2τd,S) + φL exp(−t/2τd,L), (3.4)

where τd,S and τd,L are the longest relaxation times of the short and long chains,

respectively. The stress relaxation modulus is then, according to Equation (3.1),

G(t) = G0
N

[
φ2

S exp (−t/τd,S) + φ2
L exp (−t/τd,L) (3.5)

+2φSφL exp
(
− t(1/2τd,S + 1/2τd,L)

)]
.

The linear rheology of Equation (3.5) is sketched in Figure 3.1, in the limit

τd,S � τd,L. A fraction φ2
S + 2φSφL of the stress relaxes at ω ≈ τ−1

d,S and a

fraction φ2
L relaxes at ω ≈ τ−1

d,L.

For binary blends double reptation often breaks down in the sense that di-

lution with short chains speeds up the long chain relaxation rate. However, for

polydisperse systems many of the detailed dynamics are hidden by the broad

distribution of relaxation times, and double reptation is often successful [Dealy

& Larson (2006)].
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3.2 Nonlinear rheology of bidisperse blends

We are now going to develop a nonlinear constitutive model for polydisperse linear

entangled polymers designed to be consistent, in linear rheology, with double

reptation, Section 3.1. We begin by outlining the model for a binary blend before

generalising to many components in Section 3.3. Note that a model of this form

has been proposed before, cf. microscale polymer processing1 (µPP, µPP2) and

Reptate software2, but not published. We will implement a correction which

speeds up the long chain relaxation time with dilution, by including the effects

of contour length fluctuations in the diluted tube [Likhtman & McLeish (2002);

Read et al. (2012)].

3.2.1 Description of the model

To understand the effect of polydispersity on entangled linear polymer chains,

we consider a blend of two monodisperse entangled linear polymers. As a simple

model describing the entanglement effects, we use the Rolie-Poly model [Likhtman

& Graham (2003)] that we decorate with finite extensibility.

In the following, we denote the quantities related to the shorter chains with

a subscript “S”, and the longer chains the subscript “L”. We consider that our

blend contains a volume fraction φS of short chains, and a fraction φL of long

chains. We write the total stress tensor as

σ = G0
N

(
φS fE(λS)A

S
+ φL fE(λL)A

L

)
, (3.6)

where G0
N is the (experimental) plateau modulus, A

S
and A

L
are the average

conformation tensors for an entanglement segment of short and long chains re-

1http://www1.irc.leeds.ac.uk/mupp/, http://www1.irc.leeds.ac.uk/mupp2/
2http://reptate.com
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spectively,

λS =

(
1

3
trA

S

)1/2

, and λL =

(
1

3
trA

L

)1/2

, (3.7)

are the stretch ratios of the S-chains and L-chains, respectively, and the finite

extensibility function is the Warner approximation [Warner (1972)] of the inverse

Langevin function

fE(λ) =
1− λ−2

max

1− λ2λ−2
max

, (3.8)

with λmax the maximum stretch ratio in extension. For the rest of this Chapter,

we take λmax = 5, unless stated otherwise.

The short chains and long chains entangle with other short and long chains,

releasing their entanglements on different timescales. Therefore, we break down

the conformation tensors A
S

and A
L

as

A
S

= φSASS
+ φLASL

(3.9)

A
L

= φLALL
+ φSALS

, (3.10)

where A
IJ

accounts for the effect of entanglements from chains of type J on the

average configuration of chains of type I (where I and J could be short (S) or

long (L)). A
SS

and A
LL

follow the “classic” Rolie-Poly equation [Likhtman &

Graham (2003)], where we add finite extensibility effects via fE Equation (3.8),

∇
A

SS
= − 1

τd,S

(
A

SS
− I

)
− 2(1− λ−1

S )

τs,S

fE(λS) (3.11)

×
[
A

SS
+ βCCRλ

2δ
S

(
A

SS
− I

)]
,

∇
A

LL
= − 1

τd,L

(
A

LL
− I

)
− 2(1− λ−1

L )

τs,L

fE(λL) (3.12)

×
[
A

LL
+ βCCRλ

2δ
L

(
A

LL
− I

)]
.

The timescales τd, and τs are respectively the disengagement time (comprising
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reptation and constraint release, see Section 3.2.4) and stretch relaxation times,

the coefficients (βCCR, δ) are the CCR coefficients taken equal to (1,−1/2), and

we define the upper-convected time derivative as

∇
A≡ DtA−

(
κ ·A+A · κT

)
, (3.13)

with Dt ≡
∂

∂t
+ u · ∇ the convective (or material) derivative, and u the flow

velocity.

Now we define the evolution equation of the “stress” (conformation tensor)

on the S-chains from their entanglements with the L-chains

∇
A

SL
= − 1

2τd,S

(
A

SL
− I

)
− 2(1− λ−1

S )

τs,S

fE(λS)A
SL

(3.14)

−
(
A

SL
− I

) βth

2τd,L︸ ︷︷ ︸
thermal CR

+ 2βCCR
(1− λ−1

L )

τs,L

fE(λL)λ2δ
S︸ ︷︷ ︸

CCR

 ,

where βth is the thermal constraint release coefficient, taken equal to 1. It ac-

counts for the reptation of the L-chains. The factor 2, in front of the orientation

relaxation times, makes the set of equations consistent, in the linear regime, with

the double reptation model [des Cloizeaux (1988)], as demonstrated below in

Section 3.2.2. The term (1 − λ−1
L ) gives the rate of entanglement release from

the long chains, and the factor λ2δ
S arose in the original Rolie-Poly equation from

considering the effect of the constraint release on the stretched chains. This is

why the subscripts are as they are in the CCR expression.

Similarly, we define the evolution equation of the “stress” on the L-chains
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3.2 Nonlinear rheology of bidisperse blends

from their entanglements with the S-chains

∇
A

LS
= − 1

2τd,L

(
A

LS
− I

)
− 2(1− λ−1

L )

τs,L

fE(λL)A
LS

(3.15)

−
(
A

LS
− I

) βth

2τd,S︸ ︷︷ ︸
thermal CR

+ 2βCCR
(1− λ−1

S )

τs,S

fE(λS)λ2δ
L︸ ︷︷ ︸

CCR

 .

3.2.2 Linear rheology

Equation (3.6) contains 4 different Maxwell times in the linear rheology. In the

limit where we consider that the short chain have a disengagement time smaller

than the long chains, τd,S � τd,L, we have

A
SS

relaxes at time ( 1
2τd,S

+ βth
2τd,S

)−1 ≈ τ−1
d,S and contributes a weight φ2

S to the

stress,

A
SL

relaxes at time ( 1
2τd,S

+ βth
2τd,L

)−1 ≈ (2τd,S)−1 and contributes a weight φSφL

to the stress,

A
LL

relaxes at time ( 1
2τd,L

+ βth
2τd,L

)−1 ≈ τ−1
d,L and contributes a weight φ2

L to the

stress,

A
LS

relaxes at time ( 1
2τd,L

+ βth
2τd,S

)−1 ≈ (2τd,S)−1 and contributes a weight φSφL

to the stress.

These results are consistent with the double reptation, Equation (3.5). Figure 3.1

sketches the predictions in the linear regime, for a frequency sweep experiment.

A fraction φ2
S + 2φSφL of the stress relaxes at ω ≈ τ−1

d,S and a fraction φ2
L relaxes

at ω ≈ τ−1
d,L.
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3. BLENDS OF LINEAR POLYMERS

Figure 3.1: Sketch of the linear regime predictions for Equation (3.5) and Equa-
tion (3.6) for a frequency sweep experiment.

3.2.3 Enhanced stretch relaxation time

The onset of chain stretch and emergent extension hardening in the nonlinear

rheological response of molten binary blends (of long and short polymer chains)

is set by an effective stretch relaxation time of the long chains. It has been found

experimentally [Auhl et al. (2009)] that this effective stretch relaxation time of

the long chains initially increases proportionally to the inverse volume fraction of

long chains φ−αL , where α is the dilution exponent for entanglements (we assume

α = 1 here). In elongation experiments, if the flow rate exceeds the inverse of the

stretch relaxation time of the long molecules, they are stretched by the flow, i.e.

their length along the tube contour grows. The macroscopic consequence of chain

stretch is elongation hardening, i.e. the elongational viscosity, η+
E , grows above

the linear viscoelastic envelope prediction.

A detailed theoretical framework for bidisperse blend of entangled polymers

has been established by Read et al. [Read et al. (2012)], where the enhanced

relaxation time appears naturally within the theory. Although much simpler,

the “blend of Rolie-Poly equations”, presented in Section 3.2.1, do contain the
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3.2 Nonlinear rheology of bidisperse blends

enhanced relaxation time. Indeed, if the extension rate, ε̇, is smaller than the

reptation time of the short chains, ε̇τd,S � 1, then A
LS
≈ I. Hence the stretch

λL of the L-chain, defined Equation (3.7), is

λ2
L =

1

3

(
φS trA

LS
+ φL trA

LL

)
≈ φS +

1

3
φL trA

LL
, ε̇τd,S � 1. (3.16)

Taking the time derivative of Equation (3.16) and reorganizing, we have

2λL
dλL

dt
=
φL

3

d trA
LL

dt
. (3.17)

Using Equation (3.12), and keeping only the stretch term, we obtain

2λL
dλL

dt
≈ φL

3

(
− 2

τs,L

(1− λ−1
L ) trA

LL

)
. (3.18)

We then use Equation (3.16) to arrive at

dλL

dt
= − 1

τs,L

(1− λ−1
L )(λ2

L − φS)

λL

. (3.19)

We write the stretch as λL = 1 + `L, where `L is the “extra” stretch. Therefore

we have

1− λ−1
L = `L/(1 + `L), and λ2

L − φS = φL + 2`L + `2
L, (3.20)
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3. BLENDS OF LINEAR POLYMERS

so Equation (3.19) gives the time evolution of the extra stretch

d`L

dt
= − 1

τs,L

`L(φL + 2`L + `2
L)

(1 + `L)2

≈


− φL

τs,L

`L, `L � 1

− 1

τs,L

`L, `L � 1

. (3.21)

We see that the “effective” stretch relaxation time of the L-chains at small stretch

(`L � 1) is

τ eff
s,L =

τs,L

φL

. (3.22)

The stretch relaxation time is therefore renormalised by a factor φ−1
L > 1, so, the

L-chains (blended with S-chains) will start to stretch at smaller flow rate than if

there were no S-chains. At large stretch, `L � 1, there is no renormalisation of

the stretch relaxation time.

We illustrate this phenomenon in Figure 3.2 where the predictions of our

“blend” of Rolie-Poly equations in uniaxial extension are shown, virtually without

finite extensibility (λmax � 1). The short chains (τd,S = 0.05, τs,S = 0.01), are

blended with 5% of long chains (τd,L = 100, τs,L = 1). When the elongation

rate, ε̇, is small, the stress growth coefficient (viscosity), η+
E , follows the LVE.

The onset of elongation hardening is clearly seen for ε̇ = 0.05 and above. It is

in agreement with Equation (3.21) as τs,L = 1 and φL = 0.05. Another feature

of Figure 3.2 is that the stress grows but then stops for flow rates between 0.05

and 1; but then it continues to grow for larger flow rates. This has to do with

nonlinear terms in Equation (3.21), i.e. for large `L, the effective relaxation time

is simply τ−1
s,L .
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Figure 3.2: Illustration of the enhanced stretch relaxation time. Logarithms of
the stress growth coefficient in elongation, η+

E as a function of time for different
elongation rates for a blend of S-chains (τd,S = 0.05, τs,S = 0.01) with, φL = 0.05,
L-chains (τd,L = 100, τs,L = 1). We set λmax � 1. According to Equation (3.22),
the enhanced stretch relaxation time is τs,L/φL = 20.

3.2.4 Comparison with experimental data

In this section, we compare our model predictions with experimental data of

four bidisperse melts found in Ref. [Read et al. (2012)]. The majority of the

parameters of the model are fixed by chemistry, taken from literature values, or

calculated from these. Only one parameter is used as a fitting parameter in linear

rheology, which then yields a parameter-free prediction of the nonlinear rheology

(shear and extension).

Fixed parameters

We use the parameters {τe,Me,ML,MS, Ge}, provided in Table II of Ref. [Read

et al. (2012)], for four blends of (long and short) linear monodisperse entangled

chains [Auhl et al. (2008)]. We reproduce them in Table 3.1.
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3. BLENDS OF LINEAR POLYMERS

Table 3.1: Parameters of four binary blends, from Ref. [Read et al. (2012)].

PI226 23 20 PI226 23 40 PI483 34 40 PS blend 2

T (◦C) 25 25 25 130

φL 0.2 0.4 0.4 0.1437

Ge (kPa) 595.5 595.5 595.5 276

ML (kg/mol) 226 226 483.1 390

MS (kg/mol) 23.4 23.4 33.6 51.7

Me (kg/mol) 4.816 4.816 4.816 18.1

τe (s) 1.314×10−5 1.314×10−5 1.314×10−5 0.91

Calculated parameters

Stretch relaxation times: The stretch relaxation times of the short (S) and

long (L) chains are computed from the fixed parameters, Table 3.1, as follows

τs,S = Z2
Sτe, and τs,L = Z2

Lτe, (3.23)

with Z = M/Me the entanglement number, M is the molecular mass of the S- or

L-chains, Me is the entanglement molecular mass, and τe is the Rouse time of an

entanglement segment.

Reptation times: The relaxation times τd,S and τd,L have to be understood

as Maxwell relaxation times. They contain all the relaxation mechanisms of the

stress related to the tubes. For monodisperse chains, the many chain relaxation

function of the stress accumulated in the tubes was written as [Likhtman &

McLeish (2002)]

G(t) =
4

5
GeR(t)µ(t) ≈ 4

5
Geµ

2(t), (3.24)

where R ≈ µα is the relaxation via CR (α is the dilution exponent that we

take equal to 1) and µ the relaxation via reptation and CLF that occurs in a
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3.2 Nonlinear rheology of bidisperse blends

characteristic time τµd . It is defined as [Doi (1983); Likhtman & McLeish (2002)]

τµd = 3Z3τe fµ(Z), with fµ(Z) = 1− 2C1

Z1/2
+
C2

Z
+

C3

Z3/2
, (3.25)

where the function fµ(Z) accounts for contour length fluctuation effects. The

coefficient are C1 = 1.69, C2 = 4.17, and C3 = −1.55 [Likhtman & McLeish

(2002)]. Taking a similar approach, for our binary blend, we assume:

τµd,S = 3Z3
Sτe fµ(ZS), and τµd,L = 3Z3

Lτe fµ(Z̃L), (3.26)

where Z̃L = φLZL is the number of long chain entanglements per long chain,

assuming a dilution exponent of 1 [Viovy et al. (1991)]. The reason for using

Z̃L instead of ZL is that we assume contour length fluctuations occur in the fat

tube, as explained in Ref. [Read et al. (2012)]. Assuming that the relaxation

modulus, Equation (3.24), is relaxing on a Maxwell time τd (which contains all

the relaxation mechanisms related to the tube), then

G(t) ≈ exp(−t/τd) ≈ µ(t)2

= exp(−2t/τµd ). (3.27)

Therefore, in Equations (3.11) to (3.15), the relaxation times, τd, are taken as

half that of Equation (3.26)

τd,S =
1

2
τµd,S, and τd,L =

1

2
τµd,L. (3.28)

Plateau modulus: Doi-Edwards theory predicts the plateau modulus to be

4/5 of the rubber modulus, Ge = ρRT/Me, because entanglements do allow

longitudinal motion along the tube and therefore are different from cross-links.
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3. BLENDS OF LINEAR POLYMERS

The value of the (experimentally observed) plateau modulus, G0
N , that we use in

Equation (3.6) is taken as (“Graessley–Fetters” definition [Fetters et al. (1999);

Graessley (1980)])

G0
N =

4

5

ρRT

Me

=
4

5
Ge, (3.29)

where Ge is the value reported in Table 3.1.

In Table 3.2, we summarize the calculated parameters used to produce the

predictions in Figures 3.3–3.6.

Fitting parameter φ̃L

The volume fraction of long chains, φL, reported in Table 3.1, is given by the

chemistry. In the model, we need to adjust that parameter to account for the

partial relaxation of long chains on the timescale of the relaxation of the short

chains. Indeed, during the time needed by the fraction φS = 1−φL of short chains

to relax, a portion of the φL long chains have relaxed too, leaving only a volume

fraction φ̃L ≤ φL of long chain unrelaxed.

φ̃L is obtain from “best fit” between the model and the data in the linear rhe-

ology, cf. Figures 3.3a–3.6a. A similar fitting parameter was used in [Read et al.

(2012)]. Note that with only two relaxation times, we are able to obtain a rea-

sonably good match between the linear rheology predictions and the data. Then,

the nonlinear rheology predictions are produced without extra fitting parameters.

Results

Non linear data and model predictions are shown in Figures 3.4b–3.6b. The model

quantitatively matches the experimental data in elongation at all elongation rates.

This means that we are capturing the enhanced stretch relaxation time correctly.

However, in shear, the model fails at predicting the moderate to high shear rates,

which the more detailed model of Ref. [Read et al. (2012)] achieved. The failure at
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3.3 Blend of n species

Table 3.2: Computed parameters using Equation (3.23) and Equation (3.26). φL

is adjusted to φ̃L for best fit in the linear rheology.

PI226 23 20 PI226 23 40 PI483 34 40 PS blend 2

G0
N (kPa) 476 476 476 221

τd,L (s) 0.48 0.75 10.2 1930

τs,L (s) 2.89×10−2 2.89×10−2 0.13 422

τd,S (s) 4.07×10−4 4.07×10−4 1.16×10−3 8.84

τs,S (s) 3.10×10−4 3.10×10−4 6.40×10−4 7.42

φ̃L 0.15 0.3 0.3 0.1437

high rates indicates that a simple 2-mode model is not enough, and probably the

coupling between different chain sections of the long-chains, produced by stretch

relaxation, in the “full chain” Read model [Read et al. (2012)] is needed.

3.3 Blend of n species

3.3.1 Generalisation of the model to n species

We can generalize Equation (3.6) to a blend of n monodisperse entangled linear

polymers. The total stress is then the sum of the stresses coming from each

species i, weighted by their volume fraction, φi, and finite extensibility function

related to their stretch λi

σ = G0
N

n∑
i=1

φi fE(λi)Ai
, with λi = (trA

i
/3)1/2. (3.30)

The conformation tensor A
i

accounts for the stresses that come from the inter-

action of the species i with itself and the other (n− 1) species. Hence, we write
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Figure 3.3: PI226 23 20. Experimental data (symbols) and model predictions
using φ̃L (lines). (a) LVE. (b) Nonlinear rheology, shear stress growth coefficients
(γ̇ = {0.03493, 0.4416, 1.164, 2.22, 4.416, 6.661, 13.25, 22.2, 44.16, 66.61, 132.5,
222}).
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Figure 3.4: PI226 23 40. Experimental data (symbols) and model predictions us-
ing φ̃L (lines). (a) LVE. (b) Nonlinear rheology, stress growth coefficients. Elon-
gation (ε̇ = {0.2321, 6.796, 22.65, 67.64, 225.5}); shear (γ̇ = {0.02903, 0.2903,
0.9676, 2.903, 9.676, 22.65, 67.96, 226.5, 679.6}), top and bottom curves respec-
tively.
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Figure 3.5: PI483 34 40. Experimental data (symbols) and model predictions
using φ̃L (lines). (a) LVE. (b) Nonlinear rheology, stress growth coefficients in
elongation (ε̇ = {0.12, 1.2, 10.4, 100.4}).
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Figure 3.6: PS 2. Experimental data (symbols) and model predictions using φ̃L

(lines). (a) LVE. (b) Nonlinear rheology, stress growth coefficients in elongation
(ε̇ = {0.001, 0.003, 0.01, 0.03, 0.1}).
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A
i

=
n∑
j=1

φjAij
, (3.31)

where A
ij

is the stress on the i-chains coming from their entanglements with the

j-chains. Analogously to Equation (3.14), we have

∇
A
ij

= − 1

2τd,i

(
A
ij
− I

)
− 2(1− λ−1

i )

τs,i

fE(λi)Aij
(3.32)

−
(
A
ij
− I

)( βth

2τd,j

+ 2βCCR

(1− λ−1
j )

τs,j

fE(λj)λ
2δ
i

)
.

3.3.2 Comparison with experimental data

Molar mass distribution

We exemplify the use of Equations (3.30–3.32) with two polystyrene (PS) melts.

It has been shown that the elongation hardening, defined as the viscosity going

above the linear viscoelastic envelope, very much depends on the molar mass

distribution of the melt rather than just its weight-average molar mass, Mw. For

instance, by considering two PS melts of different molar mass distribution, Münst-

edt [Münstedt (1980)] reported that the nonlinear rheology is strongly influenced

by the high molar mass components. In the following, we use Equations (3.30–

3.32) with two (theoretical) PS samples that reproduce two PS blends used by

Münstedt [Münstedt (1980)]. We extract the molar mass distribution presented

in Fig.1 of Ref. [Münstedt (1980)] using WebPlotDigitizer 1, a web based tool to

extract data from plots, images, and maps. The result is shown in Figure 3.8a.

We discretise the molar mass distributions of these two PS samples as indicated

Figure 3.8b. Note that since the high molar mass components are “diluted”

1http://arohatgi.info/WebPlotDigitizer
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3.3 Blend of n species

Figure 3.7: Sketch of the different tubes within which the species are confined.
The species with the highest molar mass (M) has the fattest tube, made of
entanglements with its own species only. The species with the smallest molar
mass experiences the thinnest tube, made of entanglements with all other species.
Intermediate molar mass species are confined somewhere in between.

into others, their effectiveness does not become as pronounced as in the case of

separated peaks of the molecular weight, as seen Section 3.2 for binary blends.

The characteristics of the two PS samples are tabulated in Table 3.3, where

〈Mk〉
Mk

≡
∑

i wiM
k
i

(
∑

i wiMi)
k
, k ≥ 2 (3.33)

are high-order molar mass averages that emphasize the high molar mass tail of

the molar mass distribution, Figure 3.8. We can see from Table 3.3 that while

the PS III sample has a higher weight-average molar mass, Mw, than the PS IV

sample, it has a smaller polydispersity, Mw/Mn, and a shorter high-molar mass

tail.

Relaxation times and dilution

For each molecular mass component, Mi, we approximate the reptation time,

τd,i, and stretch relaxation time τs,i, from the entanglement relaxation time of
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3. BLENDS OF LINEAR POLYMERS

polystyrene at 160◦C, τe = 10−2 s [Pattamaprom et al. (2000)], as

τd,i = 3Z3
i fµ(Z̃i)τe, and τs,i = Z2

i τe, (3.34)

with Zi = Mi/Me the entanglement number of the ith species, Me = 16 625

g/mol the entanglement molecular mass of polystyrene, and fµ(Z) is the CLF

correction as in Equation (3.26) [Likhtman & McLeish (2002)], and Z̃i = φdil,iZi

is the effective number of entanglements on the chain i, assuming a dilution

exponent of 1 [Viovy et al. (1991)].

Equation (3.34) works, broadly, within the “dynamic dilution” picture of tube

dynamics, which considers that the effective “tube” constraint felt by a given test

chain depends on the timescale of the motion being considered. After relaxation of

shorter chains, they release their entanglements on longer chains and so, in some

sense, act as “solvent” for the longer chains. Hence, depending on the timescale,

a test chain may “feel” different tubes, as illustrated in Figure 3.7, with different

tubes representing the dilution as various short chain species relax. However,

it is pointed out by Read and co-workers [Read et al. (2012)] for the case of

binary blends, that the relevant tube depends upon the motion being considered.

Reptation motion along the contour of a smoother “diluted” tube requires the

chain to move a shorter distance, but it involves a larger friction because each step

along the diluted tube requires constraint release from the shorter chains. On the

other hand, reptation along the thinnest tube is subject only to the friction from

the chain monomers. In most cases, the fastest reptation motion remains the low-

friction motion along the thinnest tube, and this is reflected in Equation (3.34)

because the undiluted number of entanglements is raised to the third power.

However, as pointed out by Read and co-workers [Read et al. (2012)], even

if reptation is fastest along the thinner tube, the extra freedom given to the

chain by constraint release events can permit deeper contour length fluctuations
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commensurate with the diluted tube, which speeds up the terminal relaxation

because CLF shortens the distance required to reptate. This is reflected in the

factor fµ(Z̃) of Equation (3.34), but we need to make a choice as to which diluted

tube is appropriate for the CLF of a given test chain. For a given dilution, φdil,

the predicted CLF timescale is, according to Ref. [Read et al. (2012)], τs/φdil.

For the purposes of the present work, we make the following assumptions: (i)

the effective dilution at a given timescale t is φdil(t) which is equal to the sum of

the volume fractions of all chains with relaxation time greater than t; (ii) CLF

makes use of the most diluted tube available at the CLF timescale. Hence, the

dilution φdil used in the formula for the effective CLF time τ eff
s = τs/φdil is simply

the effective dilution at that timescale, i.e. φdil(τ
eff
s ). This gives a self-consistent

formula which can be solved to obtain the CLF time, and appropriate dilution

factor for CLF, for a given chain species. The value of Z̃ for that species is then

Z̃ = φdilZ. This rule allows a first guess to be made for the relaxation time of

each species, and so gives a prediction for the linear rheology. It is likely that,

in practice, the detailed chain dynamics are more complicated (e.g. each chain

has different relaxation times associated with chain ends and chain centres) so we

would not expect this prediction to be perfect, and certainly more detailed work

is required on linear rheology prediction.

In practice, to find the value of the dilution factor, φdil,i, for the species i, we

solve 
τ eff

s,i =
Z2
i τe

φdil,i

,

φdil,i =
∑n

jmin,i
φj,

(3.35)

with jmin,i the smallest j such that τ eff
s,i < τd,j, assuming the species are ordered:

τd,1 < τd,2 < · · · < τd,n, and φj is the volume fraction of the species j, as in

Equation (3.30). In case τ eff
s,i > τd,n, we set φdil,i = φn.

We solve Equation (3.35) iteratively, starting with the shortest chains (i.e.
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i = 1), for which we set φdil,1 = 1 (no dilution), and the reptation times are

computed using Equation (3.34), where the unknown dilution factors, φdil, are

initially set equal to 1.

Due to the discretization of the molar mass distribution, Equation (3.35) gives

the same φdil for all species i such that τd,j−1 < τ eff
s,i < τd,j, and so φdil follows

steps as a function of i. In practice, we do a linear interpolation to ensure that

the dilution factor is “smoothly” decreasing, i.e. we do

φdil,i = φint,i +
n∑

jmin,i

φj, where φint,i =
τd,jmin,i

− τ eff
s,i

τd,jmin,i
− τd,jmin,i−1

φjmin,i−1. (3.36)

The interpolated value, φint,i, depends on the “distance” between τ eff
s,i and the two

neighbouring values of τd.

In case where the dilution factor obtained is such that Ziφdil,i < 1, i.e. the

species i is effectively unentangled, we set τd,i to be a solution of Ziφdil,i(τd,i) =

1, using Equation (3.36) to do the interpolation of φdil,i. This gives the time

when the species i becomes unentangled, resulting in a constraint-release Rouse

motion [Milner et al. (1998); Viovy et al. (1991)].

Results

Figure 3.9 presents the predicted elongational viscosity, or stress growth coeffi-

cient, for the PS III and PS IV samples at various elongation rates. We may note

that the linear rheology is not perfectly predicted. The theory slightly over pre-

dicts the LVE for the PS IV blend. We note that we have simply taken literature

values for Me, Ge and τe, and made predictions using the “recipe” suggested in

Equations (3.34) to (3.36), with no free fitting parameters. This indicates that

more work is required on the linear rheology prediction. Our focus, however, is

on the nonlinear rheology, and we can see that despite the relatively small dif-
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Table 3.3: Characteristics of the two (model) PS melts used to produce the
predictions Figure 3.9.

PS III PS IV

Reference Model Reference Model

Mw (kg/mol) 253 253 219 219

Mw/Mn 1.9 1.2 2.3 1.8

〈M2〉/M2 1.19 1.1 1.69 1.4

〈M3〉/M3 1.55 1.7 4.2 5.3

〈M4〉/M4 2.23 2.3 14.55 17.4

ferences between the molar mass distribution of these two samples, cf. Figure 3.8

and Table 3.3, there is a strong difference in their response to nonlinear flow,

which is captured by our model, especially the elongation hardening feature, i.e.

where the viscosity departs from the LVE.

Experimental data of the PS IV sample showed a clear elongation hardening at

the two highest elongation rate, ε̇ = {0.07, 0.3}, see Figure 3.9, and marginally at

ε̇ = 0.015. These features were captured by the model which showed elongation

hardening occurring at the two highest elongation rates, ε̇ = {0.07, 0.3}. In

contrast, our PS III sample does not present elongation hardening, even at the

highest flow rate, γ̇ = 0.07. These results are in qualitative agreement (for the

elongation hardening feature) with experimental data of Münstedt [Münstedt

(1980)], where the PS III sample do not present elongation hardening at ε̇ = 0.07,

while the PS IV sample is above the LVE at that flow rate.

3.4 Conclusions

In this Chapter, we proposed a simplified tube model, based on the Rolie-Poly

model [Likhtman & Graham (2003)], for a polydisperse melt of entangled poly-
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Figure 3.8: Molar mass distribution (in g/mol) of the PS III and PS IV blends
of Ref. [Münstedt (1980)] (a), and of the two (theoretical) PS samples used to
produce Figure 3.9 (b). Characteristics of these distributions are reported in
Table 3.3
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Figure 3.9: Logarithm of the elongational viscosity as a function of time
for the two PS blends described in Figure 3.8. Top curves: PS III with
ε̇ = {0.003, 0.015, 0.05, 0.07} s−1. Bottom curves: PS IV with ε̇ =
{0.00075, 0.0031, 0.015, 0.07, 0.3} s−1. For comparison, we show the experi-
mental data (symbols) from Ref. [Münstedt (1980)]. Parameters are τe = 0.01 s,
Me = 16 625 g/mol, G0

N = 2× 105 Pa, λmax = 10.
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mers that aims at predicting nonlinear rheology, whilst being consistent with the

“double reptation” theory [des Cloizeaux (1988)] in linear rheology.

For the case of bidisperse blends (blend of long and short chains), we have

compared the predictions of the model with experimental data from Ref. [Read

et al. (2012)]. The model presented has only one fitting parameter that is adjusted

using linear rheology data. Then, there are no extra fitting parameter to produce

the prediction of nonlinear rheology (shear and extension). The model quantita-

tively matches the experimental data in elongation at all elongation rates. This

means that we are the capturing enhanced stretch relaxation time, first discussed

by Auhl et al. [Auhl et al. (2008)], correctly. However, in shear, the model fails

at predicting the moderate to high shear rates, which the more detailed model

of Read et al. achieved. The failure at high rates indicates that a simple 2-mode

model is not enough, and probably the coupling between different parts of the

long chain, produced by chain retraction, in the “full chain” model of Read et

al. [Read et al. (2012)] is needed.

Finally, we generalised the model to polydisperse melts and compared our

model predictions to experimental data of Münstedt [Münstedt (1980)]. Given

that the nonlinear rheology is strongly influenced by the high molar-mass com-

ponents (i.e. it depends on the molecular weight distribution of the melt rather

than just its weight-average molar mass, Mw), we investigated the nonlinear rhe-

ological properties of two PS melts having different molar mass distribution. The

model slightly over predicted the LVE of the PS IV sample. This, essentially,

is a problem with the double reptation formalism we used. Nevertheless, our

goal was to develop a simple model for the nonlinear rheology of polydisperse

melts. The elongation hardening that was seen experimentally in Ref. [Münstedt

(1980)] for the sample with high molar mass component could be qualitatively

reproduced using our polydisperse model. Experimental data of the PS IV sam-
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ple showed elongation hardening, i.e. where the viscosity departs from the LVE,

at the two highest elongation rates. These features were captured by the model

which showed elongation hardening occurring at the same elongation rates. Note

that, due to the finite extensibility term in the model, the viscosity saturates to a

steady state after hardening. It is possible that experimental data would show a

similar feature if the experiments were run for larger strain (longer time). On the

other hand, the experimental data of the PS III sample did not present any sign

of shear hardening, and nor did the model prediction. Hence, given a molecular

mass distribution, the model can successfully predict when, and at which elonga-

tion rate, elongation hardening might occur. It is worth noting that the model

does it without any fitting parameter.
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Part II

Models for entangled telechelic

star polymers
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Introduction

Telechelic polymers, as introduced by Ref. [Uraneck et al. (1960)], are defined

as polymer molecules possessing functional terminal end-groups. Because these

end-groups, also referred to as “stickers”, can create transient networks, they

modify the (long time) flow properties of the material. By tuning the strength

or the nature of the stickers, one can modify the supramolecular structure of

the system. Previous theoretical works and simulations have tried to understand

the different interactions leading to the self assembling process of unentangled

solutions of linear telechelic polymers [Semenov et al. (1995a); Tripathi et al.

(2006)], or polymers with stickers along the backbone [Rubinstein & Semenov

(1998); Semenov & Rubinstein (1998); Semenov et al. (1995b)], or linear entangled

polymers with stickers along the backbone [Baxandall (1989); Leibler et al. (1991);

Rubinstein & Semenov (2001)].

Our goal in this second Part of the thesis is to produce a “toy” (i.e. “single

mode”) constitutive model that captures elements of the nonlinear rheology of

entangled telechelic polymers, and to explore the interaction between timescales

set by the stickers, timescales set by the entangled polymer, and the flow rate. In

creating such a toy model, we have chosen to consider a star polymer architec-

ture and, since this does not immediately seem the most obvious choice, we feel

it requires some explanation before proceeding. In particular: why did we choose

a star architecture instead of a linear?
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An entangled star arm is pinned at one end by its branch point – which is fixed

in our simple model (we ignore, for simplicity, branch point withdrawal [Bick &

McLeish (1996); Hawke et al. (2015); McLeish & Larson (1998); Wagner & Rolon-

Garrido (2008)]). Hence, as presented in Figure 4.1, we consider that the star arm

has strictly only two possible states: (i) when the sticker is “attached” then no

relaxation is possible – except through convective constraint release in nonlinear

flows [Marrucci (1996)] – and the arm is trapped in the entanglement network;

(ii) when the sticker is “detached” then relaxation becomes possible by contour

length fluctuation (CLF).

In contrast, the other “simple” architecture, telechelic linear chains (with

stickers at both ends), has a greater number of states to consider: linear chains

can stick together to form longer linear chains, somewhat akin to wormlike mi-

celles [Cates (1990)], which can still relax by reptation (i.e. the stickers do not

prevent relaxation, but only increase the reptation time), which, in turn, delays

the nonlinear effects (stretching of the chains) that we aim at studying here.

Moreover, in practice, even stickers designed to be difunctional commonly have

additional weaker associations with other stickers, so that they tend to form clus-

ters, suppressing the reptation [Tam et al. (1998)] – when this occurs the possible

relaxation pathways of the material start to become somewhat complex, which

wholly defeats the object of our intended “toy” model study.

In some materials, the stickers are actually designed to form clusters rather

than pair-wise associations, e.g. zwitterionic groups that forms “clusters of sticker

pairs” [Fetters et al. (1988); van Ruymbeke et al. (2010); Vlassopoulos et al.

(1999; 2000)]. Telechelic linear chains have stickers at both ends so that release

of either sticker could give rise to relaxation of the entangled chain. However,

we could assume that, when one sticker is released, the other normally remains
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attached to its cluster. In this case, the attached cluster acts in a similar way to

the branch point in a star polymer, suppressing reptation, so that relaxation is

via CLF (breathing modes/arm retraction) [Ball & McLeish (1989); McLeish &

Milner (1999); Milner & McLeish (1997)]. Only when both stickers are released

can reptation occur (a rare event if the stickers are strong). Again, consideration

of these effects gives rise to a greater number of states for the linear chains, as

compared to the “simpler” star arm.

Linear chains are therefore more complicated than the star architecture for

the purposes of the present study since whether we consider pair-wise association,

or clusters of stickers, the star arm is a two-state system whilst the linear chain

requires consideration of multiple states. Nevertheless, given the above argument

that in practice the relaxation of linear chains shares features with star chains,

we might hope that our toy model captures the essence of the nonlinear rheology

for many linear chain systems. In this sense, we consider our model to be an

equivalent of the “pom-pom” model for branched polymers [Hawke et al. (2015);

McLeish & Larson (1998)] – it is based on a simplified picture of a representa-

tive architecture, and designed to capture the essential physics. Star polymers,

first reported in Ref. [Morton et al. (1962); Schaefgen & Flory (1948)], exhibit

unique properties due to their spatially defined and compact three-dimensional

structure. Efficient synthetic routes and unique rheological properties make them

promising tools for use in drug delivery, biomedical applications, or thermoplas-

tics, amongst other applications [Hadjichristidis et al. (2012); Ren et al. (2016)].

Entangled telechelic star polymers have been the focus of previous work where

they successfully established a linear rheology model [van Ruymbeke et al. (2010)].

We now aim at establishing a nonlinear rheology model for entangled telechelic

stars, that would, in the limit of the linear regime, be compatible with Ref. [van

Ruymbeke et al. (2010)].
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We propose a simplified stochastic tube model for telechelic star polymers

able to account for both the associating dynamics of telechelic groups and the en-

tanglement constraints. For simplicity we consider in our model that the stickers

are designed to form clusters to avoid the complications arising from bifunctional

(pair-wise) associations where partner exchange and the time to search for a new

free partner should be considered [Rubinstein & Semenov (1998)]. In our model,

the stickers have a probability to become free (or attached) that does not depend

on the surrounding chain states. Nevertheless, we note that more complex sticker

dynamics could easily be incorporated into our model.

However simple, our resulting model exhibits interesting constitutive behav-

ior. We find that the nature of the response to flow depends very much on the

interaction between timescales set by the entanglements, and timescales set by

the stickers. In principle, these timescales vary with temperature (and other fac-

tors) in different ways. This leads to (i) thermorheological complexity and (ii)

the – perhaps obvious – possibility of using temperature as a control variable to

change the processing properties of the material. In order to illustrate these ef-

fects, we present “maps” of the parameter space, showing how the response may

be expected to change as parameters are varied.

Whilst the stochastic model gives interesting results, it is preferable for flow

computations to have a simplified model which exhibits broadly the same behav-

ior. We, therefore, get rid of the stochastic nature of our model by preaveraging

our set of equations. The resulting model, quantitatively very close to that of

the stochastic model, is computationally far less expensive and allows for future

flow simulations. As an example of this, we present studies of the shear-banding

properties of our preaveraged model in the final substantive chapter of this part

of the thesis.
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Part II is therefore organised as follows. In Chapter 4, we develop our stochas-

tic model, compare the predictions in the linear regime with experimental data,

and give predictions for nonlinear shear and extension rheology. Then, the preav-

eraged model is presented in Chapter 5 and compared against the predictions of

the stochastic model. Finally, Chapter 6 illustrates flow simulations using the

preaveraged model, focussing specifically on shear banding.
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Chapter 4

Stochastic model for entangled

telechelic star polymers

4.1 Presentation of the model

In this Chapter, we develop a simplified model for entangled star polymers with

sticky end groups, as a test model to explore linear and nonlinear rheology of

entangled supramolecular systems. We explore the effects of interplay between

entanglement timescales and sticker lifetimes within a highly simplified nonlinear

constitutive model. The entanglement effect gives orientation and stretch relax-

ation times, τd and τs respectively, whilst stickers give three (non-independent)

parameters: the association lifetime (i.e. the typical time a sticker stays associated

before detaching), the free lifetime (i.e. the typical time a sticker stays free before

reattaching), and the fraction of associated stickers, τas, τfree, and φas respectively.

Different assumptions about sticker attachment and detachment dynamics have

been listed in Ref. [Tripathi et al. (2006)]. For our initial model development, we

have chosen to use the simplest possible assumption for attachment/detachment

dynamics [Green & Tobolsky (1946)], but we note that other assumptions could
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straightforwardly be incorporated into the model. We will match our model pa-

rameters with those used in the literature and run simulations to understand

how the parameters influence the linear and nonlinear rheology. We explore the

parameter space and characterize the different behaviour of the system in each

region of this space.

Figure 4.1: Left: representation of an entangled telechelic 4-arms star polymer.
Each arm has a sticky group “ @ ” on one end, and is fixed to the branch point
“ • ” on the other end. Right, top: if the sticker is attached (to the grey area),
CCR event (red star) contributes to stress relaxation. Bottom: if the sticker is
detached, CLF relaxes stress by renewing the tube (red dashed line), in addition
to CCR.

Figure 4.1 illustrates our model of star polymer. Each arm has a sticky group

that can associate and dissociate due to thermal fluctuations. For the purposes of

initial model development, we assume that each sticker attaches to, and detaches

from, a mean field “sticky background”. This is an approximation to the situation

where stickers associate to micelles, with many stickers per micelle. On the right

is the simplified model we are working with where only two states are possible:

either the sticker is attached or detached. Our model is a single arm model. The

main ingredients of our model are:

(i) probabilities of association and dissociation of the sticky end group;

(ii) entanglement effects – which give rise to tube orientation and stretching of

the chain within the tube. Although star polymers have a range of relaxation

times [Ball & McLeish (1989); McLeish & Milner (1999); Milner & McLeish
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(1997)], we consider in our model a single orientation relaxation time and

single stretch relaxation time;

(iii) finite extensibility of polymer chains.

Note that the number of star arms per molecule does not appear directly in our

model but it would be a crucial parameter for the branch point withdrawal effect,

which is not included in our simple model. Branch point withdrawal is, however,

unlikely or rare if the number of arms per star is significant. The force balance for

branch point withdrawal would require a situation where one arm is significantly

stretched whilst all other arms are not stretched. Such situations may occur from

time to time, but will not provide the dominant rheological response.

4.1.1 Entanglements

As a toy model for entanglements we base our single orientation relaxation time

model on the Rolie-Poly equation of Likhtman and Graham [Likhtman & Graham

(2003)]. Let us present a brief review of the model and its origins.

Graham and co-workers proposed a molecular theory for entangled polymer

chains under fast deformation, referred to as GLaMM model [Graham et al.

(2003)]. The GLaMM model includes the processes of reptation, thermal con-

straint release, chain stretch, and contour length fluctuation (CLF), but differs

in the treatment of convective constraint release (CCR) – as introduced by Mar-

rucci [Marrucci (1996)] – from previous models [Ianniruberto & Marrucci (2002b);

Mead et al. (1998)]. However successful in predicting the rheology of fast flows,

the GLaMM model requires solving partial differential equations which means in-

tensive calculations. From the GLaMM model, Likhtman and Graham derived a

simplified constitutive equation, called the Rolie-Poly equation (for Rouse linear

entangled polymers) [Likhtman & Graham (2003)]. It is a simple one-mode differ-
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ential constitutive equation for the stress tensor that contains reptation, stretch

and CCR. In that theory, the time evolution equation of the conformation tensor

of the polymer chain, τ , is given by

dτ

dt
= κ · τ + τ · κ+ f(τ ), (4.1)

with the function f given by

f(τ ) = − 1

τd

(τ − I)− 2

τs

(
1−

(
3/ tr τ

)1/2
)(
τ + β

(
tr τ/3

)δ
(τ − I)

)
, (4.2)

and where κ is the velocity gradient tensor, τd the reptation or disengagement

time, τs is the slowest Rouse time or stretch time, β is the CCR parameter as in

Ref. [Marrucci (1996)] and analogous to cν in the GLaMM model, δ is a negative

power that can be obtained by fitting to the GLaMM model, and I is the isotropic

or equilibrium tensor.

Our stochastic system is composed of Nc chains with their own history of at-

tachment/detachment of their sticker. We shall detail our model for the stochas-

tic dynamics of attachment and detachment below, in Section 4.1.3. At any

given time of the simulation, each chain i has either its sticker attached or de-

tached. If the sticker is detached, we set the stretch relaxation time τs,i = τs,

and the orientation relaxation time τd,i = τd. On the other hand, if the sticker

is attached, the chain is anchored between the branch point of the star and the

sticker. Therefore, stretch relaxation and orientation relaxation are prohibited,

so we set τs,i → ∞, τd,i → ∞. Hence as each individual chain in our simula-

tion undergoes its history of detachment and attachment, it switches from being

able to relax its stress and stretch, or not. However, surrounding chains are still

moving and release entanglement constraints: we allow our Nc chains to interact

with one another via the CCR mechanism. Additionally, we include the finite
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extensibility of the arm to the Rolie-Poly model using the Warner approximation

of the inverse Langevin function [Warner (1972)], as introduced Equation (3.8).

Considering the arm i, the evolution equation of its conformation tensor, τi,

reads

dτi

dt
= κ · τi + τi · κT − 1

τd,i

(τi − I) (4.3)

−2(1− λ−1
i )

τs,i

fE(λi)τi + 2βνλ2δ
i (τi − I),

where

τd,i =

τd if i detached

∞ if i attached

and τs,i =

τs if i detached

∞ if i attached

λi = (tr τi/3)1/2 is the stretch of the arm,

fE(λi) =
1− λ−2

max

1− λ2
iλ
−2
max

is a finite extensibility function,

with λmax the maximal stretch, κ the velocity gradient tensor, and ν the CCR

rate defined below in Section 4.1.2. For the rest of the study, we take (β, δ) =

(1,−1/2), as suggested by Ref. [Likhtman & Graham (2003)]. The stress tensor,

σ, is obtained by averaging over the Nc chains the individual stress contributions,

including the contribution from finite extensibility

σ = G
1

Nc

Nc∑
i=1

fE(λi)τi, (4.4)

where G is the plateau modulus. In the rest of the document we take G = 1

without loss of generality.
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4.1.2 CCR rate

We consider that the length of the chains in the tube at equilibrium is L0, the

current length of the chain i is Li, and we define the stretch ratio λi = Li/L0. The

relative velocity between the chain-end and the tube when the chain is retracting

is vrel,i = L0(λi−1) fE(λi)/τs,i. At this point, we assume that the number of entan-

glements per arm is fixed, even when the arm stretches [Everaers (2012); Heinrich

& Kaliske (1997); Rubinstein & Panyukov (1997)]. It follows that the average

distance between entanglements on an arm increases as the chain stretches. We

consider the average distance between entanglements to be a = a0λi, with a0 the

average distance between entanglements at equilibrium. Therefore, the rate at

which the chain-end passes the entanglements is

vrel,i

a
=
L0(λi − 1) fE(λi)/τs,i

a0λi
. (4.5)

Thus, the average CCR rate, ν, is obtained by summing over the contribution

of the Nc chains, and dividing by the total number of entanglement NcL0/a0.

Therefore, we obtain

ν =

∑Nc

i=1 L0(λi − 1) fE(λi)/a0λiτs,i

NcL0/a0

=
1

Nc

Nc∑
i=1

1− λ−1
i

τs,i

fE(λi).

We see that only the detached chains contribute to the CCR coefficient because

(τs,j)attached →∞. Therefore, we obtain

ν =
1

Nc

1

τs

∑
i,detached

(1− λ−1
i ) fE(λi). (4.6)
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4.1.3 Sticker dynamics

First, let us consider the association dynamics. In this model, the association

dynamics is set to the simplest, yet sensible, expression from a large range of

possible assumptions about sticker dynamics [Tripathi et al. (2006)]. Hence, to

model a specific chemical system it is likely that the exact form of the expressions

in this Section would need to be revisited. This can be done without any signifi-

cant structural change to the model. Our purpose here is to explore a simple set

of assumptions and to illustrate the consequences.

The dynamical equations in the previous section must be integrated numer-

ically, i.e. using a discrete time steps ∆t. During any given time step, there is

a finite probability that a free sticker will become attached, or that an attached

sticker will become free. Based on the typical time the stickers spend free, τfree,

the survival probability that a free sticker becomes associated in a simulation

time step ∆t is

pfree→as = 1− exp

(
− ∆t

τfree

)
.

This leads us to the expression for the rate of association, in the limit where

∆t� τfree

rfree→as =
pfree→as

∆t
≈ τ−1

free. (4.7)

The higher the value of the parameter τfree, the lower the number of transitions

from free to attached per unit time. For the purpose of initial model development,

we chose the simplest possible model for the rate of attachment, which is here

independent of the flow rate or stretch – in contrast with more detailed models

(e.g. Ref. [Tripathi et al. (2006)] on unentangled polymers).

The rest of this Section aims at defining a stretch dependent rate of detach-

ment. Indeed, we expect the rate of detachment to increase as the chain stretches

because the energy barrier that the sticker has to overcome to detach is dimin-
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ished as the arm pulls on the bond. We start by defining the rate of detachment,

at equilibrium, and when the arm is not stretched, similarly to the attachment

rate:

req
as→free = τ−1

as , (4.8)

where τas is the typical time an attached sticker stays attached. The bigger τas,

the fewer the number of transitions from the attached state to the detached state

per unit time. A steady-state implies that the total number of chains attaching

per unit time equals the total number of chains detaching. This condition gives

us a relation between the rate of dissociation for a non stretched arm (λ = 1) at

equilibrium, and the fraction, φas, of associated arms at equilibrium:

φas r
eq
as→free = (1− φas) rfree→as, (4.9)

where req
as→free = peq

as→free/∆t. By substitution of Equations (4.7) & (4.8) into

Equation (4.9), we obtain a relation between φas, τas, τfree:

φas =
τas

τfree + τas

. (4.10)

van Ruymbeke and co-workers suggested that for their experimental systems the

average time spent associated is much longer than the average time spent free, i.e.

τfree � τas, this leads to a fraction of associated arms at equilibrium close to unity

[van Ruymbeke et al. (2010)]. Typical systems called “sticky” or “supramolecu-

lar” are usually designed such that most bonds are formed, so φas is close to 1.

We note that temperature or chemical modification of the solvent may affect

the strength of the stickers, e.g. an increase of temperature deactivates hydrogen

bonds; counter-ions inactivates metal-ligands stickers [Brassinne et al. (2013)].

These might also affect the rate at which supramolecular bonds are formed and

110



4.1 Presentation of the model

broken. Hence a system might be classed as “sticky” (φas close to 1) and yet

have either a fast or slow rate of bond formation and breaking. Conversely, but

perhaps less likely, it could be “not sticky” (small φas) but have a slow transition

between attachment and detachment. All these situations are characterised by

different values of φas and τas.

Under “strong” flows, the arms are stretched. The detachment process de-

pends on the stretch of the arm inside the tube. Indeed, we assume that it is

more likely for an attached sticker to detach when the arm is stretched because

the entropic forces are pulling more strongly on the sticker.

Following previous work [Hernández Cifre et al. (2003); Tripathi et al. (2006)],

we incorporate the effect of the nonlinear spring force on the exit rate (detachment

rate) of the sticky group. We write the extra force acting on the sticker as

F (L) =
3kBT

Nb2

1− L2
eqL
−2
max

1− L2L−2
max

L− fT , (4.11)

where L,Leq, Lmax are the current, equilibrium, and maximal length of the arm,

respectively; kBT is the thermal energy, N is the number of Kuhn segments per

arm in equivalent freely jointed chain, and b is the Kuhn or statistical segment

length. The first term is the force pulling the arm end (i.e. pulling the sticker)

inside the tube, the second term, fT = 3kBT/a0, with a0 the distance between

entanglements at equilibrium, is the entropic force pulling the arm-end off the

tube (Section 6.4 of Ref. [Doi & Edwards (1988)]). Note that, because we included

the numerator (1−L2
eqL
−2
max) in the nonlinear Warner spring factor, the net force

is null at equilibrium, F (Leq) = 0.

The detachment is considered as an activated process. Attached stickers are

residing within an energy well, so that they must overcome an energy barrier in

order to detach. This energy barrier is reduced by the force F (L) acting over a

typical length, r, which is the width of the potential energy well i.e. the “sticky
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potential width
r

F

Figure 4.2: Schematic representation of the effect of a force, F , pulling on the
sticker. The energy barrier that the sticker has to overcome in order to detach is
reduced when a force is pulling.

zone”. Figure 4.2 illustrates how pulling on the sticker reduces the energy barrier

that the sticker has to overcome to jump from an attached state to a detached

state, i.e. a detachment event is more likely to happen as F grows. It is a first

passage problem, also known as Kramers problem [Kramers (1940)], for which the

survival probability for simple cases such as a Brownian particle in a potential well

is known. Since Kramers seminal work [Kramers (1940)], more complex situation

have been studied. For instance, Likhtman and co-workers [Cao et al. (2015);

Likhtman & Marques (2006)] recently developed an exact analytical method for

describing the kinetics of end-chain reactions, i.e. the first passage problem of a

Rouse chain (cf. Section 1.2.4) arising in the reaction diffusion theory of polymer

chains.

In the case pictured in Figure 4.2, the detachment probability takes the form

pas→free(L) ∝ exp

(
1

kBT

∫ L

L−r
F (l)dl

)
,

with r a length characteristic of the sticker. After integration we obtain

pas→free(L) ∝ exp

(
−3r

a0

)(
1− L2L−2

max

1− L−2
max (L− r)2

)− 3N
2 (1−L2

eqL
−2
max)

. (4.12)

When the length of the arm gets close to the maximal value, Lmax, the probability
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of detachment diverges and the arm is forced to detach. This result is very similar

to Ref. [Tripathi et al. (2006)] except that (i) in Equation (4.11), we considered

the entropic force fT arising from the entanglement effects, (ii) we added the

numerator in Equation (4.11) to have F (Leq) = 0, and (iii) we used a scalar

quantity, L, to describe the arm length.

We rewrite Equation (4.12) using the dimensionless stretch ratio λ = L/Leq =

L/Za0, the entanglement number Z = Nb2/a2
0, and the maximal stretch ratio

λmax = Lmax/Leq = Nb/Za0, to obtain

pas→free(λ) = p0 exp

(
−3r

a0

) 1− λ2λ−2
max

1− λ−2
max

(
λ− r

Za0

)2


− 3

2
Zλ2max(1−λ−2

max)

. (4.13)

We find the proportionality constant, p0, using Equation (4.9), and Equation

(4.13) with λ = 1. It follows that the expression for the rate of detachment,

ras→free(λ) = pas→free(λ)/∆t, of an associated sticker as a function of the stretch

ratio λ is:

ras→free(λ) = τ−1
as

 1− λ2λ−2
max

1− λ−2
max

(
λ− r

Za0

)2

1− λ−2
max

(
1− r

Za0

)2

1− λ−2
max


− 3

2
Zλ2max(1−λ−2

max)

.

(4.14)

Throughout the present work, we assume “typical” values are Z = 6, r/a0 =

0.01, λmax = 10. Increasing λmax has a clear impact on the predictions in non-

linear shear or extensional flows, at flow rates greater than the inverse effective

stretch time or inverse of the association time (timescales defined in Section 4.2),

whichever is smaller. In shear flow, at high flow rates, it increases the strain value

at which the stress is maximum and also increases the steady state stress value,

however, the maximum stress value is nearly unchanged. In extensional flow, at
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high extension rates, it increases the maximum and steady state stress value, and

the strain at which the maximum stress occurs.

A variation of the ratio r/Za0 has a small or no impact on the predictions

as the ratio has to remain smaller than 1, the reason being that the distance

between entanglement at equilibrium, a0, is bigger than the “sticky length”, r,

and the entanglement number, Z, cannot be much smaller than 6 for our tube

model to hold.

Therefore, some terms of Equation (4.14) are negligible: λ−2
max � 1, and

r/Za0 � 1. Under these approximations, we obtain a compact form for the

rate of detachment

ras→free(λ) ≈ τ−1
as

 1− λ2λ−2
max

1− λ−2
max

(
λ− r

Za0

)2


− 3

2
Zλ2max

. (4.15)

4.1.4 Numerical implementation

We consider thousands of arms, each arm has its own history of attachment/de-

tachment. When an arm is attached, i.e. the sticker at the arm-end is associated,

there is a probability that at the next time step, the sticker will be detached.

Similarly, when the arm is free, there is a probability that at the next time step

the sticker will be associated. When the sticker is associated, we use

ras→free(λi) = τ−1
as

 1− λ2
iλ
−2
max

1− λ−2
max

(
λi − r

Za0

)2


− 3

2
Zλ2max

, (4.16)

dτi

dt
= κ · τi + τi · κT − 2βνλ−1

i (τi − I). (4.17)
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4.2 Predictions in the linear regime

When the sticker is detached, we use:

rfree→as = τ−1
free, (4.18)

dτi

dt
= κ · τi + τi · κT − 2βνλ−1

i (τi − I) (4.19)

− 1

τd

(τi − I)− 2(1− λ−1
i )

τs

fE(λi)τi,

where ν is the CCR rate defined Equation (4.6), and λi = (tr τi/3)1/2. Equa-

tions (4.16) and (4.18) are the rates of detachment and attachment of the stickers.

Equations (4.17) and (4.19) are the evolution equations that the conformation

tensor, τi, follows when the sticker is associated or free, respectively. The total

stress is then computed according to Equation (3.6).

At each simulation time step, ∆t, a uniformly distributed random number,

0 < θ < 1, is generated, and we compare it with the probabilities of attachment

or detachment.

• If the sticker is attached and θ < ras→free(λi)/∆t, then the sticker detaches;

• If the sticker is detached and θ < rfree→as/∆t, then the sticker attaches;

• Otherwise, the sticker stays in its previous state.

4.2 Predictions of the model: linear regime

4.2.1 Method

In order to explore the rheological response of the linear regime of our set of

equations presented in Section 4.1, we perform a step strain of 1% in shear, i.e.

we apply a strain rate γ̇ during a short period of time, tstep, such that γ̇tstep = 0.01.

Then we monitor the decay of the dynamic modulus, G(t), while no flow is
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imposed. In many cases, the decay of G(t) is rather slow, when φas ≈ 1, as

the stickers remain attached during a time orders of magnitude greater than the

simulation time step. Therefore, no relaxation of the dynamic modulus G occurs

for a long period of time when φas ≈ 1.

Indeed, in practice, if τfree ≈ 10−4 τas, (φas ≈ 0.9999), then ∆t = τfree/100

would be the biggest possible time step with Euler’s method. It means that to

see the first detachment event, likely to happen after a time τas, one should use

106 time steps. Given we consider of order 103 chains, we expect 109 Euler steps

to get to the first detachment event. This number may seem acceptable, but,

because multiple detachments are required to fully relax the arms, the simulation

time becomes enormous.

We present the method we used to avoid unnecessary long simulations. If the

chain is associated, the probability that an associated sticker has not detached

during a time ∆t is

pas→as(∆t) = exp (−∆t/τas) .

We invert the probability distribution in order to obtain, from a uniformly dis-

tributed (pseudo) random number 0 < θ < 1, a random time, (∆t)detachment,

during which the sticker stays attached (or time before detachment). This time

is defined as

(∆t)detachment = τas ln(1/θ).

Therefore, we can generate time intervals corresponding to times the sticker

spends associated. Similarly, the time intervals corresponding to the time the

sticker stays free (or time before attachment) are generated using

(∆t)attachment = τfree ln(1/θ).

During the times (∆t)detachment where the sticker is attached, the modulus G for
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4.2 Predictions in the linear regime

an individual chain stays constant, and relaxation occurs only when the sticker

is free. The decay of G(t) for an individual chain during the times, (∆t)attachment,

when the sticker is free is written as

G(t+ ∆t) = G(t) exp (−∆t/τd) . (4.20)

This method allows us to obtain the full relaxation of G(t) in a shorter simula-

tion time than with the classic Euler method. For each chain, we simply generate

randomly the history of attachment and detachment in terms of the times be-

tween these events, using the above equations. For each period of time when the

chain is detached, we relax the stress according to Equation (4.20). So, for an

individual chain, the stress relaxation becomes a series of plateaus (during the

attached state) together with periods of stress relaxation (during the detached

state). When averaged over many chains, a smooth relaxation profile G(t) is

attained.

From G(t), we use a Schwarzl transformation [Schwarzl (1971)] to reconstruct

the elastic and loss moduli G′ and G′′. In this section the strain applied is small, as

a consequence, the system stays in the linear regime and the arms do not stretch

(λ = 1). The stretch relaxation time, τs, is, therefore, irrelevant here. Note

that the method just described only applies to the linear rheology predictions.

This is due to the simplicity of Equations (4.17) and (4.19) when λ = 1 and no

flow is imposed (κ = 0): the RHS of (4.17) is zero, and the RHS of (4.19) only

contains the orientation relaxation term. In the nonlinear rheology regime (see

Section 4.3), there is no such simplification and we integrate Equations (4.17) and

(4.19) for each stochastic arm using Euler’s scheme, as described in Section 4.3.1.
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4.2.2 Predictions: map of the linear regime

We are left with three parameters to explore: the orientation relaxation time, the

average time a sticky group stays free, and the average time a sticky group stays

attached; τd, τfree, and τas respectively. We have found it useful to “map” out our

results on a graph with the typical “free” time (τfree) on the horizontal axis, and

typical “associated” time (τas) on the vertical axis. Note that, on a log-log scale,

lines of constant fraction of associated chains, φas, are parallel lines at 45 degrees

to the horizontal and vertical axes. Values of φas close to 1 (i.e. sticky systems)

are found towards the upper left of the diagram, whilst values of φas close to zero

(i.e. non-sticky systems) are found towards the bottom right of the diagram. For

linear rheology, the values of τfree and τas should be compared to the orientation

relaxation time, τd, (whilst in our equivalent maps for the nonlinear rheology,

Section 4.3, we compare them against the stretch relaxation time τs).

Figure 4.3 reports the characteristic trends of the loss modulus, G′′(ω), for

different values of the parameters. Depending on how τas and τfree compare with

τd, different relaxation profiles are seen.

The dashed lines in Figure 4.3 separate the parameter map into three regions

where the loss modulus as a function of the frequency has a clearly different trend.

Between the regions B and C sits the horizontal line that is defined by τas = τd.

Above that line, in the region C, the loss modulus presents two relaxation modes,

at frequencies τ−1
d and τ−1

as . It is explained as follows: initially, a fraction (1−φas)

of polymer arms is detached, and, because τd � τfree, the stickers stay free long

enough so that fraction (1− φas) of arms can fully relax before the sticky groups

reattach. On the other hand, the fraction φas of polymers that was initially

attached stays attached, on average, during a time τas. Once they have detached,

they can fully relax in a relatively short time τd. Thus, the second relaxation

mode is located at ω = (τas + τd)−1 ≈ τ−1
as , because τas � τd in region C. Below
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4.2 Predictions in the linear regime

Figure 4.3: Sketches of the predictions of our model for frequency sweep, the sub-
plots represent the loss modulus as a function of the frequency in log-log scale.
Three distinct relaxation behaviors are observed in the region A, B, and C. The
discontinuous lines indicate where we expect to see a change in the qualitative
shape of G′′.

that horizontal line, in the region B, τas � τd, and τas � τfree. The latter relation

means that the sticky groups are mostly detached (φas � 1), and the arms can

relax their orientation in a time τd before the sticky group can possibly attach

because τd � τfree in that region. Therefore, we expect the peak in loss modulus

to be located at ω = τ−1
d similarly to systems with no sticky groups – in fact, in

this regime the effect of sticky groups is negligible.

The vertical line is defined by τd/(1 − φas) ≈ τas, which occurs, according to

Equation (4.10) and given that φas ≈ 1, when τfree = τd. It separates the region

C from the region A. In region A, τfree � τd and τd � τas and the loss modulus

relaxation peak is located at ω = (τd/(1 − φas))
−1. The factor (1 − φas) comes
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Figure 4.4: Predictions in the linear regime. Characteristic behavior of the loss
modulus as a function of frequency (log-log scale) for each region of Figure 4.3,
and details on what happens when we cross the lines separating the regions A,
B, and C.

from the fact that the sticky group is blinking between the attached and detached

states, at a rate which is much faster than the tube orientation relaxation time.

The chain is only able to relax stress while detached, which is, on average, a

fraction (1 − φas) of the time. Hence the effective relaxation time is increased

by the factor (1 − φas) – this can be considered as an increased “drag” due to

the stickers, although the physics of attachment and detachment ensures that

the increase in friction is proportional to the bare chain friction. In other words,

during the time after an arm detaches and before it is re-attached, it has time

to relax only a small amount of orientation. It then needs to wait for another
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4.2 Predictions in the linear regime

detachment event before it can relax more orientation.

The diagonal line separates the region A from the region B. It is defined by

τfree = τas, which, according to Equation (4.10), is equivalent to φas = 1/2. Thus,

on that line we have τd/(1− φas) = 2τd.

Typical simulation results are presented Figure 4.4, for each of the three re-

gions. We also illustrate the transitions between the regions to show how the loss

modulus is affected. From region A to region B, the relaxation peak is moved to

lower frequencies as we decrease τas at constant τfree, i.e. (1 − φas) is increasing.

From the region A to the region C, the second relaxation time becomes evident

as we increase τfree at constant τas. Finally, from region B to region C, the second

relaxation peak emerges as we increase τas at fixed τfree.

4.2.3 Comparison with literature

We compare our results with experimental data of van Ruymbeke and co-workers

[van Ruymbeke et al. (2010)], where they performed linear rheology measurements

on entangled telechelic star polymers. We focus on the 12-arms star polyisoprene

functionalized with zwitterionic groups. Figure 4.5 presents the data for 12PZw-

PI-10. Ref. [van Ruymbeke et al. (2010)] have evidence that some of the arms were

not “sticky”. One cause could be the synthesis process i.e. some arms do not carry

a zwitterionic group (sticker). We expect the fraction of unfunctionalized arms to

relax at τ−1
d . We observe a bump at intermediate frequencies that we identify with

the relaxation of the unfunctionalized arms. At this point, we want to emphasize

that our simplified model contains only one orientation relaxation mode, whereas

it is known that stars have a broad spectrum of orientation relaxation times [Ball

& McLeish (1989); McLeish & Milner (1999); Milner & McLeish (1997)]. Thus,

graphically, we can extract a range of values for the orientation relaxation time

corresponding to our model: 102 < τd < 104 seconds.
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Figure 4.5: Linear rheology of 12PZw-PI-10 from Ref. [van Ruymbeke et al.
(2010)] (symbols) together with the predictions of our model for different values of
the orientation relaxation time in the range 102 < τd < 104 s (thin colored lines).
We also present the predictions of our model with 13% of non-functionalized arms
(dot-dashed thick lines). Parameters are τas = 106 s, τfree = 9 s, plateau modulus
G0
N = 0.57 MPa.

On the other hand, for the population of stars with functionalized arms,

the sticky groups have been characterized. For the 12PZw-PI-10, according to

Ref. [van Ruymbeke et al. (2010)], the typical time spent associated is τas = 106 s,

the typical time spent free is τfree = 9 s, hence, the fraction of free arms at

equilibrium is 1 − φas ≈ 10−5 according to our Equation (4.10). From these

values we know that this system is located in the part A of Figure 4.3 because

τfree � τd � τas.

Therefore, the relaxation peak for the population of stars with stickers is expected

to occur in the range 10−9 < (τd/(1− φas))
−1 < 10−7 rad/s.

We present in Figure 4.5 the predictions of our model for three different orien-

tation relaxation times τd = 102, 103, and 104 s, and the above mentioned values

for τas and τfree. Each of the three τd values exhibit a single peak of relaxation,
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4.3 Predictions in the nonlinear regime

therefore, we see in Figure 4.5 three “single” peaks of relaxation centered at

((1−φas)/τd) rad/s, corresponding to the thin colored lines. We can also include

a fraction (13% as reported by Ref. [van Ruymbeke et al. (2010)]) of “non-active

arm” to our model, i.e. non-functionalized arms, corresponding to the sticker

being “always free” in our model: the thick dot-dashed lines Figure 4.5. The

loss modulus has now an additional peak corresponding to the relaxation of the

“non-active arms”.

It is evident that our simple model captures with success the height of the

different loss modulus peaks, and the characteristic relaxation events. For each

considered τd, we obtain two narrow peaks. As we vary τd across the considered

range (102 to 104 s), the left peak spans the observed range of relaxation frequen-

cies for the attached arms, whilst the right-hand peak spans the observed range

of relaxation frequencies for the non-sticky arms. Hence, in the linear regime, our

model with a single orientation relaxation can be considered a simplified version

of the more elaborate linear rheology model of van Ruymbeke and co-workers [van

Ruymbeke et al. (2010)]. One effect captured by their more refined model is the

shape of the relaxation peaks due to dynamic dilution as the different part of the

star arms relax. It is impossible to capture such details in our single mode model!

Note that our model does not predict the high-frequency regime where the Rouse

modes within the tube are dominant i.e. G′, G′′ ∝ ω1/2.

4.3 Predictions of the model: nonlinear regime

4.3.1 Numerical method

We integrate Equations (4.17) and (4.19) using Euler’s scheme, where we set the

numerical time step, ∆t, of the simulation to be at least 100 times smaller than the

minimum amongst: (i) the sticker timescales, τas, τfree (to not miss attachment or
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Figure 4.6: Parameter map showing the different regions delimited by the lines
where the critical timescales, τas, τs, and τsφ meet.

detachment events), or (ii) the orientation or stretch relaxation timescales, τd, τs,

or (iii) the inverse flow rate. We checked that reducing the numerical time step,

∆t, does not modify the results.

The number of chains that we consider in the simulation is initially set to

1 000 chains. However, in some cases, it is necessary to increase the number of

chains to avoid noisy data. For instance, when φas = 0.0001, as it is the case in

region B, Figure 4.8, using 1 000 chains implies that, on average, only one chain

is attached (and stretch at high flow rate). This gives rise to noisy data. Note

that even though we used 106 to 108 chains in region B, f remains noisy in Figure

4.8.
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4.3.2 Presentation of the parameter space

In order to explore the rheological response of the nonlinear regime of the set of

equations presented in Section 4.1, we explore the shear and elongation predic-

tions of start-up flows.

In contrast to the broad spectrum of star-arm orientation relaxation times,

the nonlinear regime is characterized by a single stretch relaxation time, τs. With

the same approach as in Section 4.2, we have selected three parameters of our

model to explore. We present our predictions for the stress growth coefficient

(viscosity), the average stretch of the attached and detached populations, as well

as the fraction of the attached stickers, (respectively λA, λD, and f) as a function

of time for different sets of the parameters τas, τfree, and τs, in shear and elongation

flows.

In Figure 4.6, boundaries between different regions correspond to places in

parameter space where critical rates are equal. Qualitative changes in nonlinear

response are observed when the critical flow rates are exceeded. There are also

critical flow rates corresponding to orientation relaxation, however, we are explor-

ing flow rates, κ, such that κτd � 1 – where κ ≡ γ̇ or ε̇, in shear or elongation

respectively. We consider that the tubes are all oriented as we perform the simu-

lations in the regime of high Weissenberg number related to the tube orientation

relaxation time. Hence, all flow rates considered are above critical orientation

rates. At lowest flow rates we get thinning behavior in both shear and extension,

i.e. the response follows the linear envelope up to strain of order 1, followed by

a plateau in extension, or a weak overshoot and steady state in shear (similar to

linear polymers in the regime τ−1
d < γ̇ < τ−1

s ). At low flow rates, no stretching is

seen (λ ≈ λD ≈ 1) and the fraction of attached stickers stays at its initial value

(f(t) ≈ φas).

At higher flow rates, stronger nonlinear behaviors are apparent, and in dif-
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ferent regions of parameter space, the critical rates are encountered in differ-

ent orders. In particular, three timescales seem important: τas, τs, and τsφ =

τs/(1−φas). The timescale, τfree, seems less important. Then we can divide space

up into different regions A1, A2, B, C1, and C2 as shown in Figure 4.6.

The timescale τsφ = τs/(1 − φas) is the renormalized stretch relaxation time

that arises from the repeated attachment and detachment of the sticker when

τfree � τas � τs. In that regime, most of the stickers are initially attached. When

the arm is stretched and that the sticker is forced to detach, it stays free, on

average, for a time τfree (much shorter than τs), which means that the arms are

not able to relax all stretch in one detachment event. Stretch relaxation occurs

only when the sticker is free, and this is the case for a fraction (1−φas) of the time.

Hence, similarly to renormalization of the orientation relaxation time, τd, in the

linear regime seen in Section 4.2, this leads to a renormalized stretch relaxation

time τsφ = τs/(1 − φas), as defined below. This renormalized stretch relaxation

time plays a role in the regions A1 and A2 Figure 4.6, similarly to the linear

regime described in Section 4.2. Note that in regions B and C1, τsφ ≈ τs because

φas � 1.

The region A1 is where τs � τas � τsφ, which corresponds to τfree � τs

and τs � τas. The transition from A1 to C is when τsφ ≈ τas or, equivalently,

τfree ≈ τas. In this region, stickers like to stay associated and free stickers have a

short lifetime compared to the stretch relaxation time.

Region A2 is when τas � τs � τsφ i.e. τfree � τas and τas � τs. It is a region

where the stickers attach and detach rapidly with respect to the stretch relaxation

time, but are initially mostly attached (1− φas � 1). The transition from A1 to

A2 is when τas = τs. The only change between region A1 and A2 is the second

critical rate encountered on increasing flow rate.

Region B is where τas � τsφ ≈ τs, which corresponds to τs � τfree and τas � τs.
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(a) Elongation (b) Shear

Figure 4.7: Stochastic model predictions for region A1 in the nonlinear regime.
We present the values, as a function of time, of the fraction of attached chains,
f , the stretch of the attached chains λA and stretch of the detached chains λD,
and stress growth coefficients, η+

E and η+, for uniaxial extension (left), and step
rate (right) respectively. Parameters are τfree = 10−2, τas = 102, τs = 1, τd = 106,
λmax = 10.
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(a) Elongation (b) Shear

Figure 4.8: Stochastic model predictions for region A2 in the nonlinear regime.
We present the values, as a function of time, of the fraction of attached chains, f ,
the stretch of the attached chains λA and stretch of the detached chains λD, and
stress growth coefficients, η+

E and η+, for uniaxial extension (left), and step rate
(right) respectively. Parameters are τfree = 10−4, τas = 10−2, τs = 1, τd = 106,
λmax = 10.
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The transition from A2 to B is where φas ≈ 1/2. It is a region where the stickers

are initially mostly free and they do not like to stay associated. It is a “non-

sticky” region. Indeed, our predictions of the shear stress growth coefficient, η+,

in this regime are consistent with shear experiments on non-telechelic entangled

star polymers [Snijkers et al. (2013)].

(a) Elongation (b) Shear

Figure 4.9: Stochastic model predictions for region B in the nonlinear regime.
We present the values, as a function of time, of the fraction of attached chains,
f , the stretch of the attached chains λA and stretch of the detached chains λD,
and stress growth coefficients, η+

E and η+, for uniaxial extension (left), and step
rate (right) respectively. Parameters are τfree = 102, τas = 10−2, τs = 1, τd = 106,
λmax = 10.

Region C1 is where τs ≈ τsφ � τas, which corresponds to τs � τas � τfree.
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When attached, the stickers stay attached a long time compared to the stretch

relaxation time, but most of the stickers are initially detached because φas is close

to zero. The transition from B to C1 is when τas ≈ τs.

(a) Elongation (b) Shear

Figure 4.10: Stochastic model predictions for region C1 in the nonlinear regime.
We present the values, as a function of time, of the fraction of attached chains,
f , the stretch of the attached chains λA and stretch of the detached chains λD,
and stress growth coefficients, η+

E and η+, for uniaxial extension (left), and step
rate (right) respectively. Parameters are τfree = 104, τas = 102, τs = 1, τd = 106,
λmax = 10.

Finally, region C2 is where τs � τsφ � τas, which corresponds to τs � τfree �
τas. When attached, the stickers stay attached a long time compared to the

stretch relaxation time, but most of the stickers are initially attached because φas

is close to one. The transition from C1 to C2 is when τas = τfree, or equivalently
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4.3 Predictions in the nonlinear regime

φas = 1/2.

(a) Elongation (b) Shear

Figure 4.11: Stochastic model predictions for region C2 in the nonlinear regime.
We present the values, as a function of time, of the fraction of attached chains,
f , the stretch of the attached chains λA and stretch of the detached chains λD,
and stress growth coefficients, η+

E and η+, for uniaxial extension (left), and step
rate (right) respectively. Parameters are τfree = 103, τas = 105, τs = 1, τd = 106,
λmax = 10.

In regions A1, A2, and B, τas � τsφ. This condition ensures that interchange

between the attached and detached population keeps the stretch of the attached

and detached population approximately equal: λA ≈ λD. On the other hand, the

regions C1 and C2 have τsφ � τas, which implies a separation between populations

of attached and detached chains. Indeed, when the flow rate exceeds the inverse
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of τsφ in regions A1, A2, and C2 or τs in regions B and C1, we expect to see

an onset of stretch of the attached and detached chains. Additionally, if the

flow rate exceeds the inverse of τas before τsφ, as is it the case in regions C1,

and C2 where τsφ � τas, we expect only the attached chains to stretch, but not

the detached chains. However, because the attached chain will eventually detach

due to Equation (4.15), it will consequently increase the average stretch of the

detached chains. The bottom graphs of Figures 4.7–4.11, in shear and elongation,

where we plotted the average values of the stretch for the attached chains and

detached chains as a function of time, support that statement.

To explore the map Figure 4.6, we will, in the following Sections 4.3.3 and

4.3.4, choose “extreme” parameters to separate out timescales by orders of mag-

nitude and clearly delineate different typical responses of the material.

4.3.3 Elongation

On the left parts of the Figures 4.7–4.11, we present the predictions of our model

in the regions A1, A2, B, C1, and C2, respectively, for the logarithms of the tensile

stress growth coefficient (sometimes known as extensional viscosity), η+
E (t, ε̇), the

instantaneous fraction of attached chains f , and the stretch of the attached and

detached chains, λA and λD, as a function of time. In all five regions, the tensile

stress growth coefficient follows the linear viscoelastic envelope up to strain of

order 1, i.e. ε̇t ≈ 1, where ε̇ is the Hencky strain rate (elongation rate), the

chains are not stretched (λA ≈ λD ≈ 1) and the fraction of attached chains is not

modified, f(t) ≈ φas. For ε̇t > 1, the behavior depends on how ε̇ compares with

the different timescales.

In regions A1 and A2 Figure 4.6, the stretch relaxation time is rescaled simi-

larly to the linear regime, Section 4.2. The stretch is able to relax mainly when

the stickers are free and this is the case for a fraction 1 − φas of arms. Over

132



4.3 Predictions in the nonlinear regime

a time t, the arm is effectively detached for a time t/(1 − φas). Thus, the ef-

fective stretch relaxation time is longer than τs by a factor 1 − φas. The stick-

ers are blinking between attached and detached states in regions A1 and A2.

When ε̇ < τ−1
sφ = [τs/(1 − φas)]

−1, the viscosity reaches a steady state plateau,

λA ≈ λD ≈ 1, and f(t) ≈ φas. If ε̇ > τsφ, we observe elongation hardening due to

chain stretching, followed by a steady state plateau.

In region A1, Figure 4.7 left, at intermediate elongation rates when τ−1
as < ε̇ <

τ−1
s , small overshoots appear: the chains are stretched and reach the maximum

extensibility because the flow rate is faster than the average time needed for a

sticker to detach: τ−1
as < ε̇. That triggers the detachment of stickers, as confirmed

by the undershoot of f , and therefore immediate relaxation of the stretch of the

arm because the stretch relaxation time is faster than the flow: ε̇ < τ−1
s . However,

the time the sticker will spend free is small compared to the stretch relaxation

time, hence, only a fraction of stress can be relaxed – in contrast with findings in

region C2.

As expected, these small overshoots in η+
E and undershoots in f , are not seen in

the region A2, Figure 4.8 left, as τas � τs implies that increasing elongation rates

will exceed τ−1
s before τ−1

as . Therefore, when τ−1
as < ε̇, the maximum extensibility

is reached and chains are forced to detach but they cannot fully relax the stretch

as the flow rate is faster than the stretch relaxation time.

In region B Figure 4.6, we are in a non-sticky regime because most of the

stickers are free and the lifetime of an associated sticker is short. As before, in

Figure 4.9 left, the viscosity follows the LVE up to strain of order 1. If ε̇ < τ−1
s ,

η+
E reaches a steady state plateau. If ε̇ > τ−1

s we see elongation hardening due to

chain stretching, followed by a steady state plateau.

In regions C1 and C2 Figure 4.6, there is no rescaling of the stretch relaxation

time because the dynamic of association/disassociation of the stickers is slow
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compared to the stretch relaxation, i.e. there is no renormalization due to the

blinking phenomena seen in regions A1 and A2. Thus, τsφ is irrelevant in regions

C1 and C2.

In region C2, Figure 4.11 left, we observe elongation hardening as soon as

the flow rate exceeds the inverse association time, ε̇ > τ−1
as . Indeed, φas being

close to unity, almost all chains are initially attached and they will stay attached

long enough to be stretched by the flow until the chains reach their maximal

extensibility where they are forced to detach. On the other hand, the detached

chains are not stretched at this point. The dramatic drop in viscosity is due to

the fast relaxation of the arms’ stretch immediately following the detachment of

the stickers. At moderately high flow rates, when τ−1
as < ε̇ < τ−1

s , the chains

can “fully” relax their stretch before the stickers re-attach and stretch the arm

again. This cycle of attachment-stretch/detachment-relaxation is responsible for

the undershoot and oscillation in viscosity seen at intermediate elongation rate.

At high elongation rates, when ε̇ > τ−1
s , the chains that are forced to detach

are only able to partially relax their stretch before the stickers re-attach, which

produces a smooth transition towards the steady state with no undershoot or

oscillation. Indeed, when ε̇ > τ−1
s , the detached chains also start to stretch.

In region C1, Figure 4.10 left, we observe something intermediate between

the regions B and C2. At small elongation rate, ε̇ < τ−1
s , η+

E follows the LVE

and reaches a steady state plateau that is below the LVE, similar to region B.

Additionally, at intermediate elongation rates, τ−1
as < ε̇ < τ−1

s , sharp spikes of

the tensile stress growth coefficient are visible, similar to region C2. These small

spikes are the result of the few initially attached chains (recall that φas is close to

zero in region C1) that stretch until they detach, and because the flow is “slower”

than the stretch relaxation time, they can fully relax their stretch. Indeed, at

these elongation rates, the detached chains are not stretched. At high flow rates,
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4.3 Predictions in the nonlinear regime

τ−1
s < ε̇, the chains that are forced to detach are only able to partially relax their

stretch as they are being dragged by the flow: the detached chains are stretching

too. On increasing φas, the spikes are more pronounced. The transition from C1

to C2 is when φas ≈ 1/2.

4.3.4 Shear

On the right parts of the Figures 4.7–4.11, we present the predictions of our

model in the regions A1, A2, B, C1, and C2, respectively, for the logarithms of

the shear stress growth coefficient (sometimes known as shear viscosity), η+(t, γ̇),

the fraction of attached chains f , and the stretch of the attached and detached

chains, λA and λD, as a function of time.

As in elongation, up to a strain of order 1, the viscosity follows the LVE, the

chains are not stretched (λA ≈ λD ≈ 1) and the fraction of attached chains is not

modified, f ≈ φas. The subsequent behavior strongly depends on the different

parameters and the applied shear rate. We detail below the predictions in the

different regions.

Regions A1, A2, B

(i) When the shear rate is smaller than the inverse of the effective stretch

relaxation time, τsφ = τs/(1−φas), for regions A1 and A2, or smaller than the

stretch relaxation time τs for region B, the viscosity shows a mild overshoot

before reaching the steady state. This mild overshoot under the LVE has

been observed experimentally for non-telechelic entangled stars [Snijkers

et al. (2013)]. Indeed, at low shear rates, the system is not aware of the

stickers.

(ii) As the shear rate exceeds the inverse of τs or τsφ, the stress overshoot be-
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comes more pronounced and its height increases. This is typical for en-

tangled linear chains in the chain stretching regime. The response remains

below the LVE, so still in the shear thinning regime. We also start to see

the onset of stretch of the attached and detached chains.

(iii) We observe in Figures 4.7–4.9 right, that, above a second critical shear

rate, shear hardening occurs, i.e. η+ goes above the LVE. In regions A1, A2,

and B, we have found empirically that this critical shear rate above which

hardening is seen, γ̇hard
c , depends on the maximal stretch λmax, on the stretch

relaxation time τs, and the fraction of associated arms at equilibrium, φas,

as

γ̇hard
c =

[
τs

6λmax(1− φas)

]−1

. (4.21)

We note that this hardening is a feature of the Rolie-Poly model with finite

extensibility, i.e. if φas is set to zero, there remains a critical rate in Equation

(4.21) above which shear hardening is seen.

(iv) We observe in region A1 that, at intermediate to high shear rates, sharp

peaks in viscosity appear. Similarly to the elongation case, at moderately

high shear rates, τ−1
as < γ̇, the chains are stretched and reach the maximum

extensibility, which triggers the detachment of stickers and therefore imme-

diate relaxation of the stretch of the arm because λD < λA. On the other

hand, in region A2, λA ≈ λD so the stress does not relax as fast. Hence, we

do not see the sharp decrease in viscosity at high shear rates.

Regions C1 and C2

In region C2, Figure 4.11 right, the critical shear rate at which shear hardening

occurs is γ̇hard
c = τ−1

as . Note that in region C2, the regime (ii) (observed in regions

A1, A2, and B above) is not seen due to the high value of τas. In addition,
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when the shear rate exceeds τ−1
as , the associated arms are strongly stretched –

this corresponds to the onset of shear hardening – until they reach the maximal

stretch ratio. Then the strongly stretched arms are forced to detach and will stay

detached during τfree in average. Because τs � τfree, the detached arms can fully

relax before getting reattached (λD < λA). This fast relaxation is responsible

for the undershoots visible at intermediate shear rates. At higher shear rates,

γ̇ > τ−1
s , the detached arms can only partially relax as they are dragged by

the flow, which produces a smooth transition towards the steady state with no

undershoot or oscillation (λD ≈ λA).

In region C1, Figure 4.10 right, we observe a behavior intermediate between

the regions B and C2. Changes in the shape of the stress growth coefficient are

seen when the flow rate exceeds either τ−1
s or γ̇hard

c , similarly to (i), (ii), and

(iii) above. Additionally, small spikes appear at intermediate flow rates, when

τ−1
as < γ̇ < τ−1

s , due to the same mechanism described above for the region

C2. However, these spikes are of small amplitude because the initial fraction of

attached chain is close to zero (φas ≈ 0). On increasing φas, these spikes are more

pronounced.

4.4 Conclusions

The stochastic model presented in this Chapter is in good qualitative agreement

with experimental linear rheology data; the reasons listed at the end of Sec-

tion 4.2.3 explain the discrepancies in the low frequency region (due to dilution

effects) and in the plateau region for G′′ (the spectrum of orientation relaxation

times is not accounted for in our simple model). To our knowledge, no nonlinear

rheology data on entangled telechelic star polymers have been published.

The stochastic model predicts a wide range of interesting nonlinear behavior
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as parameters are varied e.g. shear hardening, sharp stress peaks and a non-

monotonic constitutive curve (see Figure 5.4) which we anticipate may be exhib-

ited in real materials. Given this, there is potential interest in using the constitu-

tive model in computations for more complex flows. Such computations could, for

example, allow qualitative investigation of the relationship between the predicted

nonlinear viscoelasticity and flow phenomena such as transient or steady state

shear banding. Our toy model might also be applicable at the same level as the

multimode pom-pom model for branched polymers [McLeish & Larson (1998)], in

which the model parameters are usually adjusted freely so as to match available

linear and nonlinear rheology, which can then serve to make reasonably accurate

predictions in non-viscometric flows.

We may also note that much of the interesting nonlinear behaviour we pre-

dict arises from interaction of the flow and sticker timescales with the stretch

relaxation time τs of the stars. Our toy model is not designed to capture the full

spectrum of orientation relaxation times for a “real” star arm, applicable to lin-

ear rheology. However, star polymers are expected to possess a single dominant

stretch relaxation time: in this respect our model is quite close to reality and we

may anticipate that in this sense our nonlinear predictions might be more accu-

rate than the linear ones, especially at high flow rates in the strongly nonlinear

regime.

The model we have presented so far is not very efficient for numerical com-

putation in complex flows such as shear banding calculations because of the cost

of solving stochastic equations for many arms. Given this, we develop, in the fol-

lowing Chapter 5, a preaveraged version of the stochastic model, which is far less

computationally costly and retains most of the features of the stochastic model.
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Chapter 5

Preaveraged model for entangled

telechelic stars

5.1 Motivations

The stochastic model presented in Chapter 4 is not very efficient for numerical

computation in complex flows such as shear banding calculations because of the

cost of solving stochastic equations for many arms. Given this, we develop in

this Chapter a preaveraged version of the stochastic model, which is far less

computationally costly and retains most of the features of the stochastic model.

We get rid of the stochastic nature of the model by preaveraging the contri-

butions to the stress of the attached and detached populations. The outcome is

a scalar differential equation for the time-dependent fraction of attached chains,

f(t), and two tensorial equations for the conformational average of the associated

and dissociated chains, Q
A

(t) and Q
D

(t), similar to Refs. [Tripathi et al. (2006);

Vaccaro & Marrucci (2000)].
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5.2 Assumptions of the model

The evolution equation of the fraction of attached chains, f , is constrained by

the balance equation

df

dt
=

1

Nc

dnA

dt
=
(
1− f(t)

)
rfree→as − f(t)ras→free(λA), (5.1)

where nA is the instantaneous number of associated chain, Nc is the total number

of chains, the rate of dissociation and association rfree→as, and ras→free(λA) are

defined by Equations (4.7) and (4.15) respectively, and the stretch ratio of the

attached population, λA, is defined below in Equation (5.6).

The conformation tensor, τ defined Section 4.1.1, can be split up into two con-

tributions from the associated and dissociated populations, τ
A

and τ
D

, respec-

tively. The time evolution of the conformation tensor representing the associated

chains, τ
A

, is given by Equation (4.17). The time evolution of the conformation

tensor representing the detached chains, τ
D

, is given by Equation (4.19).

The stress tensor, σ, of the full system is then defined as the sum of the

contributions of the attached and detached chains, weighted by the fraction of

such chains, f(t) and 1 − f(t) respectively. Including the finite extensibility

function, we obtain, in units of G,

σ = f fE(λA)τ
A

+ (1− f) fE(λD)τ
D
, (5.2)

where λA and λD are the stretch ratio of the attached and detached populations,

as defined below. The rest of this Chapter aims at defining the time evolution of

Equation (5.2) and concludes by comparing with the predictions of the stochastic

model of the previous section. In deriving the preaveraged model, one constraint

upon which we insist is that attachment and detachment events, on their own,
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should not result in a change in stress – rather stress relaxation occurs when

detached chains relax.

5.3 Derivation of the evolution equations

5.3.1 Tensor preaveraging

We consider the two tensors, related to the stress of the attached and detached

chains, defined by

Q
A

= fE (λA) τ
A
, (5.3)

Q
D

= fE (λD) τ
D
, (5.4)

where λ2
A = tr τ

A
/3, and λ2

D = tr τ
D
/3 are the (squared) preaveraged stretch

ratio of, respectively, the attached and detached populations. The total stress

tensor, Equation (5.2), can be written

σ = fQ
A

+ (1− f)Q
D
. (5.5)

We can express the two stretch ratios as a function of the traces of the tensors

Q
A

and Q
D

. The trace of Equation (5.3) gives

tr
(
Q

A

)
=

1− λ−2
max

1− λ2
Aλ
−2
max

tr
(
τ

A

)
(
1− λ2

Aλ
−2
max

)
tr
(
Q

A

)
=

(
1− λ−2

max

)
3λ2

A

λ2
A =

λ2
max tr

(
Q

A

)
3λ2

max − 3 + tr
(
Q

A

) . (5.6)
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Similarly, Equation (5.4) gives

λ2
D =

λ2
max tr

(
Q

D

)
3λ2

max − 3 + tr
(
Q

D

) . (5.7)

We deduce the expression of the finite extensibility function, fE, depending on

the tensor Q
i
, i ≡ A or D,

fE(λi) =
3λ2

max − 3 + tr
(
Q
i

)
3λ2

max

. (5.8)

We will now express the time evolution the two tensors Q
A

and Q
D

. This is

a two-fold process. First, we will define the exchange terms that arise from the

switch between attached and detached states. Then, we define the flow contribu-

tion.

Exchange terms

The exchange term is present to ensure that the total stress remains constant

when a fraction of chains detaches or attaches. The exchange term is given by

writing the time increment of the quantity fQ
A

between the times t and t+ ∆t,

in absence of flow or relaxation. At a time t + ∆t, a fraction f∆t ras→free(λA) of

chains have detached, while a fraction (1− f)∆t rfree→as have attached. We write

f(t+ ∆t)Q
A

(t+ ∆t) = f(t)Q
A

(t) + ∆t
((

1− f(t)
)
rfree→asQ

D
(t)

−f(t)ras→free(λA)Q
A

(t)
)
. (5.9)

By rearranging the terms we obtain, in a first approximation, the exchange
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terms
dQ

A

dt

∣∣∣∣∣
exchange

= rfree→as
1− f
f

(
Q

D
−Q

A

)
, (5.10)

and similarly

dQ
D

dt

∣∣∣∣∣
exchange

= ras→free(λA)
f

1− f
(
Q

A
−Q

D

)
. (5.11)

One can easily verify that in the absence of flow and ignoring the orientation or

stretch relaxation processes, dσ/dt ≡ d
(
fQ

A
+ (1− f)Q

D

)
/dt = 0. Therefore,

we ensure in this way that the stress stays constant when a chain attaches or

detaches. This, in fact, is the reason for writing the dynamics in terms of Q
A

and Q
D

, rather than τ
A

and τ
D

.

Flow terms

We now derive the flow terms using Equations (4.17) and (4.19). Using the chain

rule, we take the derivative with respect to time of Equation (5.3), and considering

Equation (5.8) we obtain,

dQ
A

dt

∣∣∣∣∣
flow

= τ
A

d

dt

(
3λ2

max − 3 + trQ
A

3λ2
max

)
+

3λ2
max − 3 + trQ

A

3λ2
max

dτ
A

dt

= τ
A

1

3λ2
max

d trQ
A

dt
+

3λ2
max − 3 + trQ

A

3λ2
max

dτ
A

dt
(5.12)

By taking the trace of Equation (5.12) and re-arranging the terms, we get

d trQ
A

dt
=

3λ2
max − 3 + trQ

A

3λ2
max

d tr τ
A

dt

3λ2
max − 3 + trQ

A

3λ2
max − 3

. (5.13)
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We substitute the latter equation into Equation (5.12) to obtain

dQ
A

dt

∣∣∣∣∣
flow

=
1

3λ2
max − 3

tr
[
g
(
Q

A

)]
Q

A
+ g

(
Q

A

)
, (5.14)

were we have defined a tensor function g as

g
(
Q

A

)
≡

3λ2
max − 3 + trQ

A

3λ2
max

dτ
A

dt
(5.15)

= fE(λA)
dτ

A

dt
.

Recall that the evolution of τ
A

is defined by Equation (4.17), therefore we write


dQ

A

dt

∣∣∣∣∣
flow

= g
(
Q

A

)
+

1

3λ2
max − 3

tr
[
g
(
Q

A

)]
Q

A
,

g
(
Q

A

)
≡ κ ·Q

A
+Q

A
· κT − 2βν̃λ−1

A

(
Q

A
− fE(λA)I

)
.

(5.16)

The same strategy leads to



dQ
D

dt

∣∣∣∣∣
flow

= h
(
Q

D

)
+

1

3λ2
max − 3

tr
[
h
(
Q

D

)]
Q

D
,

h
(
Q

D

)
≡ κ ·Q

D
+Q

D
· κT − 2βν̃λ−1

D

(
Q

D
− fE(λD)I

)
− 1

τd

(
Q

D
− fE(λD)I

)
− 2(1− λ−1

D )

τs

fE(λD)Q
D
.

(5.17)

where the stretches λA and λD are defined as a function of Q
A

and Q
D

respec-

tively in Equations (5.6) and (5.7), and, similarly to Equation (5.15), we have

defined the tensor function h
(
Q

D

)
≡ fE(λD)dτ

D
/dt, where dτ

D
/dt is defined

by Equation (4.19).

Note that the CCR rate, ν̃, in the preaveraged equations needs to be defined.

This is the aim of the following Section 5.3.2.
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5.3.2 Preaveraged CCR rate

For the preaveraged model, we could define a CCR rate, ν̃, that is equivalent to

CCR rate defined in Equation (4.6), which would be

ν̃ = (1− f)
1− λ−1

D

τs

fE(λD). (5.18)

The way the preaveraging is done in Section 5.3.1, using the tensors Q
A

and

Q
D

, ensures that the total stress is conserved during attachment and detach-

ment events. However, due to the nonlinear relation between stress and stretch,

the preaveraged stretches are not conserved during attachment and detachment

events. In reality, when detachments or attachments occur, both the stress and

the stretch are conserved, but in our preaveraged model, only the stress is con-

served, and the stretch “jumps” between the preaveraged stretches of the attached

and detached chains, λA, and λD, respectively. This behaviour is a direct result

of the preaveraging in the context of nonlinear elasticity: in the stochastic en-

semble of chains in Chapter 4, each chain conserves its stress and stretch but in

a preaveraged model of the type developed here one cannot conserve both. Thus,

when preaveraging, we must choose whether to conserve stress or stretch. In

summary, keeping the stress constant but not the stretch is not physical, but this

is a necessary sacrifice for self-consistency of the model.

Hence, the CCR rate – that depends on the preaveraged stretch λD – is in-

correct if defined as in Equation (5.18). In Figure 5.1 we show the CCR rate

(together with the viscosity) for the stochastic model Equation (4.6) and for the

preaveraged model with Equation (5.18), for two shear rates in region C2 of the

map Figure 4.6 (τs = 1, τfree = 103, τas = 105, τd = 106, λmax = 10). The preaver-

aged CCR rate from Equation (5.18), in the red lines of Figure 5.1, presents the

same overshoot as the stochastic one, but then fails to drop causing the viscosity
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5. PREAVARAGED MODEL

to stay at a too high level in the preaveraged model as compared to the stochastic

model. As a consequence of using Equation (5.18), the predictions of the stress

growth coefficient are qualitatively different (higher) as compared to the stochas-

tic model. The CCR rates (and thus the viscosity) differs qualitatively between

the two models, especially at intermediate shear rate. Therefore, we introduce a

(a) γ̇ = 0.1 (b) γ̇ = 1

Figure 5.1: Region C2 of Figure 4.6: comparison between the stochastic model
(black), and “incorrect” (red) and “correct” (blue) preaveraged model using
Equation (5.18) and Equation (5.22), respectively, for γ̇ = 0.1 and γ̇ = 1. Bot-
tom: CCR rates. Top: corresponding viscosity. Parameters are τs = 1, τfree = 103,
τas = 105, τd = 106, λmax = 10.

new stretch variable, λD,eq, for which the only purpose is to compute the CCR

rate. The time evolution of the new preaveraged stretch, λD,eq, reads

dλD,eq

dt
=
(
κ : S

D

)
λD,eq−

λD,eq − 1

τs

fE(λD,eq) +fras→free(λA)(λA−λD,eq), (5.19)

where S
D
≡ Q

D
/ trQ

D
is the (unit trace) orientation tensor of the detached

population, and λA is defined in Equation (5.6). The first term of the RHS is

the flow contribution to the stretch, the second term is the stretch relaxation

with a characteristic time τs and includes finite extensibility, and the last term
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5.3 Derivation of the evolution equations

is a source term which is proportional to the fraction of attached chains and the

rate of detachment. It accounts for the additional stretch that an attached chain

brings to the detached population when it detaches.

We then need to split the CCR rate up into two contributions. A first con-

tribution comes from the detached chains similar to Equation (5.18), but using

λD,eq

ν1 = (1− f)
1− λ−1

D,eq

τs

fE (λD,eq) . (5.20)

A second contribution, ν2, to the total CCR rate comes from the detachment of

(attached) stretched chains as

ν2 = fras→free(λA)
λA − λD

(λA + λD)
. (5.21)

We need to include this second contribution because, in the stochastic model,

when a chain detaches, it loses stretch (sometimes rapidly) before “joining” the

average of the detached population. During this detachment and retraction pro-

cess, it contributes significantly to CCR, and we capture this through Equation

(5.21). The total CCR rate, ν̃, of the preaveraged model is thus defined using

Equations (5.20) and (5.21) as

ν̃ = (1− f)
1− λ−1

D,eq

τs

fE(λD,eq) + fras→free(λA)
λA − λD

(λA + λD)
. (5.22)

By using Equation (5.22) for the CCR rate in the preaveraged model, the

predictions match reasonably closely the stochastic model in all regimes of the

parameter space. In particular, we show in blue lines Figure 5.1 the CCR rates of

the preaveraged model corresponding to Equation (5.22), to be compared with the

red lines that correspond to Equation (5.18). It is clear that the CCR rates (and

viscosities) of the two models are now in qualitative agreement as we manage
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5. PREAVARAGED MODEL

to capture the sharp drop of CCR rate. Figures 5.2 and 5.3 present a similar

comparison of the CCR rates for the regions A1 and A2 of Figure 4.6, where we

see that either Equation (5.18) or Equation (5.22) manage to have the CCR (and

viscosity) in good agreement with the stochastic model.
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Figure 5.2: Region A1 of Figure 4.6: comparison between the stochastic model
(black), and “incorrect” (red) and “correct” (blue) preaveraged model using
Equation (5.18) and Equation (5.22), respectively, for γ̇ = 0.1 and γ̇ = 10.
Bottom: CCR rates. Top: corresponding viscosity. Parameters are τs = 1,
τfree = 10−2, τas = 102, τd = 106, λmax = 10.

However, in these above examples, the match is not always perfect at a quan-

titative level, and we anticipate that, when this is the case, the steady state stress

in the two model will differ, see Section 5.5.

5.3.3 Summary of the preaveraged set of equations

The time evolution equations of the fraction of attached chains, of the tensors Q
A

and Q
D

– as the sum of the flow terms Equations (5.16) and (5.17), and exchange

terms Equations (5.10) and (5.11) – and the relevant variables are summarized

in Table 5.1.
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5.3 Derivation of the evolution equations

Table 5.1: Preaveraged equation set.

Expression for the stress tensor, in units of G:

σ = fQ
A

+ (1− f)Q
D
.

Evolution of the fraction of attached chains:

df

dt
= rfree→as (1− f)− ras→free(λA)f.

Evolution of the attached chains tensor:

dQ
A

dt
= g

(
Q

A

)
+

1

3λ2
max − 3

tr
[
g
(
Q

A

)]
Q

A
+ rfree→as

1− f
f

(
Q

D
−Q

A

)
,

with

g
(
Q

A

)
≡ κ ·Q

A
+Q

A
· κT − 2βν̃λ−1

A

(
Q

A
− fE(λA)I

)
.

Evolution of the detached chains tensor:

dQ
D

dt
= h

(
Q

D

)
+

1

3λ2
max − 3

tr
[
h
(
Q

D

)]
Q

D
+ ras→free(λA)

f

1− f
(
Q

A
−Q

D

)
,

with

h
(
Q

D

)
≡ κ ·Q

D
+Q

D
· κT − 2βν̃λ−1

D

(
Q

D
− fE(λD)I

)
− 1

τd

(
Q

D
− fE(λD)I

)
− 2(1− λ−1

D )

τs

fE(λD)Q
D
.

Preaveraged CCR rate:

ν̃ = (1− f)
1− λ−1

D,eq

τs

fE(λD,eq) + fras→free(λA)
λA − λD

(λA + λD)
.

Evolution of the CCR stretch-variable:

dλD,eq

dt
= (κ : Q

D
/ trQ

D
)λD,eq −

λD,eq − 1

τs

fE(λD,eq) + fras→free(λA)(λA − λD,eq).

Rate of attachment and detachment:

rfree→as = τ−1
as

φas

1− φas

, ras→free(λA) = τ−1
as

 1− λ2
Aλ
−2
max

1− λ−2
max

(
λA − r

Za0

)2


− 3

2
Zλ2max

.

Stretch of the attached and detached chains:

λA =

 λ2
max tr

(
Q

A

)
3λ2

max − 3 + tr
(
Q

A

)
1/2

, λD =

 λ2
max tr

(
Q

D

)
3λ2

max − 3 + tr
(
Q

D

)
1/2

.
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Figure 5.3: Region A2 of Figure 4.6: comparison between the stochastic model
(black), and “incorrect” (red) and “correct” (blue) preaveraged model using
Equation (5.18) and Equation (5.22), respectively, for γ̇ = 0.2 and γ̇ = 10.
Bottom: CCR rates. Top: corresponding viscosity. Parameters are τs = 1,
τfree = 10−4, τas = 10−2, τd = 106, λmax = 10.

5.4 Predictions of the preaveraged model

We solve the set of differential equations presented in Table 5.1 using the Euler

scheme, with a time step ∆t < min(τas, τfree, τs, κ
−1)/100, where κ = γ̇ or ε̇ is the

flow rate.

We present in Figures 5.5–5.9 (at the end of this Chapter) the predictions

of the preaveraged model for the regions A1, A2, B, C1, and C2 respectively.

These should be compared against Figures 4.7–4.11 respectively, in Chapter 4.

It is evident that the preaveraged model captures most of the features of the

stochastic model:

(i) We obtain the same critical shear rate, γ̇hard
c , at which shear hardening is

seen;

(ii) Transients in regions A1, A2, and B are in almost perfect quantitative agree-
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5.5 Constitutive curve comparison

ment;

(iii) Steady state stress as a function of shear rate curves have the same trend;

(iv) The spikes at intermediate elongation rate in region A1, Figure 5.5, are well

resolved.

Although the preaveraged model successfully captures the onset of the spikes in

the regions C1 and C2, it suffers from the biggest discrepancies, at intermediate

(shear or elongation) rates, with the stochastic predictions:

(v) In the region C1, Figure 5.8, the preaveraged model produces oscillations in

shear that are not present in Figure 4.10 for γ̇ = 0.3 and γ̇ = 0.5;

(vi) In the region C2, Figure 5.9, the undershoots, both in elongation and shear,

are not captured, and the steady state stresses are different at low and

intermediate flow rates.

It is, of course, extremely unlikely that a preaveraged model could quantitatively

capture every single feature of the stochastic model. We consider the remarkably

high level of agreement between the stochastic and preaveraged models to be a

significant success of this work. As a result, we have a model which is suitable

for flow computation, with physically meaningful parameters, that can be used

as a “toy” model for future investigations.

5.5 Constitutive curve comparison

In Figure 5.4, we present the steady state shear and elongation stresses as a

function of the flow rate obtained by averaging out the late time values of the

stress tensor: σxy in shear, and σxx − σyy in elongation, for both the stochastic

and preaveraged model. We note that
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5. PREAVARAGED MODEL

Figure 5.4: Steady state stress as a function of the flow rate (in log-scale) in
the different regions of Figure 4.6, in shear (σxy) and elongation (σE = σxx −
σyy), squares and circles respectively. Comparison between the stochastic model
(empty symbols) and preaveraged model (filled symbols).

(i) In regions A2 and B, there is a perfect agreement between the stochastic

and preaveraged model in both shear and elongation;

(ii) In region C2 there is qualitative agreement of the steady state stresses be-

tween the stochastic and preaveraged model;

(iii) In region A1, the preaveraged model predicts slightly negative slope in shear

and elongation which are not seen in the stochastic model. This is caused

by a too high CCR rate in the preaveraged model which results in a higher

stress value;

(iv) Due to the CCR parameter being large enough (β = 1), the regions A1, A2,

and B exhibit a monotonic curve. However, the region C2 shows a clearly

non-monotonic relation between steady state stress and shear rate, in both

the stochastic and preaveraged model, which, according to recent works,
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5.6 Conclusions on the stochastic and preaveraged model

implies shear banding of the system in the steady state. Also, transient

shear banding might occur where shear hardening and rapid stress drop is

seen [Adams et al. (2011); Cromer et al. (2014); Fielding (2016); Moorcroft

& Fielding (2013)];

(v) Results presented in this work for the region C1 are for φas = 0.01, and do

not present a non-monotonic relation for the stochastic model. However,

we already see an onset of non-monotonicity in the preaveraged model. As

we go towards region C2 ( increasing φas), the non-monotonicity starts to

grow. Therefore, we might be able to tune the shear banding properties of

the polymeric systems by adjusting the parameter φas.

5.6 Conclusions on the stochastic and preaver-

aged model

The central goal of Chapters 4 and 5 was to produce a simplified nonlinear consti-

tutive “toy” model which could capture effects of both entanglements and “sticky”

telechelic groups in polymeric systems. As argued in the Introduction of Part II,

we chose the star polymer as the simplest architecture to consider, since it results

in a two-state system in which the single sticker is attached or detached. Our

methodology, then, was to create a stochastic model in which each star arm has

its own history of attachment and detachment, and then to create a preaveraged

model with properties that closely resemble the stochastic system. Both models

contain physically meaningful parameters, allowing a “map” of typical behavior

in different regions of parameter space to be investigated.

The simplified stochastic tube model for entangled telechelic stars, Chapter 4,

exhibits a broad range of behaviors that one is able to tune by adjusting the sticker
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parameters, τas, and τfree with respect to the orientation (in the linear regime)

or stretch (in the nonlinear regime) relaxation times. In both the linear and

nonlinear regime, we produced a parameter map where we identified different

regions defined by how critical timescales compare. In the linear regime, our

model is in good agreement with the more detailed work of van Ruymbeke and

co-workers [van Ruymbeke et al. (2010)].

In the nonlinear regime, we saw dramatic changes in the stress growth coeffi-

cient transients as we navigated around the parameter map, i.e. our constitutive

model exhibits a rich variety of responses. We observed that particular parameter

sets produce shear hardening, extension hardening, sharp stress drops, smoother

stress drops, monotonic and non-monotonic curve for the steady state stress as a

function of shear rate.

Finally, we developed, in this Chapter, a preaveraged model, that retains the

vast majority of the features of the stochastic model. We anticipate that this will

serve as a prototypical “toy” model for flow computation. As an example of this,

in the following Chapter 6, we shall investigate the shear banding flow instability

using this novel constitutive model.
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(a) Elongation (b) Shear

Figure 5.5: Preaveraged model predictions for region A1 in the nonlinear regime,
to be compared with Figure 4.7. We present the values, as a function of time,
of the fraction of attached chains, f , the stretch of the attached chains λA and
stretch of the detached chains λD, and stress growth coefficients, η+

E and η+,
for uniaxial extension (left), and step rate (right) respectively. Parameters are
τfree = 10−2, τas = 102, τs = 1, τd = 106, λmax = 10.
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(a) Elongation (b) Shear

Figure 5.6: Preaveraged model predictions for region A2 in the nonlinear regime,
to be compared with Figure 4.8. We present the values, as a function of time,
of the fraction of attached chains, f , the stretch of the attached chains λA and
stretch of the detached chains λD, and stress growth coefficients, η+

E and η+,
for uniaxial extension (left), and step rate (right) respectively. Parameters are
τfree = 10−4, τas = 10−2, τs = 1, τd = 106, λmax = 10.
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(a) Elongation (b) Shear

Figure 5.7: Preaveraged model predictions for region B in the nonlinear regime, to
be compared with Figure 4.9. We present the values, as a function of time, of the
fraction of attached chains, f , the stretch of the attached chains λA and stretch
of the detached chains λD, and stress growth coefficients, η+

E and η+, for uniaxial
extension (left), and step rate (right) respectively. Parameters are τfree = 102,
τas = 10−2, τs = 1, τd = 106, λmax = 10.
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(a) Elongation (b) Shear

Figure 5.8: Preaveraged model predictions for region C1 in the nonlinear regime,
to be compared with Figure 4.10. We present the values, as a function of time,
of the fraction of attached chains, f , the stretch of the attached chains λA and
stretch of the detached chains λD, and stress growth coefficients, η+

E and η+,
for uniaxial extension (left), and step rate (right) respectively. Parameters are
τfree = 104, τas = 102, τs = 1, τd = 106, λmax = 10.
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(a) Elongation (b) Shear

Figure 5.9: Preaveraged model predictions for region C2 in the nonlinear regime,
to be compared with Figure 4.11. We present the values, as a function of time,
of the fraction of attached chains, f , the stretch of the attached chains λA and
stretch of the detached chains λD, and stress growth coefficients, η+

E and η+,
for uniaxial extension (left), and step rate (right) respectively. Parameters are
τfree = 103, τas = 105, τs = 1, τd = 106, λmax = 10.
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Chapter 6

Shear banding study of entangled

telechelic star polymers

6.1 Introduction

6.1.1 Flow instabilities

The flow of viscoelastic liquids is often accompanied by interesting effects usually

not seen in (simple) Newtonian liquids [Bird et al. (1987); Brochard & de Gennes

(1992); Brochard-Wyart et al. (1996); Larson (1992); Maxwell & Galt (1962);

Migler et al. (1993); Vinogradov et al. (1984)]. Non-Newtonian effects are fre-

quently present during the extrusion of molten polymers at high stresses – one of

the most common industrial shaping process. The surface or shape of the result-

ing material is altered by the presence of flow defects such as extrudate swelling,

crystallization effects, sharkskin or melt flow instabilities, depending on the type

of polymer as well as on the construction of the capillary device [Benbow & Lamb

(1963); Leonov (1984); Paskhin (1978); Vinogradov et al. (1984)]. In some con-

stant rate experiments on capillaries [den Otter (1971); Lupton & Regester (1965)]
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or cone-plate [Bandyopadhyay et al. (2000); Soltero et al. (1999)] geometry, peri-

odic oscillations of the shear stress or pressure is observed and attributed to either

a structural breakdown (chain disentanglement), or to a stick-slip transition at

the walls or between macrodomains [Bandyopadhyay et al. (2000)].

Wall-slip, a non-zero relative velocity at a solid-liquid interface, is called “true

slip”; it must be distinguished from “apparent slip”. For example, when we im-

pose an external shear rate, higher than the complex-fluid characteristic time, the

internal mesoscopic structure is reorganized and the shear rate may localize so

that two (or more) bands experiencing different shear rates coexist. In the result-

ing “shear banded” state, a narrow shear band close to a wall can appear as an

apparent wall slip. Since the first theoretical models for worm-like micelles [Cates

(1987; 1990); Spenley et al. (1996; 1993)], numerous techniques and experiments

were developed to understand the shear banding phenomena; cf. [Cates & Field-

ing (2006); Fielding (2007); Lerouge & Berret (2010); Olmsted (2008)] for reviews

of experiments (mainly on worm-like micelles) and theoretical considerations.

Polymeric systems with reversible junctions, such as entanglements or asso-

ciative stickers, are known to undergo flow instabilities, e.g. spurt [McLeish &

Ball (1986)], shear banding [Divoux et al. (2015); Fielding (2007; 2016); Man-

neville (2008); Moorcroft & Fielding (2014)] or melt fracture [Berret & Séréro

(2001); Ligoure & Mora (2013); Sprakel et al. (2009)]. These instabilities can

alter the flow and final properties of the material and therefore controlling these

phenomena is of critical industrial importance in the processing of polymers.

Experimental understanding of the flow and instabilities in complex fluids gener-

ally rely on rotational rheometers [Dealy & Larson (2006)], e.g. Taylor-Couette,

cone-plate, or parallel plate geometries.

In concentrated solutions of telechelic polymers, i.e. linear chains with stickers

at both extremities that enable the formation of transient network, experiments
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[Berret & Séréro (2001); Michel et al. (2001); Sprakel et al. (2008)] and MD

simulations [Castillo-Tejas et al. (2017)] showed that flow instabilities can oc-

cur. Note that above a critical concentration, telechelic polymers self-assemble

into overlapping flowerlike micelles whose local structure resembles star polymers

because, in the limit of very sticky system (τas � τd, τs and φas ≈ 1), linear en-

tangled telechelic polymers have both ends attached most of the time and, upon

(rare) detachment of a sticker, the linear polymer is in a configuration akin to

star polymers with one anchored end (branch point) and one free end.

In this Chapter, we investigate shear banding using the preaveraged constitu-

tive model for entangled telechelic star polymers, that is based on the Rolie-Poly

model [Likhtman & Graham (2003)] and developed in Chapter 5, and compare

with experimental findings on concentrated solution of linear telechelic chains.

The advantage of the Rolie-Poly model [Likhtman & Graham (2003)] over the

Johnson-Segalman model (a widely used phenomenological constitutive model

[Fardin et al. (2012); Johnson & Segalman (1977)]) is that it is derived from

a full molecular model based on tube dynamics, and it includes chain stretch,

contour length fluctuation, and thermal and convective constraint release (CCR)

[Marrucci (1996)].

We show that our molecular constitutive model for entangled telechelic poly-

mers of Chapter 5, predicts (i) steady state shear banding and (ii) periodic os-

cillatory stress response. These oscillations are generated by an “apparent slip”

i.e. a narrow shear band usually close to the wall, giving the impression of a

“stick-slip” behavior (though our simulations use non-slip boundary conditions).

In contrast with phenomenological models of, e.g., Refs. [Head et al. (2002);

Picard et al. (2002)], our molecular model reveals a novel mechanism for a stick-

slip transition, arising from interaction between the structural relaxation within

the material, and diffusion of the constituent species across a narrow band. In
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what follows, we present our model and the mechanism of this apparent stick-slip

process, and discuss how this may relate to the non trivial physical phenomena

occurring in experiments. This work is also a demonstration of the utility of the

constitutive model developed in Chapter 5 in addressing complex, time-dependent

flows.

6.1.2 Flow curve

We briefly summarise the phenomenology of shear banding. Figure 6.1 presents

a sketch of the steady state shear stress as a function of the applied shear rate,

typically for σ following the Rolie-Poly model [Graham et al. (2003)] with β ≈ 0,

i.e. no CCR [Agimelen & Olmsted (2013)]. Other models that exhibit shear

banding, e.g. the Johnson-Segalman [Johnson & Segalman (1977)] model, often

have a similar steady state stress curve [Olmsted (2008)]. The (non-monotonic)

homogeneous constitutive curve is “ABCDEF”. The system is unstable in the

portion “CD”, and metastable in the “BC” and “DE” portions. The (shear

banded) flow curve is “ABEF”, i.e. when the applied shear rate is between γ̇low

and γ̇high, the system spontaneously forms two macroscopic bands of fluid, one at

a shear rate γ̇low and the other at γ̇high [Fielding (2016)]. In the banded regime, i.e.

γ̇low < γ̇av < γ̇high, the stress stays constant, or slightly increases due to curvature

effects (not considered here) in geometries such as cylindrical Couette [Fielding

& Olmsted (2003); Lerouge et al. (2000); Olmsted et al. (2000)].

For an applied shear rate such that γ̇low < γ̇av < γ̇high, the fraction, αhigh, of

fluid “experiencing” the high shear rate is given by the lever rule:

γ̇av ≈ αhighγ̇high + (1− αhigh)γ̇low. (6.1)

This rule has been confirmed by many experiments [Lerouge & Berret (2010)].
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Figure 6.1: Steady state shear stress function of the applied shear rate. The
“ABCDEF” line is the (non-monotonic) homogeneous constitutive curve, while
the “ABEF” path is the shear-banded flow curve. The selected stress is the “BE”
level and the selected shear rates are γ̇low and γ̇high.

The stress selection that is made by the system when it bands, which corresponds

to the stress plateau, is unique if we include a diffusion term in our model [Lu

et al. (2000)].

We detail, in the following, the method we used to derive the diffusion terms

(that allow a single stress selection) as well as the simulation set-up, followed by

our results and discussion.

6.2 Shear banding simulations

6.2.1 Parallel plates

We consider a parallel plate configuration: the top plate at y = L moves with

velocity u in the x-direction with respect to the bottom plate at y = 0, giving

fixed average shear rate γ̇av = u/L, cf. Figure 6.2. This may describe a cone-plate
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Figure 6.2: Simulation set-up. The top plate at y = L moves with a velocity u
in the x-direction with respect to the bottom plate at y = 0. Left: homogeneous
flow. Right: a banded flow.

or Taylor-Couette flow, if we neglect the curvature effects.

6.2.2 Derivation of the diffusive terms

In order to study the shear banding effects associated with the set of equations

presented in Table 5.1, we detail the effect of diffusion of the chains across a

unidimensional channel.

We split the domain between y = 0 and y = L into a set of “boxes” of size ∆y,

and we consider the effect of chains jumping between these boxes. We suppose

that there are n chains in total in each box, a fraction f of which are attached

and a fraction (1 − f) detached. We then assume that at each time step ∆t,

each box exchanges δn chains with each of the adjacent boxes. These chains are

selected in proportion to the number of attached or detached chains in the box

from which they leave.

We can summarize by saying that at each time step, the box at “height” y

loses stress related to the attached and detached population in proportion to

2δnf(y)Q
A

(y), (6.2)

2δn
(
1− f(y)

)
Q

D
(y), (6.3)
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where the factor 2 comes from the fact that, except at the boundaries, the quan-

tities exit through the top and bottom. Moreover, at each time step, the box at

“height” y gains some stress coming from the top and bottom boxes:

δn(fQ
A

)(y + ∆y) + δn(fQ
A

)(y −∆y) from A-chains, (6.4)

δn
(
(1− f)Q

D

)
(y + ∆y) + δn

(
(1− f)Q

D

)
(y −∆y) from D-chains, (6.5)

where we used the shorthand (fQ)(y) ≡ f(y)Q(y), and all the quantities are at

time t.

Now, we can express the fraction of attached chains, f , at t+∆t. Considering

that the total number of chains in the box at “height” y is n, the number of

attached chains at time t+ ∆t is

nf(y, t+ ∆t) = (n− 2δn)f(y) + δnf(y + ∆y) + δnf(y −∆y)

= nf(y) + δn
(
f(y + ∆y) + f(y −∆y)− 2f(y)

)
, (6.6)

where all quantities are evaluated at time t if not specified otherwise. Dividing by

n∆t and rearranging the terms, we recognise the finite difference approximation

of the time derivative and second order spatial derivative derivative, so that in

the limit ∆t → 0 and ∆y → 0, taken such that (∆y)2/∆t remains constant, we

find:
∂f

∂t
= D

∂2f

∂y2
, (6.7)

where D =
δn

n

(∆y)2

∆t
. Hence, the fraction of attached chains, f , diffuses across

the boxes with a diffusion coefficient D.

Now, we will derive the value of the tensor Q
A

at time t+ ∆t. According to

the balance equations previously written we have that the total stress in the box
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at “height” y from the attached population is

nf(y, t+ ∆t)Q
A

(y, t+ ∆t) = (stress from A-chains at time t in box y)

− (stress from A-chains leaving box y)

+ (stress from A-chains arriving box y)

= n(fQ
A

)(y, t)

−2δn(fQ
A

)(y, t)

+δn
(
(fQ

A
)(y + ∆y, t) + (fQ

A
)(y −∆y, t)

)
.

Rearranging the terms and approximating the finite differences for the derivatives,

we obtain the partial differential equation

∂fQ
A

∂t
= D

∂2fQ
A

∂y2
. (6.8)

From Equation (6.7), we know the value of f(y, t+ ∆t), hence we can deduce the

value of Q
A

(y, t+ ∆t) from Equation (6.8) by a simple division.

Similarly, the time evolution of the tensorQ
D

representing the detached chains

can be obtained via

∂(1− f)Q
D

∂t
= D

∂2(1− f)Q
D

∂y2
. (6.9)

6.2.3 Simulation parameters

The diffusion coefficient, D, is dimensionless in the simulations, as are the gap

size L and timescales (e.g. τas, the longest relaxation time), corresponding to

physical (dimensional) quantities D̃, L̃ and τ̃as respectively. D may therefore be

obtained from D = D̃L2τ̃as/L̃
2τas, so a decrease in physical gap size L̃ increases

the dimensionless D. For the rest of this Chapter, the (dimensionless) gap size is
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6.2 Shear banding simulations

set as L = 1, without loss of generality.

Although experimental methods can provide values of D̃ for “simple” poly-

mers, which range from 10−15 to 10−10 m2/s [Appel & Fleischer (1993); Lodge

(1999); Tao et al. (2000); Wheeler & Lodge (1989)], data for telechelic polymers

are not available. Taking D̃ ∼ 10−14 m2/s, L̃ ∼ 1 mm, τ̃as ∼ 106 s [van Ruymbeke

et al. (2010)], and τas = 103 (as used in Section 6.3), gives a reference D0 = 10−5.

In the following, we vary D around D0.

We use the fourth order Runge-Kutta (RK4) method to increment Equa-

tions (5.1), (5.16), and (5.17), and the Crank-Nicolson (CN) finite difference

method to increment the diffusive terms, Equations (6.7) to (6.9), over a uniform

spatial grid of Ngrid ≥ 1 000 points with a zero-gradient boundary condition.

The boundary condition is a zero gradient imposed on the top and bottom

plates, i.e. no quantity can exit the system:

∂X

∂y

∣∣∣∣
y=0

= 0 and
∂X

∂y

∣∣∣∣
y=L

= 0, (6.10)

where X is each of Q
A

, Q
D

, and f .

We use a (common) time step for the RK4 and CN methods that is smaller

than the characteristic times of the system (τas, τfree, γ̇
−1) and smaller than the

characteristic diffusion time across a box ∆tdiff = (∆y)2/D, where ∆y = L/Ngrid

is the box size. Therefore, a finer grid (increase of Ngrid) not only implies more

computation points but could also imply a smaller simulation time step (as ∆y

decreases), which would highly increase the simulation time. Nevertheless, we

must ensure that the transition between the high and low share rate bands (if any)

is “numerically smooth”, see inserts of Figure 6.8. The width of that interface,

`int, is determined by the diffusion coefficient and a relaxation time as `int ≈
(Dτ)1/2 [Fardin et al. (2015)], and we must ensure that ∆y � `int, so we take

τ ≡ τs (the smallest relaxation time). Hence, a high number of grid points are
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needed for small-D simulations. In Section 6.3, we explore the effects of three

values for the (dimensionless) diffusion coefficient: D = {10−7, 10−5, 10−3}, with

respectively Ngrid = {10 000, 4 000, 1 000}, ensuring that ∆y � `int.

6.2.4 Momentum equation in parallel plate geometry

The typical Reynolds number, Re, is given by the balance between the inertia

and viscosity as Re = ρuL/µ, where ρ ≈ 1 g/cm3 is the density of the polymer,

u ≈ 1 mm/s is the typical velocity, L ≈ 1 mm is the typical gap size, and µ the

polymer viscosity that we take of order 105 Pa·s [Fetters et al. (1993)]. Hence,

Re ≈ 10−8 � 1, so we can neglect the inertia contribution.

The momentum equation reads

ρDtu = ∇ · T , (6.11)

where Dt ≡ ∂t +u ·∇, and T = σ+ η(κ+κT )− pI is the total stress (polymeric

stress σ, plus Newtonian solvent with viscosity η, plus isotropic pressure ensuring

incompressibility), where κ = (∇u)T is the velocity gradient tensor. A direct

consequence of a small Reynolds number is

∇ · T = 0. (6.12)

Thus, ∂Txy/∂y = 0, so Txy is constant across the gap. It follows that Txy(y, t) =〈
Txy(y, t)

〉
, where 〈 · 〉 = 1

L

∫ L
0
· dy is an average across the gap, with

Txy(x, t) = σxy(y, t) + ηγ̇(y, t) (6.13)〈
Txy(y, t)

〉
=

〈
σxy(y, t)

〉
+ η
〈
γ̇(y, t)

〉
. (6.14)
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6.2 Shear banding simulations

Figure 6.3: Diffusion across the simulation boxes.

Combining the two above equations gives

γ̇(y, t) =
〈
γ̇(y, t)

〉
+

1

η

(〈
σxy(y, t)

〉
− σxy(y, t)

)
, (6.15)

where
〈
γ̇(y, t)

〉
≡ γ̇av is the constant (externally) applied shear rate, or average

shear rate across the gap, during step rate experiments or simulations.

At each time step, we compute the local value of the polymeric stress σxy(y, t)

using the set of equations Table 5.1 and Equations (6.7) to (6.9). Then, the

average stress across the gap,
〈
σxy(y, t)

〉
, is computed which, in turn, allows us

to evaluate the local shear rate via Equation (6.15). This local shear rate is then

used in the next step to update the polymeric stress. We increment the dynamical

equations for the system by repeating this cycle for each timestep.
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Figure 6.4: Homogeneous flow curves of the preaveraged model with φas =
{0.01, 0.5, 0.99, 0.9999}. In insert is Txy(t) for γ̇av = 0.42 and φas = 0.99.

6.3 Predictions of the “diffusive” preaveraged

model

6.3.1 Homogeneous flow curves

In the preaveraged model, Chapter 5, the polymeric stress tensor (in units of

plateau modulus) is written as a linear combination of stress from arms with

attached and detached stickers, σ = fQ
A

+ (1− f)Q
D

. The dynamical variables

are: f , the instantaneous fraction of attached stickers (f = φas at equilibrium

with no flow), and Q
A

and Q
D

, the averaged stress (including maximum stretch)

from Attached and Detached chains, respectively. The full dynamical equations

are presented Table 5.1. Typical entangled telechelic star polymers have τs �
τd � τas, and, at equilibrium, most of the stickers are attached: φas ≈ 1 [van

Ruymbeke et al. (2010)]. For the rest of this Chapter, we choose τs = 1, τd = 102,

τas = 103, λmax = 10, and η = 0.1.

In Figure 6.4, we present the (steady state, homogeneous) constitutive curves
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6.3 Predictions of the “diffusive” preaveraged model

for the preaveraged model where we vary the equilibrium fractions, φas, of at-

tached stickers, i.e. we change the “stickiness” of the system from φas = 0.01

(not sticky) to φas = 0.9999 (sticky). It is clear that, as φas increases, a non-

monotonicity in the constitutive curve appears, and so shear banding phenomena

may be anticipated. Additionally, as indicated in the insert in Figure 6.4, the

transient stress during start-up of steady homogeneous flow exhibits a sharp stress

maximum, which is a result of attached chains being stretched close to their max-

imum λmax before the stickers are forced to detach. This detachment event, and

subsequent relaxation of the detached chains, produces a rapid reduction of stress.

We may anticipate that this produces interesting dynamical phenomena during

the establishment of shear bands.

6.3.2 Banded flow curves

In the following, we explore the complex flow dynamics arising from the preav-

eraged model for φas = 0.99 (sticky system) by means of 1-dimensional parallel

plate simulations, as described Section 6.2.1. Therefore, the set of parameters

(τs, τfree, τd, τas) = (1, 10, 102, 103) places the system in the region A of Figure 4.3,

and in the region C2 of Figure 4.6.

At t = 0, the stress tensors Q
A

and Q
D

are set equal to the isotropic tensor,

and the fraction of attached chains, f , is set as the fraction of attached chains at

equilibrium, φas, plus a small perturbation,

f(y, t = 0) = φas + A cos(πy), (6.16)

where A� φas is the overall amplitude of the perturbation, which ensures f to be

slightly lower than φas at high y and vice versa. A small value of A leads to delayed

effects, i.e. longer simulation time needed to access a banded state, while large
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6. SHEAR BANDING

values of A are unphysical. If banding occurs, Equation (6.16) guarantees a high

shear rate band at high y values, because f drops when the flow rate increases.

Other initial conditions may result in bands (either oscillatory or steady) forming

away from the wall, which typically migrate towards one wall or the other, see

Section 6.4.

Figure 6.5: Steady state stress versus shear rate for homogeneous non-banded
flow (dashed line), and for shear banding simulations (symbols), time averaged
in the case of oscillatory response (white crossed symbols). Inserts (a, b, c) show
the transient stress versus time, Txy(t), at γ̇av = 0.42, for D = 10−3, D = 10−5,
and D = 10−7 respectively. Parameters are φas = 0.99, A = 10−3.

In Figure 6.5 we plot the steady state stress as a function of applied γ̇av, for

various diffusion coefficients. We also show transient plots of stress versus time

for different diffusion coefficient at the same γ̇av = 0.42. We found that for large

values of the diffusion coefficient and in a narrow range of applied shear rate, e.g.

D = 10−3 (equivalently, for small gap size) and 0.2 < γ̇av < 1, the total stress does

not reach steady state but keeps oscillating between, roughly, the stress values

174



6.3 Predictions of the “diffusive” preaveraged model

for homogeneous flow (dashed line) and for the shear banded state (white crossed

symbols). Each “oscillation” appears to be, in detail, a sharp stress overshoot

similar to the early event where initially attached chains reach their maximal

stretch and detach. However, at smaller values of D, e.g. D = 10−5 (equivalently,

as the gap size increases), the stress oscillates for a short time, but a steady state

is eventually reached. After a further decrease of D, e.g. D = 10−7, no oscillation

is seen.

6.3.3 Stick-slip and diffusion

In order to investigate the transient behavior and especially the interesting os-

cillatory response further, we present, in Figure 6.6, color maps (corresponding

to the three inserts in Figure 6.5) of γ̇(y, t) and f(y, t), and the trajectory of the

simulation projected onto the plane (Txy,∆f), where ∆f is the difference between

the maximum and minimum value of f observed across the gap.
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6.3 Predictions of the “diffusive” preaveraged model

Focusing first on D = 10−7 in Figure 6.6 left, we observe that the fraction of

attached arms drops across the whole width of the simulation at the time (t ≈ 40)

of the initial sharp stress maximum, and at this point no significant banding is

observed. The flow remains homogeneous (H) for a time, but the (Txy,∆f) plane

reveals the growth of an instability in which ∆f increases. Eventually, at t ≈ 54,

a thin band of material near the upper wall reaches a state with almost all chains

detached, which gives rise to a sharp recoil (R), i.e. where coexistence of negative

and positive shear rates is seen, cf. Figure 6.8. This permits a release of the elastic

energy stored in the remaining bulk of the material, driving the sharp recoil and a

rapid drop in stress. Subsequently, the flow stabilizes to a banded state (B), with

a narrow band at high shear rate close to the upper wall, effectively an apparent

wall slip. Figure 6.8 displays the velocity profile during the homogeneous (H),

recoil (R) and banded (B) states, at times indicated by stars in Figure 6.6 left.

We see in the (Txy,∆f) plot that the system is driven away from the instability

and reaches a permanent banded state, where ∆f ≈ 1; two shear bands are

formed, one with a high number of attached stickers, and the other with most of

the stickers detached.

In contrast, for larger D = 10−5, shown in Figure 6.6 middle, after the initial

recoil the simulation returns towards a homogeneous state (H) before recoiling

(R) once more and eventually stabilizing into a banded state (B) where, as before,

∆f ≈ 1. The (Txy,∆f) plot shows the extra oscillatory cycle made before the

system eventually reaches a steady state.

For large values of the diffusion coefficient, e.g. D = 10−3, oscillation between

homogeneous (H) and recoil (R) states repeats indefinitely, i.e. no steady banded

state is reached. The (Txy,∆f) plot, of Figure 6.6 right, reveals the limit cycle

that underpins the oscillations.

The critical process driving the oscillation is the return towards a homoge-
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neous flow profile following the banding and elastic recoil. The dependence of this

process on the diffusion constant indicates the following mechanism is at work:

After the recoil, a narrow high shear rate band is formed, in which most chains are

in the detached state. However, if diffusion is sufficiently rapid (depending upon

the width of the band as well as the magnitude of the diffusion constant) diffu-

sive exchange of chains between the narrow band and bulk of the material (which

contains many attached chains) leads to an increase in the number of attached

chains in the “fast” band (seen as a reduction of ∆f in the (Txy,∆f) trajectory).

This slows down shear in the fast band, re-establishing a nearly homogeneous

flow. This then sets up a state in which the initial banding and recoil instability

can reoccur, so that the cycle potentially repeats indefinitely. The oscillation is

therefore a result of interaction between the diffusion and the dynamics of the

internal variables of the constitutive model.

Confirmation of this oscillatory mechanism is found by examining the effect

of increasing shear rate. The oscillation is first seen for γ̇av on the onset of the

unstable region (negative slope of the constitutive curve, Figure 6.4 right). The

frequency of the oscillations increases almost linearly with increasing shear rate

(circles Figure 6.7), because the time needed for a chain to reach its maximum

strain (followed by detachment and recoil) decreases as shear rate increases. In-

deed, by analysing the stress, Txy, as a function of strain γ = γ̇avt, we see that

the frequency of these oscillations is quasi-constant with increasing shear rate

(squares Figure 6.7). However, according to Equation (6.1), the width of the

high shear-rate band αhighL, also increases with increasing shear rate until, even-

tually, the band becomes sufficiently wide that diffusion can no longer re-establish

a homogeneous flow profile. Beyond this point, oscillations are no longer seen.

Hence, we might suggest that there is a competition between two phenomena:

(i) the homogenization of f across the gap via diffusion on a timescale τdif =
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Figure 6.7: Frequency of the oscillations as a function of the applied shear rate,
corresponding to D = 10−3 in Figure 6.6. Red circles: for the stress vs time
curve. Black squares: for the stress vs strain curve.

(αhighL)2/D, with αhigh = (γ̇av − γ̇low)/(γ̇high − γ̇low) the fraction of gap occupied

by the high shear rate band, cf. Equation (6.1); and (ii) the breaking of the

associated chains in the high shear rate band that occurs at a fixed strain γc, on

a timescale τb = γc/γ̇high. Thus, oscillations on the unstable branch of the flow

are expected if τdif < τb, i.e. if

γ̇av < γ̇low + (γ̇high − γ̇low)(Dγc/L
2γ̇high)1/2. (6.17)

According to Figure 6.5, γ̇high ≈ 130, γ̇low ≈ 0.02. Therefore, Equation (6.17)

gives γ̇av < 1.5 for D = 10−3, and γ̇av < 0.03 for D = 10−7 (which is before

the unstable region), in qualitative agreement with Figure 6.5. Note that the

critical strain, γc, depends on the value of the maximum stretch ratio, λmax, as

γc ≈
√

3λmax.
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Figure 6.8: Velocity profile (normalized by γ̇av) for D = 10−7 at times indicated
by stars in Figure 6.6.

6.4 Influence of the initial perturbation

In the previous Section 6.3, the initial perturbation on the fraction of attached

chains, f , was set using Equation (6.16), ensuring that f was slightly higher than

φas near the upper wall (y = 1) and slightly lower than φas near the lower wall

(y = 0) which guaranteed that, when banding occurs, the high shear rate band

is located near the upper wall.

A symmetric initial perturbation such as

f(y) = φas + A cos(2πy) (6.18)

ensures that, initially, the minimum of f is located at the centre of the gap. Using

Equation (6.18) as initial condition, we observe that

(i) When steady banding occurs, the high shear rate band remains in the centre

of the gap;

(ii) When oscillations occur (in a range of shear rates), the high shear rate band

appears in the centre of the gap;
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(iii) The range of shear rates at which (“permanent”) oscillations are produced is

slightly larger, e.g. for D = 10−3, we see permanent oscillations for γ̇av = 1,

see Figure 6.9 left, whereas at that shear rate the system stabilises into a

steady banded state when f is initialised using Equation (6.16).

These results support the idea that diffusion destabilises the bands, especially

observation (iii), since when the high shear rate band is in the centre of the

simulation “box”, diffusion from above and below the band rehomogenises the

flow. Hence the effect of diffusion is stronger when the band is in the centre of

the domain as compared to the edge, and we therefore expect oscillations when

τdif/2 < τb.

Focusing on γ̇av = 1, we can alternatively set the initial perturbation such

that f has its lowest value at y = 1/3,

f(y) =

φas + A cos(3πy), 0 ≤ y ≤ 2/3

φas + A, 2/3 < y ≤ 1

(6.19)

the high shear rate band is initially formed at around y = 1/3, then it is slowly

pushed to the bottom, cf. Figure 6.9 right. When the high shear rate band reaches

the bottom wall, oscillations cease for that particular shear rate (γ̇av = 1), which

is consistent with our initial results, Section 6.3.

6.5 Conclusions

We have investigated shear instabilities using the novel constitutive law designed

for describing the rheology of entangled telechelic star polymers of Chapter 5.

The model displays shear banding, often accompanied by a strong elastic recoil

in the transient response. This may appear as an “apparent” wall slip, i.e. a very
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Figure 6.9: Time evolution spatially resolved of f and γ̇ for an initial perturbation
set as Equation (6.18) (left), and Equation (6.19) (right).

narrow band of high shear rate close to the wall. In the same sense, the model

also displays an oscillatory “apparent” stick-slip behavior, driven by a cycle of

elastic recoil followed by diffusive re-homogenization of the flow.

Since our modelling is entirely at the continuum level, with an imposed no-

slip boundary condition, it is wholly impossible for these observed phenomena

to be anything but “apparent” wall slip or stick-slip. Within this continuum

approach, reducing the diffusion constant, or (correspondingly) increasing the gap

size, removes the oscillations. Nevertheless, we may speculate that an identical

mechanism drives stick-slip oscillations in the case of “true” wall slip, which

occurs as a result of the microscopic local environment close to a wall. It seems

very plausible that molecular diffusion from the material bulk into the local wall

region might temporarily arrest wall slip (i.e. re-homogenize the flow) before

wall slip occurs once more, driving a similar cyclic phenomenon to the one we

observe. In the case of true wall slip, the local environment sets a new physical

lengthscale, so that increasing the (macroscopic) gap size no longer removes the

oscillations. Finally, this Chapter has demonstrated the use of the constitutive

equation derived in Chapters 4 and 5 in a complex flow simulation.
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GENERAL CONCLUSIONS

Since brief but detailed summaries have been included at the end of each

Chapter, we provide here an overview of the key achievements and outcomes of

this thesis.

In Chapter 2, we presented a model aiming at predicting the linear rheology

of unentangled linear polymer chains with stickers along the backbone. We pro-

posed a new model (stochastic sticky-Rouse model) based on a similar assumption

to the sticky-Rouse model [Baxandall (1989); Chen et al. (2013); Leibler et al.

(1991)] that the sticker timescale and the characteristic relaxation time of Rouse

segments are well separated. Firstly, we explained how we generated a popu-

lation of chains such that (i) the number of stickers per chain follows a certain

probability distribution characterised by an average number, Ns, of stickers, (ii)

the stickers are placed randomly along the chain. We constructed a dynamical

model for these chains such that the sticker, when finding a new partner, under-

goes a finite sized hop in space. Subsequently, we proposed a way to compute

the stress relaxation function, and thus the elastic and loss moduli, of a system

composed by a polydisperse mixture of such chains, and finally we compared our

model with frequency-sweep experimental data, provided by G. Cui, on PEHA-

UPy polymer melts with various sticker concentration, i.e. samples with different

Ns. It is clear that our stochastic model improves the intermediate frequency

predictions as compared to the “standard” sticky-Rouse model while matching it

at low frequencies. However, a discrepancy still exists. One way to improve the

intermediate frequency predictions of the model would to define a distribution of

sticker timescales, which would broaden the loss moduli low-frequency shoulder.

In Chapter 3, we proposed a simplified tube model, based on the Rolie-Poly

model [Likhtman & Graham (2003)], for a polydisperse melt of entangled poly-

mers that aims at predicting nonlinear rheology, whilst being consistent with the
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“double reptation” theory [des Cloizeaux (1988)] in linear rheology. For the case

of bidisperse blends (blends of long and short chains), we compared the predic-

tions of the model with experimental data from Ref. [Read et al. (2012)]. The

model presented has only one fitting parameter that is adjusted using linear rhe-

ology data. Then, there are no extra fitting parameter to produce the prediction

of nonlinear rheology (shear and extension). The model quantitatively matches

the experimental data in elongation at all elongation rates. This means that we

are capturing the enhanced stretch relaxation time predicted by Auhl et al. [Auhl

et al. (2008)] correctly. However, in shear, the model fails at predicting the mod-

erate to high shear rates, which the more detailed model of Read et al. achieved.

The failure at high rates indicates that a simple 2-mode model is not enough, and

probably the long-chain coupling in the “full chain” model [Read et al. (2012)] is

needed.

We generalised the model to polydisperse melts and compared our model pre-

dictions to experimental data of Münstedt [Münstedt (1980)]. Given that the

nonlinear rheology is strongly influenced by the high-molar-weight components

(i.e. it depends on the molecular weight distribution of the melt rather than just

its weight-average molar mass, Mw), we investigated the nonlinear rheological

properties of two PS melts having different molar mass distribution. The model

slightly over predicted the experimental LVE. This indicates that more work needs

to be done on the linear rheology. Nevertheless, the elongation hardening that

was seen experimentally in Ref. [Münstedt (1980)] for the sample with high mo-

lar weight component could be qualitatively reproduced using our polydisperse

model. It is a step forward to the possibility of predicting the mechanical prop-

erties of polymer melts accurately and robustly, which would be a major advance

for industries manufacturing textiles, automobiles, aircraft, paints and coatings,

cosmetics and consumer products, oil-field fluids, and others.
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Part I of the thesis considered the rheological effects of “sticky groups” and

“entanglements” in isolation. In Part II, our goal was to combine the effects of

these and to produce a “toy” (i.e. “single mode”) constitutive model that captures

elements of the nonlinear rheology of entangled telechelic polymers (forming a

transient network), and to explore the interaction between timescales set by the

stickers, timescales set by the entangled polymer, and the flow rate.

In Chapter 4, we proposed a simplified stochastic tube model for telechelic star

polymers able to account for both the associating dynamics of telechelic groups

and the entanglement constraints. However simple, our resulting model exhibits

interesting constitutive behavior. We found that the nature of the response to

flow depends very much on the interaction between timescales set by the entan-

glements, and timescales set by the stickers. In principle, these timescales vary

with temperature (and other factors) in different ways. In order to illustrate these

effects, we presented “maps” of the parameter space, showing how the response

may be expected to change as parameters are varied. In the nonlinear regime, we

saw dramatic changes in the stress growth coefficient transients as we navigated

around the parameter map, i.e. our constitutive model exhibits a rich variety of

responses. We observed that particular parameter sets produce shear hardening,

extension hardening, sharp stress drops, smoother stress drops, monotonic and

non-monotonic flow curves. The parameter map that was produced can be of

use when thinking about polymer processing. We anticipate that, in practice,

it is possible to navigate around the regions of the map by tuning the external

environment of the sticker (temperature, pH, counter-ion) and so modifying its

association time and its stickiness.

Whilst the stochastic model gives interesting results, for flow computations it

is preferable to have a simplified model which exhibits broadly the same behavior.
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In Chapter 5, we therefore got rid of the stochastic nature of our model by

preaveraging our set of equations. The outcome is a scalar differential equation for

the time-dependent fraction of attached chains, f(t), and two tensorial equations

for the conformational average of the associated and dissociated chains, Q
A

(t)

and Q
D

(t), similar to Refs. [Tripathi et al. (2006); Vaccaro & Marrucci (2000)].

The resulting model, quantitatively very close to that of the stochastic model,

was computationally far less expensive and allows for flow simulations.

As an example of flow simulations, in Chapter 6, we investigated shear band-

ing using the preaveraged constitutive model for entangled telechelic polymers,

developed in Chapter 5. For particular parameter choices, we found that the

continuum model displays shear banding, often accompanied by a strong elastic

recoil in the transient response, which appeared as an “apparent” wall slip. For

certain parameters, the model also displayed a novel “apparent” stick-slip behav-

ior, giving rise to strong nonlinear oscillations in the stress response driven by

a repeating cycle of elastic recoil followed by diffusive re-homogenization of the

flow. We discussed the relation between the apparent stick-slip in our continuum

model with similar behavior in “true” wall slip. We elucidated a novel mechanism

leading to a “periodic apparent wall-slip” (stick slip) phenomena, driven by diffu-

sion. It would be interesting to investigate this phenomenon further, for example

by flow computations in more complex flow situations such as pipe flow, extru-

sion or exit from a die, where “wall slip” is thought to produce instabilities and

surface defects in polymer products. Our developed constitutive model may pro-

vide a useful continuum model for examining these types of polymer processing

problems.
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Kröger, M. (2005). “Shortest multiple disconnected path for the analysis of entangle-

ments in two- and three-dimensional polymeric systems,” Comput. Phys. Commun.

168, 209–232. 27
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