
 

Computational Modelling of Treg Networks in  

Experimental 

Autoimmune Encephalomyelitis 
 

 

 

 

 

 

 

 

 

 

 

 

 
Richard Brian Greaves 

 

 

Submitted for the degree of Master of Science by Research. 

 

 

 

 

 

 

University of York 

Department of Computer Science 

 

 

 

September 2011 



ii 

Abstract  
 

Recent experiments have demonstrated the value of rigorously validated simulation in 

furthering our understanding of immunology. We seek to expand on a body of 

existing work at York in which we simulate the mouse disease, Experimental 

Autoimmune Encephalomyelitis (EAE) which is a model for Multiple Sclerosis. We 

use a locally developed EAE simulation which was designed using the CoSMoS 

(Complex Systems Modelling and Simulation) process. The CoSMoS process was 

conceived with the aim of promoting the development of rigorous complex system 

models. 

 

In the model of EAE employed herein, there are two populations of regulatory T-cells 

(Treg), CD4 Treg and CD8 Treg. The CD4 Treg serve to stimulate dendritic cells to 

express a protein called Qa-1. Qa-1 permits CD8 Treg to bind to dendritic cells and 

be activated by them, thus facilitating regulation of autoimmunity. 

 

Previous experimentation demonstrated a large increase in the population of CD8 

Treg upon abrogation of the CD4 Treg from the simulation providing that dendritic 

cells were made capable of constitutively expressing Qa-1.We use simulation to 

explore two hypotheses proposed to account for this observation. The hypotheses 

explored are: 

 

i) the timing of Qa-1 expression is influential in determining the population 

of CD8 Treg. 

ii) removal of spatial competition between Treg sub-types favours expansion 

of the CD8 Treg population. 

 

We demonstrate that both hypotheses are significant in explaining the observed 

experimental result. 

 

We subsequently investigate addition of a further regulatory mechanism to the 

existing model. This additional mode of regulation is poorly understood, but has been 

suggested by an expert immunologist to be an important mechanism of disease 

regulation. We augmented our model to include this pathway so we could make it 

more closely resemble the real world murine immune system in EAE. The model 

implemented proved to cause an overly severe reduction in the activation of T-cells, 

demonstrating the potential influence of this pathway in disease regulation and that 

the behaviour of this pathway warrants further investigation. 
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1 

Chapter 1: Introduction 

 

We live in an age in which there has been an unprecedented explosion in the volume 

of biological data available to researchers (from large biological studies such as the 

Human Genome Project
1
, for example). However, this has not automatically 

translated into rapid progress in the fight against disease as it is difficult to extract 

knowledge and understanding from the masses of raw data [Germain et al. 2011, 

Kitano 2004, 2002b] – a situation that is complicated by the fact that the data 

available invariably concerns low-level functions such as gene expression, protein 

sequences, etc. when what we require is a system (organ / organism) level 

understanding of disease. 

 

Systems biology has developed from the need to organise and integrate available 

biological data into some form whereby true understanding can be derived from it 

[Germain et al. 2011, Kitano 2001]. There are two principal fields of endeavour 

which tackle this problem: bioinformatics concerns itself with extracting patterns or 

trends from data (‘data mining’) whereas simulation attempts to create a working 

computational model of the system (or some abstraction of it) based on 

representations of its cellular and molecular components. The interested reader can 

find more detail about systems biology in the work of Kitano [Kitano 2001, 2002a, 

2002b, 2004] and in the following review [Germain et al. 2011]. 

 

Simulation offers us the potential of being able to observe system-wide effects 

emerge from the interactions of the system’s components, effectively linking 

behaviour at the molecular level to that at the system level [Germain et al. 2011]. 

There are numerous methods available for implementing simulations and models. Of 

these, we are principally interested in agent-based modelling as this permits the 

explicit representation of individual heterogeneous cells as individual software agents 

[Walker and Southgate 2009] and provides a natural description of the immune 

system. 

 

With greater computational power becoming more readily available, agent-based 

modelling and simulation has grown in usage in the biological domain [Walker and 

Southgate 2009, An 2008, Forrest and Beauchemin 2007, Bauer et al. 2009]. Use of 

agent-based models has enhanced understanding of immunology and the mechanisms 

of disease [Bauer et al. 2009] via facilitation of hypothesis testing and the integration 

of data across multiple experiments [Forrest and Beauchemin 2007]. The focus of this 

thesis is on agent-based simulations of the murine immune system in the disease 

Experimental Autoimmune Encephalomyelitis (EAE). 

 

Despite the growing use of computer-based simulation in biology, the uptake of 

usage has been slow. This may be due, in part, to a perceived 'lack of trust' in the 

methodology [Polack et al. 2010], potentially arising due to the inherent limitations 

of model building. Firstly, the number of cells in the real system is far greater than 

even the largest simulation is able to realistically incorporate – potentially leading to 

                                                           
1
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scale-related effects [Kleinstein and Seiden 2000]. Secondly, the model is, at best, an 

abstraction of the real system – that is certain details are disregarded for the sake of 

making the computational model tractable and understandable. This entails 

approximations and assumptions being made [Andrews et al. 2010]. These 

considerations give rise to the need for simulations to be rigorously validated 

[Andrews et al. 2008]. The CoSMoS process [Andrews et al. 2010] outlines a 

rigorous approach to developing models and simulations of complex systems such as 

the immune system. By providing a principled approach to model building, CoSMoS 

permits the documentation and communication of models (and the assumptions made 

during their design and implementation) and hence, the promotion of trust in 

simulation as a research tool. 

 

The EAE Simulator has been rigorously designed following the CoSMoS approach 

and has been implemented and calibrated in a principled manner in conjunction with 

an immunological domain expert [Read et al. 2009a, 2009b, 2011, Read 2011]. The 

work presented here employs augmentations of the existing simulation, the design of 

which also adhere to the CoSMoS process, to test hypotheses and to model a poorly 

understood regulatory mechanism. 

 

Throughout the body of the thesis, there is a need to compare experimental results 

and to be able to assess the significance of any changes brought about by specific 

changes in parameterization. We employ non-parametric statistical tests to compare 

the simulation results from pairs of directly comparable experiments i.e. those that 

differ only in the value of a particular parameter of interest. 

 

1.1 Thesis Goal 

 

EAE is a mouse model of Multiple Sclerosis. This neuro-degenerative condition is 

caused when immune system cells recognise and attack components of the myelin 

sheath which protects nerve fibres. The cells which recognise the myelin components 

are a sub-population of the cells called T-helper cells. The disease is regulated by a 

further sub-population of T-cells called regulatory T-cells (Treg). These express the 

protein CD8 on their surface (CD8 Treg). Treg which express the molecule CD4 

(CD4 Treg) also exist and these serve to stimulate cells (dendritic cells) which 

activate CD8 Treg to carry out their regulatory function. 

 

The driving aim of the thesis is to increase understanding of the disease regulation 

mechanisms in EAE via in silico experimentation. This translates into a two-fold 

goal: at the immunological level, we wish to identify relevant questions that we may 

direct to the domain expert to address. At the computational level, we seek to gain 

further insight into the operation of the simulation under hypothetical situations 

within the EAE system. These are experiments we wish to understand more fully and 

that, at least at present, are not easily implemented in vivo or in vitro.  

 

A full exploration of the simulation is beyond the scope of this thesis and since the 

relevant detail exists elsewhere, interested readers are referred to the Doctoral Thesis 

of Dr Mark Read [Read 2011]. 
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The thesis is structured as follows: 

 

Chapter 2: Presents a literature review of the relevant domain knowledge i.e. 

immunology, autoimmune disease as exemplified by Multiple Sclerosis and a model 

for it, EAE. Relevant computational aspects of the work are also reviewed, for 

example, systems biology, documenting software models and previous simulations of 

the immune system. We conclude with a description of the CoSMoS process 

[Andrews et al. 2010] and a synopsis of the existing work carried out using the EAE 

Simulator [Read et al. 2009a, 2009b, 2011; Read 2011, Williams 2010b, Williams et 

al. 2011]. 

 

Chapter 3: Presents the experimentation conducted to explain observations from 

previous simulation within which the CD4 Treg population was abrogated. These 

cells are required to stimulate the dendritic cells which in turn activate CD8 Treg. We 

conduct a series of experiments to assess the relative impact of two hypotheses on the 

peak population of CD8 Treg in this simulation: 

 

i) that the timing of Qa-1 expression by dendritic cells is influential in 

determining the population size for CD8 Treg 

ii) removal of spatial competition with CD4 Treg favours population 

expansion by CD8 Treg. 

 

Chapter 4: Presents an initial investigation of a poorly understood disease regulatory 

pathway (the CD200-CD200R axis). Our aim is to incorporate the axis into our model 

in order to make it a closer approximation to the real-world system and to gain 

understanding of how this axis might function in vivo. The inclusion of the additional 

regulatory pathway entails an investigation of how it interacts with the mechanism of 

regulation already implemented in the simulation (i.e. CD8 Treg mediated regulation) 

and ultimately allows us to rebalance the influence of the two pathways to produce a 

more realistic model of the EAE system. 

 

Chapter 5: Presents a brief summary of the major conclusions that we have drawn 

from our experimental evidence and of the contribution made by this work. The 

chapter subsequently presents work still outstanding from the proposed 

experimentation and also proposals for future experimentation that build on and 

further validate the work presented.
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Chapter 2: General Overview of the Computational and Immunological Context 

of the Project 

 

2.1 Introduction 

 

In the previous chapter we stated that the research presented within this thesis 

represents a body of work in the field of Computational Immunology [Forrest and 

Beauchemin 2007]. The purpose of this chapter is to provide a foundation in the 

concepts required to understand the work presented in the later chapters. i.e. the 

domain knowledge relevant to the simulations carried out, the reasons for doing the 

research the way that we have and to facilitate sufficient understanding to appreciate 

what the results of the simulation are telling us. 

 

We adopt the CoSMoS process [Andrews et al. 2010] to implement our 

experimentation. This chapter also follows a CoSMoS-like approach to reviewing the 

relevant literature. We therefore begin with a description of our domain, which 

necessitates a brief grounding in immunology (Section 2.2) and an appreciation of the 

impact of autoimmunity as exemplified by Multiple Sclerosis described in Section 

2.3. We then progress to discussion of the specific domain of interest – a model of 

EAE in mice (described in Section 2.4) [Smith and Kumar 2008a, 2008b, Tang et al. 

2005] and utilised in the laboratory of our domain expert, Professor Vipin Kumar at 

the Torrey Pines Institute of Molecular Studies, San Diego. 

 

Having outlined the state of domain understanding upon which we have based our 

models, we then proceed to discuss the field of Systems Biology (Section 2.5), 

grounding our work within this context. We outline the potential motivations for 

conducting simulation-based research in Section 2.6 and take a brief overview of 

some of the research already carried out in this discipline (Section 2.7). Section 2.8 

forms an interlude, and provides brief details of notations that are commonly 

employed for documenting software models employed in agent-based simulations. 

Section 2.9 then describes the CoSMoS process which was employed in the design 

and implementation of the EAE simulator which is described in Section 2.10. 

 

The thesis builds on extensive local work [Read et al. 2009a, 2009b, 2011, Read 

2011, Williams 2010b, Williams et al. 2011] developing and utilising the EAE 

Simulator. In Chapter 3 we employ the simulator in testing hypotheses proposed by 

the domain expert to explain the results of previous in silico experimentation and in 

Chapter 4 we seek to add further complexity into our EAE model so as to make it a 

more realistic representation of the real-world system. The further complexity 

consists of an additional regulatory pathway which the domain expert believes to be 

important, but which is poorly understood at present. We seek to employ our in silico 

experimentation to gain further insight into our EAE model and the in vivo disease. 
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2.2 The Immune System  

 

Our domain of interest is the murine immune system in the EAE disease state. It is 

therefore necessary for us to have some basic knowledge of what the immune system 

is, what it does and how it carries out its function. This understanding aids us to 

construct a reasonable domain model from which we may implement simulations. 

 

The immune system comprises two interacting sets of mechanisms (innate and 

adaptive immunity) that protect the body from pathogens: bacteria, fungi, viruses and 

protozoan parasites [Garrett and Grisham 2004, Janeway et al. 2008]. 

 

The protection offered by the innate immune system is rapid and responds to general 

features of pathogens [Janeway et al. 2008]. This is an evolutionarily ancient system 

[Berg et al. 2007] and is invariant across all individuals of a given species. It 

comprises a set of molecular and cellular responses that are deployed in the early 

stages of infection. An innate immune response mediated by macrophages is 

triggered by a breach of the body's physical defences (e.g. the skin) [Janeway et al. 

2008].  

 

Macrophages are phagocytic or ‘scavenger’ cells and are responsible for recognizing 

and removing dead cells and cellular debris from the body [Playfair and Lydyard 

1995]. As part of this function they engulf and digest invading pathogens [Janeway et 

al. 2008]. Macrophages induce inflammation [Janeway et al. 2008], which they 

achieve by secreting certain signalling molecules called cytokines [Playfair and 

Lydyard 1995]. Inflammation activates other immune system cells and recruits them 

to the immune response [Janeway et al. 2008]. Sometimes when inoculating against a 

disease, an injection of vaccine is accompanied by a substance ('adjuvant') e.g. a 

toxin, which provokes a more aggressive immune response from the phagocytic cells. 

 

A second class of cells that possess phagocytic capability are the dendritic cells. 

Dendritic cells (DC) form in the bone marrow and then migrate to the periphery 

where they monitor for pathogens [Janeway et al. 2008]. As infection is set up within 

the body, DCs recognise pathogens via a set of molecules that commonly appear in 

their cell walls: Pathogen Associated Molecular Patterns (PAMPs). PAMP binding 

stimulates the DC to phagocytose ('phagocytosis' literally 'cell eating process') the 

invading cell and present antigens (proteins or fragments of digested proteins that can 

trigger an immune response) on the cell surface [Janeway et al. 2008]. DCs or 

macrophages presenting antigens in this manner are called Antigen Presenting Cells 

(APCs) [Kindt et al. 2007, Janeway et al. 2008]. 

 

The DC then migrates from the site of infection to the lymph nodes (which are 

represented as Secondary Lymphoid Organs (SLO) in the simulation) where it 

matures and presents the antigens to 'naïve' or 'unprimed' T-cells (T-cells which have 

not yet encountered the antigen for which they are specific – the 'cognate antigen'). 

DCs are capable of activating naïve T-cells via presentation of antigens, delivery of 

an additional excitation signal ('costimulation') and secretion of cytokines [Janeway 

et al. 2008, Kindt et al. 2007]. 
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The presentation of antigens to naïve T-cells triggers the adaptive immune response 

[Janeway et al. 2008]. The inflammation initiated by macrophages ensures a more 

potent immune response by recruiting other immune cell types to the site of infection 

[Janeway et al. 2008]. A full description of innate immunity lies outside the scope of 

this thesis as the innate response is not explicitly included in our model of EAE.  

 

In contrast to innate immunity, adaptive immunity is highly antigen specific and each 

individual possesses a unique adaptive immune system dependent on heredity and the 

history of infections that the individual has been exposed to. This mechanism relies 

on the ability of the lymphocytes to generate a diversity of antigen receptors that 

allows them to recognise new potential threats [Berg et al. 2007]. The adaptive 

immune response is more efficient than the innate immune response, but cannot act as 

swiftly; it requires several days to build up a population of effector cells large enough 

to mount an effective attack on the invading pathogen [Janeway et al. 2008]. 

 

Broadly speaking the adaptive immune system also consists of two inter-connected 

systems: humoral and cellular (‘cell mediated’) immunity, both being effected by 

lymphocytes. Lymphocytes are a subpopulation of white blood cells [Playfair and 

Lydyard 1995, Kindt et al. 2007], which arise in the bone marrow and which can 

leave the circulatory system and take up positions in the intercellular spaces. They 

mediate the recognition of pathogens via specific cell surface proteins [Voet and Voet 

2004]. There are two types of lymphocyte: B-cells and T-cells [Janeway et al. 2008]. 

 

Humoral immunity is mediated by B-cells which originate and mature in the bone 

marrow. They express B-cell Receptors (BCR) [Kindt et al. 2007] which each 

recognise and bind a specific antigen [Garrett and Grisham 2004]. When a B-cell 

recognises its cognate antigen via the BCR, the cell is activated and can then 

differentiate into effector cells ('plasma cells') or memory cells. The plasma cell can 

secrete a soluble form of the antigen receptor called an antibody [Kindt et al. 2007, 

Playfair and Lydyard 1995] and this molecule then binds to the antigen and marks it 

for destruction by the body's phagocytic cells. The diversity of antibodies observed is 

generated by gene re-arrangements of the BCR protein genes [Garrett and Grisham 

2004]. Many features of B-cell biology are analogous to those of the T-cells so this 

description has been provided for the sake of completeness only. B-cells are not 

included in the domain model of EAE at all.  

 

Both cellular and humoral immunity are triggered by the presence of lymphocyte 

cognate antigens presented by APCs [Kindt et al. 2007]. Cellular immunity is 

mediated by T-cells which recognise antigens via a diversity of T-cell Receptors 

(TCRs) [Voet and Voet 2004]. T-cells originate in the bone marrow but mature in the 

thymus [Voet and Voet 2004]. They have distinctive membrane-bound antigen 

receptors (TCRs) [Kindt et al. 2007, Janeway et al. 2008] which recognise a 

processed fragment of the antigen that is presented as a complex with a Major 

Histocompatibility Complex (MHC) molecule (see Appendix A.1) on the surface of 

an APC [Kindt et al. 2007, Janeway et al. 2008]. The diversity (‘repertoire’) of TCRs 

is also generated by gene rearrangements ensuring that a great diversity of antigens 

can be recognised by T-cells [Garrett and Grisham 2004].  
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The T-cell population is divided into subpopulations which express either CD4 or 

CD8 co-receptors. Those expressing CD8 only recognise antigen presented on MHC 

class I compounds, whereas those expressing CD4 recognise antigen presented on 

MHC class II compounds [Kindt et al. 2007, Janeway et al. 2008]. 

 

If a naïve T-cell does not recognise its antigen within a certain time period it dies of 

neglect. However, should it encounter its cognate antigen presented by APCs in the 

SLO it is induced to enter the rest of its cell cycle i.e. it undergoes a proliferative 

burst and then matures into one of the effector cell types described below. Only T-

cells that are responsive to the invading pathogen are produced in great quantity 

('clonal selection') [Alberts et al. 2008, Voet and Voet 2004].  

 

Typically there are 10
9
 lymphocytes in circulation and so the diversity of their 

receptors ('repertoire') is immense [Janeway et al. 2008]. Given the diversity of 

antigen-specificities available among TCRs, it is likely that at least some of these are 

reactive towards self-antigens. However, the number of these potentially damaging 

cells is kept to a minimum by a process of 'selection' during development in the 

thymus [Kindt et al. 2007, Janeway et al. 2008].  

 

Once a naïve T-cell has recognised its antigen and become activated, it needs to 

receive a costimulating signal from a DC to allow it to start proliferating [Janeway et 

al. 2008]. Thus, APCs bound to T-cells regulate T-cell differentiation and 

proliferation [Voet and Voet 2004]. The T-cells then proliferate and differentiate into 

effector and memory cells [Kindt et al. 2007, Janeway et al. 2008]. The process is 

further stimulated by appropriate cytokine signals from the environment [Janeway et 

al. 2008]. 

 

The effector cells of the T-cell lineage are diverse. The CD4 bearing effectors are the 

T-helper (Th) cells, the CD8 effectors are Cytotoxic T-Lymphocytes (CTLs). The Th 

cells outnumber the CTL cells by a ratio of approximately 2:1 [Janeway et al. 2008]. 

 

There are two main subtypes of Th cell, Th1 and Th2. The subtype ('polarization') 

that a T-helper cell adopts is dependent upon the mix of cytokines in the 

environment. There are other subtypes of T-helper cell, but these are less well studied 

and therefore lie outside the scope of this description. The Th1 and Th2 subtypes of 

CD4 T-helper cell secrete different cytokines. Th1 polarised cells secrete cytokines 

which perform cell-mediated inflammatory roles, whereas Th2 cells secrete cytokines 

which have roles in B-cell activation [Kindt et al. 2007]. 

 

T-helper cells 'help' in a number of distinct ways; they stimulate the differentiation 

and proliferation of B-cells and 'killer' T-cells [Berg et al. 2007, Janeway et al. 2008], 

they provide additional stimuli to activate macrophages [Janeway et al. 2008, Kindt 

et al. 2007] and they amplify the immune response via cytokine production [Voet and 

Voet 2004]. A further role of T-helper cells is in providing assistance to ('licensing') 

APCs to prime CD8 T-cells. Usually this licensing takes the form of stimulating the 

APC to express certain stimulatory cell surface proteins [Janeway et al. 2008].  
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During adaptive immune response, CTLs serve to apoptose (kill) infected cells and 

CD4 T-helper cells stimulate B-cells in the Secondary Lymphoid Organs to produce 

antibodies against the infectious agent.  

 

CD8 T-cells (Tc) mature into CTLs whose role is to eliminate virus and tumour-

infected cells. [Kindt et al. 2007, Janeway et al. 2008]. CD8 T-cells bind to antigen-

MHC Class I complexes presented on APCs [Voet and Voet 2004, Kindt et al. 2007, 

Janeway et al. 2008] and in so doing, stimulate the APC's antibacterial mechanisms 

[Janeway et al. 2008]. CD8 T-cells require more activation than CD4 T-cells and 

must be activated by a mature DC as well as receiving help from CD4 effectors 

bound to the same APC. This strict requirement for activation acts as a form of 

safeguard against autoimmunity as the antigen has, in effect, to be recognised twice 

(once by CD4 T-cells and once by CD8 T-cells) before it can provoke the highly 

CTLs to act [Kindt et al. 2007]. Activated CD8 T-cells effectors kill infected cells by 

inducing programmed cell death (‘apoptosis’) [Berg et al. 2007, Alberts et al. 2008, 

Voet and Voet 2004]. The only CD8 Tc included in our model is the CD8 Treg. 

 

The effector cells described migrate from their site of maturation into the periphery, 

where they encounter their cognate antigen and are activated without the requirement 

for costimulatory signals [Janeway et al. 2008]. These cells then return to the 

circulation via the lymphatic system which comprises the body’s main sites of 

immune response (the lymph nodes and the spleen) [Voet and Voet 2004].  

 

Upon resolution of the infection, the effector B- and T-cells die due to ‘death-by-

neglect’, that is they no longer receive the stimulus of meeting and binding their 

cognate antigens. At this stage in recovery, some B- and T-cells develop into 

‘memory’ cells which allow rapid response to any re-occurrence of the same 

infection. The immune response is finally terminated by the clearing up of cellular 

debris by phagocytic cells [Janeway et al. 2008]. 

 

2.2.1 Tolerance 

 

One of the chief characteristics of the immune system is its ability to distinguish 

antigens derived from the body (‘self’) from pathogen-derived antigens ('non-self') 

[Voet and Voet 2004]. If the immune cells did not possess this facility then they 

would be able to freely mount an immune response to any antigen at all that was 

presented to them, which in theory would mean that the body would destroy its own 

tissues [Kindt et al. 2007]. To protect against this possibility, the immune system has 

two mechanisms that serve to limit the numbers of self-reactive immune cells (in 

particular T-cells) in circulation in the periphery – central tolerance and peripheral 

tolerance. Central Tolerance reduces potentially self-reactive T-cell population 

numbers and takes place during lymphocyte development in the thymus [Playfair and 

Lydyard 1995, Kindt et al. 2007].  

 

However, due to the vast diversity of T-cell receptors generated, there is a danger that 

potentially auto-reactive T-cells mature and leave the thymus. Therefore other 

safeguards against un-regulated T-cell activation exist in the periphery and these 
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constitute ‘peripheral tolerance’. Peripheral tolerance can be exerted through several 

mechanisms including the induction of a state of unresponsiveness (also called 

‘anergy' [Schwartz 2003]) in self-reactive T-cells outside of the primary lymphoid 

tissues [Playfair and Lydyard 1995]. This results in the clonal deletion of those T-

cells that have recognised their cognate antigen, but have entered the anergic state 

due to not receiving an additional excitation signal from an APC (‘costimulation’). 

 

Additionally, once a T-cell has been activated, it is only permitted to survive for a 

certain amount of time before it advances along the cell cycle and enters an apoptotic 

state. This is known as Activation Induced Cell Death (AICD) [Smith and Kumar 

2008a]. 

 

Redmond and Sherman 2005 proposed two further mechanisms which are considered 

important in the tolerization of CD8 T-cells in the periphery. Firstly, the absence of 

inflammatory pathogens means that antigens are presented by a DC expressing low 

levels of costimulatory molecules. Secondly, antigen persistence appears to drive 

tolerance through clonal deletion, anergy or suppression. This second observation 

makes intuitive sense as presumably self-derived antigens might be expected to 

persist, whereas antigens from an infection would not. 

 

Unlike the CD4 T-helper cells and CD8 T-Lymphocytes (CTLs) which serve to 

amplify the immune response, regulatory T-cells (Treg) serve to suppress immune 

response [Kindt et al. 2007]. This suppression is a further mechanism of tolerance 

and acts as a protection against autoimmunity [Kindt et al. 2007]. 

 

There are different types of Treg [Shevach 2006] and different populations appear to 

have different roles. For example, CD4 Treg are not reported as directly killing other 

T-cells, though CD4CD25Foxp3
2
 T-cells are known to suppress population 

expansion of other T cells [Kindt et al. 2007, Kohm et al. 2002]. Treg limit the 

activity of quickly proliferating T-cell populations, often via direct killing 

mechanisms [Kindt et al. 2007, Janeway et al. 2008]. There remains much work to be 

done in characterizing these cell populations [Smith and Kumar 2008b]. Treg mediate 

their killing ability either in a contact dependent fashion employing direct cell-to-cell 

killing methods or via the release of cytokines [Janeway et al. 2008].  

 

CD8 Treg have been demonstrated to play a pivotal role in the regulation of EAE 

[Kumar and Sercarz 2001, Smith and Kumar 2008a]. 

 

2.2.2 When things go wrong 

 

As has been stated in the previous section (2.2.1), the effective regulation of T-cell 

activation is essential. Sometimes, for reasons not yet fully understood, the tolerance 

mechanism breaks down and there is a failure to distinguish 'self' from 'non-self'. 

When this arises, self-reactive T-cells are able to persist in the peripheral immune 

                                                           
2
 Foxp3 is a protein called a transcription factor that is associated with cells that possess the ability to 

directly apoptose other cells. 
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system and are then able to differentiate and proliferate if they encounter their 

cognate antigen [Kindt et al. 2007]. These kinds of inappropriate immune responses 

are termed 'autoimmunity'. A number of autoimmune disorders have been identified 

in humans. These are categorised depending on the self-antigen that gives rise to the 

improper immune response. 

 

Certain autoimmune conditions are organ or tissue specific, for example insulin-

dependent diabetes mellitus (IDDM). Other conditions are more generalised 

throughout the body ('systemic') such as Multiple Sclerosis [Kindt et al. 2007, 

Janeway et al. 2008]. In Section 2.3 we briefly focus on the example of Multiple 

Sclerosis to provide a motivation for the study of EAE described in Section 2.4. 

 

2.3 Multiple Sclerosis 

 

Multiple Sclerosis (MS) is a common neurological disease [Lodish and Darnell 

1995]. Charcot first noted the condition in 1869 (English translation [Charcot 1877]) 

and postulated that it was a novel disease with a well defined progression of 

symptoms. 

 

MS is a disease of young adult life [Steiner and Wirguin 2000], characterised by 

destruction of the myelin sheath that insulates nerve fibres in the Central Nervous 

System (CNS) [McDonald 1974]. As a result, the ability of nerve fibres to conduct 

impulses is impaired [Lodish and Darnell 1995, Robertson 1981, McDonald 1974].  

 

Clinical symptoms include weakness, incoordination and disturbances of speech and 

vision. The course of the disease is usually prolonged, the term ‘multiple’ referring to 

the relapses and remissions that occur over many years [Dorland's 2010]. 

 

There are four recognised forms of the disease which are characterised by different 

patterns of relapse and remission [Dorland's 2010]. The stages are clinically defined 

on the basis of myelin protein loss and on the geography and extension of 

demyelinated plaques [Hafler 2004]. Typically, the disease progresses from a 

relapsing-remitting pattern to a chronic progressive pattern [Chataway 1989]. 

 

The cause of the disease is unknown, though the predominant view is that MS is ‘a 

complex genetic disease associated with inflammation in the CNS and thought to be 

mediated by auto-reactive T-cells.’ [Hafler 2004].  

 

There are numerous factors that have confused and complicated the study of MS 

[Steiner and Wirguin 2000]. This lack of clarity has led to a search for ways to 

simplify our understanding of MS by finding animal models of the disease. One such 

model is discussed in Section 2.4. 
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2.4 Experimental Autoimmune Encephalomyelitis (EAE) 

 

Whilst researching post-vaccination CNS dysfunction, Rivers et al. 1933 found that 

by injecting rabbit brain homogenate into the brains of experimental monkeys, they 

could induce a form of neurological disorder that they named Experimental 

Autoimmune Encephalomyelitis
3
.  

 

The disease is characterised by substantial loss of myelin in the CNS and Lublin 

argued that relapsing EAE could be a valuable model for human demyelinating 

diseases such as MS [Lublin 1985]. Full discussion of the forms of EAE lies outside 

the scope of this thesis however, for the interested reader the various forms of EAE 

are enumerated and described in detail in the review of the disease by Pender [Pender 

1995]. 

 

The model of EAE which we use as the basis of our domain model is a mouse EAE 

model based on the current understanding of the disease of our domain expert, 

Professor Kumar [Kumar and Sercarz 2001, Tang et al. 2005, Smith and Kumar 

2008a,b].  

 

2.4.1 Progression of the Disease 

 

The disease cannot develop spontaneously and is induced in experimental animals via 

inoculation of the subject with myelin-related protein fragments such as myelin basic 

protein (MBP) and complete Freund’s adjuvant (CFA) augmented with Pertussis 

toxin
4
 [reviewed in Pender 1995]. EAE can also be induced in a host by passive 

induction (transfer of lymph node material from an infected animal to a new host) 

[van den Bark et al. 1985]. 

 

After inoculation, an immune response is provoked from the host organism. DCs 

phagocytose the injected MBP. This is then presented on the surface of the DCs 

which migrate away from the periphery. 

 

EAE is mediated by CD4 T-cells specific for MBP [van den Bark et al. 1985, Pender 

1995]. The CD4 T-cells recognise the MBP-MHC complexes presented by the DCs 

in the SLO and are activated and begin to proliferate [Pender 1995]. The MBP-

reactive CD4 T-helper cells are then able to migrate into the CNS and localise there 

[Ludowyk et al. 1992]. The CD4 Th express molecules [Baron et al. 1993] that then 

allow them to pass through the Blood Brain Barrier (BBB) which has been made 

more permeable by the Pertussis toxin in circulation [Mostarica-Stojkovic et al. 

1992]. Once the auto-aggressive T-cells have passed the BBB, inflammation ensues. 

This causes the observable signs of EAE in the spinal cord. The increased 

permeability of the BBB during EAE also leads to oedema formation which is 

correlated with the clinical signs of EAE [Claudio et al. 1990]. 

 

                                                           
3
 Sometimes also referred to as Experimental Allergic Encephalomyelitis. 

4
 The neuro-toxin from Bordetella pertussis which causes whooping cough. 
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Other immune system cells are able to enter the CNS. In fact 50% of the CNS 

invading cells in the EAE cycle are macrophages [Huitinga et al. 1990] with most of 

the remainder being CD4 T-cells [McCombe et al. 1994]. Elimination of macrophage 

populations in the CNS during EAE, eliminates clinical signs of the disease 

suggesting that macrophages play a role in demyelination [Huitinga et al. 1990].  

 

Microglia are the resident macrophages of the CNS. Activated microglia are 

detrimental to the CNS because they are capable of secreting potent neurotoxins such 

as Tumour Necrosis Factor- (TNF- [Carson 2002, Pender 1995]. 

 

The CD4 Th1 cells that have invaded the CNS are capable of activating both the 

microglia [Carson 2002] and the macrophages that have also invaded the CNS 

[Huitinga et al. 1990, Pender 1995]. These macrophages then secrete TNF- which 

damages neurons [Huitinga et al. 1990, Pender 1995, Carson 2002]. 

 

Following the onset of EAE there is a significant increase in the population of 

Interferon- (IFN- secreting cells in the CNS and SLO [Mustafa et al. 1991]. IFN- 

is a potent activator of macrophages and so induces the production of TNF-. IFN- 

also up-regulates the expression of MHC-II and adhesion molecules which permit 

cells to cross the BBB [Pender 1995].  

 

TNF- secretion by macrophages in the CNS causes extensive nerve damage. The 

apoptosed neurons are phagocytosed by macrophages which then present the MBP 

from the dead cells. This is recognised by MBP-reactive CD4 Th entering the CNS 

and the cycle of disease is perpetuated [Pender 1995]. 

 

Ultimately the CD4 T-helper cells in the CNS become apoptotic and leave the CNS 

[Pender 1995]. Having left the CNS, the MBP-reactive cells can be digested and 

processed by DC which then present peptides from the digested auto-reactive TCRs 

(principally the Complementarity Determining Region (CDR1/2) and the Framework 

region 3 (Fr3) segments from the TCR molecule) [Pender 1995, Kumar and Sercarz 

2001, Tang et al. 2005]. 

 

2.4.2 Spontaneous Recovery  

 

Once DCs have phagocytosed the apoptotic auto-reactive CD4 T-Helper cells, they 

can process and present fragments of proteins present in the T-cells including proteins 

from the TCR. In particular, DC present the Fr3 and CDR1/2 portions of the auto-

reactive CD4 Th TCR [Pender 1995, Kumar and Sercarz 2001, Tang et al. 2005]. The 

MHC-II-Fr3 complex presented on the DC surface can be recognised and bound by 

CD4 Treg [Kumar et al. 1996] which then stimulate (or ‘license’) the DC for 

production of the MHC Class Ib compound Qa-1 [Cantor et al. 1978]. The licensed 

DC can then bind CD8 Treg which recognise the presented Qa-1 – CDR1/2 complex 

[Tang et al. 2005]. CD8 Treg are then activated, with further help from IFN- 

secretion by CD4 Treg, and proliferate [Kumar and Sercarz 2001, Pender 1995]. 
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Effector CD8 Treg recognise Qa-1 – antigen complex [Kumar and Sercarz 2001] 

presented on the surface of CD4 Th and kill them [Beeston et al. 2010, Pender 1995]. 

Consequently, the CD4 Th population falls during the recovery phase and within ~30 

days the population has returned to resting levels [McCombe et al. 1994] and within 

~50 days the disease-recovery cycle is completed and the animal is fully recovered 

[Pender 1995]. 

 

The number of CNS T-cells declines substantially during remission with the 

apoptosis of T-cells reaching a peak during the recovery phase [Pender 1995]. After 

full recovery from acute EAE the number of T-cells falls back to near baseline levels 

[McCombe et al. 1994]. 

 

In cell-mediated recovery, CD8 Tregs participate in the apoptosis of CD4 Th [Kumar 

and Sercarz 2001], leading to a feedback inhibition regulatory mechanism [Tang et 

al. 2005]. 

 

Having described what it is that we wish to simulate, we now turn our attention to 

techniques that we may use to create a simulation, how we might choose to document 

the model so created. 

 

2.5 Systems Biology 

 

Systems Biology is the integration of experimental and computational research to 

explore scientific questions in biology [Kitano 2002a]. The domain has developed in 

response to the pressing need to integrate the vast amounts of molecular biology data 

and derive understanding from it [Kitano 2002a, Germain et al. 2011]. This process 

has been facilitated by the ready availability of increasingly powerful computational 

resources [Kitano 2002a]. 

 

Systems biology consists of two fields of investigation: bioinformatics and simulation 

based analysis. Simulation is used to predict the dynamics of a system or to test 

assumptions made about the system [Kitano 2002a]. The reader interested in how 

these fields inter-relate is referred to the recent review by Germain [Germain et al. 

2011]. 

 

Systems biology aims to help us to understand biology at system (e.g. whole 

organism) level via modelling of the structure and dynamics of the system at a 

cellular or molecular level [Kitano 2002b]. However, the quality of that 

understanding is strongly determined by the reliability of the data on which the 

models are built [Kitano 2002b]. 

 

Kitano 2002a proposes that model quality is enhanced via model exchange and 

communication. This facilitates community validation of models used in published 

studies [Kitano 2002a] and promotes trust in the results obtained from them [Polack 

et al. 2010]. Model documentation is revisited in greater depth in Section 2.8 where 

we discuss the Unified Modelling Language.
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 A full review of systems biology lies outside the scope of this thesis. The definitions, 

spirit and practice of systems biology are reviewed in [Kitano 2001]. 

 

2.5.1 Biological Complex Systems 

 

A general view of a complex system is a system of very many simple, homogeneous 

entities, each of which exhibits simple behaviour and is capable of interacting with its 

neighbours. Such a system of simple entities then leads to complex system-wide 

('emergent') behaviour [Kitano 2002a].  

 

However, biological systems are more difficult to understand because system level 

events result from complex interactions between large numbers of heterogeneous 

components [Kitano 2002a]. Such systems are inherently dynamic and multi-scale 

[Cohen 2007], with behaviour evolving in response to discrete event cues or in 

specific spatial locations [Bauer et al. 2007]. Behaviour at different spatial and 

temporal scales arises from local mechanisms [Forrest and Beauchemin 2007] and 

models typically have several ‘compartments’ to represent different tissue types or 

bodily locations to reflect this [Germain et al. 2011]. 

 

Adaptive immunity provides a good illustration of these concepts. Adaptive 

immunity is a complex process involving spatial and temporal organization of system 

elements [Segovia-Juarez et al. 2004] with many of its processes being highly 

dependent on specific cellular interactions and their spatial locations [Thorne et al. 

2007]. The emergent properties of the immune system arise from the heterogeneity of 

the dispersed cellular interactions in the system and from stochastic events occurring 

within it [Germain 2001]. In this way, both the timing and the location of an event 

determine the result of that event.  

 

A further example is provided by the specificity of responses to cell signalling, which 

are determined by the spatial and temporal dynamics of signalling networks 

[Kholodenko 2006]. Temporal dynamics were found to be coupled to spatial 

gradients of signalling activities, whereas localization of signalling proteins lead to 

the discrete sub-cellular location of excitation events. 

 

2.6 Motivating Immunological Simulation 

 

Immune system modelling and simulation is becoming more widely used as is 

evidenced by a number of relevant reviews [Walker and Southgate 2009, Forrest and 

Beauchemin 2007, Bauer et al. 2009]. 

 

A model is ‘an abstraction that is made to aid understanding or description of 

something’ [Andrews et al. 2010]. A model often makes assumptions of varying 

justifiability and these must be explicitly documented to facilitate validation of the 

model [Andrews et al. 2010], often with the assistance of a domain expert [Read et 

al. 2009a]. 
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A simulation is an ‘executable model’ [Polack et al. 2010]. Simulation is the 

‘technique of imitating the behaviour of some situation or process… by means of a 

suitably analogous situation or apparatus esp. for the purpose of study or personal 

training [sic]’ [Andrews et al. 2010]. 

 

One reason for constructing a model is to increase understanding of a system by 

creating an 'acceptable simplification' of that system [Andrews et al. 2010]. 

Integration of data into a coherent whole for use in modelling [Read et al. 2011] often 

helps us organise the available data in a way that allows previously unasked questions 

to be raised by it [Kam et al. 2001]. Thus, modelling becomes a means to providing 

explanations and making predictions [Kam et al. 2001]. 

 

Similarly, An 2008 saw modelling as ‘a formal means of testing, evaluating and 

comparing knowledge’ that is to say, a form of ‘conceptual model verification’. This 

view of modelling as a mode of hypothesis testing is also shared by other authors 

[Read et al. 2009a, Read et al. 2011]. Modelling may also be utilised as a mode of 

hypothesis generation once the simulation results have been interpreted in light of 

expert domain knowledge [Read et al. 2011]. 

 

Finally, at a practical level, wet laboratory experiments are often costly and / or 

difficult to perform – and in some cases may be simply not possible (technically or 

ethically) in the real world. Modelling and simulation therefore permit us to ask 

questions that could not easily be answered by standard laboratory techniques and 

serve as a useful complement to wet laboratory experimentation [Read et al. 2009a]. 

 

The main power of modelling is that it has the potential to produce a clearer picture 

of system behaviour by abstracting away low-level information. For example, the 

immune system is composed of ~10
12 

cells of numerous types each consisting of 

various sub-populations [Seiden and Celada 1992] which interact to produce the 

emergent behaviour. To understand such a system in its entirety would be 

overwhelmingly difficult both in terms of the computational power required and in 

the scientist’s ability to describe the system [Read et al. 2011]. 

 

The methods used to build a conceptual model of a system differ according to the 

methods being used to study the system. As we are principally concerned with agent-

based models we present a brief description on model building specific to agent-

based modelling in Section 2.7.3.  

 

Once implemented, models are parameterised using relevant biological data for the 

agents chosen [Macal and North 2005]. A parameterised model must then be 

validated against observed system behaviour before the model can be used to make 

predictions [Macal and North 2005]. The modelling process is usually iterative 

[Kitano 2002b], with the model being refined through several definition – 

implementation – parameterization – validation cycles [Macal and North 2005]. 
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A number of different mathematical and computational methods have been employed 

in the in silico study of immunology. These are discussed in the following section. 

 

2.7 Computational Techniques Employed in Modelling the Immune System 

 

The following sections describe the techniques commonly used to model the immune 

system. The author aims to provide some insight into the techniques and their relative 

strengths and weaknesses. A short synopsis of immune system models generated via 

these techniques is also provided to illustrate the wider applicability of the methods. 

 

2.7.1 Ordinary Differential Equations 

 

Traditionally mathematical modelling of physical and biological systems has made 

extensive use of Ordinary Differential Equations (ODEs). Use of ODEs can prove 

invaluable in gaining insight into the dynamics of a system, for example the dynamics 

of HIV infection where AIDS occurs on a timescale of years, but yet which 

commences with events that occur over hours or days [Perelson and Nelson 1999]. 

This study successfully modelled the lag between the initial infection with HIV and 

the onset of full HIV/AIDS principally by accounting for changes in the circulating 

CD4 Th1 cell population. The interested reader is referred to Perelson's review of 

modelling viral infection and immune system dynamics [Perelson 2002] for a fuller 

exploration of the use of ODEs in modelling the immune system. 

 

Despite the successes of using ODEs to model biological systems, such an approach 

does entail several perceived weaknesses. One obvious weakness becomes apparent 

upon reading the mathematical model; it is a daunting description for a non-

mathematician to comprehend [Seiden and Celada 1992]. However, the principal 

weakness of the use of ODEs lies in the fact that they average space or population 

behaviour [Kleinstein and Seiden 2000], whereas we may be rather more interested in 

a spread of behaviours, for example, the diversity of functions exhibited by cells of a 

given population..  

 

ODEs are continuous representations of systems that contain many discontinuities 

(that is, the real system is composed of discrete individuals) [Kleinstein and Seiden 

2000, Seiden and Celada 1992, Bernaschi and Castiglione 2001]. The equations 

generated are therefore difficult to solve exactly and attempts to solve them 

analytically necessitate the making of potentially unacceptable approximations to the 

real nature of the modelled system. Often these equations need to be solved using 

numerical methods [Kleinstein and Seiden 2000, Seiden and Celada 1992]. It is 

therefore often difficult to modify the complexity of the model. For example if one 

chose to incorporate a new cell type into the existing model, then an entirely new set 

of equations would need to be derived in order to integrate the behaviour of this new 

cell type into the behaviour of the overall system [Kleinstein and Seiden 2000].  

 

An ODE model assumes a population of entities with essentially identical properties 

that can be calculated. This is particularly problematic when simulating the immune 

system which consists of many cell types, some of which are heterogeneous in their 
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properties. One response to this might be to subdivide each class, but this would 

result in a good many sub-classes some of which may not be present in particularly 

great numbers [Kleinstein and Seiden 2000]. 

 

2.7.2 Cellular Automata  

 

Cellular Automata (CA) are conceptually defined by a lattice of grid points which 

represent locations within a system of interest. Each grid point has a state associated 

with it and this state is changeable according to the rules of the automaton. The rules 

are based on the current state of the grid point of interest and the states of its 

immediate neighbours. Thus well defined state transitions are permitted to occur for 

each grid point in the lattice [Walker and Southgate 2009]. 

 

During simulation, the grid points can be populated by entities e.g. cells, and these 

‘move’ around the grid as dictated by the changes in the states of the grid points. It is 

worth noting here that the agents themselves do not possess heterogeneous state. 

 

CA have been used extensively in immune system modelling. Seiden and Celada 

proposed using CA to implement in silico modelling of the immune system as an 

adjunct to traditional wet lab experimentation [Seiden and Celada 1992]. In their 

proof of concept paper they proposed a generalised implementation of an immune 

system model which would be based primarily on a detailed description of the 

interactions between different cell types. The authors considered that their results 

'reliably simulated' the immune system and that it would be appropriate to scale up 

the model to incorporate a greater number of cells. 

 

Several subsequent cellular automaton models have built on this initial work, mostly 

focussing on increasing the number of cells that the system could incorporate by 

using more efficient data structures. These include IMMSIM [Kleinstein and Seiden 

2000], PARIMM [Bernaschi and Castiglione 2001] and C-ImmSim [Baldazzi et al. 

2006]. 

 

Santoni et al. 2008 employed C-ImmSim in their simulation of T cell differentiation 

during hypersensitivity reaction. The simulation was found to reproduce the essential 

features of hypersensitivity reaction.  

Walker and Southgate provide a thorough review of approaches to modelling that use 

CA and continuous space ('off-lattice') agent-based modelling techniques [Walker 

and Southgate 2009]. 

 

The work with CA-based simulations has stimulated modelling studies by clearly 

demonstrating the potential of such work, whilst remaining aware of potential short-

comings such as limits on the size of the system. The simulators are designed and 

described using language relevant to the study of biology (‘domain specific 

language’) meaning that the model is immediately comprehensible to biologists 

[Seiden and Celada 1992]. This conceptual simplicity offers several potential 

advantages as compared to ODEs (these are essentially the converse of the perceived 

disadvantages of ODEs). 
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One principal advantage of CAs is that they represent agents within a model e.g. cells 

explicitly, whereas ODEs represent populations of agents [Kleinstein and Seiden 

2000]. Implicit in this is the fact that we can exploit stochasticity to estimate 

distributions of behaviour rather than average system behaviour [Kleinstein and 

Seiden 2000]. Solutions to ODEs are often analytical but approximate, failing to 

capture exactly important features of the system under examination [Hone 2009]. 

 

As stated in Section 2.6, use of simulation, offers one clear potential advantage over 

traditional wet-laboratory experiments. However, simulations are only capable of 

modelling systems of relatively small size compared to the real system and so we are 

forced to sacrifice detail in the model. The modeller also has to be aware of the 

potential for size related artefacts in the resulting behaviour of the system [Kleinstein 

and Seiden 1990, Seiden and Celada 1992].  

 

Additionally, simulation introduces abstractions and assumptions to reduce model 

complexity. This raises the question of whether the simulation is still representative 

of the system being modelled. Creation of simulations in which biologists can trust 

requires considerable effort [Polack et al. 2010, Andrews et al. 2010]. So, although 

simulation is much less costly, due to the limitation of the finite system we cannot yet 

hope to replace wet-laboratory experimentation [Seiden and Celada 1992]. 

 

2.7.3 Agent-Based Modelling and Simulation 

 

CA are a form of Agent-Based Modelling [Walker and Southgate 2009]. However, 

there are important differences between CA and continuous space ('off-lattice') ABM 

methodologies. In CA, the agents are represented as an aspect of the state of the grid 

points [Thorne 2007] and are not truly mobile [Wishart et al. 2004]. In ABM the 

agents are explicitly represented and autonomous. They possess their own 

heterogeneous states [Wishart et al. 2004]. 

 

ABMS is an approach tailored to the modelling of ‘autonomous, interacting agents’ 

[Macal and North 2005] and which simulates the 'actions and interactions' of these 

agents [Macal and North 2005]. Simulation is generally aimed at elucidating the 

mechanisms of ‘emergence’, the process by which the microscale behaviour of the 

system i.e. of the agents themselves, translates into the overall (or ‘emergent’) 

behaviour of the system [Macal and North 2005]. 

 

This technique offers clarity of insight into the behaviour of a system, which often 

cannot be gained from mathematical models such as ODEs [Kam et al. 2001]. For 

this reason, ABMS has found application in many disciplines [Macal and North 

2005] where it provides information on the 'dynamic aspects of real-world systems' 

[Bonabeau 2002]. 

 

ABMS is particularly suited to modelling systems in which the key entities can 

naturally be described as separate agents and where spatial location is an important 

part of an object’s state e.g. cells in an organism [Macal and North 2005] and it is 

natural to employ ABMS when the agents exhibit complexity and stochasticity of 
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behaviour [Bonabeau 2002]. It is also appropriate for the simulation of multi-scale 

models, the results of which are heavily dependent on correctly identifying the key 

agents and on any simplifying assumptions made while designing the abstraction of 

the system [An 2008].  

 

The term 'agent' carries a variety of subtly different connotations but in terms of 

modelling the immune system, we understand that agents are autonomous entities 

[Macal and North 2005, Mellouli et al. 2004, Bonabeau 2002] which can exhibit a 

range of heterogeneous states [Macal and North 2005] and encompass stochastic 

behaviour [Bonabeau 2002]. An agent should also be 'situated' [Macal and North 

2005] i.e. have a well defined location within the system and able to interact with 

other agents [Mellouli et al. 2004]. 

 

Creation of an ABM of a system begins with identification of the entities which are 

‘agents’ within the model followed by enumeration of all the possible relationships 

between the different agents [Macal and North 2005]. Only once these details have 

been decided can the user begin to draw up a strategy for developing the model, 

which probably includes deciding which of the several ABMS development platforms 

available one is going to employ. ABMS development platforms available include 

Netlogo
5
 [Tisue and Wilensky 2004], Repast

6
 [Collier et al. 2003], Multi-Agent 

Simulation of Neighbourhoods (MASON)
7
 [Luke et al. 2003, 2004, 2005], Swarm

8
 

[Minar et al. 1996] and Flexible Large-Scale Agent-based Modelling Environment 

(FLAME)
9
 [Holcombe 2006] inter alia. Once the model has been implemented the 

process entails iterative parameterization and validation as described in Section 2.6. 

 

There are a growing number of ABM studies of the immune system. A 

comprehensive review of agent-based modelling of the immune system can be found 

in Forrest and Beauchemin 2007 and some influential examples are cited here. 

 

Kam et al. 2001 created models of 'reactive systems' using the Rhapsody
10

 State 

Chart-based modelling environment. They concluded that their multi-scale model of 

T-cell activation could realistically bridge the gap between reductionist and system-

level views of the immune system. Building on this, Efroni et al. successfully 

modelled the effects of two gene 'knockout' mutations on the dynamics of thymocyte 

development in the thymus [Efroni et al. 2005, 2007]. 

 

In a direct comparison of simulation with experimental data, Walker et al. 2004 

compared results from an ABM of cell growth in the epithelium to the experimentally 

determined growth characteristics of epithelial cells grown in monolayer culture. The 

authors found that the model data was a qualitatively good fit to the experimental 

data. 

                                                           
5
 http://ccl.northwestern.edu/netlogo/ 

6
 http://repast.sourceforge.net/api/index.html 

7
 http://cs.gmu.edu/~eclab/projects/mason/ 

8
 http://www.swarm.org/index.php/Main_Page 

9
 http://www.flame.ac.uk 

10
 http://www.ilogix.com 
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During the same year, Segovia-Juarez et al. 2004 created an ABM of granuloma 

formation in the lungs during tuberculosis infection. The model identified several key 

factors in granuloma formation, which included the rate of chemokine diffusion and 

the location and number of T-cells within the granuloma.  

 

More recently, Pogson et al. 2008 have used the FLAME modelling environment to 

create a model of the intracellular NF-B signalling pathway. The model permitted 

the authors to predict that NF-B inhibition is affected by the sequestering of excess 

NF-B inhibitor by actin fibres in the cell cytoskeleton, a behaviour which was 

subsequently confirmed experimentally. 

 

The above studies demonstrate the potential of well validated simulation to generate 

explanations of system behaviour and to make predictions about the system based on 

current domain knowledge. The extensive body of local work using ABM to 

investigate the mechanisms of disease in EAE are described in the final section of this 

chapter (Section 2.10). 

 

Many of the perceived advantages of ABMS over ODEs are the same as those 

discussed for CA in Section 2.7.2. The technique also offers flexibility compared to 

other methodologies e.g. it is easier to add new agent classes or to tune agent 

behaviour [Bonabeau 2002].  

 

Thorne 2007 identified several key challenges to ABMS experimentation in his 

review of the use of ABMS in biomedical science. In particular, he cautioned of the 

imperative need to couple such simulation and modelling to wet laboratory 

experimental work so as to address the issue of model parameterisation. Other 

challenges included finding the appropriate level of abstraction for the model and 

communicating completely the model implemented. Thorne also suggested the 

potential of exploring the simulation parameter space using sensitivity analysis. 

 

A further consideration to bear in mind when conducting ABM is the environment in 

which the agents function. The environment defines the properties of the 'world' in 

which the agents operate and provides the conditions under which they can exist. An 

agent is 'of no practical use without its environment' [Odell et al. 2002]. Design of 

effective agents therefore requires careful consideration of both physical interaction 

with, and communication through the environment [Odell et al. 2002]. 

 

2.8 Documenting Models 

 

One of the aims of Systems Biology is the communication and documentation of 

models [Kitano 2002a]. In the following section we discuss two widely used 

formalisms for documenting software implementations. 
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2.8.1 State Charts 

 

State Charts were devised by David Harel as a means for visually describing complex 

software systems and represent an extension of the formalisms of state machines and 

state diagrams [Harel 1987]. State Charts introduce the 'notions of hierarchy, 

concurrency and communication' to the concept of state.  

 

State Charts are considered to be 'compact and expressive' and Harel sees them as 

overcoming many of the perceived shortcomings of state machine diagrams. For 

example with State Charts we can cluster states into super-states, show refinement of 

states or illustrate state orthogonality. 

 

Although the State Chart formalism promises many potential advantages to the 

developer of biological complex systems, it seems to have been overshadowed, 

perhaps rather unjustly, by the more widely used UML conventions [Booch et al. 

2005, Larman 2005]. Indeed, the UML state machine formalism is derived from 

Harel's State Charts and shares many features in common with them. However, the 

two formalisms differ in semantics, the exact nature of which lie outside the scope of 

this thesis.  

 

State Charts have principally been employed by the Harel laboratory at Rehovot 

University, for example, the studies cited in the discussion of biological studies using 

ABM in Section 2.7.3 [Kam et al. 2001, Efroni et al. 2005, 2007]. 

 

2.8.2 Unified Modelling Language (UML) 

 

It is contemporary good-practice in the software industry to use UML notation in the 

description of software systems. UML notation affords the designer a standardised 

‘visual language’ [Booch et al. 2005] which can be used to document and 

conceptualise the software [Larman 2005], A number of web-based UML support 

tools, resources, tutorials and articles are available via the Object Management Group 

[OMG]. 

 

UML offers a variety of diagram types for the description of software systems at 

different levels of abstraction, each having its own specific and well-defined purpose 

and each representing a different view of the system [Booch et al. 2005]. As well as 

serving to describe system architecture, UML serves as a record of implementation 

decisions or as a reverse engineering tool [Larman 2005].  

 

Through its wide-spread use in the software industry, UML has gained currency and 

is widely used within the scientific and engineering communities. Several studies 

have been conducted to probe the suitability of UML formalisms for documenting 

biological complex systems and with a few minor reservations the authors agree that 

UML provides an adequately expressive language with which to fully describe these 

systems.
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Webb and White 2004 presented a UML cell model as an illustration of the practical 

uses of the object-oriented programming paradigm. This was followed up by a further 

model of the cell which was used to elucidate the principles of object-oriented 

program design in complex system modelling [Webb and White 2005]. The authors 

concluded that simulation based on the model should be possible given that it fully 

describes the system in a top-down manner. 

 

In a more recent study, Garnett et al. 2008 created an executable model of auxin 

transport in plants. Working from a high level towards more detailed representations, 

the authors created UML models to successfully capture the key perspectives of the 

system. 

 

In a proof of concept, Williams set out a description of the glycolytic pathway and 

TCA described in UML models. The author clearly demonstrated the utility of 

creating conceptual models of biological pathways in UML notation [Williams 

2010a]. 

 

We now turn our attention to the CoSMoS process, a process that assists in the 

rigorous conceptualization and implementation of complex system models and 

simulations.  

 

2.9 The CoSMoS Process  

 

The CoSMoS Process is a process for the modelling and simulation of complex 

systems [Andrews et al. 2010]. In this instance ‘complex system’ carries the 

connotations given to it in Section 2.5. 

 

CoSMoS focuses on three principal objectives: to provide tools for creating models 

and techniques for setting up simulations for use in studying complex systems, to 

provide a guide to best practice in the modelling and analysis of complex systems and 

to help in the design of and encourage proper validation of complex system models. 

These goals should then allow us to “elaborate and explore science in a wider 

context.” [Andrews et al. 2010]. 

 

Simulation supports mainstream scientific research e.g. by permitting 

experimentation in silico which would be costly or otherwise difficult to perform in 

vitro or in vivo (see Section 2.6 for the motivation behind computational simulation).  

 

The process is constructed from principles derived from case-studies in immunology, 

and ecology inter alia and consists principally of phases, products, activities and 

roles.  

 

The CoSMoS process consists of three phases termed Discovery, Development and 

Exploration. The phases generate five products which are the Research Context, the 

Domain Model, the Platform Model, the Simulation Platform and the Results Model. 

These are illustrated in Figure 2.1.  
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The phases each entail the possibility of several activities which have the effect of 

modifying the products of the process e.g. scoping, which might, for example, 

involve considering the relevance of including a new cell sub-population in the 

model. 

 

The products from the three phases are inter-related and are also strongly identified 

with the Research Context and the Domain, which is to say that we create a 

simulation of a specific system to ask specific questions. These relationships are 

illustrated in Figure 2.2. 

 

The Research Context captures the overall context of the project – including a 

motivation for the project, the questions addressed and also the validation and 

evaluation needs. 

 

The Domain Model describes the domain expert’s understanding of the appropriate 

aspects of the domain and thus is focused on current scientific knowledge of the 

system. 

 

The Platform Model incorporates the design and implementation models for the 

simulation platform based on the Domain Model and the Research Context. It serves 

to document the decisions made in the construction of the model and how these might 

be implemented into programming code. 

 

The Simulation Platform actually encodes the Platform Model into useable software 

and hardware platforms on which simulations are performed. 

 

The Results Model describes the understanding that results from the simulation. This 

includes insight into Simulation Platform behaviour, results of data collection and 

observations of simulation runs. 

 

The interested reader is referred to the relevant technical report [Andrews et al. 

2010]. 
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Figure 2.1: The Phases and Products of the CoSMoS process. In the diagram the 

solid arrows indicate the progress of the project through the cycle of phases and the 

dashed arrows indicate those products on which each phase acts. The process begins 

with a Discovery phase during which the current understanding of the domain is 

detailed with the help of a domain expert, resulting in a Domain Model. At this stage 

the research questions and purpose of the project are mapped out, leading to an 

appreciation of the Research Context. During Development the software engineer 

starts to implement a model in programming code (Simulation Platform), working 

from the domain model created during Discovery. The implemented simulation is 

then executed to validate it and verify the model. The simulation produces results (the 

Results Model) which must be interpreted in the light of domain knowledge. The 

results of Exploration may then feed forward into another phase of Discovery. 

Adapted from Andrews et al. 2010. 
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Figure 2.2: The relationships between the Products of the CoSMoS Process and 

the Domain. The process is iterative, but should normally begin with consideration 

of the domain. Discussion of the domain with an expert in the field ('domain expert'), 

allows a first model of the domain (‘Domain Model’) to be developed and 

parameterised. Only once a full model is in place can the software engineers begin to 

implement the model as computer code (Platform Model leading to an implemented 

Simulation Platform). Once the simulation is implemented it needs to be tested 

against the expectations of the researchers and the domain expert ('validation'). The 

model should also be rigorously calibrated, which may include a test of sensitivity to 

parameterization. The results should then be interpreted in light of what is known of 

the domain (Results Model). All the previous steps should be carried out with strict 

reference to the Research Context that is the overall context of the project – the 

reasons for creating the simulation, and the question(s) it was created to address. The 

process is intended to be flexible, but the typical flow of information involved in 

developing the products is indicated by the arrows in the diagram. Adapted from 

Andrews et al. 2010. 
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2.10 The EAE Simulator 

 

The EAE Simulator employed in this thesis was written by Mark Read at the 

University of York [Read et al. 2009a, 2009b, 2011, Read 2011]. The simulator was 

designed as a CoSMoS project and as such has generated the relevant model products 

from the three phases of the process – Discovery, Development and Exploration. The 

Simulator is fully described using UML diagrams [Read et al. 2009a, Read 2011] and 

implemented using the object-oriented paradigm which is particularly suited to 

ABMs. Simulator design was carried out in collaboration with a domain expert, 

Professor Vipin Kumar of the Torrey Pines Institute of Molecular Studies (TPIMS). 

 

Elements of the immune system in EAE correspond to objects in the ABM. These 

agents exhibit stochastic behaviour within the context of the model. The behaviour of 

the agents is determined by various model parameters derived from experimental 

data, with guidance from the domain expert. Because of the inherent stochasticity of 

the system, the outcome of simulations using the simulator could be highly dependent 

upon the parameterization employed. A recent analysis of simulator sensitivity to 

parameterization suggested that at least 500 simulation runs would be required to 

reduce chance uncertainties in responses to parameter changes to an acceptably small 

value [Read et al. 2011].  

 

The Simulator has also been extensively validated [Read et al. 2011]; testing 

sensitivity to parameters and robustness using a Latin Hypercube algorithm [Mckay 

et al. 2000] to systematically measure the model response to all possible 

combinations of changes across the model parameters. Such an approach can yield 

seemingly counterintuitive results (see for example [Dancik et al. 2010]) and can 

reveal critical components and pathways or redundancies within the modelled system. 

 

2.10.1 Domain Model 

 

The Domain Model for the simulator provides a full diagrammatic description of the 

behaviour of the agent types in the simulator under different conditions or ‘states’ and 

at different levels of abstraction. The model consists of some 25 UML diagrams and 

is more fully represented in [Read 2011]. 

 

In short, the simulator incorporates a domain expert approved abstraction of the full 

disease-recovery cycle of EAE, incorporating all the relevant immune cell types 

[Read et al. 2009a]. A conceptual representation of the interacting disease and 

recovery cycles is presented in Figure 2.3 below. 

 

2.10.2 Implementation of the Simulation 

 

The simulator is implemented in Java using the agent-based development framework, 

MASON [Luke et al. 2003, 2004, 2005]. Many of the accompanying analysis scripts 

are written either in Ruby or the Matlab
11

 scripting language. 

                                                           
11

 http://www.mathworks.com/matlab 
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2.10.3 Implementation Specific Details 

 

For the interested reader, certain implementation specific description of the simulator 

has been provided in Appendix B of this thesis along with UML diagrams 

representing certain aspects of the structure of the software. 

 

2.10.4 Results Model 

 

The two cycles, disease and spontaneous recovery are clearly visible in the system-

wide plot of T-cell populations over a 50 day simulation cycle (Figure 2.4). Firstly 

the CD4 Th1 cells reach a peak population at around 15 days and then start to wane. 

At about this time the populations of the Tregs start to climb, with CD4 Treg reaching 

a higher peak population than CD8 Treg at around day 27. This time marks the height 

of the recovery period and by day 50 the T-cell populations have returned to baseline 

levels and recovery is complete. 

 

2.10.5 Summary of Results Obtained Prior to the Start of the Present Work 

 

Significant work has been done in examining the effects of splenectomy on the 

system and in generating an EAE Severity Score from the calculated T-cell effector 

populations and levels of neuron killing [Read 2011]. 
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Figure 2.3: A conceptual representation of the EAE Disease and Spontaneous 

Recovery Cycles. The disease cycle is represented by the red arrows and the 

recovery cycle by the green. The DCs (shown as generic APCs) play a pivotal role in 

both cycles, both initiating the immune response to myelin basic protein and also 

serving to activate the CD8 Treg which are responsible for cell mediated immune 

regulation. The cycle is initiated with inoculation with MBP and CFA. These 

stimulate the DCs which phagocytose MBP and display antigen fragments. These are 

recognised by MBP-reactive CD4 Th1 which are activated and begin proliferating. 

Due to changes in the permeability of the BBB these CD4 Th1 can enter the CNS 

where they stimulate the microglia to produce neurotoxic TNF- which kills neurons. 

The dead neurons are phagocytosed by CNS-invading macrophages and their MBP is 

presented by these APCs. This activates further CD4 Th1 inside the CNS leading to a 

progression in the disease state. Eventually, however, the CD4 Th1 reach the end of 

their lifespan and become apoptotic. Then they can leave the CNS where they are 

phagocytosed by DCs (APCs) which then present fragments of the MBP-reactive 

CD4 Th1 TCR. The Fr3-MHC-II complex is recognised by CD4 Treg which 

stimulate DCs to express Qa-1. This is recognised by CD8 Treg which can then bind 

to the DCs and become activated. The activated CD8 Treg can then recognise Qa-1-

CDR1/2 presented on the surface of MBP-reactive CD4 Th1 and bind the CD4 Th1 

prior to apoptosing them. The apoptosed CD4 Th are then phagocytosed by DCs to 

complete the recovery cycle. Adapted from Read et al. 2009a. 
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Figure 2.4: Median System Wide Effector T-cell populations in a series of 1000 

runs of the baseline simulation. The curves show the progression of the system 

through a disease state (days 0 to 20) during which the populations of CD4 Th 

effectors rises to a peak and falls again. By day 20 the recovery cycle has been 

initiated and the CD4 Treg are approximately half-way through their response. By 

day 50 all the effector populations have essentially returned to resting levels. This 

figure was generated from data produced by re-running the baseline simulation [Read 

et al. 2009a]. 

 

Subsequently a simulator experiment in which DCs could not simultaneously present 

MBP
12

 and Th1-derived peptide
13

 fragments ('mutually exclusive peptide 

presentation') demonstrated that very few DCs prime both CD4 Th1 and CD8 Treg 

(see Figure 2.5) [Williams 2010b, Williams et al. 2011]. The patterns of CD8 Treg 

(10% reduction) and CD4 Th1 priming and of CD4 Th1 apoptosis (5% reduction) 

were perturbed very little from that observed in the baseline experiment (illustrated in 

Figures 2.6, 2.7 and 2.8 respectively) due to the very small change in the pattern of 

peptide expression by the DCs. Only 5 DC were found to present both MBP and Type 

1 peptides in the baseline simulation, the vast majority of DC not presenting any 

antigen at all. 

 

Williams subsequently demonstrated a dramatic rise in the peak population of CD8 

Treg, as compared to the baseline experiment, when the CD4 Treg population was 

abrogated in the simulation and the DCs were allowed to constitutively express the 

MHC compound, Qa-1 [Williams 2010b]. The elevated population of CD8 Treg can 

be compared to the baseline level in Figure 2.9 below.  

 

                                                           
12

 MBP is Myelin Basic Protein, a component of myelin which insulates nerve fibres in the Central 

Nervous System. 
13

 These peptides, also referred to as ‘Type 1’ peptides, are the digestion products of the CD4 Th1 T-

cell receptors once they have been phagocytosed by Antigen Presentingn Cells. 
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Since there is an elevated population of CD8 Treg effectors, there must also be more 

priming of CD8 Treg than in the baseline simulation. This priming takes place in the 

spleen as illustrated in Figure 2.10 below. Similarly, one would expect more CD4 

Th1 apoptosis by CD8 Treg - this occurs in the circulation and in the Cervical Lymph 

Node (CLN) as illustrated in Figure 2.11. 

 

An investigation of the causes of this significant rise in CD8 Treg population under 

CD4 Treg abrogation forms the basis of the subsequent experimentation described in 

Chapter 3 of this thesis. 

 

Figure 2.5: The expression of peptides by dendritic cells in the mutually 

exclusive peptide presentation (MEPP) and baseline experiments. The curves are 

computed from median data obtained from a set of 1000 runs of the simulator. In the 

plot, the mutually exclusive peptide presentation (MEPP) experiment frequency 

curves are shown in solid lines while those for the baseline (Baseline) are shown as 

dashed lines for reference. MBP is myelin basic protein, a component of the myelin 

sheath from the CNS. Type 1 refers to peptides derived from type 1 Th cells i.e. type 

1 peptides are CDR1/2 and Fr3. This figure was generated from data produced by re-

running the mutually exclusive peptide presentation experiment [Williams 2010b]. 
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Figure 2.6: Occurrence of CD8 Treg Priming by Compartment in the mutually 

exclusive peptide presentation and baseline experiments. The curves are computed 

from median data obtained from a set of 1000 runs of the simulator. In the plot, the 

mutually exclusive peptide presentation experiment population (MEPP) curves are 

shown in solid lines while those for the baseline are shown as dashed lines for 

reference. This figure was generated from data produced by re-running the mutually 

exclusive peptide presentation experiment [Williams 2010b]. 

 

 
 

Figure 2.7: Occurrence of CD4 Th1 Priming by Compartment in the mutually 

exclusive peptide presentation and baseline experiments. The curves are computed 

from median data obtained from a set of 1000 runs of the simulator. In the plot, the 

mutually exclusive peptide presentation (MEPP) experiment population curves are 

shown in solid lines while those for the baseline are shown as dashed lines for 

reference. This figure was generated from data produced by re-running the mutually 

exclusive peptide presentation experiment [Williams 2010b]. 
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Figure 2.8: Occurrence of CD4 Th1 Apoptosis by Compartment in the mutually 

exclusive peptide presentation and baseline experiments. The curves are computed 

from median data obtained from a set of 1000 runs of the simulator. In the plot, the 

mutually exclusive peptide presentation (MEPP) experiment population curves are 

shown in solid lines while those for the baseline are shown as dashed lines for 

reference. This figure was generated from data produced by re-running the mutually 

exclusive peptide presentation experiment [Williams 2010b]. 

 

 
 

Figure 2.9: System wide effector T-cell populations under the CD4 Treg 

Abrogation and baseline experiments. The curves are computed from median data 

obtained from a set of 1000 runs of the simulator. It can be seen that the peak 

population of CD8 Treg is much higher (~1,000 cells) in the abrogation experiment 

than in the baseline case described above (~600 cells). The CD4 Treg abrogation (A.) 

experiment results are shown in solid lines and the baseline (B.) experiments in 

dashed lines for comparison. There is, of course, no solid blue line as the CD4 Treg 

population has been removed from this experiment. This figure was generated from 

data produced by re-running the CD4 Treg abrogation experiment [Williams 2010b]. 
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Figure 2.10: Occurrence of CD8 Treg Priming by Compartment in the CD4 

Treg abrogation and baseline experiments. The curves are computed from median 

data obtained from a set of 1000 runs of the simulator. In the plot, the abrogation 

experiment population curves are shown in solid lines while those for the baseline are 

shown as dashed lines for reference. This figure was generated from data produced by 

re-running the CD4 Treg abrogation experiment [Williams 2010b]. 

 

 
 

Figure 2.11: Occurrence of CD4 Th1 Killing by CD8 Treg by Compartment in 

the CD4 Treg abrogation and baseline experiments. The curves are computed 

from median data obtained from a set of 1000 runs of the simulator. In the plot, the 

abrogation (Abr.) experiment population curves are shown in solid lines while those 

for the baseline (Bas.) are shown as dashed lines for reference. This figure was 

generated from data produced by re-running the CD4 Treg abrogation experiment 

[Williams 2010b]. 
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Chapter 3: Explaining the Doubling of CD8 Treg Population on Abrogation of 

the CD4 Treg Population 

 

3.1 Introduction 

 

The experiments presented seek to explain the observation of elevated CD8 Treg 

population when we maintain the conditions necessary to CD8 Treg priming, but 

abrogate the CD4 Treg population from the simulation [Williams 2010b].  

 

To begin, we briefly outline the domain knowledge relevant to the work presented 

(Section 3.2). Then we develop two hypotheses that explain the observations and 

state these in a testable form (Section 3.3) before outlining the experimental 

procedure that we propose to adopt to test the two hypotheses (Section 3.4). Section 

3.4 also describes the non-parametric effect size A-Test [Vargha and Delaney 2000], 

which we use to assess the significance of the effect that a particular parameter 

change has on simulation behaviour. We then briefly note the implications of what 

we aim to undertake in terms of the CoSMoS process (Section 3.5). In Section 3.6 we 

describe the experimentation conducted in the testing of the first hypothesis and in 

Section 3.7 we present an initial, unsuccessful attempt to address the second 

hypothesis. The results have, never-the-less, been presented as they give indications 

of the T-cell population dynamics around DCs during simulation. In Section 3.8 we 

address the issue of the significance of CD4 / CD8 Treg competition in determining 

the peak population of CD8 Treg effectors. In Section 3.9 we present data, in the 

form of A-Test scores, to draw conclusions about the significance of the two 

hypotheses in determining CD8 Treg population size. Section 3.10 is an experimental 

postscript and briefly details a further verification of the significance of spatial 

competition in determining CD8 Treg population. We draw our final conclusions in 

Section 3.11. 

 

3.2 The Domain  

 

In Chapter 2 we saw how EAE is mediated by MBP-reactive CD4 T-Helper cells 

[Pender 1995, van den Bark 1985]. These cells become able to access the CNS due to 

the increased permeability of the BBB [Mostarica-Stojkovic et al. 1992, Claudio et 

al. 1990, Baron et al. 1993]. Once inside the CNS, they promote the destruction of 

neurons via the activation of TNF- secretion by macrophages that have also 

infiltrated the CNS [Huitinga et al. 1990, Pender 1995] and by the resident 

macrophages of the CNS, the microglia [Carson 2002]. 

 

Ultimately the MBP-reactive CD4 T-helper cells in the CNS reach the end of their 

cell cycle and become apoptotic. They can then migrate out of the CNS where they 

are phagocytosed by DCs [Pender 1995] which process the dead T-Helper cells and 

present the Complementarity Determining Region (CDR1/2) and Framework region 3 

(Fr3) segments from their T-cell receptor V8.2 chains [Kumar and Sercarz 2001, 

Tang et al. 2005]. 
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The MHC-II-Fr3 complex presented on the DC surface can be recognised and bound 

by regulatory CD4 Treg [Kumar et al. 1996] which then stimulate (or ‘license’) the 

DC for production of the MHC Class Ib compound [Cantor et al. 1978]. CD8 Treg 

which recognise Qa-1 – CDR1/2 complex presented on the DC surface, can then bind 

to DC [Tang et al. 2005]. Once bound to the licensed APC, CD8 Treg are activated, 

with further help from IFN- secretion by CD4 Treg, and proliferate [Kumar and 

Sercarz 2001, Pender 1995]. 

 

When CD8 Treg become effector cells, they dissociate from the APC and become 

mobile. The effectors can recognise the Qa-1 – antigen complex [Kumar and Sercarz 

2001] presented on the surface of CD4 T-Helper cells and kill them via the perforin 

pathway [Beeston et al. 2010, Pender 1995]. Consequently, the CD4 Th population 

falls during the recovery phase of EAE and within 30 days the populations of CD4 T-

Helper cells have returned to their normal resting levels. Within ~50 days the full 

cycle is completed, with Treg populations falling back to their resting levels, and 

recovery is essentially complete [Pender 1995].  

 

The necessity for CD4 Treg in licensing DC has been demonstrated by Kumar et al. 

1996 who showed that the inactivation of CD4 Treg cells, via binding of a 

monoclonal antibody specific for the V8.2 T-cell receptor protein, produced mice 

that suffered an increase in severity and duration of disease and that did not fully 

recover from EAE.  

 

Similarly, an experiment that demonstrated the use of the perforin pathway by CD8 

Treg to apoptose CD4 Th1 cells, showed that perforin-deficient mice suffered more 

severe EAE, due to the inability of CD8 Treg to apoptose the CD4 Th1 cells which 

mediate the disease [Beeston et al. 2010]. 

 

In summary, CD4 Treg cells are required, in vivo, to license DCs to express the MHC 

Class Ib compound Qa-1. Qa-1 is essential for the presentation of the CDR1/2 antigen 

from the MBP-reactive CD4 Th1 T-cell receptor. This complex is recognised by CD8 

Treg cells and is therefore essential for their binding to DCs and their subsequent 

activation by them and hence to the role of CD8 Treg in cell-mediated regulation of 

autoimmunity (illustrated in Figure 3.1 below) [Tang et al. 2005]. 
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Figure 3.1: Cartoon representation of the activation of CD8 Treg by dendritic 

cells that have been licensed for Qa-1 expression by CD4 Treg. In this process, an 

APC presenting MHC Class II – Fr3 complex can be bound by CD4 Treg whose T-

cell receptors recognise it. The CD4 Treg provide the stimulus necessary for the APC 

to begin expressing the MHC compound Qa-1. The Qa-1 – CDR1/2 complex is 

recognised and bound by the TCR on CD8 Treg which then become activated. The 

CD8 Treg receives further stimulatory assistance from the CD4 Treg population via 

the secretion of IFN-. Activated CD8 Treg can then proceed to recognise and bind 

Qa-1 – CDR1/2 on the surface of the CD4 Th1 that they subsequently apoptose 

during cell-mediated regulation of autoimmunity. The cup-like projections on the 

surfaces of the Treg cells depict the T-cell receptors of these cells. 'Cross-Priming' is 

a process in which a CD8 T-cell response is initiated towards an antigen not 

synthesised by the APC. Cross-priming is more fully described in Appendix A.3. 

This figure is adapted from Figure 1 of Tang et al. 2005. 

 

 
 

 

 

3.3 Motivation for Further Experimentation 

 

As shown in the previous chapter (Section 2.10), earlier work with the EAE 

Simulator demonstrated that abrogating the CD4 Treg cell population resulted in an 

approximate doubling of the peak population of CD8 Treg cells provided that DCs 

were permitted to constitutively express Qa-1 upon maturity [Williams 2010b]. 
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It has been demonstrated that the abrogation of the CD4 Treg population in mice has 

a negative impact on their recovery from EAE [Kumar et al. 1996]. This raises the 

question as to whether the CD4 Treg population serves to modulate the generation of 

CD8 Treg and thus the recovery from EAE.  

 

The CD4 Treg abrogation experiment [Williams 2010b] demonstrated the advantage 

of being able to conduct speculative experiments in silico – Williams was able to 

maintain the conditions needed for CD8 Treg priming whilst removing the CD4 Treg 

from the system. The work presented here represents a further investigation of this 

system in an attempt to explain Williams' observations. 

 

The ‘age of licensing’ hypothesis
14 

concerns the constitutive expression of Qa-1 by 

the DC population. In the baseline simulation it takes ~60 hours (2.5 days) for CD4 

Treg cells to mature into effectors and license DC for Qa-1 expression. In Williams' 

experiment [Williams 2010b], constitutive expression of Qa-1 facilitates earlier 

priming of CD8 Treg on DC because there is now no delay in waiting for licensing. 

The earlier priming could, in theory, permit an extra proliferative burst by CD8 Treg 

as the time that a CD8 Treg must wait to become proliferative is ~19 hours (0.8 

days). The hypothesis can be expressed more formally: 

 

 H1: the timing of Qa-1 expression by DC has a significant effect on 

the size of the CD8 Treg effector population. 

 

The ‘spatial saturation’ hypothesis concerns the binding space available around the 

DCs. Both CD4 and CD8 Treg prime on the same DCs and so compete for binding 

space. Since CD4 Treg may be priming immediately upon DC maturation and CD8 

Treg must wait for the DC to be licensed, CD4 Treg would be expected to occupy a 

greater fraction of the total space around any given DC. If spatial competition is a 

limiting factor in CD8 Treg population expansion, then removal of the CD4 Treg 

from the simulation should permit a greater growth in CD8 Treg numbers. Again, the 

hypothesis can be expressed more formally: 

 

H2: the competition between CD4 and CD8 Treg has a significant 

effect on the size of the CD8 Treg effector population. 

 

3.4 Assessing the Hypotheses 

 

Both of the hypotheses described could contribute to the observed rise in CD8 Treg 

peak population size under CD4 Treg abrogation. We propose two lines of 

experimentation to assess the relative influence of the hypotheses on increased CD8 

Treg population size. 

 

                                                           
14

 Named because the hypothesis chiefly concerns the timing of Qa-1 expression by dendritic cells 



3.4 Assessing the Hypotheses 

 

38 

3.4.1 The 'Age of Licensing' Experiment 

 

The aim of this experiment is to gain some insight into how long it takes for DCs to 

become licensed for Qa-1 expression in a typical baseline simulation. This time 

approximates the total time taken for CD4 Treg cells to mature into effectors and 

license DCs. This information would then be used to parameterise an enforced delay 

in the constitutive expression of Qa-1 by DCs in a CD4 Treg abrogation experiment, 

thus simulating the DC’s wait for a CD4 Treg to license it, without needing to 

explicitly include the CD4 Treg in the simulation model. 

 

It is a trivial matter to record the times at which key life events occur for each DC in 

the simulation. We have chosen to record the ages of DCs at the time they become 

licensed for Qa-1 expression so that we can investigate the spread of values exhibited 

during a typical set of simulation runs. 

 

We were then able to implement a time delay in the constitutive expression of Qa-1 

under abrogation of the CD4 Treg population. In this way we would be able to 

simulate a system where CD8 Treg have to wait to be licensed but do not have to 

compete for binding space around the DC. The CD8 Treg population size data 

collected from this 'Qa-1 delay' experiment could then be compared statistically with 

that from the original (Qa-1 expression not delayed) CD4 Treg abrogation experiment 

in order to assess the significance of the timing of Qa-1 expression (i.e. delayed 

versus immediate) on CD8 Treg population size. The method used to assess the 

statistical significance of differences between our various experiments is discussed in 

more detail in Section 3.4.3. 

 

3.4.2 The ‘Spatial Saturation’ Experiment 

 

The aim of this experiment is to examine how the spatial saturation around the DCs at 

the time of apoptosis changes between simulator runs performed with immediate 

constitutive Qa-1 expression and runs performed with delayed constitutive Qa-1 

expression. The runs with delayed constitutive expression of Qa-1 were also 

compared to the baseline runs which had been conducted as a control experiment. 

 

By comparing these experiments using the A-Test, we aim to gain insight into 

whether removing the CD4 Treg population from the simulation advantages the CD8 

Treg in terms of removing their need to compete for DC binding space. 

 

To achieve these goals we implemented methods in the appropriate classes of the 

simulator to record the neighbours of each DC at its time of apoptosis, the time when 

DCs are most probably at their maximal spatial saturation, as judged from previous 

simulation behaviour. Implementation specific details of the changes made to the 

platform model are presented in Appendix C.1. 

 

We were then able to record the saturation data for DCs in the same baseline runs that 

we used to derive parameterization of the Qa-1 expression delay. Ultimately we 

implemented the Qa-1 expression delay and ran more simulator runs under CD4 Treg 
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abrogation to simulate a system in which DCs still need to wait to be licensed for Qa-

1 expression, but in which CD8 Treg do not need to compete for binding space 

around them. 

 

In calculating the proportion of binding space occupied by a particular cell type one 

has to be aware of how that space is defined. The simulator is composed of a number 

of separate simulation compartments (see Appendix B.4). Each of the compartments 

consists of a lattice of grid points, each of which has the capacity to hold a certain 

number of cells and each of which has 8 neighbouring cells because the lattice is two-

dimensional. 

 

In our current parameterization, one grid point can accommodate 1 DC or 7 T-cells. 

This means that a soft limit of 56 T-cells may surround any given DC when it is at 

maximum spatial saturation. Therefore to calculate the proportion of binding space 

occupied by CD8 Treg we simply counted the number of CD8 Treg neighbouring an 

apoptotic DC and converted this figure into a percentage of binding space occupied. 

 

3.4.3 Assessing the Relative Importance of the Two Hypotheses 

 

The ultimate aim of the experiments proposed above, is to assess the relative 

significance of the two factors i.e. timing of Qa-1 expression on DC (and hence, 

indirectly, of activation of CD8 Treg) and spatial competition with CD4 Treg on the 

peak population size attained by CD8 Treg. 

 

The simulator readily provides the user with sets of output data detailing the 

populations of key cell types throughout the simulation. Thus, we need some suitable 

means to reliably compare the data derived from different experiments. 

 

For each experiment we ran 1000 runs of the simulator and we then calculated 

median data for the set of 1000 runs (the mean data set was not appropriate as the 

data did not appear to be normally distributed). We assumed that we were not dealing 

with normally distributed data and so tests such as Student's t-test were not 

appropriate and we chose to use Vargha and Delaney's implementation of the A-Test 

[Vargha and Delaney 2000] first described by Mann and Whitney [Mann and 

Whitney 1947]. 

 

The test is appropriate for working with non-parametric data and for assessing the 

magnitude of an effect i.e. the impact of changing one parameter value between a pair 

of experiments whilst holding all other parameter values constant. 

 

The effect sizes corresponding to the various A-Test scores are detailed for the 

interested reader in Appendix D. For current purposes we have taken A-test scores 

below 0.29 and above 0.71 to represent scientifically significant effects. 
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3.5 Implications of the Experiments in Terms of the CoSMoS Process 

 

As we were not intending to modify the logic of the actual simulation itself i.e. we 

were not introducing any new agent types, permitting changes to state transitions or 

permitting existing agents to access compartments that they had not previously been 

permitted to access, we did not need to change the domain model [Read 2011]. 

 

However, the simulation platform was modified as we needed to implement 

additional methods to capture data that already existed within the simulation, for 

example timings of key cellular events. New data logger and data store objects were 

implemented for each experiment. These were simply added to the appropriate 

existing packages in the simulator. 

 

Required code changes were implemented on top of the existing simulator code. 

Code visualization, editing and compilation were performed using the Eclipse 

Integrated Development Environment
15

.  

 

We have not presented details of the exact changes made to the code. However, these 

are outlined for the interested reader in Appendix C.1 along with brief comment on 

the testing process. 

 

3.6 The 'Age of Licensing' Experiment  

 

3.6.1 Collecting Age of Licensing Data from the Baseline Experiment 

 

Before proceeding to collect timing data from the simulator we needed to verify that 

coding changes had not altered the behaviour of the simulator. 1000 simulator runs 

were performed in order to verify that the baseline behaviour of the simulator would 

still be returned when not performing CD4 Treg population abrogation with or 

without implementing a Qa-1 expression delay. 

 

Plots of the system-wide T-cell effector population levels during the simulation 

suggested that the baseline behaviour of the simulator had not been disturbed by the 

coding changes (data presented in Appendix C.3). Having verified that these 

simulation runs correctly reproduced the baseline, the data produced was used to 

represent our baseline case data. 

 

3.6.2 Reproducing the CD4 Treg Abrogation Experiment Results  

 

It was then important to verify that CD4 Treg abrogation still functioned properly in 

the augmented simulator. 1000 simulator runs were performed with CD4 Treg 

abrogation switched on and the delay in constitutive expression of Qa-1 switched off. 

The earlier CD4 Treg abrogation results [Williams 2010b] were reproduced by our 

verification runs (data presented in Appendix C.4). Having verified that these 
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simulation runs correctly reproduced the original CD4 Treg abrogation experiment, 

the data produced was used to represent our CD4 Treg abrogation case data. 

 

3.6.3 Distribution of DC Ages at Time of Licensing  

 

The baseline runs performed in section 3.6.1 were used to derive parameters for the 

delay in constitutive Qa-1 expression by DCs. In all, 1000 runs were performed and 

the spread of DC ages at the time of becoming licensed for Qa-1 expression was 

analysed.  

 

At first analysis was restricted to a small sample of 5 runs, but the spread of licensing 

ages across the 5 runs appeared to be too wide to permit the extraction of any 

meaningful information. It was therefore decided to include data from the full 1000 

runs in our investigation. To permit this, analysis and graph plotting was carried out 

in Matlab
16

 via scripts written for the purpose.  

 

First we analysed the median age at licensing across the 1000 simulator runs. The 

median age of DCs at licensing from these 1000 runs was 3.06 days (73.3750 hours). 

The inter-quartile range was 2.25 days (54 hours). Here, age statistics have been 

presented in days and in hours because it is more common in immunology to measure 

events in days, whereas the simulator parameter files contain cell timing parameters 

expressed in hours. The distribution of DC ages at licensing for the 1000 baseline 

runs is shown below in Figure 3.2: 
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Figure 3.2: Histogram showing the distribution of dendritic cell ages at the time 

of licensing for Qa-1 expression across a set of 1000 baseline simulator runs. The 

data has been normalised by the total DC count across the 1000 simulator runs in 

order to facilitate direct comparison with the distributions presented later on in the 

discussion. 

 

 
 

We investigate the possibility that the age of licensing of DCs may be related to the 

time of creation of those DCs. The simplest means to achieve this is to split the 

simulation data set for the entire DC population into data from DCs created earlier on 

in the simulation and data from those created later in the simulation. These two sets 

of DCs might be expected to exhibit different ages at the time of licensing because 

early on in the simulation there are fewer CD4 Treg present and therefore the chances 

of a DC-CD4 Treg encounter productive for licensing are much diminished compared 

to those later on in the simulation when the CD4 Treg population is reaching its peak. 

 

To investigate this possibility we arbitrarily divided the data for each baseline 

simulation run into data derived from DCs with a creation time of 20 days (480 

hours) or earlier (the ‘early’ population) and that derived from DCs created after 20 

days (the ‘late’ population). The 20 day cut off time was chosen as it is the point on 

the baseline simulation system-wide T-cell effector population plot (presented for 

reference in Figure 3.3) where the CD4 Treg are approximately halfway through their 

immune response. This is also the point in the simulation when DCs begin to present 

peptides derived from CD4 Th1 apoptosed by CD8 Treg. 

 

 

 

 

 

 

 



3.6 The ‘Age of Licensing’ Experiment 

 

43 

 

Figure 3.3: System-wide T-cell effector population levels throughout the baseline 

simulation to illustrate the choice of the 20 day cut-off used for separating the 

dendritic cell age data into two distinct sets. The approximate mid-point of the 

CD4 Treg response is indicated by the vertical dashed line at day 20. 

 

 
 

The separated data showed a clear
17

 differentiation in medians between the 'early' and 

'late' simulation DC. For the population of DCs created before 20 days the median 

age at licensing was 3.44 days (82.50 hours) with an inter-quartile range of 2.36 days 

(56.75 hours). For the 'late' population the median age at licensing was 2.48 days 

(59.50 hours) with an inter-quartile range of 1.45 days (34.875 hours). The 

distributions of the ages of licensing in the 'early' and 'late' DC populations are 

presented below in Figures 3.4 and 3.5. 
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 A clear, but not a significant difference. A comparison of the two populations via the A-test gave a 

score of 0.644 which indicates an effect of only medium size. However, as this arbitrary splitting of the 

data was performed solely to illustrate the idea that DC age at licensing varies across simulation time, 

this result has no impact on any further results within the thesis. 
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Figure 3.4: Histogram showing the distribution of dendritic cell ages at the time 

of licensing for Qa-1 expression in the 'early' dendritic cell population (i.e. those 

dendritic cells created prior to 20 days in the baseline simulator experiment) 

across a set of 1000 baseline simulator runs. The data has been normalised by the 

total 'early' population DC count across all 1000 simulator runs in order to facilitate 

direct comparison with the distributions presented later on in the discussion. 

 

 
 

Figure 3.5: Histogram showing the distribution of dendritic cell ages at the time 

of licensing for Qa-1 expression in the 'late' dendritic cell population (i.e. those 

dendritic cells created later than 20 days in the baseline simulator experiment) 

across a set of 1000 baseline simulator runs. The data has been normalised by the 

total 'late' population DC count across all 1000 simulator runs in order to facilitate 

direct comparison with the distributions presented later on in the discussion. 
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3.6.4 Choice of Parameterization 

 

Since we are mostly interested in the immunology relevant to the late simulation 

environment (this is when CD8 Treg become activated by licensed DC), a mean delay 

in Qa-1 expression of 2.48 days (59.50 hours) with two standard deviations being 

equivalent to 1.83 days (43.803 hours)
18

 was chosen to approximate the spread of 

licensing ages found for the baseline simulation.  

 

It is worth noting at this point that the simulator calculates a future time for an event 

by drawing a time interval from a normal distribution of time intervals, expressed in 

hours, centred on a parameterised mean and with a spread determined by the 

parameterised standard deviation and adding this interval to the current time. 

 

We chose to approximate the non-parametric distribution of DC ages obtained from 

the baseline simulation with a normal distribution
19

 of mean equal to the median age 

and with an approximate standard deviation given by Equation 1. The distribution of 

DC ages at the time of licensing was reasonably well approximated by a normal 

distribution as illustrated in Figure 3.6 below: 

 

Equation 1: 0.5 * Inter-Quartile Range * (68.2/50.0) 
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 These numbers were derived from the distribution of ages of licensing for Qa-1 expression of ‘late’ 

population DC in the baseline simulation described in Section 3.6.3. 
19

 The comparison of the ‘early’ population distribution to its normal approximation gave an A-test 

score of 0.4573 which indicates no effect, whereas the comparison of the ‘late’ population data to its 

normal approximation gave a score of 0.5797 i.e. only a small effect. Therefore, neither approximation 

was significantly different from its corresponding real distribution. Therefore, we might reasonably 

anticipate that use of this approximation would not affect the results obtained in our simulations. 

However, to ensure that this is really the case, we should ideally re-run all the experiments in this 

section with a better approximation to the data. 
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Figure 3.6: Histogram illustrating the approximation of the experimental 

distribution (blue bars) of dendritic cell ages at the time of licensing for Qa-1 

expression in the ‘late’ population dendritic cells by a normal distribution (red 

bars) of dendritic cell ages based upon it (the mean is set to the median of the 

experimental data and the standard deviation is approximated from the semi-

inter-quartile range as described in the text). The data has been normalised by the 

'late' population DC count across all 1000 simulator runs in order to facilitate direct 

comparison with the distributions presented later on in the discussion. 

 

 
 

Finally, as a computationally cheap way of assessing the importance of our choice of 

expression delay parameters on the simulation results in general and the peak CD8 

Treg population in particular, we implemented a Qa-1 expression delay with a larger 

mean of 3.44 days (82.50 hours) with two standard deviations set to 2.97 days 

(71.278 hours). The parameterisation for this distribution was taken from the 

distribution of licensing ages in the ‘early’ population DC in the baseline simulation. 

The comparison of the non-parametric distribution of DC licensing ages with the 

normally distributed approximation to it is presented in Figure 3.7 below. 
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Figure 3.7: Histogram illustrating the approximation of the experimental 

distribution (blue bars) of dendritic cell ages at the time of licensing for Qa-1 

expression in the ‘early’ population dendritic cells by a normal distribution (red 

bars) of dendritic cell ages based upon it (the mean is set to the median of the 

experimental data and the standard deviation is approximated from the semi-

inter-quartile range as described in the text). The data has been normalised by the 

'early' population DC count across all 1000 simulator runs in order to facilitate direct 

comparison with the distributions presented later on in the discussion. 

 

 
 

3.6.5 The Results Obtained by Implementing a Delay in Qa-1 Expression Under 

CD4 Treg Abrogation 

 

3.6.5.1 The 'Qa-1 Delay' Experiment 

 

Having chosen the timing parameters, the 2.48 day Qa-1 expression delay was turned 

on and 1000 runs of the simulator were performed under CD4 Treg abrogation. The 

cellular event timing data was briefly analysed to verify that the simulation was 

reproducing the anticipated range of ages at licensing, and this was the case (data 

presented in Figure 3.8 below). 
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Figure 3.8: The distribution of dendritic cell ages at the time of licensing (blue 

bars) in 1000 runs of the simulator implementing CD4 Treg abrogation with an 

enforced mean delay of 2.48 days in constitutive expression of Qa-1 (‘Qa-1 

delay’) compared to the normal distribution used to generate the times of 

licensing for the dendritic cells in this simulation (red bars). The data presented 

has been normalised by the 'late' population DC count across the 1000 simulator runs 

to facilitate comparison of results in later discussion. 

 

 
 

The system-wide effector T-cell population curves were of a similar form to the 

baseline curves, though peak populations of the different cell types (the CD8 Treg in 

particular) recorded had shifted from their baseline values as illustrated below in 

Figure 3.9. As anticipated the peak population of CD8 Treg was reduced from the 

approximate 1000 cells in the CD4 Treg abrogation experiment to around 750 cells 

under CD4 Treg abrogation coupled with an enforced delay in constitutive Qa-1 

expression by DCs. 
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Figure 3.9: Median T-cell effector population levels (‘responses’) from 1000 

simulator runs under CD4 Treg abrogation and employing a mean delay of 2.48 

days in constitutive expression of Qa-1 by dendritic cells (‘Qa-1 delay’). The peak 

population of effector CD8 Treg has been reduced to ~750 cells from the original 

CD4 Treg abrogation experiment peak of ~1,000 cells. This is still above the ~600 

cell peak population of CD8 Treg effectors found for the baseline experiment. 

 

 
 

3.6.5.2 The 'Longer Qa-1 Delay' Experiment 

 

When we repeated the simulation using a longer mean delay in constitutive Qa-1 

expression of 3.44 days, the system-wide effector T-cell population curves were 

again of a similar form to the baseline curves (the effector T-cell population sizes are 

presented in Figure 3.10 below). The peak population of CD8 Treg was reduced from 

the approximate 1000 cells in the CD4 Treg abrogation experiment to around 400 

cells under CD4 Treg abrogation coupled with the longer enforced delay in 

constitutive Qa-1 expression by DCs.  
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Figure 3.10: Median T-cell population responses from 1000 simulator runs 

under CD4 Treg abrogation and employing a mean delay of 3.44 days in 

constitutive expression of Qa-1 by dendritic cells (‘longer Qa-1 delay’). The peak 

population of effector CD8 Treg has been reduced to ~400 cells from the original 

CD4 Treg abrogation experiment peak of ~1,000 cells. This is now lower than the 

~600 cell peak population of CD8 Treg effectors found for the baseline experiment. 

 

 
 

Again we verified that the observed distribution of DC ages at the time of licensing 

reproduced the normal distribution from which the times of licensing were drawn. 

This was again the case; the comparison of the two distributions is presented in 

Figure 3.11 below. 

 

It should be noted that the apparently anomalous datum at age zero arises due to the 

way that the simulator calculates times for future events. The normal distribution 

used to parameterise our time for DC licensing actually extends nearly two days into 

the past and therefore, if these times are selected by the simulator they have to be 

rounded up to 0 or else the simulator would be trying to place the licensing event in 

the past. 

 



3.6 The ‘Age of Licensing’ Experiment 

 

51 

Figure 3.11: Distribution of dendritic cell ages at the time of licensing (blue bars) 

in 1000 runs of the simulator implementing CD4 Treg abrogation with an 

enforced mean delay of 3.44 days in constitutive expression of Qa-1 (‘longer Qa-

1 delay’) compared to the normal distribution used to generate the times of 

licensing for the dendritic cells in this simulation (red bars). The data presented 

has been normalised by the 'early' population DC count across the 1000 simulator 

runs to facilitate comparison of results in later discussion. 

 

 
 

The significance of the changes in T-cell peak populations was assessed using the 

Mann and Whitney A-test described in section 3.4.3 [Mann and Whitney 1947, 

Vargha and Delaney 2000]. The CD8 Treg effector population in the ‘Qa-1 delay’ 

experiment showed a medium-sized increase as compared to the baseline case and a 

large decrease as compared to the CD4 Treg abrogation experiment. The ‘longer Qa-1 

delay’ experiment showed a large decrease compared to both the baseline and CD4 

Treg abrogation experiments. 

 

For the CD4 Th1 cells the peak populations showed small changes overall. The 

number of Th1 apoptosed appeared to be more significantly affected, as expected as 

significant changes in the size of CD8 Treg population might reasonably be expected 

to have significant impact on the numbers of CD4 Th1 cells they could apoptose.  

 

The experimental results and their significance are discussed in greater detail in 

Section 3.9 where we then attempt to assess the relative influence of the two 

hypotheses on CD8 Treg peak effector population. A short summary of the relevant 

experiments is presented in Table 3.1 below. 
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Table 3.1: Summary of the experiments compared during the investigation of 

the effects of variation in the timing of Qa-1 expression by dendritic cells. The 

table details the median ages of DCs at licensing in the various experiments along 

with the peak population attained by the CD8 Treg. Notes are provided to further 

identify each experiment in the text. All experiments except ‘Qa-1 delay’ showed a 

significantly changed CD8 Treg population as compared to the baseline simulation as 

assessed using the A-test. 

 

Experiment Peak CD8 

Treg 

effector 

population 

Notes 

Baseline 

Median age of DC at time of 

licensing = 3.06 days 

600 default behaviour of simulator as 

described in Read et al. 2009a.  

CD4 Treg abrogation 

Median age of DC at time of 

licensing = 0.00 days 

(constitutive and immediate) 

1000 as described in Williams 2010b.  

‘Qa-1 delay’ 

Median age of DC at time of 

licensing = 2.48 days 

750 parameterised from the distribution 

of ages of licensing of DCs created 

later than 20 days into the baseline 

simulation.  

‘Longer Qa-1 delay’ 

Median age of DC at time of 

licensing = 3.44 days 

400 parameterised from the distribution 

of ages of licensing of DCs created 

prior to 20 days into the baseline 

simulation.  

 

3.7 The ‘Spatial Saturation’ Experiment 

 

3.7.1 Conducting the ‘Spatial Saturation’ Experiment 

 

The aim of this experiment was to provide a means by which we could compare 

experiments that employed CD4 Treg abrogation with those that did not. This was 

done in order to assess the impact of the spatial competition of CD8 Treg with CD4 

Treg on the peak population of CD8 Treg effectors in the simulation, using the A-

Test as described in section 3.4.3.  

 

Our previous experiments concerned the 'age of licensing' hypothesis and contrasted 

systems where CD4 Treg abrogation had occurred and the expression of Qa-1 by DC 

had been delayed with those where Qa-1 expression was immediate. This experiment 

relates to the spatial saturation hypothesis and should allow us to compare systems 

where there are CD4 Treg present and those where they are not. 

 

However, analysis of the spatial saturation data was problematical as there was great 

variation in the proportion of the binding space occupied around DCs as well as in the 
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numbers of DC apoptosed during the different simulator runs. This made it difficult 

to present coherent and meaningful datasets appropriate for use with the A-Test 

[Vargha and Delaney 2000]. No other suitable test was identified for demonstrating 

the significance of differences in the data. The data is, however, presented here 

because it provides insight into the population dynamics of T-cells during the 

simulation. 

 

Initially, we attempted to examine the distribution of the spatial saturations of the DC 

in the 1000 baseline runs and the two sets of 1000 runs with CD4 Treg abrogation 

coupled with different delays in constitutive Qa-1 expression implemented (the 'Qa-1 

Delay' and 'longer Qa-1 Delay' experiments described in Section 3.6.5).  

 

After initial inspection of the resulting data, we investigated whether the distribution 

of neighbours around the DC changed over simulation time. This investigation is 

particularly appropriate here as a large proportion of the logged DCs that are created 

prior to the 20 day cut off express MBP, whereas those created later in the simulation 

tend to express Th1-derived peptides. Very few DC express both MBP and Th1-

derived peptides. This is not unreasonable, in the simulation DCs are created 

expressing MBP and early on in the simulation have not had time to encounter CD4 

Th1 cells and phagocytose them, the phagocytosis being a necessary preliminary step 

to the expression of Th1-derived peptides. 

 

The data from the baseline and each ‘Qa-1 delay’ run was split into 'early' and 'late' 

DCs as in the previous experimental analysis and the space occupied around the DCs 

by each T-cell population calculated. As the data is complicated, only specific 

emerging trends are presented for the sake of simplicity and brevity. 

 

3.7.2 Results of the ‘Spatial Saturation’ Experiment 

 

Of particular note is the fact that the spatial saturation of the DCs expressing Th1-

derived peptide is dominated by CD4 Treg in the baseline experiment in a ratio of 

roughly 2:1 with CD8 Treg (see Table 3.2 which summarises the histograms 

presented in Figure 3.12). The median spatial occupancy for CD4 Treg is around 60% 

and for CD8 Treg around 30%, but is irrelevant to the Qa-1 expression delaying 

experiments as CD4 Treg abrogation was implemented during these simulations. 

 

The median spatial saturation by CD4 Th cells around MBP expressing DCs is 90% 

for the baseline runs and appears to be reduced in the experiments where we 

implemented a Qa-1 expression delay. It is not known why this saturation does not 

actually reach 100% in the baseline experiment. The two trends are illustrated in 

Figures 3.12a-f below. 

 

A further trend that emerged from the data was that towards greater spatial saturation 

by Tregs with time i.e. DCs tend to become more 'crowded' by Treg toward the latter 

half of the simulation. In contrast, the DC expressing MBP tended to become slightly 

less saturated by CD4 Th1 as the simulation progressed (this was markedly more 

significant in the CD4 Treg Abrogation experiment). This could potentially arise 
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from the fact that later on in the simulation there is a greater population of CD8 Treg 

and thus a greater possibility of CD4 Th1 apoptosis occurring and in the CD4 Treg 

abrogation experiment there are significantly more CD8 Treg present. This could be 

confirmed from simulation by recording CD8 Treg-CD4 Th encounters resulting in 

apoptosis of CD4 Th. Figures 3.12a-f illustrate the trends in the baseline experiment. 

These trends were observed for DC expressing Th1-derived peptides in the baseline, 

the CD4 Treg abrogation and both Qa-1 expression delaying experiments (as 

illustrated for the ‘Qa-1 Delay’ experiment in Figures 3.13a-d). 

 

Figure 3.12: Histograms illustrating the trend toward lesser spatial saturation of 

MBP-expressing dendritic cells by CD4 Th1 and toward greater spatial 

saturation of Th1-derived peptide expressing dendritic cells by Treg with 

simulation time across 1000 baseline simulator runs. The data presented has been 

normalised by the DC population count pertaining to the subset of interest (i.e. 'early' 

or 'late') across the 1000 simulator runs to facilitate comparison of results in later 

discussion. Panels a) and b) show the fraction of ‘early’ and ‘late’ population MBP-

expressing DCs having a given proportion of their binding space occupied by CD4 T-

helper cells. Panels c) and d) show the fraction of ‘early’ and ‘late’ population Th1 

peptide-expressing DCs having a given proportion of their binding space occupied by 

CD4 Treg. Panels e) and f) show the fraction of ‘early’ and ‘late’ Th1 peptide-

expressing population DCs having a given proportion of their binding space occupied 

by CD8 Treg.  
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The Qa-1 expression delaying experiments (‘Qa-1 Delay’ and ‘Longer Qa-1 Delay’) 

showed similar trends to those described for the baseline experiment above (the trend 

toward lesser spatial saturation of DC by CD4 Th1 with time is illustrated in Figures 

3.13a and b, while that for greater spatial saturation of DC with time by CD8 Treg is 

illustrated in Figures 3.13c and d).  

 

Figure 3.13: Histograms illustrating the trends toward lesser spatial saturation 

of dendritic cells by CD4 Th1 and greater spatial saturation of dendritic cells by 

CD8 Treg with simulation time across 1000 simulator runs under CD4 Treg 

abrogation with a mean delay of 59.2 hours implemented in the constitutive 

expression of Qa-1 by dendritic cells. The data presented has been normalised by 

the DC population count pertaining to the subset of interest (i.e. 'early' or 'late') across 

the 1000 simulator runs to facilitate comparison of results in later discussion. Panels 

a) and b) show the fraction of ‘early’ and ‘late’ population MBP-expressing DCs 

having a given proportion of their binding space occupied by CD4 T-helper cells. 

Panels c) and d) show the fraction of ‘early’ and ‘late’ population Th1 peptide-

expressing DCs having a given proportion of their binding space occupied by CD8 

Treg. 

 

 
 

However, there were also some differences between the Qa-1 expression delaying 

experiments and the baseline. In the ‘Qa-1 delay’ experiment
20

 the maximum 

proportion of binding space around DCs occupied by CD8 Treg is greater than in the 

                                                           
20

 Parameterised with data from dendritic cells created after 20 days into the baseline experiment 
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baseline. This should come as no surprise as in the baseline experiment the CD8 Treg 

have to compete for binding sites around the DC with the CD4 Treg population 

whereas in the Qa-1 delay experiments the CD4 Treg population has been abrogated. 

In contrast, the ‘Qa-1 Delay Longer’ experiment exhibited similar median saturation 

of DCs by CD8 Treg in the latter half of the simulation to that shown in the baseline, 

despite the fact that the CD4 Treg were abrogated in the Qa-1 delay experiment. A 

possible reason for this may be simply the lower population of CD8 Treg present in 

the simulation due to the longer wait for activation. 

 

The median spatial saturation levels for the DC in the baseline, the CD4 Treg 

abrogation and the two Qa-1 expression delaying experiments are presented as a 

summary of the above in Table 3.2 

 

Table 3.2: Summary of the median spatial saturations of apoptotic dendritic 

cells across 1000 runs of the EAE simulator in the baseline, CD4 Treg 

abrogation and Qa-1 expression delaying experiments. Median data has been 

presented since the distributions are non-normal meaning that presentation of means 

would be inappropriate. The median data serves to distinguish the type of cellular 

neighbourhood of DCs early in the simulation from that later in the simulation. 

 

Experiment Cell type Median proportion 

of space around DC 

occupied 'early' 

(%) 

Median proportion 

of space around DC 

occupied 'late' (%) 

Longer Qa-1 delay 

(median DC age at 

licensing = 3.44 

days) 

CD4 Treg 0 (NA) 0 (NA) 

CD8 Treg 3.57 32.14 

CD4 Th 82.14 73.21 

Qa-1 delay 

(median DC age at 

licensing = 2.48 

days) 

CD4 Treg 0 (NA) 0 (NA) 

CD8 Treg 8.93 73.21 

CD4 Th 89.29 72.21 

CD4 Treg 

Abrogation 

(median DC age at 

licensing = 0.00 

days) 

CD4 Treg 0 (NA) 0 (NA) 

CD8 Treg 12.50 83.93 

CD4 Th1 83.93 57.14 

Baseline 

(median DC age at 

licensing = 3.06 

days) 

CD4 Treg 39.29 57.14 

CD8 Treg 17.86 30.36 

CD4 Th 92.96 87.5 
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3.8 Demonstrating the Effect of Spatial Restriction about Dendritic Cells on the 

Peak Population of CD8 Treg  

 

Given that the spatial saturation data described in Section 3.7 was unsuitable for 

comparison using the A-Test on account of the different sizes of dataset between the 

experiments, a different method was required to provide a comparison between 

experiments where CD8 Treg faced spatial competition from CD4 Treg and 

experiments where they did not. Ideally this method relies on comparing simulator 

time-series data, particularly the T-cell effector population levels with time, as these 

are guaranteed to be of the same size i.e. the number of simulation time steps. To this 

end further experiments are conducted in which the spatial restrictions applicable to 

CD8 Treg are modified as compared to other T-cell populations. 

 

The simulator baseline behaviour is to allow T-cells to migrate to a grid point only if 

there are less than 7 T-cells already at that point. We selectively removed this test for 

saturation of the destination grid point for CD8 Treg migrating to this position. In two 

separate experiments we allowed CD8 Treg to continue to enter a grid point until 

there were first 14 and secondly 21 T-cells present in the grid point, the values 14 and 

21 representing twice and three times the baseline limit on the number of T-cells 

occupying any one grid point. This allowed us to assess the behaviour of the system 

when CD8 Treg face significantly less spatial competition but still need to wait for 

DC to become licensed before they can be activated. 

 

It is important to emphasise that the restrictions pertaining to T-cell migration are all 

that is changed between the baseline simulator and these two experiments. Expression 

of Qa-1 on DC occurs as for the baseline case and CD4 Treg are present in the 

simulation. The experiments relevant to the comparison of levels of CD8 Treg spatial 

restriction on peak CD8 Treg population are enumerated in Table 3.3 below. The 

author has adopted short-hand names for the two additional experiments in order to 

simplify the text and discussion. 

 

Table 3.3: List of experiments facilitating the comparison of the effects of 

varying the spatial restrictions imposed on CD8 Treg. 

 

Experiment Referred to in text as 

Baseline baseline 

Allow CD8 Treg to enter a grid point 

until there are 14 T-cells at that 

location 

maximal crowding 14 

Allow CD8 Treg to enter a grid point 

until there are 21 T-cells at that 

location 

maximal crowding 21 
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As a result of the relaxation of the crowding criteria for CD8 Treg, but not other T-

cell populations, the peak population of CD8 Treg was greatly increased compared to 

the baseline experiment. When allowing CD8 Treg to enter a grid space up to a total 

of 14 T-cells, the peak response rose to ~2,300 CD8 Treg cells. This figure rose even 

further, to ~3,000 cells in the 'maximal crowding 21' experiment. This is illustrated in 

Figure 3.14 a, b and c below and summarised in Table 3.4. 

 

Figure 3.14: Effector T-cell population (‘response’) curves obtained under the 

baseline conditions and with modified rules for CD8 Treg migration – firstly, 

allowing CD8 Tregs to migrate into a grid point if there are fewer than 14 T-

cells already present there and secondly, allowing CD8 Tregs to migrate into a 

grid point if there are fewer than 21 T-cells already present there. Panel a) shows 

the baseline experiment. Panel b) shows the results of the experiment with the 

maximal crowding parameter set to 14 and panel c) shows the results of the 

experiment with the maximal crowding parameter set to 21. All results were obtained 

from median data from samples of 1000 simulator runs. The maximal crowding 

parameter determines how many T-cells can migrate into a grid point and is more 

fully described in the text. 
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Table 3.4: Summary of the peak population of CD8 Treg effectors attained in 

the baseline, CD4 Treg abrogation and spatial restriction experiments. The non-

linear relationship between the number of T-cells permitted per grid space and the 

maximum CD8 Treg effector population arises from system stochasticity. 

 

Experiment Peak CD8 Treg 

effector population 

(cells) 

Number and nature of T-cells 

allowed to enter a grid-space  

baseline 600 CD4 Th / CD4 Treg / CD8 Treg 

enter if < 7 T-cells already present 

CD4 Treg abrogation 1000 CD4 Th / CD4 Treg / CD8 Treg 

enter if < 7 T-cells already present 

Maximal crowding 14 2300 CD4 Th / CD4 Treg enter  if < 7 

T-cells already present, CD8 Treg 

enter if < 14 T-cells already 

present 

Maximal crowding 21 3000 CD4 Th / CD4 Treg enter  if < 7 

T-cells already present, CD8 Treg  

enter if < 21 T-cells already 

present 

 

An investigation of the cellular neighbourhood of apoptotic DCs in these experiments 

showed that the DC experienced an increase in spatial occupancy by CD8 Treg, with 

some showing more than the theoretical maximum occupancy as defined by the 

baseline experiment i.e. more than 56 T-cells around a DC. The trend toward super-

crowded DC was more pronounced towards the end of the simulation for CD8 Treg. 

CD4 Treg showed the reverse trend, as CD8 Treg numbers expand, the CD4 Treg are 

apparently 'crowded out' from the DC and the amount of space occupied by CD4 

Treg diminishes toward the end of the simulation. This is illustrated in Figure 3.15a-d 

below. 

 

3.9 The Significance of the Changes in Maximum CD8 Treg Populations 

Between Experiments 

 

We are now in a position to try to assess the relative influence of the age of licensing 

and spatial saturation hypotheses on the peak populations of CD8 Tregs in the 

system. We aim to achieve this using non-parametric A-Test statistics [Vargha and 

Delaney 2000] as described in Section 3.4.3. 

 

The T-cell population (or 'response') curves from each experiment were analysed to 

locate the maximum response of each T-cell subtype and the time within the 

simulation at which this occurred. This data was then compared to that from the 

baseline and original CD4 Treg abrogation experiments. The comparisons of the peak 

CD8 Treg populations in the experiments from the 'age of licensing' hypothesis are 
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presented in Table 3.5 and those for the spatial competition experiments in Table 3.6. 

The corresponding measures of significance for the changes relative to baseline and 

CD4 Treg abrogation experiments are presented in Tables 3.7 and 3.8 respectively. 

 

Figure 3.15: Illustrating spatial saturation of DC under the modified CD8 

migration rules – in this instance we allowed CD8 Treg to continue to migrate 

into a grid space up until there were 14 T-cells present (the default simulator 

behaviour is to permit a maximum of 7 T-cells per grid point). The data are 

normalised by the 'early' and 'late' DC populations to facilitate comparison. Panels a) 

and b) show the fraction of ‘early’ and ‘late’ Th1 peptide-expressing population DCs 

having a given proportion of their binding space occupied by CD8 Treg. Panels c) 

and d) show the fraction of ‘early’ and ‘late’ population Th1 peptide-expressing DCs 

having a given proportion of their binding space occupied by CD4 Treg.  
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Table 3.5: Comparison of the peak CD8 Treg effector populations in the 

different experiments performed on the licensing of DC by CD4 Treg.  

 

Experiment Peak CD8 Treg 

population (cells) 

delay in Qa-1 expression 

/hours 

CD4 Treg abrogation 1000 0.000 

'Qa-1 Delay' 750 59.500 

Baseline 600 73.375 

'Longer Qa-1 Delay' 400 82.500 

 

Table 3.6: Comparison of the effects of the different experiments performed on 

the spatial competition between CD4 Treg and CD8 Treg around DC.  

 

Experiment Peak CD8 Treg 

population (cells) 

CD8 Tregs can enter grid 

point if <X T-cells present: X= 

(cells) 

Baseline 600 7 

CD4 Treg abrogation 1000 7 

'Maximal crowding 14' 2300 14 

'Maximal crowding 21' 3000 21 

 

Table 3.7: Comparison of the effects of different experiments performed on the 

licensing of DC by CD4 Treg on peak population attained by effector CD8 Treg.  

 

Experiment 1  Experiment 2  A-Test 

measure 

 Effect Size 

CD4 Treg abrogation baseline 0.941468 Large 

'Qa-1 delay' baseline 0.704443 Medium 

'Longer Qa-1 delay' baseline 0.163168 Large 

 

Experiment 1  Experiment 2  A-Test 

measure 

 Effect Size 

'Qa-1 delay' CD4 Treg 

Abrogation 

0.176274 Large 

'Longer Qa-1 delay' CD4 Treg 

Abrogation 

0.011294 Large 

 

The A-Test statistics suggest that delaying Qa-1 expression by DC during a 

simulation in which CD4 Treg have been abrogated, has a significant effect on the 
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peak population attained by the CD8 Treg compared to CD4 Treg abrogation 

experiments in which Qa-1 expression is constitutive and immediate. The effect sizes 

of the changes relative to the baseline experiment are less marked as the mean delay 

times in these experiments are not as far removed from that found in the baseline i.e. 

3.06 days as they are from the delay i.e. 0.00 days in the CD4 Treg abrogation 

experiment. 

 

Conversely, the effect sizes of the peak CD8 Treg population changes caused by the 

changes of migration rules for CD8 Tregs ('maximal crowding 14' and 'maximal 

crowding 21' experiments) were both large compared to both the baseline and the 

CD4 Treg abrogation experiments as shown in Table 3.8. 

 

Table 3.8: Comparison of the effects on the peak population of CD8 Treg 

effectors of different experiments performed on the spatial competition between 

CD4 Treg and CD8 Treg around DC. 

 

Experiment 1  Experiment 2  A-Test Score   Effect Size 

Maximal crowding 

14 

 baseline 0.999985 Large 

Maximal crowding 

21 

 baseline 1.000000 Large 

 

Experiment 1  Experiment 2  A-Test Score  Effect Size 

Maximal crowding 

14 

CD4 Treg 

Abrogation 

0.994426  Large 

Maximal crowding 

21 

CD4 Treg 

Abrogation 

0.999787  Large  

 

From Table 3.7 it can be seen that the timing of licensing is profoundly important in 

determining the size of the population of CD8 Treg during immune response (CD4 

Treg abrogation with Qa-1 delay implemented versus CD4 Treg abrogation with no 

delay in Qa-1 expression). Equally, the effect of reducing the spatial restrictions 

applied to CD8 Treg migrating into the vicinity of a DC, are seen to have a large 

effect on the peak population of CD8 Treg compared to the baseline and CD4 Treg 

abrogation experiments. 

 

Therefore we conclude that the lifting of spatial competition in the original CD4 Treg 

abrogation experiment was at least as important as the constitutive expression of Qa-1 

by DC in promoting a much inflated population of CD8 Treg since we cannot 

realistically say any more based on the A-Test results derived in the course of this 

work.



3.10 Verification of the Significance of the Effect of Spatial Competition on Peak 

CD8 Treg Effector Population – an Experimental Postscript 

 

63 

3.10 Verification of the Significance of the Effect of Spatial Competition on Peak 

CD8 Treg Effector Population – an Experimental Postscript 

 

In Section 3.8 we presented results that demonstrated the significance of the impact 

that CD4 Treg – CD8 Treg spatial competition has on the peak population of CD8 

Treg Effectors in the simulation. During the writing process and following discussion 

of the experimental design, it was decided that the experiments of Section 3.8 were 

not the fairest comparison of the baseline and CD4 Treg abrogation experiments 

possible. 

 

To gain as fair a comparison as possible of these two experiments in order to assess 

the effect of Treg spatial competition, we need to be able to allow the same number 

of CD8 Tregs into a baseline simulation grid space as can occupy an abrogation 

experiment grid space whilst keeping all other factors unchanged. 

 

From Table 3.2 which details the median spatial occupancy around DC at their time 

of apoptosis, we see that the median fraction of DC binding space occupied by CD8 

Treg is ~84%, corresponding to 6 CD8 Treg around each DC. In comparison, the 

median fraction of DC binding space occupied by CD8 Treg in the baseline is ~30%. 

 

A further experiment was conducted in which we again modified the rules by which 

we assess whether T-cell migration into a given grid point are allowed. In this 

particular experiment we continued to test CD4 Treg and CD4 Th migration as in the 

default simulation i.e. a CD4 Treg or CD4 Th can only enter a grid point if there are 

fewer than 7 T-cells already present there. The change was implemented in how we 

tested for CD8 Treg migration. When attempting to move a CD8 Treg into a grid 

point we only counted the CD8 Treg that were already present at that point – and if 

there were fewer than 7, the CD8 Treg could migrate to the grid point. 

 

Once again, the change in the way we allow CD8 Treg to migrate permitted the CD8 

Treg to overcome the spatial competition from CD4 Treg and greatly enhanced the 

peak population of CD8 Treg Effectors. The baseline population of ~600 cells was 

increased to ~1400 when CD8 Treg migration rules were relaxed. The non-parametric 

effect size A-Test scored the effect of this experiment as large when comparing 

against either the baseline or the CD4 Treg abrogation experiment (0.762 for peak 

CD8 Treg population and 0.001 for peak CD4 Treg population when comparing to 

the baseline simulator. The corresponding scores for comparison to the CD4 Treg 

abrogation experiment are 0.074 for CD8 Treg effector population and 0.000 for the 

CD4 Treg population).  

 

This experiment serves to corroborate the experimentation described in Section 3.8 

and further strengthens the idea that CD4 Treg – CD8 Treg spatial competition exerts 

a powerful effect on the eventual population size of CD8 Treg during an immune 

response. 

 



3.11 Conclusions 

 

64 

3.11 Conclusions 

 

The distribution of median ages of DCs at time of licensing for Qa-1 suggest that the 

age of DCs at licensing is quite diverse but tends to lie between 3 and 4 days (70-80 

hours) as calculated from the entire simulation population. 

 

If DC data is split into two populations, those DC created before and after 20 days, 

we see a clear distinction of the medians of the two data sets. Intuitively this makes 

sense as early on in the simulation there are fewer CD4 Tregs in the simulation to 

license the DCs for Qa-1 expression and we observe a longer median age of 3.48 days 

(82.50 hours). For the DCs created later in the simulation we observe a median age of 

approximately 2.48 days (59.50 hours). At this stage in the simulation there are a 

greater number of CD4 Treg and so a greater chance of encounter between them and 

DC effectors so making the possibility of productive encounters greater. 

 

The distribution of median spatial saturations shows that for DC expressing Th1-

derived peptide, binding space is dominated by CD4 Treg in a ratio 2:1 reminiscent 

of the ratio found for CD4 to CD8 T-cells produced in Efroni et al.'s model of 

thymocyte development in the thymus [Efroni et al. 2007]. The proportion of binding 

space occupied is roughly CD4 Treg: 60% and CD8 Treg: 30%. 

 

DCs expressing MBP are saturated by CD4 Th cells with approximately 90% of 

available binding space occupied by these cells in the baseline runs. One possible 

explanation for the fact that this figure is not 100% lies in the stochasticity of the 

system. When a T-cell attempts to bind to an APC in the simulation, it does not check 

every single grid space but randomly samples several spaces prior to moving away 

and it is this less than full sampling of DC binding space that can result in less than 

100% occupancy. 

 

Within these simulation runs there were very few DC expressing MBP and Th1-

derived peptides together and it is difficult to draw meaningful generalizations from 

the data. There were no CD8 Tregs observed around these cells and very few CD4 

Tregs. Several simulation runs exhibited DCs with high proportions of occupied 

binding space – up to ~75%, the neighbouring cells being almost exclusively CD4 

Th1. 

 

Generally spatial saturation of DCs expressing Th1-derived peptides tends to increase 

as the simulation progresses, whereas the spatial saturation around MBP expressing 

DCs falls slightly. 

 

Abrogation of the CD4 Treg population within the simulator appears to permit the 

spatial saturation of Th1-derived peptide expressing DC by CD8 Treg to increase to 

levels significantly above those observed for the baseline runs. 

 

The further experiments, in which we relaxed the rules governing CD8 Treg 

migration into a grid space, showed that permitting CD8 Treg to benefit from a more 

lenient migration condition had a very significant impact on the peak response for 
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these cells. It is entirely possible that there may be some limit on just how many T-

cells can be allowed to occupy any one binding site around a DC. Eventually if CD8 

Treg proliferate to the extent that they then completely prevent CD4 Treg from 

accessing DC and then licensing them, no more CD8 Treg become activated or 

proliferative and the population plateaus. It remains to be determined just where this 

population plateau lies in relation to the baseline restrictions on T-cell migration. The 

significance of the effect of relaxing spatial competition was further demonstrated by 

an additional experiment in which we counted only CD8 Treg in the destination grid 

cell if we were attempting to move a CD8 Treg into that grid cell. 

 

Overall, we observe that the simulator is producing an elevated peak population of 

CD8 Tregs under CD4 Treg abrogation via a combination of Hypothesis 1 and 

Hypothesis 2. That is to say that both reduced spatial restriction due to the missing 

competition from CD4 Treg and the fact that constitutive Qa-1 expression was 

permitted on DCs have allowed the CD8 Treg to become activated and proliferate 

more freely than they would have done in the baseline simulation.  

 

One could be tempted to speculate that the spatial competition between CD4 Treg 

and CD8 Treg for binding space around DC coupled with the requirement for DC to 

be licensed by CD4 Treg before CD8 Treg can be activated, serves as a brake on 

potentially runaway responses by CD8 Treg. 

 

An attempt has been made to relate the observations drawn from the presented 

experimentation to the literature. This has proved difficult since the work conducted 

has been speculative and would have been problematic to conduct in a wet lab. 

However, the observation that CD4 Treg outnumber CD8 Treg around DC by 2:1 

mirrors the result of CD4 T cells outnumbering CD8 T-cells 2:1 obtained by Efroni et 

al. 2007 in their simulation of T-cell development in the thymus. To date we have 

been unable to obtain further corroboration of our results from the literature. 
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Chapter 4: Investigating the Effect of Adding the CD200-CD200R Regulatory 

Pathway to the Domain Model 

 

4.1 Introduction 

 

We are principally interested in aspects of CD8 Treg involvement in EAE regulation. 

The expression of CD200 by CD8 Treg effectors potentially allows these cells to 

signal down-regulation of expression of costimulatory molecules, Qa-1 and MHC-II 

molecules by DCs. This in turn impacts the ability of the DC to prime all T-cell sub-

populations, so not only regulating the disease but also CD8 Treg mediated killing of 

auto-reactive CD4 T-helper cells. 

 

We seek to implement a limited model of the CD200-CD200R regulatory axis within 

our existing domain model to permit us to address greater model complexity within 

the context of the simulation and to investigate the effect that this regulation axis has 

on CD8 Treg behaviour and numbers within our EAE disease model. 

 

We have chosen to implement a simplified model of the axis to permit us to 

understand simulation behaviour in a less complex model prior to adding layers of 

greater complexity at a later stage. This greater complexity consists of extending the 

effects of CD200 and CD200R expression into the CNS. 

 

We present the revisions that we have made to the domain model in Section 4.3 and 

discuss this model and its implications in Section 4.4. The augmented model 

introduces two new parameters – the probability that a CD200-CD200R interaction 

(‘negative signal’) causes a DC to down-regulate costimulatory molecule ('CoStim') 

expression and the probability that a negative signal causes a DC to down regulate 

Qa-1 and MHC-II molecule ('MHC') expression.  

 

The work presented here attempts to locate values for these two parameters that 

return baseline simulation behaviour when this additional regulatory axis is 

implemented. We aim to achieve this via systematic mapping of simulation behaviour 

at an array of combinations of the parameter values and assessing which lie close to 

baseline behaviour (a 'factorial analysis'). Ultimately, our aim is to rebalance the 

CD200-CD200R regulatory mechanism with the CD8 Treg mediated cell killing 

mechanism so as to restore baseline simulation behaviour. 

 

The preliminary factorial analysis is described in Section 4.5 and a brief investigation 

of the immunological effects of varying the probability parameters is presented in 

Section 4.6. A further factorial analysis at smaller values of the two parameters was 

required, and is described in Section 4.7. In Section 4.8 we present a brief experiment 

as a preliminary attempt to assess the extent of the interaction between the additional 

disease regulation axis and the CD8 Treg mediated killing mechanism that existed in 

the baseline simulation. Our conclusions about the outcomes and efficacy of this 

work are presented in Section 4.9. 
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4.2 The Domain 

 

4.2.1 CD200 and CD200R 

 

CD200, also called OX2 [Minas and Liversidge 2006, Feuer 2007], is a small 

glycoprotein [Hoek et al. 2000, Wright et al. 2003, Meuth et al. 2008] expressed on 

the surface of a wide variety of cell types [Hoek et al. 2000, Wright et al. 2003]. 

Different authors report CD200 expression on different cell types but there appears to 

be consensus that CD200 is expressed by neurons [Hoek et al. 2000, Minas and 

Liversidge 2006, Copland et al. 2007, Meuth et al. 2008, Liu et al. 2010] and by T-

Cells [Minas and Liversidge 2006, Copland et al. 2007, Liu et al. 2010]. Other 

authors report expression by B-cells [Hoek et al. 2000, Minas and Liversidge 2006] 

and DCs [Liu et al. 2010]. 

 

CD200 interacts with the CD200R family of receptors [Gorczynski et al. 2004a] 

which is also a cell surface expressed glycoprotein. CD200R is generally expressed in 

cells of myeloid origin [Wright et al. 2003, Gorczynski et al. 2004a, Meuth et al. 

2008] such as DCs [Copland et al. 2007, Liu et al. 2010], macrophages and microglia 

[Liu et al. 2010]. Minas and Liversidge 2006 report CD200R expression on APCs 

generally. 

 

The interaction of CD200 with its receptor has important consequences for the 

behaviour of the cell receiving the receptor signal. CD200 has been shown to mediate 

inhibitory signals via CD200R [Meuth et al. 2008] which play a role in the regulation 

of macrophages [Hoek et al. 2000, Wright et al. 2003, Minas and Liversidge 2006]. 

Through this signalling, CD200 helps to regulate the adaptive immune system 

through lymphocyte-APC interactions [Gorczynski et al. 2004a]. 

 

The CD200-CD200R axis is potentially a very complex regulatory network as there is 

some evidence that CD200R is expressed on certain T-cell subsets whilst, conversely 

APCs may also express CD200 [Minas and Liversidge 2006, Liu et al. 2010]. This 

additional complexity may serve as a form of 'fine control' of immune response 

[Minas and Liversidge 2006]. 

 

The evidence for, and the implications of this role for CD200 are examined in the 

following Section (4.2.2). 

 

4.2.2 Experimental Evidence for the Role of the CD200-CD200R Regulatory 

Axis 

 

A number of authors report the increased activation of macrophages and severity of 

autoimmune disorders in mice lacking the ability to express CD200 (CD200
-/- 

mice) 

[Hoek et al. 2000, Copland et al. 2005, Melchior et al. 2006]. Hoek et al. 2000 also 

demonstrated that disruption of the CD200-CD200R interaction precipitates 

susceptibility to Collagen-Induced Arthritis (CIA). Copland et al. 2005 found greater 

infiltration of the retina by macrophages during Experimental Autoimmune 

Uveoretinitis (EAU). However, the authors also found that administration of a 
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CD200R agonist was capable of suppressing EAU and produced an earlier resolution 

of the disease despite maintenance of T-cell proliferation. Subsequently, Melchior et 

al. 2006 found that microglia in the CNS of CD200
-/-

 mice showed an activated 

phenotype even in the absence of pathogenic stimuli. 

 

In contrast, a number of authors have demonstrated that stimulation of CD200R can 

lead to suppressed macrophage activity and reduced severity of inflammation [Lue et 

al. 2010] or autoimmune disease [Feuer 2007, Liu et al. 2010]. Liu et al. 2010 found 

that the decreased severity of EAE in their study was linked to reduced axonal 

damage and demyelination, a fact that they attributed to suppression of macrophage 

and microglial accumulation in the CNS. 

 

On the other hand, blockade of CD200R such that CD200 cannot bind leads to mice 

that exhibit an aggravated form of EAE [Meuth et al. 2008]. This study also observed 

an enhanced infiltrate of T-cells and macrophages in the spinal cord lesions of the 

affected mice, an observation that is explained in terms of CD200-CD200R 

interaction permitting a form of spatially restricted signalling between neurons and 

infiltrating macrophages [Meuth et al. 2008]. 

 

Finally, a study of Wld
s21 

mice showed that they suffer an attenuated form of EAE 

because these mice possess a gene phenotype that confers axon protection [Chitnis et 

al. 2007]. The authors also found decreased macrophage accumulation in the CNS 

which they associated with the constitutive expression of CD200 on neurons. 

However, administration of anti-CD200 antibody to Wld
s
 mice abrogated the axonal 

protection that they benefitted from and the mice then suffered increased CNS 

inflammation and neuro-degeneration. The authors concluded that CD200-CD200R 

plays a critical role in the attenuation of EAE and in reducing inflammation-mediated 

damage in the CNS [Chitnis et al. 2007]. 

 

Similarly, the myxoma virus can express a cell surface protein that possesses 

significant similarity to CD200 and which is implicated in myeloid lineage cell 

activation. The M141R protein is found to be required for full development of lethal 

myxoma virus infection. Compared to wild type M141R infected rabbits, M141R 

'knock-out' virus (M141R
-/-

) infected rabbits showed higher activation levels of 

macrophages and lymphocytes suggesting that M141R can inhibit macrophage 

activation and ability to prime lymphocytes, allowing the virus to bypass the host's 

immune system [Cameron et al. 2007]. 

 

Taken together, the evidence suggests that the CD200-CD200R axis serves, at a very 

minimum, as a form of immune response regulation, acting via modulation of DC or 

macrophage ability to activate T-cells. 

 

                                                           
21

 A specific genetic strain of mouse used in genetic and immunological experiments. 
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4.3 Implications in Terms of the CoSMoS Process 

 

4.3.1 The Existing Domain Model 

 

The purpose of a domain model is to fully describe the domain expert's current 

understanding of the domain of interest so that a model may be implemented from it. 

The EAE simulator domain model was briefly introduced in Section 2.10. The model 

comprises 25 UML diagrams which between them fully describe the baseline 

simulator behaviour [Read et al. 2009a, Read 2011].  

 

The domain model is fully described in [Read et al. 2009a, Read 2011]. To give the 

reader some appreciation of what has been changed in the simulator in order to carry 

out the work presented in this chapter, a short description of the domain model 

diagrams is given below. 

 

The largest set of diagrams in the model represent the lowest level of abstraction i.e. 

the most detailed descriptions, and are the state machine diagrams for the various cell 

types and molecules in the simulator. These outline what states a particular kind of 

cell may exist in and how the cell's behaviour changes according to what state it is in 

e.g. DCs can be in a non-mature or a mature state. 

 

Similarly there are state diagrams for the other cell types of the simulator [Read 

2011] – CD4Treg, CD4THelper, CD8Treg, neuron, microglia (CNSmacrophage) and 

a special diagram for generic T cell behaviour within Lymphoid Organs. The model 

also details the possible states and behaviours of the important chemical entities in 

the system – MBP, TNF- and Types 1 and 2 cytokines. 

 

The domain model [Read 2011] contains several UML class diagrams whose purpose 

is to provide descriptions of how the various classes interact to produce certain 

systemic behaviours such as propagation and regulation of EAE. The diagrams detail 

the pattern of inheritance among classes, and in what numbers the classes interact 

with each other ('aggregation') and in what way they interact ('association'). The 

Simulator Domain Model includes four class diagrams which describe how the 

various cell types interact to produce the EAE disease cycle and the regulation 

mediated recovery cycle (both of which are informally depicted in Figure 2.3 in 

Chapter 2 of this thesis).There is also a diagram describing how cellular interactions 

give rise to the 'type 2 deviation' which is the tipping of the CD4 Th1 to Th2 ratio in 

favour of Th2 as recovery progresses and Th1 cells are killed by CD8 Treg. 

 

The model [Read 2011] also contains four activity diagrams that correspond roughly 

to the class diagrams described above. Activity diagrams detail complex processes by 

documenting sequences of actions performed by the various system agents. The 

Domain Model includes diagrams illustrating how cellular level events give rise to 

instigation and perpetuation of disease as well as to recovery and type 2 deviation. 

 

Finally there are diagrams which illustrate the conventions used in describing cellular 

relationships such as interrupted interactions and spawning behaviour. There are also 
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diagrams that depict the system at higher levels of abstraction – informally 

illustrating the disease-recovery cycle and the expected behaviours of the system 

which lead to the directly observable results. 

 

4.3.2 A Revised Domain Model 

 

We are introducing two new chemical entities, CD200 and CD200R which certain 

cells are allowed to express under specific conditions. The two proteins will be 

allowed to interact, with the interaction producing specific results in the interacting 

cells. 

 

For this reason we need to modify the existing domain model diagrams [Read 2011] 

to incorporate the expression and effects of the new protein entities. The relevant 

diagrams contain some elements that are not part of standard UML. Read provides a 

full description of the domain model and all of the symbols employed within it [Read 

2011]. The symbols coined by Read that appear in the diagrams relevant to the 

changes effected here are described in Table 4.1 along with those notations added by 

the author.  
 

Table 4.1: The non-standard UML notations employed in the UML domain 

model diagrams presented in the Sections 4.3.2.1 to 4.3.2.5. These notations have 

been devised in an attempt to express concepts that are not readily conveyed in 

standard UML. 

 

Symbol Explanation 

λ  on a state transition indicates that a transition 

between states occurs after some discrete period of 

time over which a specified event occurs – a 

temporal guard. 

δ  on a state transition forms a probabilistic term in a 

guard 

pair of parallel dashed 

lines 

indicates that an event or transition is 

probabilistically interrupted (by analogy with Read's 

interrupt relationship [Read 2011]). 

dashed arrows  indicate event transitions that occur probabilistically 

(by analogy to the probabilistic interrupt described 

above). 

 

 

Modifications have been made to six of the domain model diagrams that are relevant 

to DCs, CD8 Treg and their roles in our model of the CD200-CD200R regulatory 

axis. We present the relevant portions of the model and outline the changes made to 

the existing EAE model in Sections 4.3.2.1 to 4.3.2.5. 
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4.3.2.1 The State Machine Diagram for CD8Treg  

 

We restrict CD200 expression to CD8 Treg Effector cells. CD200 expression is 

constitutive and immediate upon a CD8 Treg becoming an effector, local activation 

of the CD8 Treg not being required prior to CD200 expression. We have maintained 

the current assumption that CD8 Treg cannot enter the CNS, despite evidence to the 

contrary [Zozulya et al. 2009], in order to maintain the simplicity of the model so that 

we can effectively explore, parameterise and understand the system more fully before 

incorporating further levels of complexity. By allowing CD8 Treg to migrate into the 

CNS we would also then have to allow microglia to express CD200R and neurons to 

express CD200. Before we reach this level of complexity we need to be able to 

reliably assess the impact of the regulatory axis on the DCs. The state diagram needs 

to be changed to reflect this altered situation as illustrated in Figure 4.1.  

 

Figure 4.1: Revised state diagram for the CD8Treg class. The modifications made 

by the author are highlighted in red and show that expression of CD200 commences 

immediately upon a CD8 Treg maturing into an effector cell and without the prior 

need for local activation. Otherwise, the state behaviour of the CD8Treg class is 

substantially unaltered. Adapted from the original CD8Treg state diagram in [Read 

2011]. 
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4.3.2.2 The State Machine Diagram for DendriticCell 

 

We enable mature DCs to express CD200R immediately upon maturity. CD200-

CD200R interaction is implicit when a CD8 Treg and a DC occupy neighbouring grid 

spaces and no further signals or activation are required. The 'negative signal' 

generated by CD200-CD200R interaction is to be allowed two possible probabilistic 

effects a) to down-regulate expression of MHC compounds ('MHC') i.e. MHC Class 

II and Qa-1 completely and b) to down-regulate expression of costimulatory 

molecules ('CoStim') completely. The potential for re-induction of CoStim expression 

is not explicitly ruled out, nor is that of re-licensing of DC to express Qa-1, though in 

practice this cannot occur because MHC-II down-regulation is permanent once it 

occurs. The changes made to the model are illustrated in Figure 4.2. 

 

4.3.2.3 The EAE Instigation, EAE Perpetuation and Type 2 Deviation Activity 

Diagrams 

 

Three of the four activity diagrams also had to be modified to incorporate changes in 

behaviour associated with the CD200-CD200R negative signal. These changes reflect 

the potential for the changed ability of DCs to prime T-cells once they have received 

the negative signal. In the EAE instigation diagram the possibility of disrupting the 

priming of CD4 Th in the SLO has been added and in the perpetuation diagram we 

have added the possibility of disruption of CD4 Th priming in the CLN. Finally, 

modifications to the type 2 deviation diagram illustrate the disruption to Th and Treg 

priming owing to negatively signalled DC. The changes are presented in Figures 4.3, 

4.4 and 4.5. 
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Figure 4.2: Revised state diagram for the DendriticCell class. The modifications 

made by the author are highlighted in red and show that expression of CD200R 

commences immediately once a DC reaches maturity. The diagram also incorporates 

the anticipated effects of the CD200-CD200R signal on DC behaviour. For instance 

we have added the suppression of Qa-1 expression on a probabilistic basis upon 

receipt of the negative signal. Likewise, MHC-II and costimulatory molecule 

expression is curtailed. However, it should be noted that while MHC-II down-

regulation is permanent in our new model, Qa-1 and CoStim can at least in theory be 

switched back on if the appropriate conditions apply (though, of course, for Qa-1 this 

does not occur as CD4 T-cells require MHC-II expression before they can bind to and 

license DC). Adapted from the original DC state diagram in Read 2011 (in this 

diagram some non-standard notation has been employed:  denotes a probabilistic 

process whereas  denotes a process that occurs after some undefined delay). 
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Figure 4.3: Illustrating the modifications made to the EAE instigation activity 

diagram. The only major change made to this diagram (shown in red) is that the 

mature DC entering the SLO are now capable of expressing CD200R and thus of 

being negatively signalled by CD8 Treg effectors expressing CD200. The CD4 Th in 

the SLO are not able to bind to the signalled DC if these have ceased to express 

MHC-II compounds and so CD4 Th are not able to receive 'signal 1' necessary for 

activation. The diagram contains some non-standard UML symbols, the oblique 

dashed parallel lines are here meant to denote that the cessation of MHC-II 

expression is probabilistic and therefore the interruption of CD4 Th1 priming is 

likewise probabilistic. Adapted from the original EAE instigation activity diagram in 

Read 2011. 

 

 
 



4.3 Implications in Terms of the CoSMoS Process 

 

75 

Figure 4.4: Illustrating the modifications made to the EAE perpetuation activity 

diagram. The only major change made to this diagram (shown in red) is that the 

mature DC entering the CLN are now capable of expressing CD200R and thus of 

being negatively signalled by CD8 Treg effectors expressing CD200. The CD4 Th in 

the CLN arel not able to bind to the signalled DC if these have ceased to express 

MHC-II compounds and so CD4 Th are not able to receive 'signal 1' necessary for 

activation. The diagram contains some non-standard UML symbols, the oblique 

dashed parallel lines are here meant to denote that the cessation of MHC-II 

expression is probabilistic and therefore the interruption of CD4 Th1 priming is 

likewise probabilistic. Adapted from the original EAE perpetuation activity diagram 

in Read 2011. 
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Figure 4.5: Illustrating the modifications made to the type 2 deviation activity 

diagram. The changes made to this diagram (shown in red) indicate that 

immunogenic DC are now capable of expressing CD200R and thus of being 

negatively signalled by CD8 Treg effectors expressing CD200 and that their priming 

of CD4 Th1 and Th2 populations can be disrupted. Similarly, the possibility of 

disrupting Treg priming by negatively signalled DC is included here. The diagram 

contains some non-standard UML symbols, the oblique dashed parallel lines are here 

meant to denote that the cessation of MHC-II, CoStim and Qa-1 expression is 

probabilistic and therefore the interruption of T-cell priming is likewise probabilistic. 

Adapted from the original type 2 deviation activity diagram in Read 2011. 

 

 
 

4.3.2.4 The Expected Behaviour Diagram  

 

Finally, we needed to modify the expected behaviour diagram which details the 

system at the highest level of abstraction. The modified diagram (Figure 4.6) 

incorporates the potential for down-regulation of the expression of CoStim, MHC-II 

and Qa-1 on DC by negative signalling from effector CD8 Treg. 

 



 

 

Figure 4.6: The Expected Behaviour Diagram which illustrates the macroscale, observable effects of the microscale 

interactions of the individual cells. The diagram has been modified simply by the addition of an arrow indicating the negative 

signalling of DCs by CD8 Treg (the change is high-lighted in red). As before the figure is adapted from the original as presented in 

Read 2011. 
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4.3.2.5 Creation of an EAE CD200-CD200R Regulation Axis Activity Diagram 

 

Additionally, we attempted to create an activity diagram that expresses the sequence 

of events set in motion by negative signalling of DC. A very basic CD200 Axis 

regulation activity diagram is presented in Figure 4.7. 

 

Figure 4.7: EAE CD200 Axis regulation activity diagram. Non-standard notation 

has been employed to express ideas that are difficult to express within standard UML. 

The dotted directed lines are meant to denote that the following action is performed 

probabilistically – that is down-regulation of Qa-1, MHC-II and CoStim are all 

probabilistic. No attempt is made in this diagram to connect this regulation axis into 

the original CD8 Treg mediated regulation. This diagram was not part of the original 

domain model and has been added by the author. 
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4.4 The Model Implemented 

 

Modifications are made to the EAE Simulator to facilitate incorporation of a simple 

model of the CD200-CD200R regulatory axis. The altered model contains two new 

parameters which we wish to assign values to in such a way that simulator baseline 

behaviour can be reproduced even when the new regulatory axis is included in our 

implementation. 

 

CD8 Treg effectors are made capable of CD200 expression without local activation, 

with immediate effect upon becoming an effector. Mature DCs can constitutively 

express CD200R, again immediately upon maturity.  

 

At the moment CD8 Treg remain excluded from the CNS, neurons are not allowed to 

express CD200 and microglia are not permitted to express CD200R. This allows us to 

explore the new model at a lower level of complexity compared to if we had included 

all the cell types in our model immediately, facilitating our understanding of novel 

regulatory axis behaviour in the simulation prior to adding further layers of 

complexity at a later date. 

 

In our model, interaction of CD8 Treg with a DC implies CD200-CD200R interaction 

and DC receives a 'negative signal' via this interaction. Currently, one negative signal 

can completely switch off CoStim and / or MHC (MHC-II and Qa-1) expression on a 

probabilistic basis. 

 

This change potentially radically alters the simulation behaviour and therefore it is 

necessary to parameterise the probabilities for CoStim and MHC down-regulation 

upon receipt of the CD200-CD200R negative signal by DC. 

 

There are two probability parameters to explore – the probability that a negatively 

signalled DC down-regulates MHC and the probability that a negatively signalled DC 

down-regulates CoStim e.g. one negative signal may have a 10% chance of down-

regulating MHC expression and at the same time a 50% chance of down-regulating 

CoStim expression by DC.  

 

The work presented here attempts to locate values for these two parameters that 

return baseline simulator behaviour when this additional regulatory axis is 

implemented in the simulator. We achieve this via systematic mapping of simulation 

behaviour at an array of combinations of the parameter values and assessing which lie 

close to baseline behaviour (a 'factorial analysis'). This experiment is described in 

Section 4.5. 
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4.5 A Factorial Analysis of the Two Probability Parameters 

 

To gain insight into how we should parameterise such a model, we explore a 2D 

parameter space over the full range of values for the two probability parameters. We 

varied each parameter from 0% to 100% in increments of 10% giving 121 simulator 

experiments with unique combinations of parameter values. We calculated T-cell 

(Th1, Th2, CD4 Treg and CD8 Treg) populations and EAE Severity scores [Read 

2011] (which we refer to as 'responses') for 500 runs of the simulator using each 

pairing of parameter values. We analysed the maximum population size for each T-

cell sub-type along with the time of its occurrence in order to gain insight into the 

size of the immune reaction and the extent of its regulation. The EAE Severity Scores 

are an attempt to calculate a severity for the EAE suffered by the simulated mouse at 

each time-step of the simulation. These scores are meant to mirror the clinical 

measures used to assess the severity of disease in laboratory animals. 

 

The effect of each pair of parameter settings on peak effector cell population for each 

T-cell subtype is presented in the figures below. We also present a deeper discussion 

of the immunological changes occurring alongside the changes in our chosen 

parameters (probabilities of a negative signal down-regulating MHC or down-

regulating CoStim) in Section 4.6. 

 

4.5.1 Effect on Peak CD4 Th1 Effector Population 

 

Figure 4.8: 3-dimensional plot illustrating the peak CD4 Th1 effector population 

at all of the possible pairings of probability parameter values. The probability 

parameters represent the probability that a DC receiving a negative signal from 

CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. 
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Variation in the value of the CoStim down-regulation probability has relatively little 

impact on the CD4 Th1 population, whereas gradual increase in the MHC down-

regulation parameter leads to a concomitant rise in the peak population of CD4 Th1 

observed in the simulation. One possible explanation for this lies in the behaviour of 

the CD8 Treg population under the influence of the two parameters (see Section 

4.5.7). There is a rapid decline in CD8 Treg effector numbers upon increasing the 

probability of a DC down-regulating MHC expression upon receipt of a CD200-

CD200R negative signal. 

 

4.5.2 Effect on Time Taken to Reach Peak CD4 Th1 Effector Population 

 

Unlike with the actual peak population of CD4 Th1, the time taken to reach this peak 

population within the simulation does not appear to be related to the two probability 

parameters in a simple manner. The variation of this response is reasonably small 

(about 1 day in a simulation covering ~50 days) and the A-Test results (presented in 

Appendix E) comparing runs with varying p(down-regulate CoStim) and varying 

p(down-regulate MHC) show that variation in either of these probability parameters 

has no significant effect on the response and therefore the variation is most likely due 

to the inherent stochasticity of the system. 

 

Figure 4.9: 3-dimensional plot illustrating the time taken to reach peak CD4 Th1 

effector population at all of the possible pairings of probability parameter 

values. The probability parameters represent the probability that a DC receiving a 

negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. 
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4.5.3 Effect on Peak CD4 Th2 Effector Population 

 

Unlike for the CD4 Th1 population, the peak effector CD4 Th2 population does not 

appear to bear any straight-forward relationship to the values of the two probability 

parameters. Here the change in numbers of cells is much smaller (a range of just 3 

cells compared to a range of ~20 cells for the CD4 Th1). Again, the relevant A-Test 

scores (presented in Appendix E.2) suggest that the effect size of varying the two 

probability parameters is small and so the variation observed is just system 

stochasticity. 

 

Figure 4.10: 3-dimensional plot illustrating the peak CD4 Th2 effector 

population at all of the possible pairings of probability parameters. The 

probability parameters represent the probability that a DC receiving a negative signal 

from CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. 
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4.5.4 Effect on Time Taken to Reach Peak CD4 Th2 Effector Population 

 

As with the time taken to attain peak CD4 Th1 effector population, the time taken to 

achieve peak CD4 Th2 effector population in the simulation is not straight-forwardly 

related to the values of the probability parameters. As with the time of CD4 Th1 peak 

population variation in the times of peak population here show very little real 

variation (~1 day). Although the A-Test scores are indicative of small to medium 

effect due to variation of p(down-regulate MHC) and small effect only for varying 

p(down-regulate CoStim), the variation observed is probably due to noise. 

 

Figure 4.11: 3-dimensional plot illustrating the time taken to reach peak CD4 

Th2 effector population at all of the possible pairings of probability parameter 

values. The probability parameters represent the probability that a DC receiving a 

negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. 

 

 

 

 



4.5 A Factorial Analysis of the Two Probability Parameters 

 

84 

4.5.5 Effect on Peak CD4 Treg Effector Population 

 

The peak CD4 Treg effector population is rapidly diminished once we start allowing 

MHC expression to be switched off. Compared to the effect of varying the probability 

that negative signalling switches off MHC expression by DC, the effect of varying 

the probability of CoStim down-regulation is small, but does exist. The fall in peak 

CD4 Treg population in going from p(down-regulate CoStim) = 0% to p(down-

regulate CoStim) = 10% is from 1053 cells to 1000 cells and stands at 846 cells with 

p(down-regulate CoStim) at 100%. 

 

Figure 4.12: 3-dimensional plot illustrating the peak CD4 Treg effector 

population at all of the possible pairings of probability parameters. The 

probability parameters represent the probability that a DC receiving a negative signal 

from CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. 
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4.5.6 Effect on Time Taken to Reach Peak CD4 Treg Effector Population 

 

As we start to increase the probability of negative signalling down-regulating the 

expression of MHC, the time taken to reach the peak CD4 Treg population 

diminishes rapidly. This reflects the much reduced size of the overall population of 

CD4 Treg in the simulation at these higher parameter values. 

 

Figure 4.13: 3-dimensional plot illustrating the time taken to reach peak CD4 

Treg effector population at all of the possible pairings of probability parameter 

values. The probability parameters represent the probability that a DC receiving a 

negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. 
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4.5.7 Effect on Peak CD8 Treg Effector Population 

 

As with the CD4 Treg effector population, peak numbers of CD8 Treg effectors are 

highly sensitive to any fall in the levels of MHC expression. This may well have 

impacted on the peak population size observed for the effector CD4 Th1 cells in 

Section 4.5.1. 

 

Figure 4.14: 3-dimensional plot illustrating the peak CD8 Treg effector 

population at all of the possible pairings of probability parameters. The 

probability parameters represent the probability that a DC receiving a negative signal 

from CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. 

 

 

 

 



4.5 A Factorial Analysis of the Two Probability Parameters 

 

87 

4.5.8 Effect on Time Taken to Reach Peak CD8 Treg Effector Population 

 

As we permit a greater possibility that a DC completely down-regulates MHC 

expression upon receiving the negative signal, the time taken to reach peak CD8 Treg 

effector population size falls. 

 

Figure 4.15: 3-dimensional plot illustrating the time taken to reach the peak 

CD8 Treg effector population at all of the possible pairings of probability 

parameters. The probability parameters represent the probability that a DC receiving 

a negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. 
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4.5.9 Effect on CD4 Th1 Effector Response at 40 Days 

 

As we allow MHC expression by DC to be curtailed by negative signalling, the size 

of the CD4 Th1 effector population persisting to day 40 of the simulation starts to 

rise. As the CD4 Th1 effector population is tending to persist coupled with the fact 

that both the CD4 and CD8 Treg effector populations are much reduced from their 

baseline levels, one might anticipate that EAE severity becomes greater as we 

increase the probability of MHC down-regulation following negative signalling. 

 

Figure 4.16: 3-dimensional plot illustrating the size of the effector CD4 Th1 

population on day 40 at all of the possible pairings of probability parameters. 
The probability parameters represent the probability that a DC receiving a negative 

signal from CD200R down regulates MHC expression – p(down-regulate MHC) and 

the probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. 
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4.5.10 Effect on Mean EAE Severity 

 

The expectation of increased EAE severity at higher probability parameter values is 

largely borne out by the simulation data, presumably due to the elevation of the peak 

population observed for effector CD4 Th1 and the much reduced peak populations of 

the Treg effectors. 
 

Figure 4.17: 3-dimensional plot illustrating the mean EAE severity score at all of 

the possible pairings of probability parameter values. The probability parameters 

represent the probability that a DC receiving a negative signal from CD200R down 

regulates MHC expression – p(down-regulate MHC) and the probability that a DC 

receiving a negative signal from CD200R down-regulates CoStim expression – 

p(down-regulate CoStim). The point 0, 0 that is nearest to the reader in the lower 

middle portion of the plot is the current simulator baseline behaviour. 
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4.5.11 Effect on EAE Severity at 40 Days 

 

For EAE severity at day 40 it is hard to discern any significant trend. However, it 

does appear that stronger negative signalling i.e. greater probability of MHC and / or 

CoStim being down-regulated raises the EAE Severity at day 40. 

 

Figure 4.18: 3-dimensional plot illustrating the mean EAE severity score on day 

40 of simulation at all of the possible pairings of probability parameter values. 
The probability parameters represent the probability that a DC receiving a negative 

signal from CD200R down regulates MHC expression – p(down-regulate MHC) and 

the probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. 

 

 

4.6 Summary of Findings 

 

A common theme of all the response plots is that the value of the CoStim down-

regulation probability (p(down-regulate CoStim)) appeared to have relatively little 

influence on the peak responses. The probability of MHC down-regulation (p(down-

regulate MHC)) in contrast, had a dramatic impact on the peak responses, with peak 

Treg effector populations falling to less than half their baseline values when it was set 

to 10% from 0%. This is perhaps not so surprising; for every CD8 Treg that a DC 

primes there is a CD200-CD200R interaction (and thus negative signalling) since 

expression is immediate. In this manner, small changes to the MHC probability 

parameter has potentially dramatic effects on T-cell populations, whereas changes to 

the CoStim parameter are not as influential. We propose that this is the case because 

in the current model, CoStim expression can be switched back on once down-

regulated, but MHC cannot (see Section 4.3.2.2). 
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4.6.1 Other Immunological Effects of the Parameter Values Changes 

 

Comparing the response curves of runs with differing p(down-regulate CoStim) but 

constant p(down-regulate MHC) we see that most of the responses are essentially 

unchanged between runs (data not presented). This is borne out by A-Test
 
(introduced 

in Section 3.4.3)
 
statistics (presented in Appendix E.2) which allow us to compare 

data sets from two experiments differing only in one parameter setting. 

 

The chief effect of allowing the down-regulation of CoStim expression on DC 

following negative signalling is that we now see one or two (literally) partially 

activated T-cells (Th1/CD4 Treg/CD8 Treg) in the resulting responses. This reflects 

the fact that T-cells in the simulator can only access the proliferating state directly 

from the naïve state if they receive both signal 1 and signal 2 i.e. recognise and bind 

cognate antigen and receive costimulation. This is surprising as one might reasonably 

have expected a good many more partially activated T-cells owing to the lower levels 

of CoStim expression. However, it is possible that, as the down-regulation of MHC 

and CoStim upon receipt of the negative signal is probabilistic, CoStim may be 

down-regulated while MHC is not. Under these circumstances, T-cells can still bind 

to APCs and if the APCs perceive sufficient Type 1 cytokine in the environment then 

they may be re-induced to express CoStim as no explicit bar to this was added to our 

model. It remains to be verified if this is indeed what has happened, this being 

relatively easily achieved by logging how many times CoStim expression has been 

up- or down-regulated on a particular DC. 

 

There is also evidence of a slightly elevated rate of neuron killing after 30 days as 

compared to the baseline. 

 

Comparing experiments which differ in p(down-regulate MHC) value and having the 

same p(down-regulate CoStim) the differences are much more marked. The peak 

population of Treg effectors is much reduced compared to the baseline (data not 

presented). There is much less Treg priming occurring in non-zero p(down-regulate 

MHC) simulations – CD4 Treg priming in the spleen is radically reduced (5000 in 

baseline and just 400 with p(down-regulate MHC) = 10%, p(down-regulate CoStim) 

= 0%) (data presented in Figure 4.19). 

 

There are similar numbers of CD4 Th1 effectors in the CNS, but these persist after 

day 20 if p(down-regulate MHC) is greater than zero. Allied to this, there is neuron 

killing beyond 30 days in simulations with p(down-regulate MHC) > 0% and the 

cumulative count of neurons killed is much greater (50,000 as opposed to 30,000 in 

the baseline)(data not presented). 

 

Coupled with this the CD4 Th1 population in general falls off much more slowly 

when we allow MHC down-regulation on DC. APC behaviour is also modified by the 

parameter change. There are more immature APC in the spleen after day 20 (data 

presented in Figure 4.20), though there are fewer immature APC in the CNS (but an 

elevated number of immunogenic APC) when p(down-regulate MHC) > 0% (data 

presented in Figure 4.21). 
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Figure 4.19: the effect of increasing p(down-regulate MHC) from 0% to 10% on 

CD4 Treg priming in the spleen, CLN and the SLO in the modified simulation. 
In the plot below, the baseline experimental results are shown by the dashed lines and 

the experiment in which MHC expression has a 10% probability of being switched 

off by negative signalling (‘Stop MHC’) is shown by solid lines. The different 

coloured lines represent different simulator compartments as indicated in the plot 

legend. 

 
 

Figure 4.20: the effect of increasing p(down-regulate MHC) from 0% to 10% on 

the number of immature APC in the spleen in the modified simulation. In the 

plot below, the baseline (‘Base’) experimental results are shown by the dashed lines 

and the experiment in which MHC expression has a 10% probability of being 

switched off by negative signalling (‘MHC’) is shown by solid lines. The different 

coloured lines represent the different APC states within the simulator (Immature 

(Imm.), Tolerogenic (Tolero.) and Immunogenic (Immuno.). 
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Figure 4.21: the effect of increasing p(down-regulate MHC) from 0% to 10% on 

the numbers of APCs in the CNS in the modified simulation. In the plot below, 

the baseline (‘Base’) experimental results are shown by the dashed lines and the 

experiment in which MHC expression has a 10% probability of being switched off by 

negative signalling (‘MHC’) is shown by solid lines. The different coloured lines 

represent the different APC states within the simulator (Immature (Imm.), 

Tolerogenic (Tolero.) and Immunogenic (Immuno.). 

 

 
 

4.7 A Further Factorial Analysis 

 

As even our smallest non-baseline parameter pairing (i.e. 10%, 10%) gave Treg and 

Th1 effector populations quite significantly changed from the baseline values, we 

decided to explore this region of parameter space in more detail.  

 

Further simulator runs with progressively smaller values of p(down-regulate MHC) 

indicated that values between 0% and 1% might return responses reasonably close to 

those in the baseline experiment.  

 

Therefore, we decided that a second parameter analysis to explore the parameter 

space for p(down-regulate MHC) and p(down-regulate CoStim) between 0% and 1% 

in steps of 0.1% would be appropriate. The effect of these parameter settings on peak 

effector responses is presented below. 

 

4.7.1 Effect on Peak CD4 Th1 Population 
 

Even at these low probabilities of down-regulating MHC expression on DC receiving 

the CD200-CD200R negative signal, we observe some shift away from baseline 

figures in terms of the peak CD4 Th1 effector population, though this is only 1-2 cells 

at p(down-regulate MHC) = 0.1%. The probability of down-regulating MHC appears 

to have a less significant effect on peak CD4 Th1 population size than the probability 

of down-regulating CoStim at low values of the parameters. However, the data is 

probably noise based on the values of the A-Test scores for variations of these 

parameters between experiments (see Appendix E.2).
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Figure 4.22: 3-dimensional plot illustrating the peak CD4 Th1 effector 

population at all of the possible pairings of probability parameters between 0% 

and 1%. The probability parameters represent the probability that a DC receiving a 

negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. The probabilities on the x- and y-axes have been multiplied by 

100 for clarity of labelling the axis ticks. 

 

4.7.2 Effect on Time Taken to Reach Peak CD4 Th1 Effector Population 

 

The time taken to attain peak CD4 Th1 effector population is not shifted too far away 

from the baseline level even at p(down-regulate MHC) = 1%. The 3D plot for the 

parameter mapping of this response is not included in the main flow of the document 

since the data is probably noise, a conclusion borne out by A-Test scores for varying 

each of the probability parameters separately. Instead the plot is presented in 

Appendix E.1 and the A-Test data in Appendix E.3 for reference. 

 

4.7.3 Effect on Peak CD4 Th2 Effector Population 

 

There does not appear to be any clear relationship between the two down-regulation 

probabilities and the CD4 Th2 effector peak response. The A-Test scores in 

Appendix E.3 suggest that again, the data is noise and so the plot has been presented 

in Appendix E.1. 
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4.7.4 Effect on Time Taken to Reach Peak CD4 Th2 Effector Population 
 

As with the peak CD4 Th2 response, there does not seem to be any straightforward 

relationship between the down-regulation probabilities and the time of peak CD4 Th2 

response. The A-Test scores (presented in Appendix E.3) suggest that the data is 

noise, so the plot is presented for completeness in Appendix E.1. 

 

4.7.5 Effect on Peak CD4 Treg Effector Population 

 

Even at p(down-regulate MHC) = 1% the peak population of CD4 Treg effectors has 

fallen from ~1000 to less than 600. The peak response is only reasonably close to the 

baseline value at p(down-regulate MHC) < 0.1%. The value of p(down-regulate 

CoStim) has relatively little impact compared to the probability of down-regulating 

MHC. 

 

Figure 4.23: 3-dimensional plot illustrating the peak CD4 Treg effector 

population at all of the possible pairings of probability parameters between 0% 

and 1%. The probability parameters represent the probability that a DC receiving a 

negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. The probabilities on the x- and y-axes have been multiplied by 

100 for clarity of labelling the axis ticks. 
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4.7.6 Effect on Time Taken to Reach Peak CD4 Treg Population 

 

The effect of the parameters on the time taken to reach the peak CD4 Treg effector 

response mirrors their effect on the size of the response itself. 

 

Figure 4.24: 3-dimensional plot illustrating the time taken to reach the peak 

CD4 Treg effector population at all of the possible pairings of probability 

parameters between 0% and 1%. The probability parameters represent the 

probability that a DC receiving a negative signal from CD200R down regulates MHC 

expression – p(down-regulate MHC) and the probability that a DC receiving a 

negative signal from CD200R down-regulates CoStim expression – p(down-regulate 

CoStim). The point 0, 0 that is nearest to the reader in the lower middle portion of the 

plot is the current simulator baseline behaviour. The probabilities on the x- and y-

axes have been multiplied by 100 for clarity of labelling the axis ticks. 
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4.7.7 Effect on Peak CD8 Treg Effector Population 
 

As with the CD4 Treg effector response, the CD8 Treg effector response is very 

sensitive to changes in p(down-regulate MHC) and falls from ~600 cells to ~500 cells 

in changing from 0% to 0.1%. Beyond this parameter value the response deviates 

increasingly from the baseline value. 

 

Figure 4.25: 3-dimensional plot illustrating the peak CD8 Treg effector 

population at all of the possible pairings of probability parameters between 0% 

and 1%. The probability parameters represent the probability that a DC receiving a 

negative signal from CD200R down regulates MHC expression – p(down-regulate 

MHC) and the probability that a DC receiving a negative signal from CD200R down-

regulates CoStim expression – p(down-regulate CoStim). The point 0, 0 that is 

nearest to the reader in the lower middle portion of the plot is the current simulator 

baseline behaviour. The probabilities on the x- and y-axes have been multiplied by 

100 for clarity of labelling the axis ticks. 
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4.7.8 Effect on Time Taken to Reach Peak CD8 Treg Effector Population 

 

The time taken to reach peak CD8 Treg effector response roughly echoes the shape of  

the peak response plot. 

 

Figure 4.26: 3-dimensional plot illustrating the time taken to reach the peak 

CD8 Treg effector population at all of the possible pairings of probability 

parameters between 0% and 1%. The probability parameters represent the 

probability that a DC receiving a negative signal from CD200R down regulates MHC 

expression – p(down-regulate MHC) and the probability that a DC receiving a 

negative signal from CD200R down-regulates CoStim expression – p(down-regulate 

CoStim). The point 0, 0 that is nearest to the reader in the lower middle portion of the 

plot is the current simulator baseline behaviour. The probabilities on the x- and y-

axes have been multiplied by 100 for clarity of labelling the axis ticks. 
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4.7.9 Effect on CD4 Th1 Effector Response at 40 Days 

 

The population size of CD4 Th1 effectors at 40 days appears to be less sensitive to 

the value of p(down-regulate MHC) than the other responses. The baseline behaviour 

is maintained until p(down-regulate MHC) reaches 0.5%. 

 

Figure 4.27: 3-dimensional plot illustrating the CD4 Th1 effector population 

persisting at day 40 at all of the possible pairings of probability parameters 

between 0% and 1%. The probability parameters represent the probability that a DC 

receiving a negative signal from CD200R down regulates MHC expression – 

p(down-regulate MHC) and the probability that a DC receiving a negative signal 

from CD200R down-regulates CoStim expression – p(down-regulate CoStim). The 

point 0, 0 that is nearest to the reader in the lower middle portion of the plot is the 

current simulator baseline behaviour. The probabilities on the x- and y-axes have 

been multiplied by 100 for clarity of labelling the axis ticks. 
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4.7.10 Effect on Mean EAE Severity 

 

Mean severity of EAE appears to be less susceptible to changes in the two down-

regulation probabilities at these low values. 

 

Figure 4.28: 3-dimensional plot illustrating the mean EAE severity at all of the 

possible pairings of probability parameters between 0% and 1%. The probability 

parameters represent the probability that a DC receiving a negative signal from 

CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. The probabilities on the x- and y-axes have been multiplied by 100 for 

clarity of labelling the axis ticks. 
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4.7.11 Effect on EAE Severity at 40 Days 

 

The EAE Severity at 40 days plot appears to behave very like the mean EAE Severity 

plot.  

 

Figure 4.29: 3-dimensional plot illustrating the mean EAE severity at 40 days at 

all of the possible pairings of probability parameters between 0% and 1%. The 

probability parameters represent the probability that a DC receiving a negative signal 

from CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. The probabilities on the x- and y-axes have been multiplied by 100 for 

clarity of labelling the axis ticks. 
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4.8 A Brief Investigation of the Extent of Interaction Between the two Disease 

Regulation Mechanisms 

 

In the augmented domain model presented in Section 4.3 we have added an additional 

regulatory mechanism to the existing CD8 Treg mediated killing mechanism. Since 

the CD200-CD200R axis affects the ability of DC to prime T cell populations, the 

two regulatory mechanisms exhibit some degree of interaction. This interaction 

depends on the extent to which the T cell priming capacity of DCs is affected by the 

added axis and by the efficiency of CD4 Th1 killing by CD8 Treg. In the work 

presented in this thesis we have assumed that CD8 Treg killing of CD4 Th1 is 100% 

efficient. However, there is some evidence that this is not the case [Tang et al. 2006]. 

Altering the efficiency of CD4 Th1 killing in our model offers us a means to assess 

how much the CD8 Treg mediated killing mechanism of disease regulation is 

interacting with the CD200-CD200R axis mediated down-regulation of CD4 priming 

by DCs and hence to re-balance the two mechanisms within the simulation to return a 

more baseline-like behaviour. 

 

To investigate the extent of such regulatory mechanism interaction we conducted a 

further experiment in which the efficiency of CD4 Th1 killing by CD8 Treg was 

adjusted from its baseline level of 100% to a lower level of 30% whilst implementing 

the negative signalling with both probability parameters set at 1%. The results of this 

experiment would serve as a guide as to whether re-balancing was needed  

 

However, an investigation into the robustness of the system described above to 

changes in the killing efficiency of CD4 Th1 by CD8 Treg (a ‘robustness analysis’ 

[Read et al. 2011]) showed that the only response that changed significantly relative 

to the simulation using killing efficiency of 100% was the population of CD4 Th1 

remaining at day 40 of the simulation. The number of CD4 Th1 remaining at 40 days 

was 26 cells compared to just 2 in the experiment using 100% killing efficiency and 0 

in the baseline experiment. All other responses show no effect after reduction of the 

killing efficiency to 30%. This suggests that the model of the CD200-CD200R 

mediated regulation is probably too severe and is completely dominating the 

regulation of T-cell populations within the simulation. 

 

4.9 Overall Conclusions 

 

Overall, the results from the two factorial analyses suggest that the simulator 

behaviour is particularly sensitive to the ability of DC to carry on expressing MHC 

(this being particularly true of the CD4 Treg, CD8 Treg and CD4 Th1 effector 

responses). The system deviates quite significantly from the baseline T-cell effector 

responses once the probability of the negative signal down-regulating MHC 

expression on DC rises to 1%. It remains to decide whether these deviations lie 

within tolerable bounds and whether we are able to satisfactorily parameterise the 

effects of the CD200-CD200R negative signal on DC expression of MHC and 

CoStim. 
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It must be borne in mind that only the parameter pairing (0%, 0%) returns exactly the 

baseline behaviour as this represents the situation implemented in the baseline 

simulator. We should also bear in mind that it is entirely possible that the 'all-or-

nothing' model of negative signalling adopted currently employed is probably too 

simplistic and that a 'phased' model in which negative signalling can reduce MHC 

and / or CoStim expression by some fraction less than 100% (and so subsequent 

signals can therefore compound to further reduce MHC or CoStim expression) might 

be more appropriate and would almost certainly more accurately reflect the biological 

situation. This 'phased' down-regulation would allow for a much lower level of 

response to negative signalling than the current model permits. 

 

The current analysis was carried out assuming that CD8 Treg are 100% efficient at 

killing CD4 Th1. Thorough investigation of the effects of lower killing efficiency in 

tandem with the implementation of the CD200-CD200R axis is needed and requires a 

more extensive re-parameterization to properly recalibrate the simulator. Our initial 

experiment with lowered killing efficiency suggests that this parameter has no 

significant effect on simulation behaviour when using our current model of the 

CD200-CD200R axis even at low values of the two down-regulation probability 

parameters. This suggests that the model of the CD200-CD200R regulation axis is 

too simplistic and too severe, making it difficult to relate the results of this 

preliminary exploration back to the real domain.
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Chapter 5: Conclusions and Further Work 

 

5.1 Contribution 

 

We conducted experimentation to assess the significance of two hypotheses in 

explaining the observed CD8 Treg effector population size in a CD4 Treg abrogation 

experiment. The hypotheses investigated were:  

 

H1: timing of Qa-1 expression on DCs has a significant impact on CD8 Treg 

population. 

 

H2: competition between CD4 and CD8 Treg for binding space around DC has a 

significant impact on CD8 Treg population.  

 

Hypothesis significance was assessed by means of the non-parametric effect size A-

test [Vargha and Delaney 2000]. 

 

The domain expert subsequently indicated an interest in investigating a different 

mechanism for the regulation of disease not currently implemented in the simulation. 

In a separate experiment we augmented the simulation to incorporate a simplified 

model of this additional, but poorly understood, immune regulatory axis. The 

implemented model incorporated two new simulation parameters which represented 

probabilities that expression of certain molecules by DCs would be down-regulated. 

We sought to assign values to these by exploring simulation behaviour over all 

combinations of values of the two parameters. We then attempted to identify which 

values returned behaviour close to that of the baseline simulation (where the two 

parameters are both effectively set to 0%).  

 

5.2 Conclusions 

 

5.2.1 Conclusions Drawn from the Experimentation on CD8 Treg Activation by 

Dendritic Cells 

 

In chapter 3 of this thesis we assessed the significance of two hypotheses in 

determining the peak population of CD8 Treg effectors in an experiment where the 

CD4 Treg population had been abrogated [Williams 2010b], clearly demonstrating 

how in silico experimentation allows us to examine hypothetical circumstances that 

would have been impossible to test in the same way in a wet laboratory. This body of 

experimentation required no changes to be made to the existing domain model [Read 

2011]. 

 

Both hypotheses were found to be significant in explaining the observed CD8 Treg 

population levels, illustrating that both the timing of Qa-1 expression by DCs and the 

spatial competition of CD4 with CD8 Treg for binding space around DC have a 

profound impact on the scale of the cytotoxic response following the onset of disease. 

This implies that CD4 Treg are capable of exerting a dual influence on the size of the 

CD8 Treg population attainable.
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Although these results are grounded specifically in the EAE system, the results are 

potentially applicable to any disease system where CD4 Th and CD8 T-cells are 

involved in the immune response and have significance for attempts to create 

therapies based on boosting the CD8 Treg population [Beeston et al. 2010], for 

example in inflammatory bowel disease where CD8 Treg have been shown to cure 

colitis in mice [Endharti et al. 2010]. 

 

5.2.2 Conclusions Drawn from the Experimentation on Adding the CD200-

CD200R Regulatory Axis to the Simulation 

 

In chapter 4 of this thesis we employed the CoSMoS process to implement additional 

functionality in our model of EAE. The implementation of the additional cellular 

functions required changes to the domain model [Read 2011], which were discussed 

with the domain expert. The CoSMoS process facilitated structured thinking about 

what changes to the logic of the simulation were actually required and how best to 

implement them. 

 

Our additions to the basic domain model [Read 2011] were simple in that we required 

expression of a new cell surface protein on CD8 Treg and of another on DC. The two 

new proteins were allowed to interact, with the interaction having predefined effects 

on the behaviour of the DC.  

 

The interaction ('negative signal') was defined in the model, at the suggestion of the 

domain expert, as probabilistically switching off the expression of MHC compounds 

and / or costimulatory molecules. This introduced two new parameters to our model; 

the probability that negative signalling switches off MHC expression and the 

probability that it switches off CoStim expression. We restricted our model to a 

simple switching off of MHC and / or CoStim expression by DC as we have no prior 

knowledge as to the effects of the pathway on the system and we wished to explore 

the results of the augmentation on the simulation. This representation was considered 

to be more realistic than a model in which all negative signals caused complete down-

regulation of DC activity and easier to implement than a model in which each 

negative signal produced partial down-regulation of MHC and / or CoStim by DC. 

 

We implemented the new regulatory pathway on the advice of the domain expert, 

who believes this pathway to be important. However, we were unable to obtain any 

guidance from the literature regarding the possible values of the two parameters. In 

an attempt to locate values for the two parameters that would replicate the baseline 

simulation, we carried out two factorial analyses and found that even a value of 1% 

for the probability of turning off MHC expression yielded significant impact on the 

peak populations of certain key cell populations (CD4 Th1, CD4 Treg and CD8 

Treg).  

 



5.3 Further Work 

 

106 
 

It is unlikely that the mechanism abstracted in our model is a fair representation of 

what happens in vivo as the T-cell populations are radically reduced in our 

simulation. For this reason we need to explore other representations of the system 

which exhibit a better balance between CD8 Treg killing of CD4 Th1 and CD8 down-

regulation of DC. Alternative abstractions are considered in the section on further 

work (Section 5.3.3). In this light it is quite possible that our initial model is too 

simplistic and severe. This line of experimentation would certainly benefit from 

further in vivo data concerning the regulatory pathway.  

 

5.3 Further Work 

 

In the following sections, we consider further strands of investigation that could 

extend and strengthen the work presented in the thesis. 

 

5.3.1 General Considerations about the EAE Simulator 

 

At a general level there are two considerations to be aware of that may impact on the 

reliability of the results of any simulation: the limited size of the model compared to 

that of the real system and the amount of detail that is abstracted away in the model. 

 

The immune system consists of some 10
12

 cells [Seiden and Celada 1992], with 10
9
 

lymphocytes in circulation [Janeway et al. 2008]. The EAE Simulator employed in 

the experiments presented in this thesis uses cell populations significantly lower than 

these numbers.  
 

This may be a concern in that we may need to account for size-related artefacts in the 

simulation [Seiden and Celada 1992]. However, it could be validly argued that there 

is very little purpose in creating a simulation that can handle truly biological sized 

populations of cells (along with the concomitant demands on computing power that 

this would entail) if the results of smaller, tractable simulations adequately address 

the questions we ask of them. 

 

Initial cell populations are simulation parameters and as such their influence on 

simulation behaviour can be examined via a sensitivity analysis as described in [Read 

et al. 2011]. If the cell populations are not found to be influential then they are not 

anticipated to bring about any scale-related effects in the simulation results. However, 

.if one population is found to be influential when all others are held constant, then 

there could be population size related effects. Generally one would change all 

population numbers simultaneously in such a way as to preserve population ratios. In 

this way EAE scores and other simulation results of interest would remain constant. 

Generally, if there are qualitative changes following changes in initial cell 

populations, one must be cautious in the interpretation of simulation results. The 

course of remedial action chosen would then be problem specific. 

 

Our second consideration is the level of detail included in our model. There are two 

features of the immune system that are potentially relevant to EAE, which are 

abstracted out of our current domain model. 
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The first of these concerns a sub-population of T-helper cells, the Th17 cells. These 

cells are generated in a different cytokine milieu (generally the cytokine environment 

of an early immune response [Janeway et al. 2008]) to the Th1 and Th2 cells and 

have been implicated in the early phase of EAE induction [Reboldi et al. 2009]. Our 

domain model does not include these cells, and indeed abstracts away the period of 

innate immune response into a special immunization method and by the setting up of 

an initial population of mature and immature DC (see Appendix B.7). 

 

Again, one might validly argue that the further complexity of the model entailed in 

explicitly including this T cell subpopulation in our model serves no useful purpose 

given that our current model gives reasonable and encouraging results. 

 

In Chapter 4 of this thesis we deal with adding complexity to our domain model by 

allowing CD8 Treg effectors to express CD200 and mature DC to express CD200R 

and by allowing the interaction of CD200 with CD200R to bring about inhibitory 

effects on the DC population. Among the effects included in our model was the 

probabilistic down-regulation of costimulatory molecule expression by DC. 

 

In actual fact, our model abstracts away considerable detail about the signals 

exchanged by DC and T cells. In particular the simulation uses the concept of 

'costimulatory molecule' to cover several distinct entities which are expressed on DC. 

These molecules are ligands to receptors which can either stimulate or inhibit T cell 

responses to antigens [Keir and Sharpe 2005]. These molecular interactions serve to 

fine tune immune response and consist of many different receptors and ligands 

[Crawford and Wherry 2009, Orabona et al. 2004]. 

 

It is more difficult to explore abstraction space than parameter space, as it is difficult 

to be sure that one has explored every possible abstraction of a system, possibly 

owing to incomplete domain knowledge. In this instance the only possible procedure 

is careful iterative calibration in collaboration with a domain expert as described in 

[Read et al. 2011]. This remains a problem for modelling that is not fully resolved. 

 

It is important that we remain aware of the detail that has been abstracted away in the 

domain model and as we have implemented an, albeit very simplified model of the 

CD200-CD200R axis, it is not inconceivable that a more explicit description of DC to 

T-cell signalling may one day also be included in the simulation. This would become 

a particularly relevant issue if, in future, some aspect of the simulation concerned 

with mechanisms of costimulation were not to produce results in agreement with 

what is observed in vivo. However, we have no evidence as yet that such a 

discrepancy would be likely and the potential benefits of adding this level of detail to 

the model would have to be carefully assessed in light of our current work with the 

CD200-CD200R axis. 
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5.3.2 Further Work Arising from the Chapter 3 Experimentation 

 

A general concern that has emerged from this work has been that when comparing 

experiments using the A-Test, we need the comparison to be as fair as we can make 

it. With valid, but 'unfair' comparisons such as those cited in Section 3.9 we can only 

validly assess which of our two hypotheses are significant. 

 

Ideally, we should continue to attempt to develop a completely fair comparison on 

which to use the A-Test. This would allow us to assess the relative significance of the 

two hypotheses by directly comparing A-Test scores. 

 

5.3.2.1 Further Work Arising from the Analysis of Dendritic Cell Age at Time of 

Licensing  

 

There remain immunologically interesting data to be obtained from our simulations. 

The simulator makes much of this relatively straightforward to obtain, requiring only 

alterations to the code for storage and output of the required quantities. 

 

For example, we could use the simulation data to investigate the extent to which 

mature DC phagocytose other cells (immature DC have greater phagocytic ability 

than mature DC). This would provide us with a more detailed picture of DC 

behaviour within the simulation, which would be potentially useful in helping to 

explain or interpret T-cell population dynamics as DC play a pivotal role in priming 

T-cells. 

 

Also of interest is whether DC acquire their peptide presentation capabilities when 

they are immature or only after maturation. This is interesting because DC are more 

phagocytic when immature, but they spend more of their life span in the mature state 

under current simulation parameterization (48 hours in the immature state versus 110 

hours in the mature state).  

 

We could also record data from the simulation that would allow us to assess how 

quickly T-cells interact with DCs within the simulation. At the moment we have an 

approximation to how quickly CD4 Treg can reach and bind DCs in our age at 

licensing data, but this measures time from the perspective of the DC and not the 

CD4 Treg. 

 

These ideas would provide us with greater detail on how the simulation is behaving at 

a cellular level as opposed to the system level. There is potential for collating data 

about cell behaviours that may be verifiable by wet-lab experimentation and this 

would help to increase trust in the simulation. Such data on the behaviour of specific 

cell types could also potentially be relevant to other disease systems, particular those 

mediated by CD4 Th and regulated by CD8 Treg. 

 

More directly related to the work presented in the thesis, it has been suggested that 

we might investigate other representations of how DC age at licensing is related to 

DC time of creation. In the 'age of licensing' experiment in Section 3.6.3 we have 
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employed a very simple method of demonstrating the trend toward quicker licensing 

of DC later on in the simulation i.e. we have divided the population of DC into two 

sub-populations. However, we could have provided a more detailed picture. e.g. a 

three-dimensional plot of DC time of creation versus DC age at time of licensing 

versus frequency of DCs in the data bin. This would enable us to gain insight into the 

lifecycle of DC within the simulator, potentially suggesting wet lab experiments that 

would serve to corroborate the in silico results. 

 

5.3.2.2 Further Work Arising from the Spatial Saturation Experiments 

 

Whilst conducting investigation into the significance of CD8 / CD4 Treg spatial 

competition, we omitted to thoroughly investigate how the spatial saturation of DCs 

varied over simulation time for each peptide presentation profile (in a manner 

analogous to the ‘Age of Licensing’ analysis in Section 5.3.2.1). This would enable 

us to gain insight into the population dynamics of T-cells and DC and into their 

patterns of interaction over the course of an immune response. 

 

We also need to investigate further the idea of increasing the maximal crowding 

parameter introduced in Section 3.8. We would like to know if there is a point beyond 

which increases in this parameter cease to increase peak CD8 Treg effector 

population and if this point is reached before the simulation is rendered intractable by 

the CD8 Treg population explosion. This would provide an estimate of how crowded 

a DC could theoretically become before CD8 Treg were no longer able to reach them 

and become activated. It would also serve to model the effect on CD8 Treg effector 

population size, were this to occur. 

 

These ideas have wider immunological relevance in that they give insight into T-cell 

population dynamics and into T-cell interactions with DC during the course of an 

immune response. As argued previously, this information could be particularly 

pertinent to the development of therapies for autoimmunity which aim to boost CD8 

Treg population sizes and / or activity. 

 

5.3.3 Further Work Arising from the Implementation of the CD200-CD200R 

Regulatory Pathway 

 

The results of our experimentation on adding a representation of the CD200-CD200R 

pathway to our simulation, led us to conclude that our representation of that pathway 

was probably too severe. Therefore, in this section we propose further potential 

abstractions of the pathway that could be investigated further. 

 

The work presented in Chapter 4 introduced the idea of rescue from negative 

signalling. This form of rescue can in theory occur because the possibility that DC 

can be re-stimulated into expressing costimulatory molecules or re-licensed to 

express Qa-1 after a negative signalling event has down-regulated them is not 

explicitly ruled out in the altered domain model presented in Section 4.3. However, 

DCs can only up-regulate MHC-II expression at the time of maturity in our current 

domain model. Janeway et al. 2008 state that DC can act as APCs i.e. express MHC 
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compounds, upon maturity but do not mention any other circumstances under which 

MHC-II expression can be up-regulated. In our model, this means that once negative 

signalling has down-regulated MHC-II expression, it remains down-regulated. This in 

turn means that DC cannot be re-licensed to express Qa-1 (CD4 T-cells cannot bind 

to a DC that is not expressing MHC-II). This means that our domain model is 

possibly over proscriptive in that it allows negative signalling to cause DC to down-

regulate both MHC-II and Qa-1 expression, thus effectively ruling out the possibility 

of rescue by CD4 T-cells. We propose that the next phase of investigation should 

focus on a less severe domain model in which the negative signal triggers Qa-1 but 

not MHC-II down-regulation on DC. 

 

The simulations carried out in Chapter 4 assumed that killing of CD4 Th by CD8 

Treg is 100% efficient. However, it seems unrealistic to assume that killing is 100% 

efficient [Tang et al. 2006] and CD4 Th1 populations may not be as severely affected 

by the additional regulatory axis as our current model suggests. This would mean that 

CD4 Th populations would not be reduced as much by CD8 Treg mediated killing as 

our baseline simulation currently predicts. Without the additional regulatory 

mechanism provided by the CD200-CD200R axis, EAE Severity scores would also 

be higher than we currently observe. However, with this axis in place the two 

regulatory pathways should co-operate in keeping populations of self-reactive CD4 

Th in check. The question for our simulation then lies in just how the two 

mechanisms are balanced. 

 

We have briefly investigated the effect of reducing the killing efficiency parameter to 

30% at low values of the new model probability parameters and found the change to 

show no significant effect (as judged by A-Test scores). To fully investigate the 

interplay of the two disease regulation mechanisms i.e. direct CD8 Treg mediated 

killing of CD4 Th and CD200-CD200R axis mediated attenuation of CD4 Th priming 

by DC, we would need to conduct a factorial analysis for the two probability 

parameters plus the killing efficiency parameter. Ideally a full sensitivity analysis 

would be performed over all simulation parameters including the two new probability 

parameters, permitting a rebalancing of the two regulatory mechanisms within the 

simulation. 

 

We mentioned in Section 5.2.2 that our model of negative signalling may be too 

simplistic. In fact, the domain expert has suggested that negative signal has a 

significant effect on MHC and / or CoStim expression by DC but that it is not 'all or 

nothing' (which is what our current model assumed for the sake of simplicity). In 

light of this a better model may be to allow each negative signal to probabilistically 

reduce (but not turn off completely) MHC and / or CoStim expression by DC, thus 

requiring several negative signals to be received by a DC before it stops expressing 

these cell-surface proteins. For example, the first negative signal might reduce MHC 

and / or CoStim expression by say 10%, each subsequent negative signal reducing 

expression by some preset decrement over and above the existing extent of down-

regulation until MHC / CoStim expression is totally down-regulated. 
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Another simplification made for the sake of our model which may impact 

significantly on the scale of the simulation response to negative signalling is the fact 

that we did not require the CD8 Treg to receive local stimulation prior to expressing 

CD200. This in effect means that all CD8 Treg effectors express CD200 capable of 

signalling DC via CD200R. It would therefore be instructive to implement a model in 

which the CD8 Treg do require local stimulation prior to expression of CD200. This 

would be anticipated to reduce the numbers of CD8 Treg capable of sending a 

negative signal to DC and thus moderating the extent of MHC and CoStim down-

regulation occurring throughout the simulation. 

 

Although we were aware that CD8 Treg can enter the CNS [Zozulya et al. 2009], the 

domain expert advised us not to investigate this in our preliminary investigations of 

the regulatory axis. Allowing CD8 Treg to enter the CNS would require that we also 

permit neurons to express CD200 and microglia to express CD200R, thus introducing 

a great deal more complexity into our model before we even fully understand our 

current model. It is also important that we rebalance the regulatory mechanisms 

within the simulation so that both interact in a reasonable manner (at the moment the 

CD200-CD200R negative signalling completely dominates the simulation). 

Ultimately, however, we would like to extend the domain model to incorporate the 

full complexity of the CD200-CD200R regulatory axis. 

 

5.4 Summary Statement 

 

In Chapter 1 we stated that the goal of the thesis was two-fold: firstly to identify 

relevant questions that we may direct to our domain expert to address and secondly to 

gain further insight into the operation of the simulation in hypothetical situations 

within the EAE system which are not easily implemented in vivo or in vitro. We now 

address how far we feel the thesis has attained its aims. 

 

We have utilised in silico experimentation to assess the significance of two 

hypotheses in explaining the results of a previous experiment that would have been 

impossible to conduct in a wet lab. The results of this hypothesis testing, though 

useful in explaining a previous observation, could also potentially have consequences 

for the design of therapies based on boosting CD8 Treg populations. 

 

We have also implemented a limited model of the CD200-CD200R immune 

regulatory pathway in the simulation. Although this is tempered by the knowledge 

that our initial model is probably too strict, the experimentation has suggested a 

number of novel avenues of investigation. It has also prompted a need for specific 

data concerning the behaviour of DCs upon receiving a CD200-CD200R 'negative 

signal'. 

 

In conclusion, we have demonstrated the utility of in silico experimentation in 

answering questions that could not easily be investigated in a wet lab, and also the 

potential relevance of such work to the wider practice of immunology. 
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Appendix A: A Brief Glossary of Immunological Terms Used Within the Thesis 

 

This appendix briefly presents definitions and descriptions of certain immunological 

terms and concepts that are used in the text of this thesis. Some are not strictly 

relevant to the design of the domain model of the simulator, though they are 

important in the understanding of the results obtained and the limitations of the model 

utilised for our simulations. 

 

A.1 Major Histocompatibility Complex (MHC) Molecules 

 

These molecules are antigen-presenting marker molecules which the immune system 

uses to distinguish cells that are harbouring invading pathogens from normal body 

cells (MHC Class I) and immune cells from other cells (MHC Class II) [Voet and 

Voet 2004]. 

 

All nucleated cells can express MHC Class I compounds, whereas only DC, 

macrophages and B-cells can express MHC Class II compounds [Kindt et al. 2007]. 

These are the cells that are activated by or activate CD4 T-cells. This allows CTLs to 

attack only infected host cells, while permitting T helper cells to interact only with 

immune system cells. APCs display both MHC Classes and can stimulate 

development of both Tc and Th cells. 

 

The MHC compounds are represented in the simulator as generic class I and class II 

molecule objects. Methods also exist to test for expression of the MHC class 1b 

compound Qa-1 on DCs. 

 

A.2 Priming 

 

The activation of a T-cell is sometimes called ‘priming’. A primed T-cell can enter 

the cell cycle and continue its development into an effector cell. Priming occurs when 

a T-cell binds its cognate MHC-antigen complex (MHC II in case of CD4 Th and 

MHC I for CD8 Tc) [Kindt et al. 2007, Janeway et al. 2008]. 

 

A.3 Cross Priming 

 

Normally endogenous antigens are proteolysed and displayed on MHC Class I 

compounds. Similarly, exogenous antigens are presented on MHC Class II 

compounds. Cross-priming is the initiation of CD8 T-cell response to antigens which 

are not synthesised by APCs. 

 

In cross-presentation exogenous antigen is displayed on MHC Class I compounds. 

[Kurts et al. 2010, Brode and Macary 2004]. Cross-presentation of exogenous 

antigens on MHC Class I molecules occurs through several distinct cellular pathways 

the precise description of which lies outside of the scope of this thesis. Interested 

readers are referred to [Brode and Macary 2004]. 
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Cross-presentation offers an important mechanism in the activation of CTLs which 

defend the body against pathogens and tumours [Kurts et al. 2010]. To avoid the 

destruction of uninfected cells that have endocytosed microbial debris; the 

endocytosed material does not normally enter the MHC class I loading machinery. 

 

Cross-presentation and cross-priming are essential to the CD8 T-cell response to 

viruses that do not infect APC [Kurts et al. 2010]. 

 

A.4 Licensing 

 

A textbook explanation of licensing is that inflammation following infection 

generally activates DCs as part of the innate immune response to the causative 

pathogen. When inflammation has not occurred then the DCs do not possess the 

necessary level of activation to stimulate a complete response from CD8 T-cells. CD4 

T-cells then serve to stimulate DCs to an activation level sufficient that they can 

stimulate CD8 T-cell response. This action is termed ‘licensing’ – CD4 T-cells being 

said to ‘license’ DCs [Janeway et al. 2008]. However, the role of inflammation is 

contentious and there are several important unknown factors involved in the licensing 

process. For instance, is the licensing signal sent via the APC itself or is the process 

cytokine mediated? Are the CD4 T-cells bound to the APC at the same time as the 

CD8 Treg? 

 

The requirement for DC licensing in the absence of inflammation is a mechanism for 

protecting against autoimmunity because it is in effect a requirement for an antigen to 

be recognised both by CD4 T-cells and CD8 T-cells before the CD8 T-cells can be 

stimulated to proliferate and differentiate into potentially deleterious CTLs. 

 

The issue of DC licensing by CD4 Treg cells is particularly important in the 

experiments in Chapter 3 of this thesis and in the simulator licensing is understood to 

be simply a signal from CD4 Th (or CD4 Treg) to an APC in order to allow the APC 

to prime CD8 T-cells. 

 

A.5 Apoptosis 

 

Apoptosis is the name given to ‘programmed cell death’ i.e. the natural death of a 

cell. Apoptosis serves the function of removing unnecessary cells from the system, 

returning cell populations to their appropriate levels following clearance of infection 

and removal of potentially auto-reactive T-cells during selection 

 

Induction of apoptosis involves different signals (e.g. caspases, FasL-Fas) depending 

on the cell type involved. 
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Appendix B: Implementation Specific Details of the Simulator 
 

B.1 Simulator Packages 

 

The purpose of a package diagram is to show how the software is structured with 

regard to the groupings of agents. Agents are grouped by intended function into 

packages of agents sharing similarly functions e.g. I/O, data logging etc.  

 

Generally, in Java, packages correspond to the location of the different agents in the 

Java source code directory. 

 

Figure B.1: A package diagram for the EAE Simulator. Since the package 

structure is implementation specific, the diagram presented here is mainly for the 

interested reader. The diagram is adapted from [Williams 2010b]. 
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B.2 Interactions Between the Simulator Classes 

 

The purpose of an association class diagram is to give an overview of how the 

varying classes within a project interact with each other. For biological complex 

systems such as the immune system in EAE, this can lead to highly connected and 

potentially unclear diagrams. 

 

Figure B.2: An association class diagram for the EAE Simulator. The diagram 

aims to give an overview of the various types of interaction (or 'associations') that 

occur between the different agent types (the Java classes) within the simulator. Again, 

since the association of classes is implementation specific, this diagram is presented 

merely for the interested reader. Adapted from [Williams 2010b]. 
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B.3 Cell Types Incorporated into the Domain Model 

 

The following cell types are incorporated into the Domain Model for EAE employed 

in the simulator [Read et al. 2009a, Read 2011]. 

 

Figure B.3: The different cell populations defined within the EAE Simulator 

[Read 2011]. The figure also shows how the different cell types are related to each 

other i.e. their pattern of inheritance. 
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B.4 Simulator Compartments – Nature, Dimensions and Inter-communication  

 

The EAE Simulator defines four different compartments which each represent a 

distinct location within the body where immune cells may reside during immune 

response. The compartments are the SLO which represents generic lymphatic tissue, 

the CLN which is the major lymph node in the neck and serves as a key access point 

for immune cells into the CNS. Lastly the simulator defines a spleen compartment, 

which represents the spleen which is an important lymph system organ. These four 

compartments are notionally connected by the fifth, or circulation compartment. Most 

cell types can enter the circulation, but strict rules pertain as to which compartments 

they can migrate to from there. 

 

Table B.1: Enumeration and dimensions of the compartments defined within the 

simulator. There are five main compartments defined within the simulator, the 

periphery is not explicitly modelled and is notionally included for the purposes of 

implementing immunization in the simulation. 

 

Compartment Length / grid points Width / grid points 

Circulation 62 40 

SLO 50 50 

CLN 50 50 

Spleen 62 40 

CNS 50 50 
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Figure B.4: Illustration of the inter-communication between the different 

simulator compartments. Each compartment represents a distinct location within 

the body. Annotations on the communicating arrows define which cell types are 

allowed to migrate between the specified compartments in the baseline simulator. 

This figure is adapted from [Read 2011]. 

 

 

 

Cell migration occurs on the grid defined for each compartment. A cell can randomly 

choose a direction in which to move and, if there is space in the chosen destination 

cell for it to do so, the cell migrates. If a cell reaches the boundary of its current 

compartment, then the cell can choose whether or not to migrate into the circulation, 

or if already there, to one of the other compartments to which it has access. 
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B.5 The States Available to Dendritic Cells 

 

DCs can be either Immature or Mature and a Mature DC can be Tolerogenic or 

Immunogenic depending on whether the cell can express costimulatory molecules or 

not. These states are summarised in Table B.2 below. 

 

Table B.2: Description of the states that dendritic cells can adopt within the 

simulator. The states are defined in terms of whether the cell is expressing MHC 

compounds (MHC) or costimulatory molecules (CoStim) and whether the cell is 

Type 1 or Type 2 polarised. 

 

State Express MHC Express CoStim Polarization set 

Immature No No No 

Mature Yes Yes Yes 

Tolerogenic Yes No Yes 

Immunogenic Yes Yes Yes 

 



Appendix B 

 

120 

B.6 The States Available to T-cells 

 

Naïve cells are spawned bound to the same APC that their parent was bound to. The 

naïve cell has the same specificity as its parent. 

 

When the naïve T-cell receives 'signal 1' that is it recognises its cognate antigen, the 

cell becomes partially activated and can move into a proliferative state if it receives 

'signal 2' – costimulation.  

 

The proliferating cell remains bound to the APC and a time is set at which the T-cell 

can become an effector.  

 

Once the T-cell has become an effector times are set for cell death via Activation 

Induced Cell Death and for 'death by neglect'. The T-cell becomes unbound from the 

APC and is free to migrate. Effector function is not active until the T-cell encounters 

its cognate antigen. 

 

Once the T-cell reaches a preset age, it becomes apoptotic, that is, it undergoes 

natural programmed cell death. 
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B.7 The Immunization and Initial Populations of Dendritic Cells 

 

The simulator is designed to appear as if it has been running permanently. To this end 

there are two special types of DendriticCell agent within the simulator. There are 252 

DC in all created at a simulation time designated -1.0. 120 of these (36 immature and 

84 mature) are divided between the spleen, CLN and SLO and accounts for all the 

DC which are permanently resident in these compartments. 40 immature, migrating 

DC are placed in the CNS and 92 mature, migratory DC in the CLN.  

 

Additionally, DC are introduced to the simulation as 'immunization DCs'. Initially 14 

immunization DC are added to the SLO at time 1.0. Further mature DC are created 

over time according to the immunization protocol. 

 

The above information was derived from simulator parameters and via personal 

communication with Dr Mark Read. 
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B.8 Data Logging, Storing and Output 

 

Within the Simulator software there are packages specifically designed for logging 

simulation data, storing it and ultimately writing it to the file system. 

 

The dataLoggers package contains classes for logging simulation data. Typically this 

is primarily cell population counts and the counting is performed automatically at 

every simulation time-step. However, in our experiments investigating the effects of 

Qa-1 expression timing and of competition between CD4 and CD8 Treg, we needed 

to log data on apoptotic DCs and so it made more sense to log the data from these 

cells as they became apoptotic.  

 

The data logged by the dataLogger is stored in a dataStore object during the 

simulation and is then tabulated and output to the file system. The dataStore object 

has one record for each time step and one field within each record for each of the 

quantities that the simulator keeps track of. 

 

Again, for the work in Chapter 3 of the thesis we implemented our own bespoke 

dataStore objects for recording the age of licensing of DCs and also the proportions 

of space around each DC occupied by the different T Cell sub-populations. 

 



 

123 

Appendix C: Specific Details of the Changes Implemented in the Simulator 

 

C.1 Changes in Implementation for the Work in Chapter 3 

 

The new data logger and data store objects were coded and added to the appropriate 

packages. The data loggers were instantiated as static pointers on the 

DendriticCell class, the instantiation taking place in the TregSimulation 

class. The data stores were instantiated and accessed in the SingleRun class in a 

manner analogous to the existing SingleRunDataStore object which holds the 

data that the simulator writes to the file system. 

 

The stop clock data logger (DCApoptosedEventsDataLogger) was 

implemented so that it logged timing data only from DCs that were expressing Th1-

derived peptides (namely the CDR1/2 and Fr3 fragments of the T-cell receptor V8.2 

chain). The spatial saturation data logger 

(DCApoptosedNeighboursDataLogger) recorded the proportion of the 

available space around DCs occupied by different types of T-cells. Specifically data 

were recorded on the proportion of binding space occupied by CD4 and CD8 Treg 

around DC expressing Th1-derived peptides, the proportion of space occupied by 

CD4 Th cells around DC expressing MBP and the proportion of space occupied by all 

three T-cell types around DC expressing MBP and Th1-derived peptides together. 

 

All other coding changes took place within the DendriticCell class. These 

principally consisted of new methods used to record the cellular event timings on the 

DCs and relevant accessor ('getter') methods to permit the data loggers to access the 

private fields on the DendriticCell. Of paramount importance to the two 

experiments were the modifications made to the becomeApoptotic() method on 

DendriticCell as these enabled the DendriticCell objects to submit 

themselves to the data loggers when they became apoptotic. 

 

A slight modification was made in the DendriticCellMigrates class to allow 

for full inheritance of methods implemented in DendriticCell class. This related 

to the becomeApoptotic() method from which the apoptotic DendriticCell 

objects submit themselves to the two data loggers. 

 

The code was tested after major revisions. Testing consisted principally of tracing 

flow of control via diagnostic use of the System.out.println() method. This 

method was also used to report on values passed between methods on different 

objects and of key variables at decision points in the code. 
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C.2 Unusual Data in the Age of Licensing Distribution 

 

While collecting the age at licensing data in Section 3.6.3, the simulation presented 

some unusual timing data. The age of licensing data logger was found to have logged 

DCs which had creation times of -1.0 hours, a time for Qa-1 licensing and no 

recorded time of maturity in several runs out of the 1000. These data were 

particularly unusual in that the age of licensing data logger during each simulator run 

typically logged between 120 and 150 Th1-derived peptide expressing DCs and this 

kind of cell had been logged only between one and three times per run. It was 

therefore important to verify that these data were legitimate observations and not an 

artefact of a software bug. 

 

The simulator has been implemented in such a way as to make it appear as if it has 

been running forever. This is achieved by creating a ready established population of 

DCs across the simulator's compartments at time -1.0 hours. Some of these DCs are 

immature and some are mature, in which case they never invoke the 

becomeNonImmature() method which is where the time of maturity is recorded 

for each DC. All start the simulation able to express MBP but not Th1-derived 

peptides. As the mature DC created at time -1.0 hour then function as ordinary DCs it 

is perfectly feasible for these cells to have become licensed for Qa-1 expression and 

to be expressing CDR1/2 and Fr3 at the time of cell death. Hence the data logger can 

legitimately record the timing data pertaining to these DCs.  

 

Similarly, several of the initial population of immature DCs were legitimately logged 

throughout the 1000 baseline runs. These cells had a creation time of -1.0 hours, but 

had a time of maturity and a time of licensing recorded for them. 
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C.3 Results from the Verification of Baseline Behaviour Conducted in Section 

3.6.1 

 

The baseline simulation carried out served to provide a test that the alterations to 

simulation logic had not caused any disturbances in baseline behaviour. It also served 

to provide us with a set of baseline data against which we could compare subsequent 

experiments by means of the A-Test. 

 

A brief way to assess that we are returning baseline behaviour is to examine the 

system-wide T-cell effector population curves. The CD4 Th1 should peak at around 

day 15 (~1,000 cells), CD4 Th2 should peak around day 12 (~200cells). CD4 Treg 

peak around 30 days at slightly more than 1,000 cells and CD8 Treg peak around the 

same time with a lower population of ~600 cells. We find that this is indeed the case 

as is illustrated in Figure C1. 

 

Figure C.1: The median system-wide T-cell effector populations across 1,000 

runs of the simulation using our augmented simulation to verify that we had not 

disturbed baseline behaviour. The peaks in effector populations occurred at the 

anticipated times and at the correct population levels. 
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C.4 Results from the Verification of CD4 Treg Abrogation Behaviour 

Conducted in Section 3.6.2 

 

The CD4 Treg abrogation simulation carried out served to provide a test that the 

alterations to simulation logic had not caused any disturbances in previously recorded 

behaviour [Williams 2010b]. It also served to provide us with a set of CD4 Treg 

abrogation simulation data against which we could compare subsequent experiments 

by means of the A-Test. 

 

A brief way to assess that we are returning the proper behaviour is to examine the 

system-wide T-cell effector population curves. The CD4 Th1 should peak at around 

day 12 (~900 cells), CD4 Th2 should peak around day 12 (~200cells). CD8 Treg 

should peak at around 30 days ~1000 cells. We find that this is indeed the case as is 

illustrated in Figure C2. 

 

Figure C.2: The median system-wide T-cell effector populations across 1,000 

runs of the simulation using our augmented simulation to verify that we had not 

disturbed baseline behaviour. The peaks in effector populations occurred at the 

anticipated times and at the correct population levels. 
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Appendix D: The A-Test 

 

D.1 Effect Sizes for the A-Test 

 

The A-Test is a non-parametric test of effect, used to test the significance of a change 

effected between two populations where the property of interest is not normally 

distributed [Vargha and Delaney 2000]. In the context of this thesis we have used the 

test for assessing the statistical magnitude of the effect of changing one parameter 

and holding all others constant between two simulator experiments e.g. with Qa-1 

expression delayed and with constitutive Qa-1 expression. 

 

The test returns a score which lies in the range 0.00 to 1.00, the score reflecting the 

statistical size of the observed effect. The effect sizes associated with the range of 

scores is detailed in Table D.1. 

 

Table D.1: The effect sizes relating to the range of A-Test scores. The descriptions 

and score boundaries corresponding to them are justified in the paper by [Vargha and 

Delaney 2000]. 

 

A-Test Score  Effect Size 

> 0.71  Large 

> 0.64  Medium 

> 0.56  Small 

0.44-0.56  No Difference 

> 0.36  Small 

> 0.29  Medium 

> 0.00  Large 
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Appendix E: Supporting Data for the CD200-CD200R Negative Signalling 

Factorial Analyses 

 

E.1 The Graphs Omitted from the Discussion in Section 4.7 

 

i) Effect on Time taken to reach peak CD4 Th1 effector population 

 

Figure E.1: 3-dimensional plot illustrating the time taken to reach the peak CD4 

Th1 effector population at all of the possible pairings of probability parameters 

between 0% and 1%. The probability parameters represent the probability that a DC 

receiving a negative signal from CD200R down regulates MHC expression – 

p(down-regulate MHC) and the probability that a DC receiving a negative signal 

from CD200R down-regulates CoStim expression – p(down-regulate CoStim). The 

point 0, 0 that is nearest to the reader in the lower middle portion of the plot is the 

current simulator baseline behaviour. The probabilities on the x- and y-axes have 

been multiplied by 100 for clarity of labelling the axis ticks. 
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ii) Effect on Peak CD4 Th2 Effector Population 

 

Figure E.2: 3-dimensional plot illustrating the peak CD4 Th2 effector population 

at all of the possible pairings of probability parameters between 0% and 1 The 

probability parameters represent the probability that a DC receiving a negative signal 

from CD200R down regulates MHC expression – p(down-regulate MHC) and the 

probability that a DC receiving a negative signal from CD200R down-regulates 

CoStim expression – p(down-regulate CoStim). The point 0, 0 that is nearest to the 

reader in the lower middle portion of the plot is the current simulator baseline 

behaviour. The probabilities on the x- and y-axes have been multiplied by 100 for 

clarity of labelling the axis ticks. 
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iii) Effect on time taken to reach peak CD4 Th2 Effector population 

 

Figure E.3: 3-dimensional plot illustrating the time taken to reach the peak CD4 

Th2 effector population at all of the possible pairings of probability parameters 

between 0% and 1%. The probability parameters represent the probability that a DC 

receiving a negative signal from CD200R down regulates MHC expression – 

p(down-regulate MHC) and the probability that a DC receiving a negative signal 

from CD200R down-regulates CoStim expression – p(down-regulate CoStim). The 

point 0, 0 that is nearest to the reader in the lower middle portion of the plot is the 

current simulator baseline behaviour. The probabilities on the x- and y-axes have 

been multiplied by 100 for clarity of labelling the axis ticks.  
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E.2 The Initial Parameter Mapping (0% to 100% in 10% Increments) 

 

E.2.1 A-Test Scores: Comparing Experiments with Equal p(down-regulate 

CoStim) but Varying p(down-regulate MHC) 

 

Table E.1: A-Test scores for comparison of experiments with p(down-regulate 

CoStim) held constant and p(down-regulate MHC) varied. p(down-regulate 

CoStim) is the probability that negative signalling (interaction of CD200 with 

CD200R) causes the DC bearing CD200R to down-regulate expression of 

costimulatory molecules. Similarly with p(down-regulate MHC) for MHC 

expression. The column headings labelled 'Max' indicate the A-Test score for 

comparing the peak cell population for the named cell type. Columns labelled 

'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. (This Table is continued on the following page) 

 

parameter 

value (%) 

CD4Th1 

Max 

CD4Th1 

MaxTime 

CD4Th2 

Max 

CD4Th2 

MaxTime 

CD4Treg 

Max 

CD4Treg 

MaxTime 

0 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.507706 0.523136 0.419184 0.405426 0.000000 0.039386 

20 0.507790 0.519696 0.380486 0.363170 0.000000 0.070310 

30 0.518728 0.535204 0.373630 0.339494 0.000000 0.100902 

40 0.524850 0.539938 0.362316 0.331794 0.000000 0.109296 

50 0.525610 0.555570 0.364720 0.314024 0.000000 0.124714 

60 0.531712 0.560296 0.360154 0.303970 0.000000 0.118954 

70 0.528210 0.564018 0.366472 0.308928 0.000000 0.144788 

80 0.530710 0.553380 0.361682 0.307078 0.000000 0.129618 

90 0.534768 0.567352 0.358936 0.310726 0.000000 0.177884 

100 0.532738 0.575280 0.359524 0.321834 0.000000 0.132368 
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Table E.1 (continued from the previous page): A-Test scores for comparison of 

experiments with p(down-regulate CoStim) held constant and p(down-regulate 

MHC) varied. p(down-regulate CoStim) is the probability that negative signalling 

(interaction of CD200 with CD200R) causes the DC bearing CD200R to down-

regulate expression of costimulatory molecules. Similarly with p(down-regulate 

MHC) for MHC expression. The column headings labelled 'Max' indicate the A-Test 

score for comparing the peak cell population for the named cell type. Columns 

labelled 'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. 

 

parameter 

value (%) 

CD8Treg 

Max 

CD8Treg 

MaxTime 

 Th1@40d  Max EAE EAE@40d 

0 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.000000 0.033176 0.999836 0.503166 0.510408 

20 0.000000 0.045978 0.999984 0.498864 0.521928 

30 0.000000 0.052090 0.999998 0.522078 0.522484 

40 0.000000 0.091714 1.000000 0.525404 0.519856 

50 0.000000 0.060586 1.000000 0.524620 0.528376 

60 0.000000 0.083204 1.000000 0.532588 0.534228 

70 0.000000 0.097656 0.999960 0.516434 0.521524 

80 0.000000 0.083382 1.000000 0.523108 0.542784 

90 0.000000 0.079436 1.000000 0.540198 0.540228 

100 0.000000 0.111352 1.000000 0.517506 0.532896 

 



Appendix E 

 

133 

E.2.2 A-Test Scores: Comparing Experiments with Equal p(down-regulate 

MHC) but Varying p(down-regulate CoStim) 

 

Table E.2: A-Test scores for comparison of experiments with p(down-regulate 

MHC) held constant and p(down-regulate CoStim) varied. p(down-regulate 

CoStim) is the probability that negative signalling (interaction of CD200 with 

CD200R) causes the DC bearing CD200R to down-regulate expression of 

costimulatory molecules. Similarly with p(down-regulate MHC) for MHC 

expression. The column headings labelled 'Max' indicate the A-Test score for 

comparing the peak cell population for the named cell type. Columns labelled 

'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. (This Table is continued on the following page). 

 

parameter 

value (%) 

CD4Th1 

Max 

CD4Th1 

MaxTime 

CD4Th2 

Max 

CD4Th2 

MaxTime 

CD4Treg 

Max 

CD4Treg 

MaxTime 

0 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.501582 0.512196 0.501890 0.493508 0.424492 0.537170 

20 0.501650 0.515530 0.502052 0.500864 0.391384 0.557110 

30 0.509048 0.530504 0.486646 0.492014 0.348824 0.590214 

40 0.511748 0.529004 0.502324 0.488778 0.315146 0.629780 

50 0.512946 0.535958 0.492400 0.493912 0.295734 0.660070 

60 0.513068 0.536054 0.482720 0.481930 0.267788 0.672842 

70 0.517040 0.543850 0.485528 0.490268 0.271842 0.680516 

80 0.515112 0.533634 0.474712 0.476094 0.251464 0.683260 

90 0.517422 0.538278 0.492188 0.510296 0.248208 0.690682 

100 0.517522 0.539400 0.493658 0.500876 0.237738 0.701848 
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Table E.2 (continued from the previous page): A-Test scores for comparison of 

experiments with p(down-regulate MHC) held constant and p(down-regulate 

CoStim) varied. p(down-regulate CoStim) is the probability that negative signalling 

(interaction of CD200 with CD200R) causes the DC bearing CD200R to down-

regulate expression of costimulatory molecules. Similarly with p(down-regulate 

MHC) for MHC expression. The column headings labelled 'Max' indicate the A-Test 

score for comparing the peak cell population for the named cell type. Columns 

labelled 'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. 

 

parameter 

value (%) 

CD8Treg 

Max 

CD8Treg 

MaxTime 

Th1@40d Max EAE EAE@40d 

0 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.401226 0.550872 0.507656 0.476774 0.478000 

20 0.355782 0.593948 0.512812 0.486340 0.493000 

30 0.286896 0.627662 0.527040 0.481468 0.495000 

40 0.248384 0.652224 0.520228 0.513286 0.506000 

50 0.220766 0.680140 0.535756 0.505538 0.494000 

60 0.191364 0.692632 0.540336 0.493636 0.494000 

70 0.193134 0.731048 0.548118 0.514604 0.507000 

80 0.172830 0.699364 0.556400 0.512942 0.490000 

90 0.159002 0.714832 0.557060 0.510678 0.495000 

100 0.135610 0.723236 0.566768 0.512384 0.499000 
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E.3 The Second Parameter Mapping (0% to 1% in 0.1% Increments) 

 

E.3.1 A-Test Scores: Comparing Experiments with Equal p(down-regulate 

CoStim) but Varying p(down-regulate MHC) 

 

Table E.3: A-Test scores for comparison of experiments with p(down-regulate 

CoStim) held constant and p(down-regulate MHC) varied. p(down-regulate 

CoStim) is the probability that negative signalling (interaction of CD200 with 

CD200R) causes the DC bearing CD200R to down-regulate expression of 

costimulatory molecules. Similarly with p(down-regulate MHC) for MHC 

expression. The column headings labelled 'Max' indicate the A-Test score for 

comparing the peak cell population for the named cell type. Columns labelled 

'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. (This Table is continued on the following page). 

 

parameter 

value x 

100 (%) 

CD4Th1 

Max 

CD4Th1 

MaxTime 

CD4Th2 

Max 

CD4Th2 

MaxTime 

CD4Treg 

Max 

CD4Treg 

MaxTime 

0 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.501932 0.501572 0.498926 0.498678 0.311550 0.356856 

20 0.502022 0.505780 0.498808 0.481066 0.194218 0.275556 

30 0.504628 0.509142 0.499680 0.488492 0.130162 0.223092 

40 0.503012 0.503852 0.483568 0.476254 0.083034 0.198960 

50 0.503568 0.506058 0.485768 0.483976 0.061702 0.161288 

60 0.501308 0.503116 0.508066 0.492698 0.039374 0.140530 

70 0.502022 0.503366 0.516686 0.510340 0.028486 0.131072 

80 0.504006 0.504636 0.502488 0.487826 0.019028 0.118398 

90 0.503484 0.505764 0.485170 0.483774 0.013740 0.110824 

100 0.503478 0.509196 0.501560 0.507476 0.009842 0.096466 
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Table E.3 (continued from the previous page): A-Test scores for comparison of 

experiments with p(down-regulate CoStim) held constant and p(down-regulate 

MHC) varied. p(down-regulate CoStim) is the probability that negative signalling 

(interaction of CD200 with CD200R) causes the DC bearing CD200R to down-

regulate expression of costimulatory molecules. Similarly with p(down-regulate 

MHC) for MHC expression. The column headings labelled 'Max' indicate the A-Test 

score for comparing the peak cell population for the named cell type. Columns 

labelled 'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. 

 

parameter 

value x 

100 (%) 

CD8Treg 

Max 

CD8Treg 

MaxTime 

Th1@40d Max EAE EAE@40d 

0 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.311118 0.353784 0.526306 0.499672 0.499000 

20 0.196198 0.275970 0.558474 0.494870 0.496000 

30 0.114834 0.224868 0.610494 0.486004 0.489000 

40 0.073854 0.203982 0.643398 0.484688 0.490000 

50 0.048158 0.176650 0.669044 0.474960 0.486000 

60 0.030080 0.149998 0.692798 0.478622 0.493000 

70 0.019506 0.129692 0.761152 0.492220 0.500000 

80 0.010858 0.120848 0.774034 0.496186 0.499000 

90 0.008530 0.114460 0.802424 0.488274 0.497000 

100 0.005308 0.098662 0.814916 0.490828 0.490000 
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E.3.2 A-Test Scores: Comparing Experiments with Equal p(down-regulate 

MHC) but Varying p(down-regulate CoStim)  

 

Table E.4: A-Test scores for comparison of experiments with p(down-regulate 

MHC) held constant and p(down-regulate CoStim) varied. p(down-regulate 

CoStim) is the probability that negative signalling (interaction of CD200 with 

CD200R) causes the DC bearing CD200R to down-regulate expression of 

costimulatory molecules. Similarly with p(down-regulate MHC) for MHC 

expression. The column headings labelled 'Max' indicate the A-Test score for 

comparing the peak cell population for the named cell type. Columns labelled 

'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. (This Table is continued on the following page). 

 

parameter 

value x 

100 (%) 

CD4Th1 

Max  

CD4Th1 

MaxTime  

CD4Th2 

Max  

CD4Th2 

MaxTime 

CD4Treg 

Max  

CD4Treg 

MaxTime 

0 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.500216 0.499680 0.503292 0.509718 0.502804 0.483094 

20 0.499716 0.499364 0.505904 0.501896 0.499714 0.468330 

30 0.500782 0.501306 0.510912 0.498490 0.511886 0.484136 

40 0.501036 0.500334 0.525940 0.506372 0.510466 0.494934 

50 0.501516 0.503122 0.519098 0.510134 0.507666 0.499596 

60 0.501836 0.502730 0.520352 0.515270 0.503068 0.476712 

70 0.502634 0.503924 0.513628 0.528814 0.510000 0.506094 

80 0.502702 0.504368 0.517840 0.513676 0.493594 0.492716 

90 0.503356 0.504402 0.506354 0.506230 0.493154 0.487664 

100 0.503376 0.504322 0.529254 0.524930 0.487680 0.487432 
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Table E.4 (continued from the previous page): A-Test scores for comparison of 

experiments with p(down-regulate MHC) held constant and p(down-regulate 

CoStim) varied. p(down-regulate CoStim) is the probability that negative signalling 

(interaction of CD200 with CD200R) causes the DC bearing CD200R to down-

regulate expression of costimulatory molecules. Similarly with p(down-regulate 

MHC) for MHC expression. The column headings labelled 'Max' indicate the A-Test 

score for comparing the peak cell population for the named cell type. Columns 

labelled 'MaxTime' are the scores for comparison of the times taken to reach the peak 

population. Th1@40 is the score for comparing the CD4 Th1 population at day 40 of 

the simulation. MaxEAE is the score for comparing the maximum EAE severity 

scores during the simulation and EAE@40d is the score for comparing EAE severity 

at day 40 between two experiments. 

 

parameter 

value x 

100 (%) 

CD8Treg 

Max  

CD8Treg 

MaxTime 

Th1@40d  Max EAE EAE@40d 

0 0.500000 0.500000 0.500000 0.500000 0.500000 

10 0.492524 0.499834 0.504778 0.506592 0.504000 

20 0.493992 0.496610 0.481120 0.505646 0.502000 

30 0.500508 0.480476 0.498954 0.499270 0.498000 

40 0.511922 0.503724 0.492432 0.496632 0.496000 

50 0.501148 0.496266 0.486122 0.497326 0.495000 

60 0.511442 0.501090 0.487026 0.492840 0.491000 

70 0.510000 0.518940 0.486270 0.492914 0.495000 

80 0.502756 0.505886 0.498776 0.494954 0.491000 

90 0.496330 0.494158 0.489290 0.488580 0.490000 

100 0.492420 0.507452 0.486926 0.490320 0.487000 
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Abbreviations Used Within the Thesis 
 

Immunological and Biological: 

MS Multiple Sclerosis 

EAE Experimental Autoimmune (or Allergic) Encephalomyelitis 

CNS Central Nervous System 

BBB Blood Brain Barrier 

SLO Secondary Lymphoid Organ 

CLN Cervical Lymph Node 

 

DC  Dendritic Cell 

APC  Antigen Presenting Cell 

Treg  Regulatory T-cell 

 

IFN Interferon 

TNF Tumour Necrosis Factor 

 

Computational: 

ABM(S)  Agent Based Modelling (and Simulation)  

ABM  Agent Based Model 

UML   Unified Modelling Language 

CA   Cellular Automaton 

ODE   Ordinary Differential Equation 

MASON Multi-Agent Simulation of Neighbourhoods / Networks 

FLAME Flexible Large-scale Agent-based Modelling Environment 

CoSMoS Complex Systems Modelling and Simulation 
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