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ABSTRACT 

The human body is colonised by an immense number of microbial organisms inhabiting various 

tissues and body sites and although most microbiomes are beneficial for the host, environmental 

disturbances can lead to negative clinical consequences. Microenvironment disruption has been 

linked with various disorders in the vaginal tissue including Bacterial Vaginosis, HIV and other 

Sexually Transmitted Infections. Microbiome studies have proven a useful tool in characterising 

microorganisms associated with health and disease in humans. Amplicon data can provide 

information on the relationship between bacterial community composition and ecosystem 

function. This study aimed to identify correlations between members of the vaginal microbiomes 

from different individuals with gynaecological disorders, to gain insight into the microbial 

interactions that affect community assembly. Although positive and negative correlations between 

bacterial taxa may give us insight to bacterial relationships, they can be enhanced by exploring the 

metabolic properties of these taxa. A pipeline was designed here to allow cultivation-free, 

bioinformatics analysis on existing amplicon data from vaginal microbiome studies. QIIME 

(Quantitative Insights Into Microbial Ecology) and other purpose-written Python scripts were 

designed to complete taxonomy assignment, diversity and clustering analysis, as well as to assess 

the statistical significance of the correlations from the interactions observed. Analysis suggests 

strong correlations between various anaerobes, linked with dysbiosis in bacterial communities. A 

novel correlation between Dialister and Prevotella genera is presented, which can be reinforced by 

the presence of metabolic links. Succinate is a shared metabolite, that is a product of fermentation 

in Prevotella and a substrate for Dialister in propionate production. The findings identify links 

between the human microbiome and pathogenicity, thus providing insight into vaginal microbiome 

structure and composition, particularly so in the gynaecological syndrome of bacterial vaginosis. In 

conclusion, microbiome analyses studies show the prospect of new approaches to diagnosis and 

therapy. 
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1. INTRODUCTION 

1.1 Importance of Microbiomes 

The human body is colonised by an immense number of microbial organisms cohabiting in various 

tissues and body sites throughout surfaces of the body. Human microbiomes play a crucial role in 

health and disease, whilst also being linked to nutrition, metabolism and immunity protection [1]. 

The number and scope of human microbiome studies has been greatly expanded over the past 

decade due to the technical advances in sequencing technologies [2]. Additionally, metagenomic 

tools have promoted microbiome study analyses, by offering insight into metabolic functionality. 

Computational tools are now available which can analyse microbiome community composition and 

functionality as a complete system, thus avoiding potential cultivation bias [3]. 

Due to  advances in sequencing and accompanying metagenomics  technologies scientists have 

been able to understand the importance of microbiome composition underlying function in 

multiple different tissues and organs throughout the body [4],[5]. Gut, oral, skin and vaginal 

microbiomes are colonised by distinct microbial communities, that offer a mutually beneficial 

system for both host and resident microbes. Microbiomes are mainly composed of bacteria, though 

they can also contain viruses, protozoa and fungi that play key roles in digestion and immunity 

defence. Gut microbiomes are composed of very diverse communities with approximately 800 

microbe species [6]. Skin is the largest organ in the human body, and like the gut or the vagina, is 

colonised by various beneficial microorganisms comprising stable structures based on microbiome 

interactions [7]. D’Argenio et al. 2015 report that key organisms in the gut flora such as Firmicutes, 

Bacteroidetes and Actinobacteria assist in polysaccharide digestion [8]. This leads to production of 

various vitamins (such as vitamin B) which play a role in immune system development and defence 

against infections [9]. On the other hand, the microbes in turn flourish within their human hosts, 

benefiting from nutrients and an advantageous growth environment.  

Microbiomes of asymptomatic healthy individuals, represent dynamic, structured bacterial 

communities forming symbiotic relationships and regulating various metabolic functions [10]. 

Symbiosis is a term describing on going relationships between organisms. More specifically 

mutualism refers to mutually beneficial symbiotic relationships, and in this instance is commonly 

related to metabolic properties [11]. Mutualistic symbiotic metabolic interactions between 

members of the gut microbiome as well as between the microbiome and host have been studied 

extensively [12]. For example, Neish et al. 2000 revealed that nonvirulent Salmonella strains inhibit 

inflammatory cytokine production in intestinal epithelia cells, via the IkB pathway, blocking further 

nuclear translocation of the NF-kB dimer[13], as a result, illustrating the mutualistic symbiosis 

between host and Salmonella. Xu et al. 2013 discuss bacteria-bacteria symbiosis in their study on 

Gram-negative anaerobe Bacteroides thetaiotaomicron [14]. They reveal that bacteria Bacteroides 

thetaiotaomicron, Clostridium perfringens, Bifidobacterium longum, and Escherichia coli have the 

ability to utilise various polysaccharides depending on environmental availability, thus efficiently 

sharing environmental resources and creating a “metabolic milieu of the intestinal ecosystem” [14].  
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Equally, vaginal microbiomes reveal various symbiotic bacteria-bacteria metabolic relationships 

due to the compositional stability of the microbiome. In 1997 Pybus et al. proposed a mutualistic  

symbiotic metabolic relationship between Gardnerella vaginalis and Prevotella bivia [15]. They 

revealed that Gardnerella vaginalis and Prevotella bivia cycle ammonia and amino acids, with P. 

bivia utilising amino acids for growth and producing ammonia whilst G. vaginalis utilised ammonia 

for growth and produced amino acids [15]. Neisseria gonorrhoeae, a pathogenic bacterium 

responsible for vaginal gonorrhoea infections, is also known to display syntrophic interactions.  N. 

gonorrhoeae contains a conserved genomic island, the prp gene cluster, which enables propionic 

acid utilisation as a carbon source, especially under stress conditions [16]. Propionic acid is 

produced by various anaerobic bacteria as an end product of fermentation. This proves useful to 

vaginal microbiome communities as multiple bacteria (eg. Corynebacterium) utilised propionic acid 

to generate pyruvate, a key carbon source [17] [18]. 

Humans experience multiple microbiome composition variation phenomena throughout their life 

span, from infancy to puberty, adulthood and finally to less diverse elderly microbiota [19]–[23]. 

However, some compositional changes driven by environmental stress (eg. pregnancy, 

psychological stress [24]) have been implicated with increased susceptibility to disease or infections 

[25]–[27]. Microbiome fluctuations have been linked to vaginosis [28], obesity [29], bowel disease 

[30], and even behavioural habits [31]. As Falony et al. 2015 discussed in their study, metabolites 

in the gut microbiome, such as trimethylamine, can turn harmful and promote atherosclerosis, 

although strong correlation to causation was not proven [32]. Additionally, Gosmann et al. suggests 

in their 2017 study, a correlation between vaginal microbiome composition and human 

immunodeficiency virus (HIV) susceptibility [27].  Their analysis reports links between decreased 

L. crispatus and increased anaerobes (such as Prevotella, Sneathia and others) with elevated 

activated genital CD4+ T cells [27]. Vaginal communities with increased activated CD4+ T cells were 

additionally associated with increased HIV susceptibility, due to their ability in expressing HIV co-

receptors and thus allowing enhanced viral replication [33]. Their data were used for the purpose 

of this research, to approach complete microbiome analyses via a new proposed pipeline. (The 

study will be referred in the upcoming chapters by its Sequence Read Archive (SRA) code HIV). 

1.2 Dysbiosis in Vaginal Microbiomes 

The focus of this study was to identify community links between vaginal microbiomes under various 

dysbiotic conditions based on microbiome composition. Vaginal flora are very beneficial to their 

host by providing the first line of defence against infections and colonisation of pathogenic 

organisms. As Cribby et al. 2008 mention in their study, more than 50 unique microbial species 

inhabit human vaginas [6]. Asymptomatic female vaginal tracts usually consist of aerobic and 

anaerobic bacterial communities.  The majority of healthy vaginal microbiomes consist of bacterial 

communities with predominantly one of four Lactobacillus species [28]. L. iners, L. crispatus, L. 

gasseri, L. jenesenii are the four most commonly present Lactobacillus species, involved in key 

processes maintaining a balanced microbiome environment [34]. Lactobacilli maintain a low pH (4-

4.5) by producing lactic acid, an antimicrobial compound in its own right, thus creating an 

unsuitable environment for various pathogenic organisms and preventing colonisation [28], [35]–

[37]. Vaginal Lactobacilli are also involved in hydrogen peroxide production, generating an 

additional barrier to pathogenic colonisation [38].  However, multiple healthy asymptomatic 

women, present low Lactobacillus abundance microbiome communities. Interestingly, the 

http://www.sciencedirect.com/science/article/pii/S1074761316305192
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microbiome will balance lactic-acid production by replacing Lactobacilli with other lactic acid–

producing bacteria such as Atopobium vaginae, Megasphaera, and Leptotrichia [39].  In conclusion, 

female health is significantly regulated by the vaginal microbiome. Reduction in Lactobacillus 

abundance has been linked to various vaginal syndromes, most commonly Bacterial Vaginosis (BV) 

and HIV [40].  

Females are commonly diagnosed with vaginal inflammation syndromes (non-specific vaginitis), 

however treatment for vaginitis can prove challenging as various conditions can be responsible for 

its cause [41]. Most common infections are caused by yeast or bacteria colonisation, due to 

hormonal changes, medical prescriptions or even sexually transmitted diseases [41]. Bacterial 

vaginosis (BV), Chlamydia, Genital herpes and Gonorrhoea are some of the most common causes 

of non-specific vaginitis [42]. All disorders include unique symptoms however the most common 

are discharge, odour and irritation. Unfortunately, the symptom similarities between disorders 

causes complications with diagnosis, as women assume yeast infections (which are commonly self-

treated). The misconception is common in BV [43] and Gonorrhoea patients [44], thus increasing 

the percentage of falsely medicated cases. Self-medicating or antibiotic over-prescription can lead 

to increased antibiotic resistant bacterial strains, as observed in the latest years with Neisseria 

gonorrhoeae (the bacteria responsible for bacterial gonorrhoea) [45]. 

Disturbance of the vaginal microbiota’s ecosystem can result in moderate infections or severe 

vaginal conditions. Bacterial vaginosis (BV) is a common clinical syndrome resulting from disruption 

of the environmental equilibria in the vaginal microbiome [46]. BV is an “alert state” of the vaginal 

microbiome usually characterised by the loss of lactobacilli and an increase in anaerobes and Gram-

negative bacteria [47]. Gardnerella spp have also been reportedly high in BV patients [48]. BV state 

is characterised by a number of typical symptoms, including topical irritation, increased pH and thin 

grey-white vaginal discharge, however the reasons leading to this environmental disruption are not 

fully understood [49].   Despite the common occurrence, even though common, BV is strongly linked 

with gynaecologic implications such as an increased chance to acquire STI infections and HIV [40], 

[50]. Saxena et al. 2012 discuss that the association between BV and HIV susceptibility could be a 

result of mucosal permeability defects, driven by BV [51]. BV has also been linked with pregnancy 

miscarriages as well as an increased rate of premature labour [52], [53]. BV has severe implications 

to female health, accordingly it is crucial to investigate BV microbiomes to better understand the 

relationships between bacteria, host and the causation of bacteria imbalance. 

While all vaginitis conditions have major implications on microbiome composition and patient 

health, the correlation of microbiome instability to HIV susceptibility is concerning [54]. As Zhou et 

al. 2007 mention in their study, more than 90% of HIV infections originate from heterosexual 

intercourse with a 2-4-fold increase ratio if females were BV carriers [55].  HIV is a lentivirus, which 

over time can be responsible for Acquired Immunodeficiency Syndrome (AIDS), a severe immune 

failure disorder. Due to hindered immune system, women infected with HIV present microbiomes 

with higher species richness [27]. Spear et al. 2010 results demonstrated that Lactobacillus iners 

were significantly less present (1.3-fold difference) in HIV-positive women, compared to HIV-

negative patients [56]. Additionally, Hummelen et al. 2010 focused on sequencing Tanzanian 

women’s microbiomes and revealed a strong increase of Clostridiales order level taxonomies (with 

Prevotella bivia dominating most patients), in co-infected HIV and BV individuals [57]. Equally, Ravel 

et al. 2011 report Prevotella as the most abundant genus taxonomy, in low Lactobacillus samples 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Saxena%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22193889
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ravel%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20534435
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[28]. Prevotella appears to be significantly associated with decreased presence of Lactobacilli, 

either as a result of HIV or BV microbiome imbalance. Interestingly, Prevotella is a pathogen 

responsible for aspiration pneumonia, lung abscess and other respiratory tract infections, due to 

its ability in invading epithelial cells and thus triggering inflammatory response [58]. Consequently, 

there is a large need to study vaginal microbiomes and understand the interactions of their 

members to identify the causes of the changes that can turn its environment toxic to its host. 

1.2.1 Definition of dysbiosis 

As discussed, disturbance of microbiome communities due to external triggers can result in major 

health implications. However, fluctuations in community structures do not always lead to increased 

vulnerability. All humans undergo multiple microbiome community fluctuations during their life 

span causing temporary microbiome instability. Vaginal microbiomes consisting of atypical 

microbial communities can be characterised as dysbiotic. Dysbiotic is an ambiguous term, as various 

studies provide different definitions. It is commonly expressed as the presence of microbial 

imbalance. Tamboli et al. 2004 define dysbiosis as an imbalance of “healthy” vs “harmful” bacteria 

in the intestinal microbiome [59]. Dysbiosis is commonly related to damaging, susceptible or 

diseased microbiomes, [60]–[62] and not focused on microbiome composition and structure. 

However, for the purpose of this study the term “dysbiotic” will signify the lack of a “common” 

asymptomatic vaginal microbiome community. In particular, a dysbiotic vaginal sample will 

describe a patient’s lack of, or irregularly low abundance of, Lactobacilli or the presence of 

uncommon bacterial community structures. Dysbiosis will not be associated with patient’s medical 

status or condition. Therefore, asymptomatic healthy patients with atypical vaginal microbiomes, 

as observed in Ma et al. 2012 study - where healthy vaginal microbiomes not dominated by 

Lactobacilli were detected, will be described as dysbiotic [36]. In conclusion for the purpose of this 

study dysbiosis will not be synonymous to symptomatic, vulnerability or diseased but simply 

represent atypical vaginal microbiome communities. 

1.3 Metagenomics 

Human microbiome studies have been proven to be a very useful tool in identifying and 

characterising microorganisms associated with health and disease in humans. Microbiome studies 

via metagenomic analysis can provide information on the relationship between bacterial 

community composition and the ecosystem function in human tissues colonised by 

microorganisms. Prior to high throughput sequencing technologies, microbiome studies required 

individually cultured community members in order to investigate associations and community 

structure [63]. Culturing methodologies are optimised for a small number of well characterised 

organisms, thus atypical bacteria would cause complications in analysis. Additionally, culture-

dependent techniques can create bias; depending on culturing conditions, the easily cultured 

bacteria will be overrepresented. Consequently, culture based microbial analysis present 

limitations.[64], [65]. Fortunately, high-throughput sequencing provides an efficient approach to 

investigate members of microbial communities by analysing DNA samples directly from the source 

[66].  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Tamboli%20CP%5BAuthor%5D&cauthor=true&cauthor_uid=14684564
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Metagenomics is a term used to define both research techniques (commonly associated with 

amplicon data and computational analyses), and a research field studying genomic material from 

uncultured microbial populations [67]. Metagenomics allows investigation of microbiomes aiming 

to gain insight on microbial behaviours and environmental interactions at a genomic level [68]. A 

number of studies have investigated vaginal microbial communities via metagenomic analysis [16], 

[40], [47], [69], providing a large numbers of amplicon data to investigate bacterial interactions. 

Typically, metagenomic analysis of microbiome bacterial communities is implemented on multiple 

samples of varied composition. This would allow comparison between microbiomes and distinction 

between microbial communities in response to function. For example, study [70], [71] collected 

samples from various areas of the human digestive tract, comparing microbiome composition 

between gut and faecal microbiomes.   

Metagenomics sequencing techniques can produce hundreds of thousands of reads, depending on 

the size and sample properties of the experiment. The large numbers of reads assist with accuracy 

and provide better assessment of microbiome composition while avoiding cultural bias [72].  The 

sequencing reads can be utilised to perform diversity and correlation analysis to understand 

microbiome community composition thus gain a better understanding of function.  Various 

computational tools such as Quantitative Insights Into Microbial Ecology (QIIME), have been 

developed allowing sample assignment, operational taxonomic unit (OTU) picking and taxonomic 

identification [73]. Using these tools on data sets originating from multiple published studies 

focused on various dysbiotic microbiomes could allow insight into potential links between dysbiotic 

vaginal environments. 

16S ribosomal RNA data has been one of the preferred methods for sequencing studies, when 

characterising members of a microbiome since the late 1980’s, and particularly since the invention 

of PCR [74].  16S rRNA data have proven beneficial as they contain conserved regions, as well as 

variable regions helping with taxonomy assignment [75]. 16S rRNA are part of ribosomes, which are 

ubiquitous and have had conserved structural and functional properties over the course of 

evolution, thus allowing direct organism identification and assessment of phylogenetic relatedness 

[76]. However, multiple studies have criticised 16S rRNA ability to identify taxonomies to species 

level. Multiple studies such as Becker et al. 2004 have attempted new approaches to 16S rRNA 

analysis to overcome species level phylogenic disadvantages [77]. Ribosomal RNA identification is 

most commonly used in bacterial metagenomics analysis due to the well-established reference 

databases assigning taxonomy to 16S sequences [64], [78], [79]. 

Cultivation-free analysis with bioinformatics permits fast and deep understanding of microbiome 

composition and structure as well as the effect of environmental changes. As mentioned above, 

vaginal flora undergo multiple disturbance events from pregnancy to medication prescriptions 

during women’s life span [36]. It has been suggested that stability of the microbiome, if exposed to 

environmental stress is dependent on microbiome composition [80]. It is therefore interesting to 

investigate whether short term conservation changes of the microbiome, have an effect on its 

ability to fight infection. For that reason, various dysbiotic vaginal microbiomes will be analysed. 

Data originating from existing microbial diversity studies [27], [81]–[84] may allow insight into any 

potential links between composition and dysbiosis thus gaining a clearer understanding of medical 

disorders and their associated bacterial interactions. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Becker%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15528685
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1.4 Aims 

Focusing on the impact of dysbiosis on vaginal microbiomes, five studies were selected to carry out 

a computational analysis. This would draw out information on potential links between dysbiotic 

vaginal microbiomes and the interactions between members of those microbiomes. Aiming to 

identify associations between specific members of the microbiome, a new approach to microbiome 

analysis is suggested. The study hypothesises strong correlations between specific bacteria 

constituting the microbiome driven by complementary metabolic traits. These will be tested via 

various bioinformatics software and tools. Bioinformatic tools such as Quantitative Insights Into 

Microbial Ecology (QIIME) and Clustered Image Maps (CIM)miner were utilised to perform OTU and 

taxonomy assignment, thus identifying microbiome composition; as well as diversity and clustering 

analyses, thus investigating microbiome interactions.  Various python programs were developed to 

carry out additional clustering assessments (illustrated in heatmaps and dendrograms) as well as 

statistical tests to confirm the significance of inter-species correlations. Various previous studies 

have focused on correlations between microbiome composition and environmental state, whereas 

this project focuses on identifying strong correlations between specific organisms dependant on 

microbiome community structure. In conclusion, this study aims to provide insight to potential 

associations between specific bacteria members of a microbiome and express the likelihood of 

metabolic relationships being the driving force of these correlations.  
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2. METHODS AND METHOD DEVELOPMENT 

The recent “hype” in microbiome studies, paired with the advanced feasibility of genome-wide 

sequencing has resulted in a diverse database of sequenced microbiomes. This provides the 

materials to assess human microbiome communities by computational methods [85]. 

Bioinformatics allow rapid assimilation of a vast number of sequences thus permitting investigation 

of a microbiome’s diversity, structure, composition and even ecosystem in a reduced-resource and 

high-throughput manner.  

One of the aims of this project was the design of a new pipeline to manage 16S rRNA data for 

metagenomic analysis. The lack of a universal amplicon pipeline steered the optimisation of the 

methodology to carry out whole microbiome community assessment. The design of this 

methodology aspired to investigate interpersonal microbiome variation, bacteria and 

environmental interaction analyses, on any given amplicon dataset. Most currently available 

methodologies specialise on certain statistical or correlation tests rather than profiling complete 

microbiomes and their interactions [35], [76], [86]–[88]. 

Here a pipeline was developed to perform data acquisition and reformatting on 16S rRNA human 

vaginal microbiome samples collected from former microbiome studies. Aiming to study vaginal 

community structures under different pathology states, the pipeline contains Operational 

Taxonomic Unit (OTU) and taxonomy assignments, allowing profiling of the microbiome. Diversity 

analyses in the pipeline reveal microbiome community structures and correlations within its 

members as well as in-between the ecosystems. Additionally, executing statistical tests such as 

Shapiro and Wilks, Spearman’s rank correlation coefficient and computing principal component 

analysis (PCA) provides a statistical significance on the observed associations. Clustering analysis, 

dendrograms and heatmaps are more tools added to the pipeline, aiding in visualising interactions 

within and in-between the microbiomes. 

Most of the pipeline steps were implemented through Python programming (see Appendices). 

However key tools such as Quantitative Insights Into Microbial Ecology (QIIME) and CIM miner 

online tools were used for data filtering, microbiome classification, heatmap generations and 

investigation of key correlation links. 

Further development of the pipeline dedicated on metabolic interactions and associations within 

the microbiome would allow a complete illustration of a microbiome’s contribution to health and 

disease at an intrapersonal level. Completion of this pipeline could provide an improved and faster 

way for medical diagnostics using bioinformatics as an assessment tool. 

2.1 Data selection and acquisition 

Metagenomic analysis on microbiome studies is a very common approach with multiple 

applications in research. For this study, amplicon data produced through high throughput 

sequencing methods (454 or Illumina), were selected to investigate human vaginal microbiomes 

under various dysbiotic conditions. 16S rRNA data have proven very useful in microbiome 

assessment due to their high success in profiling complex microbiome communities [89]. 16S rRNA 

allows microbiome profiling, particularly for low abundance species, with deep sequencing depth 

[90]. As mentioned previously, healthy vaginal microbiomes vary in diversity however most are 
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dominated by key bacteria such as the Lactobacillus species. As this research focused on dysbiotic 

vaginal microbiomes, it was essential that the data included an accurate representation of low 

abundance species. Therefore, 16S rRNA sequences were the amplicon data chosen for this study 

in order to observe variations between medical syndromes driven by microbiome interactions.  

Sequences were collected from previous metagenomic studies containing vaginal samples; either 

tissue or swab samples. Samples were accessed from the Sequence Read Archives (SRA) database, 

a function of NCBI’s (National Centre for Biotechnology Information) database. Each sequence file 

contains sequences from a single tissue sample. Tissue samples do not necessarily represent an 

individual in a study. Typically patients were required to provide multiple samples during the course 

of a study, to review intrapersonal variations over time [91]. Unfortunately, the true “identity” of 

the samples was not always available, due to annotation issues and will for the purpose of this study 

be perceived as independent samples. 

It is important to mention that the final dataset assembled for this study (see Table 1) went through 

a series of quantitative and qualitative edits. The details of data acquisition and sorting are 

discussed to present possible means of approaching computational setbacks and challenges faced. 

The initial search for sequences was performed through utilising NCBI’s database through the 

search box, typing “vaginal microbiome”. This search (01/02/2016-18/02/2016) listed 6928 

experiments with approximately 41000 SRR (SRA Run Brower) accession codes, each containing 

sequence and technique details of a single run. Aiming to create a diverse sample size database 

containing various 16S rRNA human vaginal samples, all 41000 SRR’s were included in the initial 

dataset. The attempted download of 41000 SRR was performed through the “SRA Toolkit” via 

“prefetch” command (suitable for Windows operating systems) in command prompt. NCBI offers 

SRA Toolkit, a collection of tools and libraries available for Sequence Read Archive data analysis. 

>> prefetch [options] <path/SRA file | path/kart file> [<path/file> ...] 

“Prefetch” calls the SRA accession number corresponding to a single study run and generates a .txt 

file containing the sequences of that SRR file (see Appendix 1). Following this step, “fastq-dump” 

was employed to reformat the “SRR*.txt” file to a more computationally friendly .fastq file. “fastq-

dump” is an additional SRA Toolkit utility which was again implemented in command prompt 

(command listed below). Fastq files are commonly used text file formats, containing sequence reads 

and qualitative information of the sequence reads, thus assisting with sequence display for 

bioinformatics analyses. 

>> fastq-dump [options] <path/file> [<path/file> ...] 

However, the immense size of the database appeared to decrease the speed of the download. As 

this process proved too computationally heavy for a Windows operating system, Ubuntu Linux 

operating system was installed. Linux provides a safer, more efficient system when programming, 

with great advantages in memory management allowing faster processing in comparison to 

Windows. “fastq-dump” command works differently in a Linux operating system. Unlike in 

Windows, “fastq-dump” in Linux does not need a preceding step in order to download SRR 

sequences. It downloads and directly converts and stores the files into a .fastq or .fasta file.  

>> fastq-dump -X 5 -Z SRR390728   (see more in Appendix 2) 
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During the initial database selection step, non-human samples were detected; as the database 

consisted of every study listed under “vaginal microbiome”. Removal of the non-human vaginal 

samples resulted in a new dataset of 7963 SRR’s. Download for the second dataset was performed 

through the fastq-dump command in Linux terminal.  However, a number of accession codes were 

flagged thus preventing their download. Upon examination of the returned SRA codes (550 SRA 

false files), some codes corresponded to blank SRR sequence files, thus were deleted; whereas 

others had to be downloaded individually via “prefetch”. The precise reasoning behind 

troubleshooting error-flagged files via prefetch are not fully understood, however it is speculated 

that file format issues caused download blocking.  

Upon completion of all downloads, data reformatting followed. Samples downloaded through 

fastq-dump, thus stored in a .fastq file format, were then converted into .fasta files via seqtk 

command. 

>> seqtk seq -a input.fq > output.fa 

The files downloaded via prefetch were stored as .sra files, thus had a step preceding seqtk. The 

.sra files were initially formatted into .fastq files (via fastq-dump), followed by seqtk conversion 

(into .fasta files).  Fasta files are very similar to fastq files; however, fasta files lack quality data for 

each sequence run. Fasta files permit straightforward data analysis and sequence visualisation, due 

to their smaller file size. Sequence manipulation is also possible in fastq files, however fastq 

increased file size hinders processing power and thus sequence visualisation in a text editor. For 

the first version of the pipeline proposed, converting fastq files into fasta proved obsolete, as the 

fasta files remained too large to allow any visualisation advantages. Additionally, the QIIME tools 

and scripts employed to approach microbiome studies exhibited compatibility with fastq files.  

Manipulation of the second selected study dataset, proved its impractical size. The second study 

dataset contained 20 human vaginal microbiome studies with collectively 7963 SRA samples. The 

database might have permitted extensive in depth sampling, but would also present an ambiguous 

study with massive time restrictions. For that reason, the selection of studies was further filtered 

through a number of additional criteria. The studies selected had to contain human vaginal 

amplicon data (16S rRNA), sequenced through high throughput sequencing techniques; such as 

Illumina and 454. Moreover, the number of SRA samples was taken into consideration as broader 

diverse sampling studies were preferred (>50 SRAs) for the purpose of this research. At that stage, 

the focus was turned on the presence of primers for each study with the hopes of identifying 

enough data with matching primers to allow analysis of multiple studies under the same pipeline.  

It soon became apparent that most studies did not contain identical primer reads, so these criteria 

were excluded for study sorting. Implementing these criteria reduced the dataset to 18 studies 

(with 3119 SRA samples in total). However, the number of studies remained excessive; thus an 

additional criteria based on vaginal microbiome condition, was considered for study selection. 

Studies focused on dysbiotic or diseased microbiomes were favoured; thus creating the finalised 

dataset; including 7 studies (1927 SRR’s) on HIV, candiditis, herpes and Bacterial Vaginosis vaginal 

microenvironments (refer to Table1). 
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Table 1: Summary table of selected studies utilised for data analysis. A table summarising the 7 studies 

composing the finalised dataset with a total of 1927 sequence files. All studies listed were applied to the 

pipeline presented, in order to investigate vaginal microbiomes under various microbiome disorders. 

*Studies were not included in the final analysis due to sequencing file errors (see Appendix 3 for details.) For 

Experiment accession codes refer to Appendix 4) 

Study 
Description 

Designated 
Abbreviations 

SRA 
Project 

Accession 
number 

Amplicon Sequencing 
Method 

Number 
of runs 

Human 
Vaginal 
Samples 

Certain species 
of vaginal 
bacteria can 
increase a 
woman's 
susceptibility 
to HIV 

HIV ERP017263 Yes Illumina 
 

168 Yes 

Diverse vaginal 
microbiomes in 
reproductive-
age women 
with 
vulvovaginal 
candidiasis 

CANDIDIASIS ERP003902 Yes Illumina 223 Yes 

Complementar
y 
seminovaginal 
microbiome in 
couples 

SV ERP009682 Yes Illumina 69 Yes 

Characterizatio
n of the Vaginal 
Microbiota 
among Sexual 
Risk Behavior 
Groups of 
Women with 
Bacterial 
Vaginosis 

BV SRP045868 Yes 454 112 
 

Yes 

Distinct effects 
of the cervico-
vaginal 
microbiota and 
herpes simplex 
type 2 infection 
on female 
genital tract 
immunology 

HSV2 SRP071021 Yes Illumina 51 
 

Yes 

Vaginal 
microbiome of 
reproductive-
age women * 

PRJNA329618 SRP090242 Yes Illumina 
 

366 
 

Yes 

Endometrial 
cancer 
microbiome * 
 

PRJNA295859 SRP064295 Yes Illumina 238 
 

Yes 
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Once the finalised dataset of 7 studies was established (Table 1), aiming to maximise time efficiency 

when handling 16S rRNA data, a new method of downloading sequences was established. EMBL- 

EBI (European Molecular Biology Laboratory – European Bioinformatics Institute) offers a direct and 

simplified approach to downloading amplicon data1. Accessing a study’s sequence files can be 

achieved by sourcing EBI’s ENA (The European Nucleotide Archive) web based function and quoting 

an SRA Project Accession number or Experiment Accession Number (attained from NCBI’s database) 

in the ”Text Search” box. ENA offers bulk download of all files enclosed within any study. Launch of 

this application can only be accomplished through Java software, consequently installation might 

be required. ENA loads a new window with details of the downloading files, as well as offers the 

choice of selecting a specific download directory for the files to be saved in. Downloading time 

differs depending on the number of runs contained within each study, however ENA includes a 

download status bar permitting live monitoring. In comparison to the methodology presented 

previously, it is safe to state that EBI proposes the simplest method, with limited steps, to approach 

16S rRNA sequence download.  

ENA’s download generates numerous fastq files originating from an individual study. Once all fastq 

files were acquired, conversion to fasta files was essential for the following step to commence. 

QIIME’s split_libraries.py command performs data de-multiplexing, a crucial step for microbiome 

amplicon analysis, which requires a fasta (.fna) file (details of this script will be discussed in detail 

in the following sections). Unlike the approach followed previously, fasta reformatting was 

accomplished through a QIIME command. Convert_fastaqual_fastq.py script assists in generating 

two files per fastq file; a fasta file containing all sequence runs and their IDs in a text file format 

(stored as .fna file) and a qual file containing quality scores for each sequence run.  

>> Convert_fastaqual_fastq.py (see Appendix 5) 

In conclusion it is important to state that the finalised version of the pipeline proposed here for 

microbiome research, includes several different techniques for data acquisition and reformatting.  

2.2 QIIME toolkit 

QIIME is a powerful open–source pipeline that allows several amplicon microbiome data analyses 

from taxonomy assignment to statistics and diversity analyses. It offers a number of python scripts 

running in Unix shells with multiple modifiable parameters to match any study’s focus or 

requirements. For the purpose of this study de-multiplexing, OTU and taxonomy assignment, were 

employed through QIIME scrips followed by investigation of microbiome composition variation and 

evaluation of alpha and beta diversity in microbiomes.  

                                                           
1 http://www.ebi.ac.uk/ena 
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Installation of QIIME proved complex as Windows operating systems require installation of a 

VirtualBox (VB). The Oracle VirtualBox version 5.0.26 was downloaded, running a virtual Ubuntu 

based system, containing QIIME 1.9.1 with pre-installed dependencies and scripts. All QIIME and 

python scripts were developed in IPython Jupyter Notebook; an interactive shell tool supporting 

data visualisation and providing access to GUI toolkits. Installation of IPython Jupyter Notebook is 

very suitably bundled within Anaconda, a package and environment manager that installs Python 

(for this study python 2.7 was installed) and other analytical scientific packages 2. 

Due to QIIME’s computationally expensive scripts and large 16S rRNA file sizes, a standard desktop 

computer faced memory and size restrictions, thus hindering command completion. Struggling to 

complete such tasks in a timely manner, the University of York’s computer cluster (YARCC - York 

Advanced Research Computing Cluster) was installed and a personal server filesystem was set to 

run most QIIME scripts. Although a computationally challenging task, as python libraries and QIIME 

scripts had to be installed individually on a personal file system, this proved beneficial when 

working with large files. This caused a significant processing speed increase, thus reducing duration 

of each task to less than half the time previously observed in the VB.  

It is important to emphasise that two distinct QIIME pipelines were employed to design an optimal 

methodology approaching microbial community analysis (see Figure 1 a,b). Even though both 

pipelines performed the same tests and investigations, they vary in stages and scopes, proving the 

importance of exploring different methodologies at various stages during a research project. In this 

section the steps followed to design and employ an amplicon analysis on 16S rRNA vaginal 

microbiomes sequences via QIIME will be described in detail.  

The following diagram illustrates all the main stages, followed to create two QIIME pipelines which 

will be discussed in detail in this section (Figure 1).  

 

                                                           
2 https://docs.continuum.io/. 

https://wiki.york.ac.uk/display/RHPC/YARCC+-+York+Advanced+Research+Computing+Cluster
https://wiki.york.ac.uk/display/RHPC/YARCC+-+York+Advanced+Research+Computing+Cluster
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Figure 1: QIIME pipelines followed for microbiome analyses. Figure 1 displays a step to step illustration of 
two the pipelines employed through QIIME, to investigate diversity within and in-between human vaginal 
microbiomes. Figure 1a demonstrates a diagram of the initial pipeline, pipeline one, designed to carry out 
diversity analyses in QIIME. Figure 1b represents the improved and optimised version of the QIIME pipeline, 

pipeline two, applied on 16S rRNA data. 
 

2.2.1 Reformatting and de-multiplexing SRA data 

Regardless of a researcher’s aimed end product, the first step in most QIIME pipelines is consistent. 

De-multiplexing of 16S rRNA sequence reads is the primary stage of any analysis in QIIME as it 

converts the raw data into a functioning format for QIIME to use [92]. Quality filtering and 

reformatting are crucial steps that assure successful results through QIIME.  

Therefore, the first task was to assign multiplexed 16S rRNA reads to groups based on their 

nucleotide barcode. Split_libraries.py is a QIIME command which performs quality filtering based 

on the quality features of each sequence by removing poor or ambiguous reads. Split_libraries.py 

additionally executes quality control by introducing thresholds on sequence lengths, end-trimmings 

and on minimum quality scores. De-multiplexing, reformatting and concatenating millions of 

sequence reads from an individual study, results in a computationally heavy process. Completion 

of split_libraries.py script was possible through a virtual box, even for an abundantly sampled study 

(tested on study SRP062720 with a total of 511 sample runs; run for approximately 48hours). 

However due to the long duration of the process, a cluster computer system was the preferred 

method. Subsequently, for all studies selected, split_libraries.py script was exclusively performed 

in YARCC reducing the time of the run (20-40minutes depending on SRA file sizes). 

Split_libraries_fastq.py 

(ouput = .fna file) 

Pick_open_reference_otus.py 
(input = green genes database & .fna file) 

(output = biom file) 

Create mapping file 

Validate_mapping_file.py 
Check if mapping file created in the 

correct format 

Core_diversity_analyses.py 

Create mapping file 

Validate_mapping_file.py 
Check if mapping file created in the correct 

format 

Split_libraries.py 
(ouput = .fna file) 

Pick_open_reference_otus.py 
(input = green genes database & .fna file) 

(output = biom file)  

Core_diversity_analyses.py 

a) b) 
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To perform split_libraries.py a mapping file along with the fasta file names of a single study, were 

required as input files (see Appendix 6a and 6b for full scripts). The mapping file contained 

information used for the sequence groupings, in order to execute effective de-multiplexing. The 

mapping file assists with assignment of unique barcodes, allowing parallel analysis and facilitates 

arrangement into sample groups (refer to Appendix 7 for format of mapping files). split_libraries.py 

–m and –f arguments instruct the input mapping and 16S rRNA sequence fna files, respectively. All 

output files can be directed to a directory or folder by –o argument.  

>> python /<absolute path> /split_libraries.py -m 

mapping_tableHIV_corrected.txt -f 

ERR1679496_1_barcoded_linkedPrimer.fna,ERR1679497_1_barcoded_linkedPrimer

.fna,ERR1679498_1_barcoded_linkedPrimer.fna,………… -o /<absolute path> 

/<output folder>/ 

QIIME’s explicit requirements on the format of a mapping file are not to be overlooked. Any 

compatibility errors with the mapping file will cause major malfunctions with de-multiplexing. For 

that reason, QIIME provides validate_mapping_file.py; a script that will ensure the file’s contents 

and format. If any errors are detected, QIIME will create a log file stating the faults. Once corrected, 

the mapping file can be applied to the split_libraries.py script. 

Unfortunately, all 7 studies selected did not include barcodes in their sample sequences. Thus a 

python script was composed; generating unique randomised barcodes 12base pair long, to be 

assigned and added on all sequence runs of a study (see Appendix 8 for python script). Upon testing, 

the need for Linker Primers became apparent as split_libraries.py requires them for assortment 

during de-multiplexing. A randomised Linker Primer sequence was designed 

(ATGCTGCCTCCCGTAGGAGT) and added to both fasta and mapping files, to be employed in the 

split_libraries.py. QIIME script. This study proposed de-multiplexing of all sequence runs depending 

on nucleotide barcodes and sample IDs. As both barcodes and Linker Primer sequences were only 

designed to assist de-multiplexing and had no influence in biological organism identification, their 

features were not significant for the purpose of this study. Therefore, Linker Primers remained in 

the pipeline exclusively for formatting purposes, as QIIME requires Linker Primers to complete de-

multiplexing. Subsequently all SRA files were modified so that each 16S rRNA sequence run 

contained a unique barcode followed by a consistent Linker Primer (ATGCTGCCTCCCGTAGGAGT) 

and finally the sample sequence (Figure 2). Modified sequences were saved as a fasta file, with the 

_barcoded_linkedPrimer.fna extension ID to be later applied in split libraries script.  

 

Figure 2: Remodified SRA sequence runs. Figure 2 represents the final format of all fasta sequences before 

employed for the QIIME scripts. A python script modified all SRR sequences to contain unique barcodes (12 

base pairs) and identical Linker Primer sequences (ATGCTGCCTCCCGTAGGAGT). This format that would allow 

successful de-multiplexing though command split_libraries.py in QIIME.  

 

Linker Primer Sequence 

ATGCTGCCTCCCGTAGGAGT 

Barcode Sequence SRR sample sequence 
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Completion of split_libraries generates an output of three new files; histograms.txt, seqs.fna and 

split_library_log.txt.  Files histograms.txt and split_library_log.txt contain information and the 

specifics of the split command, whereas seqs.fna is substantially large fasta file containing 

concatenated and reformatted sequences from a single study. Seqs.fna contained high quality 

reads assigned to unique barcodes and clustered accordingly. Success of this step results in 

completed de-multiplexed 16S rRNA data. 

During the course of this research QIIME released a new update (07/11/2016 – QIIME 2), during 

which a number of optional parameters for the QIIME commands turned compulsory. 

Split_libraries_fastq.py script allows sequence de-multiplexing without the need of a mapping file 

containing details for the groupings. If no barcodes were passed through this command (optional 

parameter: --barcode_type 'not-barcoded') the split would depend on the sample IDs passed (see 

Appendix 6b). The script would again output a seq.fna file, concatenating all sequence reads of one 

study. Each sequence run contained a unique sample ID and an origin SRA accession number, thus 

de-multiplexing the original 16S rRNA sequences. This approach was utilised for the design of the 

first pipeline, pipeline one (Figure 1a), to study microbiome community interactions. However, the 

methodology described previously via QIIME’s split_libraries.py, allows extra specification and 

more thorough control of sequence assessment into biological groups. Subsequently, the optimised 

pipeline two is a superior methodology to approach 16S rRNA de-multiplexing and is therefore 

recommended for future 16S rRNA microbiome studies. 

The script bellow illustrates the split_libraries_fastq.py QIIME command utilised in pipeline one, to 

perform de-multiplexing based on sample IDs with a “dummy” mapping file. All QIIME scripts run 

in ipython, included !  generating a bash subprocess shell internally.  –i argument instructs the input 

fastq files and -o generates an output directory. Optional parameters such as  --sample_ids define 

an alias ID for all sample sequences and --barcode_type express the presence/ or absence of 

barcodes sequences within the sequence files. Additionally --phred_offset parameter, controls 

substitution errors. 

>> !split_libraries_fastq.py -i 

SRR1823471.fastq,SRR1823472.fastq,SRR1823473.fastq,…  --sample_ids 

SRR1,SRR2,SRR3,… -o /<absolute path>/split_libraries_fastq_output --

barcode_type 'not-barcoded' --phred_offset 33 

2.2.2 OTU picking and Taxonomy assessment 

The first aim of our analysis was assigning taxonomies to the 16S rRNA samples. This was achieved 

by using the pick_open_reference_otus.py QIIME command.  QIIME’s default algorithm for OTU 

assessment is uclust OTU clustering tool. Pick_open_reference_otus.py is a complex script 

consisting of four stages resulting in OTU assessment.  

The script commences with close-reference OTU picking, where sample sequences get clustered 

against a reference sequence database. For the purpose of this research, GreenGenes’ 2010 

database was downloaded as a reference database. Although more recently updated databases are 

available, the present study is focused on vaginal microbiota, consisting of thoroughly characterised 

and established organisms. Therefore, the GreenGenes reference dataset can provide sufficient 

data coverage. 
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Closed reference OTU picking generates two key files; containing the identified sequences and the 

unmatched sequence reads. The unmatched sequences are further progressed through de novo 

clustering. De novo OTU picking performs sequence clustering by matching sequences against each 

other with no additional reference dataset. Due to its computationally heavy methodology, only 

the sequences that failed to be assigned get assessed through it. De novo OTU picking forms 

sequence clusters where each cluster centroid is subsequently used as a “new reference sequence”. 

Stage 3 follows up with closed reference OTU picking, where unidentified reads are clustered 

against the “new reference sequences” (created through de novo picking). Any remaining 

unidentified sequences advance to the final stage of OTU picking through an additional de novo 

OTU picking process. The small number of remaining unidentified sequences makes de novo OTU 

assessment computationally feasible. Once every OTU assignment stage has been completed, 

pick_open_reference_otus.py produces a OTU mapping file containing all successful OTU samples. 

Finally, the OTU mapping file is later used to apply taxonomy assessment on all representative 

sequences of the OTU table.  

QIIME offers the option of running any individual OTU picking command, included in the 

pick_open_reference_otus.py script, as separate commands. However, for the purpose of this 

study pick_open_reference_otus.py was the most appropriate command. Due to the research’s 

high volume of amplicon data the most time efficient test was preferred. Although de novo picking 

might have provided a more in depth taxonomy assignment, it would prove too computationally 

demanding for the present scope due the sheer number of sequences. Vaginal microbiomes consist 

of well characterised organisms thus an extensively in depth assessment would not have produced 

vastly improved results. Thus pick_open_reference_otus.py script was the appropriately chosen 

script for OTU assignment.   

Pick_open_reference_otus.py command requires as input files; a seq.fna concatenated file (created 

previously via split_libraries.py command) as well as a reference sequence database and a 

parameters file (consult complete command on Appendix 9a). As mentioned previously, 

pick_open_reference_otus.py script combines multiple QIIME commands; thus a parameters file 

defining the preferences for each command is essential.  For the purpose of this study, the 

parameters file contained feature details on OTU picking, taxonomy assignment and filtering quality 

control (see Appendix 9b). A reference sequence database was essential for the script’s completion, 

as during the initial stage of the analysis (closed reference OTU picking), reads get clustered against 

a reference database. GreenGenes 2010 database was selected for this purpose 

(gg_97_otus_6oct2010_aligned.fasta). 

>> !pick_open_reference_otus.py -f -i split_librariesSV/seqs.fna -r 

current_Bacteria_aligned.fa -o otusSV/ -p params.txt --

suppress_align_and_tree 
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To conclude, the key output files of pick_open_reference_otus.py script are an 

otu_table_mc_w_tax.biom and a rep_set_tax_assignment.txt. otu_table_mc_w_tax.biom 

contained information on a study’s OTU assessment as well as their abundance values per sample 

(see Appendix 10). otu_table_mc_w_tax.biom file represented the classic format of a OTU table. 

On the other hand, pick_open_reference_otus.py additionally created a blast_assigned_taxonomy 

folder containing two files; one of which the rep_set_tax_assignment.txt file. The text file contains 

taxonomy assessment of the OTU samples (provided in the biom file) as well as the details of the 

blast search (see Appendix 11). Otu_table_mc_w_tax.biom and rep_set_tax_assignment.txt are 

fundamental files for the subsequent statistical stages of the suggested pipeline. These files would 

be further modified to allow statistical tests investigating distribution and correlation within 

microbiomes. 

Pipeline one focused on assigning taxonomies, thus pick_open_reference_otus.py was the first 

script to be applied. Upon completion, the core_diversity_analyses.py script followed, where a 

number of diversity tests remained incomplete. The importance of de-multiplexing was recognised, 

as this step was identified as the cause of errors in the diversity tests. The de-multiplexing step was 

modified for the second pipeline and core diversity analyses were completed.  High throughput 

sequencing methods generate multiple reads per run causing complications in tests due to the 

collective volume of sequences. Split_libraries_fastq.py as mentioned previously, allows libraries to 

be split according to their individual barcodes and thus multiple sequencing runs can be processed 

simultaneously and the results can be clustered according to their sample IDs. 

2.2.3 Core Diversity analysis 

Upon completing OTU and taxonomy assessment the next aim for the pipeline designed was to 

investigate diversity within and between microbiomes and their members. QIIME offers python 

core_diversity_analyses.py script for such analyses. It is a script consisting of an extensive workflow 

of assessing rarefaction, beta diversity, alpha diversity and microbiome composition. 

Core_diversity_analyses.py requires inputs of a .biom file (generated during 

pick_open_reference_otus.py script) followed by the same mapping file created when splitting 

libraries as well as specifying a sampling depth (-e) (see Appendix 12a for full script). The –e value 

had to be no larger than the number of sequences present in the smallest sample (information 

enclosed in the output folder of pick_open_reference_otus.py).  

For the purpose of this analysis the parameter --nonphylogenetic_diversity was passed as non-

phylogenetic alpha (chao1 and observed_otus) and beta (bray_curtis) diversity calculations were 

preferred. Bray Curtis was the favoured test as it displays the presence or absence of dissimilarity 

between different sites, something really useful for comparative metagenomics study. Chao1 and 

observed_otus are non-parametric tests allowing accurate testing with minimal bias in large data 

sets [93]. They permit estimation of a communities’ species richness thus assisting in investigating 

microbiome correlations. 

>> python /<absolute path>/core_diversity_analyses.py -i /<absolute 

path>/otu_table_mc2_w_tax.biom -o /<absolute path for output folder>/ -m 

/<absolute path>/mapping_tableBV_corrected.txt -e 7000 --

nonphylogenetic_diversity 
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Core_diversity_analyses.py script outputs a number of files assisting with visualising patterns in 

data but not necessarily resolving queries.  Nevertheless, core_diversity_analyses.py results can 

assess beta diversity through a Principal Component Analysis (PCA) 3D graph, by visualising sample 

clustering to identify variation between the microbiomes from different individual donors (as 

presented herein by Figures 13-17, 25, 26); alpha diversity and species taxonomic richness via 

rarefaction plots and bar plots.   

Interestingly, core_diversity_analyses.py analysis did not differ between pipeline one and pipeline 

two. Unlike with previously discussed QIIME scripts, where the parameters and format of the 

commands varied between the two designed pipelines, all parameters for 

core_diversity_analyses.py script remained identical for pipeline one and two (Appendix 12b).  

2.3 BIOM file reformatting 

As discussed previously, a BIOM file (or OTU table) is essential to any microbiome studies. The 

original format generated through pick_open_reference_otus.py QIIME’s script consists of an OTU 

table of a complete study with all sample sequence identifiers (column data), all OTU identifiers 

(row data), as well as metadata for each present OTU (counts of each OTU per sample). Although 

an extremely useful file, the .biom format proves problematic to employ. Therefore, reformatting 

is essential for further analysis. 

The first step was converting the .biom file into an easily handled text file. The biom convert 

command applied in a Linux bash shell converts a .biom file into a tab-delaminated file format 

allowing data visualisation and shift between sparse and dense file formats. CSV (comma separated 

values) was the format chosen for the biom files storing tabular data applied through the following 

command in terminal. 

>> biom convert -i table.biom -o table.from_biom.csv 

Below follows the python script designed to carry out the OTU table file reformatting. A python 

library was loaded in an ipython shell permitting .csv file processing. Pandas is an open source 

python library allowing easy data structure visualisation and processing. In this case pandas allows 

visualisation of a .csv file as a tab- delimited file. The first obstacle to be observed was the presence 

of OTU identifiers instead of more informative taxonomies, in the biom file. For that reason, the 

rep_set_tax_assignment text file matching OTUs to taxonomies, was utilised. The file contained the 

results of a blast search during pick open reference OTUs; thus listing the assigned OTU IDs with 

their corresponding taxonomies and unique blast e-value qualities. However, this illustrated an 

additional issue. Due to the similarity score parameter during the pick OTUs step (0.97), QIIME had 

excessively assigned OTUs. This created multiple samples under the taxonomies thus creating 

duplicates of the same entries. To overcome the multiple taxonomy entries, a script was created, 

grouping and summarising all identical taxonomy entries to a single data submission.  16S rRNA 

data have been extensively discussed for their difficulty with species level sequence identification, 

resulting from their stable gene structure and functionality not easily disturbed by time [94]. 

Therefore, for the purpose of this study, only the successfully genus ranked taxonomies were used. 

The output of the following script was an excel file containing unique genus level taxonomies as 

well their abundance data per sample (see Appendix 13 for complete format).  
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Modifying BIOM file script: 

# loading files and python libraries 

import pandas as pd 

import numpy as np 

file1 = pd.read_table("otu_table_mc2_w_taxHIV.from_biom.csv", header=1, 

sep="\t") #important not to define index cause np tables do not work 

otherwise 

file2 = pd.read_excel("HIV_rep_set_tax_assignment.xlsx") 

 

#compair both files to test if OTUs from file1 match OTUs from file2 

OTUs1 = file1["#OTU ID"].values.tolist() 

OTUs2= file2["OTUs"].values.tolist() 

 

def cmp(OTUs1,OTUs2): 

    for item in OTUs1: 

        if item in OTUs2: 

            item=item 

            print ("found ") + (item)  

        else: 

            print ("not found") + (item) 

print cmp(OTUs1, OTUs2) 

 
 

#create 2D lists of the OTUs with the correlating taxonomies from the 

assingment file 

otus2_taxa2_LIST = list(file2[["OTUs", "Taxa"]].values)  

 

#create dictionary with corresponding OTUs and Taxomomies 

otu2_tax2_dict={} 

for i, item in enumerate(otus2_taxa2_LIST): 

    otus = item[0] 

    taxa = item[1] 

    otu2_tax2_dict[str(otus)] = taxa 

 

# create the list of the taxomonies by including only the ones that have 

genus (taxalevel=6) 

data_list = list(file1.values) 

taxa_level = 6 

genus_data_dict = {} 

 

#loading the responding data to the 2D list 

for n, data_row in enumerate(data_list): 

    otu = data_row[0] 

    taxa = otu2_tax2_dict[otu] #replace  

    if taxa[0] == "k": 

        genus = "".join(taxa.split(';')[0:taxa_level]) 

        if genus[-1] == '_': 

            #genus = "".join(taxa.split(';')[0:taxa_level-1]) 

             genus = "excluded" 

        #now to match the abundance data with according taxonomies 

        if genus in genus_data_dict: 

            genus_data_dict[genus].append(data_row) 

        else: 

            genus_data_dict[genus] = [data_row] 

 

# Condence the .biom table reformed above "genus_data_dict" into a numpy 

table 

final_table = {} 

 

for name, row_list in genus_data_dict.items(): 

    numpy_table = np.array(row_list) 
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    final_table[name] = numpy_table[:,1:].sum(axis=0) 

 

#Create New Reformed Biom file in a dataframe 

SRR_samples = file1.columns[1:] 

new_taxonomies = final_table.keys() 

abundances = final_table.values() 

new_biomfile = pd.DataFrame(abundances, index=new_taxonomies, 

columns=SRR_samples) 

 

#write biom file to excel 

writer = pd.ExcelWriter("Final_HIV_biom.xlsx") 

new_biomfile.to_excel(writer, sheet_name="Sheet1") 

writer.save() 

 

2.4 Spearman’s Rank Correlation Coefficient and Statistics 

Studying correlations between bacteria composing the microbiomes under various medical 

conditions (BV, gonorrhoea, STIs), would offer insights on potential links between 

microenvironments and the disorders. Hence correlation models were added to the pipeline.  

The first correlation model attempted was Pearson correlation coefficient (r) which was run 

through a script from the scipy library module pearsonr, programmed in ipython notebook 

(Appendix 14). The python program utilises the previously modified OTU table containing all sample 

abundances and genus level taxonomic identities, to perform the correlation analysis. Prior to the 

Pearson correlation model, taxonomies with an abundance sum of less than 60 were excluded, as 

they represented insignificant rare taxa.  Although not essential, it allowed clearer visualisation of 

correlation links, especially as most vaginal microbiomes are dominated by lactobacilli with 

extraordinary high abundance scores (e.g. study HIV listed an abundance sum of 7541501 

lactobacilli out of a 1019104 total study abundance).  

Python library scipy lists module scipy.stats.pearsonr(), calculating Pearson correlation coefficient 

(r) and the statistical p-values of the correlation test.  The module applied on the taxonomy 

abundance data created a single three dimensional data structure containing both correlation and 

p-values. The file was stored as a numpy array to assist with data handling. Finally, the numpy array 

was separated into two asymmetric tables one containing the Pearson correlation coefficient data 

and the other enlisting the p values of the statistical test. Both tables were saved in a tab-delimited 

format. The Pearson correlation table consisted of asymmetrical values ranging from -1 to 1, as well 

as their corresponding taxonomies. Likewise, the p-values followed the same file structure covering 

p-values from 0 to 1.   

However, upon additional testing it became apparent that the abundance data were not normally 

distributed (due to the large amount of zero reads). Thus Pearson correlation proved inadequate 

to estimate correlation within the microbiomes as it should only be used with normally distributed 

data. To assure that the data were not normally distributed, a Shapiro – Wilk normality test was 

performed. Once again, a python programme was written to perform the normality test with scipy 

python library’s assistance (module scipy.stats.shapiro() – see Appendix 15). The test returned a 

value of 0.039 (anything less than 0.055 reveals non normally distributed data) indicating that the 

data were not normally distributed, thus a new correlation test had to be implemented.  
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Spearman’s rank correlation coefficient (ρ) offers non-parametric correlation coefficient testing. 

Spearman’s model measures the degree of similarity between two ranked variables and estimates 

the correlation significance between them. Unlike Pearson’s correlation model where linear 

relationships are tested, Spearman’s coefficient reviews monotonic relationships. An “absolute” 

correlation between taxa would be indicated if each variable is a monotone function of the other 

variable and therefore resulting in ρ values of +1 or -1. Just like with the Pearson python script 

discussed previously, Spearman test was carried out in an ipython shell. The output consisted again 

of a three dimensional numpy array, containing Spearman’s correlation coefficient along their p-

values. Equally the array was split into two asymmetrical tables; one containing the ρ values 

between every taxa and the other consisting of the corresponding p values. The p-values 

represented the probability of obtaining a correlation relationship against the probability of the 

event occurrence. However, significance of the Spearman correlations was determined through on 

the ρ values for each study, gaining 95 % confidence that a correlation is true. Details of the 

estimated correlation significance threshold will be discussed in detail in section 2.4. The python 

script listed below carries out Spearman’s rank correlation coefficient test. 

Spearmans’ ranked correlation coefficient analysis script: 

#because data are not normalised i need to do a different correlation test: 

Spearman's rank correlation coefficient 

n = biom.shape[0] 

 

#creates a numpy table full of zeros (x,z,y) which will then be filled 

with the data bellow 

output_table = np.zeros([n,n,2]) 

 

#.values changes Dataframe into numpy array 

otutable_data = biom.values 

for row1 in range(n): 

    for row2 in range(row1,n): 

        row = otutable_data[row1,1:] 

        col = otutable_data[row2,1:] 

        output_table[row1,row2,:] = scipy.stats.spearmanr(row, col) 

np.save("SpearmanTableERP003902.npy", output_table) 
 

#see numpy 2D table only with the spearman values 

numpy3D = np.load("SpearmanTableERP003902.npy") 
Spearm2D_spearm = pd.DataFrame(numpy3D[:,:,0]) 

print pearson2D_pears[:10] 

 

#name columns and rows 

b = output_sum_taxa.keys() 

Spearm2D_spearm.columns = b 

Spearm2D_spearm.index = b 

print Spearm2D_spearm 

 

#write spearman 2D file to excel 

writer = pd.ExcelWriter("Spearman_values.xlsx") 

Spearm2D_spearm.to_excel(writer, sheet_name="Sheet1") 

writer.save() 

 

#see numpy 2D table only with the spearman p-values 

numpy3D = np.load("SpearmanTableERP003902.npy") 
Spearm2D_Pval = pd.DataFrame(numpy3D[:,:,1]) 

print pearson2D_pears[:10] 
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#name columns and rows 

b = output_sum_taxa.keys() 

Spearm2D_Pval.columns = b 

Spearm2D_Pval.index = b 

print Spearm2D_Pval 

 

#write pearson 2D file to excel 

writer = pd.ExcelWriter("Spearman_P_values.xlsx") 

Spearm2D_Pval.to_excel(writer, sheet_name="Sheet1") 

writer.save() 

 

Due to the large sample size of data, Bonferroni correction was applied on the p-values files. 

Bonferroni correction adjusted the p values to scale to the study sample size. P value was corrected 

by the number of genus-genus pairs. The correction was performed by dividing all p-values (α), with 

the total number of correlations observed (e.g. for study HIV, 38 taxa * 38 taxa -1 = 1443, thus 

α/1443) (Appendix 16). Hence, lowering the threshold at which a p value was considered significant 

(original p = 0.05). This correction ensured reduced chances of acquiring false positive reads (type I 

errors) in statistical analyses investigating correlation relationships. The threshold of spearman rank 

correlation coefficient (ρ) value representing 95 % confidence that a correlation is significant, was 

calculated. The corresponding rho value was determined from the Bonferroni-adjusted p-value 

using a statistical table relating rho and p in Excel. Briefly, the t statistic was calculated using the 

relationship t = ρ * SQRT[(n-2)/(1- ρ2)] (where n is the number of samples in the study). The p-value 

was calculated for values of t using the Excel function TDIST. This correction ensured reduced 

chances of acquiring false positive reads (type I errors) in statistical analyses investigating 

correlation relationships.  

Aiming to identify intrapersonal bacterial interactions focus was redirected to the Spearman 

correlation data, where high positive and negative correlations were selected. The selected data 

pairs exceeded the threshold for rho-value representing > 95 % confidence. This value of rho varied 

between studies, as it depends on sample size and number of genus-genus pairs. Once certified, 

the strongly correlated taxonomies were visualised through the design of linear graphs (Appendix 

17, 18) via python programming (script not shown). To visualise the correlation between two taxa, 

the abundance data of two species were plotted against each other, where a linear association 

(best fit line) illustrated the intensity and the type of correlation (positive or negative correlation). 

2.5 Clustering and Principal Component analyses 

Clustering analysis was conducted, as it could show patterns of similarity and coexistence. 

Clustering analysis would create groupings of samples according to a distance similarity matrix, a 

density threshold and statistical distributions. A cluster can be a changeable term depending on 

parameters and algorithm types selected to run the analysis.  A large assortment of algorithms was 

available for clustering, varying from Hierarchical and K-means clustering to statistical models like 

Principal Component Analysis. 

For the purpose of this study multiple clustering algorithms were attempted. However hierarchical 

clustering was the preferred algorithm, as it did not require prior knowledge of the number of 

clusters or the values of centroid centres (the centres of each cluster group). In contrast, a 

successful K-means analysis can only be achieved through knowing or guessing these parameters. 
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Hierarchical clustering uses distance connectivity models to create grouping, unlike K-means which 

uses centroid models representing each cluster by a single mean vector. In other words, hierarchical 

clustering is based on the theory that samples in closer proximity will be more closely related than 

samples with a larger distance between them. An additional beneficial feature of hierarchical 

clustering is the utilisation of dendrograms to assist with clustering visualisation. Dendrograms 

represent the hierarchy of sample groupings into clusters, which combine with other sample groups 

at certain distances. The axis in a dendrogram displayed the distance between members of the 

same or different clusters. More specifically in this study the distance similarity was calculated 

through a Euclidean distance model converting distance into a metric space. Clustering analyses 

additionally require linkage criteria algorithms, to order and estimate the distance of each sample 

within one cluster. Average linkage clustering or otherwise named: Unweighted Pair Group Method 

with Arithmetic Mean (UPGMA) method was used for this study’s data due to the larger data 

coverage. 

The first attempt in performing clustering analysis was carried through CIMminer (Cluster Image 

Maps) open source tool3. CIMminer offers one or two matrix clustering analysis. As the abundance 

data files (.biom file/ OTU table) were two dimensional; with a format of taxonomy rows against 

sample columns, one matrix approach was the appropriate technique. CIMminer requires a .txt file 

input format, thus the abundance data were converted and uploaded onto their server, followed 

by customisation of clustering parameters. Clustering was performed on both taxonomy (rows) and 

samples (columns) values, through Euclidean distance method and average linkage clustering 

algorithm. CIMminer results were emailed to an address provided, containing 6 files. The key output 

file was an html index file enclosing a clustering heatmap with two corresponding dendrograms for 

both bacteria and sample data (Appendix 19). Although the resulting heatmap offered clear 

visualisation of patterns and relationships between both samples and bacteria, the application tool 

needed refining as lacks room for customisation. For that reason, analysis progressed through other 

applied bioinformatics tools approaching clustering (Cluster 3.0- Java TreeView). 

The next open source software employed was Cluster 3.0 which likewise offers a number of 

different clustering methods4. Cluster 3.0 was downloaded on a windows drive and the abundance 

data file was again uploaded as a text file. Hierarchical clustering was chosen for both “genes” 

(representing row-wise means) and “arrays” (column-wise means) [95]. Finally, Euclidean distance 

and average linkage clustering models were chosen once again. Cluster 3.0 generates a .cdt output 

file, only compatible and legible through the assistance of a second software; Java TreeView. Java 

TreeView is an open source program allowing visualisation and interactive analysis of the data 

created by Cluster 3.0. The output generates a file consisting of a heatmap with the corresponding 

dendrograms for both column and row values. Unfortunately, although an initial test ran 

successfully, Cluster 3.0 ran into a major program and server malfunction with the application 

failing to resume. Despite all troubleshooting efforts, the underlying issue could not be traced. 

Remaining unexplained, the approach had to be removed from the methodology proposed here. 

                                                           
3 https://discover.nci.nih.gov/cimminer/ 
 
4 http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm 
 

https://discover.nci.nih.gov/cimminer/
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2.5.1 Implementing python scripts to generate Heatmaps 

As presented thus far, Hierarchical Clustering analyses can be effectively visualised through 

heatmaps. A heat map allows representation of numerical data (i.e. a data table) by using colours 

and a spectrum to signify values. It also allows qualitative and quantitative control on the clustering 

data represented. The clustering matrix in a heatmap would display the similarity or dissimilarity of 

values via generation of a distance matrix. 

The applied bioinformatics tools discussed previously, lacked parameter and illustration 

modification, thus a python script was programmed to perform clustering analysis that would allow 

control on parameters and visual marks. The code was designed with the help of ploty python 

library and was divided into 3 main sections: 1) creating a dendrogram for the bacteria values 

(rows), a 2) generating a dendrogram for the sample values (columns), and 3) constructing a 

heatmap in a three dimensional matrix. The full python script created to carry Hierarchical 

clustering via Euclidean distance and average linkage algorithms is enclosed bellow: 

Clustering and Heatmap analysis script: 

 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

import scipy 

import pylab 

import scipy.cluster.hierarchy as sch 

import matplotlib 

 

file1 = pd.read_excel("Log_Abundances_BV.xlsx") 

 

# Override the default linewidth. 

matplotlib.rcParams['lines.linewidth'] = 10 

data = np.transpose(np.array(file1)) 

        

# Compute and plot first dendrogram. X=SAMPLES 

fig = pylab.figure(figsize=(80,80)) 

ax1 = fig.add_axes([0.3,0.71,0.6,0.2]) 

X = sch.linkage(data, "average") 

Z1 = sch.dendrogram(X, orientation='top') 

ax1.set_xticks([]) 

ax1.set_yticks([]) 

 

# Plot colorbar 

cbar = fig.colorbar(im, ticks=[-1, 0.5, 2.5, 5], orientation='top', 

shrink=0.3, aspect=10) 

cbar.ax.set_xticklabels(['Low', 'Medium', 'High'], fontsize=50)  # 

horizontal colorbar 

 

# Compute and plot second dendrogram. Y=BACTERIA 

data2 = np.array(file1) 

ax2 = fig.add_axes([0.09,0.1,0.2,0.6]) 

Y = sch.linkage(data2, "complete") 

Z2 = sch.dendrogram(Y, orientation='left') 

ax2.set_xticks([]) 

ax2.set_yticks([]) 

 

#clusterind data 

clustered_data = np.zeros(data2.shape) 

for i, j in enumerate(Z1["leaves"]): 
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    clustered_data[:,i] = data2[:,j] 

clustered_data2 = np.zeros(data2.shape) 

 

for i, j in enumerate(Z2["leaves"]): 

    clustered_data2[i,:] = clustered_data[j,:] 

 

#heatmap 

# Plot distance matrix. 

axmatrix = fig.add_axes([0.3,0.1,0.6,0.6]) 

im = axmatrix.matshow(clustered_data2, aspect='auto', origin='lower', 

cmap=pylab.cm.YlGnBu) 

axmatrix.set_xticks([]) 

axmatrix.set_yticks([]) 

 

#LABELS SAMPLES 

samples = Z1["leaves"] 

names = file1.columns 

idx1 = [] 

for i in samples: 

    for n,SRR in enumerate(names): 

        if i==n: 

            i=SRR 

            idx1.append(i) 

             

axmatrix.set_xticks(range(112)) 

axmatrix.set_xticklabels(idx1, minor=False) 

axmatrix.xaxis.set_label_position('bottom') 

axmatrix.xaxis.tick_bottom() 

pylab.xticks(rotation="vertical", fontsize=20) 

 

#LABELS BACTERIA 

bacteria = Z2["leaves"] 

taxa = file1.index 

idx2 = [] 

for i in bacteria: 

    for n,name in enumerate(taxa): 

        if i==n: 

            names=name.split("_") 

            i=names[-1] 

            idx2.append(i) 

axmatrix.set_yticks(range(109)) 

axmatrix.set_yticklabels(idx2, minor=False) 

axmatrix.yaxis.set_label_position('right') 

axmatrix.yaxis.tick_right() 

pylab.yticks(rotation="horizontal", fontsize=30) 

 

fig.show() 

fig.savefig('dendrogram_BV_FIX.png') 
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2.5.2 Implementing python scripts to investigate Principal Component Analysis 

An additional way to study clustering of samples is though Principal Component Analysis. Principal 

Component Analysis is a statistical model that transforms multidimensional data into two or three 

dimensions to allow visualisation. In other words, converts correlated non-linear data into linear 

linked data called principal components. This results in a new output file where the number of 

principal components reflects the number of original samples.  

For this study, Principal Component analysis model was carried out through two vastly different 

approaches. The first application was achieved through QIIME’s core_diversity_analyses.py script, 

in the form of a 3D graph displaying sample groupings (discussed in section 2.2.3). A python script 

was additionally created to carry PCA to allow further interactive clustering investigation. Sklearn’s 

decomposition python library was utilised to allow two dimensional and three dimensional PCA 

testing (see Appendix 20 for full analysis and graphs). Unlike the Principal Component analysis 

created through QIIME, python allowed parameters and features modification as well as focus on 

single principal components. Unlike with QIIME’s pipeline, where total sample clustering was 

observed; the script emphasised the number of clusters created within one variable (samples or 

bacteria). To reduce time and size restrictions for the computational runs, only three principal 

components were calculated due to the lack of significant variation within the data processed for 

this study.  By observing the biodiversity distribution, it was evident that most of the total variance 

of a study, could be explained by the first Principal Component. Once PC1 was isolated and 

displayed as a histogram, clustering of either samples (column values) or bacteria (row values) could 

be visualised very clearly (Appendix 20).  
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3. EXPLORING COMPOSITION DIVERSITY IN HUMAN VAGINAL MICROBIOMES 

3.1 Investigating composition of dysbiotic vaginal microbiomes 

The aim of this study was to examine diversity of the bacteria in vaginal microbiomes. Diversity 

analyses assist in interpreting microbiome community structure and function [96]. Publically 

available datasets were used, which included samples from healthy individuals and individuals with 

various diseases or clinical syndromes which might be associated with dysbiosis. In this chapter, the 

microbial diversity amongst individuals within these five selected studies were analysed using 

various methods. Microbiome studies have proven very useful in establishing health and disease 

within individuals. As Turnbaugh et al. 2016 discuss in their study on gut microbiome associations 

with obesity, important questions on human health and disease can be addressed through 

microbiome diversity analyses [97]. Therefore, investigation of diversity within and in-between 

various microbiome studies is essential to examine human and ecosystem disorders; as human 

vaginal disorders might be linked to a breakdown of normal microbial community structure (and 

function). 

The first attempt was to visualise α microbial diversity within samples as well as β – diversity among 

samples of a single study. α diversity represents the number of unique species within an individual, 

whereas β – diversity illustrates the differences in species composition between individuals. α - 

diversity was estimated via taxon based methods and more specifically the generation of taxonomy 

bar plots. Taxonomy bar plots were created, as mentioned previously, through QIIME’s 

core_diversity_analyses.py script on studies; HIV, HSV2, BV, CANDIDIASIS, SV which contain 

samples from healthy individuals and individuals with conditions such as HIV, BV, Herpes and 

candidiasis (Figures 3-12). Study HIV contained healthy atypical vaginal samples; HSV2 sampled HIV, 

BV, HSV-1, HSV-2 and yeast infected females; BV consisted of healthy and BV infected samples; 

CANDIDIASIS enlisted BV and vulvovaginal candidiasis patients; and finally SV sampled healthy 

vaginal microbiomes.  

The taxonomy bar plots, created by QIIME, represent the collective bacterial richness of an 

individual study as well as illustrating interpersonal variation between patients. The bar charts 

display all assigned taxonomies within each sample of a single study. The x-axis lists the sample ID’s 

and the y-axis displays different coloured bars representing individual taxonomies identified 

through QIIME’s pick_open_reference_otus.py command. Taxonomies are presented in the format 

assigned via QIIME, which have been consistently displayed at the Genus level for all five studies. 

Additional bar charts at either Family or Order taxonomic levels are also included for each study to 

signify the total level of variation within each study. Family or Order level bar taxonomies would 

allow investigation of the level of differentiation at various levels of taxonomy. The length of each 

coloured bar signifies the relative abundance of a specific taxon. Bacterial abundance could lead to 

information about microbiome and community structure through correlation studies, which is 

discussed in the following chapters 4 and 5. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443784/#R84
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Bar charts are very informative illustrations when working with microbiome data, providing visual 

representation of diversity within and between samples. Bar charts not only allow insight into 

patients’ intrapersonal bacterial variation and total bacterial richness, but also display common and 

rare taxa. Exhibiting microbiome composition with categorical quantitative data allows 

straightforward comparisons between bacteria, patients and studies. Bacterial diversity 

comparison between studies, via taxonomic bar charts, is possible as bar taxonomies overcome 

irregularities caused by dissimilarities in rRNA sampling or sequencing. For this project, comparison 

of the variation between studies was a beneficial feature offered by the bar charts, which could 

assist identification of potential links between various dysbiotic vaginal environments. Taxonomic 

bar charts permit visualisation of total diversity within a microenvironment or a complete study, 

thus enabling comparisons between all five selected studies. Bar charts display a detailed 

representation of each taxon contained within each sample. However, due to the large amounts of 

sample data, it is possible to overlook certain less dominant taxonomic interactions within a study. 

It is important to state that even though this approach is not as accurate when focusing on 

intrapersonal variation and composition, universal diversity patterns leading to assumptions on 

community relationships could be identified.  

The suggestive relationships were further investigated and tested through various means and 

statistical models. The analyses supported the presence of certain community structures in 

dysbiotic vaginal microbiomes. These will be discussed in detail in the following sections (chapters 

4 and 5). Due to metadata sequence annotation issues and lack of sample metadata descriptions, 

it was not possible to assign relationships between sample and any particular medical syndromes 

which were associated with the donor of that sample. However, the analysis presented here allows 

comparisons between samples and studies where clear associations between members of the 

microbiomes and the microbiomes themselves can be traced. This pipeline offers the prospect of 

application on datasets with sample descriptions to identify correlations between medical 

syndromes by comparing various microbiomes. 

Through observing the bar charts, it can be concluded that some studies demonstrate more diverse 

communities with patients containing diverse and varying bacterial communities, whereas others 

are mainly composed by numerous monoclonal samples. By comparing total taxa composition 

diversity within studies, studies HIV and CANDIDIASIS display the highest levels of diversity within 

the selected studies used for this project (Figure 3, 4). Study HIV had fewer samples than 

CANDIDIASIS, yet consisted of more patients with higher bacteria diversity and fewer monoclonal 

microbiomes. Figure 3 depicts considerable organismal diversity, with most samples containing 

multiple high abundance taxa and fewer samples consisting of exclusively or most abundantly of 

green bars (in Figure 3 depicting lactobacilli). On the other hand, study CANDIDIASIS catalogues 

more unique taxa (as seen in Figure 4b) and submits greater sampling depth, however contains a 

greater number of monoclonal samples. Most samples in Figure 4a carry an abundance of 

Lactobacilli illustrated with pale peach coloured bars. Although study CANDIDIASIS identifies 

additional unique taxa (in comparison to HIV), most atypical genera remain in relatively low 

abundances, therefore not contributing to total community variation. In other words, study HIV 

exhibits higher intrapersonal variation (α diversity), whereas study CANDIDIASIS represents higher 

β diversity levels (variation between individuals).   
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Figure 3: Study HIV genus level taxonomy bar chart. Figure 3a the bar chart displays all assigned taxonomies 

from each sample. The x-axis lists sample IDs with various colour bars representing individual taxonomies 

assigned via QIIME scripts. The length of each coloured bar signifies the relative abundance of a specific 

taxon. The green bars represent Lactobacillus as the most abundant organism in the complete study. Figure 

3b lists the taxonomy IDs corresponding to the bar chart of Figure 3a. 

 

  

a) 
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b) 
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Figure 4: Study CANDIDIASIS genus level taxonomy bar chart. Figure 4a illustrates a bar chart representing 

all assigned taxonomies for the samples. The x-axis displays the sample IDs with colour bars representing 

the assigned taxonomies. The length of each bar displays the relative abundance of a taxon within a single 

sample. The salmon colour bars represent the most abundant bacteria in the study, Lactobacillus.  Figure 

4b lists the taxonomic identities of each coloured bar in Figure 4a. 

  

a) 
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b) 
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Studies BV, HSV2 and SV do not represent as highly diverse systems as the two previously 

mentioned studies. Though characterised by an immense number of unique taxa, their abundances 

remain substantially low with the majority of samples appearing monoclonal while dominated by 

Lactobacilli. In more detail, though study BV implemented thorough sampling depth (similar to 

study HIV), it is apparent that sampling does not affect total study diversity, due to the low taxon 

richness present in most samples (Figure 5). Though fewer monoclonal patients are present, 

bacteria appear relatively balanced within samples with most patients carrying similar abundance 

taxa. In other words, community structures appear more stable with most samples consisting of 8 

dominant bacteria (Lactobacilli, Shuttleworthia, Prevotella, Megasphaera, Sneathia, Parvimonas, 

Atopobium and Dialister).  

Study SV has multiple diverse samples, however half of the samples documented in the bar chart 

originated from male seminal samples, as study SV examined the influence of intercourse on vaginal 

microbiomes [82]. The first 23 samples (ERR769967-ERR769989) listed in the chart enclosing purple 

coloured bars represent seminal samples (Figure 7a). The taxa chart generated through QIIME 

shows that most male microbiomes are dominated by Flavobacterium, Lactobacillus and 

Acinetobacter (not Corynebacterium as reported in Mandar et al. 2015 published results [82]).  

Seminal microbiome samples are noticeably more diverse compared to vaginal samples, whilst 

most vaginal samples are dominated exclusively by Lactobacilli (illustrated by pale pink bars seen 

in Figure 7a) and supplementary bacteria are only present in very low abundances. In other words, 

male seminal microbiomes have a higher α- and β –diversity, compared to vaginal microbiomes 

with the majority of the vaginal communities appearing homogenous. As the present project was 

solely focused on vaginal microbiome composition, study SV was considered to present low β-

diversity levels, even though total bacteria richness is excessively high (due to the immense number 

of unique taxonomies assigned illustrated in Figure 7b). Finally study HSV2 represents similar levels 

of diversity at both intrapersonal and total study diversity levels (Figure 6). Bacterial richness as 

displayed in Figure 6b remains low, followed by low abundances in most rare taxa (Figure 6a). The 

majority of the samples appear monoclonal and colonised by Lactobacilli as illustrated by the purple 

bars in Figure 6. Only a handful of study HSV2 samples demonstrate intrapersonal diversity, with a 

number of abundantly represent bacteria, of which most common is Gardnerella. 
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Figure 5: Study BV genus level taxonomy bar chart. Figure 5a illustrates a bar chart representing all 

taxonomies assigned in each sample from the study. The x-axis lists the sample IDs and the colour bars 

display the assigned taxonomies within each sample. The bar length represents the relative abundance of 

each taxon from a single sample. Brown bars illustrate Shuttleworthia as the most abundant organism. 

Figure 5b lists the taxonomic identities of each coloured bar. 

a) 
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b) 
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Figure 6: Study HSV2 genus level taxonomy bar chart. Figure 6a depicts a bar chart created via QIIME 

commands and represents all taxonomies identified within each sample of the study. The x-axis lists sample 

IDs and bars represent the taxa within each sample. The length of each coloured bar demonstrates the 

relative abundance of each taxon within each sample. Purple coloured bars represent Lactobacillus, which 

is the most abundant organism and displays multiple homogenous samples. Figure 6b lists the taxonomic 

identities of each coloured bar from Figure 6a. 

a) 
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Figure 7: Study SV genus level taxonomic bar chart. Figure 7a depicts QIIME’s genus level bar chart 

presenting all taxonomies identified within each sample of the study. The x-axis displays the sample IDs. 

Colour bars represent the taxonomy characterised for each sample. The length of the colour bars 

demonstrates the relative abundance of each taxon present. ERR769967-ERR769989 samples containing 

purple bars represent seminal specimens whereas the remaining samples originate from vaginal samples. 

Salmon colour bars depict Lactobacillus, which is the most abundant organism and multiple near-

monoclonal samples are present. Figure 7b lists the taxonomic identities of each coloured bar in Figure 

7a. 

a) 
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3.2 Providing supplementary taxonomic bar charts to test study variation 

While total diversity of a study can be inferred through genus level taxonomy bar charts, it is 

important to test diversity at multiple taxonomic levels, to investigate different levels of divergence 

between microbial communities. For that reason, as mentioned previously, all bar charts are 

represented on two distinct taxonomic levels as observed in Figures 8-12. One of QIIME’s 

advantageous features when estimating diversity, is the creation of taxonomy summary bar plots 

at all taxonomic levels (phylum, class, order, family, genus and species). QIIME’s default parameters 

for taxa charts generation do not include analysis on species levels, thus avoiding errors in 

taxonomic assignment. Though parameters can be altered to allow species level analysis, for the 

purpose of this study this was not considered appropriate. While most bacteria inhabiting human 

vaginal microbiomes are well-established organisms, investigating microbiome composition 

through 16S rRNA data could prove inaccurate at species level.  Small sequence changes (due to 

random evolutionary events) could not be distinguished between species in 16S rRNA reads, thus 

creating false groupings and not illustrating an accurate description of microbiome’s variation.  

Reviewing taxonomy plots at multiple taxonomic levels additionally provides qualitative control of 

the bacterial communities reported by Genus level bar taxonomies, as well as providing clearer 

information on the predominantly abundant organisms. Figure 8 unquestionably supports all 

previous diversity statements for study HIV. Both α and β diversities are significantly high, with large 

numbers of individual families assigned (Figure 8b), proportionately significant relative abundances 

for most families and low representation of monoclonal patients (Figure 8a). Additionally, it is 

crucial to point out that relative abundance between Figure 3 and Figure 8 are similar, therefore 

verifying accuracy of the reported abundant bacterial communities. This proves QIIME’s 

appropriate approach when assigning OTUs and taxonomies.  

Equally to study HIV, study CANDIDIASIS taxonomy plots at order taxonomic level (Figure 9), display 

identical diversity patterns to those illustrated at Genus level (Figure 4). Study CANDIDIASIS QIIME 

taxonomy charts were presented at both genus and Order level, as the diversity plots between 

Genus and Family levels illustrated similar levels of diversity. Unable to observe consistent bacterial 

patterns at Family level taxonomy charts of the study, Order level taxonomies were utilised for bar 

chart analysis. Examining Order level taxonomic composition through bar charts allowed clearer 

visualisation of the most abundant members of the microbial communities avoiding misperception 

by detailed intrapersonal diversity data. Therefore, it is concluded that study CANDIDIASIS consists 

a number of highly diverse samples with high relative abundances. However, by comparing the 

family taxa plots of study HIV and the order taxa plots from study CANDIDIASIS, it becomes 

apparent that study CANDIDIASIS does not contain as high of an α-diversity as study HIV (Figures 8 

and 9). Study CANDIDIASIS contains fewer unique organisms with lower relative abundances. Thus 

the overall increased study diversity represented by the great numbers of unique individuals (Figure 

9b) could be a result of the more in-depth sampling, with study HIV containing only 168 samples 

whereas study CANDIDIASIS containing 224 vaginal samples.  
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Figure 8: Study HIV family level taxonomy bar chart. Figure 8a displays individualistic families assigned 

within each study. The x-axis of the chart lists the sample IDs.  Coloured bars represent the taxonomic 

families composing the samples. The size of the bars indicates the relative abundance of an organism within 

a single sample. Lactobacillaceae, Bififobacteriaceae, Veillonellaceae, Prevotellaceae, Lachnospiraceae, 

Fusobacteria are the most frequently present bars thus illustrating the most abundant organisms. Figure 8b 

lists the family identities of the coloured bars observed in Figure 8a.   

  

a) 
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b) 
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Figure 9: Study CANDIDIASIS order level taxonomy bar chart. Figure 9a illustrates a bar chart consisting of 

order level taxonomies identified in the samples. The sample IDs are displayed on the x-axis of the chart. 

Coloured bars represent individual organisms and the length of the bars depicts the relative abundancy of 

an organism within one sample. Bififobacteriales, Coriobacteriales, Lactobacillales, Bacillales, Clostridiales, 

Gemmatales and finally a non-identified blast search result appear as the most abundant organisms in the 

complete study. Figure 9b lists the order taxa identities of the coloured bars observed in Figure 9a.   

  

a) 
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b) 



52 | P a g e  
 

Study BV exemplifies an average vaginal microbiome diversity study. Both genus and order level 

taxonomy bar charts display high numbers of individual taxa with low relative abundance values 

(Figures 5 and 10). Despite the large numbers of identified taxa (Figure 10b), the order level 

taxonomy chart illustrates that study BV represents relatively lower β – diversity compared to the 

previously examined studies, as most samples are characterised by five highly abundant dominant 

organisms (orders: Clostridiales, Lactobacillales, Fusobacteriales, Bacteroidales, Coriobacteriales) 

(Figure 10a). The lack of monoclonal samples is noticeable in both taxonomy bar charts, thus 

representing a moderately increased α - diversity.  Interestingly, study BV displays uncommon 

interpersonal variation patterns. Although numerous low taxon richness samples are enlisted they 

are not dominantly colonised by Lactobacilli, as portrayed in most healthy vaginal microbiomes, but 

are instead dominated by Shuttleworthia (k__Bacteria p__Firmicutes c__Clostridia o__Clostridiales 

f__Lachnospiraceae g__Shuttleworthia). As the study focused on characterising the impact of 

various sexually active groups on BV affected microbiomes [83], the samples contained various 

dysbiotic samples which is apparent from the lack of Lactobacilli. Females with dysbiotic vaginal 

microenvironments do not necessarily represent diseased individuals but rather samples of 

microbiomes with a “different than usual” bacterial community composition.  

On the other hand, studies SV and HSV2 represent the lowest spectrum of diversity and bacteria 

richness in the present dataset of selected studies. By observing the family level taxonomy bar 

charts total study diversity can be seen, with both studies representing only three dominant 

organisms. Study HSV2 consists of mainly Lactobacillaceae, Bififobacteriaceae and 

Coriobacteriaceae (Figure 11), whereas study SV lists Lactobacillaceae, Bififobacteriaceae and 

Veillonellaceae as the three most abundant bacterial families (Figure 12). Therefore, both studies 

reveal low β – diversities, even though focused on different vaginal environments. Study HSV2 

represents a higher α – diversity with fewer monoclonal samples, than the one observed in study 

SV (Figure 11). Although most HSV2 samples were colonised by fewer organisms, less monoclonal 

samples exist, increasing the levels of intrapersonal bacterial diversity. Instead, the majority of 

study SV samples consisted of a collection of monoclonal samples (excluding the male samples as 

previously mentioned). Female vaginal samples were dominated by Lactobacillaceae and only 

approximately 6 patients; out of 69 patients in total (12 samples – due to multiple sampling 

collections during the course of the study) were dominated by Bifidobacteriaceae or Veillonellaceae 

(samples SRR769992-9, SRR770006-7, SRR770014-15) (Figure 12). Vaginal samples in study SV 

contradicted expectations, since impact of sexual intercourse was expected to result in increased 

variation within the vaginal samples. Although fluctuations were reported in vaginal microbiome 

composition by Mandar et al. 2015, change remained at bacteria specific and intrapersonal levels, 

thus not affecting overall low level of diversity and coinciding with the present results. 
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Figure 10: Study BV order level taxonomy bar chart. Figure 10a displays a taxonomic bar chart with order 

level taxonomies assigned from samples in the study. The sample IDs are listed on the x-axis. Coloured bars 

illustrate the different taxonomies contained within each sample and bar length represents abundance. 

Clostridiales, Lactobacillales, Fusobacteriales, Bacteroidales, Coriobacteriales appear as the most abundant 

bacteria within the study. Figure 10b lists the identities of the order level taxonomies displayed in Figure 

10a. 

  

a) 
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Figure 11: Study HSV2 family level taxonomy bar chart. Figure 11a demonstrates microbiome diversity 

within samples from the study. Sample IDs are listed on the x-axis. Colour bars signify the assigned family 

level taxonomies. The length of the bars suggests that Lactobacillaceae, Bififobacteriaceae and 

Coriobacteriaceae are the most abundant taxa in the complete study. Figure 11b displays the IDs at family 

level of the bars presented on Figure 11a.  

a) 
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b) 
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Figure 12: Study SV family level taxonomy bar chart. Figure 12a demonstrates family level taxonomy 

variation at both interpersonal and study levels. X-axis displays the sample IDs. Coloured bars represent the 

family level taxonomies present within each sample. Bar length illustrates taxon abundance. Samples 

ERR769967-ERR769989 are seminal samples and they display significantly more diverse communities. 

Seminal samples illustrate Flavobacterium, Lactobacili and Acinetobacter as the most dominant organisms. 

Vaginal samples suggest Lactobacillaceae, Bififobacteriaceae and Veillonellaceae as the most dominant 

organisms. Figure 12b displays the identities of the family level taxonomies illustrated as coloured bars in 

Figure 12a. 

  

a) 
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3.3 Criticising limitations of taxonomic bar charts generated in QIIME 

Diversity analyses allow investigation of microbiome’s composition as well as permit insight into 

microbiome variation between healthy and diseased states. Although advantageous for 

comparisons of variations between studies, diversity analyses have limitations for examining 

microbiome interactions. It is crucial to state that due to the lack of metadata information, on the 

sequence sample reads provided in most studies, the intrapersonal variation presented cannot be 

linked to medical condition. Thus only speculations of the microbiome state based on microbiome 

composition were possible. For that reason, additional analyses need to be developed to further 

support the evidence illustrated by the diversity analyses. 

To ensure accuracy of the bar charts and quantify the results observed, the average abundance 

data were further examined. Although bar charts provide a straight-forward method for visualising 

the most abundant taxa, it is only accurately representative for intrapersonal variation and not total 

study bacterial abundance. A homogenous sample would include one long mono-colour bar 

representing the most abundant organism in that particular sample. However, the length of that 

bar would not be proportional to the absolute abundances of other samples, only the relative 

abundance. In other words, it is challenging to quantify abundance of an organism depending on 

bar length and almost unfeasible to calculate collective organism colonisation abundance of a 

complete study. For that reason, Table 2 was created from the relative abundance values 

originating from .biom OTU files. Table 2 represents lists of the 10 most abundant bacteria present 

in each study followed by percentage total abundance in all SRR samples of the study. 

Table 2 displays different dominant microbial communities than the ones previously observed on 

the bar charts. Therefore, demonstrating the problem with bar taxonomies being exclusively used 

to study composition and variation in-between different studies. Due to study HIV having a 

relatively high diversity, genus taxonomy charts proved challenging in identifying the most 

dominant organism with accuracy. However, family level taxa bar charts pointed six commonly 

present bacteria (Lactobacillaceae, Bififobacteriaceae, Veillonellaceae, Prevotellaceae, 

Lachnospiraceae, Fusobacteria) (Figure 8). Although useful information, it is not possible to detect 

an order of dominance by observing the bar charts. Once focused on the bacterial abundances 

within a study, Lactobacillus, Prevotella, Gardnerella, Shuttleworthia, Sneathia and Dialister were 

quantifiably classified as the top 6 most abundant organisms, supportive of the results observed in 

the bar charts (Table 2).  

Both HIV and CANDIDIASIS studies represent a diverse system with high numbers of identified 

taxonomies making it difficult to predict the most abundant organisms through bar length 

assessment. The order level taxonomy for study CANDIDIASIS (Figure 9), suggested 7 most 

abundant taxa (Bififobacteriales, Coriobacteriales, Lactobacillales, Bacillales, Clostridiales, 

Gemmatales and finally Nitrospirales). Examining the abundance values within the study, Table 2 

summarises Lactobacillus, Gardnerella, Streptococcus, Atopobium, Nitrospirales (family level 

taxonomy), Prevotella, Gemella as the first 7 most dominant bacterial genera. Although the data 

from the abundance table (Table 2) and the order level bar chart (Figure 9) appear different, they 

are in fact the same with Table 2 listing the correct taxonomies. This is due to the difficulty in 

interpreting abundances through taxonomic bar charts.  
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QIIME performs taxonomic assignment by blasting the sequences provided against a database. If 

no results in the database match the minimum length, e-value and percentage requirements QIIME 

catalogues them under “No blast hit;Other;Other;Other”. Such data points are not sufficient to 

affect the overall results of the analysis as all remaining taxonomies consist of high quality matches 

representing expected organisms in the vaginal community. The non-identified blast matches were 

removed from the abundance data to avoid over representation of organisms. Consequently, QIIME 

proves a useful tool for taxonomy assessment in 16S rRNA data, even though encountering issues 

with Blast analysis.  

Studies BV, SV and HSV2 as previously mentioned represent lower levels of diversity. The order 

level taxonomy chart for study BV assisted in the identification of five highly abundant organisms 

(Clostridiales, Lactobacillales, Fusobacteriales, Bacteroidales, Coriobacteriales) (Figure 10). 

Interestingly, coinciding not only with the abundance percentages (Table 2), but also with the 

results presented by Muzny’s study [83].  They reported Lactobacillus, Lachnospiraceae, Prevotella, 

and Sneathia as the four most dominant taxa, corresponding with the genus level Shuttleworthia, 

Prevotella, Lactobacillus, Sneathia observed in the taxonomic bar charts created by QIIME (Figure 

5). Thus certifying the accuracy and suitability of the methodology performed.  

Additionally, study SV once exclusively focused on vaginal samples displayed low diversity 

throughout with most samples appearing homogenous. A family level taxonomy chart revealed 

Flavobacterium, Lactobacillus and Acinetobacter as the most common organisms (Figure 12). 

However, by analysing the total abundance data of the study, Lactobacillus, Gardnerella, 

Veillonella, Flavobacterium and Streptococcus surfaced as highly present bacteria (Table 2). 

Lactobacillus and Gardnerella were the most commonly dominant organisms, followed by the 

atypical bacteria Veillonella and equally abundant Flavobacterium and Streptococcus. Unlike all 

previous analysed studies, study SV does not entirely match the results presented by Mandar et al. 

2015. Male samples partially contradict the results presented in bar chart analysis created in this 

project, whilst Mandar et al. 2015 predict Corynebacterium as one of the three most abundant 

bacteria and not Acinetobacter as reported here. This could be a result of green genes human 

vaginal database used as a reference for the blast and taxonomy assessment analysis performed 

through QIIME. Although this exposes flaws with the pipeline followed for this study, seminal 

samples were not relevant to the focus of this project. Moreover, the degree of divergence between 

results was not substantial, thus could be excluded from the analysis. Nevertheless, the results from 

the vaginal samples observed in the bar charts were consistent with the abundance table (Table 2) 

and the reported results from Mandar et al. 2015. In conclusion, vaginal samples from study SV 

were colonised by Lactobacillus, Gardnerella, Veillonella, Flavobacterium and Streptococcus with 

the most dominant organisms being Lactobacillus and Gardnerella (Figure 12 and Table 2).  

Finally, study HSV2 consisted of mostly homogenous patients dominated by Lactobacilli, with few 

more diverse samples observed in Figure 11. The family level taxonomy chart illustrated three 

typically abundant taxa: Lactobacillaceae, Bififobacteriaceae and Coriobacteriaceae. The results 

followed the same community patterns and were further supported by the percentage abundance 

data, observed in Table 2.  

Lastly, Table 2 not only listed the most abundant bacteria present in each study, but interestingly 

revealed five shared dominant organisms (within the first ten most abundant bacteria within each 

javascript:gg('Other');
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study) between most of the five selected studies. Lactobacillus, as expected, was shared between 

all five studies, however despite expectations was not consistently exceedingly dominant, with a 5-

fold average increase dominance over the rest of the organisms composing the microbiomes. 

Interestingly, Dialister and Prevotella were the next consistently abundant bacteria present in all 

five studies. Gardnerella, and Atopobium were equally present in most studies with high percentage 

abundances. Numerous other key organisms were shared between studies, like Streptococcus with 

relatively high abundances. However, abundance data do not reveal information on interactions 

between members of the microbiome, and thus we undertook clustering analysis to explore this 

further. 
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4. INVESTIGATING MICROBIOME COMMUNITY STRUCTURES VIA CLUSTERING 

ANALYSIS 

Clustering analyses were implemented, with the aim to investigate interactions between vaginal 

microbiomes and their members, in order to characterise any potential links between bacteria 

belonging to the vaginal microbiome. Clustering analysis allows visualisation of interactions 

between members of a microbiome by establishing proximity between data. Clustering as discussed 

previously, can be achieved through various algorithms, which differ in defining the concept of a 

“cluster”. Hierarchical clustering was utilised as the most advantageous algorithm, for the purpose 

of this analysis. Hierarchical clustering defines sample similarity through dendrograms, where the 

proximity of each leaf demonstrates the degree of similarity or dissimilarity. Hierarchical clustering 

is commonly presented alongside a heatmap, thus representing the complete data matrix of a 

study. Another common way of visualising data clustering is through Principal Component Analysis 

(PCA). PCA is a statistical model allowing visualisation of multi-dimensional data into the “principal 

components”, demonstrating patterns of variance between them. Both methods effectively display 

interaction patterns as well as variance and similarities between microbiomes and their members. 

However, results are more reliable if both approaches are utilised in parallel, as the two technique 

provide complementary information. 

4.1 Principal component analysis 3D plot designed through QIIME 

Principal component analysis permits visualisation of a complete study’s data matrix as well as the 

similarities in microbiome composition between samples of the study. The first approach in utilising 

PCA, was through QIIME’s core_diversity_analyses.py script. One of the commands in QIIME’s 

core_diversity_analyses.py script, make_emperor.py creates a 3D PCA graph consisting of the first 

three principal components displaying variation between samples. In QIIME’s PCA plots, close 

proximity clustering/ grouping between samples signifies sample similarity dependant on bacterial 

composition and abundance. QIIME assessed principal components by estimating Bray-Curtis 

dissimilarity index of a study’s complete abundance data matrix. As mentioned previously, Bray-

Curtis assesses dissimilarity by generating a distance matrix with values ranging from 0 to 1. Zero 

values signify samples with equivalent bacteria abundances and 1 values represent samples that do 

not share any microbiome abundance similarities [98]. 

3D PCA plots were generated for all selected studies (HIV, HSV2, BV, CANDIDIASIS, SV) in order to 

investigate microbiome differences, as well as identify potential patterns between patients, giving 

us insight to microbiome conditions. Figures 13 – 17 display QIIME’s 3D PCA plots for all studies, 

with the x-axis representing the first principal component (PC1) spanning the highest amount of 

bacterial compositional variation; the y- axis demonstrating the second principal component (PC2) 

illustrating the second highest bacterial compositional variance; and finally the z-axis signifying the 

third principal component (PC3) classifying the third highest percentage variance in bacterial 

composition. It is crucial to criticise that most of the variation will be driven by the high abundance 

in Lactobacilli, thus raising questions on clustering efficiency as the majority of human vaginal 

microbiomes are typically dominated by Lactobacilli. Through PCA the data matrices are 

reformatted in a 3 dimensional plane with commonly 2 dimensions covering the majority of the 

bacterial composition variation between samples, thus allowing easier pattern visualisation. 

Therefore, universally, if samples appear clustered in close proximity, samples are composed with 
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matching bacteria abundances. Throughout this chapter various clusters will be discussed, however 

unlike clusters presented through k-means analysis, PCA illustrates subjective groupings. 

Consequently, all clusters presented in Figures 13-17 are ambiguous and only selected to illustrate 

variation and resemblances within samples of the studies. 

Figure 13 displays a 3D PCA plot for study HIV with x, y and z axis representing the first 3 principal 

components. The axis percentages illustrate the percentage of bacterial composition variation 

covered by each corresponding principal component. PCA components 1, 2 and 3 explain about 

57% of the total variance in the complete study, thus ensuring significance of the grouping patterns 

observed. Evidently, principal component one and two explain most variation, illustrated by the 

high variation percentages (PC1 = 28.69, PC2 = 21.65). As most variation is explained through the 

first two principal components, most clustering patterns can be visualised at a two dimensional 

plane. The PCA plot illustrates 3 distinct clusters (clusters A, B and C in Figure 13) with the majority 

of samples belonging to cluster A. Lacking metadata descriptions, it is not possible to link clusters 

with microbiome medical conditions. However, it is evident that samples fall in three classifications 

depending on their composition.  

3D PCA plots offer advantages on visualising microbiome community structures and identifying 

similarities within samples of a specific study. In this case, Figure 13 illustrates three major 

groupings, which are based on bacterial composition. It is speculated that cluster formation is 

driven from samples composition dominant in Lactobacillus, Prevotella and Gardnerella, the three 

most abundant genera in this study. Cluster A represents the largest cluster, consisting of the most 

samples, thus Lactobacilli could be the driving source of this cluster. An alternative hypothesis is 

that the samples are clustered according to having several shared species, rather than each cluster 

being driven by a single taxon. Distinguishing the true causation behind QIIME’s PCA sample 

clustering, proved challenging and time consuming as each sample point had to be investigated for 

its bacterial composition. Instead hierarchical clustering along with heatmap charts, offered a 

simpler approach to identifying similarities in sample composition within a study. Hierarchical 

clustering will be discussed in detail in section 4.2. Though, PCA is not self-sufficient to support 

conclusive evidence on microbiome interactions and structure, composition similarities were 

reported between patients, thus suggesting possible bacteria interactions and shared microbiome 

structures. Succeeding, focus should shift to investigating correlations within the selected studies 

for this project.   
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Figure 13: 3D Principal Component Plot for study HIV. Samples from study HIV plotted against the first three 

principal components displaying the highest amount of variance between sample bacterial compositions. 

Three suggestive sample clusters are formed and illustrated by the red, blue and green circles.  Cluster A 

demonstrates the most populated cluster. 

  

Cluster A 

Cluster B 

Cluster C 
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Figure 14 represents QIIME’s designed PCA plot for study CANDIDIASIS. Unlike study HIV the 

principal component axes portray low percentages of explained sample composition variance, with 

only 10% of the total study variation being covered by the 3D PCA plot. The second (PC2) and third 

(PC3) components consist of almost equally low variation percentages, thus clustering patterns can 

only be visualised in a three dimensional plane. Although well-defined clusters are not easy to 

distinguish, the total abundance table (Table 2) raises composition factors, which could support the 

PCA patterns. Almost 80% of the total bacterial abundance in all present study samples, consists of 

Lactobacilli, with the remainder organisms present in very low abundances. Thus Figure 14 displays 

numerous small clusters with various sub-clusters within them, making patterns hard to detect. 

Low PC percentages illustrate the multidimensionality of the data matrix, due to the high in-depth 

sampling and high study bacteria richness, thus each principal component would explain a small 

percentage of the total study diversity. The majority of sample variation would be expressed by the 

abundance of Lactobacilli as they dominate most samples within the study.  

Interestingly, it is worth restating that study CANDIDIASIS was analysed through the first pipeline, 

discussed in the “QIIME toolkit” section 2.2. Consequently, it could be argued that the lack of 

pattern observed in the PCA plot could be a result of the difference in the de-multiplexing approach. 

Although both pipelines designed for this project were effective and accurate for microbiome 

assessment, de-multiplexing is a complex factor and a step which could affect generation of the 

abundance matrix and in consequence PCA plot. In conclusion the PCA for study CANDIDIASIS 

illustrates an uncharacteristic arrangement of microbiome structure compared to the other studies, 

and supports the results presented on both taxonomy bar charts (Figures 4 and 9) which were 

indicative of high sample variation. 

QIIME’s script enabled PCA analysis for study BV, presented in Figure 15. As mentioned previously, 

the PCA plot illustrates three axes representing the first three principal components covering the 

percentage of bacteria abundance variation in the study. The total amount of study variation 

explained through PCA is more than 50%, ensuring confidence in the clustering patterns. Principal 

component one and two axes cover most of the sample variation within the study, with PC3 

displaying a significantly lower percentage of the variation (6.58 %). This is additionally supported 

by the ability to distinctly visualise the complete PCA array in two dimensions. Interestingly, study 

BV depicts similar clustering and patterns to Figure 13 for study HIV. Three evident clusters can be 

observed with cluster A, consisting of most samples. As discussed previously, the most abundant 

species could be driving the majority of the compositional similarities between samples. Table 2 

enlists Shuttleworthia, Prevotella and Lactobacillus as the three most abundant organisms. 

Therefore, can be proposed that the highly dominant Shuttleworthia is driving the establishment 

of cluster A. However, the identity of clusters B and C in Figure 15 could be a result of a combination 

of shared taxa between samples. Therefore, although composition and organism variance differs, 

clustering patterns appear similar between studies HIV and BV, possibly indicating shared stable 

microbiome community structures. 
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Figure 14: 3D Principal Component Plot for study CANDIDIASIS. Blue data points represent all samples 

collected for study CANDIDIASIS plotted against the first three principal components. Each principal 

component explains the highest amount of variance between sample bacterial composition. Figure 14 

illustrates relatively low variance percentages and a lack of sample clustering.  
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Figure 15: Study BV 3D Principal Component Graph. The principal component plot consists of three axis 

representing the first three principal components, explaining the most bacterial composition variance within 

samples. Data points of patients from the study cluster according to composition similarities with three 

distinct clusters forming which are highlighted by the red, green and blue circles   

Cluster A 

Cluster C 

Cluster B 
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The PCA based on study’s HSV2 data is illustrated in Figure 16. Once again the three axes represent 

the first three principal components along the percentages responsible for the sample variance. 

Study HSV2 exemplifies a relatively small study with only 51 samples (whereas an average of 143 

samples is present in most selected studies). Thus due to lack of greater sampling depth PCA reveals 

a single dominant cluster. The detectable cluster is most likely driven by the 62% abundant 

Lactobacilli reported in Table 2. As seen previously on Figure 14 (PCA for study CANDIDIASIS), the 

PC percentages for study HSV2 are relatively low, representing only 19% of the total sample 

abundance variation of the study. Unlike study CANDIDIASIS, the de-multiplexing of study HSV2 was 

achieved through the second and final pipeline designed for this project. Consequently, both HSV2 

and CANDIDIASIS studies consist of “loosely” structured microbiomes with atypical compositions 

causing multidimensionality to their PCA matrix. Thus each individual principal component will 

explain a small percentage of the total sample abundance variance of a complete study. The lack of 

further sample clustering in study CANDIDIASIS further challenges the drawing of conclusions on 

microbiome structure and organism interactions. 

Finally, study SV displays very dissimilar PCA patterns, to all previously discussed studies (Figure 

17).  Figure 17 typically encloses the first three principal components, including the percentages 

covering the amount of sample abundance variation within the study. However, study SV is the only 

study which displays significant variance in the third principal component (PC3 = 14.9%), thus all PC 

axes have corresponding sample data points. PC1 as expected, represents the majority of the 

variance with 27%, whereas PC2 and PC3 have comparably high values with 17% and 15% 

correspondingly. Study SV displays one of the highest amounts of PCA coverage with about 60% 

sample bacteria abundance variance explained by the first three principal components. 

Interestingly unlike HIV, CANDIDIASIS, BV, HSV2 studies, more than four clusters are distinguishable 

from the PCA plot, even though the overall bacterial structure presented on Table 2 remains 

equivalent to the other studies. Cluster A demonstrates the most populated cluster, thus is likely to 

be determined by Lactobacilli consisting 55% of the total study. Once more, although the 3D PCA 

plot suggests multiple interesting patterns, there is no conclusive evidence of consistent bacterial 

structures or microbiome organism interactions. Seminal samples have contributed to increased 

clustering, due to their high bacterial diversity. Numerous speculations on microbiome structure 

providing stability to a microbiome have been brought to the surface. Further investigation on the 

causation of sample clustering was essential, therefore, the subsequent step focused on 

hierarchical clustering. Hierarchical clustering along with heatmap charts would allow easy 

visualisation of the composition similarities that drive the generation of the groupings/ clusters 

between samples of a study, thus suggesting association between organisms as well as microbiome 

structure. 

Additionally, a python script was programmed to carry out PCA analysis to focus on different 

aspects of Principal Component analysis to ensure no additional patterns could be traced. In more 

detail python programming allowed plotting of specific principal components combinations, giving 

a more powerful analytical tool (Appendix 20). Results proved parallel to QIIME’s plots thus were 

excluded from the analysis.  
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Figure 16: Principal Component 3D plot for study HSV2. Principal Component analysis plot illustrates low 

percentages of explained variance in all three principal component axis as well as a single sample cluster 

(cluster A) indicating sample composition similarities between patients.  

Cluster A 
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Figure 17: 3D Principal component graph for study SV. Sample data plotted in a 3D graph against the first 

three principal components represents the highest amounts of sample bacterial composition. The analysis 

suggests four sample clusters. Each distinct cluster demonstrates shared bacterial composition similarities, 

which are illustrated by the red, orange, green and blue circles; with Cluster A being the most prevalent. 

  

Cluster A 

Cluster B 

 

Cluster C 

 

Cluster D 
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4.2 Hierarchical clustering displayed in the form of heatmaps 

The python script discussed in chapter 2.5.1, was designed to carry out hierarchical clustering along 

with heatmap analysis on HIV, CANDIDIASIS, BV, HSV2 and SV studies. Heatmaps allow clear 

visualisation of clustering, as well as fast assessment of potential bacterial interactions both at 

intrapersonal and at collective study level. Unlike previous methods, heatmaps evaluate similarity 

patterns between samples’ bacterial composition, determine organism interactions based on 

relative abundance, display the most abundant bacteria within each sample and in a complete study 

with no ambiguity, as well as providing a visual representation of microbial community structure. 

The first stages of the script generated dendrograms for both sample and bacteria data for each 

study. Hierarchical clustering dendrograms represent similarities between sample or bacteria 

values in the form of clusters, as well as illustrating the order of clustering. These dendrograms 

have a similar structure to phylogenetic trees, but with no phylogeny assessment. Dendrograms’ 

leaves clustered in close proximity illustrate high levels of compositional or abundance similarity, 

with Branch length exhibiting the degree of dissimilarity and order of clustering. Both x and y axes 

of the heatmap display dendrograms respectively for sample and bacteria values. The following 

stages of the python program, carried out abundance data clustering, thus ensuring global scaling 

of the data matrix. The relative abundance data matrix was normalised and logged for the purpose 

of the heatmap. This ensured easy visualisation of the complete data matrix, as well as of the 

suggestive patterns generated from analysis. Global scaling assisted with clear, non-arbitrary 

visualisation and quantification of sample specific bacterium abundance composition, thus gaining 

insight on interpersonal sample composition by detecting the most abundant taxa within each 

sample. The relative abundance matrix was clustered and scaled from a Euclidian distance similarity 

based algorithm, converting “similarity” to a quantifiable variable. In conclusion, the script 

generated heatmap charts for all selected studies (Figure 18- 22) with sample and bacteria 

dendrograms on both axes and a similarity relative abundance data matrix. The rows of each 

heatmap display the taxonomically assigned 16S rRNA sequences (recorded at genus level), 

whereas the columns represent the samples from which the sequences originate.  A colour bar 

quantified the measures of relative abundance data, within a given study, while displayed in a 

similarity distance matrix.  

Figure 18, illustrates the heatmap generated for study HIV. The top x-axis displays the dendrogram 

created for the sample data, with the bottom x-axis listing the corresponding sample IDs. The 

sample dendrogram expresses clustering between samples depending on microbiome composition. 

On the other hand, the left y- axis along the heatmap illustrate the bacteria dendrogram reporting 

clustering between all bacteria present within study HIV. Bacterial clustering is based upon bacterial 

abundance within samples with no correlation to phylogenetic assessment. The genus level 

taxonomic identities corresponding to the y-axis bacteria dendrogram are listed on the right side of 

the heatmap. The relative abundance data matrix is scaled and displayed as a colour range from 

white to blue, with the darkest blue illustrating the highest relative abundance values. The relative 

abundance data were normalised and logged to ensure accuracy and assist visualisation of 

interaction patterns.  
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Figure 18: Heatmap representing vaginal microbiome profiles of study HIV. The heatmap includes hierarchical 

clustering for sample and bacterial data on the top x-axis and the left y-axis respectively. The bottom x-axis 

as well as the right y-axis contain the corresponding sample or bacterial IDs for each leaf of the dendrograms. 

The data matrix illustrated in the heatmap presents the logged abundances of the bacteria taxa found in the 

study. The values are displayed as colour scales with dark blue representing the highest values and white 

representing zero abundance. Hierarchical clustering suggests three major sample clusters as well as three 

bacterial clusters dependant on microbiome composition.  
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Observing study’s HIV sample dendrogram, five clusters are visible, two of which comprise most 

samples. On the other hand, bacteria dendrograms present numerous smaller clusters consisted of 

multiple sub-clusters, thus difficult to distinguish exact clustering. The relative abundance data 

matrix reveals the most abundant taxa, as well as bacteria interactions driven by abundance 

similarities. Bacteria with consistently high abundances shared in multiple samples cluster closely 

(Figure 18), representing potential organism interactions. This suggests stability in the microbiome 

structure. Interestingly, the samples dendrogram on the x-axis, partially matches the clustering 

patterns observed in the PCA plot (Figure 13). The PCA displayed three sample clusters based on 

bacteria composition, with cluster A dominantly represented by Lactobacilli. Equally the two major 

sample clusters visualised on the x-axis of the heatmap are driven by the relative abundance values 

of Lactobacilli. Though the sample dendrogram displays five clusters, two clusters consist of few 

samples; unlike the three highly populated clusters observed in the PCA plot (Figure 13). Therefore, 

both PCA and dendrogram sample clustering present equivalent patterns, ensuring accuracy of the 

results. Focusing on bacteria patterns, a number of interactions appear to be linked with 

Lactobacillus abundancy. All sample clusters experience a significant increase of Gardnerella, 

Prevotella, Dialister, Shuttleworthia, Sneathia abundance, when associated with a decrease in 

Lactobacilli (Figure 18). Thus, interactions between these organisms can be speculated. 

Interestingly, all closely clustered organisms are listed in the top six most abundant bacteria in Table 

2. Additionally, multiple clustering patterns are visible in a number of sample clusters between the 

first 11 listed bacteria (Gemella-Corynebacterium) (Figure 18). In conclusion, study HIV represents 

a number of clear sample clusters signifying similarities in microbiome composition, whereas 

bacterial clustering is influenced by multiple parameters thus resulting in less structured clusters, 

yet an apparent link between Lactobacilli abundance and bacteria clustering is present.  However, 

all major clustering patterns observed are only informally suggestive of microbial interactions, thus 

further testing with correlation models was followed.   

Figure 19 displays the heatmap from study CANDIDIASIS, illustrating diversity patterns as well as 

relationships between microbiome composition. Like in study HIV the heatmap consists of x-axis 

displaying samples dendrogram along the sample IDs, whereas the y-axis demonstrates bacterial 

dendrogram along the corresponding taxonomic IDs. Each row represents a specific taxon identified 

from the 16S rRNA sequences, whereas each column corresponds to a specific sample of the study. 

Supporting the clustering observed in the PCA analysis (Figure 14), the sampling dendrogram does 

not display clear clustering. Instead multiple small clusters with various sub-clusters are visualised. 

Therefore, this confirms the high β-diversity of study CANDIDIASIS, following previous claims based 

on the taxonomic bar charts (Figures 4 and 9).  Although the study displays high bacteria richness 

(shown by bacteria dendrograms) the low relative abundances cause decreased total variation. 

Lactobacilli dominate the majority of the samples in study CANDIDIASIS, coinciding with the 80% 

relative abundance data presented on Table 2. The bacteria dendrograms display two major 

clusters with Dialister, Prevotella, Atopobium and Gardnerella appear strongly linked. Interestingly, 

Dialister, Prevotella and Gardnerella are three bacteria which appeared correlated in study HIV. 

However, unlike in study HIV where the link was driven by the presence or absence of Lactobacilli, 

study CANDIDIASIS does not display such link. Although the three organisms appear interconnected 

irrespectively of the Lactobacilli dominance, their relative abundances are equivalently low. While 

clustering is suggestive of strong correlations, the links need to be validated through correlation 

statistical models.  
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Figure 19: Heatmap of vaginal microbiomes present in study CANDIDIASIS. Hierarchical clustering for sample 

and bacterial data are displayed on the top x-axis and the left y-axis respectively. The sample and bacteria IDs 

corresponding to the dendrograms are listed at the bottom x-axis and right y-axis respectively. The data 

matrix representing the logged abundances of the bacteria taxa identified in study CANDIDIASIS are displayed 

as colour scales. Dark blue represents high abundancy whereas white represents zero abundance. 

Hierarchical clustering suggests various small sample clusters as well as two major bacterial clusters 

dependant on microbiome bacterial composition. 

  



76 | P a g e  
 

Respectively, Figure 20 illustrates the heatmap generated for study BV. Identical to both previously 

discussed heatmaps, Figure 20 assists visualisation of diversity and clustering patterns though the 

presentation of sample and bacteria dendrograms along a scaled and logged data matrix of relative 

abundance. Each dendrogram was created through hierarchical clustering, permitting visualisation 

of similarity patterns through clustering. The x-axis sample dendrogram illustrates one dominant 

cluster composed by the majority of the study’s samples, followed by numerous smaller clusters. 

Clustering patterns are partially supportive of the clustering observed on the PCA plot in Figure 15. 

PCA as previously discussed, illustrated three well-defined clusters with cluster A consisting of most 

samples, thus possibly driven by Shuttleworthia - the most dominant bacteria present in study BV 

(30% total abundancy as reported in Table 2). Although one dominant cluster is visible on the 

sample dendrogram, clusters B and C from Figure 15 were probably representing a combination of 

the smaller clustering groups observed in Figure’s 20 sample dendrogram. In contrast, bacteria 

dendrograms displayed on the y-axis, represent three clusters driven by each taxon’s relative 

abundance. The red cluster lists the eight most abundant bacteria (Shuttleworthia, Lactobacillus, 

Prevotella, Megasphaera, Sneathia, Parvimonas, Atopobium and Dialister) identifying various 

microbiome community structures. Additionally, bacteria Peptoniphilus, Gemella, Mycoplasma, 

Aerococcus and Clostridium appear linked even though they present relatively low abundance 

values. Study BV is the third study supporting a community link between Dialister and Prevotella 

even in the absence of Lactobacillus dominance. Correlation analysis is essential to test the validity 

of a possible link between Dialister and Prevotella. 
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Figure 20: Heatmap of patients’ vaginal microbiomes present in study BV. Hierarchical clustering for sample 

data is illustrated as a dendrogram on the top x-axis.  Hierarchical dendrogram on the left y-axis demonstrates 

clustering for the bacterial data. The corresponding sample and bacteria IDs of the dendrograms are listed at 

the bottom x-axis and the right y-axis respectively. The logged bacterial abundances data matrix is displayed 

as a colour scale. Dark blue represents high values whereas white represents zero abundance values. The 

dendrograms illustrate one dominant sample cluster as well as three major bacterial clusters dependant on 

microbiome bacterial composition.   
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Study’s HSV2 data generated hierarchical clustering along a heatmap presented on Figure 21 

allowing visualisation of clustering patterns and thus portray potential microbiome community 

structures. Alike studies HIV, CANDIDIASIS, BV hierarchical clustering is displayed in the form of 

dendrograms for both sample and bacteria values. Due to the multidimensionality of the data 

arrays with various representative conditions (microbiome type, sample, abundance, bacteria) a 

heatmap permits straightforward visualisation of the data matrix and thus diversity and clustering 

patterns. The x-axis of the heatmap display the dendrogram generated for sample clustering, along 

the sample IDs at the bottom of the heatmap. Sample dendrogram illustrates two visible clusters, 

however samples SRR3223167 and SRR3211969 do not fall into any clustering due to their 

distinctive composition. Shannon B. 2017 et al. does not list metadata descriptions in the NCBI 

database, however patients were only sampled once throughout the course of their study with no 

follow up visits [84]. Therefore, outlier samples SRR3223167 and SRR3211969 represent two 

distinct patients. The green cluster presented is significantly populated, however the samples 

composing it lack β-diversity due to the low average abundances. On the other hand, the red cluster 

consists of fewer samples with higher abundances and more complex microbiome communities. 

Bacteria dendrograms display two clusters with Lactobacillus as an outlier, signifying the excessive 

level of dominance (62% of total study abundance). The second bacteria cluster does not represent 

bacterial interactions due to low bacteria relative abundance. However, the first bacterial cluster 

represents strong clustering between 13 diverse samples with high relative abundances of 

Peptoniphilus, Dialister, Prevotella, Atopobium, Sneathia, Parvimonas, Megasphaera, Clostridium, 

Mobiluncus, Shuttleworthia, Aerococcus and Gardanella. Interestingly not all bacteria coincide with 

the most highly abundant organisms listed on Table 2. Therefore, verifying that microbiome 

structure is not exclusively driven by abundancy. Multiple organisms reported in previous studies 

similarly appear related in study HSV2, such as Dialister, Prevotella, Atopobium, Gardanella and 

others, thus confirming the need for further investigation. 
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Figure 21: Heatmap representing patients’ vaginal microbiome profiles from study HSV2. The heatmap 

exhibits hierarchical clustering in the form of dendrograms for sample and bacterial data on the top x-axis 

and the left y-axis respectively. The bottom x-axis and the right y-axis list the corresponding sample or 

bacterial IDs for each leaf of the dendrograms. The logged abundance data matrix illustrated is displayed as 

a colour scale. Dark blue represents the highest abundance whereas white represents zero abundance. 

Hierarchical clustering suggests two major sample clusters as well as two distinct bacterial clusters dependant 

on microbiome composition.  
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Finally, study SV equally displays the same analysis as discussed for all other heatmaps (Figure 22). 

The x-axis sample dendrogram illustrates two very distinct clusters (red and green) with two sample 

outliers each. The green cluster consists of the majority of samples and though taxon richness is 

high, unique taxonomies are present in very low abundances. By examining the taxonomies 

presented on the right it is evident that the x-axis green cluster illustrates female vaginal samples. 

Female vaginal samples are evidently less diverse, in comparison to the adjacent red cluster 

depicting male samples. Male samples are characterised by atypically low Lactobacilli and 

demonstrate elevated bacterial diversity. For the purpose of this analysis, study SV will be perceived 

here as a low diversity study, as most of the β – diversity visualised on the heatmap is driven by 

high levels of male sample diversity. 

Bacteria dendrograms presented on the left y-axis, display an extraordinary number of taxonomies. 

Once again a result of seminal samples. Bacteria clustering appears puzzling with few defined 

clusters, thus proving difficult to distinguish between female and male clusters. The two sexes share 

organisms but not community structures with divergence in abundance values of certain taxa. 

Focusing on vaginal samples, a small bacterial cluster of 17 organisms (red cluster-bacterial 

clustering y-axis) illustrates association between some of the most abundant organisms including 

Lactobacillus, Dialister, Prevotella, Gardanella, Streptococcus and others. Interestingly, all female 

clustered bacteria are dominantly present in male samples. Study SV examined the effect of sexual 

intercourse on vaginal microbiomes. Mandar et al. 2015 report microbiome changes at 

intrapersonal level, post sexual intercourse, which defends the presence of shared bacteria 

between female and male samples. As mentioned before, the relationships reported for the shared 

organisms do not appear dependant on Lactobacillus abundance.  

In conclusion, although study’s SV heatmap appears complex, most taxonomic variation is driven 

by seminal samples, though more female samples were collected. Additionally, the heatmap 

displays strong links between all commonly present organisms discussed in the previous studies 

(e.g. Dialister, Prevotella), which are clustered in close proximity within the red y-axis cluster on the 

bacterial dendrogram. Strongly associated bacteria from vaginal samples (illustrated through 

bacterial dendrogram clustering) are not necessarily listed in the ten most abundant taxa (Table 2). 

This is due to male seminal organisms’ impact on the total percentage abundance, due to their 

increased bacterial diversity. Sample dendrogram clustering did not offer further insight to PCA 

clustering patterns (Figure 17) as multiple factors affecting the basis of the clustering were present 

for this study (sex, sample type, microbiome, abundances).  Finally, the heatmaps designed through 

the bespoke python programming allowed illustration of both bacteria abundance and bacteria 

composition thus proposing bacterial relationships for the various microbiomes within each study. 

Though presenting multiple patterns and potential community links, establishment of microbiome 

interactions is not possible without correlation analysis, needed to quantify and ensure confidence 

in the relationships.   
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Figure 22: Heatmap of vaginal microbiomes present in study SV. Hierarchical clustering for sample and 

bacterial data are displayed as dendrograms on the top x-axis and the left y-axis respectively. The 

corresponding sample and bacteria IDs are listed at the bottom x-axis and the right y-axis respectively. The 

data matrix of the logged bacteria abundances are illustrated as colour scales. Dark blue represents the 

highest values, whereas white represents zero abundance. Hierarchical clustering suggests various small 

bacterial clusters; with one visibly distinct cluster (red cluster on left y-axis), as well as two major sample 

clusters dependant on microbiome bacterial composition.   



82 | P a g e  
 

5. CORRELATION STATISTICS ANALYSIS 

The previous chapter covered the results of clustering analyses which provided insight to potential 

microbiome interactions within the vaginal microbiome. Interestingly, multiple patterns were 

shared between the selected studies. Although the heatmaps suggested associations between 

vaginal bacteria indicating potential microbiome structures, the links have to be further tested 

through correlation statistics analysis. To quantify any correlations between pairs of bacterial 

genera in the vaginal microbiome Spearman Rank Correlation Coefficient (ρ) model was utilised.   

Spearman’s rank correlation coefficient permits correlation analysis on non-normally distributed 

data by ranking the abundance of bacteria within a data matrix. The relative abundance data from 

all selected studies were not normally distributed, an effect that was due to the large number of 

zero values (or values close to zero) for many species in many samples, thus skewing the influence 

of the abundances towards the most abundant bacteria. For the purpose of this study correlation 

analysis assesses correlation between two data variables; in this case bacteria. Spearman’s 

correlation generates asymmetrical tables (Figure 23) with values ranging from -1 to 1, with 1 

representing a perfect positive correlation, -1 a negative correlation and finally 0 the presence of 

no correlation between two bacteria. Correlation models require p-values certifying statistical 

significance of the correlation links. However due to ample bacteria taxon richness within each 

study, Bonferroni correction on p-values and a Spearman correlation cut off value were estimated 

to avoid ambiguity in the significance of the correlations. The Spearman correlation cut off value 

delivered 95% confidence that a correlation is not a result of random associations driven by high 

abundance, but rather a true correlation.   

Heatmaps identified various associations between bacterial community members depending on 

abundance composition. Spearman’s correlation characterises the nature of the observed 

associations, by investigating for linear correlations. The first captivating association was drawn 

between Dialister and Prevotella, two bacteria dominantly present in all five selected studies (Table 

3). As discussed previously, Dialister and Prevotella were consistently presented within the top ten 

most abundant organisms of the microbiomes (Table 2). Interestingly within all studies, Prevotella 

dominates Dialister in abundance, irrespective of the microbiome’s conditional state. The heatmap 

from study HIV (Figure 18) reveals that both Prevotella and Dialister experience a visible increase 

within the samples consisting of lower Lactobacilli. Samples consisting of high Lactobacilli 

abundances present an abundance decrease in Dialister and Prevotella, however the two remain 

correlated. Therefore, again confirming that an association between Dialister and Prevotella is not 

dependant on Lactobacilli abundance. Finally, all studies (HIV, CANDIDIASIS, BV, HSV2, SV) 

consistently demonstrate strong clustering (Figures 18-22) between the two organisms even when 

relative abundances are not proportional. Therefore, all findings suggest strong association 

between Prevotella and Dialister as well as indicate strong influence on community structure and 

stability.  

  



83 | P a g e  
 

  

Fi
g

u
re

 2
3

: 
Sp

ea
rm

an
 R

an
k 

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t 

as
sy

m
e

n
tr

ic
 t

ab
le

 f
o

r 
st

u
d

y 
H

SV
2

. 
Fi

gu
re

 2
3

 d
is

p
la

ys
 t

h
e 

as
sy

m
en

tr
ic

al
 t

ab
le

 e
n

cl
o

si
n

g 
Sp

ea
rm

an
 

co
rr

el
at

io
n

 v
al

u
es

 g
en

er
at

ed
 f

o
r 

st
u

d
y 

H
SV

2
. T

h
e 

h
ig

h
lig

h
te

d
 b

lu
e 

ce
lls

 il
lu

st
ra

te
 c

o
rr

el
at

io
n

 v
al

u
es

 o
ve

r 
0

.6
, s

ig
n

if
yi

n
g 

th
e 

p
re

se
n

ta
ge

 o
f 

o
ve

ra
ll 

p
o

si
ti

ve
 c

o
rr

el
at

io
n

s 
w

it
h

in
 a

 s
tu

d
y.

 



84 | P a g e  
 

 Dialister – Prevotella 
95% Spearman correlation 

confidence threshold 

HIV 0.81 0.5 

BV 0.44 0.41 

CANDIDIASIS 0.68 0.27 

SV 0.91 0.55 

HSV2 0.75 0.57 

Table 3: Spearman Ranked Correlation Coefficient analysis between Dialister and Prevotella for all selected 

studies. The values generated through a python script running Spearman’s correlation are listed on Table3. 

The significance threshold is additionally displayed for all studies, representing 95% certainty of a correction 

being true and not a result of random association by chance. Thus validating significance of the correlations. 

Spearman’s rank correlation coefficient was carried out for all possible bacteria-bacteria 

associations within each study, however only key relationships will be discussed. (For full Spearman 

correlation tables of each study refer to Appendix electronic files). Table 3 lists all Spearman 

correlation values generated between Dialister and Prevotella for all five selected studies. To 

validate correlation results, the 95% spearman correlation coefficient cut off values were included 

in Table 3. As expected, correlation values were consistently and significantly high, with the 

exception of study BV which illustrated moderately positive, yet highly probable correlation 

between the two organisms. Study BV focused on identifying microbiome composition differences 

between female homosexual couples, female heterosexual couples and finally heterosexual BV 

female carriers couples [83]. Due to the presence of 44 dysbiotic vaginal microbiomes infected with 

BV, the overall study composition is shifted, thus altering Dialister and Prevotella abundances. 

However, the 95% certainty threshold for study BV was 0.41 thus still representing a very favourable 

correlation. Lower positive correlations between Dialister and Prevotella could be a result of more 

unstable microbiome communities, due to high levels of bacteria diversity driven by BV. On the 

other hand, studies HIV, CANDIDIASIS, HSV2, SV demonstrate substantially high positive 

correlations with studies HIV and SV almost representing a perfect correlation. All Spearman 

correlation values exceed the 95% significance threshold thus supporting that these correlations 

are genuine. In other words, it is extremely probable that Dialister and Prevotella are correlated in 

vaginal microbiomes irrespectively on microbiome state or microbiome composition. 

Graphical representation of the correlations would allow straight-forward visualisation of the type 

of correlation and strength of the correlations. Scatter plots were generated for all studies sporting 

a Dialister and Prevotella link (Figure 24).  The green best fit line represents the correlation link 

between the two variables (Dialister and Prevotella) and illustrates the strength (angle of the line) 

and type (positive, negative or no correlation) of correlation. Each subplot within Figure 24 

represents a single study. Coinciding with the previous results, all studies represent strong positive 

correlations, with the exception of study BV, which illustrates less sharp angles of the linear positive 

correlation between the two bacteria. The type of the correlation (i.e. positive or negative) is 

described through the angle of the best fitted line, whilst the strength of the correlation is 

dependent on the data proximity to the best fit line.  
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Figure 24: Scatter plots of Dialister and Prevotella correlations for all five selected studies. Figure 24 illustrates 

scatter plots for all five studies (HIV, BV, CANDIDIASIS, SV, HSV2). The blue data points represent the relative 

logged abundance data for Dialister (x-axis) against the relative logged abundances of Prevotella (y-axis). The 

green best fit line illustrates the correlation link between the two variables (Dialister and Prevotella). Each 

subplot lists the Spearman Rank Correlation Coefficient value for each study. All subplots suggest strong 

positive correlations between Dialister and Prevotella with high correlation values and steep best fit green 

lines.   
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Figures 24a,c,d,e illustrate strong, positive correlations between Dialister and Prevotella for studies 

HIV, CANDIDIASIS, HSV2, SV. Study BV displays a weaker positive correlation demonstrated by the 

lower best fit angle and the ρ value of 0.44 (spearman correlation 95% certainty threshold 0.41). 

All correlations significantly exceeded the 95% Spearman correlation cut off value, thus ensuring 

confidence in the nature of the correlations and signifying the low probabilities of the correlation 

being a result of random association due to high abundances. In conclusion, all results strongly 

support a relationship between Dialister and Prevotella bacteria and therefore suggesting a key role 

in microbiome structure stability. To this point, the correlation detected between Dialister and 

Prevotella is a novel correlation which has yet to be investigated. Although the true nature of the 

correlation between Dialister and Prevotella is not known, speculations on its influence on 

microbiome community structure can be made. Perhaps the degree of microbiome susceptibility 

to disease or infection (observed in BV and HIV infected microbiomes), is influenced by the 

association between Dialister and Prevotella [88], [99], [100]. However, the true character of the 

association could be investigated through metabolic patterns and interactions provided in KEGG 

followed by culture experiments. 

Dialister and Prevotella were not the only dominant associations observed in the heatmap analyses. 

Gardnerella and Atopobium, were two additional bacteria clustered in close proximity with Dialister 

and Prevotella. As previously mentioned, Gardnerella and Atopobium, Dialister and Prevotella are 

shared bacteria within most of the five studies and are listed within the top ten most abundant 

organisms of the microbiomes within each study. Table 4 contains the Spearman correlation values 

for all possible associations between Gardnerella, Atopobium, Dialister and Prevotella tested within 

each study. The new 95% significance threshold implemented through the Bonferroni correction is 

included on Table 3. 
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 HIV BV CANDIDIASIS SV HSV2 

Atopobium - Gardnerella 0.79 0.20 0.47 0.22 0.59 

Dialister - Gardnerella 0.68 -0.04 0.50 0.37 0.66 

Prevotella - Gardnerella 0.68 -0.09 0.35 0.38 0.60 

Atopobium - Prevotella 0.78 0.03 0.53 0.50 0.58 

Atopobium - Dialister 0.72 0.02 0.58 0.39 0.71 

Streptococcus - Gardnerella 0.04 0.16 -0.07 0.33 -0.14 

Streptococcus - Atopobium -0.10 0.18 -0.11 0.21 -0.11 

Streptococcus - Prevotella -0.02 0.08 0.05 0.53 -0.01 

Streptococcus - Dialister 0.02 0.03 0.09 0.50 0.06 

Sneathia - Gardnerella 0.59 0.04 0.32 0.36 0.51 

Sneathia - Atopobium 0.75 0.01 0.47 0.46 0.42 

Sneathia - Prevotella 0.81 0.12 0.46 0.50 0.36 

Sneathia - Dialister 0.66 0.22 0.40 0.53 0.48 

Table 4: Spearman Rank Correlation Coefficient analysis between key bacteria of the vaginal microbiome. 

Table 4 displays the results of Spearman’s Correlation analysis between Dialister, Prevotella, Gardnerella, 

Atopobium, Streptococcus and Sneathia within all five studies. Table 4 lists the correlation values with the 

green values meeting the 95% spearman correlation cut off value for each study as illustrated in Table 3. 

 

Unlike the consistently high correlation values observed between Dialister and Prevotella, the 

values presented on Table 4 for correlations between bacteria Gardnerella, Atopobium, Dialister 

and Prevotella, appear study dependent. Study HIV and HSV2 are the only two studies with 

consistently high Spearman correlation values for all bacteria pairs. The 95% Spearman correlation 

significance threshold for study HIV is 0.5, therefore all correlations are significantly likely to be true 

correlations. Equally study HSV2 exhibits a 0.57 95% cut off value, which is significantly lower than 

all correlations between bacterial pairs, thus confirming high likelihood of the correlations. On the 

other hand, study BV exhibits exceptionally low correlation values representing almost no 

correlation between the bacteria, and a 95% correlation coefficient cut off value of 0.41. Therefore, 

all the correlations could be suggestive of false associations due to random chance. Studies 

CANDIDIASIS and SV represent moderate to low Spearman correlations for most bacteria groupings. 

However, study SV has a relatively high 95% Spearman correlation significance cut off value of 0.55, 

thus suggesting that any suggested correlations between Gardnerella, Atopobium, Dialister and 

Prevotella could be due to random chance. Instead study CANDIDIASIS displays highly possible 

correlations between the anaerobes with a very low 95% Spearman threshold 0.27. Consequently, 

the correlations between Gardnerella, Atopobium, Dialister and Prevotella in study CANDIDIASIS 

are highly significant even though not as strong in comparison to studies HIV and HSV2. 
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Interestingly, the exceptionally low correlation values between the four dominant bacteria of study 

BV, provides further support for the positive correlation discussed previously between Dialister and 

Prevotella. Gardnerella is not included in the ten most abundant bacteria for study BV (Table 2), 

thus the low Spearman correlation values could be driven by lower relative abundance hindering 

the correlation due to other more dominant associations. However, this is not the case with 

Atopobium, as it consists of nearly 5% of total study bacteria abundancy. Nevertheless, Atopobium 

shows no correlation with Gardnerella, Dialister or Prevotella, with correlation values close to zero. 

As mentioned previously the Spearman correlations don’t meet the threshold, thus suggest 

increased chances that a correlation between these key members of most vaginal microbiomes are 

due to chance and not true correlations. The results for study BV coincide with Muzny et al. 2013 

findings as dysbiotic females influenced by BV experienced a decrease in both Atopobium and 

Prevotella [83]. It is possible, that the unbalance of the dysbiotic vaginal environments affected the 

overall structure of the communities within the microbiome, which could explain the low yet 

positive correlation observed between Dialister and Prevotella. 

Equally for study SV the Spearman correlation coefficient values are relatively low (Table 4). Study 

SV aimed to identify the effect of sexual intercourse on vaginal microbiomes. For that reason, both 

vaginal and seminal samples were collected [82]. Seminal samples were significantly more diverse 

as seen on Figure 22, however most highly abundant bacteria were shared with females, whereas 

unique exclusively male bacteria remained in very low abundances. Therefore, the overall total 

abundance table (Table 2) was not skewed by male bacteria. Dialister, Prevotella and Gardnerella 

remained dominantly shared within both male and female samples. Even though the correlation 

between Dialister and Prevotella was an almost perfect correlation (0.91), no other correlations 

were significantly high between Dialister, Prevotella, Gardnerella or Atopobium (correlations did 

not meet the 95% Spearman correlation cut off value 0.55). It is not possible to argue that the lack 

of correlations derives from seminal bacteria diversity abundancy, as percentages were low. Table 

2 enlists Gardnerella as the second most abundant bacteria (16%) in the study following 

Lactobacillus. If correlations were dependant on relative abundancy, Gardnerella should have 

displayed strong positive correlations between these dominant members of the vaginal 

microbiome (as seen on heatmap in Figure 22). However, the correlation results on Table 4 

contradict this theory, thus ensuring correlations to be a result of true microbiome community 

associations between the bacteria. In other words, study SV does not support evidence of strong 

positive or negative correlations between Dialister, Prevotella, Gardnerella or Atopobium but 

displays an almost perfect, reliable correlation between Dialister and Prevotella. 

Study CANDIDIASIS represents a few moderately high positive correlations (Table 4).  Dialister and 

Atopobium represent the highest Spearman correlation with a value of 0.58 which significantly 

exceeds the 95% correlation threshold 0.27. Both Dialister and Atopobium are listed in Table 2 

within the top ten most abundant bacteria.  Atopobium demonstrates a 4-fold abundance over 

Dialister, the low positive correlation could be a result of few metabolic interactions between the 

two organisms. Atopobium appears to depict similar patterns with Prevotella with Spearman value 

of 0.53. Equally Dialister and Gardnerella illustrate low positive correlations with Spearman value 

of 0.50 and higher almost 10-fold abundance difference between the two bacteria. The significance 

of the correlations suggests purposeful correlations and not ones driven by bacteria abundance. 
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Finally studies HSV2 and HIV illustrate strong high positive correlations between all commonly 

shared bacteria (Dialister, Prevotella, Gardnerella and Atopobium). Both studies enlist all four 

bacteria in Table 2 displaying their top ten highest abundance bacteria. In study HSV2 Dialister, 

Prevotella, Gardnerella and Atopobium correlations remain above 0.55, with the highest one 

between Atopobium and Dialister with a Spearman correlation value of 0.71. Thus all higher than 

the estimated 95% Spearman correlation threshold verifying confidence in correlations. In 

conclusion, study HSV2 suggests microbiome stability and community structure based on the 

associations between bacteria Dialister, Prevotella, Gardnerella and Atopobium. Similarly study HIV 

represents even stronger positive correlations between Dialister, Prevotella, Gardnerella and 

Atopobium. In this case Spearman values exceed 0.67 values illustrating stable correlations within 

communities of the microbiomes. Once again the correlations exceed the correlation confidence 

threshold, validating the statistical likelihood of the correlations. Strong, non-random correlations 

between organisms are not driven by bacteria abundance. Studies HIV and HSV2 included dysbiotic 

female samples in their datasets, resulting to overall diverse microbiome composition. Despite the 

fluctuating microbiome composition usually reported in dysbiotic vaginal microbiomes, correlation 

between Dialister, Prevotella, Gardnerella and Atopobium remained prominent. Thus suggesting 

that Dialister, Prevotella, Gardnerella and Atopobium could be playing a key role in microbiome 

stability and assist organisation of structured microbiome communities. In conclusion, strong 

correlations between bacteria illustrate microbiome community associations linked to community 

structure.  

Although these correlations appear significant and are supported by both clustering and statistical 

analyses, it can be argued that correlations were biased due to subjective selection of abundant 

species. Figure 23 depicts the asymmetrical table generated for study HSV2 consisting the 

Spearman correlation coefficient data. The blue highlighted cells represent values above 0.6, thus 

the majority of study’s HSV2 Spearman correlation values are low, most of which do not meet the 

95% correlation threshold (0.57). Consequently, the high correlations enlisted are not false 

positives or exclusive representations of high abundances, but true representations of community 

association and structure.  

Lastly, the excessive dominance of Lactobacilli could be responsible for driving the strong 

correlations. In other words, strong positive correlations could be originating from negative 

correlations between the anaerobes (Dialister, Prevotella, Gardnerella and Atopobium) and 

Lactobacilli, due to their excessive abundances. Studies HIV, CANDIDIASIS, HSV2, SV are dominated 

by Lactobacilli. To avoid ambiguity of the results, correlations between Lactobacilli and the key 

anaerobes were examined (Table 5). As expected, the majority of values illustrate negative 

correlations driven by the Lactobacillus dominance, however the values remain at low levels close 

to zero signifying the lack of significant correlation, with no correlations meeting the 95% 

confidence correlation threshold.  Additionally, no study dependent patterns are detected, 

demonstrating the lack of bacteria abundance influence on bacterial relationships. On the contrary, 

study BV presents Shuttleworthia as the most dominant bacteria (30% of total abundance – Table 

2) and not Lactobacillus. Shuttleworthia are anaerobic, Gram-positive bacilli characterised in human 

oral microbiomes [101]. Muzny et al. 2013 show association between Shuttleworthia and BV 

infected patients within increased microbiome diversity [83]. The correlations observed between 

Shuttleworthia and the key anaerobes are representative of the patterns seen with Lactobacilli. In 
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other words Shuttleworthia abundancy does not drive the correlations between the anaerobes, as 

no correlation relationships between Shuttleworthia and Dialister, Prevotella, Gardnerella and 

Atopobium meet the 95% Spearman correlation threshold. Therefore, once again the correlations 

observed between Dialister and Prevotella in study BV are not a result of random association due 

to high abundances. 

 HIV BV CANDIDIASIS SV HSV2 

Lactobacillus - Gardnerella -0.28 0.23 -0.15 -0.07 -0.36 

Lactobacillus - Atopobium -0.40 0.22 -0.17 -0.20 -0.55 

Lactobacillus - Prevotella -0.47 -0.19 -0.19 -0.39 -0.32 

Lactobacillus - Dialister -0.38 -0.05 -0.16 -0.35 -0.54 

Shuttleworthia - Gardnerella 0.40 -0.15 No Shuttleworthia 0.12 0.50 

Shuttleworthia - Atopobium 0.50 -0.23 No Shuttleworthia 0.42 0.31 

Shuttleworthia - Prevotella 0.57 -0.02 No Shuttleworthia 0.43 0.45 

Shuttleworthia - Dialister 0.41 0.12 No Shuttleworthia 0.42 0.45 

Table 5: Spearman Rank Correlation Coefficient analysis between Lactobacilli and Shuttleworthia with the key 
bacteria Dialister, Prevotella, Gardnerella and Atopobium. Table 5 displays the correlation values to test the 
nature of the association between organisms Dialister, Prevotella, Gardnerella, Atopobium and 
Shuttleworthia. Green correlation values record correlations that met the correlation cut off threshold, thus 
ensuring certainty in the correlation. Samples from study CANDIDIASIS did not include Shuttleworthia, thus 
no correlations between Shuttleworthia and the other key anaerobes could be reported. 

Further investigation is needed to test the nature of correlations between Lactobacillus, Prevotella 

and Atopobium bacteria. In conclusion, although the Lactobacillus dominance is prominent and 

affects microbiome associations, most positive correlations are not driven by Lactobacillus 

dominance with most of the impact emerging from structured microbiome communities. Most 

studies revealed apparent correlations between key anaerobic bacteria (Dialister, Prevotella, 

Gardnerella and Atopobium), however not universally shared patterns. However, it is possible to 

conclude that Dialister and Prevotella correlation is a consistently observed relationship among all 

five studies, suggesting key involvement in metabolism and microbiome structure.  
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6. DISCUSSION 

Although vaginal microbiomes have been extensively studied, their association to health and 

disease is commonly focused on one disorder, with few studies investigating similarities between 

medical syndromes  [1], [2], [13]. Although the analysis proposed here was not able to report links 

between the microbiomes and medical syndromes associated with the sample donors; access to 

metadata information would allow further insight into the disorders. Suggesting similarities 

between vaginal medical disorders such as bacterial vaginosis (BV), HIV and even gonorrhoea, could 

prove very useful not only in understanding the metabolic structure of the disease but may also 

propose new approaches to diagnostics and treatment. Mimee et al. 2016 review the possible 

strategies to approach host treatment through microbiome manipulation as well as the challenges 

faced when developing “microbiome-based therapeutics” [102]. They discuss three possible 

therapies; through addition of natural or engineered bacteria; exclusion of harmful bacteria and 

finally “modulatory therapies” administrating non-living agents or prebiotics to manipulate 

microbiome communities [102]. Probiotics have been discussed in multiple studies for their 

suitability in treating the dysbiotic microbiome environments which are the root cause of certain 

disorders [6], [10]. For example, probiotics have been shown to benefit Inflammatory Bowel 

Disease by preventing pathogenic bacteria growth and improving immunity by increasing intestinal 

barrier function and regulating the host’s immune response [103].   

This study focused on characterising links between bacteria and microbiome ecosystem in various 

dysbiotic vaginal samples. A pipeline was designed, utilising publicly available data from five 

individual studies; [27], [81]–[84]. Each selected study focused on different dysbiotic vaginal 

environments. This study aimed to identify unique characteristics within each microbiome by 

examining and comparing microbiome community structures. The compositional diversity between 

the microbiomes, as well as interactions between the bacteria comprising the microbiomes were 

studied via various bioinformatic tools. Dysbiotic vaginal microbiomes are expected to be linked to 

a breakdown of microbial community composition and function.  

The results suggest multiple strong correlations between specific organisms of the microbiomes 

associated with dysbiotic microbiome ecosystems. In other words, correlations between bacteria 

appeared stronger in some dysbiotic samples but not necessarily in others. However as mentioned 

before, no links could be drawn between specific microbiome structures and existing medical 

conditions due to the lack of metadata information. Interestingly, the analysis here suggests a novel 

correlation between Dialister and Prevotella genera which appears consistently strong and 

significant between all five selected studies.  

6.1 Reviewing studies and analysis outcomes 

Study HIV (Gosmann et al. 2017) investigated HIV susceptibility in healthy, asymptomatic South 

African women with atypically variant microbiomes. They report samples with high diversity 

bacterial communities and individuals with lower than average Lactobacillus abundance [27]. The 

bar taxonomies designed here (Figure 3,8), display matching patterns with the results as presented 

by  Gosmann et al.(2017), illustrating a highly diverse system, with strong intrapersonal bacteria 

variance within individuals. Although the majority of the samples contain Lactobacillus they do not 

dominate the ecosystem. In fact, Table 2 confirms the low abundance of Lactobacilli, with 

Lactobacilli representing only 40% of total relative abundance with only a 2-fold increase compared 

http://www.sciencedirect.com/science/article/pii/S1074761316305192
http://www.sciencedirect.com/science/article/pii/S1074761316305192
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to the second most common bacteria (Prevotella). Gosmann et al. 2017 analysis equally supports 

high abundances of Prevotella and classify Prevotella, Gardnerella, Shuttleworthia, Sneathia as key 

anaerobes responsible for increased inflammation and thus increased HIV acquisition. The pipeline 

followed here investigated correlation relationships between all bacteria comprising the 

microbiomes. Clustering analyses (Figure 13,18) confirmed stable shared community structures in 

patients. Supporting the hypotheses that specific bacteria-bacteria correlations would appear more 

prevalent in some dysbiotic microbiomes, Tables 3,4 and 5 list Spearman correlation values 

between key genera Lactobacillus, Prevotella, Gardnerella, Atopobium and Dialister. Although the 

Gosmann et al. 2017 study does not report any strong bacteria-bacteria associations, the heatmap 

presented here shows correlations between Prevotella, Gardnerella, Atopobium and Dialister taxa; 

which were further confirmed by Spearman Rank Correlation coefficient test. Spearman correlation 

values exhibit the highest positive correlation between Dialister and Prevotella (ρ=0.81, 95% 

confidence threshold = 0.5). As previously mentioned, the significance of the Spearman correlation 

test was calculated, representing 95% confidence in the observed bacteria associations. 

Interestingly, the lack of strong negative correlations between Lactobacilli and the key bacteria 

(Prevotella, Gardnerella, Atopobium and Dialister), suggests a true association between them, 

which is not driven by the dominance of Lactobacilli. The strong correlations suggest probable 

metabolic relationships between the bacteria. Furthermore, the correlations between taxa 

Prevotella, Gardnerella, Atopobium and Dialister (Table 3,4), suggest stable community structures 

in dysbiotic microbiome communities associated with HIV susceptibility.  

Liu et al. 2013 characterised composition and diversity between women with vulvovaginal 

candidiasis (VVC), bacterial vaginosis (BV) and finally women infected with both vulvovaginal 

candidiasis (VVC) and bacterial vaginosis (BV). Their data were utilised for the purpose of this 

research and accessed through their SRA project accession code ERP003902. Liu et al. 2013 report 

high diversity and intrapersonal variation within VVC patients [81]. Due to the lack of patient 

metadata information, the analyses followed here could not distinguish patterns specific to 

disorders. However, the taxonomy bar charts equally illustrated highly diverse communities as well 

as high species richness within individual samples (Figures 4,9). Reviewing the relative abundance 

data from all patient samples (Table 2), Lactobacillus, Gardnerella, Streptococcus and Atopobium 

were reported as the most abundant taxa, with Lactobacilli dominating the majority of samples. 

Moreover, almost 80% of the study’s bacterial abundance is explained by Lactobacilli.  

Liu et al. 2013 associated microbiome composition to medical syndromes and correspondingly 

identified BV patients consisting of higher Gardnerella, Atopobium, Dialister, Sneathia, Mobiluncus, 

and Prevotella with lower than typical Lactobacilli; BV and VVC infected patients illustrating 

microbiome patterns of both BV and “normal” microbiomes (Lactobacilli dominance followed by 

increased levels of Prevotella, Gardnerella and Atopobium); and finally VVC infected patients 

displaying high abundancy of Lactobacilli (lower levels than in normal vaginal microbiomes) and 

multiple microbiome community profiles. Unlike their reported compositional distinction between 

medical disorders, the results created by the suggested pipeline here, do not report patient sample 

clustering (Figures 14, 19). This could be a result of sample ID de-multiplexing, instead of the 

barcode and linker primer sequence methodology carried out in studies HIV, BV and HSV2. 

Confirming the compositional results reported by Liu et al. 2013 hierarchical clustering (Figure 19) 

suggested links between Gardnerella, Atopobium, Prevotella and Dialister. The links were further 

http://www.sciencedirect.com/science/article/pii/S1074761316305192
http://www.sciencedirect.com/science/article/pii/S1074761316305192
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confirmed as significant bacterial correlations through Spearman correlation statistical analysis. The 

results exposed a previously unreported strong positive correlation between Prevotella and 

Dialister bacteria. Even though Lactobacilli abundancy would be expected to drive most of the 

microbiome community patterns, both the heatmap (Figure 19) and Spearman correlation analyses 

(Table 5) verify no significant impact from Lactobacilli abundancy. The lack of sample patient 

information limited the pipeline and the possible outcomes for this study, however it was able to 

reveal strong correlations between key bacteria responsible for dysbiotic environments, suggesting 

stable microbiome community structures probably associated with metabolic function.  

Study BV focused on identifying microbiome composition patterns between various “sexual risk 

behaviour groups”. Muzny  et al. 2013 support the theory that BV is a sexually transmitted disorder, 

which is more prevalent in females who have sexual intercourse with females. For that reason, they 

studied BV infected females who have sexual intercourse with men, women and finally both men 

and women [83]. Against their hypothesis, they report more diverse communities between women 

that have sex with men, with their microbiomes consisting high abundances of Atopobium, 

Parvimonas and Prevotella, all key bacteria in charactering BV. Additionally, they report 

exceptionally high levels of Lachnospiraceae abundance. Lachnospiraceae is a family level taxon, 

reported by Muzny  et al. 2013 to be highly specific to BV infections [83].  

Correspondingly the analysis suggested here reports nearly identical relative abundance 

percentages to the results of  Muzny  et al. 2013, across all samples [83]. Shuttleworthia (originating 

from Lachnospiraceae family taxa), Prevotella, Lactobacillus, Sneathia, Megasphaera, Atopobium, 

Parvimonas, Dialister are reported as the most abundant genera in descending order in both studies 

(Table 2). Study BV did not include metadata details of the patients in NBCI database, thus the 

analysis was not able to distinguish compositional patterns between sexual groups. However, the 

taxonomic bar charts generated (Figures 5,10), illustrate similar patterns of high intrapersonal 

variation between some patients, whereas others are almost entirely dominated by Shuttleworthia.  

The results of Muzny  et al. 2013 illustrate clear sample grouping between individuals depending 

on microbiome composition based on sexual behaviour [83]. Equally, both PCA and heatmap 

Figures (Figures 15, 20) demonstrate clear sample clustering. However, the heatmap’s sample 

dendrograms illustrates smaller groups consisting of multiple clustering pairs. This could be 

explained through the microbiome composition similarities between the patients, as all females 

were infected with BV. Although each sexual group was characterised by specific microbiome 

profiles, BV is characterised by key organisms which were shared between all samples. Therefore, 

when analysing bacterial abundances of the complete study sample, patterns would not be easy to 

distinguish. The driving influence of the PCA clusters cannot be easily determined, however it has 

been proposed that cluster A (the most populated cluster) could be generated due to 

Shuttleworthia dominance.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Muzny%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=24236175
https://www.ncbi.nlm.nih.gov/pubmed/?term=Muzny%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=24236175
https://www.ncbi.nlm.nih.gov/pubmed/?term=Muzny%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=24236175
https://www.ncbi.nlm.nih.gov/pubmed/?term=Muzny%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=24236175
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In their analyses Muzny et al. 2013 did not carry out correlation tests [83]. Spearman’s rank 

correlation coefficient implemented here reveals significant positive correlations between Dialister 

and Prevotella taxa, but not between other key BV specific anaerobic bacteria, as expected. 

Prevotella, Atopobium, Gardnerella and Dialister, demonstrate low, insignificant correlations, 

suggesting no association between the bacteria. Study BV does not support links between 

Prevotella, Atopobium, Gardnerella and Dialister despite their high abundances and clustering 

observed in the heatmap graph. Unlike previously discussed studies HIV and CANDIDIASIS, no 

strong microbiome communities or structures can be confirmed. However, Shuttleworthia, 

Prevotella, Lactobacillus, Sneathia, Megasphaera, Atopobium, Parvimonas, Dialister are once again 

confirmed as key organisms associated with BV infection. Additionally, study BV supports bacterial 

associations between Dialister and Prevotella enhancing the hypothesis of a metabolic link between 

them. 

Study HSV2 aimed to identify links between cervicovaginal microbiomes, genital immunology and 

HSV-2 infection in African, Caribbean and Black (ACB) women. Shannon et al. 2017 sampled patients 

with diagnosed BV, HSV-1, HSV-2, intermediate vaginal flora, papillomavirus, and yeast infections 

[84]. For the purpose of their analysis, samples were grouped dependant on “community state 

types” with one group representing samples dominated by L. crispatus (CST-I), another dominated 

by L. gasseri (CST-II), a third group dominated by L. iners (CST-III) and finally a fourth group 

representing low Lactobacilli abundances with increased diversity and abundances of anaerobes 

(CST-IV). They report the highest level of diversity within patients consisting of low Lactobacilli and 

high anaerobes. Additionally, sample group three (CTS-III) and four (CST-IV) included BV infected 

patients thus increasing the overall bacteria richness. On the other hand, sample groups one (CST-

I) and two (CST-II) were characterised as healthy vaginal microbiomes. CST-III and CST-IV were 

associated with genital inflammation and proinflammatory cytokines. Although Shannon et al. 2017 

identified synergy between BV and HSV-2, they were not able to report links between the sample 

groups (CTSs) and HSV-2 infection [84].  

Following the same patterns, the taxonomic analyses performed here (Figures 16,21), 

demonstrated high Lactobacillus abundancy with low total diversity including a number of samples 

which appeared monoclonal; whereas others illustrated higher intrapersonal variation. This could 

be explained by the presence of diseased or infected patients discussed by  B. Shannon. Therefore, 

it can be hypothesised that more diverse samples reflect infected individuals grouped in CST-III or 

CST-IV, while monoclonal samples dominated by Lactobacilli represent healthy individuals grouped 

in CST-I or CST-II. However due to the lack of metadata information the medical diagnosis or CST 

condition of the samples was not available, thus prohibiting confirmation of the hypothesis. 

Interestingly, the dendrograms presented on the generated heatmap (Figure 21) illustrate clear 

clustering between patients’ dependant on Lactobacillus presence as well as anaerobic bacteria 

diversity. The red sample cluster depicts low Lactobacilli abundance, followed by diverse anaerobic 

communities. Therefore, it can be suggested that dysbiotic microenvironments are a result of BV, 

HSV-1, HSV-2, intermediate vaginal flora, papillomavirus, or yeast infections, whereas the green 

sample cluster illustrates healthy individuals.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Muzny%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=24236175
javascript:;
javascript:;
javascript:;


95 | P a g e  
 

Overall high Lactobacilli abundance is supported by Table 2, where a 4-fold dominance of 

Lactobacilli against Gardnerella is evident. PCA analysis in Figure 16 additionally supports this 

dominance by demonstrating a single strong cluster driven by high Lactobacillus abundance 

samples. The pipeline suggested here performed Spearman correlation analysis, focusing on the 

primarily dominant anaerobes Prevotella, Atopobium, Gardnerella and Dialister. The results 

suggested significant strong positive correlations between all anaerobes (Tables 3,4). Dialister and 

Prevotella displayed the greatest positive correlation relationship between the anaerobes. To 

ensure that the correlations were not driven by the communities’ lack of Lactobacilli, Table 5 lists 

the Spearman correlation values of the anaerobes against Lactobacilli. All correlations were 

insignificant between the key anaerobes and Lactobacilli thus implying the associations are due to 

interactions between the anaerobes, rather than due to the absence of Lactobacillus, possibly 

linked to metabolic functionality. Even though the analysis could not report links between causation 

of dysbiosis, study HSV2 supports dysbiotic microbiome community structures with low Lactobacilli 

abundance and correlations between Dialister and Prevotella as well as with other key anaerobes 

potentially reinforced by metabolic associations. 

Finally study SV aimed to identify the impact of sexual intercourse on vaginal microbiota. 

Consequently, complementary seminovaginal microbiomes were studied prior and post sexual 

intercourse [82]. Mändar et al. 2015 reveal seminal microbiomes with increased diversity 

communities and low bacterial abundances and no predominant bacteria; in comparison to nearly 

homogenous vaginal communities dominated by Lactobacilli or Gardnerella vaginalis (dominant in 

half of female samples associated with Leukocytospermia). Additionally, Mändar et al. 2015 

identified four men dominated by Prevotella and Porphyromonas and suggest a possible association 

with inflammation in the upper genital tract. Their results presented shared organisms between 

seminal and vaginal microbiomes (such as Lactobacillus, Veillonella, Streptococcus, Porphyromonas 

and Atopobium). Investigating microbiome composition, they identified male patients with high 

Porphyromonas abundances, others with high proportions of Prevotella sp. followed by high 

presence of Porphyromonas. On the other hand, most vaginal microbiota were consistent of 

Lactobacillus iners and Lactobacillus crispatus, as well as Lactobacillus jensenii and Lactobacillus 

gasseri, with some patients revealing Gardnerella vaginalis as the most dominant species, and other 

females listing Streptococcus, Enterobacteriaceae, Veillonella, Pseudomonas, Atopobium and other 

aerobic communities. After intercourse, Mändar et al. 2015 reveal a significant decrease of 

Lactobacillus crispatus relative abundance in females driven by seminal microbiomes. Thus they 

conclude significant concordance between seminal and vaginal samples with regards to Gardnerella 

vaginalis predominance (in vaginal microbiomes) and association to inflammation in male genital 

tracts. 

The bioinformatics approach followed here utilising data from study SV, aimed to investigate 

interactions between and within atypical (dysbiotic) vaginal microbiomes. For that reason, seminal 

samples were not suitable for this analysis. However, the data uploaded in NCBI’s database did not 

include sample identify information at the stage of data acquisition, thus distinguishing between 

male and female samples was not possible. For that reason, both male and female samples were 

included in the analysis even though the focus remained on female microbiota.  

When analysing the bar taxonomies generated, male samples are easily distinguished in 23 samples 

(ERR769967-ERR769989). Male samples consisted of drastically lower Lactobacilli abundances with 
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the microbiome communities not compensating with additional lactic acid producing bacteria, such 

as Atopobium, Corynebacterium, Anaerococcus, Peptoniphilus, Prevotella, Gardnerella, Sneathia,  

as observed in asymptomatic atypical female vaginal microbiomes [104]. Male samples illustrate 

significantly higher bacterial diversity with no single dominating taxa. Equally female samples follow 

the same patterns as discussed in Mändar et al. 2015 results, with most samples representing 

Lactobacilli dominance and fewer samples revealing Gardnerella predominance. Table 2 

demonstrates a 3-fold universal dominance of Lactobacilli over Gardnerella. Although male samples 

exhibited high genera richness, the heatmap displayed in Figure 22 illustrated low relative 

abundances. Therefore, the overall study’s bacteria abundances presented on Table 2 will not be 

affected by male samples and the dominating relationships between bacteria will be driven by 

vaginal microbiota.  

It is difficult to suggest a driving force of the PCA clustering (Figure 17) as samples are clustered 

according to sample sex identity (male/ female) and microbiome composition. However, cluster A 

will be driven by the high abundance of Lactobacilli, due to the large number of samples comprising 

it. Interestingly the PCA is suggesting association and composition similarities between seminal and 

vaginal samples as more than two clear clusters exist not exclusively dependant on samples gender 

identity. On the contrary, the sample dendrogram represented on Figure’s 22 heatmap, illustrates 

clustering between male and female samples, with the green cluster representing female samples 

and the red cluster displaying male samples. Once again, the heatmap graph supports evidence of 

shared organisms between seminal and vaginal samples as well as suggesting association between 

the sample communities. Bacteria such as Prevotella, Gardnerella, Dialister, Veillonella, 

Flavobacterium, and Corynebacterium are shared between female and male couples (following 

equal patterns as reported from Mändar et al. 2015). Additional Spearman correlation analysis not 

examined in the SV study, suggested an almost perfect correlation between Dialister and Prevotella, 

but no correlation between other key anaerobes. Correlations would be driven by high bacterial 

abundances as present in vaginal microbiomes samples. Therefore, the lack of correlation between 

key anaerobes is a result of low anaerobe colonisation in healthy females. Although Prevotella, 

Gardnerella and Dialister are dominant in male microbiota, the low male bacterial abundances 

would not impact bacterial correlations. 

High levels of Prevotella and Gardnerella in certain female and male samples, identified in both 

analyses, confirm association between bacteria and dysbiotic environments or genital 

inflammation. Once again, the lack of Lactobacillus dependency of the correlation between Dialister 

and Prevotella (Table 5) proves the strength of the correlation and is consistent with a metabolic 

link. Interestingly, even though study SV mainly sampled healthy vaginal microbiomes dominated 

by Lactobacilli, key bacteria such as Dialister and Prevotella still indicate strong community 

associations, suggesting community structures.  
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To investigate universal microbiome patterns between all studies, PCA clustering was performed 

on studies HIV, BV and HSV2 (studies CANDIDIASIS and SV were excluded due to de-multiplexing 

compatibility issues). Figure 25 demonstrates a 3D PCA plot for studies HIV, BV and HSV2, where 

each colour represents a different study (green colour samples represent patients from study HIV, 

black samples depict study’s HSV2 samples and finally blue samples originate from study BV). Figure 

25 does not illustrate distinct sample clustering, even though studies were shown to share 

microbiome community patterns. Instead samples appear clustered by study. Despite PCA’s short-

coming on comparing between studies, the analysis suggested here reports strong patterns of 

shared bacteria, (as seen from hierarchical clustering, heatmaps and Spearman correlation tests), 

particularly with respect to the Dialister and Prevotella link. The lack of clustering between studies, 

could be due to sample preparation, sequencing techniques and number of reads. Although 

bacteria Prevotella, Atopobium, Gardnerella and Dialister were universally abundant in most 

samples of the studies, correlations between them were only proven in studies HIV, CANDIDIASIS 

and HSV2. However, Dialister and Prevotella associations were strongly shared between all five 

studies (Table 3). All studies with the exception of BV demonstrated significant dominance of 

Lactobacilli irrespective of the microbiome’s condition focus for each study. Therefore, it can be 

argued that any potential clustering observed in Figure 25 would be driven by the overpowering 

abundance of Lactobacilli.  

To test this hypothesis Lactobacilli were removed from all studies individually and PCA was 

performed again. Figure 26 illustrates a 3D PCA plot of the same studies excluding Lactobacilli from 

its samples. The hypothesis is confirmed as all studies cluster independently from each other, with 

each cluster representing a single study containing exclusively its original samples and no other 

samples originating from other studies. Hence, any clustering suggested on Figure 25 would be 

driven by Lactobacilli with no other microbiome community similarities presented within patients. 

The lack of sample clustering does not affect the significance of the bacteria-bacteria correlations 

reported, but is instead suggesting the significance of sampling methodologies. In other words, the 

clustering observed in Figures 25 and 26 are exclusively dependent on sequencing and sampling 

methodologies rather than inter-personal variation between individuals. Therefore, the impact of 

sequencing techniques, sample preparation and number of sequence reads will affect the nature 

of the samples, creating additional variation between the sequences of a specific study. PCA 

clustering represents sequencing methodology similarities between samples of the same study. In 

conclusion the absence of clustering is driven by the difference in sample “type” and does not 

reflect microbiome structure similarities between dysbiotic environments.  
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Figure 25: Principal Component Analysis 3D graph for studies HIV, BV and HSV2. Sample data from all three 

studies plotted against the first three principal components representing the highest levels of variance 

explained by each principal component. Each study is presented by a different colour; with data from study 

HSV2 illustrated in black, data from study HIV in green and data from study BV in blue. The 3D plot suggests 

no clear sample clustering.  
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Figure 26: Principal Component Analysis 3D graph for studies HIV, BV and HSV2 excluding Lactobacilli 

taxonomies. Sample data excluding Lactobacilli taxonomies from all three studies plotted against the first 

three principal components, representing the highest levels of variance explained by each principal 

component. Study HIV is illustrated by green data points, study HSV2 is represented by black data points and 

finally study BV is depicted by blue data points. The removal of Lactobacilli taxonomies confirms the lack of 

sample clustering, as the only suggested clusters illustrated are study dependent   
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6.2 Supporting evidence from literature 

The five studies selected for this research (HIV, CANDIDIASIS, BV, HSV2, SV) report evidence of 

microbiome structures, with composition suggesting some direct bacteria-bacteria interactions. 

Relationships between members of the microbiome suggest structure within vaginal microbiomes. 

Even though dysbiotic communities fluctuate in composition and are therefore less structured, 

compared to atypical, asymptomatic vaginal microbiomes; some microbiome community 

structures appear consistent in all environments. An example of this is the shared correlation 

observed in all five studies between Dialister and Prevotella. Dysbiotic environments illustrate less 

established microbiome structures with microbiome composition varying between stages of 

dysbiosis. Therefore, some correlations between bacteria appear more convincing within certain 

studies, even though present in most studies.  

Dysbiosis in vaginal microbiomes is not characterised by a single microbiome composition or 

structure but instead describes a range of microbiome states from typical to “unhealthy”. 

Independent of the samples’ microbiome states, all five studies demonstrated strong positive 

interactions between Dialister and Prevotella bacteria. All studies listed both organisms within the 

top ten most abundant organisms with Prevotella always dominating Dialister in abundancy. This 

evidence suggests a stable relationship between the bacteria regardless of the microbiome state. 

Thus, structured communities can be driven by Dialister and Prevotella bacterial interactions, with 

individuals carrying both organisms consisting of more stable microbiomes. Although none of the 

five selected studies reported the Dialister and Prevotella correlation in their published papers, 

when analysed by different tests the correlation is abundantly present. All results presented here 

propose the possibility of a metabolic functionality link between Dialister and Prevotella, which 

needs to be further investigated.  

A different study by Srinivasan et al. 2012 focused on BV infected microbiomes and does not report 

a correlation between Dialister and Prevotella, although their analysis on Figure 4 of their published 

paper illustrates strong positive correlations between the bacteria [88]. The correlation was 

possibly overlooked due to their focus on higher positive correlations, even though their 

supplementary table lists positive correlations between multiple Dialister and Prevotella species 

with Pearson values ranging from 0.2 to 0.7 (P <0.05) (Srinivasan et al. 2012 – Supplementary Table 

S7).  In line with the results presented here, they speculate polyamine (such as putrescine, 

cadaverine, and trimethylamine) metabolic correlations, due to “amine odour” of samples [88]. 

“Amine odour” reported from a Whiff tests has been linked to BV infected individuals, representing 

increased species richness, increased anaerobe abundances (such as Atopobium vaginae, 

Veillonellaceae, Prevotella spp., BVAB1 and Dialister micraerophilus) and decreased Lactobacilli 

[88]. Therefore, polyamine metabolic correlations coincide with Dialister and Prevotella 

correlations, both characterising dysbiotic microbiomes.   Additionally, Nelson et al. 2015 report 

high Dialister and Prevotella abundances in the presence of low Lactobacilli, however they do not 

report correlation between the genera [99]. C. J. Yeoman state high abundances in both Dialister 

and Prevotella, as well as demonstrating  correlations with polyamine presence (responsible for 

vaginal odour), thus suggesting key contribution to BV state. They conclude that BV symptoms could 

be a result of individual metabolic processes originating from Dialister spp., Gardnerella spp., 

Mobiluncus spp., or other bacteria [100]. All the above-mentioned associations suggest a 

correlation between Dialister and Prevotella to dysbiosis in vaginal microbiomes. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nelson%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=26483694
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yeoman%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=23405259


101 | P a g e  
 

The analyses presented here, reported a unique reoccurring significant correlation between vaginal 

bacteria Dialister and Prevotella.  Dialister was isolated and studied in faecal microbiomes, where 

it was shown that Dialister succinatiphilus sp. nov. growth utilises succinate and produces 

propionate and acetate as end metabolic by-products [87]. On the other hand, Prevotella 

intermedia and Prevotella nigrescens produce succinate as an end-product of glucose metabolism 

[105]. Therefore, it can be speculated that the strong correlations observed in all selected studies 

for this project, are not only a result of stable microbiome communities but also represent a 

possible metabolic link between decarboxylation of succinate to propionate. In other words, it is 

probable that Prevotella produces succinate as an end-product of its glucose pathway, which is then 

utilised by Dialister to enhance anaerobic growth and generate propionate. Thus, suggesting a 

linear metabolic pathway illustrated in Figure 27.  

 

 

Figure 27: Diagram of the suggested metabolic correlation between Dialister and Prevotella. Glucose 

decarboxylation via Prevotella produces succinate, which is then taken up by Dialister leading to an end 

product of propionate. 

A potential link between Dialister and Prevotella through glucose metabolism could explain the 

association to dysbiosis. Propionate is a key metabolite utilised by various vaginal microorganisms 

which have been associated with BV infections [106]. In fact L. V. Hill utilised high levels of 

propionate to characterise BV infected individuals [107].  Therefore, high levels of propionate and 

succinate would define dysbiotic microbiota communities and more specifically the presence of BV 

infections. This hypothesis could explain the consistently strong correlations between Dialister and 

Prevotella, expressed through this analysis, as all studies included more diverse dysbiotic females. 

Consequently, it can be suggested that a Dialister and Prevotella link, if driving propionate 

metabolism, could prove an association between health, dysbiosis and disease in female genital 

tracts. 

Additionally, other key anaerobes such as Atopobium and Gardnerella also appeared linked to 

acquisition and microbiome interactions through this analysis. Various studies have linked 

Prevotella, Atopobium and Gardnerella with dysbiotic vaginal microbiota, usually characterised by 

the reduced Lactobacilli abundance [86]. High levels of Prevotella, Gardnerella and Atopobium have 

also been correlated with various vaginal inflammation disorders such as HSV-2 infection [84], BV 

[69], [81], [83] upper genital tract inflammation [82] and HIV susceptibility [27]. For example, 

increased abundances of Atopobium and Gardnerella followed by lowered levels of Lactobacilli 

were found in vaginal microbiomes infected by BV, in a study focused on vaginal immunity [108].  

The analysis suggested here illustrates similar patterns, where studies consisting of more diverse 

samples express higher levels of correlations between these key anaerobes. This could be 

suggestive of a correlation between microbiome composition and susceptibility to infection. 

Verhelst et al. 2004 report a strong correlation between Gardnerella vaginalis and Atopobium 

vaginae in BV infected patients [109], however do not suggest any potential metabolic links 

between them. Studies HIV, CANDIDIASIS and HSV2 analysed here, equally represent high positive 

correlations between the two bacteria with Spearman correlation values ranging from 0.5 to 0.8 

(95% confidence in correlation < 0.57).  

Glucose Succinate Propionate 
Prevotella Dialister 
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Although Prevotella, Gardnerella and Atopobium are present in healthy, typical vaginal flora [110], 

high abundances followed by lower than normal levels of Lactobacilli appear linked to dysbiosis. 

Thus, it can be hypothesised that those key anaerobes influence microbiome structure in healthy 

microbiomes, which if triggered by environmental changes (such as yeast infection, or pregnancy 

etc.) will lead to an increase in their numbers turning into dysbiosis. The consistency of increased 

abundances of the anaerobes in multiple vaginosis states suggests a microbiome structure even 

though environments are dysbiotic. To our knowledge, although no metabolic associations have 

been suggested in literature the stability of the associations proves their importance for further 

investigation. 

6.3 Restrictions with bioinformatics in microbiome studies 

Fast sequencing techniques followed by the collection of large data pools has led to the popular 

use of microbiome studies accompanied by a massive increase of interest in the –omics fields. 

Although such studies have proven useful in establishing relationships between an organism and 

its microbiome, as well as studying links between health and disease, questions are being raised on 

their scientific implication and approach. Due to the “informal” approach that computational 

analyses offer, most bioinformatics research starts with a lack of a clear hypothesis [111]. Instead 

the study turns into a search for results causing the “fishing for significance” phenomenon [112].  

“Fishing for significance” is a term that A. L. Boulesteix uses to define the phenomenon of over 

optimised research results. Due to the rapid progression in bioinformatics tools it is now easy to 

submit data in online programs to scout for links [113].  

Hanno Teeling et al. 2012 discuss the challenges faced when analysing microbiome samples through 

bioinformatic tools [114]. Data submission generated various challenges in this research due to lack 

of metadata information as well as annotation imbalances. Teeling et al.  2012 comment on the 

issue caused by the lack of a universal standardised annotation model implemented on publically 

available databases [114]. Most accessible online tools permit fast analyses using standardised 

parameters. Therefore, online tools need to be used with caution. Verifying the tool’s parameters 

and algorithm to be compatible with the data type imported as well as assessing their suitability for 

the type of analyses carried out can prevent misuse of the programs. Unfortunately, the benefits 

of open access tools can be abused; due to lack of precaution, as the generated results get 

presented as research findings with no further supporting evidence or testing.  

This analysis aimed to identify compositional links related to microbiome structure in various 

dysbiotic vaginal microbiomes. A novel correlation between two common vaginal bacteria Dialister 

and Prevotella is proposed here. In addition, the study suggested links between specific anaerobic 

bacteria, such as Prevotella, Gardnerella and Atopobium, and dysbiotic vaginal communities. The 

reoccurring correlation between them proves of great importance as a metabolic link is theorised. 

It is proposed that Dialister and Prevotella are associated through a linear metabolic pathway 

(illustrated in Figure 27), utilising succinate and producing propionate as an end product. As 

mentioned before, propionate is a crucial metabolite utilised by various bacteria and is linked to BV 

infections. Thus, it can be hypothesised that the Dialister and Prevotella correlation is associated 

with dysbiotic and more specifically BV vaginal environments. However, these are simple 

speculations and more analyses need to be run to test this hypothesis. Online tools such as Kyoto 

Encyclopedia of Genes and Genomes (Kegg) could provide additional information on the potential 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Teeling%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22966151
https://www.ncbi.nlm.nih.gov/pubmed/?term=Teeling%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22966151
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metabolic links. This would then portray any metabolic association and therefore give means to 

create metabolic maps.  Most importantly, cultural experiments should follow up to demonstrate 

the metabolic interaction. A possible example of this would be a propionate accumulation study via 

gas chromatography in mixed population of Dialister and Prevotella compared to monocultures of 

each. If over time there is an accumulation of propionate in the mixed population media, in 

comparison to little or no propionate presence in the monocultures, this could be an indication of 

a Dialister and Prevotella metabolic relationship. As a negative control a third non-interacting 

partner should also be selected from the pool of available vaginal microbiota and also be grown in 

a mixed population with Dialister and then Prevotella alone. Such an experiment would help us 

understand highly functional metabolic pathways vital for the vaginal microbiome and how they 

are utilised by the organism inhabiting the microbiome as well as human health. Metagenomics 

applied in microbiome studies could prove very beneficial to diagnostics as well as improve 

personalized treatments by carefully studying the environmental and ecosystem changes. Above 

all a potential metabolic link between various dysbiotic communities could provide a whole new 

approach to diagnosis and treatment of vaginitis. 
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APPENDICES 

Appendix 1: 

Python script running in ipython notebook via the Oracle VM Virtual Box, calling all SRA accession 

codes of a study to be applied to the prefetch command. 

file1 = open ("E:/Database_files/NCBI/all_sras - Copy.txt") 

 

import subprocess 

import time 

import sys 

 

count = 0 

   

for line in file1: 

    total_count = len(line.split(" ")) 

    accesion = line[0:10] 

    for acc_num in line.split(" "): 

        count +=1 

        print acc_num + ": " + str(count) + "/" + str(total_count) 

+ " (" + time.strftime("%H:%M:%S") + ")" 

        sys.stdout.flush() 

        subprocess.call(["prefetch", acc_num]) 
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Appendix 2: 

Fastq-dump command for Linux operating systems. Fastq-dump in a linux shell did not require prior 

sra download of the sequence files within a study. The command connects to NCBI and downloads 

each SRR sequence file accessed through the SRR accession code, retrieved via the python script 

listed in Appendix 1. Parameters X and Z are optional and were added in this study to print the first 

five spots (-X 5) of the file on the screen(-Z) to ensure success. 

fastq-dump -X 5 -Z SRR1804553 
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Appendix 3: 

Studies PRJNA329618 - Vaginal microbiome of reproductive-age women and PRJNA295859 - 

Endometrial cancer microbiome were not included in the final analysis as the sequence files for both 

studies included sequence duplicates and annotation errors. More specifically, the SRR sequence 

files for both studies did not follow the typical fasta format of unique sequence IDs followed by the 

sequence: 

>sequence_name_1 

CAGTAACAGACCAGAGAGCCGCCTTCGCCACCGGTGTTCTTCCATATATCTACGCATTTCACCGCT

ACGGCATT 

>sequence_name_2 

TCTAATTGATTACCGTCAAACAAAGGTCAGTTACTACCCCTGTCCTTCTTCACCAACAACAGAGCT

TTACGAGCT 
 
Instead the SRR files contained duplicates of the sequence IDs followed by incomplete sequences 

and distorted characters (not readable in Linux or Windows operating systems). An example from 

study PRJNA295859 is illustrated in Appendix 3a. 
 

a) 

'>SRR2533924\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x
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00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x
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00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x
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00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x00\x00\x00\x00\x00GTAGCGTGCAGGATGACGGCCCTATGGGTTGTAAACTGCTTTTA

TGTGGGGATAAAGTGCGTGACGTGTCATGCATTGCAGGTACCACATGAATAAGGACCGGCTAATTC

CGTGCCAGCAGCCGCGGTAATACGGAAGGTTCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAG

CGTAGGCTGTCTATTAAGCGTGTTGTGAAATTTAACGGCTCAACCGGTGGCTTGCAGCGCGAACTG

GTCGCATTGACTATGGA' 

  

A python script was programmed to rewrite all .fna files (Appendix 3b), however the size of the 

studies caused major time restrictions. Therefore, studies PRJNA329618 and PRJNA295859 were 

not included in the final analysis. 

b) fix fna sequences: 

import glob 

import re 

from subprocess import call 

study1path = glob.glob('/scratch/tef504/SRP064295/SRR25339*') 

 

nameslist = [] 

for n in study1path: 

    nameslist.append(n[26:36]) 

 

seq_name = "bad" 

for filepath in study1path: 

    infile = open(filepath, 'r') 

    outfile = open(filepath.replace('out', 'FIXED'), 'w') 

 

    for line in infile: 

        if re.match('^>[A-Z]{3}[0-9]+.*', line): 

            if line[1:11] in nameslist: 

                seq_name = line 

 

        else: 
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            if re.match("^[ATGC]+\r\n?|\n$", line) and not 

seq_name == "bad": 

                sequence = line.replace("\n", "") 

                cmd = "echo " + "'" + seq_name + sequence + "'" + 

" >> " + (filepath.replace('out', 'FIXED')) 

                seq_name = "bad" 

                call(cmd, shell=True) 
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Appendix 4: List of Study Accession codes 

  

Study Description Experiment 
Accession Number 

Designated 
Abbreviations 

SRA Project 
Accession 
number 

Certain species of vaginal bacteria 
can increase a woman's 
susceptibility to HIV 

PRJEB15497 HIV ERP017263 

Diverse vaginal microbiomes in 
reproductive-age women with 
vulvovaginal candidiasis 

PRJEB4606 CANDIDIASIS ERP003902 

Complementary seminovaginal 
microbiome in couples 

PRJEB8658 SV ERP009682 

Characterization of the Vaginal 
Microbiota among Sexual Risk 
Behavior Groups of Women with 
Bacterial Vaginosis 

PRJNA259744 BV 
 

SRP045868 

Distinct effects of the cervico-vaginal 
microbiota and herpes simplex type 
2 infection on female genital tract 
immunology 

PRJNA310998 HSV2 SRP071021 

Vaginal microbiome of reproductive-
age women * 

PRJNA329618 SRP090242 SRP090242 

Endometrial cancer microbiome * 
 

PRJNA295859 SRP064295 SRP064295 

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB4606
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB8658
https://trace.ncbi.nlm.nih.gov/Traces/sra?study=SRP045868
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Appendix 5: 

Pipeline two downloaded sequence files from ENA database in a fastq format. 

Convert_fastaqual_fastq.py QIIME’s script converts all downloaded fastq files, to more compatible 

.fna files for all five selected studies. 

#changing format for fastqs to .fna 

import glob 

import subprocess 

from subprocess import call 

 

files = glob.glob("./fastq_files/fastq_files_PRJNA329618/*.fastq") 

list1 = [] 

for i in files: 

    list1.append(i[38:]) 

 

for filename in list1: 

    cmd_str = "convert_fastaqual_fastq.py -c fastq_to_fastaqual -f 

" + 

"/home/qiime/Desktop/Shared_Folder/fastq_files/fastq_files_PRJNA32

9618/"  + filename + " -o 

/home/qiime/Desktop/Shared_Folder/fasta_files/fasta_files_PRJNA329

618/" 

    call(cmd_str, shell=True) 
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Appendix 6: 

Split libraries QIIME commands. Appendix 6a illustrates the script employed in the suggested 

pipeline one. Sequence de-multiplexing was initially based on sequence sample IDs and not Barcodes 

or Linker Primer sequences. –i argument instructs the input files, in this case all 16S rRNA sequences 

within a study. --sample_ids define an alias for all sample sequences and –-barcode_type defines 

whether the sequences contain barcodes or not. --phred_offset is the ascii offset used to decode phred 

scores. In other words, phred offset 33 value represents the possibility of substitution errors.  

a) !split_libraries_fastq.py -i 

ERR341370.fastq,ERR341371.fastq,ERR341372.fastq,ERR341373.fas

tq,ERR341374.fastq,ERR341375.fastq,ERR341376.fastq,ERR341377.

fastq,ERR341379.fastq,ERR341380.fastq,ERR341381.fastq,ERR3413

82.fastq,ERR341383.fastq,ERR341384.fastq,ERR341385.fastq,ERR3

41386.fastq,ERR341387.fastq,ERR341388.fastq,ERR341389.fastq,E

RR341390.fastq,ERR341391.fastq,ERR341392.fastq,ERR341393.fast

q,ERR341394.fastq,ERR341395.fastq,ERR341396.fastq,ERR341397.f

astq,ERR341398.fastq,ERR341399.fastq,ERR341400.fastq,ERR34140

1.fastq,ERR341402.fastq,ERR341403.fastq,ERR341404.fastq,ERR34

1405.fastq,ERR341406.fastq,ERR341407.fastq,ERR341408.fastq,ER

R341409.fastq,ERR341410.fastq,ERR341411.fastq,ERR341412.fastq

,ERR341413.fastq,ERR341414.fastq,ERR341415.fastq,ERR341416.fa

stq,ERR341417.fastq,ERR341467.fastq,ERR341468.fastq,ERR341469

.fastq,ERR341470.fastq,ERR341471.fastq,ERR341472.fastq,ERR341

473.fastq,ERR341474.fastq,ERR341475.fastq,ERR341476.fastq,ERR

341477.fastq,ERR341478.fastq,ERR341479.fastq,ERR341480.fastq,

ERR341481.fastq,ERR341482.fastq,ERR341483.fastq,ERR341484.fas

tq,ERR341485.fastq,ERR341486.fastq,ERR341487.fastq,ERR341488.

fastq,ERR341489.fastq,ERR341490.fastq,ERR341491.fastq,ERR3414

92.fastq,ERR341493.fastq,ERR341494.fastq,ERR341495.fastq,ERR3

41496.fastq,ERR341497.fastq,ERR341498.fastq,ERR341499.fastq,E

RR341500.fastq,ERR341501.fastq,ERR341502.fastq,ERR341503.fast

q,ERR341504.fastq,ERR341505.fastq,ERR341506.fastq,ERR341507.f

astq,ERR341508.fastq,ERR341509.fastq,ERR341510.fastq,ERR34151

1.fastq,ERR341512.fastq,ERR341513.fastq,ERR341514.fastq,ERR34

1515.fastq,ERR341516.fastq,ERR341517.fastq,ERR341518.fastq,ER

R341301.fastq,ERR341302.fastq,ERR341303.fastq,ERR341304.fastq

,ERR341305.fastq,ERR341306.fastq,ERR341307.fastq,ERR341308.fa

stq,ERR341309.fastq,ERR341310.fastq,ERR341311.fastq,ERR341312

.fastq,ERR341313.fastq,ERR341314.fastq,ERR341315.fastq,ERR341

316.fastq,ERR341317.fastq,ERR341318.fastq,ERR341319.fastq,ERR

341320.fastq,ERR341321.fastq,ERR341322.fastq,ERR341323.fastq,

ERR341324.fastq,ERR341325.fastq,ERR341326.fastq,ERR341327.fas

tq,ERR341328.fastq,ERR341329.fastq,ERR341330.fastq,ERR341331.

fastq,ERR341332.fastq,ERR341333.fastq,ERR341334.fastq,ERR3413

35.fastq,ERR341336.fastq,ERR341337.fastq,ERR341338.fastq,ERR3

41339.fastq,ERR341340.fastq,ERR341341.fastq,ERR341342.fastq,E

RR341343.fastq,ERR341344.fastq,ERR341345.fastq,ERR341346.fast

q,ERR341347.fastq,ERR341348.fastq,ERR341349.fastq,ERR341350.f
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astq,ERR341351.fastq,ERR341352.fastq,ERR341353.fastq,ERR34135

4.fastq,ERR341355.fastq,ERR341356.fastq,ERR341357.fastq,ERR34

1358.fastq,ERR341359.fastq,ERR341360.fastq,ERR341361.fastq,ER

R341362.fastq,ERR341363.fastq,ERR341364.fastq,ERR341365.fastq

,ERR341366.fastq,ERR341367.fastq,ERR341368.fastq,ERR341369.fa

stq,ERR341436.fastq,ERR341437.fastq,ERR341438.fastq,ERR341439

.fastq,ERR341440.fastq,ERR341441.fastq,ERR341442.fastq,ERR341

443.fastq,ERR341444.fastq,ERR341445.fastq,ERR341446.fastq,ERR

341447.fastq,ERR341448.fastq,ERR341449.fastq,ERR341450.fastq,

ERR341451.fastq,ERR341452.fastq,ERR341453.fastq,ERR341454.fas

tq,ERR341455.fastq,ERR341456.fastq,ERR341457.fastq,ERR341458.

fastq,ERR341459.fastq,ERR341460.fastq,ERR341461.fastq,ERR3414

62.fastq,ERR341463.fastq,ERR341464.fastq,ERR341465.fastq,ERR3

41466.fastq,ERR341418.fastq,ERR341419.fastq,ERR341420.fastq,E

RR341421.fastq,ERR341422.fastq,ERR341423.fastq,ERR341424.fast

q,ERR341425.fastq,ERR341426.fastq,ERR341427.fastq,ERR341428.f

astq,ERR341429.fastq,ERR341430.fastq,ERR341431.fastq,ERR34143

2.fastq,ERR341433.fastq,ERR341434.fastq,ERR341435.fastq,ERR34

1519.fastq,ERR341520.fastq,ERR341521.fastq,ERR341522.fastq,ER

R341523.fastq,ERR341524.fastq  --sample_ids 

SRR1,SRR2,SRR3,SRR4,SRR5,SRR6,SRR7,SRR8,SRR9,SRR10,SRR11,SRR1

2,SRR13,SRR14,SRR15,SRR16,SRR17,SRR18,SRR19,SRR20,SRR21,SRR22

,SRR23,SRR24,SRR25,SRR26,SRR27,SRR28,SRR29,SRR30,SRR31,SRR32,

SRR33,SRR34,SRR35,SRR36,SRR37,SRR38,SRR39,SRR40,SRR41,SRR42,S

RR43,SRR44,SRR45,SRR46,SRR47,SRR48,SRR49,SRR50,SRR51,SRR52,SR

R53,SRR54,SRR55,SRR56,SRR57,SRR58,SRR59,SRR60,SRR61,SRR62,SRR

63,SRR64,SRR65,SRR66,SRR67,SRR68,SRR69,SRR70,SRR71,SRR72,SRR7

3,SRR74,SRR75,SRR76,SRR77,SRR78,SRR79,SRR80,SRR81,SRR82,SRR83

,SRR84,SRR85,SRR86,SRR87,SRR88,SRR89,SRR90,SRR91,SRR92,SRR93,

SRR94,SRR95,SRR96,SRR97,SRR98,SRR99,SRR100,SRR101,SRR102,SRR1

03,SRR104,SRR105,SRR106,SRR107,SRR108,SRR109,SRR110,SRR111,SR

R112,SRR113,SRR114,SRR115,SRR116,SRR117,SRR118,SRR119,SRR120,

SRR121,SRR122,SRR123,SRR124,SRR125,SRR126,SRR127,SRR128,SRR12

9,SRR130,SRR131,SRR132,SRR133,SRR134,SRR135,SRR136,SRR137,SRR

138,SRR139,SRR140,SRR141,SRR142,SRR143,SRR144,SRR145,SRR146,S

RR147,SRR148,SRR149,SRR150,SRR151,SRR152,SRR153,SRR154,SRR155

,SRR156,SRR157,SRR158,SRR159,SRR160,SRR161,SRR162,SRR163,SRR1

64,SRR165,SRR166,SRR167,SRR168,SRR169,SRR170,SRR171,SRR172,SR

R173,SRR174,SRR175,SRR176,SRR177,SRR178,SRR179,SRR180,SRR181,

SRR182,SRR183,SRR184,SRR185,SRR186,SRR187,SRR188,SRR189,SRR19

0,SRR191,SRR192,SRR193,SRR194,SRR195,SRR196,SRR197,SRR198,SRR

199,SRR200,SRR201,SRR202,SRR203,SRR204,SRR205,SRR206,SRR207,S

RR208,SRR209,SRR210,SRR211,SRR212,SRR213,SRR214,SRR215,SRR216

,SRR217,SRR218,SRR219,SRR220,SRR221,SRR222,SRR223 -o 

./split_libraries_CANDIDIASIS --barcode_type 'not-barcoded' -

-phred_offset 33 

Appendix 6b illustrates the split_libraries.py QIIME command utilised in pipeline two, which was 

applied in YARCC cluster computer in a terminal shell. The example below illustrates de-
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multiplexing executed on BV study. The sequence de-multiplexing was based on unique Barcodes 

and universal Linker Primer sequences. –m argument precedes the mapping_tableBV_corrected.txt; 

–f argument instructs the input sequence.fna files, and –o argument lists the output pathway. The 

mapping file utilised for split_libraries script followed the same format presented on Appendix 7.  

b) python /usr/userfs/t/tef504/python/bin/split_libraries.py -m 

/scratch/tef504/BV/mapping_tableBV_corrected.txt -f 

SRR1561443_barcoded_linkedPrimer.fna,SRR1561444_barcoded_link

edPrimer.fna,SRR1561445_barcoded_linkedPrimer.fna,SRR1561446_

barcoded_linkedPrimer.fna,SRR1561447_barcoded_linkedPrimer.fn

a,SRR1561448_barcoded_linkedPrimer.fna,SRR1561449_barcoded_li

nkedPrimer.fna,SRR1561450_barcoded_linkedPrimer.fna,SRR156145

1_barcoded_linkedPrimer.fna,SRR1561452_barcoded_linkedPrimer.

fna,SRR1561453_barcoded_linkedPrimer.fna,SRR1561454_barcoded_

linkedPrimer.fna,SRR1561455_barcoded_linkedPrimer.fna,SRR1561

456_barcoded_linkedPrimer.fna,SRR1561457_barcoded_linkedPrime

r.fna,SRR1561458_barcoded_linkedPrimer.fna,SRR1561459_barcode

d_linkedPrimer.fna,SRR1561460_barcoded_linkedPrimer.fna,SRR15

61461_barcoded_linkedPrimer.fna,SRR1561462_barcoded_linkedPri

mer.fna,SRR1561463_barcoded_linkedPrimer.fna,SRR1561464_barco

ded_linkedPrimer.fna,SRR1561465_barcoded_linkedPrimer.fna,SRR

1561466_barcoded_linkedPrimer.fna,SRR1561467_barcoded_linkedP

rimer.fna,SRR1561468_barcoded_linkedPrimer.fna,SRR1561469_bar

coded_linkedPrimer.fna,SRR1561470_barcoded_linkedPrimer.fna,S

RR1561471_barcoded_linkedPrimer.fna,SRR1561472_barcoded_linke

dPrimer.fna,SRR1561473_barcoded_linkedPrimer.fna,SRR1561474_b

arcoded_linkedPrimer.fna,SRR1561475_barcoded_linkedPrimer.fna

,SRR1561476_barcoded_linkedPrimer.fna,SRR1561477_barcoded_lin

kedPrimer.fna,SRR1561478_barcoded_linkedPrimer.fna,SRR1561479

_barcoded_linkedPrimer.fna,SRR1561480_barcoded_linkedPrimer.f

na,SRR1561481_barcoded_linkedPrimer.fna,SRR1561482_barcoded_l

inkedPrimer.fna,SRR1561483_barcoded_linkedPrimer.fna,SRR15614

84_barcoded_linkedPrimer.fna,SRR1561485_barcoded_linkedPrimer

.fna,SRR1561486_barcoded_linkedPrimer.fna,SRR1561487_barcoded

_linkedPrimer.fna,SRR1561488_barcoded_linkedPrimer.fna,SRR156

1489_barcoded_linkedPrimer.fna,SRR1561490_barcoded_linkedPrim

er.fna,SRR1561491_barcoded_linkedPrimer.fna,SRR1561492_barcod

ed_linkedPrimer.fna,SRR1561493_barcoded_linkedPrimer.fna,SRR1

561494_barcoded_linkedPrimer.fna,SRR1561495_barcoded_linkedPr

imer.fna,SRR1561496_barcoded_linkedPrimer.fna,SRR1561497_barc

oded_linkedPrimer.fna,SRR1561498_barcoded_linkedPrimer.fna,SR

R1561499_barcoded_linkedPrimer.fna,SRR1561500_barcoded_linked

Primer.fna,SRR1561501_barcoded_linkedPrimer.fna,SRR1561502_ba

rcoded_linkedPrimer.fna,SRR1561503_barcoded_linkedPrimer.fna,

SRR1561504_barcoded_linkedPrimer.fna,SRR1561505_barcoded_link

edPrimer.fna,SRR1561506_barcoded_linkedPrimer.fna,SRR1561507_

barcoded_linkedPrimer.fna,SRR1561508_barcoded_linkedPrimer.fn

a,SRR1561509_barcoded_linkedPrimer.fna,SRR1561510_barcoded_li

nkedPrimer.fna,SRR1561511_barcoded_linkedPrimer.fna,SRR156151
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2_barcoded_linkedPrimer.fna,SRR1561513_barcoded_linkedPrimer.

fna,SRR1561514_barcoded_linkedPrimer.fna,SRR1561515_barcoded_

linkedPrimer.fna,SRR1561516_barcoded_linkedPrimer.fna,SRR1561

517_barcoded_linkedPrimer.fna,SRR1561518_barcoded_linkedPrime

r.fna,SRR1561519_barcoded_linkedPrimer.fna,SRR1561520_barcode

d_linkedPrimer.fna,SRR1561521_barcoded_linkedPrimer.fna,SRR15

61522_barcoded_linkedPrimer.fna,SRR1561523_barcoded_linkedPri

mer.fna,SRR1561524_barcoded_linkedPrimer.fna,SRR1561525_barco

ded_linkedPrimer.fna,SRR1561526_barcoded_linkedPrimer.fna,SRR

1561527_barcoded_linkedPrimer.fna,SRR1561528_barcoded_linkedP

rimer.fna,SRR1561529_barcoded_linkedPrimer.fna,SRR1561530_bar

coded_linkedPrimer.fna,SRR1561531_barcoded_linkedPrimer.fna,S

RR1561532_barcoded_linkedPrimer.fna,SRR1561533_barcoded_linke

dPrimer.fna,SRR1561534_barcoded_linkedPrimer.fna,SRR1561535_b

arcoded_linkedPrimer.fna,SRR1561536_barcoded_linkedPrimer.fna

,SRR1561537_barcoded_linkedPrimer.fna,SRR1561538_barcoded_lin

kedPrimer.fna,SRR1561539_barcoded_linkedPrimer.fna,SRR1561540

_barcoded_linkedPrimer.fna,SRR1561541_barcoded_linkedPrimer.f

na,SRR1561542_barcoded_linkedPrimer.fna,SRR1561543_barcoded_l

inkedPrimer.fna,SRR1561544_barcoded_linkedPrimer.fna,SRR15615

45_barcoded_linkedPrimer.fna,SRR1561546_barcoded_linkedPrimer

.fna,SRR1561547_barcoded_linkedPrimer.fna,SRR1561548_barcoded

_linkedPrimer.fna,SRR1561549_barcoded_linkedPrimer.fna,SRR156

1550_barcoded_linkedPrimer.fna,SRR1561551_barcoded_linkedPrim

er.fna,SRR1561552_barcoded_linkedPrimer.fna,SRR1561553_barcod

ed_linkedPrimer.fna,SRR1561554_barcoded_linkedPrimer.fna -o 

/scratch/tef504/BV/split_libraries_BV/ 
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Appendix 7: 

Compatible format of mapping files for QIIME analysis. Columns #SampleID, BarcodeSequence, 

LinkerPrimerSequence and Description are essential formats of the mapping file for QIIME analysis, 

whereas the Study column was an additional feature added, specific to our analysis. 

#SampleID BarcodeSequence LinkerPrimerSequence Study Description 

ERR1679399 CCGTTTACTCTA ATGCTGCCTCCCGTAGGAGT HIV HIV 

ERR1679400 CTGCGCCCAGGT ATGCTGCCTCCCGTAGGAGT HIV ERP017264 

ERR1679401 GCACATATGATC ATGCTGCCTCCCGTAGGAGT HIV ERP017265 

ERR1679402 CGGCGCTCAAAT ATGCTGCCTCCCGTAGGAGT HIV ERP017266 

ERR1679403 TCTGTTCTCAAG ATGCTGCCTCCCGTAGGAGT HIV ERP017267 

ERR1679404 GGAGTTATGTGA ATGCTGCCTCCCGTAGGAGT HIV ERP017268 

ERR1679405 ACCCAGGGTCAT ATGCTGCCTCCCGTAGGAGT HIV ERP017269 

ERR1679406 CCCGTAAGACGG ATGCTGCCTCCCGTAGGAGT HIV ERP017270 

ERR1679407 ATGGAACATAGC ATGCTGCCTCCCGTAGGAGT HIV ERP017271 

ERR1679408 GCTCACGCGTGT ATGCTGCCTCCCGTAGGAGT HIV ERP017272 

ERR1679409 AATCAATGGTCG ATGCTGCCTCCCGTAGGAGT HIV ERP017273 

ERR1679410 TTGCCTGCGATG ATGCTGCCTCCCGTAGGAGT HIV ERP017274 

ERR1679411 CAAAAACAACCA ATGCTGCCTCCCGTAGGAGT HIV ERP017275 

ERR1679412 GGAAACACGACG ATGCTGCCTCCCGTAGGAGT HIV ERP017276 

ERR1679413 CACTCGGATGAG ATGCTGCCTCCCGTAGGAGT HIV ERP017277 

ERR1679414 CTCAAGACCAAG ATGCTGCCTCCCGTAGGAGT HIV ERP017278 

ERR1679415 AGATAAGCCTAG ATGCTGCCTCCCGTAGGAGT HIV ERP017279 

ERR1679416 TGGTAGAGAATA ATGCTGCCTCCCGTAGGAGT HIV ERP017280 

ERR1679417 ACCAAAGTTTAG ATGCTGCCTCCCGTAGGAGT HIV ERP017281 

ERR1679418 ATCAACTTGTGG ATGCTGCCTCCCGTAGGAGT HIV ERP017282 

ERR1679419 ACTGTCGCCGAT ATGCTGCCTCCCGTAGGAGT HIV ERP017283 

ERR1679420 GAAACGAGTCGG ATGCTGCCTCCCGTAGGAGT HIV ERP017284 
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Appendix 8: 

Python script run in an ipython notebook shell in the Oracle VM Virtual Box, generating unique 

barcodes for each SRR sample file of a study. 

from random import choice 

random_string = String(2856)   #2856 because HIV has 238 samples ie 

that many barcodes needed with 12bases each so 238*12=2856 

list1 = [] 

barcodes = [] 

 

n = 12 

for i in range(0, len(random_string), n): 

    list1.append(random_string[i:i+n]) 

 

for n,i in enumerate(list1): 

    barcodes.append(i) 

 

#Python script creating random barcodes. AND ADDING THEM TO FILES 

import glob 

import pandas as pd 

import numpy as np 

bardict = {} 

 

table = pd.read_excel("mapping_tableSRP064295.xlsx") 

samples = table["#SampleID"] 

barcodes = table["BarcodeSequence"] 

 

for i in range(len(samples)): 

    bardict[samples[i][0:10]] = barcodes[i] 

list1 = table["BarcodeSequence"].tolist() 

len(list1) != len(set(list1)) #if True means that barcodes NOT 

UNIQUE 

linkerprimesequence = "ATGCTGCCTCCCGTAGGAGT" 
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filepath = 

("./fasta_files/fasta_files_PRJNA295859/SRR2533984_1.fna") 

 

for filepath in glob.glob(filepath): 

    file1 = open(filepath, "r") 

#this section creates an empty output file for every input file 

    output_filepath = filepath.split("/") 

    output_filename = output_filepath[-1].split(".")[0] + 

"_barcoded_linkedPrimer." + output_filepath[-1].split(".")[1] 

    output_filepath[-1] = output_filename 

    output_filepath = "/".join(output_filepath) 

    output_file = open(output_filepath, "w") 

     

#actually writting in new file 

    barcode = "" 

     

    for n,line in enumerate(file1): 

        newline = line 

        if len(barcode) == 12:              

#this is not the first thing that the computer reads. It doesn’t 

see any barcodes so the first thing it will do is find a line that 

starts with ">" once this is done THEN it will define the barcodes, 

however this needs to be written this way because it won’t work 

otherwise 

            newline = barcode + linkerprimesequence + newline 

            barcode = "" 

        if line.startswith(">"): 

            name = line[1:11] 

            barcode = bardict[name]      #looks up barcode for the 

name you gave in the dictionary 

        output_file.write(newline) 

    output_file.close() 
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Appendix 9: 

pick_open_reference_otus.py Qiime command performing open reference OTU picking. Appendix 

9a demonstrates the QIIME script running OTU picking for study SV through pipeline one. Appendix 

9a was carried out in ipython notebook via the Oracle VM Virtual Box. –f and –i arguments instruct 

the input seq.fna file (a concatenated file of all 16S rRNA sequences of a study – shown in Appendix 

9b). –r argument instructs the GreenGenes 2010 database, which was selected for the purpose of this 

study (gg_97_otus_6oct2010_aligned.fasta). –p argument instructs the parameters file, where the 

format is illustrated in Appendix 9c. Finally, the script provided in Appendix 9d, demonstrates 

QIIME’s open reference OTU picking through the second designed pipeline, pipeline two, for study 

BV. This script utilises identically formatted seq.fna, mapping, parameter and database files as 

mentioned for pipeline one. 

a) !pick_open_reference_otus.py -f -i split_librariesSV/seqs.fna -r 

current_Bacteria_aligned.fa -o otusSV/ -p params.txt --

suppress_align_and_tree 

 

b) Format of seq.fna concatenated file: 

 

 

c) Params file: 

pick_otus:enable_rev_strand_match True 

assign_taxonomy:assignment_method blast 
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pick_otus:similarity 0.97 

prefilter_identical_sequences:False 

 

d) python 

/usr/userfs/t/tef504/python/bin/pick_open_reference_otus.py -i 

/scratch/tef504/BV/split_libraries_BV/seqs.fna -r 

/scratch/tef504/qiime_scripts/gg_97_otus_6oct2010_aligned.fasta -o 

/scratch/tef504/BV/OTUs_BV_export -p /scratch/tef504/BV/params.txt 
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Appendix 10: 

.biom output file generated though pick_open_reference_otus.py QIIME script. The original .biom 

file consisted of a list of the assigned OTUs along with the corresponding abundance data for each 

sample within one study. Appendix 10 illustrates a segment of the .biom output file generated for 

study SRO071202. 
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Appendix 11: 

rep_set_tax_assignment.txt output file generated for all selected studies, through 

pick_open_reference_otus.py QIIME script. The table below illustrates a section of the file generated 

for study HIV, which includes the assigned OTUs with their corresponding taxonomies. 

Additionally, the table includes the quality scores of the blasting identifiers, as well as a column of 

the confidence values for the deepest level of taxonomy shown. The file allows detection of the over 

assignment of unique OTUs performed through QIIME, as multiple unique OTUs characterise the 

same taxonomies.   

New.Referenc
eOTU2056 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bactero
idales;f__Prevotellaceae;g__Prevotella;s__ 

2e-130 2217 

New.Referenc
eOTU2724 

k__Bacteria;p__Actinobacteria;c__Actinobacteria 
(class);o__Bifidobacteriales;f__Bifidobacteriaceae;g__Gar
dnerella;s__Gardnerella vaginalis 

5e-128 53139
0 

New.Referenc
eOTU2054 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Veillonellaceae;g__;s__ 

5e-128 13075
0 

New.Referenc
eOTU2055 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Veillonellaceae;g__Dialister;s__Dialister micraerophilus 

8e-124 13641
5 

New.Referenc
eOTU2720 

No blast hit None None 

New.Referenc
eOTU2053 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Lachnospiraceae;g__Shuttleworthia;s__ 

5e-128 13725
8 

New.Referenc
eOTU916 

No blast hit None None 

New.Referenc
eOTU2051 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bactero
idales;f__Prevotellaceae;g__Prevotella;s__Prevotella 
melaninogenica 

8e-118 47112
2 

New.Referenc
eOTU918 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Lachnospiraceae;g__Shuttleworthia;s__ 

5e-119 13725
8 

New.Referenc
eOTU2196 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__;g__;s__ 

3e-123 22439
0 

New.Referenc
eOTU3018 

k__Bacteria;p__Fusobacteria;c__Fusobacteria 
(class);o__Fusobacteriales;f__Fusobacteriaceae;g__Sne
athia;s__ 

9e-130 11298 

New.Referenc
eOTU3647 

k__Bacteria;p__Actinobacteria;c__Actinobacteria 
(class);o__Bifidobacteriales;f__Bifidobacteriaceae;g__Gar
dnerella;s__Gardnerella vaginalis 

8e-124 53139
0 

New.Referenc
eOTU2193 

No blast hit None None 

New.Referenc
eOTU2192 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Veillonellaceae;g__;s__ 

1e-125 13075
0 

New.Referenc
eOTU2058 

No blast hit None None 

New.Referenc
eOTU2059 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Veillonellaceae;g__;s__ 

1e-128 13075
0 

New.Referenc
eOTU887 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__;g__;s__ 

5e-54 11411
5 

New.Referenc
eOTU2727 

No blast hit None None 

New.Referenc
eOTU3754 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f
__Veillonellaceae;g__;s__ 

5e-128 13075
0 
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Appendix 12: 

QIIME core_diversity_analyses.py command for diversity analysis was implemented in pipeline one 

as well as in the optimised pipeline two. Both scripts are similar, although formatted differently 

depending on the operating system they run on. –i argument instructs the input file, followed by –m 

listing the mapping file (see Appendix 7 for format) and finally the –e argument instructs a threshold 

of poor quality data (singletons etc.). Pipeline one run core_diversity_analyses.py script in a ipython 

notebook shell, in the format depicted in Appendix 12a. The script was a test run, performed for a 

study, which did not meet our selection requirements and thus was removed from the final analysis.   

The core_diversity_analyses.py QIIME script used for diversity analysis via pipeline two is presented 

in Appendix 12b which illustrates the script for study BV. The script run through the YARCC 

computer cluster in a Linux shell. 

a) !core_diversity_analyses.py -i 

swarm_otusSRR1823471/otu_table.biom -o cdoutSRR1823471.2/ -m 

validate_mapping_file_outputSRR1823471.2/mapping_tableSRR1823471_c

orrected.txt -e 1 --nonphylogenetic_diversity 

b) python 

/usr/userfs/t/tef504/python/bin/core_diversity_analyses.py -i 

/scratch/tef504/BV/OTUs_BV_export/otu_table_mc2_w_tax.biom -o 

/scratch/tef504/BV/Core_Div_BV/ -m 

/scratch/tef504/BV/mapping_tableBV_corrected.txt -e 7000 --

nonphylogenetic_diversity 
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Appendix 13: 

The table below represents the modified version of the .biom file, created though the “Modifying 

BIOM file script” discussed in Chapter section 2.3. The table includes unique taxonomies, which 

were fully characterised at genus level, instead of the numerous duplicated OTU assessments in the 

initial format presented in Appendix 11. 

 

SRR32

23081 

SRR32

11969 

SRR32

23109 

SRR32

23198 

SRR32

23106 

SRR32

17894 

SRR32

23083 

SRR32

18221 

SRR32

23104 

k__Bacteria p__Firmicutes c__Bacilli 

o__Lactobacillales f__Lactobacillaceae 

g__Lactobacillus 22799 8888 4 2324 22348 203 175 394 10 

k__Bacteria p__Actinobacteria 

c__Actinobacteria 

o__Bifidobacteriales 

f__Bifidobacteriaceae g__Gardnerella 3949 4 10118 7339 5259 12853 6340 4376 12636 

k__Bacteria p__Actinobacteria 

c__Coriobacteriia o__Coriobacteriales 

f__Coriobacteriaceae g__Atopobium 10 3 10041 5 219 3269 255 2080 4112 

k__Bacteria p__Bacteroidetes 

c__Bacteroidia o__Bacteroidales 

f__Prevotellaceae g__Prevotella 34 1673 2683 12 0 3293 202 1729 1252 

k__Bacteria p__Firmicutes 

c__Clostridia o__Clostridiales 

f__Clostridiaceae g__Clostridium 5 2 7 0 0 3354 5693 721 1077 

k__Bacteria p__Firmicutes 

c__Clostridia o__Clostridiales 

f__Lachnospiraceae g__Shuttleworthia 2 1 0 0 0 0 152 0 2713 

k__Bacteria p__Actinobacteria 

c__Actinobacteria 

o__Bifidobacteriales 

f__Bifidobacteriaceae 

g__Bifidobacterium 0 408 0 0 0 18 22 49 0 

k__Bacteria p__Firmicutes 

c__Clostridia o__Clostridiales 

f__Veillonellaceae g__Megasphaera 2 4 0 0 0 693 766 40 1114 
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Appendix 14: 

Python script programmed to run Pearson correlation analysis for all five selected studies utilising 

the modified .biom tables (see format in Appendix 13). The script run in an ipython notebook shell 

through Oracle VM Virtual Box. 

#NOW MOVING TO CREATING PEARSON 

new_biomfile = pd.read_excel("Final_biom_CANDIDIASIS.xlsx") 

n = new_biomfile.shape[0] 

#creates a numpy table full of zeros (x,z,y) which will then be 

filled with the data bellow 

output_data = np.zeros([n,n,2]) 

#.values changes Dataframe into numpy array 

otutable_values = new_biomfile.values 

for row1 in range(n): 

    for row2 in range(row1,n): 

        row = otutable_values[row1,1:] 

        col = otutable_values[row2,1:] 

        output_data[row1,row2,:] = scipy.stats.pearsonr(row, col) 

         

np.save("PearsonTableCANDIDIASIS.npy", output_data) 

#see numpy 2D table only with the pearson values 

numpy3D = np.load("PearsonTableCANDIDIASIS.npy") 

pearson2D_pears = pd.DataFrame(numpy3D[:,:,0]) 

 

#name columns and rows 

b = output_sum_taxa.keys() 

Pearson_data = pd.DataFrame(pearson2D_pears) 

Pearson_data.columns = b 

Pearson_data.index = b 

 

#write pearson 2D file to excel 

writer = pd.ExcelWriter("Pearsonvalues_table.xlsx") 
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Pearson_data.to_excel(writer, sheet_name="Sheet1") 

writer.save() 

 

#see numpy 2D table only with the p-values 

numpy3D = np.load("PearsonTableCANDIDIASIS.npy") 

pvalue2D_pears = pd.DataFrame(numpy3D[:,:,1]) 

 

#name columns and rows 

b = output_sum_taxa.keys() 

p_data = pd.DataFrame(pvalue2D_pears) 

p_data.columns = b 

p_data.index = b 

 

#write pearson 2D file to excel 

writer = pd.ExcelWriter("p_values_table.xlsx") 

p_data.to_excel(writer, sheet_name="Sheet1") 

writer.save() 
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Appendix 15: 

Python script programmed in an ipython notebook shell performing Shapiro-Wilk test, to test 

whether the bacterial abundances from the biom files of each study were normalised. All values 

returned less than 0.055, suggesting that the abundance data of all five selected studies were not 

normally distributed. 

#Shapiro–Wilk test python 

array = list(biom.values) 

x2,p = scipy.stats.shapiro(array) 

if(p < 0.055):                  #anything less than 0.055 is not 

normally distributed 

    print "Not normal distribution," , "x2 =",x2, ", p_val =",p 

 

a=biom.loc["k__Bacteriap__Firmicutesc__Bacillio__Lactobacillalesf_

_Lactobacillaceaeg__Lactobacillus"] 

x2,p = scipy.stats.shapiro(a) 

if(p < 0.055): 

    print "Not normal distribution," , "x2=",x2, ", p_val=",p 

 

a_log = np.log10(a.values[a.values>0]) 

     

plt.hist(a, bins=20) 

plt.xlim(10, 18000) 

plt.ylim(0,20) 

#NO MY DATA ARE NOT NORMALISED 
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Appendix 16: 

Python script followed to carry out Bonferroni correction for all corresponding p-values calculated 

through Spearman Rank Correlation Coefficient statistical test. The correction lowers the threshold 

at which a p value is considered significant (original p = 0.05). 

Bonferroni correction:  

S_p_values = pd.read_excel("2Spearman_P_values.xlsx") 

bonferroni_array = S_p_values.values/1443 #38 taxa * 38 taxa -

1=1443 

Bonferroni_data = pd.DataFrame(bonferroni_array, 

index=new_biom.index, columns=new_biom.index) 

 

writer = pd.ExcelWriter("2Sp_Bonferroni_P_values.xlsx") 

Bonferroni_data.to_excel(writer, sheet_name="Sheet1") 

writer.save() 
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Appendix 17: 

 

Figure 28: Scatter plots of Atopobium and Gardnerella correlations for all five selected studies.  

Scatter plots for all five studies (HIV, BV, CANDIDIASIS, SV, HSV2) demonstrating correlations 

between Atopobium and Gardnerella. The blue data points represent the relative logged abundance 

data for Atopobium (x-axis) against the relative logged abundances of Gardnerella (y-axis). The 

green best fit line illustrates the correlation link between the two variables (Atopobium and 

Gardnerella). Each subplot contains the Spearman Rank Correlation Coefficient value for each 

study. All subplots suggest positive correlations (with 95% confidence) between Atopobium and 

Gardnerella with varying Spearman correlation values and steepness lines (with some studies 

illustrating higher and stronger correlations than others). 

  



131 | P a g e  
 

Appendix 18: 

 

Figure 29: Scatter plots of Lactobacillus and Dialister correlations for all five selected studies. 

Scatter plots for all five studies (HIV, BV, CANDIDIASIS, SV, HSV2) demonstrating correlations 

between Lactobacillus and Dialister. Each subplot consists of blue data points representing the 

relative logged abundances for Lactobacillus (x-axis) against the relative logged abundances of 

Dialister (y-axis). The Spearman Rank Correlation Coefficient value for each study is shown. The 

green best fit line illustrates the correlation link between the two variables (Lactobacillus and 

Dialister). All subplots suggest low negative correlations between Lactobacillus and Dialister with 

varying negative correlation values and steepness lines. None of the correlations presented in Figure 

29 meet the 95% confidence correlation threshold that ensures that the correlation is not a result of 

random chance. 
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Appendix 19: 

Hierarchical clustering illustrated via a heatmap performed for study CANDIDIASIS through 

CIMminer open source tool. CIMminer applied Euclidean distance method and average linkage 

clustering algorithms for the analysis. The heatmap represents clustering analysis for both bacteria 

and sample data of study CANDIDIASIS presented via dendrograms on the top x-axis and the left 

y-axis. CIMminer is an interactive software allowing the corresponding sample and bacteria IDs to 

be visualised by placing the cursor over a data point. The data matrix of the logged bacteria taxonomy 

abundances was displayed as colour scales. Dark red represents the high abundance whereas white 

represents zero abundance. Hierarchical clustering via CIMminer did not propose any distinct 

clusters between sample or bacteria data thus our own python script was programmed to perform 

Hierarchical clustering as discussed in chapter 2.5. 
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Appendix 20: 

Python script programed in an ipython shell to allow two dimensional and three dimensional PCA 

analysis, as well as to permit focus on specific principal components.  

PYTHON PCA: 

import pandas as pd 

import numpy as np 

from sklearn.decomposition import PCA 

from matplotlib.mlab import PCA as mpl_PCA 

import matplotlib.pyplot as plt 

%matplotlib inline 

 

file1 = pd.read_excel("High_Abund_HIV.xlsx") 

data = file1.values 

 

#2 Principle Components - Bacteria 

def doPCA(data): 

    pca = PCA(n_components=2) 

    pca.fit(data) 

    return pca 

pca = doPCA(data) 

print pca.explained_variance_ratio_ 

first_pc = pca.components_[0] 

second_pc = pca.components_[1] 

#third_pc = pca.components_[2] 

#print pca.components_ 

>> [ 0.60096727  0.29539025] 

 

plt.scatter(transformed_data[:,0], transformed_data[:,1]) 

#principle component one and two grafting 
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plt.hist(transformed_data[:,1], bins=50) 

plt.show() 

 

#3 Principle Components 

#3 PCs 

def doPCA(data): 

    pca = PCA(n_components=3) 

    pca.fit(data) 

    return pca 

 

pca = doPCA(data) 

print pca.explained_variance_ratio_ 

first_pc = pca.components_[0] 

second_pc = pca.components_[1] 

third_pc = pca.components_[2] 
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#print pca.components_ 

 

transformed_data = pca.transform(data) 

for i, j in zip(transformed_data, data): 

    plt.scatter(first_pc[0]*i[0]*i[0], first_pc[1]*i[0]*i[0], 

color="k") 

    plt.scatter(second_pc[0]*i[1]*i[0], second_pc[1]*i[1]*i[0], 

color="b") 

    #plt.scatter(third_pc[0]*i[0]*i[1], third_pc[1]*i[1]*i[1], 

color="c") 

    #plt.plot(j, "ro") 

    #print data.shape 

    #plt.xlim(-0.25,0.05) 

    #plt.ylim(-0.2,0.2) 

 

plt.scatter(transformed_data[:,0], transformed_data[:,1], 

transformed_data[:,2]) 
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# 2 Principal Component - Samples 

file1 = pd.read_excel("High_Abund_HIV.xlsx") 

data = file1.transpose() 

def doPCA(data): 

    pca = PCA(n_components=2) 

    pca.fit(data) 

    return pca 

pca = doPCA(data) 

print pca.explained_variance_ratio_ 

first_pc = pca.components_[0] 

second_pc = pca.components_[1] 

#third_pc = pca.components_[2] 

#print pca.components_ 

transformed_data = pca.transform(data) 

print transformed_data.shape 

plt.scatter(transformed_data[:,0], transformed_data[:,1]) 

#principal component one and two grafting 
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plt.hist(transformed_data[:,0], bins=50) 

plt.show() 
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Appendix 21: List of Electronic files 

 

Spearman rank correlation coefficient value tables: 

1. Spearman_values_HSV2.xlsx 

2. Spearman_values_BV.xlsx 

3. Spearman_values_ERP017021.xlsx 

4. Spearman_values_SV.xlsx 

5. Spearman_values_CANDIDIASIS.xlsx 

Modified OTU tables with taxonomies: 

1. OTU_table_HSV2.xlsx 

2. OTU_table_ BV.xlsx 

3. OTU_table_ ERP017021.xlsx 

4. OTU_table_ SV.xlsx 

5. OTU_table_ CANDIDIASIS.xlsx 

Figures: 

Study ERP017021: 

1. taxa-genus-HIV_legend.pdf 

2. taxa-genus-HIV.pdf 

3. taxa-family-HIV_legend.pdf 

4. taxa-family-HIV.pdf 

5. PCA-qiime-HIV.pdf 

6. heatmap_HIV.png 

Study BV: 

1. taxa-order-BV_legend.pdf 

2. taxa-order-BV.pdf 

3. taxa-genus-BV_legend.pdf 

4. taxa-genus-BV.pdf 

5. PCA-QIIME-BV.pdf 

6. HEATMAP_BV.jpg 

Study HSV2: 

1. taxa-family-SRP07102_legend.pdf 

2. taxa-family-SRP07102.pdf 

3. taxa-genus-SRP07102_legend.pdf 

4. taxa-genus-SRP07102.pdf 

5. PCA-Qiime-HSV2.pdf 

6. Heatmap_HSV2.png 

Study SV: 

1. taxa-family-SV_legend.pdf 

2. taxa-family-SV.pdf 

3. taxa-genus-SV_legend.pdf 

4. taxa-genus-SV_legend.pdf 

5. PCA-QIIME-SV.pdf 



139 | P a g e  
 

6. Heatmap_SV.png 

Study CANDIDIASIS: 

1. taxa-order-CANDIDIASIS_legend.pdf 

2. taxa-order-CANDIDIASIS.pdf 

3. taxa-genus-CANDIDIASIS_legend.pdf 

4. taxa-genus-CANDIDIASIS.pdf 

5. PCA-QIIME-CANDIDIASIS.pdf 

6. Heatmap_CANDIDIASIS.png 
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