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Abstract
Nonlinear dynamic behaviour has become increasingly significant due to the performance
demands on modern mechanical structures that are increasingly lightweight and flexible,
e.g. the geometric nonlinearity caused by the large deflection. Also, numerous traditional
mechanical applications are found to be able to achieve better performance when nonlinear
characteristics are exploited. However, the application of any traditional linear analysis to
nonlinear systems can only provide, at best, suboptimal solutions as the well-established
linear techniques fail to capture the unique nonlinear features, e.g. modal interactions and
bifurcations.

This thesis aims to improve the theoretical understanding of the smooth nonlinear dy-
namic behaviours of mechanical systems and apply the findings to develop innovative ap-
proaches for practical use. Backbone curve analysis is employed throughout the thesis as a
tool to develop this understanding.

The resonant interactions only involving two modes of a three-lumped-mass nonlinear
oscillator are investigated. It is demonstrated that the backbone curves of this example sys-
tem can provide an interpretation of the underlying nonlinear dynamic behaviours, including
stability and bifurcations. Then we consider two kinds of triple-mode resonant interactions
in other 3-DoF systems, including 1 : 1 : 1 and 1 : 2 : 3 modal interactions. The effects of
these multi-mode resonant interactions, e.g. the non-existent of single- and double-mode re-
sponses and the resonance between ‘non-resonant’ modes after involving extra modes, are
demonstrated, and the mechanism is explored using backbone curves.

A nonlinear dynamic phenomenon, resonant frequency shift, is also considered. The
power spectrum density results of a thin plate under multi-mode-multi-frequency excita-
tions are used to demonstrate this nonlinear behaviour, which shows that the frequency
shift can be caused by an interaction between any non-resonant modes. Based on a nonlin-
ear reduced-order model, backbone curves are used to explain the mechanism of the non-
resonant modal interaction, which is caused by the unconditionally resonant mixed-mode
nonlinear terms. The understanding of the non-resonant modal interaction is then used to
develop a practical approach for nonlinear system identification which employs the back-
bone curves as the parametric model. The proposed identification approach is applied to the
example plate to demonstrate its accuracy and advantages.
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Chapter 1

Introduction

Real-life mechanical systems are inherently nonlinear to some extent, and the sources of
nonlinearity are diverse: geometric, material and contact/boundary conditions. Nonlinearity
is often viewed to be problematic as it may cause unwanted vibration motions and some-
times even catastrophic failure of mechanical structures. One of the typical devastating in-
cidents is the collapse of the first Tacoma Narrows Bridge (Fig. 1.1(a)) whose failure is due
to the catastrophic vibrations caused by the nonlinear fluid-structure interaction. Therefore,
traditionally most structures are designed to operate within regions where their behaviour is
approximately linear. However, linearity is an idealisation. The existence of structural non-
linearities is often inevitable, especially for these recent advanced mechanical applications
which are required to perform more cleanly and efficiently. For example, in the aerody-
namic field, to enhance fuel economy and prevent climate change, high-aspect-ratio wings
(Fig. 1.1(b)) are employed to increase the lift-to-drag ratio, and a lot of composite material
components of nonlinear mechanical properties replace the traditional metal ones to reduce
weight. All of these will eventually result in nonlinearities of aeroplane systems.

In fact, the occurrence of nonlinearities is not always negative. On the contrary, nonlin-
earities can also bring advantages, e.g. with the concept of nonlinear design, the application
context or performance may be significantly improved. One example may be that about
the nonlinear improvement of tuned mass dampers (TMDs), a vibration reduction device
wildly used in engineering structures. One significant drawback of linear TMDs is that they
have a small operating frequency range. This suggests that linear TMDs are not suitable
for applications where the excitation has several dominant frequencies and systems possess
nonlinear components. In this context, the nonlinear characteristics may be exploited to
address this limitation. By replacing the linear springs and damping with nonlinear ones in
TMDs, their effective frequency range was proved to be significantly enhanced [80].
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(a) The collapse of the Tacoma Narrow Bridge1 (b) An ASH 31 glider with very high aspect ratio2

Fig. 1.1 Example nonlinear mechanical structures.

About the well-established linear techniques for designing and optimising the dynamic
performance of mechanical structures, most of them adopt the approach of modal analysis,
which is based on the concept of linear normal modes. In the modal analysis, the equation
of motion (EoM) of a dynamic system can be decoupled using linear normal modes and
then system (free or forced) response can be expressed as the superposition of individual
linear normal mode responses. This decomposition is based on an important property of
linear normal modes, i.e. orthogonality, which means that the modes are uncoupled. More
specifically, the response of one mode is not affected by the change of other modes. Due to
the uncoupling property, linear modes are to be considered individually.

Undeniably, with the useful properties of linear normal modes, the linear techniques
have achieved numerous implementation successes, e.g. reduced-order modelling and sys-
tem identification. However, these linear techniques are obviously limited for nonlinear
systems. One simple reason is that the principle of superposition does not hold for non-
linear systems due to the presence of nonlinearities. Therefore, considering the (positive
and negative) significance of the nonlinearity, the lack of tools suited to dealing with non-
linearity in dynamic structures presents a challenge of developing novel techniques and
methodologies for nonlinear dynamic systems. This expectation can only be achieved by
better understanding and interpreting nonlinear system behaviours.

This thesis aims to further improve the theoretical understanding of the smooth nonlinear
dynamic behaviours of mechanical systems, and apply the findings to develop innovative
approaches for the practical use.

1https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
2https://en.wikipedia.org/wiki/Schleicher_ASH_31

https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
https://en.wikipedia.org/wiki/Schleicher_ASH_31
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1.1 Research motivations

The overall objective of the project is

• To advance understanding and develop techniques for dynamic analysis of nonlinear
mechanical systems.

The specific objectives are

• To further explore modal interactions within nonlinear systems with a low number of
degrees of freedom.

• To demonstrate that backbone curves offer a valuable tool for interpreting the nonlin-
ear dynamic behaviours of mechanical systems.

• To investigate an alternative approach for the identification of nonlinear mechanical
systems using backbone curves.

1.2 Thesis outline

• In Chapter 2, a brief literature review is presented, related to the dynamic character-
istics of nonlinear systems, e.g. modal interaction. Two main approaches for solv-
ing nonlinear mathematical models, i.e. numerical and approximate analytical ap-
proaches, are discussed. Additionally, the modal analysis for nonlinear systems, i.e.
normal form analysis and nonlinear normal modes, is briefly introduced. Lastly, the
techniques for the identification of nonlinear systems are compared.

• In Chapter 3, the derivation of the application of the direct normal form technique to a
general nonlinear system under damped and single-frequency forcing is presented, in
which its implementation assumptions and corresponding limitations are discussed.
The companion approach for the stability assessment of the direct normal form so-
lutions is introduced to complete the framework for the nonlinear solution approxi-
mation. This approximation framework is shown to be able to compute the backbone
curves of nonlinear systems by considering its underlying conservative system, i.e.
without damping and forcing terms. The objective of this chapter is to introduce the
implementation procedure of the direct normal form technique in detail, which is the
primary technique used throughout this thesis.
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• In Chapter 4, the research of dynamic characteristics, especially the resonant modal
interaction, of a nonlinear 3-degree-of-freedom (DoF) system is presented. The struc-
ture of this system is specifically designed to make one of its vibration modes linearly
independent and the other two, with similar linear natural frequencies, nonlinearly
coupled. The direct normal form method is first applied to approximate the time-
invariant equations governing the forced resonances of this system under the harmonic
excitation at a frequency in the vicinity of its linear natural frequencies. However, to
reveal the relationship between the modal interaction and the physical system param-
eters, the governing equations without the forcing and damping terms are considered
to compute backbone curves. These backbone curves are demonstrated to be able to
interpret different kinds of resonant modal interaction between the two nonlinearly
interacting modes. Based on the observation of the relationship between forced re-
sponse and backbone curves, these backbone curves are found to be useful to predict
the occurrence of response bifurcations caused by resonant modal interaction for the
forced and damped situation. The purpose of this chapter is to demonstrate the reso-
nant modal interaction involving a subset of vibration modes of systems of multiple
degrees of freedom and show the ability of backbone curves to interpret and predict
nonlinear bifurcations caused by the resonant internal interaction.

• In Chapter 5, the resonant modal interaction among three nonlinearly coupled modes
is considered. Firstly, the derivation of the direct normal form technique applied to
a generic conservative 3-DoF system with cubic stiffness nonlinearity is introduced.
The results are later used to compute backbone curves of specific examples for demon-
strating different kinds of potential internal interaction. For the first example, its three
vibration modes are designed to be nonlinearly coupled, and their linear natural fre-
quencies are tuned to be closed such that the three modes may potentially, resonantly
interact with each other. The second example has three nonlinearly coupled modes
of commensurable linear natural frequencies, i.e. ωn1 : ωn2 : ωn3 ≈ 1 : 2 : 3. The
backbone curves solutions of both examples are discussed respectively, and the back-
bone curve bifurcations are considered to interpret the resonant interaction happening
among multiple nonlinear modes. The objective of this chapter is to demonstrate the
resonant internal interaction involving all modes of systems of multiple degrees of
freedom and show the backbone curves can be further applied to interpret these more
complex nonlinear phenomena.

• In Chapter 6, the resonant frequency shift of systems under multi-frequencies exci-
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tations due to the non-resonant modal interaction is considered. This nonlinear phe-
nomenon is shown by the power spectral density results of finite element computa-
tional models of a thin rectangular plate under random and random plus harmonic
excitations at relatively high power levels. Two nonlinear reduced-order models con-
sisting of the first four vibration modes of the example plate are employed to simulate
the response under the identical excitations of interest, and the results are qualita-
tively compared with the finite element analysis results. The difference between the
two nonlinear mathematical models is that one includes the nonlinear coupled-mode
terms and the other one does not. The comparison results show that the nonlinear
coupled-mode terms associated non-resonant modes contribute to the resonant fre-
quency shift. The backbone curves are again employed to interpret the mechanism
of these nonlinear coupled-mode terms affecting resonant frequencies, which is be-
cause of the non-resonant modal interaction occurring for the situation when multiple
modes are simultaneously and externally excited. The objective of this chapter is to
show the effect of the non-resonant interaction for multi-mode excitation situations
and the significance of the nonlinear coupled-mode terms of non-resonant modes to
be included in the mathematical model for such situations.

• In Chapter 7, an approach for nonlinear system identification is investigated. This ap-
proach is inspired by the findings in Chapter 6 and its main advantages are: estimating
parameters of multiple modes through applying a single test and determining parame-
ters related to non-resonant mixed-mode nonlinear terms. The idea of resonant decay
is employed to estimate backbone curves, in which multiple modes of the system
under consideration are initially forced and then freely decay after the excitation is
removed. The short-time Fourier transform with time-varying windows is employed
to measure backbone curves from the free-decay response. Then the backbone curve
model with the consideration of non-resonant modal interaction is used to determine
the parameters of the mathematical model.

• In Chapter 8, the conclusions and potential further work are discussed.





Chapter 2

Literature review

In this chapter, a brief literature review is presented, related to nonlinear dynamic charac-
teristics, analysis approaches for studying nonlinear systems and nonlinear system identifi-
cation.

2.1 Nonlinear dynamic behaviours in mechanical systems

In Chapter 1, the importance of the role of nonlinearities in mechanical systems has been
briefly introduced. In this section, the dynamic characteristics of nonlinear mechanical sys-
tems and their corresponding effects are discussed. Since nonlinear dynamics is a popular
research area studied for decades, plenty of relating literature is available. For example,
in the books [8, 30, 39, 56, 92], much of the early literature and background to nonlinear
dynamics have been summarised.

2.1.1 Nonlinear dynamic characteristics

Compared with that of linear systems, the dynamic behaviour of nonlinear systems presents
numerous unique features. One example is the initial condition sensitivity: contrary to linear
systems the steady-state response of a nonlinear system may not be unique and may depend
on the initial conditions. Besides, when subject to a harmonic input the major component
of the output of a nonlinear system may not be at the input frequency, i.e. a subharmonic or
a superharmonic of the input frequency. These unique characteristics may cause nonlinear
dynamic phenomena including multiple solutions, jump phenomena, harmonics, resonance
distortion, quasi-periodic motions, etc. However, the most significant dynamic character-
istic of nonlinear systems, more specifically for nonlinear multi-DoF discrete systems and
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continuous systems, may be modal interactions [66, 67]. Unlike a linear system whose vi-
bration modes are uncoupled and behave independently, the modes of a nonlinear system
may be nonlinearly coupled and interact, which is the main reason that the superposition
principle does not hold for nonlinear systems.

The modal interaction can cause energy exchanges between/among modes, one of whose
results is that the externally unforced mode(s) can be activated by the nonlinearly coupled
mode(s) which is directly forced, termed as resonant interaction. For example, Cammarano
et al. [6] considered an in-linear lumped-mass nonlinear oscillator of two degrees of freedom
whose two linear natural frequencies are close. This system is forced in the anti-phase mode
(two masses moving in opposite directions), while its in-phase mode (two masses moving
in an identical direction) responds due to the one-to-one internal resonance when the exci-
tation is beyond a specific amplitude. This phenomenon was also observed in continuous
structures: in [35], a taut cable under a purely vertical, in-plane support excitation at a fre-
quency close to its second linear in-plane natural frequency exhibits a whirling behaviour,
which was demonstrated to be because an out-of-plane mode of the cable is activated due to
the one-to-one out-of-unison resonant interaction.

Except for the one-to-one resonant interaction, there exists auto-parametric resonance
between modes. In [49], a 2-DoF system, consisting of a grounded nonlinear oscillator
under harmonic excitation coupled to a light linear attachment, experiences a three-to-one
resonant modal interaction. This resonance results in a localisation phenomenon that the
primary and three-times harmonic components of the system response are localised to the
nonlinear oscillator and the linear attachment respectively. This auto-parametric interaction
can even cause more complex dynamic behaviours. In [87], a cantilever beam with a nonlin-
ear spring at the tip experiencing a three-to-one modal interaction was observed to exhibit
isolated resonant response (detached resonance) and quasi-periodic response.

The resonant modal interaction is not limited to happening within two nonlinear modes.
Nayfeh et al. [68] investigated the three-mode interaction by considering the response of a
3-DoF system with quadratic nonlinearities under the internal resonant condition that ω1 :
ω2 : ω3 ≈ 1 : 2 : 4 to a harmonic excitation. It was found that this system undergoes periodic,
quasi-periodic and chaotic motion as the amplitude of the excitation increases.

2.1.2 Effects of the nonlinearity in mechanical systems

The occurrence of nonlinearities may cause undesirable effects on engineering systems,
which correspondingly brings some challenges to structural engineers. One of the chal-
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lenges lies in the control design for nonlinear vibrations, e.g. nonlinear active feedback
control. For the control of single-DoF systems, due to harmonic responses caused by the
nonlinear terms, the control signal must include harmonic components, and, for that of
multi-DoF systems, because of the modal interaction due to cross-coupling terms, all the
associated modes instead of the one of interest must be considered together. Obviously,
these significantly enhance the difficulty of control system designs for nonlinear structures.

The nonlinear feature of isolated resonant responses is also demonstrated to be prob-
lematic, e.g. causing large-amplitude responses [87]. This feature may significantly affect
the performance of mechanical applications, e.g. this nonlinear large-amplitude response
phenomenon caused by the detached resonance was observed in a nonlinear TMD studied
by Alexander and Schilder [1], which consequently raises the question about the efficacy of
nonlinear TMDs.

On the contrary, the presence of nonlinearity can be also beneficial in cases where it
is properly exploited. For nonlinear TMDs, one of its advantages of efficient vibration
suppression over a broad bandwidth is thanks to the resonance distortion. Another example
of nonlinear applications may be the high-static-low-dynamic-stiffness (HSLDS) vibration
isolator [25, 79]. The linear vibration isolator only works in the bandwidth far way from
its natural frequency, [37], As ωn =

√
k/m, a smaller stiffness results in a wider frequency

range of isolation, while its side-effect is a larger static displacement. To address this trade-
off issue, softening nonlinear springs are used to induce an isolation of a high static stiffness,
thus a small static displacement, but a low dynamic stiffness, and therefore a reduced natural
frequency.

As with other nonlinear dynamic characteristics, the modal interactions in the dynam-
ics of nonlinear systems also have many practical implications. For example, the motion
confinement feature can be exploited in novel designs of the vibration isolator, where a dis-
turbance caused by external forces is first spatially confined to a pre-designed part of the
structure, and then, passively or actively dissipated [27, 29, 41, 43, 44, 50, 93, 95]. Ad-
ditionally, the mode localisation can also be implemented in the micro-electro-mechanical
system (MEMS) designs, e.g. micro-cantilever arrays and micro-resonator arrays [19]. It
was suggested that the type of localisation due to the auto-parametric resonance found in
[49] could be used to design new type of atomic force microscope (AFM) probe.
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2.2 Methods for analysing nonlinear dynamics

For either avoiding or exploiting nonlinearities, understanding the behaviour of nonlinearity
in structural dynamics seems to be essential. While the approaches recently used for explor-
ing nonlinear dynamics are broad, they can be simply classified into three types: numerical,
analytical and experimental methods. Due to the specific theme of this thesis, we only fo-
cus on the mathematical-model-based approaches, i.e. numerical and analytical methods, in
this section. For the discussion of experimental methods for studying nonlinear dynamics,
see [65]. Additionally, the approaches of modal analysis for nonlinear systems are briefly
discussed.

2.2.1 Numerical methods

Given a dynamic mathematical model of a deterministic nonlinear system, the numerical
techniques may be a straight-forward way to be employed for finding its solutions. As the
mathematical models for physical systems could be depicted in various forms, an overview
of only the methods for solving nonlinear ordinary differential equations (ODEs) will be
provided because this is the primary method used in this thesis.

One of the numerical approaches for finding dynamic solutions is the direct time-integration
of equations of motion (EoMs). The main advantage of this method is its simplicity and
accessibility, e.g. the inbuilt ODE solvers in MATLAB® [58] are a good option. This tech-
nique is also not restricted to the forms of mathematical models, i.e. neither smooth nor
non-smooth systems. Moreover, because it is a time-domain approach, the time-integration
method is inherently employable for simulating system transient dynamic responses, which
may be further processed to find solutions like the steady-state response or frequency re-
sponse functions (FRFs). For example, in [71], Neild and Wagg found the steady-state of a
single-DoF Duffing oscillator using this approach to validate their approximation results of
resonance curves. However, the drawbacks of this method are also obvious. For example, it
is significantly time-consuming and inefficient to implement this on problems of large-scale
systems. Additionally, finding the steady state, or near steady state of a system using such
techniques may take a long time, especially for systems with light damping. Besides, due
to transient or numerical effects, it may be impossible to integrate the unstable steady-state
solutions or even stable solutions but with weak attractions.

The other numerical approach, which is more specific to smooth nonlinear dynamic sys-
tems, is numerical continuation. The theoretical concept of numerical continuation, also
known as parameter continuation, is based on a simple observation that the solutions to pa-
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rameterised mathematical equations are a curve or a manifold of points. This suggests that
the solution to a small, continuous change to a parameter of the EoMs of the underdeter-
mined system will result in a small, continuous change in the solution. Therefore, given an
initial solution point in the parameter space, the solution corresponding to a small change
in a considered parameter can be traced in its immediate neighbourhood, this new found
solution may then be used to find the next solution with another small parameter change
and the procedure repeats. Compared with direct time-integration techniques, the numer-
ical continuation is more efficient in finding the steady-state solutions. Also, the unstable
solutions may also be traced using this technique.

The theory of numerical continuation has been implemented in a variety of software
packages. Some well-known examples in the dynamic community are AUTO-07p, firstly
proposed by Doedel in [21] and accessible from [22], MatCont, developed by Dhooge et al.
[16] and available from [18] with new features added [17], COCO, introduced in [14] and
available from [84] and NNMcont, discussed in [73] by Peeters et al. and available from [72].
Many of the continuation packages were initially developed for the mathematics community
to use, e.g. AUTO-07p, MatCont and COCO. Due to their versatility and extensibility, they
have been employed to help understand complex mechanical dynamic behaviours. For ex-
ample, AUTO-07p was used, in [85], to conduct the bifurcation analysis of an aircraft, which
was reported to be of importance during the aircraft design process. The other example of
the combined use of numerical continuation and other techniques for experimental tests is
given in [77], in which COCO in a controlled manner was adapted to track the locus of the
resonant response of an experimental nonlinear oscillator set-up.

Unlike others, NNMcont is specifically designed for computing the response of nonlin-
ear mechanical structures. More specifically, instead of computing the forced and damped,
i.e. non-conservative, response of the nonlinear mechanical systems, this algorithm allows
for finding the periodic solution of equivalent conservative structures based on the nonlin-

ear normal modes (NNMs) theory [45]. There are numerous mechanical applications of
NNMcont. For example, in the aerospace field, Kerschen et al. [46] adopted it to compute
the NNMs of the airframe of the aircraft and Renson et al. [78] used it to find the NNMs of
a satellite structure.

Comparing the example numerical continuation algorithms, AUTO-07p is written in For-
tran while the other three are implemented in MATLAB®; therefore, AUTO-07p may be less
familiar with structural dynamicists and less compatible with many existing software pack-
ages. Besides, MatCont and NNMcont both use the graphical user interface, which makes
them easily implementable but correspondingly limits their flexibility in the aspect of re-
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search. Therefore, COCO has been employed to conduct the works for this thesis.

2.2.2 Approximate analytical methods

Although numerical approaches are very powerful for solving the nonlinear EoMs of dy-
namic systems, there still exist limitations. Firstly, the numerical results could not implicitly
present the relationships between physical properties of the mechanical systems and nonlin-
ear dynamic behaviours they exhibit without additional tools to aid interpretation. The other
limitation is that the numerical solution can be incomplete, especially when solving nonlin-
ear dynamic equations with multiple solutions, which means that some solutions may not be
found using numerical approaches. This was presented, for example, in [1] when exploring
the dynamic behaviour of nonlinear TMDs that a family of isolated resonant response was
missed in the numerical simulation in [29]. These drawbacks of the numerical approaches
may restrict the insight gained into the mechanisms governing the dynamic behaviour, and,
sometimes even worse, lead to a potential failure scenario.

Considering the analytical methods, the drawbacks of the numerical approach may be
naturally circumvented. It is noteworthy that compared with numerical techniques, the an-
alytical approach also has its limitations, one of which is that the upper bound of the ap-
plication of analytical methods is not known a priori, i.e. the accuracy of the analytically
approximated results for a specific system is unknown before compared with the real solu-
tions. Therefore, the joint use of the numerical and analytical methods will be applied in
this thesis. In the existing literature, the most commonly used approximation methods are
harmonic balance, averaging, multiple scales and normal form [66, 98].

The harmonic balance method is a frequency domain method for calculating the steady
state, which was originally implemented by Baily [3] and Lindenlaub [53]. The idea of this
method is based on the substitution of a pre-assumed solution with a finite number of sinu-
soidal components into the differential EoM and balancing the terms at each frequency after
expanding the expressions and ignoring the higher-order unbalanced terms. This method
has been wildly used to study mechanical structures, e.g. bladed discs [74] and MEMS [47]

The main advantage of the harmonic balance method is its simplicity as no specific as-
sumption is needed, which correspondingly leads to one of its disadvantages that there are
no strict rules for the assumption of the solution for the nonlinear governing ODEs. Thus
the accuracy of this method strictly depends on the choice of the number of harmonics in
the assumed solution [48]. For example, if specific harmonics are of interest, then they may
be included in the assumed solution, which asks for the adopter to have prior knowledge
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of the response of the system under consideration. The other disadvantage of the harmonic
balance method is that its complexity grows exponentially with the number of the sinusoidal
components in the assumed solution, which limits its application in large and complex sys-
tems, e.g. the one with many degrees of freedom. While the automated computation of the
harmonic balance method [15, 97] with the help of the numerical treatment may circumvent
this issue, this is based on the sacrifice of the advantages of the analytical method.

The averaging method is based on the averaging principle that the exact differential
EoM is replaced by its averaged version, i.e. the average response over one period of mo-
tion is considered. Thus, the slow dynamic component of the response, i.e. the fundamental
response, is retained for solving the response while the fast dynamics, i.e. the harmonics,
have been removed. Similar to the harmonic balance method, the assumed solution needs
to be substituted into the EoM. More details about the averaging method applied in nonlin-
ear dynamic systems can be found in the textbook [83]. The significant advantage of this
method is that not only can it be used to find the steady-state response of a system but also
to determine its transient behaviour [96], with which feature the averaging method can be
extensively employed to assess the stability of the steady-state solutions. For example, the
method of averaging was adopted to determine the stability of the modal response solution
of an inclined cable system in [28].

The averaging method also has several disadvantages, one of which is that because of the
averaging process the harmonic terms cannot be considered directly, which limits the insight
given by the solution only into the fundamental components of the response. Additionally,
due to the assumption of small nonlinear terms, the application of the method of averaging
is limited to weakly-nonlinear systems, where the nonlinear terms is much smaller than
the linear ones [98]. While most of the nonlinear analytical approximation methods adopt
the weakly-nonlinear assumption, thus this is not considered as a significant issue in the
thesis. It is noteworthy that the harmonic balance method can approximately solve strongly
nonlinear dynamic problems.

The multiple scales technique, as with the averaging method, employs the concept of
multiple time scales so that the components of the response can be separated into fast and
slow dynamics. However, the difference is that instead of removing the fast components
via averaging, any terms are considered to be of equivalent order by applying different time
scales. Similar to other analytical methods, the application becomes complex when systems
become large.

About the normal form method, the French genius Henri Poincaré has to be mentioned.
He pointed out it is possible to derive the most important information about the behaviour
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of a family of solutions without having to solve the equation. The original context was
that of conservative systems written in Hamiltonian form. The details about Hamiltonian
normal form (or Birkhoff normal form) was introduced in [61]. This Hamiltonian normal
form theory does not allow for the presence of damping, and it is not straightforward to
include forcing. To eliminate the weakness, the other normal form technique about the
transformation of first-order ODEs was developed, named as the first-order normal form

technique [2]. It was first implemented in nonlinear dynamic systems in [40]. Compared
with the Hamiltonian normal form, the damping and force can be treated in the first-order
normal form.

However, there is still an obvious limitation of the first-order normal form technique,
i.e. the coordinates used are non-physical and need to be transformed back to the physi-
cal domain. Consequently, a variant of the normal forms was firstly introduced by Neild
and Wagg in [71] that can be directly applied to second-order differential equations; thus
this method is called the direct normal form technique (or the second-order normal form

technique originally). Because most of the mechanical vibration problems are naturally de-
scribed in the second-order form, the direct normal form technique has its innate advantage.
Additionally, the direct normal form technique is demonstrated to be able to provide more
accurate approximation solutions than the first order equivalent does [71]. Compared with
other techniques discussed so far, the primary advantage of the normal form technique is
that it can inherently compute the harmonics without pre-assuming any specific harmonic
components included in the trial solution. This means that no priori knowledge about the
harmonic components in the response of the system is required and no additional complex-
ity is needed when considering the harmonics. Besides, the process of normal forms can be
formulated in a matrix based manner, which makes its application more appropriate for the
computer automation.

There are a number of research works about nonlinear dynamics of mechanical systems
based on the direct normal form technique. Xin et al. [102] used the direct normal form
technique to consider the single-DoF nonlinear oscillators of polynomial-type nonlineari-
ties involving velocities and displacements. They illustrated the contributions of the dif-
ferent polynomial nonlinearities in different forms to the system response by the resonance
response functions (RRFs) results. In [86], the performance of the nonlinear vibration iso-
lator was investigated using the direct normal form technique. The system was modelled as
a single-DoF oscillator with cubic and quintic nonlinear terms. Shaw et al. [86] estimated a
group of backbone curves of the nonlinear vibration isolator with considering its equivalent
conservative system, which, with the aid of limit curves, can be used to predict the optimum
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restriction of the nonlinear vibration isolator. Cammarano et al. [7] analytically and numer-
ically investigated the optimal load for the nonlinear energy harvester in the case of purely
resistive loads. They found the analytical results approximated using the direct normal form
technique were very close to the numerical results within the frequency range of interest.

The direct normal form technique was also applied to study the nonlinear dynamic be-
haviours of multi-DoF systems. Cammarano et al. [6] studied the bifurcations of the back-
bone curves caused by the modal interaction by considering a 2-DoF oscillator with cubic
nonlinearities and Hill et al. [35] considered the same system to introduce the out-of-unison
resonance behaviour which was also observed in practical systems, such as the taut cable.
In [32], Hill et al. discussed how backbone curves estimated using the normal form method
can be used to guide the design and optimisation of weakly nonlinear systems of multiple
degrees of freedom. The direct normal form technique has been chosen as the main analysis
tool to estimate the dynamic response of the nonlinear systems considered in this thesis. Its
applications and advantages will be demonstrated in detail in the following chapters.

2.2.3 Modal analysis

Modal analysis is based on the concept of modes of vibration which can be used to represent
the system response. Linear modal analysis has been developed over the past half-century,
during which it has been successfully implemented in many fields, e.g. sub-structuring tech-
niques [11] and structural health monitoring [20]. For linear systems, these vibration modes
are decoupled (mutually independent) and the system response can be expressed as the sum-
mation of the response from each mode. The vibration modes are only determined by the
material properties, e.g. mass, damping and stiffness, and structural properties, e.g. bound-
ary conditions, of the system. The number of modes is equal to the degrees of freedom of
the system. Each mode is related to a natural frequency, modal damping and mode shape.

x1 x2

m m

k k k

c c c
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f1 f2

Fig. 2.1 A schematic diagram of an in-line, 2-DoF oscillator with masses, m, linear stiffness
k, linear damping c and nonlinear stiffness κ .
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For example, considering a linear 2-DoF system depicted in Fig. 2.1 whose motion is
governed by the equations,

mẍ1 + c(2ẋ1 − ẋ2)+ k(2x1 − x2) = f1,

mẍ2 + c(2ẋ2 − ẋ1)+ k(2x2 − x1) = f2,
(2.1)

there are two vibration modes: the two lumped masses oscillating in-phase and out-of-phase,
i.e.

φ
⊺
1 = [1 1] and φ

⊺
2 = [1 −1] , (2.2)

where φi is the ith linear mode shape and the superscript ⊺ denotes the transpose. The
equations governing modal motions are
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2
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(2.4)

are the natural frequencies, modal damping ratios and modal forces respectively. Eqs. (2.3)
are fully decoupled which means the two modes can be considered separately and the phys-
ical response of the two lumped masses can then be computed using the superposition prin-
ciple, i.e.

x1 = q1 +q2 and x2 = q1 −q2. (2.5)

For modal analysis of nonlinear structures, one approach is to use the theory of NNMs.
The NNMs concept was first introduced by Rosenberg [82] and, then, Rand [76] and Manevich
and Mikhlin [55] used it to investigate nonlinear dynamic phenomena. Vakakis [94] sys-
tematically studied NNMs defined based on conservative systems. Shaw and Pierre [88]
extended the concept of NNMs to deal with non-conservative systems and the most recent
definition of NNMs was given in [45] by Kerschen et al..

There exist a number of definitions of NNMs in the literature. Rosenberg defined an
NNM as a vibration in unison of the system, i.e. all system points reach their extreme values
and pass through zero simultaneously. Therefore, it allows us to use the displacement of a
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specific point as the reference and then the displacements of the remaining points can be
described by the chosen reference. For example, considering the nonlinear 2-DoF system
shown in Fig. 2.1, its EoMs (without damping or forcing in this case) are written as

mẍ1 + k(2x1 − x2)+κx3
1 +κ(x1 − x2)

3 = 0,

mẍ2 + k(2x2 − x1)+κx3
2 +κ(x2 − x1)

3 = 0.
(2.6)

Using the displacement x1 as the reference coordinate, x2 can be expressed as

x2 = x̂2(x1), (2.7)

where x̂2 is the expression of the modal curve. Then the second time derivative of x2 is

ẍ2 = x̂′′2 ẋ2
1 + x̂′2ẍ1, (2.8)

where prime denotes differentiation with respect to x1. Substituting Eqs. (2.7) and (2.8)
into Eqs. (2.6) and then eliminating time dependence, i.e. ẍ1 and ẋ1, x̂2 may be found.
The detailed introduction to techniques for computing NNMs can be found in [45]. The
most significant advantage of the approach using NNMs is that it is not limited to weakly
nonlinear systems.

The modal decomposition approach can also be incorporated for modal analysis of non-
linear systems. Employing the linear mode shapes derived from the underlying linear struc-
ture of nonlinear systems, the nonlinear EoMs are decomposed into a set of linearly un-
coupled but potentially, nonlinearly coupled modes. For the example system described in
Eq. (2.6), using the linear mode shapes, Eq. (2.2), the nonlinear modal EoMs are

q̈1 +ω
2
n1q1 +

κ

m
(q3

1 +3q1q2
2) = 0,

q̈2 +ω
2
n2q2 +

κ

m
(3q2

1q2 +9q3
2) = 0.

(2.9)

Compared with Eqs. (2.3), Eqs. (2.9) has additional coupled nonlinear terms which means
that the modes may interact and are not independent with each other anymore. This is the
reason that the principle of superposition does not hold for nonlinear systems. The approx-
imated solutions of Eqs. (2.9) can be computed using the normal form technique discussed
in §2.2.2 through a series of transformations and the detailed derivation will be presented in
§3.2. Compared with that using NNMs, the approach using normal form techniques based
on the modal decomposition has two main advantages, especially for weakly nonlinear sys-
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tems: modal interaction can be easily dealt with, and modal superposition can be tackled to
some extent.

2.3 Nonlinear system identification

To apply either numerical or analytical technique to compute the system response for under-
standing nonlinearity in dynamic structures, a mathematical model of the system considered
is required. The derivation of a mathematical model of some simple structures, e.g. a beam
or a plate of simple structural and material properties and well-known and deterministic
nonlinearities, may be straightforward. However, for more complex systems or structures
of unknown/unclear nonlinearity, this could be less evident, in which case, a system iden-
tification technique may be adopted. In this section, the literature for nonlinear system
identification is discussed. It is noteworthy that the discussion here is not a comprehensive
review about the existing approaches for the identification of nonlinear dynamical structures
as this subject is extremely broad, and an extensive literature exists.

One popular technique for nonlinear system identification is the equivalent linearisation

method, which was inspired by the powerful linear system identification based on the modal
analysis. The basic idea of the equivalent linearisation method is to describe the nonlinear
system under identification using a linear system whose dynamic features of interest, e.g.
FRFs and time-series response, are close to those of the nonlinear system. The advantages
of this approach are obvious in that all the well-established linear dynamic techniques may
be straightforwardly applied during its procedures and, also, the resulting linear systems are
easy to solve for any further analysis.

However, there are limitations for the equivalent linearisation method. Due to the nonlin-
ear dynamic response feature of the input-dependent output, the representative linear system
may only be valid for a given excitation type at a specific excitation level. This means that
different linearisation may be required for different excitation situations. Additionally, when
FRFs are the considered criteria, this approach may work better for a system under a random
excitation than under other types of forcing, e.g. harmonic excitation, as only the random
excitation can generate the linear-system-FRFs-liked (nonlinear systems) FRFs. Besides,
since the nonlinear systems are finally linearly described, the modal interaction may not be
directly studied using the results of the equivalent linearisation method.

Another approach to nonlinear system identification is the restoring force surface (RFS)
method. This method was firstly introduced by Masri and Caughey in [57] and a popular
variation, known as force-state mapping, was developed independently by Crawley and
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Aubert [12] and Crawley and O’Donnell [13]. This method involves formulating a surface
describing the relationship between the internal restoring force, displacement and velocity
of one degree of freedom associated with a nonlinearity and this surface is then used to
estimate the parameters based on a proper model of internal forcing chosen based on the
shape of the nonlinearity (surface).

There exist a number of example applications of RFS method to experiment systems. For
example, Kerschen et al. [42] considered an impacting cantilever beam using RFS, where
the system was excited using a band-limited white noise centred on the natural frequency of
the mode of interest and a piecewise linear model was employed for parameters estimation.
One significant advantage of this method is that no a priori knowledge of the system nonlin-
earity is required for obtaining the restoring force surface. Besides, the RFS method is not
restricted to the types of system nonlinearity, e.g. smooth/non-smooth and strong/weak and
the types of forcing, e.g. random excitation and harmonic excitation. However, its limita-
tion is that this technique may be more appropriate to single-DoF systems or systems where
nonlinear behaviour is located in one degree of freedom.

The NARMAX (Nonlinear Auto-Regressive Moving-Average with eXogenous inputs)
modelling technique, which was firstly introduced by Leontaritis and Billings [51, 52], is
the extension of ARX modelling technique to nonlinear systems and enables the addition of
noise models to be included. This approach involves modelling nonlinear dynamic systems
in a discrete-time manner, thus allowing it to inherently work for the physical experiment
test. The NARMAX modelling technique is demonstrated to be very versatile in the sense
that it is not limited to systems with polynomial nonlinearity and with low complexity [4].
The only issue of this approach is that the resulting models do not directly give insight into
the physics of the system being modelled.

The final approach to nonlinear system identification considered is the nonlinear reso-

nant decay (RD) method, which was firstly introduced by Naylor et al. [69] for the identifi-
cation of non-proportionally damped linear systems. The basic idea of this approach is that
the parameters of a system mode of interest can be determined from the free decay response
of such a mode activated with an appropriated force pattern. Because this approach models
the nonlinear systems in the modal space, the number of parameters to be identified may be
enormous. To address this problem, during the initial procedure of RD techniques applica-
tion, the system under identification is usually divided into a sequence of low-dimensional
sub-systems which involves the modes of interaction. Although the RD method has not
been used to identify large-scale continuous structures, there are still several remarkable
applications to discrete systems. For example, Wright et al. [101] applied this method to a
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5-DoF lumped-mass system with nonlinear springs of the cubic stiffness whose second and
fourth modes are nonlinearly coupled.

2.4 Summary

In §2.1, the literature about the characteristics of nonlinearity in mechanical systems and
their effects on system responses were discussed. Among the nonlinear dynamic features,
modal interaction seems to be of prime importance as it results in the failure of the principle
of superposition for nonlinear systems. The occurrence of modal interaction may be prob-
lematic, e.g. increasing the difficulty of nonlinear system designs and causing undesirable
large-amplitude responses. However, the modal interaction can also bring benefits if it is
properly utilised, e.g. the localisation phenomenon can be used for novel vibration isolator
designs.

Based on the observations in §2.1, the following points are concluded:

• Modal interaction plays a significant role in distinguishing linear and nonlinear dy-
namic systems of multiple degrees of freedom, thus to better under nonlinearity in
mechanical systems this specific nonlinear feature will be mainly investigated in this
thesis.

• Most previous work on modal interaction, especially those using analytical approaches,
considered systems only having two degrees of freedom, hence this thesis will further
explore the modal interaction of nonlinear systems of relatively higher degrees of
freedom.

• The modal interaction phenomenon investigated in most literature occurs within sys-
tems under a single-frequency harmonic excitation. Hence the effect of modal inter-
action for the multi-frequency forcing situation will be considered here.

To understand nonlinearity in mechanical systems, the response solutions of nonlinear
systems need to be found. Therefore, in §2.2, two main approaches for solving the solutions
of mathematical models of nonlinear systems were discussed, i.e. numerical and analyti-
cal methods. The main advantage of the numerical approach is that they are not limited
to the complexity of nonlinear systems; while one of its drawbacks is that the numerical
results alone can provide limited insight into the explicit relationships between the physical
properties and dynamic behaviour of systems. This numerical drawback can be inherently
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addressed by analytical techniques. However, the upper bound of the application of analyti-
cal techniques is not known a priori, which, in turn, may be circumvented by validating the
analytical results using numerical ones. Within the several widely-used analytical methods
outlined, the direct normal form technique has been chosen to be employed to investigate
nonlinear behaviour in this thesis due to its advantages for studying modal interaction which
will be presented in detail throughout this thesis. Additionally, the modal analysis for non-
linear systems is discussed. Two approaches using NNMs and modal decomposition based
on normal form technique are compared. The advantages of the normal form analysis ap-
proach are that it can better deal with modal interaction and partially tackle nonlinear modal
superposition.

Based on the observations in §2.2, the following points are summarised:

• Considering the advantages and disadvantages of numerical and analytical techniques,
they will be jointly implemented for the research in this thesis.

• Normal form analysis using the direct normal form technique will be the main ap-
proach for analysing the nonlinear systems in this thesis.

As a mathematical model is the basis of studying nonlinearity in mechanical systems,
lastly, in §2.3, the literature about a number of powerful methods for nonlinear system
identification were reviewed, and the limitations of these methods were discussed. For
example, some of them are difficult to be extensively applied to large-scale systems (systems
of multiple degrees of freedom), and some of them are incapable of producing a model
providing physical insights.

Based on the discussion in §2.3, the following points are concluded:

• The nonlinear system identification approach introduced in this thesis will focus on
the complex systems with modal interaction, suggesting that it may be potentially
applicable to large-scale systems.

• The model generated by the introduced system identification approach must provide
physical insight.





Chapter 3

Analysis tools for nonlinear systems

In this chapter we:

• Derive the direct normal form technique for the general forced and damped nonlinear
system of multiple degrees of freedom.

• Introduce the assumptions made in the direct normal form technique and discuss the
corresponding limitations.

• Derive a method, based on the direct normal form technique, for stability determina-
tion of the steady-state solutions.

• Introduce the backbone curve calculation of the equivalent conservative system of the
general forced and damped nonlinear system using the direct normal form method.

• Demonstrate the capability of the direct normal form technique for estimating the
steady-state forced response via its application to a 1-DoF Duffing oscillator.

• Apply the stability assessment method to analyse the stability of the normal form
solutions of the 1-DoF Duffing oscillator.

• Calculate the backbone curve of the 1-DoF Duffing oscillator and demonstrate its
relation with the forced responses.

3.1 Introduction

Given a mathematical description of a nonlinear system, there are mainly two approaches
to tackle it: numerical and approximate analytical. The numerical approach seems to be
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versatile and able to efficiently provide an approximate solution for problems in any form
(e.g. ordinary differential equation or partial differential equation) with almost any type of
nonlinearity (e.g. smooth or non-smooth nonlinear). However, using the numerical results
to gain insight into the underlying physics of nonlinear systems remains challenging.

On the contrary, the analytical approach may often end up with explicit expressions
describing the relationship between the nonlinear dynamic behaviour of systems (e.g. forced
response), and their properties (e.g. physical parameters) and external excitations, such as
the frequency response function (FRF). However, the significant shortcoming is that there
is no exact analytical solution for the majority of nonlinear problems which means that the
solutions often have to be approximated. In spite of this, as long as a sufficiently accurate
solution is able to be provided, analytical techniques can still give a valuable insight to
understanding the nonlinear behaviour of systems of interest. Besides, analytical techniques
are generally limited to systems of low degrees of freedom, while it is sufficient for the
works in this thesis.

There exist a number of analytical techniques that may be applicable for the nonlinear
systems considered in this thesis, amongst which the most popular and widely used ones
are harmonic balance and multiple scales [66, 98]. A key issue of these techniques is the
complexity when they are applied to systems of multiple degrees of freedom. For exam-
ple in the case of harmonic balance, it is incredibly challenging for the adaptor to decide
which of the harmonic components should be included in the pre-assumed solution and in
the case of multiple scales, finding the solutions of the resulting nested equations are often
not straightforward. The other analytical method is the normal form technique which was
firstly introduced in the version applied to first-order differential equations, termed as first-

order normal form technique [2]. One of the advantages of the normal form technique is its
inherent ability for considering the modal interaction, suggesting it is well suitable for sys-
tems with multiple degrees of freedom. However, the shortcoming of the first-order normal
form technique is that, as described, it requires the problem to be formulated in a first-order
or state-space form for its application, while, most of the vibration problems are naturally
formulated with second-order differential EoMs. To circumvent this, a variant normal form,
named as direct normal form and originally known as second-order normal form [71], was
introduced. This technique can be directly applied to second-order differential equations
of nonlinear oscillators. Compared with the first-order method, the second-order variant is
demonstrated to be able to provide more accurate approximated solutions, see [71]. The
direct normal form technique will be used throughout this thesis.

This chapter is composed of four themed sections. Section §3.2 presents the derivation
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of the direct normal form technique applied to a general forced and damped nonlinear sys-
tem of multiple degrees of freedom to estimate its steady-state response. It provides a basis
introduction of the application of this technique, alongside with its assumptions and limita-
tions. Then in the following section, §3.3, an analytical method used to assess the stability
of the steady-state solutions is introduced. This method was introduced in [102] and has
been applied to nonlinear forced systems in [98]. As this method is affiliated with the direct
normal form technique, it can be directly applied to the normal form solutions. Section
§3.4 derives the direct normal form technique for estimating backbone curves of the general
nonlinear system. As the conservative EoM, in the unforced and undamped form, of the
nonlinear system is under consideration when computing backbone curves, the derivation is
presented in a way that distinguishes it from that in §3.2. In order to gain a more practical
understanding, all the techniques outlined are applied to a 1-DoF, forced Duffing oscillator
in the final themed section, §3.5. These techniques outlined will provide a foundation for
the work presented in later chapters of this thesis.

3.2 Direct normal form method

Similar to some other nonlinear analytical techniques like averaging and multiple scales, the
basic idea of the direct normal form method is: through transforming the original nonlinear
EoM to one in terms of the coordinates composed of just the primary response (e.g. without
harmonic components), the resulting approximated EoM may be then analytically solved
directly. Based on the invertibility of the transforms, the approximated solutions, in terms
of the original coordinates, can be finally reconstructed.

To better demonstrate the derivation of the direct normal form technique, an N-DoF
nonlinear system forced at a single-frequency sine wave is considered. The EoM of this
system may be described as,

Mẍ+ εCẋ+Kx+ εΓΓΓx(x, ẋ,r) = Pxr, (3.1)

where x is an {N × 1} vector of physical displacements, and M, C and K are {N ×N}
matrices of mass, linear damping and linear stiffness respectively. The external force is
expressed as the product of an {N ×2} matrix Px and the {2×1} vector r, written as

Px =

[
P̄x

2
P̄x

2

]
and r⊺ = (rp rm) =

(
e+iΩt e−iΩt

)
, (3.2)
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where P̄x is an {N × 1} vector whose ith element is the amplitude of the sinusoidal exci-
tation applied to the ith degree-of-freedom, Ω is the frequency of the external excitation, i
is the imaginary unit, and t is time. ΓΓΓx (x, ẋ,r) is an {N × 1} vector containing stiffness,
damping and forcing related nonlinear terms which are assumed to be able to be expressed
in a polynomial form in terms of x, ẋ and r. In Eq. (3.1), a bookkeeping parameter, ε , is
used to denote the smallness of the linear damping and nonlinear terms which are assumed
to be small relative to the linear stiffness and inertia terms, i.e. weak nonlinearity. For the
application of the direct normal form technique, it is conventional to cluster all the small

terms, i.e. the one of order ε , thus Eq. (3.1) may become,

Mẍ+Kx+ εNx(x, ẋ,r) = Pxr, (3.3)

where εNx (x, ẋ,r) = εΓx (x, ẋ,r)+ εCẋ such that Nx is an {N × 1} vector containing the
nonlinear and damping terms.

Now the direct normal form technique is ready to be applied and the whole process
consists of three sequential transformations, i.e.

Linear modal transform x → q
This exact transform is to convert the EoM in terms of
from the physical coordinates, x, to the linear modal
coordinates, q, to decouple the linear terms.

Forcing transform q → v
This approximate transform is to describe the motion
in new coordinates, v, via removing the non-resonant
forcing from the linear modal EoM in terms of q.

Nonlinear near-identity
transform

v → u

This approximate transform is to describe the mo-
tion in resonant coordinates, u, via removing the non-
resonant, i.e. sub- and super-harmonic, terms from the
transformed EoM in v.

The details of each of these transforms will be introduced in the following subsections.

3.2.1 Linear modal transform

The first step of the direct normal form technique is the linear modal transform (x → q), in
which the linear terms in Eq. (3.3) are decoupled. Note that due to its aim, this transform
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may be omitted for the case where EoMs are already described in the modal coordinates or
in a linearly decoupled form. This linear modal transform is written as,

x =ΦΦΦq, (3.4)

where q is an {N × 1} vector of linear modal displacements and ΦΦΦ is an {N ×N} linear
modeshape matrix whose ith column is the modeshape of the ith linear mode. Here the
modeshape matrix may be found from the eigenvalue problem described as

ΦΦΦΛΛΛ =ΛΛΛΦΦΦ = M−1KΦΦΦ, (3.5)

where ΛΛΛ is an {N ×N} diagonal matrix whose ith leading diagonal term is the square of the
natural frequency of the ith linear mode, i.e.

ΛΛΛ =


ω2

n1 0 · · · 0
0 ω2

n2 · · · 0
...

... . . . ...
0 0 · · · ω2

nN

 . (3.6)

Substituting Eq. (3.3) with the linear modal transform expression, Eq. (3.4), and then pre-
multiplying by ΦΦΦ⊺ leads to

(ΦΦΦ⊺MΦΦΦ) q̈+(ΦΦΦ⊺KΦΦΦ)q+ εΦΦΦ
⊺Nx(ΦΦΦq,ΦΦΦq̇,r) =ΦΦΦ

⊺Pxr. (3.7)

This is further premultiplied by (ΦΦΦ⊺MΦΦΦ)−1 gives the EoM described in the linear modal
coordinates,

q̈+ΛΛΛq+ εNq(q, q̇,r) = Pqr. (3.8)

The matrix of nonlinear and damping terms and force amplitude vector in modal coordinates
q are

εNq(q, q̇,r) = εΦΦΦ
−1M−1Nx(ΦΦΦq,ΦΦΦq̇,r), (3.9)

Pq =ΦΦΦ
−1M−1Px. (3.10)

3.2.2 Forcing transform

The second step of the direct normal form technique is the forcing transform (q → v), in
which any non-resonant forcing terms are removed. Note that due to its aim, this transform
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may be performed by simply applying v = q for the case when systems are unforced (this
case is illustrated in §3.4 related to backbone curves). This forcing transform is written as,

q = v+ er, (3.11)

where e is an {N ×2} transform matrix. Substituting Eq. (3.11) into Eq. (3.8) gives

v̈+ eWWr+ΛΛΛv+ΛΛΛer+ εNq (v+ er, v̇+ eWr,r) = Pqr, (3.12)

where W is a {2×2} diagonal matrix with diagonal elements +iΩ and −iΩ, i.e.

W =

[
+iΩ 0

0 −iΩ

]
. (3.13)

Once the non-resonant forcing terms have been removed, the transformed equation, Eq. (3.12),
is expected to be of the form as

v̈+ΛΛΛv+ εNv (v, v̇,r) = Pvr, (3.14)

where Nv is an {N × 1} vector of nonlinear and damping terms in v and Pv is an {N × 2}
matrix of near-resonant forcing amplitudes in which the near-resonant one may be retained
and non-resonant removed.

It is proposed in [98] that the forcing applied to the ith linear mode is near-resonant when
its frequency, Ω, is close to the linear natural frequency of that mode, ωni. Therefore the ith

row of Pv may set to be

Pv,i =

{
Pq,i if: Ω ≈ ωni,

[ 0 0 ] if: Ω ̸≈ ωni,
(3.15)

where the second subscript, i, of Pv,i and Pq,i denotes the ith row of Pv and Pq.
Now, to determine the transform matrix e, comparing Eq. (3.12) with Eq. (3.14) leads to

εNv (v, v̇,r) = εNq (v+ er, v̇+ eWr,r) , (3.16)

Pv = Pq − eWW−ΛΛΛe. (3.17)

Rearranging Eq. (3.17) with using Eq. (3.13) gives

Pq = Pv +
(
ΛΛΛ−Ω

2IN
)

e, (3.18)
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where IN is an {N ×N} identity matrix. Then, the matrix e can be calculated using

e =
(
ΛΛΛ−Ω

2IN
)−1

(Pq −Pv), (3.19)

but using a unique arithmetic rule that 0/0 = 0 in the case Ω = ωni. A more rigorous way
of solving e is to consider it row by row, i.e. taking the ith row of Eq. (3.18) with Eq. (3.6)
gives

Pq,i = Pv,i +(ω2
ni −Ω

2)ei; (3.20)

where ei is the ith row of e. Considering Eqs. (3.15) and (3.20), ei may be defined as,

ei =


[ 0 0 ] if: Ω ≈ ωni,

Pq,i

ω2
ni −Ω2 if: Ω ̸≈ ωni.

(3.21)

After the force transform matrix e is obtained, it can be used for computing the transformed
vector Nv, see Eq. (3.16).

3.2.3 Nonlinear near-identity transform

The last step of the direct normal form technique is the nonlinear near-identity transform
(v→ u), in which the harmonic response components are removed from Eq. (3.14) resulting
in a resonant EoM. This transform is written as,

v = u+ εH(u, u̇,r), (3.22)

where u and H are the fundamental and harmonic components of v respectively. In the
nonlinear near-identity transform, the harmonics are assumed to be small relative to the
fundamental components due to the weak nonlinearity assumption, hence H(u, u̇,r) is noted
to be of order ε . Since the harmonic components are removed, it is reasonable for us to
assume the solution of the ith element of u, which is the fundamental response of the ith

linear mode, to be
ui =Ui cos(ωrit −φi), (3.23)

where Ui, ωri and φi are the response amplitude, frequency and phase of ui respectively.
Here, an {N ×N} diagonal matrix ϒϒϒ of the resonant response frequencies is introduced and
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its ith leading diagonal terms is ω2
ri, thus

ϒϒϒ =


ω2

r1 0 · · · 0
0 ω2

r2 · · · 0
...

... . . . ...
0 0 · · · ω2

rN

 . (3.24)

Therefore, the second-order derivative of the resonant response vector, u, may be expressed
as

ü =−ϒϒϒu. (3.25)

After the nonlinear near-identity transform, the resulting transformed resonant EoM may
be written in the form of

ü+Λu+ εNu (u, u̇,r) = Pur, (3.26)

where Nu is an {N ×1} vector of resonant nonlinear and damping terms, and Pu is an
{N ×2} matrix of resonant forcing amplitude terms. In Eq. (3.26), all terms in its ith row
respond sinusoidally at the resonant response frequency of the ith linear mode, ωri. Using
Eq. (3.25), the resonant EoM, Eq. (3.26), may be written as,

(ΛΛΛ−ϒϒϒ)u+ εNu(u, u̇,r) = Pur. (3.27)

This equation is finally used to formulate a set of time-invariant expressions related to Ui,
ωri and φi, which can be solved to find the solution in terms of u.

Now to determinate the resonant terms retained in Eq. (3.14), the first step in the non-
linear near-identity transform is to substitute Eq. (3.22) into Eq. (3.14), giving

ü+ εḦ+ΛΛΛu+ εΛΛΛH+ εNv(u+ εH, u̇+ εḢ,r) = Pvr. (3.28)

Comparing Eq. (3.28) with Eq. (3.26) leads to

εḦ+ εΛΛΛH+ εNv(u+ εH, u̇+ εḢ,r)−Pvr = εNu(u, u̇,r)−Pur. (3.29)

The vectors Nu and H are expressed in a series form as

εNu(u, u̇,r) =
∞

∑
j=1

ε
jnu( j)(u, u̇,r) = εnu(1)(u, u̇,r)+ ε

2nu(2)(u, u̇,r)+ · · · , (3.30)
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εH(u, u̇,r) =
∞

∑
j=1

ε
jh( j)(u, u̇,r) = εh(1)(u, u̇,r)+ ε

2h(2)(u, u̇,r)+ · · · , (3.31)

where nu( j) and h( j) are the {N ×1} vectors in the identical form of Nu and H respectively.
Note that Eqs. (3.30) and (3.31) are not Taylor series expansions but decompositions into
a series of terms of reducing significance. Also note that nu( j) and h( j) are different from
Nu,i and Hi which are the ith elements of Nu and H respectively. Then, Nv is expanded in a
Taylor series about the equilibrium [u, u̇], written

Nv(u+ εH, u̇+ εḢ,r)

=
∞

∑
ℓ1=0

∞

∑
ℓ2=0

[
1

ℓ1!ℓ2!
∇
ℓ2
˙̄u

[
∇
ℓ1
ū Nv(ū, ˙̄u,r){εH(u, u̇,r)}ℓ1

]
ū=u

{
εḢ(u, u̇,r)

}ℓ2

]
˙̄u=u̇

= Nv(u, u̇,r)+ ε

(
[∇ūNv(ū, u̇,r)]ū=u H+[∇ ˙̄uNv(u, ˙̄u,r)] ˙̄u=u̇ Ḣ

)
+O(ε2),

(3.32)

where ℓi! denotes the factorial of ℓi, O(ε2) includes the terms of second- and higher-order
ε , and ∇ū and ∇ ˙̄u are the Jacobian operator in terms of ū and ˙̄u respectively, written

∇ū =
∂

∂ ū
=

[
∂

∂ ū1

∂

∂ ū2
· · · ∂

∂ ūN

]
, (3.33a)

∇ ˙̄u =
∂

∂ ˙̄u
=

[
∂

∂ ˙̄u1

∂

∂ ˙̄u2
· · · ∂

∂ ˙̄uN

]
. (3.33b)

Besides, a frequency detuning process is introduced using the detuning expression, written
as

ΛΛΛ =ϒϒϒ+ ε (ΛΛΛ−ϒϒϒ) , (3.34)

which is based on the observation that the response frequencies of nonlinear systems are
often distinct from linear natural frequencies, i.e. typically ΛΛΛ ̸=ϒϒϒ. In this process, it allows
the approximation ΛΛΛ = ϒϒϒ to be made in the order ε0 and the difference between ΛΛΛ and ϒϒϒ

is of order ε1. More detailed discussion about accuracy effects of the detuning step can be
found in [70].

Now, substituting Eqs. (3.30-3.32) and Eq. (3.34) into Eq. (3.29) leads to

εḧ(1)+ ε
2ḧ(2)+ εϒϒϒh(1)+ ε

2 (ΛΛΛ−ϒϒϒ)h(1)+ ε
2
ΛΛΛh(2)+ εNv

+ ε
2
(

∂Nv

∂u
h(1)+

∂Nv

∂ u̇
ḣ(1)

)
−Pvr− εnu(1)− ε

2nu(2)−Pur+O(ε3) = 0.
(3.35)



32 Analysis tools for nonlinear systems

Balancing the terms of different orders of ε in Eq. (3.35) gives

ε
0 : Pur = Pvr, (3.36a)

ε
1 : nu(1)(u, u̇,r) = nv(1)(u, u̇,r)+ ḧ(1)(u, u̇,r)+ϒϒϒh(1)(u, u̇,r), (3.36b)

ε
2 : nu(2)(u, u̇,r) = nv(2)(u, u̇,r)+ ḧ(2)(u, u̇,r)+ϒϒϒh(2)(u, u̇,r), (3.36c)

...
...

where

nv(1)(u, u̇,r) = Nv(u, u̇,r), (3.37a)

nv(2)(u, u̇,r) =
(

ΛΛΛ−ϒϒϒ+
∂Nv

∂u

)
h(1)(u, u̇,r)+

∂Nv

∂ u̇
ḣ(1)(u, u̇,r). (3.37b)

In Eqs. (3.36), the equation associating to ε j is referred as the jth homological equation [31].
For the 0th homological equation, Eq. (3.36a), it may be easily satisfied by simply setting

Pu = Pv. (3.38)

However the solutions of the homological equations of order ε1 and above may not be
unique because of the existence of multiple unknowns, i.e. nu( j) and h( j). This suggests that
further considerations are required.

Now, writing the solution of ui, Eq. (3.23), in the exponential form gives

ui = uip +uim =
Ui

2
e+i(ωrit−φi)+

Ui

2
e−i(ωrit−φi), (3.39)

where the subscripts p and m denote the signs of the exponents. Then substituting Eqs. (3.2)
and (3.39), nv( j)(u, u̇,r), nu( j)(u, u̇,r) and h( j)(u, u̇,r) may be expressed as the functions of
uip, uim and rp and rm which are further rearranged into the matrix form as

nv( j)(u, u̇,r) =
[
nv( j)

]
u∗
( j)(up,um,rm,rp), (3.40a)

nu( j)(u, u̇,r) =
[
nu( j)

]
u∗
( j)(up,um,rm,rp), (3.40b)

h( j)(u, u̇,r) =
[
h( j)
]

u∗
( j)(up,um,rm,rp), (3.40c)

where up and um are {N ×1} vectors of uip and uim respectively, u∗
( j) is an

{
L j ×1

}
vector

of unique combinations of uip, uim, rp and ri appearing in the jth homological equation and
[nv( j)], [nu( j)] and [h( j)] are

{
N ×L j

}
matrices of the time-invariant coefficients correspond-
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ing to the terms in u∗
( j). For the case of polynomial nonlinear terms under consideration, the

ℓth element of u∗
( j) may be written as

u∗( j)ℓ = r
mp j,ℓ
p r

mm j,ℓ
m

N

∏
i=1

u
sp j,ℓ,i
ip u

sm j,ℓ,i
im , (3.41)

where mp j,ℓ, mm j,ℓ, sp j,ℓ,i and sm j,ℓ,i are exponents of rp, rm, uip and uim in the ℓth element
of u∗

( j) respectively. By considering Eqs. (3.2) and (3.39), the ℓth element of u∗
( j) may also

be written in the exponential form as

u∗( j)ℓ =U∗
( j)ℓ exp

(
i
[
ω

∗
( j)ℓt −φ

∗
( j)ℓ

])
, (3.42)

where

U∗
( j)ℓ =

N

∏
i=1

(
Ui

2

)sp j,ℓ,i+sm j,ℓ,i

, (3.43a)

φ
∗
( j)ℓ =

N

∑
i=1

(
sm j,ℓ,i − sp j,ℓ,i

)
φi, (3.43b)

ω
∗
( j)ℓ =

(
mp j,ℓ−mm j,ℓ

)
Ω+

N

∑
i=1

(
sp j,ℓ,i − sm j,ℓ,i

)
ωri. (3.43c)

Then we may observe a significant feature of the elements of u∗
( j) that its second-order

derivative is the product of a time-invariant coefficient and itself, i.e.

ü∗( j)ℓ =−[ω∗
( j)ℓ]

2u∗( j)ℓ. (3.44)

Therefore, ü∗
( j) may be expressed as

ü∗
( j) =−

[
C( j)

]⊺ ◦u∗
( j). (3.45)

where
[
C( j)

]
is a

{
1×L j

}
row vector with the ℓth element given by,

[
C( j)

]
ℓ
= [ω∗

( j)ℓ]
2, (3.46)

and ◦ denotes the Hadamard product operator with the definition: for two matrices, A and
B, with the identical dimension, {M×N}, their Hadamard product, A◦B, is a matrix of the
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same dimension, whose elements are

[A◦B]i, j = Ai, jBi, j, (3.47)

where 1 ⩽ i ⩽ M and 1 ⩽ j ⩽ N. Now substituting Eqs. (3.40) and (3.45), the expression of
the homological equation for ε j (where j > 0) from Eq. (3.36) may become

[
nu( j)

]
u∗
( j) =−

[
h( j)
][[

C( j)
]⊺ ◦u∗

( j)

]
+ϒϒϒ

[
h( j)
]

u∗
( j)+

[
nv( j)

]
u∗
( j), (3.48a)

=−
[
C( j)

]
[N]

◦
[
h( j)
]

u∗
( j)+

[
ϒ( j)

]
◦
[
h( j)
]

u∗
( j)+

[
nv( j)

]
u∗
( j), (3.48b)

where
[
C( j)

]
[N]

is an
{

N ×L j
}

matrix whose nth row is
[
C( j)

]
and

[
ϒ( j)

]
is an

{
N ×L j

}
matrix whose nth row is all of ω2

ri, i.e.

[
ϒ( j)

]
=


ω2

r1 ω2
r1 · · · ω2

r1

ω2
r2 ω2

r2 · · · ω2
r2

...
... . . . ...

ω2
rn ω2

rn · · · ω2
rn

 . (3.49)

It can be seen that Eq. (3.48b) can be satisfied by simply setting

[
nu( j)

]
=
[
nv( j)

]
−
[
C( j)

]
[N]

◦
[
h( j)
]
+
[
ϒ( j)

]
◦
[
h( j)
]
, (3.50a)

=
[
nv( j)

]
−βββ ( j) ◦

[
h( j)
]
, (3.50b)

where the βββ ( j) =
[
C( j)

]
[N]

−
[
ϒ( j)

]
is an

{
N ×L j

}
matrix whose {i, ℓ} th element is

β( j)i,ℓ = ω
∗2
j,ℓ−ω

2
ri. (3.51)

Eq. (3.50b) cannot be solved uniquely yet due to the multiple unknowns,
[
nu( j)

]
and

[
h( j)
]
,

inherited from nu( j) and h( j) respectively. To address this, the definition of the nonlinear
near-identity transform is reconsidered, which is the ith element of nu( j) is resonant which
must respond at the frequency ωri and, while, that in h( j) is non-resonant hence must respond
at frequencies other than ωri. From Eq. (3.42), it is known that the frequency at which u∗( j)ℓ

oscillates is denoted by ω∗
( j)ℓ, hence if ω∗

( j)ℓ = ±ωri it may be stated that the term u∗( j)ℓ is
resonant with the ith mode. Therefore its corresponding element in the resonant coefficient
matrix,

[
nu( j)

]
i,ℓ, is expected to be equal to the nonlinear coefficients,

[
nv( j)

]
i,ℓ, and the

corresponding elements in the matrix of harmonic coefficients, is zero, i.e.
[
h( j)
]

i,ℓ = 0. In
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contrast, if ω∗
( j)l ̸= ±ωri, u∗( j)ℓ is non-resonant with the ith mode then the corresponding

resonant coefficient should be zero, i.e.
[
nu( j)

]
i,ℓ = 0, and harmonic coefficient must be

non-zero, i.e.
[
h( j)
]

i,ℓ ̸= 0.
Considering Eq. (3.51), when ω∗

( j)ℓ = ±ωri, β( j)i,ℓ = 0 and when ω∗
( j)ℓ ̸= ±ωri, then

β( j)i,ℓ ̸= 0. Hence the matrix βββ ( j) may be used as an index for the selection of resonant
terms from

[
nv( j)

]
, which correspondingly determines the values of elements in

[
nu( j)

]
.

Therefore, by using Eq. (3.50b) the criteria of the near-identity transform selection based on
matrix βββ ( j) may be described as

[
nu( j)

]
i,ℓ =

[
nv( j)

]
i,ℓ and

[
h( j)
]

i,ℓ = 0, if: β( j)i,ℓ = 0, (3.52a)

[
nu( j)

]
i,ℓ = 0 and

[
h( j)
]

i,ℓ =

[
nu( j)

]
i,ℓ

β( j)i,ℓ
, if: β( j)i,ℓ ̸= 0. (3.52b)

This selection criteria can also be mathematically expressed as

[
nu( j)

]
= δ (βββ ( j))◦

[
nv( j)

]
, (3.53a)[

h( j)
]
=
[[

nv( j)
]
−
[
nu( j)

]]
⊘ βββ ( j), (3.53b)

where δ (βββ ( j)) is an
{

N ×L j
}

Dirac delta matrix with the element value to be 0 or 1 de-
termined by the corresponding term value of βββ ( j) and ⊘ is the Hadamard division operator
whose definition is that C = A⊘B : Ci j = Ai j/Bi j. Note that 0/0 = 0 is defined as with
Eq. (3.19). This expression, Eqs. (3.53), can be directly applied in a computer program.

Once
[
nu( j)

]
and

[
h( j)
]

are determined to the required accuracy level, ε j, Eqs. (3.40b)
and (3.30) are used to compute Nu. Based on the transform assumption that the ith element
of Nu is resonating at the frequency ωri, it may be written as

Nu,i = N+
ui e

+iωri t +N−
ui e

−iωri t , (3.54)

where N+
ui and N−

ui are a complex conjugate pair and time-invariant. Substituting Eq. (3.54)
into Eq. (3.27) and using Eqs. (3.2) and (3.39), the ith row of the resonant EoM may be
written as[(

ω
2
ni −ω

2
ri
)Ui

2
e−iφi +N+

ui −Pu,i

]
e+iωrit +

[(
ω

2
ni −ω

2
ri
)Ui

2
e+iφi +N−

ui −Pu,i

]
e−iωrit = 0,

(3.55)
where Pu,i is the {i,1} th element of Pu. It can be seen that the content of the square brackets
in Eq. (3.55) are a complex conjugate pair, so in order to satisfy the equation, both of them
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must be zero, i.e. (
ω

2
ni −ω

2
ri
)Ui

2
e∓iφi +N±

ui = Pu,i. (3.56)

This equation can be solved to find the solutions of Ui and φi and then the vector of funda-
mental response, u, can be formed.

Additionally based on Eqs. (3.40c) and (3.31), the vector of harmonic response is calcu-
lated via the expression

H(u, u̇,r) =
J

∑
j=1

[
h( j)
]

u∗
j (up,um,rp,rm) , (3.57)

where J is the level of accuracy adopted.
After finding u and H, a series of inverting transforms are applied to find the solution

x: firstly, the nonlinear transform expression, Eq. (3.22), is applied to find the solution of v.
Then the response in the modal coordinates, q, may be found using the forcing transform
expression, Eq. (3.11) and lastly the physical response, x, found using the linear modal
transform Eq. (3.4). Finally, the solution of physical displacement response may be written
as

x =ΦΦΦ [u+H(u, u̇,r)+ er] . (3.58)

The whole process of the application of the direct normal form technique on the N-DoF
nonlinear system with polynomial nonlinearities is given in Algorithm 1.

3.2.4 Discussion of limitations

While the direct normal form technique outlined is powerful, there is still a number of lim-
itations that we may see from its application process. The most obvious one may be that
this technique is only applicable to systems with nonlinearities expressed in the polynomial
form. But fortunately, many of the smooth nonlinearities of interest may be expressed or ap-
proximated to be in the polynomial form, e.g. using the Taylor series expansion, which will
be seen in Chapter 6. Then another limitation should be caused by its smallness assumption
of the nonlinear and damping terms, see Eq. (3.3), and the difference from the response
frequency to the corresponding linear natural frequency, Eq. (3.34). The further limitation
is that this technique can only be used to determine steady-state, periodic response due to
the assumed sinusoidal solution, see Eq. (3.23). Therefore, the non-periodic solutions, e.g.
transient, quasi-periodic and chaotic responses, may not be able to be approximated using
this technique without some modification. Additionally, although the direct normal form
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Algorithm 1 Direct normal form technique
Input: Mass matrix, M, linear stiffness matrix K, nonlinear and linear damping terms vec-

tor Nx, forcing amplitudes matrix Px and forcing frequency Ω.

Output: Displacement response x.

Linear modal transform:
1: Calculate linear natural frequencies, ΛΛΛ, and modeshapes, ΦΦΦ, using Eq. (3.5).
2: Calculate nonlinear and linear damping terms, Nq, and forcing amplitudes, Pq, in modal

space using Eqs. (3.9) and (3.10) respectively.

Forcing transform:
3: Determine resonant forcing amplitudes, Pv, using Eq. (3.15).
4: Calculate the forcing transform matrix, e, using Eq. (3.19).
5: Calculate nonlinear and linear damping terms after the forcing transform, Nv, using

Eq. (3.16).

Nonlinear near-identity transform:
6: for j = 1, · · · , J do
7: Calculate the nonlinear and linear damping terms in the jth homological equation,

nv( j), using Eq. (3.37).
8: Determine the nonlinear and linear damping coefficients, [nv( j)], and unique combi-

nation of variables, u∗
( j), in the jth homological equation, using Eq. (3.40a).

9: Calculate the indexes for determing resonant terms in the jth homological equation,
βββ ( j), using Eq. (3.51).

10: Calculate the coefficients of resonant terms, [nu( j)], and of harmonic terms, [h( j)], in
the jth homological equation, using Eqs. (3.53).

11: end for
12: Calculate the resonant nonlinear and linear damping terms, Nu, using Eqs. (3.40b) and

(3.30).
13: Find N+

ui and N−
ui of the ith mode, using Eq. (3.54).

14: Solve the response amplitudes, Ui, and phases, φi, of the ith mode using Eq. (3.56).
15: Form the fundamental modal response, u, using Eq. (3.23).
16: Calculate the harmonic modal response, H, using Eq. (3.57).

Inverse transforms:
17: Find the physical displacement response, x, using Eq. (3.58).
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technique is suitable for nonlinear systems of multiple degrees of freedom, it is still limited
to low dimensional systems as the computing complexity will exponentially increase with
the system degrees of freedom.

3.3 Stability analysis of the steady-state solution

Now a method for analysing the stability of the estimated solution obtained via the direct
normal form technique application is introduced. This method is firstly used in [102] and
re-derived in [31]. The idea of this method is based on considering a perturbation from the
steady-state solution and then the stability of the solution is determined by examining the
stability of the perturbation.

A solution of the ith mode that deviates from its steady-state is first considered. The
amplitude, Ui, and phase, φi, of the solution are allowed to be slowly varying with time,
such that it can written as

ui =Upi(εt)eiωrit +Umi(εt)e−iωrit , (3.59)

where t is time and Upi(εt) and Umi(εt) are a complex conjugate pair such that

Upi =
1
2

Ui(εt)e−iφi(εt) and Umi =
1
2

Ui(εt)e+iφi(εt). (3.60)

Here ε denotes smallness as with the normal form analysis, and the amplitude and phase
of the solution are functions of time, i.e. Ui = Ui(εt) and φi = φi(εt), which represent the
slowly time-varying assumptions. Then, the first and second time-derivatives of ui, from
Eq. (3.59), may be written as

u̇i = iωri

(
Upie+iωrit −Umie−iωrit

)
+O(ε1), (3.61a)

üi =−ω
2
riui + εi2ωri

(
U ′

pie
+iωrit −U ′

mie
−iωrit

)
+O(ε2), (3.61b)

where the prime denotes the derivative with respect to (εt), i.e.

U ′
pi =

dUpi

d(εt)
and U ′

mi =
dUmi

d(εt)
. (3.62)

In Eq. (3.61), the u̇i is truncated at order ε1 because the velocity related terms are assumed to
only appear in nonlinear and damping terms which are considered to be of order ε1 already,
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while the acceleration related terms are considered to be of order ε0, hence üi is truncated
at order ε2. Therefore, the complete expression with their substitutions is truncated at order
ε2. Substituting Eqs. (3.59) and (3.61) into the ith resonant equation, Eq. (3.26), gives[

+ i2ωriU ′
pi+(ω2

ni −ω
2
ri)Upi +N+

ui −Pui
]
e+iωrit

+
[
− i2ωriU ′

mi +(ω2
ni −ω

2
ri)Umi +N−

ui −Pui
]
e−iωrit = 0,

(3.63)

where the complex conjugate N+
ui and N−

ui are those obtained from Nui in the same manner
as those from Eq. (3.54). To satisfy Eq. (3.63), the contents of the square brackets must be
equated to zero, such that

U ′
pi =+

i
2ωri

[
(ω2

ni −ω
2
ri)Upi +N+

ui −Pui
]
, (3.64a)

U ′
mi =− i

2ωri

[
(ω2

ni −ω
2
ri)Umi +N−

ui −Pui
]
. (3.64b)

Now introducing a vector of amplitude and phase components, written as U, such that

U =
(

Up1 Um1 ··· Upi Umi ··· UpN UmN
)⊺
, (3.65)

Eqs. (3.64) may be expressed in a functional form, i.e.

U′ =
(

U ′
p1 U ′

m1 ··· U ′
pi U ′

mi ··· U ′
pN U ′

mN

)⊺
= f(U). (3.66)

Considering that the initial definition of the solution, which is the one with a small derivation
from its steady state, it can also be written as a sum of a steady-state solution, written as
Uss, and a small perturbation, εUpb, such that

U = Uss + εUpb. (3.67)

Eq. (3.67) is substituted into the expression of U′, Eq. (3.66), and then a Taylor series ex-
pansion to order ε1 is applied, giving

U′
ss + εU′

pb = f(Uss + εUpb) (3.68a)

= f(Uss)+ εfU(Uss)Ubp +O(ε2), (3.68b)
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where fU is the Jacobian matrix of f with respect to U, such that

fU =



∂ f1
∂Up1

∂ f1
∂Um1

· · · ∂ f1
∂Upi

∂ f1
∂Umi

· · · ∂ f1
∂UpN

∂ f1
∂UmN

∂ f2
∂Up1

∂ f2
∂Um1

· · · ∂ f2
∂Upi

∂ f2
∂Umi

· · · ∂ f2
∂UpN

∂ f2
∂UmN

...
... . . . ...

... . . . ...
...

∂ f2N−1
∂Up1

∂ f2N−1
∂Um1

· · · ∂ f2N−1
∂Upi

∂ f2N−1
∂Umi

· · · ∂ f2N−1
∂UpN

∂ f2N−1
∂UmN

∂ f2N
∂Up1

∂ f2N
∂Um1

· · · ∂ f2N
∂Upi

∂ f2N
∂Umi

· · · ∂ f2N
∂UpN

∂ f2N
∂UmN


. (3.69)

Using U′
ss = f(Uss) as with Eq. (3.66), Eq. (3.68b) is deduced to be

U′
pb = fU(Uss)Upb. (3.70)

From Eq. (3.67), we know that the steady-state solution is stable if the solution of perturba-
tion is stable around zero. Hence, the stability analysis may become an eigenvalue problem
and the stability of the steady-state solution can be assessed from the eigenvalues of fU.
From the theorem of stability, the solution becomes unstable when any one of the eigenval-
ues crosses the imaginary axis from left to right in the complex plane. Therefore, the criteria
of stability determination may be concluded as:

i. when all the eigenvalues have negative real components, the steady-state solution is
stable.

ii. when any eigenvalue has a zero real component and the others have negative real
components, the steady-state solution is neutrally stable.

iii. when any eigenvalue has a positive real component, the steady-state solution is unsta-
ble.

3.4 Backbone curves

Now a general process for calculating backbone curves of nonlinear systems using the di-
rect normal form method is introduced. A backbone curve is a locus of the maximum
responses of the nonlinear system, which describes the response of the unforced and un-
damped (equivalent conservative) systems. Compared with the forced responses of nonlin-
ear systems which may vary with forced and damping configuration, conservative responses
are invariant; hence it describes the global dynamic property of the system. Besides, forced
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responses of nonlinear systems are often complicated, e.g. those when the modal interac-
tion occurs, so that they would be highly difficult to be interpreted. But even so, in the
case of lightly damped systems, important information about the forced, damped response
can be obtained from the unforced, undamped response which is characterised by back-
bone curves. The significance of the backbone curves for nonlinear systems analysis will be
further demonstrated and discussed in the later chapters.

To derive the backbone curves approximation process, the N-DoF nonlinear system is
considered again. Here, its EoM, Eq. (3.3) with no forcing or damping term, is analysed,
written as

Mẍ+Kx+ εNx(x) = 0. (3.71)

For backbone curves, as the response of conservative systems is considered, in contrast to
Eq. (3.3), Nx here is not a function of the velocity, ẋ, or the force, r, but simply contains the
stiffness nonlinearities related to the displacement, x.

As Eq. (3.71) is still a smooth second-order differential equation, the steps of calculating
backbone curves are similar to those described in §3.2. Hence, in this section, it mainly
focuses on their distinctions during each transforming step.

Linear modal transform

Identical to that in §3.2, the first step is the linear modal transform, x = ΦΦΦq. As the mode-
shape matrix is only related to the linear terms, i.e. the mass matrix M and linear stiffness
matrix K, instead of the damping or forcing terms, see Eq. (3.5), the eigenvalue problem is
solved to find natural frequencies matrix ΛΛΛ and the resulting EoM is written in linear modal
normal form, i.e.

q̈+ΛΛΛq+ εNq(q) = 0, (3.72)

where the nonlinear vector is found using Eq. (3.9) as before; however as with Nx, Nq is not
a function of q̇ or r for the conservative case.

Forcing transform

The second step of the direct normal form technique described in §3.2 is the forcing trans-
form. However, as the equivalent conservative system, i.e. no forcing, is considered for
backbone curves, this transform is a unity transform by simply using v = q.
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Nonlinear near-identity transform

The following step is the nonlinear near-identity transform, v = u+H(u), which ends up
with the resonant EoM in terms of u, written

ü+ΛΛΛu+ εNu(u) = 0. (3.73)

Similarly, here the harmonic response vector H used in the transform and nonlinear terms
vector Nu do not include the u̇ and r related terms. Therefore, all the associated vectors
nv( j)(u), nu( j)(u) and h( j)(u) are a function of the displacement u only. The derivation
process of the nonlinear near-identity transform is almost identical to its application on the
forced and damped system. The only difference is about the vector of nonlinear polynomial
terms, u∗

( j), which is not a function of the forcing anymore. Therefore, the expression of its
elements, Eq. (3.41), may be rewritten as

u∗( j)ℓ =
N

∏
i=1

u
sp j,ℓ,i
ip u

sm j,ℓ,i
im . (3.74)

Hence the value of its corresponding element in βββ ( j) is also redefined, using Eqs. (3.43c)
and (3.51), to be

β( j)i,ℓ =

[
N

∑
n=1

(
sp j,ℓ,n − sm j,ℓ,n

)
ωrn

]2

−ω
2
ri. (3.75)

The selection criteria for determining the value of elements in the resonant coefficient matrix[
nu( j)

]
, Eq. (3.52) or Eq. (3.53), is still valid for the backbone curves case. Substituting

selected resonant nonlinear terms to the EoM, Eq. (3.73), its ith row may become

[
(ω2

ni −ω
2
ri)

Ui

2
e−iφi +N+

ui
]
e+iωrit +

[
(ω2

ni −ω
2
ri)

Ui

2
e+iφi +N−

ui
]
e−iωrit = 0, (3.76)

where no force term, Pui, exists compared with Eq. (3.63). Equating the content of the
square brackets to be zero gives the time-invariant equation of the ith mode for the backbone
curve case, i.e.

(ω2
ni −ω

2
ri)

Ui

2
e∓iφi +N±

ui = 0. (3.77)

Eq. (3.77) is then solved to find the solutions of Ui and ωri which may be used to construct
backbone curves in the modal coordinate u. To solve Eq. (3.77) some assumptions are
required to be made based on the structure of time-invariant equations and its solutions may
also be affected by the modal phase difference, i.e. |φi−φ j|. More details about the solutions
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of backbone curves of specific nonlinear systems will be presented in the later chapters.
As with §3.2, the physical displacement response of backbone curves may be found via

the related inverting transforms, written,

x = Φ [u+H(u)] . (3.78)

Basically, the procedure of backbone curves computation using the direct normal form
technique is a simplified version of its application on the forced and damped systems. There-
fore for the case when the time-invariant equations describing the relation of the steady-state
response and forcing, Eq. (3.56), have already been approximated for some purposes, the
ones for backbone curves can be easily obtained via simply removing the terms associated
with the forcing and damping, see the example in Chapter 4.

3.5 Application to an example system

In this section, the application of the previously outlined techniques to a 1-DoF Duffing
oscillator is considered. The similar examples have been considered in [31, 71, 98] as well.

x

m

k

c

κ

Pcos(Ωt)

Fig. 3.1 A schematic diagram of a 1-DoF Duffing oscillator with mass m, linear stiffness k,
linear damping c and nonlinear stiffness κ . This system responds at the displacement x to
the external forcing with amplitude P at frequency Ω.

Fig. 3.1 shows the schematic of the forced Duffing oscillator and its EoM, in the physical
displacement coordinate, x, is written

mẍ+ cẋ+ kx+κx3 = Pcos(Ωt). (3.79)
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3.5.1 Forced response approximation

Writing the EoM of the system, Eq. (3.79), in the conventional form, Eq. (3.3), the corre-
sponding matrices and vectors are

x = x1, M = m, K = k, Nx = cẋ1 +κx3
1, Px =

(
P1

2
,

P1

2

)
, (3.80)

where x1 = x and P1 = P. Since this is a 1-DoF system, the linear transform may be a trivial
step, which gives an expression in the form of Eq. (3.8) where

ΛΛΛ = ω
2
n1 =

k
m
, Nq =

c
m

q̇1 +
κ

m
q3

1, Pq =

(
P1

2m
,

P1

2m

)
. (3.81)

Here the resonant response of the system is considered so that the forcing frequency is
assumed to be close to the linear natural frequency, i.e. Ω ≈ ωn1. Therefore, referring to
Eq. (3.21), the force transform matrix e = [0, 0], thus the identity forcing transform that
q = v is used. This results the equation in v written in the form of Eq. (3.14), where

Nv =
c
m

v̇1 +
κ

m
v3

1, Pv = Pq =

(
P1

2m
,

P1

2m

)
. (3.82)

Then the nonlinear near-identity transform is considered. Here this transform is applied to
the first level of accuracy, ε1, which will be presented to be sufficient later via comparison
with numerical data. The application of the transform to a higher level of accuracy, e.g. ε2,
can be referred to literature [31, 98].

For the first level of accuracy under consideration, the coefficient matrix
[
nv(1)

]
and the

corresponding nonlinear terms vector, u∗
(1)(up,um,r), can easily found, using Eqs. (3.40a)

and (3.37a), from

Nv(u, u̇,r) = nu(1)(u, u̇,r) =
[
nv(1)

]
u∗
(1)(up,um,r). (3.83)

So simply substituting v = u into the expression of Nv(v, v̇,r), Eq. (3.82), with using
Eq. (3.39), gives

Nv(u, u̇,r) = iωr1
c
m

(
u1p −u1m

)
+

κ

m

(
u3

1p +u3
1m +3u2

1pu1m +3u1pu2
1m
)
. (3.84)
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Combining Eqs. (3.83) and (3.84), we may obtain

[
nv(1)

]⊺
=

1
m



κ

κ

3κ

3κ

iωr1c

−iωr1c


, u∗

(1) =



u3
1p

u3
1m

u2
1pu1m

u1pu2
1m

u1p

u1m


, βββ

⊺
(1) = ω

2
r1



8
8
0
0
0
0


, (3.85)

where the selection index matrix βββ (1) is computed using Eqs. (3.43c) and (3.51). Now, using
Eq. (3.52) or Eq. (3.53),

[
nu(1)

]
and

[
h( j)
]

may be found to be

[
nu(1)

]
=

1
m

(
0 0 3κ 3κ iωr1c −iωr1c

)
, (3.86a)[

h(1)
]
=

1
8ω2

r1

(
κ κ 0 0 0 0

)
(3.86b)

Then nu(1) and h(1) are found using Eq. (3.40b) and Eq. (3.40c) respectively to be

nu(1) = i
ωr1c

m

(
u1p −u1m

)
+

3κ

m

(
u2

1pu1m +u1pu2
1m
)
, (3.87a)

h(1) =
κ

8mω2
r1

(
u3

1p +u3
1m
)
. (3.87b)

For the case with the first level of accuracy, ε1, Eqs. (3.40a) and (3.40c) simply become

Nu = nu(1), and H = h(1). (3.88)

Separating Nu into the form of Eq. (3.54) with using Eq. (3.39) gives,

Nu,1 = N+
u1e+iωr1 t +N−

ui e
−iωr1 t ,

=

[(
3κ

8m
U3

1 + i
ωr1c
2m

)
e−iφ1

]
e+iωr1t +

[(
3κ

8m
U3

1 − i
ωr1c
2m

)
e+iφ1

]
e−iωr1t ,

(3.89)

which ends up with a time-invariant equation as Eq. (3.55), written as

(
ω

2
n1 −Ω

2)U1

2
e−iφ1 +

(
3κ

8m
U3

1 + i
Ωc
2m

)
e−iφ1 =

P1

2m
. (3.90)

where the assumption that the response frequency is equal to the forcing frequency, i.e.
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ωr1 = Ω, has been made and used. Multiplying through by eiφ1 = cos(φ1)+ isin(φ1) and
balancing the real and imaginary parts of Eq. (3.90) gives

Re : P1 cos(φ1) = (ω2
n1 −Ω

2)mU1 +
3
4

κU3
1 , (3.91a)

Im : P1 sin(φ1) = ΩcU1. (3.91b)

Eliminating the phase φ1 by squaring and then summing the equations of Re and Im leads
to [(

ω
2
n1 −Ω

2)mU1 +
3
4

κU3
1

]2

+[ΩcU1]
2 = P2

1 . (3.92)

This equation is solved to find the fundamental displacement response amplitude, U1, and
the phase, φ1, is then calculated, using Eq. (3.91b), from

φ1 = arcsin(
ΩcU1

P1
). (3.93)

With the solution of amplitude and phase, the harmonics are found using Eqs. (3.87b) and
(3.88) as

H =
κU3

1
32mΩ2 cos(3[Ωt −φ1]). (3.94)

Here it can be seen that to the first-level accuracy, ε1, only one harmonic component which
responds at the 3 times of forcing frequency is estimated. Higher-order harmonics can also
be approximated by considering the application with a higher level of accuracy of normal
forms and the examples are in [31, 98].

Finally, the inverse transforms are applied, using Eq. (3.58), to find the displacement
response in the physical coordinate, x, as

x1 = x = q = v = u+H =U1 cos(Ωt −φ1)+HU cos(3Ωt −φH) (3.95)

where HU and φH are the amplitude and phase of the approximated harmonic component
respectively, written

HU =
κU3

1
32mΩ2 , and φH = 3φ1. (3.96)

Now, we consider the response results of a Duffing oscillator, described by Eq. (3.79),
with the specific parameters: m = 1, c = 0.05, k = 1 and κ = 1. The system is forced at
three different levels of amplitude P1 = 0.01, 0.03 and 0.05 and the result is shown in Fig. 3.2
which is presented in the projection of the forcing frequency, Ω, against the displacement
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response amplitude, |x1| = U1 +HU . In order to validate the results approximated by the
normal form technique, the response computed using the numerical continuation toolbox
based on Matlab named COCO [14] is compared. From the result, it can be seen that the
normal form predictions and numerical results are generally in good agreement. The ap-
proximated and numerical results for the cases of P1 = 0.01 and 0.03 are almost on top with
each other, with the maximum relative differences 0.78% and 0.97% respectively, while
their difference for P1 = 0.05 is relatively obvious near the maximum response amplitude
region, i.e. the maximum differences is 2.5%. However, considering the ε1 accuracy, this
level of distinction is acceptable and the more accurate solution may be achieved when the
normal form technique with a higher level of accuracy is applied but additional complexity
of the computation is needed correspondingly.
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Fig. 3.2 The responses of a 1-DoF Duffing oscillator excited at three force amplitudes. The
plot is in the projection of forcing frequency, Ω, against the displacement response ampli-
tude, |x1|. The dashed-blue lines represent the results calculated using the direct normal
form technique to ε1 accuracy and the solid-red lines denote the numerical solution found
using the COCO toolbox based on Matlab.
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3.5.2 Stability analysis

Now we consider the stability of the response results of the 1-DoF Duffing oscillator ap-
proximated by the direct normal form technique using the approach introduced in §3.3.

Firstly, using Eqs. (3.87a) and (3.59), the nonlinear terms Nu,1 are separated in the man-
ner of Eq. (3.54), which results in

N+
u1 =+i

ωr1c
m

Up1 +
3κ

m
U2

p1Um1, (3.97a)

N−
u1 =−i

ωr1c
m

Um1 +
3κ

m
Up1U2

m1. (3.97b)

Substituting Eq. (3.97) and Pu1 =P1/2m into Eq. (3.64), the function vector of U=
[
Up1, Um1

]
,

in the form of Eq. (3.66), is constructed, written as

f(U) =
i

2Ω

 +
(
ω

2
n1 −Ω

2)Up1 + i
Ωc
m

Up1 +
3κ

m
U2

p1Um1 −
P1

2m

−
(
ω

2
n1 −Ω

2)Um1 + i
Ωc
m

Um1 −
3κ

m
Up1U2

m1 +
P1

2m

 , (3.98)

where as with Eq. (3.90), the assumption ωr1 = Ω is used. Then using Eq. (3.69), the
Jacobian matrix of f with respect to U may be calculated, as

fU =
i

2Ω

 ω2
n1 −Ω2 + i

Ωc
m

+
6κ

m
Up1Um1

3κ

m
U2

p1

−3κ

m
U2

m1 Ω2 −ω2
n1 + i

Ωc
m

− 6κ

m
Up1Um1

 . (3.99)

Then the eigenvalues, λ , of fU are found from the equation,

λ
2 +

c
m

λ +
1

4Ω2

[(
ω

2
n1 −Ω

2 +
3κ

2m
U2

1

)2

+

(
3κ

4m
U2

1

)2

+

(
Ωc
m

)2
]
= 0, (3.100)

where Up1Um1 =U2
1 /4 is used. The solutions of Eq. (3.100) is written in the form of

λ =
−B±

√
B2 −4C

2
, (3.101)

where

B =
c
m
, (3.102a)
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C =
1

4Ω2

[(
ω

2
n1 −Ω

2 +
3κ

2m
U2

1

)2

−
(

3κ

4m
U2

1

)2

+

(
Ωc
m

)2
]
. (3.102b)

Here, the neutrally stable condition, which is the boundary of the stable and unstable solu-
tions, is considered. From the stability criteria listed in §3.3 that the solution is of neutral
stability when one of the eigenvalues has a zero real component, the bifurcation points are
found, from Eq. (3.101), by setting

Re

{
−B±

√
B2 −4C

2

}
= 0. (3.103)

As B must be real, Eq. (3.103) may be written as

Re

{
−B±

√
B2 −4C

2

}
=−B

2
±Re

{√
B2 −4C

2

}
= 0, (3.104)

in which (
√

B2 −4C)/2 can only be either a non-negative real number when B2 ⩾ 4C or
a purely imaginary number when B2 < 4C. Therefore, it can seen that a valid solution of
Eq. (3.103) may be found, by assuming B2 ⩾ 4C, from

−B±
√

B2 −4C
2

= 0, (3.105)

which is rearranged to give C = 0 and then using Eq. (3.102b) gives[
3
(

3κ

4m

)2
]

U4
1 +

[(
ω

2
n1 −Ω

2) 3κ

m

]
U2

1 +

[(
ω

2
n1 −Ω

2)2
+

(
Ωc
m

)2
]
= 0. (3.106)

This equation describing the relationship between response amplitude and forcing frequency
is solved to find the stability boundary at which a bifurcation may occur. Besides, it can be
seen from Eq. (3.106) that this amplitude-frequency relationship is independent of forcing
amplitude, which means that the region where solutions are unstable is not affected by the
forcing amplitude.

Fig. 3.3 shows the stability result of the 1-DoF Duffing oscillator depicted in the previ-
ous section. The forced response curves in Fig. 3.2 are shown again but with the stability
distinction pattern. The stability of the numerical solutions is determined based on the Flo-
quent eigenvalues automatically computed during the continuation and that of the normal
form solutions is found using the eigenvalues, Eq. (3.101), based on the stability criteria.
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The stability boundary (dashed-blue line) presenting a family of bifurcation points is also
computed using Eq. (3.106), which is compared with the numerically calculated results of
the locus of saddle-node bifurcations (solid-red line). From Fig. 3.3, it can be seen that
bifurcation positions predicted by the normal form method and numerical approach are in
good agreement and the solutions within the stability boundary are unstable.
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Fig. 3.3 The response stability of a 1-DoF Duffing oscillator excited at three forced ampli-
tudes. The plot is in the projection of forcing frequency, Ω, against the response ampli-
tude, |x1|. The black and grey lines represent the results calculated by the direct normal
form method and the numerical continuation toolbox COCO respectively. For both sets of
solutions, solid parts denote the stable solutions and dashed-dotted parts denote the unsta-
ble solutions. The dashed-blue and solid-red lines represent the stability boundary solu-
tions predicted analytically and numerically, respectively. The green asterisks denote the
numerically-computed fold points.

3.5.3 Backbone curve calculation

Now we consider the backbone curve of the 1-DoF Duffing oscillator. In §3.5.1, the forced
response of the system has already been approximated to the first-level of accuracy via the
direct normal form technique. Hence, instead of applying the normal form method to the
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conservative EoM of this system, the expression of backbone curves can be obtained from
the results of forced response via removing the forcing and damping terms.

From Eq. (3.90), the corresponding time-invariant equation for the backbone curve case
may written as [(

ω
2
n1 −Ω

2)U1

2
+

3κ

8m
U3

1

]
e−iφ1 = 0. (3.107)

The phase can be directly eliminated via multiplying through e+iφ1 , which, via rearranging,
leads to the equation describing the backbone curve in u, as

Ω
2 = ω

2
n1 +

3k
4m

U2
1 . (3.108)

For the phase, φ1, due to its definition of the phase difference between the force and response
signal, it is physically meaningless for the 1-DoF system for the unforced situation, hence
there is no result of φ1 for this case. The harmonic response is computed identically as with
the forced response case using Eq. (3.94) and then the physical displacement response in x
is calculated using Eq. (3.95).

Fig. 3.4 shows the backbone curve of the Duffing oscillator for the system depicted in
Fig. 3.2. The backbone curve solution calculated by the normal form technique is compared
to that found using COCO. Besides, to demonstrate the feature of backbone curves that is
the locus of points of the maximum response amplitude, the forced response curves shown
in Fig. 3.2 is plotted as the reference. It can be seen, from Fig. 3.4, that there is a good
agreement between the solution calculated by the numerical continuation and by the analyt-
ical technique outlined. It can also be seen that all the maximum response points for three
excitation cases are close to the backbone curve.

3.6 Summary

In this chapter, an analytical method – the direct normal form technique – for solving the
nonlinear systems has been derived via its application on a non-conservative N-DoF non-
linear system for computing the steady-state response. We have seen that this improved
normal form technique is able to be directly applied to the second-order differential equa-
tions of motion, unlike previous normal form methods. Besides, the ability of this technique
to naturally estimate the harmonic components of a response has been demonstrated. Al-
though there exist several limitations about the direct normal form technique, i.e. applicable
to systems of polynomial nonlinear terms only, the smallness assumption of nonlinear and
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Fig. 3.4 The backbone curve of a 1-DoF Duffing oscillator. The plot is represented in the
projection of forcing frequency, Ω, against the response amplitude, |x1|. The dash-blue
and solid-red lines represent the backbone curve solution predicted using the direct normal
form technique and the toolbox COCO respectively. The black and grey lines denote the
analytical and numerical solution of force responses shown in Fig. 3.2, respectively.

damping terms and frequency detuning and restricted determination of steady-state solu-
tions, as discussed, this technique is declared to be powerful enough for studying the non-
linear systems in this thesis.

Then a method used for accessing the stability of the steady-state response has been
presented. The most attractive aspect of this stability determination technique is that it is
readily applicable to the normal form solution as it is introduced based on the direct normal
form technique. This method can help us to deeply explore the mechanisms of the stable
and unstable behaviours for the nonlinear systems, e.g. nonlinear modal interactions and
bifurcations.

The idea of backbone curves, which are the locus of the free response of the equivalent
conservative system of the fundamental nonlinear structures, has been briefly introduced. Its
computational process using the direct normal form has been presented in a way that distin-
guishes the differences from forced response estimation for the non-conservative nonlinear
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systems. The backbone curve is a very powerful tool for interpreting the complex response
of nonlinear systems, the discussions of which are presented in Chapter 4, 5 and 6.

It is known that one main thing makes the response of nonlinear system far more com-
plex, which also makes it distinct from that of the linear system, is the nonlinear modal
interaction. It is a nonlinear behaviour of energy transferring between (or amongst) linearly
decoupled but nonlinearly coupled modes. So in the next two chapters, we will explore the
effects of nonlinear modal interaction and the relationship of its occurrence with the system
structures, system parameters, and external excitations. This is achieved using the nonlinear
analysis techniques outlined in this chapter.





Chapter 4

N − i modal interaction of nonlinear
multi-degree-of-freedom systems

In this chapter we:

• Compute the backbone curves of a 3-DoF nonlinear oscillator with one to one nonlin-
ear modal interaction due to the bilaterally symmetric nature of its linear structure.

• Consider the stability of the backbone curves using the method outlined in §3.4 and
the bifurcations of mixed-mode backbone curves from single-mode backbone curves.

• Find the relationship between the backbone curves and forced-response curves and
illustrate the ability of backbone curves to interpret the complicated forced response.

• Investigate the relationship between the occurrence of the modal interaction and the
external force amplitude via considering the bifurcations on the primary single-mode
forced-response curves.

4.1 Introduction

One of the factors distinguishing linear and nonlinear dynamic systems is the modal inter-
action. In linear systems, the fundamental vibration modes are independent of each other
such that they can be considered separately. However, this is not the case for multi-DoF
nonlinear systems where modes have the possibility of interacting with each other, which
is also why many of the existing linear analysis tools or techniques are no longer worthy
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for understanding the mechanical structures behaving in nonlinear regions. Therefore, un-
derstanding the effects of modal interaction is an essential step in being able to predict the
subsequent nonlinear dynamic responses.

For a nonlinear system with N (where N ≥ 2) modes, it is possible for response solutions
to exist in which a subset of, i.e. N − i (where N − i ≥ 2), or all, i.e. N, of its underlying
modes interact. In this chapter, we consider the case where N − i modal interaction can
occur. More specifically, the case where N = 3 is analysed, such that only two, i.e. N − 1,
modes can interact. To do this, we choose a specific configuration of an in-line 3-DoF
lumped mass weakly nonlinear oscillator with small forcing and light damping. Due to
its structural symmetry, one of the modes of this system is linear, and the other two are
nonlinear. So even though all the natural frequencies are close, the linear mode behaves
independently. Hence the study about the example 3-DoF system is focused on the modal
interaction of the two coupled modes.

In this chapter, we first apply the direct normal form technique to the example system
under damping and forcing to derive the time-invariant equations describing the relationship
between modal responses and external forcing. These equations are found to be complicated
to solve due to the existence of the nonlinear coupled terms. Hence in §4.3.1, we try to
find the solutions after removing damping and forcing related terms, i.e. computing the
backbone curves instead. For this example 3-DoF system, we find three primary backbone
curves, one linear and two nonlinear, each including the response of a single mode only.
The two nonlinear primary backbone curves tend to respond as the underlying linear system
does when their amplitudes are close to zero. Additionally, for the case where the nonlinear
constant of coupling springs is negative, there are bifurcations on the nonlinear primary
backbone curves where extra backbone curves involving N −1 modal interaction emanate.
In §4.3.2, the stability of the primary backbone curves, i.e. bifurcation points, are studied
using the technique outlined in §3.4.

In §4.4, we consider the relationship between the backbone curves and the forced re-
sponses. The ability of backbone curves to interpret the modal interaction of the forced
responses is first demonstrated in §4.4.1. Then, in §4.4.2, the relationship between the
occurrence of bifurcations on the single-mode forced-response curves and the forcing am-
plitude is investigated. It is found that with knowing the bifurcations on primary forced-
response curves, backbone curves may be able to predict the occurrence of nonlinear modal
interaction for the non-conservative situation.
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4.2 Nonlinear 3-DoF system with bilateral symmetry

Throughout this chapter, we consider the 3-DoF oscillator depicted in Fig. 4.1. This system
has a bilaterally symmetric structure which consists of three identical lumped masses, m.
The three masses are grounded via the same linear springs of the stiffness, k, and viscous
dampers, c. Additionally, the mass in the middle is connected to the other two at the sides
via viscous dampers c̄ and cubic nonlinear springs of linear and nonlinear constants k̄ and
κ respectively. The elastic force characteristics of these nonlinear springs is F = k̄(∆x)+

κ(∆x)3 where ∆x is the spring deflection. Furthermore, each mass is sinusoidally excited
at an identical frequency Ω, with amplitude Pi, and has displacement response xi, where
i = 1, 2, and 3.

x1 x2 x3

k k k

c cc
m m m

P1cos(�t) P2cos(�t) P3cos(�t)

c c

k,κk,κ

Fig. 4.1 A schematic diagram of an in-line, 3-DoF system with a bilaterally symmetric
structure and cubic nonlinear springs.

The EoM of this system, in the coordinates of physical displacement response x =

[x1 x2 x3]
⊺, may be written in the conventional form as Eq. (3.3) for the application of the

direct normal form technique, where the linear stiffness matrix, external force amplitude
vector and small (nonlinear and linear damping) terms vector are respectively given by

K =

 k+ k̄ −k̄ 0
−k̄ k+2k̄ −k̄

0 −k̄ k+ k̄

 , Px =
1
2

 P1 P1

P2 P2

P3 P3

 . (4.1a)

Nx =

 c+ c̄ −c̄ 0
−c̄ c+2c̄ −c̄

0 −c̄ c+ c̄

 ẋ+κ

 (x1 − x2)
3

(x2 − x1)
3 +(x2 − x3)

3

(x3 − x2)
3

 , (4.1b)

Now the first step of the direct normal form technique, i.e. the linear modal transform,
may be applied to decouple the linear stiffness terms. This results in the EoM in the modal
displacement responses q, of the form Eq. (3.8). The matrices of modal natural frequencies,
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ΛΛΛ, and linear modeshape, ΦΦΦ, of this system are found by solving the eigenvalue problem,
Eq. (3.5), written as

ΛΛΛ =

 ω2
n1 0 0
0 ω2

n2 0
0 0 ω2

n3

=
1
m

 k 0 0
0 k+ k̄ 0
0 0 k+3k̄

 , (4.2a)

ΦΦΦ =

 1 1 1
1 0 −2
1 −1 1

 . (4.2b)

Then, the vector of nonlinear stiffness and damping terms in modal coordinates is found,
using Eq. (3.16), to be

Nq = µ

 η1q̇1

η2q̇2 +q3
2 +27q2q2

3

η3q̇3 +9q2
2q3 +27q3

3

 . (4.3)

where ηi = cmi/µ , µ = κ/m, cm1 = c, cm2 = c+ c̄ and cm3 = c+3c̄. Using Eq. (3.17), the
transformed vector of force amplitudes is given by

Pq =
1
2

 Pm1 Pm1

Pm2 Pm2

Pm3 Pm3

=
1

12m

 2P1 +2P2 +2P3 2P1 +2P2 +2P3

3P1 −3P3 3P1 −3P3

P1 −2P2 +P3 P1 −2P2 +P3

 (4.4)

Then the forcing transform, the second step of the direct normal form technique, is
applied. Here, the forcing frequency is assumed to be close to the system linear natural
frequencies, i.e. Ω ≈ ωn1 ≈ ωn2 ≈ ωn3. This assumption may be reasonable when the
linear constant of the coupling springs is small compared to that of the grounding springs,
i.e. k̄ ≪ k. Therefore, v = q is used for this transform as the forcing transform matrix
e = [0]{3×2}. Using Eqs. (3.21) and (3.11), the vector of small terms and matrix of force
amplitudes in the EoM in v, as Eq. (3.14), are

Nv(v, v̇) = Nq(v, v̇) (4.5a)

Pv = Pq. (4.5b)

The final step is the nonlinear near-identity transform which leads to the resonant EoM
in u, as Eq. (3.26). From the results of the Duffing oscillator in §3.5, we have seen a good
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agreement between the normal form results of the first-level accuracy and numerical results.
Hence, for this 3-DoF system, the nonlinear transform is again applied to the accuracy level
ε1 and this level of accuracy will be approved later via comparison with numerical results,
see §4.4.

Substituting the first equality of Eq. (3.39) into Eq. (4.5a), we may find the polynomial
terms vector, u∗

(1), and the corresponding coefficient matrix,
[
nv(1)

]
, from Eqs. (3.37a) and

(3.40a) and, then, using Eqs. (3.43c) and (3.51), the matrix βββ (1) may be computed, i.e.

u∗
(1)=



u3
2p

u3
2m

u2
2pu2m

u2pu2
2m

u2pu2
3p

u2mu2
3m

u2pu3pu3m

u2mu3pu3m

u2pu2
3m

u2mu2
3p

u2
2pu3p

u2
2mu3m

u2pu2mu3p

u2pu2mu3m

u2
2mu3p

u2
2pu3m

u3
3p

u3
3m

u2
3pu3m

u3pu2
3m

u1p

u1m

u2p

u2m

u3p

u3m



,
[
nv(1)

]⊺
= µ



0 1 0
0 1 0
0 3 0
0 3 0
0 27 0
0 27 0
0 54 0
0 54 0
0 27 0
0 27 0
0 0 9
0 0 9
0 0 18
0 0 18
0 0 9
0 0 9
0 0 27
0 0 27
0 0 81
0 0 81

iη̃1 0 0
−iη̃1 0 0

0 iη̃2 0
0 −iη̃2 0
0 0 iη̃3

0 0 −iη̃3



,βββ⊺
(1)=ω

2
r2



− 8 −
− 8 −
− 0 −
− 0 −
− 8 −
− 8 −
− 0 −
− 0 −
− 0 −
− 0 −
− − 8
− − 8
− − 0
− − 0
− − 0
− − 0
− − 8
− − 8
− − 0
− − 0
0 − −
0 − −
− 0 −
− 0 −
− − 0
− − 0



,

(4.6)
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where η̃i = ωriηi and a dash in βββ (1) represents that its value is insignificant as the corre-
sponding coefficient in

[
nv(1)

]
is zero. When calculating βββ (1), it has been assumed that

Ω = ωr2 = ωr3 for the situation that Ω ≈ ωn2 ≈ ωn3. Once matrix βββ (1) has been deter-
mined, Eq. (3.52) is used to find

[
nu(1)

]
and Eq. (4.10) is then used to compute the vector of

nonlinear and damping terms in the resonant EoM, written as

Nu = µ

 iη1ωr1(u1p −u1m)

iη2ωr2(u2p −u2m)+
[
3u2pu2m +54u3pu3m

]
u2 +27[u2mu2

3p +u2pu2
3m]

iη3ωr3(u3p −u3m)+
[
18u2pu2m +81u3pu3m

]
u3 +9[u2

2pu3m +u2
2mu3p]

 . (4.7)

Then using Eq. (3.54), the time-invariant complex coefficient corresponding to e+iωrit in the
ith row of Eq. (4.7) may be found, as

N+
u1 = iµη1ωr1e−iφ1 , (4.8a)

N+
u2 = iµη2ωr2e−iφ2 +

3
8

µe−iφ2U2

[
U2

2 +18U2
3 +9e+i2(φ2−φ3)U2

3

]
, (4.8b)

N+
u3 = iµη3ωr3e−iφ3 +

9
8

µe−iφ3U3

[
2U2

2 +9U2
3 + e−i2(φ2−φ3)U2

2

]
, (4.8c)

where ωr2 = ωr3 is provided and φ2−φ3 represents the phase difference between the second
and third modes. Substituting Eqs. (4.8) into Eq. (3.56) and then eliminating the terms of φi

in the equation of the ith mode, the time-invariant equations for the example system depicted
in Fig. 4.1 may be written as {[

ω
2
n1 −ω

2
r1
]2
+(cm1ωr1)

2
}

U2
1 = P2

m1, (4.9a){[
ω

2
n2 −ω

2
r2 +

3
4

µ

{
U2

2 +(18+9ei2(φ2−φ3))U2
3

}]2

+(cm2ωr2)
2

}
U2

2 = P2
m2, (4.9b){[

ω
2
n3 −ω

2
r3 +

3
4

µ

{
27U2

3 +(6+3e−i2(φ2−φ3))U2
2

}]2

+(cm3ωr3)
2

}
U2

3 = P2
m3, (4.9c)

where cmi = µηi is used. Looking at Eqs. (4.9), we can see that due to the existence of
nonlinear coupled terms in Eqs. (4.9b) and (4.9c), the solutions may not be easy to find.
Therefore, in later sections, instead of solving Eqs. (4.9) to find the nonlinear steady-state
forced response, we choose to consider the backbone curves of this example system to
simplify this problem.
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4.3 Backbone curves

4.3.1 Calculation of backbone curves

To calculate the backbone curves of the example system, we simply set the damping and
external force to be zero, i.e. cmi = 0 and Pmi = 0, in Eqs. (4.9). This gives the time-invariant
equations governing the modal response amplitudes and frequencies for the corresponding
conservative system, written as

[
ω

2
n1 −ω

2
r1
]
U1 = 0, (4.10a)[

ω
2
n2 −ω

2
r2 +

3
4

µ

{
U2

2 +(18+9ei2(φ2−φ3))U2
3

}]
U2 = 0, (4.10b)[

ω
2
n3 −ω

2
r3 +

3
4

µ

{
27U2

3 +(6+3e−i2(φ2−φ3))U2
2

}]
U3 = 0. (4.10c)

One trivial solution of Eqs. (4.10) is U1 = U2 = U3 = 0 which represents no motion.
Three more straightforward sets of solutions can also be found in the situations where each
mode is assumed to behave independently. On these backbone curves, the response only
includes the contribution of one mode; thus they are termed as single-mode backbone curve.
Successively setting U2 = U3 = 0, U1 = U3 = 0 and U1 = U2 = 0 in Eqs. (4.10) leads to
the expressions describing the frequency-amplitude relationships of the three single-mode
backbone curves labelled S1, S2 and S3:

S1 : U1 ̸= 0, U2 =U3 = 0, ω
2
r1 = ω

2
n1, (4.11a)

S2 : U2 ̸= 0, U1 =U3 = 0, ω
2
r2 = ω

2
n2 +

3
4

µU2
2 , (4.11b)

S3 : U3 ̸= 0, U1 =U2 = 0, ω
2
r3 = ω

2
n3 +

81
4

µU2
3 , (4.11c)

where the letter S in the backbone curve label stands for single-mode and the following
number represents the activated mode.

Furthermore, additional solutions, in which two related modes are simultaneously present,
may also exist. For the problem under consideration, the only solution may be U1 = 0 and
U2 ̸= 0, U3 ̸= 0 as the first mode must behave independently. So substituting U1 = 0 into
Eqs. (4.10) gives

−ω
2
r2 +ω

2
n2 +

3
4

µ

{
U2

2 +(18+9ei2(φ2−φ3))U2
3

}
= 0, (4.12a)
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−ω
2
r3 +ω

2
n3 +

3
4

µ

{
27U2

3 +(6+3e−i2(φ2−φ3))U2
2

}
= 0, (4.12b)

which may contain complex components from the phase related terms as

e±i2([φ2−φ3]) = cos(2[φ2 −φ3])± isin(2[φ2 −φ3]). (4.13)

Balancing the imaginary components in Eq. (4.12) gives

sin(2[φ2 −φ3]) = 0, (4.14)

which may be satisfied by |φ2 − φ3| = 0,
π

2
, π , · · · . Therefore, a phase-related variable is

defined as

p = ei2(|φ2−φ3|) =


+1 when: |φ2 −φ3|= 0,π, · · · ,

−1 when: |φ2 −φ3|=
π

2
,
3π

2
, · · · .

(4.15)

Now Eqs. (4.12) may be written as

ω
2
r2 = ω

2
n2 +

3
4

µ
{

U2
2 +(18+9p)U2

3
}
, (4.16a)

ω
2
r3 = ω

2
n3 +

3
4

µ
{

27U2
3 +(6+3p)U2

2
}
. (4.16b)

For the case where p =+1, Eqs. (4.16) may be combined to give

ω
2
r = ω

2
n2 +

3
4

µ
{

U2
2 +27U2

3
}
= ω

2
n3 +

3
4

µ
{

27U2
3 +9U2

2
}
, (4.17)

where ωr2 = ωr3 = ωr is used. Eq. (4.17) may be further arranged to be

D23[i] :


U2

2 =
ω2

n2 −ω2
n3

6µ
,

ω
2
r =

9ω2
n2 −ω2

n3
8

+
81
4

µU2
3 ,

(4.18)

which describes the amplitude-frequency relationships of a further set of double-mode back-
bone curves. For the solutions of Eq. (4.18), the second and third modes can behave either
in-phase, i.e. |φ2 − φ3| = 0, or anti-phase, |φ2 − φ3| = π , see from Eq. (4.15). Therefore
Eq. (4.18) describes two backbone branches labelled D23+

[i] and D23−
[i] which respectively
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have the phase relationships

D23+[i] : φ2 −φ3 = 0 and D23−[i] : φ2 −φ3 = π. (4.19)

The in-phase and anti-phase backbone curves are both termed as in-unison because on the
locus of these curves the two involved modes reach their maximum values and pass through
zero simultaneously. For example, in the time domain, the responses of the second and third
modes on D23±

[i], using Eq. (3.23), may be written as

D23+
[i] : u2 =U2 cos(ωrt) and u3 =+U3 cos(ωrt),

D23−
[i] : u2 =U2 cos(ωrt) and u3 =−U3 cos(ωrt).

(4.20)

Hence in the label of double-mode backbone curves, e.g. D23+
[i], letter D denotes the double-

mode, numbers present the modes involved as with single-mode solutions, subscript [i] in-
dicates in-unison and the superscript denotes the modal phase difference.

For the case where p =−1, Eqs. (4.16) may also be written as

ω
2
r = ω

2
n2 +

3
4

µ
{

U2
2 +9U2

3
}
= ω

2
n3 +

3
4

µ
{

27U2
3 +3U2

2
}
. (4.21)

This is then arranged to give the expression describing an extra pair of double-mode back-
bone curves, i.e.

D23[o] :


U2

2 =
2(ω2

n2 −ω2
n3)

3µ
−9U2

3 ,

ω
2
r =

3ω2
n2 −ω2

n3
2

,

(4.22)

which again represents two phase-difference cases:

D23+[o] : φ2 −φ3 =+
π

2
and D23−[o] : φ2 −φ3 =−π

2
. (4.23)

Hence, the modal responses on these backbone curves may be

D23+
[o] : u2 =U2 cos(Ωt) and u3 =+U3 sin(Ωt),

D23−
[o] : u2 =U2 cos(Ωt) and u3 =−U3 sin(Ωt).

(4.24)

Eqs. (4.24) indicate that when one of the modes reaches its maximum amplitude the other
one has zero response and this behaviour is termed to be out-of-unison which is denoted in
the backbone curve label using subscript [o].
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In Fig. 4.2, the modal responses for each backbone curve outlined above is illustrated in
a 3-D plot in the projections of u1 against u2 against u3.
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Fig. 4.2 The projection diagrams of u1 against u2 against u3 of the response on the backbone
curve branches: (a) S1, (b) S2, (c) S3, (d) D23+

[i], (d) D23−
[i] and (e) D23±

[o]. The blue and red
arrows in (f) denote the motion direction of D23+

[o] and D23−
[o] respectively.
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When computing the physical responses, the harmonics are assumed to be negligible,
such that in the near-identity nonlinear transform H = 0. This assumption will be justified to
be sufficiently accurate via the comparison of the normal form results with numerical results,
see §4.4. Therefore, the physical response is found simply using x = ΦΦΦu, see Eq. (3.78),
with Eq. (4.2b), i.e.  x1

x2

x3

=

 u1 +u2 +u3

u1 −2u3

u1 −u2 +u3

 . (4.25)

For the backbone curves outlined, as all the activated mode(s) is(are) assumed to respond at
an identical frequency ωr, the physical displacements must be sinusoidal at this frequency
This may allow us to write  x1

x2

x3

=

 X1 cos(ωrt −φx1)

X2 cos(ωrt −φx2)

X3 cos(ωrt −φx3)

 , (4.26)

where Xi and φxi are the amplitude and phase of xi respectively. For the single-mode back-
bone curves, these amplitudes may be written

S1 :

 X1

X2

X3

=

 U1

U1

U1

 , S2 :

 X1

X2

X3

=

 U2

0
U2

 , S3 :

 X1

X2

X3

=

 U3

2U3

U3

 . (4.27)

For the cases where u2 and u3 are in-unison, i.e. in-phase and anti-phase, the amplitude
relationship may be written

D23+[i] :

 X1

X2

X3

=

 U2 +U3

2U3

U2 −U3

 , D23−[i] :

 X1

X2

X3

=

 U2 −U3

2U3

U2 +U3

 , (4.28)

and for the cases where u2 and u3 are out-of-unison, the amplitude relationship may be

D23±[o] :

 X1

X2

X3

=


√

U2
2 +U2

3

2U3√
U2

2 +U2
3

 . (4.29)

From a further inspection of Eqs. (4.18) and (4.22), it can be seen that µ must be negative
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to ensure that these equations have real solutions, corresponding to the backbone branches of
physically meaning as ωn3 >ωn2, see Eq. (4.2a) with the assumption k̄> 0. Referring µ ∝ κ ,
the sign of µ is determined by the type of the system nonlinearity. Hence the hardening and
softening nonlinear cases are considered separately in the following subsections to discuss
the occurrence of double-mode backbone curves (resonant modal interactions) and also the
relationship between each type of backbone curves.

Hardening nonlinearity

When the nonlinear springs are assumed hardening, i.e. µ > 0, all amplitude solutions of
Eqs. (4.18) and (4.22) must be complex, which means that double-mode backbone branches
do not exist. While as Eqs. (4.22) may always have physical solutions, single-mode back-
bone curves S1, S2 and S3 unconditionally exist. The inexistence of double-mode backbone
curves suggests that there is no modal interaction between the three underlying modes.

The backbone curves of the example system of hardening nonlinear springs are shown
in Fig. 4.3, where ωn1 = 1, ωn2 = 1.005, ωn3 = 1.0015 and the system parameters used
are: m = 1, k = 1, k̄ = 0.01, and κ = 0.05. All panels show the backbone curves plotted
in the projection of the response frequency against the displacement response amplitude.
The panels in the first column show the amplitude of the fundamental components of the
modal response, i.e. Ui, and the second column shows the that of the physical displacement
response of individual masses, Xi. The S1, S2 and S3 branches are the single-mode backbone
curves. The backbone curve S1 is linear as expected and S2 and S3 show the characteristic
shape of a hardening response which is similar to that of the single-DoF Duffing oscillator
shown in §3.5.3.

In the first column of Fig. 4.3, one interesting feature about single-mode backbone
curves is that all these branches emerge from the frequency axis, more specifically from
the points at the linear natural frequencies with zero response amplitude, i.e. ωri = ωni and
Ui = 0. Considering the expression of branch S2, Eq. (4.11b), when U2 = 0, the response fre-
quency is equal to the second natural frequency, i.e. ωr2 = ωn2. Similarly, for Eqs. (4.11a)
and (4.11c) of S1 and S3, when U1 = 0 and U3 = 0, then ωr1 = ωn1 and ωr3 = ωn3 re-
spectively. These starting points of each single-mode backbone curves, which are also the
zero-amplitude solutions, may be regarded as Hamiltonian Hopf bifurcation points, sug-
gesting that the single-mode backbone curves bifurcate from the no-motion trivial solution.
This phenomenon is in keeping with the assumption of normal form techniques that there
is an underlying linear system, i.e. the nonlinear system tends to behave as its equivalent
linear system does as the amplitude tends to zero.
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Fig. 4.3 The backbone curves of the 3-DoF oscillator depicted in Fig. 4.1 with the physical
parameters m = 1, k = 1, k̄ = 0.01 and κ = 0.05. The panels in the first and second column
show the results of the underlying vibrations modes and the physical masses respectively.
Specific backbone curves are labelled respectively, and bifurcation points are denoted by
dots. The black dots mark the system linear natural frequencies.
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From the panels in the second column of Fig. 4.3, it can be seen that, due to the structural
symmetry of the example, the backbone curve results of the masses on both sides for the
hardening case are the same.

Softening nonlinearity

Considering the case where the nonlinear springs are softening, i.e. µ < 0, Eqs. (4.18) and
(4.22) may have real solutions. Therefore, the in-unison, D23±

[i], and out-of-unison, D23±
[o],

backbone curves may be physically realistic. In Fig. 4.4, the backbone curves of the system
with softening nonlinear springs are shown. As with the hardening case, S1, S2 and S3 of
the first and third masses are the same, where branch S1 is vertically straight, and S2 and
S3 are curved, but bending oppositely compared with those in Fig. 4.3. However, backbone
curves D23±

[i] for these two symmetric masses come with the position swapped. Although
the phase differences between the second and third modes are different for the out-of-unison
backbone curves, D23+

[o] and D23−
[o], their amplitude projections are the same. Therefore,

D23+
[o] and D23−

[o] overlay each other in the results.
Here, the double-mode backbone curves D23±

[i] and D23±
[o], where both the second and

third modes are activated, are of primary interest. In Fig. 4.4, it can be seen that D23±
[i]

emanate from branch S2 and D23±
[o] appear between S2 and S3. Considering the starting

point of D23[i] by substituting U3 = 0 into Eq. (4.18) gives

U2
2 =

ω2
n2 −ω2

n3
6µ

and Ω2 =
9ω2

n2 −ω2
n3

8
. (4.30)

It can be seen, from Eq. (4.11b), that Eq. (4.30) describes a point on S2. Additionally, when
Ω = 0 in Eq. (4.18), then

U2
3 =

ω2
n3 −9ω2

n2
162µ

. (4.31)

which corresponds to a point on the response-amplitude axis. Therefore, it can be deduced
that in-unison backbone curves D23±

[i] bifurcate from the single-mode backbone curves S2
and ends at zero-frequency axis, which matches the observation of Fig. 4.4.

Similarly, substituting U3 = 0 into the expressions of D23±
[o], i.e. Eq. (4.22), gives

U2
2 =

2(ω2
n2 −ω2

n3)

3µ
and Ω2 =

3ω2
n2 −ω2

n3
2

, (4.32)

which can be seen from Eq. (4.11b) that it describes another point on S2. When substituting
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Fig. 4.4 The backbone curves of the 3-DoF oscillator depicted in Fig. 4.1 with the physical
parameters m = 1, k = 1, k̄ = 0.01 and κ = −0.05. Specific backbone curves respectively
are labelled. Solid and dashed lines denote the stable and unstable solutions respectively.
Bifurcation points are denoted by dots. Note that as D23±

[o] overlay the S1, the backbone
curves D23±

[o] are indicated by short cross lines for distinction.
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U2 = 0 into Eq. (4.22), it gives

U2
3 =

2(ω2
n2 −ω2

n3)

18µ
and Ω2 =

3ω2
n2 −ω2

n3
2

, (4.33)

which describes a point on S3, see Eq. (4.11c). This agrees with the observation from
Fig. 4.4 that the out-of-unison double-mode backbone curves emerge from single-mode
backbone curves S2 and end at S3 (or described the other way around). These bifurcation
phenomena of backbone curves have also been observed in other 2-DoF systems, see for
example [6, 35]. A significant difference from the previous systems in the literature is that
backbone curves D23±

[o] here is vertically straight with a limited length, which suggests that
the out-of-unison resonance only happens within a specific amplitude (power) range for this
system.

4.3.2 Stability of the backbone curves

In §4.3.1, we have seen the nonlinear behaviour of double-mode backbone curves bifur-
cating from the single-mode backbone curves. As the existence of a bifurcation may be
associated with changes in stability, the stability of backbone curves is considered using the
technique outlined in §3.3.

It is known, from Fig. 4.4, that there are two bifurcations on backbone curve S2 where
D23±

[i] and D23±
[o] emerge from respectively; hence the stability of S2 is chosen to be con-

sidered in detail. On branch S2, the response only contains that of the second mode; thus
u3 = 0. So the stability of S2 may be determined by considering the dynamics of u3 about its
zero-solution. It is noteworthy that u1 is not considered here due to its independence from
u2 and u3. This may allow us to simplify the problem via considering the resonant EoM of
the third mode only instead of that of the whole system. Using Eq. (4.7), resonant nonlinear
terms in the EoM of the third mode are

Nu,3 = 9µ
[
2u2pu2mu3 +(u2

2pu3m +u2
2mu3p)

]
, (4.34)

where, as u3 is considered around its zero-solution, the term u3pu3mu3 is so small that it has
been neglected. Using Eq. (3.54), the complex coefficients, N+

u,3 and N−
u,3, are found to be

N+
u,3 =

9µ

4
(
2Up2Um2Up3 +U2

p2Um3
)
, (4.35a)

N−
u,3 =

9µ

4
(
2Up2Um2Um3 +U2

m2Up3
)
. (4.35b)
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Based on Eq. (3.64), the vector f of this problem, defined using U′
3 = f(U3), see Eq. (3.66),

for the backbone curve case may be constructed, i.e.

f =

(
U ′

p3

U ′
m3

)
=

i
2ωr3

(
+
(
ω

2
n3 −ω

2
r3
)

Up3 +N+
u3

−
(
ω

2
n3 −ω

2
r3
)

Um3 −N−
u3

)
. (4.36)

So, substituting Eqs. (4.35) into Eq. (4.36) gives

f =
i

2ωr3

 +
(
ω

2
n3 −ω

2
r3
)

Up3 +
9µ

4
(
2Up2Um2Up3 +U2

p2Um3
)

−
(
ω

2
n3 −ω

2
r3
)

Um3 −
9µ

4
(
2U2pUm2Um3 +U2

m2Up3
)
 , (4.37)

whose Jacobian may be computed as

fU3 =
i

2ωr3


(
ω2

n3 −ω2
r3
)
+

9µ

2
Up2Um2

9µ

4
U2

p2

−9µ

4
U2

m2 −
(
ω2

n3 −ω2
r3
)
− 9µ

2
Up2Um2

 . (4.38)

Now, the eigenvalues, λ , of fU may be found from

λ
2 +

1
4ω2

r3

[(
ω

2
n3 −ω

2
r3 +

9µ

2
U2

2

)2

−
(

9µ

4
U2

2

)2
]
= 0, (4.39)

where U2
2 = Up2Um2 is used. From Eq. (4.39), it can be seen that the eigenvalues are ei-

ther real pair of opposite sign, i.e. λ = ±R where R ∈ R, or purely imaginary conjugates,
i.e. λ = ±I where I ∈ I. Therefore, the backbone curve S2 may only be unstable when
the eigenvalues are non-zero real, or neutrally stable when eigenvalues are on the imagi-
nary axis. This is different from the forced case which will be shown in §4.4 where the
eigenvalues may be complex conjugate pairs, i.e. λ = R± I, corresponding to three stability
situations listed in §3.3.

From Eq. (4.39), the unstable region is given by

Re


√(

ω2
n3 −ω2

r3 +
9µ

2
U2

2

)2

−
(

9µ

4
U2

2

)2
> 0, (4.40)
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which may be simplified to ∣∣∣∣ω2
n3 −ω

2
r3 +

9µ

2
U2

2

∣∣∣∣> ∣∣∣∣9µ

4
U2

2

∣∣∣∣ . (4.41)

This implies that the changes in stability occur when both sides of inequality given by
Eq. (4.41) are equal, where λ = 0. Hence substituting the solution expression of S2, given
by Eq. (4.11b), into Eq. (4.41), gives∣∣∣∣ω2

n3 −ω
2
n2 +

15µ

4
U2

2

∣∣∣∣= ∣∣∣∣9µ

8
U2

2

∣∣∣∣ , (4.42)

which may be solved to find the positions of bifurcations on S2.
When µ > 0, the content within the absolute value sign at both sides of Eq. (4.42) are

unconditionally positive; hence Eq. (4.42) may be rearranged to give

−21
8

U2
2 = ω

2
n3 −ω

2
n2, (4.43)

which is unphysical, recalling ωn3 > ωn2 > 0. This suggests that there is no bifurcation on
S2 for the hardening case.

When µ < 0, Eq. (4.42) has two valid solutions, which describe the positions of bifur-
cations, given by

BP
D23[i]
S2 :


Ω

2 =
9ω2

n2 −ω2
n3

8
,

U2
2 =

ω2
n2 −ω2

n3
6µ

,

(4.44)

and

BP
D23[o]
S2 :


Ω

2 =
3ω2

n2 −ω2
n3

2
,

U2
2 =

2(ω2
n2 −ω2

n3)

3µ
.

(4.45)

Those are the identical points where D23±
[i] and D23±

[o] emerge from S2, given in Eq. (4.30)
and Eq. (4.32) respectively. So in the notation of the bifurcation points, the subscript denotes
which backbone curve they are on, and the superscript indicates which backbone curves
emerge. It can also be easily found that the parts of S2 below bifurcation point BP

D23[i]
S2 and

above BP
D23[o]
S2 are stable and that between them is unstable.

The same analysis could be applied to the solution of S3 to find where the bifurcation
happens. As with branch S2, there is no valid solution for the hardening case. The bifurcat-
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ing position on S3 for the softening case is predicted to be

BP
D23[o]
S3 :


Ω

2 =
3ω2

n2 −ω2
n3

2
,

U2
3 =

2(ω2
n2 −ω2

n3)

27µ
,

(4.46)

which is the intersection point of S3 and D23±
[o], given by Eq. (4.33). The stability condition

of branch S3 is that the section below BP
D23[o]
S3 is stable and above is unstable. In addition,

using the bifurcation theory for Hamiltonian systems, all these bifurcation points detected
are the (Hamiltonian) pitchfork bifurcation. Note that as the first mode is linear, the whole
trajectory of S1 is neutrally stable and no bifurcation occurs on it.

In Fig. 4.4, the information regarding the stability of the single-mode backbone curves
S2 and S3 is also indicated: the stable and unstable responses are represented by solid and
dashed lines respectively.

4.4 Forced response

4.4.1 Relation between forced response and backbone curves

In this section, the relationship between forced responses and backbone curves is explored,
especially the ability of backbone curves to interpret the modal interaction occurring for the
forced situation is demonstrated. As the occurrence of modal interaction may be affected
by the sign of the nonlinear stiffness value for the example system, as discussed in §4.3, the
forced response for the hardening and softening cases are investigated separately.

Hardening case

Fig. 4.5 shows the forced-response curves of the example system with hardening springs.
The damping coefficients used are c = 2× 10−3 and c̄ = 2× 10−5, such that the modal
damping ratios are ζi ≈ 0.1%. The amplitude of the external force applied is (P1, P2, P3) =

(3, −1, 1)× 10−3. This forcing scenario ensures that all three modes are excited at the
same level, i.e. (Pm1, Pm2, Pm3) = (1, 1, 1)×10−3, see Eqs. (4.2b) and (3.10). The purpose
of choosing this forcing scenario is for presenting the modal independence of the hardening
system under excitation. The forced response was numerically computed using the Matlab
continuation toolbox, COCO.
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For the forced responses, it is assumed that the fundamental response frequency, ωri, is
equal to the forcing frequency, Ω. Hence, Fig. 4.5 is plotted in the projection of the forcing
frequency, Ω, against the displacement response amplitude of the three masses, X1, X2 and
X3. From the result, it can be seen that the response curves may be able to be divided into
three regions by two minima for separate observation (from left to right):

• For the first resonance, the response curves of three masses are similar to that of the
linear oscillator and are centred around the backbone curve S1.

• For the second resonance, the familiar shape of the response of a typical Duffing
oscillator is following S2, and the jump phenomenon can be observed on the right
part of the curve for the first and third masses. Due to the speciality of the modeshape
of the second mode, i.e. Φ2 = (1, 0, −1)⊺, there is no resonant response for the
second mass in Fig. 4.5(b) within this bandwidth.

• For the third resonance, in Fig. 4.5(a), the curve around S3 contains a loop where
the upper trajectory is unstable, which occurs from the addition and subtraction of the
modal contributions. In Fig. 4.5(b) and Fig. 4.5(c), the response of the typical Duffing
oscillator can be observed enveloping S3.

For the first part of the response, the resonant peak points are exactly on the linear backbone
curve S1, and for the other parts of the forced-response curves, they cross the backbone
curves S2 and S3 almost at the fold points. This observation is in line with the results found
for systems with a lower number of degrees of freedom. In Fig. 4.5, no modal interac-
tion phenomenon is observed which demonstrates the modal independence of the hardening
nonlinear system. This result matches the prediction of the backbone curves.

Softening case

Now the forced response of the system with softening nonlinear springs is considered. From
the backbone curve results shown in Fig. 4.4, it is known that for this case the modal inter-
actions may occur between the second and third modes. Therefore, the single-mode forcing
configuration is chosen. More specifically, considering both types of double-mode backbone
curves emerging from S2, the external forcing is chosen to be applied to the second mode
only, i.e. Pm2 ̸= 0 and Pm1 = Pm3 = 0. The physical parameters used are: c = 2× 10−3,
c̄ = 2× 10−5 and (P1, P2, P3) = 0.4, 0.9, 1.5× (1, 0, −1)× 10−3, which corresponds to
ζi ≈ 0.1% and Pm2 = 0.4, 0.9, 1.5 (×10−3).
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Fig. 4.5 The displacement response curves of the 3-DoF system depicted in Fig. 4.1 when it
is externally forced at amplitude (P1, P2, P3) = (3, −1, 1)×10−3 with physical parameters
m= 1, k = 1, k̄ = 0.01, κ = 0.05, c= 2×10−3 and c̄= 2×10−5. The solid-blue and dashed-
red lines represent the stable and unstable response respectively. The grey lines represent
the backbone curves and the red asterisks represent the fold points. (a) Mass 1, X1, (b) Mass
2, X2, and (c) Mass 3, X3.
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Fig. 4.6 The response curves of the 3-DoF system depicted in Fig. 4.1 excited in the sec-
ond mode only at three different amplitudes. The system parameters used are the same as
those in Fig. 4.4 and the damping values are c = 2× 10−3 and c̄ = 2× 10−5. The solid
and dashed lines represent the stable and unstable responses respectively. The diamonds
and asterisks indicate secondary bifurcation and fold points. The grey lines represent the
backbone curves. Note that due to the specific forcing configuration, the backbone curves
S1 and S3 have been omitted.
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Fig. 4.6 shows the forced response results superimposed on the backbone curves for the
first and second masses in panels of the first and second columns respectively. Due to the
bilateral symmetry of the system structure and the forcing configuration, the response curves
of the first and third mass look the same. Thus the results of the third mass are omitted. It
can be observed, from Fig. 4.6, that:

• for the small force amplitude situation, Fig. 4.6(a) and Fig. 4.6(b), there is only one
response branch centred around S2. The curve for the first mass is like that of a
softening Duffing oscillator and only composed of the response of the second mode,
u2, such that no motion of the second mass is observed. For this case, the force is
insufficient to trigger the modal interaction or jump.

• for the medium force amplitude situation, Fig. 4.6(c) and Fig. 4.6(d), there are three
response branches, i.e. one blue and two green. The two green curves following
D23±

[i] (with their fold points almost on D23±
[i]) bifurcate from the primary (single-

mode) response curve (the blue one) at two secondary bifurcation points respectively,
and they are composed of the responses of both the second and third modes, i.e. u2

and u3. The instability of the upper-right part of the trajectory of the primary response
curve (the section above the second bifurcation) is in keeping with that of S2.

• for the large force amplitude situation, Fig. 4.6(e) and Fig. 4.6(f), there are two addi-
tional response curves, i.e. the black ones, which corresponds to D23±

[o], which again
bifurcate from the primary response curve of the second mode. On these two curves,
both the second and third modes are present. However, unlike other double-mode
response curves, no fold point of these two new response curves is close to the out-
of-unison backbone curves D23±

[o]. The occurrence of the bifurcation of the response
corresponding to D23±

[o] from the primary response is after that to D23±
[i]. This bifurca-

tion sequence is in line with the positions of the bifurcation points BP
D23[i]
S2 and BP

D23[o]
S2

on backbone curve S2. Besides, for the right trajectory of the primary response curve,
it turns back stable after the second secondary bifurcation which matches the charac-
teristics of the backbone curves.

From the results in Fig. 4.6, it can be noticed that for the situation where a single nonlin-
ear mode is externally excited, the other nonlinear coupled modes may be activated due to
the modal interaction. Also, the occurrence of this modal interaction is affected by the force
amplitude. More specifically, some critical values of the force amplitude must be reached
to trigger the modal interaction. Besides, the nonlinear dynamic phenomena of the forced
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responses are in good agreement with those of the backbone curves: the stability character-
istics of the primary single-mode responses, the position of the local maximum amplitude
for both single- and multi-mode forced response and the occurrence of bifurcations due to
modal interaction (both the types and occurring sequence).

Fig. 4.6 shows that all the double-mode response curves emanate from the primary re-
sponse curves at secondary bifurcation points, and the forced responses and their bifurca-
tions can be associated with the corresponding backbone curves. It is inferred that for the
single-mode excited situation if the bifurcations of primary response curves are known, the
occurrence of the multi-mode forced response may be predicted without calculating the full
response curves. In §4.4.2, we will consider the stability of the single-mode response curves
to find the relation between the occurrence of the modal interaction and the force amplitude.

4.4.2 Relation between modal interactions and force amplitudes

As it is known that there is a change in the stability of the single-mode response curve across
the points where the mixed-mode responses emanate from, it allows us to apply the stability
analysis technique mentioned in §3.4 to find the bifurcation positions.

Here, we consider the situation where only the second mode is forced again. The pri-
mary response curve contains the second mode only, and the third mode is known to be not
activated. Therefore, the stability of the primary response curve of the second mode may
be found by considering the stability of the zero-solution of the third mode. When the zero
solution for the response of the unforced mode is stable/unstable, the single-mode response
curve of the forced mode is also stable/unstable. As a result, the point of neutral stability is
the (secondary) bifurcation point.

Before the stability analysis, we must find the steady-state response when only the sec-
ond mode of the system is assumed to be activated. Hence the resonant EoM of the second
mode is considered, in which the nonlinear and damping tems, using Eq. (4.7), are given by

Nu,2 = icm2Ω(u2p −u2m)+3µu2pu2mu2, (4.47)

where the u3 related terms have been removed as the third mode is assumed inactive on the
primary response curve of the second mode, i.e. u3 = 0. Based on Eqs. (3.54) and (3.56),
the time-invariant equation is found to be

(
ω

2
n2 −Ω

2)U2

2
+3µ

U3
2

8
+ icm2Ω

U2

2
=

Pm2

2
eiφ2 . (4.48)
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Eliminating the phase terms in Eq. (4.48) gives the equation describing the relation between
the response and force amplitude, i.e.

9µ
2U6

2 +24µ(ω2
n2 −Ω

2)U4
2 +16

[
(ω2

n2 −Ω
2)2 +(cm2Ω)2]U2

2 = 16P2
m2. (4.49)

Then the zero-solution of the third mode is considered. The nonlinear and damping terms
in the resonant EoM of the third mode are

Nu,3 = icm3Ω
(
u3p −u3m

)
+18u2pu2mu3 +9(u2

2pu3m +u2
2mu3p), (4.50)

where, as with Eq. (4.34), the u3pu3mu3 term has been ignored due to its smallness. From
Eq. (4.50), the conjugate coefficients N±

u,3 are found using Eq. (3.53), and, then the function
of U3 =

[
Up3 Um3

]⊺, i.e. F(U3), is formulated, using Eq. (3.63), given

F =
i

2ωr3


+
(
ω

2
n3 −Ω

2)Up3 +
9µ

4
(
2Up2Um2Up3 +U2

p2Um3
)
+ icm3ΩUp3

−
(
ω

2
n3 −Ω

2)Um3 −
9µ

4
(
2U2pUm2Um3 +U2

m2Up3
)
+ icm3ΩUm3

 , (4.51)

Note that the notation F is used here to be distinct from f in §4.3.2 for the backbone curve
case. Therefore, the Jacobian of F is found to be

FU3 =
i

2Ω

 ω2
n3 −Ω2 +

9µ

2
U2pU2m + icm3Ω

9µ

4
U2

2p

−9µ

4
U2

2m −
(

ω2
n3 −Ω2 +

9µ

2
U2pU2m

)
+ icm3Ω

 .
(4.52)

Then the eigenvalues , λ , for FU3 may be found from

λ
2 +Bλ +C = 0, (4.53)

where,

B = cm3, (4.54a)

C =
(Ω2 −ω2

n3)
2 −9µU2

2 (Ω
2 −ω2

n3)+
243
16

U4
2 +(cm3Ω)2

4Ω2 . (4.54b)
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The solutions of Eq. (4.53) may be written as,

λ =
−B±

√
B2 −4C

2
. (4.55)

Similar to the discussion for the Duffing oscillator in §3.5.2, the bifurcation happens when
the eigenvalues are on the imaginary axis, which finally leads to C = 0. Hence, equating
Eq. (4.54b) to zero and rearranging it gives

243µ
2U4

2 +144µ(ω2
n3 −Ω

2)U2
2 +16

[
(ω2

n3 −Ω
2)2 +(cm3Ω)2]= 0, (4.56)

which describes the locus of points where the modal interaction may occur. Combining
Eqs. (4.50) and (4.56), it may allow us to find the number and positions of their intersection
points. To ensure the solutions are physically reasonable, only the intersection points at
Ui > 0 and Ω > 0 are considered. Those points are secondary bifurcation points that can be
used to predict the onset of the modal interaction. There are three possible cases:

(i) if zero or one (for the special case) intersection point, there will be no modal interac-
tion, e.g. Fig. 4.7(a).

(ii) if two or three (for the special case) intersection points, the double-mode response
caused by the modal interaction following the in-unison backbone curves will exist,
e.g. Fig. 4.7(b).

(iii) if four intersection points, both the double-mode response corresponding to the in-
unison and out-of-unison backbone curves will occur, e.g. Fig. 4.7(c).

Fig. 4.7 shows the curves of Eq. (4.49) (green line) and Eq. (4.56) (red line) with the
same parameter values of the softening nonlinear system depicted in Fig. 4.6 and their in-
tersection points are marked by red dots. For comparison, the numerically calculated re-
sponse curves (black) in Fig. 4.5 are also shown here. From Fig. 4.6, it can be seen that
the single-mode response curve results approximated using the normal form technique and
those numerically calculated are in good agreement. Besides, the intersections of Eqs. (4.49)
and (4.56) are very close to the numerically predicted secondary bifurcation points for ev-
ery case. The observation implies that the normal form technique is capable to detect the
occurrence of modal interaction and identify the position of bifurcation points.

Furthermore, for the situation where only the third mode is externally forced, the same
analysis can be applied to find the bifurcation points at the single-mode response curve
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Fig. 4.7 The intersections between the forced response curve of the first mass, Eq. (4.56)
and the stability boundary, Eq. (4.49), of the 3-DoF system depicted in Fig. 4.1 when only
its second mode is forced at three different amplitudes. The parameters used are the same as
those in Fig. 4.6. The green and red lines represent the forced response curve and stability
boundary respectively. The red dots mark the intersection points. The solid- and dashed-
black lines represent the stable and unstable forced response results numerically computed.

composed of only u3. This leads to two equations, i.e.

2187µ
2U4

3 −432µ(Ω2 −ω
2
n2)U

2
3 +16

[
(Ω2 −ω

2
n2)

2 +(cm2Ω)2]= 0, (4.57)

and

6561µ
2U6

3 +648µ(ω2
n3 −Ω

2)U4
3 +16

[
(ω2

n3 −Ω
2)2 +(cm3Ω)2]U2

3 = 16P2
m3, (4.58)
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which describe the trajectory of secondary bifurcation points and the relationship between
force and response amplitudes respectively. Similarly, combining Eqs. (4.57) and (4.58) to
find the position and number of their intersection points, we can predict the occurrence of
modal interaction for the third-mode-forced-only situation. Fig. 4.8 shows the position re-
lationship between these two curves of the example system of softening nonlinear springs.
Two force amplitudes are considered: Pm3 = 0.5× 10−3 and Pm3 = 1.0× 10−3. The inter-
section points are marked by red dots. The corresponding backbone curves S3 and D23±

[o] in
Fig. 4.4 and response curves computed using COCO are also shown to make the compari-
son.

For these two forced situations, there is no intersection point in Fig. 4.8(a), and two
intersection points in Fig. 4.8(b) between curves of Eqs. (4.57) and (4.58) respectively. As
expected, there is no double-mode response in Fig. 4.8(a). In Fig. 4.8(b), it can be seen that
the double-mode response curves following D23±

[o] emanate from the single-mode response
curve from the intersection points. Here, the maximum number of the intersection points
between the primary response curve of the third mode, Eq. (4.58), and the curve of Eq. (4.57)
is two within the frequency range of interest. This means that only one kind of double-mode
response, which is the one following D23±

[o] shown in the results, may occur when the third
mode of the system is externally forced. This is also in agreement with the observation of
the backbone curve results that only a pair of out-of-unison resonant backbone curves D23±

[o]

emanate from S3.

4.5 Summary

In this chapter, we considered a specific 3-DoF system with cubic stiffness nonlinearity
to investigate the modal interaction involving a subset of modes of nonlinear systems of
multiple degrees of freedom. Due to the bilateral symmetry of the example system structure,
one of its vibration modes is linearly independent, which makes the modal interaction only
happen between the other two modes. It is noteworthy that a more common reason why the
resonant modal interaction is limited to a subset of vibration modes of the nonlinear multi-
DoF system is that no corresponding resonant cross-coupling term exists given the specific
commensurable natural frequencies, and an example of this case is shown in Appendix B.

In §4.2, through the application of the direct normal form technique to example system
under forcing and damping, the time-invariant equations describing the relationship between
the external forcing and fundamental modal response were derived. These equations were
found to be difficult to solve due to the existence of pairwise interacting terms. There-
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Fig. 4.8 The intersections between the forced response curve of the first mass, Eq. (4.57) and
the stability boundary, Eq. (4.58), of the 3-DoF system depicted in Fig. 4.1 when only its
third mode is forced at two different amplitudes. The system parameters used are the same
as those in Fig. 4.4 and the force amplitudes are (a) Pm3 = 0.5×10−3 and (b) Pm3 = 1.0×
10−3. The green and red lines represent the forced response curve and stability boundary
respectively. The red dots mark the intersection points. The solid- and dashed-black lines
represent the stable and unstable forced response results numerically computed. The grey
lines represent the backbone curves.

fore, the terms relating to forcing and damping were removed for considering the backbone
curves of the underlying conservative system instead.

It has been shown, in §4.3.1, that the nonlinear stiffness would affect the occurrence of
the modal interaction. For the system considered in this chapter, only if its nonlinear stiff-
ness constant of the coupling springs is negative, bifurcations would occur on the single-
mode backbone curves which lead to additional double-mode backbone curves. Based on
the phase differences between the two involved modes, the double-mode backbone curves
may be classified into two types, i.e. in-unison backbone curves where both modes reach
their maximum and zero simultaneously, and out-of-unison backbone curves where one
mode reaches its peak while the other one is zero. The occurrence of these modal interac-
tion has made the number of backbone curves much more than that of the system degrees
of freedom, which also illustrates the complexity of the systems with nonlinearly coupled
modes. In §4.3.2, the stability of the single-mode backbone curves has been considered, and
the results have shown that the bifurcations points are precisely where the stability of these
backbone curves changes.

The forced-response curves are compared with the backbone curves in §4.4.1 and it has
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been shown that both the structure and stability of the backbone curves are analogous to the
forced responses. For the hardening case where no bifurcation on the single-mode backbone
curves occur, the forcing scenario where all three modes of the system are simultaneously
forced has been used. The results have shown that as with backbone curves no modal inter-
action occurs and three ‘witch-hat’ shaped response curves respectively surround the three
primary backbone curves in the vicinity of their corresponding linear natural frequencies.

When the nonlinear springs were assumed softening, it has been shown that the back-
bone curves can precisely capture the behaviour of the forced responses for the single-mode-
forced situation. More specifically, the modal interaction type and their occurring sequence
from the single-mode response curves are in agreement with those of the backbone curves.
Based on the observation, it has enabled us to locate the bifurcations on the single-mode
forced-response curves, combined with the knowledge of backbone curves, to predict the
modal interaction for a nonlinear system under a specific excitation.

Throughout this chapter, we have seen that due to the feature of the underlying linear
structure, e.g. bilaterally symmetric, only N − i modes may resonantly interact with each
other in a N-DoF nonlinear system so that sub-modal-structures may be separately studied
instead of the whole system to reduce the problem complexity. While for some other situ-
ations where all of the nonlinear system vibration modes may be involved in the resonant
interaction, N nonlinear modes have to be considered together and this case will be studied
in the next chapter.



Chapter 5

N modal interaction of nonlinear
multi-degree-of-freedom systems

In this chapter we:

• Develop analytical models of the backbone curves of the general 3-DoF oscillator
with cubic nonlinear springs.

• Compute the backbone curves of an example nonlinear oscillator of 1 : 1 : 1 resonant
modal interaction.

• Find the relationship between the backbone curves and forced-response curves when
the 1 : 1 : 1 resonant interaction may occur.

• Investigate the bifurcation feature of the triple-mode response caused by the nonlinear
resonant interaction.

• Study the auto-parametric resonant interaction among multiple modes using backbone
curves by considering an example system of the approximated 1 : 2 : 3 linear natural
frequency ratio.

5.1 Introduction

As discussed in Chapter 4, because of the characteristic of the underlying linear structure,
N − i modes of N-DoF nonlinear systems may be involved in a resonant interaction. This
feature may allow us to analyse the system using subsystems composing of the interacted
N− i modes for some specific excitation scenarios, e.g. single mode forced. While, for some
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engineering systems, e.g. periodically symmetric structures like the blade disc component of
gas turbines, all considered modes formulating the analytical model of the nonlinear system
may resonantly interact with each other. Therefore, it may make us have to consider all the
N modes of the nonlinear system together.

In this chapter, we investigate the dynamic behaviour of nonlinear systems whose N

modes may be involved in the resonant interaction. As presented in the last chapter, the
backbone curves of the underlying unforced, undamped system enable us to largely simplify
the computation, accurately predict the resonant modal interaction and precisely explain the
system forced response features. Therefore, the backbone curve is used as the primary tool
throughout this chapter.

Firstly in §5.2, the direct normal form technique is applied to a generic conservative
3-DoF lumped mass system with cubic springs for the development of a backbone curve
model. In this model, the conditionally resonant terms decided by the fundamental response
frequencies are examined because of their effect on the resonant interaction which is pre-
sented in later sections.

In §5.3, an example nonlinear 3-DoF system with a geometrically symmetric structure is
specifically designed to have three nonlinear coupled modes of similar natural frequencies,
which is to investigate the 1 : 1 : 1 resonant interaction. The developed generic backbone
curve model is used to find the time-invariant equations describing the response amplitude
and frequencies for this specific system. The existence of backbone solutions including
the contributions of single, double and triple nonlinear mode(s) are theoretically analysed
alongside a discussion about the effect of the phase differences. Then specific parameters
values of the system are chosen to calculate the backbone curve results for hardening and
softening cases respectively to demonstrate the occurrence and effects of the resonant inter-
action. The numerical forced response results are then used to validate the backbone curves
once again.

In §5.4, the generic 3-DoF system is specifically designed to have three coupled nonlin-
ear modes with commensurable natural frequencies, i.e. 1 : 2 : 3 relations, for studying the
auto-parametric resonant interaction among multiple modes. The backbone curve expres-
sions for this auto-parametric resonant case are found and the results presented show that
due to the multi-mode interaction, the preconceived non-resonant modes may also interact.
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5.2 Backbone curve model of the generic 3-DoF system
with cubic nonlinear springs

To better explore the resonant interaction among N (N ⩾ 3) modes, a generic nonlinear 3-
DoF oscillator with cubic springs is considered to develop a backbone curve model. The
schematic of the generic nonlinear 3-DoF system is shown in Fig. 5.1. This system consists
of three lumped masses, mi, where i = 1, 2, 3, and each individual is grounded via a viscous
damper, of damping constant ci, and a nonlinear spring, of linear stiffness, ki, and cubic
nonlinear stiffness, κi. Additionally, three nonlinear springs connect individual pair of the
three masses, whose linear and nonlinear constant are ki,i+1 and κi,i+1. Note that k31 =

k34 = k13 and κ31 = κ34 = κ13. The elastic force characteristics of these nonlinear springs
are F = k(∆x)+ κ(∆x)3 where ∆x is the deflection of the spring, and k and κ denote the
linear and nonlinear constants respectively. Besides, the damper between each of the masses
is linear of constant ci,i+1. The three masses of the oscillator are forced sinusoidally at the
same frequency Ω with amplitudes Pi and have displacement responses xi.

k1,�1 k2,�2 k3,�3

c1 c2 c3
k12,�12 k23,�23

c12 c23

c13

k13,�13

m1 m2 m3

P1cos(�t) P2cos(�t) P3cos(�t)

x1 x2 x3

Fig. 5.1 A schematic diagram of the generic, in-line, lumped-mass 3-DoF system with cubic
nonlinear springs.

The EoM of this nonlinear 3-DoF system, in the physical displacement coordinate xi, is
written as

miẍi + ciẋi + kixi + ki−1,i(xi − xi−1)+ ki,i+1(xi − xi+1)

+κix3
i +κi−1,i(xi − xi−1)

3 +κi,i+1(xi − xi+1)
3 = Pi cos(Ωt),

(5.1)

where i = 1, 2, 3, k01 = k34 = k13 and κ01 = κ34 = κ13. To compute the backbone curves
of this system, the EoM of the equivalent conservative system must be considered. Hence,
Eq. (5.1) is written in an unforced and undamped form, as Eq. (3.71), which is shown again
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here
Mẍ+Kx+ εNx(x) = 0, (5.2)

where the linear stiffness matrix and nonlinear terms vector for this nonlinear system are

K =

 k1 + k12 + k13 −k12 −k13

−k12 k2 + k12 + k23 −k23

−k13 −k23 k3 + k13 + k23

 , (5.3a)

Nx(x) =


κ1x3

1 +κ13(x1 − x3)
3 +κ12(x1 − x2)

3

κ2x3
2 +κ12(x2 − x1)

3 +κ23(x2 − x3)
3

κ3x3
3 +κ23(x3 − x2)

3 +κ13(x3 − x1)
3

 . (5.3b)

Following the application steps of the direct normal form technique, the linear modal trans-
form is firstly applied to Eq. (5.2) to find the EoM in linear modal displacements, q, in the
form of Eq. (3.72), as

q̈+ΛΛΛq+ εNq(q) = 0. (5.4)

The linear natural frequencies matrix, ΛΛΛ, and modeshape matrix, ΦΦΦ, used in the linear modal
transform is found via solving the eigenvalue problem, given in Eq. (3.5). The nonlinear
terms vector, Nq, is then found using Eq. (3.9). As multiple unspecific coefficient parameters
are involved, i.e. m, k and κ , the expressions of elements in Nq is highly complex so that
may not be written explicitly. While considering the specific nonlinearity type of the 3-DoF
oscillator, i.e. cubic, and the linear transform not changing the order of the polynomial terms
in the EoM, the vector of nonlinear terms, Nq, may be written in the form as

Nq =
[
nq
]

q∗, (5.5)

where q∗ is a {10×1} vector of all unique third-power polynomial combinations of qi and
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[
nq
]

is a {3×10} matrix of the corresponding coefficients, which may be written
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, (5.6)

where the superscript, [i], of the elements in matrix
[
nq
]

denotes the related mode.
As no force is applied to the conservative system, the following forcing transform step

of the direct normal form technique is omitted for the backbone curve case. Considering
the force transform in §4.2 where the linear natural frequencies were discussed to obtain
the force transform matrix, this simplification is also one of the significant advantages of
considering backbone curves to investigate systems of multiple degrees of freedom.

The final step is the nonlinear near-identity transform which leads to the resonant EoM,
written as

ü+Λu+ εNu(u) = 0. (5.7)

For the level of accuracy ε1 considered here, it is known that we have the relationship

[
nq(1)

]
u∗
(1)(up,um) = nq(1)(u) = Nq(u). (5.8)

Substituting q = u into Eq. (5.6) and using

u3
i = (uip +uim)

3

=
(
u3

ip +u3
im
)
+3
(
u2

ipuim +3uipu2
im
)
,

(5.9a)

u2
i u j = (uip +uim)

2 (u jp +u jm
)

=
(
u2

ipu jp +u2
imu jm

)
+2
(
uipuimu jp +uipuimu jm

)
+
(
u2

ipu jm +u2
imu jp

)
,

(5.9b)
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uiu juk = (uip +uim)
(
u jp +u jm

)(
ukp +ukm

)
=
(
uipu jpukp +uimu jmukm

)
+
(
uipu jpukm +uimu jmukp

)
+
(
uipu jmukp +uimu jpukm

)
+
(
uimu jpukp +uipu jmukm

)
,

(5.9c)

the polynomial terms vector u∗
(1) may be obtained. Then using Eq. (3.75) and Eq. (3.52),

the coefficient matrix
[
nq(1)

]
and resonant term index matrix βββ (1) may be computed. Here

notations describing the relationship of the modal response frequencies are defined, written
as

r =
ωr2

ωr1
and r̄ =

ωr3

ωr1
. (5.10)

The elements of u∗
(1),
[
nq(1)

]
and βββ (1) of the generic nonlinear 3-DoF oscillator depicted

in Fig. 5.1 are defined in Eq. (5.16). It can be seen that elements in the ith row of βββ (1)

corresponding to some polynomial terms in u∗
(1), i.e. uipu jpu jm and uimu jpu jm, must be

zero. This means that these terms must be retained in the resonant EoM without being
affected by the relationship of modal response frequencies, i.e. r and r̄, so that they are
denoted to be unconditionally resonant. Besides, there are also other nonlinear terms that
are conditionally resonant based on the response relationship. For example, e.g. u1pu2

2m and
u1mu2

2p may be a pair of resonant terms for the first mode when r = 1. Therefore, it may
allow us to write the vector of resonant nonlinear terms as

Nu = N[uc]+N[cd], (5.11)

where N[uc] and N[cd] are the vectors of unconditionally and conditionally resonant nonlinear
terms respectively. Writing N[uc],i and N[cd],i in the form of Eq. (3.54) to find the complex
conjugate coefficients and then substituting into Eq. (3.56) gives

(
ω

2
ni −ω

2
ri
)Ui

2
e∓iφi +N±

[uc],i +N±
[cd],i = 0. (5.12)

Using Eq. (5.16), it can be concluded that the unconditional resonant terms for the ith mode
of a 3-DoF system of cubic stiffness nonlinearity may be written as

N[uc],i = (uip +uim)
[
2α

[i]
3i−2u1pu1m +2α

[i]
3i−1u2pu2m +2α

[i]
3iu3pu3m +α

[i]
4i−3uipuim

]
, (5.13)
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which may be used to find

N±
[uc],i =

1
8

(
2α

[i]
3i−2U2

1 +2α
[i]
3i−1U2

2 +2α
[i]
3iU

2
3 +α

[i]
4i−3U2

i

)
Uie∓iφi. (5.14)

Then the time-invariant equations of the system are obtained via substituting Eq. (5.14) into
Eq. (5.12), i.e.

(ω2
ni −ω

2
ri)Ui +

1
4

Ui

(
2α

[i]
3i−2U2

1 +2α
[i]
3i−1U2

2 +2α
[i]
3iU

2
3 +α

[i]
4i−3U2

i

)
+2N±

[cd],ie
±iφi = 0.

(5.15)
From the discussions in §4.2, we know that the modal response frequencies are related to
their corresponding linear natural frequencies – also see the frequency detuning expression,
Eq. (3.34). Hence, the system parameters, especially the linear ones like k and m, are
required to be specified to find the conditionally resonant terms retained in Ncd then to be
used for substitution of Eq. (5.15). In later sections, different specific linear parameters
will be chosen to investigate the nonlinear dynamic behaviour caused by different nonlinear
modal interactions.

5.3 1 : 1 : 1 modal interaction

Fig. 5.2 shows the specific 3-DoF nonlinear oscillating system considered in this section.

k k+� k

c c c

k,� k,�

cc

c

k

m m m

P1cos(�t) P2cos(�t) P3cos(�t)

x1 x2 x3

Fig. 5.2 A schematic diagram of an in-line, 3-DoF system with a mistuned periodically
symmetric structure and cubic nonlinear springs. The three underlying modes of this system
have similar linear natural frequencies and are nonlinearly coupled with each other such that
the 1 : 1 : 1 modal interaction may occur.

The system is developed based on an ideal periodically symmetric version of the generic
oscillator depicted in Fig. 5.1 that the linear grounding and nonlinear coupling springs and
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⊺
(1) = ω
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...
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. (5.16)
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. (5.16)



5.3 1 : 1 : 1 modal interaction 95

grounding and coupling dampers are all identical. As with the system in Fig. 4.1, the linear
stiffness of grounding springs is much larger than that of the coupling ones, and the nonlin-
ear constant of the nonlinear spring is small. To slightly break the symmetry of the system
structure, a small mistuning term δ is added to the stiffness of the grounding spring related
to the second mass, and the nonlinear constant of coupling springs connecting the first and
third masses is set to zero. Therefore,

k1 = k, k2 = k+δ , k3 = k, k12 = k̄, k23 = k̄, k13 = k̄,

κ1 = 0, κ2 = 0, κ3 = 0, κ12 = κ, κ23 = κ, κ13 = 0,
(5.17)

where k̄ ≪ k, κ ≪ k and δ ≪ k. Through substituting Eqs. (5.17) into Eqs. (5.3), the linear
stiffness matrix and nonlinear term vectors for this system are written as

K =

 k+2k̄ −k̄ −k̄

−k̄ k+2k̄+δ −k̄

−k̄ −k̄ k+2k̄

 , (5.18a)

Nx(x) = κ

 (x1 − x2)
3

(x2 − x1)
3 +(x2 − x3)

3

(x3 − x2)
3

 . (5.18b)

Hence the matrix of linear modeshape is found to be

ΦΦΦ =

 1 1 1
a 0 b

1 −1 1

 , (5.19)

where

a =−δ + k̄+∆

2k̄
, b =−δ + k̄−∆

2k̄
, ∆

2 = (δ + k̄)2 +8k̄2. (5.20)

The modal natural frequencies are

ΛΛΛ =


1+

1
2
(δ +3k̄−∆) 0 0

0 1+3k̄ 0

0 0 1+
1
2
(δ +3k̄+∆)

 (5.21)
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and the coefficient matrix of modal nonlinear terms,
[
nq
]
, is

[
nq
]⊺

=
κ

b−a



(a−1)3(b+2) 0 (1−a)3(a+2)
3(a−1)(b+2) 0 3(1−a)(a+2)

3(a−1)(b−1)2(b+2) 0 3(1−a)(1−b)2(a+2)
0 3(a−1)2(a−b) 0
0 a−b 0
0 3(b−1)2(a−b) 0

3(a−1)2(b−1)(b+2) 0 3(1−a)2(1−b)(a+2)
3(b−1)(b+2) 0 3(1−b)(a+2)
(b−1)3(b+2) 0 (1−b)3(a+2)

0 6(a−1)(b−1)(a−b) 0



.

(5.22)
Note that to simplify the symbol manipulation, k= 1 and m= 1 are used without the sacrifice
of the problem generality.

As the assumption that k̄ ≪ k and δ ≪ k has been made, the linear natural frequencies of
this system are close, i.e. ωn1 : ωn2 : ωn3 ≈ 1 : 1 : 1, see Eq. (5.21); hence it is reasonable to
assume that ωr1 = ωr2 = ωr3 when computing βββ (1). Therefore, the vector of the condition-
ally resonant nonlinear terms with non-zero coefficient under the condition that r = r̄ = 1 is
found to be

N[cd] =


α

[1]
2 (u1mu2

2p +u1pu2
2m)+α

[1]
3 (u1mu2

3p +u1pu2
3m)+3α

[1]
9 u3pu3mu3

α
[2]
4 (u2

1pu2m +u2
1mu2p)+α

[2]
6 (u2mu2

3p +u2pu2
3m)

α
[3]
7 (u2

1pu3m +u2
1mu3p)+α

[3]
8 (u2

2pu3m +u2
3mu3p)+3α

[3]
1 u1u1pu1m

+α
[1]
7 (u2

1pu3m +u2
1mu3p +2u1pu1mu3)+α

[1]
8 (u2

2pu3m +u2
2mu3p +2u2pu2mu3)

+α
[2]
0 (u1u2pu3m +u1mu2u3p +u1pu2mu3)

+α
[3]
2 (u1pu2

2m +u1mu2
2p +2u1u2pu2m)+α

[3]
3 (u1pu2

3m +u1mu2
3p +2u1u3pu3m)

 .

(5.23)

It can be seen that the number of the resonant cross-coupling terms retained is much more
than that of the oscillator in Chapter 4. This suggests that the behaviour of the system
considered in this chapter may be more complex. Then the time-invariant components of
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Eq. (5.23) that corresponding to e+iωrit is obtained to be

N+
[cd],1 =

1
8

e−iφ1
{

α
[1]
2 U1U2

2 e+i2φ d
12 +α

[1]
3 U1U2

3 e−i2φ d
31 +3α

[1]
9 U3

3 e−iφ d
31

+α
[1]
7 U2

1 U3[e+iφ d
31 +2e−iφ d

31 ]+α
[1]
8 U2

2 U3[e+i(φ d
12−φ d

23)+2e−iφ d
31]
}
,

(5.24a)

N+
[cd],2 =

1
8

e−iφ2
{

α
[2]
4 U2

1 U2e−i2φ d
12 +α

[2]
6 U2U2

3 e+i2φ d
23

+α
[2]
0 U1U2U3[e+iφ d

31 + e−i(φ d
12−φ d

23)+ e−iφ d
31]
}
,

(5.24b)

N+
[cd],3 =

1
8

e−iφ3
{

α
[3]
7 U2

1 U3e+i2φ d
31 +α

[3]
8 U2

2 U3e−i2φ d
23 +3α

[3]
1 U3

1 e+iφ d
31

+α
[3]
2 U1U2

2 [e
+i(φ d

12−φ d
23)+2e+iφ d

31 ]+α
[3]
3 U1U2

3 [e
−iφ d

31 +2e+iφ d
31]
}
,

(5.24c)

where φ d
12 = φ1 − φ2, φ d

23 = φ2 − φ3 and φ d
31 = φ3 − φ1. Now using Eq. (5.15), the time-

invariant resonant EoM for this specific nonlinear system may be written

(ω2
n1 −ω

2
r1)U1 +

1
4

[
3α

[1]
1 U2

1 +2α
[1]
2 U2

2 +2α
[1]
3 U2

3

]
U1

+
1
4

[
e+i2φ d

12α
[1]
2 U2

2 + e−i2φ d
31α

[1]
3 U2

3 +(e+iφ d
31 +2e−iφ d

31)α [1]
7 U1U3

]
U1

+
1
4

[
(e+i(φ d

12−φ d
23)+2e−iφ d

31)α [1]
8 U2

2 U3 +3e−iφ d
31α

[1]
9 U3

3

]
= 0,

(5.25a)

(ω2
n2 −ω

2
r2)U2 +

1
4

[
2α

[2]
4 U2

1 +3α
[2]
5 U2

2 +2α
[2]
6 U2

3

]
U2

+
1
4

[
e−i2φ d

12α
[2]
4 U2

1 + e+i2φ d
23α

[2]
6 U2

3 +α
[2]
0 (e+iφ d

31 + e−i(φ d
12−φ d

23)+ e−iφ d
31)U1U3

]
U2 = 0,

(5.25b)

(ω2
n3 −ω

2
r3)U3 +

1
4

[
2α

[3]
7 U2

1 +2α
[3]
8 U2

2 +3α
[3]
9 U2

3

]
U3

+
1
4

[
e+i2φ d

31α
[3]
7 U2

1 + e−i2φ d
23α

[3]
8 U2

3 +(e−iφ d
31 +2e+iφ d

31)α [3]
3 U1U3

]
U3

+
1
4

[
3e+iφ d

31α
[3]
1 U3

1 +(e+i(φ d
12−φ d

23)+2e+iφ d
31)α [3]

2 U1U2
2

]
= 0.

(5.25c)

From Eq. (5.25), it can be seen that the three modes of this system are nonlinearly coupled
with each other as designed which may cause the nonlinear resonant interactions between
(among) any three underlying modes. Furthermore, we may also observe that all the con-
ditionally resonant terms result in the components related to the phase difference in the
time-invariant equations. Based on the findings in Chapter 4, it may allow us to guess that
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different types of backbone branches involving the same nonlinear modes may exist. Be-
sides, the appearance of these phase-related terms is an essential condition of the occurrence
of the resonant modal interaction, which will be discussed in Chapter 6. In the later subsec-
tions, we will calculate the backbone curve solutions for this system to investigate the effect
of the three-mode modal interaction.

5.3.1 Calculation of backbone curves

From Eqs. (5.25), we know that the three underlying nonlinear modes of the 3-DoF system
considered here may interact with each other due to the close linear natural frequencies and
the coupled terms. Thus, the investigation of the backbone curve solutions of Eqs. (5.25)
may be classified into three types based on the number of involved modes: single-, double-
and triple-mode backbone curves. Note that the trivial solution of Eq. (5.25) corresponding
to no motion, i.e. U1 =U2 =U3 = 0, also exists for this system.

Firstly, we consider the single-mode backbone solution where the response of only one
underlying mode is present. Similar to the analysis in Chapter 4, successfully equating the
fundamental response amplitude of each nonlinear mode to non-zero and those of the other
two to zero, the expressions of the single-mode backbone curves may be obtained.

To find backbone S1, U2 =U3 = 0 is substituted into Eq. (5.25), leading to

ω
2
r1 = ω

2
n1 +

3
4

α
[1]
1 U2

1 , (5.26a)

3
4

e+iφ d
31α

[3]
1 U3

1 = 0. (5.26b)

These equations can be satisfied only if U1 = 0 as α
[3]
1 ̸= 0, see Eqs. (5.22) and (5.20).

The similar result may be obtained when seeking backbone S3, i.e. Eqs. (5.25), with the
substitution U1 =U3 = 0, turns out to be

ω
2
r3 = ω

2
n3 +

3
4

α
[3]
9 U2

3 (5.27a)

3
4

e−iφ d
31α

[3]
3 U3

3 = 0, (5.27b)

which can only be true if U3 = 0. These findings suggest that the single-mode backbone
solutions S1 and S3 do not physically exist for the system under consideration. When only
the second mode is assumed active, substituting U1 = U3 = 0 into Eqs. (5.25) gives the
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expression of backbone solution S2, written as

S2 : U2 ̸= 0, U1 =U3 = 0, ω
2
r2 = ω

2
n2 +

3
4

α
[2]
5 U2

2 . (5.28)

Then, the solutions of double-mode backbone curves are explored. Based on the specific
two activated modes without considering their phase differences, there may potentially exist
three clusters of backbone branches labelled D12, D23 and D13. For backbone curves
D12 where the first and second modes contribute to the response, substituting U3 = 0 into
Eqs. (5.25) gives

ω
2
r = ω

2
n1 +

3
4

α
[1]
1 U2

1 +
1
4
(2+ e+iφ d

12)α [1]
2 U2

2 , (5.29a)

ω
2
r = ω

2
n2 +

3
4

α
[2]
5 U2

2 +
1
4
(2+ e−iφ d

12)α [2]
4 U2

1 , (5.29b)(
α

[3]
1 U2

1 +α
[3]
2 U2

2

)
U1 = 0, (5.29c)

where ωr1 = ωr2 = ωr has been used. It can be easily predicted that unless the coefficients
α

[3]
1 = α

[3]
2 = 0 the solution of Eqs. (5.29) must be U1 =C1 and U2 =C2 where C1 and C2 are

non-negative constants if real solutions exist, which finally leads to a single point instead of
a curve on the amplitude-frequency plane. Similarly, it is also the case for backbone curves
D23. Therefore, double-mode backbone curves D12 and D23 are regarded to be inexistent
here. When only the first and third modes are assumed to be present which corresponds to
backbone curves D13, substituting U2 = 0 into Eqs. (5.25) leads to

(ω2
n1 −ω

2
r )+

3
4

e−iφ d
31α

[1]
9

U3
3

U1

+
1
4

[
3α

[1]
1 U2

1 +(2+ e−i2φ d
31)α [1]

3 U2
3 +(e+iφ d

31 +2e−iφ d
31)α [1]

7 U1U3

]
= 0,

(5.30a)

(ω2
n3 −ω

2
r )+

3
4

e+iφ d
31α

[3]
1

U3
1

U3

+
1
4

[
(2+ e+i2φ d

31)α [3]
7 U2

1 +3α
[3]
9 U2

3 +(e−iφ d
31 +2e+iφ d

31)α [3]
3 U1U3

]
= 0.

(5.30b)

It can be seen that Eqs. (5.30) contain complex terms, which the imaginary components of
Eqs. (5.30) may lead to[

α
[1]
7 U2

1 +2α
[1]
3 U1U3 cos(φ d

31)+3α
[1]
9 U2

3

]
sin(φ d

31) = 0, (5.31a)[
3α

[3]
1 U2

1 +2α
[3]
7 U1U3 cos(φ d

31)+α
[3]
3 U2

3

]
sin(φ d

31) = 0. (5.31b)
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These equations may be satisfied by sin(φ d
31) = 0 such that φ3 −φ1 = 0, π, 2π, · · · , which

correspond to the in-unison response. This may allow us to define a variable p̄31 using

p̄31 = ei|φ d
31| =

{
+1 when φ3 −φ1 = 0, 2π, · · · ,
−1 when φ3 −φ1 = π, 3π, · · · .

(5.32)

Therefore, the variable p31 = e2i|φ d
31| related to the two times of the modal phase difference,

discussed in Chapter 4, could only be equal to one, i.e.

p31 = p̄2
31 = 1. (5.33)

It implies that because of the existence of ei|φ d
31| in Eqs. (5.30), the phase difference between

the first and third modes cannot be ±π/2, so that the out-of-unison backbone curves D13[o]
do not exist for this system. Now using Eqs. (5.32) and (5.33), Eqs. (5.30) may be rearranged
to give

α
[1]
9 U4

3 + p̄13(α
[1]
3 −α

[3]
9 )U1U3

3 +(α [1]
7 −α

[3]
3 )U2

1 U2
3

+ p̄13[(α
[1]
1 −α

[3]
7 )U3

1 +
4
3
(ω2

n1 −ω
2
n3)U1]U3 −α

[3]
1 U4

1 = 0,
(5.34)

which describes the response frequency and amplitude relationship of the first or third
modes. From Eq. (5.34), it can be seen that U1 is an explicit function of U3 or other way
around, i.e.

U1 = FU(U3) or U3 = FU(U1). (5.35)

Then through rearranging anyone of Eqs. (5.30) with the substitution of Eq. (5.35), the
response frequency may also be expressed as the function of response amplitudes, i.e.

ωr = Fω(U3) or ωr = Fω(U1). (5.36)

Hence the backbone curves D13[i] may be symbolically expressed as

D13±[i] :

{
U1 = FU(U3),

ωr = Fω(U3),
or

{
U3 = FU(U1),

ωr = Fω(U1).
(5.37)

Considering Eqs. (4.18) and (4.22), the expressions of the double-mode backbone curves
of the nonlinear system in Chapter 4 are special cases of Eq. (5.37). It is noteworthy that
Eq. (5.37) cannot ensure the existence of the backbone curve D13±

[i] as its valid solutions are



5.3 1 : 1 : 1 modal interaction 101

further decided by the coefficient values of nonlinear terms, i.e. α
[i]
ℓ .

Lastly, we investigate the existence of triple-mode backbone curves where the resonant
interaction occurs among three nonlinear modes. As the presence of the phase terms may
lead to complex components, we consider the imaginary components of Eq. (5.25b), written
as

α
[2]
4 sin(2φ

d
12)U

2
1 −α

[2]
6 sin(2φ

d
23)U

2
3 +α

[2]
0 sin(φ d

12 −φ
d
23) = 0, (5.38)

which may only be satisfied by φ d
12 = 0,π, · · · and φ d

23 = 0,π, · · · therefore φ d
31 = 0,π, · · · ,

φ d
12 =

π

2
,
3π

2
, · · · and φ d

23 =
π

2
,
3π

2
, · · · therefore φ d

31 = 0,π, · · · .
(5.39)

Therefore, two extra phase-related variables are defined as

p12 = ei2|φ d
12| and p23 = ei2|φ d

23|, (5.40)

which makes Eq. (5.39) also be expressed as{
p12 = p23 = 1 and p̄31 =±1,
p12 = p23 =−1 and p̄31 =±1.

(5.41)

For the case where p12 = p23 = 1, Eqs. (5.25) may be rearranged to be

(α [1]
1 −α

[2]
4 )U3

1 +(α [1]
2 −α

[2]
5 )U1U2

2 + p̄13α
[1]
8 U2

2 U3 + p̄13α
[1]
9 U3

3

+(α [1]
3 −α

[2]
6 )U1U2

3 + p̄13(α
[1]
7 −α

[2]
0 )U2

1 U3 +
4
3
(ω2

n1 −ω
2
n2)U1 = 0,

(5.42a)

p̄13α
[3]
1 U3

1 + p̄13α
[3]
2 U1U2

2 +(α [3]
8 −α

[2]
5 )U2

2 U3 +(α [3]
9 −α

[2]
6 )U3

3

+p̄13(α
[3]
3 −α

[2]
0 )U1U2

3 +(α [3]
7 −α

[2]
4 )U2

1 U3 +
4
3
(ω2

n3 −ω
2
n2)U3 = 0.

(5.42b)

With treating anyone of the modal response amplitude Ui as the reference variable, Eq. (5.42)
may be solved to find the solutions of the other two. For example, regarding U2 as the refer-
ence, Eqs. (5.42) become a cubic equation set in U1 and U3. Once the response amplitudes
relationship has been found, the response frequency may be computed by substituting the
amplitude solutions into one of Eqs. (5.25), e.g.

ω
2
r = ω

2
n2 +

3
4

[
α

[2]
4 U2

1 +α
[2]
5 U2

2 +α
[2]
6 U2

3 +α
[1]
0 U1U3

]
, (5.43)
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derived from rearranging Eq. (5.25b). These solutions correspond to the triple-mode back-
bone curves labelled T 123±,±

[i, i] , in which T stands for triple-mode and the subscripts denote
the type of resonance interaction regarding the first mode listed and superscripts denote their
phase differences.

For the case where p12 = p23 =−1, Eqs. (5.25) may be re-written to give the equations
describing the relationship of the modal response amplitude as

(3α
[1]
1 −α

[2]
4 )U3

1 +(α [1]
2 −3α

[2]
5 )U1U2

2 +3p̄13α
[1]
8 U2

2 U3 +3p̄13α
[1]
9 U3

3

+(3α
[1]
3 −α

[2]
6 )U1U2

3 +3p̄13(α
[1]
7 −α

[2]
0 )U2

1 U3 +4(ω2
n1 −ω

2
n2)U1 = 0,

(5.44a)

3p̄13α
[3]
1 U3

1 +3 p̄13α
[3]
2 U1U2

2 +(α [3]
8 −3α

[2]
5 )U2

2 U3 +(3α
[3]
9 −α

[2]
6 )U3

3

+3 p̄13(α
[3]
3 −α

[2]
0 )U1U2

3 +(3α
[3]
7 −α

[2]
4 )U2

1 U3 +4(ω2
n3 −ω

2
n2)U3 = 0,

(5.44b)

and Eq. (5.25b) may be arranged to give the response frequency equation as

ω
2
r = ω

2
n2 +

1
4

[
α

[2]
4 U2

1 +3α
[2]
5 U2

2 +α
[2]
6 U2

3 +3α
[2]
0 U1U3

]
. (5.45)

Seeing Eqs. (5.41) and (5.39), we know the solution sets of Eqs. (5.44) and (5.45) corre-
spond to the triple-mode backbone curve T 123±,±

[o, i]. In fact, we may guess that, in general,
other two groups of triple-mode backbone curves, T 123±,±

[i, o] and T 123±,±
[o, o], may exist for

systems with three nonlinearly coupled modes. However, for this system, because of the
requirement of specific phase difference led by some conditionally resonant terms, these
backbone solutions do not exist. The modal responses on the triple-mode backbone curves
outlined above are shown in Fig. 5.3.

All these backbone curves in modal coordinates can be converted to the results of phys-
ical responses via the inverse transformations mentioned in Chapter 3. Similarly, as with
Chapter 4, the harmonics are assumed small and so neglected. Using Eq. (5.19), the physi-
cal response amplitudes on each backbone curves may be written as

S2 :

 X1

X2

X3

=

 U2

0
U2

 , (5.46a)

D13±[i] :

 X1

X2

X3

=

 U1 +U3

aU1 +bU3

U1 +U3

 , (5.46b)
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Fig. 5.3 The projection diagrams of u1 against u2 against u3 of the response on the backbone
curve branches: (a) T 123+,+

[i, i] , (b) T 123−,−
[i, i] , (c) T 123+,−

[i, i] , (d) T 123−,+
[i, i] , (e) T 123±,+

[o, i] and (f)

T 123±,−
[o, i]. The blue and red arrows in (e) and (f) denote the motion direction of T 123+,+

[o, i]

and T 123−,+
[o, i], and T 123+,−

[o, i] and T 123−,−
[o, i] respectively.
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T 123±,±
[i, i] :

 X1

X2

X3

=

 U1 ±(1)U2 ±(2)U3

aU1 ±(2) bU3

U1 ∓(1)+U2 ±(2)U3

 , (5.46c)

T 123±,±
[o, i] :

 X1

X2

X3

=


√

(U1 ±(2)U3)2 +U2
2

aU1 ±(2) bU3√
(U1 ±(2)U3)2 +U2

2

 , (5.46d)

where the superscript of ± denotes its corresponding sequential modal phase difference.
Now we choose specific values of the system parameters to compute the backbone curve

results. Fig. 5.4 and Fig. 5.5 show the backbone curves for the hardening and softening cases
respectively. All panels show the backbone curves plotted in the projection of response
frequency against displacement amplitude. For both cases, the linear natural frequencies
are ωn1 = 1.0025, ωn2 = 1.0150 and ωn3 = 1.0250 where linear parameters are k = 1, k̄ =

0.01 and δ = 0.025 and the cubic stiffness is κ = ±0.025 respectively. Also, the linear
modeshapes are Φ1 = [ 1, 0.5, 1 ]⊺, Φ2 = [ 1, 0, 1 ]⊺ and Φ3 = [ 1, −4, 1 ]⊺.
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Fig. 5.4 The backbone curves of the 3-DoF system depicted in Fig. 5.2 with physical pa-
rameters m = 1, k = 1, k̄ = 0.01, δ = 0.025 and κ = 0.025. Specific backbone curves are
labelled respectively. The blue asterisks mark the system linear natural frequencies.

From Fig. 5.4, it can be seen that for the hardening situation there exist three backbone
curves, i.e. one single-mode backbone curve, i.e. S2, and two double-mode backbone curves,
D13±

[i]. Note that due to the bilateral symmetry of the system structure, the backbone curves
of the first and third masses are identical, also see Eqs. (5.46a) and (5.46b); thus the result of
the third mass is omitted. In Fig. 5.4, all these backbone curves emerge from the response-
frequency axis with the coordinates ωn1, ωn2 and ωn3 respectively, which makes the double-
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mode backbone curves seem to bifurcate from the trivial solution directly. This phenomenon
is contrary to what has been observed in Chapter 4 where the double-mode backbone curves
appear from the bifurcation points on the primary single-mode backbone curves. While
considering the findings of Eqs. (5.26), we may also regard that the single-mode backbone
curve S1 does exist but loses the stability at its starting point on the response-frequency axis,
where D13−

[i] appears, due to the resonant modal interaction. Similarly, the behaviour of
backbone curves S3 and D13+

[i] may also be explained in the same way. So the points where
the double mode backbone curves of this example appear are co-dimension two bifurcations,
i.e. one bifurcation on top of the other. Furthermore, this backbone curve behaviour also
suggests that neither the first nor the third mode can be present alone under any circumstance
as a resonant interaction between them must occur as long as anyone of them is activated.
There is no triple-mode backbone curve for the system of hardening nonlinear springs since
there is no valid solution for Eq. (5.34).

Fig. 5.5 shows the backbone curve results for the softening case. It can be seen that it
is far more complicated than the results in Fig. 5.4. There are eight branches including all
three types of backbone curves. Same as those of the hardening case, single- and double-
mode backbone curves directly start from the points at the response frequency axis with the
coordinates of linear natural frequencies. For the triple-mode backbone curves, they seem
to appear from either a single-mode backbone curve, i.e. T 123±,−

[i, i] from S2, or double-mode
backbone curves, i.e. T 123±,+

[i, i] from D13+
[i] and T 123±,−

[o, i] from D13−
[i]. The phenomenon that

triple-mode backbone curves bifurcate from a single-mode backbone curve may also explain
in the same manner that double-mode backbone curves appear from the trivial solution.
For example, it may be regarded that double-mode backbone curves D12[i] and D23[i] lose
their stability when they start from S2 and then they immediately bifurcate to T 123±,−

[i,i] .
Therefore, the bifurcation points on S2 may also be co-dimension two bifurcations. Here
backbone curves T 123±,+

[o, i] do not exist due to the in-existence of valid solutions. Note that
here the backbone curves of the first and third masses are no longer the same as the positions
of branches T 123−,+

[i, i] & T 123+,+
[i, i] and T 123+,−

[i, i] & T 123−,−
[i, i] swap respectively.

In Fig. 5.5, it is interesting to see that the branches T 123±,−
[i, i] start and end at the same

backbone curve S2. This backbone curve behaviour suggests that when only the second
mode is externally forced, the modal interaction may only occur within a specific frequency
range. Another interesting observation is that the bifurcation point on D13−

[i] where the
triple-mode backbone curves T 123±,−

[o, i] emanate is on the frequency axis, which suggests
that the triple-mode interaction can happen unconditionally, i.e. not restricted to the force
amplitude, to cause all the three modes to be activated for specific forcing scenarios.
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Fig. 5.5 The backbone curves of the 3-DoF system depicted in Fig. 5.2 with physical pa-
rameters m = 1, k = 1, k̄ = 0.01, δ = 0.025 and κ = −0.025. Specific backbone curves
are labelled respectively, bifurcation points are denoted by dots and blue asterisks mark the
system linear natural frequencies.
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5.3.2 Forced response

Now the numerical forced response results computed using COCO is compared with the
backbone curves. As the result of the softening system includes all the types of backbone
curves of hardening system, only the softening case is considered here. Fig. 5.6 shows
the responses of the system with softening nonlinear springs when forced directly in the
second mode, i.e. P1 = −P3 = Pm2 and P2 = 0, at four incremental magnitudes, i.e. Pm2 =

5, 10, 15, 20 (×10−4). Because of this specific forcing shape, it is expected that the forced
responses should only follow backbone curves related S2 and itself, i.e. S2 and T 123±,−

[i, i] ;
therefore the other unrelated backbone curves are omitted from the results. From Fig. 5.6,
it can be seen that

• in Fig. 5.6(a), the simple result shows a typical Duffing-like softening response which
envelops the backbone curve S2.

• in Fig. 5.6(b), a pair of extra forced-response curves, following backbone curve T 123+,±
[i, i]

respectively, appears from the primary response curve at the same bifurcation points,
beyond which the stability of the primary response curve changes. The beginning
parts of the new forced-response curves are unstable, and this occurs because of the
occurrence of quasi-periodic response which is unable to be numerically computed.

• in Fig. 5.6(c), two more bifurcation points appearing on the primary response curve
leads to a pair of further extra response curves which are close to the finishing (verti-
cal) parts of backbone curve T 123±,−

[i, i] . Beyond the ‘new’ upper bifurcation point, the
upper trajectory of the primary response curve becomes stable.

• in Fig. 5.6(d), the scope of each response curve increases, but the triple-mode re-
sponse curves seem not to go beyond the specific frequency range, which verifies the
prediction of backbone curves.

Furthermore, the responses when the system are excited at only the first mode or the third
mode are investigated respectively, i.e. P1 = P3 = Pm1 & P2 = 0.5Pm1 and P1 = P3 = Pm3 &
P2 = −4Pm3. Only the results when the system is excited strongly enough to result in the
resonant modal interactions are illustrated in Fig. 5.7, i.e. the forced amplitudes used here
are Pm1 = 20×10−4 for Fig. 5.7(a) and Pm3 = 15×10−4 for Fig. 5.7(b) respectively.

When the system is excited in the first-mode-forced-only scenario, Fig. 5.7(a), there is
a primary forced-response curve including the contributions of the first and third modes
enveloping the double-mode backbone curve D13+

[i]. Here no single-mode response is ob-
served as with the backbone curves. From this double-mode primary response curve, a pair
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Fig. 5.6 The response curves of the 3-DoF system depicted in Fig. 5.2 excited in the second
mode only at four different amplitude. The results are computed using the numerical contin-
uation toolbox COCO. The system parameters used are the same as those in Fig. 5.5 and the
force amplitudes are (a) (P1, P2, P3) = (5, 0, −5)×10−4, (b) (P1, P2, P3) = (10, 0, −10)×
10−4, (c) (P1, P2, P3) = (15, 0, −15)× 10−4 and (d) (P1, P2, P3) = (20, 0, −20)× 10−4.
The solid and dashed lines represent the stable and unstable responses respectively. The
red asterisks denote the fold points on the forced-response curves, and the green diamonds
mark the branch-point bifurcations where the triple-mode forced-response curves emerge
from the single-mode forced-response curve. The grey lines denote the backbone curves.

of extra response curves appears on which all three underlying modes are present. These
triple-mode response curves precisely follow T 123+,−

[i, i] and T 123−,−
[i, i] respectively with their

folding points almost on the corresponding backbone curves.
When the system is forced in the third mode only, see Fig. 5.7(b), there is a primary

double-mode response curve located around D13−
[i]. Additionally, a pair of triple-mode re-

sponse curves corresponding to T 123±,−
[o, i] emanate from the bifurcation points on the primary

response curve. It is interesting to see that one of the branch bifurcation points is close to
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Fig. 5.7 The response curves of the 3-DoF system depicted in Fig. 5.2 excited in the first or
third mode only. The force amplitudes are (a) (P1, P2, P3) = (20, 10, 20)× 10−4 and (b)
(P1, P2, P3) = (15, −60, 15)×10−4. The plot denotations are identical to those of Fig. 5.6
and the system parameters used are the same as those in Fig. 5.5.

the frequency axis, i.e. X1 ≈ 0. It is noteworthy that no matter how small the force applied
at the third mode is, the triple-mode responses always exist for this situation. These bifur-
cation features of the forced response are in line with the prediction of the backbone curves
T 123±,−

[o, i].
From the results of Fig. 5.6 and Fig. 5.7, we have seen the occurrence of the resonant

interaction among three nonlinear coupled modes when the system is forced in a single
mode. For these specific forcing situations, the unique phenomena of the extinction of the
single-mode response and the triple-mode response bifurcating from either single-mode or
double-mode response are investigated. Surprisingly, all these nonlinear behaviours can be
interpreted and predicted by their corresponding backbone curves to some extent.

5.4 Auto-parametric modal interaction

m m m

P1cos(�t) P2cos(�t) P3cos(�t)
k,� k,� k,� k,�

c c c c

x1 x2 x3

Fig. 5.8 A schematic diagram of an in-line, 3-DoF oscillator with cubic nonlinear springs.
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In §5.3, the resonant interaction between/among nonlinear modes of similar natural fre-
quencies and responding at same frequencies has been investigated. Now, we study the
auto-parametric modal interaction that also involves multiple modes of nonlinear systems.
The nonlinear oscillating system used for demonstration is shown in Fig. 5.8. The system
consists of three identical lumped masses with a bilaterally symmetric structure. The two
side masses are grounded via a cubic nonlinear spring, with linear constant, k, and nonlin-
ear constant, κ , and a viscous damper, c, and the mass in the middle connects the two side
masses with a nonlinear spring, i.e. k̄ and κ̄ . Using the annotations of the generic nonlinear
3-DoF system depicted in Fig. 5.1, the stiffness parameters may be written as

k1 = k, k2 = 0, k3 = k, k12 = k̄, k23 = k̄, k13 = 0,
κ1 = κ, κ2 = 0, κ3 = κ, κ12 = κ̄, κ23 = κ̄, κ13 = 0.

(5.47)

Substituting Eqs. (5.47) into Eqs. (5.3) gives the linear stiffness matrix and nonlinear stiff-
ness terms vector for this system, i.e.

K =

 k+ k̄ −k̄ 0
−k̄ 2k̄ −k̄

0 −k̄ k+ k̄

 , (5.48a)

Nx =

 κx3
1 + κ̄(x1 − x2)

3

κ̄(x2 − x1)
3 + κ̄(x2 − x3)

3

κx3
3 + κ̄(x3 − x2)

3

 . (5.48b)

Then the eigenvalue problem, M−1KΦΦΦ =ΦΦΦΛΛΛ, may be formulated to find linear modeshapes
and corresponding natural frequencies, i.e.

ΦΦΦ =

 1 1 1
a 0 b

1 −1 1

 , (5.49a)

ΛΛΛ =
1
m


k+3k̄−∆

2
0 0

0 k+ k̄ 0

0 0
k+3k̄+∆

2

 , (5.49b)
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where

a =
k− k̄+∆

2k̄
, b =

k− k̄−∆

2k̄
, ∆

2 = k2 −2kk̄+9k̄2. (5.50)

Once the linear modeshapes have been found, the vector of nonlinear term in the modal
coordinates, Nq, may be calculated using Eq. (3.9). However, it may not be easy to write the
elements of Nq symbolically. From the previous studies, we have known that the underlying
linear structure of the nonlinear system may decide the potential resonant modal interaction
by affecting the linear natural frequencies. Therefore, here the specific values of the linear
stiffness are designed before continuing the nonlinear transformation which may largely
simplify the calculating process.

5.4.1 Design of the underlying linear structure

Firstly the mass is set to be unity, i.e. m = 1. Then the linear modal frequencies may
be scaled. Using the simple expression of the natural frequency of the second mode, see
Eq. (5.49b), as the scaled reference, i.e. ω2

n2 = k+ k̄ = 1, it may allow us to write k = 1− k̄.
Note that the usage of the specific parameter values here does not sacrify the problem gen-
erality as it can also be obtained through the scaling process. k = 1− k̄ is then substituted
into Eqs. (5.49b) and (5.50) which allows us to re-write the natural frequencies and the
associated coefficients as  ω2

n1

ω2
n2

ω2
n3

=

 0.5+ k̄−0.5∆

1
0.5+ k̄+0.5∆

 , (5.51)

and

a =
1−2k̄−∆

2k̄
, b =

1−2k̄+∆

2k̄
, ∆

2 = 12k̄2 −4k̄+1. (5.52)

Now the linear modal frequencies are the functions of k̄ only and Fig. 5.9 shows the varying
trend of ωni against k̄. To ensure the linear stiffness of the ground springs be positive, i.e.
k ⩾ 0, the considered range of k̄ is [0, 1]. In Fig. 5.9, an interesting case may be that when
k̄ = 0.65 the natural frequency ratio is ωn1 : ωn2 : ωn3 ≈ 1 : 2 : 3, which is marked by the
black dots in the plot.

Furthermore, to ensure each mode make a relative balanced contribution to the response
of each linear modeshape, the values of the elements in the modeshape matrix, ΦΦΦ, must
be reasonable, i.e. the values of a and b should not be too large or too small. From the
observation of the varying trend of a and b against k̄, shown in Fig. 5.10, it may be regarded
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Fig. 5.9 The variation of the linear natural frequencies, ωni, with the value of the linear
stiffness of coupling springs, k̄.

that when k̄ > 0.15 the linear modeshape values are reasonable (a = 6 is regarded as the
biggest acceptable ratio value here).

From the above discussion, k = 0.35 and k̄ = 0.65 are chosen for the study of auto-
parametric resonant interaction.

5.4.2 Backbone curves

When the linear constants of springs are k = 0.35 and k̄ = 0.65, the system natural frequen-
cies are ωn1 = 0.4676, ωn2 = 1 and ωn3 = 1.4427, i.e. ωn1 : ωn2 : ωn3 ≈ 1 : 2 : 3. Therefore,
the assumption of the response frequency ratio, ωr1 : ωr2 : ωr3 = 1 : 2 : 3, may be reasonably
made to be used in the nonlinear near-identity transform. Substituting the values of k and k̄

into Eq. (5.49a) leads to

ΦΦΦ =

 1 1 1
1.2021 0 −1.6637

1 −1 1

 , (5.53)
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Fig. 5.10 The variation of the absolute values of the linear modeshapes, |φ12| and |φ32|, with
the value of the linear stiffness of coupling springs, k̄.

and then the nonlinear modal coefficient matrix,
[
nq
]
, is computed, as

[
nq
]⊺

= κ



0.5806+0.0010λ 0 0.5814−0.0101λ

1.7418+0.0711λ 0 1.7442−0.7756λ

1.7418+0.5042λ 0 1.7442−5.5030λ

0 3+0.1225λ 0
0 1+λ 0
0 3+21.2859λ 0

1.7418−0.0383λ 0 1.7442+0.4175λ

1.7418−0.9366λ 0 1.7442+10.2222λ

0.5806−2.2151λ 0 0.5814+24.1766λ

0 6−3.23λ 0



, (5.54)

where λ = κ̄/κ . Now r = 2 and r̄ = 3 are substituted into Eqs. (5.16) to distinguish the
conditionally resonant terms and then the time-independent equations of the system here
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are found using Eqs. (3.54) and (5.15), given by

(ω2
n1 −ω

2
r1)U1 +

1
4

[
3α

[1]
1 U2

1 +2α
[1]
2 U2

2 +2α
[1]
3 U2

3

]
U1

+
1
4

[
e+i(3φ1−φ3)α

[1]
7 U2

1 U3 + e+i(φ1−2φ2+φ3)α
[1]
8 U2

2 U3

]
= 0,

(5.55a)

(ω2
n2 −ω

2
r2)U2 +

1
4

[
2α

[2]
4 U2

1 +3α
[2]
5 U2

2 +2α
[2]
6 U2

3

]
U2

+
1
4

e−i(φ1−2φ2+φ3)α
[2]
0 U1U2U3 = 0,

(5.55b)

(ω2
n3 −ω

2
r3)U3 +

1
4

[
2α

[3]
7 U2

1 +2α
[3]
8 U2

2 +3α
[3]
9 U2

3

]
U3

+
1
4

[
e−i(3φ1−φ3)α

[3]
1 U3

1 + e+i(φ1−2φ2+φ3)α
[3]
2 U1U2

2

]
= 0.

(5.55c)

From Eqs. (5.55), it may be found that S2 and S3, the solutions of the single-mode back-
bone curves associated to the second and third modes respectively, for the system depicted
in Fig. 5.8 are governed by the expressions as

S2 : U2 ̸= 0, U1 =U3 = 0, ω
2
r2 = ω

2
n2 +

3
4

α
[2]
5 U2

2 , (5.56a)

S3 : U3 ̸= 0, U1 =U2 = 0, ω
2
r3 = ω

2
n3 +

3
4

α
[3]
9 U2

3 . (5.56b)

However, the solution S1 may not always exist, as its existence depends on the value of α
[3]
1

to satisfy Eq. (5.55c) with the substitution U1 ̸= 0 and U2 =U3 = 0: when α
[3]
1 = 0 then S1

exists or vice versa. So, only if α
[3]
1 = 0, such that the nonlinear stiffness ratio λ ≈ 55, we

have
S1 : U1 ̸= 0, U2 =U3 = 0, ω

2
r1 = ω

2
n1 +

3
4

α
[1]
1 U2

1 , (5.57)

Furthermore, the solutions in which more than one mode is present may also exist. Con-
sidering the double-mode solutions, u1 and u3 are first assumed activated simultaneously.
Substituting U2 = 0 into Eqs. (5.55) leads to

(ω2
n1 −ω

2
r1)+

1
4

[
3α

[1]
1 U2

1 +2α
[1]
3 U2

3

]
+

1
4

e+i(3φ1−φ3)α
[1]
7 U1U3 = 0, (5.58a)

(ω2
n3 −ω

2
r3)+

1
4

[
2α

[3]
7 U2

1 +3α
[3]
9 U2

3

]
+

1
4

e−i(3φ1−φ3)α
[3]
1 U3

1 /U3 = 0. (5.58b)

Due to the phase-caused complex components, Eqs. (5.58) can only be satisfied when

sin(|3φ1−φ3|) = 0, such that |3φ1−φ3|= 0, π, 2π, · · · . Therefore, a variable
{1:3}
p̄31 is defined
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that
{1:3}
p̄31= ei|3φ1−φ3| =

 +1 when: |3φ1 −φ3|= 0, 2π, · · · ,

−1 when: |3φ1 −φ3|= π, 3π, · · · .
(5.59)

Using
{1:3}
p̄31, Eqs. (5.58) are combined (using ωr3 = 3ωr1) to give the equation describing the

relation between the modal response amplitudes, i.e.

(18α
[1]
3 −3α

[3]
9 )U3

3 +9
{1:3}
p̄31 α

[1]
7 U1U2

3

+
[
(27α

[1]
1 −2α

[3]
7 )U2

1 +4(9ω
2
n1 −ω

2
n3)
]

U3−
{1:3}
p̄31 α

[3]
1 U3

1 = 0,
(5.60)

and rearranged to lead to the those of the response frequencies, i.e.

ω
2
r1 = ω

2
n1 +

1
4
(3α

[1]
1 U2

1 +2α
[1]
3 U2

3+
{1:3}
p̄31 α

[1]
7 U1U3), (5.61a)

ω
2
r3 = ω

2
n3 +

1
4
(2α

[3]
7 U2

1 +3α
[3]
9 U2

3+
{1:3}
p̄31 α

[3]
1 U3

1 /U3). (5.61b)

Considering Eqs. (3.23) and (5.59), on the backbone curves governed by Eqs. (5.60) and
(5.61), when the first mode reaches its peak and zero, the third mode also has the maxi-
mum and zero response respectively. However, the reverse description does not hold: when
the third mode reaches its peak and zero, the first mode does not have to have the maxi-
mum or zero response respectively. Hence, this behaviour can be regarded as the in-unison
resonance for the three-to-one auto-parametric interaction case. Therefore, these backbone

curves are labelled as
{1:3}

D13±
[i], where the superscript indicates the value of

{1:3}
p̄31.

The double-mode solutions consisting of either the responses of only the first and second
modes or the second and third modes do not exist because when substituting U3 = 0 or
U1 = 0 into Eqs. (5.55), it leads to

e−i(3φ1−φ3)α
[3]
1 U3

1 + e+i(φ1−2φ2+φ3)α
[3]
2 U1U2

2 = 0, (5.62)

derived from Eq. (5.55c), and

e+i(φ1−2φ2+φ3)α
[1]
8 U2

2 U3 = 0, (5.63)

from Eq. (5.55a) respectively. These equations may only be satisfied by α
[3]
1 = α

[3]
2 = 0 and

α
[1]
8 = 0 which is not the case with the arbitrary values of nonlinear constants.

When all three modes are assumed to be present, i.e. U1 ̸= 0, U2 ̸= 0 and U3 ̸= 0, to
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balance the complex components in Eqs. (5.55), the phase differences must be

|φ1 −2φ2 +φ3|= 0, π, 2π, · · · and |3φ1 −φ3|= 0, π, 2π, · · · (5.64)

which leads to |2φ1 −φ2|= 0, π, 2π, · · ·

|3φ1 −φ3|= 0, π, 2π, · · ·
and

 |2φ1 −φ2|=
π

2
,

3π

2
,

5π

2
, · · ·

|3φ1 −φ3|= 0, π, 2π, · · ·
(5.65)

Therefore, we define another phase-related variable

{1:2}
p12= e2i|2φ1−φ2| =


+1 when: |2φ1 −φ2|= 0, π, · · · ,

−1 when: |3φ1 −φ2|=
π

2
,

3π

2
, · · · .

(5.66)

When
{1:2}
p12= +1, such that |2φ1 − φ2| = 0 or π , Eqs. (5.55) may be arranged, using

ωr2 = 2ωr1 and ωr3 = 3ωr1, to be

ω
2
r1 = ω

2
n1 +

1
4
[3α

[1]
1 U2
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For this case, when the first mode has the maximum response, the second mode also reaches
its peak (while when the first mode has zero response, the second mode does not pass zero
but also has the maximum response). Therefore, we regard this behaviour as the in-unison
resonance for the two-to-one auto-parametric interaction case and label the backbone curve

solution described by Eqs. (5.67) as
{1:2:3}

T 123±,±
[i, i] .

When
{1:2}
p12=−1, such that |2φ1 −φ2|= π/2, the modal responses are governed by
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For this case, when the first mode has the maximum response, the second mode passes zero
(while when the first mode has zero-amplitude response, the second mode also responses
zero). Therefore, we regard this behaviour as the out-of-unison resonance for the two-to-
one auto-parametric interaction case and label the backbone curve solution described by

Eqs. (5.68) as
{1:2:3}

T 123±,±
[o, i] .

The backbone curve results of the nonlinear system depicted in Fig. 5.8 are shown in
Fig. 5.11. All panels show the backbone curves in the projection of the modal response
frequency against displacement amplitude. The values of the system parameters used are:
m = 1, k = 0.35, k̄ = 0.65, κ =−1, and κ̄ = 1.01.

In Fig. 5.11, three backbone curve emanate from the frequency axis with the coordinates

of each modal natural frequency respectively, i.e.
{1:3}

D13+
[i], S2 and S3, which is similar to that

of the system of 1 : 1 : 1 resonant interaction, see Fig. 5.4 and Fig. 5.5. The triple-mode

backbone curves
{1:2:3}

T 123±,+
[o, i] and

{1:2:3}

T 123±,−
[i, i] appear from the identical bifurcation point on

S2 and all of them show a hardening nonlinear property, i.e. bending to the frequency-

increase direction. Note that the backbone solutions
{1:3}

D13−
[i],

{1:2:3}

T 123±,−
[o, i] and

{1:2:3}

T 123±,+
[i, i] do

not exist as there is not valid solution for their corresponding governing equations.

In Fig. 5.11, the existence of backbone curves
{1:2:3}

T 123±,+
[o, i] and

{1:2:3}

T 123±,−
[i, i] demonstrates

the occurrence of the resonant interaction between the second mode and other two modes.
Considering the linear natural frequency relationship and nonlinearity type of the example
system, this phenomenon is unique to the modal interaction involving multiple modes. More
specifically, it is believed that in general, the two-to-one or three-to-two auto-parametric in-
teraction may only occur between two modes of a system of corresponding stiffness nonlin-
earities, e.g. quadratic and quartic. Hence when considering the double-mode interaction,
the second mode of the example system could never get internal resonance with any of the
other two modes alone. This observation suggests that the unexpected lower-number-mode
resonant interaction may occur in a nonlinear system of multiple degrees of freedom when
additional mode(s) is(are) involved. Therefore, when a number of modes of a system are
nonlinearly coupled, it may be necessary to consider the modal interaction involving as
many modes as possible to prevent ignoring any multi-mode resonant interactions.
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Fig. 5.11 The backbone curves of the 3-DoF system depicted in Fig. 5.8 with physical
parameters m = 1, k = 0.35, k̄ = 0.65, κ =−1 and κ̄ = 1.01. Specific backbone curves are
labelled respectively, and the bifurcation points are denoted by dots. The asterisk, cross and
square denote the corresponding scaled linear natural frequencies.

5.5 Summary

In this chapter, we have investigated the interaction between/among all the underlying
modes of some nonlinear oscillating systems of multiple degrees of freedom using backbone
curves. The 3-DoF oscillator with cubic nonlinear springs has been considered throughout
as the example system to explore different types of resonant multi-mode interactions that
potentially occur.

In §5.2, the backbone curve model of a generic 3-DoF lumped-mass oscillator of cubic
nonlinearity was first developed using the direct norm form technique. During the deriva-
tion, the vector of nonlinear terms in the modal coordinates was expressed as the product
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of a polynomial-term vector and its corresponding symbolised-coefficient matrix. Hence, in
the final time-invariant equations, the origin of the resonant terms transformed to be retained
could be detected. In the backbone curve model, the resonant terms have been classified to
be unconditionally and conditionally resonant based on their relationship with the response
frequency ratios. The latter has been demonstrated to be always resulting in phase-related
terms which may finally lead to several backbone curve branches involving identical system
modes but of different phase differences.

The effect of one-to-one-to-one resonant modal interaction has specifically been inves-
tigated in §5.3. As the nonlinear system was designed to have three nature modes that are
nonlinearly coupled and have close natural frequencies, the one-to-one-to-one triple-mode
interaction may occur. It has been demonstrated that the existence of triple-mode backbone
curves is still affected by the values of nonlinear stiffness parameters, e.g. the triple-mode
backbone curves do not exist when the nonlinear constants of the system springs are posi-
tive, which is in keeping with the finding in Chapter 4.

When the nonlinear springs were assumed to be softening, the triple-mode backbone
curves were shown to be able to bifurcate from either single- or double-mode backbone
curves. The corresponding bifurcation points on single-mode backbone curve turn out to
be co-dimension two bifurcation points where the associated double-mode backbone curves
appear, loss stability and then lead to triple-mode branches. The similar phenomenon was
also observed for the bifurcation of double-mode backbone curves from the no-motion triv-
ial solution for the example system considered here. This backbone curve behaviour sug-
gests that when a single mode is directly forced, (i) a single-mode forced response may not
be observed but the double-mode one would directly appear instead, and (ii) three modes
may be activated without experiencing the two-mode-activation process. These backbone
curve predictions have been demonstrated by the numerical forced-response results for the
single-mode-forced situation.

The auto-parametric interaction involving multiple modes has also been investigated
in §5.4 via considering another 3-DoF system whose natural frequencies are ωn1 : ωn2 :
ωn3 ≈ 1 : 2 : 3. As expected, it has been shown that the three-to-one auto-parametric modal
interaction may occur between the first and third modes of this system of cubic nonlinearity.
But here, a unique nonlinear behaviour of multi-DoF systems was found that the unexpected
resonance mode, i.e. the second mode of the example system, would get resonance with the
other two when the three modes are also present for the single-mode-forced situation. This
finding demonstrated that for systems of several nonlinearly coupled modes, it is essential to
examine their natural frequencies to prevent ignoring modal interactions occurring among



120 N modal interaction of nonlinear multi-degree-of-freedom systems

multiple modes.
Throughout Chapter 4 and Chapter 5, we have investigated nonlinear interactions in-

volving different numbers of coupled modes with different response frequency relations
and their corresponding effects in the forced responses. It has been demonstrated that these
modal interactions can get resonance between involved modes: when one of the modes is ex-
ternally forced, the other unforced modes would also be activated. All these kinds of modal
interactions are based on a specific fixed response frequency ratio regarding a correspond-
ing type of nonlinearity, e.g. one-to-one and three-to-one modal interaction for the cubic
nonlinearity, and two-to-one for the quadratic nonlinearity. However, if the nonlinearly cou-
pled modes of multi-DoF systems interact with each other but not in a resonant way, what
kinds of nonlinear dynamic characteristics may then result in? In the next chapter, we will
investigate the effect of the non-resonant modal interaction, and in the subsequent chapter,
one of its application is introduced.



Chapter 6

Resonant frequency shift

In this chapter we:

• Show the resonant-frequency-shift phenomenon occurs in nonlinear systems under
the multi-mode excitation due to membrane stress.

• Investigate the contribution of different nonlinear terms, single-mode and coupled-
mode ones, during frequency shift.

• Use nonlinear reduced-order models to demonstrate the importance of the nonlinear
coupled-mode terms on accurate response prediction.

• Introduce the concept of the non-resonant interaction between nonlinearly coupled
modes and demonstrate its existence in continuous structures.

• Demonstrate the influence of the non-resonant interaction on the system response for
the multi-mode-excited situation.

6.1 Introduction

In Chapter 5, different kinds of N modal interaction were discussed. It has been shown
how the backbone curves provide a means for accurately predicting the forced responses
and interpreting different resonant modal interactions. However, all the forcing conditions
considered in the previous chapters tend to be single-frequency while the real working en-
vironment of practical machines may be much more complicated. For example, aircraft
fuselage structures subjected to high aeroelastic or acoustic loading.
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In this chapter, we investigate dynamic behaviours of nonlinear systems when multiple
modes are externally forced under a relatively complex excitation, e.g. random excitation
and hybrid excitation of random and harmonic-wave components. The chapter begins by
introducing a thin rectangular plate with the edges simply supported. Its unique dynamic
behaviour, i.e. resonant frequency shift, due to the membrane stresses under multi-mode
excitation is the key point of interest.

The accurate prediction of the nonlinear response of plates and shells still presents chal-
lenges, especially for structures of low stiffness and strong flexibility under high environ-
mental loads, resulting in significant nonlinear behaviours. The linear analysis techniques
fail to capture this nonlinear behaviour, particularly at high levels of dynamic excitation
when, for example, the resonant frequencies can vary with amplitude. For plate structures,
it is accepted that in general when the transverse deflection approaches the thickness of the
plate, the effect of the nonlinearity becomes significant. For a pinned plate, this is primarily
because the in-plane stress starts to make the response amplitude dependent [10].

One approach to studying this problem is to perform full-order model simulations using
a finite element software. The computation time is the limitation of this approach for prac-
tical applications. Another promising alternative strategy for addressing these drawbacks
is using reduced order modelling (ROM), more specifically, nonlinear reduced order mod-
elling (NROM) techniques [62]. NROMs consist of a low number of modes that include
linear and nonlinear terms, typically in the form of a series of quadratic and cubic terms in
the modal coordinates.

The underlying linear modes can be easily determined using the well-established linear
modal techniques, e.g. the linear Galerkin decomposition method for systems described
using a partial differential equation (PDE) model [66]. The main challenge in developing
an accurate NROM lies in the determination of the nonlinear stiffness coefficients. The
methods for computing the nonlinear stiffness coefficients can mainly be classified into
direct and indirect approaches. The direct approach applies the modal transformation on
the full-order nonlinear stiffness matrices [64, 89] or decompose the nonlinear PDEs [98].
The indirect approach uses the static nonlinear solution of a full finite element model to
determine stiffness coefficients [36, 59, 60, 63]. Due to the simple structure of the plate
under consideration, we can easily write the PDE of the nonlinear version; hence the direct
approach, i.e. Galerkin decomposition, is employed to derive the NROM.

In §6.3, using linear modeshape functions, we decompose the nonlinear PDE of the
example plate into a set of ordinary differential equations (ODEs) with nonlinear cubic
terms in the modal coordinates. It is found that the resulting NROM is still not easy to solve
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due to the existence of nonlinearly coupled terms. The majority of these coupled-mode
terms are believed to be insignificant for single-frequency excitation situation, which leads
us to consider whether they can also be ignored for complex excitation cases. Therefore,
the forced response of two kinds of NROMs, with and without coupled-mode terms are
simulated and qualitatively compared with the full model simulation results. It turns out that
the NROM including the coupled-mode terms can more accurately represent the nonlinear
behaviour (resonant frequency shift) for the excitation situations under consideration.

In §6.4, the backbone curve tool is used again to help explain the effect of the non-
resonant coupled-terms, and then a non-resonant interaction is introduced. Due to simul-
taneous activation of multiple non-resonant coupled modes, their presence tends to make
each other stiffen or soften (based on the sign of the associated stiffness values). The forced
response curves under multi-mode excitations are again found to have a good match with
the updated backbone curves where the non-resonant modal interaction is considered.

6.2 Frequency shift of an example pinned-pinned plate

z y

xO

w

b

a
h

Fig. 6.1 A schematic diagram of a thin, rectangular plate with the edges simply supported
and the coordinate system.

Throughout this chapter we consider the transverse deflection of a thin rectangular plate
with all edges simply supported (i.e. pinned). The schematic of the example plate is shown
in Fig. 6.1. An associated coordinate system (O;x,y,z) is overlaid on the plate with its origin
O at one corner. For an arbitrary point of coordinates (x,y) on the middle surface of the
plate, its out-of-plane (i.e. z-direction) displacement is denoted by w(x,y). The geometric
and material properties of the example plate are listed in Table 6.1.
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Length [mm] Width [mm] Thickness [mm]

a = 500 b = 520 h = 5

Density
[
kg/m3] Young’s modulus [GPa] Poisson’s ratio

ρ = 2700 E = 70 v = 0.31

Table 6.1 Properties of the example plate.

Firstly, the full-order simulations are performed in Abaqus®, a commercial finite ele-
ment (FE) analysis software, to illustrate the resonant frequency-shift phenomenon. 1600
thick shell elements (S8R in Abaqus®) are used to discretise the plate. This specific ele-
ment is adopted as it includes membrane stretching effects for large displacements. This FE
model is used to simulate the transient response of the example plate under specific exci-
tations, and then the response results are analysed in the frequency domain to examine the
varying of the system resonant frequencies.

Before performing the transient dynamic response simulation, the linear modal analy-
sis (the job model LnDynModal in Abaqus®) is conducted to understand the modeshape
patterns of the underlying linear structure. Fig. 6.2 shows the configurations of the first
four non-rigid-body modes denoted as Mode I, II, III and IV and their natural frequencies
are ωn1 = 58.707rad/s, ωn2 = 143.33rad/s, ωn3 = 150.24rad/s and ωn4 = 234.83rad/s
respectively. These four modes will be mainly considered in the following study.

For the transient simulation, the Abaqus/Implicits integrator in Abaqus/Standard solver
is adopted. To ensure a stable (physical) response, the value of the only parameter αn spec-
ifying the integrator is chosen to αn = −1

6 to impose adequate numerical damping during
integration. As for the forcing input, a group of random data with the sampling rate of
10kHz for a period T = 50s was generated using Matlab® function rand initially and then
substituted into Abaqus® as the random input amplitude. The model was integrated over
the input period at a minimum sampling time of 10−8 s. The displacement response at the
centre of the right-top quadrant of the plate (with coordinates (x,y) = 3

4(a,b)) is used as
a metric. This point is chosen to guarantee that the responses of all the first four bending
modes are considered. The time-domain response is processed to obtain the spectrum result
via the PSD (power spectral density) estimator based on the AR (auto-regression) model
in Matlab®. One issue of using the AR-based PSD estimator is the determination of the
AR model order for the specific signal considered. Here FPE (Final Prediction Error), AIC
(Akaike Information Criterion), MDL (Rissanen’s Minimum Description Length) and CAT



6.2 Frequency shift of an example pinned-pinned plate 125

(a) (b)

(c) (d)

Fig. 6.2 The linear modeshape configurations of the first four bending modes of the plate
depicted in Fig. 6.1 with the properties described in Table 6.1, computed using Abaqus®

linear modal analysis. (a) Mode I, (b) Mode II, (c) Mode III and (d) Mode IV.

(Parzen’s Criterion AR Transfer) order selection criterion are employed for the work in this
thesis. In Appendix A, the details of the AR power spectral estimation and order selec-
tion criteria can be found. To demonstrate the effects of nonlinearity, each forcing situation
is simulated with the two control settings, i.e. Nlgeom ‘Off’ and ‘On’, for exclusion and
inclusion of the nonlinear effects of large displacements respectively in the model.

Fig. 6.3 shows the spectral responses of the plate when a random uniform pressure load
is applied at the bottom-left quadrant area. This force scenario is chosen to ensure that the
four modes of interest are directly excited. Besides, the pressure excitation can represent
which modes are directly forced better, see Fig. 6.2. For this group of simulations, two force
magnitudes, denoted as A, are used. For the result (i) in Fig. 6.3, the force magnitude used
is low, i.e. A = 10−2, and the maximum displacement response amplitude of the whole plate
is less than 20% of the thickness of the plate, i.e. wmax < 0.2h. For the result (ii), the force
magnitude is relatively high, i.e. A = 1, which results a maximum displacement response
amplitude larger than the plate thickness, i.e. wmax > h.

From Fig. 6.3, it can be seen that for the low-level excitation situation the linear and
nonlinear results are almost on top of each other and their resonant frequencies are close
to the corresponding linear natural frequencies. This implies that the plate behaves linearly
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for this case. When the excitation level increases, the difference between the linear and
nonlinear results becomes obvious: the resonant frequencies of the linear results are still
close to the linear natural frequencies, but those of the nonlinear results have all shifted to
the right significantly.
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Fig. 6.3 The power spectral density of the response of the plate depicted in Fig. 6.1 to
random excitations, computed using the FE simulation data. The plate is under a uniform
pressure load random excitation on the left-bottom quarter area at two amplitude: (i) A =
10−2 and (ii) A = 1, and the displacement response at the point with the coordinates (x, y) =
3
4(a, b) is considered. The blue and red lines represent the results excluding and including
the large-amplitude nonlinear effects respectively, and the dash-black lines denote the linear
natural frequencies.

Fig. 6.4 shows the simulation results when the plate is under a hybrid excitation of
random and harmonic forces. The random component is identical to that used for the case
(i) in Fig. 6.3, which aims to ensure all modes of interest be mildly active. The harmonic
component is a point force applied at the centre of the plate. The specific loading point
chosen is for forcing Mode I only (among the four modes under consideration) to increase
its power (amplitude). Hence the forcing frequency is chosen to equate the first linear natural
frequency, i.e. Ω = ωn1.

We already know, from Fig. 6.3, that for the mildly random excitation situation, all four
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modes behave linearly and no frequency shift is observed. In Fig. 6.4, the linear result (the
blue line) shows no apparent difference in the resonant frequencies and the PSD levels of
Mode II, III and IV to that in Fig. 6.3. However, due to the additive harmonic force, the
PSD of Mode I significantly increases. For the nonlinear result (the red line), there are clear
double peaks near the first modal frequency and, furthermore, the positions of resonant
frequencies have shifted to the right for the rest of the modes.
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Fig. 6.4 The power spectral density of the response of the plate depicted in Fig. 6.1 to a
hybrid excitation, computed using the FE simulation data. The plate is under the excitation
comprising a random component identical to that used for the case (i) in Fig. 6.3 and a har-
monic component applied at the plate centre with the amplitude Fh = 5×10−3 at frequency
Ω = ωn1. The displacement response at the point with the coordinates (x, y) = 3

4(a, b) is
considered. The denotations are the same as those of Fig. 6.3.

The results shown in Fig. 6.3 and Fig. 6.4 demonstrate that:

• when the response amplitude becomes large, the nonlinearity due to the membrane
stretching effect would cause the resonant frequencies of the structure to shift

• the source of this nonlinear effect on the frequency shift is not limited to individual
modes, but maybe from the interaction between relevant modes.
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In the following sections, we will analytically investigate this nonlinear phenomenon using
dynamic tools such as nonlinear reduced-order models and backbone curves.

6.3 Nonlinear reduced-order model

To investigate the nonlinearity of the plate, a mathematical model that can not only accu-
rately make the prediction of the forced response but also give some insight into the system
physical parameters is needed. Therefore, the parametric physical model, NROM, is one of
the candidates. Although there are numerous studies about how to create accurate NROMs,
the techniques for geometrically nonlinear structures may be mainly classified as direct and
indirect/non-intrusive. Details about the techniques for developing the reduced-order model
for nonlinear mechanical systems can be found in [62]. In this section, considering the
simple geometry of the plate under consideration, a direct method of decomposing the non-
linear PDE using functions of linear modeshapes is employed to develop the NROM. Then
the effects of different nonlinear terms are analysed based on the NROM simulation results.

6.3.1 Development of a nonlinear reduced-order model

From [98], through the analysis of nonlinear strain-displacement relationships, the PDE of
the plate behaving in the nonlinear region is written as

ρh
∂ 2w
∂ t2 +D▽2▽2w−

(
∂ 2Φ

∂y2
∂ 2w
∂x2 −2

∂ 2Φ

∂x∂y
∂ 2w
∂x∂y

+
∂ 2Φ

∂x2
∂ 2w
∂y2

)
= Pf , (6.1)

with a compatibility equation,

1
Eh

▽2▽2
Φ+

∂ 2w
∂x2

∂ 2w
∂y2 −

(
∂ 2w
∂x∂y

)2

= 0, (6.2)

where w(x,y, t) is the transverse deflection, D = Eh3

12[1−v2]
is the flexural rigidity of the plate

under the assumption of the homogeneous, isotropic, and elastic material, Φ(x,y, t) is the
in-plane constraint force function due to the pre-stressing of the plate between its boundary
supports for the large transverse deflection situation, also known as Airy stress function,
Pf (x,y, t) is the external in-plane force and ρ , h, E and v represent the corresponding struc-
tural parameters in Table 6.1 and the operator ▽2 = ∂ 2

∂x2 +
∂ 2

∂y2 . Note that Eqs. (6.1) and
(6.2) do not include the damping related terms and the artificial modal-type damping will
be added later.
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To decompose the spatial and temporal variables, a modal description is adopted, such
that the deflection , w, is written,

w(x,y, t) =
M

∑
m=1

N

∑
n=1

φx,m(x)φy,n(y)qmn(t), (6.3)

where φx,m(x) and φy,n(y) are the spatial coordinate, describing the 2-dimensional mth and
nth linear modeshape in the x and y directions respectively and qmn(t) is the temporal co-
ordinate, describing the displacement of the {m,n} th linear mode. The modeshapes only
account for the linear contribution from the spring mechanism, but not the nonlinear compo-
nent. The expressions of linear modeshapes of the simply supported plate can be explicitly
written as [5]

φx,m(x) = sin
(mπ

a
x
)

and φy,n(y) = sin
(nπ

b
y
)
. (6.4)

Similarly, the Airy stress function is described in the same form, written as

Φ(x,y, t) =
R

∑
r=1

S

∑
s=1

ϕx,r(x)ϕy,s(y)ηrs(t), (6.5)

where
ϕx,r(x) = sin

(rπ

a
x
)

and ϕy,s(y) = sin
(sπ

b
y
)
. (6.6)

Now, substituting Eqs. (6.3) and (6.5) into Eq. (6.1) gives
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−
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}
= Pf .

(6.7)

Similarly, the associated compatibility equation with the substitution of w and Φ becomes,

R,S
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1
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dx2
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dy2 −
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dx
dφy,h

dy
dφx,t

dx
dφy,u

dy

)}
qghqtu = 0.

(6.8)

Then the Galerkin process is applied to above resulting equations: multiply Eq. (6.7) by
arbitrary modeshape functions φx,i and φy, j on both sides and integrate across the whole area
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of the plate. Furthermore, the orthogonality conditions of linear modeshapes, i.e.

∫ a

0
φx,iφx, jdx =

∫ a

0

d2φx,i

dx2
d2φx, j

dx2 dx

=
∫ a

0

d4φx,i

dx4
d4φx, j

dx4 dx = 0,
when i ̸= j, (6.9)

is used to modally decouple the EoM. This process leads to a set of ODEs in terms of linear
modal coordinates, written as,

q̈i j +ω
2
i jqi j −

M,N,R,S

∑ Θmnrsi jηrsqmn = fi j, (6.10)

where the linear modal frequencies,

ω
2
i j = π

2
(

i2

a2 +
j2

b2

)√
D
ρh

, (6.11)

the external force in modal coordinates,

fi j =
∫ a

0

∫ b

0
Pf φx,iφy, jdxdy, (6.12)

that may be calculated with extra information about the force pattern, and

Θmnrsi j =
4

ρhab

∫ a

0

∫ b

0

(
ϕx,r

d2ϕy,s

dy2
d2φx,m

dx2 φy,n

−2
dϕx,r

dx
dϕy,s

dy
dφx,n

dx
dφy,m

dy
+

d2ϕx,r

dx2 ϕy,sφx,m
d2φy,n

dy2

)
φx,iφy, jdydx.

(6.13)

Similarly, Eq. (6.8) becomes,

ϒrsηpq +
G,H,T,U

∑ Γghtursqghqtu = 0, (6.14)

where,

Γghturs =
∫ a

0

∫ b

0

{
d2φx,g

dx2 φy,hφx,t
d2φy,u

dy2 −
(

dφx,g

dx
dφy,h

dy
dφx,t

dx
dφy,u

dy

)}
ϕx,rϕy,sdydx, (6.15a)

ϒrs =
ab

4Eh
π

4
(

r2

a2 +
s2

b2

)2

. (6.15b)
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Combining Eqs. (6.10) and (6.14) to eliminate ηrs gives,

q̈i j +ω
2
i jqi j +

{
M,N,G,H,T,U

∑ µi j,ghtumnqghqtuqmn

}
= fi j, (6.16)

where

µi j,ghtumn =
R,S

∑
ΓghtursΘmnrsi j

ϒrs
. (6.17)

Eq. (6.16) describes the motion of the undamped {i, j} th modes of the plate. These EoMs
can be sorted by the magnitude of the linear natural frequencies and written in our familiar
matrix form, see Eq. (3.1), with the imposed modal damping terms, as

q̈+Cq+ΛΛΛq+Nq(q) = Fm, (6.18)

where C is a diagonal matrix of damping coefficients, ΛΛΛ is a diagonal matrix of the squares
of modal natural frequencies, Nq is the column vector containing the nonlinear terms whose
nth element may be written

Nq,n =
N

∑
r=1

N

∑
s=r

N

∑
t=s

α
[n]
ℓ qrqsqt , (6.19)

and Fm is a vector of modal forcing terms.
Substituting Eqs. (6.4) and (6.6) with the example plate parameters values in Table 6.1

into Eqs. (6.11), (6.13), (6.15) and (6.19) may result in the values of linear natural frequen-
cies and coefficients of nonlinear stiffness terms. Table 6.2 lists the values of the linear
natural frequencies and the non-zero coefficients of nonlinear terms for the first four modes
of the plate. The configurations of the linear modeshapes of the first four modes, plotted
using Eqs. (6.4), are shown in Fig. 6.5. It can be seen that these results are almost identical
to those of the FE simulation, see Fig. 6.2.

6.3.2 Simulation results

In the EoM of the nth mode, the nonlinear terms can be mainly classified into two types,
i.e. single-mode terms, q3

n, and mixed-mode terms, qiq jqk where i ̸= n, j ̸= n or k ̸= n, see
Table 6.2. It is known that the single-mode terms can only affect the resonant frequency of
its corresponding mode; while the mixed-mode ones may affect the response of other modes
via the modal interaction for the situation of the single-mode-single-frequency excitation.
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Mode No. ωn [rad/s] Coefficients (×109) NL term

Mode I

i = 1

j = 1

58.9

α I
1 = 5.45 q3

1

α I
2 = 23.6 q1q2

2

α I
3 = 22.7 q1q2

3

α I
4 = 24.4 q1q2

4

α I
5 = 74.3 q2q3q4

Mode II

i = 1

j = 2

143.9

α II
1 = 23.6 q2

1q2

α II
2 = 31.4 q3

2

α II
3 = 65.1 q2q2

3

α II
4 = 124.3 q2q2

4

α II
5 = 74.3 q1q3q4

Mode III

i = 2

j = 1

150.8

α III
1 = 22.7 q2

1q3

α III
2 = 65.1 q2

2q3

α III
3 = 31.4 q3

3

α III
4 = 132.4 q3q2

4

α III
5 = 74.3 q1q2q4

Mode IV

i = 2

j = 2

235.8

α IV
1 = 24.4 q2

1q4

α IV
2 = 124.3 q2

2q4

α IV
3 = 132.4 q2

3q4

α IV
4 = 55.8 q3

4

α IV
5 = 74.3 q1q2q3

Table 6.2 Linear natural frequencies and nonlinear parameters for the first four modes of the
example plate.

The result in Fig. 6.4 has already demonstrated that there exists a modal interaction between
Mode I and other three modes of the plate structure. Hence, to investigate the effects of the
single- and mixed-mode nonlinear terms on the resonant frequency shift for the multi-mode
forced situation, two kinds of nonlinear four-mode truncation models for the example plate
are employed to qualitatively compare with the FE model, i.e. a coupled model including
nonlinear mixed-mode terms and an uncoupled model excluding mixed-mode term. Their
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(a) (b)

(c) (d)

Fig. 6.5 The linear modeshape configurations of the first four modes of the plate depicted in
Fig. 6.1 with the properties described in Table 6.1, used in the Galerkin decomposition. (a)
Mode I, (b) Mode II, (c) Mode III and (d) Mode IV.

respective EoMs are stated as,

Coupled NROM : q̈+Cq̇+Λq+Nq(q) = Fm(t), (6.20a)

Uncoupled NROM : ¨̃q+C ˙̃q+Λq̃+ Ñq̃(q̃) = Fm(t), (6.20b)

where the modal force vector Fm(t) may be written

Fm = Prr(t)+Ph cos(Ωt), (6.21)

where r(t) is the scaled random input signal (i.e. the random amplitude input in FE sim-
ulation), Pr is the vector magnitude of the modal random force component and Ph is the
vector amplitude of the harmonic component. Nq and Ñq̃ are the vectors of nonlinear terms,
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written as

Nq =


α I

1q3
1 +α I

2q1q2
2 +α I

3q1q2
3 +α I

4q1q2
4 +α I

5q2q3q4

α II
1 q2

1q2 +α II
2 q3

2 +α II
3 q2q2

3 +α II
4 q2q2

3 +α II
5 q1q3q4

α III
1 q2

1q3 +α III
2 q2

2q3 +α III
3 q3

3 +α III
4 q3q2

4 +α III
5 q1q2q4

α IV
1 q2

1q4 +α IV
2 q2

2q4 +α IV
3 q2

3q4 +α IV
4 q3

4 +α IV
5 q1q2q3

 , (6.22)

and,

Ñq̃ =


α I

1q̃3
1

α II
2 q̃3

2

α III
3 q̃3

3

α IV
4 q̃3

4

 . (6.23)

It is noteworthy that due to unstable responses, another NROM candidate which only con-
sists of the mixed-mode terms is unable to be employed for comparison.

In both NROMs, viscous damping is added, and the damping ratio is assumed to be
ζ = 0.1% for all modes. These two equations are integrated over the same force time
history defined at discrete data points for each specific excitation case using the fourth-order
Runge-Kutta integration operator. The random data is generated identically for that used in
the previous FE simulation. The discrete-time period between consecutive time history
points is 10−4 s and the integration was performed over a period of 50s. The displacement
response of the same point considered in the FE simulation is again used here, and similarly,
the spectrum results are employed to demonstrate the frequency-shift phenomenon.

Firstly, the excitations considered in Fig. 6.3 are simulated using two NROMs, and the
result is shown in Fig. 6.6. For this excitation case, the magnitudes of the random com-
ponents are Pr =

4
π2ρh [1, 1, 1, 1]⊺×10−2 and Pr =

4
π2ρh [1, 1, 1, 1]⊺ for the simulation (i)

and (ii) respectively. The magnitudes of harmonic component for both cases are Ph = [0]⊺.
From the results of the simulation (i), it can be seen that the responses of the uncoupled and
coupled models are nearly identical and their resonant frequencies are close to the linear
natural frequencies. As expected, this observation confirms that the effect of the coupled-
mode terms is insignificant for the low-response-amplitude situation. For the high-level
excitation situation, the result (ii), the resonant frequencies for both models tend to shift to
higher values. However, the shift level of the coupled model is more significant than that of
the uncoupled model. Note that the frequency shift for the results of the uncoupled model is
due to the backbone curve distortion. This result demonstrates that both single- and mixed-
mode terms can cause frequency shifting in the nonlinear region. Based on the qualitative
comparison between Fig. 6.3 and Fig. 6.6, it is unable to distinguish which NROM is more
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Fig. 6.6 The power spectral density of the response of the plate depicted in Fig. 6.1 to
random excitations in the first four modes, computed using NROM simulation data. The
two force amplitudes used are: (i) Pr =

4×10−2

π2ρh (1, 1, 1, 1)⊺ and (ii) Pr =
4

π2ρh (1, 1, 1, 1)⊺.

The displacement response x = 1
2q1 −

√
2

2 q2 −
√

2
2 q3 +q4 is considered, which is equivalent

to that at the point with the coordinates (x, y) = 3
4(a, b). The blue and red lines represent

the results of the uncoupled and coupled models respectively, and the dashed-black lines
denote the linear natural frequencies.

accurate for describing the nonlinear behaviour of the example plate.
Then, the NROMs are used to simulate the plate under the hybrid excitation considered

in Fig. 6.4. The corresponding force amplitudes used are Pr =
4

π2ρh (1, 1, 1, 1)⊺× 10−2

and Ph =
4

ρhab (5, 0, 0, 0)⊺×10−3. Fig. 6.7 shows the simulation results for this case. We
can see that for Mode II, III and IV, compared with linear natural frequencies, their resonant
frequencies of the coupled model result have increased, while those in the uncoupled model
result have not changed. For this case, it is the coupled model that can more accurately rep-
resent the nonlinear behaviour of the full-order FE model, see from the comparison between
Fig. 6.4 and Fig. 6.6.

The NROM simulation results in Fig. 6.6 and Fig. 6.7 have further demonstrated that
the mixed-mode terms would cause modal interactions, especially for the multi-mode exci-
tation situation. However, it is not clear whether this modal interaction is the resonant one
investigated in Chapter 5. Note that the one-to-one modal interaction is excluded as it may
only occur between Mode II and III. By examining the linear frequencies ratio and nonlin-
ear terms, it can be predicted that the multi-mode auto-parametric interaction involving the
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Fig. 6.7 The power spectral density of the response of the plate depicted in Fig. 6.1 to a
hybrid excitation in the first four modes, computed using NROM simulation data. The hy-
brid excitation scenario is that all four modes are randomly excited and Mode I is sinusoidal
forced simultaneously: Pr =

4×10−1

π2ρh (1, 1, 1, 1)⊺, Ph =
4×10−3

ρhab (5, 0, 0, 0)⊺ and Ω = ωn1.

The displacement response x = 1
2q1 −

√
2

2 q2 −
√

2
2 q3 +q4 is considered. The denotations are

the same as those of Fig. 6.6.

four modes of interest may occur. For example, the nonlinear terms q2q3q4 in the EoM of
Mode I may give birth to a complex conjugate u2pu3pu4m and u2mu3mu4p during the nonlin-
ear near-identity transform of the direct normal form technique application. These derived
terms respond at the fundamental frequency of Mode I, thus causing a resonant modal in-
teraction. Therefore, a group of extra NROM simulations is performed in which only Mode
I and Mode III are directly excited:

• In Fig. 6.8(a), Mode I and III are randomly forced at two levels: (i) Pr =
4

π2ρh (1, 0, 1, 0)⊺×
10−2 and Ph = (0)⊺, and (ii) Pr =

4
π2ρh (1, 0, 1, 0)⊺ and Ph = (0)⊺.

• In Fig. 6.8(b), Mode I and III are randomly forced at a relatively low level and an
extra sine-wave force is applied to Mode I: Pr =

4
π2ρh (1, 0, 1, 0)⊺ × 10−2, Ph =

4
ρhab (5, 0, 0, 0)⊺×10−3 and Ω = ωn1.

• In Fig. 6.8(c), Mode I and III are randomly forced at a relatively low level and an
extra sine-wave force is applied to Mode III: Pr =

4
π2ρh (1, 0, 1, 0)⊺× 10−2, Ph =

4
ρhab (0, 0, 5, 0)⊺×10−3 and Ω = ωn3.
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Fig. 6.8 The power spectral density of the response of the plate depicted in Fig. 6.1, com-
puted using the NROM simulation data, when (a) Mode I and III are randomly forced, (b)
only Mode I is additionally forced harmonically and (c) only Mode III is additionally forced
harmonically.
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As with Fig. 6.6, Fig. 6.8(a) shows a similar result that for the low-level forcing case, the
results of coupled and uncoupled models are close and for the high-level case, they both
present frequency-shift phenomena and the shift level of the coupled model results is higher.
Also, the observation from Fig. 6.8(b) and Fig. 6.8(c) is similar to that of Fig. 6.7 that the
power increment of one mode due to the harmonic forcing results in a resonant frequency
increasing of the other mode. Note that in Fig. 6.8(b), the resonant peak at around 30Hz is
due to the three-times harmonic response of Mode I. From the results illustrated in Fig. 6.8,
we may conclude that:

• the frequency shift is not caused by the double-mode one-to-one or multi-mode auto-
parametric modal interaction because Mode II and IV are always still for this case.

• the occurrence of the frequency shift is not affected by the number of modes involved
but the power level of the nonlinear dynamic system.

• the effect of modal interactions in the example plate due to mixed-mode terms is
bilateral, see from Fig. 6.8(b) and Fig. 6.8(c).

6.4 Effect of the nonlinear coupled-mode terms explana-
tion

In this section, backbone curves, approximated by the direct normal form technique, are
used to explain the effect of mixed-mode terms on the frequency shift when systems are
under multi-frequency-multi-mode excitation. More specifically, we investigate how the
inclusion of mixed-mode terms affects the configuration of the ‘original’ backbone curves
of the modes without resonant modal interaction. During the approximation of backbone
curves, the applicability of the single-fundamental-response-frequency assumption used in
previous chapters is further discussed. Based on that, a non-resonant modal interaction
related to the mixed-mode nonlinear terms is introduced which is helpful for understanding
the frequency-shift phenomenon.

6.4.1 Non-resonant interaction

To exclude the potential occurrence of the multi-mode auto-parametric interaction since it
was demonstrated to not occur in the previous simulations, a three-mode truncated NROM
consisting of Mode I, II and III is considered instead for simplifying the problem. Using
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Eq. (6.20a), the EoM of the equivalent conservative system is written as,

q̈+ΛΛΛq+Nq(q) = 0, (6.24)

where the vector of nonlinear terms is,

Nq =


α I

1q3
1 +α I

2q1q2
2 +α I

3q1q2
3 +α I

4q1q2
4

α II
1 q2

1q2 +α II
2 q3

2 +α II
3 q2q2

3 +α II
4 q2q2

3

α III
1 q2

1q3 +α III
2 q2

2q3 +α III
3 q3

3 +α III
4 q3q2

4

 . (6.25)

Based on the linear natural frequencies values in Table 6.2, i.e. ωn1 : ωn2 : ωn3 ≈ 1 : 2.5 : 2.5,
a reasonable modal response frequency relation may be assumed, i.e. ωr1 : ωr2 : ωr3 = 1 :
2.5 : 2.5. Through the application of the direct normal form technique, the resulting time-
invariant equations are,[(

ω
2
n1 −ω

2
r1
)
+

1
4
(
3α I

1U2
1 +2α I

2U2
2 +2α I

3U2
3
)]

U1 = 0, (6.26a)[(
ω

2
n2 −ω

2
r2
)
+

1
4
(
2α II

1 U2
1 +3α II

2 U2
2 +(2+ p)α II

3 U2
3
)]

U2 = 0, (6.26b)[(
ω

2
n3 −ω

2
r3
)
+

1
4
(
2α III

1 U2
1 +(2+ p)α III

2 U2
2 +3α III

3 U2
3
)]

U3 = 0, (6.26c)

where ωr2 = ωr3 has been used, p = ei2|φ2−φ3| and Ui, ωri and φi are the fundamental re-
sponse amplitude, frequency and phase of the ith mode respectively.

Following the ‘classic’ steps of backbone curve solution approximation, see Chapter 4
and Chapter 5, successively setting U2 and U3, U1 and U3, and U1 and U2 to zero in
Eqs. (6.26) gives the expressions of three single-mode backbone curves, as

S1 : ω
2
r1 = ω

2
n1 +

3
4

α I
1U2

1 , (6.27a)

S2 : ω
2
r2 = ω

2
n2 +

3
4

α II
2 U2

2 , (6.27b)

S3 : ω
2
r3 = ω

2
n3 +

3
4

α III
3 U2

3 . (6.27c)

Furthermore, because of the specific natural frequencies relation and the phase-related terms
associated with Mode II and III, there exist double-mode backbone curve solutions, i.e. D23,
related to these two modes here. So if U1 = 0, while U2 ̸= 0 and U3 ̸= 0 and Mode II and III
are assumed to respond at the same frequency, Eqs. (6.26b) and (6.26c) can be rearranged
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with submission of ωr = ωr2 = ωr3. Therefore, the expressions of D23 may be derived: for
the in-unison case, i.e. p = 1, Eqs. (6.26) gives,

D23±[i]s2
:


U2

2 =U2
[i]s2

+η[i]s2U
2
3 ,

ω2
r = ω2

[i]s2
+

3
4

γ[i]s2U
2
3 ,

(6.28a)

or

D23±[i]s3
:


U2

3 =U2
[i]s3

+η[i]s3U
2
2 ,

ω2
r = ω2

[i]s3
+

3
4

γ[i]s3U
2
2 ,

(6.28b)

and for the out-of-unison case, i.e. p =−1, we obtain

D23±[o]s2
:


U2

2 =U2
[o]s2

+η[o]s2U
2
3 ,

ω2
r = ω2

[o]s2
+

1
4

γ[o]s2U
2
3 ,

(6.29a)

or

D23±[o]s3
:


U2

3 =U2
[o]s3

+η[o]s3U
2
2 ,

ω2
r = ω2

[o]s3
+

1
4

γ[o]s3U
2
2 ,

(6.29b)

where the second subscript of the backbone curve label denotes where the corresponding
backbone curve bifurcates from, the coefficients, U2, ω2, η and γ are time-invariant and the
calculated expressions are listed in Table 6.3.

Furthermore, it is also possible to have solutions where only Mode I and II are present.
Eqs. (6.26) with the substitution U3 = 0 becomes

ω
2
r1 = ω

2
n1 +

3
4

α I
1U2

1 +
1
2

α I
2U2

2 , (6.30a)

ω
2
r2 = ω

2
n2 +

3
4

α II
2 U2

2 +
1
2

α II
1 U2

1 . (6.30b)

In Eqs. (6.30), since all the nonlinear terms retained are unconditionally resonant, no phase
condition is imposed, i.e. phase-unlocking, and the modal response frequency ratio can be
arbitrary. Similarly, the same result is found when only Mode I and III are present, i.e.

ω
2
r1 = ω

2
n1 +

3
4

α I
1U2

1 +
1
2

α I
3U2

3 , (6.31a)
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D23[i] D23[o]

BP S2 S3 S2 S3

U2
[tr]sn

4
3

ω2
n3 −ω2

n2
α II

2 −α III
2

4
3

ω2
n3 −ω2

n2
α II

3 −α III
3

4(ω2
n3 −ω2

n2)

3α II
2 −α III

2

4(ω2
n3 −ω2

n2)

α II
2 −3α III

3

ω2
[tr]sn

α II
2 ω2

n3 −α III
2 ω2

n2
α II

2 −α III
2

α II
3 ω2

n3 −α III
3 ω2

n2
α II

3 −α III
3

3α II
2 ω2

n3 −α III
2 ω2

n2
3α II

2 −α III
2

α II
3 ω2

n3 −3α III
3 ω2

n2
α II

3 −3α III
3

η[tr]sn
α III

3 −α II
3

α II
2 −α III

2

α III
2 −α II

2
α II

3 −α III
3

3α III
3 −α II

3
3α II

2 −α III
2

α III
2 −3α II

2
α II

3 −3α III
3

γ[tr]sn
α II

2 α III
3 −α III

2 α II
3

α II
2 −α III

2

α II
3 α III

2 −α II
2 α III

3
α II

3 −α III
3

9α II
2 α III

3 −α III
2 α II

3
3α II

2 −α III
2

α II
3 α III

2 −9α II
2 α III

3
α II

3 −α III
3

Table 6.3 Expressions of the parameters in the descriptions of the double-mode backbone
curves of the example plate. In the subscripts of the parameter labels, ‘sn’ = ‘s2’ or ‘s3’
indicates the position of the double-mode backbone curves bifurcating from, i.e. either S2
or S3, and ‘tr’ = ‘i’ or ‘o’ stands for the type of interaction, i.e. either in-unison or out-of-
unison. BP is short for bifurcation position.

ω
2
r3 = ω

2
n3 +

3
4

α III
3 U2

3 +
1
2

α III
1 U2

1 . (6.31b)

Therefore, the solutions of Eqs. (6.30) and (6.31) are not resonant and may be impossible for
the single-frequency-single-mode-forced situation. Mode I is considered to be non-resonant
to Mode II and III. The details about the influence of phase-locking on internal resonance
can be found in [34].

When considering the situation of multi-frequency-multi-mode excitation, the solutions
of Eqs. (6.30) and (6.31) may be valid. For example, the non-resonant Mode I is activated by
external forcing and responding sinusoidally at a frequency other than the commensurable
one of Mode II or III, e.g. 3ωr1 = ωr2,r3 or ωr1 = ωr2,r3, to avoid resonance. Rearranging
Eq. (6.30b) and Eq. (6.31b) results in modified backbone curve solutions, Ŝ2 and Ŝ3

Ŝ2 : ω
2
r2 = ω̂

2
n2 +

3
4

α II
2 U2

2 , (6.32a)

Ŝ3 : ω
2
r3 = ω̂
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3
4

α III
3 U2

3 , (6.32b)

where
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2
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2
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1
2

α II
1 U2

1 , (6.33a)



142 Resonant frequency shift

ω̂
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n3 = ω

2
n3 +

1
2

α III
1 U2

1 , (6.33b)

and the hat symbol ‘◦̂’ denotes the solutions with consideration of the effect of Mode I for
distinction. Similarly, the expressions of double-mode backbone curves are adjusted to be,
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(6.34a)

or

D̂23±[i]s3
:
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and,
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or
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[o]s3

+η[o]s3U
2
2 ,

ω2
r = ω̂2

[o]s3
+

1
4

γ[o]s3U
2
2 ,

(6.35b)

where,
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1 , (6.36a)
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2
1 . (6.36b)

The calculated expressions of the additive coefficients, i.e. µ and ν in Eq. (6.36), are listed
in Table 6.4.

Comparing modified backbone solutions of Mode II and III, Eqs. (6.32a), (6.32b), (6.34)
and (6.35), with the orignal ones, Eqs. (6.27b), (6.27c), (6.28) and (6.29), it can be seen that
their base structures are identical. While, considering Eq. (6.33) for the modified single-
mode backbone solutions, the ‘effective’ natural frequencies, ω̂ni, increases with the re-
sponse amplitude of Mode I (refer α II

1 > 0 and α III
1 > 0). This further results in the in-

crement of the resonant response frequencies of Mode II and III, i.e. ωri. This explains
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3
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3 −3α III
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Table 6.4 Expressions of the extra parameters in the descriptions of the double-mode back-
bone curves of the example plate depicted, with non-resonant interactions considered.

the frequency-shift phenomenon caused by the nonlinear mixed-mode terms observed in
spectrum results. A similar phenomenon can be observed in the double-mode backbone
solution. In Eqs. (6.36), ω̂[tr]sn is the function of U1, thus the resonant frequencies, ωr, are
also affected by the response amplitude of Mode I, see Eqs. (6.34) and (6.35).

Furthermore, to investigate the bilateral feature of this modal interaction, the effect of
the presence of non-resonant modes to Mode I, i.e. Mode II and III, on the backbone curve
S1 is considered. Simply rearranging Eq. (6.26a) gives the updated expression of S1, such
that,

Ŝ1 : ω
2
r1 = ω̂

2
n1 +

3
4

α I
1U2

1 , (6.37)

where
ω̂

2
n1 = ω

2
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2
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2U2

2 +
1
2

α I
3U2

3 . (6.38)

From this, we could predict that if Mode II and III are non-resonantly present, the value of
the resonant frequency of the backbone curve S1 will be larger, corresponding to a right-
forward shift in the frequency spectrum. Different from the modal interactions investigated
in Chapter 4 and Chapter 5, the interaction between Mode I and Mode II and III considered
here is not limited to the commensurable response frequencies and also does not cause
resonance; therefore it is denoted as non-resonant modal interaction.

6.4.2 Backbone curves and forced response results

Now, the coefficients values are substituted into Eqs. (6.34) and (6.35) to compute the back-
bone curves of Mode II and III of the example plate. Then the numerically computed forced
responses for the multi-frequency-multi-mode-forced situation are compared with the back-
bone curves to illustrate the effect of mixed-mode terms on frequency shift.
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(a)

(b)

Fig. 6.9 The backbone curves of Mode II and III, of the plate depicted in Fig. 6.1 with
considering the effect of the non-resonant modal interaction with Mode I. The single-mode
backbone curves Ŝ2 and Ŝ3 are shaded in blue and red respectively, and the double-mode
backbone curves, D̂23±

[i], are in green. The black dash lines indicate the ‘effective’ natural
frequencies described by Eq. (6.33) and magenta lines indicate the ‘effective’ bifurcation
points described by Eq. (6.36). The blue, red and green lines represent the backbone curves
S2, S3 and D23±

[i] respectively.
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Fig. 6.9 shows backbone curves results projected onto a three-dimensional space of the
resonant frequency, ω̄r, against the fundamental response amplitude of Mode II or Mode
III, Ū2 or Ū3, against the fundamental response amplitude of Mode I, Ū1. Here for the better
illustration, the coordinates are scaled using Ūi = Ui/h and ω̄r = ωr/ωn2. Note that due
to the inexistence of valid solution of Eqs. (6.35), there is no out-of-unison double-mode
backbone curve for this case. From the results, it can be seen that the ‘effective’ natural
frequencies of single-mode backbone curves (the black dash lines) and bifurcation points
of double-mode backbone curves (solid magenta lines) are increasing with the response
amplitude of Mode I, i.e. bending to the right viewing from negative z-direction. Meanwhile,
the resonant frequencies of all the backbone curves related to Mode II and III have shifted
to a higher value because of the appearance of Ū1 just as expected. The backbone curve
results demonstrate that the presence of non-resonant modes may make the other vibration
modes of the plate system appear stiffer.

Then the multi-frequency-multi-mode-forced responses of the example plate are com-
puted. Firstly, a somewhat artificial situation is considered: the forcing of Mode I is such
that the resonant response of this mode, U1, is at a constant amplitude, Mode II is left unex-
cited and Mode III is directly forced at a constant amplitude but a series of frequencies near
its linear natural frequency. Here the forcing amplitude is chosen to be big enough such that
the resonant modal interaction between Mode II and III can be triggered. The mathemati-
cal expression of this forced situation, which is also the equation used in the continuation
simulation, is,

q1 =U1 cos(ωr1t +φ1),

q̈2 +2ζ ωn2q̇2 +ω
2
n2q2 +α II

1 q2
1q2 +α II

2 q3
2 +α II

3 q2q2
3 = 0,

q̈3 +2ζ ωn3q̇2 +ω
2
n3q3 +α III

1 q2
1q3 +α III

2 q2
2q3 +α III

3 q3
3 = F cos(Ωt).

(6.39)

Fig. 6.10 shows the responses of the plate regarding the response amplitude of Mode II
and Mode III in the same three-dimension projection space of Fig. 6.9. To aid comparison,
the backbone curves are also shown, shaded in grey. In this plot, the single-mode and
double-mode forced responses for different response amplitudes of Mode I are shown to
surround their corresponding backbone curves. It can be seen that the maximum response
points of each response branch are close to the backbone surfaces, which shows a frequency
shift trend due to the presence of Mode I. Likewise, we can note that the amplitude of the
peak response (either single-mode or double-mode) is also increased due to the increased
frequency at which the peak response occurs.
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Finally, a more realistic excitation case is considered in which Mode I is forced at a fixed
frequency, Ωc, and a constant amplitude, Fc, Mode III is still directly forced and Mode II is
left unexcited, i.e.,

q̈1 +2ζ ωn1q̇1 +ω
2
n1q1 +α I

1q3
1 +α I

2q1q2
2 +α I

3q1q2
3 = Fc cos(Ωct +φ1)
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2
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1 q2
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2 q3
2 +α II

3 q2q2
3 = 0,

q̈3 +2ζ ωn3q̇2 +ω
2
n3q3 +α III

1 q2
1q3 +α III

2 q2
2q3 +α III

3 q3
3 = F cos(Ωt).

(6.40)

The numerical results for this case are shown in Fig. 6.11. It can be seen that due to the inter-
actions between Mode I and Mode III, the stiffening effect varies with excitation frequency
due to the variance of the response amplitudes. For this case, the backbone curves still
capture the nonlinear dynamic features of the forced-response curves, e.g. peak amplitude
points, bifurcations and resonant frequency shift.

The backbone curve and forced-response results indicate that when the system is under
multi-mode excitation, the associated modes, either resonant or non-resonant, must be con-
sidered together to give an accurate nonlinear response prediction, i.e. resonant frequency
and bifurcation positions. Furthermore, the non-resonant modal interaction also highlights
the importance of the inclusion of mixed-mode terms for nonlinear model selection.

6.5 Summary

In this chapter, we have observed the shifting phenomenon of resonant frequencies in a
thin plate due to the geometrical nonlinearity of the multi-mode-forced situation. This phe-
nomenon has been demonstrated by the dynamic responses of a thin rectangular plate with
an ideal edge-pinned constraint. The response data in the time-domain were simulated using
the implicit integrator on a ‘full-order’ finite element model which includes the geometri-
cally nonlinear effect. Contrary to the finding in the previous chapters that there exists no
interaction between non-resonant modes for the single-mode-single-frequency excitation
case, the simulation results have demonstrated that the non-resonant modes do affect each
other when multiple modes are activated simultaneously.

To investigate the interactions between non-resonant modes, the nonlinear reduced-order
model has been developed by decomposing the nonlinear partial differential equation gov-
erning the motion of the plate using the Galerkin method. The resulting reduced-order
model consists of both single-mode and mixed-mode nonlinear terms in the EoM of each
mode. Based on the knowledge that only the mixed-mode nonlinear terms can cause the
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influences between modes, two four-mode truncated nonlinear reduced-order models, one
with both single- and mixed-mode terms and the other one only with single-mode terms,
have been considered. They have been used to generate the dynamic response for compar-
ison with each other and with FE results, to investigate the effect of mixed-mode terms.
Although the NROM results are unable to be exactly matched with FE results due to the is-
sue of shear locking in thin shell elements, i.e. finite element solutions of thin shell elements
become stiffer from those predicted by Kirchhoff’s theory [9], the qualitative comparison
has shown the ‘full’ NROM can better catch the nonlinear frequency shifting behaviour for
more forced situations. The NROM mutual comparison has also demonstrated the energy
transfer between modes is due to the existence of the mixed-mode terms.

For understanding the mechanism of how mixed-mode terms affect the response fre-
quency, the direct normal form method has been applied to estimate the backbone curves of
the NROM of the plate under consideration. However, different from the standard process in
previous chapters where the assumption that only single mode or multiple modes responding
at commensurable frequencies is made when approximate the backbone curves, all modes
have been regarded to be activated as multi-mode excitation considered. This leaves an open
question as to whether an energy analysis for the plate with random input would explain
what is happening. From the updated backbone curves of a three-mode NROM, consisting
of Mode I, II and III, we have seen that due to the presence of non-resonant Mode I, both
single- and double-mode- backbone curves of resonantly interactive Mode II and III have
shifted. More specifically, the ‘effective’ natural frequencies and bifurcation positions have
shifted. The forced response results have also been computed for the multi-mode-forced
situation, which has once again proved the interaction between non-resonant modes. It is
noteworthy that this non-resonant modal interaction could also occur in discrete systems,
see the example in Appendix B.

In the following chapter, an approach for nonlinear system identification is introduced.
The understanding of the non-resonant modal interactions that have been gained here in-
spires using the expressions describing backbone curves as a parametric model for multi-
mode parameters estimation.
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(a)

(b)

Fig. 6.10 The forced response curves of Mode II and III of the plate depicted in Fig. 6.1 for
an artificial excitation case where Mode I is forced to response at a constant amplitude and
Mode III is harmonically forced. The black lines denote the forced response curves, blue
and red dots denote the stable and unstable sectors respectively, and green dots indicate the
bifurcation positions. The grey surfaces denote the backbone curves.
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(a)

(b)

Fig. 6.11 The forced response curves of Mode II and III of the plate depicted in Fig. 6.1 for
an artificial excitation case where Mode I is harmonically excited at constant amplitude and
frequency and Mode III are harmonically forced at varying frequencies. The denotations
are the same as those of Fig. 6.10.





Chapter 7

System identification based on backbone
curve models

In this chapter we:

• Show how the backbone curve model can be used, alongside experimental measure-
ments, to estimate nonlinear parameters, especially for those of nonlinear terms cou-
pling non-resonant modes.

• Employ a short-time Fourier transform technique with size-varying windows to mea-
sure the backbone curves from the free-decay response comprising the contributions
of multiple modes of the nonlinear system.

• Adopt a self-adaptive evolution algorithm to estimate the linear and nonlinear param-
eters of the backbone curve model of the nonlinear system.

• Demonstrate the ability of the proposed technique to estimate the parameters of non-
linear systems of multiple degrees of freedom by its application to an example plate.

7.1 Introduction

In the previous chapters, we have seen how the direct normal form technique may be used to
derive time-invariant equations describing the backbone curves of nonlinear systems. All the
applications of backbone curves in the previous examples are focused on the nonlinear dy-
namic behaviour prediction and interpretation of systems with known structural parameters
under specific excitation circumstances. However, when considering the problem inversely,
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if the response of a system is given, can we use the knowledge of backbone curves to deter-
mine the system parameters? This process is known as system identification, a technique to
obtain a mathematical description of a system.

The identification of linear systems has been studied in depth for decades. There are
plenty of successful applications, and their techniques are very mature, see for example [23].
However, the identification of nonlinear characteristics still needs development. Many ex-
isting identification approaches based on backbone curves or NNM tend to simply consider
single-mode excitation situation[33, 54], which means that their results will lose efficacy
for more complex situations, e.g. multi-mode excitation and random excitation. Other ap-
proaches, such as NARMAX methods [4] and machine learning [24], are versatile and able
to identify nonlinear dynamic behaviour efficiently, but their resulting models give limited
insight into the underlying physics.

In this chapter, we will show how the analytical descriptions of the backbone curves
obtained by the direct normal form technique work as a computationally-cheap model of the
dynamic behaviour of a nonlinear system. The main advantages of this proposed approach
are (a) the parameters of multiple modes of the nonlinear system can be determined given a
single experimental test and (b) the parameters of nonlinear mixed-mode terms contributing
to the non-resonant interaction can be determined. The parameter estimation technique
presented here consists of three main steps: (i) the measurement of the backbone curves of
the structure of interest, (ii) the assumption of the mathematical model and the derivation of
the corresponding backbone curves and (iii) the estimation of the parameters of the assumed
model by fitting the model expressions to the measured data.

The literature [54] points out that as long as the damping of an unforced system is weak,
the decaying response tends to fall to the closest point on backbone curves and then closely
follow it. Based on this idea, an approach of approximating the measurement of backbone
curves from the nonlinear system decaying response is introduced in §7.2. Firstly, for the
determination of mixed-mode terms, the decay data is required to comprise the responses
of multiple modes of interest. Therefore, these modes have to be activated initially, which
means that a multi-mode excitation scenario is needed. Here we adopt a naive approach,
i.e. using broadband excitation. When a broadband force is applied at the proper position
of the structure for sufficient time, all the modes under consideration can be activated and
then free decay after the forcing removed. This leads to an extra benefit of our system
identification approach that no excitation frequency tuning process is required. For the
technique in [33, 54], the specific system mode under consideration is required to reach or
get close to its resonance before free decay. However, because of the nonlinear feature of
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the amplitude-dependent resonant frequency, a careful excitation frequency tuning process
is needed, which significantly increases the application complexity of their approach.

As the free-decay response contains the contribution of several modes, i.e. components
of different fundamental response frequencies, the short-time Fourier transform, with the
ability of the modal decomposition, is employed for the backbone curve measurement. Fur-
thermore, the size of the window imposed is allowed to vary with time to track the temporal
evolution of the instantaneous frequencies of nonlinear systems. Besides, as multiple modes
contribute to the response, the modeshapes are required to be known in advance. Here the
methods outlined in [100] or the linear modal analysis in any commercial finite element
software can be used to estimate the modeshapes of the underlying linear system.

Based on the features of the measured backbone curves, a proper mathematical model
must be selected that may be able to describe the nonlinear behaviour of the structure under
consideration (where the parameters of that model are to be estimated). Furthermore, the
expressions describing backbone curves of the assumed model must be formulated (the
derivations are in previous chapters). Then, from the data found using the short-time Fourier
transform, the self-adaptive differential evolution algorithm, introduced in §7.3, is employed
to estimate the parameters of the model, based on the backbone curve expressions.

To demonstrate the application of the proposed system identification technique, the plate
considered in Chapter 6 is considered. The estimated results are compared with the ‘true’
values of parameters to validate the performance of our technique using the criteria of rela-
tive difference. The results are found to have a reasonable level of accuracy.

7.2 Backbone curve measurement from transient free-decay
data

To measure the backbone curves from the response data consisting of components of dif-
ferent fundamental frequencies, the normally used resonant decay method, an experimental
technique for measuring the backbone curves from a fundamentally single-frequency re-
sponse data, no longer works. So a technique with the ability of the mode decomposition,
e.g. the Hilbert transform and empirical mode decomposition (EMP), must be used. Here
the short-time Fourier transform with size-varied windows is adopted due to its utility when
applied to nonlinear response with the characteristic of the amplitude-dependent response
frequency.
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7.2.1 Short-time Fourier transform with size-varying windows

Let the free-decay response of a nonlinear mechanical system in the time domain be denoted
as x(t), where t is time. The experimental data is measured in the period of T in which N+1
data points are evenly spaced, such that the time increment ∆ = T/N. This means that there
are N + 1 discretized measurements x0, x1, · · · , xN , where xn = x(n∆). For the short-time
Fourier transform (STFT), a window function, w(t−τ), is used which moves along the time
axis with discrete time shifts τ = m∆. The discretized window is sampled at the same N+1
points in the period T , denoted as wm,0, wm,1, · · · , wm,N , where wm,n = w((n−m)∆). Here
the ‘effective’ period of the window function, where t ∈ (m∆,m∆+Tw) then wm(t) > 0, is
chosen to be much shorter than the measurement period, i.e. Tw ≪ T , so that Tw may be also
called the window period. Hence, after the application of windows, the Fourier transform
can be taken for different sections of the signal x(t) and then the average frequency content
in the applied window period, Tw, may be measured. Due to the smallness of Tw, it may
allow us to assume the average result to be the instantaneous one at the time point of the
corresponding window centre, i.e. tw,m = ∆m+Tw/2.

Mathematically, the discrete Fourier transform with the windowed signal is described
as,

X(k,m) =
N

∑
n=0

xnwm,ne−i2πk n
N , (7.1)

defined at discrete frequencies,

ω(k) =
2πk
T

, for k = 1,2, · · · . (7.2)

However, one of the issues with STFT is that its accuracy and resolution of the spectrum
results are dominated by the effective period of the window function, Tw, e.g. when the
window period is too large, the frequency of the signal will be poorly averaged. Conversely,
when the window period is too small, then the poor frequency resolution makes it difficult to
approximate the instantaneous frequency. For a linear system with a linearly scalable FRF,
a fixed optimal window period may be found for processing the data of a specific structure
under consideration. While for a nonlinear system whose response amplitude dictates the
response frequency, the fixed window scenario may be ineffective.

To circumvent the trade-off issue of the conventional STFT, we may allow the window
period of STFT to change as it moves along the time axis, e.g. the window period Tw is the
function of the time instant, m. The ability to either expand or contract the window size
helps produce an STFT with the better averaging and resolution. Hence, the mathematical
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expression of the modified STFT with size-varying windows (STFT-SVW) is updated to be,

X(k,m) =
N

∑
n=0

xnwm,n(m)e−i2πk n
N . (7.3)

Based on X(k,m), the Fourier series coefficients approximation of x(t) is,

X̂(k,m) =
2X(k,m)

∑
N
n=0 wm,n(m)

. (7.4)

The instant at the centre of the window also becomes,

tw,m =
mT
N

+
Tw(m)

2
. (7.5)

7.2.2 Estimation of the instantaneous frequencies and amplitudes

In this section, an approach to estimate the instantaneous frequencies and amplitudes from
the STFT results is introduced. Based on the modal superposition assumption, the free-
decay data of the nonlinear system under light damping is allowed to be described as a
summation of the response of P harmonic oscillators (i.e. linear normal modes), such that

x(t) =
P

∑
i=1

ΦiUi cosθi, (7.6)

where Φi is the ith modeshape of the underlying linear system, Ui and θi are the instanta-
neous response amplitude and the phase of each harmonic components respectively. There-
fore, Ui and θi are functions of time, such as

Ui(t) =Ui,0 exp(−ζiωit), (7.7)

θi(t) = ωi,dt +θi,0. (7.8)

Similar to the notations of the free response of a linear underdamped oscillator, Ui,0 =Ui(0)
and θi,0 = θi(0) are the initial response amplitude and phase respectively, ζi is the damping
ratio and ωi and ωi,d are the undamped and damped natural frequencies respectively, i.e.

ωi,d = ωi

√
1−ζ 2

i . While contrary to those of linear systems, the damping ratio, ζi, and
response frequency, ωi, may not be invariant but be dependent on the magnitude of the
response amplitudes, Ui(t). Therefore, they are also functions of time, i.e. ζi(t) and ωi(t).

Now, the time-dependent frequencies and damping ratios can be estimated from the
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STFT results via using a simple peak-picking method. Assuming that the damping is small
and there exists no modal resonant interaction in the free decay, it allows us to write the
free-decay data in the form of Eq. (7.6). Hence, it is reasonable for us to believe that
the damped response frequency occurs where there is a maximum absolute value of the
Fourier coefficient within a user-defined frequency range of the spectrum of each windowed
response. The values of these maximum absolute Fourier coefficients are the corresponding
response amplitudes of each of the harmonic components at the time point of the applied
window centre, i.e. tw,m. The details of the process to fit the frequency, ωi(t), damping ratio,
ζi(t), and response amplitude, Ui,0, is described as below.

Firstly, considering the collection of the STFT data processing with the jth ( j = 1,2, · · · ,m)
window with a centre time, tw, j, i.e. X̂(k, j) and ω(k), a maximum amplitude of the Fourier
coefficients within each N subsets of frequency range defined by the set [ki,min ki,max] (i =
1, · · · ,N) to be the instantaneous response amplitude of the ith harmonic function, which can
be mathematically expressed as,

Ui(tw, j) =
maxk∈[ki,min ki,max]

(∣∣X̂(k, j)
∣∣)

Φi
, (7.9)

and the damped frequency of corresponding peak is

ωi,d(tw, j) =
2πki,X̂ j,max

T
, (7.10)

where ki,X̂ j,max
denotes the value of ki where X̂(k, j) has its maximum absolute value within

the ith subset of ki . Note that the ith subset of ki is determined using Eq. (7.2) with the pre-
estimating frequency range of ith harmonic components, e.g. ±15% of ith linear frequency.

Once a series of discrete Ui(t) and ωi,d(t) at tw, j are estimated, the instantaneous damp-
ing ratio may be estimated. There are two assumptions made and used here: (i) the damping
and response periods are considered to be invariant during two window time points and
equal to that at the first time point, i.e. ζi = ζi(tw, j) and ωi = ωi(tw, j) when tw, j ≤ t < tw, j+1,
and (ii) the decay rate at the closed end of the windowed response has decayed to a linear
response amplitude, so that this allows us to regard βi(tw,m−1) = βi(tw,m). The second as-
sumption is reasonable as the response amplitude is small so that the system is behaving
almost linearly. Therefore, using Eq. (7.7), the relation between the response amplitude at
two window time points is

Ui(tw, j−1) =Ui(tw, j)exp
(
−ζi(tw, j)ωi(tw, j)(tw, j − tw, j−1)

)
, (7.11)
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where the instantaneous damping rate, βi(tw, j) = ζi(tw, j)ωi(tw, j), at discrete times may be
computed from

βi(tw, j) =
1

tw, j − tw, j−1
ln
(

Ui(tw, j)
Ui(tw, j−1)

)
. (7.12)

Referring the relationship between damped and undamped response frequencies as

ωi,d(tw, j) = ωi(tw, j)
√

1−ζ 2
i (tw, j)tw, j, (7.13)

the instantaneous undamped frequency is estimated using Eq. (7.12), written as

ωi(tw, j) =
√

ω2
i,d(tw, j)+β 2

i (tw, j). (7.14)

Lastly, the instantaneous damping ratio is approximated using

ζi(tw, j) =
βi(tw, j)
ωi(tw, j)

. (7.15)

Now, with the collection of instantaneous response amplitudes Ui and frequencies ωi, the
backbone curves, Ui vs. ωi, can be estimated.

7.2.3 Application

Now we consider the application of the STFT-SVW technique to the example plate structure
in Chapter 6. Firstly, it is applied to the free-decay data simulated by the coupled nonlinear
reduced-order model developed in §6.3 and the estimation results are compared with the
real parameter values used. Secondly, the data generated using the ‘full-order’ nonlinear
FE model is used to demonstrate the application of this technique to real-life nonlinear
structures.

Nonlinear reduced-order model case

Firstly, the coupled truncated four-mode based NROM is used. Eq. (6.20b) is restated here
again for clarity as,

q̈+Cq̇+ΛΛΛq+Nq(q) = Fm(t),
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with

Nq(q) =


α I

1q3
1 +α I

2q1q2
2 +α I

3q1q2
3 +α I

4q1q2
4 +α I

5q2q3q4

α II
1 q2

1q2 +α II
2 q3

2 +α II
3 q2q2

3 +α II
4 q2q2

3 +α II
5 q1q3q4

α III
1 q2

1q3 +α III
2 q2

2q3 +α III
3 q3

3 +α III
4 q3q2

4 +α III
5 q1q2q4

α IV
4 q2

1q4 +α IV
2 q2

2q4 +α IV
3 q2

3q4 +α IV
4 q3

4 +α IV
5 q1q2q3

 .

In order to generate the transient free-decay data comprising of the response components
of multiple modes, Mode I and III are chosen to be randomly forced for a period of time,
e.g. Tf = 20s in our simulation. Then the force is removed to let the system free decay till a
small response magnitude reaches, e.g. T = 100s in our simulation. Again, the displacement
response at the centre of the top-right square is considered, i.e. xc(t) = 1

2q1(t)−
√

2
2 q2(t)−√

2
2 q3(t) + q4(t), see Eqs. (6.4). The same integration operator, i.e. fourth-order Runge-

Kutta, with the same time interval, tRK = 10−4s, in §6.3.2 is used to simulate all the time-
series response. In Fig. 7.1, a free-decay time-series data of the NROM is shown. It can be
seen that the initial response amplitude of the metric point is close to two times of the plate
thickness, which ensures the occurrence of the nonlinear behaviour. Note that the maximum
initial response amplitude of the whole plate may be even larger.

Now a population of windows with the increasing length are applied on the ring-down
data. For the modified STFT, a variety of window functions are available to be used, e.g.
Rectangle, Hamming, et al. . The type of window chosen depends on the specific problem
considered and the application of interest. Here, the size-varying Hanning window is used
throughout the work and its discretized function is given as

wn,m =

{
1
2

[
1− cos

(
2π(n−m)T

Tw(m)N

)]
if 0 ≤ (n−m)T

N ≤ Tw(m),

0 if (n−m)T
N ≥ Tw(m) or (n−m)T

N < 0.
(7.16)

It is noteworthy that the other windows have also been tried and they can also provide sat-
isfactory results for the case considered. The used size-varying Hanning window is shown
in Fig. 7.2 and the window period is chosen to be increasing along the time axis due to the
stiffening property of the example plate.

For the Fourier transformation, the sampling frequency, fs = 100Hz, is used which may
be sufficient for covering the response frequency range of the considered modes. Fig. 7.3
shows the Fourier transform frequency content results. From the plot, we can see that there
are two obvious populations of peaks located where their frequencies are slight bigger than
the natural frequencies of Mode I and III respectively.

Through the peak-picking process, a series of the instantaneous response amplitudes and
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Fig. 7.1 A schematic representation of a free-decay displacement response of the example
plate depicted in Fig. 6.1. This data is simulated using the NROM described by Eq. (6.20b)
where Mode I and III of the plate are initially forced. The displacement response is acquired
at the centre of the top-right square of the plate.

frequencies of each component are obtained. These results plotted against the corresponding
time points of the applied windows, tw,m, are shown in Fig. 7.4. It can be seen that both the
response frequencies and amplitudes decrease with time, which matches the expectation
of the system nonlinearity. Note that the results of instantaneous response amplitude, in
Fig. 7.4, are scaled using |q̄i|= |qi|/h.

Finally, the backbone curves are constructed using the instantaneous response frequency
and amplitude results, shown in Fig. 7.5. For reference purposes, the analytical backbone
curves approximated by the direct normal form technique for the case without consider-
ing the non-resonant interaction, see Eqs. (6.27a) and (6.27c), are also plotted. Through
comparison, it can be seen that the meausred backbone curve of Mode III has apparently
deformed: the measured response frequencies are larger than the analytically estimated ones
given the same amplitudes. This demonstrates that the response of Mode III has been af-
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Fig. 7.2 A schematic representation of the Hanning windows of a varying size with time.
These windows are applied to the data shown in Fig. 7.1 during the STFT process. Note that
every 20 windows used are plotted for a better demonstration purpose.
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Fig. 7.3 A schematic representation of the Fourier transfer coefficient results of the free-
decay response of the example plate depicted in Fig. 6.1. This result is obtained using
response data in Fig. 7.1 pre-processed by the windows depicted in Fig. 7.2.

fected by the appearance of Mode I, i.e. the non-resonant modal interaction. However, the
effect of Mode III on Mode I is not significant. Besides, when the response amplitudes
are small, the response frequencies of both modes drop back to their corresponding linear
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Fig. 7.4 A schematic representation of instantaneous response amplitudes and frequencies
of Mode I and III of the plate depicted in Fig. 6.1. This result is obtained through the
peak-picking process of the data in Fig. 7.3. (a) U1, (b) fr1, (c) |U3|, and (d) fr3.

natural frequencies, i.e. ωni.

‘Full-order’ FE model

Now the application of the modified STFT technique to the FE simulation results is con-
sidered. The force pattern applied here is expected to be ‘identical’ to that used in the
NROM simulation, i.e. Mode I and III are directly forced and Mode II and III are left unex-
cited. Therefore, the response of the plate under the excitation of the configuration shown
in Fig. 7.6(a) is simulated using Abaqus®. Here, all the simulation settings, i.e. boundary
condition, types of elements, mesh density, damping and minimum simulation time interval,
are identical to those described in §6.2.

Unlike the NROM case that the actual values of parameters underestimation are already
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Fig. 7.5 The backbone curves of Mode I and III of the example plate depicted in Fig. 6.1,
measured form NROM simulation data. The blue dots denote the measured backbone
curves. The dashed-grey lines indicate the analytically approximated backbone curves com-
puted using Eqs. (6.27a) and (6.27c) and the coefficient values in Table 6.2.

known for validation in the next section, the real parameter values of the mathematical
model for FE case are unknown. Therefore, two more simulations that a single mode is
initially excited are conducted, and their data are also processed with the STFT procedure.
The force configurations for the single-mode FE simulation are shown in Fig. 7.6(b) and
Fig. 7.6(c), which corresponds to the cases of only Mode I and only Mode III being initially
forced respectively. Then the estimated backbone curves can be used to approximate the
stiffness parameters of the corresponding modes, i.e. ωn1 & α I

1 and ωn3 & α III
3 .

Fig. 7.7 shows the backbone curves measured from the FE simulation data. The results
based on single-mode simulation data are similar to that of a hardening Duffing oscillator.
As a comparison, the shape deformation of the double-mode results is similar to that of the
NROM results.
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(a) (b) (c)

Fig. 7.6 The force configurations used for FE simulations of the example plate depicted in
Fig. 6.1. The blue shades denote the areas when the excitation is applied and the opposite
shade direction represents the opposite forcing direction. The red dots denote the position
where the displacement response is considered. (a) Both Mode I and III are directly excited,
(b) Only Mode I is directly excited, and (c) Only Mode III is directly excited.
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Fig. 7.7 The backbone curves of Mode I and III of the example plate depicted in Fig. 6.1,
measured from FE simulation data. The red and blue dots denote the measurements from
the simulation data for multi-mode- and single-mode-forced situations respectively.

The parameters values approximation based on these estimated backbone curves of the
NROM and FE simulations will be shown in the application in the following section.
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7.3 Stiffness parameters identification

To determine the system parameters using the backbone curves measured via the STFT
process, a proper parametric model is required. Considering that the system underdetermi-
nation initially suffers a multi-mode disturbance, multiple modes of interest are activated
simultaneously during the free-decay process. Therefore, the candidate backbone curve
model must include the effect of potential non-resonant modal interactions, e.g. the one
described by Eqs. (6.32) of the example plate.

Once the structure of the candidate model is decided, the model parameters, i.e. ωni and
α
[i]
ℓ , can be estimated via a data fitting procedure. There is a number of parameter estimation

techniques available for solving the problem here, e.g. quasi-Newton method and nonlinear
regression method. In this section, the self-adaptive differential evolution (SaDE) algorithm
is chosen to be used due to its excellent performance and easy usage.

7.3.1 Differential evolution algorithm

The differential evolution (DE) algorithm [91] is a simple but powerful population-based
stochastic search technique for solving global optimisation problems. It has been proven
to be applicable in many fields, such as pattern recognition [91] , communication [38] and
mechanical engineering [90]. The details of the DE algorithm are as follows:

Let p be a {1×n} vector of parameters of the problem under consideration and S ⊂ Rn

be the search space, where n is the number of parameters underdetermination. The whole
process of DE involves NG evolution generations. Within each generation, a population of
NP different n-dimensional target vectors is evolved. These individual vectors are the solu-
tion candidates, such as X[G]

i =
{

x[G]
i,1 , · · · ,x

[G]
i,n

}
∈ S where i = 1, · · · ,NP, and G = 1, · · · ,NG.

Firstly, an initial population of candidate vectors, i.e. X[1]
1 , · · · ,X[1]

Np
, is generated whose

element values should ideally be randomly and uniformly distributed among the prescribed
range of its corresponding parameters, i.e. [pmin

j , pmax
j ] ( j = 1, · · · ,n). Then two kinds of

operations, i.e. mutation and crossover, are employed to produce a trial vector U[G]
i for

each target vector X[G]
i in the current population. The candidate vectors of the subsequent

generation, i.e. X[G+1]
i , is chosen from either X[G]

i or U[G]
i through a selection operation. The

details of the three operations are:
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Mutation operation

At the generation G, an associated mutant vector V[G]
i =

{
v[G]

i,1 , · · · ,v
[G]
i,n

}
for the correspond-

ing target vector X[G]
i are generated via one of the following 5 strategies as shown in the

online available codes:

"DE/rand/1" : V[G]
i = X[G]

r1 +F ·
(

X[G]
r2 −X[G]

r3

)
,

"DE/best/1" : V[G]
i = X[G]

b +F ·
(

X[G]
r1 −X[G]

r2

)
,

"DE/current to best/1" : V[G]
i = X[G]

r1 +F ·
(

X[G]
b −X[G]

i

)
+F ·

(
X[G]

r1 −X[G]
r2

)
,

"DE/best/2" : V[G]
i = X[G]

b +F ·
(

X[G]
r1 −X[G]

r2

)
+F ·

(
X[G]

r3 −X[G]
r4

)
,

"DE/rand/2" : V[G]
i = X[G]

r1 +F ·
(

X[G]
r2 −X[G]

r3

)
+F ·

(
X[G]

r4 −X[G]
r5

)
,

(7.17)

where r1, · · · ,r5 are random integers within [1, Np] which r j ̸= rk and r j ̸= i (where j, k =

1, · · · ,5) to ensure X[G]
r j be different from the current target vector X[G]

i , F is a factor chosen
from the range [0, 2] for scaling differential vectors and X[G]

b is the individual vector with
the best fitness value in its population at the current generation G.

Crossover operation

After the mutation phase, an associated trial vector, U[G]
i =

{
u[G]

i,1 , · · · ,u
[G]
i,n

}
, is generated

via a ‘binominal’ crossover operation. The values of individuals of trial vector, u[G]
i, j , are

randomly chosen to be equal either that of the mutant vector, v[G]
i, j , or that of the target

vector, x[G]
i, j . The process of the crossover operation is mathematically expressed as,

u[G]
i, j =


v[G]

i, j , if R([0, 1]) j ⩽ CR or j = jR,

x[G]
i, j , otherwise,

(7.18)

where R(•) is a random operator which generates a value in a defined range, CR is a con-
stant within [0, 1) specified by users and jR is a randomly chosen integer in [1, NP] which
is to ensure that the trial vector U[G]

i is different from its corresponding target vector X[G]
i

by, at least, one element.
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Selection operation

From Eqs. (7.17) and (7.18), it can be seen that some elements of trial vectors, u[G]
i, j , may

exceed the pre-specified range of the corresponding parameter under determination. For
this case, the exceeding individuals need to be re-initialised via a random and uniform re-
selection process within its search range before evaluating the fitness of the trial vectors.
Then, a selection operation is performed to produce the target vectors of the next generation
by comparing the fitness value (e.g. the value of a specific cost function) of each trial vector
with that of its corresponding target vector, in the current population. For example, the
(either trial or target) vector of a smaller fitness value will enter the population of the next
generation for a minimisation problem, i.e.

X[G+1]
i =

 U[G]
i , if f

(
U[G]

i

)
⩽ f

(
X[G]

i

)
X[G]

i , otherwise
. (7.19)

The above three operations are repeated generation after generation until specific termina-
tion criteria is satisfied, e.g. the user-specified generation number, NG, is reached. Finally,
the target vector of the last population with the smallest fitness value is regarded as the final
solution. The schematic diagram of the DE algorithm is concluded in Fig. 7.8.

7.3.2 Self-adaptive differential evolution algorithm

From the typical process of the DE algorithm mentioned previously, we can see that for
a specific problem three critical control parameters F , CR and Np need to be specified by
the user, and the most suitable learning strategy out of all available ones are expected to
be used. It is believed that the parameters and strategy setting have a significant effect on
the algorithm performance [26, 81]. For example, the value of F affects the convergence
speed of the algorithm, and CR is sensitive to the nature and complexity of the problem.
Although, the most suitable control parameters and strategy could be found for a specific
problem via the process of trial and error. However, the searching process is significantly
time-consuming and more importantly, the most suitable parameters and strategy may vary
during different evolution stages as the preference of the global and local search capability
may vary through the evolution process. Therefore, Qin and Suganthan [75] introduced a
new DE algorithm that can automatically adapt the learning strategies and the parameter
setting during the evolution.
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Fig. 7.8 A schematic diagram of the DE algorithm.
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Learning strategy adaptation

The learning strategy adaptation of SaDE is to probabilistically select a learning strategy
out of the candidates pool to apply to the current population . Firstly, a strategies pool
including Ns learning strategies needs to be confirmed. Then, the probability of applying
each learning strategy, ps (s = 1, · · · , Ns and ∑

Ns
1 ps = 1) , needs to be determined. At the

start of the evolution process, the probability of applying each candidate strategy needs to
be initialized for the first population. Normally, the initial probabilities are set to be equal,
i.e. ps,0 = 1

Ns
, which ensures that all the candidate strategies have the equal chance to be

applied for the initial population. Then, an Np-dimensional vector, R, is generated whose
elements are uniformly and randomly chosen from the range [0, 1), i.e. R =

{
γ1, ·, γNp

}
and γ j ∈ [0, 1). If the value of the jth element of R is bigger than the sum of the applied
probability of the first s−1 strategies but less than that of the first s strategies, then the jth

trivial vector in the current population will be generated using the sth strategy, i.e.

Apply

{
1st strategy, if 0 ⩽ γ j < p1 ,

sth strategy, if ∑
s−1
1 ps ⩽ γ j < ∑

s
1 ps, when 2 ⩽ s ⩽ Ns.

(7.20)

After performing the selection operation, the numbers of trial vectors successfully and un-
successfully entering the next generation while generated by the sth strategy are recorded
as n{s}

s and n{ f}
s respectively. These two groups of numbers are accumulated during the

learning period (a user-specified number of generations). Then, the applying probability of
each strategy is updated to be

ps =
n{s}

s ∑
Ns
i=1(1−δsi)n

{c}
i

∑
Ns
j=1

{
n{s}

j ∑
Ns
i=1(1−δsi)n

{c}
i

} , (7.21)

where n{c}
i = n{s}

i + n{ f}
i and δi j is the Dirac delta function. Eq. (7.21) represents the per-

centage of the success rate of the trial vectors generated by the sth strategy during the learn-
ing period. Finally, the most suitable learning strategy of the highest applying probability
can be selected for the problem under consideration.

Control parameters adaptation

For the conventional DE algorithm, there are three critical user-specified control parameters,
i.e. Np, F and CR, whose values will affect the result of the problem under consideration.
The parameter of the population size, Np, is related to the dimension of the problem consid-
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ered. Therefore, in SaDE, the value of Np is still kept to be user-specified. So for the new
DE algorithm, the parameters F and CR are automatically adapted.

It is found that the F value will affect the ability of the DE algorithm for searching good
mutant vectors throughout the evolution process, i.e. small and large F values correspond to
local and global search ability respectively [75]. Although the choice of F is very flexible,
it still falls within the preferred range of (0, 1]. Therefore, in SaDE, a population of Np

different F is randomly generated within the range (0, 2] under the normal distribution of
mean 0.5 and standard deviation 0.3 for the current generation.

The idea of the parameter CR adaptation is based on: (i) a proper choice of CR may
lead to good performance under several learning strategies; while a poor choice of CR may
result in performance deterioration under any learning strategy, and (ii) the good CR pa-
rameter value falls within a small range, with which the algorithm can perform consistently
well on a complex problem [75]. In SaDE, the CR values are assumed to fall in the normal
distribution with mean CRm and a small specific standard deviation, e.g. 0.1. The initial
value of CRm is set to be 0.5. A set of Np different CR values is randomly generated under
the assumed normal distribution to evaluate their corresponding mutant vectors for several
generations, i.e. nCR. Then a new population of CR is generated under the same distribution
for the evaluation process, which is repeated for nℓ times. After that, the mean of the normal
distribution of CR is updated with the mean of the CR values corresponding to trial vectors
successfully entering the next generation during the nℓ ·nCR generations evolved. The above
procedure is repeated with the updated normal distribution and the same standard devia-
tion to let the algorithm learn an optimal CR value range that best suits the problem under
consideration.

7.3.3 Application

In this section, the results of the backbone curves of Mode I and III of the example plate
measured in §7.2.3 are used to determine the parameters of the corresponding modes using
the SaDE algorithm. The first step, as described previously, is to choose a proper model that
is sufficiently accurate to describe the relation between the modal response amplitudes and
frequencies. Let’s restate the approximated backbone curve expressions without and with
consideration of the non-resonant interaction again here, i.e.

ω
2
r1 = ω

2
n1 +

3
4

α I
1U2

1 , (7.22a)

ω
2
r3 = ω

2
n3 +

3
4

α III
3 U2

3 , (7.22b)
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and,

ω
2
r1 = ω

2
n1 +

3
4

α I
1U2

1 +
1
2

α I
3U2

3 , (7.23a)

ω
2
r3 = ω

2
n3 +

3
4

α III
3 U2

3 +
1
2

α III
1 U2

1 . (7.23b)

Simply examining the backbone curve estimations in Fig. 7.5, the model of Eqs. (7.22)
is found to be obviously inaccurate for the results of Mode III (note that the grey dash
lines in Fig. 7.5 are the backbone curves computed using Eq. (7.22)). It has also been
demonstrated in Chapter 6 that the NROM with mixed-mode terms is better at predicting
the system response for the multi-mode-forced situation as its includes the effect of non-
resonant modal interactions. Therefore, it allows us to reasonably assume that Eqs. (7.23)
may be proper for the multi-active-modes free-decay response data.

Writing the right side of Eqs. (7.23) in the form of a function gives,

f1(U1,U3) = ω
2
n1 +

3
4

α I
1U2

1 +
1
2

α I
3U2

3 , (7.24a)

f3(U1,U3) = ω
2
n3 +

3
4

α III
3 U2

3 +
1
2

α III
1 U2

1 , (7.24b)

which are our candidate model for the SaDE algorithm. Therefore, the vectors of the pa-
rameters under determination are p1 =

[
ωn1, α I

1, α I
3
]

and p2 =
[
ωn3, α III

1 , α III
3
]
. Note that as

the parameters of Mode I and Mode III are independent when considering each individual
backbone curve, p1 and p2 are determined separately here. To have an objective measure of
the goodness of fit, the normalised mean-square error (MSE) is used as the cost function to
find the ‘best’ population of parameters, whose expression is,

MSE( fn) =
100

Nσ2
ω2

rn

N

∑
i=1

(
fn,i −ω

2
rn,i
)2
, (7.25)

where,
fn,i = fn(U1,i,U3,i), (7.26)

the subscript n = 1 or 3 denotes the index of the model function member, the subscript i

denotes the ith input data and N is the number of data points. In our application, N = m where
m is the window number of STFT as no data cleaning process is applied. Experience shows
that an MSE of less than 5.0 indicates good fit [99], which will also be used to examine
the performance of our model. Note that when considering the FE based backbone curves
data for the single-mode-forced situation, as only one mode is assumed to be activated,
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i.e. the non-resonant modal interaction is assumed to not occur, the backbone curve model,
Eqs. (7.22), is applied, written in functional form as,

f̂1(U1) = ω
2
n1 +

3
4

α I
1U2

1 , (7.27a)

f̂3(U3) = ω
2
n3 +

3
4

α III
3 U2

3 , (7.27b)

During the determination of each group of parameters, the SaDE algorithm is repeated
10 times, and the values of the ‘best’ run are chosen to be the final result. The settings of the
SaDE algorithm are: size of the population is Np = 30 (10 times of parameters number), the
value of crossover ratio, CR, are updated after 10 generations and the learning period of the
strategy adaptation is also 10 generations. Besides, a group of test runs are conducted to find
the converged features related to the number of the generation, NG. Fig. 7.9 and Fig. 7.10
show the convergence maps of the SaDE algorithm applied to the model, Eq. (7.24), for the
NROM and FE results respectively. From the convergence maps, NG = 200 is found to be
sufficient for both cases.

The ‘best’ determination results are shown in Table 7.1 and Table 7.2 for those using
the NROM simulation data, in Fig. 7.5, and the FE model simulation data, in Fig. 7.7,
respectively.

True (×109) Est. (×109) Diff. (%) MSE

ωn1 58.9 58.823 0.13

0.068α I
1 5.45 5.5773 2.34

α I
3 22.7 20.560 9.43

ωn3 150.8 150.953 0.10

2.800α III
1 22.7 21.036 7.33

α III
3 31.4 32.715 1.06

Table 7.1 The true and estimated values of the linear natural frequencies and nonlinear
parameters of the example plate, using nonlinear NROM simulation data.

From Table 7.1, it can be seen that the MSE value for the case of either Mode I or Mode
III is less than 5. This demonstrates that our backbone curve model provides a good fit with
the measured backbone curve data. Besides, for all the parameters underdetermination, the
relative differences between the real and estimated values are below 10%. Especially, the
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Fig. 7.9 A schematic representation of the convergence map of the SaDE algorithm pro-
cessing NROM simulation data: MSE against the number of generation adopted. The result
shown is for processing the data in Fig. 7.5 with using the functions described in Eqs. (7.24).
The blue and red lines denote results for determining the coefficients associated to Mode I
and III respectively.

estimated natural frequencies and parameters of single-mode nonlinear terms are surpris-
ingly close to the corresponding real values. Therefore, it can be concluded that our system
identification approach using the backbone curve model can give sufficiently accurate re-
sults.

For the FE simulation case, the performance assessment of our technique may be lim-
ited to the linear natural frequencies and parameters of single-mode nonlinear terms, as
the mixed-mode parameters between non-resonant modes cannot be determined from the
single-mode-forced simulation. From Table 7.2, a promising result can still be seen, i.e. the
MSE values are all under 5 and the relative differences for all the estimated parameters are
significantly small.

Furthermore, the estimated coefficients values are substituted into the backbone curves
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Fig. 7.10 A schematic representation of the convergence map of the SaDE algorithm pro-
cessing FE simulation data. The result shown is for processing the data of the multi-mode-
forced case in Fig. 7.7 with using the function described in Eqs. (7.24).

SM est. (×1010) MSE DM est. (×1010) MSE Diff. (%)

ωn1 58.737

0.247

58.678

1.174

0.10

α I
1 1.008 1.038 2.98

α I
3 n/a 5.901 n/a

ωn3 150.164

2.379

150.571

2.400

0.27

α III
1 n/a 21.036 n/a

α III
3 15.947 14.352 9.83

Table 7.2 The estimated values of the linear natural frequencies and nonlinear parameters of
the example plate, using FE simulation data.
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expressions, Eqs. (6.26a) and (6.26c), and the results are plotted on top of those calculated
using real values, see Fig. 7.11 and Fig. 7.12. As expected, the ‘real’ and estimated results
for both cases are very close to each other.
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Fig. 7.11 A comparison between the true and estimated backbone curves of Mode I and III
of the example plate depicted in Fig. 6.1, using NROM simulation data. The solid-red and
dashed-grey lines indicate the backbone curves calculated by Eqs. (6.27a) and (6.27c) using
the estimated parameters in Table 7.1 and the true parameters in Table 6.2 respectively.

7.4 Summary

In this chapter, we have introduced an approach for estimating the parameters of a nonlinear
system using the backbone curves expressions. Compared with the existing parameter esti-
mation methods based on backbone curves, the main advantages of the proposed technique
is the ability to estimate the parameters of mixed-mode nonlinear terms related to non-
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Fig. 7.12 A comparison between the estimated backbone curves of Mode I and III of the ex-
ample plate depicted in Fig. 6.1, using FE simulation data for the single-mode- and double-
mode-forced situations. The blue and red lines indicate the backbone curves calculated by
Eqs. (6.27a) and (6.27c) using the parameters of single-mode and double-mode estimations
in Table 7.2 respectively.

resonant modes, and identify parameters of multiple modes using the experimental data of
a single test. Besides, the other benefits may also be that no excitation frequency tuning
process is required and also the random input is easier to be generated compared with the
sine waves, which means that the ambient vibrations may be potentially employed for the
system identification by using our technique. Here the approach has been demonstrated
using a thin, rectangular plate with edges simply supported, whose dynamic behaviour has
been simulated using either a four-mode nonlinear reduced-order model or a ‘full-order’
finite element model. The estimation results from the experimental simulation data of both
models are promising, which shows that the expressions describing the set of non-resonant
coupled backbone curves represents a useful parametric model that can be used for efficient
and easily applicable parameters estimation.
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During the backbone curves measurement process of the introduced approach, as the
free-decay response in the time-domain consists of contributions of multiple activated modes,
the short-time Fourier transfer method with the ability of modal decomposition has been
adopted. To improve the application performance of this technique on nonlinear systems
with the amplitude-dependent-frequency features, the short-time Fourier transfer technique
is modified to allow the size of the applied windows to vary with time to enhance its spec-
trum resolution without sacrificing the accuracy.

When choosing the mathematical model structure for the system under consideration,
the one only considering the single-mode contribution is apparently unfit for the measured
backbone curve data. Instead, the model with the consideration of effects of non-resonant
modal interactions seems to be valid and has been used. With the candidate parametric
model and experimentally measured backbone curves, the modified differential evolution
algorithm, the self-adaptive differential evolution algorithm, has been used to estimate the
values of model parameters. The advantages of using SaDE are no need of choosing learning
strategies and less number of the user-specific control parameters. The only control param-
eters for the algorithm is the generation number which can decide with simple convergence
test simulations. The use of SaDe makes the introduced system identification approach more
powerful for even more complex cases, e.g. numerous parameters underdetermination.



Chapter 8

Conclusion and future work

8.1 Conclusions

Nonlinear analysis tools

In Chapter 3, three primary tools for analytically investigating the dynamics of nonlinear
mechanical structures in this thesis were introduced: the direct normal form technique, the
solution stability assessment technique and the backbone curve. The direct normal form
technique was first derived: the process of its application to a damped and externally forced
system of multiple degrees of freedom with nonlinearities of a polynomial form in the stiff-
ness, damping and external forcing was introduced. It was shown that compared with other
nonlinear analytical approximation techniques, the normal form technique is inherently able
to consider the nonlinear multi-degree-of-freedom systems. Contrary to the first-order nor-
mal form variation, the direct normal technique is readily applied to systems whose motion
is described by second-order differential equations which are the natural form of most of
the dynamic problems in mechanical systems.

The other significant advantage of this technique is its easy application into a computer
program due to its vectorised parameters. In the derivation process of the direct normal form
technique, some limitations resulted from its application assumptions were identified. The
first one is that the nonlinear terms must be (approximately) expressed in the polynomial
form. Secondly, the nonlinear terms and linear damping terms must be small compared
with the linear inertial terms, and the differences of the fundamental response frequencies
from the linear natural frequencies must be small as well. Additionally, the approximated
solutions must be steady state and periodic. Along with these limitations, the direct normal
form technique was demonstrated to be sufficiently accurate, by comparison with numerical
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results, for the works in this thesis.
A companion technique for assessing the stability of the approximated solutions was

then derived. As this method is based on the direct normal form technique, it is readily
applicable to the normal form solutions. Finally, the backbone curve, which is a locus
of the steady-state free responses of the underlying conservative system of the nonlinear
structures, was introduced. The process of backbone curve computation for the nonlinear
multi-degree-of-freedom system with no damping and forcing terms using the direct normal
form technique was derived. This process was demonstrated to be a simplified version of
the ‘full’ direct normal form application.

All these techniques were applied to a single-degree-of-freedom nonlinear Duffing oscil-
lator to find its steady-state resonant forced response, stability and backbone curve respec-
tively. The results demonstrate the suitability of these techniques for the analytical study of
the dynamic behaviours of nonlinear mechanical systems.

In conclusion, in Chapter 3 it was shown that:

• The analytical approximation framework based on the direct normal form technique
can be applied to the (conservative and non-conservative) multi-degree-of-freedom
systems with polynomial nonlinearities to study their dynamic responses at a suffi-
ciently accurate level.

• The backbone curves can be used as a simplified tool for the investigation of the
dynamic behaviours of nonlinear single-degree-of-freedom systems.

N − i modal interaction of nonlinear multi-degree-of-freedom systems

In Chapter 4, the resonant modal interaction involving a subset of modes of nonlinear multi-
degree-of-freedom systems was investigated. This was demonstrated by considering an
in-line, bilaterally symmetric 3-degree-of-freedom oscillator with cubic nonlinear springs.
Due to the symmetry of the linear structure of the example system, one of its oscillating
modes is linearly independent, and the other two modes are nonlinearly coupled. Firstly, the
direct normal form technique was used to derive the analytical description of the resonant
forced response of the example system. However, it was shown that the solutions of these
expressions were difficult to find due to the existence of nonlinearly coupled terms in the
equations of the corresponding modes. Therefore, the forcing and damping related terms
were removed to solve the expressions of backbone curves which govern the relationship
between the modal fundamental response amplitudes, frequencies, and phase differences.
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The simple backbone curve solutions including the contribution of one of the underly-
ing modes correspond to single-mode backbone curves. It was observed that the response
on these backbone curves tended to that of the equivalent linear system as the response
amplitude tends to zero, which suggests that these single-mode solutions are the nonlinear
extension of their linear counterparts. Due to the existence of nonlinear terms coupling two
nonlinear modes with similar natural frequencies, it was found that double-mode backbone
curve solutions may exist caused by the one-to-one modal interaction. This resonant modal
interaction was found to result in two main types of double-mode backbone curves with
different modal phase differences: the in-unison backbone curves when the phase differ-
ence between the two coupled modes is 0 or π and out-of-unison backbone curves when
the phase difference is ±π/2. However, the occurrence of this resonant modal interaction
was demonstrated to be affected by the nonlinear stiffness: no double-mode backbone curve
exists for our example system when its nonlinearity is hardening,

The relationship between the single- and double-mode backbone curves was investigated
by considering their analytical expressions. The double-mode backbone curves were found
to emanate from the points on the single-mode backbone curves. Furthermore, a stability
analysis of the backbone curves was conducted to find that primary single-mode backbone
curves lost their stability at the positions of those points where the double-mode backbone
curves bifurcate. This finding again demonstrated the resonant modal interaction.

Finally, the numerically computed forced-response results were compared with the back-
bone curves for validation. It was shown that either the single- or double-mode forced-
response curves could find their corresponding backbone curves at which their maximum-
amplitude forced-response points almost locate. The comparison results have demonstrated
that the backbone curves could interpret the complex dynamic behaviour of forced nonlin-
ear multi-degree-of-freedom systems even when the modal interaction occurs. Furthermore,
using the stability information of primary forced-response curves determined by the tech-
nique outlined in §3.3, backbone curves were shown to be able to predict the occurrence of
modal interactions for a specific forcing situation.

In conclusion, in Chapter 4 it was shown that:

• In a nonlinear system of multiple degrees of freedom, it is possible that only a subset
of its nonlinearly coupled modes can resonantly interact due to the specific system
structure, for which case the subsystems comprising those associated modes could be
considered to investigate the system responses.

• Modal interaction involving the same nonlinear modes can cause different kinds of
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resonances with different phase differences, which causes the dynamic behaviour of
nonlinear systems to be far more complicated than that of linear systems.

• Backbone curves can give insight to the modal interaction of the nonlinear systems
of multiple degrees of freedom including its occurrence conditions and effects on the
system forced responses.

N modal interaction of nonlinear multi-degree-of-freedom systems

Chapter 5 began by deriving the expressions describing the relationship between the modal
fundamental response amplitudes and frequencies for the generic conservative 3-degree-of-
freedom oscillator with cubic nonlinear springs by using the direct normal form technique.
These descriptions were used to find the backbone curve solutions of two example systems
for investigating the resonant modal interaction involving all modes of nonlinear systems of
multiple degrees of freedom. In the derivation process, a symbolised coefficient matrix and
a third-power polynomial terms vector were defined to express the nonlinear terms in modal
coordinates. Consequently, the origin of the resonant terms retained in the final expressions
can be traced, and then a specific nonlinear behaviour caused by these nonlinear terms can
also be analysed. It was found that the nonlinear terms retained in the final resonant equa-
tions of motion can be classified into two types based on their relationship with the modal
response frequencies: the unconditional and condition resonant nonlinear terms. The later
would lead to the phase terms in the time-invariant equations for finding backbone curve
solutions, which are the reason for the existence of multiple mixed-mode backbone curves
involving the same modes and also an essential condition for the occurrence of resonant
modal interactions discussed in Chapter 6.

Secondly, a specially designed example 3-degree-of-freedom oscillator was considered
to investigate the one-to-one-to-one resonant modal interaction using its backbone curves. It
was found that some of the single-mode backbone curves did not exist and the double-mode
backbone curves related to these modes would directly emanate from the no-motion triv-
ial solution. This phenomenon was demonstrated to be because the single-mode response
associated with these modes loses its stability as soon as one of the modes is activated. Ad-
ditionally, the existence of the triple-mode backbone curves was analysed. As three modes
are involved in the one-to-one-to-one internal interaction, there exist four groups of triple-
mode backbone curves in theory classified by the modal phase differences which are 0, π

and ±π/2 which is similar to that of the example system in Chapter 4. However, it was
proved that only two groups might exist for our system because the phase condition could
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not be satisfied for the others. These existing triple-mode backbone curves were observed to
be able to emanate from the bifurcation points on either single- or double-mode backbone
curves. The unique former case was explained in the same manner as that of double-mode
backbone curves bifurcating from the no-motion solution. The system forced responses
were numerically computed to compare with the backbone curves to better demonstrate
those multi-mode internal interactions. It was shown that the forced responses of the sys-
tem under a single-mode excitation exhibit those unique dynamic features of the backbone
curves.

Finally, the auto-parametric modal interaction involving multiple modes was consid-
ered. The linear stiffness ratio of the grounding and coupling springs of the other example
3-degree-of-freedom system was tuned to have approximated commensurable linear natural
frequencies, i.e. ωn1 : ωn2 : ωn3 ≈ 1 : 2 : 3, and, also, its three underlying modes are non-
linearly coupled. Therefore, a one-to-two-to-three modal interaction could happen within
this system. The backbone curve results have demonstrated an interesting finding of the
multi-mode auto-parametric interaction that the modes, which are unexpected to get inter-
nal resonance, may also resonantly interact when some extra modes are considered.

In conclusion, Chapter 5 has shown that:

• For nonlinear multi-degree-of-freedom systems, the modal interaction may cause the
disappearance of the responses only comprising that of some specific modes for any
forcing situation as those responses lose their stability immediately when they appear.

• When the internal interaction involves multiple modes of a nonlinear system, some
non-resonant modes when considering fewer modes may also resonate, which sug-
gests that it is essential to consider all the nonlinearly coupled modes simultaneously
to capture these types of multi-mode resonant interactions.

Resonant frequency shift

In Chapter 6, a thin rectangular plate, with its all edges simply supported, was introduced.
The nonlinearity of the example plate was the result of membrane stress when its trans-
verse displacement response is large compared with its thickness. The nonlinear dynamic
behaviour of this plate under multi-mode excitation was demonstrated by the power spectral
density results simulated by its finite element model. It was shown that when the example
plate was randomly forced at high amplitude, the resonant frequencies of all its modes un-
der consideration had shifted from their corresponding linear natural frequencies. This phe-
nomenon demonstrates that the nonlinearity due to the large-amplitude response causes the
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resonant frequency shift. Additionally, when the plate was permitted to be mildly and ran-
domly excited with one of its modes vigorously and harmonically forced, the other modes
under consideration have been observed to exhibit a frequency-shift behaviour. This obser-
vation implies that there exist modal interactions affecting the response frequency.

To investigate the mechanism of nonlinearity affecting the resonant response frequen-
cies for the multi-mode-forced situation, the nonlinear mathematical model, i.e. nonlinear
reduced-order model, was considered. The mathematical model was developed by decom-
posing the partial differential equation governing the motion of the example plate using
linear modeshapes. This governing equation of motion is nonlinear and captures the effect
of large-amplitude displacement response. In the resulting model, there exist two types of
nonlinear terms: single-mode and mixed-mode terms. To investigate the modal interaction,
two nonlinear reduced-order models, the coupled one and uncoupled one, were used for
simulating the system response for the same excitation situations considered in the finite
element analysis simulations. Through the comparison with the finite element results, the
coupled model including mixed-mode terms was demonstrated to be able to more accurately
describe the nonlinear behaviour of the example plate, especially for the hybrid excitation
situation.

The nonlinear reduced-order model simulation results have shown that both the single-
mode and mixed-mode nonlinear terms could contribute to the resonant frequency shift
when multiple modes are directly excited. However, it was found that only the mixed-mode
nonlinear terms could cause the effects of the frequency shift between nonlinear modes. Ad-
ditionally, a further group of simulations was conducted to eliminate the possibility that the
frequency shift associated with the mixed-mode nonlinear terms is caused by the resonant
modal interaction. This suggested that for the multi-mode-forced situation, there must exist
another kind of modal interaction which is not limited to the nonlinearly coupled modes
with commensurable response frequencies.

Finally, backbone curves were employed to investigate the mechanism of the mixed-
mode nonlinear terms affecting modal response frequencies. It was found that when multi-
ple modes are activated simultaneously by the external forcing, they may affect each other if
they are nonlinearly coupled via the mixed-mode terms even they do share a commensurable
response frequencies relationship. This kind of modal interaction is termed as non-resonant
interaction.

In conclusion, in Chapter 6 it was shown that:

• An underlying low-order model, e.g. reduced-order model, can be sufficiently accu-
rate to explain the nonlinear dynamic behaviours, e.g. resonant frequency shift, of the
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‘full-order’ system.

• When nonlinear multi-degree-of-freedom systems are under a multi-mode excitation,
a modal interaction can occur between its nonlinearly coupled modes without the
commensurable response frequencies relationship.

• The backbone curve model can be used to interpret the complex dynamic behaviours
of nonlinear system under a multi-mode-multi-frequency excitation, e.g. the resonant
frequency shift due to the non-resonant modal interaction under a random forcing.

System identification based on backbone curve models

In Chapter 7, an approach for the identification of nonlinear systems was introduced, em-
ploying the analytical descriptions of the backbone curves to estimate the nonlinear param-
eters along with the linear natural frequencies. It was demonstrated that the advantages of
this approach compared with other system identification techniques using backbone curves
include the estimation of the parameters of multiple modes of the system simultaneously us-
ing test data, the determination of the parameters of coupled-mode nonlinear terms related
to non-resonant modes and no more need of the excitation frequency tuning operation. The
benefits of the introduced system identification approach are from the consideration of non-
resonant modal interactions in the analytical expressions of backbone curves derived using
the direct normal form technique. The application of this technique was demonstrated using
the example nonlinear plate introduced in Chapter 6, and its nonlinear reduced-order model
was employed to derive the backbone curve model. Our approach was applied to the ‘exper-
iment’ data simulated using both nonlinear reduced-order model and finite element model.
For both cases, the estimates of the linear natural frequencies were found to be remarkably
accurate, and that of the cubic parameters was at a sufficient level.

In our nonlinear system identification approach, the idea of the resonant decay method
was first employed to obtain the measurement of backbone curves. The modes of interest
of the nonlinear system under consideration are initially forced by a multi-mode excitation,
e.g. the random excitation of a specific forcing configuration. Then the external force is
removed to let the system free decay, and the backbone curves can be measured from the
free-decay response data. Because the free-decay response includes the contributions of
multiple modes, the short-time Fourier transform with the ability of modal decomposition is
used to estimate the frequency content of the data. To address the trade-off issue of the short-
time Fourier transform, the length of its windows is allowed to vary with time. Finally, a
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simple peak-picking process is applied to find populations of instantaneous modal response
frequencies and amplitudes, which are then used to form the backbone curves.

To estimate the parameter value using the backbone curve measurements, the self-
adapted differential evolution algorithm is adopted. The most significant advantage of using
the differential evolution algorithm is its ease of use. Compared with the conventional dif-
ferential evolution algorithm, the learning strategy and some of the control parameters of
the self-adapted differential evolution algorithm do not need to be specified by users, which
makes it even more easy to be applied.

In conclusion, in Chapter 7 it was shown that:

• When the non-resonant modal interaction is considered, the system identification ap-
proach will not be limited to the identification of single-mode parameters like other
approaches based on backbone curves.

• As multiple modes are allowed to be activated simultaneously in the experimental data
of our introduced approach, some easily-generated excitation scenarios, e.g. even the
ambient vibration, can be employed for the system identification.

• In our approach, the backbone curve model including the effect of non-resonant modal
interactions can first be used to identify the parameters of mixed-mode nonlinear
terms associated with non-resonant modes.

8.2 Suggestions for potential future work

• As discussed in Chapter 3, the direct normal form technique is limited to the systems
of weak nonlinearity, e.g. the detuning of the response frequencies from the linear nat-
ural frequencies is small. However, a number of mechanical applications are strongly
nonlinear. e.g. the nonlinear energy sink studied in [27]. Therefore, the future work
will concentrate on how to relax the smallness assumption of the direct normal form
technique to make it adaptable to the application of strongly nonlinear systems.

• In the forced-response results shown in Chapter 4 and Chapter 5, it can be seen that
the nonlinear systems may exhibit quasi-periodic responses in the frequency ranges
where no stable steady-state response exists. But the results show that our recent back-
bone curve analysis framework fails to provide any information about this nonlinear
behaviour due to the limitation of the normal form technique. Therefore, we believe
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that some ‘new’ backbone curves approximated using direct normal form technique
can address this limitation.

• For the resonant modal interaction occurring situation, our investigation about the
relationship between backbone curves and system forced responses is limited to the
single-mode forcing scenario. However, real-life mechanical systems are often under
more complex excitations. Therefore, using the backbone curves to predict and in-
terpret the forced responses of nonlinear systems under a multi-mode excitation is a
vital issue for the future research.

• In Chapter 5, the investigation of the multi-mode auto-parametric interaction has
stopped with the backbone curve analysis due to a lack of proper system parame-
ters. Future work will be kept on seeking better parameters or system structures to
study the effect of this modal interaction on the forced system responses.

• The current direct normal form technique cannot be used to approximate the responses
of a nonlinear system under a multi-frequency excitation. For example, in Chapter 6,
the backbone curves approximated by the direct normal form technique can only indi-
rectly interpret the occurrence and effect of non-resonant modal interaction for the
multi-frequency-multi-mode-forced situation. Therefore, a promising future work
will be carried out in the investigation of the application of the direct normal form
technique to the multi-frequency forcing situation.

• For our nonlinear system identification approach, the resonant modal interaction is
not considered in our backbone curve model. However, it can happen during the
system free-decay progress that causes unexpected modes to be activated, in which
case our approach may give incorrect identification results. For this issue, we suggest
that further research should be undertaken in: (i) identifying the occurrence of the
resonant modal interaction during the free-decay period so that the corresponding test
data can be get rid of and (ii) improving our approach to be adaptable to the resonant
modal interaction case by employing new backbone curve measurement technique
and including the effect of resonant interaction in our backbone curve model.

• The parametric model of our nonlinear system identification approach does not con-
sider the effect of noise which is inevitable in real experimental data. Further work
needs to be carried out to include the noise components to make our approach noise-
robust.
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Appendix A

Order selection criteria for AR modelling

A.1 AR modelling

For the autoregressive (AR) modelling, a time series, x[n], may be expressed as,

x[n] =
p

∑
k=1

akx[n− k]+ e[n], (A.1)

where ak are the AR coefficients or characteristic polynomials of the AR model, p is the
number of ak or order of the AR model and e[n] is a purely stationary white noise with zero
mean and finite variance σ2. Eq. (A.1) means that the current value of the series, x[n], can
be expressed as a linear function of its p previous values, i.e. ∑

p
k=1 akx[n− k], plus an error

term, i.e. e[n]. There are four methods for estimating the AR coefficients, such as Yule-
Walker method, Burg method, covariance method and modified covariance method. Then,
the power spectrum of the time series signal, x, can be estimated from the ak coefficients of
the AR model, such that

PAR( f ) =
σ2T∣∣1+∑

p
k=1 ake− j2π f kT

∣∣2 , (A.2)

where PAR( f ) is the AR power spectral estimation, and T is the sample period.

A.2 Order selection criteria

The main issue for the application of the AR-model-based power spectrum estimation is the
determination of the AR order. The true AR order of a given signal is normally unknown
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so that many methods of order selection criteria have been developed for the estimation
of the AR order. The most established methods include the Final Prediction Error (FPE),
Akaike Information Criterion (AIC), Rissanen’s Minimum Description Length (MDL) esti-
mator and Parzen’s Criterion AR Transfer (CAT) Function. The expressions for these order
selection criteria are

FPE(k) =
N + k+1
N − k−1

σ(k)2, (A.3)

AIC(K) = ln(σ(k)2)+
2k+1

N
, (A.4)

MDL(k) = σ(k)2
[

1+
(

p+1
N

)
ln(N)

]
, (A.5)

CAT (k) =

[
1
N

k

∑
j=1

N − j
Nσ( j)2

]
− N − k

Nσ(k)2 , (A.6)

where N is the sample size of x[n], k is the AR model order, σ2 is the variance of the
prediction error for the given model order, such that

σ(k)2 =
1

N − p

N

∑
n=p+1

{
x(n)+

p

∑
i=1

aix(n− i)

}2

. (A.7)

The process of estimating the true optimal AR order of a given signal via using the
criteria mentioned above is:

1. Choose a maximum order, K, which the optimum order would not exceed.

2. Compute the variance σ(k)2 of the prediction error for the scanning orders.

3. Calculate the criterion values for each specific criterion.

4. Choose the one with the minimum criterion value as the optimum order.

Ideally, all the criteria should suggest the same true order, but it may not always be true.
For that case, the optimum order suggested by the majority of the criteria is regarded as the
‘true’ order, which is also partly why four criteria have been used here.



Appendix B

An example system with resonant and
non-resonant modal interactions

For the nonlinear system depicted in Fig. 5.7, when the stiffness constants of its linear
springs are k = 0.85 and k̄ = 0.15, its linear natural frequencies are ωn1 = 0.4906, ωn2 = 1
and ωn3 = 1.0292, thus ωn1 : ωn2 : ωn3 ≈ 1 : 2 : 2. The linear modeshape matrix, ΦΦΦ, is

ΦΦΦ =

 1 1 1
5.0618 0 −0.3951

1 −1 1

 , (B.1)

and the coefficient matrix of nonlinear stiffness terms in modal coordinates is

nT
q = κ



0.0724+19.7151λ 0 0.9276−86.7275λ

0.2172+3.58494λ 0 2.7828−15.7703λ

0.2172+6.97739λ 0 2.7828−30.6939λ

0 3+49.4947λ 0
0 1+λ 0
0 3+5.83891λ 0

0.2172−20.3145λ 0 2.7828+89.3645λ

0.2172−1.23132λ 0 2.7828+5.41662λ

0.0724−0.79884λ 0 0.9276+3.51413λ

0 6−33.9997λ 0



, (B.2)

where λ = κ̄/κ . Due to the specific linear natural frequencies relationship, it is possible
to assume the response frequency ratio to be r = 2 and r̄ = 2. These are used to find the
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time-invariant equations, written as[
ω

2
n1 −ω

2
r1 +

1
4

{
3α

[1]
1 U2

1 +2α
[1]
2 U2

2 +2α
[1]
3 U2

3

}]
U1 = 0, (B.3a)[

ω
2
n2 −ω

2
r2 +

1
4

{
2α

[2]
4 U2

1 +3α
[2]
5 U2

2 +(2+ p)α [2]
6 U2

3

}]
U2 = 0, (B.3b)[

ω
2
n3 −ω

2
r3 +

1
4

{
2α

[3]
7 U2

1 +(2+ p)α [3]
8 U2

2 +3α
[3]
9 U2

3

}]
U3 = 0, (B.3c)

where p = ei2(|φ2−φ3|).

B.1 Resonant modal interaction

Using Eqs. (B.3), the expressions of the single-mode backbone curves may be obtained,
written as

S1 : U1 ̸= 0,U2 =U3 = 0, ω
2
r1 = ω

2
n1 +

3
4

α
[1]
1 U2

1 , (B.4a)

S2 : U2 ̸= 0,U1 =U3 = 0, ω
2
r2 = ω

2
n2 +

3
4

α
[2]
5 U2

2 , (B.4b)

S3 : U3 ̸= 0,U1 =U2 = 0, ω
2
r3 = ω

2
n3 +

3
4

α
[3]
9 U2

3 . (B.4c)

Besides, as the linear natural frequencies of the second and third modes are close, there
exist 1 : 1 resonant double-mode backbone curves, D23. The expressions of the in-unison
backbone curves D23±

[i] are

D23±
[i] :


U2

2 = [U S2
D23[i]

]2 +ηS2
D23[i]

U2
3 ,

Ω
2 = [ωS2

D23[i]
]2 +

3
4

γS2
D23[i]

U2
3 ,

or


U2

3 = [U S3
D23[i]

]2 +ηS3
D23[i]

U2
2 ,

Ω
2 = [ωS3

D23[i]
]2 +

3
4

γS3
D23[i]

U2
2 ,

(B.5)
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where U Sn
D23[i]

, ηSn
D23[i]

, ωSn
D23[i]

, γSn
D23[i]

are constants whose values can be computed using the
expressions

[U S2
D23[i]

]2 =
4
3

ω2
n3 −ω2

n2

α
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5 −α
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8

,
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(B.6)

Similarly, the governing expressions for the out-of-unison backbone curves D23±
[o] are

D23±
[o] :


U2

2 = [U S2
D23[o]

]2 +ηS2
D23[o]

U2
3 ,

Ω
2 = [ωS2
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
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(B.7)

where
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(B.8)

B.1.1 Hardening nonlinearity

Now the nonlinearity of this system is assumed to be hardening. Fig. B.1 shows the back-
bone curves of this system with the nonlinear stiffness parameters κ = 0.04 and κ̄ = 0.02.
All panels show the backbone curves in the projection of the response frequency against
a displacement. The first column shows the amplitudes of the fundamental displacement
response in modal coordinates, i.e. U1, U2 and U3, and the second column represents those
of the three lumped masses, i.e. X1, X2 and X3. Note that the results within frequency
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Fig. B.1 The backbone curves of the 3-DoF system depicted in Fig. 5.8 with the physical
parameters m = 1, k = 0.85, k̄ = 0.15, κ = 0.04 and κ̄ = 0.02. The panels in the first
and second columns show the modal and physical results respectively. Specific backbone
curves are labelled respectively, and the bifurcation points are denoted by red dots. Stable
and unstable solutions are represented by solid and dashed lines respectively.
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bandwidth far away from the resonant frequencies or the parametric ones are not plotted.
The labelled S1, S2 and S3 branches are the single-mode backbone curves and D23±

[i] are
in-unison double-mode backbone curves.

From Fig. B.1, it can be seen that the branches S1, S2 and S3 are curves bending to
the frequency increasing side (right) which indicates that all modes of the system have
hardening nonlinearities. The branches D23±

[i] bifurcate from S3, while D23±
[o] do not exist

here since there is no valid solution for Eqs. (B.7).

B.1.2 Softening nonlinearity

Now the system with softening nonlinearities is considered. Fig. B.2 shows the backbone
curves for the case where κ =−0.04 and κ̄ =−0.08. Both types of double-mode backbone
curves D23±

[i] and D23±
[o] exist for the softening case. The branches D23±

[i] emanate from S2
instead of S3 for the hardening nonlinearity. An interesting phenomenon of the softening
nonlinearity result is that the branches D23±

[o] appear from S3 and end at S2 (or describing the
other way around). This type of bifurcation behaviour has also been shown in the results of
the system considered in Chapter 4. However, the difference is that D23±

[o] are not straightly
vertical here.

For both results in Fig. B.1 and Fig. B.2, it shows that there is no resonance between the
first mode and the rest two modes for both hardening and softening cases. This is because
that there is no corresponding nonlinear term to the 1 : 2 auto-parametric resonance in the
equations of associated modes, e.g. the quadratic terms.

B.2 Non-resonant modal interaction

When the non-resonant modal interaction between the first mode with the second and third
modes is considered, the expressions of the backbone curves may be changed. For the
single-mode backbone curve of the first mode, substituting with U1 ̸= 0, U2 ̸= 0 and U3 ̸= 0
into Eq. (B.3a) and then rearranging gives

Ŝ1 : ω̂
2
r1 = ω̂

2
n1 +

3
4

α
[1]
1 U2

1 , (B.9)

where the ‘effective’ natural frequency is

ω̂
2
n1 = ω

2
n1 +

1
2

α
[1]
2 U2

2 +
1
2

α
[1]
3 U2

3 . (B.10)
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Fig. B.2 The backbone curves of the 3-DoF system depicted in Fig. 5.8 with the physical
parameters m = 1, k = 0.85, k̄ = 0.15, κ =−0.04 and κ̄ =−0.08. The denotations are the
same as those of Fig. B.1.
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Similarly the descriptions of single-mode backbone curves S2 and S3 are updated to be

Ŝ2 : ω̂
2
r2 = ω̂

2
n2 +

3
4

α
[2]
5 U2

2 , (B.11a)

Ŝ3 : ω̂
2
r3 = ω̂

2
n3 +

3
4

α
[3]
9 U2

3 , (B.11b)

where

ω̂
2
n2 = ω

2
n2 +

1
2

α
[2]
4 U2

1 , (B.12a)

ω̂
2
n3 = ω

2
n3 +

1
2

α
[3]
7 U2

1 . (B.12b)

From Eqs. (B.10) and (B.12), it can be seen that due to the non-resonant modal interaction,
the effective natural frequencies may vary with the response amplitude of the non-resonant
modes.

For double-mode backbone curves, the expressions of in-unison ones, D̂23±
[i], are up-

dated to be

D̂23±
[i] :


U2

2 = [Û S2
D23[i]

]2 +ηS2
D23[i]

U2
3 ,

Ω
2 = [ω̂S2

D23[i]
]2 +

3
4

γS2
D23[i]

U2
3 ,

or


U2

3 = [Û S3
D23[i]

]2 +ηS3
D23[i]

U2
2 ,

Ω
2 = [ω̂S3

D23[i]
]2 +

3
4

γS3
D23[i]

U2
2 ,

(B.13)

and the modified out-of-unison backbone curves, D̂23±
[o], to be

D̂23±
[o] :


U2

2 = [Û S2
D23[o]

]2 +ηS2
D23[o]

U2
3 ,

Ω
2 = [ω̂S2

D23[o]
]2 +

3
4

γS2
D23[o]

U2
3 ,

or


U2

3 = [Û S3
D23[o]

]2 +ηS3
D23[o]

U2
2 ,

Ω
2 = [ω̂S3

D23[o]
]2 +

3
4

γS3
D23[o]

U2
2 ,

(B.14)

where

[Û Sn
D23[tr]

]2 = [U Sn
D23[tr]

]2 +µSn
D23[tr]

U2
1 ,

[ω̂Sn
D23[tr]

]2 = [ωSn
D23[tr]

]2 +
1
2

νSn
D23[tr]

U2
1 ,

(B.15)

and

µS2
D23[i]

=
2
3

α
[3]
7 −α

[2]
4

α
[2]
5 −α

[3]
8

,

νS2
D23[i]

=
α

[2]
5 α

[3]
7 −α

[2]
4 α

[3]
8

α
[2]
5 −α

[3]
8

,

and

µS3
D23[i]

=
2
3

α
[3]
7 −α

[2]
4

α
[2]
6 −α

[3]
9

,

νS3
D23[i]

=
α

[2]
6 α

[3]
7 −α

[2]
4 α

[3]
9

α
[2]
6 −α

[3]
9

,

(B.16)
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and

µS2
D23[o]

= 2
α

[3]
7 −α
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[3]
8
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5 α

[3]
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[2]
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D23[o]
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α

[3]
7 −α

[2]
4

α
[2]
6 −3α

[3]
9

,

νS3
D23[o]
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α

[2]
6 α

[3]
7 −3α

[2]
4 α

[3]
9

α
[2]
6 −3α

[3]
9
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(B.17)

From the modified backbone curve expressions, we can see that the bifurcation position, i.e.
the amplitude, Û Sn

D23[x]
, and frequency, ω̂Sn

D23[x]
, of the double-mode backbone curves may also

vary with the response amplitude of the non-resonant interacted mode, i.e. U1. This further
affects the shapes of these mixed-mode backbone curves.
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