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Abstract iv

Abstract

Eighty-Nine Non-Small Cell Lung Cancer (NSCLC) patients experience chromo-

somal rearrangements called Copy Number Alteration (CNA), where the cells have

abnormal number of copies in one or more regions in their genome, this genetic al-

teration are known to drive cancer development. An important aim of this thesis is

to propose a way to combine the clinical covariate as fixed predictors with CNAs ge-

nomics windows as smoothing terms using the penalized additive Cox Proportional

Hazard (PH) model. Most of the proposed prediction methods assume linearity of the

CNAs genomic windows along with the clinical covariates. However, the continu-

ous covariates can affect the hazard via more complicated nonlinear functional forms.

Therefore, Cox PH model with continuous covariate are likely misspecified, because

it is not fitting the correct functional form for the continuous covariates. Some reports

of the work on combining the clinical covariates with high-dimensional genomic data

in a clinical genomic prediction are based on standard Cox PH model. Most of them

focus on applying variable selection to high-dimensional CNA genomic data.

Our main interest is to propose a variable selection procedure to select important

nonlinear effects from CNAs genomic-windows. Two different approaches of feature

selection are presented which are discrete and shrinkage. Discrete feature selection

is based on penalized univariate variable selection, which identify the subset of the

CNAs genomic-windows have the strongest effects on the survival time, while feature

selection by shrinkage works by adding a second penalty to the penalized partial log-

likelihood, that leads to penalizing the smoothing coefficients in the model, as a result

some of the smoothing coefficient are being set to the zero.

For the NSCLC dataset, we find that the size of the tumor cells and spread cancer

into the lymph nodes are significant factors that increase the hazard of the patients

survival, and the estimate of the smooth log hazard ratio curves identify that some of

the significant CNA genomic-windows contribute a higher or lower hazard of death to

the survival of some significant CNA genomic-windows across the genome.
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Chapter 1

Introduction

The third most common cancer in the United Kingdom is the Squamous Cell carci-

noma which is subtypes of Non-Small Cell Lung Cancer (NSCLC). Non-Small Cell

Lung Cancer (NSCLC) patients experience chromosomal rearrangements called Copy

Number Alteration (CNA), which has a high degree of homology with regards to their

chromosomal abnormalities (Zhang et al., 2009), this genetic alteration is known to

drive cancer development. An important aim of this thesis is identifying CNAs of

NSCLC to assess the severity of the chromosomes rearrangement, and to investigate

the non-linear relationship between survival and CNAs. The Cox Proportional Haz-

ards (PH) model, (Cox, 1972), has become a popular choice for modeling survival

data, where the effect of the continuous covariates are assumed to be linear. To in-

troduce possible nonlinear effects of the continuous covariates into a Cox model, the

hazard can be expressed as an additive Cox model using smoothing methods Hastie

and Tibshirani (1990b); Gray (1992). This flexibility would be a great help to further

scientific understanding of the association between CNAs and survival. In this thesis

we derive a new nonlinear technique to express the relationship between CNA genetics

and survival, using the penalized additive Cox model for high-dimensional data.

The additive Cox PH model can not be directly applied in case of high-dimensional

CNA data, and some CNAs are highly correlated. To handle this issue, we try to apply

two different methods of feature variable selection: discrete and shrinkage.

1
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1.1 Objective of Thesis

There are many problems related to including high-dimensional data in survival mod-

els. In this thesis, we will focus on three main problems, which can be summarized as

follows:

• Developing penalized additive Cox PH models where the effect of the continu-

ous covariates on the log hazard ratios are represented nonlinearly using radial

basis functions as a smoothing term. Combining clinical characteristics, as fixed

predictors, with CNA data as smoothing terms in the penalized additive Cox

PH model, where each smoothing term having two constraints. The general lin-

ear constraints approach can be used to solve the constraints problem. We will

discuses some aspect that are relevant to the penalized additive Cox PH model

such as Cross-Validated partial log-likelihood (CVPL), the effective degrees of

freedom (edf), and choosing the optimal number of knots.

• Modeling high-dimensional data is challenging as the number of covariates is

generally much larger than the sample size. The problem is not only including

high-dimensional data in the survival model, but it is also including the high-

dimensional data as smoothing terms in the survival models. Each smoothing

term can be express as a matrix where the number of rows is the number of

observations, and the number of columns is the number of spline parameters,

which is associated with the number of knots. Combining all these matrices

together lead to very large smooth matrix for all CNA in the model, which can

be computational demanding.

• Developing an approach that is able to select the important CNA data, and iden-

tifying which CNA to include in the penalized additive Cox PH model without

incorporation a whole CNA in the model. This leads to simpler model for easier

interpretation. Variable selection is tried to gain as much as possible informa-

tion from CNA data. We introduce two variable selection methods: discrete and
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shrinkage.

1.2 Outline of Thesis

Chapter 2 begins with the NSCLC dataset description for the clinical characteristics,

and CNA data. The recent method of detecting CNA from next-generation sequences

data is reviewed in Chapter 2. This method is applied for each patient individually to

estimate CNA as a ratio of the tumour sample to the normal sample from the patients,

the result of this method is a matrix with dimension 85×13253, where 85 is the number

of patients and 13253 is the number of CNA variables.

In Chapter 3, the background of modeling survival analysis based on the standard

Cox proportional hazard model when the number of covariates is less than the sample

size (p < n) is presented with an application using the clinical characteristics only.

However, standard Cox PH model in the case of the high-dimensional data setting

where the number of covariates is much larger than the sample size (p > n) is not

discussed in this thesis, because it assumes the linearity of the covariates, while we are

interested in non-linear form of the covariates.

The aim of Chapter 4, is to provide an overview of Generalized Additive Models

(GAM) based on penalized likelihood framework and discussing some aspects that are

relevant to this thesis such as Generalized Cross Validation (GCV), the effective de-

grees of freedom (edf), and choosing the optimal number of knots. Logistic regression

with GAM for the clinical characteristics is presented.

In Chapter 5, we present a novel statistical model based on the penalized additive

Cox PH model where the smoothing term is the radial basis function. This extension

of Cox PH model allows us to include the clinical characteristics as fixed effect and

CNA variables as smoothing terms. The method of estimating the model parameters

for both the fixed effect and smooth spline effect based on maximizing the penalized

partial log likelihood is presented. The estimate of the smooth log hazard ratio for the

continuous covariate is presented. We generalize the idea of Bender et al. (2005) to
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generate survival data from the additive Cox model. Simulations studies are described

and discussed to assess the proposed model. The test statistics for testing the smooth

spline effect in the model using the penalized version of the score, Wald and likeli-

hood ratio test statistics are discussed, simulation studies under the null hypothesis is

discussed. Cross validation partial log likelihood (CVPL) which is adapted to select

the optimal smoothing parameters and optimal number of knots in the penalized addi-

tive Cox PH model is presented. Since the model diagnosis is an important part of the

model process, Breslow’s estimator of the baseline cumulative hazard rate, the estimate

of the survival function, Cox-Snell residuals, and Martingale residuals are presented.

Finally, results and evaluation of NSCLC clinical data only are presented.

In Chapter 6,we produce variable selection methods based on discrete feature se-

lection, in which only subsets of the CNA variables are selected and included in the

multivariate penalized additive Cox PH model. This feature selection can be done dis-

cretely, by considering a strategy to assess whether CNA feature variables should be

included in the model. We generalized univariate variable selection in Bøvelstad et al.

(2007) to select the significant CNA variables by performing penalized univariate vari-

able selection. We compared our penalized univariate selection method with univariate

variable selection in Bøvelstad et al. (2007). As a result, the penalized univariate se-

lection identify more significant CNA variables than the univariate selection method.

Forward stepwise selection is used to include this significant CNA variables in the

multivariate penalized additive Cox PH model. Three different Clustering techniques

are used to identify the similar log hazard ratio shapes of the significant CNA variables

across the genome.

In Chapter 7, we propose the double shrinkage penalty approach for variable selec-

tion. The idea of the shrinkage approach is to add a second penalty to the penalized

partial log-likelihood, that leads to penalizing the smoothing spline coefficients in the

model, as a result some of the smoothing coefficient are being set to the zero. Simula-

tion studies are described and discussed to assess the proposal of the double shrinkage

approach to the penalized additive Cox PH model.
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In Chapter 8, a summary of our findings and the final conclusion is included with

some suggestions for further work.



Chapter 2

Estimation of Copy Number alteration

in Lung Cancer Data

2.1 Introduction

In this chapter, a description of the Non-Small Cell Lung Cancer (NSCLC) dataset,

which includes the clinical characteristics and cancer genomes data, is introduced in

Section 2.2. The method of estimating the Copy Number Alterations (CNA) based on

the approach that described in Gusnanto et al. (2012) is presented in Section 2.3. The

results obtained after the analysis for one patients (LS168) are shown in Section 2.4.

2.2 Description of Non-Small Cell Lung Cancer Dataset

2.2.1 Clinical Characteristics

The dataset that we were working with contained information for 89 patients with

Non-Small Cell Lung Cancer (NSCLC), in particular Squamous Cell Carcinoma lung

cancer, who had been seen in the Department of Thoracic Surgery at Leeds Teach-

ing Hospital in Leeds, United Kingdom, between 1994 and 2003. For each of these

patients, Next-Generation Sequencing data (NGS) and clinical characteristics data are

6
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available. The demographical and clinical characteristics of patients are described in

Belvedere et al. (2012) which is summarized in Table 2.1.

Covariate # of patients
Gender Male 63

Female 26
Status Censored 23

Uncensored 66
T1 The tumor is smaller than 2 cm 23

Tumour Size T2 The tumour is between 3 -7cm 59
T3 The tumour is larger than 7cm 7
N0 There are no lymph nodes 47
N1 There are cancer cells in 1 or 2

Nodal Status nearby lymph nodes 35
N2 There are cancer cells in 3 to 6

nearby lymph nodes 7
G1 Low-grade 2
G2 Intermediate-grade 46

Grade G3 High-grade 37
GX The grade cannot be assessed 4

Table 2.1: Demographic and clinical characteristics of patients in Non-Small Cell Lung Can-
cer dataset.

The response variable is the survival time (in days, range 34-4565 days), the median

survival time is 680 days. Survival status is either uncensored or censored, uncensored

when the information is available, and censored when the information on the time-to-

event is not available due to the event does not occurring before the study ended. The

covariate includes age of the patients at the time of surgery (numerical variable), the

range of age is between 39 and 84. Gender variable indicates the gender of the patients

whether male or female. Stage T of cancer is an ordinal variable which indicates the

size of the tumor cells, which can be level 1,2, or 3, with 1 for smallest size and 3 for

the largest size . Stage N is also an ordinal variable which describes whether the cancer

has spread to the nearby lymph nodes, there are 3 levels, 0, 1, and 2. Stage-N0 means

that there is no cancer in the lymph nodes. Stage-N1 means there are cancer cells in

lymph nodes within the hilum lymph nodes. Stage-N2 means the cancer has spread

to the lymph nodes. Grade is an ordinal variable which describes how abnormal the
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cancer cells are when compared to normal cells. Tumors cells can be graded as 1, 2,

3, or 4, the lower the grade the slower the growth rate of the cancer, and grade GX

means that the grade can not be assessed. There were 4 patients having grade GX , so

we remove them from the data, the number of patients is reduced from 89 to 85.

2.2.2 Next-Generation Sequencing for Copy Number Alteration

NSCLC patients experience chromosomal rearrangements called Copy Number Alter-

ations (CNA), where the cells have abnormal number of copies in one or more regions

in their genome. The Next-Generation Sequencing (NGS) data from clinical samples

come directly from patients. DNA libraries were obtained and sequenced by using

ILLumina GAII sequencer, the preparation of DNA can be found in Belvedere et al.

(2012). DNA sequencing refers to the methods that are used to determine the orders

of nucleotide bases in a DNA molecule, namely adenine (A), guanine (G), cytosine

(C) and thymine (T). The normal sample was created from a pool of 20 normal British

individuals. The effect of pooling the data from different individuals is to reduce the

variability due to individual specific variation, so the total number of normal read is

4,386,893.

The DNA was collected from the 89 patients; small DNA fragments (called reads)

from each patient are mapped to a human normal genome. The genome was split into

windows with average 300 tumour reads per window. To calculate the Copy Number

Alteration (CNA), we count the number of reads that fall into fixed-size, 200 kb win-

dow size, non-overlapping genomic ‘windows’. The information from each window is

recorded as rows in Table 2.2. The number of reads from the patient in the “Test” col-

umn were compared to the number of reads from the normal samples in the “Normal”

column. The Guanine-Cytosine (GC) column contains the percentage of nitrogenous

bases in a read that are either Guanine or Cytosine in each window, and the right most

column is the ratio of test reads to normal reads. The total number of windows is

15490, which was consistent across all patients, whilst the total number of test reads



Chapter 2. 9

were different for each window in the samples. For example, for one patient the total

number of test reads are 1,820,403, for more information see Tables 2.4 and 2.5 in

Section 2.4.

Chromosome Window Test Normal GC Ratio
starting position

1 1 5 6 42.96 0.84
1 200001 1 1 39.87 1.00
1 400001 6 11 45.06 0.54
...

...
...

...
...

...
10 18600001 131 283 40.82 0.46
10 18800001 99 318 39.95 0.31
10 19000001 93 310 37.70 0.30
...

...
...

...
...

...
22 28200001 102 319 43.29 0.32
22 28400001 107 292 41.96 0.36
22 28600001 101 328 38.01 0.31

Table 2.2: The number of reads for one patient (Test) and normal human genome
(Norm), guanine-cytosine (GC) percentage and test/norm read (Ratio).

2.3 Analysis of Copy Number Alteration.

As mentioned earlier, this analysis based on CNAnorm method developed by Gusnanto

et al. (2012), we also use the same notations and arguments and the notation applies to

a generic patient. To calculate the CNA, we compute the ratio of test reads to normal

reads as follows: the observed number of reads from a tumour sample is denoted by

xjk for each chromosome j = 1, . . . , h, and window k = 1, . . . , nj , where nj is the

number of windows in chromosome j and h = 22, and the observed number of reads

in a normal sample is denoted by yjk. In order to identify the CNAs in the tumour

genome that either gain or loss, we estimate CNAs as the observed ratio of the tumour

sample to the normal sample in each window:

ρ̂jk = rjk =
xjk
yjk

. (2.1)
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In the normal sample there are two copies of (outosomole) chromosomes, while in

the tumor sample may have zero, one, two or more duplication. Therefore, the ratio

can takes any value in G = {0, 0.5, 1, 1.5, 2, . . . } which corresponds to tumor copy

number P = {0, 1, 2, 3 . . . }. However, the ratio rjk does not take into account the

different number of reads in each genome, the recorded number of reads is different

(number of test/normal reads), the size of tumour and normal genome is different,

and the contamination of the tumour sample with a normal sample. All these problems

make the estimate ρ̂jk not belong toG, and the CNAs corresponding to normal genomic

region will not centered to a ratio 1. Estimation of CNA requires several steps which

are described in more details as follows.

2.3.1 GC Correction

Chen et al. (2013) showed that in the NGS data, the GC is bias, and this can be ex-

plained by the low coverage of reads in the GC-poor or GC-rich regions of a genome.

However, the ratio rjk is influenced by the GC content in the genome windows (Boeva

et al., 2011). The aim of this step is to remove the dependency of the ratio rjk on

GC content. In order to achieve that, a quadratic local regression model can be used.

Gusnanto et al. (2012) expressed the GC-correction ratio as follows

rnorm
jk =

κ

Ajk
rjk, (2.2)

where κ represents the median of rjk, and the estimated Loess pointwise mean of rjkis

denoted by Ajk. For simplicity, the superscript norm is dropped, so the notation rjk in

the following steps have been GC-corrected.

2.3.2 A Smooth Segmentation Approach.

This step is based on the smooth segmentation approach by Huang et al. (2007), which

is necessary in case of the small number of reads in each window. This smooth seg-
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mentation approach based on a linear model under the assumption that the second-

order differences of the random effect parameters follows a Cauchy distribution, so es-

timates of the random effects are the segmented ratios r̃jk. Let b1, . . . , bn, be the fixed

genomic position and n is the number of genomic position, with b1 < b2 < . . . < bn,

and r1, . . . , rn are the observed ratio. The model is

ri = f(bi) + εi, i = 1, . . . , n (2.3)

where the errors ε1, . . . , εn are independent and identically distributed (IID) t-distribution

with location at 0, unknown dispersion σ2 and k degrees of freedom. To estimate f(bi)

based on observations rjk, Huang et al. (2007) assumed B-splines of degree zero with

the observed bi as knots, and the smoothness of f can be expressed by the second-

order differences ai = ∇2fi = fi − 2fi−1 + fi−2 which are IID Cauchy distributed to

allow smooth transition. Using maximum likelihood approach, the log-likelihood can

be expressed as

`(f, σ2, σ2
f ) = log(p(r|f)) + log(p(f)). (2.4)

The first term on the right hand side of equation (2.4) is obtained from the t-density

with k degrees of freedom, which can be expressed as:

log(p(r|f)) = log Γ(k/2 + 1/2)− log Γ(k/2) +
k

2
log(k)

− 1

2
log(πσ2)− k + 1

2
log
{
k +

(r − f)2

σ2

}
, (2.5)

The second term in equation (2.4) is the random effects which comes from Cauchy

model, with located at 0 and has scale factor σ2
f and can be written a

log(p(f)) ≡ `(a) = −(n− 2) log(πσf )−
n−2∑
i=1

log
(

1 +
a2

σ2
f

)
. (2.6)

Taking the first derivative of log(p(r, f)) with respect to the random effect f we ob-

tained 1
σ2W (r − f), where W = diag( k+1

k+(ri−fi)2/σ2 ), and then taking the first deriva-
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tive of log(p(f)) with respect to a, we have − 2a
a2+σ2

f
, which can be written in vector

form − 1
σ2
f
D−1a, where a = ∇2f , ∇2 is the (n− 2)× n second order differences ma-

trix, and D−1 = diag[2/(1 + a2/σ2
f )]. Therefore, combining the above results, the first

derivative of `(f, σ2, σ2
f ) with respect to f is

S(f) =
1

σ2
W (r − f)− 1

σ2
f

(∇2)TD−1(∇2)f. (2.7)

In order to solve S(f) = 0, Huang et al. (2007) proposed an Iterative Re-weighted

Least Square (IRLS) method. Given the initial value of f , we can compute the matri-

ces W and D, and solve the updating equation f =
(
W + λ(∇2)TD−1(∇2)

)−1

Wr,

where λ = σ/σf . The estimation of the dispersion parameter σ can be calculated

as σ̂ = median{|ri − f̂i|}. The degree of freedom in the model is df ≡ df(λ) =

trace{(W + λ(∇2)TD−1(∇2))−1W }. The estimation of λ can be done by minimiz-

ing the AIC criterion, AIC(λ) = −2
∑

log(p(r|f̂)) + 2df . The estimate of σf is σ̂/λ.

The estimate of the random effect f̂i is the segmented ratio r̃jk.

2.3.3 Genome-wide Normalization

The aim of this step is to correct the location of the distribution of the copy number

ratio, to achieve this we have to estimate δCNA from the segmented ratio r̃jk, where

δCNA represents the genome-wide normalization coefficient. In the previous step the

segmented ratio r̃jk displays a multi-modal distribution, each mode indicated the posi-

tion of the CNA in G, and the corresponding copy number in P . However, the modes

of the segmented ratio distribution r̃jk are not centered on the expected CNA in G,

to correct that we need to estimate δCNA from the segmented ratio r̃jk. The mixture

normal distributions can be used to fit the distribution of smooth segmented ratio r̃jk.

p(r̃jk) =
M∑
m=1

πmN(r̃jk;µm, σ
2
m). (2.8)
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where µm are the mean, σ2
m are the variance for each normal distribution, and πm

are the unknown mixing proportions, such that
∑M

m=1 πm = 1 , 0 ≤ πm ≤ 1 for

m = 1, . . . ,M , and M is the number of component. Each value of the means µm

corresponds to the value in G that indicates the ratio of tumour to normal copy number,

and the corresponding tumour copy number P .

Gusnanto et al. (2012) estimated the mixture component in equation (2.8) using the

standard expectation-maximization (EM) algorithm. Akaike’s Information Criterion

(AIC) is used to select the number of components M in the model. After estimating

µ̂ = (µ̂1, . . . , µ̂M), the relationship between µ̂ and the corresponding tumour copy

number in P is described by a linear regression model.

The component in the mixture model in equation (2.8) that corresponds to the

normal ploidy, which has ratio 1 in G is identified as the most common component

ν = argmaxmπ̂m, this indicates that the νth components is assigned to have ν− 1 copy

number, because the first component is corresponding to zero copy number.

The genome-wide normalization coefficient was estimated as δ̂CNA = 1
µ̂ν

, as a result

the estimation of δ̂CNA identified the mixture component that corresponds to normal

ratio, so then shifts the whole distribution multiplicatively which makes the normal

ratio center at one. The estimation of crude CNA can be computed as follows

ρ̂ajk = r̃jkδ̂CNA, (2.9)

where ρ̂ajk is the estimates of CNA where the contamination is still presents, for the

purpose of finding the estimate of CNA that makes the estimate comparable between

samples, we need to characterized any contamination in order to make the suitable

correction.

2.3.4 Contamination Correction

In the case of no contamination, the smoothed ratio r̃jk takes any value G, while if the

contamination is present the smooth ratio r̃jk shrunk toward ratio one (see Gusnanto
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et al. (2012) supplementary material).

To estimate the contamination, Gusnanto et al. (2012) assumed that the contamina-

tion shrinks the CNA linearly towards a ratio of one. For example, it ρjk = 2, then the

CNAs will shrink to 1 < ρjk < 2, while if ρjk = 0.5, the CNA will shrink between 0.5

and 1. However, from the previous step the normal copy number is centered at one,

so we can assume that the estimation of CNAs has occurred from a shrinkage of the

non-contaminated ρ̂jk around ratio one.

ρ̂ajk = 1 + (ρ̂jk − 1)× (1− ψ̂), (2.10)

where ψ̂ is the estimate of contamination proportions, which is between zero and 1.

If ψ̂ is equal to zero, the estimate of crude CNA will be equal to the ratio ρ̂jk. The

estimation of ψ̂ can be done by investigating how the estimate in µ̂ have been shrunk

towards µ̂v that corresponds to the copy number two. To do this they normalized the

estimates µ̂ = (µ̂1, µ̂2, . . . , µ̂M) into µ̂c ≡ {µ̂cm} = {µ̂mδ̂CNA} for m = 1, . . . ,M .

The estimate of ψ̂ is (Gusnanto et al., 2012)

ψ̂ =
1

M − 1

∑
m, m 6=ν

(
1− |µ

c
m − µcν |
µcν

1

0.5× |Pm − Pν |

)
, (2.11)

where Pm is the set of the copy number without Pν . From equation (2.10) the estimate

of CNA can be written as

ρ̂jk = 1 + (ρ̂ajk − 1)× 1

(1− ψ̂)
. (2.12)

The estimation of CNA by ρ̂jk now considers the different read depths, genome size

and contamination. This can make the estimate comparable between different pairs of

samples.
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2.4 Real Data Normalization

The normalization steps have already been applied to the 85 patients by using R pack-

age CNAnorm as described by Gusnanto et al. (2012). Tables (2.4) and (2.5) present

the ploidy number, the number of test reads and the estimated contamination for the

85 patients. There are only 4 patients with estimated ploidy equal to 4 (tetraploid),

and 81 patients with estimated with ploidy equal to 2 (diploid), more invigorations is

needed regrading whether or not it would be useful to include the number of ploidy

and the contamination information of Tables (2.4) and (2.5) as a additional variables in

the survival models.

The result of only one of the patients (LS168) out of the 89 patients will be pre-

sented as an illustrative example. Figure 2.1 illustrates the impact of the smoothing on

the distribution of copy number ratio. The left panel shows the ratios rjk, which do not

clearly identify the multi-modality in the distribution of ratio rjk in the genome. The

right panel is the smoothed ratios r̃jk, which clearly identify the multi-modality in the

distribution of the smoothed ratio r̃jk.
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Figure 2.1: The left panel is the histogram of ratio as reported by CNAnorm. The right
panel is the smoothed ratio across the genome of patient LS168.
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We fit the mixture model in equation (2.8) to the distribution of the smoothed ratio

r̃jk, as seen in Figure 2.2. The optimal number of mixture components is M = 7 as

determined by minimizing AIC, with estimates of the means µ̂m = (0.33, 0.36, 0.39,

0.42, 0.46, 0.50, 0.58). The estimated proportion of the common mixture component

is π̂3 = 0.28 which illustrates that the third component is the most common one (ν =

3) suggestion that the tumour genome is diploid, so µ̂3 = 0.39 and δCNA = 2.56.

After scaling for the diploid component to have ratio one, the scaled estimates µ̂c

were 0.84, 0.92, 0.99, 1.07, 1.17, 1.40 and 1.48. This gives the estimate of the tumour

contamination ψ̂ = 71.13%.
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Figure 2.2: The fit of the mixture distribution to the smoothed ratio, the black vertical
solid lines indicate the mean of the distribution. The estimated tumour content is shown
in the legend of patient LS168.

Figure 2.3 shows the normalized copy number ratio with estimates of copy number,

as a smoothed signal lines across the genome. Segmented ratio using DNACopy is

presented in Figure 2.4,the vertical solid lines separate the chromosomes, Grey dots

represent normalized reads per window, solid thick lines are the normalized and seg-
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mented DNAcopy, and the horizontal dashed lines are the median copy number. The

solid horizontal line across the entire figure is the mixture model closest to the median,

the green triangles are points outside the graph.
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Figure 2.3: The copy number ratio with estimates of copy number, as a smoothed
signal, lines across the genome of patient LS168.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

chr1 chr2 chr4 chr6 chr7 chr10 chr12 chr15 chr18 chrX

Genomic location

0
1

2
3

4
5

6
7

8
9

11
13

E
st

im
at

ed
 p

lo
id

y

0
1

2
3

4
5

6
7

R
at

io
 c

en
te

re
d 

on
 m

os
t c

om
m

on

Figure 2.4: The normalized copy number ratio with estimates of copy number, the
solid thick black lines are the normalized and segmented DNAcopy of patient LS168.

Figure 2.5 shows the output for chromosome three before and after normalization.
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There are 15,490 genomic-windows per patients, with some missing data due to cen-

tromeres of the genome, each window that contain one missing value we impute it by

the mean of that windows, as result, the estimate of CNA is 13253 genomics-windows

for each patients. Finally, the result of the normalization steps for patient LS168 are

presented in Table 2.3.

Figure 2.5: Copy number ratios for chromosome three before (left) and after (right)
normalization, the black solid line is the estimate of CNA of patient LS168.

# Chr Pos Ratio Ratio.n Ratio.s.n SegMean SegMean.n
1 chr1 1 0.83 4.80 0.58 -0.82 2.99
2 chr1 200001 1 8.19 0.57 -0.82 2.99
3 chr1 400001 0.54 1.40 0.56 -0.82 2.99
4 chr1 600001 0.56 2.04 0.55 -0.82 2.99
5 chr1 800001 0.64 0.98 0.54 -0.8 2.99
6 chr1 1000001 0.75 1.77 0.53 -0.82 2.99

...
...

...
...

...
...

...
14410 chr22 50200001 0.52 0.39 0.31 -1.58 0.39
14411 chr22 50400001 0.42 0.00 0.31 -1.58 0.39
14412 chr22 50600001 0.54 0.32 0.31 -1.58 0.39
14413 chr22 50800001 0.56 0.55 0.31 -1.58 0.39
14414 chr22 51000001 0.48 0.26 0.31 -1.58 0.39
14415 chr22 51200001 0.25 -0.65 0.31 -1.58 0.39

Table 2.3: The output of the CNAnorm method for patients LS168.
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Patient Number of Ploidy Number of Test Contamination
LS 168 2 1820403 71.13
LS169 2 2017296 49.79
LS170 2 1877104 86.49
LS171 2 3141892 72.15
LS172 2 1926593 74.60
LS173 2 3217576 79.82
LS174 2 2434153 87.27
LS182 2 275944 78.43
LS187 2 99541 57.81
LS188 2 680068 75.91
LS189 2 613568 89.99
LS192 2 934719 79.11
LS193 2 394880 92.33
LS194 2 1054930 42.40
LS195 2 528435 31.17
LS197 2 1011972 86.25
LS199 2 1159264 60.02
LS200 2 888820 75.85
LS202 2 496917 79.72
LS203 4 1145927 34.10
LS204 2 427771 63.65
LS206 2 275195 86.10
LS238 2 1084707 59.92
LS243 2 1211597 38.18
LS244 2 1065651 81.69
LS245 2 112859 51.36
LS246 2 1069590 78.57
LS249 2 679410 75.21
LS251 2 616019 82.30
LS254 2 1062136 81.60
LS255 2 700787 77.24
LS256 2 771187 84.89
LS257 2 1294166 72.62
LS258 2 1147664 86.23
LS259 2 976499 70.42
LS260 2 983376 93.65
LS264 2 389219 83.34
LS265 2 98367 76.81
LS266 2 541334 61.38
LS270 2 124166 67.80
LS272 2 961265 89.13
LS273 2 1071641 90.43
LS274 2 300947 83.62
LS277 2 1873814 80.92

Table 2.4: The number of ploidy, number of test read and the estimate of contamination
for 89 patients.
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Patient Number of Ploidy Number of Test Contamination
LS281 2 1051811 91.60
LS282 4 1061886 92.93
LS283 2 1602892 91.72
LS286 2 2312598 87.55
LS287 2 1224020 78.23
LS289 2 468956 82.94
LS290 2 1545591 63.78
LS291 2 2202839 58.04
LS292 2 778032 81.40
LS293 2 964380 54.49
LS294 2 1162422 83.74
LS295 2 16563 82.84
LS296 2 1586895 56.23
LS297 2 587496 88.02
LS299 2 8212772 69.65
LS300 4 1455529 88.91
LS302 2 325607 78.61
LS303 4 1523161 88.12
LS304 2 1278349 71.04
LS306 2 1514125 85.42
LS307 2 1394593 85.40
LS352 2 1001953 82.16
LS353 2 1500424 63.00
LS354 2 850667 85.70
LS355 2 1991428 60.83
LS357 2 271962 80.06
LS359 2 1624446 74.17
LS362 2 1563365 73.43
LS364 2 1862728 61.62
LS366 2 1316441 41.40
LS367 2 1107864 72.92
LS369 2 507639 39.17
LS370 2 306645 88.29
LS375 2 1252654 65.56
LS376 2 878661 78.75
LS379 2 552071 66.54
LS382 2 1554592 78.33
LS383 2 1429903 36.83
LS384 2 41823 86.07
LS387 2 2143304 66.07
LS388 2 749250 75.13

Table 2.5: The number of ploidy number of test read and the estimate of contamination
for 89 patients.
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2.5 Conclusion

We have applied the method to estimate CNA from patients genomic sample using

the method explained in Gusnanto et al. (2012). The observed ratio (test/normal read)

is not necessarily take the expected value of the normal genome, this is because the

random error, different number of read, and different size, and the contamination. The

random error is solved by using the smoothing method. The other problems is solved

by acknowledging the multi-modality in the distribution of the segmented ratio, and

correcting the location of the distribution to the corresponding different copy number.

The estimation of CNA by ρ̂jk now considers the different read depths, genome size

and contamination, which makes the estimate comparable between different pairs of

samples. The normalization methods was applied to the 89 patients genomic sample.



Chapter 3

Survival Analysis

3.1 Introduction

The most frequently model used in survival analysis is the Proportional Hazard (PH)

model introduced by Cox (1972), which is used to explore the relationship between the

survival time of patients and a set of covariates. This chapter deals with the background

of the standard setting for the Cox PH model, where the number of covariates is less

than the sample size, n < p. However, in the case of high-dimensional data where the

number of covariates is larger than the sample size, p � n, various techniques have

been proposed in the literature, which are not discussed in this thesis. Some examples

can be found in Van Houwelingen et al. (2006); Simon et al. (2011); Bøvelstad et al.

(2007, 2009).

This chapter is organized as follows. In Section 3.3 we introduce the method of

estimating the regression coefficients by using partial log likelihood maximization.

The Breslow estimator for estimating the baseline hazard and the corresponding sur-

vival function estimator are introduced in Section 3.4. Section 3.5 shows the method

of testing the proportional hazard assumption based on a scaled Schoenfeld residual

(Schoenfeld, 1982). This chapter describes the application of the standard Cox PH

model using clinical characteristics only. Later, we shall explore the use of CNA data

in standard Cox PH models as smooth function of CNA via additive model.

22



Chapter 3. 23

3.2 Cox Proportional Hazards (PH) Models

Cox’s PH model was invented by Cox (1972), and has proven to be a popular mathe-

matical model for the analysis of survival data, because it allows the survival probabil-

ity to depend not only on time, but also on the set of covariates. Let δi for i = 1, . . . , n

be the event indicator for the ith patient, where δi is equal to 1 if the survival time ti

is uncensored, and to zero if ti is censored. Let X be a matrix of size n × p, where

the number of rows ofX correspond to the number of patients, and the columns ofX

correspond to the clinical characteristics as continuous and categorical covariates. The

ith row ofX is xi, which is a p vector of the covariates for the ith patient. Let h0(t) be

the baseline hazard function, which is describes the hazard for a hypothetical individ-

ual with all covariates being equal to zero. The hazard function for the ith individual

can be written as

hi(t|X) = h0(t)ϕ(Xi),

where ϕ(Xi) is a relative hazard function, that is the hazard at time t for an individual

whose vector of covariate variable isXi, relative to the hazard for an individual with all

covariates being equal to zero. According to the specification of the Cox model (Cox,

1972) the relative hazard function must be a non-negative function, and hi(t) is posi-

tive. A common model for ϕ(Xi) is exp(Xiβ) resulting in the standard proportional

hazard model written as

hi(t) = h0(t) exp(Xiβ) (3.1)

The phrase proportional hazard refers to the ratio of hazard functions corresponding to

any two patients i and j, where i 6= j does not depending on time t:

h(t|Xi)

h(t|Xj)
=
h0(t) exp(Xiβ)

h0(t) exp(Xjβ)
= exp[(Xi −Xj)β]. (3.2)

Equation (3.1) has two components that need to be estimated, the first component

is the unknown coefficients of the covariates variables; β = [β1, . . . , βp]
T , and the

second component is the baseline hazard function h0(t). The estimation of the model
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parameters will be discussed further in the following section.

3.3 Estimation of The Model Parameters

3.3.1 The Full Likelihood Function

The full likelihood function of the proportional hazard model can be written as

L(β, h0(t)) =
n∏
i=1

[f(ti|Xi)]
δi [S(ti|Xi)]

1−δi ,

=
n∏
i=1

[h(ti|Xi)]
δiS(ti|Xi), (3.3)

where h(ti|Xi) is the hazard function and S(ti|Xi) is the survival function. Replac-

ing h(ti|Xi) by h0(ti) exp(Xiβ), and S(ti|Xi) by exp{−H0(ti) exp(Xiβ)}, the full

likelihood becomes

L(β, h0(t)) =
n∏
i=1

{
h0(ti) exp(Xiβ)

}δi
exp

{
−H0(ti) exp(Xiβ)

}
. (3.4)

The full maximum likelihood requires that we maximize (3.4) with respect to the un-

known parameter β and the unspecified baseline hazard function h0(ti) which is dif-

ficult without specifying the form for the baseline hazard. Cox (1972) used the con-

ditional argument to derive the partial likelihood function, which is presented in the

following subsection.

3.3.2 The Partial Likelihood Function

An important feature of the PH model is that the estimated regression parameter β can

be obtained without specifying the baseline hazard h0(t). Cox (1972) derived a partial

likelihood function for the ith patient for a PH model. The derivation for the partial

likelihood function can be found in Chapter 3 of Collett (2003). We assume that only

one individual dies at each death time, so there are no ties in the data and there is no
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assumption about the form of the baseline hazard. Let t1 < t2, · · · < tn denote the

ordered observed follow-up times, δi is the event indicator, which is 1 if the individual

is dead and zero otherwise, and xi is a vector of covariates for the ith individual who

dies at ti or censored. The risk set at time t, denoted by R(t) = {j : tj ≥ t}, which is

the set of all individuals who are still alive and uncensored at a time just prior to t.

The probability that the ith individual with covariate vector xi dies at ti, conditioned

on that only one death in R(ti) occurring at time ti can be express as

Pr( individual with covariates xi dies at ti |one death at ti )

=
Pr( individual with covariates xi dies at ti )

Pr(one death at ti )

=
Pr( individual with covariates xi dies at ti )∑

j∈R(ti)
Pr( individual with covariates xj dies at t(i) )

. (3.5)

If the probabilities of death at time ti are replaced by the probabilities of death in the

interval (ti, ti + ∆t), expression (3.5) becomes

Pr( individual with covariates xi dies in (ti, ti + ∆t) )∑
j∈R(ti)

Pr( individual with covariates xj dies in (ti, ti + ∆t) )
, (3.6)

Dividing the numerator and denominator in expression (3.6) by ∆t, and taking the

limit as ∆t→ 0, we obtain the ratio of the corresponding hazards of death at time ti:

lim
∆t→0

Pr( individual with covariates xi dies on (ti, ti + ∆t) )/∆t∑
j∈R(ti)

Pr( individual with covariates xj dies on (ti, ti + ∆t) )/∆t
,

=
hazard of death at time ti for individual with variable xi∑

j∈R(ti)
{hazard of death at time ti for individual with variable xj}

=
h(ti|Xi)∑

j∈R(t(i))
h(ti|Xj)

=
exp(Xiβ)∑

j∈R(t(i))
exp(Xjβ)

.

The product of this conditional probability is the partial likelihood function for all
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observations,

Lpl(β) =
n∏
i=1

(
exp(Xiβ)∑

j∈R(ti)
exp(Xjβ)

)δi

,

The partial log-likelihood is

`pl(β) =
n∑
i=1

δi

Xiβ − log
∑

j∈R(ti)

exp(Xjβ)

 . (3.7)

The Newton-Raphson algorithm is used to maximize the partial log-likelihood function

(3.7). Let Upl(β) be the p× 1 vector of the first derivative of the partial log-likelihood

function (3.7) with respect to β

Upl(β) =
∂`pl(β)

∂β
=

n∑
i=1

δi

(
Xi −

∑
j∈R(ti)

Xj exp(Xjβ)∑
j∈R(ti)

exp(Xjβ)

)
.

The negative of the matrix of the second derivative of the partial log likelihood is the

information matrix, which is denoted as Ipl(β)p×p and is given by

Ipl(β) = −
[∂2`pl(β)

∂βl∂βm

]
=

n∑
i=1

δi

((∑
j∈R(ti)

Xjl exp(Xjβ)
)(∑

j∈R(ti)
Xjm exp(Xjβ)

)
(∑

j∈R(ti)
exp(Xjβ)

)2

−

(∑
j∈R(ti)

Xjl exp(Xjβ)
)(∑

j∈R(ti)
XjmXjl exp(Xjβ)

)
(∑

j∈R(ti)
exp(Xjβ)

)2

)

An estimate of the vector of the β parameters at the (s+ 1)th iteration is

β̂s+1 = β̂s + Ipl(β̂s)
−1Upl(β̂s). (3.8)

The estimator of the variance of the estimated parameters is the inverse of the infor-

mation matrix evaluated at β = β̂, is given by Var(β̂) = I−1
pl (β̂), and the square root

of the diagonal of the estimated variance is the standard error of β̂, denoted se(β̂).
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As n → ∞, the β̂ will converge to the true value of β, and β̂ approximately follows

a normal distribution N(β, I−1
p (β)). The null hypothesis H0 : β = 0 can be tested

using the Wald statistics, z = ( β̂

se(β̂)
)2, which have asymptotically a χ2

p distribution

under the null hypothesis and p is the dimension of β. Subset selection with model

selection criteria, such as the Akaike Information Criterion AIC = −2 log `pl(β̂)+2p,

can be used to identify relevant variables and choose the best model, where `pl(β̂) is

the partial log likelihood for the estimated parameters. There is built-in function in

R package for Cox PH model in survival package, but we wrote R code to carry out

the Newton-Raphson algorithm in case of standard Cox PH model, in order to extend

this later on when we include the CNA genomic-windows as smoothing terms in the

model, in Chapters 5, 6 and 7.

3.4 Breslow Estimator

In this section we focus on estimating the baseline hazard, h0(t), which dropped out of

the partial likelihood. Breslow (1974) proposed a method that is based on the full like-

lihood function by fixing β = β̂ in equation (3.4). This method estimates the baseline

hazard, so the estimated survival function can be obtained by knowing the estimate of

the cumulative hazard function and the estimate of the regression parameters. Estimat-

ing hazard function can be found in Chapter 8 of Klein and Moeschberger (1997). The

full likelihood with β equal to β̂ is a function of h0(t) only:

L(h0|β = β̂) =
n∏
i=1

[h0(ti)]
δi [exp(Xiβ̂)]δi exp[−H0(ti) exp(Xiβ̂)]

=

{ n∏
i=1

[h0(ti)]
δi [exp(Xiβ̂)]δi

}{ n∏
i=1

exp[−H0(ti) exp(Xiβ̂)]

}
=

{ n∏
i=1

[h0(ti)]
δi [exp(Xiβ̂)]δi

}{
exp

[ n∑
i=1

−H0(ti) exp(Xiβ̂)
]}
.

(3.9)
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Equation (3.9) has two components including h0(ti). In the first component [h0(ti)]
δi

when δi = 1, h0(ti) will be a large value, which leads to a large value in the likeli-

hood. The second component is exp(−H0(ti)) = exp(−
∫ ti

0
h0(u)du), so to maximize

(3.9), H0(ti) should have a small value. This can be obtained when ĥ0(t) = 0 for

all t 6∈ {t(1), · · · , t(m)}, where m is the number of deaths among n, so H0(ti) =∑
tj≤ti h0(t(j)). After some simplification, Klein and Moeschberger (1997), show that

equation (3.9) can be written as

L(h0(tj)) =

{ m∏
j=1

h0(tj) exp(Xjβ̂)

}
exp

{
−

m∑
j=1

h0(tj)
∑

j∈R(ti)

exp(Xjβ̂)

}
. (3.10)

The log likelihood is

`(h0(tj) =
m∑
j=1

{log h0(tj) +Xjβ̂} −
m∑
j=1

h0(tj)
∑

i∈R(tj)

exp(Xiβ̂)}. (3.11)

Differentiating (3.11) with respect to h0(tj) and setting the derivative to zero gives the

maximum likelihood estimator for h0(tj).

ĥ0(tj) =
1∑

i∈R(tj)
exp(Xiβ̂)

. (3.12)

The estimate of the cumulative baseline hazard function of H0(t) is

Ĥ0(t) =
∑
tj≤t

1∑
i∈R(tj)

exp(Xiβ̂)
, (3.13)

and the corresponding baseline survival function is

Ŝ0(t|xi) = exp(−Ĥ0(t)). (3.14)
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3.5 Checking the Proportional Hazard Assumption

The proportionality of the hazard assumption is the main assumption of the Cox model.

The PH assumption means that the hazard ratio between two sets of covariates is con-

stant over time, because the common baseline hazard function cancels out in the ratio

of the two hazards. Various methods have been proposed to test the proportional haz-

ard assumption. This section presents the method of testing the proportional hazard

assumption based on a scaled Schoenfeld residual (Schoenfeld, 1982), which is a mea-

sure of the difference between the observed and expected value of the covariate at each

time (Therneau and Grambsch, 2000). If the proportional hazard assumption is rea-

sonable, the Schoenfeld residual will be independent of time. This approach considers

one covariate at a time, the result of which is that one p-value per covariate is included

in the fitted Cox regression model. The derivation for the Schoenfeld residuals can be

found in Chapter 4 of Collett (2003), which involves taking the first derivative of the

partial log likelihood for the i-th covariate,

r̃i(β̂) = δi

(
Xi −

∑
j∈R(ti)

Xj exp(Xjβ̂)∑
j∈R(ti)

exp(Xjβ̂)

)
.

Schoenfeld residuals are known as partial score residuals, because their sum is equals

the partial log likelihood score function whose solution is the estimated model param-

eters,
∑

i r̃i(β̂) = 0. These residuals are plotted against time to validate the propor-

tional hazard assumption, and if the residual falls randomly around a horizontal line

centered at zero, the proportional hazard assumption is thought to hold. Otherwise, the

proportional hazard assumption does not hold. We carried out the test as follows:

1. Performed the Cox proportional hazard model and obtained the Schoenfeld resid-

ual for each covariate.

2. Ranked death times as suggested by Kleinbaum and Klein (2005).

3. Tested the correlation, ρ, between the Schoenfeld residual and ranked death
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times:

The null hypothesis is that the correlation, ρ, between the Schoenfeld residual and the

ranked death times is zero, H0 : ρ = 0. Rejection of the null hypothesis leads to

the conclusion that the proportional hazard assumption is violated. An alternative was

proposed by Grambsch and Therneau (1994), in which the scaling of the residuals is

by done by multiplying it with the an estimate of their variance, and that approach is

used in the survival package in R (Therneau, 2015; Therneau and Grambsch, 2000).

Let the vector of Schoenfeld residuals for the ith individual be r̃i = (r̃1i, r̃2i, . . . , r̃pi)
T .

The scaled Schoenfeld residual r∗ki, is defined as

r∗i = m Var(β̂)r̃i. (3.15)

where m is the number of deaths among n individuals, and Var(β̂) is the variance

covariance matrix of the estimated parameters in the Cox PH regression model.

3.6 Residual for Cox PH model

Several types of residuals have been proposed in survival analysis which can be found

in may articles and books (Klein and Moeschberger, 1997; Grambsch and Therneau,

1994; Therneau and Grambsch, 2000). In this chapter we briefly introduce Cox-Snell

and Martingale residuals, Cox-Snell residual is defined as (Cox and Snell, 1968)

rCi = Ĥ0(ti) exp(Xiβ̂) (3.16)

where Ĥ0(ti) is the estimate of the baseline cumulative hazard function at time ti. The

Nelson-Aalen estimator used in practice which is given by

Ĥ0(ti) = − log Ŝ0(ti) =
∑
i:ti≤tj

δi∑
j∈R(ti)

exp(Xiβ)
. (3.17)
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The Cox-Snell residual can be also expressed as

rCi = Ĥi(t) = − log Ŝi(ti) (3.18)

where Ŝi(ti) = exp(−Ĥi(t))
exp(Xiβ̂). The Cox-Snell residual can be compared graph-

ically to the cumulative hazard function of an exponential distribution with mean equal

to one. The plot of the cumulative hazard estimator of the residual by the Nelson-Aalen

versus the Cox-Snell should be a straight line passing through 0 with unit slope.

The Martingales residuals are defined for the ith individual as:

rMi = δi − rCi = δi − Ĥi(ti). (3.19)

where rCi is the Cox-Snell residual, and Ĥi(ti) is the cumulative hazard. The residual

rMi can be viewed as the difference between the observed number of deaths for the

ith patient between 0 and ti and the expected numbers of death in that interval. rMi’s

have mean 0, and the range of Martingale residuals is between −∞ and 1. Therefore,

Martingale value near to 1 represent patients died sooner and large negative values

mean that the patient lived too long or it were censored. Martingale residuals are

very useful as they can be used for determining the functional form of a covariate

to be included in the model, this can be obtain by plotting the Martingale residual

versus the continuous covariate, and then the points can be fitted using nonparametric

LOESS smoother method, the fitted smooth lines should be linear to satisfy the Cox

proportional hazards model assumptions.

3.7 The Cox PH model for Clinical Characteristic Data

We now analyzes the clinical (non-CNA) part of our data set using the Cox PH model.

The standard Cox PH model is only applicable to the situation where the number of

covariates is less than the sample size. The predictors in the model in the clinical

characteristic are presented in Table 2.1. The clinical variables we consider are age,
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gender, tumor grade, tumor stage, and nodes status, female, G1, T1 and N0 are a part

of the baseline hazard. The response variable is the survival time (in days). Table 3.1

shows the 32 possible model combinations for 5 variables with AIC value for each

model.

Model Variables in the model −2 log ˆ̀
pl q AIC

1) intercept 478.567
2) Age 473.504 1 475.504
3) Gender 477.982 1 479.982
4) Stage N 475.810 2 479.810
5) Stage T 479.509 2 478.509
6) Grade 477.087 2 481.087
7) Age+Gender 473.249 2 477.249
8) Age+Stage T 466.405 3 478.405
9) Age+Stage N 467.225 3 473.225

10) Age+Grade 471.734 3 477.734
11) Gender+Stage T 472.312 3 478.312
12) Gender+Stage N 475.530 3 481.530
13) Gender+Grade 476.384 3 482.384
14) Stage T+ Stage N 471.842 4 479.842
15) Stage T+Grade 473.098 4 481.098
16) Stage N+Grade 474.321 4 482.321
17) Age+Gender+Stage T 464.680 4 472.680
18) Age+Gender+Stage N 467.225 4 475.225
19) Age+Gender+Grade 471.399 4 479.399
20) Age+Stage T+Stage N 459.463 5 469.463
21) Age+Stage T+Grade 464.639 5 474.639
22) Age+Stage N+Grade 464.958 5 474.958
23) Gender+Stage T+Stage N 470.289 5 480.289
24) Gender+Stage T+Grade 470.982 5 480.982
25) Stage T+Stage N+Grade 470.360 6 482.360
26) Gender+Stage N+Grade 473.942 5 483.942
27) Gender+Stage T+Stage N+Grade 468.871 6 482.871
28) Age+Gender+Stage T+Stage N 458.940 6 470.940
29) Age+Gender+Stage N+Grade 457.859 7 471.859
31) Age+Gender+StageN+Grade 464.932 6 476.932
32) Age+Gender+StageT+StageN+Grade 457.287 8 473.287

Table 3.1: The values of −2 log likelihood, the number of parameters q, and the AIC
for each possible standard Cox PH model.
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The best model is the model that has the smallest AIC value, which is the model

that contains Age, Stage-T and Stage-N, this is also confirmed by the stepwise selec-

tion procedure. Table 3.2 shows the estimated parameters for the best Cox PH model

that includes Age, Stage-T and Stage-N. However, the p-values of both Stage-N1 and

Stage-T2 are not significant. One way to solve this is to combine the levels of Stage-

T1 with Stage-T2, and level Stage-N1 with Stage-N2. This will give a model with

significant p-values as shown in Table 3.2.

Parameter Estimate exp(Estimate) Standard error p-value
Age 0.05 1.05 0.03 0.02
Stage-N1 0.34 1.41 0.28 0.22
Stage-N2 1.33 3.80 0.48 0.01
Stage-T2 0.15 1.16 0.30 0.62
Stage-T3 1.80 6.05 0.57 0.00
(combining level of stages)
Age 0.05 1.05 0.01 0.00
Stage-N2 1.17 3.23 0.45 0.01
Stage-T3 1.83 6.21 0.53 0.00

Table 3.2: The estimated coefficients, exponential estimated coefficients, and standard
errors of estimated coefficients and the p-value for the fitting a proportional hazard
model that includes Age, Stage-T and Stage-N.

The model for the ith patients in the first part in the Table 3.2 can be expressed as

hi(t) = h0(t) exp{0.05 Agei +0.34 StageN1i +1.34 StageN2i +0.15 StageT2i

+ 1.80 StageT3i)} (3.20)

The interpretation of the model is that the positive estimate of Stage-N2 means that

the wider spread of cancer cells near the lymph nodes will increase the hazard level,

the hazard for patients having Stage-N1 and Stage-N2 are 1.41 and 3.80 times that for

those of who are in Stage-N0. Similarly, the positive estimate of Stage-T3 indicates

that large tumor size increases the hazard risk, so those patients who are in Stage-T2

and at Stage-T3 have a hazard about 1.16 and 6.05 times that of those who are in

Stage-T1. For all patients every year of age increases hazard by 5%.
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The test and graphical diagnostics for the PH model based on the Schoenfeld resid-

ual are applied to the best model, which gives the result shown in Table 3.3 and Figure

3.1.

Parameter ρ χ2 p-value
Age -0.0215 0.0356 0.85043

Stage-T2 -0.1126 0.7898 0.37415
Stage-T3 -0.3600 8.9400 0.00279
Stage-N1 0.0952 0.5835 0.44493
Stage-N2 -0.0387 0.0941 0.75899
GLOBAL 9.7663 0.08213

Table 3.3: The p-values from testing the Cox PH assumption for the model that con-
tains Age, Stage-T and Stage-N.

The Pearson product-moment correlation between the scaled Schoenfeld residual

and time for each covariates in the best model in ρ column, the test statistic in the

χ2 column, and p−value in the third column. The Global test for all the covariates is

0.082 which indicates no evidence for non proportionality. However, Stage-T3 shows

non proportionality as indicate by the p-value in Table 3.3. This is because Stage-

T3 represent the size of the tumour larger than 7 cm which is the most severe case.

The proportional hazards assumption states that the hazard of any variables must be

constant. That is, hazard of Stage-T3 should not fluctuate with time. Figure 3.1 (c)

shows the plot of scaled Schoenfeld residuals against time for Stage-T3, There are

five outliers hazard associated with Stage-T3 between 34 and 199 days. Table 3.4

represents the informations of five hazards outliers.

# survival survival Age Stage-T2 Stage-T3 Stage-N1 Stage-N2
# time status
1 34 1 66 0 1 0 0
4 54 1 45 0 1 1 0
6 81 1 80 0 1 1 0
12 179 1 55. 0 1 1 0
16 199 1 65 0 1 0 0

Table 3.4: The information of five hazards outliers.
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Figure 3.1: Plots of scaled Schoenfeld residuals against time for each covariate in the
best model. The solid line is a smoothing-spline fit to the plot, the dashed line is the ±
2 standard error band around the fit.
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Schemper (1992) discussed the consequences of violated PH assumptions for Cox’s

proportional hazards model. One possible consequences of violated PH assumptions is

that the relative risk for covariates with hazard ratios increasing over time is overesti-

mated and for covariates whose hazard ratios are non-constant over time, the power of

corresponding tests decreases because of suboptimal weights for combining the infor-

mation provided by the risk sets of times where failures occur. To solve this problem

we built up a model that contained an interaction Age with Stage-T, and Stage-N,

the result of test and graphical diagnostics for the PH model based on the Schoenfeld

residual are shown in Table 3.5 and Figure 3.2.

Parameter ρ χ2 p-value
StageN1 0.0863 0.4708 0.493
StageN2 -0.0258 0.0423 0.837

Age:StageT1 0.0952 0.6719 0.412
Age:StageT2 0.0587 0.2458 0.620
Age:StageT3 -0.0456 0.1574 0.692

GLOBAL 6.1530 0.292

Table 3.5: The p-values from testing the Cox PH assumption for the model that con-
tains Age:Stage-T and Stage-N.

The Global test for all the covariates is 0.292 which indicates no evidence for non

proportionality. This result can be added to the previous investigation which allows us

to believe that the Stage-T3 can be satisfied with the PH assumption.

Martingale and Cox-Snell residuals for a best model fitted are computed. Figure 3.3

shows the plot of the Martingale residuals against continuous covariates with a non-

parametric LOESS-smoother, which is a common approach used to assess the func-

tional form of a covariate. The resulting Cox-Snell residualsl plot is appear in Figure

3.5.
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Figure 3.2: Plots of scaled Schoenfeld residuals against time for each covariate in the
best model. The solid line is a smoothing-spline fit to the plot, the dashed line is the ±
2 standard error band around the fit.
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Figure 3.3: Plots of the martingale residuals versus Age with smooth curve the black
solid line.
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residual for the best model, the red solid line is the identity line.
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Figure 3.5: Plots of the estimated cumulative hazard function versus survival time (in
days).

3.8 Conclusion

In this chapter, we introduced the standard Cox PH model when the number of covari-

ates is less than the sample size. The model parameters are estimated by maximizing

the partial log likelihood function, the estimated parameters have an asymptotic normal

distribution with mean equal to the estimated parameters and covariance matrix given

by the inverse observed Fisher information matrix at the estimated parameters. The

estimate baseline hazard function can be obtained using the Breslow estimator, and

survival function can be obtained plugging in the Breslow estimator and the estimated

parameters. The Schoenfeld residuals are used to testing the PH assumption.

The clinical data of NSCLC were included in the Cox PH model, we fit 32 possible

models, each model containing one or more variables. The variable selection is per-

formed by AIC to choose the best model, the best model includes Age, and Stage-T

and Stage-N shown in Table 3.2. The results show that the positive estimate of Stage-

N2 and Stage-T leads to an increase the hazard level, a 5% increase in hazard level for
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every 1-year older in age. The PH assumption is satisfied for Age and Stage N2 but

violated for Stage T3.
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Generalized Additive Model

4.1 Introduction

The Generalized Additive Model (GAM), which was first proposed by Hastie and Tib-

shirani (1990b), is a Generalized Linear Model (GLM) McCullagh and Nelder (1989)

where the linear predictor includes smooth functions of some or all of the covariates.

GAM assumes that the mean of the response variable depends on an additive predictor

through a link function, and the response probability distribution is a member of the

exponential family of distributions. Various methodologies in the literature for fitting

a GAM have been developed. The first method was the back-fitting algorithm pro-

posed by Hastie and Tibshirani (1990b), which is based on an iterative procedure of

smoothing partial residuals in order to estimate each smooth model component. The

generalized smoothing spline approach Wahba (1990); Green and Silverman (1994) is

another method of fitting GAM via a penalized regression smoothing spline approach,

which is considered in this chapter. The theory of penalized regression smoothing is

explained in Wood (2006). The penalized regression spline approach consists of three

main steps:

1. Representation the smooth term with a penalized regression spline.

2. Estimating the model coefficients by using penalized log likelihood maximiza-

41
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tion.

3. Estimating the smoothing parameters by minimization of the Generalized Cross

Validation (GCV) score.

Complexities arise from the number of predictors, p, being larger than the sample

size n; Marra and Wood (2011) presented the variable selection methods of GAM.

Most of the definitions and methods here are drawn from Wood (2006). The layout

of this chapter is as follows: an overview of the generalized additive model is briefly

presented in Section 4.2. The representation of the smoothing term in GAM using

penalized regression splines is presented in Section 4.3. The purpose of this section

is to present how the basis functions and the roughness penalty are constructed, for

simplicity, the one smoothing term is presented, which can be extended to more than

one smoothing terms. Fitting the GAM model is discussed in Section 4.4. The method

of estimating the smoothing parameter is also presented in Section 4.5. Choosing the

optimal number of knots by minimizing GCV is introduced in Section 4.6. Testing

the hypothesis that each smoothing term in the model is equal to zero is introduced

in Section 4.7. Finally, a logistic regression with the GAM smoothing term for the

clinical characteristic of the NSCLC dataset is presented in Section 4.8.

4.2 Generalized Additive Model Overview

The response variable yi, i = 1, . . . , n, is an independent observation from a distribu-

tion belonging to an exponential family, and x1i, x2i, . . . , xqi are the covariates. Gen-

eralized additive model proposes that the mean of the response variable yi is linked to

an additive effect of the covariate variables via a known link function. The GAM can

be expressed as:

g(µi) = XL
i ζ +

p∑
j=1

fj(xj), (4.1)

where g(µi) is a known link function, which describes how the mean, µi = E(yi)

depends on the additive predictor ηi = g(µi).
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The parametric model matrix of size n × q for any parametric component such

as the intercept, or categorical covariates is denoted by XL, where the ith row of the

parametric matrix XL is XL
i , and the corresponding unknown vector of parametric

parameters is ζ = [ζ1, . . . , ζq]
T , fj(xji) are unknown smooth functions of the j th co-

variates xji that may be a vector value. Various penalized regression smoothers can

be used to represent the smooth functions fj(xji), such as cubic regression spline, cu-

bic B-spline, truncated polynomial spline, or radial basis function, for representing a

single covariate.

The main challenge is how to estimate fj(xj). The general idea is to determine a

basis function bj , so that the j th smoothing function can be presented as

fj(xj) =

qj∑
k=1

bjk(xj)βjk,

where xj is a vector of the j th covariate, βjk are the coefficients of the j th smoothing

function that need to estimated, and qj is a number of knots or a number of basis func-

tion, so estimating fj is equivalent to estimating the coefficients βjk. The j th smoothing

term can be expressed in vector-matrix notation as

fj = Xjβj,

where fj is the vector of the j th smooth term with fji = fj(xji), Xj is the j th smooth

matrix of size n × qj , where the ith row of the the j th smooth matrix Xj is Xji =

{bj1(xji), . . . , bjqj(xji)}, and the vector of the coefficients for the j th smoothing term

is βj = [βj1, βj2, . . . , βjqj ]
T , Therefore, We can write each smooth function in the

model in terms of its introduced smooth matrix.

The model (4.1) is not identifiable. To solve this problem each smooth function is

subject to centering constraints so that the sum of fj is equal to zero, more details can

be found in (Wood, 2006) Section 4.2. Having centered the model matrices for the
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smoothing functions, model (4.1) can be expressed as

g(µi) = Xiβ, (4.2)

where βT = [ζT ,βT1 , . . . ,β
T
p ], and X = [XL,X1,X2, . . . ,Xp] is the model matrix,

andXi is the ith row of the model matrixX .

Model (4.2) can be represented as a GLM, and the parameters β can be estimated

by standard likelihood maximization, which can be obtained using the Iterative Re-

weighted Least Square (IRLS) method. However, if qj is large, then the model will

be overfitted, so introducing a penalty for each smoothing term can solve the prob-

lem of smoothing, so the model parameter can be estimated by penalized likelihood

maximization. The penalty can be presented in terms of the integrated square second

derivative of the smoothing function. The penalized likelihood can be written as

`pen(β) = `(β)− 1

2

p∑
j=1

λj

∫
[f ′′j (xj)]

2dxj, (4.3)

where `(β) is the log likelihood of the model, and λj > 0 are the smoothing pa-

rameters that control the smoothness, the fraction of 1/2 is included for the conve-

nience of the derivative representation. The integration is over the range of xj , and∫
[f ′′j (xj)]

2dxj is a measure of the total change in the function f ′′j (xj), over the range

of xj , so λj
∫

[f ′′(x)]2dxj encourages fj(xj) to be smooth. However, larger value of λj ,

will lead to a smoother fj(xj). The penalty
∑p

j=1 λj
∫

[f ′′j (xj)]
2dxj can be expressed

as a quadratic form in β. Note that the penalty form depends on the basis function that

we choose.

∫
[f ′′j (xj)]

2dxj =

∫ [∂2fj(xj)

∂x2
j

]
dxj =

∫ [∂2
∑qj

k=1 bjk(xj)βjk
∂x2

j

]
dxj

=

∫ [
βTj b

′′
j (xj)

]2

dxj =

∫
βTj b

′′
j (xj)b

′′
j (xj)

Tβjdxj

= βTj

[ ∫
b′′j (xj)b

′′
j (xj)

Tdxj

]
βj = βTj Sjβj,
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where b′′j (xj) is a vector involving the second derivatives of the basis function for the

j th smoothing term with respect to the j th covariate xj , which follows that

p∑
j=1

λj

∫
[f ′′j (xj)]

2dxj =

p∑
j=1

λjβ
T
j Sjβj.

The penalized likelihood can be expressed as

`pen(β) = `(β)− 1

2

p∑
j=1

λjβ
T
j Sjβj, (4.4)

whereSj is the penalty matrix with known elements. For given values of the smoothing

parameters λj , and defining the block diagonal matrix S =
∑

j λjSj , the penalized log

likelihood function can be written as;

`pen(β) = `(β)− 1

2
βTSβ. (4.5)

The model parameter vector β can be estimated by maximizing the penalized likeli-

hood, which can be done using the Penalized Iteratively Re-weighted Least Square

(PIRLS) method. However, before coming to the details of the model parameters

estimation, we would like to explain how the smoothing term, and the penalty are

constructed. Two basis functions are discussed here: the radial basis function and cu-

bic splines, which are used in this thesis. The radial basis function is mainly used in

Chapter2 5, 6 and 7, while the cubic spline is used in this chapter.

4.3 Spline Basis and Penalties

4.3.1 Radial Basis Functions

The primary references for this section are Ruppert et al. (2003), Lancaster and Šalkauskas

(1986), Wood and Augustin (2002), and Wood (2006). Radial basis function is defined
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in Ruppert et al. (2003) as

f(xi) = α1+α2xi+

nk∑
k=1

α1k|xi−x∗k|3, subject to
nk∑
k=1

α1k =

nk∑
k=1

α1kxk
∗ = 0, (4.6)

where x∗k for k = 1, . . . , nk are the knots in the range of xi, and nk is the number of

the knots. Ruppert (2002) suggests that the location and number of knots are fixed

in advance, we used the evenly spaced knots through the range of observed xi. The

constraints are imposed on the parameters of the third part of f(xi). These constraints

come from the natural cubic spline constraints, which means that the smooth function

is linear in the tails on the boundary knots by conditioning f ′′(x∗1) = f ′′(x∗nk) = 0,

more information is provided in the derivation of the penalty term in equation (4.12).

The radial basis function can be written as matrix-vector notation, such that f = Xβc

where X is a n × (nk + 2) smooth matrix, such that X = [1, X̆], and the ith row of

the matrix X̆ is X̆i = [xi, |xi − x∗1|3, |xi − x∗2|3, . . . , |xi − x∗nk |
3], which depends only

on the distance between the observation and the knots. The smooth matrix X can be

constructed as

X =


1 x1 |x1 − x∗1|3 |x1 − x∗2|3 . . . |x1 − x∗nk |

3

1 x2 |x2 − x∗1|3 |x2 − x∗2|3 . . . |x2 − x∗nk |
3

...
...

...
...

1 xn |xn − x∗1|3 |xn − x∗2|3 . . . |xn − x∗nk |
3

 , (4.7)

and let βc = [α1, α2, α11, . . . , α1nk ]
T be the nk + 2 vector of unknown constraint

parameters, which is subject to the constraints, Cβc = 0, where C is a 2 × (nk + 2)
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matrix. These constraints can be expressed as;

Cβc =

 0 0 1 1 · · · 1

0 0 x∗1 x∗2 · · · x∗nk




α1

α2

α11

...

α1nk


=

 0

0

 . (4.8)

The radial basis function involves nk + 2 parameters and two linear constraints. The

general linear constraints approach can be used to solve the constraints problem, which

can be found in Wood (2006) Section 1.8.1. The main idea is to re-write the model in

terms of nk unconstrained parameters. QR decomposition can only be applied to the

constraints matrix C if the number of rows is greater than the number of columns,

therefore we consider the CT instead of C. Let CT be

CT = Q

 R
0

 , (4.9)

whereQ is (nk+2)×(nk+2) square and orthogonal matrix such thatQTQ = QQT =

Ink+2 andR is a 2× 2 upper triangular matrix. Q can be partitioned asQ = [D : Z],

where Z is a semi-orthogonal matrix of size (nk + 2) × (nk), where ZTZ = I , such

that

CT =
[
D Z

]R
0

 .
The aim is to find the orthogonal matrixQ, such that

CQ =
[
RT 0

]
,

C
[
D : Z

]
=
[
RT 0

]
.
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This means that CZ = 0 and CD = RT . Let

βc = Zβz, (4.10)

where βz is an nk vector of unknown parameters, then Cβc = 0 for any βz since

Cβc =
[
RT 0

]DT

ZT

Zβz =
[
RT 0

]0

I

βz = 0.

The radial basis function can be expressed as

f = XZβz. (4.11)

Derivation of the Penalty Term

The radial basis function is defined in equation (4.6), which can be rewritten as;

f(xi) = α1 + α2xi +

nk∑
k=1

α1kgk(xi),

where gk(xi) = |xi − x∗k|3; this may be rewritten as

gk(xi) = sign(xi − x∗k)(xi − x∗k)3.

The first and second derivatives of f(xi) with respect to xi are

f ′(xi) = α2 + 3

nk∑
k=1

α1ksign(xi − x∗k)(xi − x∗k)2,

f ′′(xi) = 6

nk∑
k=1

α1ksign(xi − x∗k)(xi − x∗k).
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The natural spline constraints require f ′′(x∗1) = f ′′(x∗nk) = 0, therefore

−6

nk∑
k=1

α1k(x
∗
1 − x∗k) = 0 and 6

nk∑
k=1

α1k(x
∗
nk
− x∗k) = 0. (4.12)

Solving these two simultaneous equations gives
∑nk

k=1 α1k =
∑nk

k=1 α1kx
∗
k = 0. There-

fore, this is equation (4.6)

f(xi) = α1 + α2xi +

nk∑
k=1

α1k|xi − x∗k|3;

nk∑
k=1

α1k =

nk∑
k=1

α1kx
∗
k = 0

Since f is a natural cubic spline, f ′′(xi) = 0 for all xi < x∗1 and for all xi > x∗nk .

Therefore, for any value a > max(|x∗1|, |x∗nk |),

∫ ∞
−∞

[f ′′(x)]2dx =

∫ a

−a
[f ′′(x)]2dx.

For any twice differentiable function h(x) and for any s ∈ [−m,m], where s is a single

knot, we have

∫ a

−a
h′′(xi)(sign(xi − s) (xi − s)3)′′dx = 6

∫ a

−a
h′′(xi)(sign(xi − s)(xi − s))dxi

= 6

∫ s

−a
h′′(xi)sign(xi − s)(xi − s)dxi

+ 6

∫ a

s

h′′(xi)sign(xi − s)(xi − s)dxi

= −6

∫ s

−a
h′′(xi)(xi − s)dxi + 6

∫ a

s

h′′(xi)(xi − s)dxi

= −6

(
[h′(xi)(xi − s)]s−a −

∫ s

−a
h′(xi)dxi

)
+ 6

(
[h′(xi)(xi − s)]as −

∫ a

s

h′(xi)dxi

)
= 6[h(m)(m− s)− h(−m)(−m− s) + 2h(s)].
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In order to compute [f ′′(x)]2 we let

∫ m

−m
h′′(xi)f

′′(xi)dx =

∫ m

−m
h′′(xi)6

nk∑
k=1

α1ksign(xi − s)(xi − s)dxi,

= 6

nk∑
k=1

α1k

∫ m

−m
h′′(xi)(sign(xi − s)(xi − s))dx.

Using the above result, and setting s = x∗k gives

∫ m

−m
h′′(xi)f

′′(xi)dx = 6

nk∑
k=1

α1k

6[(m− s)h′(m)︸ ︷︷ ︸
=0

− (−m− s)h′(−m)︸ ︷︷ ︸
=0

+ 2h(s)︸ ︷︷ ︸
settings=x∗k

]


= 6

nk∑
k=1

α1k2h(x∗k)

= 12

nk∑
k=1

α1kh(x∗k).

Setting h(xi) = f(xi) gives;

∫ ∞
−∞

[f ′′(xi)]
2dx = 12

nk∑
k=1

α1kf(x∗k)

= 12

nk∑
k=1

α1k

[
α1 + α2x

∗
k +

nk∑
j=1

αjk|x∗k − x∗j |3
]

= 12

nk∑
k=1

α1k(α1 + α2x
∗
k)︸ ︷︷ ︸

=0

+12

nk∑
k=1

α1k

nk∑
j=1

α1j|x∗k − x∗j |3

= 12

nk∑
k=1

nk∑
j=1

α1kα1j|x∗k − x∗j |3

= βT1 Sβ1,

where β1 = [α11, . . . , α1nk ]
T is the corresponding parameters, and S is the nk × nk

matrix with (k, j) element being 12|x∗k−x∗j |3. Commonly the penalty can be expressed
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in a quadratic form of the full parameters vector as follows

K =

 02×2 02×nk

0nk×2 Snk×nk


(nk+2)×(nk+2)

, (4.13)

where K is a square penalty matrix of size (nk + 2) × (nk + 2), while the first two

rows and columns of K are zero. The penalty matrix can be expressed in a quadratic

form of the full parameters vector as

∫ [
f ′′(x)

]2
dx = βTz Z

TKZβz. (4.14)

4.3.2 Cubic Splines

Cubic splines are constructed by using sections of cubic polynomials joined at the

knots, so that they are continuous up to and including the second derivative. The

derivation for the cubic spline function can be found in Lancaster and Šalkauskas

(1986) and Poirier (1973). The aim in this section is to construct a cubic function

f(x), where the number of knots is less than the number of data points, or the location

of the knots does not correspond with y. However, the case of the number of knots

being equal to the data points is discussed in Green and Silverman (1994). Let a set

of knots {x∗j}, j = 1, . . . , nk be given which satisfy x∗1 ≤ x∗2 ≤ · · · ≤ x∗nk , where

x∗1 and x∗nk are the minimum and maximum value of the data point respectively. On

each interval [x∗j , x
∗
j+1] for j = 1, . . . , nk − 1, the cubic piecewise function fj(x) is

defined. The result of connecting all these piecewise functions is a curve y = f(x),

whose first and second derivatives are both continuous on the interval [x∗1, x
∗
nk

]. Most

of the definitions and methods here are drawn from Lancaster and Šalkauskas (1986).

The spline f(x) is created by considering a piecewise cubic function fj(x) for each
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interval [x∗j , x
∗
j+1], which can be defined as

f(x) =


f1(x) = a1 + b1x+ c1x

2 + d1x
3, x∗1 ≤ x ≤ x∗2,

...
...

fnk−1(x) = ank−1 + bnk−1x+ cnk−1x
2 + dnk−1x

3, x∗nk−1 ≤ x ≤ x∗nk .

There are nk − 1 segments of the piecewise cubic function, where each segment has 4

unknown coefficients. Requiring continuity and smoothness at the knots will force the

the cubic spline to interpolate at the knots. The strategy is to first construct the linear

spline to interpolate f ′′j (xi) and then integrate that twice to obtain fj(xi). Since f(xi)

is a set of cubic polynomials with a continuous second derivative, f ′′j (xi) is the linear

interpolating spline over (x∗j , z
∗
j ). Let f ′′j (x∗j) = z∗j , where z∗j is the value of the second

derivative of the spline at the knot. The natural splines condition on the boundary knot

is used, so this implies f ′′1 (x∗1) = z∗1 = 0, f ′′nk−1(x∗nk) = z∗nk = 0, although the other

z∗j are unknown and need to be estimated; let

f ′′j (xi) = f ′′j (x∗j) +mj(xi − x∗j), (4.15)

where the slope is mj =
z∗j+1−z∗j
x∗j+1−x∗j

=
z∗j+1−z∗j

hj
and hj = x∗j+1 − x∗j , then

f ′′j (xi) =
(x∗j+1 − xi)z∗j

hj
+
z∗j+1(xi − x∗j)

hj
. (4.16)

Integrate equation (4.16) twice to obtain fj(xi):

f ′j(xi) = −z∗j
(x∗j+1 − xi)2

2hj
+ z∗j+1

(x∗j+1 − xi)2

2hj
+ Ej, (4.17)

fj(xi) = z∗j
(x∗j+1 − xi)3

6hj
+ z∗j+1

(xi − x∗j)3

6hj
+ Ejxi +Gj. (4.18)

The values of Ej and Gj can be obtained by using the interpolation condition. The

values of the spline at the knots are fj(x∗j) = y∗j and fj(x∗j+1) = y∗j+1. This leads to
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writingEj andGj in terms of the spline at the knots. The cubic spline for each segment

is defined as

fj(xi) = z∗j
(x∗j+1 − xi)3

6hj
+ z∗j+1

(xi − x∗j)3

6hj
+

(
y∗j+1

hj
−
y∗j
hj
− hj

6
(z∗j+1 − z∗j )

)
xi

+
x∗j+1y

∗
j

hj
−
x∗jy

∗
j+1

hj
− hj

6
x∗j+1z

∗
j +

hj
6
x∗jz

∗
j+1;

simplifying, we obtain

fj(xi) = y∗j
(x∗j+1 − xi)

hj
+ y∗j+1

(xi − x∗j)
hj

+

(
(x∗j+1 − xi)3

6hj
−
hj(x

∗
j+1 − xi)

6

)
z∗j

+

(
(xi − x∗j)3

6hj
−
hj(xi − x∗j)

6

)
z∗j+1. xi ∈ [x∗j , x

∗
j+1].

(4.19)

Summing over j leads to the cubic spline basis parameterized in terms of its value,

and values of it is first and second derivative at the knots. In order to make the spline

smooth at the knots, constraints must be applied. The interpolation condition fj(x∗j) =

y∗j and fj(x∗j+1) = y∗j+1 guarantee that f(xi) is continuous, and f ′j(x
∗
j+1) = f ′j+1(x∗j+1),

f ′′j (x∗j+1) = f ′′j+1(x∗j+1) guarantee the smoothness . Imposing the condition f ′j(x
∗
j+1) =

f ′j+1(x∗j+1) yields

y∗j
hj
−
(

1

hj
+

1

hj+1

)
y∗j+1 +

y∗j+2

hj+1

=
z∗jhj

6
+

(
hj
3

+
hj+1

3

)
z∗j+1 +

z∗j+2hj+1

6
.

The smoothing condition can be expressed in a vector-matrix notation as

Dy∗ = Bz∗, (4.20)

where z∗ = (z2, · · · , znk−1)T is the vector of the second derivative at the knots (note

z∗1 = z∗nk = 0), and y∗ = (y∗1, · · · , y∗nk)
T is the vector of the value of the spline at

the knots. The two tri-diagonal matrices D and B are defined in terms of the spacing

between successive knots by known hj = x∗j+1−x∗j , for j = 1, · · · , nk−1. The matrix
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D is defined as a (nk − 2)× (nk) matrix;

D =



1
h1
−
(

1
h1

+ 1
h2

)
1
h2

· · · 0 0

0 1
h2

−
(

1
h2

+ 1
h3

)
1
h3

· · · 0

... . . . . . . . . . . . . ...

0 0 · · · 1
hnk−1

−
(

1
hnk−2

+ 1
hnk−1

)
1

hnk−1


(nk−2)×(nk)

.

The (nk − 2)× (nk − 2) symmetric matrixB is defined to be ;

B =


1
3
(h1 + h2) 1

6h1
0 · · · 0 0

1
6h2

1
3
(h2 + h3) 1

6h3
· · · 0 0

... . . . . . . . . . . . . ...

0 0 · · · · · · 1
6hnk−2

1
3
(hnk−2 + hnk−1)


(nk−2)×(nk−2)

.

Equation (4.20) can be written as Fy∗ = z∗, where

F =


0

B−1D

0


Therefore, equation (4.19) can be rewritten in terms of the unknown parameter y∗.

Using the notation in (Wood, 2006), section 4.1.2, the cubic spline can written as

fj(xi) = a−j (xi)y
∗
j + a+

j (xi)y
∗
j+1 + c−j (xi)Fjy

∗ + c+
j (xi)Fj+1y

∗ if x∗j ≤ xi ≤ x∗j+1,

(4.21)
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where,

a−j (xi) =
(x∗j+1 − xi)

hj
,

a+
j (xi) =

(xi − x∗j)
hj

,

c−j (xi) =

(
(x∗j+1 − xi)3

6hj
−
hj(x

∗
j+1 − xi)

6

)
,

c+
j (xi) =

(
(xi − x∗j)3

6hj
−
hj(xi − x∗j)

6

)
.

This can be written in a matrix form which maps y∗ to the evaluated spline. The model

matrix Ẍ is defined as the sum of two matrices, where Ẍ = A+R, such that

A =



a−1 (x1) a+
1 (x1) 0 0 0

...
... . . . ...

...

a−1 (xn1) a+
1 (xn1) 0 0 0

0 a−2 (xn1+1) a+
2 (xn1+1) 0 0

...
... . . . ...

...

0 a−2 (xn2) a+
2 (xn2) 0 0

...
... . . . ...

...

0 0 0 a+
nk−1(xn1+n2+···+1) a+

nk−1(xn1+n2+···+1)
...

... . . . ...
...

0 0 0 a+
nk−1(xn) a+

nk−1(xn)


n×(nk)

,

where n1 is the number of observations in the first segment, n2 is the number of obser-

vations in the second segment and xn is the number of observations in the nk segment.
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Then

R =


c−1 (x1)F1 + c+

1 (x1)F2 · · · c−1 (xn1)F1 + c+
1 (xn1)F2

c−2 (xn1+1)F2 + c+
2 (xn1+1)F3 · · · c−2 (xn2)F2 + c+

2 (xn2)F3

... . . . ...

c−nk−1(xn1+···+1)Fnk−1 + c+
nk−1(xn1+···+1)Fnk · · · c−nk−1(xn)Fnk−1 + c+

nk−1(xn)Fnk


n×(nk)

.

Derivation of the Penalty Term

The second derivative of the spline is defined in equation 4.16 as

f ′′j (xi) =
(x∗j+1 − xi)

hj
z∗j +

(xi − x∗j)
hj

z∗j+1,

=
nk−2∑
j=2

z∗j dj(x),

where

dj(xi) =



xi−x∗j
hj−1

x∗j−1 ≤ xi ≤ x∗j

x∗j−1−xi
hj

x∗j ≤ xi ≤ x∗j+1

0 x∗i ≥ x∗j+1

.

we get

∫
[f ′′(x)]2dx = z∗

T

∫
d(x)d(x)Tdxz∗.
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∫
d(x)d(x)T is tri-diagonal and the diagonal elements are

∫ x∗j+1

x∗j−1

(dj(xi))
2dxi =

∫ x∗j

x∗j−1

(dj(xi))
2dxi +

∫ x∗j+1

x∗j

(dj(xi))
2dxi

=

∫ x∗j

x∗j−1

(xi − x∗j−1)2

h2
j−1

dxi +

∫ x∗j+1

x∗j

(x∗j+1 − xi)2

h2
j

dxi

=
[(xi − x∗j−1)3

3h2
j−1

]x∗j
x∗j−1

−
[(xj+1 − x∗i )3

3h2
j

]x∗j+1

x∗j

=
hj−1

3
+
hj
3
.

The off-diagonal elements are

∫ x∗j

x∗j−1

dj(xi)dj−1(xi)dxi =

∫ x∗j

x∗j−1

(xi − x∗j−1)

hj−1

.
(x∗j − xi)
hj−1

dxi

=
1

h2
j−1

∫ x∗j

x∗j−1

(xi − x∗j−1)(x∗j − xi)dxi

=
1

h2
j−1

[
(xi − x∗j−1)

(x∗j − xi)2

2

]x∗j
x∗j−1︸ ︷︷ ︸

=0

−
∫ x∗j

x∗j−1

−(xj − x∗i )2

2
dxi

]

=
1

h2
j−1

[(x∗j − xi)3

6

]x∗j
x∗j−1

,

=
hj−1

6
.

The penalty matrix is

∫ [
f ′′(xi)

]2
dxi = z∗TBz∗

= y∗TDT B−1B︸ ︷︷ ︸
I

B−1Dy∗

= y∗T DTB−1D︸ ︷︷ ︸
(nk)×(nk)

y∗
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4.4 Penalized Iteratively Re-weighted Least Square Es-

timation (PIRLS)

The probability density function of yi given θi is defined as

f ∗(yi|θi) = exp

{
yiθi − bi(θi)

ai(φ)
+ ci(yi, φ)

}
,

= exp

{
wi (yiθi − bi(θi))

φ
+ ci(yi, φ)

}
,

where θi is the parameter of interest, which is also called the canonical parameter. The

functions bi(θi), ci(yi, φ) and ai(φ) are arbitrary functions, and ai(φ) = φ/wi where

wi is a known constant, which is often equal to 1, and φ is dispersion parameter. The

parameter θi is determined by µi, which has the properties

µi = E(yi) = b′i(θi), (4.22)

Var(yi) = a(φ)b′′i (θi) = φV (µi), (4.23)

where b′i(θi) and b′′i (θi) are the first and second derivatives of bi(θi). The canonical link

function is defined since we let ηi = θi = Xiβ, so

g(µi) = g(b′(θi)) = ηi

b′(θi) = g−1(ηi),

µi = g−1(ηi),

µi = g−1(Xiβ).

The likelihood of β is

L(β) =
n∏
i=1

f ∗(yi|θi),
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the log-likelihood of β is

l(β) =
n∑
i=1

log[f ∗(yi|θi)].

The penalized log likelihood function is defined in equation 4.5 as

`pen(β) = `(β)− 1

2
βTSβ, (4.24)

Given the values of the smoothing parameters λj , the parameters β can be estimated

by maximizing the penalized log likelihood. To maximize `pen(β) we partially differ-

entiate `pen(β) with respect to βj and set the result to zero, such that:

∂`pen(β)

∂βj
=
∂`(β)

∂βj
− [Sβ]j = 0 for all j = 1, . . . , p,

where [.]j denotes the jth element of a vector. The derivative of `(β) with respect to

βj is

∂`(β)

∂βj
=

1

φ

n∑
i=1

(
yi
∂θi
∂βj
− b′i(θi)

∂θi
∂βj

)
, for all j = 1, . . . , p.

Using the chain rule, we obtain

∂θi
∂βj

=
∂θi
∂µi

.
∂µi
∂βj

.

Since µ = b′(θ) for any distribution belonging to the exponential family, we have

∂µi
∂θi

= b′′(θi) =⇒ ∂θi
∂µj

=
1

b′′(θi)
.

Therefore,

∂l(β)

∂βj
=

1

φ

n∑
i=1

(
yi − b′(θ)
b′′(θi)

∂µi
∂βj

)
. (4.25)
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We substitute 4.22, and 4.23 into (4.25) to obtain

∂l(β)

∂βj
=

n∑
i=1

(
yi − µi
V (µi)

∂µi
∂βj

)
.

The estimate is required to satisfy

∂lpen(β)

∂βj
= 0 (4.26)

n∑
i=1

(
yi − µi
V (µi)

∂µi
∂βj

)
− [Sβ]j = 0,

Define S to be

S =
n∑
i=1

(
yi − µi
V (µi)

∂µi
∂βj

)
+ βTSβ.

If the variance V (µi) is fixed, then the solution of (4.26) is equivalent to minimizing S

with respect to µ = (µi, . . . , µn)T which can be solved by PIRLS algorithm. Given a

starting value µ0, and then compute V = diag(V (µ
[0]
1 ), . . . , V (µ

[0]
n )) to minimize the

S :

S =
n∑
i=1

(
yi − µi
V (µi)

∂µi
∂βj

)
+ βTSβ = ‖

√
V −1[y − µ(β)]‖2 + βTSβ.

µ is replaced by its first order Taylor expanison, we can write

µ(β[k]) ≈µ(β)[k] +
∂µi
∂βj

(β − β[k])

≈µ[k] + Jij(β − β[k]),

where J is the Jacobian matrix with elements Jij = ∂µi
∂βj
|β̂[k] , such that;

‖
√
V [k]−1

[y − µ[k] − J [β − β̂[k]]‖2 + βTSβ,
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since we have,

g(µi) = Xiβ =⇒ g′(µi)
∂µi
∂βj

= Xij =⇒ Jij =
∂µi
∂βj
|β̂[k] =

Xij

g′(µ
[k]
i )

.

Defining the diagonal matrixG[k] = diag(g′(µ
[k]
1 ), . . . , g′(µ

[k]
n )) leads to J = (G[k])−1X .

So we can finally write

S ≈ ‖
√
V [k]−1

(G[k])−1
[
G[k](y − µ[k]) +Xβ̂[k] −Xβ

]
‖2 + βTSβ,

where η[k] = Xβ̂[k]. The pseudo-data is z[k] = G[k](y − µ[k]) + η[k], and W [k]

is a diagonal matrix, such that W [k]
ii = 1

V (µ
[k]
i )g′(µ

[k]
i )2

. The penalized problem can be

written as:

‖
√
W [k](z[k] −Xβ)‖2 + βTSβ. (4.27)

The maximum penalized likelihood estimates β̂ can be estimated by the iteration pro-

cedure until convergence, as follows:

1. Given the current µ[k], calculate the diagonal weight matrix w[k]
i and the pseudo-

data z[k].

2. Minimize ‖
√
W [k](z[k]−Xβ)‖2 +βTSβ with respect to β to obtain β̂[k+1] and

evaluate η[k+1] = Xβ̂[k+1].

3. Compute the fitted values µ[k+1]
i = g−1(η

[k+1]
i ).

4. Increase k.

The expression ‖
√
W [k](z[k] −Xβ)‖2 + βTSβ can be minimized by differentiating

it with respect to β and then setting it to zero, such that

β̂[k+1] =
(
XTW [k]X + S

)−1
XTW [k]z[k].

The influence matrix is H = X(XTWX + S)−1XTW and the effective degree

of freedom is defined as the trace of the influence matrix, tr(H), which controls the
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smoothness of the curve. Using large values of smoothing parameters, the result of

the model fitting will have few degrees of freedom, because the penalization reduces

the models degree of freedom. The residual variance for the GAM model is estimated

in a similar manner to the residual variance in linear regression, σ̂2 = ‖y−Hy‖2
n−tr(H)

. The

estimation for the scale parameter can be obtained using the Pearson-like estimator, as

φ̂ =
∑
i V (µ̂i)

−1(yi−µ̂i)2
n−tr(H)

. The variance-covariance matrix for the estimators β̂ is given

by;

Ve = (XTWX + S)−1XTWX(XTWX + S)−1φ, (4.28)

and therefore, β̂ ∼
ap
N(E(β̂),Ve).

4.5 Selecting the Smoothing Parameter

Penalized likelihood maximization estimates the model parameters β for given values

of the smoothing parametersλ. Wood (2006) suggested two methods for estimating the

smoothing parameters λ, based on either the known or unknown scale parameter φ. For

known scale parameter φ, the smoothing parameters can be estimated by minimizing

Mallow’sCp (Mallows, 1973), or using the Un-Biased Risk Estimator (UBRE) (Craven

and Wahba, 1979), νu(λ) = ‖y −Hy‖2/n − σ2 + 2tr(H)σ2/n. In the case of an

unknown scale parameter, the estimation of the smoothing parameters λ is obtained by

generalized cross validation. The Leave One Out Cross Validation (LOOCV) criterion

was introduced by Wahba et al. (1979), which is based on a method of minimizing the

average mean square error in predicting a new observation y using the fitting model

by leaving one observation yi out and fitting the model for the remaining data. This

process continues for all data points in turn. The LOOCV score is given by;

LOOCV (λ) =
1

n

n∑
i=1

(yi − f̂ [−i])2, (4.29)
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where f̂ [−i] is the prediction of fi obtained by fitting a model to all data except the ith

value. It is ineffectual to calculate LOOCV score by leaving out one variable at a time,

and fitting the n models, but fortunately it can be shown that

LOOCV (λ) =
1

n

n∑
i=1

(yi − f̂i)2/(1−Hii)
2, (4.30)

where f̂ is the estimate from fitting to all the data, andH is the corresponding influence

matrix. In practice the weights, (1 − Hii), are often replaced by the mean weight,

tr(I −H)/n, which gives the generalized cross validation score

GCV (λ) =
n
∑n

i=1(yi − f̂i)2

[tr(I −H)]2
. (4.31)

4.6 Choosing the Number of Knots

In this section two algorithms for selection of the knots based on GCV are discussed.

The primary reference for this section can be found in Ruppert et al. (2003) Chapter 5.

4.6.1 Myopic algorithm

The idea of a myopic algorithm is based on a sequence of trial values of knots, taking

into account that the knots are equally spaced and the number of knots has to be less

than n − p − 1, where n is the sample size and p is the number of covariates. This

is performed by taking two values of knots from a sequence, fitting two GAMs with

optimal smoothing parameter value λ for each model separately, and then computing

the GCV for both models. This continues for the whole sequence and is stopped when

there is no improvement in GCV score.
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4.6.2 Full-search Algorithm

The idea of the full-search algorithm is more general than the myopic algorithm, which

considers all the values of the sequence of knots, computes GCV by fitting the GAM

with optimal smooth parameter value of λ separately for each values of the knots, and

selects the knots that minimize the GCV score. Therefore, the myopic algorithm takes

less computational time than the full-search algorithm.

4.7 P-value

In this section we are interested on testing a subset βj of β is identically zero, which

means there is no effect of the j th smoothing term. To test the hypotheses regarding

nonlinearity of the j th smoothing term, the null hypothesis is that fj = 0. Let Vβ̂j be

the covariance matrix of β̂j , extracted from Ve. Under the null hypothesis, βj = 0,

we have β̂j ∼
ap
N(0,Vβ̂j). However, Vβ̂j is not a full rank so it is not invertible. Let

u = rank(Vβ̂j) and V u−
β̂j

is the rank u pseudo-inverse of the covariance matrix, then

the Wald test statistics is performed using the result under the null hypothesis.

Tj = β̂j
T
V u−
β̂j
β̂j ∼

ap
χ2
u (4.32)

In the case of the covariance matrix Ve containing an unknown scale parameter, φ, the

p-value can be calculated from the following test

β̂j
T
V u−
β̂j
β̂j/u

φ̂/(n− edf)
∼Fu,edf , (4.33)

where edf is equal to the effective degrees of freedom for the model.
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4.8 Logistic Regression with GAM for Clinical Char-

acteristic of Lung Cancer Dataset

In medical research, the common statistical model for binary data is the logistic model.

This section represents the logistic regression model using the GAM, with one smoother

for continuous covariates and other covariates in their original form, since they are cat-

egorical. The link function is logit. In this model the response variable yi is 0 or 1,

with yi = 1 when the survival time is less than the median, based on the uncensored

observations. Alternatively, yi = 0 if the survival time is greater then the median,

which is also based on the uncensored observations. Censored observations were not

taken into account in this GAM setting. Table 4.1 shows the binary response variables,

the number of patients that are involved, the median survival times (in days) and the

number of censored/uncensored observations.

Number of Median yi Status
patients survival Censored Uncensored

85 645 yi = 1 if t < 645 0 32
yi = 0 if t > 645 22 31

Table 4.1: The number of patients, median survival times, censored and uncensored
observations for the response variables.

4.8.1 Modelling

We fit 32 generalized additive logistic models to the binary response variable, with

smooth terms for Age with 5 knots, and a categorical variable for the rest. The models

were fitted using the mgcv package function in R Wood (2006), where the smooth

term is the cubic regression spline, which is described in Section 4.3.2. The AIC values

are used for variable selection, where AIC is defined as −2`(β̂) + 2edf , where `(β̂) is

the log likelihood of the estimated parameter, β̂ are the maximum penalized likelihood

estimates and edf is the effective degrees of freedom for the model. The UBRE score
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is also used for the smoothing parameters selection for known scale parameters. The

AIC values and the degree of freedom for the 32 possible models are given in Table

4.2.

# parameters in the model edf AIC
1 intercept 1.00 89.32
2 f(Age) 2.54 91.17
3 Gender 2.00 91.28
4 Stage T 3.00 81.17
5 Stage N 3.00 89.88
6 Grade 3.00 90.50
7 f(Age)+Gender 3.40 93.14
8 f(Age)+Stage T 5.59 80.81
9 f(Age)+Stage N 4.51 91.72
10 f(Age)+Grade 4.00 92.38
11 Gender+Stage T 4.00 81.92
12 Gender+Stage N 4.00 91.87
13 Gender+Grade 4.00 92.50
14 Stage T+Stage N 5.00 81.47
15 Stage T+ Grade 5.00 79.69
16 Stage N+Grade 5.00 91.81
17 f(Age)+Gender+Stage T 6.37 82.10
18 f(Age)+Gender+Stage N 5.55 93.70
19 f(Age)+Gender+Grade 5.00 94.38
20 f(Age)+Stage T+Stage N 8.69 77.75
21 f(Age)+Stage T+Grade 6.84 80.74
22 f(Age)+Stage N+Grade 6.04 93.81
23 Gender+Stage T+Stage N 6.00 82.51
24 Gender+Stage T+Grade 6.00 81.12
25 Stage T+Stage N+Grade 7.00 81.34
26 Gender+ Stage N+ Grade 6.00 93.81
27 Gender+Stage T+Stage N+Grade 8.00 82.81
28 f(Age)+Gender+Stage T+ Stage N 9.71 78.73
29 f(Age)+Gender+Stage T+Stage N 7.78 82.27
30 f(Age)+Stage T+Stage N+Grade 10.53 80.54
31 f(Age)+Gender+Stage N+Grade 7.13 95.80
32 f(Age)+Gender++Stage T+Stage N+Grade 11.59 81.73

Table 4.2: 32 possible GAM models with the effective degree of freedom and AIC
values for each model.

The best model that has the smallest AIC value is the model that contains Age, as
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a smooth function, the optimal value of the smoothing parameter is λopt = 0.010 with

corresponding minimum UBRE score 0.2341, Stage-T and Stage-N. Table 4.3 shows

the estimated parameters for the best model that includes Age, as smoothing term,

Stage-T and Stage-N.

Parameter Estimate Standard error p-value
Intercept -2.404 0.8449 0.004
f(Age) 0.233
Stage-T2 1.703 0.764 0.025
Stage-T3 4.094 2388 0.999
Stage-N1 0.212 0.658 0.747
Stage-N2 3.989 2.349 0.089
Intercept -2.295 2.295 -0.317
Age 0.013 0.031 0.655
StageT2 1.291 0.675 0.055
StageT3 17.982 1069.241 0.986
StageN2 0.034 0.614 0.955
StageN3 2.016 1.208 0.095

Table 4.3: The estimated coefficients, and standard errors of estimated coefficients
and the p-value for the fitting a logistic generalized additive model that includes Age,
Stage-T and Stage-N.

However, the p-values of both Stage-N1, Stage-N3, Stage-T3, and f(Age) are not

significant. The p-values for including a non-linear smoothing terms f(Age) is equal

to 0.233, over a linear age effect is equal to 0.655, which means there no effect of Age.

Figure 4.1 shows the estimate of the smooth function of Age, where the vertical axis

is on the scale of the additive predictor of the model. The horizontal axis indicates the

Age, the solid line represents the predictor values, the two dashed lines represent the

95% confidence interval, and the small lines along the horizontal axis are the “rug”,

showing the values of the covariate of Age for each patient. The highest risk age is

between 55 and 65. Somewhat surprisingly, the risk seems to be same for all patients

older than age 68.
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Figure 4.1: The plot of the smooth function of Age in model 20, the solid line repre-
sents the predictor values, the two dashed lines represent the 95% confidence interval,
and the small lines along the horizontal axis are the “rug”, showing the values of the
covariate of Age for each patient.

4.9 Conclusion

GAM produced a flexible statistical method for nonlinear relationships between inde-

pendent and dependent variables in the exponential family form. In this chapter, we

presented how GAM is constructed using the penalized regression spline and how the

estimated parameters are obtained by PIRLS. The method of estimating the smooth-

ing parameters using either UBRE or GCV is included. Two algorithms for selecting

the optimal number of knots are discussed. The generalized additive logistic model is

commonly used in medical research, which can be used to identify and characterize
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the effect of clinical characteristics on a binary response variable. In the logistic GAM

example, the PIRLS was used to predict the unspecified smoothing function, the cubic

spline smoother, with 5 knots, was employed to the continuous independent variable.

The UBRE score was used to select the optimal smoothing parameter. The resulting

curves of Age shows that patients aged 55 to 65 years have higher risk, while patients

age 68 or older have slightly lower risk.
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Additive Cox PH Model

5.1 Introduction

The Cox proportional hazard model (PH) forces the log hazard ratio to be linear in

the predictors. To express non-linear effects in the Cox model, the hazard can be

expressed in terms of additive predictors. The purpose of this method is to examine

the flexibility of a survival model that does not have to be linear in the predictors. Using

smoothing terms in the Cox PH model allows nonlinear predictor effects to be detected

and modeled. In the literature, cubic B-splines is most commonly used to represent the

smoothing term in the additive Cox PH model. However, the spline parameters for the

cubic B-spline and cubic regression spline are unconstrained.

O’Sullivan (1988); Gray (1992, 1994); Tsujitani et al. (2012); Tsujitani and Tanaka

(2013); Nan et al. (2005); Cadarso-Surez et al. (2010); Meira-Machado et al. (2013);

Wang et al. (2017a) studied nonparametric estimation of relative risk using a cubic

B-spline representation of the smoothing term in the additive Cox PH model, with

the parameter estimates obtained by maximizing the penalized partial log likelihood

function using Newton-Raphson procedure. Sleeper and Harrington (1990) used the

cubic B-spline in the Cox PH model with a small number of knots, and suggested 5

knots or less to clarify the effect of the covariate in survival. The coefficients were

estimated in a manner similar to Cox regression coefficients using partial likelihood

70
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without penalty term.

Hastie and Tibshirani (1990a) and O’Sullivan (1988) presented a cubic B-spline

with knots at all data points in the Cox PH model, as a result using the full information

matrix could be time-consuming in the process of estimating the model parameters.

Because of this, Hastie and Tibshirani (1990a) used the banded approximation to the

information matrix instead of the full information matrix, which is implemented by

setting off-diagonal elements of the information matrix to zero. Inference on GAM

estimates is not well developed in the case of the Cox PH model because the standard

GAM does not take into account censored observations.

Sleeper and Harrington (1990) and Gray (1992) noticed that the estimated B-spline

functions gives poor estimates around the boundary knots. This chapter introduces

a new smoothing term to the additive Cox PH model, using a radial basis function

to build the survival model, aiming to capture nonlinear patterns of CNA genomic-

windows, and age in the NSCLC data, and model their relationship with the survival

time of patients. The radial basis function is used because it satisfies the natural cubic

spline conditions, which are the second derivative at the boundary knots is equal to

zero, this means the radial basis function has a better ending behavior at the bound-

ary knots compared to the cubic B-spline. This point is discussed more in Section

5.5.2. By identifying nonlinear predictors and estimating their effects, we can estimate

the current risk and thus determine which variable corresponds to lower or higher risk,

that could affect the survival time, and which variables could increase the risk of death.

The new smoothing term in the additive Cox PH model allows us to study both con-

strained and unconstrained smooth spline coefficients, which gives more flexibility in

the model. In this thesis the number of knots is smaller than the number of observa-

tions, and the full information matrix is used in the Newton-Raphson procedure.

This chapter is organized as follows: Section 5.2 describes the statistical method-

ology for fitting the penalized additive Cox PH model using the penalized partial like-

lihood approach. The estimation of the log hazard ratio is present in Section 5.3. To

investigate the stability of our method we perform a simulation study in Section 5.5.
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Generating survival times to simulate the additive Cox model is introduced in Section

5.5.1. The test statistics for the spline effect are given in Section 5.6.1. Section 5.7

discusses the method of choosing the optimal values of the smoothing parameters and

the optimal number of knots, using Cross-Validation Partial Log-likelihood (CVPL)

method. Model diagnostics are present in Section 5.8. Finally, Section 5.9 shows the

main result of modeling the clinical characteristic of the NSCLC.

5.2 Extending The Cox PH Model

The standard Cox model as defined in equation (3.1) has the form

hi(t|X) = h0(t) exp{ηi} = h0(t) exp{Xiβ},

where ηi = Xiβ is the linear predictor,X is a parametric model matrix of size n× p,

where the ith row of this matrix is denoted by Xi, which is p vector of the covariates

of the ith patient, and β is the p vector of unknown parameters.

Replacing the linear predictor by the additive predictor allows us to include the

genome-wide CNA profile and age as smoothing terms. Incorporating genome-wide

CNA profiles into the Cox PH model as smoothing terms will make the parameters

inestimable. The main challenges lies in the dimension of the smoothing matrix of

all the CNA profiles. For the j th CNA genomic-windows variable, the size of the j th

smooth matrix is n × qj , where qj is the number of the basis function that represent

the j th smoothing term. Combine all these matrices together lead to very large smooth

matrix for all CNA genomic-windows in the model, which can be computationally

demanding.

Variable selection is very important in this case, which tries to gain as much in-

formation as possible from CNA data, without incorporating the large number of CNA

genomic-windows variables in the model. As a result of this, we obtain simpler models

that identify the important predictors in the CNA genomic-windows. Variable selection
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is discussed in Chapters 6 and 7.

The extension of the Cox PH model formed by including the CNA genome-windows

profiles as smoothing terms can be expressed as

hi(t) = h0(t) exp{XL
i ζ +

p∑
j=1

fj(xj)}, (5.1)

where h0(t) is the baseline hazard function, which is the hazard function for a patient

with values of all covariates equal to zero. We define XL to be the parametric model

matrix of size n× q, that includes the continuous, categorical, or both continuous and

categorical variables. We denote the rows of the parametric model matrix XL as XL
i ,

which is the q vector of the fixed-effect covariates for the ith patient. Here XL is the

same as X in equation (3.1), and ζ is a q-vector of the parametric model parameters

(the fixed effect parameters).

The fj are the unknown smooth function of the covariate xji . To estimate the model,

we need to specify a basis function for each smoothing term. For simplicity, we assume

the same basis function for each smoothing term, with the number of knots being

equal for each smoothing term. In this chapter, the smoothing term is the radial basis

function with 5 equally spaced knots, which is described in Section 4.3.1. The radial

basis function is defined in equation (4.6), removing the intercept from the radial basis

function, because it is absorbed in the baseline hazard, the radial basis function can be

expressed as

fj(xji) = αj0xji +

nk∑
k=1

αjk|xji − x∗jk|3, j = 1, . . . , p, k = 1, . . . , nk, (5.2)

subject to

nk∑
k=1

αjk =

nk∑
k=1

αjkx
∗
jk = 0. (5.3)

where x∗jk for k = 1, . . . , nk are the knots in the range of xji for i = 1, . . . , n and nk is
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the number of the knots. Equation (5.2) can be written as matrix-vector notation, such

that fj = Xjβcj , where fj is then- vector of the j th smoothing term with fji = fj(xji),

Xj is the j th smoothing matrix of size n× (nk+1), the ith row of the j th smooth matrix

Xj is Xji = [xji, |xji − x∗j1|3, |xji − x∗j2|3, . . . , |xji − x∗jnk |
3], which depends only on

the distance between the observation and the knots. Note, this matrix is the same as

equation (4.7) except the first column which is removed, and βcj is (nk + 1) vector of

the j th constrained spline effect parameter, such that βcj = [αj0, αj1, . . . , αjnk ]
T . Each

spline effect parameter has two constraints, which can be expressed as Cjβcj = 0,

where Cj is 2× (nk + 1) matrix. These constraints can be expressed as;

Cjβcj =

 0 1 1 · · · 1

0 x∗j1 x∗j2 · · · x∗jnk




αj0

αj1
...

αjnk

 =

 0

0

 . (5.4)

whereCj is as the same as equation (4.8), where the first column is removed. Using the

general linear constraints approach as discussed in Section 4.3.1, the constrained spline

effect parameter can be expressed as βcj = Zjβzj , where Zj is a semi-orthogonal

matrix of size (nk+1)×(nk−1),ZT
j Zj = I , andβzj is a vector of nk−1 unconstrained

spline effect parameters for the j th smoothing term. Therefore, the jth smoothing term,

which can be expressed as fj = XjZjβzj , so we can write each smoothing term in

the model in terms of its introduced unconstrained spline effect parameters.

The additive Cox PH model can be written as

hi(t) = h0(t) exp{Xiβ}, (5.5)

where Xi is the ith row of the matrix X = [XL,X1Z1,X2Z2, . . . ,XpZp]. The

model matrix X includes the columns of the parametric model; XL, and columns

that represent the spline basis XjZj for j = 1, . . . , p. The full set of parameters in

the model is denoted by β, which contains ζ and all the unconstrained spline effect
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parameters vector βzj , so that βT = [ζT ,βTz1,β
T
z2, . . . ,β

T
zp].

The estimation of the parameters β can be obtained using partial likelihood method.

The partial likelihood is

Lpl(β) =
n∏
i=1

(
exp[Xiβ]∑

j∈R(ti)
exp[Xjβ]

)δi

, (5.6)

where δi is an indicator variable, with δi = 1 when the individual is dead and zero if

the individual is censored. The unpenalized partial log-likelihood function `pl(β) can

be written as

`pl(β) =
n∑
i=1

δiXiβ −
n∑
i=1

δi log

 ∑
j∈R(ti)

exp(Xjβ)

 . (5.7)

The first derivative of the partial log likelihood with respect to β gives the score vector

Upl(β) =
∂`pl(β)

∂β
=

n∑
i=1

δi

(
Xi −

∑
j∈R(ti)

Xj exp(Xjβ)∑
j∈R(ti)

exp(Xjβ)

)
,

The Fisher information matrix is calculated as the negative second derivative of the

partial log likelihood with respect to β:

Ipl(β) = −
[∂2`pl(β)

∂βl∂βm

]
=

n∑
i=1

δi

((∑
j∈R(ti)

Xjl exp(Xjβ)
)(∑

j∈R(ti)
Xjm exp(Xjβ)

)
(∑

j∈R(ti)
exp(Xjβ)

)2

−

(∑
j∈R(ti)

Xjl exp(Xjβ)
)(∑

j∈R(ti)
XjmXjl exp(Xjβ)

)
(∑

j∈R(ti)
exp(Xjβ)

)2

)

The penalized partial log-likelihood can be used to solve the smoothing problems,

which can be written as the difference between the partial log-likelihood `pl(β) and

the penalty,
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`pen(βλ) = `pl(β)− 1

2

∑
j

λj

∫
[f ′′j (xj)]

2dxj, (5.8)

where `pl(β) is the partial log likelihood, and λ1, λ2, . . . , λp are the smoothing param-

eters. The derivation of an integrated square second derivative penalty is described in

Section 4.3.1. The j th penalty term can be expressed as

∫
[f ′′j (xj)]

2dxj = βTzjZ
T
j KjZjβzj,

where Zj is a semi-orthogonal matrix of size (nk + 1) × (nk − 1), Kj is a square

matrix of the j th smoothing term of size (nk + 1)× (nk + 1), with (e, f) element being

12|x∗je − x∗jf |3, and the first row and column is equal to zero.

The model parameters can be obtained by maximizing the penalized partial log-

likelihood, such that

`pen(βλ) = `pl(β)− 1

2

p∑
j=1

λjβ
T
zjZ

T
j KjZjβzj

= `pl(β)− 1

2
βTKβ

=
n∑
i=1

δi[Xiβ]−
n∑
i=1

δi log

 ∑
j∈R(ti)

exp[Xjβ]

− 1

2
βTKβ, (5.9)

whereK is the block diagonal matrix defined asK = diag(0, λ1Z
T
1 K1Z1, . . . , λpZ

T
pKpZp).

The parameters for linear effects, the parametric components remain unpenalized in the

model, as only the parameters corresponding to smooth terms are penalized. The first

and second derivative of the penalized partial log-likelihood with respect to β are given

by

Upen(βλ) =
∂`pen(βλ)

∂βλ
=
∂`pl(β)

∂β
−Kβ = Upl(β)−Kβ,

Ipen(βλ) = −
[∂2`pen(βλ)

∂β2
λ

]
= −

[∂2`pl(β)

∂β2

]
+K = Ipl(β) +K.
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For given values of smoothing parameters λ1, λ2, . . . , λp, the penalized estimate for

βλ can be obtained by using Newton-Raphson algorithm, so an estimate of βλ at the

(s+ 1)th iteration procedure, β̂(s+1)
λ is calculated as

β̂λ
s+1

= β̂λ
s

+ I−1
pen(β̂λ

s
)Upen(β̂λ

s
), (5.10)

where Upen(β̂sλ) is the penalized score vector and I−1
pen(β̂sλ) is the inverse of the penal-

ized information matrix, both evaluated at β̂sλ. When the iterative procedure has con-

verged, the inverse of the penalized information matrix I−1
pen(β̂λ) can be used as an ap-

proximate variance-covariance matrix. Van Houwelingen and Verweij (1994) proposed

the penalized standard Cox PH model, they used square root of the diagonal elements

of I−1
pen(β̂λ) as pesudo standard errors. Gray (1992) showed that β̂λ is asymptotically

normal with mean 0 and variance-covariance matrix V = I−1
pen(β̂λ)Ipl(β̂)I−1

pen(β̂λ). We

wrote R code to carry out the Newton-Raphson algorithm in case of penalized addi-

tive Cox PH model using radial basis function as a smoothing term as an extension

to our previous code for the standard Cox PH model. We did not use mgcv package

because they represented the smoothing term using cubic regression spline, and thin

plate regression spline.

The inference of the spline effect parameters is not important, because each spline

term contains several spline parameters associated with the number of knots, and none

of these spline effect parameters are statistically significant from zero in most cases.

However, the estimation of spline effect parameters allows for visualizing the spline fit

by plotting, which is described in Section 5.3.

5.3 The Smoothing Log Hazard Ratio

An excellent explanation of the hazard ratio in the standard Cox PH model and its

interpretation can be found in Kay (2004) and Spruance et al. (2004). The standard

Cox PH model only predicts relative risks between pairs of subjects, for the continuous
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covariate this means we can predict relative risk with respect to a reference value. The

adjusted hazard ratio for a subject with continuous covariate value xj compared to a

subject with covariate value xj,ref can be expressed as

HRj(xj, xj,ref ) = exp{(xj − xj,ref )β},

where xj,ref is a particular value of the continuous covariate considered as the refer-

ence value, this reference value can be zero or the mean of the covariate. If the mean

of continuous covariates is taken as a reference value, this effectively centers the co-

variates on their mean. The result of this is that the baseline hazard is evaluated at the

mean of the continuous covariate, so basically it just redefines h0(t) in terms of the

mean covariates, rather than zero. Plotting the logarithm of the hazard ratio (HRj)

against xj yields a straight line.

In contrast, the explanation of construction of the log hazard ratio for continuous

covariate in the additive Cox model, and its interpretation, can be found in Strasak et al.

(2009), Cadarso-Surez et al. (2010) and Meira-Machado et al. (2013). The adjusted

hazard ratio curve for a continuous covariate value xj in the additive Cox PH model

(5.1) can be expressed as

HRj(xj, xj,ref ) = exp(fj(xj)− fj(xj,ref )).

If we take fj(xj,ref ) to be zero value, then we can replace fj(xj) by the corresponding

smoothing function estimate f̂j = XjZjβ̂zj , where XjZj is j th smoothing matrix

for j th the covariate. The variance of the log hazard ratio estimate can be expressed

in terms of the variance of the estimated parameter β̂zj and smoothing matrix of the

smoothing function estimate f̂j(xj) as

Var(f̂j) = Var(XjZjβ̂zj) = XjZjVar(β̂zj)(XjZj)
T

= XjZjI
−1
pen (β̂zj)(XjZj)

T .
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Van Houwelingen and Verweij (1994) proposed the penalized standard Cox model,

and they used the square root of the diagonal elements of I−1
pen as a pseudo-standard

errors. We could compute the variance of the log hazard ratio using Gray’s formula

for variance covariance matrix, which makes the pointwise confidence band very nar-

row in the mean of the covariate. Relying on asymptotic normality of the estimated

parameters β̂zj , a 95% pointwise confidence band around the log hazard ratio can be

calculated as

f̂ji ± 1.96

√
Var(f̂j)ii. (5.11)

5.4 Simulating Survival Time from Standard Paramet-

ric Distributions

We conducted simulation studies to investigate the performance of the additive Cox

PH model using radial basis functions to construct the smoothing terms. The inverse

methods to generate survival times for simulating the Cox proportional hazards model,

for a variety of standard parametric distributions for the baseline hazard, are presented

by Bender et al. (2005). Briefly, we describe the method for generating survival times

to simulate the standard Cox PH models. The hazard function of the Cox PH model is

defined in equation (3.1) as

h(t|X) = h0(t) exp(Xβ), (5.12)

where h0(t) is the baseline hazard function identified by some parametric distribution,

X is a vector of one covariate, and β is the corresponding unknown fixed effect param-

eter. By assuming that the baseline hazard follows a parametric distribution, such as

an Exponential or Weibull distribution, the survival time can be generated based on the

inverse of the cumulative baseline hazard. The cumulative hazard H(t|X), survival
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S(t|X), and cumulative distribution, F (t|X), are defined as

H(t|X) = H0(t) exp(Xβ), where H0(t) =

∫ t

0

h0(u)du,

S(t|x) = exp
{
−H(t|X)

}
,

F (t|x) = 1− exp
{
−H(t|X)

}
= 1− exp

{
−H0(t) exp(Xβ)

}
.

If we let Y to be the random variable with distribution function F , then U = F (Y )

follows a uniform distribution, and if U ∼ U [0, 1] then 1− U ∼ U [0, 1]. Let T be the

simulated survival time of the Cox PH model. Then Bender et al. (2005) showed that

F (T |X) = 1− exp
{
H0(t) exp(Xβ)

}
= U, where U ∼ U [0, 1]

or equivalently

U = exp
{
−H0(T ) exp(Xβ)

}
∼ U [0, 1]. (5.13)

If h0(T ) > 0, then equation (5.13) can be solved for the survival time T as long as

H0(t) can be inverted. In this case,

T = H−1
0

{
− log(U)

exp(Xβ)

}
. (5.14)

To simulate survival times of the Cox model in the case with a constant baseline hazard

λEXP , equation (5.14) becomes

T = − log(U)

λEXP × exp(Xβ)
. (5.15)

Also to simulate survival times of a Cox model with the baseline hazard of a Weibull

distribution with scale parameter λWei and shape parameter ν, equation (5.14) can be
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written as

T =
( − log(U)

λWei × exp(Xβ)

) 1
ν
. (5.16)

5.4.1 Generating Survival Times to Simulate Cox PH models

We created the following algorithm to simulate the survival time from the standard

Cox PH model:

1. Set the number of observations n.

2. Set {xi : i = 1, . . . , n}.

3. Set β̆.

4. Let nsim be the number of simulations.

5. Generate Tik = H−1
0

{
− log(U)

exp(xiβ̆)

}
, where U is a random variable uniformly

distributed on interval [0, 1], and Tik is the generated failure time for the ith indi-

vidual and for the kth simulation k = 1, . . . , nsim.

6. Generate censoring times Cik randomly drawn from an exponential distribution

with rate 1
2

min
i

(exp(xiβ̆)), where Cik is the censoring time for the ith individual

for the kth simulation for k = 1, . . . , nsim.

7. Evaluate observed value tik = min(Tik, Cik), where tik is the observed survival

time for the ith individual for the kth simulation.

8. Evaluate censoring indicator δik = I(Tik ≤ Cik), where δik is the censoring

indicator of the ith individual for the kth simulation. δik = 1 if the event was

observed (Tik ≤ Cik), and zero if (Tik > Cik)
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5.5 Simulation Study

5.5.1 Generating Survival Times to Simulate Additive Cox PH Mod-

els

In this section we develop a general method for simulating data from the additive Cox

model, we used a technique described in Bender et al. (2005) in more general form by

replacing the linear predictor in the hazard function of standard Cox PH model by the

known smoothing function, such as f(x), so the Cox PH hazard function becomes

h(t|xi) = h0(t) exp(f(xi)).

If f(xi) = xiβ, this is the standard Cox PH model. The general algorithm to simulate

survival times from the additive Cox PH model is an extension to Bender et al. (2005)

can be summarized as follows:

1. Set the number of observations n.

2. Set {xi : i = 1, . . . , n}.

3. Define the known smoothing function f(xi).

4. Let nsim be the number of simulations.

5. Generate Tik = H−1
0

{
− log(U)

exp(f(xi))

}
, and U ∼ U [0, 1], where Tik is the generation

failure time for the ith observation and for the kth simulation k = 1, . . . , nsim.

6. Generate censoring times Cik randomly drawn from an exponential distribution

with rate 1
2

min
i

(exp(f(xi))), where Cik is the censoring time for the ith individ-

uals for the kth simulation.

7. Evaluate observed value tik = min(Tik, Cik), where tik is the observed survival

time for the ith individuals for the kth simulation.
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8. Evaluate censoring indicator δik = I(Tik ≤ Cik), where δik is the censoring

indicator of the ith individual for the kth simulation. δik = 1 if the event was

observed (Tik ≤ Cik), and zero if (Tik > Cik)

Once we have data (tik, δik, xi)
n
i=1 for k = 1, . . . , nsim, we fit the unpenalized additive

Cox model to obtain the model parameters, and the estimate of the log hazard ratios

are calculated separately for each simulation. This algorithm will be used to simulate

the survival time to assess the performance of the proposed method.

5.5.2 Simulating Additive Cox Model for One Smooth Term

We ran 500 simulations with sample size n = 200, where the covariate was defined as

xi = i
n
× 2π, i = 1, . . . , n, and the true curve was the known smoothing function,

which is defined by f(xi) = sin(xi). We used the algorithm described in Section 5.5.1

to generate survival data to fit the unpenalized additive Cox model for one smooth

term using the radial basis function and the cubic B-spline. We generated survival

times from the additive Cox model with constant baseline hazard λEXP = 1, which

were calculated as Tik = − log(U)
exp(f(xi))

, where U ∼ U [0, 1]. The censoring times Cik are

randomly drawn from an exponential distribution with rate 1
2

min(exp(f(xi))). This

generated data is such that approximately 17.63% of the observations were censored.

In order to compare the additive Cox PH model using radial basis function with ad-

ditive Cox PH model using cubic B-spline, we fit the unpenalized additive Cox model

with five equally spaced knots to obtain the model parameters using the radial basis

function and cubic B-spline as the smoothing term separately, and then the estimation

of the log hazard ratio for each simulation were calculated separately. The estimated

log hazard ratios for each simulation were plotted versus the covariate xi, and the av-

erage of these 500 estimated log hazard ratio was also plotted versus xi.

Figure 5.1 (a) shows the plot of the estimated log hazard ratio f̂(x) using radial

basis function versus x. The gray lines are the estimated log hazard ratio f̂(x) for

the 500 simulations, the black line indicates the true curve f(x) = sin(x), and the
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red dashed line is the average of f̂(x) for the 500 simulations, while Figure 5.1 (b)

shows the plot of the estimated log hazard ratio f̂(x) using cubic B-spline versus x,

which shows poor estimate of the log hazard ratio at the boundary knots. As a result,

the average of the 500 estimated log hazard ratios was equal to the true curve, but

the radial basis function has a better ending behavior, which means the estimated log

hazard ratio is numerical stability at the knots. The mean square error was computed

for both and the estimated log hazard ratio using radial basis function has a small

mean square error compare to the estimated log hazard ratio using cubic B-spline as

illustrated in Figure 5.2
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Figure 5.1: The plot of the estimated log hazard ratio f̂(x) versus x. The gray lines are
the estimated log hazard ratio f̂(x) for the 500 simulations, the black line indicates the
true curve f(x) = sin(x), and the red dashed line is the average of f̂(x) for the 500
simulations.
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Figure 5.2: The plot of the mean square error versus x, the dotted vertical lines indi-
cates the locations of the knots.

5.5.3 Simulating Additive Cox Model for Two Smoothing Terms

This section presents the simulation example of fitting the additive Cox model that in-

cludes two smoothing terms. We ran 500 simulations with sample size n = 200, let

x1i = i
n
× 2π for i = 1, . . . , n and f1(x1i) = sin(x1i). Let x2i be the normal random

variable with mean 0 and variance equal to 1, and f2(x2i) = (x2
2i + x3

2i)/3. The algo-

rithm in Section 5.5.1 was used to generate survival data to fit the unpenalized additive

Cox PH model for two smoothing terms. The survival time of the additive Cox PH

model with constant baseline hazard λEXP = 1 is given by Tik = − log(U)
exp(f1(x1i)+f2(x2i))

,

where U ∼ U [0, 1]. The censoring times Cik are randomly drawn from an exponential

distribution with rate equal to min exp
(
f1(x1i) + f2(x2i)

)
. This generated data where

approximately 4.84% of the observations were censored. The unpenalized additive

Cox PH model with five equally spaced knots for each smoothing term was fitted. The

estimated log hazard ratio for the first and second smoothing terms, for each simula-

tion, were computed. The results indicate that the mean of the 500 simulations for the

two additive predictors is equal to the true curve. Our simulation results suggest the
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proposed model works well for more than one smoothing term.
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Figure 5.3: The left panel is the plot of the estimated log hazard ratio for the first
smooth function f̂1(x1) evaluated at the observed x1. The right panel is the plot of
the estimate log hazard ratio of the second smooth function of f̂2(x2), evaluated at the
observed x2. The black solid line is the true curve and the red dashed lines indicate the
average of 500 simulations.

5.5.4 Simulating Additive Cox Model with One Smoothing Term

and One Categorical Variable

The additive Cox PH model that includes one categorical variable and one smooth term

is

h(ti|x1i, x2i) = λ exp
(
f(x1i) + θI(x2i = 1)

)
.
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We ran 100 simulations with a sample size n = 200, let x1i = i
n
× 2π for i = 1, . . . , n,

and f(x1i) = sin(x1i), and let the categorical variable x2i be a random sample of size n

from a Bernoulli random variable which were equal to 1 with probability p = 0.5, and

0 with probability 1 − p. The algorithm in Section 5.5.1 is used to generate survival

times from the additive Cox model. The true categorical parameter θ̆ is equal to 1,

so the survival time of additive Cox model with constant baseline hazard is given by

Tik = − log(U)

exp(f(x1i)+θ̆I(x2i=1))
, where U ∼ U [0, 1]. The censoring times Cik were ran-

domly drawn from an exponential distribution with rate 1
2

min
(

exp
(
f(x1i)+θ̆I(x2i =

1)
))

. This generated data had approximately 9.60% of the observations were censored.

The unpenalized additive Cox model with five equally spaced knots for the smoothing

term was fitted. The estimated log hazard ratio for the first term, for each simulation,

were computed and plotted versus x1i. The results indicate that the mean of the 100

simulations for the additive predictors is equal to the true curve. Also, the histogram

of the estimated categorical parameter θ̂ shows the mean of the histogram is equal to

the true parameter θ̆, which suggests that the proposed model works well.
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Figure 5.5: A histogram of the estimated parameter for the categorical term.
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Figure 5.4: The plot of the estimated log hazard ratio of the smooth function of f̂1(x1)
evaluated at the observed x1i. The black solid line is the true curve f(x1i) = sin(x1i),
whereas the red dotted line indicate the mean of the 500 simulations.

5.6 Test for Covariates Effects

5.6.1 Test for the Spline Effect Parameters

In the additive Cox PH model there are fixed effect parameters and a spline effect pa-

rameter, we are interested in testing a hypothesis about subsets of β parameters, in

particular the spline effect parameters. The hypothesis is then H0 : βz = 0, where

β = [ζ,βTz ]T , where ζ is a vector of the fixed effect parameters and βz is the vector of

(nk − 1) unconstrained spline effect parameters. For fixed effect parameters, the null

hypothesis is that ζ = 0, which can be tested by using the Wald statistic as described

in Section 3.3.2. For the spline effect parameters, there are two hypotheses regarding

the smooth function f(x). Firstly, that the covariate has no effect, which can be ex-
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pressed as [α0, α
T ] = βc = βz = 0, which means f(x) = 0 and secondly, that the

covariate has a linear effect, so [αT ] = 0, which means f(x) = α0x. Gray (1992,

1994) recommended a penalized versions of the score, Wald, and likelihood ratio tests.

First consider the null hypothesis H0 : βz = 0, where the unconstrained parameter

vector βz is equal to the zero. Let β̂λ = [ζ̂, β̂Tz ]T be the values of the parameters that

maximize the penalized partial log-likelihood, and let ζ̂0 be the maximum unpenalized

partial log likelihood estimator for ζ when βz = 0. Denote the penalized partial score

vector by

Upen(ζ,βz) =

((∂`pen(ζ,βz)

∂ζ

)T
,
(∂`pen(ζ,βz)

∂βz

)T)T

=

(
UT
pen,ζ(ζ,βz), U

T
pen,βz(ζ,βz)

)T

.

Let Ipl be the Fisher information matrix from the unpenalized partial log-likelihood

with subscript denoting the sub-matrices,

Ipl =

 Iζζ Iζβz

Iβzζ Iβzβz

 ,
where Iζζ = −

(
∂2`pl(ζ,βz)

∂ζ∂ζT

)
, Iζβz = −

(
∂2`pl(ζ,βz)

∂ζ∂βTz

)
, Iβzζ = −

(
∂2`pl(ζ,βz)

∂ζT ∂βz

)
, and

Iβzβz = −
(
∂2`pl(ζ,βz)

∂βz∂βTz

)
. Let the sub-vector Upen,βz(ζ̂0,0) denote the first derivative of

the penalized log-likelihood evaluated at βz = 0, which is given by Upen,βz(ζ̂0,0) =

∂`pl(ζ̂0,0)

∂βz
. The negative of the βzβz portion of the second derivative of the penalized

log-likelihood with respect to βz is given by Iβzβz + λK. A penalized score statistic

can be expressed as

Tsc = UT
pen,βz(ζ̂0,0)(Iβzβz|ζ + λK)−1Upen,βz(ζ̂0,0), (5.17)

where Iβzβz|ζ = Iβzβz − IβzζI−1
ζζ Iζβz . The penalized likelihood ratio statistic can be
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defined by

Tr = 2[`pen(ζ̂, β̂z)− `pen(ζ̂0,0)]. (5.18)

This penalized likelihood ratio statistic is similar to the deviance statistic that are dis-

cussed by Hastie and Tibshirani (1990a,b). The Wald-type test of this null hypothesis,

H0 : βz = 0, is based on the maximum penalized partial log-likelihood estimation of

β. The Wald-type statistic can be expressed as

Tw = β̂Tz (Iβzβz|ζ + λK)β̂z. (5.19)

Using the fact that β̂c = Zβ̂z, we can compute the variance of β̂c as

Var(β̂c) = Var(Zβ̂z)

= ZVar(β̂z)Z
T

= Z(Iβzβz|ζ + λK)−1ZT .

The Wald-type statistic for β̂c can be expressed as

Tc = (Zβ̂z)
T
(
Z(Iβzβz|ζ + λK)−1ZT

)−1

(Zβ̂z), (5.20)

The simulation result in Section 5.6.2 shows that β̂c is asymptotically normal with

mean 0 and variance covariance matrix (ZI−1
pen(β̂z,λ)Z

T )−1. These tests are rejected

for large values of the statistic.

The test for the second hypothesis, which is for the effect being linear, H0 : f(x) =

α0x, (i.e. αT = 0), can be done in exactly the same way, but including α0 with ζ

instead of βz.

The effective degrees of freedom replace the number of parameters in the model,

since the penalty tends to reduce the number of parameters as λ gets larger. The effec-
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tive degrees of freedom of the test is given by

df = trace[Iβzβz|ζ(Iβzβz|ζ + λK)−1]. (5.21)

This formula for the degrees of freedom corresponds more closely to Definition 3 in

Buja et al. (1989), than to the formula in Hastie and Tibshirani (1990a). The effective

degrees of freedom in the penalized standard Cox model proposed by Van Houwelin-

gen and Verweij (1994) are identical to those in equation (5.21). The degrees of free-

dom for the Wald-type statistic regarding β̂c can be shown to be

df = trace[(ZIβzβz|ζZ
T )
(
Z(Iβzβz|ζ + λK)−1ZT )],

= trace[Iβzβz|ζ(Iβzβz|ζ + λK)−1]

This shows that the effective degrees of freedom for the Wald-type statistics re-

garding β̂c or β̂z are identical. The degrees of freedom are the trace of the matrix

[Iβzβz|ζ(Iβzβz|ζ + λK)−1], and can be computed for both the penalized and the unpe-

nalized problem.

The above definition of the effective degrees of freedom is motivated by the degrees

of freedom for generalized additive models (GAMs). The degrees of freedom in GAMs

can be defined as

df = trace(H) = trace
[
X(XTWX + λK)−1XTW

]
,

= trace
[
XTWX︸ ︷︷ ︸

Ipl

(XTWX + λK)−1︸ ︷︷ ︸
Ipen

]
,

where the hat matrixH , the design matrixX and the weight matrixW are defined in

Chapter 4, and λ andK are as before.

Under the null hypothesis H0 : βz = 0 the statistics Tsc, Tr and Tw all have the

same asymptotic distribution for a fixed number of knots, which is
∑
eiY

2
i , where the

{ei} are the eigenvalues of Iβzβz|ζ(Iβzβz|ζ + λK)−1 and Yi are IID standard normal
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random variables. For the un-penalized Cox model, the ei are all either 0 or 1, so the

test statistic have a chi-squared distribution with
∑
ei degrees of freedom. However,

in the penalized additive Cox model, 0 ≤ ei ≤ 1, and the test statistics have mean
∑
ei

and variance 2
∑
e2
i < 2

∑
ei, so using the chi square distribution as an approxima-

tion to the distribution of the test statistic with
∑
ei degrees of freedom will make it

conservative. The variance and the degrees of freedom for the additive Cox model are

computed as outlined in Van Houwelingen and Verweij (1994). However, the asymp-

totic variance estimator V can be used, but I−1
pen tends to be larger then V , and I−1

pen

is more conservative for the test statistic and for computing the confidence band. Th-

erneau et al. (2003) suggested using I−1
pen in the significance test as it is a more reliable

choice, and we used I−1
pen in our simulation examples and for the related problem of

penalized additive Cox PH model.

5.6.2 Simulation Under the Null Hypothesis of the Tests in the

Penalized Additive Cox PH Model

This section presents the simulation examples under the null hypothesis that there is no

covariate effect in the survival model. The aim of the simulation examples is to assess

the performance of the Wald-type statistic, penalized likelihood ratio statistic and the

penalized score statistic. The univariate additive Cox PH model is expressed as

h(t|xi) = h0(t) exp
(
f(xi)

)
, i = 1, . . . , n. (5.22)

The sample size is n = 200, and the covariate x is generated from a normal distribution

with mean 0 and variance 1, under the null hypothesis f(xi) = 0 so h(t|xi) = h0(t).

The algorithm in Section 5.5.1 was used to generate the survival time of the additive

Cox model with constant baseline hazard λEXP = 1, and the censoring times were

randomly drawn from an exponential distribution with rate 1
2

min
(

exp(f(xi)
)

, which

gave about 33% censored observations.

The null hypothesis is that H0 : f(xi) = 0, which means βc = βz = 0. For 5
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knots, the penalized additive Cox PH model was fitted for nsim = 300 simulations, and

then the penalized additive Cox PH model test for no effect of the covariate was carried

out as described in Section 5.6.1 without the fixed effect parameters, as no such terms

were included in the model.

Firstly, the results of applying the Wald-type statistic to test the hypothesis H0 :

βc = βz = 0, for the value of the smoothing parameters λ = 0.001 are shown in

Figures 5.6 and 5.7, while Figures 5.13 and 5.14 show the results of applying the

Wald-type statistic to test the hypothesis H0 : βc = βz = 0, for λ = 0.01.

The values of the Wald-type test statistics regarding the unconstrained spline param-

eter βz, and the constrained spline parameter βc are identical, as well as the degrees of

freedom and the p-values. This results can be seen in Figure 5.8 for λ = 0.001, and in

Figures 5.15 for λ = 0.01.

For both values of the smoothing parameters, the estimation of the unconstrained

spline effect parameter βz and the constrained spline effect parameter βc are asymptot-

ically normal with mean zero. This results are summarized in Figures 5.9, 5.10, 5.11,

and 5.12, for λ = 0.001, and Figures 5.16, 5.18 5.17, and 5.19 for λ = 0.01.
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Figure 5.6: (a) The model fit for λ = 0.001. The solid black line is the mean of
the estimated smoothing term for 300 simulations. (b) Chi-Square Q-Q plot of test
statistics for β̂z with 3.704 degrees of freedom. (c) Histogram of p-values. (d) Uniform
Q-Q plot of the p-values. (e) Histogram of the test statistic, the black solid line is
the theoretical density, and the red solid line is the kernel density estimate of the test
statistics. The rejection rate is 32 out of 300 simulations.
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Figure 5.7: (a) The model fit for λ = 0.001. The solid black line is the mean of
the estimated smoothing term for 300 simulations. (b) Chi-Square Q-Q plot of test
statistics regarding β̂c with 3.704 degrees of freedom. (c) Histogram of p-values. (d)
Uniform Q-Q plot of the p-values. (e) Histogram of the test statistic, the black solid
line is the theoretical density, and the red solid line is the kernel density estimate of the
test statistics. The rejection rate is 32 out of 300 simulations.
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Figure 5.8: (a) Plot of the values of the Wald-type statistics for β̂z versus the values
of the Wald-type statistic for β̂c, when λ = 0.001. (b) Plot of the degrees of freedom
for β̂z versus the degrees of freedom for β̂c for λ = 0.001, the range of the effective
degrees of freedom is between 3.6235 and 3.7730. (c) Plot of the p-values of the test
statistics for βz versus the p-values of the test statistic for β̂c
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Figure 5.9: Histogram of the unconstrained estimated spline parameter β̂zi for λ =
0.001.
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Figure 5.10: The Normal quantile-quantile plot of the unconstrained estimated spline
parameter β̂zi for λ = 0.001.
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Figure 5.11: Histogram of the constrained estimated parameter β̂ci for λ = 0.001.
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Figure 5.12: The Normal quantile-quantile plot of the constrained estimated parameter
β̂ci for λ = 0.001.
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Figure 5.13: (a) The model fit for λ = 0.01. The solid black line is the mean of
the estimated smoothing term for 300 simulations. (b) Chi-Square Q-Q plot of test
statistics regarding β̂z with 2.723 degrees of freedom. (c) Histogram of the p-values.
(d) Uniform Q-Q plot of the p-values. (e) Histogram of the test statistics, the black
solid line is the theoretical density, and the red solid line is the kernel density estimate
of the test statistic. The rejection rate is 112 out of 300 simulations.
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Figure 5.14: (a) The model fit for λ = 0.01. The solid black line is the mean of
the estimated smoothing term for 300 simulations. (b) Chi-Square Q-Q plot of test
statistics regarding β̂c with 2.723 degrees of freedom. (c) Histogram of the p-values.
(d) Uniform Q-Q plot of the p-values. (e) Histogram of the test statistics. The black
solid line is the theoretical density, and the red solid line is the kernel density estimate
of the test statistic,the rejection rate is 112 out of 300 simulations.
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Figure 5.15: (a) Plot of the values of the Wald-type statistic for β̂z versus the values
of the Wald-type statistic for β̂c for λ = 0.01. (b) Plot of the degrees of freedom for
β̂z versus the degrees of freedom for β̂c, the range of the effective degrees of freedom
is between 2.583 and 2.862 for λ = 0.01. (c) the p-value of the test statistics for βz
versus the p-value of the test statistics for β̂c.
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Figure 5.16: Histogram of the unconstrained estimated parameters β̂zi for λ = 0.01.
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Figure 5.17: The Normal quantile-quantile plot of the unconstrained estimated param-
eters β̂zi for λ = 0.01.
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Figure 5.18: Histogram of the constrained estimated parameters β̂ci for λ = 0.01.
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Figure 5.19: The Normal quantile-quantile plots of the constrained estimated parame-
ters β̂ci for λ = 0.01.
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Secondly, the results of applying the penalized likelihood ratio statistic to test the

hypothesis H0 : βz = 0, for the value of the smoothing parameters λ = 0.1 are shown

in Figures 5.20, while Figures 5.21 for λ = 0.2.
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Figure 5.20: (a) The model fit for λ = 0.1. The solid black line is the mean of
the estimated smoothing term for 300 simulations. (b) Chi-Square Q-Q plot of test
statistics regarding β̂z with 1.611 degrees of freedom. (c) Histogram of the p-values.
(d) Uniform Q-Q plot of the p-values. (e) Histogram of the test statistics, the black
solid line is the theoretical density, and the red solid line is the kernel density estimate
of the test statistic. The rejection rate is 110 out of 300 simulations.
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Figure 5.21: (a) The model fit for λ = 0.2. The solid black line is the mean of
the estimated smoothing term for 300 simulations. (b) Chi-Square Q-Q plot of test
statistics regarding β̂z with 1.378 degrees of freedom. (c) Histogram of the p-values.
(d) Uniform Q-Q plot of the p-values. (e) Histogram of the test statistics, the black
solid line is the theoretical density, and the red solid line is the kernel density estimate
of the test statistic. The rejection rate is 110 out of 300 simulations.

For both values of the smoothing parameters, the estimation of the unconstrained

spline effect parameter βz are asymptotically normal with mean zero. This results are

summarized in Figures 5.22, and 5.23 for λ = 0.1, and Figures 5.24, 5.25 for λ = 0.2.
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Figure 5.22: Histogram of the unconstrained estimated parameters β̂zi for λ = 0.1.
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Figure 5.23: The Normal quantile-quantile plot of the unconstrained estimated param-
eters β̂zi for λ = 0.1.
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Figure 5.24: Histogram of the unconstrained estimated parameters β̂zi for λ = 0.2.
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Figure 5.25: The Normal quantile-quantile plot of the unconstrained estimated param-
eters β̂zi for λ = 0.2.
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The main problem with the penalized version of the Wald statistics and likelihood

ratio statistics is that the penalty term can induce bias in the estimated parameters β̂z

and β̂c, for the case KβzT 6= 0 when the null hypothesis is true, where βzT is the

true value. In addition, if we test the hypothesis of linearity, under the null hypothesis

Kβz = 0, so this clarify that this term itself does not contribute to the bias. Then

careful attention must be given to choose the value of the smoothing parameter that

gives the reasonable results of the test. However, the estimate of βz depends on the

value of the smoothing parameters. If the result shows some evidence of the bias in the

estimation, Gray (1992) suggested to use smaller values of the smoothing parameters

to reduce the possible bias in the estimation.

Thirdly, the penalized score test of the null hypothesis H0 : βz = 0 was performed

for the smoothing parameters values λ = 0, 0.01, 0.1 and 0.5. In the penalized score

test, we do not have to estimate the parameters βz to perform the test, so the penalized

score tests can be computed using only the first iteration in the Newton-Raphson algo-

rithm. The results are summarized in Figures 5.26, 5.27, 5.28, and 5.29 for the values

of the smoothing parameters λ = 0, 0.01, 0.1 and 0.5 respectively, which confirm that

the test statistics have chi-square distributions with degrees of freedom depending on

the value of λ. Therefore, the result shows no bias. This confirm the bias estimate

that we obtained in the Wald-type statistics due to estimation of βz depending on the

change value of λ. Because of this we use the penalized score test statistics for the

variable selection later on in Chapter 6. We point out the histogram of p-values in

Figures 5.27(b), 5.28(b), and 5.29(b) are deficiencies as impact of changing λ.
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Figure 5.26: (a) Chi-Square Q-Q plot of tests statistics for λ = 0. (b) Histogram of
p-values. (c) Uniform Q-Q plot of the p-values. (d) Histogram of the test statistic,
the black solid line is the theoretical density, and the red solid line is kernel density
estimate of the test statistic. The degrees of freedom is 4, the rejection rate is 24 out of
300 simulations.
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Figure 5.27: (a) Chi-Square Q-Q plot of test statistics for λ = 0.01. (b) Histogram
of p-values. (c) Uniform Q-Q plot of the p-values. (d) Histogram of the test statistic,
the black solid line is the theoretical density, and the red solid line is kernel density
estimate of the test statistic. The range of the effective degrees of freedom is between
2.4797 and 2.9329. The rejection rate is 17 out of 300 simulations.
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Figure 5.28: (a) Chi-Square Q-Q plot of test statistics for λ = 0.1. (b) Histogram of
p-values. (c) Uniform Q-Q plot of the p-values. (d) Histogram of the test statistic,
the black solid line is the theoretical density, and the red solid line is kernel density
estimate of the test statistic. The range of the effective degrees of freedom is between
1.4634 and 1.7298. The rejection rate is 13 out of 300 simulations.
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Figure 5.29: (a) Chi-Square Q-Q plot of test statistics for λ = 0.5. (b) Histogram of
p-values. (c) Uniform Q-Q plot of the p-values. (d) Histogram of the test statistic,
the black solid line is the theoretical density, and the red solid line is kernel density
estimate of the test statistic. The range of the effective degrees of freedom is between
1.1335 and 1.2322. The rejection rate is 15 out of 300 simulations.
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5.7 Estimating the Smoothing Parameters and the Num-

ber of Knots

In the penalized additive Cox PH model it is very important to determined the ap-

propriate value of the smoothing parameters, which balance the trade-off between

the goodness of fit and smoothness of the model parameters. To select the appro-

priate values of the smoothing parameters we need to identify a range of possible

values of the smoothing parameters, and then select a criterion for assessing the model

corresponding to each value of the smoothing parameter. There are various methods

for choosing the amount of smoothing in a penalized additive Cox model, including

Cross-validation (CV), generalized cross-validation (GCV), Akaike information crite-

rion (AIC), or Bayesian information criterion (BIC). Wood et al. (2016)

O’Sullivan (1988) presented an approach for selecting the optimal smoothing pa-

rameter for smoothing spline estimators by minimizing the GCV under the assumption

that the baseline cumulative function, H0(t) =
∫ t

0
h0(u)du, is known, and replacing

H0(t) by the non-parametric estimator, the Breslow estimator, in the case of unknown

baseline cumulative functions.

The degrees of freedom are determined by the smoothing parameter λ, so instead

of specifying the value of the smoothing parameter, we can specify the number of the

degrees of freedom and then solve for the value of the smoothing parameter that gives

the specified degrees of freedom. This method has been used in Gray (1992, 1994),

Cadarso-Surez et al. (2010), Meira-Machado et al. (2013), Therneau et al. (2003),

and Wang et al. (2017a). They used the AIC criteria which is defined as AIC =

−2`pl(β̂λ) + 2df , where df is the effective degrees of freedom as presented earlier in

section 5.6.1. However, AIC can be under-penalize, which leads to models with an

excessively large number of degrees of freedom. Alternatively, Hurvich et al. (1998)

proposed the corrected AIC, which adjusts for this over fitting by replacing the degrees

of freedom by n(df + 1)/(n− (df + 2)), where n is the total number of events in the
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Cox model. The corrected Akaike Information Criterion (AICc) is given by

AICc = −2`pl(β̂λ) + 2
n(df + 1)

n− (df + 2)
. (5.23)

Minimization of the AIC and AICc is simple in the univariate setting and increasingly

complicated as the number of variable increases.

Bayesian information criterion (BIC) is calculated as

BIC = −2`pl(β̂λ) + log(n)× df,

where n is the number of observations. Considering there are censored observations

in survival data, Volinsky and Raftery (2000) corrected BIC by using the number

of uncensored observations in place of the number of observation n. BIC for high-

dimensional data tends to select overly sparse models, which means that BIC will se-

lect a model with few variables. Huang and Harrington (2002) proposed a resampling

method such as bootstrap selection to choose the smoothing parameter. Wood et al.

(2016) proposed the smoothing parameter estimation methods based on maximized

Laplace approximate marginal likelihood. This methods can be used for generalized

additive models for nonexponential family, Cox proportional hazards models and mul-

tivariate additive models.

The approach of leave-one-out cross validated partial log-likelihood (CVPL) for

ridge estimators in the standard Cox PH model for high-dimensional data was invented

by Van Houwelingen et al. (2006), which is based on the unpenalized partial log-

likelihood. This approach is used in Tsujitani et al. (2012), Simon et al. (2011), and

Bøvelstad et al. (2007). Generally speaking, in a k-fold cross validation, the data is

randomly divided into k folds, so the size of these folds are as similar as possible. In

turn, each fold is left out as the test set, while the remaining k − 1 folds are used as

the training set, to estimate βλ using equation (5.10). The cross validation score for

the fold is the negative partial log likelihood using equation (5.7). The overall cross

validation score is then the sum of the scores across the k folds. The optimal value of
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λ is the one that maximizes CVPL. Maximizing CVPL is obtained using grid values

to represent λ. In mathematical form, the k-fold cross validation partial log-likelihood

can be expressed as,

CVPL(λ) =
k∑
i=1

(
`ipl(β̂

(−i)
λ )

)
, (5.24)

where β̂(−i)
λ is the penalized estimate for β for a given value of λ, with the ith folds

taken out as the test set and the remaining k − 1 fold kept as the training set. `ipl is the

partial log likelihood for the ith fold. In this thesis we used the 5-fold cross-validation

partial log-likelihood to select the optimal smoothing parameters.

The shape of the log hazard ratio depends heavily on the number of knots, Nan et al.

(2005) estimate the optimal number of knots, using a modification of the O’Sullivan

(1988) GCV method, so that the optimal number of knots has the smallest GCV value.

In this chapter, we obtain the optimal number of knots by computing the CVPL value

for a range of the number of knots, and we chose the number of knots that maximizing

the cross-validation partial log-likelihood.

All the three model selection methods we presented in this section aim to choose

an optimal smoothing parameter that minimizes or maximizes the corresponding cri-

terion. Both AIC and BIC are minimized with respect to df . AIC tends to choose

relatively more complicated models than BIC. Therefore, the more complicated model

is generally associated with smaller smoothing parameter values. Cross validation

generally performs better because it is a data driven method where all data are used

to find the optimal value of the smoothing parameters, which is used in this thesis to

find the optimal values of the smoothing parameters. In large data sets, estimating

the smoothing parameter requires considerable computational time, especially when

CVPL methods are used for choosing the optimal smoothing parameters separately in

the penalized additive Cox model.
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5.8 Model Diagnostics

5.8.1 Estimation of h0(t) and S(t|x)

The most important part of the additive Cox model is predicting the survivor func-

tion Ŝ(t|x) for the model that contains the clinical characteristics and CNA profile (as

smooth term). The estimation of h0(t) and S(t|x) can be done in a similar manner

as for the standard Cox PH model. Once we obtain the parameter estimates β̂, the

estimate of the baseline hazard is given by

ĥ0(ti) =
δi∑

j∈R(ti)
exp(Xjβ̂)

. (5.25)

The cumulative hazard function H0(t), and the baseline survivor function S0(t) can be

estimated by

Ĥ0(ti) =
∑
i:ti≤tj

δi∑
j∈R(ti)

exp(Xjβ̂)
, (5.26)

Ŝ0(t) = exp{−Ĥ0(t)}. (5.27)

5.8.2 Cox-Snell Residuals

Plotting the Cox-Snell residuals provides a way of checking whether the additive Cox

PH model is suitable for the data. Cox-Snell residuals, as discussed in Chapter 3, can

be calculated for the additive Cox model as

ri = Ĥi(ti) = − log Ŝi(ti). (5.28)

where Ĥi(ti) is the estimated cumulative hazard for individual at their failure (or cen-

soring) time, and Ŝi(ti|xi) is the estimated survivor function for the ith individual at ti.
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The Martingales residuals are defined for the i-th individual as:

rMi = δi − rCi = δi − Ĥi(ti). (5.29)

5.9 Real Data Analysis

For the time being the CNA covariates are ignored, and attention is focused on the

clinical characteristics as an example of the proposed method. In order to reduce the

value of the smoothing matrix, we divided age by 100 and we used 5 equally spaced

knots to construct the smoothing matrix. Table 5.1 illustrates all possible 32 unpenal-

ized additive Cox models. Each model contains one smooth term and one or more

categorical variables. The values of −2 partial log likelihood, degrees of freedom, and

AIC for each unpenalized additive Cox model are shown in Table 5.1. The best model

is the model that contains Age as a smoothing function, Stage N, and Stage T.
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# parameters in the model −2 log L̂pl df AIC
1 Intercept 478.567
2 f(Age/100) 471.586 4 479.586
3 Gender 477.982 1 479.982
4 Stage T 474.816 2 478.509
5 Stage N 475.810 2 479.810
6 Grade 477.087 2 481.087
7 f(Age/100)+Gender 471.045 5 481.045
8 f(Age/100)+Stage T 463.020 6 475.020
9 f(Age/100)+Stage N 465.387 6 477.387
10 f(Age/100)+Grade 470.092 6 482.092
11 Gender+Stage T 472.312 3 478.312
12 Gender+Stage N 475.530 3 481.530
13 Gender+Grade 476.384 3 482.384
14 Stage T+ Stage N 471.840 4 479.840
15 Stage T+Grade 473.098 4 481.098
16 Stage N+Grade 474.321 4 482.321
17 f(Age/100)+Gender+Stage T 461.147 7 475.1471
18 f(Age/100)+Gender+Stage N 465.302 7 479.302
19 f(Age/100)+Gender+Grade 469.456 7 483.456
20 f(Age/100)+Stage T+Stage N 455.017 8 471.017
21 f(Age/100)+Stage T+Grade 461.793 8 477.793
22 f(Age/100)+Stage N+Grade 463.611 8 479.611
23 Gender+Stage T+Stage N 470.289 5 480.289
24 Gender+Stage T+Grade 470.982 5 480.982
25 Stage T+Stage N+Grade 470.360 6 482.360
26 Gender+Stage N+Grade 473.942 5 483.942
27 Gender+Stage T+Stage N+Grade 468.871 6 482.871
28 f(Age/100)+Gender+Stage T+Stage N 454.069 9 472.069
29 f(Age/100)+Gender+Stage N+Grade 463.454 9 481.454
30 f(Age/100)+Stage T+Stage N+Grade 453.961 10 473.961
31 f(Age/100)+Gender+StageN+Grade 463.454 9 481.454
32 f(Age/100)+Gender+StageT+StageN+Grade 452.976 11 474.976

Table 5.1: The values of −2 log partial likelihood and the number of parameters, AIC
for each fitted additive Cox model.
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Cross validated partial log likelihood for the best model was computed for the

number of knots 5, 6, 7 and 8 to obtain the optimal value of the smoothing param-

eter λ, and then to select the optimal number of knots that has the maximum cross-

validation partial log-likelihood value. As shown in Figure 5.30, the penalized addi-

tive Cox model with 5 knots has the maximum cross-validation partial log-likelihood

CVPL = −125.015, and the optimal smoothing parameter is equal to λopt = 0.11.
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Figure 5.30: Plots of the Cross-validated partial log-likelihood versus λ for the penal-
ized additive Cox model with 5, 6, 7, and 8 knots.

The estimates of the fixed effect and spline effect and their inferences, for the best

model under conditions with or without penalization can be seen in Tables 5.2
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Predictor Estimate Exp Standard error zvalue p-value
without smoothing term

Age/100 5.311 202.585 1.558 3.409 0.001
Stage T2 0.150 1.162 0.302 0.499 0.618
Stage T3 1.800 6.052 0.576 3.123 0.002
Stage N1 0.345 1.411 0.284 1.212 0.225
Stage N2 1.336 3.804 0.478 2.797 0.005

with smoothing term
λ = 0.000
f(Age/100) 0.003

Stage T2 0.180 1.197 0.316 0.568 0.570
Stage T3 2.318 10.156 0.652 3.556 0.000
Stage N1 0.365 1.440 0.298 1.224 0.221
Stage N2 1.581 4.858 0.508 3.113 0.002

with smoothing term
λopt = 0.111
f(Age/100) 0.000

Stage T2 0.153 1.165 0.302 0.505 0.613
Stage T3 1.901 6.690 0.576 3.297 0.001
Stage N1 0.359 1.432 0.285 1.259 0.208
Stage N2 1.407 4.085 0.478 2.945 0.003

Table 5.2: Estimated values of the parameters on fitting additive Cox PH model.

For comparing for the estimate of the fixed effect both with and without a smooth-

ing term of age, the result indicates that age, Stage-T and Stage-N are statistically

significant with p-values< 0.05. To understand the effects of individual predictors for

age, we look at the hazard rate for age e0.01×5.311 = 1.05, which shows that the hazard

ratio of death increases by about 5% as age increases by one year. The estimated coef-

ficient of Stage-N2 is positive, which indicates that the wider spread of the cancer cell

to the nearby lymph nodes increases the hazard relative to the baseline hazard Stage-

N0. Similarly, the estimates of Stage-T3 indicate large tumor size increases the hazard

relative to the baseline hazard Stage-T1.

Figure 5.31 shows the estimated log hazard ratio f̂(Age/100) versus Age/100 when

λ = 0 (left panel) and λopt = 0.111 (right panel), and the small lines along the hori-

zontal axis are the “rug”, showing the values of the covariate of Age for each patient.

The deep shape in f̂(Age/100) is between 48 to 55 years because the patient at 45
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years had a short survival time (only 54 days) where the minimum survival time is 34.

For both panels, the older patients had an increased hazard of death.
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Figure 5.31: (Left panel): the estimated smooth function f̂(Age/100) versus Age
when λ = 0. (Right panel): the estimated smooth function f̂(Age/100) versus Age
when λopt = 0.111. The points indicate the number of observations on each individ-
ual that were either censored or a failure. The dashed lines are the 95% point-wise
confidence band.

As part of the model diagnostic, the plot of the cumulative hazard of the Cox-

Snell residual from the best fitting model with λopt = 0.111 is shown in Figure 5.32.

The figure shows the cumulative hazard line is very close to the identity line, which

indicates that the additive Cox PH model is a reasonably good fit. The cumulative

hazard steps near the top right corner are jagged, as a result of rare deaths near to

the upper end of the distribution of the survival times. The martingale residuals were

examined. Figure 5.33 display the log hazard ratio for age obtained by transforming

LOWESS smoothing martingale residual for the penalized best model, which suggests

that the age is modelled correctly.
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Figure 5.32: Cumulative hazard of Cox-Snell residual from the penalized additive Cox
model fit. The red line is the identity line.
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Figure 5.33: Martingale residuals versus Age, the solid black line is the smoothed
curve using LOWESS method.
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5.10 Conclusion

In this chapter, we proposed an extension of the standard Cox PH model by including

smoothing terms. We demonstrated the use of the radial basis function as a smoothing

term in the additive Cox PH model with a fixed number of knots. The radial basis

function satisfies the natural cubic spline condition (linear tail constraints), so these

constraints reduce the dimension of the spline effect parameter by 1 degree of freedom,

this means if we have nk equally spaced knots, the estimate of the unconstrained spline

effect parameter is nk−1 degrees of freedom in the unpenalized problem, and less than

that for the penalized problem. The estimate of the model parameters can be performed

with or without penalization in the model, so the estimated parameters are obtained in a

similar manner as for the standard Cox PH model, by maximizing the penalized partial

log-likelihood using the Newton-Raphson algorithm. The asymptotic theory for the

penalized additive Cox model with radial basis estimates is relatively straightforward.

Identification of the nonlinear effect of the continuous covariate enables us to esti-

mate more accurately a patient’s prognosis, whether the patient have lower or higher

hazard, and thus to better determine lung cancer survival time. To better understand

the nonlinear effect of the continuous covariate, we look at the effects of the spline

parameters of a given continuous variable on survival time. The results of this effect

can be expressed in terms of log hazard ratio curves, taking a specific covariate value

as reference. Confidence bands for these log hazard ratio curves can also be calculated.

The simulation examples show that the proposed method performed very well.

The model enables us to evaluate the significance of the fixed effect parameters, as

well as a test for nonlinearity of the spline effect parameters. This chapter examined

a penalized method for testing two hypothesis of spline effect. The first is the test for

nonlinearity, which means testing the hypothesis of no covariate effects in the penal-

ized additive Cox model. This test is based on the spline parameters associated with

spline term all being equal to zero. The second test is the test for linearity, which means

a test for zero slope in the spline parameter in the radial basis function. We demon-
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strate the penalized versions of the Wald test, likelihood ratio statistic, and score test.

The Wald-type statistics can be used to test for no covariate effect for both constrained

and unconstrained spline parameters. The degrees of freedom are the trace of the ap-

propriate matrix, which can be computed for both penalized and unpenalized problem,

and approximations to the distribution of these test statistic are used. The simulation

examples are presented under the null hypothesis of no effect of the spline parameters

to examine the performance of the hypothesis testing procedure.

In order to find the optimal value of the smoothing parameter, we used a grid

search to select the optimal smoothing parameter value based on maximizing the cross-

validated partial log-likelihood criterion. This is computationally demanding in the

case of finding separate smoothing parameter value for each smoothing term. The op-

timal number of knots can be done by computing CVPL for a range of the number of

knots, and we then select the number of knots that maximizes CVPL.

The use of the spline method with NSCLC survival data allows nonlinear covariate

effects to be detected and tested easily. The clinical variables are considered as fixed

effects in addition to age as spline effect. This approach proved to be useful in a real

data example on lung cancer survival times. This work opens the possibility of future

work for high-dimensional data. Some reports of the work on high-dimensional data

analysis exist in the literature. However, most of them are focused on the standard

Cox PH model. There is limited reporting on high-dimensional survival analysis in the

literature for the penalized additive Cox model. Variable selection in high-dimensional

penalized additive Cox model is introduced in the next chapter.
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Variable Selection for Penalized

Additive Cox PH Model

6.1 Introduction

Extracting information from large number of covariates measured on patients for the

purpose of prediction in survival model is an important aim in medical studies. Most

of the standard statistical methods in survival analysis describe the relationship be-

tween the covariates and outcome assuming that the number of covariates p is less

than the number of observations n. In the standard setting, n > p, the parameters in

standard Cox PH model can be estimated by maximizing the partial log-likelihood.

However, combining both the clinical characteristics as fixed effect predictors and the

CNA genomic-window profiles as smoothing terms into a single prediction model will

make the model unestimable, because estimating the model parameters by maximizing

the partial log-likelihood is no longer possible.

The main challenge lies not only including high-dimensional CNA genomic-windows

in the survival model, but it is also including the high-dimensional CNA genomic-

windows as smoothing terms in the survival models. Each smoothing term can be

expressed as matrix where the number of rows is the number of observations, and num-

125
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ber of columns is the number of spline parameters, that associated with the number of

knots. The size of the smoothing matrix for all the CNAs data is n× q(nk − 1), where

n = 85 is the number of patients, q = 13253 the number of CNAs genomic-windows,

and nk is the number of knots in each smoothing term. For 5 knots for each smoothing

term, the size of the smoothing matrix for all CNA data is 85×53012, which is compu-

tational demanding. Tackling the high-dimensional smoothing problem by some form

of variable selection is very important in our case.

Variable selection is a huge area of statistics, there are several way to do that.

Firstly using filtering method, which based on select subsets of CNA variables as a

pre-processing step. Secondly by using Wrapper methods and thirdly by using em-

bedded methods. In this thesis we will use the filtering method because it is conve-

nient and given a computational burden that we have and it is manageable. Wrapper

methods consider the selection of a set of features as a search problem, a strategy is

needed to explore the feature space where different combinations are prepared, eval-

uated and compared to other combinations. The problem with this approach is that

feature space is vast and looking at every possible combination would be a compu-

tationally expensive. Two main approaches are mostly used in the wrapper methods

which are backward elimination and forward selection, both of these apprpaches is dif-

ficult in the additive Cox PH model due to the huge smoothing matrix for all the CNA

genomic-windows. Embedded methods learn which CNA genomic-windows features

best contribute to the accuracy of the model. The most common type of embedded

feature selection methods are regularization methods, which called penalization meth-

ods that introduce additional constraints into the optimization of a predictive algorithm

(such as a regression algorithm) to shrink the model coefficients toward zero resulting

fewer coefficients are not equal to zero. Embedded methods is also difficult to apply in

the additive Cox PH model, but it can be done with the standard Cox PH model using

ridge or lasso penalty. Wrapper approaches evaluation take into account the informa-

tion dependency between the evaluated features, whereas, Filter approaches assume

no dependency between the evaluated features. In this thesis we will use the filtering
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method because it is convenient and given a computational burden that we have and it

is manageable. Filtering variable selection can enhance both easy interpretability and

improved prediction accuracy.

Different strategies have been proposed for modifying the standard Cox PH model

to deal with the high-dimensional setting. Some of these strategies are based on feature

selection which can be either discrete or shrinkage selection. Discrete feature selec-

tion is the same as filtering method which will be discussed in this chapter, while the

shrinkage feature selection is discussed in Chapter 7. Discrete feature selection deal-

ing with high-dimension in the covariate space aims to determine which of the CNA

genomic-windows have the strongest effects on the survival time. This can be done by

a univariate score test for each of the CNA genomic-windows. Identifying significant

CNA genomic-windows becomes more complicated due to the need to test thousands

of hypotheses simultaneously, and this becomes harder if we use the penalized version

of the test statistic. Additionally, a multiple testing correction is needed to properly

adjustment for the number of tests performed.

Forward stepwise selection can be used to decide which of the subset of the CNA

genomic-windows to include in a multivariate model sequentially. This forward step-

wise selection is easy to implement, but it is not necessary to find the best model,

instead it leads to find the locally optimal model rather than the best model (Klein,

2013)

This chapter is organized as follows. In Section 6.2, we provide two different uni-

variate selection methods, the first method based on the standard Cox PH model in

Section 6.2.1, and the second method based on penalized additive Cox PH model in

Section 6.2.2. In Section 6.3 we deal with the dependence structure of significant

CNA genomic-windows. The results of using forward stepwise selection are presented

in Section 6.4.
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6.2 Selecting Variables by Testing Individual Covari-

ates

In this section we will consider the standard Cox PH model as well as the penalized

additive Cox PH model in variable selection. The reason why we consider the standard

Cox PH model is for comparison later on, whether some variables are selected by the

penalized additive Cox PH model are more informative to the one that is selected by

the standard Cox PH model.

6.2.1 Univariate Selection Based on Standard Cox PH Model

The univariate variable selection method proposed in Bøvelstad et al. (2007), which is

based on testing the linear effect of each CNA genomics-windows values by itself on

survival model. The univariate Cox model can be written as

h(t|CNAj) = h0(t) exp(βjCNAj), j = 1, . . . , 13253,

where βj is the coefficient in a univariate Cox PH model where the j th CNA variable is

the only covariate included in the model. The null hypothesis is that there is no effect

of each CNA. This test can be done by using the score test (Klein and Moeschberger

(1997), Chapter 8.2), the test statistic is Tc = Upl(0)T [I−1
pl (0)]Upl(0), where Upl, and

Ipl are the score vector and the information matrix of the partial log-likelihood. The

score test has chi-square distribution with one degree of freedom, which enables us

to compute the corresponding p value. Bøvelstad et al. (2007) used the score test to

perform the univariate variable selection because this test does not require the estimate

of the model parameter, which considerably reduces the computational time compared

to the Wald and likelihood ratio tests.

Univariate variable selection was applied to the CNA genomic-windows. The num-

ber of CNA genomic-windows is equal to 13253, so this is the number of null hypoth-

esis that we would like to test. The p-values were calculated for all 13253 hypothesis,
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then multiple testing correction used to determine how many of these p-value are re-

jected using both Bonferroni (1936) and Holm (1979) correction at the 5%. As a result,

we rejected 612 hypothesis for both Bonferroni and Holm.

However, Cox PH model assumes a linearity of the covariates, so the univariate

variable selection only identifies linear effect of the CNA genomic-windows, while we

are interested in the non-linearity form of of the covariate. This motivated us to gen-

eralize the univariate selection of Bøvelstad et al. (2007) as described in the following

section.

6.2.2 Univariate Selection Based on Penalized Additive Cox PH

Model

We generalized the univariate variable selection method of Bøvelstad et al. (2007)

by using penalized additive Cox PH model instead of the standard Cox PH model in

the univariate variable selection method. The penalized univariate variable selection

method is based on testing the effect of each CNA genomic-window variable by itself

in the penalized additive Cox PH model. The univariate penalized additive Cox model

can be expressed as

h(t|CNAj) = h0(t) exp (f(CNAj)) , j = 1, . . . , 13253, (6.1)

where f(CNAj) is the smoothing term for the j th CNA genomic-window that is the

only covariate included in the penalized additive Cox PH model. The null hypothesis

of no covariate effect in the model is H0j : f(CNAj) = 0. The penalized univariate

variable selection method can be done by testing the effect of each CNA genomic-

window by itself in a univariate penalized additive Cox model with 5 equally spaced

knots and the optimal value of the smoothing parameter choose separately for each

CNA genomic-window in the CNA data.

As mentioned earlier, in Section 5.6.1, for this type of null hypothesis there are

commonly three tests which can be used: penalized score test, Wald-type test and
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penalized likelihood ratio test. We used the penalized score test statistic as described

in Section 5.6.1, which has a chi-square distribution under H0j , with the degree of

freedom depending on the value of the optimal smoothing parameter. The penalized

score test does not require the estimate of the penalized spline effect, which reduces

the computational time compared to Wald-type test and penalized likelihood ratio test.

However, we still need to estimate the spline effect coefficients in order to compute

five-fold Cross-Validated Partial Log-likelihood (CVPL) which is performed across a

grid of values of smoothing parameter λ .

The p-values of the penalized score test were calculated for all 13253 hypotheses.

Subsequently, multiple testing corrections were used to determine how many of these

p-values can be rejected using either Bonferroni or Holm correction at the 5% sig-

nificant level. As a result, we rejected 1056 out of 13253 hypotheses using either a

Bonferroni and a Holm’s multiple corrections.

This penalized univariate variable selection identified more significant CNA genomic-

windows than the standard Cox PH model. This 1056 significant CNAs genomics-

windows are from different block correlated data. The 1056 significant CNAs genomics-

windows in each chromosome are presented in Appendix A Section A.1. There are

164 significant CNA genomic-windows are in common for both univariate variable se-

lection and penalized univariate variable selection, which are presented in Appendix

A, Section A.2. The relevant genes associated with Non-Small Cell Lung Cancer

(NSCLC) from the 1056 significant CNA genomic-windows are summarized in Ta-

ble 6.1. The gene which is in common for univariate variable selection and penalized

univariate variable selection is written in red.
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Gene Chromosome Reference
E2F2 1 Feliciano et al. (2017)

GALNT13 2 Nogimori et al. (2016)
SSFA2 2 Okayama et al. (2016)
PSMD2 3 Shi et al. (2017)
BEND4 4 Kettunen et al. (2017)
FEZF1 7 He et al. (2017)

NDUFAS 7 Xie et al. (2017)
CALU 7 Kundu et al. (2016)
TUSC3 8 Peng et al. (2017b)
ATAD2 8 Couto et al. (2017)
CPSF1 8 Kiehl et al. (2017)
RP11 10 Tang et al. (2017)
LMO3 12 Liu et al. (2017b)
PTPRE 10 Codreanu et al. (2017)
RSF1 11 Zhang et al. (2017)
BLID 11 Wang et al. (2015)

LRIG3 12 Roskoski (2017)
ATP8A2 13 Yan et al. (2017)
ERCC5 13 Perez-Ramirez et al. (2017)

YY1 14 Huang et al. (2017)
KIF23 15 Vikberg et al. (2017)

Table 6.1: Genes related to Non-Small Cell Lung Cancer. The gene which is in com-
mon for both univariate variable selection and penalized univariate variable selection
is written in red.

Tables 6.2, and 6.3 show some genes from the windows which we found to be

significant which are related to other types of cancer. The genes which are in common

for both univariate variable selection and penalized univariate variable selection are

written in red.
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Gene Chromosome Related Cancer Reference
B3GNT5 3 breast Uehiro et al. (2016)
ATP11B 3 ovarian Moreno-Smith et al. (2013)
KLHL6 3 leukemia Sutton et al. (2015)
ABCCS 3 breast Hofman et al. (2016)
SENP2 3 breast Nait Achour et al. (2013)
TRA2B 3 breast Liu et al. (2017a)
RPL39L 3 breast Dave et al. (2014)

TP63 3 head and neck Gleber-Netto et al. (2018)
GTF2H2 5 breast and ovarian Walker C et al. (2017)
SMN1 5 tong Upadhyay et al. (2017)

SERF1A 5 breast Mustacchi et al. (2013)
STAG3L3 7 thyroid Heß et al. (2011)
GTPBP10 7 prostate Jin et al. (2016)

SYPL1 7 liver Chen et al. (2017a)
ING3 7 prostate Nabbi et al. (2017)

CPED1 7 breast Peng et al. (2017a)
SULF1 8 bladder Lee et al. (2017a)

ANXA13 8 collector Jiang et al. (2017)
MTSS1 8 bladder Du et al. (2017)

TRMT12 8 breast Rodriguez et al. (2007)
SQLE 8 prostate Stopsack H et al. (2017)
BCCIP 10 esophageal Chen et al. (2017c)

MARCH8 11 gastric Wang et al. (2017b)
PAK1 11 colorectal Yuan He et al. (2017)
MMP7 11 gastric Sandoval-Borquez et al. (2017)
TAGLN 11 esophageal Chen et al. (2017b)

SIK3 11 breast Amara et al. (2017)
RNF26 11 cervical Zhang et al. (2005)
RERGL 12 colorectal Liu and Zhang (2017)

MGAT4C 12 prostate Demichelis et al. (2012)
CEP83 12 colorectal Zhang et al. (2016)

MTERF2 12 cervical Prasad et al. (2017)
ZIC5 13 colorectal Satow et al. (2017)

EFNB2 13 breast Schultz et al. (2017)

Table 6.2: Genes related to other types of the cancer. The gene which are in common
for both univariate variable selection and penalized univariate variable selection are
written in red.
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Gene Chromosome Related Cancer Reference
ARGLU1 13 breast Zhang et al. (2011)

VRK1 14 liver Lee et al. (2017b)
SETD3 14 liver Cheng et al. (2017)
ANP32 15 hepatocellular Ohno et al. (2017)

LRRC49 15 breast De Souza Santos et al. (2008)
IQGAP 15 hepatocellular Zoheir et al. (2016)

ABCC12 16 breast Jalkh et al. (2017)
KIF2B 17 hepatocellular Qu et al. (2016)

KDM4B 19 ovarian Wilson et al. (2016)
SAFB2 19 breast Hong et al. (2015)

Table 6.3: Genes related to other types of the cancer. The genes which are in common
for univariate variable selection and penalized univariate variable selection are written
in red.

Tables 6.4, 6.5, 6.6, and 6.7 show some genes that we found to be significant in our

penalized univariate seelction, but there are no prior studies describing a relationship

between these genes and any type of cancer. The genes which are in common for both

univariate variable selection and penalized univariate variable selection are written in

red.

Chromosome 1
TEX46 ULZP1 HNRAPR ZNF436 ASAP ID3
RPL11 PITHD CNR2 MYOM3 CRHL3 IL22RA1

NCMAP ESRRG ESPPG GPATCH2 SPAT17 DUSP10
MDS4 PLDS

Chromosome 2
ORCH4 MBD5 EPC2 KIFSC LYPD6B MMADHC
CSRNP3 SCN1A SCN7A SCN9A XIRP2 UBE2E3

NEUROD1 CERKL PPPIRIC NFUROD1 DNAJC10 FRZB
NUP35 DUSP19 NEU4 PTR5 LYPP6 ZTGA4

NCKAP1
Chromosome 3

CNTN6 CNTN4 IL5RA TRNT1 CRBN SUMF1
GRM7 SSUH2 CAV3 UBE2E2 ROB02-206 ROB02-207

Table 6.4: Genes which are not related to any type of cancer. The genes which are in
common for univariate variable selection and penalized univariate variable selection
are written in red.
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Chromosome 3
ROBO1 DCVND1 KLHL24 LAMP3 MCCC1 PARL
ECCE HTR3C YEATS2 AP2M1 CAMK2N2 THPO

ABCF3 CHRD VWA5B2 HTR3P EPHB3 MAGEF1
EHHADE MAP3KB TMEM41A ETV5 DGKG CRYGS
ADIPOO EIF4A4 ST6GAL1 DNAJB11 HRG TBCCDI

LLP ST6GAL1 DGKG MAP3K13 FETUB KNG1
SST EDM1 HTR3E MAP6D ALG31 UPSB

RFC4 FGF12 BCL6
Chromosome 4

SLC10A6 DSSPP SPP1 IBSP PYURF HERC3
FAM13A DMP1 PKD2 HSD17B13 HSD17B11 NUDT9
HERC6 GPRIN3 SNCA MMRN1 CCSSER SMARCAD1
ATOH1 GRID2 EGF GARI LRIT3 RRH

FAM160A1 PRSS48 SH3D19 RPS3A
Chromosome 5

TEM161B MEF2C
Chromosome 7

TYW1B POM121 TR1M74 MAG12 ADAM22 SRI
STEAP4 TEX47 CDK17 STEAP1 CLDN12 STEAP2

PUS7 SRPK2 ATXN7L1 NAMPT CCDC7 RRKAR
COG PNPLA GPR22 DOCK4 TMEM168 DLD

IFRD1 SLC26A4 LAMB1 LRRN3 BMT2 FOXP2
LSMEM1 CBLL1 THAP5 ZNF227 GPR85 NRCAM

MET ASZ1 TES CAV2 MDF1C TEFC
LSM8 ANKRD7 TSPAN12 WNT16 FAM36 ZNF800

PTRRZ1 IQUB SPAM AASS LMOD2 HYAL4
CADPS2 SLC13A CRM8 AAF5 WASL POT1

GCC1 SND1 P4X4 LEP TNP03 HLPDA
CCDC136 FLNC KCP 1MPDH1 METTL28 LEP

Chromosome 8
ARFGEF PREX2 PRDM14 NCOA2 NDUFAF6 PLEKHF2

HAS1 FAM91A1 ZHX2 ZHX1 TATDN TMEM6
TBC1D31 FAM91A1 ZNF572 NSMC TONSL COMMDS

CYHRIGPT ZNF34 ZNF7 ZNF16 ARHAP
Chromosome 10

ADMTS14 TBATA PCBD1 UNC5B SLC29A3 CDH23
VSTR PSAR CHST3 MICUI ASCC1 P4A41

DNAJB12 TEX36 EDRF1 MMP21 UROS CLRN3
TPRE MGMT EBF3 TCERGIL RRC27 NKX6-2

JAKMMIP3 BNIP3 DPYSL4 ALOK5 QIT3

Table 6.5: Genes which are not related to any type of cancer. The genes which are in
common for univariate variable selection and penalized univariate variable selection
are written in red.
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Chromosome 11
COA4 WASHC2C FAM25E PAAF1 DNAJB13 MRPL48

AGAP4 INPPSA ADGRA1 PAB64 PLEKHB1 C2CD3
UCP3 C2CD PPME1 LIPT2 P4HA3 PGM2L1

KCNE3 POLD3 RNF169 KLH35 TPBGL OR2ATA
SLCO2B1 LRRC32 KCTD21-A51 AAMDC INTS4 HYOU1
NDUFC2 ALG8 USP35 AQP11 GDPD4 TSKU
THAP12 NARS2 DEUP1 MTNRIB SMCO4 CEP29S
TAFID SMCO4 VSTMS HEPHL1 TMEM123 DYNC2H1

CARD16 CARD17 CASP5 CASP1 CASP4 ZPR1
PC5K7 RNF214 CEP164 BACE1 FXYD6 FXYD2
JMML MPZLZ CD3E ARCN1 CD3D CD3G
ATP3L UBE4A KMT24 IFT46 BCL91 CCDC84

TRAPPC4
Chromosome 12

PIKK3C2G TSFM CY27B1 EEF1AKMT3 P4K2C ARHGEF25
O59 TSPAN31 CTDSPS B4GALNTI CDK4 ATP23

SLC16A7 TPH2 TRHDE TBC1D15 UBE2D MRPL42
SOCS2 CRADD PLXNC1

Chromosome 13
PARP4 ATP12A RNF17 CENPJ NUP58 AMER2

MTMR6 B3GLCT RXFP2 SLITRK5 TM9SF2 CLYBL
PCCA TMTC4 BIVH SLC10A2 GGACT ITGBL1
FGF14 KDELC1 TPP2 METTL21C TEX30 LIG4
CDC16 RASA3 GAS6 ATP42 GRK1 TEDP1

Chromosome 14
AKAP6 NPAS3 SLC35F4 ACTR10 LINC00216 TIMM9

K1AA0586 DACT1 ACTN1 NEK9 TGFB3 SMOC1
SUSD4 YLPM1 GALNT16 PROX2 ZFP36L1 PPF3
DCAF3 ZFYVE1 ADAM20 MED6 CIDC TTC9
COQ6 PCNX1 ENTPD5 PTGR2 JDP2 VRTN

BDKRB2 GSKIP PAPOLA BDKRB1 ATG2B TCF12
BCL11B SETD3 CCNK SETD3 HHIPL1 CCDC85C

EML1 EVL DEGS2 BEGAIN DLK1 MEG3
WDR25 MNS1 ZNF280D

Chromosome 15
MNS1 ZNF280D TCF12 TCF12 ALDH1A CGNL1

GCOM1 MYZAP POLR2M RNF111 SLTM BN1P2
LDHAL6B GTF2A2 RORA GCNT CCNB2 MINDY2

LIPC ANXA2 C2CD48 PH1B SNX1 TRIP4
SLC51B MTFMT SLC24A1 CLPXHACD3 ZNF609 CHD2

Table 6.6: Genes which are not related to any type of cancer. The genes which are in
common for univariate variable selection and penalized univariate variable selection
are written in red.
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Chromosome 15
IGDCC TRIP4 CA12 CA12 USP3 MY01E
SLTM GLCE SPESP1 NOX5 PAQPS ARRCD4
UACA LARP6 HEXA PKM MY09A NE01
HCN4 NPTN ANPEP AP352 ARPIN NGRN
CIBI FE2 HDDC3 IDH2 MAN2A2 UNC45A

CRTC3 VPS33B RRC1 SLCO3A RGMA MCTP2
NR2F2 SPATA8 CHD2 ST8S1A C15orf32

Chromosome 16
RBFOX1 PHKB NOD2 CYLD AKTIP RBL2
SALL1 CHD9 ADCY7 BRD7 AMFR GOT2
LONP2 USB1 GNAOL CETP PLLP CPNE2
IRX5 CDH8 TOX3 SNX20 PRSSS5 PKDIL

VAC14 HYDIN ZNF19 CALB2 ZNF13 TAT
CHST4 AP1GI IST1 ATXNIL CHST4 CMTR

Chromosome 17
SPAG9 CA10 NME1 NME2 MBTD1 AKAP1
UTP18 KIF2B TOMIL1 HLF MMD NOG
COX11 STXBP4 PCTP TR1M26 COIL DGKG

Chromosome 19
LONP1 CATSPERD UHRF1 PLN3 ARRDC5 GDF1

T1CAM1 ZNRF4 PRR22 DUS3L RPL36 FUTC
LONP NRTN FUT3 VMAC KHSRP INSR

MBD3L2 GPR108 CAMSAP3 CLEC4C ELAVL1 SUGP2
EVI5L HNRNPM STXBP2 CTXN1 STX10 TRIR
HOOK JUNB PFX1 SAMD1 TECR GIPC1
PNK1 RLN3 MRI1 OR7A17 SL1A6 WIZ

NACC1 LYL1 TRMT1 FARSA SYDE HOMER3
UPF1 CERS1 COPE

Chromosome 20
TCF15 SCRT2 SLC52A3 ANGPT4 RSPO4 RAE1
PSMF1 BMP7 RBM38 ZBP1 PMEPA1 SPO11
CTCEL PCK1

Table 6.7: Genes which are not related to any type of cancer. The genes which are in
common for univariate variable selection and penalized univariate variable selection
are written in red.
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6.3 Dependencies of Significant CNA genomic-windows

Generally, the CNA genomic-window is often correlated between neighboring genomic-

windows, and some of our significant neighboring windows of CNA are highly corre-

lated. Figure 6.1 shows the correlation map for all the 1056 significant CNA genomic-

windows, each value on the x and y axes correspond to the significant CNA genomic-

widows and the color of the figure at each index (i, j), i, j = 1, . . . , 1056, represents

the correlation value as seen in the legend.

Figure 6.1: Correlation heat map all 1056 significant CNA genomic-windows.

To deal with this correlation structure, we need to choose one variable from each

highly-correlated block as representative of that block, and then we include the not

correlated significant CNA genomic-windows in the multivariate penalized additive

Cox PH model. Because the shapes of the estimated log hazard ratios for the correlated

significant CNA genomic-windows are similar, we need to choose the uncorrelated

significant CNA genomic-windows to visualize different shapes of the estimated log
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hazard ratios. To choose one variable from each highly-correlated block, we must

select a threshold value of correlation, in order to define the blocks. The threshold

value is selected as follows.

• We pick one reference variable from the middle of the highly-correlated block of

Chr 7, as we can see in black box in the Correlation heat map all 1056 significant

CNA genomic-windows in Figure 6.2.

Figure 6.2: Correlation heat map all 1056 significant CNA genomic-windows, the
black box represents the highly-correlated block of Chromosome 7.

then we fit the model with an optimal value of the smoothing parameter, and 5

equally spaced knots. The model is

h(t,CNA6456) = h0(t) exp
(
f(CNA6456)

)
, (6.2)

we have four standard error of the parameters estimate, in order to compute
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one value of the standard error of the parameter estimates, we used the geomet-

ric mean because it has an advantage over the arithmetic mean in that it is not

affected much by fluctuations (i.e is not affected by extreme values). The geo-

metric mean for the standard error of the parameter estimates of model (6.2) is

calculated as

s1 =
(

se(βz1)× se(βz2)× se(βz3)× se(βz4)
)1/4

.

• We fit the models that contains f(CNA6456), and only one other significant CNA

genomic-window j

h(t,CNA6456,CNAj) = h0(t) exp
(
f1(CNA6456) + f2(CNAj)

)
, (6.3)

for each j in our list of 1056 significant CNA genomic-windows except CNA6456,

with optimal values of the smoothing parameters and 5 equally spaced knots.

The geometric mean for the standard error of the parameter estimates of the first

term in the model f(CNA6456) is calculated as

s1|j =
(

se(βz1|j)× se(βz2|j)× se(βz3|j)× se(βz4|j)
)1/4

,

where s1|j is the geometric mean of the first variable in model (6.3) where vari-

able j is also present.

• Calculate the correlation between rj = cor(CNA6456,CNAj)

• Plot the correlation rj versus log(s1|j/s1), and then fit a line using loess with

smoothing parameter 0.1 (Figure 6.3).

The standard error s1|j/s1 starts to increase at about 0.6 correlation r = 0.6. There

is an infusion of standard error from the first variable in model as result of including

the second variable, which means that above 0.6 correlation, the other variable starts

to influence the standard error. Figure 6.3 shows the plot of the log(s1|j/s1) versus
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the correlation. The points at correlation values 1 are from the neighboring significant

CNA genomic-windows from Chr7, the red solid line is the fitted loess line. The

standard error of the estimated parameters starts to increase at about correlation r =

0.6.
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Figure 6.3: The plot of log(se/s) versus the correlation r. The red solid line is the
fitted loess line.

We define a block of significant CNA genomic-windows to be a group of consecu-

tive windows in our list of significant CNA genomic-windows where each window has

a correlation of at least 0.6, then we select the first CNA genomic-window from each

block to represent that block. As a result we have a list of 41 significant CNA genomic

windows, which are not correlated with each other. Table 6.8 illustrates the 41 signif-

icant uncorrelated CNA genomic-windows with the corresponding chromosomes, and

p-value.
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# chr window p-value # chr window p-value
1 Chr 1 108 0.027921 21 Chr8 7264 0.049593
2 Chr 1 949 0.041385 22 Chr10 8125 0.033214
3 Chr2 1815 0.032956 23 Chr10 8443 0.029323
4 Chr2 1979 0.046475 24 Chr11 8804 0.047742
5 Chr2 2284 0.043557 25 Chr11 8928 0.046319
6 Chr3 2291 0.013653 26 Chr11 9024 0.033174
7 Chr3 2676 0.042087 27 Chr11 9084 0.035453
8 Chr3 3094 0.046057 28 Chr11 9143 0.023786
9 Chr3 3186 0.046428 29 Chr12 9316 0.029923

10 Chr4 3474 0.048623 30 Chr12 9508 0.046966
11 Chr4 3797 0.034302 31 Chr12 9579 0.033303
12 Chr4 4001 0.043624 32 Chr12 9649 0.043065
13 Chr5 4528 0.034418 33 Chr12 9686 0.047636
14 Chr5 4614 0.033966 34 Chr13 9752 0.049974
15 Chr6 5137 0.040975 35 Chr13 10231 0.041216
16 Chr6 5481 0.046758 36 Chr14 10278 0.041364
17 Chr7 6253 0.038643 37 Chr15 10418 0.048141
18 Chr7 6410 0.046685 38 Chr16 10964 0.047407
19 Chr8 6528 0.048067 39 Chr17 11217 0.037782
20 Chr8 6992 0.049689 40 Chr18 11581 0.029107

41 Chr19 12356 0.045674

Table 6.8: 41 significant CNA genomic windows

6.4 Forward Stepwise Selection

To improve on the penalized univariate variable selection, forward stepwise selection

can be used to decide which of the 41 significant CNA genomic-windows to include in

a multivariate model sequentially. We start with the model that contains the significant

clinical data, Stage-T, stage-N, and age with only one of the significant CNA genomic

windows as smoothing terms. The model is

h(t) = h0(t) exp
(
StageT + StageN + f(Age) + f1(CNAj)

)
, (6.4)

for each j is on our list of 41 significant CNA genomic-window in Table 6.8. We have

two smoothing parameters to estimate one each for age and the significant CNA vari-
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able. Let λ = 0.1 × exp(log(100)/nλ)
i for i = 0, . . . , nλ be a vector of values of the

smoothing parameter, and nλ = 20 is the length of the smoothing parameter. In prac-

tice, the smoothing parameter is often chosen by a grid search of the parameter space,

because we need to find global maxima in grid. However, gradient method are very

useful for convex optimization problems, which leads to select the smoothing parame-

ter more accuracy. The smoothing parameters λ1, λ2, for the first and second smooth-

ing terms in the model (6.4) are obtained separately using five-fold Cross-Validated

partial log-likelihood. In order to estimate two smoothing parameters λ1 and λ2 sepa-

rately, we used two-dimensional grid search for all possible pairs of the two smoothing

parameters λ1 and λ2. The values of the smoothing parameters λ1,opt and λ2,opt that

maximizing CVPL are selected.

Subsequently, the penalized additive Cox PH model that contains Stage-T, stage-

N, age and one significant CNA as smoothing terms with the optimal values of the

smoothing parameters are fitted with 5 equally spaced knots. Testing the hypothesis of

no effect of the smoothing terms is carried out using a penalized score test as described

in Section 5.6.1 for all covariates. The results of including only one significant window

of the CNA in the penalized additive Cox PH model that contains Stage-T, Stage-N and

age are presented in Table 6.9.

According to Table 6.9, model 31 has the smallest p-value, CNA9579 is the first

significant CNA genomic-window covariate included in the model.
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# chr window p-value # chr window p-value
1 chr1 108 0.001986 21 chr8 7264 0.001056
2 chr1 949 0.000382 22 chr10 8125 0.001503
3 chr2 1815 0.003874 23 chr10 8443 0.002914
4 chr2 1979 0.001871 24 chr11 8804 0.002765
5 chr2 2284 0.003728 25 chr11 8928 0.000223
6 chr3 2291 0.000128 26 chr11 9024 0.002302
7 chr3 2676 0.001571 27 chr11 9084 0.004603
8 chr3 3094 0.000109 28 chr11 9143 0.000325
9 chr3 3186 0.001683 29 chr12 9316 0.000463

10 chr4 3474 0.001529 30 chr12 9508 0.001101
11 chr4 3797 0.000432 31 chr12 9579 9.3× 10−05

12 chr4 4001 0.001435 32 chr12 9649 0.000425
13 chr5 4528 0.001183 33 chr12 9686 0.002184
14 chr5 4614 0.003752 34 chr12 9752 0.001297
15 chr6 5137 0.000806 35 chr13 10231 0.001498
16 chr6 5481 0.003395 36 chr13 10278 0.000477
17 chr7 6253 0.001174 37 chr14 10418 0.000517
18 chr7 6410 0.001543 38 chr15 10964 0.000961
19 chr8 6528 0.000548 39 chr16 11217 0.000426
20 chr8 6992 0.001091 40 chr17 11581 0.000539

41 chr19 12356 0.002509

Table 6.9: The result of p-value for testing each of the selected CNA in the multivariate
penalized Cox model.

To include the second covariate in the model, we fit the model with three smoothing

terms, the model is

hi(t) = h0(t) exp
(
StageT + StageN + f(Age) + f1(CNA9579) + f2(CNAj))

)
.

for each j is on the list of 41 significant CNA genomic-window in Table 6.8 except

CNA9579, and the optimal values of the smoothing parameters λ1, λ2, and λ3 for each

smoothing terms are obtained separately. This is can be done by three-dimensional

grid searching for all possible pairs of the three smoothing parameters. The smoothing

parameters λ1,opt, λ2,opt, and λ3,opt that maximizing the CVPL are selected. However,

λ1,opt from the three-dimensional searching does not change much compared to the

λ1,opt in the two-dimensional searching, this mean that we can fixed λ1 = λ1,opt ac-
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cording to the previous two-dimensional searching, and only searching for λ2, and λ3

that maximizing the CVPL. This reduces the computational time compared to three-

dimensional searching.

Once we have the optimal values of the smoothing terms λ1,opt, λ2,opt, λ3,opt, we

can calculate the penalized score test to select which of the remaining significant CNA

covariate can be added to the most improve model. The result of including the second

significant CNA covariate is presented in Table 6.10. We continue this process until

our model is not significant in terms of p-value.

# chr window p-value # chr window p-value
1 chr1 108 0.000161 21 chr8 7264 4.1× 10−05

2 chr1 949 9.6e× 10−05 22 chr10 8125 0.000137
3 chr2 1815 0.000621 23 chr10 8443 0.000316
4 chr2 1979 0.00018 24 chr11 8804 0.000448
5 chr2 2284 0.000138 25 chr11 8928 3× 10−05

6 chr3 2291 1.5× 10−05 26 chr11 9024 0.000242
7 chr3 2676 6.1× 10−05 27 chr11 9084 0.000188
8 chr3 3094 1.1× 10−05 28 chr11 9143 3.3× 10−05

9 chr3 3186 0.001143 29 chr12 9316 6.5× 10−05

10 chr4 3474 0.000335 30 chr12 9508 6.7× 10−05

11 chr4 3797 3× 10−05 32 chr12 9649 0.000378
12 chr4 4001 0.000135 33 chr12 9686 2× 10−06

13 chr5 4528 0.000108 34 chr12 9752 0.000251
14 chr5 4614 0.000206 35 chr13 10231 0.00011
15 chr6 5137 1× 10−05 36 chr13 10278 4.7× 10−05

16 chr6 5481 0.000111 37 chr14 10418 8× 10−06

17 chr7 6253 7.7× 10−05 38 chr15 10964 0.00019
18 chr7 6410 0.000251 39 chr16 11217 3.3× 10−05

19 chr8 6528 1.5× 10−05 40 chr17 11581 3.5× 10−05

20 chr8 6992 3.6× 10−05 41 chr19 12356 0.000425

Table 6.10: The result of p-value for testing each of the significant CNA genomic-
windows in the multivariate penalized Cox model.

The challenge here is how to estimate the smoothing parameters for each smooth-

ing terms separately in the model. We have fixed the smoothing parameter of the

smoothing terms that been in the model for several iterations, and we only search

for the last two smoothing parameters that are included in the model. Although this



Chapter 6. 145

process is time consuming, it is less time consuming the optimizing all 42 smooth-

ing parameters simultaneously. However, our approach is not ideal since we do not

search the entire possible parameter space. The 42-dimensional search were to com-

putationally demanding to be feasible in practice. Our approach is a pragmatic middle

ground between the impractical full search and the overly restricted assumption that

the smoothing parameters are the same for each smoothing terms.

This forward stepwise selection ended with 40 significant CNA genomic-windows

with p-value= 0.046. The final model can be written as

h(t) = h0(t) exp
(
StageT + StageN + f(Age) + f1(CNA9579) + f2(CNA9686)

+ f3(CNA8928) + f4(CNA2291) + f5(CNA10278) + f6(CNA949) + f7(CNA9143)

+ f8(CNA10964) + f9(CNA8125) + f10(CNA11217) + f11(CNA10418) + f12(CNA5137)

+ f13(CNA3474) + f14(CNA9752) + f15(CNA6528) + f16(CNA3797) + f17(CNA4001)

+ f18(CNA3094) + f19(CNA10231) + f20(CNA4614) + f21(CNA9508) + f22(CNA12356)

+ f23(CNA3186) + f24(CNA9024) + f25(CNA108) + f26(CNA6992) + f27(CNA2676)

+ f28(CNA9316) + f29(CNA8804) + f30(CNA9084) + f31(CNA9649) + f32(CNA1815)

+ f33(CNA5481) + f34(CNA2284) + f35(CNA8443) + f36(CNA6410) + f37(CNA4528)

+ f38(CNA1979) + f39(CNA11581) + f40(CNA6253)
)

(6.5)

The optimal smoothing parameter of age is equal to 0.100 and 1.928 degrees of

freedom, while the optimal values of the smoothing parameters for all the 40 significant

CNA are summarized in Table 6.11.

Using the optimal values of the smoothing parameters for each smoothing term in

the model (6.5), the estimate of the fixed effect parameter and their inferences can

be obtain, which are summarized in Table 7.8 in Section 7.6 for comparison with the

shrinkage variable selection approach later on.
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# Variable λopt # Variable λopt
1 9579 0.100 21 9508 0.630
2 9686 0.398 22 12356 0.630
3 8928 0.158 23 3186 0.630
4 2291 0.100 24 9024 0.630
5 10278 0.251 25 108 0.630
6 949 2.154 26 6992 0.630
7 9143 1.584 27 2676 0.630
8 10964 0.630 28 9316 0.215
9 8125 0.630 29 8804 0.630

10 11217 0.630 30 9084 0.630
11 10418 0.630 31 9649 0.630
12 5137 3.981 32 1815 0.630
13 3474 0.630 33 5481 0.630
14 9752 1.584 34 2284 0.316
15 6528 0.100 35 8443 0.215
16 3797 1.584 36 6410 0.630
17 4001 0.630 37 4528 0.630
18 3094 0.630 38 1979 0.630
19 10231 0.630 39 11581 0.630
20 4614 0.630 40 6253 0.630

Table 6.11: The optimal values of smoothing parameters λ for each of the significant
windows of the CNA in the multivariate penalized Cox PH model according to the sig-
nificant CNA genomic-windows ordering in the multivariate penalized Cox PH model.

Figure 6.4 shows the plot of the log hazard ratio of age versus age. The solid black

line is the estimated log hazard ratio for age, the dashed lines are the 95% point-wise

confidence band. The points indicate the number of observations on each individual

that were either censored or a failure. Figures 6.5, 6.6, 6.7, and 6.8 show equiva-

lent plots of the estimated log hazard ratio for each of the significant CNA genomic-

windows, x-axis represents the observed CNA genomic-window, and y-axis represents

the estimated log hazard ratio of the significant CNA genamic-window. The number

of the CNA window is shown in the legend.
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Figure 6.5: Plots of the estimated log hazard ratio for each of the significant window
of the CNA. The solid black line is the estimated log hazard ratio, the dashed lines are
the 95% point-wise confidence band. The points indicate the number of observations
on each individual that were either censored or a failure.
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Figure 6.6: Plots of the estimated log hazard ratio for each of the significant window
of the CNA. The solid black line is the estimated log hazard ratio, the dashed lines are
the 95% point-wise confidence band. The points indicate the number of observations
on each individual that were either censored or a failure.
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Figure 6.7: Plots of the estimated log hazard ratio for each of the significant window
of the CNA. The solid black line is the estimated log hazard ratio, the dashed lines are
the 95% point-wise confidence band. The points indicate the number of observations
on each individual that were either censored or a failure.
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Figure 6.8: Plots of the estimated log hazard ratio for each of the significant window
of the CNA. The solid black line is the estimated log hazard ratio, the dashed lines are
the 95% point-wise confidence band. The points indicate the number of observations
on each individual that were either censored or a failure.

Some of the plots of the estimated log hazard ratios for the significant CNA win-

dow showed a similar pattern, especially at the normal ploidy of one. However, these

significant CNA genomic-windows that have similar patterns are not correlated, which

means there are some windows in the genome have the similar effects on the survival

model.

Eight plots of the estimated log hazard ratios for the significant CNA genomic-

windows indicate the lower risk at ploidy one, which are f̂4(CNA2292), f̂9(CNA8125)

f̂15(CNA6528), f̂21(CNA9508), f̂28(CNA9316), f̂32(CNA1815), f̂33(CNA5481), and f̂38(CNA1979).

Twelve CNA genomic-windows indicate higher risk at ploidy one, which are shown in
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the plots of the estimated log hazard ratios of the following significant CNA windows,

f̂3(CNA8982), f̂5(CNA10278),f̂8(CNA10964), f̂10(CNA11217), f̂14(CNA9752), f̂20(CNA4614),

f̂22(CNA12356), f̂25(CNA108), f̂29(CNA8804), f̂34(CNA2284), f̂37(CNA4528), and f̂39(CNA11581).

Approximately linear pattern of the estimated log hazard ratio can be seen in the esti-

mated log hazard ratio for age, f̂12(CNA5137), f̂23(CNA3186). For testing for linearity

of these, we perform the penalized score test, as described in Section 5.6.1, we reject

the null hypothesis, so non of these significant CNA genomic windows have a linear

log hazard ratio estimate, the p-value is 0.023.

The cumulative hazard of the Cox-Snell residuals from the model fitting (6.5) is

plotted as part of the model diagnostics, which can be seen in Figure 6.9.
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Figure 6.9: The solid black line is the cumulative hazard of Cox-Snell residual from
the fitted the penalized additive Cox PH model (6.5), based on fitting the model with
40 significant windows from CNA and age as smoothing terms and the significant fixed
effect from the clinical characteristics, comparing to the identity dashed red line.

To ensure that all the 40 significant CNA genomic-windows are important in the

model, we try to add two more variable to evaluate the selecting of the forward se-
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lection process. Firstly we add one variable to the model equation (6.5), this variable

is one of the non-significant CNA genomic-windows. The resulting plot of the esti-

mated log hazard ratio for the non-significant CNA window is shown in Figure 6.10

(p-value= 0.310). Secondly, we also add one variable to the model (6.5), which is not

related to the survival time, let y ∼ N(0, 1), we include this variable to the model in

equation (6.5). This term is not significant p-value= 0.402; the plot of the estimated

log hazard ratio for y is shown in Figure 6.11.
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Figure 6.10: Plot of the estimated log hazard ratio for the non-significant window of
the CNA.
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Figure 6.11: Plot of the estimated log hazard ratio for y.

6.4.1 Cluster Analysis

After estimating the log hazard ratios for each of the continuous variables in the model

(6.5), cluster analysis can then be used to identify groups of significant windows of

the CNA that have similar log hazard ratio shapes at normal ploidy 1. For example,

the shape of the log hazard ratio of f̂32(CNA1815) in Figure 6.7 is similar to the log

hazard ratio f̂15(CNA6528) in Figure 6.6, but the location of the normal ploidy one is

different, so we can not consider them as a group. However, the shapes of the log

hazard ratios f̂30(CNA9084), f̂31(CNA9649), and f̂33(CNA5481) in Figure 6.7 are similar

at normal ploidy one, although they are from different chromosomes (Chr11, Chr12,

and Chr6 respectively), and from different regions, and different scales of the CNA

genomic-windows.

Before using clustering analysis on our final multivariate additive Cox PH model

that contain Stage-T, Stage-N, age and 40 significant windows of the CNA, we would

like to fit the model with correlated significant windows of the CNA. The first 11

neighboring significant windows of the CNA was fit using 5 equally spaced knots,
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with optimal values of the smoothing parameters. The model is

h(t) = h0(t) exp
(
StageN + StageT +

118∑
j=108

fj(CNAj)
)
.

The first 11 neighboring significant CNA genomic-windows are from Chromosome 1,

and they have the same scales of the CNA genomic-windows. The plots of the esti-

mated log hazard ratios for the 11 neighboring significant CNA windows are presented

in Figure 6.12. This can clearly be considered as one cluster.
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Figure 6.12: The plots of the estimated log hazard ratio of the first 11 significant
neighboring windows CNA.

Hierarchical clustering is the most common clustering method. In this method, sig-

nificant CNAs genomic-windows whose estimated log hazard ratio patterns are similar

across patients can be gathered into one cluster, taking into account the location of

the normal ploidy one. Each of the significant CNA genomic-window have a different
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scale of the observe significant CNA window, in order to cluster a group of the sig-

nificant CNA genomic-windows that have a similar shape of the log hazard ratio for

the significant CNA windows at ploidy one, we create selection points, and then we

evaluate the log hazard ratio for each significant CNA window using some of these

selection points to ensure that the estimated log hazard ratio share the similar shape at

normal ploidy one.

The minimum and maximum values of all the significant CNA genomic-windows in

model (6.5) are −2.255 and 11.031 respectively, these minimum and maximum values

are used to create the selection points by 0.05, so the length of this selection points

is 266 observations. Then we evaluate each of the estimate of the log hazard ratio at

some but not all of the selection points and NA otherwise, this can be recorded as a row

in matrix, where the number of rows is the number of the significant CNA genomic-

windows, which is 40, and number of columns is length of the selection points, which

is 266. Three different cluster method as used, the first method is that we compute the

Euclidean distance to perform the complete linkage.

The second method, we would consider a maximum weighted difference. For two

smoothing terms f̂1(x1) and f̂2(x2), which are observed at some but not all of the

selection points, we define the distance measure

d12 = max
i

|f̂1(x1i)− f̂2(x2i)|√
Var
(
f1(x1i)ii

)
+ Var(f2(x2i)ii

) ,
where the maximum is over all i such that both f(x1i) and f(x2i) are not NA. The third

method is described in Bozkus (2017). Complete linkage clustering is used for all the

different methods, which is used as explanatory tool that we use to suggest group ( in

this case, pairs) of CNA windows which seems to have similar effects. We are inter-

ested to see whether the result of the clustering is meaningful and interpretable. The

objective is to find any small cluster that have very similar shape of the estimated log

hazard ratio of the significant CNA genomic-windows at normal ploidy 1. As a result,
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some of the clusters are not necessarily show a consistent similar shape estimated log

hazard ratio of the significant CNA genomic-windows at normal ratio 1, while the other

clustering shows a consistent similar shape estimated log hazard ratio at normal ratio

1 between the significant CNA genomic-windows. For example Figure 6.13 shows

they are not necessarily similar to each other although they are found to be in the same

cluster. while Figure 6.14 shows a similar estimated log hazaerd ratio of the significant

CNA genomic-windows at normal ploidy 1 and they clustered together.
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Figure 6.13: The clusters of the log hazard ratio of the significant CNA genomic-
windows.
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Figure 6.14: The clusters of the log hazard ratio of the significant CNA genomic-
windows.

The common results from all three different types of clustering are presented in

Figure 6.15. As a result, there are seven clusters, each cluster is a pairs of two estimated

log hazard ratio that is have a very similar shapes of the estimated log hazard ratio at

ploidy one. Table 6.12 shows the seven clusters with the corresponding chromosome

for each significant CNA genomic-windows.

Cluster # Window Chr Cluster # Window Chr

1
6992 8

5
8804 11

9316 12 11581 18

2
4614 5

6
12356 19

4528 5 10278 14

3
10964 16

7
8125 10

11217 17 9508 12

4
9024 11
2676 13

Table 6.12: The seven clusters of the estimated log hazard ratio of the significant CNA
genomic-windows.
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Figure 6.15: The seven clusters of the log hazard ratio of the significant CNA genomic-
windows.

The estimated log hazard ratios for the significant CNA genomic-windows

f̂26(CNA6992), f̂28(CNA9316), f̂9(CNA8125) and f̂21(CNA9508) indicate the lower risk

at ploidy one, While f̂20(CNA4614), f̂37(CNA4528), f̂8(CNA10964), f̂10(CNA11217),

f̂29(CNA8804), f̂39(CNA11581), f̂22(CNA12356), and f̂5(CNA10278) indicate the higher

risk at ploidy one.
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6.5 Conclusion

In this chapter, we consider the inclusion of genome-wide CNA profiles as a smooth-

ing terms in the penalized additive Cox PH model, in addition to using the significant

clinical characteristics as fixed predictors. The genome-wide CNA profile had 13,256

genomic-windows. Including them all in the model would run into computational diffi-

culties. Therefore, we did a screening test using a generalized method of the univariate

selection described in Bøvelstad et al. (2007) to determine which of the CNA profiles

have the strongest effects on the survival time. This reduce the CNA profile to 1056

genomic-windows.

We have compared our penalized univariate variable selection method with Bøvelsted

et al’s univariate variable selection method. Our penalized univariate variable selection

method identifies more significant CNA genomic-windows than their univariate vari-

able selection method. The significant CNA genomic-windows identified some which

overlap with genes associated with Non-Small Cell Lung Cancer (NSCLC). Table 6.1

shows that some of these genes are related to NSCLC as found in previous studies, also

some of these genes have been found to be related to other types of cancer, in previous

studies, and we found other genes with no prior studies displaying any link to any type

of cancer.

We deal with the dependencies between the significant neighboring CNA genomic-

windows by defining a block of correlated windows, after finding a value of correla-

tion to use as a threshold. As a result we have a list of 41 significant CNA genomic-

windows. The smoothing parameter λ, for each smoothing terms is obtained separately

in the model using five-fold Cross-Validated partial log-likelihood. The results of the

forward stepwise selection method enable us to assess the significance of the clini-

cal characteristics as fixed predictors, and to identify the significant CNA genomic-

windows, that exhibit higher or lower risk at normal ploidy one. Clustering techniques

are used to express the similar log hazard ratio shapes of the significant CNA genomic-

windows across patients.
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Shrinkage Penalty Variable Selection

7.1 Introduction

The method of variable selection by shrinkage is based on penalizing coefficients in

the model, which leads to all of the spline coefficients for some variable being equal

to zero. Earlier papers on shrinkage methods for variable selection and penalized co-

efficients in the standard Cox PH model have been written by Van Houwelingen and

Verweij (1994); Tibshirani (1997); Fan and Li (2002); Segal (2006); Van Houwelingen

et al. (2006); Zhang and Lu (2007). The performance of univariate variable selection

method was compared with performance of shrinkage (using ridge and lasso regres-

sion), and of summary variable (using principal components regression (PCR), and

supervised principal components regression) by Bøvelstad et al. (2007). They con-

cluded that methods based on shrinkage, especially ridge regression, tend to perform

better than univariate variable selection.

Benner et al. (2010) presented various regularization methods for fitting the stan-

dard Cox PH model in high-dimensional cases. These regularization methods were

ridge, lasso, adaptive lasso, elastic net and SCAD; they recommend the use of lasso or

elastic net in data applications. The main advantage of using the ridge penalty in the

standard Cox PH model is to prevent degeneracy due to multi-collinearity of the co-

variates (Van Houwelingen and Putter, 2012), and using ridge penalty in the standard

161
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Cox model, as it is excellent at handling correlated predictors, is suggested by Simon

et al. (2011). In the case of the penalized additive Cox PH model, the lasso and ridge

penalties are not the right choice to use as the smoothing terms contain several spline

coefficents, so it is not practical to remove one spline coefficents out of the set of spline

coefficients for a given variable. We need to create a penalty that can shrink all spline

coefficients for one variable toward zero.

There is a lack of literature on methods of variable selection in the additive Cox PH

model. However, in the GAM setting Marra and Wood (2011) presented two effective

shrinkage methods and an extension of the nonnegative garrote estimator. The non-

negative garrote component selection of Breiman (1995) is used as an approach for

variable selection in Marra and Wood (2011). This method is based on estimating

the model parameters by ordinary last square (OLS) and subsequently shrinking the

parameters by non-negative factors. However, in order to obtain the OLS estimator,

the number of covariates has to be smaller than the number of observations, therefore

this method can not be used in high-dimensional data. In this chapter we present

a shrinkage methods for variable selection in the penalized additive Cox PH model

based on the shrinkage methods in Marra and Wood (2011).

This chapter is organized as follows. In Section 7.2, we present two shrinkage

approaches, the double penalty approach in Section 7.2.1, and shrinkage approach in

Section 7.2.2. A simulation study to assess the shrinkage approach is discussed in

Section 7.3. Selecting the optimal value of the regularization parameters is presented

in Section 7.4. The results and evaluation of the significant CNA genomic-windows

using the shrinkage approach are found in Section 7.6. A comparison between the

forward variable selection, which is discussed in Chapter 6, and shrinkage method is

presented in Section 7.7.
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7.2 Shrinkage Method

Discrete feature selection methods may not capture well the joint effect of the sig-

nificant CNA genomic windows. To overcome this problem, various regularization

methods can be used, which aim to maximize a penalized partial log likelihood with

a penalty accounting for the model shrinkage. A penalized partial log-likelihood is

expressed as

`pen(βλ) = `pl(β)− 1

2

p∑
j

λj

∫
[f ′′j (xj)]

2dxj, (7.1)

where `pl(β) is the partial log likelihood, and λ1, λ2, . . . , λp are the smoothing param-

eters. The derivation of an integrated square second derivative penalty is described in

Section 4.3.1. The j th penalty term can be expressed as

∫
[f ′′j (xj)]

2dxj = βTzjZ
T
j KjZjβzj,

whereZj is a semi-orthogonal matrix of size (nk+1)× (nk−1), and nk is the number

of the knots for the smoothing term, Kj is a squared matrix of the j th smoothing term

of size (nk + 1)× (nk + 1), with (e, f) element being 12|x∗je − x∗jf |3, and the first row

and column is equal to zero. A penalized partial log-likelihood is expressed as

`pen(βλ) = `pl(β)− 1

2

p∑
j=1

λjβ
T
zjZ

T
j KjZjβzj, (7.2)

As mentioned earlier in Chapter 5, the trade-off between the goodness of fit and

smoothness of the estimated model parameters is driven by the penalty term, which has

the form λjβ
T
zjZ

T
j KjZjβzj . However, even if λj goes to infinity, there is no guarantee

that any j th smoothing term is completely removed from the model. This removal of

the j th variable from the model corresponds to estimating the corresponding vector of

the spline coefficients, βzj , as 0.
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To shrink the whole smoothing term to zero, and perform automatic model selection

for the continuous covariates based on the values of the smoothing parameter, we need

to include a second penalty in the penalized partial log likelihood (7.2). This idea was

proposed in Marra and Wood (2011) for the GAM setting. The general idea is that the

penalty term can be decomposed into the sum of two components. The first component

is associated with the function in the penalty null space, and the second component is

associated with the function in the range space. As a result, the smoothing penalty

shrinks functions in the range space to zero if the smoothing parameter is big enough

without shrinkage the penalty null space, to shrink the whole smoothing term to zero

we need to penalized the penalty null space. However, the parametric components

in the penalized additive Cox PH model are not affected by this shrinkage selection

process. As a result in this method the estimation of the model coefficients and variable

selection can be carried out simultaneously.

7.2.1 Double Penalty Approach

The smoothing penalty matrix for the j th smoothing term is ZT
j KjZj , which is not a

full rank matrix of size (nk−1)× (nk−1). The eigen decomposition ofZT
j KjZj can

be written as,

ZTj KjZj = ΓjΛjΓ
T
j , (7.3)

where Γj is (nk − 1) × (nk − 1) matrix of eigenvectors, and Λj is a diagonal matrix

of eigenvalues, which contains one zero eigenvalue due to the radial basis penalty null

space. The second penalty can be formed as follows

K∗j = Γ∗jΓ
∗T
j , (7.4)

where Γ∗j is a matrix where columns are the eigenvectors corresponding to the zero

eigenvalues of Λj , and K∗j is the second penalty matrix of size (nk − 1) × (nk − 1)

for the j th smoothing term, where the diagonal of K∗j is the square elements of Γ∗Tj
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column that corresponding to the zero eigenvalues of Λj .

The double penalized additive Cox PH model can be expressed as

`dp(βλ,λ∗) = `pl(β)− 1

2

p∑
j=1

λjβ
T
zjZ

T
j KjZjβzj −

1

2

p∑
j=1

λ∗jβ
T
zjK

∗
jβzj. (7.5)

The second term in (7.5) penalizes only smoothing components in the range space, and

hence can shrink these to zero, while the third term in (7.5) penalizes only smoothing

components in the null space, and can shrink these to zero. Consequently, the sec-

ond term would penalize (towards zero) smoothing components representing departure

from straight line behavior, while the third term in (7.5) would penalize straight line

components to zero.

There are two smoothing parameters in the proposed double penalty procedure.

The first smoothing parameters λ is associated with the roughness penalty and the reg-

ularization parameters λ∗ is associated with second penalty. The smoothing parameter

λ > 0 balances smoothness of f(x), and λ∗ > 0 is a regularization parameters con-

trolling the amount of shrinkage used in the variable selection. However, maximizing

(7.5) is not practical as fitting each smoothing term requires to estimation of both λ

and λ∗.

7.2.2 Shrinkage Approach

Marra and Wood (2011) proposed a shrinkage approach as an alternative to the dou-

ble penalty method to avoid doubling the number of smoothing parameters that are

associated with each smoothing term. The shrinkage approach replaces the smoothing

penalty ZT
j KjZj by K̃j , where

K̃j = ΓjΛ̃jΓ
T
j . (7.6)

Here, Λ̃j is similar to Λj but we replace the zero eigenvalue by ε, where ε is a small
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value in proportion to the smallest positive eigenvalue of ZT
j KjZj . Hence,

λ̃jβ
T
zjK̃jβzj = λ̃jβ

T
zjΓjΛ̃jΓ

T
j βzj

= λ̃jβ
T
zjΓj


l1 0 0 . . . 0

0 l2 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0

ΓT
j βzj + λ̃jβ

T
zjΓj


0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . ε

ΓT
j βzj

= λ̃jβ
T
zjΓjΛjΓ

T
j βzj + λ̃jβ

T
zjεΓ

∗
jΓ
∗
j
Tβzj

= λ̃jβ
T
zj

(
ZjKjZ

T
j + εΓ∗jΓ

∗
j
T
)

︸ ︷︷ ︸
K̃j

βzj,

where Γ∗j is a matrix where columns are the eigenvectors corresponding to the zero

eigenvalues of Λj . This is equivalent to fixing λ∗j = ελ̃j , so each smoothing term

has one smoothing parameter that needs to be estimated. The penalized partial log-

likelihood is expressed as

`shrink(βλ̃) = `pl(β)− 1

2

p∑
j=1

λ̃jβ
T
zjK̃jβzj

= `pl(β)− 1

2
βTKshrinkβ

=
n∑
i=1

δi[Xiβ]−
n∑
i=1

δi log

 ∑
j∈R(ti)

exp[Xjβ]

− 1

2
βTKshrinkβ.

where Kshrink is the block diagonal matrix for the shrinkage penalty matrix for each

smoothing term in the model, Kshrink = diag(0, λ̃1K̃1, . . . , λ̃pK̃p). For given values

of smoothing parameters λ̃1, λ̃2, . . . , λ̃p, the penalized estimate for βλ̃ can be obtained

by using the Newton-Raphson algorithm.
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7.3 Simulation Study

In Section 5.5.2 we presented a simulation study to assess the performance of the

unpenalized additive Cox PH model with only one smoothing term. This simulation

study is used here to assess the effect of our shrinkage approach.

7.3.1 Simulation Setting

As in Section 5.5.2, for sample size n = 200, we define xi = i
n
× 2π for i = 1, . . . , n

as covariate vector, and the true smooth function is f(xi) = sin(xi). The algorithm in

Section 5.5.1 is used to generated survival times from the additive Cox PH model with

constant baseline hazard λEXP = 1. This generated data are such that approximately

17.63% of the observations were censored. The eigenvalues of the penalty matrix are

603.613, 73.304, 19.473, and 0. In the following scenarios, the simulated data are

modeled with 5 equally spaced knots.

1. Scenario 1: Fitting the penalized additive Cox PH model where ε is fixed, and

the smoothing parameter λ increases.

2. Scenario 2: Fitting the penalized additive Cox PH model where λ is fixed, and ε

increases.

3. Scenario 3: Fitting the penalized additive Cox PH model where λ increases, and

ε decreases to maintain a constant λ∗ = λε.

7.3.2 Simulation Results

To evaluate the impact of λ in the shrinkage approach, we fixed the value ε, then we

fit the shrinkage penalized additive Cox PH model with 5 equally spaced knots. For

zero values of ε, the un-shrunk penalty matrix is used, so as λ increases the estimated

log hazard ratio shrinks from the penalized curve to a straight line only. This straight

line is not shrunk to zero which can be seen in Figure 7.1 (a), where the solid black
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line is the unpenalized additive Cox PH model, and the dashed lines are the estimated

log hazard ratio for different values of λ. The values of the smoothing parameters are

shown in the legend. However, when ε > 0, the estimate of the log hazard ratio shrinks

to a straight line and then to zero as the value of the smoothing parameter λ increases.

On the other hand, the large value of ε will lead to the faster shrinks toward zero which

can be seen in Figure 7.1 (b), (c), and (d). Different values of ε help λ to shrink the log

hazard curve to a straight line and then to zero, this is raising the question which value

of ε do we choose? The optimal value of ε is discussed in Section 7.4.

To evaluate the impact of ε, we fixed the smoothing parameter λ and we change ε.

For the small value of the smoothing parameter λ, the estimated log hazard ratio is not

shrunk to a straight line, even if the value of ε increases, this can be seen in Figure

7.2 (a). The solid black line is the unpenalized additive Cox PH model, the dashed

lines are the estimated log hazard ratio for different values of ε. The values of the ε

are shown in the legend. However, for large values of the smoothing parameter λ and

large value of ε, the estimated log hazard ratio is shrunk fast to a straight line and then

to zero, which can be seen in Figure 7.2 (b), (c), and (d). We can see that, the value of

the smoothing parameter plays an important role for the shrinkage approach.

In order to evaluate the impact of both λ and ε, we fitted the penalized additive

Cox PH model with λε is fixed but varying λ and ε. Figure 7.3 shows the impact of

changing λ and ε, in this figure the solid black line is the unpenalized additive Cox PH

model, the dashed lines are the estimated log hazard ratio for different values of λ and

ε. The values of the λ and ε are shown in the legend. This is confirms that large values

of λ shrunk the estimated log hazard ratio to zero, even if ε is very small.
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Figure 7.1: Smoothing function estimates obtained applying the shrinkage approach
for fixing ε and increasing λ.
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Figure 7.2: Smoothing function estimates obtained applying the shrinkage approach
for fixing λ and increasing ε.
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Figure 7.3: Smoothing function estimates obtained applying the shrinkage approach
for increasing λ and decreasing ε and vise versus in the shrinkage approach.

7.4 Choosing the Optimal Value of ε

Marra and Wood (2011) suggest choosing ε to be a small relative to the smallest posi-

tive eigenvalue of the penalty matrix ZT
j KjZj to ensure that

βTzjZ
T
j KjZjβzj ≈ βTzjK̃jβzj.

This means we want the value to be small enough that extra penalization only has

effect when the penalty is already penalizing strongly toward the null space, but large

enough that the value of the penalty does not plateau for some range of the smoothing

parameter values before the null space penalization takes effect. To find the optimal

value of ε, we conducted the following simulation study.

7.4.1 Simulation Study

We conducted a simulation study to find the optimal values of ε in the shrinkage ap-

proach. In Section 7.3 we evaluated the impact of λ, ε, or both λ and ε. In this section
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we used this simulation study again, aiming to find the optimal values of smoothing pa-

rameter λ and ε that maximize the CVPL (5.24). Figure 7.4 shows the five-fold CVPL

values for different values of λ and ε. The optimal value of λ, ε and the corresponding

CVPL’s are λopt = 2, εopt = 0, and CVPL(λopt, εopt) = −452.842. The zero value of

ε means there is no linear relationship between the estimated log hazard ratio and the

covariate.

lambda

0

1

2

3

ep
si

lo
n

0

1

2

3

C
V

 partial log−likelihood

−454.0

−453.5

−453.0

−454.0

−453.8

−453.6

−453.4

−453.2

−453.0

Figure 7.4: Five-fold CVPL for different values of λ and ε.

The left panel in Figure 7.5 shows the five-fold CVPL for different values of λ at the

optimal value of εopt = 0. The red points represent the optimal smoothing parameter

λopt. The right panel in Figure 7.5 illustrates the five-fold CVPL for different values of

ε at the optimal value of λopt = 2. The red points represent the optimal values of εopt.
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(b) λopt = 2

Figure 7.5: (a) Five-fold CVPL for different values of λ at the optimal value of εopt = 0.
(b) Five-fold CVPL for different values of ε at the optimal value of λopt = 2.

The plots of the different estimated log hazard ratio at the optimal value of the

smoothing parameter λopt = 2, with different values of ε are presented in Figure 7.6.

The solid black line is the unpenalized additive Cox PH model, the dashed lines are

the estimated log hazard ratio for different values of ε. The values of ε are shown in

the legend.
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Figure 7.6: Plots of the estimated log hazard ratio at optimal values of λopt = 2 and
different values of ε.

7.4.2 Simulation Study Using Real Data

In this section we used the significant CNA genomic-windows data in order to find the

optimal value of ε. The results of obtaining the optimal value of ε for each univariate

penalized additive Cox PH model that includes one significant CNA genomic-windows

are summarized in Table 7.1. As result, the optimal values of ε is approximately equal

to the 10% of the smallest non zero eigenvalues. The optimal values of λ and ε for

univariate penalized additive Cox PH model for Age are zeros.
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# Chr Variable smallest non-zero eigenvalues λopt εopt
1 Chr 1 108 0.511 0.010 0.048
2 Chr 1 949 0.324 0.655 0.030
3 Chr2 1815 1.270 0.020 0.112
4 Chr2 1979 1.331 0.081 0.118
5 Chr2 2284 5.637 10.483 0.553
6 Chr3 2291 7.878 0.081 0.675
7 Chr3 2676 0.792 0.010 0.070
8 Chr3 3094 13.530 0.020 1.202
9 Chr3 3186 97.280 1.310 8.666

10 Chr4 3474 0.906 0.020 0.089
11 Chr4 3797 1.402 0.020 0.124
12 Chr4 4001 1.611 0.020 0.143
13 Chr5 4528 1.404 10.485 0.124
14 Chr5 4614 0.891 1.310 0.079
15 Chr6 5137 1.794 167.772 0.159
16 Chr6 5481 8.782 0.020 0.878
17 Chr7 6253 10.560 0.081 1.056
18 Chr7 6410 17.500 0.010 1.598
19 Chr8 6528 10.110 167.772 1.010
20 Chr8 6992 4.661 83.030 0.451
21 Chr8 7264 18.817 83.886 1.587
22 Chr10 8125 3.333 1.310 0.285
23 Chr10 8443 0.926 0.655 0.091
24 Chr11 8804 1.298 20.971 0.126
25 Chr11 8928 6.059 0.327 0.591
26 Chr11 9024 2.851 0.655 0.244
27 Chr11 9084 15.062 0.327 1.506
28 Chr11 9143 3.384 0.655 0.298
29 Chr12 9316 3.916 0.163 0.335
30 Chr12 9508 0.659 0.081 0.059
31 Chr12 9579 0.976 0.081 0.086
32 Chr12 9649 1.463 0.000 0.139
33 Chr12 9686 0.893 1.310 0.076
34 Chr13 9752 0.706 0.163 0.069
35 Chr13 10231 7.205 0.163 0.710
36 Chr14 10278 20.676 0.163 2.045
37 Chr15 10418 9.594 0.081 0.899
38 Chr16 10964 1.439 0.020 0.123
39 Chr17 11217 1.229 0.327 0.105
40 Chr18 11581 1.219 0.163 0.117
41 Chr19 12356 1.463 0.655 0.125

Table 7.1: The optimal values of smoothing parameters λ, and ε for each univariate
penalized additive Cox PH model.
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The result of only one univariate penalized additive Cox PH model will be presented

as an illustrative example.

One Smoothing Term in the Model

The model is

h(t) = h0(t) exp
(
f1(CNA108))

)
. (7.7)

The eigenvalues of the penalty matrix are 15.867, 1.927, 0.511, and 0, We choose a

range values of ε1 to be between zero and 20% of the smallest non-zero eigenvalue.

Two-dimensional grid searching is carried out to find the optimal values of λ1 and ε1

that maximize CVPL, which are λ1,opt = 0.010, ε1,opt = 0.048, and the corresponding

CVPL is −120.200. We note that, in this case the optimal value of ε1 is approximately

10% of the smallest non-zero eigenvalue of the penalty matrix (0.048/0.511 = 0.09).

The left panel in Figure 7.7 shows the five-fold CVPL for different values of λ1, the

red point represents the optimal smoothing parameter λ1,opt. The right panel in Figure

7.7 illustrates the five-fold CVPL for different values of ε1 at the optimal value of

λ1,opt = 0.0102. The red point represents the optimal values of ε1,opt. The magnitude

of change in CVPL due to changing ε1 is very small, as it can be seen in Figure 7.7(b).

The right panel of Figure 7.8 shows CVPL for different values of λ1 and ε1.
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(b) λ1,opt = 0.010

Figure 7.7: (a) Five-fold CVPL for different values of λ1 at the optimal value pf ε1,opt.
(b) Five-fold CVPL for different values of ε1 at the optimal value of λ1,opt = 0.0102.
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Figure 7.8: Five-fold CVPL for different values of λ and ε.
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Two Smoothing Terms in the Model

The second smoothing term is added to the model 7.7, the additive Cox PH model with

two smoothing term is

h(t) = h0(t) exp
(
f1(CNA108) + f2(CNA949))

)
. (7.8)

The smoothing parameter λ1,opt, and ε1,opt are kept fixed, and we only search for op-

timal values of λ2, and ε2 which maximize CVPL. The eigenvalues of the second

penalty matrix are 24.561, 2.982, 0.324, and 0. The range of values of ε2 is between

zero and 20% of the smallest non-zero eigenvalue. The optimal values of λ2, and

ε2 are λ2,opt = 0.655, ε2,opt = 0.030, with CVPL −118.829. The optimal value of

ε2,opt is approximately 10% of the smallest non-zero eigenvalue of the penalty matrix

(0.03/0.3240 = 0.09).

The left panel in Figure 7.9 shows the five-fold CVPL for different values of λ2 at

the optimal value of ε2,opt, the red point represents the optimal smoothing parameter

λ2,opt. The right panel in Figure 7.7 illustrates the five-fold CVPL for different values

of ε2 at the optimal value of λ2,opt = 0.655. The red point represents the optimal values

of ε2,opt. The magnitude of change in CVPL due to changing ε2 is very small, as it can

be seen in Figure 7.9(b). The right panel of Figure 7.8 shows CVPL for different values

of λ2 and ε2. When we switch the order for considering f1(CNA949) and f2(CNA108)

in equation (7.8), the optimal values of ε1 and ε2 are approximately equal to 10% of

the smallest non-zero eigenvalues of the penalties matrix. In practice it is difficult to

obtain the optimal values of each smoothing parameters and ε separately in the model,

we can fix each ε to be 10% of the smallest non-zero eigenvalue for each penalty

matrix separately, and only obtaining the optimal values of the smoothing parameters

separately in the model.
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(b) λ2,opt = 0.655

Figure 7.9: (a) Five-fold CVPL for different values of λ2 at the optimal value of ε2,opt.
(b) Five-fold CVPL for different values of ε2 at the optimal value of λ2,opt = 0.655.
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Figure 7.10: Five-fold CVPL for different values of λ2 and ε2.
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7.5 Real Data Analysis

7.5.1 Fit the Shrinkage Penalized Additive Cox PH Model with

One Smoothing Parameter

The basic idea of the shrinkage approach is that the variable selection can be carried out

in one single model. As a result in this method the estimation of the model coefficients

and variable selection can be carried out simultaneously. There are 41 significant CNA

genomic-windows out of 1056, each of these 41 significant CNA genomic-windows

represents a block. However, to apply the shrinkage approach to the significant CNA

genomic-windows simultaneously, we need to assume that the smoothing parameters

for each smoothing term will have the same value, and we fixed ε to be 10% of the

smallest non-zero eigenvalue for each penalty matrix separately.

Let λ = 10−5 × 2(i−1) for i = 1, . . . , nλ be a vector of values of the smoothing

parameter, and nλ = 30 is the length of the smoothing parameter. Plot of the five-fold

cross-validated partial log-likelihood as a function of the smoothing parameter λ is

given in Figure 7.11. The optimal value of the smoothing parameter is λopt = 83.88,

CVPL(λopt) = −118.23.
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Figure 7.11: The cross-validated partial log likelihood for the shrinkage approach.

The penalized additive Cox PH model is fitted with 5 equally spaced knots for each

smoothing term, and the optimal value of the smoothing parameter λ. This model in-

cludes Stage-T, Stage-N, age and 41 significant windows of CNA as smoothing terms.

It is easy to optimize the CVPL for one smoothing parameter, but it gives a very smooth

fit to all the significant CNA genomic-windows. As a result, the estimated log hazard

ratio for all the smoothing terms are fitted as a linear terms. In particular we keep only

27 significant CNA genomic-windows, and 14 CNA windows are removed from the

model, because the confidence band of these 14 CNA windows include f(x) ≡ 0, so

we can just plot a horizontal line at zero.

Figure 7.12 shows the estimated log hazard ratio for age. The estimated log hazard

ratios for all of the 41 significant windows of CNA are presented in Figures 7.13 - 7.16,

x-axis represents the observed CNA window, and the y-axis represents the estimated

log hazard ratio of CNA window. The solid black line is the estimated log hazard

ratio, the points indicate the number of observations on each individual that were either

censored or a failure. The dashed lines are the 95% point-wise confidence band. The

CNA genomic-windows number is shown in the legend.
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To overcome this over smoothed fit we will use forward variable selection, and esti-

mate the smoothing parameters for each smoothing term separately, which is discussed

in the following section.
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Figure 7.12: Plots of the estimate log hazard ratio for age. The sold black line is
the estimated log hazard ratio, the points indicate the number of observations on each
individual that were either censored or a failure. The dashed lines are the 95% point-
wise confidence band.
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Figure 7.13: Plots of the estimate log hazard ratios. The sold black line is the estimated
log hazard ratio, the points indicate the number of observations on each individual that
were either censored or a failure. The dashed lines are the 95% point-wise confidence
band. The CNA genomic-windows number is shown in the legend.
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Figure 7.14: Plots of the estimate log hazard ratios. The sold black line is the estimated
log hazard ratio, the points indicate the number of observations on each individual that
were either censored or a failure. The dashed lines are the 95% point-wise confidence
band. The CNA genomic-windows number is shown in the legend.
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Figure 7.15: Plots of the estimate log hazard ratios. The sold black line is the estimated
log hazard ratio, the points indicate the number of observations on each individual that
were either censored or a failure. The dashed lines are the 95% point-wise confidence
band. The CNA genomic-windows number is shown in the legend.
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Figure 7.16: Plots of the estimate log hazard ratios. The sold black line is the estimated
log hazard ratio, the points indicate the number of observations on each individual that
were either censored or a failure. The dashed lines are the 95% point-wise confidence
band. The CNA genomic-windows number is shown in the legend.
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7.6 Forward Stepwise Selection Using the Shrinkage

Approach

The aim of this section is to apply the shrinkage approach to the 41 significant CNA

genomic-windows, obtaining the smoothing parameters λ separately for each smooth-

ing term. The main question here is which variable should we include first in the

model; we include the most significant CNA genomic-windows based on the small-

est p-value from the penalized univariate variable selection, as described in Section

6.2.2. The order of the significant CNA genomic-windows based on their p-values are

presented in Table 7.2.

# chr window p-value # chr window p-value
1 Chr3 2291 0.013653 21 Chr3 2676 0.042087
2 Chr11 9143 0.023786 22 Chr12 9649 0.043065
3 Chr 1 108 0.027921 23 Chr2 2284 0.043557
4 Chr18 11581 0.029107 24 Chr4 4001 0.043624
5 Chr10 8443 0.029323 25 Chr19 12356 0.045674
6 Chr12 9316 0.029923 26 Chr3 3094 0.046057
7 Chr2 1815 0.032956 27 Chr11 8928 0.046315
8 Chr11 9024 0.033174 28 Chr3 3186 0.046428
9 Chr10 8125 0.033214 29 Chr2 1979 0.046475

10 Chr12 9579 0.033303 30 Chr7 6410 0.046685
11 Chr5 4614 0.033966 31 Chr6 5481 0.046758
12 Chr4 3797 0.034302 32 Chr12 9508 0.046966
13 Chr5 4528 0.034418 33 Chr16 10964 0.047407
14 Chr11 9084 0.035453 34 Chr12 9686 0.047636
15 Chr17 11217 0.037782 35 Chr11 8804 0.047742
16 Chr7 6253 0.038643 36 Chr8 6528 0.048067
17 Chr6 5137 0.040975 37 Chr15 10418 0.048141
18 Chr13 10231 0.041216 38 Chr4 3474 0.048623
19 Chr14 10278 0.041364 39 Chr8 7264 0.049593
20 Chr 1 949 0.041385 40 Chr8 6992 0.049689

41 Chr13 9752 0.049974

Table 7.2: The ordering of the significant CNA genomic-windows.
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We fixed ε for each smoothing term to be 10% for the smallest non-zero eigenvalue

of the penalty matrix. For the j th smoothing term, we fixed εj to be 10% of the smallest

non-zero eigenvalue of the j th penalty matrix. Let λ = 10−5 × 2(i−1) for i = 1, . . . , nλ

be a vector of values of the smoothing parameter, and nλ = 30 is the length of the

smoothing parameter, to obtain the optimal values of the smoothing parameters in the

model, we used two-dimensional grid searching. For the j th smoothing term term in-

clude in the model we chose (λj−1, λj) by two dimensional searching, with re-optimize

the previous λ. The optimal value (λj−1,opt, λj,opt) that maximizing CVPL are selected.

Basically, we used the same technique of estimating the smoothing parameters as we

did in Chapter 6. The final model is

h(t) =h0(t) exp
(
StageT + StageN + f(Age) + f1(CNA2291) + f2(CNA9143)

+ f3(CNA108) + f4(CNA11581) + f5(CNA9316) + f6(CNA4614)

+ f7(CNA3797) + f8(CNA4528) + f9(CNA9084) + f10(CNA10231)

+ f11(CNA10278) + f12(CNA949) + f13(CNA2676) + f14(CNA9649)

+ f15(CNA2284) + f16(CNA12356) + f17(CNA6528) + f18(CNA10418)
)
.

(7.9)

The p-value for testing of the null hypothesis there is no covariate effect of the smooth-

ing terms is equal to 0.0165. The optimal values of the smoothing parameter of age

λ = 0.163, and ε = 0.0007. The optimal values of the smoothing parameters, and ε for

the each of the significant CNA genomic-window in model (7.9) can be summarized

in Table 7.3.
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# window λopt ε # window λopt ε
1 2291 0.010 0.7878 10 10231 0.010 0.7205
2 9143 0.163 0.3384 11 10278 0.163 2.0676
3 108 0.010 0.0511 12 949 0.010 0.3247
4 11581 0.004 0.1219 13 2676 0.163 0.0792
5 9316 0.327 0.3916 14 9649 0.327 0.1463
6 4614 0.010 0.0891 15 2284 0.655 0.5849
7 3797 0.005 0.1507 16 12356 0.163 0.1463
8 4528 0.327 0.1404 17 6528 0.010 0.4869
9 9084 0.163 1.5062 18 10418 0.163 0.9594

Table 7.3: The optimal values of smoothing parameters λ for each of the selected
significant windows of the CNA in the multivariate shrinkage penalized Cox model.

Using the optimal values of the smoothing parameters for each smoothing term

in the model, the estimate of the fixed effect parameter and their inferences can be

summarized in Table 7.8 in Section 7.7 for comparison with the penalized univariate

selection method using forward variable selection. The effective degrees of freedom

for each smoothing significant CNA genomic-windows are summarized in Table 7.4.

# window edf # window edf
1 2291 2.020 10 10231 2.003
2 9143 3.657 11 10278 1.035
3 108 3.069 12 949 1.010
4 11581 3.216 13 2676 3.940
5 9316 3.956 14 9649 1.213
6 4614 1.859 15 2284 3.049
7 3797 3.414 16 12356 1.160
8 4528 1.495 17 6528 3.135
9 9084 2.468 18 10418 1.178

Table 7.4: The effective degrees of freedom for each smoothing significant CNA
genomic-windows.

The plot of the estimated log hazard for f̂(Age) is presented in Figure 7.17, the

solid black line is the estimated log hazard ratio, the points indicate the number of

observations on each individual that were either censored or a failure. The dashed

lines are the 95% point-wise confidence band. Figures 7.18 and 7.19 show the plots

of the estimated log hazard ratio for each of the 18 significant window of the CNA,



Chapter 7. 190

x-axis represents the observed CNA window, and the y-axis represents the estimated

log hazard ratio of CNA window. The solid black line is the estimated log hazard

ratio, the points indicate the number of observations on each individual that were either

censored or a failure. The dashed lines are the 95% point-wise confidence band. The

CNA genomic-windows number is shown in the legend.
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Figure 7.18: Plots of the estimated log hazard ratio for each of the significant window
of the CNA. The sold black line is the estimated log hazard ratio, the dashed lines are
the 95% point-wise confidence band. The points indicate the number of observations
on each individual that were either censored or a failure. The CNA genomic-windows
number is shown in the legend.
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Figure 7.19: Plots of the estimated log hazard ratio for each of the significant window
of the CNA. The sold black line is the estimated log hazard ratio, the dashed lines are
the 95% point-wise confidence band. The points indicate the number of observations
on each individual that were either censored or a failure. The CNA genomic-windows
number is shown in the legend.



Chapter 7. 193

The smoothing hazard ratio of Age, CNA10278, CNA949, CNA9649, CNA12356, and

CNA10418 exhibit a linear pattern, hence these terms can be replace in the model by lin-

ear terms. Two significant windows of CNA identify the lower risk at normal ploidy 1,

which are CNA2291, and CNA9316, while CNA108, CNA11581, CNA3797, and CNA10231

significant windows of CNA identify a higher risk at normal ploidy 1.

The cumulative hazard of the Cox-Snell residuals from the model fitting based on

Stage-T, Stage-N, age, and 18 significant windows of the CNA and as smoothing terms

in model (7.9) is plotted as part of the model diagnostics, which can be seen in Figure

7.20.

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Cox−Snell Residuals

E
st

im
at

ed
 C

um
ul

at
iv

e 
H

az
ar

d 
F

un
ct

io
n

Figure 7.20: Cumulative hazard of Cox-Snell residual, the solid line, from the shrink
additive Cox PH model fit, comparing to the identity line the red dashed line .

Some of the plots of the estimated log hazard ratios for the significant CNA window

showed a similar pattern, especially at the normal ploidy of one. However, these sig-

nificant CNA window that have similar patterns are not correlated, which means there

are some windows in the gene are have similar effects on the survival model.
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Hierarchical clustering is the most common clustering method. In this method, sig-

nificant CNAs genomic-windows whose estimated log hazard ratio patterns are similar

across patients can be gathered into one cluster, taking into account the location of

the normal ploidy one. Each of the significant CNA genomic-window have a different

scale of the observe significant CNA window, in order to cluster a group of the sig-

nificant CNA genomic-windows that have a similar shape of the log hazard ratio for

the significant CNA windows at ploidy one, we create selection points, and then we

evaluate the log hazard ratio for each significant CNA window using some of these

selection points to ensure that the estimated log hazard ratio share the similar shape at

normal ploidy one.

The minimum and maximum values of all the significant CNA genomic-windows in

model (6.5) are −2.255 and 11.031 respectively, these minimum and maximum values

are used to create the selection points by 0.05, so the length of this selection points

is 266 observations. Then we evaluate each of the estimate of the log hazard ratio at

some but not all of the selection points and NA otherwise, this can be recorded as a row

in matrix, where the number of rows is the number of the significant CNA genomic-

windows, which is 18, and number of columns is length of the selection points, which

is 266. Three different cluster method as used, the first method is that we compute the

Euclidean distance to perform the complete linkage. The second method, we would

consider a maximum weighted difference. For two smoothing terms f̂1(x1) and f̂2(x2),

which are observed at some but not all of the selection points, we define the distance

measure

d12 = max
i

|f̂1(x1i)− f̂2(x2i)|√
Var
(
f1(x1i)ii

)
+ Var(f2(x2i)ii

) ,
where the maximum is over all i such that both f(x1i) and f(x2i) are not NA. The third

method is described in Bozkus (2017). Complete linkage clustering is used for all the

different methods, which is used as explanatory tool that we use to suggest group (

in this case, pairs) of CNA windows which seems to have similar effects. We are

interested to see whether the result of the clustering is meaningful and interpretable.
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The objective is to find any small cluster that have very similar shape of the estimated

log hazard ratio of the significant CNA genomic-windows at normal ploidy 1. As a

result, some of the clusters do not necessarily show a consistent similar shape estimated

log hazard ratio of the significant CNA genomic-windows at normal ratio 1, while other

clustering shows a consistent similar shape estimated log hazard ratio at normal ratio 1

between the significant CNA genomic-windows. For example the top panel of Figure

7.21 shows the estimated log hazard ratios are not necessarily similar to each other

although they are found to be in the same cluster. while down panel of Figure 7.21

shows a similar estimated log hazard ratio of the significant CNA genomic-windows

at normal ploidy 1 and they clustered together.
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Figure 7.21: Two clusters of the estimated log hazard ratio of the significant CNA
genomic-windows.

The common results from all different type of clustering are presented in Figure
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7.22. Table 7.5 shows the six clusters with the corresponding chromosome for each

significant CNA genomic-windows.
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Figure 7.22: The six clusters of the estimated log hazard ratio of the significant CNA
genomic-windows.
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Cluster Window Chromosome

1
10278 14
949 1

2
4528 5
2284 2

3
9143 11
9649 12

4
108 1

4614 5

5
9316 12
2676 3

6
11581 18
3797 4

Table 7.5: The six clusters of the estimated log hazard ratio of the significant CNA
genomic-windows.

7.7 A Comparison between the Discrete Feature Selec-

tion and Shrinkage Feature Selection

The main objective of this section is to investigate and compare the use of the dis-

crete feature selection and shrinkage feature selection in the penalized additive Cox

PH model, where the clinical data are considered as fixed effect predictors, and the

41 significant CNA genomic-windows as a smoothing terms. In the case of fitting the

standard Cox PH model to the clinical data, Stage-T, Stage-N and age were significant

(p-value < 0.05); these variables were included in both variable selection methods.

In both discrete feature selection and shrinkage feature selection, no variable selection

have been applied to the clinical covariates. The variable selection methods are applied

to the high-dimensional CNA genomic-windows. A List of the 18 common significant

CNA genomic-windows by the order on the genome are presented in Table 7.6. There

are 23 significant CNA genomic-windows in the forward stepwise selection, which are

eliminated using the shrinkage approach.

For both methods, five-fold CVPL was used to obtain optimal values of the smooth-

ing parameters. Table 7.7 presents the optimal smoothing parameter values of each of
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# Chr #window # Chr # window
1 1 108 10 11 9084
2 1 949 11 11 9143
3 2 2284 12 12 9316
4 3 2291 13 12 9649
5 3 2676 14 13 10231
6 4 3797 15 14 10278
7 5 4528 16 15 10418
8 5 4614 17 18 11581
9 8 6528 18 19 12356

Table 7.6: List of the common significant CNA genomic-windows for both forward
variable selection and shrinkage selection.

the common significant CNA genomic-windows.

# Chr window forward shrinkage
λopt λopt ε

1 1 108 0.630 0.010 0.051
2 1 949 2.154 0.010 0.324
3 2 2284 0.341 0.655 0.584
4 3 2291 0.100 0.010 0.787
5 3 2676 0.630 0.163 0.079
6 4 3797 1.584 0.005 0.150
7 5 4528 0.630 0.327 0.140
8 5 4614 0.630 0.010 0.089
9 8 6528 0.100 0.010 0.486

10 11 9084 0.630 0.163 1.506
11 11 9143 1.584 0.163 0.338
12 12 9316 0.215 0.327 0.391
13 12 9649 0.630 0.327 0.146
14 13 10231 0.630 0.010 0.726
15 14 10278 0.251 0.163 2.067
16 15 10418 0.630 0.163 0.959
17 18 11581 0.630 0.004 0.121
18 19 12356 0.630 0.163 0.146

Table 7.7: List of the common significant CNA genomic-windows for both forward
variable selection and shrinkage selection.

Using the optimal values of the smoothing parameters for each smoothing term

in the two different approaches, the fixed effect parameters for both forward variable
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selection and shrinkage selection were estimated. Estimates of the fixed effect parame-

ters and their inferences using both methods can be seen in Table 7.8. This table shows

that Stage-T3 and Stage-N2 are statistically significant (p-value< 0.05). The estimate

of Stage-T3 is positive, which indicate that the larger tumour size increases the hazard

relative to the baseline Stage-T1. Likewise, the positive estimates of Stage-N2 suggest

that a wider spread of cancer to the lymph nodes increases the hazard significantly

relevant to the baseline Stage-N0. The estimated fixed effect parameters from fitting

the two approaches, both forward variable selection and shrinkage selection, are sim-

ilar in some aspect, and the confidence interval of the fixed effect parameters in both

approaches overlap. The p-values for the estimated fixed effect parameters are similar,

except Stage-N1 in the forward stepwise selection, which appears to to be significant.

However, additional investigations are needed on order to confirm our findings and

draw a final conclusions.

Predictor Estimate Exp Standard error Wald test p-value
without smoothing term

Age 5.311 202.585 1.558 3.409 0.001
Stage T2 0.150 1.162 0.302 0.499 0.618
Stage T3 1.800 6.052 0.576 3.123 0.002
Stage N1 0.345 1.411 0.284 1.212 0.225
Stage N2 1.336 3.804 0.478 2.797 0.005

with forward selection
StageT2 0.465 1.593 0.318 1.465 0.143
StageT3 2.207 9.087 0.591 3.736 0.000
StageN1 0.722 2.059 0.323 2.233 0.026
StageN2 1.887 6.602 0.498 3.790 0.000

with shrinkage selection
StageT2 0.115 1.122 0.304 0.378 0.706
StageT3 1.958 7.082 0.576 3.400 0.001
StageN1 0.144 1.154 0.288 0.499 0.618
StageN2 1.442 4.228 0.481 2.996 0.003

Table 7.8: Estimated values of the parameters on fitting additive Cox PH model for
both forward variable selection and shrinkage selection.

The models are not nested except in special cases, this excludes using the test statis-

tics for both forward variable selection and shrinkage selection of no effect of the age
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and significant CNA genomic-windows, the p-values are calculated for both forward

variable selection and shrinkage selection which are 0.0165, and 0.046 for shrinkage,

forward stepwise selection respectively. The likelihood function for both approaches

is different, this implies that likelihood based model selection criteria such as AIC can

not be used in this case.

To compare the estimated log hazard ratio of the two variable selection methods, we

plot the estimated log hazard ratio for the common significant CNA genomic-windows

for both methods for each significant CNA genomic-windows, which can be seen in

Figures 7.23 and 7.24, the red dashed line represent the estimated log hazard ratio for

each of the significant window of the CNA using forward stepwise selection, and the

black solid line represent the estimated log hazard ratio for each of the significant win-

dow of the CNA using shrinkage approach. The significant CNA genomic-windows

number are shown in the legend.
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Figure 7.23: The plot of the estimated log hazard ratio for each of the significant
window of the CNA using forward stepwise selection (red dashed line) and shrink-
age approach (black solid line).The CNA genomic-windows number is shown in the
legend.
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Figure 7.24: The plot of the estimated log hazard ratio for each of the significant
window of the CNA using forward stepwise selection (red dashed line) and shrink-
age approach (black solid line). The CNA genomic-windows number is shown in the
legend.



Chapter 7. 203

For both methods, we have the same conclusion about the estimated log hazard

ratios for three significant CNA genomic-windows, the significant CNA genomic win-

dows CNA108, and CNA11581 display a higher risk at ploidy one, while the log hazard

ratio estimate for CNA9316 shows a lower hazard at ploidy one. The shapes of the es-

timated log hazard ratio for most cases are different. This may be because the set of

variables in the two methods are different, and there may be correlation with combi-

nations of other variables. These different log hazard ratios for individual significant

CNAs genomic-windows need to be investigated further in order to achieve a better

biological understanding of the process.

Method based on shrinkage approach of significant CNA genomic-windows have

fewer variable compare to a forward stepwise selection, but the ”forward stepwise

leads to locally optimal model rather than the best model” Klein (2013) page 96.

7.8 Conclusion

In this chapter, two shrinkage approach are introduced, which are based on the shrink-

age approach explained in Marra and Wood (2011). The smoothing components can

be selected based on their smoothing parameter values. This shrinkage approach can

be carried out in one single model. However, obtaining one optimal smoothing param-

eter in the model by assuming that the each smoothing term have the same smoothing

parameter value leads to an over-smoothed model. Alternatively, a forward stepwise

method can be used, which allow us to obtain the optimal smoothing parameter value

for each smoothing component separately.

In addition to the methods that are described in this chapter, clustering techniques

are used to identify possible similar patterns of the significant genomic windows across

patients. Comparison between the desecrate feature selection (penalized univariate se-

lection) and shrinkage feature selection is presented in terms of the estimated fixed

effect parameters, and comparing the shapes of the log hazard ratio of these two dif-

ferent methods.
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Generally, for both prediction and interpretation, the shrinkage approach has the

better performance, because it is fit a method that includes fewer significant genomic

windows of CNA in contrast to the forward stepwise selection of the high dimension

of significant genomic windows of CNA.
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Conclusion and Future Work

8.1 Conclusion

The main objective of our thesis was to establish and develop statistical methods that

allows us to include the high-dimensional CNA genomic-windows in the Cox PH

model as smooth functions. In the literature, there are existing approach to include

the high-dimensional data in the standard Cox PH model, and no existing approach

in the additive Cox PH model. Different strategies have been proposed for modifying

the standard Cox PH model to deal with the high-dimensional setting. Some of these

strategies are based on feature selection which can be either discrete or shrinkage. Dis-

crete feature selection can be done by penalized univariate score test for each of the

CNA genomic-windows. Variable selection by shrinkage is based on penalizing coeffi-

cients in the model, which leads to all of the spline coefficients for some variable being

equal to zero. Identification of the nonlinear effect of the CNA genomic-windows en-

ables us to estimate more accurately a patient’s prognosis, and thus better determine

NSCLC survival time. We addressed our objective by achieving the following points:

• In Chapter 2, we reviewed the method of estimating the CNA of our lung cancer

dataset. The estimation of the CNA as ratio of tumour sample to the normal

sample are obtained from each patients, which are recorded as rows in a matrix,

205
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with dimension 85× 13253, where 85 is the number of patients and 13253 is the

number of CNA genomic-windows.

• In Chapter 3, we presented the standard Cox PH model with some related con-

cept, and we applied that to the clinical characteristics of the NSCLC data.

• Generalized Additive Models are presented in Chapter 4. We applied the logistic

GAM to the clinical characteristics of the NSCLC data with a binary response

variable.

• In Chapter 5, we presented a detailed discussion of new an extension to the

standard Cox proportional hazard model. We demonstrated the use of radial

basis function to represent the smoothing term in the additive Cox proportional

hazard models. The clinical characteristics are considered as fixed predictors,

and the genomic-wide CNA as smoothing terms in the model. The results of

the smoothing effect can be expressed in terms of the log hazard ratio curve.

Testing the hypothesis of no effect of the smoothing terms is carried out using the

penalized version of the test statistic. Our proposed model used a grid search to

select the optimal smoothing parameter value based on five-fold Cross-Validated

partial log-likelihood (CVPL).

• In Chapter 6, we described the discrete variable selection method, to select sub-

set of CNA genomic-windows that have a strong effect on the survival time. We

generalized the univariate selection method explained in Bøvelstad et al. (2007),

testing the CNA genomic-windows individually in the penalized additive Cox

PH model using the penalized score test. We dealt with the dependence struc-

ture of the neighboring significant windows by selecting the correlation values

between the significant CNA gemomic windows. We used the five-fold cross-

validated partial log likelihood to perform the choice of the smoothing parame-

ter. To improve the penalized univariate variable selection, we include the CNA

genomic-windows in a multivariate penalized additive Cox PH model sequen-
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tially, analogous to forward stepwise selection. Finally, a clustering technique is

used to identify the groups of the significant CNA genomic windows that have

the similar log hazard ratio shapes around normal ploidy one.

• Another methods of the variable selection based on the shrinkage approach de-

scribed in Marra and Wood (2011), are presented in Chapter 7. The smooth

component can completely removed from the model based on its smoothing pa-

rameter value. Simulation studies to assess the shrinkage approach are included.

The shrinkage approach is used for the variable selection of the significant CNA

genomics windows. We compared both methods, forward stepwise selection and

shrinkage selection.

8.2 Future Work

8.2.1 Selecting the Optimal Values of the Smoothing Parame-

ters

The smoothing parameter plays an important role in the regularization proce-

dure in the penalized additive Cox PH model. To choose the optimal values of

the smoothing parameter, we need to specify a range of possible value for the

smoothing parameters, and select the criterion in order to evaluate the model fit

corresponding to each value. In this thesis, five-fold Cross-Validated Partial Log-

likelihood (CVPL) procedure is performed for each value of the smoothing pa-

rameter, and the value of the smoothing parameter which maximizing the CVPL

is selected. Optimizing all the smoothing parameter in the high-dimensional

CNA genomic-windows is computational demanding, we only perform the two-

dimensional grid searching to select the smoothing parameters that maximize

CVPL. We fixed the smoothing parameter of the smoothing terms that been in

the model for several iterations, and we only search for the last two smooth-
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ing parameters that are included in the model. In the following subsection, we

present an example of four-dimensional searching.

Two Smoothing Terms in the Model Using 4 Dimensional Searching

The model is

h(t) = h0(t) exp
(
f1(CNA108) + f2(CNA949))

)
. (8.1)

We would like to obtain optimal values of λ1, λ2, ε1, and ε2 using a four di-

mensional grid searching. The eigenvalues of the first penalty matrix are 15.867,

1.927, 0.511, and 0, and the eigenvalues of the second penalty matrix are 24.561,

2.982, 0.324, and 0. Thus all possible values of ε1 and ε2 are between zero and

20% of the smallest non-zero eigenvalues that corresponding to the first and the

second penalty respectively.

The optimal values are λ1,opt = 1.310, ε1,opt = 0.05, λ2,opt = 0.655, ε2,opt =

0.034, and CVPL −121.702. The optimal values of ε1,opt, and ε2,opt are approxi-

mately 10% of the smallest eigenvalues of the second penalty matrix (0.034/0.34 =

0.10), (0.05/0.51 = 0.09).

Figure 8.1 represent the five fold CVPL values for different values of λ1 and

λ2. The red point represent the optimal values for both λ1 and λ2. Figure 8.2

show CVPL for different values of ε1 and ε2. The red point represent the optimal

values for both ε1 and ε2.
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Figure 8.1: Five-fold CVPL for different values of λ1 and λ2.
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Figure 8.2: Five-fold CVPL for different values of ε1 and ε2.

However, the value of λ1 is not maximizing CVPL. We increase the values of

possible values of λ1 and repeated the 4 dimensional grid searching, but again

we did not find a optimal value of λ1. Figure 8.3 represent the five fold CVPL

values for different values of λ1 and λ2. The red point represent the optimal

values for both λ1 and λ2. Figure 8.4 show CVPL for different values of ε1 and

ε2. The red point represent the optimal values for both ε1 and ε2.
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Figure 8.3: Five-fold CVPL for different values of λ1 and λ2.
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Figure 8.4: Five-fold CVPL for different values of ε1 and ε2.

We need to develop the effective algorithm that can obtain the optimal smoothing

parameters for each smoothing term separately.
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Appendix A

Significant CNA genomics windows

A.1 Significant CNA Genomics Windows in the Penal-

ized Univariate Selection

Chr total number number of windows
of windows significant window

Chr 1 1109 21 108-118
948-949
953-956

973
976
999
1075
1079

Chr2 1181 45 1815-1824
1840-1846
1903-1913
1979-1992
2282-2287

Chr 3 974 115 2291-2336
2341

2403-2410
2679-3102
3186-3221

229
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Chr total number number of windows
of windows significant window

Chr4 934 57 3474
3679-3697
3715-3716

3718
3794-3996
4001-4006

Chr5 873 12 4528-4533
4614-4620

Chr 6 839 77 5317
5157
5177
5181
5209

5213-5236
5481-5489
5507-5538
5798-5804

Chr 7 769 131 6253
6280
6284

6327-6341
6405

6410-6505
6513-6528

Chr8 708 66 6742-6754
6992-7009
7131-7137

7200
7264-7282
7378-7386

Chr 9 549 0
Chr 10 643 47 8125

8258-8269
8321
8323
8326

8443-8445
8526-8528
8543-8566

8568
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Chr total number number of windows
of windows significant window

Chr 11 655 109 8804-8806
888-8890
8928-8965
9024-9029
9070-9084
9119-9120
9143-9182

Chr 12 653 46 9316-9325
9508-9521

9538
9579-9598
9649-9654
9686-9691

9732
9752-9755

Chr 13 471 78 9002-9003
9911-9919
9945-9948

10218-10231
10278-10324
10351-10352

Chr 14 437 69 10418-10422
10517

10546-10553
10596-10619
10639-10644
10738-10762

Chr 15 394 77 10964-10967
10991-11011
11023-11050
11125-11147
11169-11170

Chr 16 381 25 11217-11220
11257-11358

11376
11448-11454
11473-11479
11565-11568
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Chr total number number of windows
of windows significant window

Chr 17 388 29 11581
11806

11808-11821
11827-11839

Chr 18 374 4 12104-12107
Chr 19 280 39 12356-12374

12391-12408
1242-12425

Chr 20 300 9 12614-12617
12882-12886

Chr21 174 0
Chr22 169 0
total 13253 1056
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A.2 The Common significant CNA Genomic-Windows

for both Univariate Variable Selection and Penal-

ized Univariate Variable Selection

Chr total number number of windows
of windows significant window

Chr 3 974 80 2300-2336
2403-2410
3190-3221

Chr 6 839 14 5175-5181
5209
5213

5217-5227
5229

Chr 10 643 12 8258-8269
Chr 11 655 30 9070-9076

9077
9079

9154-9174
Chr 13 471 2 10351-10352
Chr 15 394 13 11134-11147
Chr 17 388 11 11813-11821

11827-11829


