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Abstract 
 

Biofilms in drinking water distribution networks (DWDNs) are recognized as potential pathogen 

reservoirs. Recent experiments have found that biofilm can also act as precursors for the formation 

of disinfection by-products (DBPs). This project aimed to better understand the impact of the 

presence of biofilms and improve prediction of DBPs in DWDNs. To study the microbial significance 

of biofilms in water pipes, bacterial communities in biofilm and bulk water were identified in a DWDN 

in a tropical climate country. Drinking water and biofilms were characterised by physico-chemical 

parameters. Relationships between biotic, physico-chemical parameters and engineered factors 

(i.e., pipe age, material and diameter; and water age) were explored by the application of statistical 

tests. 

Additionally, improvement of DBP prediction in DWDNs was approached by modelling the role of 

biofilms as DBP precursors. Two models for predicting DBP formation potentials were developed 

from chlorination of cells and extracellular polymeric substances. The first model corresponded to 

stagnant conditions and a second more complex model was produced for transitional and turbulent 

flow. The models were implemented in the software COMSOL Multiphysics 5.2a and sensitivity 

analysis was carried out to screen the parameters influence on the response variables. 

Field-work assessment allowed determining that biofilms are richer habitats than bulk water. Pipe 

age, pipe material, water age, free chlorine, pH and temperature can be key to the composition of 

bacterial communities. Model simulations suggested that the important DBP exposure is related to 

dichloroacetronitrile, stagnant bulk, and slow flow. The microbial and chemical significance of 

biofilms is important in the context of climate change and developing countries because water 

managers can face multiple challenges under these conditions. Alterations of raw water properties, 

increasing occurrence of extreme weather events and poor capacity to mitigate such events may 

rise the chemical and microbiological risk associated to biofilms in DWDNs in tropical countries. 
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1 INTRODUCTION 

1.1 MOTIVATION 

The supply of water and sanitation services is one of the most effective strategies for reducing 

poverty around the world. The Sustainable Development Goals from the United Nations 

Organization include in the goal number 6: “Ensure availability and sustainable management of 

water and sanitation for all” (United Nations, 2015). However, preserving drinking water to 

consumers represents a challenge for water utilities, since technical and economic resources, 

appropriate knowledge and training, and adequate operation and maintenance (O&M) programmes 

are required to achieve this purpose. To respond to this challenge in the drinking water distribution 

networks (DWDNs) is an enormous task because several phenomena occur in the pipes such as 

biofilm growth, disinfection by-products (DBPs) formation, sedimentation, corrosion, discolouration, 

among others. Therefore, efforts must be addressed to minimize such phenomena and to find the 

balance between acute and chronic risk in drinking water supply. 

Once raw water is treated in water treatment plants (WTPs) for human consumption, DWDNs are 

used to transport drinking water to consumers. DWDNs are mainly composed by pipes, fittings, 

storage facilities, and back-flow prevention devices (NRCNA, 2006). In drinking water systems, 

treated water at the outlet of the WTPs is not sterile and still contains cells and organic matter. 

Then, microorganisms develop biofilms as a strategy to survive in DWDNs. Biofilms are habitats 

fixed to wet surfaces where live bacteria, archaea, fungi, and protozoa. The ability of some 

microorganisms to produce Extracellular Polymeric Substances (EPS) enables their attachment to 

surfaces in hostile environments (e.g., low nutrient concentrations, bulk flow, and presence of 

disinfectant). Other organisms can also adhere to the biofilm once this started forming (Wang et 

al., 2014; Fish et al., 2015; Srivastava and Bhargava, 2015). DBPs are the result of the reaction 

between disinfectants and natural organic matter (NOM), biofilms, anthropogenic contaminants, 

bromide, and iodide during the production and/or distribution of drinking water. Such reaction is 

driven by several factors such as pH, temperature, type and concentration of precursor and 

disinfectant, and contact time (Chowdhury et al., 2009).  

Biofilm and DBP formation has become a major concern in the operation of DWDNs since they can 

cause acute and chronic effects on human health. Biofilms can lead to corrosion, discoloured 

waters and odours; host pathogens which may be released to bulk water; detach and recolonize 

clean surfaces; act as precursors for the formation of DBPs, and consequently, contribute to 

disinfectant decay (NRCNA, 2006). In this line, biofilm modelling has shown a further development 
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in order to better understand phenomena which allow attachment, growing, detachment, and 

survival of cells, considering hydraulic and molecular conditions (Wang and Zhang, 2010a). 

On the other hand, it is widely accepted that DBPs have negative effects on human health as they 

have been identified as carcinogenic, teratogenic and mutagenic substances (WHO, 2008). The 

multiple factors involved in reactions between disinfectants and organic matter and the diverse 

nature of precursors has resulted in numerous DBP species; to date, 600 species have been 

identified (Hrudey, 2009). From those, chloroform and dichloroacetonitrile (DCAN) are approached 

in this project because the first DBP is the most abundant substance in the group trihalomethanes 

(THMs), which is one of the few DBP groups regulated around the world (Richardson et al., 2007). 

The second DBP is the most abundant substance in the group haloacetonitriles (HANs), which has 

not regulated yet and experimental tests on mice has shown that they are more toxic than regulated 

DBPs such as haloacetic acids (HAAs) (Muellner et al., 2007). In this line, DBP formation modelling 

has been developed to predict their concentrations by empirical models according to different 

environmental, hydraulic and chemical variables such as pH, temperature, residence time, 

disinfectant and bromide concentrations, and type and amount of precursors (Chowdhury et al., 

2009). 

Biological and chemical processes related to biofilms in drinking water pipes are described in Figure 

1-1. Recently, DBP formation in DWDNs has also been attributed to the reaction of disinfectants 

with biofilm matrix, which is mainly composed by intracellular organic matter, EPS, and other 

biomolecules (Wang et al., 2012c; Wang et al., 2013a; Xue et al., 2014). Therefore, recent 

experimental studies have focussed on the formation of DBPs from pure cells and heterogeneous 

biofilms, planktonic cells, and extracted EPS (Hong et al., 2008; Fang et al., 2010a; Fang et al., 

2010b; Wang et al., 2012c; Wang et al., 2013a; Wang et al., 2013b). Considering that biofilms act 

as DBP precursors and that most of the empirical models developed to date do not include the 

contribution of biomass to the bulk water concentrations of these substances, further research is 

required to define the role of drinking water biofilms into the formation of DBPs in distribution 

networks. The capacity of biofilms to act as both pathogen reservoir and DBP precursor was the 

driver behind this research. 
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Adapted from Prest et al. (2016) 

Figure 1-1. Chemical and biological processes occurring in water pipes 

 

1.2 PROBLEM DEFINITION 

Tropical climate is characterised by average temperatures higher than 18 °C, high precipitation, 

and then high humidity. In contrast to temperate weather, there are not seasons in tropical climate 

regions but periods of higher or lower precipitation (The British Geographer, 2017). Tropical climate 

region is located between the Tropic of Cancer and the Tropic of Capricorn (The British 

Geographer, 2017); it means Latino American, African and Pacific Ocean countries are located in 

this region. Furthermore, climate change has significantly impacted water availability, since 

extreme events as droughts and floods are more frequent and more severe in different regions of 

the world (Delpla et al., 2009). Then, it is important to highlight that less developed countries are 

more vulnerable to the consequences of extreme weather events but developed regions are also 

susceptible to them (Cann et al., 2012; Rataj et al., 2016). Thus, water supply in the developing 

world may represent a challenge under extreme weather conditions and economical limitations. 

Several factors can or may affect drinking water quality; the following describes some of them. 

According to Delpla et al. (2009), surface water quality has been especially affected due to 

temperature increase and the alteration of almost all physico-chemical equilibriums and biological 

reactions; therefore, rise of organic and inorganic micro-pollutants, dissolved organic matter, 

nutrients and pathogens is expected. Climate change could impact drinking water quality because 

of the rise of DBP concentrations with increasing water temperature; and elevated levels of turbidity 

and organic matter found in river waters during rainy seasons in tropical countries may deteriorate 

treatment performance, demanding more sophisticated technologies and, therefore, more 
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economical resources (Dearmont et al., 1998; Yorkshire Water, 2013; Hutton and Varughese, 

2016).  

In particular, inefficient performance of water treatment processes could lead to solids accumulation 

and biofilm and DBP formation in areas of DWDNs where flow velocity is low (end zones and 

storage/distribution tanks). Wen et al. (2014) showed that improving coagulation can restrict 

microbial regrowth in tap water by phosphate elimination in water treatment. This was concluded 

by testing conventional treatment with three different coagulants and enumerating microbes by flow 

cytometry. Microbial regrowth potential was identified by inoculation of bottled mineral water of 

filtered de-chlorinated water and addition of nutrients such as phosphate and carbon. Their results 

showed that coagulation was the crucial step for decreasing the microbial re-growth potential and 

producing phosphorous-limited water. Indeed, it is known that limiting nutrient content in treated 

water contributes to achieve bio-stability of the water. This procedure is used to limit carbon 

concentrations in mid-northern Europe (Hammes et al., 2010) and phosphate concentrations in 

northern Europe (Miettinen et al., 1997). 

In addition, events which compromise hydraulic and physical integrity of networks like water supply 

interruption, leakages repairs, and infrastructure replacements also promote solid accumulation 

and increase of nutrient concentrations (Propato and Uber, 2004; NRCNA, 2006; Vreeburg and 

Boxall, 2007). Although some authors argue that limiting particle accumulation and reducing 

assimilable organic carbon are the best way to preserve drinking water quality in DWDNs (Brettar 

and Höfle, 2008; Liu et al., 2013), other considerations like high variability of quality of surface water 

sources, improved performance of WTPs, loss of the physical integrity of DWDNs, and the ability 

of bacteria to grow in oligotrophic environments (Simões and Simões, 2013) should be recognized 

in planning and O&M of drinking water supply systems. 

Water treatment, including disinfection, is not completely effective to remove all biomass present 

in raw water and, as a result, treated water still contains viable microorganisms. Low velocities, low 

residual disinfectant concentrations, presence of nutrients, and biofilm-former microorganisms in 

bulk water together promote biofilm formation in all the components of a DWDN. Biofilm represents 

the large fraction of total biomass in drinking water (Abe et al., 2012). Figure 1-2 shows the existing 

relationships between factors that can lead to acute and chronic risk for consumers. Such risk is 

associated with bacterial re-growth and DBP formation. In addition, customer complaints to water 

utilities and regulatory agencies can occur due to changes in aesthetic characteristics and 

intermittence in the service (e.g., discoloured water, broken pipes). In summary, drinking water 

quality can deteriorate when the physical barrier (physical integrity) of the DWDNs is broken, 
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hydraulic changes occurs (hydraulic integrity), and physico-chemical and biological processes 

occur within the water pipes (water quality integrity). 

 
Figure 1-2. Issues arising in DWDNs 

 

Precisely, biofilms are a concern because they can promote corrosion of pipes, discoloured waters 

and odours; host pathogens which may be released to bulk water; detach and recolonize clean 

surfaces; be precursors of DBPs and, consequently, causing disinfectant decay (Lehtola et al., 

2004; Berry et al., 2006; Wang et al., 2012a; Pu et al., 2013; Wang et al., 2013a; Sun et al., 2014; 

Xue et al., 2014). Biofilm control has been oriented toward application of disinfection strategies 

(Berry et al., 2006; Simões and Simões, 2013) due to its role as pathogen reservoir (Wingender 

and Flemming, 2011). Several studies have investigated the effects of disinfectants on the structure 

of biofilms and survival of cells (Codony et al., 2005; Gagnon et al., 2005; Roeder et al., 2010). 

Even though there is evidence of DBP formation from the disinfection of biofilms and that EPS exert 

a protection barrier against disinfectants, recent studies still recommend to adjust operation 

parameters for disinfection considering appropriate doses of disinfectant in order to inactivate 

efficiently both biofilm and detached clusters (Xue et al., 2012; Xue et al., 2014; Prest et al., 2016).  

Drinking water quality in distribution networks is frequently threatened by several factors such as 

sudden variations of raw water quality, inefficient treatment, intrusion phenomenon, and routine 

maintenance practices (Figure 1-2). In order to preserve drinking water quality in the DWDNs, water 
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operators carry out regular practices such as flushing and pipeline cleaning, which are known as 

the simplest and most cost effective ways of reducing the risk of discolouration (Vreeburg and 

Boxall, 2007). The objective of flushing pipes is to remove, in a controlled way, soft deposits from 

a sector of distribution network; flushing can be effective in soft deposit removal in cast iron pipes 

(Lehtola et al., 2004; Vreeburg et al., 2008) but relatively ineffective in achieving biofilms 

detachment (Abe et al., 2012; Fish et al., 2012). 

DBP formation is another concern in the control of water quality in DWDNs because they have a 

negative effect on human health as they have been identified as potential carcinogenic, teratogenic 

and mutagenic substances (WHO, 2008). DBPs are the result of the reaction between oxidant 

substances, halogens and organic matter. There are more than 600 species identified to date 

(Hrudey, 2009), and they are commonly classified into two groups: carbonaceous and nitrogenous 

DBPs. The highest occurrence of DBPs is for chlorate, followed by chloroform, dichloroacetic acid, 

dibromoacetic acid, thichloroacetic acid, bromate, and chlorite (Richardson et al., 2007).  

Despite of the wide variety of DBP species, only THMs and HAAs (carbonaceous DBPs) are the 

regulated groups around the world (Richardson et al., 2007). DBP formation starts, under the 

presence of disinfectants, in water treatment and continues during distribution and storage, 

increasing with water age. This principle applies for THMs but not for unstable DBPs such as HAAs, 

since some species of this group are biodegradable and their concentrations can be lower at points 

where biological activity is high within DWDNs, such as areas with high residence time and low 

chlorine residuals (Tung and Xie, 2009). Similarly, DCAN is an unstable DBP species, which 

degrades under certain conditions of free chorine and pH. DCAN degrades in the absence of 

chlorine above pH 7and below pH 6.5. In the presence of free chlorine, DCAN degradation can be 

much faster in the condition of a pH of about 6–8.5 under low to moderate chlorine residuals 

(Reckhow et al., 2001). 

Considering that biofilms are present in every component of DWDNs and are DBP precursors; a 

particular interest has grown in the recent years in relation to DBP formation from disinfection of 

pure cells and heterogeneous biofilms, planktonic cells, and extracted EPS from pure cells. For 

example, studies of disinfection of microbial biomass from cyanobacteria and green microalgae 

(i.e., highly relevant in tropical climate countries) were undertaken to determine the yield of THMs 

and HAAs (Hong et al., 2008; Fang et al., 2010a; Fang et al., 2010b; Pu et al., 2013; Xie et al., 

2013), focusing on disinfection of surface water from reservoirs and water in pools and cooling 

towers.  
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In addition, EPS from planktonic pure cells, biofilm pure cells, and isolated drinking water biofilms 

have been tested after disinfection with chlorine and/or chloramines to quantify carbonaceous and 

nitrogenous DBPs (Wang et al., 2012c; Wang et al., 2013a; Wang et al., 2013b). Another focus of 

research has been developed by Yang et al. (2010) and Huang et al. (2012) towards quantification 

of nitrogenous DBPs from nitrogenous organic compounds since these DBPs are considered more 

toxic than carbonaceous DBPs (Muellner et al., 2007; Plewa et al., 2008). Doederer et al. (2014) 

also investigated this topic on disinfection of treated wastewater.  

These studies were based on laboratory tests and their results demonstrate that biofilms contribute 

significantly to the DBP formation in disinfection processes. However, more information is still 

required to determine parameters which allow mathematical simulation of this phenomenon in order 

to apply it to experiment design and DWDN operation. It is recognized that modelling could 

represent a less expensive tool when compared to experimental/field work and it allows testing 

different scenarios to predict and optimize processes. Finally, it is worth noting that biofilm and DBP 

modelling has been approached separately, resulting in the need for improving the development of 

DBP models that take into account the role of biofilms as DBP precursors. 

 

1.3 RESEARCH QUESTIONS, AIM AND OBJECTIVES 

Following the above discussion, the current document corresponds to a research project aimed to 

improve the understanding of biofilms presence in drinking water pipes by conducting a field work 

in a tropical climate country and developing a flow-coupled mathematical model to predict the 

contribution of biofilms to the DBP concentration in bulk water. This project addressed the gaps in 

knowledge related to (i) the type of bacterial communities present in real scale DWDNs, especially 

in tropical climates, and (ii) limited previous models that couples biofilms and DBPs together, 

principally under transitional and turbulent flow conditions. 

 

1.3.1 Research questions 

 Is there any correlation between hydraulic factors, water quality, biofilm properties, bacterial 

communities and total THMs concentrations in a tropical-climate DWDN? 

 What are the bacterial communities present in bulk water and biofilms of a tropical-climate 

DWDN? 

 What are the main parameters influencing the formation of DBPs under stagnation conditions? 
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 Can the interaction between these parameters be quantified? 

 How flow regime and pipe surface/volume ratio and biofilm characteristics affect the DBP 

formation in drinking water pipes? 

 Which are the practical recommendations for O&M of DWDNs in order to reduce the formation 

of DBPs, related to biofilms? 

 

1.3.2 Aim 

The aim of this project is to better understand the impacts on water quality from the presence of 

biofilms in DWDNs in tropical climate countries, with particular emphasis on their dual role as 

pathogen reservoirs and DBPs precursors, under transitional and turbulent flow conditions. 

 

1.3.3 Objectives 

1. To understand the current knowledge on drinking water quality associated with biofilms and 

DBPs, microbiological methods, and modelling. 

2. To identify the bacterial communities existing in biofilm and bulk water of a tropical-climate 

DWDN. 

3. To identify the interrelationship between hydraulic, physical, chemical and biological factors in 

a tropical-climate DWDN. 

4. To build a simple biofilm model in order to understand the basis of modelling the chlorination of 

biofilms, and the chloroform and DCAN formation potentials, under stagnation conditions. 

5. To develop a flow-coupled model to predict chloroform and DCAN formation from chlorination 

of biofilms in drinking water pipes. 

6. To provide practical recommendations on biofilm and DBPs control in drinking water networks, 

with a particular focus on tropical climate. 

 

1.4 GENERAL METHODOLOGY OF THE RESEARCH PROJECT 

The general methodological approach of the current research project is described in Figure 1-3. 

The starting point of this study was an extensive literature review to identify the gap on the study 

of biofilms and DBPs in drinking water. Then, the problem, research questions, aim, and objectives 

were stablished. In order to achieve such objectives, a field work and the development of one-

dimensional (1D) and two-dimensional (2D) models were carried out. The results of such work were 
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analysed and discussed in order to improve the understanding of the impact of the presence of 

biofilms and prediction of DBPs in DWDNs. 

 
Figure 1-3. Methodological approach of the current research project 

 

1.4.1 Structure of the thesis 

The current thesis is structured as it follows: 

 Chapter 2: Literature review. This chapter explains the basic concepts related to this study 

such as physical, hydraulic, and water quality integrity in DWDNs; water disinfection, biofilms, 

and DBPs. The literature review shows the evolution of research on biofilms and DBPs and 

focuses on the relationship between these two elements. Finally, this chapter presents the 

current gap related to such relationship and explains how this project intends to fill it. 

 

 Chapter 3: Field assessment of bacterial communities and their relationships with 

engineered factors. Here the identification of bacterial communities in bulk water and biofilms 

is presented. The relationships among biotic and abiotic properties of a tropical-climate DWDN 
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are defined by statistical tests, and the relationship between methylotrophic bacteria and total 

THMs concentrations is also explored. 

 

 Chapter 4: A simple biofilm disinfection model. This chapter presents the basics for 

developing a 1D model of biofilm chlorination, under stagnation conditions, and the consequent 

chloroform and DCAN formation. The parameter influence on the bulk concentration of these 

substances is also assessed, and the model is applied to plumbing building conditions. 

 

 Chapter 5: Modelling DBP formation from biofilm chlorination under hydrodynamic 

conditions. The simple biofilm model built in Chapter 4 forms the basis for the extended 2D 

model, flow-coupled developed here. This chapter evaluates the influence of parameters such 

as Re, flow regime, pipe surface to volume ratio (S/V), and water quality on the mass transfer 

of dissolved substances through the biofilm surface. 

 

 Chapter 6: General discussion, implications and applications. Here the results obtained in 

Chapters 3, 4, and 5 are discussed together and their implications are reported in the context 

of climate change and human health. Special focus is brought into the practicalities of the results 

in the water industry. 

 

 Chapter 7: Key findings, conclusion and future research. This final chapter summarize the 

main findings of the current research project, presents a general conclusion linked to the aim 

and mentions potential areas for further investigation. 
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2 LITERATURE REVIEW 

2.1 INTRODUCTION 

The current research project was described in the previous chapter, including the problem 

identification and objectives. In order to identify the research gaps in current knowledge on biofilm 

and DBP research, the current chapter outlines a conceptual framework to physico-chemical and 

biological processes occurring in DWDNs, with special focus on biofilms, DBPs, and modelling. 

 

2.2 PHYSICAL, HYDRAULIC AND WATER QUALITY INTEGRITY OF DRINKING 

WATER DISTRIBUTION NETWORKS 

The preservation of water quality for the consumers is a major challenge for utilities, and the origin 

of substantial changes in the DWDN must be understood in order to reach a suitable performance 

in O&M. Those changes can be associated with different events which affect the physical, 

hydraulic, and water quality integrity such as cross-connections, leakages, metal leaching, pipe 

corrosion, residual disinfectant loss, formation of DBPs, bacterial regrowth, turbidity fluctuations, 

inadequate network construction, and maintenance and repairs (Kirmeyer et al., 2001). 

As a result, water contamination sources in DWDNs are generally studied to identify potential health 

risks and strategies for future investments and operation and maintenance activities. Because of 

this, the USA National Research Council established that maintaining the physical, hydraulic, and 

water quality integrity in DWDNs is necessary to preserve water quality, considering that the 

networks can be less vulnerable to contamination than contamination of surface water sources 

(NRCNA, 2006), but reducing risks could be more difficult if they became contaminated (Stevens 

et al., 2004).  

 

2.2.1 Physical integrity of DWDNs 

Physical integrity of DWDNs applies to the primary physical barriers used to avoid the entry of 

external contaminants to the distribution network resulting in poor water quality. Those barriers 

comprises mains, services lines, and premise plumbing; fittings (crosses, tees, ells, hydrants, 

valves, and meters); storage facilities (service reservoirs and storage tanks); and back-flow 

prevention devices (NRCNA, 2006). The loss of physical integrity is related to corrosion (Kettler 

and Goulter, 1985; Ahmadi et al., 2013); biodegradation (Wang et al., 2011); missing cover of 
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storage facilities (USEPA, 2002b); unsanitary activity during construction, replacement, or repair of 

pipes and fittings (RSPH et al., 2017); among others (NRCNA, 2006). According to the NRCNA 

(2006), the loss of physical integrity is mainly due to material failure as a result of its alteration, and 

absence and improper installation of the barrier. Material modification can be related to chemical 

interactions between the materials and the surrounding environment, eventually leading to holes, 

leaks, and other breaches. Material collapse can be accelerated by high water pressure and stress 

on pipes, and during natural disasters (NRCNA, 2006).  

Losing the physical integrity of the system affects the water quality by the introduction of microbial 

and chemical contaminants, debris, and particulate matter into the distribution system, sometimes 

accompanied by changes in aesthetic characteristics (i.e., water colour, turbidity, taste, and odour). 

However, aesthetic changes do not always represent a direct health impact (NRCNA, 2006). 

Strategies such as monitoring, prediction and prevention of failures; disinfection of new pipes; 

design and implementation of protocols for leakage repairs and accessories and pipeline 

replacements, and inspections are recommended to maintain the physical integrity of DWDNs 

(RSPH et al., 2017). In addition, maintenance activities such as proper material selection, corrosion 

control, avoiding permeation, cleaning and inspection of storage facilities, and cross-connection 

control should also be implemented (NRCNA, 2006). 

Water supply interruption and environmental damage due to wasting water are the immediate 

repercussions of leakages. They can impact customers’ perception on water companies and their 

own water saving strategies (CCWater, 2013). The Consumer Council for Water in the United 

Kingdom (UK) promotes the reduction of leaks in DWDNs in order to keep high levels of customer 

satisfaction and reduce negative environmental impacts. The latest report for water companies in 

England and Wales “Diving into Water 2011-12 to 2015-16” informed about the change of trend: 

industry-wide leakage levels were rising since 2011-12 but more recently it was found a reduction 

of 1.4% in leakage levels for 2015-16 (CCWater, 2013). 

Despite of the immediate consequences of leakages, the most serious effect is the negative impact 

on water quality. Therefore, strategies to reduce their number include setting leakage targets; 

replacement of pipelines with cast iron and stainless steel pipes (Farley, 2015); however, others 

recommend plastic materials over metal considering biological aspects of drinking water quality 

(Fish et al., 2016). Additionally, changing water management by installing water meters and 

controlling losses; reducing pressure transients and stress in the pipe network by setting valve 

operations, pumping routines and pressure management to operate at the optimum level (pressure 

districts); real time monitoring; smart asset management by identifying leaks as soon as they 
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propagate; integrated data management by handling “big data”; and researching to reduce the risk 

of failure of plastic pipes (polyethylene) (Farley, 2015). 

 

2.2.2 Hydraulic integrity of DWDNs 

Hydraulic integrity refers to the maintenance required to keep a desirable water flow, water 

pressure, and water age, taking both potable water and fire flow provision into account. Generally, 

big cities have centralised drinking water supply systems and continuous service provision. 

However, extreme weather events such as droughts and heavy rain are impacting the normal 

operation of WTPs and, therefore, impacting drinking water quality (Khan et al., 2015). Such 

impacts can lead to water interruption supply in developing countries as reported by Montoya et al. 

(2011) in Colombia, but in industrialised countries like the USA and Australia main concerns are 

more related to changes in the quality of water sources and subsequent formation of DBPs (Water 

Research Foundation, 2014; Raseman et al., 2017). Similarly, water scarce areas have drinking 

water supply systems which must be operated intermittently (Kumpel and Nelson, 2016). This 

irregular operation of DWDNs can cause pressure transients, changes in flow regime, and backflow 

(NRCNA, 2006; Kumpel and Nelson, 2016), which can lead to water quality deterioration. 

Water demand is the driving force for the operation of DWDNs. Due to its stochastic nature, 

operation of DWDNs requires an understanding of the amount of water being used, where it is 

being used, and the temporal variation of water consumption (NRCNA, 2006). For instance, water 

age is a factor related to the hydraulic design of the system and directly influences water quality 

(USEPA, 2002a). One of the most commonly acknowledged effects of increasing water age is the 

decay of disinfectant residuals such as chlorine and chloramines. DWDN operators are commonly 

committed to keep residual concentrations of disinfectants in the networks, but very often none or 

very low concentrations of disinfectant can be found in locations at the farthest distances from the 

actual WTP, along with an increment of DBP concentrations such as THMs (USEPA, 2002a). 

Low flow velocities in pipes create long travel times, resulting in pipe sections where sediments can 

accumulate and microorganisms can form biofilms (USEPA, 2002a). Long detention times can also 

greatly reduce corrosion control effectiveness by reversing blended metha- and poly-phosphates 

to orthophosphates with time (i.e., as they tend to hydrolyse) and increasing their concentration in 

bulk water; orthophosphates are less effective as corrosion inhibitors (USEPA, 2002a). The need 

for pH control is another consequence of high water age, since the interaction between water and 

cement linings significantly increases pH; unstable, soft, low-mineralized waters can revert to 
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untreated water pH conditions by the time the water reaches the point-of-use tap (USEPA, 2002a). 

Thus, reducing water age is important to maintain the hydraulic integrity of the system (USEPA, 

2002a; NRCNA, 2006). 

Factors causing loss of hydraulic integrity include pipe deterioration, pressure transients and 

changes in flow regime, hydraulic changes during maintenance and emergencies, tuberculation 

and scale, inadequate operational control of DWDNs related to the lack of focus on water-quality-

related issues. Several procedures can be applied to maintain and/or recover the hydraulic integrity 

of DWDNs such as providing alternative water sources, managing pressure zones, using devices 

for surge protection, flushing water mains, maintaining sufficient mixing and turnover rates in 

storage facilities, and cleaning pipes (NRCNA, 2006). 

For instance, it is advisable to divide a new or existing DWDN into pressure zones when pressure 

differentials in relation to minimal and maximal values are outside of their desirable values 

(NRCNA, 2006). Pressure zones are created by installation of closed valves, and pressure-

regulating valves are placed between the zones to improve reliability and stretches of new pipe are 

used to eliminate dead ends (NRCNA, 2006). Adequate pressure zones will reduce leaks by 

properly controlling pressure fluctuations, breaks, and pumping costs; improving reservoir turnover 

rates; and avoiding over-pressured systems (NRCNA, 2006), which can lead to reduce pipe 

leakages. However, pressure districts or sectorization can also lead to deterioration of drinking 

water quality since they reduce the network redundancy, increase the probabilities of sediment 

resuspension, and promote the deterioration of drinking water quality due to the increase of number 

of dead zones and water age (Grayman et al., 2009; Di Nardo et al., 2013; Wright et al., 2014) . 

Pipe flushing is considered a maintenance activity aimed to eliminate loose deposits and poor-

quality water accumulated mainly in dead ends. This procedure can be conducted by conventional 

or unidirectional flushing. Conventional flushing consists simply in opening one or more hydrant 

valves to let sediments be washed out of the distribution network. In unidirectional flushing water 

flow is increased in a specific “dirty” pipe by cutting off flows in other segments of the network and 

increasing scouring velocities (to 1.5 – 3.0 m/s), with the resulting effect of flushing out sediments, 

biofilms, corrosion products, and tuberculation (Antoun et al., 1999). Although, unidirectional 

flushing requires more labour, equipment, data collection, and appropriate measures to dispose 

disinfected water, it is more efficient and uses on average 40 percent less water than conventional 

flushing (Barbeau et al., 2005). 

Storage tanks or service reservoirs are used in the DWDNs to provide disinfectant contact time, 

water reserve, and pressure regulation. Poor design and/or operation of storage facilities can 
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promote insufficient mixing and consequently increase water age, which promotes DBP formation, 

losing disinfectant residual, microbial regrowth, organoleptic alterations and water recontamination 

in the network (USEPA, 2002b). Montoya et al. (2012) and Montoya-Pachongo et al. (2016) 

recommended to promote mixing times in service reservoirs to be higher than the duration of filling 

times, reduce minimum water levels, avoid thermal stratification, increase turnover rates, and 

change inlet configuration in order to increase jet momentum to impact positively water quality 

stored in service reservoirs.  

 

2.2.3 Water quality integrity of DWDNs 

Water quality integrity refers to the maintenance of finished water quality via prevention of internally 

derived contamination. It was already explained how issues with physical and hydraulic integrity 

may result in deterioration of water quality; however, this can also occur even in the absence of 

external contamination events due to transformations which take place within pipes, tanks, and 

premises plumbing (NRCNA, 2006). The factors that affect water quality integrity include biofilm 

growth (Srivastava and Bhargava, 2015), nitrification (Lipponen et al., 2002), leaching substances 

from network materials (WHO, 2008), internal corrosion (WHO, 2008), scale formation and 

dissolution (Peng et al., 2010), disinfectant loss (WHO, 2008), and DBP formation (WHO, 2008). 

The core focus of the research work reported herein is on biofilms and DBP formation; therefore, 

these subjects will be discussed in depth in the following sections.  

Biological nitrification is a process in which nitrifying bacteria oxidize reduced nitrogen compounds 

(e.g., ammonia) to nitrite and then nitrate (Lipponen et al., 2002). It is associated with long retention 

times in distribution systems practicing chloramination (NRCNA, 2006). However, nitrification 

potential has also been identified in chlorinated and non-disinfected DWDNs, but no correlations 

between retention times and occurrence of nitrifying bacteria has been identified, as reported in a 

study conducted in Finland covering 15 DWDNs from eight towns (Lipponen et al., 2002). One of 

the most important problems exacerbated by nitrification is loss of the chloramine disinfectant 

residual (NRCNA, 2006). In addition, all materials in the DWDN leach substances into the water, 

which can alter the taste and odour of drinking water. For instance, leaching lead from lead-pipes 

can represent a substantial health risk (NRCNA, 2006; WHO, 2008).  

Internal corrosion manifests as the destruction of metal pipe interiors by both uniform and pitting 

corrosion, which can lead to accumulation of scales. The latter one can also be formed by the 

precipitation of some metals dissolved in bulk water as a consequence of changes in water pH and 
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redox potential. Corrosion and scaling in pipes offer higher surface area for biofilm growth, which 

can be detached changing the organoleptic characteristics of bulk water (NRCNA, 2006). To 

preserve drinking water quality, it is necessary to monitor it and carry out adequate O&M to prevent 

or solve any case of water quality integrity loss (WHO, 2005). Monitoring water quality can include 

the installation of on-line monitoring devices for conductivity, chlorine, pH, turbidity, and 

temperature; and surveillance of biological quality indicators in both biofilms and bulk water with 

emphasis on opportunistic and pathogenic organisms and other microorganisms associated with 

them (e.g., amoebas, Cryptosporidium, Staphylococcus, etc.) (NRCNA, 2006).  

In addition, the NRCNA (2006) stated that drinking water can serve as a transmission vehicle for a 

variety of hazardous agents such as enteric microbial pathogens from human or animal faecal 

contamination (e.g., noroviruses, E. coli O157:H7, Cryptosporidium, fungi like moulds and yeasts), 

aquatic microorganisms that can cause harmful infections in humans (e.g., nontuberculous 

mycobacteria, Legionella), and toxins from aquatic microorganisms such as cyanobacteria (Fan, 

2012; Badar et al., 2015). In addition, some aquatic invertebrates have organoleptic and clinical 

importance because can alter the turbidity of drinking water and serve as transport hosts for 

pathogenic bacteria (e.g., free living amoeba and bacteria Legionella) (Lau and Ashbolt, 2009). 

Such organisms have been found in bulk water from WTPs, main pipelines (Wolmarans et al., 

2005), and premise plumbing (Buse et al., 2013). 

According to WHO (2005), monitoring can be defined as “the act of conducting a planned series of 

observations or measurements of operational and/or critical limits to assess whether the 

components of the water supply are operating properly.” This kind of monitoring involves design 

and application of corrective actions in order to amend the deviation and maintain water quality in 

the short and long term (WHO, 2005). The drinking water surveillance could be achieved by 

traditional methods (water sampling by fixed stations) (Montoya et al., 2009) or computational 

applications (real-time operation) (Perelman and Ostfeld, 2013); however, both methods may be 

based on new technologies of both software and hardware. Although their application seems to be 

sophisticated, these could be applied in large cities of developing countries if adequate knowledge, 

training and funding are provided. However, developing countries still need to deal with prov iding 

treatment facilities and increasing coverage of water supply in rural areas and small towns; 

therefore, in the meantime, real-time monitoring of drinking water quality may be mainly affordable 

for large DWDNs. 

Procedures such as reduction of organic matter content and nutrients in WTPs; cleaning pipes by 

flushing; controlling corrosion by appropriate selection of materials and maintaining suitable 
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chemical conditions of water; and keeping appropriate concentrations of residual disinfectant, 

taking into consideration a balance between acute and chronic health risk, can be carried out to 

directly control water quality (NRCNA, 2006). In summary, physical, hydraulic, and water quality 

integrity are closely interrelated, which reflects the complexity of DWDNs and their O&M. The main 

purpose of a water company is to deliver drinking water to the consumers with appropriate amount 

and quality. This firstly requires to know in detail the distribution system itself (infrastructure and 

operation), to monitor the most influencing factors on water quality, and to apply simultaneously 

procedures to preserve it (NRCNA, 2006). This demands adequate technical and administrative 

structure of the water company, where the different departments sustain fluent communication 

channels for planning, decision making, and supporting to each other. 

 

2.2.4 Plumbing systems 

The last component of the water supply chain is the plumbing systems. Plumbing premises 

comprise health and education institutions, private housing, commercial buildings, among others; 

and it is in there where actual water consumption occurs (Chowdhury, 2016). However, regulation 

and monitoring by agencies and water utilities take place in the distribution networks (NRCNA, 

2006). The same physical, chemical, and biological processes occurring in a full scale DWDN take 

place in plumbing systems, but these may be exacerbated by being located at the end of the 

network, and poorer water quality can be found. Table 2-1 briefly explain the main characteristics 

of plumbing buildings. 

Table 2-1. Characteristics of plumbing systems 

Characteristic Description 

High surface 
area to volume 
ratio (S/V) 

One of the most prominent characteristics of plumbing premises is the high S/V ratio 
because they are lengthy sections and small-diameter tubing (NRCNA, 2006). S/V 

is inversely proportional to pipe diameter (4/). According to Hallam et al. (2002), 
the higher S/V, the larger the surface across which mass transfer can occur and the 
greater the number of reactive sites available for each unit volume of water passing 
through the pipe. While the public infrastructure can have S/V of 0.26 cm2/mL, 
private infrastructure can have S/V of 2.1 cm2/mL (NRCNA, 2006). This represents 
that wall effects on bulk water are more important in these systems as it will be 
explained later. 

High water age 

In plumbing systems, water flow is more dependent on household consumption 
patterns. These systems are characterized for stagnation conditions since the 
buildings can remain unoccupied for several hours, days or weeks in houses, 
commercial buildings or schools, respectively. It should be noted that the negative 
effects of water age are exacerbated if the biological stability of the water in the 
DWDN is poor (NRCNA, 2006). 

Presence of 
different 
materials 

Several materials can be found in plumbing premises such as copper, plastics, 
brass, lead, galvanized iron, and stainless steel. Such variety is not usually found in 
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Characteristic Description 

public DWDNs. The type of pipe material influences the interaction with 
disinfectants and microorganisms (NRCNA, 2006). 

Extreme 
temperatures 

Interior of buildings are naturally warmer that outdoors, especially in geographic 
regions with temperate weather, which use heating systems during cold season. 
This is reflected in warmer water temperatures in plumbing facilities. In addition, the 
domestic hot-water distribution systems also transfer heat to adjacent pipes. 

Low or no 
disinfectant 
residual 

The reaction of disinfectants with pipe materials, organic and inorganic matter, and 
biofilms promotes the disinfectant decay. If the disinfectant concentrations are 
already low in the service lines, it is expected total disappearance of this under 
stagnation conditions in building facilities (Lu et al., 1999; Buamah et al., 2014; Lee 
et al., 2014). 

Potential 
bacterial 
regrowth and 
biofilm formation 

Type of pipe material (Song et al., 2015), high S/V, warm water, and low 
concentration of disinfectant promote the bacterial regrowth and biofilm formation or 
survival. This increases the risk by potential survival and exposure to pathogenic 
microorganisms (NRCNA, 2006). 

Highly variable 
velocities 

Plumbing premises are characterized by start-stop flow patterns. This induces a 
high variation of flow velocities, which can lead to biofilm detachment and potential 
consumption of pathogenic microorganisms by the consumers, if these were 
released to the bulk water (NRCNA, 2006). 

Exposure to 
vapours and 
bioaerosols 

Showering is an important exposure route to bioaerosols with hygienic importance  
such as Mycobacterium avium and Legionella (Whiley et al., 2015) and volatile 
DBPs such as THMs (Cantor et al., 2010; Chowdhury, 2016). 

Proximity to 
service lines 

According to NRCNA (2006), service lines are the connection between the 
distribution main and the premise plumbing. The potential contamination of these by 
water leaks and repairs can affect individual consumers due to the proximity of 
plumbing premises to service lines. 

Prevalence of 
cross-
connections 

Maintenance activities of plumbing systems are developed by the household or by 
plumbers, who are not trained and licensed in all the cases. Thus, the risk of cross-
connections may increase leading to backflow and contamination of the drinking 
water within the facilities (NRCNA, 2006). 

 

2.3 BASICS OF TRANSPORT PHENOMENA 

Transport phenomena occurs when a perturbation of the equilibrium occurs in a physical system. 

Such perturbation can correspond to gradients of temperature, substance concentrations, and 

velocity. Energy, matter and momentum tend to move from regions of higher to lower concentration. 

The central aspects of the analysis of transport phenomena is the establishment of suitable 

constitutive equations to relate the fluxes of energy, matter, and momentum to local material 

properties. 

 

2.3.1 Fluxes and conservation of chemical species 

The fluxes of energy, matter, and momentum are composed by convective transport, which is 

related to bulk motion, and molecular or diffusive transport, which is related to small-scale 

molecular displacements. For the case of heat conduction, the Fourier’s law is used as the 
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constitutive equation to describe the heat fluxes; Equation (2-1) represents the heat flux q (energy 

flow per unit cross-sectional are). A schematic representation of the heat flux vector is presented 

in Figure 2-1 for an imaginary surface, which is perpendicular to a vector n of unit magnitude. 

Equation (2-2) expresses the heat flux qn normal to the surface. Here k is the thermal conductivity, 

 is the gradient operator, and T is temperature. 

 

Figure 2-1. Schematic representation of mass flux at a surface with a unit normal n and arbitrary 
orientation 

 

𝑞 = −𝑘∇𝑇  (2-1) 

𝑞𝑛 = 𝑛 ∙ 𝑞 = −𝑘(𝑛 ∙ ∇𝑇)  (2-2) 

A similar analysis can be done for a given species in a mixture, which results from a gradient in a 

concentration of that species; in this case, the Fick’s law is used as the constitutive equation to 

describe the fluxes. The total flux (Ni) is given by Equation (2-3).  

𝑵𝑖 = 𝐶𝑖𝒖 + 𝐉𝑖   (2-3) 

Here, Ciu is the convective flux (Ci: concentration, u: mass-average velocity) and Ji is the molar 

flux of the species i. For liquid solutions, the molar flux is given by Equation (2-4), where Di is the 

diffusion coefficient of the substance. 

𝐉𝑖 = −𝐷𝑖∇𝐶𝑖  (2-4) 

 

2.3.2 Mass transfer and boundary conditions at interfaces 

The analysis of conservation equations for interfaces found in Deen (1998) defined an interfacial 

balance valid at any instant in time given by the flux relative to the interface between two phases. 

Such interfacial source creates a difference in the normal components of the fluxes relative to the 



 

Chapter 2. Literature review  20 
Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineerin 

interface. In general, all of the quantities involved are functions of position on the interface, so that 

the balance changes from point to point. This interfacial balance is a key result, because it is the 

basis for many of the boundary conditions in mass transfer problems. Further simplification of such 

interfacial balances led to the boundary condition flux continuity, which is commonly used in biofilm 

modelling (Equation (2-5)) (IWA Task Group on Biofilm Modeling et al., 2006; Taherzadeh et al., 

2012). Here flux in the phase biofilm (B) at the biofilm surface (Bs) is equal to the flux in liquid (L) 

at the same point. 

𝐷𝐵

𝑑𝐶

𝑑𝑛
|𝐵 = 𝐷𝐿

𝑑𝐶

𝑑𝑛
|𝐿 

 (2-5) 

In the case of bulk motion, convection boundary condition at the biofilm surface is defined in the 

Equation (2-6) (Deen, 1998). Here kf is the mass transfer rate specific to the substance since it 

depends in part on its diffusivity, so it is different for each component of a mixture. CL-Bs is the 

concentration of the substance i in liquid at the biofilm surface. Co is the concentration in the bulk 

far away from the biofilm surface, concentration at the reactor inlet is usually used as Co 

(Taherzadeh et al., 2012). According to Deen (1998), when mass transfer is accompanied by bulk 

flow normal to the interface, the boundary condition shown in Equation (2-6) is best preserved if 

the mass transfer coefficient continues to refer only to the diffusive part of the solute flux ( i.e., JBs 

rather than NBs). This is because this analogy has been adapted from the analysis of heat transfer; 

then heat transfer coefficients have been defined to represent only the conduction heat flux and 

not energy transfer by bulk flow (Deen, 1998). 

𝐉𝐵𝑠 = 𝑘𝑓−𝑖(𝐶𝑖−𝐿−𝐵𝑠 − 𝐶𝑜)  (2-6) 

2.3.2.1 Sherwood number 

Despite of the simplicity of Equation (2-6), the parameter kf and variable CL-Bs are not always 

available. In biofilm analysis, kf can be calculated from experimental tests of penetration of a 

specific substance and monitoring its concentration in the bulk and within the biofilm by micro-

sensors. More details of this can be found in Chen and Stewart (1996) and Guimerà et al. (2016). 

By combining Equations (2-4) and (2-6), kf is given by Equation (2-7); where δC represent the 

thickness of the stagnant film in the fluid next to the wall; δC is also known as boundary layer 

thickness. 

𝑘𝑓 =
𝐷𝐿

𝛿𝐶
 

 (2-7) 
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In some cases, δC is not available; therefore, the Sherwood number (Sh) is used mainly for 

modelling purposes (IWA Task Group on Biofilm Modeling et al., 2006; Tosun, 2007). Since δC 

depends on the convection just outside the interface, Sh gives a measurement of the convective 

and diffusive fluxes to such interface. Sh is a dimensionless form of k f and is represented by the 

Equation (2-8). Here Lch is the characteristic length which can be assumed as pipe diameter or 

radius, width of a channel, or radius of the bubble for the case of transport around a gas bubble in 

a liquid (COMSOL, 2017). For instance, Taherzadeh et al. (2012) used the biofilm head diameter 

as Lch for studying the fluid dynamics and mass transfer of biofilm streamers with a small immobile 

base attached to the support and a flexible tail elongated in the flow direction, which can vibrate in 

fast flows. 

𝑆ℎ𝑖 =
𝑘𝑓−𝑖𝐿𝑐ℎ

𝐷𝑖
 

 (2-8) 

By combining the Equations (2-4), (2-6) and (2-8), an expression for Sh based on concentration 

gradient at the biofilm surface (Equation (2-9)) is obtained, which leads to the calculation of local 

Sh; then the global Sh (Sh̄ ) can be determined by a surface integration and averaging (Equation 

(2-11)). This allows comparing Sh for different system configurations and obtaining the global mass 

transfer (𝑘𝑓
̅̅ ̅) in biofilm modelling (Equation (2-12)). For instance, this approach was used by 

Taherzadeh et al. (2012). Here ds refers to differential of biofilm surface. In the case of biofilm 

attached to the pipe wall, ds represents the differential of pipe surface. 

𝑆ℎ𝑖 =
𝑘𝑓−𝑖𝐿𝑐ℎ

𝐷𝑖
=

𝐿𝑐ℎ
𝑑𝐶
𝑑𝑛

|
𝐵𝑠

𝐶𝑖−𝐵𝑠 − 𝐶𝑖−𝑜
 

 (2-9) 

𝑑𝐶𝑖

𝑑𝑛
|𝐵𝑠 =

𝐉𝑖
−𝐷𝑖

 
 (2-10) 

𝑆ℎ𝑖 =
∫ 𝑆ℎ𝑖  𝑑𝑠
𝐵𝑠

∫ 𝑑𝑠
𝐵𝑠

=
𝑘𝑓−𝑖𝐿𝑐ℎ

𝐷𝑖
 

 (2-11) 

𝑘𝑓−𝑖 =
𝑆ℎ𝑖  𝐷𝑖

𝐿𝑐ℎ
 

 (2-12) 

2.3.2.2 Engineering correlations 

According to Tosun (2007), most engineering problems do not have theoretical solutions, then a 

large portion of engineering analysis is concerned with experimental information, which is usually 
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expressed in terms of engineering correlations. In the case of mass transfer between bulk liquid 

and biofilm, calculation of Sh becomes important in order to obtain the values of k f for each 

substance of interest. According to Guimerà et al. (2016) and IWA Task Group on Biofilm Modeling 

et al. (2006), Sh is often expressed as a function of the non-dimensional Reynolds number (Re – 

Equation (2-13)) and Schmidt number (Sc – Equation (2-14)): Sh=f(Re, Sc). Sh is usually 

represented by a power function Sh=A+B•RemScn. The parameters A, B, m, and n are, in most 

cases, determined empirically from experimental data for a specific system.  

𝑅𝑒 =
𝑢𝐿

𝜈
 

 (2-13) 

𝑆𝑐 =
𝜈

𝐷𝑖
  (2-14) 

  

Where  is the kinematic viscosity of the fluid (m2/s), u is the velocity of the fluid with respect to the 

object (m/s), L is a characteristic linear dimension (m), and D is the mass diffusivity (m2/s) of 

species i. In relation to Sh, Equation (2-15) reported by Horn and Lackner (2014; cited by (Guimerà 

et al., 2016)) is used for turbulent models and Equation (2-16) is applied to laminar flow (Zhang 

and Bishop, 1994). Experimental data from Guimerà et al. (2016), who characterized external and 

internal mass transport of dissolved oxygen in an heterotrophic biofilm, fitted very well with the 

Equation (2-16).  

𝑆ℎ = 0.239 ∙ 𝑅𝑒0.8 ∙ 𝑆𝑐0.33 (2-15) Turbulent flow 

𝑆ℎ = 0.369 ∙ 𝑅𝑒0.5 ∙ 𝑆𝑐0.33 (2-16) Laminar flow 

 

Due to the empirical origin of expressions to calculate Sh, their application to biofilm modelling must 

be cautious since parameters depend on the geometry of the biofilm support medium, the type of 

substance, and are valid only for a defined range of Re and Sc. Extrapolating from these conditions 

can yield erroneous results  (IWA Task Group on Biofilm Modeling et al., 2006). Additionally, most 

correlations for Sh were derived for rigid particles, but the elastic and heterogeneous nature of the 

biofilm can influence external mass transfer (IWA Task Group on Biofilm Modeling et al., 2006). 

Despite of the mentioned cautions, engineering correlations can be useful to correlate experimental 

data to simplified models; which in turn can represent an acceptable physical process. However, 

with the further and accelerated development of numerical methods, computational techniques, 

https://en.wikipedia.org/wiki/Kinematic_viscosity
https://en.wikipedia.org/wiki/Fluid
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software, and hardware, applying theoretical concepts to physical process in drinking water industry 

is more feasible every day, the more reliable results can be obtained from modelling approaches. 

 

2.4 BIOFILMS IN DRINKING WATER DISTRIBUTION NETWORKS 

Biofilms can be understood as a biological strategy of microorganisms to survive in hostile 

environments. From a microscale point of view, biofilms are a group of microorganisms, mainly 

bacteria but archaea, fungi and protozoa are also important (Wang et al., 2014; Fish et al., 2015), 

living as a consortium, attached to a surface as a result of the secretion of EPS (Srivastava and 

Bhargava, 2015). Biofilms are successful due to the protective effect of EPS to cells against oxidant 

substances, grant cells attachment to surfaces under certain hydraulic conditions, and improve 

availability of nutrients as a result of organic matter retention. With regards to hydraulic forces, 

flushing water pipes has been proved as a proper technique to remove soft sediments and 

biological material but inefficient to completely detach biofilms (Abe et al., 2012; Douterelo et al., 

2013). From a macroscale point of view, biofilms can be conceived as reservoirs of organic matter 

due to the presence of lipids, proteins, carbohydrates, DNA, and organic matter particles (Wang et 

al., 2012b; Fish et al., 2015). 

Biofilms are naturally found in most of the solid/liquid interfaces such as showers, pools, teeth, food 

industry facilities, wastewater treatment plants, water supply systems, among others. In water 

systems for human consumption, biofilms grow in the walls of reactors of WTPs, pipes, valves, 

tanks, pumps and all the fittings of the system. In this case, drinking water biofilms are a major 

concern because they can lead to corrosion, discoloured waters and odours; host pathogens which 

may be released to bulk water; detach and recolonize clean surfaces; act as precursors for the 

formation of DBPs, and consequently, contribute to disinfectant decay (NRCNA, 2006). 

Biofilm formation starts with the adhesion or incorporation of microorganisms depending on their 

ability to produce EPS, salivary pellicle or if the cell structure includes components such as flagella 

(Song et al., 2015). Material properties like surface charge, surface energy, roughness, topography, 

surfaces with topographic patterns, and stiffness influence the adhesion of microorganisms. Some 

bacteria like P. aeruginosa use the surface sensing ability to probably modify cell surfaces to better 

attach to negatively charged surfaces (Song et al., 2015). The organisms may attach to surfaces 

as primary colonizers and actively establish biofilms alone or in combination with other 

microorganisms. However, they can also become integrated in pre-existing biofilms as secondary 
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colonizers. Bacteria such as Pseudomonas, Staphylococcus, and Methylobacterium are known as 

biofilm formers (Simões et al., 2007; Simões et al., 2010; Douterelo et al., 2014c). 

In a second step, incorporation of other organisms such as virus, fungi, and invertebrates occurs. 

In this stage, heterotrophic bacteria, free-living protozoa and fungi can multiply and persist if they 

have adapted to the oligotrophic conditions characteristic of engineered water systems (Wingender 

and Flemming, 2011). Given suitable laboratory conditions, all relevant water-related pathogenic 

bacterial species have actually been shown to be able to adhere to solid surfaces and/or to form 

mono-species biofilms, indicating their potential as biofilm organisms (Wingender and Flemming, 

2011). However, enteric viruses and parasitic protozoa are obligate parasites and dependent on 

multiplication in animal or human hosts. Such organisms can only be expected to attach to and 

persist in biofilms without being able to proliferate (Wingender and Flemming, 2011). Finally, 

chlorine effects and shear stress can cause the detachment of the biofilm (Xue and Seo, 2013), 

releasing the organisms, which can reach the customers, colonize new surfaces, or be incorporated 

in other biofilms downstream. 

 

2.4.1 Taxonomy and diversity 

Population genetics and taxonomy fields are two very different aspects of biology and necessitate 

very different assumptions, theories and methods, but they overlap at some degree (Wheeler, 

2008). First, taxonomy refers to naming, describing and classifying organisms and includes all 

plants, animals and microorganisms discovered in nature. This branch of biology is being 

transformed according to the technical and technological progress made in the access of electronic 

publications, molecular analysis, and bioinformatics (Wheeler, 2008). Then, the taxonomic rank 

allows allocating an organism in a certain group defined by the kingdom, phylum, class, order, 

family, genus, and species. In the environment, ecosystems are an assemblage of populations, 

plants, animals, bacteria, fungi (Whittaker, 1975), and the recent-defined archaea, that live in an 

environment and interact with one another, forming together a distinctive living system with its own 

composition, structure, environment relations, development, and function (Whittaker, 1975).  

Natural ecosystems are forests, lagoons, mangroves, etc. DWDNs can be considered engineered 

ecosystems since all the characteristics previously mentioned are present in there, with the 

difference that they have been designed, constructed, operated and maintained by humans. 

Therefore, it can be inferred that most of the variables influencing the behaviour of such systems 

can be modified according to the needs of the managers and drinking water consumers. In order 
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to study living systems in their environmental contexts, ecology arises as the area of the biology 

concerning to it.  

Whittaker (1975), by studying the communities in redwood forests, analysed the species diversity 

by the application of indices, according to the alpha (within community); beta (between 

communities; and gamma diversity (between regions) (Whittaker, 1975; Sepkoski, 1988). 

Examples of alpha-diversity metrics are Margalef and Chao1 richness estimators, and Simpson 

and Shannon diversity estimators (Whittaker, 1975; Gamito, 2010; Douterelo et al., 2013). 

According to the scope of this project, calculation of Shannon (H) and Margalef (d) indices to 

calculate alpha diversity are explained in this section (Equations (2-17), (2-18) and (2-19)). 

Here S is the number of species, N is the total number of individuals in the sample, pi is the relative 

importance values for these same species. 

𝑑 =
𝑆 − 1

𝐿𝑛 𝑁
 

 (2-17) 

𝐻′ = −∑𝑝𝑖  𝑙𝑜𝑔𝑝𝑖

𝑆

𝑖=1

 
 (2-18) 

𝑆 = exp (𝐻′)  (2-19) 

 

2.4.2 Microbiome identification in bulk water and biofilms in drinking water networks 

Culture-dependent methods, routinely used by water utilities to assess the microbiological quality 

of drinking water, present shortcomings such as underestimation of the amount and diversity of the 

microbial community (Theron and Cloete, 2000). Heterotrophic bacterial counts only represent a 

limited fraction of the whole microbial community (Douterelo et al., 2014a; Ren et al., 2015), when 

used to estimate bacterial loads in water samples. Moreover only less than 5% of the biomass is 

present in the water phase and 95% is living in the biofilm phase (Flemming et al., 2002). Current 

drinking water quality standards rely on culture-dependent techniques to quantify specific 

pathogenic organisms (e.g., E. coli, Enterococci, Coliform bacteria) (UK Parliament, 2000; 

Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, 

2007) and heterotrophic bacteria in bulk water. Then, biofilms are only explored for research 

purposes and, to date, they have not been included in routine operative and regulatory plans by 

drinking water operators and agencies, respectively. 
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Recently, water microbiology research is focused on developing and applying culture-independent 

practices in order to improve the diagnostic of microbiological quality of water. Therefore, molecular 

analysis is being used for studying the microbial community in bulk water and biofilms. According 

to Douterelo et al. (2014a), studying microorganisms in a DWDN allows improving knowledge about 

how abundant they are, which types of microorganisms are present, how their activities shape the 

environment or influence other organisms, including any possible effects on human health, and 

how the environment influences the structure and functions of the microorganisms present. 

Douterelo et al. (2014a) also described the classification of microbiological techniques used to 

study microbial communities according to their purpose and nature: culture-based methods, 

microscopy, polymerase chain reaction (PCR), molecular techniques, and quantification of 

metabolism by-products. In particular, molecular techniques include cloning and sequencing, 

metagenomics, and next generation sequencing. The molecular techniques are applied to study 

the microbial community composition and involve the extraction of nucleic acid, followed by PCR 

amplification of “marker genes” to obtain taxonomic information. The most commonly used marker 

gene in microbiological research is the ribosomal RNA (rRNA) gene, 16S rRNA for prokaryotes and 

18S rRNA for eukaryotes (Douterelo et al., 2014a). 

According to Douterelo et al. (2014a), cloning and sequencing is the conventional and more 

widespread genomic approach used when detailed and accurate phylogenetic information from 

environmental samples is required. After DNA extraction and amplification of the rRNA gene with 

suitable primers, clone libraries using sequencing vectors must be constructed (Rondon et al., 

2000). Selected clones are then sequenced (Sangerbased) (Sanger et al., 1977) and the nucleotide 

sequence of the rRNA gene retrieved, allowing estimates of the microbial diversity in the samples 

by comparison with sequences available in databases (e.g., GenBank, EMBL and Silva). The 

generation of DNA clone libraries followed by sequencing has being extensively applied in drinking 

water microbiology. The need to analyse the extensive amount of data related to sequence reads 

from environmental samples led to the development of the bioinformatics field, which involves 

software and analysis tools (Douterelo et al., 2014a). 

Understanding of microorganisms in DWDNs has been developed by sampling water and biofilms. 

In relation to water sampling, guidelines from environmental and regulatory agencies exist for 

sampling methods and interpretation of results of traditional and well-known laboratory parameters. 

For instance, there are several International Organization for Standardization (ISO) standards for 

detection and enumeration of faecal indicator organisms in water, which are listed in WHO (2017). 

The environmental agency of the United States has designed a guide for sampling biological 

contaminants in bulk water (USEPA, 2016b). In the European territory, the standard ISO 19458 is 
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recommended for compliance samples for microbiological parameters (European Union, 2015). 

Locally, the UK Environment Agency also offers guidelines for sampling drinking water to test 

microbiological parameters (Environment Agency, 2010). 

However, if molecular analysis and/or proteomics/metabolomics-based approaches are desired, 

there is not enough guidance about the minimal representative sampling volume required to 

capture the complete microbiome in a DWDN. Therefore, comparisons are difficult to make. In 

relation to biofilm sampling, two approaches have been used to study biofilms in DWDNs such as 

scrapping attached biofilm from cut-out pipes or directly from devices inserted into the pipes. Both 

methods can be used for sampling in real-scale or laboratory DWDNs (Douterelo et al., 2014a).  

Pipe cut-out sampling are labour-intensive, then it is common to take advantage of the leakage 

repairs or pipe replacement activities to collect pipe samples. Due to the random nature of leakages 

location, the arbitrary selection of sampling points according to the scope of the study is limited. 

Therefore, the sampling campaign may last several months in order to cope with all the selected 

criteria. Otherwise, the study must be based on few variables in order to find the balance time-

scope. On the other hand, excavation and cutting processes often lead to concerns with 

contamination and representative sampling and preservation of the physical integrity of the sample 

(Douterelo et al., 2014a). The use of devices, commonly coupons, that can be deployed repeatedly 

either within a pilot-scale test facility or in an operational DWDN, allows the study of biofilm 

dynamics over time in relation to changing abiotic and biotic factors in situ. According to Douterelo 

et al. (2014a), commonly the main limitation of some of these devices is that they distort hydraulic 

conditions in pipes and, in most cases, shear stress and turbulence regimes are different from 

those expected in real pipes, artificially influencing the way biofilms develop. 

Recent studies applying molecular analysis in DWDNs supplied by surface water, either simulated 

or real-scale DWDNs, are summarized in Table 2-2. These studies were developed mainly in 

temperate-climate areas; with water treated by different treatment processes, including chlorine 

and chloramines as disinfectants. Samples were collected from several pipe materials such as 

polyvinyl chloride (PVC), HDPE, ductile and cast iron, cement, copper. Pipe material was the 

variable more frequently tested among these studies. Results reported in every investigation found 

Proteobacteria as the predominant phylum in biofilm and bulk water samples. Particularly, research 

in USA indicates that other phyla also dominating include Cyanobacteria and Actinobacteria 

(Holinger et al., 2014; Kelly et al., 2014). By comparison, bacterial class, family and genera exhibit 

more variety of the microbial communities in the studied samples. 
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Table 2-2. Summary of bacterial composition in DWDNs supplied by surface water sources 

Reference 
and study 
country 

Type of 
system 

Water treatment 
Sampling 

point 

Type 
of 

sample 
Pipe material 

Pipe age 
(Years) / 
Biofilm 

age 

Composition of bacterial communities in pipelines (dominant 
communities and relative abundance -RA-) 

Phyla Class Genera 

Gomez-
Alvarez et 
al. (2012) 

 
USA 

Simulated 
DWDN  

FLOC, SEDIM, pH 
adj., SFILT, GAC, 

and chlorine 
disinfection 

Tap Water PVC NS 

Proteobacteria Alphaproteobacteria (35%) 

Mycobacterium, 
Acidovorax, 
Burkholderia, 
Pseudomonas, 
Dechloromonas 

chloramine 
disinfection 

Proteobacteria 
Actinobacteria 

Alphaproteobacteria (22%) 
Actinobacteria (28%) 
Betaproteobacteria (24%) 

Caulobacter, 
Rhodopseudomonas, 
Synechococcus, 
Bradyrhizobium, 
Pseudomonas 
(chloraminated 
system) 

Henne et al. 
(2012) 

 
Germany 

Full scale 
DWDN 

FLOC, COAG, 
SFILT, chlorination 

Pipe Biofilm 

NS NS 

Proteobacteria 
(9-62%) 

Alphaproteobacteria (2-30%) 
Chlorofexi (7-65%) 
Betaproteobacteria (1-20%) 
Actinobacteria (6-19%) 

NS 

Tap Water 
Proteobacteria 
(27-41%) 

Alphaproteobacteria (17-28%) 
Actinobacter (16-25%) 
Bacteroidetes (14-25%) 

NS 

Douterelo 
et al. (2013) 

 
UK 

Simulated 
DWDN 

NS 
Flushing 
points in 

the network 

Biofilm 

HDPE NS Proteobacteria 

Gammaproteobacteria (6-87%) 
Betaproteobacteria (4-60 %) 

Pseudomonas 
(20-65%) 

Water Alphaproteobacteria (59-88 %) 

Methylocistis 
(20-40%) 
Methylocella 
(10-20%) 

Henne et al. 
(2013) 

 

Full scale 
DWDN 

FLOC, COAG, 
SFILT, chlorination 

Tap 
Cold 
water 

NS NS 
Proteobacteria 
(15-72%) 
Bacteroidetes 

Alphaproteobacteria (7-28%) 
Betaproteobacteria (6-28%) 
Gammaproteobacteria (2-16%) 

NS 
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Reference 
and study 
country 

Type of 
system 

Water treatment 
Sampling 

point 

Type 
of 

sample 
Pipe material 

Pipe age 
(Years) / 
Biofilm 

age 

Composition of bacterial communities in pipelines (dominant 
communities and relative abundance -RA-) 

Phyla Class Genera 

Germany  

 

 

 

(17-36%) 
Actinobacteria 
(8-30%) 

Holinger et 
al. (2014) 

 
USA 

Full scale 
DWDNs 

NS 
Disinfection with 
chloramine: 2 
sampling points 
Disinfection with 

chlorine: 7 sampling 
points 

Taps of 
buildings 

Water NS NS 
Cyanobacteria 
Actinobacteria 
Proteobacteria 

Chloroplast (24-91%) 
Sphingomomadales (45%) 
Other (29%) 

Mycobacterium 
(43-52%) 

Kelly et al. 
(2014) 

 
USA 

Full scale 
DWDN 

CLAR, OZON, BAF, 
and chlorine 
disinfection 

Pipelines Biofilm Ductile iron 40-45 
Proteobacteria 
Actinobacteria 

Gammaproteobacteria 

Methylomonas 
(95.5%) 
Mycobacterium 
(59.1%) 
Unclassified 
Xanthomonadaceae 
(50.4%) 
Acinetobacter 
(74.2%) 

Shaw et al. 
(2014) 

 
Australia 

NS 
COAG, MIEX, MIEX 
+ COAG + GAC, MF 

Pipelines Biofilm NS 
Biofilm age: 
28 months 

Proteobacteria Alphaproteobacteria NS 

Sun et al. 
(2014) 

 
China 

Full scale 
DWDNs 

COAG, SEDIM, 
FILT, GACAd, 
and chlorine 
disinfection 

Pipelines Biofilm CI ≈ 20 
Proteobacteria 
(40-60%) 

Bacilli (30-35%) 
Betaproteobacteria (25-30%) 

Raistoria 
Burkholderia 
Delftia 
Bacillus 
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Reference 
and study 
country 

Type of 
system 

Water treatment 
Sampling 

point 

Type 
of 

sample 
Pipe material 

Pipe age 
(Years) / 
Biofilm 

age 

Composition of bacterial communities in pipelines (dominant 
communities and relative abundance -RA-) 

Phyla Class Genera 

Mycobacterium 
(RA closest to max. 
value: 42.21%) 

Wang et al. 
(2014) 

 
USA 

Simulated 
DWDN 

4.0 mg/L chlorine 
4.8 mg/L chloramine 

Ports 
located in 
pipelines 

Biofilm 
Cement, iron 

and PVC 
Biofilm age: 

6 months 
Proteobacteria 
(66-98%) 

Alphaproteobacteria (25-96%) 
Betaproteobacteria (1.2-69%) 

NS 

El-
Chakhtoura 
et al. (2015) 

 
The 

Netherlands 

Full scale 
DWDN 

COAG, FLOC, 
SEDIM, OZON, 

DMF, GACAd, and 
chlorine dioxide 
disinfection (no 

residual disinfectant) 

Effluent of 
treatment 
facility 
Pipeline in 
water 
network 

Water 
Cemented 

steal and PVC 
NS 

Proteobacteria 
(58.6%) 

Gammaproteobacteria (34.0%) NS 

Lührig et al. 
(2015) 

 
Sweden 

Full scale 
DWDN 

NS 

Water 
meters 

Biofilm 

Brass and 
plastic 

4-10 
Proteobacteria 
(45-87 %) 

Alphaproteobacteria (70-85 %) NS 

Pipelines Cast iron 45-103 
Proteobacteria 
(58-86 %) 

Gammaproteobacteria (60-65%) 
Betaproteobacteria (35%) 
Alphaproteobacteria (35 %) 

NS 

Mahapatra 
et al. (2015) 

 
India 

Full scale 
DWDN 

NS 

Commercial 
water 

purifier 
systems 

and 
pipelines 

Water PVC 

Commercial 
water 
purifier 
systems: 27 
months 
Pipelines: 
NS 

Proteobacteria Gammaproteobacteria 

Acinetobacter 
(24.7%) 
Pseudomonas 
(20.8%) 
Klebsiella (18.5%) 

Ji et al. 
(2015) 

 
USA 

Full scale 
DWDNs 

Conventional 
treatment, 

chlorine/chloramine 
disinfection (5 

WTP) 

Building 
plumbing 

rigs 
Biofilm 

CU, CPVC, 
CU/Lead 

Pipe age: 
NS 
 
Biofilm age: 
1 year 

Proteobacteria 
(50-90%) 

Alphaproteobacteria 
Betaproteobacteria 
Gammaproteobacteria 
Actinobacteria 

Staphylococcus 
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Reference 
and study 
country 

Type of 
system 

Water treatment 
Sampling 

point 

Type 
of 

sample 
Pipe material 

Pipe age 
(Years) / 
Biofilm 

age 

Composition of bacterial communities in pipelines (dominant 
communities and relative abundance -RA-) 

Phyla Class Genera 

Ren et al. 
(2015) 

 
China 

Full scale 
DWDN 

FLOC, SFILT, and 
chlorine 

disinfection 

Pipelines: 
ends of the 

DWDS 
Biofilm 

DCIP, GCIP, 
GSP, SSCP, 

PVC 
11-13 

Proteobacteria 
(71-99%) 

Alphaproteobacteria (68%, 
83%) 
Betaproteobacteria (41%) 
Gammaproteobacteria (45%, 
73%) 

Hypromicrobium 
(28%) 
Desulfovibrio (17%) 
Pseudomonas (43%, 
63%) 
Sphingomonas 
(72%) 

Revetta et 
al. (2016) 

 
USA 

Full scale 
DWDN 

GAC, chlorine 
disinfection 

Coupons 
incubated 

within 
biofilm 
annular 
reactors 

and glass 
bead 

baskets 

Biofilm 

Polycarbonate  
Biofilm age: 
3-18 
months 

Proteobacteria 
Actinobacteria 

Alphaproteobacteria (34%) 
Actinobacteria (24%) 
Betaproteobacteria (20%) 
Gammaproteobacteria (12%) 

Mycobacterium 
(23%) 
Limnobacter (11%) 

Glass 
Biofilm age: 
6-11 
months 

Bautista-de 
los Santos 

et al. (2016) 
 

UK 

Full scale 
DWDN  

COAG, rapid gravity 
filtration, chlorine 
disinfection, and 
orthophosphate 

dosing (another WTP 
included air flotation 

after coagulation) 

Faucets Water NS NS 
Proteobacteria 
(> 98%) 

Betaproteobacteria (92.2%) 
Alphaproteobacteria (76.6%) 

Comamonadaceae (a) 
(64.9%) 
Sphingomonadaceae 
(2.22%) 

Zhang et al. 
(2017) 

 
China 

Full scale 
laboratory 

DWDN 
NS Coupons 

Biofilm 
 

PE 3 years 
Proteobacteria 
Actinobacteria 

Alphaproteobacteria (32.58%) 
Bacilli (15.65%)  
Gammaproteobacteria (15.63%) 
Betaproteobacteria (14.30%) 
Actinobacteria (10.44%) 

Sphingomonas 
(25.25%) 
Streptococcus 
(7.64%) 
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Reference 
and study 
country 

Type of 
system 

Water treatment 
Sampling 

point 

Type 
of 

sample 
Pipe material 

Pipe age 
(Years) / 
Biofilm 

age 

Composition of bacterial communities in pipelines (dominant 
communities and relative abundance -RA-) 

Phyla Class Genera 

Ductile iron 
Gammaproteobacteria (47.95%) 
Actinobacteria (13.88%) 
Betaproteobacteria (11.95%) 

Enhydrobacter 
(33.84%) 
Propionibacterium 
(8.08%) 
Acinetobacter 
(5.59%) 

SS 

Betaproteobacteria (27.53%) 
Flavobacteria (25.15%) 
Verrumicrobiae (13.4%) 
Cytophagia (12.04%) 

Flavobacterium 
(24.76%) 
Arcicella (12.03%) 
Acidovorax (8.98%) 

Water -- -- Proteobacteria Betaproteobacteria (95.5%) 
Methylophilus 
(95.41%) 

(a): The authors reported these organisms as classified at the familiy/genus level | BAF: biologically active filtration | CI: cast iron | CLAR: clarification | COAG: coagulation | CPVC: polyvinyl chloride with brass fitting | CU: 
copper | DCI: ductile cast iron | DMF: dual medium filtration | FILT: filtration | FLOC: flocculation | GAC: granular activated carbon | GACAd: granular activated carbon adsorption | GCI: grey cast iron | GS: galvanized steel | 
HDPE: High-density polyethylene |MIEX: magnetic ion exchange contact | MF: membrane filtration |NS: not specified | OZON: ozonation | PB: polybutylene (PB) | PE: polyethylene | PVC: polyvinyl chloride | SEDIM: 
sedimentation | SFILT: sand filtration | SS: stainless steel | SSC: stainless steel clad | ST: steel coated with zinc | 
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2.4.3 Biofilm modelling 

As previously explained, biofilms in drinking water pipes are heterogeneous and includes multiple 

bacteria species such as aerobic, anaerobic, heterotrophic, and autotrophic bacteria. Substances 

like EPS, biomolecules and other microorganisms such as fungi, archae, and invertebrates are also 

present. In addition, hydraulics affect the biofilm physical structure by the influence of shear stress, 

which can cause detachment, and nutrients transport. Disinfectant in drinking water also affect the 

biofilm by killing cells and oxidizing biomolecules, which can translate into genetic adaptation or 

physical resistance and DBP formation. Drinking water is an oligotrophic environment and, 

according to nutrient concentrations, carbon, and nitrogen or phosphorous can be the growth-

limiting nutrient. 

Multiple factors affect the growth of biofilms in drinking water pipes. Table 2-3 reports 31 studies 

conducted on biofilm modelling between 1994 and 2017 in order to better explain the different 

approaches applied by researchers to represent biofilm dynamics. As it can be observed in Table 

2-3, biofilm models have been low-dimensional continuum models (Stewart, 1994; Stewart and 

Raquepas, 1995; Eberl and Demaret, 2007; D’Acunto and Frunzo, 2011; Clarelli et al., 2013; 

D’Acunto et al., 2015), discrete-continuum/cellular automaton models (Picioreanu et al., 1998a; 

Picioreanu et al., 1998b; Xavier et al., 2005a; Xavier et al., 2005b; Jayathilake et al., 2017), 

multidimensional biofilm models with biomass and flow coupling under laminar regime (Eberl et al., 

2000; Picioreanu et al., 2000a; Xavier et al., 2005a; Eberl and Sudarsan, 2008; Zhang et al., 2008; 

Duddu et al., 2009; Lindley et al., 2012; Taherzadeh et al., 2012; Zhang, 2012; Coroneo et al., 

2014; Tierra et al., 2015; Zhao et al., 2016) and other multidimensional biofilm models (Eberl et al., 

2001; Eberl and Efendiev, 2003; Duddu et al., 2008; Cogan, 2010; Cumsille et al., 2014). 

Most of the models have focused on biofilm structure as a result of biofilm growth and spreading, 

and substrate transport and consumption. However, other models have evolved to consider 

external flow and effects of antimicrobial agents to simulate the antimicrobial penetration barrier, 

persistent cells, and viscoelastic properties of biofilm. Due to the important role played by EPS in 

initial formation, growth, and survival of biofilms; 15 of 31 reviewed studies included EPS production 

in the biofilm models (Kommedal et al., 2001; Xavier et al., 2005a; Xavier et al., 2005b; Duddu et 

al., 2008; Zhang et al., 2008; Duddu et al., 2009; Cogan, 2010; Cogan, 2011; Lindley et al., 2012; 

Clarelli et al., 2013; Ghosh et al., 2013; Macías-Díaz, 2015; Tierra et al., 2015; Zhao et al., 2016; 

Jayathilake et al., 2017). 
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Table 2-3. Summary of studies on biofilm modelling 

Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

Stewart 
(1994) 

1D - 
continuum 

Length: 1.4 

and 87 m 

Not 
simulated 

Active and 
inert cells 

Simulated 
Dissolved 

oxygen 
Not 

simulated 

Simulated | 
Type of 

antibiotic not 
specified 

Not 
specified 

Not 
specified 

Not specified 

Disinfection 
modelling was 

simulated up to 8 
hours 

Stewart and 
Raquepas 

(1995) 

1D - 
continuum 

Not apply 
Not 

simulated 
Active and 
inert cells 

Not 
simulated 

Not apply 
Not 

simulated 

Simulated | 
Type of 

antibiotic not 
specified 

Not 
specified 

Not 
specified 

Not specified 

Model assessed 
the decay of 

active cells by 
action of 

antibiotics 

Picioreanu 
et al. 

(1998a) 

2D - 
Discrete  

Length: 600 

m; Depth: 

600 m Simulated | 
Spatial 

structure of 
colonies 

Nitrosomonas 
and 

Nitrobacter 

Not 
simulated 

Dissolved 
oxygen 

Not 
simulated 

Not simulated 
Not 

specified 
No apply 

Common 
personal 

computers | 
Comp. time not 

specified 

Spatial 
characteristics of 

colonies are 
described 

qualitatively. 
Growth was 

simulated up to 20 
days 

3D - 
Discrete  

Length: 120 

m; Depth: 

120 m; 
Height: 120 

m 

Simulated 

Picioreanu 
et al. 

(1998b) 

2D - 
Discrete  

Length: 

2000 m; 
Depth: 400 

m  

Simulated | 
Finger- 

and 
mushroom-
like shape 

Nitrosomonas 
and 

Nitrobacter 

Not 
simulated 

Dissolved 
oxygen 

Not 
simulated 

Not simulated 
Not 

simulated 

300 | 5 
days 

Not specified 

BT varied 
according to the 
biomass growth 
rate: compact 

biofilms 

300 | 7 
days 

300 | 11 
days 

300 | 18 
days 

350 | 31 
days 

BT varied 
according to the 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

350 | 71 
days 

biomass growth 
rate: mushroom 

shape biofilm 350 | 
141 
days 

3D - 
Discrete  

Length: 800 

m; Depth: 

320 m; 
Height: 400 

m 

250 | 50 
days 

- 

Eberl et al. 
(2000) 

3D - 
continuum 

1.6 mm 

Simulated | 
Mushroom 

shape: 
pores, 

cavities, 
channels 

Single species 
Not 

simulated 

Constant - 
not 

specified 

Not 
simulated 

Not simulated 
Laminar | 
Re 4.1 | 

32.6 

12.5-
137.5 | 
Time of 
growth 

not 
specified 

High perf. 
comp. | Comp. 

time not 
specified 

  

Picioreanu 
et al. 

(2000a) 

2D - 
continuum 

Height: 500 

m; Length: 

2000 m 

Simulated | 
Mushroom 

shape 
Single species 

Not 
simulated 

Dissolved 
oxygen 

Not 
simulated 

Not simulated 
Laminar | 
Re 0.8 | 

6.7 

15 | 4 
days 8 or on 16 

processors 
from a Cray 
T3E parallel 
machine with 

128 
processors 

at 400 MHz | | 
Comp. time 1 

day 

BT values 
corresponded to 
two Re values 

20 | 18 
days 

50 | 5 
days 

120 | 38 
days 

150 | 6 
days 

200 | 80 
days 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

250 | 7.5 
days 

300 | 
130 
days 

150 | 88 
and 4 
days 

BT values 
corresponded to 
two Re values 

and two substrate 
concentrations 

Eberl et al. 
(2001) 

3D - 
continuum 

Length: 121 

m; Depth: 

121 m  

Simulated | 
Wavy and 
mushroom 

shapes 

Single species 
Not 

simulated 
Not 

specified 
Not 

simulated 
Not simulated Static 

121 | 
643 

hours 
Not specified - 

Kommedal 
et al. (2001)  

1D - 
continuum 

No apply 
Not 

simulated 
P. aeruginosa 

Not 
simulated 

Glucose Simulated Not simulated Static No apply Not specified - 

Eberl and 
Efendiev 
(2003) 

3D - 
continuum 

Not 
specified 

Simulated 
Inert and 

active cells 
Not 

simulated 
Dissolved 

oxygen 
Not 

simulated 

Simulated - 
Disinfectant 
not specified 

Static - Not specified 

Decay or growth 
of active cells 

according to initial 
values of BT and 

disinfectant 
concentrations at t 

= 1.6-90 days 

Xavier et al. 
(2005a) 

2D - 
Discrete 

Length: 

4000 m; 
Depth: 31 

m  

Simulated | 
Mushroom 

shape 

Heterotrophic 
bacteria 

Simulated 
Dissolved 

oxygen 
and 

Simulated Not simulated 
Laminar | 

Re not 
specified 

75 | 40 
days 

Not specified 
CFD was applied 

for solving the 
flow 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

3D - 
Discrete 

Length: 500 

m; Depth: 

500 m  

organic 
carbon 

300 | 30 
days 

Xavier et al. 
(2005b) 

2D and 
3D - 

Discrete 

Length: 

1000 m; 
Depth: 1000 

m  

Simulated | 
Mushroom 

shape 

Active and 
inert cells 

Not 
simulated 

Dissolved 
oxygen 

and 
organic 
carbon 

Simulated Not simulated 
Not 

specified 
400 | 20 

days 
Not specified - 

Eberl and 
Demaret 
(2007) 

1D - 
continuum 

Length: 500 

m; Depth: 

500 m  

Simulated | 
Moving 

interface: 
mushroom 

shape 

Not specified 
Not 

simulated 

One/two 
substrates 
(oxygen 

and 
nutrients) 

Not 
simulated 

Not simulated 
Not 

specified 
Not 

specified 
Not specified 

Irregular 
morphology was 

observed at 
t=19.12 days. 
Channels and 

clusters appeared 
at t=159.13 days 

Duddu et 
al. (2008)  

2D - 
continuum 

Length: 
200/500 

m; Depth: 

10/500 m  

Simulated Not specified 
Not 

simulated 
Dissolved 

oxygen 
Simulated Not simulated 

Not 
specified 

100 | 7.3 
days 

Not specified 

Variation of BT 
corresponded to 
different type of 

seeds (semi-
circular and slab 

biofilm) 

300 | 31 
days 

250 | 
28.6 
days 

400 | 44 
days 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

Eberl and 
Sudarsan 

(2008) 

2D - 
continuum 

Not 
specified 

Simulated | 
Colonies 

Single species 
Not 

simulated 
Dissolved 

oxygen 
Not 

simulated 

Simulated - 
Disinfectant 
not specified 

Laminar | 
Re 

0.32x10-5 
| 1x10-5 | 
0.32x10-4 
| 1x10-4 | 
0.32x10-3 
| 1x10-3 | 
0.32x10-2 
| 1x10-2 

No apply 

Shared  
environment 
on the SGI 

Altix 330 with 
16 processors 
(4 processors 

for each 
simultaneous 
run), 1.5 GHz 

and 32 GB 
main memory, 
4 MB cache | 
Comp. time 
20-60 min 

Colonies 
formation occurs 

in 1.1 days 

Zhang et al. 
(2008) 

2D -
continuum 

Not 
specified 

Simulated Single species Simulated 
Not 

specified 
Simulated Not simulated 

Laminar | 
Re 

9.98x10-4 

Not 
specified 

Not specified 

BT was reported 
as fractions. 

Biofilm growth 
was reported at 
t=3.5, 4.7 and 

10.5 days, 
according to 

different type of 
seeds (single 

hump, mushroom 
shape, compact 

biofilm) 

Duddu et 
al. (2009)  

2D -
continuum 

Length: 
1000/2000 

Simulated | 
Mushroom 

shape 
Single species Simulated 

Dissolved 
oxygen 

Simulated Not simulated 
Laminar | 
Re 0.8 - 

10 

200 | 
120 
days 

Not specified 
This study tested 
several previous 

models, 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

m; Height: 

500 m  

250 | 4.5 
days 

considering 
different Re 

values and the 
presence/absence 

of biomass 
detachment 

250 | 
10.7 
days 

100 | 7 
days 

150 | 7 
days 

Static 
300 | 20 

days 

Cogan 
(2010) 

2D - 
continuum 

Not 
specified 

Simulated | 
Hump 
shape 

Persister and 
susceptible 

bacteria 
Simulated 

Not 
specified 

Simulated 
Simulated | 
Disinfectant: 
hypochlorite 

Re < 1 

100 | 
Time of 
growth: 

240 
hours | 

300 
hours 

21-node 
cluster of GPU 
| Comp. time 9 

hours 

Fluid momentum 
is governed by the 
Stokes equation 
(viscous forces 
are dominating) 

Cogan 
(2011) 

2D - 
continuum 

Length: 1 
cm; Depth: 

0.5 cm 

Simulated | 
Hump 
shape 

Persister and 
susceptible 

bacteria 

Not 
simulated 

Not 
specified 

Simulated 

Simulated | 
Disinfectant 

type not 
specified 

Laminar | 
Re 0.94 

Not 
specified 

Not specified 

Disinfectant 
effects on biofilm 

were simulated up 
to 35 hours 

D’Acunto 
and Frunzo 

(2011) 

1D - 
continuum 

No apply 
Not 

simulated 

Competition 
between 

heterotrophic 
and 

autotrophic 
bacteria 

Simulated 
Organic 
carbon | 

Ammonia 

Not 
simulated 

Not simulated 
Not 

specified 
No apply Not specified - 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

Taherzadeh 
et al. (2012)  

2D 

Length: 

12,000 m; 
Height: 

3,000 m  

No apply 
Single cell 

with moving 
tail 

No apply 
Dissolved 

oxygen 
Not 

simulated 
Not simulated 

Laminar | 
Re 33-

150 
No apply 

AMD Opteron 
3174 

Processors (48 
cores) and 256 

GB RAM | 
Comp. time: 6 
days using 4 
cores of code 

running 

- 

Zhang, 
2012 

2D - 
continuum 

Length: 

1000 m; 
Height: 

1000 m  

Not 
simulated 

Active and 
inert cells 

Not 
simulated 

Not 
simulated 

Not 
simulated 

Simulated | 
Biocides: 

Hypochlorous 
acid, 

glutaraldehyde, 
QAC, Nisin 

Laminar | 
Re 20 

No apply 
Not specified | 
Comp. time 60 

min 

This study did not 
consider biofilm 
growth because 

there was not 
substrate after 

rinsing biocide in 
experimental tests 

Lindley et 
al. (2012)  

2D - 
continuum 

Length: 

1000 m; 
Height: 

1000 m  

Simulated | 
Hump 

shape and 
effect of 
shear 
stress 

Single species Simulated 
Dissolved 

oxygen 
Simulated Not simulated 

Laminar 
Re 1x10-3 

| 1 

Not 
specified 
| Time of 
growth 

3.5 days 

Not specified - 

Clarelli et 
al. (2013)  

1D, 2D 
and 3D - 

continuum 

Length: 1 
cm 

Simulated | 
Hump 
biofilm 

Autotrophs: 
active and 

inert 
Cyanobacteria 

cells 

Not 
simulated 

Light Simulated Not simulated 
Not 

specified 
200 | 60 

days 

Standard 
laptops | 

Comp. time 
1D: 3.25 min | 
2D: 40 min | 

3D: 1.84 hours 

- 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

Ghosh et 
al. (2013)  

2D - 
continuum 

Not 
specified 

Simulated | 
Colonies 

Bacillus 
substilis: 

Active and 
inert cells 

Not 
simulated 

Not 
specified 

Simulated Not simulated 
Not 

simulated 
No apply Not specified 

Colonies 
formation was 

simulated up to 24 
hours 

Cumsille et 
al. (2014)  

2D - 
continuum 

Length: 119 

m; Height: 

179 m  

Simulated | 
Finger- 

and 
mushroom-
like shape 

Single species 
Not 

simulated 

Dissolved 
oxygen | 
Glucose 

Not 
simulated 

Not simulated 
Re 

Negligible 

63 | 1.3 
hours Intel Core Duo 

CPU P9600 
machine at 
2.67 GHz | 

Comp. time: 
Several hours 

(e.g., 1440 
iterations took 
25 min for the 

finest grid) 

Biofilm and flow 
were fluids with 

two different 
viscosity and both 
of them satisfied 
the Hele-Shaw 
equations. BT 

corresponded to 
several biofilm 

shapes: compact, 
mushroom, finger, 

semi-circular 
biofilms 

Length: 

1333 m; 
Height: 

2000 m  

900 | 1.8 
hours 

1000 | 
13.7 

hours 

1100 | 
17.6 

hours 

Coroneo et 
al. (2014)  

2D - 
continuum 

Length: 600 

m; Depth: 

300 m; 
Height: 10 

m 

Simulated | 
Circular 

and finger 
shape 

Not specified 
Not 

simulated 
Dissolved 

oxygen 
Not 

simulated 
Not simulated 

Laminar | 
Re not 

specified 

Not 
specified 

Not specified 

8 days were 
required to reach 
finger-like shape 

of biofilm 

D’Acunto et 
al. (2015)  

1D and 
3D - 

continuum 

Length: 

2000 m 

Not 
simulated 

Multi-species: 
autotrophs, 

heterotrophs, 
inert cells 

Simulated 

Dissolved 
oxygen | 
Organic 
carbon | 

Ammonia 

Not 
simulated 

Not simulated 
Not 

specified 
Not 

specified 
Not specified 

Biofilm growth 
was simulated up 

to 5 days 
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Reference 
Type of 
model 

System / 
Domain 

dimensions 

Model components 
Flow 

regime 
and Re 

Max. BT 

(m) 
and 

Time of 
growth 

Computer and 
computational 

time 
Observations Spatial 

character. 
of biofilm 

Bacteria 
species 

Biomass 
detachment 

Substrate 
EPS 

production 
Biocide effect 

Macías-
Díaz (2015) 

2D - 
continuum 

Not 
specified 

Simulated | 
Mushroom 

shape 

Active and 
inert cells 

Not 
simulated 

Not 
specified 

Simulated Not simulated 
Not 

specified 
Not 

specified 
Not specified - 

Tierra et al. 
(2015) 

2D - 
continuum 

Length: 

1000 m; 
Height: 

1000 m  

Simulated | 
Finger-like 

shape 
No apply Simulated No apply Simulated Not simulated 

Laminar | 
Re 5.6 | 
27.8 | 
111.1 

No apply Not specified 

Biofilm growth 
was not included: 

time scale 
deformation and 
detachment vs 
biofilm growth 
(seconds vs 

hours) 

Zhao et al. 
(2016) 

3D - 
continuum 

Length: 

1000 m; 
Depth: 2000 

m  

Simulated | 
Mushroom 

shape 

Persister and 
susceptible 

bacteria 

Not 
simulated 

Dissolved 
oxygen 

Simulated 

Simulated | 
Antimicrobial 

agent not 
specified 

Laminar | 
Re not 

specified 

Not 
specified 

CPU-GPU 
hybrid 

environm. High 
perf. comp. 

Biofilm growth 
was reported for 
1, 10, 55, 27.8 

hours 

Jayathilake 
et al. (2017)  

3D - 
Discrete 

Length: 100 

m; Dept: 

400 m; 
Height: 100 

m 

Simulated | 
Mushroom 

shape 

Multi-species: 
aerobic, 

anaerobic, 
anoxic growth 

Simulated: 
deformation 
and erosion 

Organic 
substrate: 
oxygen, 
nitrates, 
nitrites 

Simulated Not simulated 

Simulated 
| Flow 
regime 

not 
specified 

48 | 4.6 
days 

Not specified - 
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In general, modelling evolves according to the interests and needs of researchers and consultants, 

advance on numerical methods and development of software and hardware. It can be observed in 

Table 2-3 that such research have followed a cyclic pattern on time. Models start with great 

simplifications such as ignoring the spatial characteristics of biofilm in order to evaluate the effects 

of substances like disinfectants on certain populations of bacteria. Particularly, biofilm modelling 

reported in the early 90’s corresponded to one-dimension models of biofilm disinfection, and the 

spatial characteristics of the biofilm were not considered (Stewart, 1994; Stewart and Raquepas, 

1995). Then, other features were included in the models as progress on numerical methods, 

software and hardware is being done. Colonies, finger-like, and mushroom shape biofilms are then 

modelled in 2D and 3D. Models also become more sophisticated by including several species in 

the biofilm according to their metabolism and resistance to biocides. Similarly, EPS production has 

also been included in these models, especially when they were aimed to assess the viscoelastic 

properties of biofilms and effects of shear stress. In the last case, biofilm detachment has also been 

simulated. Despite of the evident evolution of biofilm modelling, mass transport by coupled flow-

biofilm is limited to laminar flow with low Re.  

Biofilm modelling is computationally expensive, depending on the characteristics to be included. 

Ideal models in drinking water pipes should include biofilm growth, multi-species, detachment, EPS 

production, multi-substrates, disinfection, DBP formation, and mass transport under turbulent flow. 

However, including all those characteristics in one model might not be feasible in reasonable times 

for practical applications. Therefore, simplifications must be done. For instance, less than 60 min 

of computational time have been reported for 1D and 2D models of disinfectant effects on colonies 

growth (Eberl and Sudarsan, 2008), antibiotic impact on initial concentration of biomass (spatial 

characteristics of biofilm were not simulated) (Zhang, 2012), growth of humps of autotrophic 

bacteria (Clarelli et al., 2013), and growth of finger-like and mushroom shape of biofilms  

Other 2D model of disinfection of persister and susceptible bacteria, hump-shaped biofilm, lasted 

nine hours, using a 21-node cluster of GPU. More expensive computations were run for 2D models 

of mushroom-shaped biofilm under laminar flow and Re<7, with eight or 16 processors from a 

parallel machine; simulations lasted one day (Picioreanu et al., 2000a). Similarly, Taherzadeh et 

al. (2012) used CFD to solve the flow field under laminar regime and Re=33-150 and calculate the 

mass transport between bulk and an spherical cell with a moving tale. 48 processors and 6 days 

were required for those simulations (Taherzadeh et al., 2012). 

Regarding the effects of flow on biofilm dynamics, Lehtola et al. (2006) stated that it is commonly 

believed that increasing water flow velocity can increase the bacterial numbers in biofilms due to 
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better mass-transfer of growth-limiting nutrients at the higher flow velocity of water, but there are 

conflicting results about this matter. The studies developed by Donland and Pipe (1988) and 

Ragazzo (2002) (cited by Lehtola et al. (2006)) have reported that the number of bacteria in biofilms 

correlated negatively with water flow rate; shear stress appeared to have no interaction on biofilm 

formation and no significant effects of flow rate were identified on biofilm thickness. As a result, 

Lehtola et al. (2006) studied the changes in water quality and the formation of biofilms in copper 

and plastic pilot systems in response to gradual increase of water flow (0.2-1.5 L/min) and velocity 

(0.04-0.28 m/s). Pilot systems were composed by 2 parallel loops ( 50 mm), each one connected 

to two parallel copper-loops ( 10 mm) and plastic-loops ( 12 mm), respectively. Water and biofilm 

samples were taken, the latter one by using collectors made of pieces of pipes of each material. 

Biofilm was characterized by heterotrophic plate count (HPC) and total bacteria measurements 

using culture and dyeing methods. This study reported that increasing flow rate did not significantly 

affect HPC in biofilms in copper pipes, but this parameter increased in plastic pipes.  

Therefore, this confirmed that number of bacteria in biofilm increased with higher flow rate, resulting 

from better mass-transfer of growth-limiting nutrients. This result is attributable to velocity changes 

and not to nutrients concentrations and dilution changes since the experiments considered water 

recirculation. However, it is necessary to examine the methods for characterizing biofilm growth 

since bacteria culture has recognized limitations regarding the ability to generate accurate results. 

In addition, HPC count only represent a limited fraction of the whole microbial community 

(Douterelo et al., 2014a; Ren et al., 2015), when used to estimate bacterial loads in water samples. 

Consequently, this study might have included non-realistic estimation of bacteria count in biofilm 

and water (Lehtola et al., 2006). This study also found that biofilms detachment occurred in copper 

pipes during the experiments. A recent work by Abokifa et al. (2016a), who built and validated a 

model to predict THM concentrations in DWDNs including the contribution of biomass, found that 

the flow velocity significantly affects the THM formation from biomass as it controls bacterial 

regrowth by enhancement of mass transfer of solutes across the bulk/biofilm interface caused by 

higher velocity.  

In relation to the effects of antimicrobial agent on biofilms, Cogan (2008) developed a two-

dimension continuum model of biofilm disinfection, including coupled motion, external fluid, and 

viscoelastic properties of the biofilm by considering this as a fluid with viscosity notably higher than 

viscosity of bulk water. To determine the various model components for each time-step, the 

researchers determined the fluid and biofilm velocities by solving incompressible Stokes equations; 

computed the advection, diffusion and reaction of the chemical substances; and the chemical 

concentrations were assumed to be at quasi-steady-state, since these equilibrate rapidly. One of 
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the key aspects of modelling two fluids is to define the interface between them and solving the 

respective equations. Cogan (2008) used the boundary integral method (BIM) which consists of 

transforming the equation governing both materials in each subdomain into a single integral 

equation, whose solution is the velocity at each point in the domain. Cogan (2008) compared the 

disinfection curves for varying biofilm viscosity and they found that flow regimes and high viscosity 

of biofilm have very little difference in disinfection using a dynamic interface as compared to the 

fixed simulations considered by Cogan (2006). Therefore, assuming a fixed interface may be a 

reasonable simplification for a range of flow regimes. 

It has been identified that biofilms have physiological protection, which consists of spatially 

dependent nutrient consumption leading to regions of lowered biocide effectiveness. Because of 

this, typical antimicrobial agents and antibiotics are most effective at killing respiring bacteria 

(Costerton et al., 1995). Therefore, disinfection rate must be dependent directly on the nutrient 

availability by assuming that disinfection rate is proportional to the bacterial growth rate. This delays 

the action of an antimicrobial within the biofilm since the bacteria near the fluid interface consume 

the nutrient leading to nutrient-depleted regions. These regions will not be susceptible to 

antimicrobial agents since they have zero growth rate. This makes the process transient where 

cells near to interface are also more susceptible to disinfection and they are killed quickly, nutrients 

can penetrate further into the biofilm reducing the nutrient depleted zones inducing susceptibility 

(Cogan, 2008). 

The previous explanation agrees with the experiments run by Xue et al. (2014) with pure cells of 

P. aeruginosa and P. putida in order to study reactivity between EPS and monochloramine. They 

found that reactivity between protein-EPS and monochloramine is eight times higher than 

polysaccharides-EPS. High reaction rate reduced monochloramine concentrations at the biofilm 

surface and lower concentrations were found in deeper layers of biofilm. According to the nutrient 

and oxygen gradients, cells enclosed in the interior of a biofilm may be in a dormant state (Xue et 

al., 2014). According to the research of Cogan (2008) and Xue et al. (2014), modelling biofilm 

disinfection considering physiological tolerance is a good approach to study resistance 

mechanisms of bacteria. However, modelling DBP formation from biofilm disinfection should also 

include the transformation of dead bacteria into DBPs since they are still organic matter which 

reacts with disinfectant. Similarly, the biomolecules embedded in EPS reacts with disinfectant, 

forming DBPs, which may contribute to increase its concentrations in bulk water. In this line, 

disinfection rate may not be fully dependent of bacteria growth rate, which may lead to a 

simplification of the model. 
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2.5 WATER DISINFECTION 

Water supply history started with the access to safe water. Due to increasing contamination of 

water sources, the efforts were then addressed to improve treatment processes. Chlorine was 

introduced to urban drinking water supply systems for first time in the USA at the beginning of the 

20th century and it has been used to control pathogenic bacteria in drinking water around the world 

(Nieuwenhuijsen et al., 2000). As a result of the discovery of DBP formation from oxidation of 

organic matter by chlorine and extensive research, other chemical disinfectants such as 

chloramine, chlorine dioxide, ozone, and ultraviolet light (UV) have raised as alternatives to 

chlorine. However the first three previous disinfectants also lead to DBP formation (Chowdhury et 

al., 2009) and the last two disinfectants only work at point-of-use since they do not produce residual 

concentrations in the DWDNs (Betancourt and Rose, 2004). Since a “perfect” disinfectant has not 

been discovered yet, chlorine is still used widely by virtue of it is easy to use, low cost, and 

especially for its residual effect, which is an important factor to protect drinking water against any 

potential microbial contamination in the distribution networks (WHO, 2005). Chlorine is an oxidizing 

substance and it is relatively unstable in water; therefore, chlorine decays in DWDNs since it reacts 

with particulate and dissolved substances in bulk water, biofilms, materials of the components of 

the network, incrustations, and sediments (Al-Jasser, 2007).  

 

2.5.1 Chlorine reactions in water 

2.5.1.1 Hydrolytic reactions 

When chlorine gas (Cl2) is added to water, hypochlorous acid (HOCl) and hypochlorite ion are 

formed (OCl-). These compounds are known as free residual chlorine and they are produced in two 

phases: 

𝐶𝑙2 + 𝐻2𝑂 → 𝐻𝑂𝐶𝑙 + 𝐻+ + 𝐶𝑙−(𝐻𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠) 

𝐻𝑂𝐶𝑙 ↔  𝐻+ + 𝑂𝐶𝑙− (𝐷𝑖𝑠𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛) 

The ratio HOCl:OCl- depends directly on pH. When dissolved free chlorine is considered, the 

predominant chlorine species present in the pH 1-3 region is chlorine (Cl2), whereas HOCl 

predominates in the pH 5-7 region and the hypochlorite ion is the major species present above pH 

8 (Gordon and Tachiyashiki, 1991). This indicates that pH is an important variable in disinfection 

processes since HOCl is a more powerful disinfectant while hypochlorite ion is weaker (Scarpino 

et al., 1972).  
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2.5.1.2 Redox reactions 

Chlorine can react with either organic or inorganic substances present in water, especially with 

those containing nitrogen. Chloramines are produced rapidly when chlorine reacts with ammonium; 

other non-disinfectant chlorinated substances are formed when chlorine reacts with organic 

nitrogen and other substances. These reactions are slow and can last days or even weeks 

(Arboleda, 2000). 

 

2.5.2 Disinfectant decay models 

Disinfectant decay is probably the process most commonly simulated in DWDNs due to its direct 

relationship with other important parameters such as bacteria regrowth, cells inactivation, and DBP 

formation. Water quality models including disinfectant, coupled with network hydraulics (dead/low 

velocities zones, water age), are regarded as a proxy model for this inactivation and are used to 

identify bacteria regrowth episodes; explain water quality complaints; select water quality 

monitoring points, among others (Clark, 2015). To model the disinfection decay process, 

parameters such as decay coefficients in bulk water and at pipe walls have been calculated from 

experimental data and represented by first and second order kinetic equations. 

Chlorine decay in DWDNs is influenced by several factors such as corrosion processes, chlorine 

mass transport between bulk water and pipe walls, and reactions with both organic and inorganic 

substances in bulk water and with biofilms attached to the wall of pipes, tanks, and accessories of 

the system (Vasconcelos et al., 1997). A general first-order expression can be used to describe the 

variation of chlorine at different residence times in the distribution network (Equation (2-20)). 

𝜕𝐶

𝜕𝑡
= −𝑘𝐶 (2-20) 

 

Here C is the chlorine concentration and k is the first-order decay constant of chlorine. Integrating 

Equation (2-20) and defining C = Co at t=0, Equation (2-21) is obtained to describe chlorine decay. 

𝐶 = 𝐶𝑜𝑒
−𝑘𝑡  (2-21) 

 

According to Vasconcelos et al. (1997), k reflects the factors mentioned previously and, as 

consequence, it is site-specific and must be verified by field measurements. Therefore, chlorine 
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decay constant is including simultaneously the reactions in bulk water and pipes walls (Equation 

(2-22)). 

𝑘 = 𝑘𝑤 + 𝑘𝑏 (2-22) 

 

Here kb is the reaction coefficient in bulk water and kw is the reaction coefficient at pipe walls. 

Chorine can quickly oxidize certain substances such as sulphides, ferrous iron, manganese, and 

humic material (Vasconcelos et al., 1997). The reaction rate of the remaining chlorine is frequently 

well-characterized as a simple first-order decay process or, in some cases, a second-order rate 

process (Clark, 1998). Pipe materials and biofilms play an important role in the quantification of kw. 

The two-steps experimental test is usually used to determine kb and kw; kb is determined by testing 

chlorine decay in water stored in glass flasks while overall k is calculated by testing chlorine decay 

in aged pipes. The difference between k and kb results in kw (Vasconcelos et al., 1997).  

2.5.2.1 Wall reaction kinetics 

In relation to wall reaction kinetics, chlorine is transported from bulk water to the wall reacting 

according to either first-order or zero-order kinetics. According to Vasconcelos et al. (1997), first-

order wall reaction is more appropriate when chlorine is the limiting reactant, as might be the case 

with reactions involving biomolecules and EPS inside of biofilms (see more details in Section 2.7). 

Zero-order wall reactions can be used to represent the case in which chlorine oxidizes immediately 

some reductant as ferrous compounds and the rate is dependent on how fast the reductant is 

produced by the pipe; this representation would be more likely applied to corrosion-induced 

reactions. Several studies have identified the chlorine wall decay by laboratory or in-situ tests, 

analysing the demand exerted by either only biofilms or all the components of pipe walls 

(sediments, corrosion by-products, biofilms, loose deposits, etc.); Table 2-4 summarises such 

values of kw. 

Table 2-4. Disinfectant decay constants reported in experimental studies 

Reference Description 
Chlorine wall decay constant  

(m3/g-day) (1/day) 

Lu et al. 
(1999) 

Growth of biofilm (7 months) in polystyrene beads 
with sand filtered water, ozonated water and 
finished water. Temperature was maintained at 18 
°C ±1 (reference water). Tests were run with 
finished water (reference water was also used and 
decay rates are much lower). 

5.10 5.00 

6.29 6.16 

2.48 5.11 

2.19 4.52 

(1) CI: 0.72 – 39.36 
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Reference Description 
Chlorine wall decay constant  

(m3/g-day) (1/day) 

Hallam et al. 
(2002) 

Determination of chlorine wall decay by in-situ and 
laboratory experiments. In-situ tests: measurements 
of chlorine decay between two points, considering 
residence time, uniform pipe material and diameter. 
Laboratory tests: measurements carried out in PVC 
instrument, including new pipe sections, new pipes 
installed in the DWDN for three weeks to allow 
biofilm growth, and pipe sections belonging 
originally to the DWDN. 

DICL: 3.12 (2) 

PVC: 2.16 (2) 

MDPE: 1.20 (2) 

Buamah et al. 
(2014) 

Chlorine decay in bulk water and overall decay were 

tested in PVC, asbestos and cast iron aged pipes.  
= 152 mm. Modelled drinking water was used in the 
tests. Wall decay was calculated by the difference 
between overall and bulk water decay constant. Clo 
= 0.74 / 1.44 mg/L (Water temperature = 26-30 °C; 
pH = 6.5-8.5). 

5.50 6.00 

4.18 4.56 

8.37 9.12 

Lee et al. 
(2014) 

Growth of biofilm (10 days) in PVC reactors,  = 77, 
98, 145 mm, reclaimed water, disinfection with 
chlorine (Clo = 1, 2, 4 mg/L) (pH = 6.84-6.93). 

2.30 4.59 

1.63 3.27 

1.04 2.07 
(1) Specific initial concentrations of chlorine were not reported | (2) Average | CI: Cast iron | DICL: cement-lined ductile iron | MDPE: 
medium density polyethylene 

 

Disinfectant decay constant in pipe walls has been attributed to reactions with the pipe material, 

biofilms and deposits (Lu et al., 1999; Buamah et al., 2014). This demonstrates that biofilms and 

deposits represent an important source of disinfectant decay, especially in smaller diameter pipes 

(Lu et al., 1999; Buamah et al., 2014; Lee et al., 2014) as the interactions between the wall and 

bulk water are more significant when the diameter is small. For instance, Lu et al. (1999) studied 

the influence of biofilms on chlorine demand by growing biomass in polystyrene beads and 

analysing S/V1 ratios. These researchers found that diameters smaller than 40 mm (1.5 inches) 

and biodegradable dissolved organic carbon higher than 0.6 mg/L are more relevant for chlorine 

decay. Such pipe dimensions correspond to that used in building plumbing systems. On the other 

hand, Buamah et al. (2014), by testing and simulating PVC, cast iron, and asbestos aged pipes, 

found that diameters of three and six inches influenced more the wall chlorine decay in comparison 

to nine inches. In contrast, Lee et al. (2014) tested reclaimed treated wastewater by growing 

biofilms in PVC reactors. By assessment of the S/V ratios, they found that wall chlorine decay in 

=77 mm (3 inches) is about 4–5 times larger than =145 mm (6 inches). 

                                                        

1 Pipe inner wall surface area per unit volume of pipe 
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2.5.2.2 Mass transfer kinetics 

Based on the transport process described in Section 2.3, Rossman et al. (1994) represented 

chlorine reaction with pipe walls by a film-resistant model of mass transfer, along the pipe. The rate 

at which chlorine is hydrodynamically transported to the wall is proportional to the difference 

between the bulk concentration and the concentration at the wall (Equation (2-23)). 

𝑑𝐶

𝑑𝑡
| 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =  

𝑘𝑓

𝑟ℎ
(𝐶 − 𝐶𝑤) (2-23) 

 

Here rh is the hydraulic radius and kf is the mass transfer coefficient, which is usually expressed in 

terms of Sh (Equation (2-8)). 

2.5.2.3 Overall rate 

Disinfectant decay is the primary water quality parameter monitored by water operators and 

effective efforts have been done to represent this process by mathematical models, which can be 

used in the routine operation of the DWDNs. The overall rate of chlorine loss in a pipe is the key 

kinetic variable for models of DWDNs containing this disinfectant; it combines the effects of bulk 

reaction, wall reaction, and mass transfer. Equations (2-24) and (2-25) show the expressions for 

first-order and zero-order wall reactions, respectively (Vasconcelos et al., 1997). 

𝜕𝐶

𝜕𝑡
= −(𝑘𝑏 +

𝑘𝑤,1𝑘𝑓

𝑘𝑤,1 + 𝑘𝑓
)𝐶 (2-24) 

  

𝜕𝐶

𝜕𝑡
= −𝑘𝑏𝐶 − 𝑚𝑖𝑛 (

𝑘𝑤,0

𝑟ℎ
,
𝑘𝑓𝐶

𝑟ℎ
) (2-25) 

 

2.6 DBPS IN DRINKING WATER 

2.6.1 Disinfection approaches 

DBPs are the result of the reaction between disinfectants (chlorine, chlorine dioxide, chloramines, 

and ozone) and NOM, biofilms, anthropogenic contaminants, bromide, and iodide, during the 

production and/or distribution of drinking water. According to Hrudey (2009), the publication by 

Rook (1974) on the discovery of THMs in drinking water changed the perspective that water safety 

was only related to waterborne diseases. Since then, extensive research has been conducted to 

determine the mechanisms of DBP formation, characterize their precursors, identify different types 
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of DBPs formed according to several variables and evaluate exposure routes and the effects on 

human health. In addition, the applicability of chlorine as the main water disinfectant has been 

questioned because of DBP formation, its inefficiency for inactivation of Giardia lamblia and 

Cryptosporidium (Roccaro et al., 2013), the inability to prevent biofilm formation (Wang et al., 2014), 

and the incapacity to fully penetrate biofilms in order to deactivate bacteria embedded in the EPS. 

As a result, other disinfectants such as chloramine, ozone, chlorine dioxide, and ultraviolet light 

(UV) have been proposed but other DBPs, such as haloquinones, can be formed, which can be 

even more dangerous than THMs (Chowdhury et al., 2009). 

 

2.6.2 DBP species 

NOM, precursor of DBPs, is highly complex in drinking water; as a consequence, the multiple 

products of any chemical reaction with NOM are largely unknown (Weinberg, 2009). As a 

consequence of the diverse nature of DBP precursors, fewer than half of the halogenated by-

products resulting from the chlorination of drinking water has been identified, and even less is 

known about the by-products in water treated with other disinfectants (Weinberg, 2009). According 

to Hrudey (2009), over 600 DBP species have currently been identified in chlorinated drinking 

waters; they are grouped as THMs, HAAs, haloacetonitriles (HANs), haloketones, chloropicrin, 

chloral hydrate, cyanogen halides, halonitromethanes, oxyhalides, bromate, aldehydes, 

aldoketoacids, carboxylic acids, maleic acids, chlorophenoles, chloroanisoles, haloacids, 

haloacetates, halonitromethanes, iodoacids, iodo-THMs, halo-ketones, halo-aldodehydes, 

haloamides, halopyrrole, halofuranones, nitrosamines, carbonyls, volatile organic compounds, 

methyl DBPs, and other halomethanes. Table 2-5 presents a summary of the chlorination DBP 

groups and their distinctive functional group. 

Table 2-5. Distinctive functional groups of chlorination DBPs 

DBP group Distinctive functional group DBP group Distinctive functional group 

1. THMs 

 

2. Haloacetates 

 

3. HAAs 

 

4. Halonitromethanes 
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DBP group Distinctive functional group DBP group Distinctive functional group 

5. Haloacetonitriles 

 

6. Iodoacids 

 

7. Haloketones 

 

8. Iodo-THMs 

 

9. Miscellaneous 
chlorinated 
organics 
(Chloropicrin and 
Chloral hydrate)  

10. Halo-ketones 

 

11. Cyanogen 
halides  12. Haloacids 

 

13. Oxyhalides 

 

14. Halo-
aldodehydes 

 

15. Aldehydes 

 

16. Haloamides 

 

17. Aldoketoacids 

 

18. Halopyrrole 

 

19. Carboxylic 
acids 

 

20. Halofuranones 

 

21. Maleic acids 

 

22. Nitrosamines  

23. Chlorophenoles 

 

24. Carbonyls 

 

25. Chloroanisoles 

 

26. Volatile organic 
compounds and 
methyl DBPs 
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DBP group Distinctive functional group DBP group Distinctive functional group 

27. Other 
halomethanes 

 
 

Adapted from Hrudey (2009) | X, X’, X’’: halogen atom (chlorine -Cl-, bromine -Br-, and iodine -I-) | R: hydrocarbon | R2: different 
chemical combinations 

 

Despite that diversity, only a small number has been assessed either in quantitative occurrence or 

health-effects studies. The most studied DBPs are those derived from halogens such as THMs, 

HAAs, HANs, and haloketones (Karanfil et al., 2008). According to Richardson et al. (2007) and 

Roccaro et al. (2013), the highest occurrence among regulated and non-regulated DBPs is for 

chlorate (high g/L levels), followed by chloroform, chlorite, dichloroacetic acid, dribromoacetic 

acid, and trichloroacetic acide (low-to mid- g/L levels). In relation to nitrogenous and unregulated 

DBPs, HAN occurrence corresponds to sub- to low- g/L levels. These DBPs can include chlorine 

and bromine atoms or both of them and brominated species result more toxic and carcinogenic 

than chlorinated species (Roccaro et al., 2013; Bond et al., 2014). The current research project is 

focused on chloroform and DCAN, which belongs to the groups THMs and HANs, respectively, in 

order to cover regulatory and toxicity aspects of DBPs. 

 Chloroform 

Chloroform is also known as trichloromethane, methane trichloride, trichloroform, methyl trichloride, 

and formyl trichloride. Its molecular formula is CHCl3, and its relative molecular mass is 119.37 

g/mol. At room temperature, chloroform is a clear, colourless, volatile liquid with a pleasant etheric 

odour. Sources of chloroform in the air can be natural and anthropogenic such as algae and fungi 

production in marine and soil environments, respectively (WHO, 2004). Anthropogenic sources 

include industrial production and as a result of its formation from other substances such as 

chlorination of paper pulp and water for human consumption and swimming pools (WHO, 2004). 

Other sources include hazardous waste sites, and sanitary landfills. Due to the volatility properties 

of chloroform, inhalation is an important exposure route.  

The major effect from acute (short-term) inhalation exposure to chloroform is central nervous 

system depression. Chronic (long-term) exposure to chloroform by inhalation in humans has 

resulted in effects on the liver, including hepatitis and jaundice, and central nervous system effects, 

such as depression and irritability (USEPA, 2000). Chloroform has been shown to be carcinogenic 
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in animals after oral exposure, resulting in an increase in kidney and liver tumours (USEPA, 2000). 

Chloroform is generally considered to be a no genotoxic carcinogen whose mechanism of action 

involves cytotoxicity and regenerative cell proliferation (IARC, 1999). EPA has classified chloroform 

into the Group B2, as a substance possibly carcinogenic to humans. The reference dose for chronic 

oral exposure of chloroform is 0.01 mg/Kg-day (USEPA, 2016a). 

 Dichloroacetonitrile 

DCAN belongs to the HAN group, which includes seven species: bromoacetonitrile, 

dibromoacetonitrile, bromochloroacetonitrile, chloroacetonitrile, DCAN, trichloroacetonitrile, and 

iodoacetonitrile. According to WHO (2017), DCAN is by far the most predominant halogenated 

acetonitrile species detected in drinking-water. Similarly, this species has also been identified as 

predominant in biomass disinfection tests (Wang et al., 2012c). It has also been reported that DCAN 

degrades over a period of hours or days, depending on pH and chlorine concentration (Reckhow 

et al., 2001). In order to reduce the occurrence of chlorinated DBPs, water managers are switching 

from chlorine to chloramine disinfection (Muellner et al., 2007), but this disinfectant increases the 

nitrogenous DBPs, including HANs. In addition, HANs are also formed when disinfectants such as 

chlorine, chloramine, chlorine dioxide, or ozone disinfection are applied in the WTPs (McGuire et 

al., 2002). In a review work, researchers found that every HAN species induced DNA damage in 

mammalian cells of Chinese hamster ovary (Richardson et al., 2007). By cell assays, Muellner et 

al. (2007) tested the cytotoxicity and genotoxicity of HANs. In descending order of cytoxicity 

dibromoacetonitrile (2.8 M) > iodoacetonitrile  bromoacetonitrile > bromochloroacetonitrile > 

DCAN > chloroacetonitrile > trichloroacetonitrile (0.16 mM). Genotoxicity potency, associated with 

DNA damage, resulted in descending order highest for iodoacetonitrile (37 M) > bromoacetonitrile 

 dibromoacetonitrile > bromochloroacetonitrile > chloroacetonitrile > trichloroacetonitrile > DCAN 

(2.7 mM). 

 

2.6.3 DBP regulation 

Even though a wide variety of DBPs exists, regulation or guidance values of these substances in 

drinking water has been applied mainly to few DBP species of the groups THMs, HAAs and HANs 

(see Table 2-6). In addition, maintaining residual disinfectant in DWDNs is required to protect 

drinking water against microbiological contamination. Accordingly, the Water Health Organization 

recommends residual disinfectant concentrations between 0.2-1.0 mg/L (WHO, 2008) and 
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Colombian regulation establishes 0.3-2.0 mg/L range (Ministerio de la Protección Social and 

Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2007); USEPA (1998) regulates 0.8-4.0 

mg/L in the United States (depending on the type of secondary disinfectant), and European Union, 

England and Wales do not establish specific values for residual disinfectant (European Union, 

1998; UK Parliament, 2000). However, biofilm research has proved that pathogenic bacteria grow 

within biofilms, have active metabolism and are protected against disinfectants since EPS exerts a 

demand, thus reducing the effective disinfectant concentration to inactivate the cells (Gomez-

Alvarez et al., 2012; Xue et al., 2013). 

Table 2-6. Regulation of concentration limits of DBPs in drinking water 

Main Group Compounds 

Regulations (g/L) 

WHO 
(WHO, 
2017)  

European 
Union (3) 

UK 
(4) 

USA 
(USEPA, 

2006) 

Colombia 
(5) 

THM 

Chloroform 300 - - - - 

Bromodichloromethane 
(BDCM) 

60 - - - - 

Bromoform (TBM) 100 - - - - 

Dibromochloromethane 
(DBCM) 

100 - - - - 

Total THMs (2) 100 100 80 200 

HAAs 

Dichloroacetic acid 
(DCAA) 

50 - - - - 

Chloroacetic acid 
(CAA) 

20 - - - - 

HAA5 (1) - - - 60 - 

Haloacetonitriles 
(HANs) 

Dibromoacetonitrile 
(DBAN) 

70 - - - - 

(DCAN) 20 - - - - 
Source: Adapted from Chowdhury et al. (2009) 
(1) HAA5 (sum of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid). 
(2) The sum of the ratio of the concentration of each to its respective guideline value should not exceed 1. 
(3) European Union (1998) 
(4) UK Parliament (2000) 
(5) Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial (2007) 

 

2.6.4 DBP precursors 

NOM, e.g., humic substances, is present at various degrees in all water supply systems and 

constitute the major component of the total organic carbon (TOC) concentration in most waters and 

it has been identified as the principal precursor in the formation of THMs and HAAs (Liang and 

Singer, 2003). NOM contains both hydrophobic and hydrophilic fractions; the hydrophobic fractions 

are generally composed of the higher molecular weight NOM with activated aromatic rings, phenolic 

hydroxyl groups and conjugated double bonds, and are considered the major precursors of THMs 

and HAAs; the hydrophilic fractions are typically composed of the lower molecular weight NOM with 
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aliphatic ketones and alcohols (Liang and Singer, 2003). The hydrophobic fractions of NOM exhibit 

higher ultraviolet absorbance (UV254)2 and higher specific ultraviolet absorbance (SUVA), defined 

as 100 UV254/DOC3. Hydrophobic fractions tend to be more reactive with chlorine than bromine, 

while the hydrophilic fractions of NOM exhibit lower UV254 and lower SUVA, and are generally more 

reactive with bromine than chlorine (Liang and Singer, 2003). 

The presence of bromide ions (Br−) represents further challenges to the control of DBP formation 

(Barrett et al., 2000). Waters without Br− mainly form chlorinated THMs (e.g, chloroform) due to 

reactions between HOCl and the hydrophobic fractions of NOM. As such, a significant fraction of 

the hydrophilic NOM may be left unreacted in these waters. Conversely, in waters with Br−, the 

hydrophilic fractions of NOM form brominated THMs through reactions with hypobromous acid 

(HOBr), while these brominated THMs may not be adequately characterized by the low SUVA or 

low UV254 values (Chowdhury et al., 2009). The removal of hydrophilic NOM through coagulation 

processes is often difficult because of their low molecular weights. As such, hydrophilic NOM tends 

to remain in finished waters. As a result, formation of brominated THMs in finished water in the 

presence of bromide ions is more likely to occur (Chowdhury et al., 2009). Additionally, 

experimental evidence from chlorine disinfection of single-species biofilm suspensions has shown 

that these can also be important DBP precursors resulting from the oxidation of EPS and lead to 

the formation of carbonaceous DBPs and nitrogenous DBPs (Wang et al., 2012c). 

 

2.6.5 Factors influencing DBP formation 

During disinfection of drinking waters, most of the chlorine demand is exhausted by reactions with 

NOM. Chlorine also reacts with various inorganic compounds in the WTPs and distribution systems 

(e.g., ammonia, Fe+2, Mn+2, S-2, Br-, pipe materials, biofilms) (Chowdhury et al., 2009). It has been 

shown that increasing pH, within the range 6-8, can increase THM formation (Chowdhury and 

Champagne, 2008) but reducing pH can lead to an increase in HAA formation, within the same 

range (Liang and Singer, 2003). Considering that pH is also an operational variable to control 

dominant chlorine species, the determination of the optimum pH range for disinfection is often 

necessary during the operation of water supply systems in order to balance the microbiological and 

                                                        

2 Ultraviolet light at the 254 nm wavelength is passed through a quartz cell containing the sample water and it provides an indication 
of the concentration of organic matter, specifically those that contain aromatic rings or unsaturated bonds (double and triple) in their 
molecular structures. (http://realtechwater.com/uv254/) 
3 SUVA is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) 
concentration. Weishaar, J.L. et al. 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition 
and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology. 37(20), pp.4702-4708. 

http://realtechwater.com/uv254/
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chemical safety of the water. Increase in contact time has also been noted to increase THM 

formation; on the other hand, reduction of HAA concentrations has been found with higher retention 

times (Tung and Xie, 2009). This has been associated with the biodegradation of dichloroacetic 

acid by methylotroph bacteria such as Methylobacterium and Delftia (Hozalski et al., 2008; Zhang 

et al., 2009). However, controlling contact time in DWDNs is often a challenge due to variable 

hydraulic conditions and water demands imposed in distribution systems.  

Temperature and seasonal variability has also been reported to affect THM formation, where the 

formation of THMs in warmer waters or during summer seasons has been reported to be higher 

than colder waters or winter months (Rodriguez and Sérodes, 2001; Wei et al., 2010; Parvez et al., 

2011). However, other studies have reported no seasonal influence on variations of THM 

concentrations (Charisiadis et al., 2015). Wei et al. (2010) also analysed the temporal variation of 

other DBP species, finding that HAAs, HANs, and haloketones presented the highest 

concentrations in winter, while chloral hydrate were observed in autumn, and chloropicrin 

concentrations were the highest in summer. This represents that control of DBP formation is highly 

complex since every species seems to have a particular relationship with environmental and 

operational variables. 

Because organic/inorganic substances act as DBP precursors, their removal prior to disinfection 

has proven to be an effective approach for reducing DBP formation potential. Treatments prior to 

chlorination can partially remove NOM, which can be reinforced by using granular activated carbon, 

enhanced coagulation and membrane filtration; but these may significantly increase O&M costs 

(Chowdhury et al., 2007). Formation of DBPs can also be reduced by introducing alternative 

disinfectants or a combination of disinfectants, including chloramine, ozone, chlorine dioxide and 

ultraviolet radiation followed by post chlorination to protect water quality against microbiological 

recontamination in bulk phase. However, the use of these alternative disinfectants can still lead to 

the formation of the more toxic DBPs. For instance, Muellner et al. (2007) compared the toxicity 

index among four DBP groups and found that genotoxicity and cytotoxicity indices were of 

magnitude order of 2x104 and 1x105 for HANs, respectively, while those indices were of magnitude 

order of 1x103 and 6x102 for HAA5, respectively. Higher toxicity index indicates higher toxic effects. 

Taking into account that biofilms are formed in chlorinated and chloraminated distribution systems 

(Gomez-Alvarez et al., 2012; Wang et al., 2014; Mi et al., 2015) and that they can potentially be 

DBP precursors as well, it is necessary to develop a decision-making scheme for each water supply 

system in order to balance the microbiological and chemical safety of drinking water. For instance, 

Raseman et al. (2017) recommended improved decision support systems for adaptation of WTPs 
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to extreme weather events. Such tool may be expanded to O&M of DWDNs under normal and 

climate change conditions. Protecting water sources and improving water treatment processes to 

minimize the content of NOM and nutrients in drinking water seems to be the first and most urgent 

procedure to be applied by water managers, since it is well known that they are the primary source 

for DBP and biofilm formation, respectively. As a consequence, governmental institutions, water 

companies and community in general should be prepared for increasing costs if better drinking 

water quality is desired (Dearmont et al., 1998; Yorkshire Water, 2013; Hutton and Varughese, 

2016). In addition, proper O&M of DWDNs is also required to avoid that external substances enter 

to the system, directly or indirectly leading to increase in the content of TOC and nutrients in the 

distribution system, then losing the effort made by the water operators in the WTP. 

 

2.6.6 DBPs and public health 

The DBP exposure routes of humans include inhalation, dermal contact, and ingestion by 

showering, bathing, and cooking. The study developed by Chowdhury (2016) found that ingestion 

route was the highest contributor of risk from THMs and HAAs; in addition, due to the volatile 

properties of chloroform, inhalation while showering represents an important exposure pathway 

(Villanueva et al., 2007). It is widely accepted that DBPs have negative effects on human health as 

they have been identified as potential carcinogenic, teratogenic and mutagenic substances (WHO, 

2008). Carcinogenic properties of DBPs refer to the ability to produce cancer tumours and can be 

by either cytoxicity or genotoxicity, which are related to cell or genetic material damage, 

respectively (Humpage, 2012; Kristiana et al., 2012). Teratogenicity is related to disruption of the 

development of the embryo or foetus, causing birth defects. Mutagenicity is a subtype of 

genotoxicity in which single DNA bases are substituted or deleted, changing the “code” contained 

in the DNA (Humpage, 2012). 

In line with that, DBP control in water treatment works has improved considerably, particularly in 

developed countries, but many concerns still remain with regard to the formation of DBP within 

DWDNs, due to the multiple operational variables involved in the system. Despite the great variety 

of DBP species, only THMs and HAAs are regulated by most of the water authorities worldwide 

since they are the most abundant species in drinking water (Chowdhury et al., 2009; Hrudey, 2009; 

Bull et al., 2011). In contrast, THMs and HAAs are now considered as largely unrelated to public 

health risk and are currently considered as primarily surrogates or indicators for other DBPs rather 

than being a likely causal agent for the adverse health outcomes suggested by some 

epidemiological studies (Hrudey, 2009; Bull et al., 2011).  
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The maximum permissible limits regulated for THMs and HAAs have been stablished following 

precautionary considerations; however, epidemiological evidence found to date is not conclusive 

yet to link a specific DBP species to certain type of cancer (Hrudey, 2009; Hrudey et al., 2015a). 

To date, the epidemiological studies by Villanueva et al. (2007) and Cantor et al. (2010) offer the 

most substantive evidence for significant association between THM exposure and bladder cancer 

risk, but the causative DBP agent has not been identified yet (Hrudey et al., 2015a). Therefore, 

more research efforts still must be done in order to clarify the wide spectrum of negative health 

effects of DBPs. 

Similarly, emerging DBPs have been increased with the changes of disinfection process and some 

of them are substantially more toxic than the THMs. In this line, Hrudey (2009) states that the risk 

management associated with the control of DBP formation should be addressed to reduce the 

precursors of these substances, which may reduce other conceivable DBP formation and 

consequently should not create an alternative DBP risk. 

 

2.6.7 Disinfection by-products modelling 

Modelling is an important tool used in hydraulic and water quality assessment in water industry. 

Chowdhury et al. (2009) presented a chronological review of models for prediction of DBP formation 

in drinking water, in the period 1983-2009. Table 2-7 presents the review of the models reported 

by this author and was updated to the year 2017. According to this review, there are 52 studies 

reporting 179 models. Few models included kinetic rates (16%) and most of them are empirical 

models based either on laboratory or field data, which make them site-specific. Due to the high 

complexity of the process of DBP formation, a general model to predict their concentrations for 

every type of raw/drinking water, treatment, and climate has not been created yet, to the author’s 

knowledge. The most simulated DBP group or species are those related to THMs and chlorine as 

disinfectant followed by HAAs since these are the regulated DBPs, so there is interest on 

developing tools to manage regulation compliance. Sixteen models were built for other disinfectants 

such as ozone, chloramine, and chloride dioxide (see Table 2-7).  

The models were constructed using commercial humic/fulvic acids and raw waters; despite of this, 

the researchers applied them to predict DBP concentrations in drinking water (outlet of the WTP or 

in distribution network). Only 12 models were based on drinking water concentrations, therefore 

making them applicable to distribution networks. Most of the models reported in Table 2-7 consider 

the main influencing factors such as contact time, pH, temperature, precursor indicator, and 



 

Chapter 2. Literature review                     60 

Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineering 

chlorine dose. However, any of the models included neither the contribution of biofilms to DBP 

concentrations in bulk water nor conditions of building systems, despite of the experimental 

evidence on biological material leading to DBP formation (more details are described in Section 

2.7). However, four models developed by Sung et al. (2000) included the variable algae. This can 

be considered the first attempt to acknowledge the contribution of  biological substances to DBP 

formation in drinking water. After, Golfinopoulos and Arhonditsis (2002a) included chlorophyll-a as 

indicator of algae presence in four empirical models.  

In addition, a recent version of the popular hydraulic and water quality model EPANET named 

EPANET multi-species extension (USEPA, 2008) includes the contribution of biofilms and pipes 

wall to disinfectant decay caused by the demand exerted by the biofilm matrix and corrosion scales, 

respectively. Then, it can be noted that the interest on contribution to DBP formation from 

disinfection of biological substances in drinking water systems is gradually increasing. 
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Table 2-7. Models for DBP formation 

Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 
Applicability ** Observations 

Scale 
Type of 
model 

Variables Verification R2 

Minear and 
Morrow (1983) 

cited by 
Chowdhury et 

al. (2009) 

1 THMs 

River raw 
water + 

commercial 
humic acid 

Chlorine Laboratory 
Multi 

regression 
model 

Br | Cl | pH | T 
| NVTOC 

Data obtained 
from field-

sampling data 
> 0.90 

Treatment: 
prechlorination 

- - 

Urano et al. 
(1983) 

1 THMs 

Humic acid 
extracted from 
river raw water 

and 
commercial 

product 

Chlorine Laboratory 
Empirical 

model 
k | pH | TOC | 

Cl | t 

River and lake 
waters using 
historical data 
and laboratory 
experiments 

NR 
Treatment: 

prechlorination 
- - 

Engerholm 
and 

Amy (1983) 
cited by 

Chowdhury et 
al. (2009) 

1 Chloroform 

Synthetic 
water: 

commercial 
humic acid + 

deionized 
water 

Chlorine Laboratory NS  
k1a | k2a | 
TOC | Cl | t 

 NS  NR 
Treatment: 

prechlorination  
- - 

Morrow and 
Minear (1987) 

4 THMs 
River raw 

water 
Chlorine Laboratory 

Nonlinear 
regression 

models 

Br | Cl | pH | T 
| NVTOC 

Data of river raw 
water and 

finished water 
supply systems 

NR 
Inlet and outlet 
of the treatment 

Model based on 
Minear and 

Morrow (1983) 

Amy et al. 
(1987) cited by 
Chowdhury et 

al. (2009) 

1 THMs 
River raw 

waters 
Chlorine 

Database 
from 

laboratory 
experiments 

Linear and 
nonlinear 

regression 
models 

UV254 | TOC | 
Cl | t | T | pH | 

Br 
NS 0.90 

Treatment: 
prechlorination  

- - 

Adin et al. 
(1991) 

1 THMs 

Fulvic and 
humic acids 

extracted from 
lake sediment 

Chlorine Laboratory 
Mechanistic 

model 

Ao | Cl | t | 
K1a | K2a | 
K3a | K4a 

Field survey of 
humic and 
bromide 

0.90 
(model 

and 

Treatment: 
prechlorination 

K1a, K2a, K3a, 
and K4a: kinetic 
rate constants 

obtained by 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

concentrations 
in lake water 

field 
data) 

curve fitting to 
the 

experimental 
results 

Harrington et 
al. (1992)  

1 THMs 
River raw 

waters 
Chlorine 

Database 
from 

laboratory 
experiments 

Linear and 
nonlinear 

regression 
models 

UV254 | TOC | 
Cl | t | T | ph | 

Br 

Simulated total 
trihalomethanes 
(TTHMs) were 
compared with 

observed values 
in a limited 
database or 
water utilities 

NR 
Treatment: 

prechlorination 

Model based on 
Amy et al. 

(1987). 
Extensive data 
base was used 

to predict 
TTHM 

formation, 
removal of 
NOM, and 

alkalinity and 
pH changes 

Malcolm Pirnie 
Inc. (1992) 

cited by 
Chowdhury et 

al. (2009) 

3 
BDCM, 

chloroform, 
DBCM 

Drinking water  Chlorine Laboratory 
Empirical 

model 

TOC | UV254 | 
Cl | t | Br | T | 

pH 
 NS  NR 

 Distribution 
system 

Model for 
individual 
species 

Malcolm Pirnie 
Inc. (1993) 

cited by 
Chowdhury et 

al. (2009) 

5 

THMs, BDCM, 
chloroform, 

DBCM, 
bromoform 

Drinking water  Chlorine Laboratory 
Empirical 

model 

TOC | UV254 | 
Cl | NH3-N | t 
| Br | T | pH 

 NS NR 
 Distribution 

system 

Model for 
individual 
species 

Montgomery 
Watson (1993) 

cited by 
11 Chloroform Raw water Chlorine 

Three 
laboratory 
data base 

Empirical 
models 

TOC | UV254 | 
Br | pH | Cl | t 

| T 

Validation using 
independent 

database 
0.88 

Treatment: 
prechlorination 

Database 
included the 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Chowdhury et 
al. (2009) BDCM 

Br | pH | Cl | t 
| T 

0.8 (for 
Cl/Br < 

75) 

work of Amy et 
al. (1987) 

BDCM 
TOC | Br | Cl | 

t | T 

0.92 
(for 

Cl/Br > 
75) 

DBCM 
TOC | Br | Cl | 

t | T 

0.82 
(for 

Cl/Br < 
50) 

DBCM 
UV254 | TOC | 
Br | pH | Cl | t 

| T 

0.83 
(for 

Cl/Br > 
50) 

Bromoform 
TOC | Br | pH 

| Cl | t 
0.86 

MCAA 
TOC | Br | pH 

| Cl | t 
0.82 

DCAA 
TOC | UV254 | 
Br | Cl | t | T 

0.97 

TCAA 
TOC | UV254 | 
Br | pH | Cl | t 

| T 
0.98 

MBAA 
TOC | UV254 | 
Br | pH | t | T 

0.80 

DBAA 
TOC | UV254 | 
Br | Cl | t | T 

0.95 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Lou and 
Chiang (1994) 

cited by 
Chowdhury et 

al. (2009) 

1 THMs 
River raw 

water 
 Chlorine Laboratory 

Regression 
model 

THMo | pH | 
NVTOC | t | Cl 

Observed data 
were within 

10.9% of the 
simulated 

results 

NR 
Treatment: 

prechlorination 
- - 

Ibarluzea et al. 
(1994) 

1 Chloroform 

Treatment 
plant and 

distribution 
network 

Chlorine Field 
Multiple 

regression 
model 

Flu | pH | T | 
Cl 

NR 0.82 

Treatment: 
prechlorination 
and distribution 

network 

- - 

Ozekin (1994) 
cited by 

Chowdhury et 
al. (2009) 

1 Bromate NS Ozone Laboratory 
Empirical 
models 

DOC | pH | O3 
| Br | t (for T < 

20 °C) 
NR NR NS - - 

ABR | O3 | 
B20 | T (for T 

> 20 °C) 

Siddiqui and 
Amy (1994) 

6 

Bromoform 

River and 
groundwater 

Ozone 
Bench - 

laboratory 
Empirical 
models 

DOC | pH | O3 
| Br | t 

Comparison 
with values 

reported in the 
literature 

0.78 

Treatment: 
prechlorination 

- - 

TOBr 
DOC | pH | O3 
| Br | T (time = 

24 h) 
0.95 

Bromate 
DOC | pH | O3 

| Br | Toz 
0.88 

Bromate DOC | pH | Br 0.64 

Bromate 
DOC | pH | Cl 
| O3 | t | Br (0 

< t < 1 h) 
0.68 

Song et al. 
(1996) 

1 Bromate 
NOM isolated 
from several 

water sources 
Ozone 

Batch - 
laboratory 

Multiple 
regression 

model 

DOC | NH3-N 
| pH | O3 | Br | 

IC | t 

Laboratory-
scaled and 
literature-

published data 

0.93 Treatment - - 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Rathbun 
(1996b) 

4 

Chloroform 

River raw 
water 

Chlorine Laboratory 
Multiple 

regression 
model 

pH | Cl | DOC 
| Br 

Comparison 
with 

experimental 
concentrations 

0.97 

Treatment: 
prechlorination 

- - 
BDCM 0.86 

DBCM 0.94 

Bromoform 0.78 

Rathbun 
(1996a) 

2 
THMs 

River raw 
water 

Chlorine Laboratory 
Multiple 

regression 
model 

pH | Cl | UV254 
| t 

Comparison 
with 

experimental 
concentrations 

0.98 
Treatment: 

prechlorination 

Model based on 
Rathbun 
(1996b) NPTOX 

pH | Cl | Br | 
UV254 | t 

0.96 

Chang et al. 
(1996) cited by 
Chowdhury et 

al. (2009) 

3 THMs 
River raw 
water and 

WTPs 
Chlorine Laboratory 

Multiple 
regression 

model 

TOC | t | Cl 

 NS 

0.94 

Treatment - - 
TOC | t | 
UV254 | Cl 

0.97 

t | UV254 | Cl 0.95 

Garcia-
Villanova et al. 

(1997a) 

1 Chloroform WTPs Chlorine Field 
Multiple 

regression 
model 

T | pH 
Comparison 

with observed 
values 

0.65 Treatment - - 

Garcia-
Villanova et al. 

(1997b) 

1 Chloroform Drinking water Chlorine Field 
Multiple 

regression 
model 

T | pH 
Comparison 

with observed 
values 

0.86 
Distribution 

system 

Continued from 
Garcia-

Villanova et al. 
(1997a) 

Huixian et al. 
(1997) 

2 
POX Fulvic acid 

extracted from 
lake water 

Chlorine Laboratory 
Nonlinear 
regression 

models 

t | TOC | Cl | 
pH | T 

Comparison 
with measured 

values 

0.94 Treatment: 
prechlorination 

- - 
NPOX 0.92 

Clark and 
Sivaganesan 

(1998) 

1 THMs 
Commercial 
humic acid 

Chlorine 
Bench - 

laboratory 
2nd order 

kinetic model 
Cl | u | TOC | 

pH | T 

Validation using 
data from two 
field studies 

performed in the 
past 

0.71 
Treatment: 

prechlorination 

Variable u 
includes kinetic 

rate 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Golfinopoulos 
et al. (1998)  

1 THMs WTP Chlorine Field 
Multi 

regression 
model 

Chla | pH | Br 
| T | Cl 

82% of 
predicted values 

were found to 
be within ±20% 
of the measured 

values 

0.98 
Outlet of the 

WTP 
- - 

Amy et al. 
(1998) cited by 
Chowdhury et 

al. (2009) 

1 THMs 
River raw 

water 
Chlorine Laboratory 

Empirical 
model 

DOC | Cl | Br | 
T | pH | t 

 NS NR 
Treatment: 

prechlorination 
- - 

Nokes et al. 
(1999) 

4 
THMs 

intermediates 
Distribution 

system 
Chlorine Laboratory 

Kinetic 
models 

12 kinetic 
rates | 

Concentration
s of HOBr and 

HOCl | 
Chlorine or 

Bromine atom 

NR NR - - 

The 
fundamental 

premise of this 
model is the 

kinetic-
controlled 

process of the 
THM formation 

Rodriguez et 
al. (2000)  

2 THMs 
River raw 

waters 
Chlorine 

Database 
from 

laboratory 
experiments 

Empirical 
models 

DOC | t | pH | 
Cl | T Validation using 

field-database 
from small water 

utilities in 
Quebec 

(Canada) 

0.90 

Treatment: 
prechlorination 

Models based 
on data from 

Amy et al. 
(1987), 

Rathbun 
(1996a,b) and 
Montgomery 

(1993) 

DOC | pH | T 0.34 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Milot et al. 
(2000) 

1 

Prediction of 
probabilities 
of exceeding 

specified 
values of 

THMs 

Distribution 
networks 

Chlorine 

Database 
from 

Quebec's 
Mininstry of 

the 
Environment 

Empirical 
model 

Type of 
treatment | 

Geographical 
region in 
Quebec | 
Season | 

Water source 

None - - 

Prediction of 
possible 

carcinogenic 
and non-

carcinogenic 
effects to 

human as well 
as to perform 

epidemiological 
studies 

- - 

Sung et al. 
(2000) 

4 

THMs 

River raw 
water 

Chlorine Field 
Semi-

mechanistic 
models 

OH- | Cl | k | 
UV254 | algae 

Validated with 
monitoring data 

NR 

Treatment: 
prechlorination 

These models 
incorporate 

chlorine decay 
kinetics (k) 

Chloroform 0.93 

HAA5 0.74 

TCAA 0.87 

Westerhoff et 
al. (2000)  

1 THMs 
River raw 

water 
Chlorine 

Databases 
from WTPs. 
Laboratory 

tests 

Regression 
model 

DOC | Cl | Br | 
T | pH | t 

None NR 
Treatment: 

prechlorination 
- - 

Elshorbagy et 
al. (2000)  

1 THMs Drinking water Chlorine - - 

Nonlinear 
optimization 

in a full 
dynamic 
DWDN 

THMs-t | Cl 
Application to a 
portion of a real 

DWDN 
NR 

Distribution 
system 

Development of 
the model 
involves a 

kinetic 
approach for 

THM formation 

Clark et al. 
(2001) 

12 

Three species 
of THMs and 

nine species of 
HAAs 

Commercial 
humic acid 

Chlorine Laboratory 
2nd order 

kinetic model 
Cl | u | pH | Br 

| pH 

Comparison 
with 

experimental 
concentrations 

0.5280-
0.9980 

Treatment: 
prechlorination 

Variable u 
includes kinetic 

rate 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Golfinopoulos 
and 

Arhonditsis 
(2002a) 

3 

THMs 

WTP Chlorine Field 
Multiple 

regression 
models 

Chla | pH | Br 
| T | Cl 

Comparison 
with measured 

values 

0.52 

Outlet of the 
WTP 

- - Chloroform 
Chla | pH | T | 

Cl 
0.51 

BDCM 
Chla | pH | Br 

| T | Cl 
0.62 

Golfinopoulos 
and 

Arhonditsis 
(2002b) 

1 THMs 
Lakes and 
treatment 

plants 
Chlorine Field 

Kinetic model 
based on 
differential 
equations 

k | TOC | 
Halogen 

concentration 
| Q 

Comparison 
with measured 

values 
- - 

Outlet of the 
WTP 

- - 

Korn et al. 
(2002) 

1 Chlorite 
Ground and 

surface 
sources 

Chlorine 
dioxide 

Bench - 
laboratory 

Linear 
regresssions 

pH | T | t | 
NPOC | UV254 

Internal and 
external 

validations. The 
last one using 
independent 
experimental 

results 

0.95 Treatment - - 

Gang et al. 
(2002) 

2 

THMs River and lake 
raw water 

followed by jar 
tests 

Chlorine Laboratory Kinetic model 
DBP yield 

coefficient | Cl 
| k | t 

None NR Treatment - - 
HAAs 

Sérodes et al. 
(2003) 

12 

HAAs 

Treated 
waters prior to 

disinfection 
Chlorine 

Bench - 
laboratory 

Regression 
models 

TOC | Cl | t 

None 

0.89 

Outlet of the 
WTP 

- - 

0.92 

TOC | Cl | t | T 0.80 

THMs 

TOC | Cl | t | T 0.78 

THMo | TOC | 
Cl | t 

0.89 

Cl | t 0.56 

4 THMs Chlorine Laboratory pH | t None 0.53 - - 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Nikolaou et al. 
(2004) 

River raw 
waters 

Multiple 
regression 

models 

pH | Cl 0.58 
Treatment: 

prechlorination 
pH | t | Cl 0.38 

HAAs pH | Cl 0.28 

Al-Omari et al. 
(2004) 

1 THMs 
Raw and 

clarified water 
Chlorine Laboratory 

Regression 
model 

t | Cl | TOC | 
Br | pH 

Comparison 
with field data 
collected in the 

DWDN 

NR Treatment - - 

Boyalla (2004) 3 

THMs 
Raw and 

drinking water 
water 

Chlorine Laboratory 
Regression 

models 

Cl | pH | TOC 
| t Comparison 

with measured 
values 

0.77 

Treatment - - 
DCAN 

Cl | pH | RCl | 
t 

0.69 

TCP Cl | pH | t 0.68 

Lekkas and 
Nikolaou 
(2004) 

2 
THMs 

River raw 
water 

Chlorine 
Bench - 

laboratory 
Regression 

models 

pH | t | Cl Comparison 
with measured 

values 

0.87 
Treatment: 

prechlorination 
- - 

HAAs pH | Br | t | Cl 0.51 

Sohn et al. 
(2004) 

16 THMs 
Raw and 

coagulated 
waters 

Chlorine 

Database 
from bench-

scale 
experiments 

Multiple 
regression 

models 

DOC | Cl | Br | 
T | pH | t 

Validation using 
data from two 

studies 
performed in the 

past 

0.90 

Treatment 

Models 
developed 

based on Amy 
et al. (1987, 
1998) and 

Montgomery 
(1991) 

UV254 | Cl | Br 
| T | pH | t 

0.7 

DOC | UV254 | 
Cl | Br | T | pH 

| t 
0.81 

DOC | Cl | Br | 
t 

0.87 

UV254 | Cl | Br 
| t 

0.90 

DOC | UV254 | 
Cl | Br | t 

0.92 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

THM (pH=7.5, 
T=20°C) | pH 

| T 
0.92 

HAA6 

DOC | Cl | Br | 
T | pH | t 

0.87 

UV254 | Cl | Br 
| T | pH | t 

0.80 

DOC | UV254 | 
Cl | Br | T | pH 

| t 
0.85 

DOC | Cl | Br | 
t 

0.92 

UV254 | Cl | Br 
| t 

0.92 

DOC | UV254 | 
Cl | Br | t 

0.94 

HAA6 
(pH=7.5, 

T=20°C) | pH 
| T 

0.85 

TOBr 

Br | DOC | O3 
| pH | TIC | 

NH3-N | H2O2 
0.98 

Br | DOC | O3 
| pH | T 

0.95 

Uyak et al. 
(2005) 

1 THMs 
Lake raw, 

finished, and 
drinking water 

Chlorine Field 
Multiple 

regression 
model 

TOC | pH | Cl 
| T 

Validation with 
data collected 
from a different 

WTP 

0.98 
Treatment: 

prechlorination 
- - 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Toroz and 
Uyak (2005) 

1 THMs 
Lake raw, 

finished, and 
drinking water 

Chlorine Field 
Regression 

model 
TOC | T | Cl 

Comparison 
with measured 

values 
0.83 

Treatment and 
distribution 

system 
- - 

Tyrovola and 
Diamadopoulo

s (2005) 

1 Bromate Groundwater Ozone Laboratory 
Multiple 

regression 
model 

Br | pH | O3 | t None 0.80 
Treatment: 

preozonation 
- - 

Rodrigues et 
al. (2007)  

5 

THMs Synthetic 
water 

prepared with 
hydrophobic 

fraction of 
fulvic acid, 

isolated from a 
dam 

Chlorine Laboratory 
Regression 

models 
FA | Cl | T None NR 

Treatment: 
prechlorination 

- - 

Chloroform 

BDCM 

DBCM 

Bromoform 

Uyak and 
Toroz (2007) 

7 

Chloroform 

Lake raw 
water 

Chlorine Laboratory 

Probabilistic 
model of 
THM and 

HAA 
speciation 

Concentration
s of HOBr and 

HOCl 
None NR 

Treatment: 
prechlorination 

- - 

DCBM 

DBCM 

Bromoform 

DCAA 

BCAA 

DBAA 

Hong et al. 
(2007) 

3 

THMs 
River raw 

water 
Chlorine Laboratory 

Multiple 
regression 

models 

t | Cl | DOC | 
pH | T | Br 

Comparison 
with measured 

values 

0.87 
Treatment: 

prechlorination 
- - Chloroform 0.86 

BDCM t | pH | T | Br 0.87 

Semerjian et 
al. (2009)  

3 THMs 
River raw and 
drinking water 

Chlorine 
Laboratory 
and field 

Multivariate 
regression 

models 

Cl | SUVA | Cl 
| UV254 

None 

0.39 Treatment and 
distribution 

system 
- - 

Cl | UV254 0.33 

t | Br | Cl 0.31 
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Reference 
Number 

of 
models 

DBPs 
modelled 

Precursors / 
Water 

sources 
Disinfectant 

Model description 

Applicability ** Observations 
Scale 

Type of 
model 

Variables Verification R2 

Chen and 
Westerhoff 

(2010) 

23 

THMs 

Raw water 
from five 

sources not 
specified 

Chlorine and 
chloramine 

Laboratory 

Regression 
models: 

weight- and 
molar-based 
models for 

DBP 
potential 
formation 
prediction 

DOC | UV254 | 
Br 

Comparison 
with an 

independent 
data source: jar-

tested 
wastewater 

effluents 

0.87 

Treatment - - 

Chloroform 0.88 

BDCM 0.69 

HAA9 0.84 

Four species 
of HAAs 

0.81 - 
0.85 

DCAN 0.62 

HAN4 
0.62 - 
0.63 

NDMA 0.77 

HAN4 
DOC | UV254 | 

Br | N 

0.64 - 
0.66 

NDMA 
0.77 - 
0.80 

Di Cristo et al. 
(2013) 

1 THMs Drinking water Chlorine Field Kinetic model Ka | Kb | Cl | t 
Comparison 

with measured 
values in field 

NR 
Distribution 

system 

Ka: global 
chlorine decay 
rate. Kb: kinetic 

constant of 
THMs formation 

Mukundan and 
Van Dreason 

(2014) 

1 THMs Drinking water Chlorine Fied 
Empirical 

model 
TOC | pH | t | 

T 
None 0.75 

Distribution 
system 

- - 

Babaei et al. 
(2015) 

8 THMs Drinking water Chlorine Field 
Multiple 

regression 
models 

T | SUVA | Cl 

None 

0.34 - 
0.37 

Distribution 
system 

- - 
T | Cl 0.32 

SUVA | Br | 
RCl | Cl 

0.45 - 
0.54 

T | RCl | Cl 0.52 
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Adapted and updated from Chowdhury et al. (2009) | ** Applicability was defined according to the current study author’s criteria and considering the precursors/water sources used in the experimental tests.  
Ao: humic acid concentration | BDCM: bromodichloromethane | Br: bromide concentration | Chla: Chlorophyll-a | Cl: chlorine dose | DBCM: Dibromochloromethane | DBAA: Dibromoacetic acid | DCAA: Dichloroacetic acid | 
DCAN: Dichloroacetonitrile | DOC: Dissolved organic carbon | DON: Dissolved organic nitrogen | FA: Fulvic acid | Flu: Fluorescence | HAA5: group of five species of haloacetic acids (MCAA+DCAA+TCAA+MBAA+DBAA) | 
HAA6: HAA5 + BCAA | HAN4: Group of four species of haloacetonitriles | IC: Inorganic carbon | MCAA: Monochloroacetic acid | MBAA: Monobromoacetic acid | N: Ammonia, nitrite, nitrate, and DON | NDMA: N-
nitrosodimethylamine | NPTOX: Non-purgeable organic halide | NS: not specified | NR: not reported | NVTOC: Non-volatile TOC | POX: Purgeable organic halide | Q: inflow/outflow flow rate | O3: Ozone dose | RCl: residual 
free chlorine | SUVA: Specific ultraviolet absorption | T: temperature | TCAA: Trichloroacetic acid | TCP: 1,1,1-trichloropropanone | t: time (contact time / water age) | THMs: Trihalomethanes | TIC: Total inorganic carbon | 
TOBr: Total organic bromide | TOC: Total organic carbon | UV254: Ultraviolet absorption at 254 nm wavelength 
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In relation to correlation coefficients, approximately 45% of the models reported R2 values higher 

than 0.90, 22% did not report the coefficients, and 33% had R2 values lower than 0.90. Inclusion of 

DBP contribution of pipe walls as a consequence of biofilm disinfection may improve the correlation 

coefficients of empirical models, especially in smaller pipe diameters, where wall reactions become 

more relevant. To improve DBP prediction may help to better assess the exposure to these 

substances, which is an important input in epidemiological studies, as mentioned in Section 2.6.6. 

Despite of the important efforts made to develop tools for easily predicting DBP concentrations in 

the treatment and distribution of drinking water, it is unknown if the water utilities actually have used 

any of the models reported in Table 2-7. Thus, this is an opportunity to bring the convenience of 

using DBP predictive models to the attention of water managers and operators as a decision-

making tool to better control the formation of such substances during the treatment processes and 

along the distribution networks to identify the worst scenarios in terms of possible health risks. For 

researchers, it is also important to create and maintain communication channels with the water 

industry in order to offer, explain, and adapt such tools to apply them to real cases and effectively 

contribute to the improvement of drinking water quality delivered to customers. 

 

2.7 BIOFILMS AS PRECURSORS OF DBPS 

Biofilm formation and control have been studied by medical, dental, food and water sciences. 

Flemming and Wingender (2010) pointed out that biofilm matrix is composed by microorganisms 

(5%) and extracellular materials (95%), although the study developed by Fish et al. (2012) found 

that 28-day old biofilms from a full scale experimental distribution system was composed by 34% 

of EPS. Biofilms in DWDNs have mainly been studied from the point of view of serving as shelters 

of pathogenic microorganisms (Wingender and Flemming, 2011; Simões and Simões, 2013; Fish 

et al., 2016), which may be released to bulk water and reach the consumers. With regards to EPS, 

these includes polysaccharides, nucleic acids, surfactants, lipids, proteins (Flemming and 

Wingender, 2010), and humic acids (Fang et al., 2014); most of which can be the result of microbial 

metabolism, known as soluble microbial products (Wang and Zhang, 2010b).  

Then, the biofilm role as precursors of DBPs have recently been studied. Table 2-8 shows the main 

features identified in experimental studies on interaction between disinfectants and biofilms, biofilm 

clusters, planktonic cells and bacterial EPS. Such findings are evidencing the role of biofilms as 

DBP precursors.  
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Table 2-8. Main features of the interaction between disinfectant and drinking water biofilms 
according to experimental studies 

Study Features 

Wang et al. 
(2012c) 

Disinfection of suspended culture of P. putida yielded higher concentrations of 
chloroform than P. aeruginosa. Nitrogen-based EPS secreted by P. putida may 
content more aromatic structures that polysaccharides-based EPS secreted by P. 
aeruginosa. Aromatic structures are known as the main THM precursors.  

Xue et al. 
(2012) 

EPS secreted by P. aeruginosa may be related to selective removal of dissolved 
organic matter molecules with hydroxyl, carboxyl, and ester groups. The presence of 
EPS reduced chlorine transport in biofilm. Results of viability ratio of cells suggest 
biofilm can be represented by a mushroom shape: viability ratio was lower at surface 
and bottom of the biofilm and higher in the middle. Lower biomass density at the 
bottom generates void spaces, then promoting disinfectant transport and inactivation 
efficiency. 

Wang et al. 
(2013a) 

THM formation potentials are higher in disinfection of planktonic cells of E. coli than P. 
aeruginosa biofilms. 

Xue et al. 
(2013) 

The role of alginate-based EPS secreted by P. aeruginosa in chlorine disinfection is 
related to increasing disinfectant demand and then reducing the concentration for 
effective cells inactivation. 

Wang et al. 
(2013b) 

Amino acid Tyrosine yielded higher concentrations of chloroform, suggesting this 
substance may constitute an important THM precursor. 

Xue et al. 
(2014) 

The action of typical antibiotics depends on the growth rate: disinfection of bacteria is 
proportional to the product of nutrient consumption and the bacterial concentration. 
Thus, bacteria that are exposed to higher nutrient levels are more susceptible to the 
antimicrobial agent. 

Shen et al. 
(2016) 

Increase of stiffness and decrease of biofilms outer layer thickness may be related to 
consumption of EPS by disinfectants in the outer layer and the lack of EPS production 
by the inactivated cells near to such layer. Such EPS layer was refilled after three 
months, under disinfection conditions. Higher biofilms stiffness may be due to higher 
fraction of EPS protein. No voids or channels were observed in the studied biofilms, 
which were one-year old and were continuously disinfected with chlorine and 
chloramine for three months. 

Lemus Pérez 
and Rodríguez 

Susa (2017) 

Characterization of EPS extracted from drinking water biofilms, which were incubated 
for 20 months and disinfected for four months with high and low chlorine 
concentrations, indicated that EPS were conformed principally of aromatic proteins, 
fulvic acid-like substances, soluble microbial proteins, and humic acid-like 
substances. Such composition was determined by chlorine concentration; biofilm 
disinfected with high chlorine concentration (B1) produced more aromatic proteins in 
comparison with biofilms disinfected with low chlorine concentration (B2). DBP 
formation potential tests indicated that HAA were higher followed by THM and 
emergent DBP (1,1-dichloro-2-propanone, 1,1,1-trichloro-2-propanone, chloropicrin, 
DCAN, dibromoacetonitrile, and bromochloroacetonitrile). DBP formation potential of 
HAA and chloroform were higher in B1 than B2. Authors suggests that B2 would have 
profited from the low biocide effect of chlorine to adsorb more organic matter and iron. 

 

Xue et al. (2014) investigated the influence of monochloramine reactivity with different EPS 

components on the viability of biofilm and detached clusters using pure cells of P. putida and P. 

aeruginosa. The authors found that reactivity between EPS and monochloramine is minimal, while 

protein-based EPS reacted rapidly with this disinfectant. Disinfection of P. putida (protein-based 

EPS) presented higher consumption of monochloramine because it reacted with the biofilm surface 

while the middle and deeper layers were protected from disinfectant (Xue et al., 2014). However, 
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this study did not measure DBPs resulting from this reaction. In contrast, Wang et al. (2012c) 

studied the carbonaceous DBPs and nitrogenous DBP formation from disinfection of extracted EPS 

from P. aeruginosa and P. putida variants, testing five different chlorine dosages, two pH values, 

six water age values, and bromide influence on DBP yields. These authors found that THM and 

HAA yields were higher from chlorine disinfection of extracted EPS from P. putida compared to P. 

aeruginosa. This was is associated with the content of more aromatic structures in protein-based 

EPS in contrast with polysaccharide-based EPS from these two strains respectively (Wang et al., 

2012c).  

Wang et al. (2013b) evaluated the influence of the major biomolecules in EPS and their chemical 

compositions on DBP formation and speciation. These authors experimented with the chlorine 

disinfection of extracted EPS from P. aeruginosa, P. putida, mixed species of biofilm samples 

isolated from a water utility, and EPS surrogate. Their results indicated that the composition of 

polysaccharide monomers in the bacterial EPS were different, since bacteria species and bacteria 

growth condition may significantly affect chemical composition of EPS. They also found similar 

results from Wang et al. (2012c) in relation to carbonaceous DBPs from disinfection of protein-

based EPS, identifying extremely high formation of DCAN and 1,1-dichloro-2-propanone from 

isolated EPS from drinking water biofilms, likely associated with nitrogenous DBP precursors. 

Additionally, Wang et al. (2013a) explored the effects of bacteria phenotype and type of materials 

of drinking water pipes on DBP formation from cellular organic matter, using E. coli K-12 as 

planktonic cells and Pseudomonas aeruginosa PAO1 as biofilms grown in PVC and galvanized 

zinc. E. coli cells reacted for one hour with chlorine or chloramine, while Pseudomonas aeruginosa 

grew on chips and reacted with sodium hypochlorite solution. Results showed that THM 

concentrations were higher in bulk-cell experiment than in biofilm experiment; the opposite 

occurred in HAN concentrations, which may be related to a higher content of nitrogen-based 

compounds in the biofilm matrix. There were not differences of DBP concentrations between pipe 

materials (Wang et al., 2013a). 

In particular, considering the high content of organic nitrogen in wastewaters and biofilms of 

DWDNs and the current trend of changing disinfectant from chlorine to chloramines, Yang et al. 

(2010) assessed the formation of organic chloramines, nitrogenous DBPs, and intermediates 

during reactions between monochloramine and organic-nitrogen compounds. This study found that 

higher reaction times produced higher concentrations of nitrogenous DBPs, and that these by-

products also originate from organic chloramines and organic-nitrogen compounds. The authors 

concluded that using chloramines in order to reduce THM and HAA formation should only be 
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attempted with carefully consideration since organic chloramines can contribute to nitrogenous 

DBPs which are of great concern to public health. 

Recently, Lemus Pérez and Rodríguez Susa (2017) studied in detail the characteristics of EPS 

extracted from drinking water biofilms. Such biofilms were stabilized for 20 months, then were 

chlorinated for four months under high (B1: 2.6 mg/L) and low concentrations (B2: 0.7 mg/L) 

conditions to emulate the proximity and most remote locations in a DWDN in relation to the WTP 

location. The researchers found that chlorination conditions affected the EPS composition of 

biofilms, then influencing the type and amount of DBP formed. Results indicated that B1-EPS were 

composed by aromatic proteins and B2-EPS were composed by humic substances. The authors 

hypothesized that EPS played a protective role for B1 and were nutrient reservoirs for B2. The 

results of Lemus Pérez and Rodríguez Susa (2017) are consistent with those from Shen et al. 

(2016); both studies found that EPS decreased in biofilms disinfected with high chlorine 

concentrations (7.5 mg/L). In addition, Lemus Pérez and Rodríguez Susa (2017) found that B1-

EPS had greater aromaticity due to proteins, which exert a protective role to cells. This agrees with 

results of Xue et al. (2013), who identified that proteins reacted with both chlorine and chloramines, 

while carbohydrates only reacted with chlorine. 

Applying disinfectants to wastewater as part of the treatment process has also been a concern for 

researchers due to the DBP formation as a result of the presence of dissolved organic nitrogen, 

synthetic organic compounds, and soluble microbial products (Huang et al., 2012; Doederer et al., 

2014; Liu et al., 2017). The results of these investigations indicated that haloacetamides, THMs 

and HAAs can impact water sources and arrays of chloraminating utilities for recycled water, 

negatively affecting water quality for human consumption. 

 

2.8 FURTHER RESEARCH NEEDED: IMPROVE THE UNDERSTANDING OF THE 

ROLE OF BIOFILMS AS DBP PRECURSORS 

Most of the research on microbial communities in real scale DWDNs have been focused mainly on 

either bulk water (Henne et al., 2013; Holinger et al., 2014; El-Chakhtoura et al., 2015; Mahapatra 

et al., 2015) or biofilms habitat (Kelly et al., 2014; Sun et al., 2014; Ji et al., 2015; Lührig et al., 

2015; Ren et al., 2015; Revetta et al., 2016). Few studies have simultaneously analysed the 

microbiome on both habitats (Henne et al., 2012). Additionally the majority of the studies have been 

conducted in temperate climate geographic regions where different pipes materials and ages were 

considered (Holinger et al., 2014; Kelly et al., 2014; Sun et al., 2014; Wang et al., 2014; Ren et al., 
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2015). Up to date, there are only two research works reported in a tropical country on this topic 

(Mahapatra et al., 2015; Ren et al., 2015) 4. 

On the other hand, in agreement with Hrudey (2009), who claims that DBP control should be 

approached from minimization of precursors concentrations, several studies have evaluated, by 

laboratory tests, the DBP formation from the disinfection of single-species culture and 

heterogeneous biofilms, planktonic cells, and extracted EPS (Fang et al., 2010a; Fang et al., 2010b; 

Wang et al., 2012c; Pu et al., 2013; Wang et al., 2013a; Wang et al., 2013b; Xie et al., 2013; Lemus 

Pérez and Rodríguez Susa, 2017). Such experiments were carried out under different conditions 

of pH, chlorine doses, and contact time to evaluate the influence of those variables on 

concentrations and yields of carbonaceous DBPs and nitrogenous DBPs. Concentrations of 

carbonaceous DBPs from disinfection of cellular material have been reported in the range of 2-150 

g/L and 0.1-5.0 g/L for nitrogenous DBPs (Fang et al., 2010a; Fang et al., 2010b; Wang et al., 

2012c; Wang et al., 2013a); and carbonaceous DBPs yields have been reported in the range of 

0.53-105 g/mg C and 0.1-5.0 g/mg C for nitrogenous DBPs (Hong et al., 2008; Wang et al., 

2012c; Wang et al., 2013a; Wang et al., 2013b). It is important to highlight that the UK and 

Colombian regulations establish 100 g/L and 200 g/L, respectively as the maximum 

concentrations of total THMs in drinking water (UK Parliament, 2000; Ministerio de la Protección 

Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2007), which represents that 

disinfection of cellular materials may result in concentrations of THMs higher than the regulated 

limit. 

In summary, biofilms in DWDNs have mainly been studied from the point of view of serving as 

shelters of pathogenic microorganisms (Wingender and Flemming, 2011; Simões and Simões, 

2013; Fish et al., 2016), which can be released to bulk water and reach the consumers, if the proper 

hydraulic conditions occurred. Investigating the role of EPS in the biofilm formation and 

development has also been a crucial step to understand the growth, attachment, protection, and 

detachment processes of the biofilm matrix (Tsuneda et al., 2003; Wang et al., 2012b; Xue et al., 

2012; Xue et al., 2013; Shen et al., 2016). Disinfectant demand by biofilms and the consequent by-

products have been recently studied (THMs, HAAs, and HANs), and the reactive components of 

the biofilms matrix (cells and biomolecules) with disinfectant have also been identified (Wang et al., 

2013b). 

                                                        

4 Research of Mahapatra et al. (2015) applied culture methods by incubation in tubes and subcultures in MaConkey 
agar. 
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DWDNs are complex systems where multiple biological, chemical, physical, and hydraulic 

interactions may occur simultaneously. Thus, further research is required to define the role of 

biofilms into the formation of DBPs in DWDNs. This is especially important if it is noticed that 

epidemiological studies have not produced conclusive results on the relationship between DBPs 

and negative effects on human health (Hrudey, 2009; Bull et al., 2011). The most substantive 

evidence was offered for bladder cancer risk and THM exposure (Villanueva et al., 2007; Cantor et 

al., 2010) but it is not strong enough to classify these DBPs as causal agents. Additionally, there 

are many uncertainties in medical and genetic aspects of human bladder, which make difficult to 

study such associations (Hrudey et al., 2015a). On the other hand, exposure assessment is another 

limitation of epidemiological studies, since they are usually based on historical data of water utilities, 

which only includes routine monitoring of regulated DBPs.  

Considering that linking bladder cancer and THMs have been studied but there are not conclusive 

results yet, it is logically expected that the information of association between other types of cancer 

and other DBP species (among over 600 species) is very limited. Due to the study of DBP effects 

on human health is very complex and involves several disciplines like medicine, genetics, 

epidemiology, and water engineering, several knowledge gaps still remain and must be addressed 

to elucidate the real causal DBP agents of negative effects on human health. This may require an 

important investment of time and money (Hrudey et al., 2015b). In this line, biofilms must be studied 

from the point of view of its role as DBP precursors and, obviously, from the acute risk they 

represent for being potential reservoir of pathogens. In general, the most distinguished 

characteristic of the biofilms is that their presence in DWDNs is undesirable and effective 

mechanisms to minimize their growth and/or to remove them are still required. 

With regards to mathematical modelling, biofilm growth, detachment, and disinfectant penetration 

have been simulated in drinking water in order to find the strategies to minimize its presence in 

water systems. In this case, the modelling includes the transport of dissolved substances 

(disinfectant, substrate, and nutrients) from bulk water towards biofilm matrix, and some of them 

included EPS production by cells. In relation to DBP modelling, most of the models developed to 

date are empirical, few of them include kinetic parameters, and are site-specific. It is unknown if 

such models are or were actually used by water utilities. Furthermore, DBP and biofilm modelling 

approaches have been clearly addressed separately. In this line, the current research project 

intends to close the gap existing in the understanding of the role of biofilms as DBP precursors in 

drinking water, according to biofilm, flow, and water quality characteristics. Furthermore, the role of 

pathogen reservoir in a real-scale DWDN located in a tropical-climate country was also studied. 
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This was done by characterizing the bacterial communities in bulk and biofilms in a tropical-climate 

DWDN, characteristics which have been scarcely explored together; exploring the relationship 

between methylotrophic bacteria and THM concentrations in bulk water; and developing a 

numerical model based on the physics of the system by the hydraulic, chemical, microbiological 

and transport processes (biofilm (cells and EPS) ↔ bulk water) occurring in drinking water pipes. 

Such model may represent a progress on the predictive tools, which may improve the exposure 

assessments of DBPs and highlight the role of biofilms as DBP precursors and the need to minimize 

its growth in DWDNs. The model may also enable to water operators and managers to take 

practical decisions to reduce DBP concentrations and to appropriately control biofilm formation.  
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3 FIELD ASSESSMENT OF BACTERIAL COMMUNITIES AND 
THEIR RELATIONSHIPS WITH ENGINEERED FACTORS 

3.1 INTRODUCTION 

The previous chapter explained the terms physical, hydraulic and water quality integrity in DWDNs 

and their interrelations. A summary of recent studies applying molecular analysis to DWDNs 

supplied with treated surface water was presented as well. The recent approach of molecular 

methods applied to study microbial communities in drinking water systems was also described. A 

review of empirical models for DBP prediction in drinking water and their main characteristics were 

also discussed in Chapter 2. The current chapter presents the field assessment of bacterial 

communities of biofilm and bulk water from a real-scale DWDN located in a tropical-climate city; 

characteristics that have scarcely explored together. Water and pieces of pipes were collected in 

nine sampling points; biofilm samples were scrapped from the internal walls of the pipes; and DNA 

were extracted from bulk water and biofilms. Additionally, drinking water was characterised by 

physico-chemical parameters such as temperature, pH, chlorine, total organic carbon (TOC), and 

total trihalomethanes (TTHMs). 

This chapter also presents the analysis of statistical correlations between microbiological [unit dry 

biomass, TOC, relative abundance (RA) of bacterial communities, and diversity and richness 

indices], physical (pipe age and material), hydraulic (water age), and water quality parameters (pH, 

temperature, free chlorine, and TTHMs); and explores the relationships between bacteria and 

TTHMs. The results reported by previous published investigations are also discussed and 

compared in the current chapter. This study aimed to characterise the physical properties, water 

chemistry and microbial communities of the DWDN to explore the relationships between biotic and 

abiotic factors, and to further understand the involvement of microorganisms in processes such as 

DBP formation. This new knowledge is needed to inform operational strategies and to ultimately 

protect public health. 

 

3.2 METHODOLOGY 

3.2.1 Data collection from Colombian water companies 

Initially, in order to identify the O&M framework of DWDNs in Colombia, this study intended to apply 

a survey to Colombian water companies. A questionnaire was created and sent to 22 companies, 
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which supply drinking water to the capitals of provinces in the country and to 12 companies 

corresponding to the second largest cities of the provinces. However, only two of these water 

companies completed the questionnaire, which are named WC1 and WC2 in this document. Due 

to the low response of the Colombian water utilities, the current study was focused on data 

collection from the DWDN of the city of Cali. The main findings of the completed questionnaires are 

presented below.  

Both water companies are considered large utilities since they have more than 2,500 customers, 

according to the Colombian Superintendence of Public Services (Superintendencia de Servicios 

Públicos Domiciliarios, 2013). The water sources are rivers for both WC1 and WC2, which 

continuously supply potable water to their respective city. In relation to disinfection, both utilities 

apply chlorine secondary disinfection and only one of them uses gaseous chlorine for primary 

disinfection. In relation to the distribution network, both networks are operated by gravity and one 

of them also combines it with pumping. The water consumption is measured by micrometres and 

none of the networks include re-disinfection stations. PVC is the most common pipe material in 

both networks and asbestos is also present. Both water companies are building a validated 

hydraulic model, therefore such models are not used yet for simulating water quality. 

In relation to drinking water quality, the maximal, minimal and average of the parameters of sanitary 

interest of year 2014 reported by WC1 and WC2 were compared to the Colombian regulation 

(Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, 

2007). Maximal values of free residual chlorine, turbidity, nitrites, and total iron exceeded the upper 

permissible limit established by the Colombian standards. Only WC1 reported monitored 

concentrations of THMs, being the maximal values equal to 200 g/L. Finally, with regards to O&M 

of the distribution networks, few data was reported by both water companies. The indicator of 

approximately 0.8 leakage repairs per Km of network was found for both WC1 and WC2 for the 

year 2014. 

 

3.2.2 Area of study 

The present study was carried out in a DWDN in Colombia (see Figure 3-1), in the city of Cali, 

located in the province Valle del Cauca, at 995 meters above sea level, with an annual average 
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temperature of 24.5 °C (23.8-25.1 °C5) and an average annual precipitation of 1425 mm (1048.8-

1742.7 mm6) (IDEAM, 2017). The water supply system is operated by one utility and is composed 

of four sub-networks originated from four surface water sources and five WTPs, which are 

described in Table 3-1. These sub-networks operate by gravity, pumping, or by a combination of 

both. In total, the distribution network comprises 2977 Km of pipelines (SUI, 2017), 10 service 

reservoirs, 28 storage tanks, and 19 pumping stations in order to deliver potable water to 2,400,653 

people7 (CCC et al., 2016; DANE, 2017).  

 

Figure 3-1. Location of the study area 

 

 

                                                        

5 Period 1981-2010 
6 Period 1981-2010 
7 Calculated from a coverage of drinking water supply of 99.2% for 2015 (CCC, C.d.C.d.C. et al. 2016. Cali cómo 
vamos. Informe de Calidad de Vida en Cali 2015. Santiago de Cali.) and projected population for Cali in 2017 of 
2,420,013 people (DANE. 2017. Proyecciones de población. [Online]. [Accessed 24th April]. Available from: 
www.dane.gov.co) 
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Table 3-1. Water sources and treatment description of the water supply system of the city of Cali 

Sub-network Source water WTP Treatment description 

1 Pance River La Ribera Filtration in multiple phases  

2 Meléndez River La Reforma 
Conventional treatment, including the 
option of direct filtration for raw water with 
low turbidity. 

3 Cali River Río Cali Conventional treatment 

4 Cauca River 
Río Cauca Conventional treatment and additional 

specific processes such activated carbon 
adsorption. Puerto Mallarino 

 

Figure 3-2 shows the fraction of the total length of the network corresponding to each pipe material8. 

The DWDN of the city of Cali has mainly been made by PVC (53.3%) and asbestos cement 

(30.4%), which represents an important fraction considering that asbestos cement becomes 

deteriorated under prolonged exposure to aggressive water due to its ion content such as chloride 

and sulphates and bio-deterioration due to biofilm growth (Wang et al., 2011). This may lead to 

structural failures of pipes (WHO, 2008), which then increases the leakage rate, therefore raising 

the vulnerability of the DWDS. Other pipe materials found in the Cali DWDN are cast iron (9.5%) 

and, in less proportion, ductile iron, CCP (concrete cylinder pipe), plastic and carbon steel (6.8% 

all together).  

 
Figure 3-2. Fractions of pipe materials in the DWDN of the city of Cali 

                                                        

8 EMCALI EICE ESP, 2014, personal communication, 10th December 
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Sampling was carried out in the sub-network 4, which is the largest one and supplied with treated 

water from the second biggest Colombian river by conventional processes including activated 

carbon adsorption, primary chlorine disinfection, coagulation, sedimentation, filtration, and 

secondary chlorine disinfection. The main treatment facility of this sub-network has two open-air 

clarified-water reservoirs to be used as a contingency for supplying drinking water (DW) when 

turbidity of raw water is higher than 1,000 NTU. When surface water exceeds such turbidity limit, 

the facility work must close the water intake and operate with the reservoirs up to 9 hours. If raw 

water does not reach turbidity levels lower than 1,000 NTU after this time, water supply is 

interrupted for almost 80% of the served population. The same situation occurs when dissolved 

oxygen of raw water in the source drops below 3.0 mg O2/L and a decreasing tendency of this 

parameter has been previously identified in comparison to the normal concentrations in a range of 

time of hours. More details about this and other events when water supply is suspended in the 

studied network is presented in Section 3.3.1.  

 

3.2.3 Preliminary activities 

First, water age and water level data in service reservoirs were collected, processed and analysed. 

Raw water age data was delivered by the local water utility in Excel format and was processed in 

the software ArcMap® 10.2.2, as it is described in the next section. Database of water levels in five 

service reservoirs was also in Excel format, provided by the local water company, corresponding 

to the months February and March 2015. The sampling campaign was carried out during this period 

of time. Water level in service reservoirs allowed determination of how the DWDN operated during 

sampling activities, since if the services reservoirs are empty, the network is supplied entirely by 

the WTPs. Otherwise, if the service reservoirs still have water, they are supplying certain sectors 

of the network and water age can be higher. 

 

3.2.4 Water age data 

Water age was determined from a hydraulic model of the sub-network and provided by the local 

water company. This model was mainly implemented in the software Infowater 11.5 and EPANET 

2.00.12 is sometimes used. Currently, the subnetwork 4 is being divided by pressure zones in order 

to proper manage pressure fluctuations and reduce leakages rate and water loss. The Colombian 

standards for DWDNs stablishes 147 KPa as minimum pressure at the household connections 
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(Universidad de los Andes, 2010). Therefore, the water company expects to maintain this pressure 

level in the network by the physical modifications they are currently carrying out. The model was 

calibrated in the year 2007 and a new calibration is planned since several operative changes have 

occurred since then9. 

In order to allocate a water age value to every sampling point, Thiessen polygons were built by 

using the software ArcMap® 10.2.2; water age map is included in the Appendix 9-A. This method 

has the unique property that each polygon contains only one input point, and any location within a 

polygon is closer to its associated point than to the point of any other polygon. The line between 

two points is located in the middle of the distance between them. Therefore, each sampling point 

is located inside of a polygon, so respective water age value is well defined. According to the 

histogram of the water age data (see Figure 3-3), these were classified in four intervals as it follows: 

1. Low water age: 0 – 8.5 hours 

2. Medium water age: 8.5 – 13 hours 

3. High water age: 13 – 68 hours 

4. Very high water age: 68 – 437 hours 

 
Figure 3-3. Water age ranges for the sampling sub-network 

 

                                                        

9 Rojas Ramírez, 2017, personal communication, 28th March. E-mail: jurojas@emcali.com.co  

mailto:jurojas@emcali.com.co
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3.2.5 Sample collection 

Sample collection procedure is illustrated in Figure 3-4. Samples were taken from nine sites over 

a 3-weeks period and their location is included in Figure 3-5. In each case, pipe sections were 

collected during leakage repairs because the normal operation of the DWDN cannot be interrupted 

for this kind of activities. This approach for taking biofilm samples is dominated by randomness due 

to O&M staff must prioritize the daily scheduled repairs according to the size and type of affected 

population (e.g., big neighbourhoods, areas with hospitals and education institutions). In the case 

that researchers want to evaluate more strictly engineered variables such as water age, pipe age, 

pipe materials, type of network component (pipelines, valves, water meters), among others, 

sampling campaigns must be carried out in a long term. According to the researcher criteria, nine 

samples of both bulk water and biofilms was an acceptable amount to characterize the bacterial 

communities in both habitats and their relationships with other engineered and physico-chemical 

variables. Additionally, field assessment like the current one described here also allows suggesting 

practical recommendations to the water operators to preserve the drinking water quality to the point 

of use. 

  

 

Step 1 Step 2 Step 3 

   
Step 4 Step 5 Step 6 

Figure 3-4. Procedure for collection of water and biofilm samples 
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Figure 3-5. Location of sampling points in the city of Cali 

 

First, bulk water samples were taken in the appropriate bottles according to the physico-chemical 

analysis of interest (step 1); 6 L of DW were collected in sterile plastic bottles for DNA extraction. 

Water samples were collected in the nearest household; the taps were flushed for 5 min before 

storage in the respective bottles. Then in-situ parameters were measured (step 2). After this, water 

supply was interrupted by closing valves in order to isolate and empty that part of the network; this 

allows to remove the broken piece of pipe and install the new pipe section (step 3). The broken 

pieces of pipe were washed with sterile water to remove portions of soil attached to pipes sections 

(step 4). The internal surfaces of pipes were also washed with sterile water to remove loose 

particles. The pipe sections were wrapped in polythene to be transported at 4 ºC to the laboratory 

(step 5) for subsequent biofilm removal and DNA isolation (step 6). Each sampling point was 

characterized by water age and pipe characteristics (material, age, and diameter). 
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3.2.6 Physicochemical analysis 

In-situ water parameters were measured as follows: (a) Temperature was measured by a bulb 

thermometer; (b) pH by portable meter kit (HQ40d HACH Cat. No. HQ40D53000000, Loveland, 

CO) coupled to a pH electrode; and (c) total and free chlorine by the DPD method using a HACH 

colorimeter II (Cat. No. 58700-00, Loveland, CO). Quantification of Total Organic Carbon (TOC) 

and total THMs (TTHMs) in bulk water was carried out by an accredited laboratory following 

standard methods (5310B and 6232B, respectively)  (Eaton et al., 2005). Equipment for TOC and 

TTHMs analysis were total carbon analyser (Shimadzu TOC 5050A, article number 3750 K3-2, 

Columbia, MD) and gas chromatograph (HP 5890, Wilmington, DE and Agilent Technologies 

7890B, Santa Clara, CA.), respectively. 

The standard method 5310B for TOC measurement is based on high-temperature combustion in a 

total carbon analyser. The water sample is homogenized and diluted and a micro-portion is injected 

into a heated reaction chamber packed with an oxidative catalyst. The water is vaporized and the 

organic carbon is oxidized to CO2 and H2O. The CO2 from oxidation of organic and inorganic carbon 

is transported and measured in the carrier-gas streams. Since total carbon is measured, inorganic 

carbon must be removed by acidification and sparging or measured separately and TOC is 

obtained by difference (Eaton et al., 2005). 

The standard method 6232B for TTHM measurement is based on liquid-liquid extraction in a gas 

chromatograph; and it is applicable for measuring chloroform, bromodichloromethane, 

dibromochloromethane, and bromoform in drinking water. The sample is extracted once with 

pentane and the extract is injected into the gas chromatograph equipped with a linearized electron 

detector for separation and analysis. In this equipment, the sample is carried by a gas stream to a 

separation tube known as the “column” (Eaton et al., 2005). 

TOC and dry-biomass content were measured in biofilm samples by scrapping a defined area on 

the pipe surface of 75 cm2 in triplicate, in order to obtain enough biomass for both parameters and 

for being able to apply descriptive statistics in the case of dry-biomass parameter. For TOC 

measurement in biofilms, scrapped biofilms were resuspended in 250 mL of deionized water. For 

dry biomass, scrapped samples were dried at 105 °C, for 24 hours and unit dry biomass was 

calculated by dividing dry biomass by the scrapped area. Due to the presence of a high amount of 

tubercles in the cast iron pipe of sample point 2, unit dry biomass was not calculated since the 

scrapped area could not be determined (see Figure 3-6). 



 

Chapter 3. Field assessment of bacterial communities and their relationships with engineered factors               90 

in a tropical-weather DWDN 
Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineering 

 
Figure 3-6. Inner walls of cast iron pipeline of sampling point 2 

 

3.2.7 Molecular methods 

Previous of taken the biofilm samples from pipe walls, the inner walls were washed again with 

sterile water to remove any extra loose particles. Biofilm samples were collected by scrapping in 

triplicate using a sterile frame with area equal to 25 cm2 and a sterile spatula. Triplicates allowed 

to calculate median value of RA of species. DNA isolation was carried out immediately using the 

Power Biofilm DNA Kit (MoBio Laboratories, Carlsbad, CA) according to the manufacturer’s 

instructions. In total 6 L of DW were filtered for every sampling point (2 L for each triplicate) through 

nitrocellulose filters (0.22 m pore-size); filters were further processed for DNA extraction using 

the Power Water DNA Kit (MoBio Laboratories, Carlsbad, CA) according to the manufacturer’s 

instructions. 

Sequencing refers to the determination of the sequence of the nucleobases (adenosine, guanine, 

adenine and thymine), which compose the RNA and DNA of any cells. Sequencing of DNA 

extracted from biofilm and water samples was performed by Illumina MiSeq Technology using the 

Illumina PE MySeq reagent Kit v3 according to the manufacturer's guidelines (Illumina, USA) and 

performed by the Molecular Research DNA Lab (Shallowater, TX, USA). 2-5 ng/L of DNA per 

sample (n=53) was used for amplification (no replicates per sample were generated) and the V4 

variable region of the 16S rRNA gene was amplified using primers 515F/806R (Caporaso et al., 

2011). Sequence data were processed using Mr DNA analysis pipeline (www.mrdnalab.com, MR 

DNA, Shallowater, TX). In summary, sequences were merged, depleted of barcodes and primers, 

sequences < 150 bp and with ambiguous base calls were removed from further analysis. 

Sequences were denoised and chimeras removed. Operational Taxonomic Units (OTUs) were 

http://www.mrdnalab.com/
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defined by clustering at 3% divergence (97% similarity) and were taxonomically classified using 

BLASTn against a curated database derived from Greengenes, RDPII and NCBI (DeSantis et al., 

2006) (http://www.ncbi.nlm.nih.gov/, http://rdp.cme.msu.edu). 

The total number of reads generated per sample ranged between 7780-304912 and between 

13759-238406, for biofilm and bulk water samples, respectively. The number of reads that passed 

quality scores ranged between 7240-256972 for biofilm and between 10257-101379 for bulk water 

samples. The data set (number of reads per sample) was not normalised or rarefacted to assess 

alpha-diversity, in order to avoid losing information from potential important sequences (McMurdie 

and Holmes, 2014). 

 

3.2.8 Data analysis 

Physico-chemical data was processed and analysed by descriptive statistics such as minimum, 

maximum, average, median, quartiles, coefficient of variation (CV), and number of data. The alpha-

diversity of the samples at 97% sequence similarity cut off was analysed by Margalef and Shannon 

community richness and diversity indices, respectively, which were calculated with Primer6 

software (PRIMER-E, Plymouth, UK). The alpha diversity was selected because the samples were 

collected in the same locality, which is supplied by the same surface water source, which is treated 

by two WTPs. The medians and means of such indices were statistically compared by t-test and 

Mann Whitney U test using the software IBM SPSS Statistics 21. The associations of RA at species 

level (considered at 97% sequence similarity cut of) with environmental factors and characteristics 

of the sampling points were determined by multidimensional scaling (MDS), by means of Bray-

Curtis similarity metrics, and analysis of similarities (ANOSIM) using Primer6 software. Spearman 

correlations were applied to determine the relationships between biofilm parameters and bulk water 

physicochemical factors; Shapiro-Wilk tests were run in IBM SPSS Statistics 21 to determine 

normal distribution of variables; results of normality tests are presented in Appendix 9-B. All 

statistical results were contrasted with significance level equal to 0.05. 

With regard to the analysis of bacterial communities in biofilm and water samples, it was based on 

the analysis of similarities using the Bray-Curtis coefficient (S), followed by hierarchical clustering 

and ordination of samples by MDS, and finally testing for differences between groups of samples 

by ANOSIM test. Figure 3-7 shows the stages in the multivariate analysis based on similarity 

coefficients (Clarke and Warwick, 2001). 

http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/
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Figure 3-7. Stages in the multivariate analysis based on similarity coefficients 

 

 Similarities between samples: percentage of RA of species identified in every sample were 

transformed by square root method in order to build a triangular matrix of the similarities 

coefficients of Bray-Curtis, so these can be ordered (ranked) for further analysis. Calculation of 

the expression (100-S) allows obtaining the dissimilarities matrix (Clarke and Warwick, 2001).  

 

 Hierarchical clustering: similarities matrix is the start point for building a dendrogram, followed by 

successively fuse the samples into groups and the groups into larger clusters with the highest 

mutual similarities and the gradually lowering the similarity level at which groups are formed 

(Clarke and Warwick, 2001). 

 

 MDS: cluster analysis is often best used in conjunction with ordination methods since agreement 

between the two representations strengthens reliability of adequacy of both. A MDS graph 

represents the configuration of the samples, in a specific number of dimensions, which attempts 

to satisfy all the conditions imposed by the rank of the (dis)similarity matrix. The construction of 

a MDS involves a numerical algorithm to produce a sample map whose inter-point distances 

have the same rank order as the corresponding dissimilarities between samples (Clarke and 

Warwick, 2001). 

 

 ANOSIM: it is a multivariate test for the null hypothesis (Ho) “there are not differences in 

community composition at the sampling sites” which is based on the statistical parameter R (-1 

< R < 1) whose calculation is based on the rank of similarities. If R=1, all replicates within sites 

are more similar to each other than any replicates from different sites. If R=0, the null hypothesis 



 

Chapter 3. Field assessment of bacterial communities and their relationships with engineered factors 93 

in a tropical-weather DWDN 
Disinfection by-product formation from chlorination of biofilms in drinking water pipes  

Carolina Montoya Pachongo. School of Civil Engineering 

is true, so that similarities between and within sites will be the same on average. To test the 

statistical significance of R, it was verified that the probability that Ho is true was less than 5% 

(p-value) (Clarke and Warwick, 2001). 

 

3.3 RESULTS 

3.3.1 Suspension of drinking water supply in the studied network  

The Colombian regulation (Superintendencia de Servicios Públicos, 2006) stablished the obligation 

to report, by the utilities, information related to drinking water supply, sewage, and cleaning services 

to SUI (Sistema Único de Información for its Spanish abbreviation) (SUI, 2017). A piece of the 

information required by the SUI is the suspension of the drinking water supply, which must be 

described by type of event, number of customers affected by each event, and duration in hours of 

the event. The description of the code used to classify the type of event is shown in Table 3-2 and 

Figure 3-8 presents the characterization of these events. Unfortunately, the description of the type 

of event does not allow identifying which ones correspond to leakage repairs, operation interruption 

of the WTPs, pipeline replacements, among others. 

Table 3-2. Description of the code used to classify the type of suspension of drinking water supply 
in Colombia 

Code Code meaning 

1 Suspension of potable water supply due to maintenance with previous notification to customers 

2 Suspension of potable water supply due to repairs with previous notification to customers 

3 
Suspension of potable water supply due to operative rationing with previous notification to 
customers or non-controllable rationing 

4 Suspensions of potable water supply without previous notification to customers 
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Figure 3-8. Characterization of events of suspension of drinking water supply in the DWDN of the 

city of Cali 

 

The first three types of events of potable water suspension are related to maintenance, repairs and 

operative activities with previous notification to customers. The type of event No 1 is the most 

common one (65.6%) and its influence is more notably on the total duration of the water supply 

suspension (62.3%) rather than on the amount of affected customers (3.9%). The type of event No 

2 is associated with repairs but the code description does not specify what kind of repairs. In 

general, this event was not frequent (8.8%), affected few customers (13.8%) and the total time of 

water supply suspension was also short (8.1%). The type of event No 3 is related to operative and 

non-controllable rationing and its occurrence was very low (0.07%); therefore its impacts on 

affected customers and total duration of events are also low (0.01% for both criteria). The type of 

event No 4 refers to suspensions of potable water supply without previous notification to customers. 

This impacted a high amount of customers (82.3%) but the amount of events (25.6%) and the total 

time of suspension of potable water supply (29.6%) were relatively low. 

By grouping the first three types of events, which include previous notification to customers, most 

of the events (74.4%) and the highest total time of suspension of potable water supply (70.4%) are 

linked to this group; the highest amount of affected customers (82.3%) is due to suspension of 

potable water supply without notification to customers. This is important if it is considered that 

previous notification to customers can lead to increase the water storage at households as a 

contingency, then water demand increases, and velocity and shear stress may raise suddenly and 
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being higher than the values found under normal operation of the DWDN. Such hydraulic changes 

may lead to biofilm detachment; the consequences of this were already discussed in Chapter 2. 

In particular, suspension of drinking water supply associated with deterioration of raw water (high 

turbidity and low dissolved oxygen) are specially important due to its relation to extreme weather 

events and climate change (Montoya et al., 2011; Khan et al., 2015). The latest management report 

of the local water company of the city of Cali (EMCALI EICE ESP, 2016) described the evolution of 

the events related to decrease of dissolved oxygen in raw water, between 1st January 2000 and 

25th September 2016, and the impact of the clarified water reservoirs built in the main water 

treatment of the system. The data is presented in Figure 3-9; the local water company has named 

this type of event as “high contaminant load” due to this causes decrease of dissolved oxygen. 

 
Figure 3-9. Evolution of events of suspension of WTP operation in the period 2000-2016 

 

Before the clarified water reservoirs were built and operated in 2009, all the events of high 

contaminant load in raw water caused suspension of operation of the WTP from year 2000; 

therefore, customers did not have access to drinking water and hydraulic integrity of the network 

was lost during these events. From 2009, the WTP was able to operate by using such stored water, 

guaranteeing the supply of potable water to customers. Although the reservoirs are an acceptable 

contingency practice, it can be noted in Figure 3-9 that, from year 2012, the number of events 

causing suspension of WTP operation has increased from once until a maximum of 13 times in 

2015. This allows inferring that the duration of the events of high contaminant load is raising since 
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the reservoirs are designed to operate for up to 9 hours. This again is causing suspension of 

drinking water supply to customers and loss of the hydraulic integrity of the DWDN. The amount of 

events has also increased from a minimum of 10 events in 2000 until a maximum of 41 in 2013, 

with fluctuations between this numbers in the assessed period (Figure 3-9). 

 

3.3.2 Water levels in service reservoirs in the DWDN 

The sub-network 4 has four pairs of service reservoirs and one single reservoir located in strategic 

points of the city (higher topographic areas) to compensate the pressure in the network (see Figure 

3-5); therefore, the network can be supplied partially by both the WTPs and the reservoirs during 

high-water demand times. Figure 3-10 shows the variation of water levels in the service reservoirs 

of the sub-network 4 and Table 3-3 presents the operational hydraulic conditions of the sub-network 

4 during sampling activities.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 3-10. Water levels in service reservoirs during sampling activities (a) La Campiña (b) Normal 
(c) Siloé (d) Nápoles (e) Ciudad Jardín 
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Table 3-3 presents the hydraulic conditions of the studied subnetwork during the sampling 

campaign. Four pairs of service reservoirs were empty during most of the sampling activities; Siloé 

reservoir was supplying its respective area during six sampling journeys but just two of the nine 

sampling points are probably located in that area (points 3 and 7 - San Judas); in addition, the 

supply region of service reservoir Siloé is not well defined, according to water company information. 

Moreover, Ciudad Jardín reservoir was supplying its respective area during the entire sampling 

campaign but none of the sampling points were located on it; sample location was dependent on 

where leakages occurred in the network during the experimental collection period. According to the 

aforementioned, the sub-network 4 was mostly supplied by the WTPs during most of the sampling 

journeys. As a result, water age was processed according to that condition through Thiessen 

polygons as explained in Section 3.2.4.
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Table 3-3. Hydraulic conditions of the sub-network 4 during sampling campaign 

Sampling 
point 

Neighbourhood 

Operation of service reservoirs during sampling 

Water age of sampling point / Filling cycle of service 
reservoirs 

Water Biofilm 

La Campiña La Normal Siloé Nápoles 
Ciudad 
Jardín 

Value 
(hours) 

Classification 
Value 

(hours) 
Classification 

1 Jorge Isaacs WTP working WTP working WTP working WTP working Draining cycle 13,95 High 13,99 High 

2 
Atanasio 
Girardot 

WTP working WTP working WTP working WTP working Draining cycle 9,71 Medium 9,71 Medium 

3 San Judas WTP working WTP working Draining cycle WTP working Draining cycle 12,37 Medium 12,37 Medium 

4 Las Ceibas WTP working WTP working Draining cycle WTP working Draining cycle 146,01 Very high 8,12 Low 

5 San Joaquín WTP working WTP working Draining cycle WTP working Draining cycle 14,41 High 15,59 High 

6 Industrial WTP working WTP working WTP working WTP working Draining cycle 10,06 Medium 10,06 Medium 

7 San Judas WTP working WTP working Draining cycle WTP working Draining cycle 11,71 Medium 11,47 Medium 

8 Olaya Herrera WTP working WTP working Draining cycle WTP working Draining cycle 13,23 High 13,23 High 

9 Alfonso López WTP working WTP working Draining cycle WTP working Draining cycle 8,00 Low 8,26 Low 
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3.3.3 Water age 

The water age corresponding to every sampling point for both biofilm and water samples is included 

in Table 3-3 and Figure 3-11. Thus, there are four pairs of samples water-biofilm with medium water 

age, three pairs of samples with high water age and one pair of samples with different classification 

of water age; the biofilm sample at point 4 had very high water age and water sample had low water 

age. The water age at Point 4 differs because water sample had to be taken two streets away from 

the biofilm sampling point and, despite their geographical proximity, the respective areas had 

notably different water age values. It can be hypothesised that such notable high water age value 

may be related to the presence of a recirculation dead-end point in the DWDN. 

 

Figure 3-11. Water age of sampling points 

 

3.3.4 Physical characteristics of sampled pipes 

Materials, diameters and age of collected pipes for biofilm sampling are described in Table 3-4. 

The predominant material of sampled pipelines is asbestos cement. One biofilm sample was 

collected from a cast iron pipeline. Pipe diameters were predominantly 4” and three biofilm samples 

were taken from 3”, 8” and 12” pipelines. The oldest pipeline was installed in February 1958 and 

the newest one in August 1990. Therefore, the range of pipe age is 25-57 years at the time of 

sampling. 
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Table 3-4. Network characteristics in sampling points 

Sampling 
point 

Neighbourhood 
Pipe 

material 
Pipe diameter 

(Inches) 
Installation 
date of pipe 

1 Jorge Isaacs Asbestos 4 21/09/1958 

2 Atanasio Girardot Cast iron 4 03/02/1958 

3 San Judas Asbestos 3 18/04/1981 

4 Las Ceibas Asbestos 4 11/12/1979 

5 San Joaquín Asbestos 4 18/08/1990 

6 Industrial Asbestos 8 20/05/1972 

7 San Judas Asbestos 12 04/06/1981 

8 Olaya Herrera Asbestos 4 17/05/1962 

9 Alfonso López Asbestos 4 06/04/1964 

 

3.3.5 Water quality and biotic parameters 

Water quality and biotic parameters and descriptive statistics are presented in Table 3-5. Water 

quality characteristics including temperature, pH, free residual chlorine and TTHMs were within the 

expected ranges, except for the lowest concentration of chlorine (0.12 mg/L), which was measured 

at sampling point 4, which corresponded to the highest water age (146 h). Such concentration of 

free residual chlorine is considered very low according to the recommended values set for drinking 

water quality standards by local regulators (0.3-2.0 mg/L) (Ministerio de la Protección Social, 2007). 

TOC measured in biofilm samples presents a lower variation (CV=105.6%) compared to the 

variation in biofilm mass (CV=321.5%). All concentrations of TOC in DW were reported as lower 

than the detection limit (<0.8 mg/L). Regarding TTHMs, concentrations in all water samples were 

lower than 40 g/L, which falls below the maximum concentration of TTHMs allowed in drinking 

water according to UK and Colombian regulation (100 and 200 g/L, respectively). 

 In relation to biotic factors, unit dry biomass presents the highest variation among all the variables 

analysed in this study (CV=329.09%; Table 3-5). Although calculation of the unit dry biomass in the 

cast iron pipe sample (sampling point 2) was not possible, the second highest content of dry 

biomass in the biofilm (233.7 - 3,664.8 mg) and highest TOC in the water sample (10.10 mg/L; 

Table 3-5) were found in this point. This result can be related to a significant amount of biofilm and 

sediments attached to the pipe walls when compared with other sampling sites. 
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Table 3-5. Water quality, biotic parameters and descriptive statistics 

Sampling point 

Water quality 
Biofilm 

characteristics 

Temperature 
(°C) 

pH 
(Units) 

Free res. 
chlorine 
(mg/L) 

Total res. 
chlorine 
(mg/L) 

TTHMs 
(mg/L) 

TOC 
(mg/L) 

Unit dry 
biomass 

(mg/cm2) * 

1 26 7,32 1,20 1,35 30,3 0,819 1,41 

2 25 7,16 1,66 1,76 28,9 10,104 - 

3 25 7,35 1,28 1,43 23,5 1,210 1,45 

4 - 7,04 0,12 1,61 36,7 1,453 0,29 

5 25 6,76 1,30 1,45 28,3 1,527 0,38 

6 26 7,01 1,12 1,33 35,5 1,739 3,23 

7 28 7,02 1,15 1,21 30,8 2,139 0,23 

8 26 6,86 0,86 1,02 38,6 1,849 2,09 

9 27 6,62 1,31 1,57 33,3 2,157 3,34 

D
es

cr
ip

tiv
e 

st
at

is
tic

s 

Minimum 25 6,62 0,12 1,02 23,45 0,819 0,23 

Median 26 7,02 1,20 1,43 30,80 1,74 1,43 

Mean 26 7,02 1,11 1,41 31,76 2,56 1,55 

Maximum 28 7,35 1,66 1,76 38,6 10,10 3,34 

Standard deviation 1 0,23 0,40 0,21 4,47 2,70 1,28 

CV 3,85% 3,26% 36,25% 14,76% 14,09% 105,64% 82,70% 

Colombian standards (a) -- 6.5-9.0 0.3-2.0 -- 200 -- -- 

* Median of replicates | Descriptive statistics of all data of unit dry biomass (including replicates - mg/cm2): Min=0.11; Median=1.41; 
Mean=5.20; Max=81.45; Stand. Dev..=17.11; CV=329.09% | AC: asbestos cement | CI: cast iron 
(a) Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial (2007) 

 

Several physicochemical characteristics of bulk water were correlated to identify the dynamics 

present in the studied network; results are presented in Table 3-6. Significant negative correlations 

were found between total residual chlorine and temperature (p=0.019), free residual chlorine and 

water age (p=0.004) and free residual chlorine and TTHMs (p=0.017). Weak negative correlations 

were identified between temperature and free residual chlorine (p=0.052, slightly higher than the 

level of significance) and between pH and TTHMs (p=0.042). A positive correlation was observed 

between temperature and TTHMs (p=0.003). 

With regards to biofilms, correlations presented in Table 3-7 indicated that there is a strong positive 

relationship between unit dry biomass and pipe age (p=0.008). Additionally, water age was 
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negatively correlated with TOC in biofilms but the p-value was slightly higher than the level of 

significance (p=0.063) and no association was identified between water age and unit dry biomass, 

possibly related to the influence of pipe age/material over the later variable. 

Table 3-6. Spearman correlation coefficients for bulk water parameters 

Variables ↓→ 
Richness 

index 
(Margalef) 

Diversity 
index 

(Shannon) 

Water 
age 

pH Temper. 
Total 

residual 
chlorine 

Free 
residual 
chlorine 

TTHMs 

Richness index 
(Margalef) 

-               

Diversity index 
(Shannon) 

C.N.T -             

Water age  0.277 0.315 -           

pH 0.365 *** 0.414 * C.N.T -         

Temperature  -0.355 *** -0.238  C.N.T C.N.T -       

Total residual 
chlorine 

0.074 0.149 -0.067 0.117 -0.476 * -     

Free residual 
chlorine 

-0.251 -0.273 
-0.533 

** 
-0.033 -0.401 *** C.N.T -   

TTHMs -0.259 0.049 0.060 
-0.594 

* 
0.802 ** C.N.T -0.671 * - 

Correlation is significant at the 0.05* / 0.01** level (2-tailed) 
*** Correlation coefficient slightly higher than 0.05 → 0.052 < p-value < 0.089 

 

Table 3-7. Spearman correlation coefficients for biofilm parameters 

Variables ↓→ 
Richness 

index 
(Margalef) 

Diversity 
index 

(Shannon) 

Water 
age  

Pipe age 
Unit dry 
biomass 

TOC - 
biofilm 

Richness index (Margalef) -           

Diversity index (Shannon) C.N.T -         

Water age  0.364 *** 0.375 *** -       

Pipe age -0.404 * -0.512 ** C.N.T -     

Unit dry biomass -0.582 ** -0.733 ** -0.196 0.559 ** -   

TOC - biofilm -0.294 -0.357 
-0.552 

*** 
0.334 0.259 - 

Correlation is significant at the 0.05* / 0.01** level (2-tailed) 
*** Correlation coefficient slightly higher than 0.05 → 0.059 < p-value < 0.068 
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3.3.6 Characterization of the bacterial community structure of biofilms and bulk water 

The RA to phylum and genera level for water and biofilm samples can be observed in Figure 3-12 

and Figure 3-13, respectively; groups with RA lower than 10% were grouped in the category 

“Others”. Water samples were dominated mainly by Proteobacteria phyla (43-98%), followed by 

Cyanobacteria (0.05-41%), and Firmicutes (0.84–34%). With regard to biofilm samples, the 

predominant phyla were Proteobacteria (26-72%), followed by Firmicutes (3–30%), and 

Actinobacteria (8-19%). Different genera were dominant in each bulk water sample and those with 

higher RA were Bacillus, Brucella, Cyanothece, Methylobacterium, and Phyllobacterium (17.47-

95.91%). With regard to biofilm samples, different genera were dominating each sample and those 

with higher RA were Acinetobacter, Alcaligenes, Alcanivorax, Bacillus, Deinococcus, Holophaga, 

and Thermoflavimicrobium (4.34–43.92%). 

 

Figure 3-12. RA of bacterial groups to (a) phylum level and (b) genus level in water samples 
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Figure 3-13. RA of bacterial groups to (a) phylum level and (b) genus level in biofilm samples 

 

ANOSIM test was applied to assess the relationships between species RA and engineered factors 

(global R and p-value; Table 3-8). With regards to water samples, relationships between species 

RA and factors water age, free chlorine, pH, and free chlorine and water age combined were 

statistically significant. In relation to biofilm samples, ANOSIM test resulted statistically significant 

for the factors pipe age, and water age, and unit dry biomass and pipe age combined. Factor “Pipe 

material” was not included in the statistic tests due to only one sample was collected from CI 

pipeline, then comparison between CI and asbestos cement would not be statistically strong. 

Habitat was also a factor influencing the RA of species. MDS analysis also revealed that habitat 

and pipe material were the factors which clustered bacterial species (Figure 3-14a and Figure 
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3-14b, respectively). The two-dimensional plots of the MDS analysis and dendrograms for 

visualization of Bray Curtis similarity index for every parameter considered in this study are included 

in the Appendix 9-C. 

Importantly, other methanotrophic organisms were observed in biofilm samples such as 

Methylobacterium (RA=1.16%) and Methylosinus (RA=3.34%). In bulk water, Spearman 

correlations with TTHMs were statistically significant for the genus Methylobacter (=0.437; p-

value=0.023) and Methylobacterium (=-0.417; p-value=0.030). 

Table 3-8. ANOSIM test for RA of species 

Habitat Factor 
ANOSIM 

Habitat Factor 
ANOSIM 

Global R p-value Global R p-value 

Bulk 
water 

Water age 0,441 0.002* 

Biofilm 

Pipe age 0,601 0.001* 

Temperature 0,002 0.430 Pipe diameter 0,122 0,113 

Free chlorine 0,441 0.001* Water age 0,601 0.001* 

pH 0,441 0.001* Unit dry biomass 0,127 0,268 

Free chlorine – 
Water age 

0,441 0.001* 
Unit dry biomass – 
Pipe age 

0.690 0.013* 

Biofilm – 
Bulk 
water 

Habitat 0,446 0.001* 

  
Water age 0,304 0.001* 

Water age – 
Habitat 

0,666 0.001* 

 

 

Figure 3-14. Non-metric MDS analysis of bacterial RA. Factors (a) Habitat and (b) and pipe material 
- biofilm samples 
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3.3.7 Microbial richness and diversity  

Richness and diversity indices were calculated (Table 3-9) according to factors such as habitat and 

water age. t-test indicated that the means of richness and diversity indices of biofilm samples are 

higher than those of water samples. Spearman correlations were applied to test the relationships 

between indices and engineered factors, for both water (Table 3-6) and biofilm (Table 3-7) samples. 

Negative correlations were found between biofilm indices and pipe age and unit dry biomass. Pipe 

material is also a factor which is influencing the diversity of species in biofilm samples since median 

of diversity index from asbestos pipes was higher than those from cast iron pipes. Results of 

comparisons of medians indicated that median of richness and diversity indices of biofilm samples 

with high water age was higher than those with medium water age. In water samples, richness 

index with very high water age was higher than those with low water age; and median of richness 

index with medium water age was higher than those with low water age. Positive correlations 

between water age and richness and diversity indices were only found in biofilm samples but the 

p-values were slightly higher than the significance level. 

Table 3-9. Medians and means of richness and diversity indices 

Index → Margalef richness 

Habitat → 
Habitat 

Bulk water Biofilm 

Factor → Water age Water age 

Descriptive 
statistics ↓ 

Biofilm Water Low Medium High Very high Low Medium High 

Median 253,5 272,0 272,0 271,0 253,0 319,0 251,0 185,5 594,0 

Mean 417,1 279,7 229,3 276,5 284,4 328,7 449,6 303,3 550,7 

Standard 
deviation 

276,68 85,80 74,77 195,60 86,24 50,20 365,30 237,16 234,59 

N 26 27 3 12 9 3 5 12 9 

p-value 0.022 (a) * 
Low - Very high water age Medium - High water age 

0.050 (b) * 0.019 (b) * 

Index → Shannon diversity 

Habitat → 
Habitat 

Bulk water Biofilm 

Factor → Water age Water age 

Descriptive 
statistics ↓ 

Biofilm Water Low Medium High Very high Low Medium High 

Median 4,978 4,647 4,422 4,611 4,647 4,876 4,696 4,442 5,648 

Mean 5,129 4,622 4,440 4,581 4,662 4,842 5,172 4,759 5,598 

Standard 
deviation 

0,76 0,30 0,26 0,27 0,36 0,09 0,92 0,73 0,46 

N 26 27 3 12 9 3 5 12 9 

p-value 0.003 (a) ** - 
Medium - High water age 

0.013 (b) * 
Means / Medians comparisons: (a): t-test; (b): Mann-Whitney test 
Correlation is significant at the 0.05* / 0.01** level. Only significant tests are shown 
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3.4 DISCUSSION 

3.4.1 Bulk water quality and biotic parameters and their relationships with engineered 
factors 

As discussed in Chapter 2, DBP formation is known to be influenced by operational parameters 

such as pH, temperature, TOC, chlorine dosage, water age, and type and concentration of 

precursors. The interactions observed between parameters such as water age, temperature, pH, 

free residual chlorine, and TTHMs confirm the dynamics occurring in a DWDN in relation to THMs 

formation: increasing water age promotes loss of free residual chlorine because the disinfectant is 

volatile and reacts with organic and inorganic matter, likewise the concentrations of THMs were 

increasing. Nescerecka et al. (2014) and Wang et al. (2014) also identified depletion of disinfectant 

with higher water age in a real scale and simulated DWDNs, respectively.  

THM formation is highly directly influenced by pH and temperature (Liang and Singer, 2003). Such 

relationship is evidenced by the current results, which show a strong correlation between TTHMs 

and temperature. However a negative relationship between TTHMs and pH was found in the 

current study, which may be related to the narrow range of pH data (6.62-7.35; CV=3.26%; see 

Table 3-5); higher concentrations of THMs have been identified with higher pH in a range of 5-8 

units in laboratory experiments (Liang and Singer, 2003; Wang et al., 2012c). Positive and negative 

correlations between pH and THMs in the distribution system have also been reported by 

Rodriguez and Sérodes (2001) in three DWDNs located in Canada. With regards to unit dry 

biomass, values found in the current study (0.11-81.45 mg/cm2) were similar to data reported by 

Ren et al. (2015) in a real scale DWDN (1.96-140.79 mg/cm2), located in a subtropical area in 

China, which had operated for 11 years at the time of sampling, and included PVC, steel, and cast 

iron pipes.  

 

3.4.2 Identification of the bacterial community structure of biofilms and bulk water 

Comparing phylotypes detected in bulk water and biofilm, biofilm samples seem to be more diverse 

than water samples (7 vs 4 groups, respectively); this was corroborated by the divers ity and 

richness indices (417,1 vs 279,7 and 5.1 vs 4.6, respectively), as discussed below. Phylum 

Actinobacteria, Firmicutes, and Proteobacteria were the common phylotypes in the two habitats, 

with the later community being the dominant group in the entire set of samples. Recent studies 

from other geographic regions have reported that both water and biofilm samples were dominated 
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by Proteobacteria phyla (Douterelo et al., 2013; Holinger et al., 2014; Kelly et al., 2014; Sun et al., 

2014; Wang et al., 2014; Mahapatra et al., 2015; Ren et al., 2015). Particularly, the study of Ren et 

al. (2015) was developed in the city of Shaoxing, located at the east of China. This city is 

characterized for a subtropical monsoon climate; the annual average low temperature oscillates 

between 3-25°C and the annual average high temperature varies between 8-33°C 

(TravelChinaGuide, 2017). Other important phylotypes in both habitats were Firmicutes and 

Actinobacteria, which have also been observed in other real scale DWDNs (Ren et al., 2015; 

Bautista-de los Santos et al., 2016). 

The phylum Cyanobacteria was present in all the water samples and it belongs to a diverse group 

of photosynthetic microorganisms, widespread in aquatic and terrestrial ecosystems; 

representative genus of this phyla is Cyanothece, which was highly abundant in four water samples 

and has been little studied (Dechatiwongse, 2015) and are not cytotoxin producers (Jakubowska 

and Szeląg-Wasielewska, 2015). The source for the high presence of these organisms in the 

analysed samples is likely to be from one of the reservoirs of clarified water located at one of the 

WTP of the studied sub-network. Revetta et al. (2011), by analyzing 16S rRNA gene clone libraries 

derived from DNA extracts of 12 samples and comparing to clone libraries previously generated 

using RNA extracts from the same samples, found that these bacteria may be active in chlorinated 

drinking water. Since drinking water pipes are dark environments, how Cyanobacteria survive in 

these is not clear yet. However, it is hypothesised that due to the limited action that chlorine has 

for the inactivation of cyanobacterial planktonic cells (Fan, 2012), cell material could have been 

transported within the distribution network and ultimately detected by DNA extraction.  

At class level, Alphaproteobacteria are known for their potential higher resistance to chlorine 

(Gomez-Alvarez et al., 2012), which explains their dominance in bulk water from seven sampling 

locations. On the other hand, Gammaproteobacteria includes the faecal indicator E. coli and genus 

Salmonella, Yersinia, Vibrio, and Pseudomonas (Williams et al., 2010). With regards to bacteria 

genera, Bacillus was the unique common genus present in both habitats; it was present mainly in 

biofilms but was also detected in bulk water. Members of this group are ubiquitous in the 

environment, they can form spores that are advantageous as a survival strategy under 

environmental and nutritional stresses (e.g., disinfectant presence). Species of the genus Bacillus 

are also known for their ability to form a biofilm in different environments (Checinska et al., 2015).  

Another example of adaptive-response strategies is the genus Deinoccocus, which was mainly 

present in biofilm samples and shows high resistance to ionizing-radiation (gamma and/or UV 

radiation) (Rainey et al., 2005). This ability may not be related to environmental adaptation since 
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natural sources of this type of radiation on Earth does not reach the resistant levels showed by 

these bacteria; compensation of desiccation has been suggested as an explanation for radio-

tolerance ability (Rainey et al., 2005). Its presence in biofilm samples may also be a strategy to 

survive in a hostile environment such as DW pipes. 

The water source of the studied DWDN is a river, and its basin supports a diverse range of domestic 

and industrial activities, which have led to concerning water quality issues (Ocampo-Duque et al., 

2013). In addition, soil surrounding the DWDN entering to the network during repair activities and 

fittings and pipelines replacement may also affect the microbial communities in DWDNs. For 

example, genera including Thermoflavimicrobium and Phyllobacterium were highly abundant in 

bulk water samples at several sampling points. These organisms have been previously reported in 

soil- related habitats (Rojas et al., 2001; Yoon et al., 2005). Then their presence may be explained 

by the characteristics of raw water source. Bacteria with anaerobic metabolism were detected only 

in biofilm samples. Holophaga genus includes only one validly described species: H. foetida, which 

was isolated from a dilution series in liquid media inoculated with black anoxic freshwater mud from 

a ditch in Germany (Itoh et al., 2011). The origin of this microorganism may be the water source 

which belong to a water basin highly contaminated due to domestic and industrial activities 

(Ocampo-Duque et al., 2013). 

Genus Desulfovibrio was only present in point 2 (11.89%), which corresponds to a cast iron pipe 

sample. These organisms are sulphate-reducing bacteria (SRB), related to iron corrosion. 

Desulfovibrio finds a favourable environment in this kind of pipes, most likely promoting its corrosion 

and potentially leading to failure. Tubercles found in the sampled piece of pipe (Figure 3-6) may 

create limited oxygen environment for the growth of these bacteria (Douterelo et al., 2014b). Similar 

high abundance of this genus was detected by Ren et al. (2015) in 11-years old cast iron pipes 

(16.90%); however Sun et al. (2014) reported low abundance of Desulfovibrio (0.01-0.19%) in 20-

years old cast iron pipes. This may be related to the temperatures associated to the sampling 

campaign; while Ren et al. (2015) carried out their field work between January and September, 

which are characterized for temperatures between 3-33 °C (TravelChinaGuide, 2017), Sun et al. 

(2014) measured temperatures between 9-20 °C for the seven water supply systems considered 

in their study. Temperature indirectly affects pipe corrosion because parameters such as biological 

activity, dissolved oxygen solubility, solution properties (e.g., viscosity), ferrous iron oxidation rate, 

and thermodynamic properties of iron scale vary with temperature. Such parameters directly 

influence corrosion of iron pipes (McNeill and Edwards, 2002). Corrosion of metallic pipes in 
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DWDNs is inconvenient because tubercles reduce the hydraulic capacity of the pipes due to the 

scales formation and the accumulation of iron and manganese particles (Douterelo et al., 2014b).  

Methylotrophic bacteria were detected in five bulk water samples. Methylobacterium genus 

includes methylotrophic organisms (Leisinger et al., 1994), which are ubiquitous in different 

environments including soil, freshwater, drinking water, lake sediments, leaf surfaces, and root 

nodules (Leisinger et al., 1994). This genus is able to degrade DBPs such as HAAs (particularly 

dichloroacetic acid) (Zhang et al., 2009), and they are biofilm formers with high resistance to sodium 

hypochlorite disinfection in single-species biofilm (Simões et al., 2010). Importantly, 

Methylobacterium has not been found yet in non-chlorinated DWDNs (Martiny et al., 2005; Liu et 

al., 2014). Therefore, the presence of these microorganisms in DWDNs should be considered as a 

potential indicator of DBP presence, despite of Methylobacterium presents facultative metabolism 

and it is able to use a wide range of organic compounds as sources of carbon and oxygen (Gallego 

et al., 2005). Therefore, the presence of methanotrophs in biofilm samples may indicate the 

presence of anoxic layers within the biofilms, as discussed previously for the genus Desulfovibrio. 

Such anoxic environment inside of the biofilms leads to the formation of methane by methanogenic 

organisms, which can be consumed by methanotrophic organisms living inside of the biofilm and 

bulk water if methane was transported to this habitat. On the other hand, it has also been identified 

utilization of chloroform in co-metabolic processes by Methylobacterium (Patel et al., 1982) and 

Methylosinus (Park et al., 1991). The negative association identified between TTHMs and 

Methylobacterium may be related to an inverse relationship between THMs and HAAs, since 

reduction of HAAs concentrations has been found with higher retention times (Tung and Xie, 2009).  

Pseudomonas was common in most of the biofilm samples (8 of 9 points) but was not the dominant 

genus. While Pseudomonas was present as the dominant group in the initial process of biofilm 

formation in 28-days-old biofilms (Douterelo et al., 2014c), Henne et al. (2012) found that biofilm 

communities sampled at nearby points were similar, then the authors hypothesised that during 

several years physically related biofilm communities will show similar community structures. In 

contrast, the current study found that dominant bacterial communities of the studied DWDN (25-57 

years old) were different in each sampling point; therefore, the present results show that biofilms 

do not present properties of either young or old biofilms. This may be related to the unstable 

hydraulic conditions of this water network, which may partially remove biofilm components, then 

altering the structure of bacterial communities. Similarly, in a laboratory-based full scale DWDN, 

high flow variations indicated the promotion of young biofilms with more cells and less EPS, by the 

potential cyclic removal of the first layers of the biofilms (Fish et al., 2017).  
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Bacteria groups, which include pathogenic and opportunistic organisms, were also observed in 

biofilm and bulk water samples. Acinetobacter was detected in four biofilm samples; members of 

this genus are ubiquitous in the environment, biofilm formers, and have been found in wastewater 

treatment reactors, in infected patients, and contaminated clinical devices (Carr et al., 2003; Lin et 

al., 2003). In bulk water, Brucella was also found in four samples; this genus comprises 11 species 

and 10 of them are associated with human infections (Scholz et al., 2010; Xavier et al., 2010). 

Results of this study indicated the presence of genus Staphylococcus in bulk water (RA = 0.04-

7.07%) and biofilm samples (RA = 0.08-10.91%). Ji et al. (2015) also found this organism in water 

samples collected from a building plumbing system. Due to this genus constitute a major 

component of the human microflora (Heilmann et al., 1996), Ji and collaborators discarded the 

hypothesis of samples contamination since these bacteria were absent in the blanks (Ji et al., 

2015). In the present study, Illumina sequencing was not run in blanks but this genus has been 

isolated from a model-laboratory DWDN and cultured in dual biofilms, being classified as a 

moderate biofilm former (Simões et al., 2007); this ability is used to colonize hospital devices. In 

addition, Staphylococcus aereus was also detected in bulk water from a rural DW system 

(Lechevallier and Seidler, 1980). It can be hypothesised that the source of this opportunistic 

pathogen could be the surface raw water, since the river basin is highly contaminated due to human 

and industrial activities (Ocampo-Duque et al., 2013). 

 

3.4.3 Influence of network characteristics over the bacterial communities and richness 
and diversity indices in biofilms and bulk water samples  

The higher richness and diversity in biofilms than in bulk water samples can be related to the 

favourable conditions offered by this microenvironment for bacteria survival such as protection 

against disinfectant and higher availability of nutrients. Douterelo et al. (2013) also found in 28-

days old biofilms higher diversity and richness in biofilms in a chlorinated DWDN, indicating that 

only certain bacteria in bulk water have the ability to produce EPS and attach to pipe walls. For 

instance, Bacillus was the only common genus detected in the two habitats. Bacillus can form 

spores that protect them from disinfection in bulk water and allow them to attach to biofilms, then 

when the environmental conditions are favourable they start developing as active cells (Checinska 

et al., 2015). Conversely, Henne et al. (2012), based on 16S r RNA fingerprints of extracted DNA 

and RNA, found that richness of microbial communities was higher in bulk water than biofilms from 

a 20-year-old DWDN. The authors argue that only those bacteria that can actively contribute to the 
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succession of the biofilm were successful in colonizing biofilms, while bacteria that cannot fill 

perfectly the narrow niches in biofilms vanished over time. 

Relationship between pipe age and unit dry biomass may be related to the detachment of some 

asbestos fibres which was observed during biofilm scrapping from the sampled pipes and is 

representative of the potential wear of the pipe material in time, due to the biological activity. The 

influence of removal of such fibres was described by Wang et al. (2011), who tested the biological 

activity in 53-54 years-old sections of asbestos pipes. By stablishing microbial activity of iron-

reducing bacteria (IRB), SRB and biofilm-former bacteria in the patina layer (porous layer, mainly 

composed of microbial biomass along with interwoven asbestos fibres) of those pipes sections, 

they established that such microbial activity leads to deterioration of asbestos pipes and potential 

leakages (Wang et al., 2011). In this study, IRB were observed in biofilm samples, corresponding 

to 24-56 years-old pipe sections, such as genus Geobacter (RA: 1.96-4.51%) and family 

Rhodobacteraceae (RA: 3.74-8.87%); SRB such as genus Desulforegula (RA=1.15%), 

Syntrophobacter (RA=1.08%), and Clostridium (RA=1.00-3.74%) were also detected.  

Although these microbial groups were present with low RA, this fact may indicate the presence of 

an anoxic layer in asbestos pipes, which promotes the acidification of the media due to the 

production of organic acids from anaerobic metabolism, leading to local pH decrease. This 

facilitates the weathering and dissolution of the acid-receptive minerals in hydrated cement matrix, 

thus, creating pitting and voids within a pipe wall. In the long term, this process continuously caused 

by biological activity can be considered as biodegradation of asbestos material in water pipes 

(Wang et al., 2011).  

The influence of pipe material on the bacteriological composition of biofilm samples is reflected on 

the presence of SRB such as Desulfovibrio, which was present exclusively in CI pipes. 

Desulfovibrio finds a favourable environment in this type of pipes, most likely promoting its 

corrosion and potentially leading to failure. Similar high abundance of this genus was detected by 

Ren et al. (2015) in 11-year old CI pipes however, Sun et al. (2014) reported low abundance of 

Desulfovibrio (0.01-0.19%) in 20-year old cast iron pipes. The tubercles found in the sampled piece 

of pipe (Figure 3-6) may create a favourable environment for the growth of these bacteria. 

Additionally, such tubercles can reduce the hydraulic capacity of the pipes due to the formation of 

scales and the accumulation of iron and manganese particles (Douterelo et al., 2014b). Several 

studies have confirmed the impact of pipe material over the structure of microbial communities in 

biofilm samples collected from simulated DWDNs (Wang et al., 2014), bench-scale pipe section 

reactors (Mi et al., 2015), and real-scale DWDNs (Ren et al., 2015). Although there is not an 
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absolute consensus about the best material to minimize biofilm growth, in general, plastics appear 

to be advisable over metals and cements (Fish et al., 2016). 

With regards to water age (8-16 hours), the effect of this factor on the biofilms bacterial communities 

may be associated with the relationship between this parameter and physicochemical 

characteristics of DW, which was previously discussed. In addition, chlorine low concentrations, 

stagnation and low velocities conditions associated with high water age lead to increase the cells 

count in bulk water (Nescerecka et al., 2014) and favour biofilm formation (Fish et al., 2016). Water 

age is considered as a factor influencing the biological stability of DW (Prest et al., 2016). This was 

corroborated by Wang et al. (2014) who established in simulated-DWDN biofilm samples that water 

age (2.3 and 5.7 days), disinfectant, and pipe material interact with each other to create distinct 

physicochemical conditions and ecological niches, in which various microbes can be selected and 

enriched in DW systems. Results of Ji et al. (2015) also confirmed that water age (3, 4.5 and 6.5 

days) can influence the shifts in microbial communities in building plumbing and obviously affected 

free chlorine, and selectively influenced lead, copper, and zinc concentrations for certain pipe 

materials. 

In this line, the main purpose to maintain residual disinfectant in a DWDN is to minimise any 

potential microbiological contamination, taking advantage of its fast oxidation ability, resulting in 

microorganisms’ inactivation, despite the protective effect caused by EPS in the biofilm matrix (Xue 

et al., 2013). Spearman’s correlations showed no associations between indices and concentrations 

of free chlorine. Due to continuous variation of free chlorine in bulk water, hourly monitoring of this 

variable assisted by online devices in the network is recommended in order to test further 

correlations. Points with potential high water age are suggested to monitor residual disinfectant 

such as extreme points of the DWDN, service reservoirs, storage tanks, and dead-end sections 

(Montoya et al., 2009).  

ANOSIM indicated statistical significant differences among species for the factor pH, which was 

also correlated positively with both richness and diversity indices. Due to the relationship between 

pH and alkalinity and the governance of this factor over the relative proportions of hypochlorous 

and hypochlorite, which present different disinfection efficacies, pH is impacting the variability in 

the water bacterial community as found by Sun et al. (2014); Ji et al. (2015) also determined higher 

individual association of pH with the bacteria and archaea organisms in water samples. 

Temperature and richness index were negatively correlated; similar results were found by Henne 

et al. (2013) by comparing microbial communities of cold and hot water (T=41 °C approximately); 
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cold water presented higher community diversity and high stability over time. This study considered 

T=3 °C, which corresponds to typical temperature values for tropical cities with hot weather. 

Deeper analysis should be done in relation to the influence of temperature variation in DWDNs in 

tropical weather. 

 

3.5 SIGNIFICANCE AND LIMITATIONS OF THE STUDY 

The current study collected samples, one sample in time, of bulk water and biofilm in nine points of 

a DWDN located in a tropical-climate city, where warm temperatures dominate. The bacterial 

communities were assessed in both habitats, and other physico-chemical parameters were used 

to characterise them, with special focus on THMs. It is important to acknowledge that size of data 

is small and temporal variation was not included in this study. It is important to highlight that the p-

value of some correlations was slightly higher than the level of significance, which may be 

associated with the limited number of data collected in this study. The current procedures for 

attention of leakage repairs also represents a challenge on developing demanding field work 

studies like the current one, considering that the normal operation cannot be interrupted for 

sampling activities, consequently, then randomness governs a sampling plan. O&M staff must 

prioritize the repairs according to the size and type of affected population (e.g., big neighbourhoods, 

areas with hospitals and education institutions); therefore sampling activities must be carried out in 

a long term if the scope included the evaluation of more strictly engineered variables such as water 

age, pipe age, pipe materials, type of network component (pipelines, valves, water meters), among 

others. 

The field assessment approach presented here represents a progress in the study of the bacterial 

composition in Cali’s DWDN, which exhibits several O&M challenges in relation to the loss of 

hydraulic integrity. To the author knowledge, this is the first time molecular analysis are applied to 

study, at full scale, the microbiological drinking water quality in this water network. This allowed to 

correlate biotic parameters with engineered characteristics, then some O&M recommendations 

were produced, which may be useful to the water utility. The author is aware that some 

communication mean must be identified in order to present and explain the findings of this study to 

the water managers of the studied water network. 

The bacterial composition of habitats bulk water and biofilm in the studied DWDN was identified by 

DNA extraction, which only allows indicating the presence of particular bacteria, but it is not possible 
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to determine when they entered to the system, for how long they have been there, what the exact 

source is, and if they were metabolically active, viable and/or cultivable. As economical, technical, 

and trained human resources improves in developing countries such as Colombia, the research 

and knowledge transfer with regards to biofilms and their interactions with other variables in 

DWDNs can be promoted. For instance, the recent work by Lemus Pérez and Rodríguez Susa 

(2017) used biofilms grown with drinking water treated by a WTP in Bogotá (Colombia) to 

quantitatively assess the influence of the type of EPS in the potential formation of several species 

of DBPs.  

Further studies should incorporate the analysis of RNA and active genes in order to improve the 

characterization of the role played by microorganisms and their interaction with engineered factors 

of DWDNs. Additionally, the temporal variation of bacterial communities in DWDNs can also be 

assessed; Bautista-de los Santos et al. (2016) found that bacterial community composition is 

significantly different across sampling sites for time-periods during which there are typically rapid 

changes in water use, which suggests hydraulic changes (driven by changes in water demand) 

contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales. In 

relation to hydraulic changes, monitoring turbidity also contributes to identify the relationship 

between this parameter and the presence of particles, cells, and biofilm detached clusters in bulk 

water (Douterelo et al., 2013; Douterelo et al., 2014b). 

 

3.6 CONCLUSIONS 

The application of sequencing analysis represents a step forward in the study of microbiological 

aspects of DWDNs in tropical-climate countries. The key findings from the study are:  

 Most of the bacterial communities identified in this work have also been found in temperate-

weather water systems. This may indicate that some drinking water bacteria are ubiquitous and 

that treatment and engineered environments shape the bacterial communities in a specific way. 

 Similarly to temperate-climate DWDNs, bacterial communities in sampled biofilms are different 

from those in bulk water, with the former more diverse and richer. 

 Pipe age, pipe material, water age, free chlorine, pH and temperature were associated with 

microbiological parameters indicating that these are key to the composition of bacterial 

communities. Deeper analysis should be done in terms of the influence of temperature variation 

in DWDNs in tropical climates. 
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 Pipe material influences the microbial ecology of DWDNs. Desulfovibrio was identified exclusively 

in the CI pipe. 

 Methylotrophic bacteria were found in biofilms and bulk water; these microorganisms are known 

to be able to degrade DBPs as HAAs. 

 Significant correlation was found between RA of Methylobacter and Methylobacterium and TTHM 

concentrations in bulk water. 

 Design and O&M of DWDNs should consider all the possible procedures to minimise biofilm 

growth to manage both biological and chemical stability of drinking water 

.
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4 A SIMPLE BIOFILM CHLORINATION MODEL 

4.1 INTRODUCTION 

Modelling is an increasingly important tool for O&M activities in the drinking water industry. It is an 

especial useful tool to help cope with the complexity of DWDNs. Modelling in this context can be 

classified in two major groups: hydraulic and water quality modelling, with the later one dependent 

on the first one. Modelling offers useful information using relatively few resources, however it 

presents challenges mostly related to obtaining reliable primary information (inputs) and validation. 

In addition, qualified personnel are required to use the model depending on the software and its 

level of elaboration, and interpret results. 

As was discussed in Chapter 2, chlorine decay and DBP formation are the most common targets 

for water network operators, while biofilm modelling has been addressed mainly for research 

purposes. Recent laboratory studies have determined that components of the biofilm matrix such 

as cells, EPS, trapped organic matter, and biomolecules act like DBP precursors (Hong et al., 2008; 

Fang et al., 2010a; Fang et al., 2010b; Wang et al., 2012c; Wang et al., 2013a; Wang et al., 2013b; 

Lemus Pérez and Rodríguez Susa, 2017). Despite this, the contribution of biofilms to DBP 

formation has scarcely been considered in DWDNs models. To the author’s knowledge, there is 

only one study published that includes the contribution of planktonic cells, biofilms, and detached 

biofilm clusters in the THM formation in main trunk pipes and dead-end zones (Abokifa et al., 

2016a).  

The literature review of Chapter 2 indicates that DBP and biofilm modelling have been developed 

separately. Empirical DBP models have been proposed to predict DBP concentrations in drinking 

water considering the main influencing factors such as time, pH, temperature, precursors, 

disinfectant dose, and bromide concentration. In relation to precursors, variables such as TOC, 

DOC, algae, chlorophyll, UV254, and SUVA have been used. The last two have been applied as 

precursor indicators, but biofilms have not been included yet in empirical models. These models 

are site-specific since they include the peculiar conditions of each studied DWDN such as seasonal 

variations, water quality parameters and type of water treatment process or technology.  

DBP models have been mainly developed to offer water quality information in the DWDNs, while 

drinking water biofilm models have been aimed at avoiding, minimizing and/or controlling biofilm 

growth. Considering the important role played by EPS in initial formation, growth, and survival of 

biofilms; several models have included the EPS production by bacteria (Kommedal et al., 2001; 
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Xavier et al., 2005a; Xavier et al., 2005b; Duddu et al., 2008; Zhang et al., 2008; Duddu et al., 2009; 

Cogan, 2010; Cogan, 2011; Lindley et al., 2012; Clarelli et al., 2013; Ghosh et al., 2013; Macías-

Díaz, 2015; Tierra et al., 2015; Zhao et al., 2016).  

The model proposed here aims to improve the DBP prediction in water systems by better 

comprehension of the role of biofilms as DPB precursors in plumbing systems, where stagnation 

conditions are predominant and DBP exposure occurs. The model predicts the DBP formation 

potential in one-dimension and involves chlorine as disinfectant and chloroform and DCAN as 

DBPs. Chloroform and DACN were selected because the first is the most abundant and 

predominant DBP in drinking water and the second is the most predominant haloacetonitrile 

species detected in drinking water (WHO, 2017) and in biomass disinfection tests (Wang et al., 

2012c), and it has been recognized as a more toxic substance than HAAs (Muellner et al., 2007).  

To the author’s knowledge, models representing the contribution of the biofilms to the bulk water 

have been developed only for particulate substances such as biofilm erosion or detachment, but 

not for dissolved substances. Following this line, the current model represents an original approach 

in biofilm and DBP modelling by considering the biofilm matrix as an organic matter reservoir 

penetrated by chlorine, which oxidizes EPS and cells, then transforming a fraction of them into 

chloroform and DCAN, separately, which are then transported by diffusion from the biofilm to the 

bulk water. The influence of pertinent parameters on bulk water concentrations is discussed, and 

the model applications and limitations are also explained. 

 

4.2 MODEL DEVELOPMENT 

4.2.1 Model definition 

According to Vannecke et al. (2015), it is likely a general rule that increased complexity concerning 

microbial diversity and/or meso-scale aggregate architecture will be more useful when the focus is 

on understanding fundamental micro-scale outputs. When the focus is on macro-scale outputs 

(e.g., substrate removal rates, optimal bulk condition), this complexity is clearly not always 

necessary. However, under some conditions, such additional model features can be critically 

informative for bulk reactor behaviour prediction or understanding. 

The main purpose of the model developed in this chapter is to represent the formation potentials 

of chloroform and DCAN by the oxidation of the biofilm matrix with HOCl. As the diffusion processes 

of simulated substances occur in minutes, biofilm growth, decay and detachment and EPS 
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formation occur in hours (Picioreanu et al., 2000a), initial constant concentration of cells and EPS 

and their decay due to the reaction with chlorine within the biofilm were considered. A 1D model 

was produced to initially represent the experimental results from Wang et al. (2013a), and then the 

model was extrapolated to plumbing pipes under conditions where stagnation prevails. A schematic 

representation of the model is presented in Figure 4-1. 

 
Figure 4-1. Schematic representation of the 1D model 

  

The main assumptions made when developing the current model are: 

 Closed system: Glass vessels used in laboratory experiments and drinking water pipes under 

normal operation can be considered closed systems, where there is not an exchange of 

materials with the surrounding environment. Therefore, the model presented here also 

represents a closed system. 

 Stagnant fluid: During the evenings, stagnation conditions can be present in DWDNs, especially 

in residential areas. In plumbing systems, water can be stagnant during periods of no 

consumption of water such as the evenings, weekends, or holiday seasons. 

 Flat biofilm: A biofilm can be compact or present voids and channels within itself. Compact 

biofilms are the result of systems limited by the biomass growth rate. Finger-like and mushroom-

like biofilms are generated in systems limited by the substrate transport (Picioreanu et al., 

1998b). Biofilms with irregular surfaces gradually shift to compact biofilms with smooth surface 

when nutrient availability increases due to higher flow velocities (Picioreanu et al., 2000a). 

Therefore, it is expected that, under static flow conditions, biofilm should develop with channels, 

voids, and rough surface. However, biofilms in drinking water pipes of plumbing systems are 

exposed to both turbulent flow and stagnant conditions but there is not yet evidence on the 

morphology characteristics of biofilms growing under these conditions. Considering that 

numerical simulation of complex morphologies of biofilms such as mushroom-like shape is 
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computationally expensive, flat biofilms were assumed here to reduce the complexity of the 

calculations. 

 Biofilm is a continuous medium; cells and EPS are homogeneously mixed in biofilm matrix: The 

biofilm is treated here as a homogeneous system. Voids and channels as part of the morphology 

of the biofilm and the protective role of EPS against cell disinfection are not simulated in the 

current model to reduce geometric elaboration complexity, which would introduce further 

solution complexity. Since this model simulates the DBP formation potentials, this assumption 

means that chlorine reacts at the same time with both cells and EPS. 

 Constant biofilm thickness: As described in Table 2-3, Table 2-8, and Table 4-2, biofilm growth 

can take several hours or days. Consequently, the computational time required to simulate 

biofilm growth can be in the order of hours, days or weeks, which is subject to the computational 

resources available. This also implies that internal boundary represented by biofilm surface is 

fixed, i.e., it does not change as cells and EPS are being transformed into DBPs. 

 Fixed initial concentration of cells (X) and EPS (E): This was assumed as the current model 

simulates the DBP formation potentials and it does not include the biofilm growth. 

 Bulk water is a complete mixed reactor: Laboratory experiments of biofilm disinfection have 

been carried out in small glass vials (40 mL, 65 mL) (Wang et al., 2012c; Wang et al., 2013a). 

Therefore, it is reasonable to assume this type of reactor, given the small volumes. However, 

plumbing systems can represent volumes of the order of litres (e.g., 6.3 L for  = ½ inches and 

L = 50 m) and the flow is usually represented by plug flow. Such simplification must be carefully 

considered for risk assessment since DBP exposure at the point of use depends on which tap 

is first opened. 

 Chloroform (S) and DCAN (S) are modelled separately according to fraction of cells and EPS 

converted into the respective DBP: The current model was developed to simulate individual 

species of DBPs in order to make it flexible. The amount of DBP species formed relies on the 

fraction of cells (Fx) and EPS (Fe) transformed into DBPs; then, as the experimental data are 

available, it is relatively easy to predict concentrations of individual DBP species from biofilm 

chlorination. 

 

4.2.2 Model equations 

Figure 4-2 sketches the 1D-stagnation model and the corresponding equations are included in 

Table 4-1. The diffusion of two dissolved substances, chlorine and DBP, through the biofilm matrix 

was simulated, considering cells and EPS decay. The formation of chloroform and DCAN is 
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expressed in terms of yield coefficients from disinfection of cells and EPS and their fraction 

transformed into DBP. Chloroform and DCAN were simulated separately according to each liquid 

diffusion coefficient and the fraction of cells and EPS transformed into the respective DBP. Bulk 

water concentrations of dissolved substances are defined by the boundary condition in the biofilm 

surface, assuming that bulk water is a complete mixed reactor (Equations (4-8) and (4-14)). Under 

stagnation conditions, diffusion processes are dominating the substance transport; therefore Fick’s 

law is applied in the biofilm and source/sink terms are also included. 

 

Figure 4-2. 1D mass balance equations for soluble and particulate components in biofilm and 
biofilm surface 

 

Table 4-1. Model equations in biofilm 

Equation Description of variables Subscripts 

𝑑𝐶

𝑑𝑡
=

𝑑

𝑑𝑧
(𝐷𝐶−𝐵

𝑑𝐶

𝑑𝑧
) − 𝑘1𝐶𝑋 − 𝑘2𝐶𝐸 

 

(4-1) 

C: Disinfectant concentration 

X: Cell concentration 

E: EPS concentration 

k1: Disinfectant decay rate – cells 

disinfection 

k2: Disinfectant decay rate – EPS 

oxidation 

DC-B: Molecular diffusion coefficient 

of chlorine in biofilm 

Ab: Biofilm area 

V: reactor volume 

t: Time 

C: Chlorine 

S: DBP 

X: Cells 

E: EPS 

B: Biofilm 

L: Bulk liquid 

Bs: Biofilm surface 
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Equation Description of variables Subscripts 

𝑑𝑋

𝑑𝑡
= −𝑌1𝑘1𝑋𝐶 

(4-2) 

X: Cell concentration 

k1: Disinfectant decay rate – cell 

disinfection 

Y1: Cell-chlorine yield coefficient 

𝑑𝐸

𝑑𝑡
= −𝑌2𝑘2𝐸𝐶 

(4-3) 

E: EPS concentration 

k2: Disinfectant decay rate – EPS 

oxidation 

Y2: EPS-chlorine yield coefficient 

𝑑𝑆

𝑑𝑡
=

𝑑

𝑑𝑧
(𝐷𝑆−𝐵

𝑑𝑆

𝑑𝑧
) + 𝐹𝑋𝑘1𝐶𝑋 + 𝐹𝐸𝑘2𝐶𝐸 

 
(4-4) 

S: DBP concentration 

DS-B: Diffusion coefficient of 

chloroform/DCAN in biofilm 

X: Cell concentration 

E: EPS concentration 

FX: Fraction of cells transformed 

into DBP 

FE: Fraction of cells transformed 

into DBP 

 

4.2.3 Parameters selection 

4.2.3.1 Biofilm thickness (BT) 

Considering that the current model does not include bacteria growth, biofilm thickness (BT) arises 

as an important input parameter, since it defines the domain size and other parameters such as 

initial concentration of EPS (Eo). In order to define appropriate values of BT, several drinking-water-

related studies were reviewed to identify the reports of this parameter. BT values and the 

experimental conditions of these studies are described in Table 4-2. It should be noted here that 

conditions such as inoculum, incubation time, method of BT measurement are diverse and it is also 

not possible to identify any correlation between biofilm and thickness and biofilm age (see Table 

4-2). 
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Table 4-2. Review of biofilm thickness data reported by drinking-water-related studies 

Study 

Tests description 
Biofilm 

thickness 

(m) 

Type of 
reactor for 

biofilm growth 
/ experiments 

Incubation 
time 

Inoculum / 
Bacterial 

community 

Substrate 
medium 

Method for 
measuring 

biofilm 
thickness 

Chen 
and 

Stewart 
(1996) 

Artificial 
biofilms growth 

in flow cell 
N.S 

Bacteria P. 
aeruginosa ERC1 

dispersed in 
agarose gel slabs 

Rich medium 

Optical 
method of 
Bakke and 

Olsson 

773 

428 

476 

771 

456 

526 

Peyton 
(1996) 

Annular reactor 14.6 days 
Bacteria P. 
aeruginosa 

Minimal-salts 
medium with 

glucose 

Optical 
method of 
Bakke and 

Olsson 

6.2 

17.61 

31.85 

Heydorn 
et al. 

(2000) 

Laboratory 
channel flow 

cells 

1 day 

Bacteria P. putida 

Modified FAB 
medium 

supplemented 
with sodium 

citrate 

CLSM 
images 

processed 
using the 
program 

COMSTAT 

0.27 

2 days 0.78 

4 days 3.03 

7 days 4.36 

10 days 7.46 

1 day 

Bacteria P. 
aureofaciens 

2.33 

2 days 2.41 

4 days 3.75 

7 days 5.17 

10 days 7.06 

1 day 

Bacteria P. 
fluorescens 

0.66 

2 days 1.37 

4 days 3.21 

7 days 5.61 

10 days 8.47 

1 day 

Bacteria P. 
aeruginosa 

3.43 

2 days 2.49 

4 days 4.96 

7 days 4.52 

10 days 5.65 

Xue et 
al. 

(2012) 

Laboratory 
channel flow 

cells 
6 days 

Bacteria P. 
aeruginosa 

0.02 strength 
LB broth 

CLSM 
images 

processed 
using the 
program 

COMSTAT 

30 

40 

Xue and 
Seo 

(2013) 

Laboratory 
channel flow 

cell 
6 days 

Bacteria P. 
aeruginosa - 
algT(U) - no 
disinfection 

Nutrient 
growth 

medium: 0.02 

CLSM 
images 

processed 
using the 

159 



 

Chapter 4. A simple biofilm chlorination model  125 

Disinfection by-product formation from chlorination of biofilms in drinking water pipes  

Carolina Montoya Pachongo. School of Civil Engineering 

Study 

Tests description 
Biofilm 

thickness 

(m) 

Type of 
reactor for 

biofilm growth 
/ experiments 

Incubation 
time 

Inoculum / 
Bacterial 

community 

Substrate 
medium 

Method for 
measuring 

biofilm 
thickness 

Bacteria P. 
aeruginosa - PAO1 

- no disinfection 

strength LB 
broth 

program 
COMSTAT 162 

Bacteria P. 
aeruginosa - 
mucA22 - no 
disinfection 

164 

Bacteria P. 
aeruginosa - 

algT(U) - chlorine 
disinfection (0.5 

mg/L) 

44 

Bacteria P. 
aeruginosa - PAO1 

- chlorine 
disinfection (0.5 

mg/L) 

85 

Bacteria P. 
aeruginosa - 

mucA22 - chlorine 
disinfection (0.5 

mg/L) 

149 

Xue et 
al. 

(2014) 

Laboratory 
channel flow 

cells 
6 days 

Bacteria P. 
aeruginosa - 

algT(U) - disinfected 
with 

monochloramine 

0.02 strength 
LB broth 

CLSM 
images 

processed 
using the 
program 

COMSTAT 

38 

Bacteria P. 
aeruginosa - PAO1 
- disinfected with 
monochloramine 

47 

Bacteria P. 
aeruginosa - 

mucA22 - 
disinfected with 

monochloramine 

46 

Bacteria P. putida - 
disinfected with 

monochloramine 
48 

Shen et 
al. 

(2016) 

PVC coupons 
in CDC 

laboratory 
reactors 

1 year 
Groundwater source for drinking 

water 

Optical 
coherence 

tomography 

120 

1 month 93 

N.R: not reported | CLSM: confocal laser scanning microscopy | CDC: Centres for disease control and prevention 

 

From Table 4-2, 43 BT values were reported in seven studies and their descriptive statistics are 

included in Table 4-3. Figure 4-3 revealed that 50% of biofilm thickness values varied between 4 

and 107 m (quartiles 1 and 3 -Q1, Q3-). This range was used to randomly vary this parameter in 
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simulations with the current model. It is worth noting that all the reviewed studies (Table 4-2) used 

bacteria Pseudomonas for their experiments since they are EPS producers, then biofilm formers, 

and have been identified in DWDNs, in both temperate and tropical climate locations. As described 

in Chapter 3, Pseudomonas genus was common in most of the biofilm samples (8 of 9 points) 

collected in Colombia. Douterelo et al. (2014c) identified Pseudomonas genus as the dominant 

group in the initial process of biofilm formation in 28-days-old biofilms in a laboratory-based full 

scale DWDN fed with drinking water supplied to the city of Sheffield (UK). 

On the other hand, the study of influence of long-term disinfection on mechanical properties of 

biofilms (Shen et al., 2016) found that BT is recovered after one month of continuous chlorination 

(4 mg/L), in relation to initial BT before tests. It is therefore reasonable to assume that the thickness 

of laboratory-incubated biofilms over two weeks is fairly presentative of more established biofilms. 

Table 4-3. Descriptive statistics of biofilm 
thickness reported in Table 4-2 

Descriptive 
statistic 

Biofilm thickness 

(m) 

Minimum 0.27 

Q1 4 

Median 18 

Q3 107 

Maximum 773 

Average 111 

Std. deviation 199 

CV 178% 

Number of data 43 
  

Figure 4-3. Box plot biofilm thickness data 

4.2.3.2 Initial volumetric biofilm density (Xo) 

The DBP potential formation experiments developed by Wang et al. (2013a) managed cells density 

6.5 ± 0.6 CFU/cm2, on a PVC surface, in glass vial volume (65 mL), chip area (1x10-4 m2), and 

number of chips per disinfection tests (10)10. In order to convert the cell density data into volumetric 

density, the relationship between cell counting units and biomass for P. aeruginosa developed by 

Kim et al. (2012) was used (Equation (4-5)). They cultured bacteria on Luria-Bertani medium, in 1 

L flask, and harvested them for further colony counting and measurement of dry weight of biomass 

(Kim et al., 2012). The authors recommended application of this relationship in transport models in 

                                                        

10 J.J. Wang, 2016, personal communication, 19th January 2017 
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aquifers since cell concentrations in water samples are usually determined by counting methods 

(Kim et al., 2012). The initial volumetric biofilm density was then established equal to 40.87 mg/L.  

𝑌 = 1.8𝑥108𝑋 − 3.6𝑥106 (4-5) 

 

Here Y is colony forming unit (CFU/mL) and X is biomass (mg/mL). In order to simulate the 

formation of DBPs in pipe/plumbing systems, cell density data was reviewed in studies previously 

published, which consisted of biofilm monitoring in real-scale DWDNs by installation of coupons or 

biofilm reactors. The cell density was determined by the methods 4',6-diamidino-2-phenylindole 

staining and epifluorescence microscope; data and further details of the reviewed studies are 

presented in Table 4-4. 

Table 4-4. Review of cell density data in drinking water biofilm reported by other researchers 

Author 
Tests description Total cell 

count 
(cells/cm2) (a) Type of reactor 

Biofilm 
age 

Pipe/coupon 
material 

Water quality Area 

Kalmbach 
et al. 

(1997) 

Two reactors were 
installed in a 
domestic DWDN at 
U. of Berlin (water 
taps) 

35 days 
Glass 

Cl: 0 mg/L, T: 12.2 
°C, TOC: 3.3 mg/L 

2 cm2 

7.20E+05 

PE 4.30E+06 

56 days 
Glass 7.20E+05 

PE 1.80E+06 

70 days 
Glass 7.00E+05 

PE 1.50E+06 

Wingender 
and 

Flemming 
(2004) 

Two biofilm reactors 
located at the outlet 
of WTP in Germany 
(no disinfected 
drinking water) and 
within the DWDN 

18 
months 

Steel, PVC, 
and PE 

T: 11.7 °C 
1650 
mm2 

3.60E+06 

3.10E+07 

18 pipe sections  
(2-99 
years 
old) 

CI 

Cl: <0.01 - 0.13 
mg/L 

Several 

7.00E+06 

Cement-lined 3.00E+05 

Galvanized 
steel 

2.00E+08 

PVC 

4.80E+05 

5.00E+07 

8.00E+05 

1.60E+07 

Lee and 
Schwab 
(2005) 

Semi-pilot  13 mm, 
L=8.8 m connected 
to a DWDN in Seoul 

84 days 
Galvanized 

iron 

Cl < 0.3 mg/L, T: 
16.0 - 25.1 °C, 

TOC: 1.27 - 2.65 
mg/L 

975 
mm2 

7.00E+06 

Långmark 
et al. 

(2005) 

Pilot plant prior to 
the distribution in 
two systems, outlet 

80-90 
days 

PE 
Cl: 0.26 mg/L, 

AOC: 34 mg/L, T 
(winter): 6.6 °C 

N.R 3.00E+04 
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Author 

Tests description Total cell 
count 

(cells/cm2) (a) Type of reactor 
Biofilm 

age 
Pipe/coupon 

material 
Water quality Area 

of the WTP, PE 
tubing, system A 

System A - DWDN 

T (autumn): 7.4 °C  6.00E+04 

T (summer): 18.8 
°C 

4.00E+04 

System A - Pilot 
plant 

Cl: 0.24 mg/L, 
AOC: 36 mg/L, T 
(winter): 8.5 °C 

1.00E+04 

T (autumn): 11.5 
°C 

8.00E+04 

T (summer): 13.2 
°C 

1.00E+05 

Coupons were 
located post 
treatment and at the 
end of the DWDN. 
System B 

Glass 

Cl: 0.09 mg/L, 
AOC: 15 mg/L, T 
(winter): 8.8 °C 

9.50E+04 

System B - DWDN 

T (autumn): 10.7 
°C 

9.00E+04 

T (summer): 20.8 
°C 

3.00E+05 

System B - Pilot 
plant 

Cl: 0.02 mg/L, 
AOC: 27 mg/L, T 
(winter): 9.4 °C 

3.00E+05 

T (autumn): 14.4 
°C 

3.50E+05 

T (summer): 15.2 
°C 

7.00E+05 

Manuel et 
al. (2007)  

Three reactors: 
Batch, Propella, 
Flow cell connected 
to Porto's DWDN. 
Batch 

56 days PVC 

Cl: 0.15 mg/L, T: 
15.9 °C, TOC: 2.32 

mg/L, DOC: 2.12 
mg/L 

4.9 cm2 8.00E+06 

Propella and Flow 
cell 

2 cm2 5.00E+07 

Manuel et 
al. (2009)  

Flow cell reactor 
connected to 
Porto's DWDS at 
different flow 
regimes. Stagnation 
- turbulent flow 

20 days PVC 
Cl: 0.15 mg/L, T: 
20 °C, TOC: 2.3 

mg/L 
2 cm2 

1.10E+07 

Stagnation - laminar 
flow 

2.60E+07 

Turbulent - laminar 
flow 

7.40E+06 

Continuous - 
laminar flow 

7.80E+06 

(a) The methods 4',6-diamidino-2-phenylindole staining and epifluorescence microscope were used in every studies to 
count total cells  

 



 

Chapter 4. A simple biofilm chlorination model  129 

Disinfection by-product formation from chlorination of biofilms in drinking water pipes  

Carolina Montoya Pachongo. School of Civil Engineering 

Table 4-5 and Figure 4-4 include the respective descriptive statistics of the cell density data. Ten 

values of Xo were randomly selected within the range defined by Q1 and Q3 (3x105 – 7.8x106 

cells/cm2) for the model developed here. By using the weight of single cell bacterium E. coli (6.65 

x 10-10 mg), biofilm area and reactor volume, cell density count values were transformed into 

volumetric concentration (mg/L).  

Table 4-5. Descriptive statistics of cell 
density in drinking water biofilm reported 

by other researchers 

Descriptive 
statistic 

Total cell count 
(cells/cm2) 

Minimum 1.00E+04 

Q1 3.00E+05 

Median 7.20E+05 

Q3 7.80E+06 

Maximum 2.00E+08 

Average 1.31E+07 

Std. deviation 3.55E+07 

CV 271.83% 

Number of data 33 
  

Figure 4-4. Box plot cell density data 

4.2.3.3 Initial concentration of EPS (Eo) 

Experimental tests of mechanical properties of drinking water biofilms indicate that EPS 

concentration depends on biofilm thickness. Kundukad et al. (2016) found that polysaccharides 

contribute to the stiffening of P. aeruginosa biofilms. A positive correlation was found between the 

biofilm surface stiffness and the micro-colony size, which was attributed to the differential 

expression of the biofilm’s EPS according to the stages of biofilm growth. Similarly, Shen et al. 

(2016) concluded that long-term disinfection of one-year-old drinking water biofilms may not 

significantly remove net biomass; after one month of disinfection, bacteria adapt to disinfectant, 

produce EPS and replenish the outer layer.  

Celmer et al. (2008) grew biofilms from autotrophic denitrifiers in two laboratory-scale membrane 

biofilm reactors, at temperatures 19.61 and 19.18 °C, and pH 7.09 and 7.02. These authors 

reported data of biofilm thickness, total and volatile solids, and EPS concentrations, which were 

used to define the linear correlation presented in Figure 4-5. This equation was included in the 

current model as an indirect way to involve the EPS production by cells. 
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Figure 4-5. Linear correlation between biofilm thickness and EPS concentration (Celmer et al., 

2008) 

 

4.2.3.4 Effective diffusion coefficient of dissolved substances ( C and  S) 

Taking into account that DBP formation from biofilm disinfection under stagnation conditions is 

represented by the Fick’s law for the diffusive processes of chlorine and DBP that are involved, 

diffusion of substances reduces within the biofilm matrix in comparison to the liquid phase as a 

consequence of the presence of EPS (Westrin and Axelsson, 1991). Therefore, it is necessary to 

define a ratio of diffusion coefficients, Dliquid / Dbiofilm for each substance. This ratio is referred to as 

C for chlorine and S for DBPs. Chlorine diffusion coefficient in liquid and biofilm reported by Chen 

and Stewart (1996) were used in the present model; resulting in C = 0.94. The value of S was 

defined by using several values within the range 0.016-1.0. The diffusion coefficient in liquid for 

chloroform and DCAN were 9.288x10-10 m2/s and 2.67x10-5 m2/s, respectively (Buzatu et al., 2007; 

Poling et al., 2007). 

4.2.3.5 Reaction rates (k1 and k2) and yield coefficients (Y1 and Y2) 

Yield coefficients represent the mass of cells or EPS in which reactive sites have been depleted 

per mass or chlorine consumed (Chen and Stewart, 1996). Chlorine-cell and chlorine-EPS reaction 

rates and yield coefficients found by Chen and Stewart (1996) in the short-duration batch 

experiment (20 min) were used in the present 1D model (see Table 4-6). However these authors 

did not specify the temperature at which tests were carried out; for the current study, it was 

assumed to be 20 °C as was used by Abokifa et al. (2016a). The pH of these experiments were 

maintained in 7.2. 
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Table 4-6. Values of reaction rates (k1 and k2) and yield coefficients (Y1 and Y2) 

Parameter Value 

Chlorine-cell reaction rate (k1) (m3/g-sec) 1.1x10-3 

Chlorine-EPS reaction rate (k2) (m3/g-sec) 3.7x10-6 

Chlorine-cell yield coefficient (Y1) (g/g) 1.85 

Chlorine-EPS yield coefficient (Y2) (g/g) 540 

 

4.2.3.6 Factors FX and FE 

Factors FX (0.7) and FE (0.3) were used in the DBP formation equation to represent the portion of 

cells and EPS transformed into DBPs. Experimental data reported by Fang et al. (2010b) were 

processed to find the fractions of chloroform formed from disinfection of extracellular organic matter 

and algal cells. M. aeruginosa laboratory tests consisted on chlorination and chloramination of 100 

mL of solutions of extracellular organic matter, intracellular organic matter, and NOM, with TOC 

content 5 mg/L, temperature 22 °C, pH = 7.0, during three days (Fang et al., 2010b). For DCAN, 

such factors were adjusted to find similar values of this DBP reported by Wang et al. (2013a) with 

the same values of BT resulting in similar values of chloroform reported by these authors. Such 

adjustment resulted in FX = 0.3 and FE = 0.17. These factors do not necessarily sum to one, since 

several DBPs may be formed simultaneously and the current model is simulating chloroform and 

DCAN separately. 

4.2.3.7 Temperature 

Temperature is widely recognized as one of the most important factors in chemical reactions by 

increasing reaction rates at higher temperatures. Temperature dependence of reaction rate is 

expressed in terms of the Arrhenius equation (Levenspiel, 1999). Having this in mind, the empirical 

relationship derived by Kiéné et al. (1998) was used to indirectly include temperature within the 

model by adjusting the reaction rates k1 and k2 in the range 5-25 °C (Equations (4-6) and (4-7)).  

𝑘1 = 0.0011𝑥℮(
−6050
𝑇+273

)
 (4-6) 𝑘2 = 3.70𝑥10−6𝑥℮(

−6050
𝑇+273

)
 (4-7) 

 

Units of constants are: 0.011 m3/g-sec, -6050 K, T+273 K, and 3.70 x 10-6 m3/g-sec. 
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4.2.4 Boundary conditions 

Table 4-7 includes the initial and boundary conditions of the model. At t = 0, chlorine is assumed 

to be completely mixed in bulk water and its concentration within the biofilm is zero; DBP 

concentration is also assumed to be zero in the entire domain at t = 0. The flux boundary condition 

is included in the biofilm surface (Bs) (Equations (4-8) and (4-14)); dissolved substances decay or 

increase according to this flux, biofilm area and reactor volume (IWA Task Group on Biofilm 

Modeling et al., 2006). On the substratum (pipe wall), there is no exchange of dissolved and 

particulate substances (i.e., no flux).  

 Table 4-7. Initial and boundary conditions in 1D model 

Initial 
conditions 

Boundary conditions Description of variables Subscripts 

t = 0 
CB = 0 

CBs = Co 

𝑑𝐶

𝑑𝑡
= −𝐷𝐶−𝐵

𝑑𝐶

𝑑𝑧
|𝐵𝑠 (

𝐴𝐵

𝑉
) 

 

(4-8) 
 

𝑗𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑢𝑚 = −𝐷𝐶−𝐵

𝑑𝐶

𝑑𝑧
= 0 

(4-9) 

C: Disinfectant concentration 

DC-B: Molecular diffusion 

coefficient of chlorine in biofilm 

Ab: Biofilm surface 

V: Reactor volume 

Co: Initial concentration of 

chlorine 

t: Time 

C: Chlorine 

S: DBP 

X: Cells 

E: EPS 

B: Biofilm 

L: Bulk liquid 

Bs: Biofilm surface 

t = 0 

XB = Xo 

𝑗𝐵𝑠 = −𝐷𝑋−𝐿

𝑑𝑋

𝑑𝑧
|𝐵𝑠 =  0 

 

(4-10) 
 

𝑗𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑢𝑚 = −𝐷𝑋−𝐵

𝑑𝑋

𝑑𝑧
= 0 

(4-11) 

X: Cells concentration 

Xo: Initial cell concentration 

t = 0 

EB = Eo 

𝑗𝐵𝑠 = −𝐷𝐸−𝐵

𝑑𝐸

𝑑𝑧
|𝐵𝑠 =  0 

 

(4-12) 
 

𝑗𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑢𝑚 = −𝐷𝐸−𝐵

𝑑𝐸

𝑑𝑧
= 0 

(4-13) 

E: EPS concentration 

Eo: Initial EPS concentration 

t = 0 
SBs = 0 
SB = 0 

𝑑𝑆

𝑑𝑡
= −𝐷𝑆−𝐵

𝑑𝑆

𝑑𝑧
|𝐵𝑠 (

𝐴𝐵

𝑉
) 

 

(4-14) 

S: DBP concentration 

DS-B: Diffusion coefficient of 

chloroform/DCAN in biofilm 

Ab: Biofilm area 

V: Reactor volume 
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Initial 
conditions 

Boundary conditions Description of variables Subscripts 

𝑗𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑢𝑚 = −𝐷𝑆−𝐵

𝑑𝑆

𝑑𝑧
= 0 

(4-15) 

 

4.2.5 Geometry and mesh 

The current model was developed in one dimension. In this case the geometry is represented by a 

line with length representing the biofilm thickness. The mesh was built by dividing the line into 

several elements (see Figure 4-6). It was implemented within the software COMSOL Multiphysics 

5.2a. 

 

Figure 4-6. Representation of the 1D model mesh 

 

4.2.6 Analysis of mesh dependence 

Figure 4-7 shows the influence of element size on the chloroform concentration in bulk water. As it 

is expected, data from coarser grids are more dissimilar that those from finer grids. The percentage 

of difference pairs of maximal, median and average values for extremely fine and extremely coarse 

meshes is 17.7%, while this parameter resulted in 0.5% among extremely fine and extra fine 

meshes. The results presented in this chapter were obtained by employing extremely fine grids, 

since the computational time was very low (less than 9 s). The number of elements of every type 

of mesh is indicated in Table 4-8. 

It is important to mention that, for simulations with the lowest BT (7 m), the length of the elements 

was 0.07 m, which may challenge the applicability of the use of continuous equations. However, 

implementing such low resolution was necessary in order to solve the equations representing the 

fast reaction between chlorine and biomass, as mentioned in section 4.2.7. Furthermore, the results 

of the model developed here resulted in agreement with experimental data obtained by other 

researchers, as discussed in the section 4.3.5. 



 

Chapter 4. A simple biofilm chlorination model                     134 

Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineering 

 
Figure 4-7. Influence of grid size on simulation results 

 

Table 4-8. Number of elements of every type of mesh 

Type of mesh 
Number of domain 

elements 
Type of mesh 

Number of domain 
elements 

Extremely fine 100 Coarse 10 

Extra fine 50 Coarser 8 

Finer 27 Extra coarse 5 

Fine 19 
Extremely coarse 3 

Normal 15 

 
 

4.2.7 Processing and numerical methods 

Initially, model equations were coded and solved in MATLAB R2015b by discretizing them with the 

explicit scheme finite difference scheme, central difference in space, and forward in time. As a 

consequence of the small diffusion coefficients, the model is represented by stiff equations. 

Therefore, small time step and grid size have to be used in order to keep the stability of the solution. 

This resulted in high computational time: up to 6 hours for chloroform and more than one week for 

DCAN simulations. For reasons of numerical efficiency, the model was implemented in COMSOL 

Multiphysics 5.2a, which also applies finite difference elements as numerical method and employs 

stabilization methods to solve the transport of species module. The computational time of COMSOL 

is up to 9 s using an extremely fine mesh. 
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The implementation of the model in MATLAB was an important step in this project because the 

author acquired modelling and a deeper understanding of the governing equations during this 

phase. Consequently, the discretization of the equations is described as it follows. Equations (4-16) 

and (4-17) shows the forward difference in time approximation for the dissolved substances 

chlorine and DBP, respectively. For the second order derivative of both chlorine and DBP, central 

difference in space is used (Equations (4-18) and (4-19), respectively). Then, by combining both 

approximations, the solution for the time and space variation of chlorine and DBP is given by 

Equations (4-20) and (4-21), respectively, which also include the reaction terms. 

a) Biofilm sub-domain 

𝛿𝑡𝐶 =
𝐶(𝑡+𝛿𝑡) − 𝐶(𝑡)

∆𝑡
 (4-16) 𝛿𝑡𝑆 =

𝑆(𝑡+𝛿𝑡) − 𝑆(𝑡)

∆𝑡
 (4-17) 

    

𝛿𝑧
2𝐶 =

(𝐶𝑖+1 − 2𝐶𝑖 + 𝐶𝑖−1)
(𝑡)

∆𝑧2
 (4-18) 𝛿𝑧

2𝑆 =
(𝑆𝑖+1 − 2𝑆𝑖 + 𝑆𝑖−1)

(𝑡)

∆𝑧2
 (4-19) 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 + ∆𝑡 ∗ [𝐷𝑐 (
𝐶𝑖+1

𝑛 − 2𝐶𝑖
𝑛 + 𝐶𝑖−1

𝑛

∆𝑧2
) − 𝑘1𝐶𝑖

𝑛𝑋𝑖
𝑛 − 𝑘2𝐶𝑖

𝑛𝐸𝑖
𝑛] (4-20) 

  

𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 + ∆𝑡 ∗ [𝐷𝑆 (
𝑆𝑖+1

𝑛 − 2𝑆𝑖
𝑛 + 𝑆𝑖−1

𝑛

∆𝑧2
) + 𝐹𝑋𝑘1𝑆𝑖

𝑛𝑋𝑖
𝑛 + 𝐹𝐸𝑘2𝑆𝑖

𝑛𝐸𝑖
𝑛] (4-21) 

 

To solve the boundary condition in the biofilm surface for dissolved substances, the same 

approximations described previously were applied (Equations (4-22) and (4-24) for chlorine and 

DBP, respectively). The solution of the boundary condition is given by the Equations (4-23) and 

(4-25); the terms with the subscript Bs+1 and Bs-1 refers to the adjacent elements to the biofilm 

surface in bulk water and biofilm, respectively. 

b) Biofilm surface (Bs) 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 − ∆𝑡 ∗ 𝑗𝐶−𝐵𝑠 (
𝐴𝐵

𝑉
) (4-22) 𝑗𝐶−𝐵𝑠 = 𝐷𝐶−𝐿 (

𝐶𝐵𝑆+1 − 𝐶𝐵𝑆−1

2∆𝑧
)
𝐴𝑏

𝑉
 (4-23) 

    

𝑆𝑖
𝑛+1 = 𝑆𝑖

𝑛 + ∆𝑡 ∗ 𝑗𝑆−𝐵𝑠 (
𝐴𝐵

𝑉
) (4-24) 𝑗𝑅−𝐵𝑠 = 𝐷𝑆−𝐿 (

𝑆𝐵𝑆+1 − 𝑆𝐵𝑆−1

2∆𝑧
)
𝐴𝑏

𝑉
 (4-25) 
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4.2.8 Model implementation in COMSOL Multiphysics 

The current model for prediction of DBP in drinking water under stagnation conditions was 

implemented in the software COMSOL Multiphysics 5.2a. This software is structured by modules 

to represent physical and chemical processes taking place within a system. According to the 

specific needs of the modeller, COMSOL allows the addition of the required modules and their 

coupling. The modules used for running the current model and the boundary and initial conditions 

are described in Table 4-9.  

Table 4-9. Main features for model implementation in COMSOL Multiphysics 5.2a 

Module 
Boundary / 

Domain 
Condition Initial condition (t=0) 

Transport of diluted 
species (tds) 

Wall No flux 

Co = 0 ; So = 0  
Biofilm surface (Bs) 

Concentration obtained 
from Boundary ODE 

module (a) 

Domain 
Reactions for chlorine 
decay and chloroform 

formation 

Domain ODE Domain 
Reactions for cells and 

EPS decay 
Xo = Xo; Eo = Eo 

Boundary ODE Biofilm surface (Bs) Source term: Flux Co = Co and So = 0  

ODE: ordinary differential equations | (a) Constraint Individual dependent variables was included for coupling tds with Boundary ODE 
module 

 

4.2.9 Selection of time step 

Time step was determined after a sensitivity study, testing several values (i.e., 1 s, 5 s, 10 s, 30 s, 

1 min, 5 min, 10 min, and 15 min). As it can be observed in Figure 4-8, no differences were identified 

among the eight sets of data. Percentage of difference between each consecutive pair of maximal 

and median values was 0.0% and less than 4.2% for average values. Thus, for short time 

simulations (less than 3 hours), time step was 30 s and 15 min for long time simulations (i.e., more 

than 8 hours). 
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Figure 4-8. Time step comparison among chloroform concentrations in bulk water 

 

4.2.10 Experimental study used as a reference 

The work of Wang et al. (2013a) was used as a reference to compare the current model results 

with those obtained in their DBP formation potential tests. Their experiments considered chlorine 

and chloramine disinfection of P. aeruginosa (PAO1) biofilms, which were grown on chips with area 

equal to 100 mm2. They used 100 mL bacterial solution and 20 mL of nutrient broth solution for 

both PVC and galvanized zinc chips, which were incubated at 25 °C in the dark. The cell density 

biofilm was monitored at 4, 8, 12, 24, 36 and 60 h; the biofilms from both types of chips reached 

maturation after 24 h incubation. Biofilm thickness was not reported in this study. Then, DBP 

formation potential was tested by disinfection of chips in 65-mL vials, at pH 8 and temperature of 

20 °C, for 24 hours. The cell density was adjusted to 6.5 CFU/m2.  

The results for PVC chips were considered here since this material is commonly used in the DWDN 

of the city of Cali (53.3% of the total network length), as discussed in Chapter 3. THM and 

haloacetonitrile (HAN) yielded 7.7±1.1 g/mg C and 1.9 ± 0.3 g/mg C, respectively. By 

considering TOC content of biofilms of  0.1 mg11 and assuming that chloroform represents 71%12 

of total THMs (TTHMs) allowed determining the range of 6.6–9.6 g/L for chloroform and 2.6-3.3 

                                                        

11 Email: J.J. Wang, 2016, personal communication, 25th August 2016 
12 This percentage was determined by results of chlorination of E. coli suspension. Wang, J.-J. et al. 2013a. Disinfection byproduct 
formation from chlorination of pure bacterial cells and pipeline biofilms. Water Research. 47(8), pp.2701-2709. 
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g/L for HANs13. The summary of their experimental conditions and results are presented in Table 

4-10.  

Table 4-10. Experimental conditions and results of tests developed by Wang et al. (2013a) 

Parameter Value 

pH (chlorination reactions) 8.0 ± 0.2 

Temperature (chlorination reactions) 25 °C 

Biofilm incubation 60 hours at 25 °C 

Contact time for DBP formation potential 24 hours 

TOC 
0.1 mg C / 65 mL 

1.54 mg/L 

Amount of chips used in DBP potential formation 10 

TTHMs yields (PVC chips) 7.7 ± 1.1 mg-Cl2/mg-C 

HANs yields (PVC chips) 1.9 ± 0.3 mg/mg-C 

Chloroform range concentration 6.62-9.46 g/L 

DCAN range concentration 2.62-3.22 g/L 

 

4.2.11 Data analysis 

The indicator percentage of difference was widely used in order to quantify the similarities and 

dissimilarities among results obtained with different features of the 1D model. Percentage of 

difference between “value 1” and “value 2” is expressed in the Equation (4-28). 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑉𝑎𝑙𝑢𝑒 1 − 𝑉𝑎𝑙𝑢𝑒 2 (4-26) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑉𝑎𝑙𝑢𝑒 1 +  𝑉𝑎𝑙𝑢𝑒 2

2
 

(4-27) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑥100 

(4-28) 

Here value 1 and value 2 are any number of the statistic descriptors mentioned previously, which 

are object of comparison. In some cases, maximal values were compared and, in others, the 

median and average of entire sets of data were used to calculate the percentage of difference. 

Median was also included here because it was more suitable for comparison purposes since this 

descriptor is less sensitive to extreme values. In general, percentage of difference of 5% was used 

as criteria to define whether pairs of values were different or similar. 

                                                        

13 100% of reported concentrations of HANs was assumed as DCAN as predominant specie within this group of DBP 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Typical model behaviour 

To illustrate the general behaviour of the model, a simulation was run with BT=16 m, Clo=1 mg/L, 

Xo=40.87 mg/L, which corresponded to biomass-limiting conditions, i.e., chlorine concentration is 

enough to completely oxidize biomass and still residual concentrations remain within the biofilm. 

Figure 4-9 presents the variation of dissolved substances within the biofilm, Figure 4-10 shows the 

behaviour of the same variables in bulk water, and Figure 4-11 illustrates the decay or particulate 

substances within the biofilm. Chlorine rapidly penetrates the biofilm (after 1 s) and chloroform 

concentration varies from zero (at t=0) until a maximum value, then it decreases to very small 

values due to the decay of cells and EPS and diffusion to the bulk water. In the bulk water, chlorine 

decays while chloroform increases, until steady state is reached due to complete depletion of cells 

and EPS, when chlorine has fully penetrated the biofilm.  

 
(a) 

 
(b) 

Figure 4-9. Dissolved substances within biofilm (a) Chlorine (b) Chloroform 
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Figure 4-10. Dissolved substances in bulk water after 3 hours 

 

 

Figure 4-11. Decay of particulate substances (a) Cells (b) EPS 

 
(a) 

 
(b) 
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4.3.2 Chlorine penetration within the biofilm 

Chen and Stewart (1996) grew artificial biofilms with bacteria P. aeruginosa and polysaccharide 

alginate to experimentally study the chlorine penetration within biofilms and modelled the process 

by a mathematical representation of diffusion and chemical reactions. The experiments were 

carried out in a flow cell with flow rate equal to 400 mL/min. The first step in the construction of the 

current model was to compare the diffusion of chlorine within the biofilm to the results reported by 

these researchers. Figure 4-12 indicates that, after 2 min, both models are able to reproduce the 

experimental results; chlorine penetrates the biofilm up to 200 m. For t=15 min, both modelled 

chlorine profiles also match with experimental data. Chlorine profiles from simulated data with the 

current model, after 30 min and up to 1 hour, represents a faster diffusion of the disinfectant and 

complete penetration of the biofilm, which may be related to the boundary condition used in both 

models. The current model includes a stagnation condition and diffusion starts in the biofilm surface 

(Figure 4-12b). Chen and Stewart (1996) was developed under flow condition and used the film 

theory in the mass transfer boundary layer (IWA Task Group on Biofilm Modeling et al., 2006), then 

diffusion starts in a small layer adjacent to the biofilm surface (Figure 4-12a). In general terms, the 

mathematical representation of chlorine diffusion was acceptable to proceed with DBP simulations. 

 
(a) 
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(b) 

Figure 4-12. Comparison of chlorine penetration within biofilm (a) Chen and Stewart (1996): 
experimental vs model data (b) Experimental data from Chen and Stewart (1996) vs simulated data 

from current model 

 

4.3.3 Sensitivity analysis 

A single parametric sensitivity analysis (Loucks and van Beek, 2005) was done in order to define 

the influence of the 14 parameters that compose the proposed model. This analysis was carried 

out by varying each parameter one at a time while others were kept constant. Then, such influence 

among parameters was compared by plotting the percentage of change of every parameter vs the 

chloroform concentration in bulk water. The base values of each parameter used in this sensitivity 

analysis are indicated in Table 4-11. 

Table 4-11. Base parameters used in the sensitivity analysis 

Parameter Base value 

 S 0.46 

Biofilm thickness (BT) 49 m 

Initial EPS concentration (Eo) 4775 mg/L 

Initial chlorine concentration (Clo) 1 mg/L 

Initial cell concentration (Xo) 40.87 mg/L 

Temperature (T) 15 °C 

Fraction of cells transformed into DBPs (Fx) 0.5 

Fraction of EPS transformed into DBPs (FE) 0.5 

Cell-chlorine yield coefficient (Y1) 1.85 (g/g) 

EPS-chlorine yield coefficient (Y2) 540 (g/g) 

Biofilm area (Ab) 10 cm2 

Reactor volume (V) 65 mL 
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The analytical solution to Equation (4-14) is given in Equation (4-29), which allows for calculating 

the maximum DBP concentration extractable from the biofilm. According to this, the parameters 

biofilm area (Ab), reactor volume (V), biofilm thickness (BT), fraction of cells transformed into 

chloroform (Fx), cell-chlorine yield coefficient (Y1), initial cells concentration (Xo), fraction of EPS 

transformed into chloroform (FE), EPS-chlorine yield coefficient (Y2), and initial EPS concentration 

(Eo) directly influence the DBP formation potential. Here MS is the molar mass of the DBP 

substance. 

𝑀𝑎𝑥 𝑆𝑒𝑥𝑡−𝑏𝑖𝑜 = 𝑀𝑆

𝐴𝑏

𝑉
(𝐵𝑇) (

𝐹𝑥

𝑌1
𝑋0 +

𝐹𝐸

𝑌2
𝐸0) (4-29) 

4.3.3.1 S, reaction rates k1 and k2, and initial chlorine concentration 

Similar influence of parameters S, k1, k2, and Clo on bulk water concentrations of chloroform can 

be observed in Figure 4-13a, Figure 4-14a, Figure 4-15a, and Figure 4-16a, respectively; it can be 

observed that such concentrations do not change for every tested parameter value, after 3 hours 

of contact time. However, the significance of such behaviour is different for every case. S is related 

to speed at which chloroform is being transported, due to the reduction of the substance diffusion 

coefficient within the biofilm. Thus, values of S as small as 0.016 allows obtaining the maximum 

concentration of chloroform in bulk water in shorter time in comparison to ratios higher than 0.09. 

Such difference is observable in less than 40 min (Figure 4-13b). For values of S higher than 0.09, 

there is not obvious difference on the time when maximal concentrations of chloroform are reached. 

 
(a) 
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(b) 

Figure 4-13. Influence of S on chloroform concentration in bulk water (a) Chloroform 

concentrations in bulk water at different values of S after t = 3 h (b) Temporal variation of 

chloroform concentrations in bulk water for three values of S 

 

With regard to reaction rates k1 and k2, the influence of these parameters on chloroform 

concentrations is actually related to the speed of the reactions; such influence is more significant 

for k1. The time required to reach the maximum potential chloroform concentration is reduced from 

eight hours corresponding to the minimum value tested (1.1x10-4 L/mg-s) down to one hour for the 

maximum value considered here (2.2x10-3 L/mg-s) (Figure 4-14b).  

 

 
(a) 
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Figure 4-14. Influence of reaction rate k1 on chloroform concentration in bulk water (a) Chloroform 
concentrations in bulk water at different values of k1 after t = 3 h (b) Temporal variation of 

chloroform concentrations in bulk water for several values of k1 

 

The influence of reaction rate k2 is less pronounced than k1, due to the contribution of EPS to DBP 

formation potential is smaller in comparison to cells. The value of k2 small as 3.7x10-7 L/mg-s 

generated complete transformation of cells and EPS into chloroform in four hours. Higher values 

of k2 increases the speed of the reactions and the time required to reach the maximal potential 

concentration of chloroform is the same (1 h) for k2 ranging between 2.22x-10-6 and 7.4x10-6 L/mg-

s (Figure 4-15b).  

 
(a) 

 
(b) 
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(b) 

Figure 4-15. Influence of reaction rate k2 on chloroform concentration in bulk water (a) Chloroform 
concentrations in bulk water at different values of k2 after t = 3 h (b) Temporal variation of 

chloroform concentrations in bulk water for several values of k2 

 

In relation to Clo, influence of this parameter on chloroform concentrations allows identifying 

whether the reactions are chlorine or biomass limiting. Values of Clo smaller than 0.3 mg/L are not 

able to completely oxidize cells and EPS, then this model turns to be chlorine limiting. For such 

chlorine concentrations, the model resulted in minimum remaining concentrations of cells and EPS 

between 0.38-40.87 mg/L (Figure 4-16a) and 58.69-2397.3 mg/L (Figure 4-16b), respectively, after 

3 hours of contact time. For Clo higher than 0.3 mg/L, the model turns biomass limiting, since the 

DBP concentrations depend on the amount of biomass available for reaction with chlorine. 

This indicates that, under certain values of Xo and Clo, the model can be either chlorine or biomass 

limiting. The same condition was found by Wang et al. (2012c) in batch experiment tests with culture 

suspensions of different strains of P. aeruginosa. By using initial cell density of 1.04 and 0.05 mg/L14 

and chlorine dose between 0.5 and 5.0 mg/L, the disinfection experiments were biomass limiting 

since free chlorine concentrations were negligible in all tested samples. Abokifa et al. (2016a) also 

included in their multicomponent model a second order reaction limited by the biomass 

concentration to predict the THM formation from chlorination of biofilm, planktonic cells, and 

detached biofilm clusters. 

                                                        

14 Cell density was reported as 108 and 106 CFU/mL, which were transformed into volumetric cell density 
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(a) 

 
(b) 

Figure 4-16. Influence of initial chlorine concentration on chloroform concentration in bulk water 
(a) Comparison between Clo and minimum cell concentration (b) Comparison between Clo and 

minimum EPS concentration 

 

4.3.3.2 Temperature 

The effect of temperature over the chloroform formation potentials is associated with the change of 

reaction rates k1 and k2, as explained in the previous section. Despite this, a similar analysis is 

presented here however based on the variation of the water temperature. According to the results 

in Figure 4-17, temperature does not affect the steady state concentrations of chloroform in bulk 

water after three hours of reaction time but does influence the speed of the reactions (Figure 4-17a). 

As was expected, the model is able to represent that the time required to obtain the maximal 

potential concentration of chloroform increases as temperature rises through the range 5-25 °C 

(Figure 4-17b). For instance, at 5 °C, two hours are required for entire reaction between chlorine 

and cells and EPS; while, at 25 °C, this happens in 45 min. 
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(a) 

 
(b) 

Figure 4-17. Temperature influence on chloroform concentration in bulk water (a) Chloroform 
concentrations in bulk water at different temperatures after t = 3 h (b) Temporal variation of 

chloroform concentrations in bulk water at the temperature range 5-25 °C 

 

4.3.3.3 Yield coefficients Y1 and Y2 and reactor volume 

Parameters such as cell and EPS yield coefficients and reactor volume result in chloroform in 

exponential decay of chloroform in bulk water (Figure 4-18). Therefore, up to certain values of these 

parameters, concentration of chloroform is minimum and does not vary significantly if these 

parameters increase. Particularly, small values of V resulted in high concentration of chloroform, 

which represents that this substance is dissolved in a low amount of solvent. Similarly, low yield 

coefficients represent that higher amount of mass of cells or EPS have been depleted per mass of 

chlorine consumed; therefore, more chloroform will be formed. 
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(a) 

 
(b) 

 
(c) 

Figure 4-18. Influence of (a) Y1, (b) Y2, and (c) reactor volume on chloroform concentration in bulk 
water after t = 3 h 

 

4.3.3.4 Biofilm thickness, initial cell and EPS concentration, fraction of cells and EPS transformed 
into DBP and biofilm area 

Parameters such as biofilm thickness (BT), initial cell and EPS concentration (Eo), fraction of cells 

and EPS transformed into DBP (FE) and biofilm area (Ab) have a linear effect on bulk water 

concentrations of chloroform (see Figure 4-19). 
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(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-19. Parameters with linear influence on chloroform concentration in bulk water (a) Biofilm 
thickness (b) Initial cell concentration (c) Initial EPS concentration (d) FX (e) FE (f) Biofilm area 

 

4.3.3.5 Comparison among parameters 

This comparison was carried out in order to identify the parameters with more influence on bulk 

water concentrations of chloroform. The 14 parameters assessed in this sensitivity analysis are 

compared in Figure 4-20. The percentage of change in relation to the base value of both parameters 

and the respective chloroform concentrations were calculated and presented in Table 4-12. Reactor 

volume (V) and chlorine-cell yield coefficient (Y1) were the parameters with influenced most the 

response variable (Figure 4-20a); reduction on 90% of these values represents an increase of 

886% and 649% on chloroform concentrations, respectively (Table 4-12 and Table 4-13).  
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To clarify which parameters were also influencing in second place, another graph was plotted 

eliminating the two parameters mentioned previously (Figure 4-20b). Then, variation among -90% 

- 100% of initial cell concentrations, biofilm area, and biofilm thickness, parameters with linear 

influence on chloroform concentrations, produces the same degree of variation in such 

concentrations (Table 4-13). Chlorine-EPS yield coefficient (Y2) is a parameter with some degree 

of influence on bulk concentrations of chloroform; a reduction of this of 90% causes an increase of 

this DBP in approximately 60% (Table 4-12). A more detailed sensitivity analysis can help to better 

rank the parameter influence on model outputs and identify interrelations existing between 

parameters. This is addressed in Chapter 5. 

 
(a) 

 
(b) 

Figure 4-20. Comparison of influence on chloroform concentration in bulk water among 
parameters (a) 14 parameters tested (b) 12 parameters tested excluding V and Y1 
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Table 4-12. Percentage of change of parameters and the respective chloroform concentrations in bulk water 

Percentage of change 

 S CHCl3 k1 CHCl3 k2 CHCl3 Clo CHCl3 T CHCl3 Y1 CHCl3 Y2 CHCl3 

-96,52% 0,00% -90,00% -11,29% -90,00% -1,04% -100,00% -100,00% -66,7% -0,1% -90,0% 649,1% -90,0% 60,1% 

-96,30% 0,00% -80,00% -1,45% -80,00% -0,14% -95,00% -26,29% -60,0% -0,1% -80,0% 356,6% -80,0% 31,0% 

-80,43% 0,00% -70,00% -0,18% -70,00% -0,02% -90,00% -17,11% -53,3% 0,0% -70,0% 211,2% -70,0% 18,4% 

-58,70% 0,00% -60,00% -0,02% -60,00% 0,00% -85,00% -7,30% -46,7% 0,0% -60,0% 138,0% -60,0% 11,9% 

-39,13% 0,00% -50,00% 0,00% -50,00% 0,00% -80,00% -2,46% -40,0% 0,0% -50,0% 91,1% -50,0% 7,9% 

-26,09% 0,00% -40,00% 0,00% -40,00% 0,00% -70,00% -0,29% -33,3% 0,0% -40,0% 61,4% -40,0% 5,3% 

0,00% 0,00% -30,00% 0,00% -30,00% 0,00% -60,00% -0,04% -26,7% 0,0% -30,0% 39,0% -30,0% 3,4% 

28,26% 0,00% -20,00% 0,00% -20,00% 0,00% -48,00% 0,00% -20,0% 0,0% -20,0% 23,0% -20,0% 2,0% 

36,96% 0,00% -10,00% 0,00% -10,00% 0,00% -28,00% 0,00% -13,3% 0,0% -10,0% 9,9% -10,0% 0,9% 

67,39% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% -6,7% 0,0% 0,0% 0,0% 0,0% 0,0% 

86,96% 0,00% 10,00% 0,00% 10,00% 0,00% 19,00% 0,00% 0,0% 0,0% 10,0% -8,6% 10,0% -0,7% 

97,83% 0,00% 20,00% 0,00% 20,00% 0,00% 31,00% 0,00% 6,7% 0,0% 20,0% -15,3% 20,0% -1,3% 

117,39% 0,00% 30,00% 0,00% 30,00% 0,00% 57,00% 0,00% 13,3% 0,0% 30,0% -21,4% 30,0% -1,8% 

  

40,00% 0,00% 40,00% 0,00% 70,00% 0,00% 20,0% 0,0% 40,0% -26,3% 40,0% -2,3% 

50,00% 0,00% 50,00% 0,00% 90,00% 0,00% 26,7% 0,0% 50,0% -30,8% 50,0% -2,6% 

60,00% 0,00% 60,00% 0,00% 100,00% 0,00% 33,3% 0,0% 60,0% -34,5% 60,0% -3,0% 

70,00% 0,00% 70,00% 0,00% 

  

40,0% 0,0% 70,0% -38,0% 70,0% -3,3% 

80,00% 0,00% 80,00% 0,00% 46,7% 0,0% 80,0% -40,9% 80,0% -3,5% 

90,00% 0,00% 90,00% 0,00% 53,3% 0,0% 90,0% -43,7% 90,0% -3,8% 

100,00% 0,00% 100,00% 0,00% 60,0% 0,0% 100,0% -46,0% 100,0% -4,0% 

  66,7% 0,0%   
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Table 4-13. Percentage of change of parameters and the respective chloroform concentrations in bulk water 

Percentage of change 

V CHCl3 BT CHCl3 Xo CHCl3 Eo CHCl3 Fx CHCl3 FE CHCl3 Ab CHCl3 

-90% 886,2% -85,71% -85,81% -90% -82,86% -80,42% -11,77% -80,0% -71,4% -80,0% -10,0% -90% -90,0% 

-80% 396,9% -83,67% -83,78% -80% -73,67% -70,53% -10,33% -60,0% -53,5% -60,0% -7,5% -80% -80,0% 

-70% 232,1% -81,63% -81,74% -70% -64,45% -45,13% -6,61% -40,0% -35,7% -40,0% -5,0% -70% -70,0% 

-60% 149,4% -79,59% -79,71% -60% -55,24% -32,17% -4,71% -20,0% -17,8% -20,0% -2,5% -60% -60,0% 

-50% 99,7% -77,55% -77,68% -50% -46,02% 0,00% 0,00% 0,0% 0,0% 0,0% 0,0% -50% -50,0% 

-40% 66,5% -75,51% -75,65% -40% -36,83% 13,34% 1,95% 20,0% 17,8% 20,0% 2,5% -40% -40,0% 

-30% 42,8% -73,47% -73,61% -30% -27,62% 29,65% 4,34% 40,0% 35,7% 40,0% 5,0% -30% -30,0% 

-20% 25,0% -71,43% -71,58% -20% -18,41% 46,70% 6,84% 60,0% 53,5% 60,0% 7,5% -20% -20,0% 

-10% 11,1% -69,39% -69,55% -10% -9,21% 80,19% 11,74% 80,0% 71,4% 80,0% 10,0% -10% -10,0% 

0% 0,0% -67,35% -67,51% 0% 0,00% 98,22% 14,38% 100,0% 89,2% 100,0% 12,6% 0% 0,0% 

10% -9,1% -65,31% -65,48% 10% 9,21% 

  

10% 10,0% 

20% -16,6% -44,90% -45,08% 20% 18,40% 20% 20,0% 

30% -23,1% -36,73% -36,91% 30% 27,62% 30% 29,9% 

40% -28,5% 0,00% 0,00% 40% 36,83% 40% 39,9% 

50% -33,3% 6,12% 6,17% 50% 46,04% 50% 49,9% 

60% -37,5% 26,53% 26,78% 60% 55,24% 60% 59,8% 

70% -41,1% 51,02% 51,60% 70% 64,45% 70% 69,8% 

80% -44,4% 71,43% 72,34% 80% 73,66% 80% 79,8% 

90% -47,3% 93,88% 95,24% 90% 82,86% 90% 89,7% 

100% -50,0% 108,16% 109,85% 100% 92,07% 100% 99,7% 
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In relation to reactor volume and biofilm area, these parameters can be easily determined in a 

DWDN from geometrical characteristics of the water pipes, or surfaces and reactors used in-situ or 

laboratories. Then, low uncertainty is expected from these parameters. Yield coefficients were 

determined by Chen and Stewart (1996) from several experimental data sets by the method of 

nonlinear least-squares; such experiments consisted of measuring chlorine profiles within artificial 

biofilms of P. aeruginosa. Therefore, further adjustments of this parameter can be done by 

laboratory tests with heterogeneous biofilms growth under real-scale DWDN conditions.  

In relation to initial cell concentration, it is important to remark that the specific chemical, physical 

and hydraulic conditions of the DWDNs shape the bacterial communities of biofilms as discussed 

in Chapter 3. Consequently, it is necessary to collect cell density data from the biofilms growing in 

the DWDN of interest. Despite initial EPS concentration having a lower impact on variation of 

chloroform bulk concentrations, it is also important to measure the EPS content in biofilms of real-

scale DWDN to improve the reliability of the model predictions. Biofilm thickness is also an 

important parameter influencing the model results and is clearly interacting with parameter Eo, 

since the latter is calculated using BT values (Section 4.2.3.3). Additionally, further biofilm research 

could led to the formulation of a relationship between EPS concentration and biofilm thickness in 

biofilms naturally found in real-scale DWDNs. 

Biofilm thickness can be determined by microscopy and imaging techniques (Shen et al., 2016). 

As presented in Table 4-2, biofilm thickness for drinking water biofilms have been measured in 

those grown in laboratory reactors. In a personal communication with Dr Isabel Douterelo, she 

mentioned the difficulty faced by measuring this parameter in biofilms grown on coupons installed 

in real-scale DWDNs, since the biomass content was very high and dyes were not able to fully 

penetrate the biofilms, then they were not completely observable thorough the microscope15. 

Other factors such as chlorine concentration and temperature can be defined by historical records 

supplied by the water utilities or direct measurement in the field (Nescerecka et al., 2014; Dippong 

et al., 2016). Parameters such as fraction of cells and EPS transformed into DBPs can be adapted 

from experimental studies reporting results of the DBP of interest (Fang et al., 2010b; Wang et al., 

2013a) or adjusted to fit the model, if there were experimental data to compare to or validate. The 

diffusion coefficient of DBP within the biofilm may also be adjusted if the model is coupled to cells 

growth and EPS production simultaneously. This factor can also be calculated by measuring DBP 

                                                        

15 Technical meeting at the University of Sheffield, 24th March 2017. E-mail: i.douterelo@sheffield.ac.uk  

mailto:i.douterelo@sheffield.ac.uk
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concentration profiles within biofilms; however, it is not clear if the micro-sensors for such 

substances are already available for laboratory applications. 

 

4.3.4 Factors affecting the DBP formation 

As explained in Chapter 2, the factors which affect the DBP formation are the concentration and 

type of NOM, type and concentration of disinfectant, pH, temperature, contact time and bromide 

concentration. The current model was developed for water systems using chlorine as disinfectant. 

The type of organic matter is included through the parameters corresponding to DBP precursors 

such as bacteria and EPS (k1, k2, Y1, Y2, FX, FE). These substances are mainly composed by 

biomolecules such as genetic material, proteins, lipids, and polymers (Wang et al., 2012b; Fish et 

al., 2015). Particularly, it has been identified that EPS contain aromatic molecules, are hydrophilic 

and contain fulvic like substances (Wang et al., 2012c; Lemus Pérez and Rodríguez Susa, 2017).  

As also mentioned before, temperature is indirectly included through the reaction rates k1 and k2. 

Equations (4-6) and (4-7) can be used to adjust these rates to the local temperature of the DWDN 

of interest. Parameters such as S, k1, and k2 affect the time when maximal potential concentration 

of DBP is reached. Higher rates and diffusion coefficient of DBP substance accelerate the 

reactions; therefore, less time is required to oxidize the entire biomass of the biofilm. This model 

did not include pH variable directly; however experimental results and field data matched with 

simulated results, as discussed in Sections 4.3.5 and 4.3.6.1. The influence of bromide 

concentration is not included in the current model; it is accepted that bromide presence in 

disinfected water favours the formation of brominated DBPs (Chowdhury et al., 2009). More 

information is required to determine the presence and amount of bromide within biofilms. 

 

4.3.5 Comparison between model results and experimental data 

According to Wang et al. (2013a), tests of DBP formation potentials resulted in ranges of 6.6–9.4 

g/L and 2.6–3.2 g/L for chloroform and DCAN, respectively. The current model reproduced such 

results for BT in ranges of 12–16 m and 12–14 m, for these substances, respectively (Figure 

4-21). These outcomes are consistent with the conditions of biofilm growth reported by Wang et al. 

(2013a); who incubated biofilm, in an enriched medium, for 60 hours, and the steady state was 

reached after 24 hours. Hence, thin biofilms may be expected under such condition. 
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(a) 

 
(b) 

Figure 4-21. (a) Chloroform and (b) DCAN concentrations according to results of Wang et al. 
(2013a) 

 

4.3.6 Simulation of scenarios: building plumbing system supplied with warm water 

DBPs are monitored in the distribution network by water utilities and regulation agencies, but people 

are exposed to them inside of the facilities. Exposure occurs by inhalation, dermal contact, and 

ingestion; through domestic activities such as bathing, showering, cooking, and drinking 

(Chowdhury, 2016). The same chemical, biological and hydraulic processes occurring in the 

distribution network also take place in plumbing systems. In addition, such systems are 

characterised by high stagnation times and temperatures, therefore water age increases inside of 

the buildings, disinfectant decays faster, and more favourable conditions exist for bulk bacteria 

regrowth, biofilm growth and DBP formation (Ji et al., 2015; Chowdhury, 2016). Overnight sleeping 

time, working hours, and weekends in commercial buildings are examples of stagnation conditions 

in plumbing systems. Stagnation on dead-end sections of DWDNs can also take place during 

overnight sleeping time. Higher water temperatures in plumbing systems can occur due to the 

heating system used to raise the temperature of the building or only for domestic activities 
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(showering, bathing, and washing). This causes the temperature of water flowing in the plumbing 

pipes to increase. 

To analyse the scenario of chloroform and DCAN formation in Colombian plumbing systems, the 

parameters included in Table 4-14 were used when running the current model, which yielded 12 

scenarios in total (Table 4-16). The scenario 1 is the least critical one, since it includes the lowest 

values of Clo, Xo, and BT, according to the ranges defined in Section 4.2.3. On the other hand, 

scenario 12 corresponds to the most critical one. 

Table 4-14. Parameters used to simulate DBP formation in plumbing systems 

Parameters Value Source 

Stagnation times 11 h (morning – afternoon) 
Assuming typical domestic activities: 
overnight sleeping time and working hours 

Pipe diameter () 0.5 inches 
Typical diameter found in houses in 
Colombia 

Length of the pipe (L) 50 m 
Assuming house depth of 25 m with two 
floors  

Temperature 25 °C 
Water temperature in Cali – Colombia 
(Table 3-4) and in Dhahran, Saudi Arabia 
(Chowdhury, 2016) 

Initial chlorine 
concentration 

0.12 and 1.66 mg/L 
Minimum and maximum values found in 
Cali – Colombia (Table 3-4) 

Biofilm thickness 7 and 102 m 
Extreme values within the range Q1-Q3 
(Table 4-3) 

Initial EPS concentration 2.397,3 and 1.919,5 mg/L 
Calculated from BT with equation included 
in Figure 4-5 

Initial cell concentration 0.89; 4.03; and 13.98 mg/L Values within the range Q1-Q3 (Table 4-5) 

 

4.3.6.1 Chloroform formation compared with field assessment (Chowdhury, 2016) 

Chowdhury (2016) investigated the effects of plumbing systems on human exposure to DBPs in 

drinking water by measuring several species of THMs and HAAs, during one year, in two houses 

located in the city of Dhahran, Saudi Arabia. The sampling campaign included three points (the 

water network at the entry of the houses, the house tap, and the hot water tank). The results of this 

study are consolidated in Table 4-15; water pH ranged between 6.89-8.33. According to the author, 

there were not any differences between sampling points, thus DBP species data for three sampling 

points were presented as averages, resulting in chloroform concentrations in the water network 

equal to 5.51 g/L; plumbing systems equal to 9.37 and 12.42 g/L for cold and hot water, 

respectively. This represents that 3.86 and 6.91 g/L of chloroform was formed in cold and hot 

water, respectively, under stagnation conditions (Chowdhury, 2016). 
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Table 4-15. TTHMs and free chlorine concentrations measured in plumbing systems (Chowdhury, 
2016) 

Sampling point 

TTHMs (g/L) Free chlorine (mg/L) 

Stagnation condition 

PM-AM AM-Aftern. PM-AM AM-Aftern. 

Water network 6.94 6.50 0.33 0.26 

House tap 11.1 10.40 0.14 0.14 

Hot water tank 14.60 13.20 0.11  

TTHMs formed under 

stagnation conditions (g/L) 

Cold water 4.16 3.90 
0.11 – 0.33 mg/L 

Hot water 7.66 6.70 

Chlorine demand under 
stagnation conditions (mg/L) 

Cold water 
- 

0.19 0.12 

Hot water 0.22 0.14 

 

Figure 4-22 shows the chloroform concentrations under initial concentrations of chlorine measured 

in plumbing systems by Chowdhury (2016) (0.33 mg/L; Table 4-15). Due to the average 

concentration of chloroform found in plumbing premises was low (3.86 g/L), lowest biofilm 

thickness and cell density were tested in the model. Model outputs resulted in similar 

concentrations to Chowdhury (2016) for pipe diameter between ¾ - 1 inches. The diameters of the 

plumbing networks were not reported by the author. However, these results confirm that the model 

is able to reproduce DBP concentrations associated with field conditions. 

 

Figure 4-22. Chloroform concentrations in bulk water for different pipe diameter  
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4.3.6.2 Chloroform formation 

Figure 4-23 presents the chloroform concentrations in bulk water for BT of 7 m and 102 m. 

Simulated chloroform concentrations ranged between 6.98-31.62 g/L and 89.29-466.20 g/L for 

7 m and 102 m of BT, respectively. For BT=7 m, 5.25 hours were required to achieve the 

maximum DBP concentration in bulk water with the lowest chlorine concentration of 0.12 mg/L and 

Xo of 0.89 and 4.03 mg/L. In the case of the highest Xo (13.98 mg/L), six hours were needed to 

reach the maximal potential chloroform concentration. For chlorine concentration of 1.66 mg/L, 

complete transformation of cells and EPS into chloroform occurred in less than 30 minutes (Figure 

4-23a). 

 
(a) 

 
(b) 

Figure 4-23. Chloroform concentrations in bulk water for several scenarios of initial chlorine and 

cell concentration (a) BT = 7 m (b) BT = 102 m 
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For BT=102 m and Clo of 0.12 mg/L, simulations indicated that the time required for complete 

reaction chlorine-biomass reduces as Xo increases (7.0, 5.5, and 4.25 hours for Xo of 0.89, 4.03, 

and 13.98 mg/L, respectively). This is related to faster production of DBP when more biomass is 

available, which is given by the expression FX × k1 × C × X of Equation (4-4). This expression 

indicates that more DBP is formed per unit of time for high cell concentration, then the maximal 

potential concentration of DBP is reached in shorter time in comparison to low concentrations of 

cells. 

The different pattern between two BT values in relation to reaction time is explained by whether the 

reactions are chlorine or biomass limiting. For 7 m, reactions can be biomass limiting, residual 

concentration is 0.11 mg/L (Figure 4-25), and reaction time is directly proportional to cell 

concentration. On the contrary, reactions can be chlorine limiting for 102 m, residual 

concentrations are almost negligible, and reaction time is inversely proportional to cell 

concentration. For Clo of 1.66 mg/L, complete transformation of cells and EPS into chloroform also 

occurred in less than 30 minutes (Figure 4-23b). 

In comparison to reference values, for BT=7 m, the highest Xo led to a maximal potential 

concentration of chloroform higher than the concentration found in the field work developed in the 

city of Cali (average 31.62 g/L vs 22.55 g/L16 - Section 3.3.5). For BT=102 m, it is worth noting 

that most of the scenarios considered here resulted in potential concentrations of chloroform higher 

than the limit defined in the UK regulations (100 g/L) (UK Parliament, 2000). In relation to 

Colombian standards (200 g/L) (Ministerio de la Protección Social and Ministerio de Ambiente 

Vivienda y Desarrollo Territorial, 2007), only the scenario of Clo=1.66 mg/L and Xo = 13.98 mg/L 

resulted in notably greater concentration (466.2 g/L). Such value can be perceived as unrealistic 

or improbable, but it is difficult to confirm due to the lack of field data to use as inputs of the model. 

Therefore, it is important to highlight the importance of studying biofilm properties in DWDNs of 

developing countries for collecting reliable field data and define real scenarios of these networks. 

In general, biofilms can be understood as potential chronic risk sources in DWDNs, which may 

even lead to non-compliance of local regulations for chloroform and TTHMs, according to model 

results. 

 

 

                                                        

16 71% of TTHMs represent chloroform – section 4.2.10 



 

Chapter 4. A simple biofilm chlorination model  161 
Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineering 

4.3.6.3 Dichloroacetonitrile formation 

As expected, the model suggests that thicker biofilms promote the formation of higher potential 

DCAN concentrations. For BT=7 m and 102 m, the simulated DCAN concentrations ranged 

between 3.43-13.16 g/L and 44.3-195.94 g/L, respectively (Figure 4-24a and b). In relation to 

reaction time needed to get to the maximal potential DCAN concentration, the same pattern of 

chloroform was found for this substance and the two values of BT tested and Clo=0.12 mg/L. For 

BT=7 m, reaction time increases as Xo increases, while this time is shorter as Xo increases for 

BT=102 m. As mentioned previously, this is related to faster chlorine depletion when more 

biomass is available, since more DBPs are being formed. For chlorine concentration of 1.66 mg/L, 

complete transformation of cells and EPS into DCAN occurs in less than 30 minutes (see Figure 

4-24a and b). For BT=102 m, following DCAN guidelines (WHO, 2017) becomes more 

challenging, since all the tested scenarios produced concentrations higher than 20 g/L (Figure 

4-24b) and a maximum of 195.94 g/L is obtained for the most critical conditions (Clo=1.66 mg/L, 

Xo=13.98 mg/L). 

It is important to highlight that DCAN is an unstable DBP species, which degrades under certain 

conditions of free chorine and pH. DCAN degrades in the absence of chlorine above pH 7and below 

pH 6.5. In the presence of free chlorine, DCAN degradation can be much faster in the condition of 

a pH of about 6–8.5 under low to moderate chlorine residuals (Reckhow et al., 2001). Therefore, 

despite of the formation of this DBP under stagnation conditions, DCAN concentrations may reduce 

if conditions of pH and free chlorine are the appropriate for its degradation. Finally, it is important 

to remark that HANs can be more toxic than THMs and its control must follow the WHO 

recommendation of 20 g/L (WHO, 2017), while further research leads to a precautionary threshold 

based on health effects. 

 
(a) 
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(b) 

Figure 4-24. DCAN concentrations in bulk water for several scenarios of initial chlorine and cell 

concentration (a) BT = 7 m (b) BT = 102 m 

 

4.3.6.4 Chlorine demand 

Figure 4-25 shows chlorine decay in bulk water during the formation of DBPs and Table 4-16 

includes the chlorine demand exerted by biomass for each scenario. While Chowdhury (2016) 

found chlorine demands of 0.19 and 0.12 mg/L in morning and afternoon measurements, 

respectively (Table 4-15), the chlorine demands exerted by cells and EPS in the current model 

resulted in much lower values (0.009-0.42 mg/L) (Table 4-16). Since chlorine decay was calculated 

based on the reaction rates and yield coefficients found by Chen and Stewart (1996), chlorine 

demand does not change with the amount of chloroform and DCAN produced. In addition, the 

recent experimental study by Lemus Pérez and Rodríguez Susa (2017) determined that all the 

chlorine consumed by the biofilm matrix was not transformed into DBPs. The current model 

approach considers the consumption of chlorine only by cells and EPS and separately simulates 

the formation potentials of two DBP species. In real systems, chlorine reacts with organic and 

inorganic substances contained in the biofilm matrix such as iron, adsorbed organic matter, and 

soluble microbial products; and several DBP species are simultaneously formed according to the 

physico-chemical conditions, chlorine dose, and amount and type of precursors (Wang et al., 

2012b; Xue et al., 2013; Lemus Pérez and Rodríguez Susa, 2017). 
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(a) 

 
(b) 

Figure 4-25. Chlorine concentrations in bulk water, under several scenarios of initial chlorine and 

cell concentration (a) BT = 7 m (b) BT = 102 m 

 

Table 4-16. Chlorine demand on plumbing system scenarios 

Scenario Chlorine demand (mg/L) 

1 BT = 7 μm | Clo = 0.12 mg/L | Xo = 0.89 mg/L 0.009 

2 BT = 7 μm | Clo = 0.12 mg/L | Xo = 4.03 mg/L 0.013 

3 BT = 7 μm | Clo = 0.12 mg/L | Xo = 13.98 mg/L 0.025 

4 BT = 7 μm | Clo = 1.66 mg/L | Xo = 0.89 mg/L 0.012 

5 BT = 7 μm | Clo = 1.66 mg/L | Xo = 4.03 mg/L 0.016 

6 BT = 7 μm | Clo = 1.66 mg/L | Xo = 13.98 mg/L 0.028 

7 BT = 102 μm | Clo = 0.12 mg/L | Xo = 0.89 mg/L 0.120 

8 BT = 102 μm | Clo = 0.12 mg/L | Xo = 4.03 mg/L 0.120 

9 BT = 102 μm | Clo = 0.12 mg/L | Xo = 13.98 mg/L 0.120 

10 BT = 102 μm | Clo = 1.66 mg/L | Xo = 0.89 mg/L 0.204 

11 BT = 102 μm | Clo = 1.66 mg/L | Xo = 4.03 mg/L 0.256 

12 BT = 102 μm | Clo = 1.66 mg/L | Xo = 13.98 mg/L 0.423 

 

4.3.6.5 Influence of S/V ratio on DBP formation 

One of the main characteristics of plumbing systems is the high S/V ratio, as explained in Section 

2.2.4. The S/V ratio is included in the current biofilm chlorination model in the boundary condition 

at the biofilm surface, which represents the variation of dissolved substances in the bulk water 

(Equations (4-8) and (4-14)). Results for 12 scenarios corresponding to pipe diameter of ½ inches, 

which is commonly used in small building facilities in Colombia, were presented previously. In order 

to illustrate the influence of this parameter of DBP concentrations, simulations for the least and 

most critical scenarios were run (1 and 12, respectively) (Table 4-16). 
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Considering that S/V ratio is inversely proportional to pipe diameter (4/), increasing the pipe 

diameter resulted in reduction of DBP concentrations in bulk water. Simulated chloroform ranged 

between 0.30-6.91 g/L (scenario 1) and between 6.55-466.2 g/L (scenario 12), for between ½ 

- 9 inches (Figure 4-26a). Similarly, modelled DCAN ranged between 0.16-3.39 g/L (scenario 1) 

and between 3.27-195.94 g/L (scenario 12), for the same range (Figure 4-26b). The analysis 

of chlorine wall decay has determined that, as pipe diameter increases, the wall reactions becomes 

less important and chlorine decay mainly relies on bulk water reactions (Lu et al., 1999; Hallam et 

al., 2002; Buamah et al., 2014; Lee et al., 2014). For DBP analysis carried out here, pipe diameter 

as big as 9 inches may lead to potential concentrations of 0.30-6.55 g/L and 0.16-3.27 g/L of 

chloroform and DCAN, respectively, which represent small fractions of the UK and Colombian 

regulation and WHO guidelines. 

 

(a) 

 

(b) 

Figure 4-26. Influence of S/V ratio on DBP concentrations in bulk water (a) Chloroform (b) DCAN 
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In order to improve the comparison of DBP concentrations to regulation compliance and guidelines, 

several simulations for both chloroform and DCAN were run for several values of BT and S/V ratio. 

This was done in order to find the values of this parameter which resulted in lower concentrations 

than the suggested or regulated ones. Figure 4-27 shows the results of DBP concentrations for 

Clo=1.66 mg/L and Xo of 1.28x10-4 mg/cm2 and 4.44x10-3 mg/cm2 for DCAN and chloroform, 

respectively. Due to Xo is expressed in terms of surface density, the volumetric concentrations are 

specified in Figure 4-28, according to the pipe diameter. 

 
(a) 

 
(b) 

Figure 4-27. DBP concentrations in bulk water and regulation limits / guidelines (a) Chloroform, Clo 
= 1.66 mg/L, Xo = 4.44x10-3 mg/cm2 (b) DCAN, Clo = 1.66 mg/L, Xo = 1.28x10-4 mg/cm2 
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Figure 4-28. Cell concentration according to pipe diameter 

 

Particularly, for the given Clo and Xo, chloroform concentrations fall below the Colombian and UK 

regulated values (200 and 100 g/L, respectively), for BT values smaller than 49 m and 16 m, 

respectively, and pipe diameter of ½ inches. However, by increasing the pipe diameter to only ¾ 

inches, chloroform concentrations reduce around 51%. Therefore, thicker biofilms result in 

chloroform concentrations lower than the regulated thresholds. For instance, 84 m potentially 

yields 188.5 g/L and 27 m potentially yields 59.3 g/L in  of ¾ inches. The same occurs with 

DCAN concentrations; BT smaller than 40 m yields potential concentrations lower than the value 

suggested by the WHO (20 g/L) (WHO, 2017) for every  considered here. Increasing diameter 

from ½ inches to ¾ inches, DCAN concentrations reduce around 36%. Such values of pipe 

diameter may offer a guideline for future recommendations for design and installation of plumbing 

pipes in small buildings, where low water consumption is expected. In order to properly propose a 

minimum pipe diameter for plumbing facilities, further hydraulic analysis must be done to determine 

the influence of such change on pressure, velocities, and residence time. 

4.3.6.6 Discussion of DBP formation potentials simulated under stagnation conditions 

The discussion presented in Sections 4.3.6.2 and 4.3.6.3 was based on regulation limits or 

guideline values; however, such thresholds are more related to precautionary limits rather than 

health-based recommendations. The toxicity of some DBPs, from around 600 DBPs species 

discovered to date, has been tested on bioassays with mice and cells using concentrations higher 

that those found in drinking water (Hrudey, 2009). Overall, the epidemiological evidence is 
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insufficient to declare chlorinated DBPs as carcinogenic in humans or a cause of birth defects 

(Hrudey, 2009; Hrudey et al., 2015a). On the other hand, the presence of pathogenic 

microorganisms in tap water will certainly cause negative public health impacts (Hrudey, 2009). In 

this line, the risk management alternative is to reduce the precursors of DBPs in the water source, 

maintaining efficient treatment processes and proper O&M of distribution networks. For plumbing 

systems, consumers should be advised on flushing the tap water, for the first use of water after a 

period of stagnation. 

In relation to reduce DBPs precursors, it is in this point that biofilm formation and disinfection 

becomes relevant. Biofilms in drinking water have only been approached in research as potential 

reservoirs of pathogens, which can be released to bulk water and reach the consumers (Wingender 

and Flemming, 2011). Biofilm monitoring is not included neither in routine O&M of distribution 

networks by water utilities nor by regulatory agencies. The current model, based on experimental  

data reported by other researchers, does acknowledge the role of biofilms as DBP precursors and 

present the potential concentrations of chloroform and DCAN under certain scenarios. The model 

presented here allows identifying the most significant parameters and better understanding of the 

interaction of those involved in the formation of two DBP species formed from the chlorination of 

drinking water biofilms. In addition, the model gives a better understanding of the rates at which 

chloroform and DCAN are formed; which is not always evident with solely laboratory data. 

 

4.4 MODEL APPLICATIONS AND LIMITATIONS 

The current model can only predict the chlorine decay according to the demand exerted by EPS 

and cells. The reactions of this disinfectant with other substances contained in the biofilm matrix 

and attached to the pipe walls such as sediments and loose deposits and bulk water reactions are 

not included; therefore, chlorine is exclusively available for biofilm reactions. This means that 

reactions occur faster compared to inclusion of total demand of chlorine in water pipes.  

The proposed model does not include neither cell growth nor EPS production. For long term 

assessment, i.e., days and weeks, biofilm growth should be incorporated in order to completely 

analyse the dynamics between disinfectant and biofilm matrix; and influence of hydraulics in mass 

transfer and biofilm detachment. For instance, Abokifa et al. (2016a) found that maximal bacteria 

growth (biofilm and planktonic cells together) occur after six hours, while cell death and inactivation 

was reduced. Then, mortality rate increased for the next 12 hours. As a consequence, THM 

formation reached a plateau for the next 30 hours and constant THM concentration was produced 
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during this period of time (Abokifa et al., 2016a). Further re-chlorination led to extra reaction with 

remaining biomass and increasing THM formation; then another plateau was observed until 60 

hours of simulation. This indicates that THM formation reached a peak and remained constant until 

re-chlorination was applied, then another peak was found and remained constant until 60 hours 

(Abokifa et al., 2016a). 

It is known that biofilm growth is a slow process (e.g., hours or days; see modelling and 

experimental data in Sections 2.4.3 and 4.2.3.1) compared to oxidative reactions with chlorine. 

Despite this the current model did not include biofilm growth and chlorine demand exerted by other 

substances present in water pipes, the proposed model developed here is applicable to determine 

the DBP formation potentials under different of scenarios of biofilm properties and drinking water 

quality. Model applications also include improving the understanding of field and experimental tests, 

which are carried out under controlled conditions, as demonstrated by the comparison of results to 

other studies. Additionally, this model can be applied to plumbing systems and dead-end sections 

of DWDNs under stagnation conditions in order to predict the potential DBP formation under 

specific conditions of the assessed system. 

On the other hand, this model does differentiate between cells and EPS contribution to DBP 

formation, which allows the incorporation of kinetic variables resulting from experimental studies 

carried out for both particulate substances. It is important to highlight that the interest on studying 

the role of EPS as a protective barrier for bacteria within the biofilm and as DBP precursor is 

increasing (Fang et al., 2010b; Huang et al., 2012; Wang et al., 2012c; Xue et al., 2012; Wang et 

al., 2013b; Lemus Pérez and Rodríguez Susa, 2017). Other advantages of the proposed model is 

the low computational cost due to it is simulating in one dimension; and is able to predict individual 

DBP species by incorporating their respective diffusion coefficients. Further development of this 

model may support the improvement of exposure assessment in humans and comparison to 

maximum concentrations established by toxicological studies. Particularly, this model simulates the 

formation of DCAN, which can be more toxic substance than other DBPs, and there has not been 

regulated yet for any national regulatory agency. Long term prediction of DCAN should include a 

sink term since it degrades over a period of hours or days, depending on pH and chlorine 

concentration (Reckhow et al., 2001).  

The current model relies on microbiological variables such as parameters of biofilm thickness, and 

initial cell and EPS concentration. As discussed above, biofilms are not frequently monitored in 

DWDNs by neither water utilities nor regulatory agencies. Therefore, data of these parameters are 

not often available in real-scale water networks; and to interpret idealized laboratory data can be 
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challenging in the context of real DWDNs. As a first step, initial EPS concentration was calculated 

in this study with a linear equation originated from an experimental study with municipal 

wastewater. Field-work information collected in Cali’s DWDN related to water quality was used as 

inputs for the several scenarios simulated with the current model. However, to the author’s 

knowledge, biofilm thickness, and initial cell and EPS concentration data for this network have not 

yet been published. This indicates that more effort is required in promoting drinking-water-biofilm 

research in developing countries by improving international collaborations, laboratory facilities, 

molecular analysis techniques, protocols for sampling in real-scale DWDNs, among others.  

Finally, as human exposure to water substances occur within the facilities, drinking water quality in 

plumbing systems becomes relevant in public health topics. The epidemiological study by Wright 

et al. (2017) found that DBP exposure classification may be improved if models were available for 

the studied network. On the other hand, DBP monitoring take place in the distribution network, 

which is characterized for flow rates leading to slow velocities in dead-end zones or normal 

velocities in the main pipes. The current model is applicable under stagnation conditions, which are 

present in dead-end sections of a network or in plumbing facilities, where water consumption 

actually occurs. To analyse the mass transfer rate of dissolved substance in the biofilm surface, 

hydrodynamics are included in a 2D model for water pipes. The definition, development, results 

and discussion of this model can be found in the following chapter. 

 

4.5 CONCLUSIONS 

Biofilms attached to the pipe walls have been acknowledged as a cause for chlorine decay in water 

pipes but they have not yet been included in DBP models for DWDNs. To the author’s knowledge, 

this is the first model including biofilm EPS oxidation as precursor of DBPs together with cell 

disinfection. The current study led to the following conclusions: 

 Under stagnation conditions and small pipes, biofilm-chlorine reactions at the pipe walls are 

important for DBP contribution to the bulk water. 

 Increasing the complexity of a model is not necessarily directly related to a better approximation 

of the process. The current 1D model of chlorine disinfection of flat biofilms is able to predict the 

chloroform and DCAN formation potentials in bulk drinking water, under stagnation conditions. 

 Chloroform and DCAN formation from biofilm chlorination can be expressed in terms of cell and 

EPS concentrations, chlorine yields, reaction rates, and fraction of cells and EPS transformed 

into DBP. 
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 Due to the slow process of biofilm growth and EPS production, fixed initial cell and EPS 

concentration are an appropriate approach to simulate DBP formation potentials occurring in 

few hours. 

 Whether the reactions are chlorine or biomass limiting depends on the parameters biofilm 

thickness and initial chlorine and cell concentrations together. 

 In the current model, DBP diffusion coefficient within the biofilm is relevant only for analysis on 

short time as 40 minutes. 

 Temperature effects are indirectly included in the model by adjusting the reaction rates of 

chlorine with cells and EPS. Higher temperature leads to acceleration of reactions. 

 Parameters biofilm thickness, initial cell and EPS concentration, fraction of cells and EPS 

transformed into DBP and biofilm area have a linear effect on bulk water concentrations of 

DBPs. Reactor volume and chlorine yield coefficients have a decreasing exponential effect of 

DBP concentrations in bulk water. 

 Reactor volume and chlorine-cell yield coefficient are the most influencing parameters on bulk 

water concentrations of DBPs, followed by biofilm area and initial cell concentration. Biofilm 

thickness also has an important effect on the model results by the direct relationship with cell 

and EPS concentrations and the definition of the domain dimension. 

 To promote biofilm research in real-scale drinking water systems will increase the availability of 

data useful for DBP models, considering biofilms as precursors. 

 Plumbing systems can favour the DBP formation from disinfection of biofilms due to the high 

stagnation time and high S/V ratios. 

 Pipe diameters as small as ½ inches in plumbing facilities may lead to DBP concentrations 

higher than the regulated or guidance values. Increasing the diameter to ¾ inches can 

significantly reduce the concentrations even to values under such thresholds. 
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5 MODELLING DBP FORMATION FROM BIOFILM CHLORINATION 
UNDER HYDRODYNAMIC CONDITIONS 

5.1 INTRODUCTION 

This chapter aims to explain the process of developing a 2D model, coupled to a pipe flow, in order 

to assess the influence of hydraulics over mass transport and formation potentials of chloroform 

and DCAN from the chlorination of biofilms in drinking water. This study aimed to improve the DBP 

prediction in water pipes under hydrodynamics conditions. While the simple model developed in 

Chapter 4 can be applied in water systems under stagnation conditions, the coupled-flow model 

can be used, in general, in DWDNs with bulk flow. By the current model, chlorine and DBP mass 

transfer were assessed under different scenarios according to the flow regime, Reynolds number, 

pipe diameter; and initial chlorine, cell, and EPS concentrations. A sensitivity analysis based on 

Morris method was also carried out to screen the parameters influence on model outputs. 

 

5.2 MODEL DEVELOPMENT 

5.2.1 Model definition 

The model described here simulates the formation potentials of chloroform and DCAN from 

chlorination of flat biofilms in drinking water pipes, in two dimensions, under bulk flow. This model 

is based on the 1D model previously developed; initial constant concentration of cells and EPS and 

their decay due to the reaction with chlorine within the biofilm were considered. The schematic 

representation of the model is presented in Figure 5-1. The starting point for developing the current 

model was the simple model presented in Chapter 4 and the physico-chemical data collected in 

the field work discussed in Chapter 3 (see Figure 5-2). 

 

Figure 5-1. Schematic representation of the 2D model 
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Figure 5-2. Process for building a flow-coupled model to predict DBP formation potentials from 
chlorination of biofilms 

 

The main assumptions made to develop the current model are: 

 Flow field solution: DWDNs are built to transport water from the WTPs to the consumers. 

Therefore, pipelines are characterized by bulk flow and the flow rates depend on the water 

demand. Transitional and turbulent flow were considered here because the first one can be 

present in dead-end sections of DWNs (Abokifa et al., 2016b) and the latter one is predominant 

in water pipes under normal operation (Cogan, 2010). Laminar flow was also included for 

comparison purposes, since the biofilm modelling was developed under this flow regime to 

reduce computational cost. 

 Flat biofilm: As explained in Chapter 4, a biofilm can be compact or present voids and channels 

within in, according to the nutrients availability. This means that biofilm growth under limited 

transport of nutrients (slow flow) leads to thicker biofilms due to the presence of voids channels 

rather than higher cell density (Picioreanu et al., 1998b; Picioreanu et al., 2000b). Considering 

that the current model is mainly focused on transitional and turbulent flow (Re: 2,300-10,000), 

flat biofilm surface is considered here as a reasonable approximation to the biofilm morphology 

in drinking water pipes. 

 Sherwood number and mass transfer rate of dissolved substances (chlorine and DBPs) are 

used to characterize the mass transport at the biofilm surface: similar approach has been 

applied for biofilm modelling, which includes biofilm growth and transport of substrates from bulk 
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water to the biofilm matrix, through the biofilm surface (IWA Task Group on Biofilm Modeling et 

al., 2006). 

Other assumptions were also made for the 2D model, which were also presented in Chapter 4: 

 Biofilm is continuous medium 

 Constant biofilm thickness 

 Cells and EPS are homogeneously mixed in biofilm matrix 

 Fixed initial concentration of cells (Xo) and EPS (Eo) 

 Chloroform (S) and DCAN (S) are modelled separately according to fraction of cells and EPS 

converted into the respective DBP 

 

5.2.2 Model equations and initial and boundary conditions – Reactions 

Figure 5-3 sketches the 2D-bulk flow model and the corresponding equations are included in Table 

5-1. Under isothermal and isotropic conditions (i.e., constant temperature and constant diffusion 

coefficient), chlorine diffuses through the biofilm matrix, reacting with cells and EPS (Equation 

(5-1)). Since this model includes fixed initial concentrations of cells and EPS, the variation of both 

particulate substances is given by their decay according to reactions with chlorine (Equations (5-2) 

and (5-3)). Such reaction leads to the formation of DBPs (Equation (5-4)). Parameters Fx and FE 

in Equation (5-4) allows simulating the formation of individual species of DBPs, according to 

experimental data reported by other researchers, as was explained in Section 4.2.3.6. In bulk water, 

transport of dissolved substances is including both convection and diffusion (Equations (5-5) and 

(5-6)). The source term in both equations is defined by the consumption of chlorine by biofilm 

reactions and the formation of DBPs (expression in the right side of the equations). 
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Figure 5-3. 2D mass balance equations for soluble and particulate components in biofilm, biofilm 

surface, and bulk water 

 

Regarding the initial conditions, at t=0, chlorine is completely mixed in bulk water with concentration 

Co, which was also specified at the inlet. Within the biofilm, chlorine concentration is zero. DBP 

concentration is zero everywhere at t=0. Initial concentration of cells and EPS (particulate 

substances) are Xo and Eo at t=0. When reactions start, these substances decay until complete 

depletion, according to contact time with chlorine. 
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 Table 5-1. Mass balance equations and initial conditions in 2D model – Cylindrical pipes 

Phase Equation 
Initial 

conditions 
Description of variables Subscripts 

B
io

fil
m

 

𝑑𝐶

𝑑𝑡
= 𝐷𝐶−𝐵∇ ∙ ∇𝐶 − 𝑘1𝐶𝑋 − 𝑘2𝐶𝐸 

(5-1) 
 

Divergence of a vector: [∇]𝑟 =
1

𝑟

𝜕

𝜕𝑟
(𝑟) [∇]𝑧 =

𝜕

𝜕𝑧
 

 

Gradient of a scalar: [∇]𝑟 =
𝜕

𝜕𝑟
 [∇]𝑧 =

𝜕

𝜕𝑧
 

t = 0 
CBo = 0 

C: Disinfectant concentration 

X: Cell concentration 

E: EPS concentration 

k1: Disinfectant decay rate – cells 

disinfection 

k2: Disinfectant decay rate – EPS oxidation 

DC-B: Molecular diffusion coefficient of 

chlorine in biofilm 

Co: Initial concentration of chlorine 

t: Time 

C: Chlorine 

S: DBP 

X: Cells 

E: EPS 

B: Biofilm 

L: Bulk liquid 

Bs: Biofilm surface 

r: Pipe radius, r-

coordinate 

z: z-coordinate 

along the pipe 

length 

𝑑𝑋

𝑑𝑡
= −𝑌1𝑘1𝑋𝐶 

 
(5-2) 

t = 0 

XBo = Xo 

X: Cell concentration 

C: Disinfectant concentration 

k1: Disinfectant decay rate – cells 

disinfection 

Y1: Cell-chlorine yield coefficient 

Xo: Initial concentration of cells 

t: Time 
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Phase Equation 
Initial 

conditions 
Description of variables Subscripts 

𝑑𝐸

𝑑𝑡
= −𝑌2𝑘2𝐸𝐶 

 
(5-3) 

t = 0 

EBo = Eo 

E: EPS concentration 

C: Disinfectant concentration 

k2: Disinfectant decay rate – EPS oxidation 

Y2: EPS-chlorine yield coefficient 

Eo: Initial concentration of EPS 

t: Time 

𝑑𝑆

𝑑𝑡
= 𝐷𝑆−𝐵𝛻 ∙ 𝛻𝑆 + 𝐹𝑋𝑘1𝐶𝑋 + 𝐹𝐸𝑘2𝐶𝐸 

 
(5-4) 

t = 0 
SBs = 0 
SBo = 0 

S: DBP concentration 

X: Cell concentration 

E: EPS concentration 

k1: Disinfectant decay rate – cells 

disinfection 

k2: Disinfectant decay rate – EPS oxidation 

DS-B: Diffusion coefficient of DBP in biofilm 

FX: Fraction of cells transformed into DBP 

FE: Fraction of EPS transformed into DBP 

So: Initial concentration of DBP 

t: Time 
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Phase Equation 
Initial 

conditions 
Description of variables Subscripts 

B
ul

k 
w

at
er

 

𝑑𝐶

𝑑𝑡
+ ∇(𝑢⃗ 𝐶) = 𝐷𝐶−𝐿𝛻 ∙ 𝛻𝐶 −

𝑑𝐶

𝑑𝑡
|𝐵𝑖𝑜𝑓𝑖𝑙𝑚 

 

(5-5) 

t = 0 
CLo = Co 

 

C: Chlorine concentration 

𝑢⃗ : Velocity vector 

DC-L: Molecular diffusion coefficient of 

chlorine in liquid 

Co: Initial concentration of chlorine 

t: Time 

𝑑𝑆

𝑑𝑡
+ ∇(𝑢⃗ 𝑆) = 𝐷𝑆−𝐿𝛻 ∙ 𝛻𝑆 +

𝑑𝑆

𝑑𝑡
|𝐵𝑖𝑜𝑓𝑖𝑙𝑚 

 
(5-6) 

t = 0 
SLo = 0 

S: DBP concentration 

X: Cells concentration 

E: EPS concentration 

DS-L: Diffusion coefficient of DBP in liquid 

t: Time 
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Table 5-2 presents the boundary conditions for the transport of dissolved substances. Continuity 

flux boundary condition is included at the biofilm surface (Bs) for chlorine (Equation (5-7)) and DBP 

(Equation (5-8)). This boundary condition means that substance concentrations and flux are the 

same on both sides of the interface between bulk water and biofilm (IWA Task Group on Biofilm 

Modeling et al., 2006). On the other hand, there is no exchange of particulate substances, cells 

and EPS, between biofilm and bulk flow (no flux condition – Equation (5-9)). At the pipe inlet, the 

boundary condition is the concentration of chlorine and DBP (Equations (5-10) and (5-11), 

respectively). At the pipe outlet, the boundary condition is represented by the outflow, which 

assumes that there is zero gradient in the normal direction, of neither chlorine (Equation (5-12)) nor 

DBP (Equation (5-13)) at this boundary. At the substratum (pipe wall), there is no exchange of 

neither particulate nor dissolved substances (no flux condition – Equations (5-14) and (5-15), 

respectively). 

Table 5-2. Boundary conditions for transport of dissolved substances in 2D model – Cylindrical 
pipes 

Boundary Boundary conditions Description of variables Subscripts 

B
io

fil
m

 s
ur

fa
ce

 (
B

s)
 

𝑗𝐶−𝐵𝑠 = −𝐷𝐶−𝐵

𝑑𝐶

𝑑𝑟
|𝐵 = −𝐷𝐶−𝐿

𝑑𝐶

𝑑𝑟
|𝐿 

 
(5-7) 

 

𝑗𝑆−𝐵𝑠 = −𝐷𝑆−𝐵

𝑑𝑆

𝑑𝑟
|𝐵 = −𝐷𝑆−𝐿

𝑑𝑆

𝑑𝑟
| 𝐿 

 
(5-8) 

 

𝑗𝑋−𝐵𝑠 =  𝑗𝐸−𝐵𝑠 = 0 
 

(5-9) 

j: Flux 

C: Chlorine concentration 

S: DBP concentration 

DC-B: Molecular diffusion 

coefficient of chlorine in biofilm 

DC-L: Molecular diffusion 

coefficient of chlorine in liquid 

C: Chlorine 

S: DBP 

X: Cells 

E: EPS 

B: Biofilm 

L: Bulk liquid 

Bs: Biofilm 

surface 

r: Pipe 

radius, r-

coordinate 

z: z-

coordinate 

In
le

t 

𝐶𝑖𝑛𝑙𝑒𝑡 = 𝐶𝑜 
 

(5-10) 
 

𝑆𝑖𝑛𝑙𝑒𝑡 = 0 
 

(5-11) 

Cinlet: Chlorine concentration at 

the pipe outlet 

Co: Initial concentration of 

chlorine 

Sinlet: DBP concentration at the 

pipe outlet 
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Boundary Boundary conditions Description of variables Subscripts 

O
ut

le
t 

𝑛 ∙ −𝐷𝐶−𝐿∇𝐶 = 0 
 

(5-12) 
 

𝑛 ∙ −𝐷𝑆−𝐿∇S = 0 
 

(5-13) 

n: Normal vector 

DC-L: Molecular diffusion 

coefficient of chlorine in liquid 

DS-L: Diffusion coefficient of 

DBP in liquid 

C: Gradient of chlorine 

concentration 

S: Gradient of DBP 

concentration 

W
al

ls
 

𝑗𝑋−𝑤𝑎𝑙𝑙 = 𝑗𝐸−𝑤𝑎𝑙𝑙 =  0 
 

(5-14) 
 

 𝑗𝐶−𝑤𝑎𝑙𝑙 = 𝑗𝑆𝑤𝑎𝑙𝑙 = 0 
 

(5-15) 

j: Flux 

 

5.2.3 Model equations and initial and boundary conditions – Bulk flow 

Table 5-3 shows the Navier-Stokes equations for solving the flow field for incompressible flow 

(mass-continuity and momentum). Here, drinking water is treated in its liquid phase and energy 

conservation equation was not solved because the model was developed for isothermal conditions. 

Navier (1827; cited by Canuto et al. (2007)) must be credited with the first attempt at deriving the 

equations for homogeneous incompressible viscous fluids on the basis of considerations involving 

the action of intermolecular forces. Stokes (1845; cited by Canuto et al. (2007)) who, under the sole 

assumption that the stresses are linear functions of the strain rates, derived the equations in the 

form that is currently in use. Equation (5-16) is the equation of mass conservation, also known as 

the continuity equation. The equation for momentum conservation is given by Equation (5-17). The 

expression on the right-hand side of this equation ((𝑢⃗ )) corresponds to the viscous stress 

tensor. 

Table 5-3. Navier-Stokes equations for incompressible flow 

Component Equation Description of variables 

Mass 

𝝏

𝝏𝒕
+ 𝛁(𝝆𝒖⃗⃗ ) = 𝟎 

 
(5-16) 

: Fluid density 

𝑢⃗ : Velocity vector 

t: Time 
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Component Equation Description of variables 

Momentum 

𝝏(𝝆𝒖⃗⃗ )

𝝏𝒕
+ 𝛁(𝝆𝒖⃗⃗ 𝒖⃗⃗ ) = −𝛁𝒑 + 𝛁(𝛍𝛁𝒖⃗⃗ ) 

 
(5-17) 

p: Pressure 

: Molecular viscosity 

 

Table 5-4 presents the boundary conditions for the flow field. Normal velocity condition is specified 

at the inlet (Equation (5-18)), pressure at the outlet (Equation (5-19)), and no slip at the walls 

(Equation (5-20)). 

Table 5-4. Boundary conditions for flow field in 2D model – Cylindrical pipes 

Boundary Boundary conditions Initial conditions Description of variables 

Inlet 
𝑢 = −𝑛𝑈𝑜 

 
(5-18) 

Uo: parabolic profile of Vo 

Turbulence conditions: 

Turbulent intensity = 0.1 

Turbulent length scale =  

u: Normal inflow velocity 

magnitude 

Uo: Velocity magnitude 

Vo: Average velocity 

Outlet 
𝑝 = 0 

 
(5-19) 

- p: Pressure 

Walls and 
Biofilm surface 

(Bs) 

𝑢⃗  = 0 
 

(5-20) 
- 𝑢⃗ : Velocity vector 

 

The model SST (Shear Stress Transport) was chosen for solving the transitional and turbulent flow. 

Details about the process to select the appropriate turbulence model are presented in the Section 

5.2.4.3. Turbulence is a property of the flow and it is measured by the Reynolds number (Re). In 

this study, the range Re = 2300 – 10,000 was used as the range for the transition regime between 

laminar and turbulent flow (Abraham et al., 2009). Turbulence is characterized by a wide range of 

flow scales: the largest occurring scales, which depend on the geometry, the smallest, quickly 

fluctuating scales, and all the scales in between (COMSOL, 2013). The Navier-Stokes equations 

can be used for turbulent flow simulations, although this would require a large number of elements 

in order to capture the turbulent flow fluctuations in time and space. A strategy to tackle this issue 

is to divide the flow into large, resolved scales and small, unresolved scales. The small scales are 

then modelled using a turbulence model to reduce the numerical cost of resolving all present scales 

(COMSOL, 2013). 
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In this line, the Navier-Stokes equations for incompressible flow are adapted to include the flow 

quantities into an averaged value and a fluctuating part. Then, 𝑢⃗  is replaced by the averaged 

velocity field U (COMSOL, 2013) (Table 5-5 and Table 5-6). The term ∇ ∙ (𝜌𝑢′⨂𝑢′) specified in 

the Equation (5-22) is called the Reynolds stress tensor (COMSOL, 2013). 

Table 5-5. Navier-Stokes equations for turbulent incompressible flow 

Component Equation Description of variables 

Mass 

𝝏

𝝏𝒕
+ 𝛁(𝝆𝑼) = 𝟎 

 
(5-21) 

: Fluid density 

U: Averaged velocity field 

t: Time 

Momentum 

𝝏(𝝆𝑼)

𝝏𝒕
+ 𝛁(𝝆𝑼) +  𝛁 ∙ (𝝆𝒖′⨂𝒖′) = −𝛁𝒑 + 𝛁(𝛍𝛁𝑼) 

 
(5-22) 

p: Pressure 

: Molecular viscosity 

 

The equations of the turbulence model SST are included in Table 5-6. The SST turbulence model 

combines the κ-ε and κ-ω turbulence models. The model equations are formulated in terms of 

turbulent kinetic energy (κ) (Equation (5-23)) and the dissipation per unit turbulent kinetic energy 

(ω) (Equation (5-24)). The turbulent viscosity is expressed by the Equation (5-25). E is the 

characteristic magnitude of the average velocity gradients (Equation (5-26)). P is a function of Pk 

(Equation (5-27)), which is the rate of production of the turbulent kinetic energy κ (Equation (5-28)), 

and the terms κ, ω, ω2 are Prandtl number-like parameters for the transport κ and ω (Abraham 

et al., 2009). The model constants are defined through interpolation of appropriate inner and outer 

values (Equation (5-29)). F1 is a blending function (Equation (5-30)) that facilitates the combination 

of the standard κ-ε and κ-ω models. The  terms are model constants. 

The factor , which multiplies the production term P in Equation (5-24), has the role of diminishing 

the rate of turbulence production in flows that are not fully turbulent (Abraham et al., 2009). The 

values of  range between 0 and 1. COMSOL interpolates  by Equation (5-29) with default values 

1 = 5/9 and 2 = 0.44 (Table 5-6). On the other hand, Abraham et al. (2009) presented a transition 

model to adapt the SST turbulence model to non-fully turbulent flows for the simulation of heat 

transfer in round pipes. The adaptation was made via the damping factor , which depends also on 

the local stability status of the flow in the near-wall region. Complete development of the transition 

model can be found in Abraham et al. (2009). Despite of some Re of the simulations presented in 
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this study fall into the transitional flow regime, the SST model included in COMSOL Multiphysics 

5.2a was used (see Section 5.2.4.3). 

SST model uses the wall distance parameter (lw; Equations (5-31) and (5-34)), which is provided 

by a mathematical Wall Distance interface. Wall distance is included when using the SST model 

implemented with COMSOL Multiphysics 5.2a. The solution to the wall distance equation is 

controlled using the parameter lref. The distance to objects larger than lref is represented accurately, 

while objects smaller than lref are effectively diminished by appearing to be farther away than they 

actually are. This is a desirable feature in turbulence modelling since small objects would get too 

large impact on the solution if the wall distance were measured exactly (COMSOL, 2013). Finally, 

the model SST in COMSOL Multiphysics 5.2a includes the default constants specified in Table 5-6, 

which remained unchanged in the application to the current biofilm chlorination model. 
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Table 5-6. Equations of the turbulent model SST 

Equations Description of variables 
𝜕(𝜌𝑘)

𝜕𝑡
+ ∇(𝜌𝑘𝑢⃗ ) = 𝑃 − 𝜌𝛽𝑜

∗𝑘ω∇ ∙ [(𝜇 + 𝜎𝑘𝜇𝑇)∇𝑘] (5-23) 
t: Time 

k: Turbulent kinetic energy 

ω: Dissipation per unit turbulent 

kinetic energy 

turbulent kinetic energy 

ρ: Fluid density 

: Molecular viscosity 

: Turbulent viscosity 

F1, F2: Interpolation functions 

E: Characteristic magnitude of the 

average velocity gradients 

T: Temperature 

Pk: Production term 

lu: Distance to the closest wall 

1, 1, *0, 1, 2, k1, k2, ω1, 

ω2, a1: constants of the model 

 

𝜕(𝜌𝜔)

𝜕𝑡
+ ∇(𝜌𝜔𝑢⃗ ) =

𝜌𝛾

𝜇𝑇
P − ρβω2 + ∇ ∙ [(𝜇 + 𝜎𝑘𝜇𝑇)∇𝑘] + 2(1 − 𝐹1)

𝜌𝜎𝜔2

𝜔
∇𝜔 ∙ ∇𝑘 (5-24) 

𝜇𝑇 =
𝜌𝑎1𝑘

max (𝑎1𝜔, 𝐸𝐹2)
 (5-25) 

𝐸 = √2𝐸𝑖𝑗𝐸𝑖𝑗 (5-26) 

𝑃 = min (𝑃𝑘 , 10𝛽𝑜
∗𝑘ω) (5-27) 

𝑃𝑘 = 𝜇𝑇(∇𝑢⃗ : (∇𝑢⃗ + (∇𝑢⃗ )𝑇) −
2

3
(∇ ∙ 𝑢⃗ )2) −

2

3
𝜌𝑘∇ ∙ 𝑢⃗  (5-28) 

Constants of the model: 𝜆 = 𝐹1𝜆1 + (1 − 𝐹1)𝜆2 for 𝜆 = 𝛽, 𝛾, 𝜎𝑘 , 𝜎𝜔  (5-29) 

𝐹1 = 𝑡𝑎𝑛𝑔ℎ(𝜃1
4) (5-30) 

𝜃1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

𝛽𝑜
∗𝜔𝑙𝑤

,
500𝜇

𝜌𝜔𝑙𝑤
2) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑙𝑤2
] (5-31) 

𝐶𝐷𝑘𝜔 = 𝑚𝑎𝑥 (
2𝜌𝜎𝜔2

𝜔
∇𝜔 ∙ ∇𝑘, 10−10) (5-32) 

𝐹2 = 𝑡𝑎𝑛𝑔ℎ(𝜃2
2) (5-33) 

𝜃2 = 𝑚𝑎𝑥(
2√𝑘

𝛽𝑜
∗𝜔𝑙𝑤

,
500𝜇

𝜌𝜔𝑙𝑤
2) (5-34) 

Turbulence model parameters: The default model constants are given by: 

1=0.075 | 2=0.0828 | *0=0.09 | 1=5/9 | 2=0.44 | k1=0.85 | k2=1.0 | ω1=0.5 | ω2=0.856 | a1=0.31 
 

Source: adapted from COMSOL (2013) 
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5.2.4 Pre-processing 

5.2.4.1 Geometry and mesh  

The current model presents some mathematical challenges at the biofilm surface; fluxes vary from 

zero to a finite value in few seconds. Several mesh and geometry configurations were tested and 

it was observed that, when the mesh size in this region was higher than the length scale of the 

mathematical solution, negative concentrations of the dissolved substances arose at the pipe wall 

and/or outlet. In order to avoid this, the optimal geometry and mesh were selected in function of 

obtaining positive concentrations of chlorine and chloroform and positive fluxes, under laminar and 

transition flow regimes. Therefore, five configurations were tested by a combination of several 

geometry and model characteristics, which are specified in Table 5-7. 

Table 5-7. Geometry configurations tested in the current model 

Configuration 
Nr. 

Main bulk 
water 

domain 

Surface 
reactions 

Full 
biofilm 

thickness 

Stabilization domain with no reaction 

Before main bulk 
water domain 

After main bulk 
water domain 

1 X X    

2 X  X   

3 X X  X  

4 X X  X X 

5 X  X X  

 

The main bulk water domain represents the portion of the pipe where wall reactions were occurring 

along its length, from the beginning to the end. Surface reactions indicated the solution of wall 

reactions in COMSOL by assuming that the biofilm is completely mixed, then simulations of the 

reactions along the total biofilm thickness is not necessary. This represented a simplification of the 

model because specifying reactions at the wall as boundary was sufficient. Full biofilm thickness 

means that wall reactions were specified along the total biofilm thickness, then constructing a 

subdomain for this was necessary. A stabilization domain with no reactions refers to the 

construction of a subdomain for bulk water, where no reactions were taking place. This was made 

in order to allow the development of the flow and the transport of dissolved substances without 

steep changes of their concentrations due to reactions with biomass. 

The meshes were created with COMSOL Multiphysics 5.2a. The first attempt was made with a 

triangular mesh refined at the wall and at the boundary between the stabilization and bulk water 

domains; biofilm reactions were included as surface reactions. However, fluxes at the wall 

presented notably oscillations. This mesh was discarded and effort was focused on rectangular 

element meshes. Finally, the configuration number 5 was selected together with a mapped mesh, 
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including boundary layers at the biofilm surface and in between stabilization and bulk water 

domains in order to smooth the transition between elements of different size. Figure 5-4 presents 

the geometry configuration and Figure 5-5 shows the mesh details. 

 

Figure 5-4. Geometry of the water pipe 

 

 

Figure 5-5. Mesh details of the water pipe 
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The software COMSOL offers the parameter “mesh quality” to assess the degeneration of the 

elements, according to their shapes. Quality varies between 0 and 1; 0 represents the presence of 

degenerated elements and 1 perfectly regular elements. Low mesh quality leads to inverted 

elements and convergence issues (COMSOL, 2012); therefore, it is preferable to obtain mesh 

quality near to 1 at the time of constructing the mesh. For the stabilization domain, high mesh 

quality was not necessary because this domain was only used for development of the flow and 

transport of chlorine with no reactions. The mesh quality of the biofilm subdomain is very low due 

to the aspect ratio of the elements; thickness varied between 7-102 m while length was 1 m. In 

order to minimise this difference, a boundary layer was included at the biofilm surface to improve 

the transition of the element size between biofilm and bulk water domains. 

The highest mesh quality was established for bulk water in order to better predict the transport of 

dissolved substances along the pipe. Another boundary layer was included between the 

stabilization and bulk water domain. Overall, the selected geometry and constructed mesh were 

appropriate for the scope of the current model, obtaining reasonable chlorine and chloroform 

concentrations and fluxes at the pipe wall and outlet, within an acceptable computational time (see 

Sections 5.2.4.2 and 5.3.1). Table 5-8, Table 5-9 and Table 5-10 describe the main mesh 

characteristics for  of 10, 6, and 3 (inches), respectively. The number of elements was changed 

according to the pipe diameter in order to keep the same mesh quality. The length of the pipe was 

kept equal to 1 m to ease the interpretation of the results. 

Table 5-8. Characteristics of the mapped mesh for pipe diameter of 10 inches 

Domain / Region Size elements 
Element distribution 

on edges 
Number of 
elements 

Average 
quality 

Stabilization 
 Length: 0.5 m 
 Predefined size: normal 

 Wall: 150  
 Inlet: 150 

34,200 0.350 

Bulk water 
 Length: 1.0 m 
 Predefined size: fine 

 Biofilm surface: 800  
 Wall: 150 

152,000 0.740 

Biofilm 

 Length: 1.0 m 

 Thickness: 7-102 m 
 Predefined size: fine 

 Biofilm surface: 800  
 Wall: 5 

4,000 0.002 

Whole mesh statistics: Total number of elements / Average quality 190,200 0.651 

Boundary layer in biofilm 
surface 

 Number of boundary layers: 40 
 Stretching factor: 1.1 
 Thickness of first layer: BT/5 

Boundary layer in 
between stabilization 
and bulk water domain 

 Number of boundary layers: 30 
 Stretching factor: 1.5 
 Thickness of first layer: L/800 
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Table 5-9. Characteristics of the mapped mesh for pipe diameter of 6 inches 

Domain / Region Size elements 
Element distribution 

on edges 
Number of 
elements 

Average 
quality 

Stabilization 
 Length: 0.5 m 
 Predefined size: normal 

 Wall: 150 
 Inlet: 100 

21,600 0.340 

Bulk water 
 Length: 1.0 m 
 Predefined size: fine 

 Biofilm surface: 800  
 Wall: 100 

96,000 0.740 

Biofilm 

 Length: 1.0 m 

 Thickness: 7-102 m 
 Predefined size: fine 

 Biofilm surface: 800  
 Wall: 5 

4,000 0.002 

Whole mesh statistics: Total number of elements / Average quality 121,600 0.646 

Boundary layer in biofilm 
surface 

 Number of boundary layers: 20 
 Stretching factor: 1.2 
 Thickness of first layer: BT/5 

Boundary layer in 
between stabilization 
and bulk water domain 

 Number of boundary layers: 30 
 Stretching factor: 1.5 
 Thickness of first layer: L/800 

 

Table 5-10. Characteristics of the mapped mesh for pipe diameter of 3 inches 

Domain / Region Size elements 
Element distribution 

on edges 
Number of 
elements 

Average 
quality 

Stabilization 
 Length: 0.5 m 
 Predefined size: normal 

 Wall: 150 
 Inlet: 50 

10,800 0.340 

Bulk water 
 Length: 1.0 m 
 Predefined size: finer 

 Biofilm surface: 800  
 Wall: 50 

48,000 0.741 

Biofilm 

 Length: 1.0 m 

 Thickness: 7-102 m 
 Predefined size: fine 

 Biofilm surface: 800  
 Wall: 5 

4,000 0.002 

Whole mesh statistics: Total number of elements / Average quality 62,800 0.625 

Boundary layer in biofilm 
surface 

 Number of boundary layers: 40 
 Stretching factor: 1.1 
 Thickness of first layer: BT/5 

Boundary layer in 
between stabilization 
and bulk water domain 

 Number of boundary layers: 30 
 Stretching factor: 1.4 
 Thickness of first layer: L/800 

 

5.2.4.2 Mesh convergence and selection of time step 

Once the base mesh was defined for 10-inch pipes (mesh 1, 190.200 elements, Table 5-8), the 

next step was to determine the mesh convergence. This was done by refining that mesh in both 

directions (r, z), including the boundary layers; such refinement consisted on doubling the number 

of elements. The mesh 2 resulted in 752.800 elements. Taking into account that the current model 

was applied for prediction of bulk concentrations of DBPs and characterisation of mass transport 

of dissolved substances at the biofilm surface, velocity at the centre of the bulk water domain along 

r axis and the parameter Sh̄ (Equation (2-11)) for both chlorine and chloroform were used to 

compare both meshes. These parameters are representing the flow regime and mass transport 
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simulations of the model. Several time steps (i.e., 1s, 5 s, 10 s, 30 s, 1 min, 5 min) were also 

compared for Sh̄ in order to identify the appropriate time step simultaneously to mesh convergence 

test.  

Results of velocity at the centre of the bulk water domain and the parameter Sh̄ are presented in 

Figure 5-6. The conditions of the simulations are also specified in Figure 5-6a. Result comparisons 

allowed determining that results of velocity and Sh̄ obtained with both meshes are similar. 

Percentage of difference for maximal, median, and average velocity were 0%, 0%, and 0.11%, 

respectively. In the case of Sh̄ for chlorine, percentage of difference ranged between 1.46-3.18% 

for the assessed time steps. Finally, Sh̄ for chloroform, percentage of difference ranged between 

0.16-1.10% for the assessed time steps. Due to small differences between two meshes, the mesh 

1 was selected for running the subsequent simulations.  

 
(a) 

 
(b) 
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(c) 

Figure 5-6. Comparison of velocity and Sh̄ between mesh 1 and 2 (a) Velocity monitored in the 
centre of bulk water domain along r axis (b) Sh̄ for chlorine (c) Sh̄ for chloroform 

  

In relation to the time step, the selected ones resulted in dissimilar results between consecutive 

pairs for every mesh. The percentage of difference ranged between 19.38-121.47% and 2.54-

97.87% for chlorine and chloroform, respectively with mesh 1; and between 19.07-121.26% and 

2.63-98.35% for chlorine and chloroform, respectively with mesh 2. For this reason, a time step of 

0.1 s was also tested with mesh 1. Figure 5-7a presents the comparison of Sh̄ for both chlorine and 

chloroform and Figure 5-7b shows the comparison of average chloroform concentrations at the 

pipe outlet for several time steps. In relation to the latter, percentage of difference varied between 

0.0-3.98%, 0.15-86.47% and 0.02-6.33% for maximal, median and average concentrations, 

respectively, for consecutive pairs of time steps. In particular, percentage of difference between 

values corresponding to 0.1 s and 1 s resulted in 0%, 0.15% and 0.02% for maximal, median and 

average concentration of chloroform, respectively. In the case of Sh̄ , percentage of difference was 

reduced to 4.78% and 0.08% for chlorine and chloroform, respectively between time steps 0.1 s 

and 1 s. Due to small differences between time steps 0.1 s and 1 s, the latter one was selected for 

the subsequent simulations. 
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(a) 

 
(b) 

Figure 5-7. Comparison of Sh̄ (a) and average chloroform concentration at the pipe outlet (b) in 
mesh 1 

 

5.2.4.3 Selection of turbulence model 

Considering that drinking water pipes are characterized by turbulent flow regime (Cogan, 2010), it 

is important to analyse the mass transport of chlorine and DBPs in the current 2D model under high 

Re. In addition, the current model involves reactions at the pipe wall; therefore, the flow near to it 

becomes important to simulate correctly. In this line, a brief background on turbulence models is 

presented here in order to better explain the selection of the turbulence model for the subsequent 

simulations. According to Frei (2013), the turbulent flow near a flat wall can be divided up into four 

regimes (Figure 5-8). At the wall, the fluid velocity is zero, and for a thin layer above this, called the 

viscous sublayer or laminar sublayer, the flow velocity is linear with distance from the wall. Further 

away from the wall, the region buffer layer is located. In the buffer region, the flow begins to 
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transition to turbulent and it eventually transitions to a region where the flow is fully turbulent and 

the average flow velocity is related to the log of the distance to the wall. This is known as the log-

law region. Even further away from the wall, the flow transitions to the free-stream region. The 

viscous and buffer layers are very thin and, if the distance to the end of the buffer layer is δ, then 

the log-law region will extend about away from the wall. 

 

Figure 5-8. Regimes of the turbulent flow near to a flat wall 

Source: Frei (2013) 

 

Three Reynolds-averaged Navier-Stokes turbulence models from seven models available in 

COMSOL Multiphysics 5.2a were tested in order to select the most appropriate one to simulate the 

mass transfer at the biofilm surface. Table 5-11 presents a brief description of the models SST, 

yPlus, and Low Reynolds number κ-ε. These models were selected as they solve the flow 

everywhere, therefore a detailed comparison on velocity magnitude and concentrations of DBPs at 

the pipe outlet could be carried out. In the case of simulations of heat transfer in round pipes, 

versions of low Reynolds number κ-ε and low Reynolds number Reynolds stress turbulence models 

(Thakre and Joshi, 2000), κ-ε with standard wall functions (Jayakumar et al., 2008), and SST 

(Abraham et al., 2009; Di Piazza and Ciofalo, 2010) have been used in comparison with 

experimental data, for transitional and fully developed turbulent flows. 

Table 5-11. Description of five turbulence models included in COMSOL Multiphysics 5.2a 

Turbulence 
model 

Variables 
computed 

Regions where 
the flow is solved 

/ not solved 
Applications Limitations 

SST 

It is a 
combination of 
the κ-ε in the 
free stream 
and the κ-ω 

Everywhere 
 

It does not use wall 
functions 

It tends to be most accurate 
when solving the flow near 
the wall 
 
Flow over an aerofoil 

-- 
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Turbulence 
model 

Variables 
computed 

Regions where 
the flow is solved 

/ not solved 
Applications Limitations 

models near 
the walls 

yPlus 
Turbulence 
viscosity 

Everywhere 
 

It does not use wall 
functions 

It provides good 
approximations for internal 
flow, especially in electronic 
cooling applications 

The least 
accurate model 

Low 
Reynolds 

number κ-ε 

κ: turbulent 
kinetic energy 
ε: rate of 
dissipation of 
kinetic energy 

Everywhere 
 

It does not use wall 
functions 

Lift and drag forces and 
heat flux can be modelled 
with higher accuracy 

It uses more 
memory than 
standard κ-ε 

Adapted from Frei (2013) 

 

To select the appropriate turbulence model for the subsequent simulations, simulations with the 

five turbulence models described in Table 5-11 were run. Velocity magnitude at the centre of bulk 

water domain along r axis (see Figure 5-6a) and chloroform concentrations at the pipe outlet were 

used to compare the performance of these models (Figure 5-9). The three models solved the flow 

in this region and the velocity magnitude is zero at the pipe wall. In order to quantify the similarity 

between turbulence models, percentage of difference was calculated for pairs or maximal (Table 

5-12), median (Table 5-13), and average (Table 5-14) velocity. Pair of models yPlus/SST was the 

only one which resulted in percentage of difference lower than 5% for every velocity value 

compared. 

 
(a) 
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(b) 

Figure 5-9. Comparison of five turbulence models included in COMSOL Multiphysics 5.2a (a) 
Velocity monitored at the middle of bulk water domain (b) Average chloroform concentrations at 

the pipe outlet 

 

Table 5-12. Percentage of difference between pairs of turbulence model – Maximal velocity 

Turbulence model yPlus 
Low Re 

κ-ε 
SST 

yPlus -  

Low Re κ-ε 20.53% -  

SST 4.77% 15.80% - 

 

Table 5-13. Percentage of difference between pairs of turbulence model – Median velocity 

Turbulence model yPlus 
Low Re 

κ-ε 
SST 

yPlus -  

Low Re κ-ε 7.14% -  

SST 4.54% 2.60% - 

 

Table 5-14. Percentage of difference between pairs of turbulence model – Average velocity 

Turbulence model yPlus 
Low Re 

κ-ε 
SST 

yPlus -  

Low Re κ-ε 8.05% -  

SST 2.24% 5.81% - 
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The effect of turbulence on concentrations of chloroform is observed in Figure 5-9b. Concentration 

curves are very dissimilar. Percentage of difference of pairs of turbulence models were higher than 

5% for all the values assessed here, except for average values of the pair Low Reynolds/SST. 

Up to this point, it is clear that solution of the flow near to the wall is crucial as the current model 

involves reactions at the pipe wall and mass transport at the biofilm surface. For instance, Di Piazza 

and Ciofalo (2010) found that models SST and Reynolds stress model – ω were in excellent 

agreement with direct numerical simulation results in relation to pressure drop in helically coiled 

heat exchanger and Re of 14,000 and 80,000. With regards to heat transfer, the predicted 

temperature with both models were in satisfactory agreement (Di Piazza and Ciofalo, 2010). 

Taking into account that there are no experimental data to compare with in order to select the most 

appropriate turbulence model, comparisons between results obtained with the software Ansys 

Fluent 16.0 were made. Simulations using Ansys Fluent 16.0 used an axisymmetric mesh, with 

64,135 rectangular elements, = 10 inches and L = 1 m. The selected models were laminar and 

SST; laminar was included because low Re (1248) was used in this analysis. Laminar flow regime 

was included in order to analyse a wider range of Re. Figure 5-10a shows the comparison of 

velocity magnitude monitored in the middle of bulk water domain for models laminar and SST run 

in both software COMSOL and Ansys Fluent. Similarly, maximal (Table 5-15), median (Table 5-16), 

average (Table 5-17) velocities were compared for each turbulence model between both software.  

Velocity profile of laminar and SST model resulting from both software are similar for maximal and 

median velocity (percentage of difference lower than 5%), but percentage of difference for average 

velocity was higher than 23%. This similarity between both software for laminar and SST turbulence 

models represents that the solution is solver independent and that the model can be replicated in 

both software. In conclusion, the turbulence model selected for the subsequent simulations in this 

study was SST; the curves of this model obtained from COMSOL and Ansys Fluent are included 

in Figure 5-10b for better illustration. It is important to highlight that SST tends to be more accurate 

solving the flow near the wall because it combines κ-ε and κ-ω models (Frei, 2013). 
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(a) 

 
(b) 

Figure 5-10. Comparison of velocity monitored at the middle of bulk water domain between 
software COMSOL and Fluent (a) Laminar and SST (b) SST 

 

Table 5-15. Percentage of difference between COMSOL and Fluent for the same turbulence model – 
Maximum velocity 

Software Fluent 

COMSOL 

Turbulence model Laminar SST 

Laminar 0.02% - 

SST - 0.47% 
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Table 5-16. Percentage of difference between COMSOL and Fluent for the same turbulence model – 
Median velocity 

Software Fluent 

COMSOL 

Turbulence model Laminar SST 

Laminar 0.88%  

SST - 4.52% 

 

Table 5-17. Percentage of difference between COMSOL and Fluent for the same turbulence model – 
Average velocity 

Software Fluent 

COMSOL 

Turbulence model Laminar SST 

Laminar 24.12%  

SST - 23.71% 

 

Due to the importance of coupling flow and mass transport, further analysis of the influence of 

turbulence on mass transport was carried out by comparing Sh̄ of chlorine and chloroform resulting 

from conditions described in Figure 5-9 and Figure 5-10. Results are shown in Table 5-18; the 

typical behaviour of the model described in Section 5.3.1 presents the normal variation in time of 

Sh. The Sh̄ calculated for the turbulence models presented in Table 5-18 are dissimilar; percentage 

of difference for every pair of Sh̄ were as high as 173%. Sh̄ for chloroform with laminar flow and 

SST turbulence model corresponding to simulation with inlet velocity equal to the normal velocity 

magnitude were the only pair of similar values (0.0011925 vs. 0.0012109; percentage of difference 

= 1.53%). 

Table 5-18. Sh̄ for different turbulent models 

Turbulence 
model 

Inlet velocity: Parabolic profile 
Inlet velocity: Normal 
velocity magnitude 

 Chlorine Chloroform Chlorine Chloroform 

Laminar N.A N.A 0.0011925 0.0056078 

yPlus 0.0014186 0.082039 N.A N.A 

Low Re 0.0041935 0.170580 N.A N.A 

SST 0.0027529 0.116310 0.0012109 0.076996 

N.D: Not Defined | N.A: Not Apply 

 

The previous analysis was undertaken to select the most appropriate turbulence model for coupling 

flow and mass transport during the formation of chloroform from chlorine disinfection. This enabled 

the conclusion to be drawn that DBP concentrations are highly sensitive to the turbulence model 

used in the simulations. Therefore, further field or laboratory research regarding DBP formation 
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from biofilms under hydrodynamic conditions should consider turbulence as an important factor 

influencing the results. 

 

5.2.5 Implementing the model in COMSOL 

As explained previously, rectangular meshes (Table 5-8, Table 5-9, and Table 5-10), time step of 

1 s, and SST turbulence model were chosen to predict the DBP formation potentials, in drinking 

water pipes, by chlorination of biofilms, under hydrodynamic conditions. First, the flow field was 

solved under steady state, then transient simulations for substance transport from this converged 

steady flow field were performed; it was assumed dissolved substances (chlorine and DBPs) do 

not affect the flow field. The discretization approach was P1+P1 (linear elements for both the 

velocity components and the pressure field) for solution of flow, linear for solution of transport of 

dissolved substances, and quadratic discretization for solution of decay of cells and EPS. 

The solver was “Direct” for both transitional flow and transport of dissolved substances simulations. 

Direct methods find an approximation of the solution A-1 f = u by matrix factorization in a number of 

operations that depend on the number of unknowns. Factorization is expensive, but once it has 

been computed, it is relatively inexpensive to solve for new right-hand sides. Since direct methods 

are expensive in terms of memory and time intensive for CPUs, they are preferable for small- to 

medium-sized 2D and 3D applications (Marra, 2013). This is the case of the current model; 

therefore, direct solver was selected. 

The numerical simulations were run in a computer with a processor Intel® Core™ i5-4430 CPU 

3.00 GHz, and RAM memory of 16.0 GB. The model was implemented in the software COMSOL 

Multiphysics 5.2a, by a 2D axisymmetric geometry of a cylindrical pipe. Computational time ranged 

between 1-10 hours, according to domain size, flow regime, and simulation time. For instance, 

each simulation for  = 3 inches, transitional flow and simulation time of one hour lasted around 1-

2 hours. Each simulations of the sensitivity analysis lasted around 3 hours. Table 5-19 presents 

the modules, boundary and initial conditions used in each simulated domain. 

Table 5-19. Main features for model implementation in COMSOL Multiphysics 5.2a 

Module Domain Boundary Boundary condition Initial values 

Laminar flow Bulk water 

Inlet 
Normal velocity – 
Parabolic profile 

0 
Outlet Pressure. Po = 0 

Bs No slip 
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Module Domain Boundary Boundary condition Initial values 

Centre of the 
pipe 

Axial symmetry 

Transitional 
and turbulent 
flow 
SST model 

Bulk water 

Inlet 

Normal velocity – 
Parabolic profile 

Turbulent intensity = 0.1 

Turbulent length scale =  
0 

Outlet Pressure. Po = 0 

Wall No slip 

Centre of the 
pipe 

Axial symmetry 

Transport 
diluted 
substances 
(tds) 

Bulk water 

Inlet Inflow. Co = Co; Ro = 0 

Co = Co; Ro = 0  
Outlet Outflow 

Bs Continuity 

Centre of the 
pipe 

Axial symmetry 

Biofilm 
Wall No flux 

Co = 0; Ro = 0 
-- Reactions 

Domain ODEs Biofilm 
Reactions for 
cells and EPS 

decay 
-- Xo = Xo; Eo = Eo 

 

5.2.6 Scenarios simulated 

The scenarios simulated with the model proposed here are based on the variables flow regime, 

Reynolds number, pipe diameter, and drinking water quality, in order to identify their influence on 

response variables such as average DBP concentration at the pipe outlet, Sh̄ and mass transfer 

rate of DBPs. The conditions of the simulated scenarios were as it follows: 

 Laminar, transitional, and turbulent flow 

 Re: 1,202 – 50,030  

 Pipe diameters of 3, 6 and 10 inches 

 BT of 7 m and 102 m, Clo of 0.12 mg/L and 1.66 mg/L, and Xo of 2.82 x 10-4 mg/cm2 and 

4.44 x 10-3 mg/cm2 

 

5.2.7 Parameters selection 

The selection of parameters was explained in Chapter 3. Table 5-20 presents the consolidation of 

the microbiological and kinetic parameters; and hydraulic-related parameters such as flow rate, 

velocity and pipe diameter considered for simulations of the scenarios described in the previous 

section. 
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Table 5-20. Parameters used in the 2D model simulations 

Parameter Value Reference 

Biofilm thickness (BT) 7 and 102 m Table 4-3 

Initial biofilm density (Xo) 2.82x10-4 and 4.44x10-3 mg/cm2 Table 4-5 

Initial EPS concentration (Eo) 𝐸𝑜 = 5.0295𝐵𝑇 + 1884.3 Celmer et al. (2008) 

Temperature (T) 25 °C Section 3.3.5 

Diffusion coefficient of chlorine in 
liquid 

2.66 x 10-9 m2/s Chen and Stewart (1996) 

Diffusion coefficient of chloroform in 
liquid 

9.29 x 10-10 m2/s Buzatu et al. (2007) 

Diffusion coefficient of DCAN in 
liquid 

1.66 x 10-9 m2/s Poling et al. (2007) 

Chlorine-cell reaction rate (k1)  1.1x10-3 m3/g-sec Chen and Stewart (1996) 

Chlorine-EPS reaction rate (k2)  3.7x10-6 m3/g-sec Chen and Stewart (1996) 

Chlorine-cell yield coefficient (Y1)  1.85 g/g Chen and Stewart (1996) 

Chlorine-EPS yield coefficient (Y2)  540 g/g Chen and Stewart (1996) 

Portion of chlorine reacting with 
cells - chloroform (Fx ) 

0.70 Section 4.2.3.6 

Portion of chlorine reacting with 
cells - DCAN (Fx ) 

0.30 Section 4.2.3.6 

Portion of chlorine reacting with 
EPS - Chloroform (FE ) 

0.30 Section 4.2.3.6 

Portion of chlorine reacting with 
EPS - DCAN (FE ) 

0.17 Section 4.2.3.6 

S 0.50 Section 5.2.8 

Flow rate (Q) 
260 – 1080 L/h Abokifa et al. (2016a) 

2170 – 2820 L/h - 

Re 1,202 – 50,030 - 

Pipe diameter () 3, 6, 10 inches - 

 

5.2.8 Effective diffusion coefficient of DBPs 

In Chapter 4, the influence of s on chloroform concentrations was observed for time less than 60 

min and values as small as s = 0.016, under stagnation conditions. Differences were noted on the 

speed of the reactions but not in the potential concentrations of chloroform. Taking into account 

that there are not experimental measurements of diffusion of chloroform and DCAN within biofilms, 

the influence of s on concentrations of both substances were examined again under transitional 

flow. Figure 5-11 shows the chloroform concentrations in bulk water and Sh̄ for the same 

substance. Results indicate there is no significant difference among concentrations at the pipe 

outlet (percentage of difference 0.00-0.21%, 0.01-0.59%, and 0.00-0.04% for maximal, median and 

average values). However, Sh̄ for chloroform is very dissimilar among the three values of s tested. 

Percentage of difference ranged between 38.14-135.31% for consecutive pair of Sh̄ values and it 

was 187% for s values of 0.016 and 1.000. Such difference is due to calculation of Sh̄ (Equation 

(2-11)), which relies on concentration gradients of dissolved substances at the biofilm surface; then, 
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changes of diffusion coefficient of these substances within the biofilm in relation to bulk water 

coefficients leads to different gradients for each s tested. 

 
(a) 

 
(b) 

Figure 5-11. Influence of S on (a) chloroform concentrations in bulk water at the pipe outlet and (b) 
Sh̄  

 

Figure 5-12 shows the DCAN concentrations in bulk water and the Sh̄ for the same substance. 

Similarly to chloroform, results for DCAN evidence there is no difference among concentrations at 

the pipe outlet (percentage of difference 0.00-0.32%, 0.24-0.56%, and 0.00-0.04% for maximal, 

median and average values). However, Sh̄ for DCAN is very dissimilar among the three values of 

s tested. Percentage of difference ranged between 38.17-135.29% for consecutive pair of Sh̄ 

values and it was 187% for s values of 0.016 and 1.000. As previously mentioned, there is not 

information regarding experimental studies to calculate the effective diffusion coefficients of 

chloroform and DCAN within biofilms. Therefore, s=0.5 was arbitrarily chosen as an intermediate 
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value within the possible range. This parameter was included in the sensitivity analysis and it was 

possible to determine its degree of influence on the response variables (see Section 5.3.7). 

 
(a) 

 
(b) 

Figure 5-12. Influence of S on (a) DCAN concentrations in bulk water at the pipe outlet and (b) Sh̄  

 

5.2.9 Mass transport 

Mass transport of dissolved substances chlorine and DBPs was characterized by the local Sh 

(Equation (2-9)), average Sh̄ (Equation (2-11)), and 𝑘𝑓
̅̅ ̅ (Equation (2-11)). 

 

5.2.10 Sensitivity analysis 

The aim of a sensitivity analysis in a model is to establish what factors need better determination, 

and to identify the weak links of the assessment chain (i.e those that propagate most variance in 
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the output) (Saltelli et al., 2004). For the particular model presented here, carrying out a sensitivity 

analysis is important because the model is based on microbiological data, which are not frequently 

available for full scale DWDNs. Therefore, to determine which parameters influence most the 

outputs is crucial for offering recommendations on further research and on where the efforts on 

field work and laboratory assessment must be put in. According to Menberg et al. (2016), there are 

three distinctive sensitivity analysis methods: i) Morris method for parameter screening (low 

computational cost), ii) linear regression analysis (medium computational cost), and iii) Sobol 

method (high computational cost). 

The results of these three methods applied to an energy building model were compared and 

researchers concluded that, by using the median value for measuring the parameter influence, 

Morris method yielded robust results for evaluations with small sample size and comparable to the 

other two method results (Menberg et al., 2016). For instance, researchers used 10 independent 

evaluations and 10 trajectories and found the same information regarding the differentiation of 

influential and negligible parameters (Menberg et al., 2016). To investigate higher-order effects and 

parameter interactions, Menberg et al. (2016) used 50-150 trajectories and found that correlation 

of elementary effects (EEs) and parameter values in Morris method can also provide basic 

information about parameter interactions. 

Taking into account that the proposed model here has a high computational cost (1.5-3.0 hours per 

each run), Morris method was chosen to perform a sensitivity analysis in order to assess the level 

of influence of each model parameter and define basic interactions between parameters. This was 

done based on the same approach of Menberg et al. (2016); median value of elementary effect 

measurement was used. The application of the method is presented in the following section. 

5.2.10.1 Parameter screening with Morris method 

Morris (1991) introduced a method for parameter screening in combination with a factorial sampling 

strategy in order to identify parameters that can be fixed at any value within their range without 

affecting the variance of the model outcome. Morris’s method is based on the model output 

represented by a mathematical function Y(Z) with Y as a vector of one model output. The outputs 

for the current analysis were the average of the average DCAN concentration at the pipe outlet and 

Sh̄ for chlorine and DCAN. Z is a N*m matrix of model inputs (Z) with N samples of m parameters 

defined within the lower and upper bounds for each parameter Zmin and Zmax, respectively (Menberg 

et al., 2016). 
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For sampling, the parameter space (Zmin - Zmax) is discretized by transforming the input parameters 

into dimensionless variables in the interval (0;1) and dividing each parameter interval into a number 

of p levels, which form a regular grid in the unit-length hypercube Hm (Menberg et al., 2016). The 

first sample is randomly chosen and each sample differs only in one coordinate from the preceding 

one (Morris, 1991). A sequence of m+1 points is called a trajectory; in each trajectory, parameter 

changes only once by a pre-defined value i. One point in a trajectory represents one evaluation 

run of the model. The magnitude of variation in the model output due to the pre-defined variation 

of one parameter Z is called elementary effect (EE) (Equation (5-35)) (Morris, 1991). 

𝐸𝐸𝑖 =
𝑌(𝑍 + 𝑒𝑖∆𝑖) − 𝑌(𝑍)

∆𝑖
 

(5-35) 

Here ei is a vector of zeros, except for the i-th component that equals ±1 and represents an 

incremental change in parameter i (Garcia Sanchez et al., 2014). While one trajectory allows the 

evaluation of one elementary effect for each parameter i, a set of t trajectories enables statistical 

evaluation of the finite distribution of the EEs. Absolute average (μ*) (Equation (5-36)) and standard 

deviation (SD) (Equation (5-37)) are the statistical measures commonly used to assess the EEs. 

𝜇𝑖
∗ = 0.5∑|𝐸𝐸𝑖𝑡|

𝑟

𝑡=1

 
(5-36) 

𝑆𝐷 = √
1

(𝑟 − 1)
∑(𝐸𝐸𝑖𝑡 − 𝜇𝑖)2

𝑟

𝑡=1

 (5-37) 

Here r is the number of random trajectories (with index t), and t is a set of multiple trajectories. The 

absolute average (μ*) indicates the magnitude of influence of a parameter on the model outcome 

and is often used to rank the parameters according to their importance. Menberg et al. (2016), by 

10 independent evaluations of the Morris method each with 10 trajectories, found that using μ* can 

result in inconsistent ranking of parameters influence, due to some bias by the occurrence or 

absence of outliers and the resulting skewness in the EE distributions. In order to overcome this 

issue, the researchers proposed the application of the absolute median *, because this measure 

is less influenced by the type of distribution of the EE and by outliers, then negligible parameters 

can be identified (Menberg et al., 2016). 

The SD is a measure for the spread in the model outcome due to changes in a specific parameter. 

It indicates that the magnitude of influence of a parameter is dependent on the values of the 
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remaining parameters, and can be interpreted as a measure for non-linearity and parameter 

interactions (Morris, 1991). The computational cost of the Morris method depends on number of 

parameters m and number of t trajectories and is given by t*(m+1). 

5.2.10.2 Higher-order parameter interaction effects 

Menberg et al. (2016), by applying an alternative strategy, investigated the interaction effect 

between two parameters by utilising the results generated from the Morris method. The strategy 

consisted on evaluating the correlation coefficient of the first parameter (its value) with the EE of 

the other parameter as an indication of second-order effects identified (Menberg et al., 2016). 

Despite of this technique is relatively easy, large number of trajectories are required in order to 

interpret the correlations meaningfully. The study of Menberg et al. (2016) used the input parameter 

matrices and their corresponding EEs obtained from sensitivity analysis runs ranging from 50 to 

150 trajectories to compute the corresponding Pearson’s correlation coefficients. For each set of 

trajectories, correlation coefficients were calculated between the EEs for each parameter i and the 

corresponding parameter values resulting in a matrix of correlation coefficient for each sensitivity 

run (Menberg et al., 2016). Then, coefficients with p-value lower than 0.005 were selected to 

calculate the sum of absolute correlation coefficients for each parameter. Ranking the parameters 

according to such sum resulted in identical to the ranking based on Sobol indices (Menberg et al., 

2016).  

5.2.10.3 Implementation of Morris method 

The Morris method was applied by following the same procedure adopted by Menberg et al. (2016), 

i.e., * instead of μ* for screening parameters; 10 trajectories and 12 parameters, which resulted 

in 130 simulations, corresponding to 33 days of computational time. All simulations were run for 

t=3 hours. Higher order interactions between parameters were not evaluated due to the 

computational cost. For instance, Menberg et al. (2016) used 50-150 trajectories, which represents 

for the current model a computational time of 108 days and 325 days. The method was 

implemented in MATLAB 2015b, using the adapted version of toolbox SAFE developed by Pianosi 

et al. (2015). Simulations of sensitivity analysis were run by using the tool “Batch sweep” in 

COMSOL Multiphysics 5.2a. Influence of parameter variation was assessed for the response 

variables Sh̄ for chlorine, Sh̄ for DCAN, and average and median value of average DCAN 

concentration at the pipe outlet. Average and median concentrations of DCAN were chosen 

because the typical behaviour of those curves are characterized by increasing values, reaching a 

maximal value and then decreasing to almost negligible concentrations. Then, average 

concentration at the pipe outlet may be affected by the maximal value in each run; then, it is 
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important to consider the peak concentrations effects. The ranges of parameters included in the 

sensitivity analysis are shown in Table 5-21, which are the same ranges used in the parametric 

sensitivity analysis applied in Chapter 4, Section 4.3.3. 

Table 5-21. Ranges of parameters considered for sensitivity analysis 

Range s Xo Eo Clo Fx FE 

Units  mg/cm2 mg/L mg/L   

Min 0.016 6.65x10-6 935 0.12 0.00 0.00 

Max 1.00 1.33x10-1 9465 2.00 1.00 1.00 

Range Y1 Y2 k1 k2 Q BT 

Units g/g g/g L/mg-s L/mg-s L/h m 

Min 0.19 54 1.1x10-4 3.7x10-7 600 7 

Max 3.70 1080 2.2x10-3 7.4x10-6 1100 102 

 

5.2.11 Post-processing 

The results processing included the description of the typical behaviour of the model by explaining 

the flow field (contour plots of velocity and pressure magnitude in the pipe and velocity profiles); 

the contour plots of concentrations of substances in bulk water and biofilm; fluxes at the biofilm 

surface; and curves of concentrations of dissolved substances at the pipe outlet. The transport of 

dissolved substances was characterized by the average global Sh̄ for chlorine and DBPs and 

calculation of mass transfer rates. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Typical model behaviour 

5.3.1.1 Flow field 

The flow field of the simulations of the 2D model is generally explained by the comparison of 

laminar, transitional and turbulent flow in Figure 5-13. The pressure is higher near to the pipe inlet 

and decreased until zero at the outlet, according to the boundary conditions. For transitional flow, 

pressure near to the inlet is around 0.6 Pa and it reaches the maximal value when the transitional 

flow is fully developed. As expected for higher flow rates, maximum pressure magnitude is higher 

in turbulent flow (20.5 Pa), followed by transitional flow (1.3 Pa) and laminar flow (0.14 Pa). 
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(a) Q = 260 L/h; Re = 1,202 

 
 

 
(b) Q = 1080 L/h; Re = 4,994 

 

 
 
 

 
(c) Q = 5425 L/h; Re = 25,084 

Figure 5-13. Pressure (Pa) surface plot – Inlet: left; Outlet: right (a) Laminar flow (b) Transitional 
flow (c) Turbulent flow 

 

Velocity profiles of three flow regimes simulated here are observed in Figure 5-14. With regards to 

laminar flow, velocity profiles are uniform along the pipe (Figure 5-14a), which is characteristic of 

this flow regime. For transitional (Figure 5-14b) and turbulent flow (Figure 5-14c), the velocity 

magnitude reached a maximum near to the inlet, which has a boundary condition defined by a 

parabolic profile. Once the flow is developed along the pipe, maximal velocities in the centre of the 

pipe are reduced, then the velocity profiles are more similar. 
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(a) 

 
(b) 

 
(c) 

Figure 5-14. Velocity profiles (a) Laminar flow (b) Transitional flow (c) Turbulent flow 
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5.3.1.2 Concentrations of substances in biofilm and bulk water 

Considering the current model corresponds to the simulation of the formation potentials of DBPs 

from chlorination of biofilms, all the simulations were run until concentrations of DBPs at the pipe 

outlet were almost zero. Due to the disproportion between pipe radius and biofilm thickness, results 

are presented in non-scaled plots for better explanation. To ease the results interpretation, Figure 

5-15 shows a sketch on the non-scaled geometry and its configuration. 

 

Figure 5-15. Sketch of the non-scaled geometry 

 

The typical behaviour of dissolved and particulate substances in the biofilm corresponds to 

transitional flow regime (Re = 2774) and is presented in Figure 5-16. Chlorine penetration occurred 

in the first seconds; at short time as 0.1 min (6 sec), chlorine within biofilm had already reached 

half of the inlet concentration and DCAN was already formed. Higher concentrations of DCAN were 

at the bottom of the biofilm most likely due to diffusion occurring in all directions while transport to 

the bulk occurs at the biofilm surface, then DCAN formed near to this boundary was being 

evacuated first. At t=0.1 min, no significant decrease of cells and EPS was observed in Figure 5-16. 

At t=1 min, chlorine in biofilm was already reaching the inlet concentration in the section near to 

the inlet. It is important to mention that chlorine first penetrated the biofilm thickness, then continues 

filling this region in the flow direction (z). Cells and EPS already showed a slight decrease and 

DCAN concentration reached the maximum value. At t=5 min, a notable reduction of cells and EPS 

was observed, chlorine concentration was higher within the biofilm and DCAN concentration still 

exhibited the highest value. At t=15 min, chlorine concentration within biofilm was equal to the 
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concentration at the pipe inlet, there were negligible concentrations of cells and EPS, and DCAN 

was already disappearing from the biofilm. From t=30 min and until the end of the simulations (1 

hour), chlorine reached the maximum concentration possible and there were negligible 

concentrations of cells, EPS, and DCAN. 

As described in Section 4.3.2, experimental data reported by Chen and Stewart (1996) indicated 

that complete penetration of a biofilm as thick as 428 m occurred after t=60 min, with flow rate of 

450 L/min. Then, it is reasonable that complete penetration of biofilm by chlorine with thickness of 

102 m and higher flow rate than 450 L/min takes place in a shorter time (e.g., 15 min). These 

results indicate that the current model is able to represent the general pattern of the reactions 

between chlorine and biofilm for the subsequent formation of DBPs. Reactions occur fast, in the 

first 5 min, when chlorine penetrates the thickness of the biofilm, reacting with cells and EPS, which 

are transformed into DCAN. 

With regards to dissolved substances in bulk water, Figure 5-17 shows the typical behaviour of 

chlorine and DCAN in this region. At t=0.1 min, chlorine was completely mixed in the bulk and 

concentration was equal to the inlet concentration, as specified in the initial conditions. DCAN was 

absent in the bulk at this time. After 1 min, consumption of chlorine near to the biofilm surface was 

observed and DCAN transport was also occurring. Chlorine concentration reached the lowest 

concentration at the pipe outlet at t=1.67 min (Figure 5-20a) and DCAN reached the highest 

concentration at the pipe outlet at t=4.3 min (Figure 5-20b). However, the surface plot of the bulk 

at this time did not show any evident differences in relation to these substances.  

For t=5 min, while chlorine decreased in bulk water near to the biofilm surface, DCAN increased in 

bulk water. Then, at t=15 min, chlorine was again filling the bulk domain and DCAN concentration 

was decreasing because it was leaving the pipe. It is important to mention that cells and EPS were 

completely depleted within the biofilm (Figure 5-16) at t=15 min, but there was still DCAN within 

this region. Then, it is reasonable to still find DCAN in the bulk water, near to the biofilm surface at 

t=15 min and 30 min. For times of 45 min and 60 min, DCAN was completely evacuated from the 

pipe and chlorine concentration is equal to that specified at the inlet. 
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Figure 5-16. Contour plots of substance concentrations in biofilm – BT = 102 m, Clo = 1.66 mg/L, Xo = 2.33 mg/L , Re = 2774,  = 3” 
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Figure 5-17. Contour plots of concentrations of dissolved substances in bulk water - BT = 102 m, Clo = 1.66 mg/L, Xo = 2.33 mg/L , Re = 2774,  = 3” 
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5.3.1.3 Fluxes of dissolved substances at biofilm surface 

Figure 5-18 presents the variation of the DCAN (a) and chlorine flux (b) at the biofilm surface. Since 

chlorine was being transported from bulk water to the biofilm, fluxes were positive; the opposite 

occurred for DCAN because this substance was being transported from biofilm to bulk water. 

Taking into account that chlorine decay occurred faster, highest variation of its flux took place in 

terms of seconds. In contrast, DCAN flux variation occurred place in terms of minutes. It is also 

important to note that absolute values of fluxes resulted in higher values for DCAN in comparison 

to chlorine. This is also reflected in the Sh̄ for both substances; Sh̄ of chlorine was lower than Sh̄ 

of DCAN (0.13962 vs 0.23260). Finally, it is also worth noting that the flux curves exhibited a 

curvilinear shape at the beginning of the biofilm (in the flow direction), when reactions chlorine-

biomass were occurring at the beginning of the reactive length of the pipe. 

  
(a) 

 
(b) 

Figure 5-18. Flux of dissolved substances at the biofilm surface (a) DCAN (b) Chlorine 
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5.3.1.4 Variation of Sh̄ at the biofilm surface 

Variation of Sh̄ of chlorine and DCAN is included in Figure 5-19. Sh̄ was high at the beginning of 

the reactions between chlorine and biomass. Then, Sh̄ rapidly decreased and became steady after 

few seconds (around 86 seconds) for chlorine and few minutes (around 5 minutes) for DCAN. 

 

Figure 5-19. Variation of Sh̄ at the pipe outlet 

 

5.3.1.5 Concentrations of dissolved substances at the pipe outlet 

Variation of concentrations of DCAN and chlorine at the pipe outlet is included in Figure 5-20. As 

chlorine concentrations were decreasing, DCAN was increasing. Minimal and maximal values of 

chlorine and DCAN, respectively were reached at different times. Chlorine decayed faster in 

relation to the formation of DCAN. However, such decay was almost negligible for this case. The 

chlorine demand was 1.3x10-3 mg/L and maximum DCAN concentration was 0.34 g/L, for 

reactions occurring in a pipe with length of 1 m. 

 

Figure 5-20. Average concentration of chlorine and DCAN at the pipe outlet 
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5.3.2 Influence of flow regime on DBP formation and transport 

To understand how flow regime influences DBP formation and transport at the biofilm surface, 

results from laminar, transitional and turbulent flow simulations were assessed under the same 

initial conditions of chlorine concentration, cell density, and biofilm thickness. This analysis was 

based on the average concentration of chloroform and DCAN at the pipe outlet and Sh̄ of these 

three substances. Average concentrations of DBPs at the pipe outlet are presented in Figure 5-21 

and average Sh̄ of chlorine and DBPs are included in Figure 5-22.  

 
(a) 

 
(b) 

Figure 5-21. Average concentration of chloroform at the pipe outlet according to flow regime (a) 
Chloroform (b) DCAN 

 
(a) 

 
(b) 

Figure 5-22. Variation of local Sh according to flow regime (a) DBPs (b) Chlorine 
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Under the three flow regimes, concentrations of chloroform and DCAN were decreasing as Re 

increased, due to dilution effect caused by the increased of the flow rate. Similarly, DBP transport 

occurred faster under turbulent flow conditions, followed by transitional flow and laminar flow. This 

is observed by the narrowing of the concentration curves as Re increased (Figure 5-21). This is 

also reflected in the values of Sherwood number, which were higher for the three dissolved 

substances simulated for higher Re (Figure 5-22). 

Although flow in drinking water pipes is frequently turbulent (Cogan, 2010), it is important to show 

the differences among results from three flow regimes, as laminar flow is commonly assumed in 

biofilm modelling, as explained in Section 2.4.3 (Table 2-3, Chapter 2), and transitional flow can be 

found in dead-end sections of DWDNs (Abokifa et al., 2016b). Depending on the biofilm 

characteristics that a modeller wants to represent, biofilm modelling is computationally expensive 

and improved hardware is required to efficiently carry out this task. Therefore, researchers have 

decided to assume laminar flow under low Re (0.32x10-5 - 150) to simplify the calculation of the 

flow next to the biofilm surface (Eberl et al., 2000; Picioreanu et al., 2000a; Eberl and Sudarsan, 

2008; Zhang et al., 2008; Duddu et al., 2009; Cogan, 2010; Lindley et al., 2012; Taherzadeh et al., 

2012; Zhang, 2012; Cumsille et al., 2014; Tierra et al., 2015). 

Most of the previous cited studies focused on substrate transport towards the biofilm to model its 

growth and influence on its morphology. Particularly, Cogan (2010); Cogan (2011) and Zhang 

(2012) simulated the disinfection of biofilms under laminar flow to analyse the behaviour of 

susceptible and persistent bacteria and the disinfection effectiveness by simulating active and dead 

cells. Eberl and Sudarsan (2008) presented a case similar to the one presented here; they modelled 

the disinfection effects on multiple colonies growing in a narrow channel, under slow flow. These 

authors found that hydrodynamics played an important role for the transport of substrate (dissolved 

oxygen); increasing the flow velocity led to faster a more stable growth. In the case of the 

disinfectant, the colonies located near to the inlet of the channel took the hardest hit, biomass was 

quickly inactivated and limited in the downstream region (Eberl and Sudarsan, 2008). The model 

developed here showed that, under continuous chlorine supply and transitional and turbulent flow, 

pipe was refilled with chlorine after few minutes ( 15 min, Section 5.3.1.2).  

For the case of the formation potentials of DBPs from chlorination of biofilms, it is important to 

consider the real flow conditions found in drinking water pipes due to hydraulic variables such as 

water demand, velocity, and pressure are not constant along the day. Therefore, transport 

parameters such as Sherwood number and mass transfer rate can be affected by such variation.  
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5.3.3 Influence of Re on DBP transport 

Once it was defined that the flow regime actually affects the transport of DBP potentially formed in 

drinking water pipes, several Re corresponding to transitional and turbulent flow were simulated to 

analyse in more detail the likely influence of flow rate on DBP formation and transport. Chlorine, 

chloroform and DCAN were assessed for biofilm thicknesses of 7 m and 102 m. 

5.3.3.1 Chloroform and dichloroacetonitrile formation 

Average concentrations of chloroform, DCAN and chlorine at the pipe outlet are shown in  

Figure 5-23, Figure 5-24, and Figure 5-25, respectively, for ten values of Re, corresponding to 

transitional flow. Similarly for turbulent flow, average concentrations of chloroform, DCAN and 

chlorine at the pipe outlet are shown in Figure 5-26, Figure 5-27, and Figure 5-28, respectively, for 

ten values of Re. Increasing Re was simulated by increasing velocity and keeping the same pipe 

diameter (3 inches). 

 

Figure 5-23. Average chloroform concentration at the pipe outlet for several Re – Transitional flow 

(a) BT = 7 m (b) BT = 102 m 

 
(a) 

 
(b) 
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(a) 

 
(b) 

Figure 5-24. Average DCAN concentration at the pipe outlet for several Re – Transitional flow (a) 

BT = 7 m (b) BT = 102 m 

 

 
(a) 
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(b) 

Figure 5-25. Average chlorine concentration at the pipe outlet for several Re – Transitional flow (a) 

BT = 7 m (b) BT = 102 m 

 

 
(a) 

 
(b) 

Figure 5-26. Average chloroform concentration at the pipe outlet for several Re – Turbulent flow (a) 

BT = 7 m (b) BT = 102 m 
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(a) 

 
(b) 

Figure 5-27. Average DCAN concentration at the pipe outlet for several Re – Turbulent flow (a) BT = 

7 m (b) BT = 102 m 

 
(a) 
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(b) 

Figure 5-28. Average chlorine concentration at the pipe outlet for several Re – Turbulent flow (a) 

BT = 7 m (b) BT = 102 m 

 

As it is expected, DBP concentrations were decreasing as Re increased, due to dilution effect 

caused by the increase of the flow rate (Figure 5-23, Figure 5-24, Figure 5-26, and Figure 5-27). 

Chlorine demand increased with higher Re, which is probably associated with faster mass transport 

towards the biofilm (Figure 5-25 and Figure 5-28). This is also observed in the shape of the 

concentration curves. Minimum chlorine concentrations occurred faster as Re increases.  

Figure 5-23, Figure 5-24, Figure 5-26, and Figure 5-27 also allows observing the influence of 

increase of Re on mass transport of DBPs. Curves of chloroform and DCAN concentrations are 

slightly closer to the vertical axis of the plots and are narrower as Re rises, which apparently reflects 

the faster evacuation of both DBP species from the pipe, when convective transport became more 

important in relation to diffusion transport. For instance, for BT=102 m, DCAN concentration of 

0.05 g/L is obtained at t=15 min for Re=2774, while the same concentration is found at t=11 min 

for Re=4994. 

Finally, concentrations of both DBP species were higher for BT=102 m in comparison with BT=7 

m, as expected when more biomass is available to react with chlorine. This is in agreement with 

the structure of the model, since higher biofilm thickness represents higher biomass available for 

reaction with chlorine, when the pipe is continuously fed with disinfectant. However, this has not 

been tested yet by experimental studies, to the author’s knowledge. Published research studied 

other variables influencing the DBP formation from biomass disinfection such as pH, temperature, 

reaction time, disinfectant dose, pipe material, bacteria species, and type of biomass organic 

matter; then concentration of DBP precursors were maintained constant during the experiments 
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(Fang et al., 2010a; Fang et al., 2010b; Wang et al., 2012c; Pu et al., 2013; Wang et al., 2013a; 

Wang et al., 2013b). On the other hand, the current model did not consider the protective role of 

EPS for cells against disinfection. Such protective role consists on increased chlorine demand by 

reaction with EPS and dissolved organic matter, and more compact structure at the bottom of the 

biofilm. This could reduce the availability of disinfectant in the deeper layers and cells located in 

this region are able to survive (Xue et al., 2012; Xue et al., 2013). 

In this line, DBP risk assessment associated to biomass disinfection must be analysed carefully, 

since the simplifications of the current model may lead to overestimation of the risk, considering 

that the model presented here simulate the DBP formation potentials. Avoiding EPS protective role 

leads to complete oxidation of cells by chlorine; this means that biofilm would not exist in real scale 

DWDNs, since disinfectant would oxidize every cell produced. However, this is not true; biofilms do 

grow in drinking water pipes and are more diverse than bacterial communities in bulk water, as 

discussed in Chapter 3. The current model used reaction terms associated to EPS according to 

experiments carried out by Chen and Stewart (1996), who used agarose as surrogate of EPS 

produced by P. aeruginosa. However, biofilms in DWDNs are heterogeneous and EPS may be 

diverse as well (Lemus Pérez and Rodríguez Susa, 2017). Then, chlorine demand exerted by EPS 

may be different than the calculated by Chen and Stewart (1996). It is important to highlight that 

factors Fx and FE corresponds to experimental tests carried out with extracted and suspended 

intracellular and extracellular organic matter from algae, by separate (Fang et al., 2010b); this 

differed from the real physical configurations of biofilms. To the author’s knowledge, work by Wang 

et al. (2013a) is the only published study which includes DBP formation from biofilm chlorination, 

under the natural conditions (i.e., biofilm growing attached to a surface). 

Despite of this, thicker biofilms, either related to higher cell density or EPS concentration, may 

increase both microbial and chemical risks. This means that increased biomass is available for 

reaction with the disinfectant and major bulk water concentrations of DBPs may be expected. 

Additionally, the secreted EPS protect the cells against the action of the disinfectant, then allowing 

them to grow and reproduce. If pathogenic microorganisms were present in biofilms, these can 

survive within this habitat and be released to bulk water if the proper hydraulics conditions were 

present. Then, they could reach the consumers, which represents an important microbial risk 

depending on the pathogen dose, level of exposure and susceptibility of the consumer. Water 

operators must pay special attention to dead-end branches, where slow flow is frequent (Abokifa 

et al., 2016b), since thicker biofilms may be present there due to limited transport of nutrients 

(Picioreanu et al., 1998b; Jayathilake et al., 2017). Therefore, it is necessary to design and apply 
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a plan for O&M of DWDNs, which includes cleaning of pipes, flushing dead-end sections, and 

opportune replacement of old pipelines. 

5.3.3.2 Mass transport 

In order to examine transport of dissolved substances in more detail, Sh̄ and 𝑘𝑓
̅̅ ̅ for chloroform, 

DCAN and chlorine were analysed. Results are presented in Figure 5-29, Figure 5-30, and Figure 

5-31, respectively, for transitional flow. For turbulent flow, Sh̄ and 𝑘𝑓
̅̅ ̅ for chloroform, DCAN and 

chlorine are shown in Figure 5-32, Figure 5-33, and Figure 5-34. The behaviour of both parameters 

is the same for the three dissolved substances analysed here, for both flow regimes: Sh̄ and 

𝑘𝑓
̅̅ ̅ increases as Re rises. 

 
(a) 

 
(b) 

Figure 5-29. Sh̄ (a) and mass transfer rate (b) of chloroform for several Re – Transitional flow 

 

 
(a) 

 
(b) 

Figure 5-30. Sh̄ (a) and mass transfer rate (b) of chloroform for several Re – Turbulent flow 
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(a) 

 
(b) 

Figure 5-31. Sh̄ (a) and mass transfer rate (b) of DCAN for several Re – Transitional flow 

 
(a) 

 
(b) 

Figure 5-32. Sh̄ (a) and mass transfer rate (b) of DCAN for several Re – Turbulent flow 

 

 
(a) 

 
(b) 

Figure 5-33. Sh̄ (a) and mass transfer rate (b) of chlorine for several Re – Transitional flow 
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(a) 

 
(b) 

Figure 5-34. Sh̄ (a) and mass transfer rate (b) of chlorine for several Re – Turbulent flow 

 

Particularly, Sh̄ was notably higher for BT=102 m than for BT=7 m (Figures 5-29a – 5-34a), 

which is logic since the parameter BT was included in the numerator of Equation (2-9) as the 

characteristic length. This also corresponds to the nature of the model, considering that higher 

biofilm thickness included more biomass available for reaction with chlorine, then chlorine demand 

and transport of chlorine and DBPs increased through the biofilm surface boundary. 

Simulated results suggest that the difference among BT was compensated in the calculation of 𝑘𝑓
̅̅ ̅ 

(Equation (2-11)). Therefore, the difference between 𝑘𝑓
̅̅ ̅ for both BT values and for the three 

dissolved substances was significantly reduced, and such difference reduced even more when Re 

increased (Figures 5-29b – 5-34b). For turbulent flow, 𝑘𝑓
̅̅ ̅ was similar for both BT values analysed 

here. Percentage of difference of 𝑘𝑓
̅̅ ̅ for chlorine and DBPs reduced from 7-12% for Re=2774 to 

0.05-0.5% for Re=50,030. Simulated values of 𝑘𝑓
̅̅ ̅ were in the order of 10-6-10-5 m/s and always 

exhibited and increasing pattern. These results are not surprising since higher velocities (i.e., higher 

Re) correlates with thinner boundary layers, then higher Sh̄ and 𝑘𝑓
̅̅ ̅ could be obtained (IWA Task 

Group on Biofilm Modeling et al., 2006; Taherzadeh et al., 2012). 

Another important result of this study is the behaviour of Sh̄ . As explained in Section 2.3.2.2, 

several empirical correlations have been proposed for Sh̄ under laminar and turbulent flow, which 

represents a polynomial relationship with Re and Sc. The behaviour of Sh̄ found with the current 

model was far from such approach. The relationship between Sh̄ and Re was clearly linear, which 

may be related to the assumption of a flat biofilm surface. It is known that irregular biofilm surface 

results in non-uniform boundary layer thickness, then different values of Sh̄ and 𝑘𝑓
̅̅ ̅ can be obtained 

along each point of the biofilm surface (Picioreanu et al., 1998b). Taherzadeh et al. (2012) also 
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found a linear relationship between Sh̄ and Re for a single cell with a moving tail, under laminar 

flow conditions (Re up to 150). 

 

5.3.4 Influence of S/V ratio on DBP transport 

5.3.4.1 Different flow rates and equal Re 

Results from Chapter 3 explained how S/V ratio influenced the DBP formation under stagnation 

conditions. A similar analysis is included here for chloroform and DCAN, under transitional flow, 

and three different pipe diameters (3, 6, and 10 inches), keeping the same Re in each pipe. Figure 

5-35 presents the average concentrations of chloroform and DCAN at the pipe outlet. Figure 5-36 

shows the average concentrations of chlorine at the pipe outlet. Figure 5-37 shows Sh̄ for the three 

dissolved substances simulated. As expected, higher concentrations of chloroform and DCAN and 

higher chlorine demand were found in smaller pipe diameters. 

For transitional flow, maximal concentration of chloroform increased from 1.17x10 -2 g/L for =10” 

to 4.06x10-2 g/L for =3” (Figure 5-35a). Minimal chlorine decreased from 1.65997 mg/L for =10” 

to 1.65988 g/L for =3” (Figure 5-35b). The increased DBP concentrations found in smaller 

diameters is in agreement with the findings of other researchers in relation to the increase of 

chlorine demand when pipe diameter decreases (Lu et al., 1999; Buamah et al., 2014; Lee et al., 

2014). This is related to interactions bulk-wall become more significant in smaller pipe diameters. 

 
(a) 
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(b) 

Figure 5-35. Average chloroform (a) and DCAN (b) concentrations at the pipe outlet for several pipe 
diameters – Transitional flow 

 

 

Figure 5-36. Average chlorine concentrations at the pipe outlet for several pipe diameters – 
Transitional flow 

 

Similarly, mass transport increased in smaller pipe diameters, which is reflected in the shape of 

concentration curves, since curves are narrower and closer to the vertical axis, which suggests that 

substances were leaving the pipe faster (Figure 5-35). Sh̄ could have also implied faster mass 

transport in smaller pipes. For transitional flow, Sh̄ of chloroform increased from 0.0059 for =10” 

to 0.0226 for =3” (Figure 5-37a). Sh̄ of DCAN increased from 0.0052 for =10” to 0.0199 for =3” 

(Figure 5-37a). Sh̄ of chlorine increased from 0.0028 for =10” to 0.0121 for =3” (Figure 5-37b).  
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Figure 5-37. Average Sh̄ for DBPs (a) and Chlorine (b) for several pipe diameters – Transitional flow 

 

5.3.4.2 Equal flow rates and different Re 

A similar analysis to the previous one is included here for chloroform and DCAN, under transitional 

and turbulent flow, by keeping the same flow rates and different Re in each pipe of diameters 3, 6 

and 10 inches. Figure 5-38 presents the average concentrations of chloroform and DCAN at the 

pipe outlet. Figure 5-39 shows the average concentrations of chlorine at the pipe outlet. Figure 5-40 

shows Sh̄ for the three dissolved substances simulated. As expected, higher concentrations of 

chloroform and DCAN and higher chlorine demand were found in smaller pipe diameters. 

 
(a) 

 
(a) 

 
(b) 
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(b) 

Figure 5-38. Average chloroform (a) and DCAN (b) concentrations at the pipe outlet for several pipe 
diameters – Turbulent flow 

 

Figure 5-39. Average chlorine concentrations at the pipe outlet for several pipe diameters – 
Turbulent flow 

 

Figure 5-40. Average Sh̄ for DBPs (a) and Chlorine (b) for several pipe diameters – Turbulent flow 

 

 
(a) 

 
(b) 
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5.3.5 DBP formation under several conditions of drinking water quality 

5.3.5.1 Transitional flow 

Two scenarios of drinking water quality were selected to test the DBP formation under those 

conditions. The least critical scenario corresponded to the lower bound of the range for parameters 

BT, Clo, and Xo (Table 5-22). The most critical scenario corresponded to the upper bound of the 

range for parameters BT, Clo, and Xo (Table 5-22). Range of chlorine concentration was defined 

by the minimal and maximal values found in the field work developed in Cali’s DWDN (Chapter 3). 

Figure 5-41 presents the chloroform and DCAN concentrations at the pipe outlet and Table 5-22 

includes Sh̄ and 𝑘𝑓
̅̅ ̅ for the three dissolved substances analysed here for transitional flow. As it is 

expected, DBP concentrations were higher under the most critical conditions in relation to the 

lowest BT, Clo, and Xo. While least critical scenario exhibited maximal concentrations of 0.0037 

g/L of chloroform (Figure 5-41a) and 0.0020 g/L of DCAN (Figure 5-41b), the most critical 

scenario resulted in maximal concentrations of 0.58 g/L (Figure 5-41a) of chloroform and 0.34 

g/L of DCAN (Figure 5-41b).  

 
(a) 

 
(b) 

Figure 5-41. Average concentrations of (a) chloroform and (b) DCAN at the pipe outlet for two 
scenarios of drinking water quality – Transitional flow 
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On the other hand, the shape of concentration curves showed that mass transport of DBP is 

different in both scenarios. Both substances left the pipe in five hours under the least critical 

conditions, while both substances left the pipe in only one hour under the most critical conditions, 

due to gradient concentrations as explained below. Faster mass transport under the most critical 

conditions of water quality was evidenced by values of Sh̄ included in Table 5-22. Sh̄ of chloroform, 

DCAN, and chlorine increased around 171% under the most critical conditions in relation to the 

least critical conditions.  

Table 5-22. Sh̄ and 𝒌𝒇
̅̅ ̅ for dissolved substances for two scenarios of drinking water quality – 

Transitional flow 

Scenario Sh̄ - Chloroform Sh̄ - DCAN Sh̄ - Chlorine 

Least critical scenario: BT = 7 m | Clo = 
0.12 mg/L | Xo = 2.82x10-4 mg/cm2 

0.0212 0.0178 0.0109 

Most critical scenario: BT = 102 m | Clo = 
1.66 mg/L | Xo = 4.44x10-3 mg/cm2 

0.2680 0.2326 0.1396 

Scenario 
Mass transfer 

(m/s) - Chloroform 
Mass transfer 
(m/s) - DCAN 

Mass transfer 
(m/s) - Chlorine 

Least critical scenario: BT = 7 m | Clo = 
0.12 mg/L | Xo = 2.82x10-4 mg/cm2 

2.81 x 10-6 4.23 x 10-6 4.10 x 10-6 

Most critical scenario: BT = 102 m | Clo = 
1.66 mg/L | Xo = 4.44x10-3 mg/cm2 

2.44 x 10-6 3.79 x 10-6 3.64 x 10-6 

 

In contrast, despite of Sh̄ is directly proportional to the biofilm thickness and flux at the biofilm 

surface (Equation (2-9)), 𝑘𝑓
̅̅ ̅ resulted higher under the least critical conditions in relation to the most 

critical conditions, for the three dissolved substances simulated (Table 5-22). For instance, flux of 

DCAN was in the order of 10-3 - 10-4 g/m2-s under the least critical conditions, while such flux was 

in the order of 10-1 g/m2-s under the most critical conditions (Figure 5-42). The same pattern 

applies for flux of chlorine; values of magnitude order of 10-6 – 10-5 mg/m2-s resulted under the 

least critical conditions, in comparison to values of magnitude order of 10 -2 – 10-3 mg/m2-s under 

the most critical conditions (Figure 5-43). Then, Sh̄ was lower when concentrations of chlorine and 

DBPs were lower, which may indicates that diffusive transport is predominant over convective 

transport at the biofilm surface under those conditions. 

On the other hand, calculation of 𝑘𝑓
̅̅ ̅ (Equation (2-11)) is inversely proportional to the characteristic 

length (BT here), then 𝑘𝑓
̅̅ ̅ resulted lower for BT=102 m in relation to BT=7 m. Higher mass 

transfer rate at biofilm surface occurred in the least critical scenario due to smaller BT, which is 

related to faster consumption of biomass. This was also confirmed by the time when DCAN left the 

biofilm and reached very low concentrations in this domain (10-9 mol/m3); DCAN evacuated the 
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biofilm domain at t=60 min under the most critical conditions, while DCAN left the biofilm domain 

at t=7 min under the least critical conditions. 

 
(a) 

 
(b) 

Figure 5-42. Flux of DCAN at the biofilm surface for two scenarios of drinking water quality (a) 
Least critical scenario (b) Most critical scenario 

 

 
(a) 
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(b) 

Figure 5-43. Flux of chlorine at the biofilm surface for two scenarios of drinking water quality – 
Transitional flow (a) Least critical scenario (b) Most critical scenario 

 

5.3.5.2 Turbulent flow 

Average concentrations of chloroform and DCAN at the pipe outlet are observed in Figure 5-44, for 

the least and most critical scenario regarding water quality parameters. Similarly to transitional flow, 

simulations for turbulent flow indicate that concentrations of both DBP species were higher for the 

most critical scenario in comparison to the least critical scenario, which is related to more biomass 

available for reaction with chlorine when biofilm thickness is higher. 

 
(a) 
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(b) 

Figure 5-44. Average concentrations of (a) chloroform and (b) DCAN at the pipe outlet for two 
scenarios of drinking water quality – Turbulent flow 

 

Table 5-23 shows the Sh̄ and 𝑘𝑓
̅̅ ̅ for DBP species and chlorine corresponding to turbulent flow. 

Similar to transitional flow, Sh̄ was higher for the most critical conditions, which is related to the 

higher biofilm thickness, as explained previously and suggests that convection effects increases 

when higher concentrations are present in bulk water. This was also observed when comparing the 

time required for DBPs to evacuate the pipe: one and five hours for the most and least critical 

conditions, respectively. In relation to 𝑘𝑓
̅̅ ̅, mass transfer also resulted slightly lower for higher BT 

(most critical scenario), due to calculation of this parameter is inversely proportional to BT (Equation 

(2-11)). This is reflecting that lower biomass is consumed faster, as explained in the previous 

section. 

Table 5-23. Sh̄ and 𝒌𝒇
̅̅ ̅ for dissolved substances for two scenarios of drinking water quality – 

Turbulent flow 

Scenario Sh̄ - Chloroform Sh̄ - DCAN Sh̄ - Chlorine 

Least critical scenario: BT = 7 m | Clo = 
0.12 mg/L | Xo = 2.82x10-4 mg/cm2 

0.1027 0.0901 0.0566 

Most critical scenario: BT = 102 m | Clo = 
1.66 mg/L | Xo = 4.44x10-3 mg/cm2 

1.4733 1.2929 0.8107 

Scenario 
Mass transfer 

(m/s) - Chloroform 
Mass transfer 
(m/s) - DCAN 

Mass transfer 
(m/s) - Chlorine 

Least critical scenario: BT = 7 m | Clo = 
0.12 mg/L | Xo = 2.82x10-4 mg/cm2 

1.36 x 10-5 2.14 x 10-5 2.15 x 10-5 

Most critical scenario: BT = 102 m | Clo = 
1.66 mg/L | Xo = 4.44x10-3 mg/cm2 

1.34 x 10-5 2.10 x 10-5 2.11 x 10-5 
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5.3.6 Discussion 

The current 2D model presented here predicted the formation potentials of chloroform and DCAN 

from biofilm chlorination in a drinking water pipe of length equal to 1 m. The simulations were 

undertaken for several scenarios in order to evaluate the influence of flow regime, Re, S/V ratio, 

and drinking water quality on DBP formation and mass transport. In terms of absolute 

concentrations, some extrapolations can be made with regards to UK and Colombian standards for 

chloroform (100 g/L and 200 g/L, respectively) (UK Parliament, 2000; Ministerio de la Protección 

Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2007) and WHO guideline for 

DCAN (20 g/L) (WHO, 2017). According to the maximum concentrations presented in the Section 

5.3.5, for transitional flow, DCAN concentrations might be higher than 20 g/L for pipelines length 

of 9.85 Km and 0.06 Km, if the least and most critical conditions uniformly prevailed along the pipes, 

respectively. In the case of chloroform, lengths of 27 Km and 54 Km would be necessary to exceed 

the UK (100 g/L) and Colombian (200 g/L) regulation, respectively (UK Parliament, 2000; 

Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, 

2007), if the least critical conditions prevailed along the pipes. For the most critical conditions, 0.17 

Km and 0.34 Km would be required to surpass the regulations mentioned previously, respectively. 

In the case of turbulent flow, DCAN concentrations might be higher than 20 g/L for pipelines length 

of 60.79 Km and 0.22 Km, if the least and most critical conditions uniformly prevailed along the 

pipes, respectively. In the case of chloroform, lengths of 154 Km and 309 Km would be necessary 

to exceed the UK (100 g/L) and Colombian (200 g/L) regulation, respectively (UK Parliament, 

2000; Ministerio de la Protección Social and Ministerio de Ambiente Vivienda y Desarrollo 

Territorial, 2007), if the least critical conditions prevailed along the pipes. For the most critical 

conditions, 0.55 Km and 1.10 Km would be required to surpass the regulations mentioned 

previously, respectively. 

This simple analysis suggests that the higher risk is related to DCAN under transitional flow (lower 

velocities). As explained in Chapters 2 and 4, the experimental evidence on cells indicates that 

toxicity of nitrogenous DBPs is higher in comparison to carbonaceous DBPs (Muellner et al., 2007). 

The most clear epidemiological evidence in relation to THMs, but not conclusive, is related to 

bladder cancer (Hrudey et al., 2015b). Therefore, for higher biomass content and chlorine residuals, 

the potential risk may be present even in small DWDNs, specially is small pipes. For bigger water 

systems, even low biomass content and chlorine residuals may also represent potential health 

risks. However, it is important to highlight that DCAN is an unstable DBP since it is degraded 

depending on the pH and chlorine concentration. DCAN degrades in the absence of chlorine above 
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pH 7 and below pH 6.5. In the presence of free chlorine, DCAN degradation can be much faster 

from a pH of about 6–8.5 under low to moderate chlorine residuals (Reckhow et al., 2001). 

Therefore, higher risk may be present in building premises and in the portion of the network 

supplying directly the consumers (smaller pipes), since less opportunities may occur for changing 

the physico-chemical conditions of drinking water, then reducing the probability of degradation of 

DCAN. 

On the other hand, there is mass transport. The present results showed that mass transport is 

faster for turbulent flow, higher Re, smaller pipe diameters, and higher Clo, higher BT, and higher 

Xo together. Thus, a balance between control of acute and chronic risk must be considered by 

water operators. Slow mass transfer favour the reduction of DBP concentrations, since chlorine is 

slowly penetrating the biofilm thickness and DBP formed within it are being slowly transported to 

the bulk. However, this slow mass transport may also favour the growth of microorganisms living 

within the biofilm, even pathogenic microbes. If there was enough contact time between biomass 

and chlorine, the disinfectant can be completely depleted and DBP concentrations can reach the 

maximum potentials. Absence of chlorine would also favour the biofilm regrowth. As mentioned in 

Chapter 3, the best approach for water operators is to minimize the biofilm formation, which can 

host pathogenic microorganisms and may be significant DBP precursors. A deeper analysis of the 

health implications of biofilm presence in drinking water pipes is presented in Chapter 6. 

 

5.3.7 Sensitivity analysis 

Sensitivity analysis was carried out based on the Morris method adapted by Menberg et al. (2016) 

and calculations were performed using the MATLAB toolbox developed by Pianosi et al. (2015). 

The influence of 12 parameters was evaluated for response variables Sh̄ for chlorine, Sh̄ for DCAN, 

average of average concentrations of DCAN at the pipe outlet, and median of average 

concentrations of DCAN at the pipe outlet. 

5.3.7.1 Sh̄ - chlorine 

Table 5-24 shows the median and standard deviation of EE for each parameter assessed. 

Parameters were sorted in descendent order according to the level of influence; i.e., from highest 

to lowest median of EE. Figure 5-45 shows the points corresponding to both values of EE from 

Table 5-24 (a) and the area covered by each parameter according to the lower and upper bounds 

of median and standard deviation of EE (b). Then, the most influencing parameters on Sh̄ - chlorine 

were biofilm thickness and flow rate, which is a logical result since the Sherwood number is a 



 

Chapter 5. Modelling DBP formation from biofilm chlorination under hydrodynamic conditions                    236 

Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineering 

measure of the diffusion and convective transport at the biofilm surface. The influence of the 

remaining parameters was very low; they are located near to the origin in Figure 5-45a. 

Table 5-24. Median and standard deviation of EEs on response variable Sh̄ - Chlorine 

Parameter Median of EE 
Standard 

deviation of EE 
Parameter Median of EE 

Standard 
deviation of EE 

BT 0.173 0.024 Y2 0.001 0.002 

Q 0.046 0.023 k1 0.001 0.002 

Xo 0.003 0.003 k2 0.001 0.002 

Clo 0.003 0.003 s 0.000 0.000 

Eo 0.001 0.002 Fx 0.000 0.001 

Y1 0.001 0.006 FE 0.000 0.000 

 

Convective transport depends on the hydrodynamics of the bulk flow, which is directly linked to the 

flow rate. Additionally, calculation of Sh̄ (Equation (2-9)) includes the characteristic length assumed 

here as the biofilm thickness. This parameter is more influencing than flow rate; Figure 5-45b shows 

that standard variation of EEs for biofilm thickness presented more variation in comparison to its 

median value, while the median of EEs for flow rate varied more in comparison to its standard 

variation. Therefore, flow calculation is important in modelling, then it is necessary to appropriate 

define the turbulence model and flow rate. 

 
(a) 
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(b) 

Figure 5-45. EEs on response variable Sh̄ - Chlorine (a) Median vs Standard deviation (b) Median vs 
Standard deviation including upper and lower bounds 

 

5.3.7.2 Sh̄ - DCAN 

Similarly to Sh̄ of chlorine, Table 5-25 shows the median and standard deviation of EE for each 

parameter assessed for Sh̄ of DCAN. Figure 5-46 shows the points intersecting the median and 

standard deviation of EEs (a) and the area covered by each parameter according to the lower and 

upper bounds of median and standard deviation of EEs (b). These results allowed identifying that 

the most influencing parameters were biofilm thickness, followed by s, and Q (Table 5-25). As 

explained in the previous section, BT and Q are influencing Sh̄ of DCAN because the calculation 

of Sherwood number (Equation (2-9)) includes the biofilm thickness as the characteristic length 

and it is a measure of the diffusive and convective transport at the biofilm surface. In addition and 

as described in Section 5.2.8, the effective diffusion coefficient within the biofilm is an important 

parameter for determining the mass transport of DBPs at the biofilm surface because this model 

included only diffusive transport within the biofilm. Then, the gradient concentration at this region 

is determined by the diffusion of the dissolved substances within the biofilm. 

Table 5-25. Median and standard deviation of EEs on response variable Sh̄ - DCAN 

Parameter Median of EE  
Standard 

deviation of EE 
Parameter Median of EE  

Standard 
deviation of EE 

BT 0.343 0.307 Xo 0.004 0.010 

s 0.229 0.881 k1 0.003 0.015 

Q 0.074 0.144 k2 0.003 0.004 

Clo 0.008 0.011 Eo 0.002 0.001 

Y1 0.005 0.021 Fx 0.001 0.002 

Y2 0.005 0.004 FE 0.000 0.002 
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As it is observed in Figure 5-46a, the influence of other parameters assessed is very low since they 

are located near to the origin of the plot. While BT is the most influencing parameter on Sh̄ of 

DCAN, s presented the highest variation in both median and standard deviation of EEs. This 

represent that this parameter must be carefully defined in case of the interest is mainly on the study 

of the mass transport of DBPs at the biofilm surface. 

 
(a) 

 
(b) 

Figure 5-46. EEs on response variable Sh̄ - DCAN (a) Median vs Standard deviation (b) Median vs 
Standard deviation including upper and lower bounds 

 

5.3.7.3 Average DCAN 

Table 5-26 presents the list of parameters sorted according to the level of influence over the 

response variable average DCAN. Figure 5-47 shows the points corresponding to both values of 

EE from Table 5-26 (a) and the area covered by each parameter according to the lower and upper 

bounds of median and standard deviation of EE (b). For the average DCAN at the pipe outlet, the 

most influencing parameters were Xo, BT and Fx. This is related to the effect caused by the 

maximal concentrations on the average DCAN. When higher values of these three parameters are 

present together, more DBPs are formed. Then, average concentrations are higher.  
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Table 5-26. Median and standard deviation of EEs on response variable average DCAN 

Parameter Median of EE  
Standard 

deviation of EE 
Parameter Median of EE 

Standard 
deviation of EE 

Xo 0.170 0.122 Q 0.048 0.076 

BT 0.136 0.264 Y2 0.040 0.105 

Fx 0.092 0.284 Clo 0.005 0.189 

Y1 0.075 0.109 s 0.000 0.001 

FE 0.061 0.076 k1 0.000 0.046 

Eo 0.055 0.078 k2 0.000 0.074 

 

In contrast to the Sherwood number, other parameters such as yield coefficients Y1 and Y2, Eo, 

and Q are also influencing the average DCAN at the pipe outlet but in less degree than the other 

three parameters mentioned previously (Figure 5-47a). Parameters k1, k2, and s have no influence 

on the average DCAN at the pipe outlet (Figure 5-47a). Xo was the most influencing parameter but 

variation of average and standard variation of EEs is low compared to the parameters BT and Fx. 

Particularly BT exhibited higher variation of the median of EEs, while Fx exhibited higher variation 

of the standard variation of EEs (Figure 5-47b). 

 
(a) 

 
(b) 

Figure 5-47. EEs on response variable average DCAN (a) Median vs Standard deviation (b) Median 
vs Standard deviation including upper and lower bounds 
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5.3.7.4 Median DCAN 

Table 5-27 presents the list of parameters sorted on descending order of influence over the 

response variable median DCAN. Figure 5-48 presents the intersection points of median and 

standard variation of EEs for the same response variable and the area covered by the upper and 

lower bounds or such values. For the case of the median DCAN at the pipe outlet, the most 

influencing parameter is Clo, followed by k1, BT, Y1, Xo, and Fx. This represents that all the 

parameters involved in the reaction with cells are the most influencing ones over the median of 

DCAN at the pipe outlet. This means that the influence over the median DCAN is distributed among 

more parameters, which is the result of eliminating the effect of outliers over the measures of central 

tendency as the median value. The parameters associated to EPS (i.e Eo and FE) and s have little 

or no influence on the median DCAN. 

Table 5-27. Median and standard deviation of EEs on response variable median DCAN 

Parameter Median of EE  
Standard 

deviation of EE 
Parameter 

Median of 
EE 

Standard 
deviation of EE 

Clo 0.039 0.185 k2 0.007 0.033 

k1 0.034 0.086 Q 0.006 0.084 

BT 0.023 0.371 Y2 0.004 0.121 

Y1 0.022 0.115 Eo 0.002 0.090 

Xo 0.015 0.133 s 0.000 0.000 

Fx 0.012 0.269 FE 0.000 0.079 

 

The spread of parameters influencing the median DCAN is more clear in Figure 5-48a. While BT is 

the third parameter most influencing the median DCAN, its variation of median and standard 

variation of EEs is higher than the other two parameters ranked in the two first places. Since higher 

BT represent more biomass available for reaction with chlorine and further transformation into 

DBPs, it is logical to find that variations on this parameter led to variations on the median 

concentrations of DCAN at the pipe outlet. 
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(a) 

 
(b) 

Figure 5-48. EEs on response variable median DCAN (a) Median vs Standard deviation (b) Median 
vs Standard deviation including upper and lower bounds 

 

5.3.7.5 Summary 

Table 5-28 presents the ranking of the parameters included in the sensitivity analysis according to 

their influence on response variables. In general, BT resulted the most important parameter for the 

characterization of the mass transport of DBPs through the biofilm surface and their concentrations 

in bulk water. Other important parameters are Xo, Clo, Y1, Q, and k1. Parameters related to EPS 

(Eo, k2, FE, Y2) exhibited medium and low influence on the response variables. This may be related 

to the current model assumed that cells contributed more to DBP concentrations, EPS and cells 

were completely mixed within the biofilm and the protective role of EPS to cells against disinfection 

was not considered. Refinement of the model should include this feature of EPS to model how 

chlorine reacts first with it, then reducing its availability for disinfection in the deeper layers of the 

biofilm. Q is globally representing medium influence of response variables, but especially important 

for the mass transport through the biofilm surface; similarly, s is also very important for this. 
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Experimental calculation of s involves the development of micro-sensors to measure 

concentrations of the target DBPs within the biofilm.  

Table 5-28. Ranking of parameters according to their influence on response variables 

Parameter 
Parameter ranking 

Sh – Chlorine Sh – DCAN Average DCAN Median DCAN 

BT 1 1 2 3 

Q 2 3 7 8 

Xo 3 7 1 5 

Clo 4 4 9 1 

Eo 5 10 6 10 

Y1 6 5 4 4 

Y2 7 6 8 9 

k1 8 8 11 2 

k2 9 9 12 7 

s 10 2 10 11 

Fx 11 11 3 6 

Fe 12 12 5 12 

 

As previously mentioned and discussed in Chapter 3, more efforts must be made in order to 

improve laboratory techniques to properly monitor microbiological parameters of biofilm such as 

thickness and cell density in real scale DWDNs. This will contribute to improve the estimation of 

DBP formation potentials from biofilm chlorination in water pipes and increase the availability of 

data for further calculations of microbial risks related to biofilms. Data of flow rates and chlorine 

concentrations are available from historic records of the water utilities or can be directly measured 

in the DWDN. 

 

5.4 MODEL APPLICATIONS AND LIMITATIONS 

The 2D model developed here presents several features that contribute to new knowledge in the 

field of biofilm–DBP modelling in drinking water. This model was formulated for prediction of 

formation potentials of two DBP species (chloroform and DCAN), under transitional and turbulent 

flow, which are the flow regimes commonly found in drinking water pipes. The flow field was 

calculated and the turbulent model SST was selected to solve the flow near to the pipe wall. This 

allowed calculating the local and global Sh at the biofilm surface boundary; then, mass transport 

rates were also available for the scenarios considered in this study.  

Mass transport characterization is important in the current model since the interest of researchers 

on biomass (cells and EPS) as DBP precursors is increasing from the point of view of experimental 
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works (Hong et al., 2008; Fang et al., 2010a; Fang et al., 2010b; Wang et al., 2012c; Pu et al., 

2013; Wang et al., 2013a; Wang et al., 2013b; Lemus Pérez and Rodríguez Susa, 2017). 

Therefore, this model can be used to compare to and explain experimental data obtained under 

hydrodynamic conditions. Experimental studies for mass transport in biofilms have been developed 

for substrate consumption such as glucose and oxygen (Zhang and Bishop, 1994; Guimerà et al., 

2016). The researchers have made attempts to represent such process by engineered correlations 

among Sh, Re, and Sc. The current model showed that Sh for the substances chloroform, DCAN, 

and chlorine is linearly correlated with Re for a flat biofilm, in the range 2,774-50,030. To the 

author’s knowledge, this is the first study reporting such analysis for these substances. 

Coupling the flow field to the transport of dissolved substances by CFD is a computationally 

expensive task. Therefore, the current model included several simplifications such as flat biofilm, 

no biofilm growth in order to only simulate DBP formation potentials, and flow in steady state. It is 

known that biofilms can have irregular surfaces as a result of their internal morphology, depending 

on the substrate concentration (Picioreanu et al., 1998b). The dynamics between residual 

disinfectant and planktonic cells and biofilms in drinking water pipes is characterized by depletion 

of the disinfectant by reaction with biomass and other inorganic and organic substances. During 

this process, microorganisms are inactivated; once disinfectant is low, bacteria regrowth occurs.  

Abokifa et al. (2016a) included this dynamics in their 1D model, under transitional flow, and found 

that THM contribution from biomass occurs in pulses. While microorganism inactivation were taking 

place, chlorine was decaying and THMs were increasing until reaching a plateau in the curve. When 

bacteria regrowth occurred, the same previous pattern was repeated, increasing the absolute THM 

concentration from biomass chlorination (Abokifa et al., 2016a). Furthermore, flow in water pipes 

varies according to changes on customer demand or due to operative procedures such as closing 

valves or intermittent supply (NRCNA, 2006). Therefore, steady state would not be the predominant 

hydraulic condition. Variation of flow leads to changes on shear stress and biofilm detachment can 

occur. 

The current model is also limited by the absence of experimental data to compare to. Previous 

experimental studies were carried out under static conditions or laminar flow regime. However, this 

model can help to design new experiments on DBP formation in drinking water pipes under 

transitional and turbulent flow. In addition, the sensitivity analysis of the model was carried out by 

using the method with the lowest computational cost (Morris method) and by evaluating the method 

only once. This represented 33 days to complete the sensitivity analysis. The methodology applied 

by Menberg et al. (2016) included 10 evaluations of the model with the Morris method. The high 
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computational cost of CFD models limited the application of more thorough sensitivity analysis 

methods and this may represent that parameter influence was not properly ranked. However, the 

results of the sensitivity analysis presented here agreed with the variables involved in the equations 

included in the model. Furthermore, this analysis offered a general idea of the parameters which 

must be determined with more accuracy and frequency in real scale DWDNs to be used as inputs 

of the current model. 

As hardware, software and more efficient numerical models are developed, more characteristics of 

the real biofilm and flow in drinking water pipes can be included in future modelling studies. In the 

meantime, the current model is an appropriate tool to evaluate the factors that influence the DBP 

formation potentials resulting in certain initial characteristics of the biofilm, which can be relative 

easy to measure. As mentioned in Chapter 4, some improvements on microscopy techniques must 

be done to measure biofilm thickness from real scale DWDNs. On the other hand, the water industry 

must do more efforts to incorporate biofilm research results into routine O&M of DWDNs. In this 

line, an effective and close relationship academy, water industry and regulatory agencies must be 

promoted. 

 

5.5 CONCLUSIONS 

This chapter presented the development of a model, in two dimensions, for predicting the formation 

potentials of chloroform and DCAN, under bulk flow. 

 Biofilms should be actively acknowledged as DBPs precursors. This may lead to improve the 

prediction of DBPs in distribution networks. Improved models of DBP formation coupled with 

validated hydraulic models in water networks may help to improve the assessment of chronic 

risks in drinking water. 

 Turbulence model SST is appropriate to solve the flow in the whole domain, especially near to 

the pipe wall, where wall reactions take place. This model is also solver independent as shown 

through solution in both COMSOL 5.2a and Ansys Fluent 16.0. 

 The concentrations of chloroform and DCAN are mainly dependent of water quality parameters 

such as initial chlorine concentration, initial cell concentration, and biofilm thickness. Higher 

values of such parameters can lead to higher concentrations of both DBP species. 

 Pipe diameter was also an important parameter influencing the DBP concentrations. Such 

concentrations were higher with small pipe diameter such as 3 inches in relation to 10 inches. 
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 Faster mass transport at the biofilm surface was found for higher Re, being faster for turbulent 

flow, followed by transitional and laminar. Similarly, faster mass transport may occur in smaller 

pipe diameter, and with higher initial concentrations of chlorine and cells and higher biofilm 

thickness. 

 Mass transfer rates of magnitude order of 10-6 – 10-5 mg/m2-s were found for chloroform and 

DCAN under transitional and turbulent flow regime. 

 A linear relationship between Re and Sh was found with the simulations run by the model 

developed in this study. 

 From the point of view of microbiological risk, slow flow represents the most critical condition to 

properly disinfect biofilms and control bacteria growth within them. Similarly, chemical risk may 

be also high due to lower flow rates led to higher concentrations of DBPs, despite of the reduced 

mass transfer. 

 Field and laboratory assessment of the biofilm properties must be focused primarily on biofilm 

thickness and cell density. Reaction rates and yield coefficients can still rely on published data 

in the scientific literature but further experimental studies may refine those results by using other 

types of disinfectant, multispecies biofilm, and environmental temperature. 

 Water operators must pay especial attention to control the chronic risk associated with DBPs 

and human health in the smaller pipes of the DWDNs, where lower flow rates can be present, 

then major interactions bulk-biofilm are expected and more DBPs can be formed. Furthermore, 

for those portions of the networks are immediately close to the customers, then the formed 

DBPs will enter the plumbing systems and may increase their concentration under stagnation 

conditions, which prevail within the building facilities. 
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6 GENERAL DISCUSSION, IMPLICATIONS AND APPLICATIONS 

6.1 GENERAL DISCUSSION 

The current research project analysed the impact of the presence of biofilms in DWDNs by two 

approaches: microbial and chemical risk, with major emphasis on the last one, due to the growing 

research interest on biomass as DBP precursors. Figure 6-1 shows how the dual role of biofilms 

was studied in the current research project. Such impact was studied by a fieldwork carried out in 

a full scale DWDN located in a tropical-weather country. Such fieldwork allowed identifying the 

predominant bacterial communities in biofilm and bulk water habitat, in nine points of the DWDN. 

Correlations between biotic parameters and engineered factors were determined and relationships 

between bacterial communities and THMs were also explored. Following the field study, two 

models were developed as tools to predict the formation potentials of chloroform and DCAN from 

chlorination of biofilms in drinking water pipes. Such models allowed determination of the 

concentrations of such DBPs under stagnation and hydrodynamic conditions, according to biofilm 

characteristics, pipe diameter, water quality, and hydraulic conditions. 

 
Figure 6-1. Dual role of biofilms studied in the current research project 
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As can be observed in Figure 6-1, by the field assessment in a tropical-weather DWDN, correlations 

between TTHMs and methanotrophs in bulk water samples and the presence of these organisms 

in biofilm samples may confirm the interrelations between microorganisms and chemical 

substances such as DBPs in real scale DWDNs. Concentrations of free residual chlorine measured 

in the Cali’s distribution network were used as inputs of the several scenarios simulated with the 

two models developed in the current research project. In this line, Figure 6-2 presents other 

parameters to be considered in further field assessments of biofilms, in order to collect more field 

data to be used as inputs of models of disinfectant decay and DBP formation including biomass 

contribution. Parameters to be considered in future field works should include biofilm thickness, 

chlorine and DBP concentrations, flow rate, pipe diameter, cell density, EPS concentration and 

identification of microbial communities. This will contribute to improve definition and validation of 

hydraulic and water quality models focused on analysis of balance between microbial and chemical 

risk in drinking water systems. 

 
Figure 6-2. Two approaches to study the microbial and chemical significance of biofilms in 

drinking water 

 

Biofilms in drinking water have been mainly studied for research purposes, especially due to its 

capacity to host pathogens. These organisms can be released to the bulk, reach the consumers, 

and cause infection if the biofilm is detached and disinfectant is insufficient or unable to inactivate 

them. In plumbing systems, opportunistic pathogens (e.g., Legionella spp., Mycobacterium spp., 
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Pseudomonas aeruginosa) generate special concerns due to they find the perfect conditions there 

for survival and growth. Opportunistic pathogens are disinfectant resistant, biofilm formers, and 

able to grow within amoeba, under oligotrophic conditions and low oxygen levels (Falkinham et al., 

2015). Additional to the ingestion exposure route, opportunistic pathogens can also be inhaled from 

aerosols formed during showering. These pathogens affect to individuals with predisposal 

conditions such as advance age (older than 70 years), cancer or immunodeficiency (Falkinham et 

al., 2015). Therefore, special attention must be paid to safety of drinking water supplied particularly 

in medical institutions and care homes. 

On the other hand, investigation on biomass as DBP precursors has been continuously developed 

in the last decade. Researchers have been interested on quantifying, by laboratory tests, the 

contribution of algae, EPS, planktonic cells of single species, both heterogeneous and 

homogeneous biofilms, detached clusters biofilms, and biomolecules to the formation of 

carbonaceous and nitrogenous DBPs, by both chlorination and chloramination (Hong et al., 2008; 

Fang et al., 2010a; Fang et al., 2010b; Wang et al., 2012c; Pu et al., 2013; Wang et al., 2013a; 

Wang et al., 2013b; Lemus Pérez and Rodríguez Susa, 2017). According to this, a recent study 

focused on modelling the formation of THMs in a DWDN, for turbulent flow regime, included the 

contribution of fixed and suspended biomass (Abokifa et al., 2016a). The researchers estimated 

that biomass contributed with around maximum 12% of the total THM concentrations simulated 

(Abokifa et al., 2016a). 

According to Lee and Schwab (2005), DWDNs from developing countries are characterized for 

several failures such as low or absence of residual disinfectant, low water pressure, intermittent 

service, and high rate of leaks; poor basic sanitation is also a common situation in such countries. 

Everything together represents that a big portion of the population of these countries are exposed 

to microbial risks by water consumption (Lee and Schwab, 2005). As described in Chapter 3, the 

DWDN of the city of Cali presents all the failures mentioned previously, in certain portions of the 

network and during specific times. A special feature of this network, which has been reported 

frequently in communication media, is the intermittent supply due to the contamination of the water 

source. In addition, the ageing infrastructure (30.4% of the pipelines are made of asbestos) and 

the hydraulic changes cause a high rate of leaks (81/100 Km for year 2013)17. High rate of leaks 

represents that service must be frequently interrupted in the affected region to repair the leak, then 

disturbing the hydraulics of the circuit. According to USEPA’s guidelines (USEPA, 2002c) and 

during the field work, it was also observed that the new piece of pipe installed did not contain any 

                                                        

17 EMCALI EICE ESP, 2014, personal communication, 10th December 
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protection against contamination and it is unknown if this was disinfected prior to installation. 

Neither disinfection nor flushing prior to putting the pipe into service was confirmed. Repair staff 

neither take any preventive procedure to protect themselves to avoid passing contamination to the 

pipelines. The affected portion of the network was not flushed either prior to reinitiate water supply. 

Thus, it is clear that several processes are simultaneously occurring in Cali’s DWDN that may 

threaten the microbial drinking water quality delivered to the consumers. With regards to chemical 

risk, DBP concentrations were in average 31.76 g/L, which is below the UK and Colombian 

standards (100 and 200 g/L, respectively) (UK Parliament, 2000; Ministerio de la Protección 

Social and Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2007). In this line, the models 

developed here showed that the more risky situation is under stagnant conditions, particularly in 

plumbing premises, where DBP exposure occurs. Similarly, other studies have also stablished that 

households are exposed to microbial risk in the building facilities (Falkinham et al., 2015; Ji et al., 

2015; Ji et al., 2017). Under no flow situation, chlorine may decay by reaction with pipe walls, then 

DBPs are formed and transported to bulk water, and bacteria regrowth occurs in both bulk water 

and biofilm. After a period of stagnation, householders use stagnant water and can be exposed, by 

mainly ingestion or inhalation, to DBPs and bacteria. 

Under turbulent flow situation, it is clear that the major chemical risk associated to DBPs is in 

smaller pipes, i.e., those around the point of use, where bulk-wall interactions are more important, 

and flow rates are lower, then dissolved substances as DBPs are more concentrated. Furthermore, 

mass transfer is enhanced when Re is higher. Under the same Re, low chlorine concentrations led 

to reduced mass transfer, and DBP formation and transport is reduced. However, low disinfectant 

residuals also poses a microbial risk, because low mass transfer at the biofilm surface reduces the 

penetration of the biofilm by chlorine and, consequently, the inactivation of potential pathogenic 

microorganisms may decrease. 

Disinfectant resistance by bacteria, protection by biofilm of microorganisms, DBP formation by 

biofilm chlorination, and disinfectant decay occur in real scale DWDNs. Then, exclusively relying 

on disinfection for biofilm control with focus on pathogen control is not sufficient. In this line, it is 

necessary to stablish a trade-off between the microbial and chemical risk and minimize the biofilm 

formation to guarantee the delivery of safe water to the consumers, which is the final goal of water 

utilities, as it has been stablished by Hrudey and collaborators (Hrudey, 2009; Hrudey and Charrois, 

2012). In order to present the practical implications of both approaches, the next sections include 

the discussion of the microbial risk associated with bacteria identified in the field assessment, the 
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chemical risk analysed with the mathematical models, their implications on O&M of DWDNs, and 

the applicability of this research. 

 

6.2 BACTERIAL COMMUNITIES AND PUBLIC HEALTH 

Potential pathogenic bacteria were identified in several bulk and biofilm samples in Cali’s DWDN. 

Due to such identification was based on DNA sequencing of a low number of base pairs, it can only 

be established the presence of the bacteria to genus level. The establishment of species and 

pathogenic strains and their viability must be done by other microbiological techniques such as 

quantitative and real-time PCR, staining-microscopy methods, measurement of ATP, and 

incorporation of bromodeoxyuridine, microautoradiography combined with FISH (Douterelo et al., 

2014a). Due to the limitations of this study, it is not possible to calculate quantitative microbiological 

risk assessment. However, the results presented here are crossed with the map risks determined 

by Pérez-Vidal et al. (2012) for the same DWDN. 

The city of Cali is administratively divided into 22 communes, which are groups of neighbourhoods 

that share similar socio-economic conditions. Pérez-Vidal et al. (2012) generated maps of 

hydraulic, physical and water quality integrity, according to criteria such as minimal pressure, 

number of leakages in aqueduct, number of leakages in sewage, number of leakages in household 

connections, percentage of material in the DWDN, historical records of water quality, and water 

quality complaints. The map risk was the result of the weighed combination of previous maps and 

population density. 

Table 6-1 presents the sampling points and communes where DNA of potential pathogenic bacteria 

was identified and the respective risk classification obtained by Pérez-Vidal et al. (2012). The 

crossed information presented in Table 6-1 shows that sampling points where pathogenic bacteria 

were identified are located in the areas of high and very high risk. This is not a coincidence, since 

samples were collected during leak repair activities and map risk was created using the number of 

leaks in the aqueduct. Pérez-Vidal et al. (2012) assigned the highest weight to this criterion together 

with minimal pressure in the map of physical and hydraulic integrity (30% each). Similarly, this type 

of integrity had the highest weight together with water quality (40% each). Finding pathogenic 

bacteria in those communes represents that choosing the criterion number of leakage in a DWDN 

is reasoning, due to the loss of physical integrity during repair activities promotes the introduction 

of external contaminants to the system. This is probably the cause of the presence of bacteria listed 

in Table 6-1. 
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Table 6-1. Potential pathogenic bacteria identified in Cali’s DWDN and their corresponding risk 
area defined by Pérez-Vidal et al. (2012) 

Bacteria genus / 
Habitat 

Sampling 
points 

Commune 
Commune risk classification 

according to risk maps 

Acinetobacter 
Biofilm 

Point 8 4 Very high risk 

Brucella 
Bulk water 

Point 1 4 Very high risk 

Point 2 8 Very high risk 

Point 4 7 High risk 

Point 6 8 Very high risk 

Mycobacterium 
Bulk water 

Point 1 4 Very high risk 

Staphylococcus 
Biofilm 

Point 6 8 Very high risk 

Point 8 4 Very high risk 

Point 9 7 High risk 

Pseudomonas 
Biofilm 

Point 3 10 High risk 

Point 5 4 Very high risk 

Point 8 17 High risk 

 

Acinetobacter, Staphylococcus and Pseudomonas are biofilm formers, opportunistic pathogens, 

have been identified in infected patients and are able to colonize medical devices (Heilmann et al., 

1996; Stover et al., 2000; Carr et al., 2003). Therefore, it is important that medical institutions and 

care homes incorporate additional remediation measures to avoid potential interaction between 

opportunistic pathogen and immune compromised patients. In order to reduce opportunistic 

pathogens in this type of institutions, Falkinham et al. (2015) recommended to increase the 

temperature of hot water and avoid its recirculation; clean and disinfect shower heads; replace 

shower heads with large hole; install single unit hot water systems to reduce the travel time of hot 

water; remove aerators from taps and faucets; carry out building wide disinfection; reduce aerosols 

by filter entrapment; and install microbial filtration devices in specific locations. It is important to 

mention that these organisms may be present in other regions of Cali’s DWDN, which may be 

transported from one point to others during hydraulic changes. 

To the author’s knowledge, this is the first study reporting Brucella in a DWDN. This genus was the 

predominant group in Point 1. Brucella comprises 11 species, ten of them are associated with 

human infections (Scholz et al., 2010; Xavier et al., 2010) and the hosts of these pathogenic 

bacteria are commonly mammals (Eisenberg et al., 2012). Human brucellosis is considered as a 

life-threatening debilitating disease and sources of infection include inhalation of contaminated dust 

or aerosols, ingestion of contaminated milk and unpasteurized dairy products, and exposure of 

mucosa or skin abrasions to fluids and tissues from aborted foetuses of infected animals or carcass 

(Xavier et al., 2010). Despite of there is not conclusive evidence on microbial risk in the studied 

DWDN, the results presented here indicate that water managers should adopt improved O&M 
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measures to prevent deterioration of drinking water quality delivered to the consumers. 

Furthermore, another study should be carried out to confirm the presence of potential pathogenic 

bacteria belonging to the genus identified in this project. 

 

6.3 DBPS AND PUBLIC HEALTH 

DBP formation is a very complex process occurring in drinking water systems because many 

factors participate in it. Factors include type and dose of disinfectant, type and amount of 

precursors, pH, temperature, residence time, and presence of bromide. This complexity is reflected 

on the identification of around 600 DBPs, classified into 26 groups, but only four groups are 

currently subject of regulation or recommendation of health-based thresholds (Richardson et al., 

2007). Certainly, the presence of disinfectant in drinking water is the main driver of DBP formation. 

Non-disinfected systems do not deal with this problem, but this occurs in cities, where water 

sources such as groundwater are properly preserved. Supply systems from Netherlands, 

Switzerland and Germany do not rely on residual disinfectants, but do on advanced treatment 

processes, improved physical integrity of the distribution system, and careful management of 

distribution system operations (Rosario-Ortiz et al., 2016). 

When the water sources are contaminated, water utilities must rely on disinfection to inactivate 

pathogenic microorganisms in raw water and protect the distributed water from further 

contamination. Since the discovery of THMs in 1974, great amount of research has been conducted 

and regulations around the world have been designed to protect the consumers from chemical risk 

associated with DBPs. In this line, water operators have faced the dilemma about either maintaining 

disinfectant residuals in the water network or minimize the DBP formation. When disinfection 

cannot be evaded, chemical safety of drinking water is supported by the regulation, then water 

utilities focuses on reducing the DBP precursors. It is clear then that regulation of DBPs have 

promoted the improvement of drinking water quality by advancement on treatment processes and 

better practices of O&M of DWDNs (Humpage, 2012). 

The previous analysis is the ideal approach in the context of the uncertainty of the association 

between mutagenic, carcinogenic and teratogenic effects on human health. According to Hrudey 

and Charrois (2012); Hrudey et al. (2015b), the epidemiological evidence is not yet conclusive to 

directly associate the most abundant and regulated DBPs such as THMs and HAAs with such 

negative health impacts. To date, the study developed by Cantor et al. (2010) has provided the 

strongest indication of potential association between bladder cancer and THMs in drinking water 
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(Hrudey et al., 2015b). However, the relationship between DBPs and negative health outcomes is 

still an open question. While the answers to this question arrive, it is necessary to put in proper 

perspective the management and control of DBPs in drinking water. In this line and according to 

the aim of this project, it is necessary to assume the biofilm risk as a trade-off and assimilate the 

biofilms as DBP precursors and potential reservoirs of pathogens. 

In this context, the models developed in this project represent a tool to improve the prediction of 

DBP concentrations in plumbing systems and DWDNs, under both stagnation and hydrodynamic 

conditions. Proper prediction of DBPs would help to improve the assessment exposure, which is a 

key component on epidemiological studies related to these substances. The hydrodynamic model 

also contributes to understand the mass transfer of dissolved substances like chlorine and DBPs 

at the biofilm surface, then scenarios where more or less chlorine is desirable in certain areas of 

the network can be identified, in order to find the balance between bacteria and DBP control. 

Consolidated results of both 1D and 2D models are included in Table 6-2 and Table 6-3, 

respectively. These results evidence that the most critical conditions in relation to DBP 

concentrations are under stagnation conditions, followed by transitional and turbulent flow. 

Diffusion is the predominant mass transport mechanism when there is not flow. For contact time of 

11 hours, which can normally occur even in single building premises, all the biomass and chlorine 

are available for reacting, and formed DBPs are transported to the bulk water and diluted in small 

volumes. 

Table 6-2. Main results of 1D model of potential of DBP formation from biofilm chlorination 

Initial conditions (Contact time = 11 

hours,  = ½ inches) 
Potential DBP 

concentrations 
BT (m) Clo (mg/L) Xo (mg/L) 

7 
0.12 and 

1.66 

0.89 
Chloroform = 6.98 g/L 

DCAN = 3.43 g/L 

13.98 
Chloroform = 31.62 g/L 

DCAN = 13.16 g/L 

102 

0.12 

0.89 
Chloroform = 89.29 g/L 

DCAN = 44.30 g/L 

13.98 
Chloroform = 146.25 g/L 

DCAN = 61.42 g/L 

1.66 

0.89 
Chloroform = 117.40 g/L 

DCAN = 58.26 g/L 

13.98 
Chloroform = 195.94 g/L 

DCAN = 466.20 g/L 

Initial conditions 
Potential DBP 

concentrations (inches) Xo (mg/L) 
BT and 

Clo 

½ - 9 0.89 – 0.05 
7 m | 

0.12 mg/L 

Chloroform: 

6.91 – 0.30 g/L 
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DCAN: 

3.39 - 0.16 g/L 

13.98 – 
0.78 

102 m | 
1.66 mg/L 

Chloroform: 

466.20 – 6.55 g/L 

DCAN: 

195.94 – 3.27 g/L 
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Table 6-3. Main results of 2D model of potential of DBP formation from biofilm chlorination 

Initial conditions (Contact time = 1 hour, Pipe length = 1 m) 
Potential DBP concentrations 

(maximal value) 
Sh̄ - DBPs Mass transfer (m/s) BT 

(m) 

Clo 
(mg/L) 

Xo 
(mg/cm2) 

 
(inches) 

Re Other 

7 1.66 4.44 x 10-3 3 
1200 | 4161 | 

25084 

Flow regime: 
Laminar, 

transitional 
and turbulent 

flow 

Chloroform 

Laminar: 4.06 x 10-2 g/L 

Transitional: 3.46 x 10-2 g/L 

Turbulent: 1.42 x 10-2 g/L 
 
DCAN 

Laminar: 2.16 x 10-2 g/L 

Transitional: 1.97 x 10-2 g/L 

Turbulent: 6.82 x 10-3 g/L 

Chloroform 
Laminar: 0.0085 
Transitional: 0.0226 
Turbulent: 0.1016 
 
DCAN 
Laminar: 0.0054 
Transitional: 0.0023 
Turbulent: 0.0895 

Chloroform 
Laminar: 1.13 x 10-6 
Transitional: 5.34 x 10-6 

Turbulent: 2.14 x 10-5 

 

DCAN 
Laminar: 1.28 x 10-6 
Transitional: 5.44 x 10-6 

Turbulent: 2.12 x 10-5 

7 1.66 4.44 x 10-3 

3 2774 - 4994 
Transitional 

flow 

Chloroform = 4.72x10-2 – 3.76x10-2 g/L 

DCAN = 2.55 x 10-2 – 1.97 x 10-2 g/L 

Chloroform: 
0.0163 – 0.0174 
DCAN: 
0.0144 – 0.0229 

Chloroform: 
2.16x10-6 – 3.46x10-6 
DCAN: 
3.43x10-6 – 5.44x10-6 

102 1.66 4.44 x 10-3 
Chloroform = 0.58 – 0.47 g/L 

DCAN = 0.34 – 0.25 g/L 

Chloroform: 
0.2680 – 0.4012 
DCAN: 
0.2326 – 0.3462 

Chloroform: 
2.44x10-6 – 3.65x10-6 
DCAN: 
3.79x10-6 – 5.63x10-6 

7 1.66 4.44 x 10-3 

3 
10034 - 
50030 

Turbulent flow 

Chloroform = 7.83x10-3 – 2.68x10-2 g/L 

DCAN = 3.70 x 10-3 – 1.35 x 10-2 g/L 

Chloroform: 
0.0462 – 0.1863 
DCAN: 
0.0405 – 0.1646 

Chloroform: 
6.13x10-6 – 2.47x10-5 
DCAN: 
9.61x10-6 – 3.90x10-5 

102 1.66 4.44 x 10-3 
Chloroform = 0.10 – 0.32 g/L 

DCAN = 5.15 x 10-2 – 0.17 g/L 

Chloroform: 
0.6654 – 2.7275 
DCAN: 
0.5792 – 2.3994 

Chloroform: 
6.06x10-6 – 2.48x10-5 
DCAN: 
9.43x10-6 – 3.90x10-5 

7 1.66 4.44 x 10-3 3 

4161 

S/V = 52.5 m-1 
Chloroform = 4.06 x 10-2 g/L 

DCAN = 2.15 x 10-2 g/L 

Chloroform = 0.0226 
DCAN = 0.0199 

Chloroform = 2.99x10-6 

DCAN = 4.71x10-6 

7 1.66 4.44 x 10-3 6 S/V = 26.3 m-1 
Chloroform = 2.07 x 10-2 g/L 

DCAN = 1.50 x 10-2 g/L 

Chloroform = 0.0120 
DCAN = 0.0137 

Chloroform = 1.59x10-6 

DCAN = 3.24x10-6 
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Initial conditions (Contact time = 1 hour, Pipe length = 1 m) 
Potential DBP concentrations 

(maximal value) 
Sh̄ - DBPs Mass transfer (m/s) BT 

(m) 

Clo 
(mg/L) 

Xo 
(mg/cm2) 

 
(inches) 

Re Other 

7 1.66 4.44 x 10-3 10 S/V = 15.8 m-1 
Chloroform = 1.17 x 10-2 g/L 

DCAN = 7.10 x 10-3 g/L 

Chloroform = 0.0059 
DCAN = 0.0052 

Chloroform = 7.84x10-7 

DCAN = 1.24x10-6 

7 1.66 4.44 x 10-3 3 10173 S/V = 52.5 m-1 
Chloroform = 2.67 x 10-2 g/L 

DCAN = 1.33 x 10-2 g/L 

Chloroform = 0.0467 
DCAN = 0.0410 

Chloroform = 6.20x10-6 

DCAN = 9.72x10-6 

7 1.66 4.44 x 10-3 6 5086 S/V = 26.3 m-1 
Chloroform = 2.46 x 10-2 g/L 

DCAN = 1.29 x 10-2 g/L 

Chloroform = 0.0274 
DCAN = 0.0242 

Chloroform = 3.63x10-6 

DCAN = 5.74x10-6 

7 1.66 4.44 x 10-3 10 3051 S/V = 15.8 m-1 
Chloroform = 1.15 x 10-2 g/L 

DCAN = 7.10 x 10-3 g/L 

Chloroform = 0.0049 
DCAN = 0.0049 

Chloroform = 6.44x10-7 

DCAN = 1.15x10-6 

7 0.12 2.82 x 10-4 

3 2774 
Transitional 

flow 

Chloroform = 3.71 x 10-3 g/L 

DCAN = 2.03 x 10-3 g/L 

Chloroform: 0.0211 
DCAN: 0.0178 

Chloroform: 2.81x10-6 
DCAN: 4.23x10-6 

102 1.66 4.44 x 10-3 
Chloroform = 0.58 g/L 

DCAN = 0.34 g/L 

Chloroform: 0.2680 
DCAN: 0.2326 

Chloroform: 2.44x10-6 
DCAN: 3.79x10-6 

7 0.12 2.82 x 10-4 

3 25084 Turbulent flow 

Chloroform = 6.48 x 10-4 g/L 

DCAN = 3.29 x 10-4 g/L 

Chloroform: 0.1027 
DCAN: 0.0901 

Chloroform: 1.36x10-5 
DCAN: 2.14x10-5 

102 1.66 4.44 x 10-3 
Chloroform = 0.18 g/L 

DCAN = 9.17 x 10-2 g/L 

Chloroform: 1.4733 
DCAN: 1.2929 

Chloroform: 1.34x10-5 
DCAN: 2.10x10-5 
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The major concern in building facilities is that formed DBPs are ready to be consumed once the 

householders use again drinking water. Therefore, consumers may be exposed to high 

concentrations of DBPs by either ingestion or inhalation, after a period of stagnation. On the 

contrary, the quantification and impact of DBPs formed under transitional and turbulent flow regime 

depends on the pipeline length, flow rate and pipe diameter. The results of the 2D model allow 

inferring that the major risk can be in small pipes due to the high S/V ratio and lower flow rates. 

Such pipes can be those in the proximity to the consumers; then exposure probability to such DBPs 

by customers may increase. Subnetworks installed within residential neighbourhoods are also 

prone to stagnation conditions overnight; then the DBP concentrations would increase, as 

explained for 1D model results. 

With regards to mass transport, mass transfer is faster when Re is higher and pipe diameter 

smaller. Decreasing chlorine concentrations in bulk water reduces the mass transport of this 

disinfectant and DBP formed at the biofilm surface. This is an important outcome of the model 

because it allows assessing the balance between microbial and chemical risk. Low concentrations 

of chlorine leads to slow penetration of the biofilm thickness and slow formation of DBPs, which are 

transported to the bulk water and leave the pipe slower than when high chlorine concentrations are 

present. From the point of view of chemical risk, this would be a desirable condition; however, slow 

penetration of the biofilm thickness also represents that potential pathogens are not being 

inactivated. The 2D model and further improvements can be useful to evaluate when it is necessary 

to increase disinfectant concentrations to inactivate microorganisms and when it must be reduced 

to minimise DBP exposure to customers. Such improvements may be achieved by further 

availability of microbial characteristics of biofilm in full scale DWDNs; important variables are biofilm 

thickness, cell density, and EPS concentration. Measuring DBP concentrations within biofilms by 

micro-sensors is also a crucial step for model validation. 

The aforementioned leads to recommend close collaboration between water industry and research 

laboratories to improve the analytical and microbiological techniques that promote better monitoring 

of biofilm roles as both pathogen hosts and DBP precursors. Combined data from models and field 

assessments in DWDNs should lead to improve O&M if they are properly interpreted to protect 

drinking water quality. Additionally, including wall contribution of DBPs to bulk water concentrations 

may also improve the performance of current DBP models for DWDNs. 
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6.4 IMPLICATIONS 

6.4.1 Implications for water quality in Cali’s DWDN in the context of extreme weather 
events 

According to IPCC (2014), one of the clear consequences of climate change is the increase in 

frequency and severity of a variety of extreme weather events, including heavy rainfall, floods and 

droughts. Similarly, the overall frequency in climate phenomena such as El Niño and La Niña is 

expected to increase under global warming (Cai et al., 2014; Cai et al., 2015). Additionally, climate 

change is projected to increase water scarcity in urban areas, and rural areas are expected to 

experience major impacts on water availability and supply (IPCC, 2014). To cope with the urban 

risks associated with water supply, IPCC (2014) includes adaptation options such as changes to 

network infrastructure as well as demand-side management to ensure sufficient water supplies and 

qualities; and increased capacities to manage reduced freshwater availability, and flood risk 

reduction. For the present times, IPCC (2014) have calculated water supply-associated urban risk 

as medium, medium-very high risk with potential to reduce to medium for the near term (2030-

2040), medium-very high and medium risk for the long term (2080-2100), under the scenarios of 2 

°C and 4 °C of increase of global temperature, respectively. 

In this line, Cann et al. (2012) documented 87 and 304 waterborne outbreaks from medical and 

meteorological databases and the global electronic reporting system ProMED, respectively. Such 

waterborne outbreaks were commonly preceded by extreme weather events such heavy rainfall 

and flooding. The most common pathogens reported in these outbreaks were Vibrio spp. and 

Leptospira spp. The events were often the result of contamination of the drinking water system 

(Cann et al., 2012). According to data from medical and meteorological databases, most of the 

Vibrio-associated outbreaks occurred in Asia, followed by Africa and South America and most of 

the Leptospira-associated outbreaks took place in North America or Asia. Causes of contamination 

of the drinking water system included failure to cope by the WTP after the extreme weather events, 

failure or inability to cope by sewage systems, and resulting in contamination of drinking water. In 

developed countries, route of infection was mainly through the DWDNs. In developing countries, 

the main cause was contamination of the water supply. 

The information collected from ProMED by Cann et al. (2012) evidenced that the majority of events 

were in Africa, followed by Asia and North America. The likely causes of the waterborne outbreaks 

were contamination of water, shortage of clean drinking water, poor sanitation and hygiene 

following the extreme weather event. In conclusion, less developed countries are more vulnerable 

to the consequences of extreme weather events (Cann et al., 2012; Rataj et al., 2016). However, 
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developed countries are also susceptible to suffer the negative effects of these events. In both 

cases, upgrading the drinking water supply systems, changing water use patterns, explore new 

water sources are some adaptation measures, which can be implemented by water utilities and 

planners (WHO, 2017). 

Additionally to the increased frequency of extreme weather events due to climate change, which 

will affect water supply, global warming per se is also expected to change the surface water quality, 

consequently affecting the performance of WTPs. Global warming refers to the increase of 

environment temperature. Temperature is the main factor affecting almost all physico-chemical 

equilibriums and biological reactions (dissolution, solubilisation, complexation, degradation, 

evaporation, etc.) (Delpla et al., 2009). Therefore, the impacts of climate change on water quality 

parameters include increase of temperature, reduction of dissolved oxygen; rise of DOC, alkalinity, 

and pH; enhancement of nitrogen mineralisation; release of nitrogen, phosphorus, and carbon from 

soil to water bodies; loss of dilution capacity of water bodies during droughts; rise of organic and 

inorganic pollutants; spread of waterborne pathogens and cyanobacteria blooms (Delpla et al., 

2009). 

Delpla et al. (2009) established that such changes on surface water quality due to climate change 

impact the drinking water quality produced by WTP due to the increase of stable DBP 

concentrations, as a consequence of higher concentrations of precursors such as DOC, algae, and 

biomass in general. It is expected to have moderate impact for unstable DBPs such as DCAN and 

1,1-DCP since they decompose with higher temperatures and HAAs are biodegradable. On the 

other hand, spread or waterborne pathogens challenge the operation of WTPs, since disinfection 

must be maintained in the treatment train and more efforts must be done on removal of DBP 

precursors to minimize DBP concentrations in the DWDNs. 

However, Colombian DWDNs may be poorly operated and maintained, even in centralised systems 

such as in Cali. Unfortunately, this is a common situation in developing countries due to limited 

resources (Lee and Schwab, 2005). One of the causes of deficiencies in DWDNs of developing 

countries is the leakages. In the year 2013, Cali’s DWDN reported 81 leakages per 100 Km18. In 

addition, Cali’s water utility loses 53% of the DW produced; in order to reduce loss of water, it is 

required to replace around 1200 Km of the oldest pipelines, corresponding to pipe materials CI and 

asbestos, which represent 40% of the total network length19. Additionally, the two main WTPs of 

                                                        

18 EMCALI EICE ESP, 2014, personal communication, 10th December 
19 Rojas Ramírez, 2017, personal communication, 10th July. E-mail: jurojas@emcali.com.co 

mailto:jurojas@emcali.com.co
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the city of Cali suspended their operation during events of water source contamination in a range 

of 1-13 times in the period 2009-201620. The high number of leakage repairs and water supply 

interruptions due to deterioration of raw water quality lead to unstable hydraulic conditions in the 

DWDN, which can promote the uncontrolled release of biofilm, sediments, loose deposits, and 

other biological material. These elements can reach the customers and may represent complaints 

due to poor aesthetic conditions or, even worse, public health risks if pathogens were present. 

One of the most common recommendations to adapt to climate change, especially during extreme 

weather events, is to adjust chlorine doses in the WTPs and maintain residual chlorine in the 

network. Such recommendation obeys to the concern of acute risk due to the potential presence of 

pathogens, with the subsequent negative impacts on public health, which can be worse in 

developing countries with low adaptation and response capacity. From the results presented in this 

research project, it is advisable that modelling tools be used to evaluate the trade-off between 

microbial and chemical risk in drinking water pipes. In the meantime, DBP research should focus 

on providing conclusive evidence on which specific DBP species produce negative health 

outcomes, in which degree, which minimal concentrations, and what type of diseases. It is also 

advisable that O&M of DWDNs consider the bio-stability approach to preserve the drinking water 

quality to the customers. 

 

6.4.2 Implications for O&M activities in DWDN 

Bacteriological composition of drinking water biofilms have been mainly studied because of the 

protective effects offered to pathogens against disinfectants; such pathogens can be released to 

bulk water if hydraulic changes occur. Experimental studies have shown that biomass can act as 

DBP precursors. Prevention and removal of biofilms must be a key concern for water utilities; 

flushing water pipes has been proved as a suitable technique to remove material attached to 

internal pipe surfaces but it is inefficient to completely detach biofilms (Abe et al., 2012; Douterelo 

et al., 2013; Fish et al. 2016). Advanced water treatment processes such as membrane filtration 

has been proved successful in highest reduction of number of microorganisms in biofilms collected 

at the inlet of a DWDN (Shaw et al., 2014). However, a recent study argues that is impossible to 

prevent biofilm accumulation but high flow variation could be used to promote young biofilms, which 

are more vulnerable to disinfection (Fish et al., 2017). 

                                                        

20 Events counted until September 2016 
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In the case of this studied network, avoiding uncontrolled biofilm detachment and contamination of 

bulk water is particularly difficult, as it exhibits specific O&M challenges associated with emptying 

of the network due to the interruption of operation of the WTPs, pumping operation, closing/opening 

valves during leakages repairs and pipelines and accessories replacement. This may lead to favour 

the formation of young biofilms, however it is important to consider that the biofilm detachment may 

occur in an uncontrolled way, then biofilm clusters containing potential pathogens may reach the 

customers. 

Samples collected in this study potentially contained pathogenic and opportunistic bacteria but, 

whether they were metabolically active or not, is unknown since DNA was used to characterise the 

samples. However, these results can motivate the application of proper practices of O&M of the 

DWDN in order to avoid uncontrolled biofilm detachment and contamination of bulk water. 

Furthermore, CI pipes represent 10% of the total length of the pipelines and asbestos 30%; and 

2,400 leakages were repaired in 201321. These O&M activities cause uncontrolled and partial 

removal of sediments and biological material and allow the entrance of external particles, which all 

together could be promoting microbial growth in the network. Future plans for pipeline replacements 

should avoid the use of metal and cement pipes and instead promote the use of pipe materials with 

more stable bio-chemical and physical conditions. It is also advisable to maintain stable hydraulic 

conditions to avoid biofilm detachment; controlled cleaning procedures of pipes such as flushing 

should be carried out to reduce the amount of nutrients available for microorganisms in bulk water 

and biofilms and avoid alterations of the organoleptic conditions of DW for the consumers. Special 

attention must be put in dead-end zones to flush stagnant water to reduce microorganism regrowth 

and DBP formation. More importantly, the efforts carried out in protecting water sources and 

improving water treatment could be useless if suitable O&M practices are not applied in the DWDNs 

in order to preserve the safety of drinking water delivered to the customers. 

 

6.5 APPLICABILITY OF THE CURRENT RESEARCH PROJECT 

Despite of the research evidence in relation to microbial and chemical risk associated to the 

presence of biofilms in drinking water pipes, there is not knowledge to date about introduction of 

biofilm monitoring in O&M of DWDNs by water utilities. In this line, the tools and results of the 

current research project become relevant with regards to the supply of new information of the 

                                                        

21 EMCALI EICE ESP, 2014, personal communication, 10th December 
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bacterial communities that may be present in the studied full scale DWDN, and their relationship 

with engineered factors and water quality characteristics. In addition, the models developed here 

are relatively easy to use and implement, especially for stagnation conditions, if the appropriate 

knowledge, trained staff, and software and hardware requirements are available. In this line, more 

efforts must be done in order to transfer the practical knowledge to the water industry and 

strengthen their capacity to apply such knowledge, especially in the context of developing 

countries, where economical limitations exist and are more vulnerable to the impacts of climate 

change. The author suggests applying the results of this research project to inform better practices 

of O&M of Cali’s DWDN, improve prediction of DBPs in DWDN, assess the balance between 

microbial and chemical risk, and make more progress on DBP exposure assessment in 

epidemiological studies. 
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7 KEY FINDINGS, CONCLUSION AND FUTURE RESEARCH 

7.1 GENERAL CONCLUSION 

Biofilms play an important role in DWDNs as pathogen reservoirs and DBP precursors. Additionally, 

diverse bacterial communities exists in this habitat. Such communities can lead to diverse physico-

chemical and biological processes in this type of engineered systems, by the influence of pipe 

materials, hydraulic factors, and drinking water characteristics. One of such processes is the 

formation of DBPs by reactions between biofilm matrix and disinfectants. Then, mathematical 

models developed in the current research project represent a progress to analyse the chemical and 

microbiological risks in drinking water pipes. The models are also useful for prediction of DBP 

formation potentials, designing laboratory experiments, and the evaluation of regulation compliance 

scenarios. Special attention must be put on large DWDNs in order to control the DBP formation in 

the sectors where small pipes and low flow rates or stagnation conditions are frequent. 

 

7.2 KEY FINDINGS 

This research potentially informs to water engineers and managers on the impact of the presence 

of biofilms in drinking water pipes. The following key findings correspond to the objectives 

formulated in the current research project. 

 

7.2.1 Bacterial communities in a tropical-climate DWDN 

The field study enabled analysis of the bacterial communities in the DWDN of the city of Cali, and 

the following are the key findings: 

 Biofilm samples were more diverse in relation to bulk water samples. 

 Proteobacteria phyla was also the predominant group in all the samples collected in the tropical-

weather DWDN. 

 Genus bacteria associated with soil, surface water, pathogenicity-related, and methyl radicals 

like THMs were identified in both habitats. 

 Significant correlations were found between TTHM concentrations and RA of methanotrophs in 

bulk water. 
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7.2.2 Relationships between abiotic and biotic parameters in a tropical-weather DWDN 

The field study enabled the identification of relationships between biotic, physico-chemical, and 

engineered factors determined in the DWDN of the city of Cali, and the following are the key 

findings: 

 Pipe age, pipe material, water age, free chlorine, pH and temperature were associated with 

microbiological parameters indicating that these are key to the composition of bacterial 

communities. 

 Pipe material influences the microbial ecology of DWDNs. Desulfovibrio was identified 

exclusively in the cast iron pipe. 

 

7.2.3 DBP formation potentials from biofilm chlorination under stagnation conditions 

The development and analysis of the one-dimensional model enabled the study of the parameters 

influencing the formation of chloroform and DCAN under stagnation conditions. The key findings 

are the following: 

 High stagnation times and S/V ratios favour DBP formation. Therefore, plumbing systems, which 

have these characteristics, may be more likely at risk. However, this study did not obtain direct 

evidence for this type of system. 

 Plumbing systems can favour the DBP formation from disinfection of biofilms due to the high 

stagnation times and S/V ratios. 

 Concentrations of DBP and DCAN may exceed the UK and Colombian regulated thresholds, 

under certain conditions of water quality and biofilm properties. 

 Pipe diameters as small as ½ inches may lead to DBP concentrations higher than the regulated 

or guidance values. Increasing the diameter to ¾ inches can significantly reduce the 

concentrations, even to values under such thresholds. Such reduction are around 51% and 36% 

for chloroform and DCAN, respectively. 

 DCAN is the more challenging substance in terms of guidance following, compared to 

chloroform, because of its potential higher toxicity, which originated a lower reference value: 20 

g/L. 

 



 

Chapter 7. Key findings, conclusion and future research   265 

Disinfection by-product formation from biofilm chlorination in drinking water pipes 

Carolina Montoya Pachongo. School of Civil Engineering 

7.2.4 DBP formation potentials from biofilm chlorination under hydrodynamic conditions 

The development and analysis of the two-dimensional model enabled the study of the parameters 

influencing the formation of chloroform and DCAN under bulk flow. The key findings are the 

following: 

 Higher chlorine concentration, biofilm thickness, cell density, and smaller pipe diameter led to 

higher concentrations of DBPs. 

 Faster mass transport at the biofilm surface was found for higher Re, smaller pipe diameter, 

higher initial concentrations of chlorine and cells, and higher biofilm thickness. 

 A linear relationship was identified between Re and Sh. 

 Compliance of chloroform and DCAN regulations is linked to the length of the water network the 

pipe diameter, and flow regime. Higher chemical risk may occur in long networks, smaller pipes 

and lower flow rates related to transitional flow. 

 

7.2.5 Practical recommendations on biofilm and disinfection by-products control in 
drinking water networks 

The practical recommendations below are the result of the analysis and discussion of the results 

included in Chapters 3, 4, and 5. 

 To adapt the water industry to climate change from the management, technical, and 

infrastructure points of view. 

 To develop and implement the Water Safety Plans for water supply systems, which considers 

that O&M and these systems should be based in risk management, from the catchment to the 

tap. 

 To keep fluent communication between treatment and distribution departments in water utilities 

in order to coordinate activities, optimize resources and make decisions together. This could 

improve the service provided to customers in terms of drinking water quality and service 

continuity. 

 To upgrade the treatment processes for minimization of organic matter, nutrients and biomass 

in treated water in order to reduce the biofilm growth and DBP formation in the DWDNs. 

 In order to control both microbial and chemical risks in the DWDNs, it is necessary to design 

and apply an integral plan of O&M of DWDNs. Such plan must include replacement of ageing 

pipelines, flushing pipes, cleaning storage tanks, reduction of water age, maintaining positive 

pressures, and guaranteeing continuous water supply. 
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 To avoid metal and cement materials in new pipelines. Bio-stability concept should be 

considered when pipe materials are being chosen for drinking water supply. 

 To use predictive tools to analyse the balance between microbial and chemical risks in the 

DWDNs and improve DBP estimation and exposure assessment in DWDNs. Biofilm contribution 

to DBP concentrations in bulk water must be included in such tools. 

 To promote closer relationship among academy, water industry and regulatory agencies in order 

to improve communication, transfer knowledge and impact of water quality research in the water 

industry. 

 

7.3 FUTURE RESEARCH 

 A long-term study to characterize pathogenic microorganisms by molecular methods, in both 

bulk water and biofilms, in Cali’s DWDN. Techniques such as q-PCR and microscopy should be 

applied to identify the presence and viability of pathogenic bacteria. Biofilms should be growth 

in coupons installed directly in the network in order to monitor several points of the network, 

without affecting the normal operation of it (Douterelo et al., 2014a). This is important because 

previous study and the current one have identified a potential risk due to the high leak rate this 

network presents. Furthermore, the DNA of potential pathogenic bacteria was found in either 

biofilm or bulk water sampled in Cali’s DWDN. 

 To identify the limiting-nutrient for bacterial regrowth in Cali’s DWDN. This would help to water 

managers to define the goal of future plans for upgrading the WTPs in Cali’s supply system. 

 To continue investigation on laboratory techniques to improve measuring DBPs and monitoring 

biofilms. Better microscopy techniques are needed to properly measure thickness of biofilms 

found in real scale DWDNs. Moreover, to develop micro-sensors are required to measure DBP 

concentrations at different depths within biofilms. Improved laboratory analytical capacities are 

fundamental for the progress of research on DBPs and biofilms in drinking water supply. 

 To assess the high flow variation in DWDNs on the detachment of biofilms, and to evaluate the 

impact of detached biofilm clusters on the transport and fate of pathogens and DBP formation. 

Loss of hydraulic integrity may increase in the future due to more frequent interruption of normal 

operation of the DWDNs. Therefore, recurrent hydraulic changes may lead the detachment of 

biofilm clusters, which can react with free chlorine and increase the DBP concentrations. 

Furthermore, clusters mobilization may also favour the biofilm colonization of clean pipe walls 

and transport pathogens to the water point of use. 
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 To include the contribution of DBP formation in DWDNs as concentration pulses, lasting the 

same time than bacterial regrowth takes place. This would allow the indirect incorporation of 

biofilm growth simultaneously with DBP formation from disinfectant-biomass interactions, with 

potential reduction of computational cost. 
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9 APPENDICES 

Appendix 9-A. Water age map 

 

Figure 9-1. Water age for subnetwork 4 at the DWDN of the city of Cali - Colombia 
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Appendix 9-B. Normality tests of correlated parameters 

 

Table B-1. Normality tests for water and biofilm parameters 

Variable 
Significance Shapiro-Wilk 

test 
Classification 

Temperature 0.001 Data do not have normal distribution 

pH 0.053 Data have normal distribution 

Free residual chlorine 0.318 Data have normal distribution 

Total chlorine 0.189 Data have normal distribution 

Total trihalomethanes 0.930 Data have normal distribution 

TOC in biofilms 0.000 Data do not have normal distribution 

Water age (water sampling 
point) 

0.000 Data do not have normal distribution 

Water age (biofilm sampling 
point) 

0.754 Data have normal distribution 

Pipe age 0.315 Data have normal distribution 

Pipe diameter 0.000 Data do not have normal distribution 

Dry biomass per surface area 
(minimal values) 

0.014 Data have normal distribution 

Dry biomass per surface area 
(median values) 

0.180 Data have normal distribution 

Dry biomass per surface area 
(maximal values) 

0.000 Data do not have normal distribution 

Unit dry biomass (all the 
values) 

0.000 Data do not have normal distribution 

Margalef richness index 
(biofilm) 

0.001 Data do not have normal distribution 

Shannon diversity index 
(biofilm) 

0.008 Data do not have normal distribution 

Margalef richness index 
(water) 

0.310 Data have normal distribution 

Shannon diversity index 
(water) 

0.313 Data have normal distribution 
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Appendix 9-C. Two-dimensional plots of the Multi-Dimensional Scaling (MDS) 
analysis and dendrograms for visualization of Bray Curtis similarity index 
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 Two-dimensional plot of the Multi-Dimensional Scaling (MDS) analysis Dendrogram for visualization of Bray Curtis similarity index 
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Figure 9-2. Bray Curtis similarities of the relative abundance percentage of species in biofilm samples – Water species 
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 Two-dimensional plot of the Multi-Dimensional Scaling (MDS) analysis Dendrogram for visualization of Bray Curtis similarity index 
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 Two-dimensional plot of the Multi-Dimensional Scaling (MDS) analysis Dendrogram for visualization of Bray Curtis similarity index 
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 Two-dimensional plot of the Multi-Dimensional Scaling (MDS) analysis Dendrogram for visualization of Bray Curtis similarity index 
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Figure 9-3. Bray Curtis similarities of the relative abundance percentage of species in biofilm samples – Biofilm species 
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 Two-dimensional plot of the Multi-Dimensional Scaling (MDS) analysis Dendrogram for visualization of Bray Curtis similarity index 
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 Two-dimensional plot of the Multi-Dimensional Scaling (MDS) analysis Dendrogram for visualization of Bray Curtis similarity index 
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Figure 9-4. Bray Curtis similarities of the relative abundance percentage of species in biofilm samples – Water and biofilm species together 

 


