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Abstract 

 

Signal transduction in sensory systems is affected by two major neural 

mechanisms:  neural noise and suppression. Both of these factors present limits on 

the perceptual abilities of the observer. For example, in contrast discrimination 

both elevate thresholds. Suppression and neural noise have been implicated in 

normal sensory development, ageing and several neurological disorders. Of 

particular interest are autism spectrum conditions (ASCs), in which both neural 

noise and suppressive mechanisms seem to be atypical. 

This thesis addresses several issues surrounding the measurement and neural 

implications of neural noise and suppression. Firstly, it investigates where in the 

brain neural noise affects sensory processing. Using machine learning algorithms 

to analyse electro- and magneto-encephalography data, it was found that the main 

source of neural noise is early sensory cortex. Secondly, it compares 

psychophysical paradigms used to dissociate the effects of noise and suppression, 

and suggests refined methods, in particular, using double-pass consistency. 

Thirdly, it investigates the neural effects of modulating neural noise and 

suppression selectively using transcranial magnetic stimulation (TMS). It reveals 

that two existing TMS protocols are suitable for this: single pulses suppress neural 

signals, whereas triple-pulse TMS increases neural noise. 

Lastly, the thesis investigates neural noise and gain control (a suppressive 

mechanism) in ASC. The findings show a relationship between sensory noise and 

autistic traits in the neurotypical population. Furthermore, electrophysiology data 

from ASC children and adults as well as a genetic Drosophila model of autism 

revealed a deficit in the transient dynamics of ASC visual systems, which changes 

over the course of development. Striking similarities between the fruit fly (Nhe3) 

model and humans suggests that the genetic model is suitable for further research 

on ASC sensory symptoms. Taken together, this thesis expands the understanding 

of neural noise and suppression as well as the situations in which these 

mechanisms are implicated.  
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Chapter 1 

 

Introduction 

 

 

 

 

 

 

1.1 Sensory signal transduction 

The nature of sensory processing is paradoxical: although the brain strives to 

produce a stable model of the world surrounding us, neural signals encoding this 

model are inherently stochastic. In vision, an entirely faithful representation of the 

amount of light at each location of the visual field is not behaviourally useful. 

Rather, neural sensitivity is regulated by a process called gain control, in order for 

sensory percepts to remain constant in transient environmental conditions 

(Carandini & Heeger, 2012; Tsai, Wade, & Norcia, 2012) For example, if we see 

a white cat in the night we have no problem determining its colour, although in 

reality white cats in the night look gray rather than white. This is because our 

visual systems are able to adjust our percepts according to the surrounding visual 

input (in this case, the darkness of the night). At the same time, the 

representations of sensory input are also affected by the stochastic property of 

signal transduction – internal (neural) noise. Looking at the same picture of a cat 

repeatedly produces slight variations in neural firing rate on each occasion. 
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In the visual system, suppressive mechanisms and neural noise can be readily 

observed in the response to contrast (the difference between light and dark regions 

in an image) in low level thalamic and cortical visual areas. Internal noise and 

suppression shape the way neural populations in the visual system encode the 

contrast of an object or a scene. Early theoretical accounts of visual perception 

postulated a step function describing the relationship between stimulus intensity 

and neural activation. Such a response pattern would have a clear threshold, at the 

point of minimum intensity (e.g. brightness of a light) that can elicit a neural 

response. However, due to neural noise, when measured over many stimulus 

presentations, this neurometric function (Palmer, Cheng, & Seidemann, 2005) 

follows a sigmoid shape: at low stimulus levels, the neural response accelerates as 

a function of intensity, at medium levels it increases monotonically, and at high 

levels it saturates. This same sigmoid function can be observed in the 

psychometric function of psychophysical observers, which plots the percentage 

trials on which a stimulus was perceived as a function of stimulus intensity 

(Burgess & Colborne, 1988). In contrast transduction, both noise and suppression 

can shift the contrast response function horizontally, changing the sensitivity of 

the visual system. 

As both suppression and internal noise manifest as a deterioration of performance 

on discrimination tasks, dissociating the effects of each presents a problem. 

Recent evidence suggests that previous attempts at estimating internal noise 

psychophysically may have been contaminated by the effects of gain control 

(Baker & Meese, 2012; Baker & Vilidaite, 2014). Furthermore, previous 

behavioural methods for studying noise and suppression involved long 

psychophysical testing sessions, which are not appropriate for some research 

questions. For example, faster and easily implementable paradigms for measuring 

sensory neural noise and suppression are desirable for developmental research, 

research on neural stimulation paradigms and research into clinical conditions, 

such as schizophrenia, epilepsy, and autism spectrum conditions (ASCs). 

In regards to the latter, sensory symptoms in ASC have generated substantial 

interest in the last decade. Hyper- and hypo-sensitivity to sensory stimulation (e.g. 

bright lights) in autism has been explained by both suppressive abnormalities 

(Dickinson, Bruyns-Haylett, Smith, Myles, & Milne, 2016) and increased 
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(Simmons et al., 2009) as well as decreased (Davis & Plaisted-Grant, 2014) levels 

of internal noise. Improved methodology for measuring neural noise and 

suppression could provide insight into the sensory abnormalities of ASC. 

Another such research question concerns the mechanisms underlying transcranial 

magnetic stimulation (TMS). TMS is used to establish links between brain areas 

and behaviour by decreasing task performance (Mckeefry, Gouws, Burton, & 

Morland, 2009). Impaired performance (such as higher thresholds in a 

discrimination paradigm) can be attributed to changes in suppression, neural noise 

or a combination of both. Understanding how TMS affects neural signaling would 

improve interpretation of existing TMS research as well as inform future 

stimulation protocol and methodological choices. 

The current thesis aims to address the issues of measuring and separating gain 

control (suppression) and neural noise in early visual areas. It also investigates the 

effects of neural noise and suppression by linking perceptual decision making and 

neural responses and by changing levels of neural noise and suppression with 

TMS. Furthermore, it addresses a clinical question in which the separation 

between noise and suppression is crucial: sensory processing in ASC. The 

remainder of Chapter 1 will discuss the background literature and rationale of 

these research questions. 

 

1.2 Neural suppression 

1.2.1 What is neural suppression? 

The combination of excitatory and inhibitory inputs in early visual cortex is often 

modeled as a divisive gain control normalisation (Carandini & Heeger, 1994; 

Heeger, 1992; Legge & Foley, 1980). This normalisation is thought to underlie 

several notable suppressive effects, such as saturation, as well as within- and 

cross-channel masking. Although the terms ‘suppression’ and ‘gain control’ are 

often used interchangeably in the literature (Carandini & Heeger, 1994; Carandini, 

Heeger, & Senn, 2002) and throughout this thesis, the distinction is worth noting. 

Suppression is a broad term describing the decrease of stimulus-driven neural 
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signals. Gain control, on the other hand, is an inherent property of sensory 

systems which regulates neural population activity in order to achieve optimal 

sensitivity to sensory stimuli across a wide range of conditions. Gain control may 

suppress or amplify stimulus-related signals according to their spatial and/or 

temporal context. However, as gain control is the main suppressive mechanism 

under normal viewing conditions, both suppression and gain control are often 

used to refer to the same neural property. 

Suppression is evident across different sensory modalities and can be observed in 

visual (Carandini et al., 2002), auditory (Keine & Ru, 2016), olfactory (Olsen, 

Bhandawat, & Wilson, 2011) and somatosensory (Bernier, Burle, & Vidal, 2009) 

processing. Furthermore, variations of it can be found at many different stages of 

sensory systems. For example, in the visual system gain control has been observed 

in retinal ganglion cells (Shapley & Victor, 1981), lateral geniculate nucleus 

(LGN; Freeman, Durand, Kiper, & Carandini, 2002), V1 (Heeger, 2009), V5 

(Majaj, Carandini, & Movshon, 2007) and higher ventral areas (Kouh & Poggio, 

2008). Finally, normalisation is a cross-species phenomenon found in primates 

(Smith, Bair, & Movshon, 2006), other mammals (Osaki, Naito, Sadakane, 

Okamoto, & Sato, 2011), other vertebrates (e.g. zebrafish; Zhu, Frank, & 

Friedrich, 2013) and even insects (e.g. Drosophila; Olsen, Bhandawat, & Wilson, 

2011). 

 

1.2.2 Neural basis of suppression 

The understanding of the neurophysiological mechanisms by which suppression 

affects sensory processing has changed considerably in the last few decades. Early 

accounts of suppression in the early visual cortex suggested that V1 neurons, 

tuned to different orientations and spatial frequencies mutually inhibit each other 

thus inhibiting the detecting channel (stimulus-related signals; Heeger, 1992). 

This process was thought to be driven by GABAA inhibitory connections between 

the neurons (Morrone, Burr, & Maffei, 1982). However, Katzner, Busse & 

Carandini (2011) found no influence of GABAA inhibitor, gabazine, on contrast 

gain control. This suggests that gain control may not be primarily produced by 

GABA-ergic inhibitory connections, at least in cat V1, and instead may be 
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inherited from subcortical structures such as the LGN (Li, Thompson, Duong, 

Peterson, & Freeman, 2006). However, it is not clear how generalizable this result 

is to other sensory systems, levels within systems, or other organisms. For 

example, in the olfactory system of Drosophila suppression was found to be 

GABA-ergic (Olsen et al., 2011). 

Another explanation of suppression states that suppression in V1 is the product of 

thalamocortical depression, happening several synapses before the primary visual 

cortex (Carandini et al., 2002; Priebe & Ferster, 2006). Furthermore, although 

suppression has long been assumed to be inhibitory, a growing body of evidence 

suggests that it relies on excitatory connections as well (Katzner et al., 2011). 

Recently, clinical investigations into gain control impairments use the term 

excitation/inhibition (E/I) imbalance to reflect this (Gao & Penzes, 2015; Nguyen, 

McKendrick, & Vingrys, 2015; Said, Egan, Minshew, Behrmann, & Heeger, 

2013). 

Suppression shapes the neural response function by normalizing neural responses 

to stimuli in order to maximize neural sensitivity over a range of stimuli and 

viewing conditions. This has several implications. First, suppression sharpens the 

tuning curves of sensory cells (Keine & Ru, 2016). Adjusting response functions 

in order to use the neuron’s dynamic response range increases sensitivity to 

stimuli in variable environments. For example, gain control in retinal ganglion 

cells discards information about the overall level of light in the visual field 

(Shapley & Victor, 1981). Second, gain control normalizes responses to high level 

stimuli (such as high contrast) producing a saturating firing rate (Carandini & 

Heeger, 2012). Abnormalities in saturation have been related to abnormal sensory 

functioning in epilepsy (Porciatti, Bonanni, Fiorentini, & Guerrini, 2000; Tsai, 

Norcia, Ales, & Wade, 2011), migraine (Nguyen et al., 2015) and autism 

(Rubenstein & Merzenich, 2003). Third, gain control governs how stimuli are 

combined in neural signals. Lowered gain control reduces suppressive effects in 

surround suppression (Petrov & Mckee, 2006), cross-orientation masking 

(Brouwer & Heeger, 2011), noise masking (Morrone et al., 1982), pedestal 

masking and binocular summation. 
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1.2.3 Measuring suppression 

Gain control can be observed as suppression of signals in phenomena such as 

attentional modulation, adaptation, surround suppression and cross-channel 

masking. The latter two are traditionally employed for measuring suppressive gain 

control processes in contrast transduction. In surround suppression a stimulus is 

presented around the target stimulus (e.g. a sine- wave grating) outside the 

receptive field of the target channel. When the spatial properties (spatial 

frequency, orientation) are similar, the response to the target stimulus diminishes 

as the contrast of the surround is increased. In cross-channel masking, the mask is 

presented within the target receptive field and produces suppression when spatial 

properties of the mask are different from the target (Petrov, Carandini, & Mckee, 

2005). These methods have been widely used psychophysically to measure 

masking and have also been applied to electrophysiology and neuroimaging.  

Cross-channel masking has been widely used together with steady-state EEG as a 

sensitive tool in assessing excitation and suppression in vision (e.g. Tsai, Wade, & 

Norcia, 2012) and audition (Stapells, Linden, Suffield, Hamel, & Picton, 1984). 

Tsai et al. used a frequency tagging paradigm where a target stimulus is flickered 

at a specific temporal frequency (F1) and a superimposed mask is flickered at a 

different frequency (F2). The differences in amplitudes of electrophysiological 

responses at F1 between target only and target + mask conditions indicate the 

level of cross-channel suppression as described by the gain control model. This 

method provides a more direct measure of gain control compared to behavioural 

tasks and can be applied in a wide range of research, e.g. animal models (West, 

Furmston, Williams, & Elliott, 2015).  

The effects of gain control (e.g. saturation, masking and tuning curves) are also 

often employed as measures of neural suppression using psychophysical and 

neuroimaging methodologies (Dickinson, Jones, & Milne, 2016). For example, 

Nguyen, McKendrick, & Vingrys (2015) estimated gain control abnormalities (E/I 

imbalance) in migraine patients by measuring saturation in their 

electroencephalographic (EEG) visually evoked potentials (VEPs). Another 

migraine study (Wilkinson, Karanovic, & Wilson, 2008) investigated E/I 

imbalance by behaviourally measuring binocular rivalry, another gain control 
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mediated neural phenomenon. Alternatively, a large body of ASD literature has 

used pitch, orientation, colour and other types of discrimination paradigms to infer 

changes in gain control (see Dickinson, Jones, & Milne, 2016 for review).  

Finally, many studies suggest gain control as a proxy for measuring GABA levels 

and vice versa: measuring GABA markers as a proxy for suppression in sensory 

systems. For example, GABA concentration in human visual cortex was found to 

be correlated with binocular rivalry alternation rates, another suppression-

dependent phenomenon (van Loon et al., 2013). However, as gain control depends 

on both excitatory and inhibitory connections in cortical and subcortical areas 

(Katzner et al., 2011), GABA-ergic synapses may only part of the picture.  

 

1.3 Neural noise 

1.3.1 What is noise? 

Signal transduction is inherently stochastic. Noise can be observed at the scale of 

single neurons, as variations in neural firing rate during repeated presentations of 

a stimulus (Hubel & Wiesel, 1962, 1968). It also manifests at the whole organism 

scale as variable behavioural responses to repeated stimulation. Noise is an 

important part of signal detection theory (Green & Swets, 1974), which is 

routinely used to characterize signal transduction in neuroscience. 

Neural noise was first observed in animal electrophysiology research as signal 

variability over repeated presentations of stimuli (Schiller, Finlay, & Volman, 

1976). Neural noise results from many sources on several processing scales (Klein 

et al., 2015): (1) molecular fluctuations in ionic conductance and ion pump 

channel activity (Faisal, Selen, & Wolpert, 2008); (2) synaptic transmission noise 

(Schneeweis & Schnapf, 1999); (3) dynamic changes in conductance from short-

term synaptic plasticity and adaptation (Clifford et al., 2007); (4) dynamic 

changes and interaction within networks (Turrigiano, 2011); (5) changes in 

internal states such as attention, arousal and top- down cognitive modulation 

(Fontanini & Katz, 2011). It is typically reported to be proportional to the mean 

firing rate of the neuron, such that the noise at a single unit level is multiplicative 
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(Tolhurst, Movshon, & Dean, 1983a). However, at the population level, the 

aggregate noise is approximately additive (signal-invariant; Chen, Geisler, & 

Seidemann, 2006). 

In psychophysics, the neurophysiological ‘neural noise’ is often approximated by 

a model parameter representing ‘internal noise’, which is assumed to be late and 

additive. As the only certain difference in these terms is the scientific tradition 

from which they originally derive from (psychophysics or neurophysiology), they 

will be used interchangeably in this thesis. 

 

1.3.2 Influence of noise 

The effects of random activity in the brain can be observed both as fluctuations in 

behaviour (i.e. decisions) and in neurophysiological measurements, such as 

single- and multi-cell recordings, EEG, magnetoencephalography (MEG) and 

functional magnetic resonance imaging (fMRI). But how do we know that neural 

noise in visual cortex affects perception? For instance, how do we know that 

variations in responses on a contrast discrimination task are to do with neural 

noise in the visual cortex rather than finger errors or noise in prefrontal (executive 

function) areas? 

Evidence for noise influencing behaviour comes from relating fMRI blood-

oxygenation-level-dependent (BOLD) signal levels to perceptual decisions in a 

contrast detection paradigm (Ress & Heeger, 2003). If behaviour is not influenced 

by spontaneous activity in the detecting channel, we would expect that trials 

containing the target (both hits and misses) would invoke higher neural activation 

than trials that did not contain the target (false alarms and correct rejections). 

However, Ress & Heeger (2003) found that hits and false alarms were preceded 

by higher BOLD signal levels than misses and correct rejections: brain activation 

was more predictive of the percept rather than the stimulus. Higher activation in 

the instance of false alarms suggests that spontaneous neural activity (noise) has 

an important effect on perception and decision making. 

However, other evidence on this is mixed. An MEG contrast detection study 

(Mostert, Kok, & Lange, 2015) confirmed the difference between hits and misses, 
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but did not find any difference in activation between false alarms and correct 

rejections. Furthermore, an EEG event-related potential (ERP) experiment, which 

used auditory signal detection in noise, found higher activation for hits than 

misses, false alarms and correct rejections (Hillyard, Squires, Bauer, & Lindsay, 

1971). This implies that the brain is only responsive when the stimulus is present 

and consciously perceived. Such results contradict the findings of Ress & Heeger 

(2003) implying that early sensory noise does not play major a role in perception. 

However, these neuroimaging studies used crude designs where only the mean 

strength (or peak) of the signal was compared between trial categories. The 

controversy may be better settled by more sensitive machine learning 

classification algorithms and by taking into account activation changes over time. 

 

1.3.3 Measuring neural noise 

Unlike intracranial electrophysiology, EEG, MEG and fMRI measure responses 

of large populations of thousands of neurons. For neural noise to influence these 

measurements it has to be correlated between neurons, as unrelated spontaneous 

activity in individual neurons would average out in the BOLD response or when 

pooling neural activity with EEG electrodes or MEG sensors (Nienborg, Cohen, 

& Cumming, 2012). To measure neural noise specifically in the detecting channel 

of a stimulus (e.g. a neuron tuned to vertical orientations) measurements need to 

be much more fine grained. As intracranial recordings in humans are highly 

invasive and rarely possible, psychophysical measures of this noise may be 

preferential. 

A substantial body of research has attempted to measure noise psychophysically 

for many different visual cues: luminance (Barlow, 1956), orientation (Jones, 

Anderson, & Murphy, 2003), shape (Sweeny, Grabowecky, Kim, & Suzuki, 

2011), motion (Barlow & Tripathy, 1997) and contrast perception (Baldwin, 

Baker, & Hess, 2016; Burgess & Colborne, 1988; Lu & Dosher, 2008; Pelli, 

1985). Furthermore, individual differences in contrast sensitivity for neurotypical 

adults have also been explained as being partly due to noise (Baker, 2013). Most 

commonly, the influence of neural noise on psychophysical task performance is 
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assessed by purposefully degrading the performance of the observer by adding 

external stimulus noise to the display. 

 

1.3.4 Equivalent noise paradigm 

Contrast detection in broadband white noise masks is commonly used to 

characterize noise in contrast transduction. The most well-known methodology for 

measuring internal noise is the equivalent noise (EN) paradigm (Legge, Kersten, 

& Burgess, 1987; Pelli, 1985). In this paradigm observers perform a two-

alternative-forced-choice (2AFC) detection experiment with a white noise mask 

presented on both stimulus intervals and a target stimulus, such as a luminance 

modulated grating, added to one of the intervals. Target detection thresholds are 

obtained for several white noise contrast levels. It is assumed that performance on 

the detection task will start to decrease (thresholds will become higher) as a 

function of stimulus noise when the amount of stimulus (mask) noise surpasses 

the amount of internal noise in the detecting channel. The white noise contrast 

level at which performance starts to rapidly decline is assumed to be equivalent to 

the amount of internal neural noise in the system (Pelli, 1985). 

The EN paradigm assumes a linear amplifier model of contrast transduction 

(LAM; Pelli, 1985), which can be defined as:  

 

    𝐶!!!"#! =  
!!"#
! !!!"#

!

!
    (Eq. 1) 

 

where Cthresh is the threshold target contrast level, β is an efficiency constant (Lu 

& Dosher, 2008) and σext and σint are the levels of external (stimulus) noise and 

internal noise respectively (Baldwin et al., 2016). The model features a linear 

relationship between stimulus input and signal output, with additive internal noise. 

External stimulus noise, such as the white noise masks in the EN paradigm, 

introduces variability into the detecting mechanism and impairs performance at 

high noise contrasts. When stimulus noise (σext) is low, internal noise (σint) is 
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dominant and so Cthresh approximates !!"#
!

. As σext increases, the amount of internal 

noise in the system becomes negligible in comparison and so Cthresh ~ !!"#
!

, causing 

thresholds to increase in proportion to external noise contrast. 

 

1.3.5 Issues with equivalent noise 

Due to the broad frequency and orientation profile of white noise masks, adjacent 

channels may also be activated by the stimulus and in turn inhibit the target 

channel (cross-channel masking; Carandini, Heeger, & Senn, 2002). The strong 

suppressive effect of broadband white noise masks has been empirically 

demonstrated (Baker & Vilidaite, 2014). This suggests that impaired performance 

at high mask levels in the EN paradigm could be due to suppressive gain control 

effects and not noise (Baker & Meese, 2012; Baldwin et al., 2016). 

One solution to this is to inject variability only into the detecting channel tuned to 

the target. This is possible by removing all off-channel spatial frequency and 

orientation information from the mask. The result is a mask that is spatially 

identical to the target grating, but with a randomly selected contrast – a ‘zero-

dimensional’ (0D) mask (Baker & Meese, 2012). Similar noise masks have been 

previously used in luminance (Cohn, 1976), orientation (Dakin, Bex, Cass, & 

Watt, 2009) and auditory tone perception (Jones, Moore, Amitay, & Shub, 2013). 

The contrast level of the mask is randomly sampled from a Gaussian distribution 

to create interval-by-interval contrast jitter. It has been shown that this type of 

mask produces stronger masking effects than white or pink noise (Baker, 2013; 

Baker & Meese, 2012) and so offers a more suitable alternative to white noise 

masks. 

In addition, as mentioned previously, the EN paradigm assumes a linear model 

which is at odds with contemporary accounts of contrast transduction (Baldwin et 

al., 2016). Evidence against linear processing of contrast has been found by 

several studies (Legge & Foley, 1980; Boynton, Demb, Glover, & Heeger, 1999; 

Baker & Vilidaite, 2014) as the relationship between stimulus contrast and visual 

response is accelerating at low contrasts and saturating at high contrasts (Baker, 
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2013; Tsai et al., 2012). Due to the nonlinearity of the human visual system a 

paradigm with an underlying nonlinear model or a model-free paradigm should be 

considered. 

 

1.3.6 Double-pass paradigm 

The ‘gold standard’ paradigm for measuring internal noise is the double-pass 

consistency paradigm (Burgess & Colborne, 1988; Green, 1964), as it estimates 

noise directly rather than inferring it from thresholds.	When there is no variability 

in the stimulus, the variability in an observer’s responses can only be due to 

internal noise. The most straightforward way of measuring it, therefore, is to 

present the exact same stimulus multiple times and look at the consistency of 

responses between presentations. In double pass, a 2AFC noise masking 

experiment (similar to EN) is run twice (pass 1 and pass 2) with the exact same 

examples of noise and target. The consistency of responses between the two 

passes (calculated as a proportion) indicates the level of internal noise in the 

system. Although this proportion does not directly relate to a physical quantity of 

neural noise, it is useful for comparison of noise levels between groups or viewing 

conditions and for investigating individual differences. 

An accuracy measure can also be obtained from double-pass. Accuracy is most 

likely reflective of the amount of stimulus-related signal in the system (or 

sensitivity in the LAM framework) although correlation between accuracy and 

consistency would be expected: the more correct choices made on trials, the more 

consistently correct the answers will be. Nonetheless, accuracy could be used as a 

measure of signal strength – the inverse of suppression. 

 

1.4 Modelling gain control and neural noise 

The effects of contrast gain control and internal noise can be differentiated within 

the normalisation (gain control) model (Carandini & Heeger, 2012; Heeger, 1992; 

Legge & Foley, 1980). The neural response in the normalisation model can be 

defined as: 
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   𝑟𝑒𝑠𝑝 =  𝐶𝑝

𝑍+ 𝐶𝑞
+  𝜎!"#   (Eq. 2) 

 

where C is the stimulus contrast, σint is internal noise and Z is the saturation 

constant (the gain control parameter). The parameters p and q are exponents that 

produce the acceleration of the response at low contrast levels and saturation at 

high contrast levels. The normalisation model describes how the responses in the 

detecting channel are suppressed by activation in channels the gain pool 

(surrounding channels/neurons). The Z parameter achieves this in the model by 

controlling the amount of divisive inhibition and shifting the contrast response 

function (CRF) horizontally (Reynolds & Heeger, 2009; Tsai, Norcia, Ales, & 

Wade, 2011).  

The differential effects of the noise (σint) and gain control (Z) parameters on 

contrast transduction are well illustrated by contrast discrimination threshold 

versus contrast (TvC) curves. In the contrast discrimination paradigm, a pedestal 

stimulus with a fixed contrast is presented in both intervals of a 2AFC experiment 

and a target contrast is added in one of the intervals. A staircase procedure is used 

to control the target contrast and focus trials around some threshold point. It is 

typical to obtain discrimination thresholds at several pedestal contrast levels to 

produce the TvC function, which takes the shape of a dipper (Nachmias & 

Sansbury, 1974). The pedestal produces a facilitation effect at low pedestal levels 

and threshold elevation from masking at higher levels of pedestal contrast. 

Changing internal noise (σint) produces vertical shifts of the dipper function: 

increased noise raises the whole curve upwards. Conversely, increased gain 

control (Z) shifts the function diagonally so that the thresholds increase at low 

pedestal contrast levels but remain unchanged at high pedestal levels (Figure 1.1). 
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Figure 1.1. Influence of internal noise and gain control on TvC curves. 

 

Although the pedestal masking paradigm is well-established and widely used, it 

has not yet been used to differentiate between internal noise and suppression. This 

paradigm, paired with the gain control model could be a useful alternative to 

equivalent noise. 

 

1.5 Suppression and neural noise in TMS 

1.5.1 TMS: introduction 

In order to further investigate the influence of neural noise and suppression on 

sensory signals, it would be useful to establish causal links between these neural 

mechanisms and perception. Experimentally manipulating the level of neural 

noise or suppression would provide insight into the behavioural and neural effects 

of each mechanism. One way to affect neural processing in humans is to use brain 

stimulation such as TMS. TMS is a common noninvasive technique to establish 

links between brain areas and certain behaviours. Typically, TMS pulses are 

applied to a particular part of the cortex during or prior to a perceptual or 
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cognitive task and then the performance on this task is compared to baseline (no 

TMS). However, so far there has been little research into precisely how TMS 

affects neural signals. 

For decades the effects of TMS have been likened to a ‘virtual lesion’ (Pascual-

Leone, Walsh, & Rothwell, 2000) and assumed to suppress neural activity in the 

region of stimulation (Mckeefry et al., 2009). However, more recently it has been 

recognized that this view may be overly simplistic for several reasons (Silvanto & 

Muggleton, 2008). First, effects of TMS are not always inhibitory or disruptive: 

TMS can also enhance task performance. For example, single pulse TMS 

(spTMS) was found to facilitate the detection of masked objects (Grosbras & Hab, 

2003). Secondly, TMS has also been shown to induce neural activity and 

subsequently involuntary motor movements when applied to the primary motor 

cortex (Moliadze, Fritzsche, & Antal, 2014; Ragert, Franzkowiak, Schwenkreis, 

Tegenthoff, & Dinse, 2008). In vision, phosphenes can be elicited by applying 

TMS to visual areas (Boroojerdi et al., 2002; Stewart, Walsh, & Hwell, 2001).  

Lastly, the disruptive effects of TMS on neural processing are likely not due to 

simple suppression of neural activity. Elevated thresholds on perceptual tasks, as 

those often seen when using TMS to link sensory brain areas to perceptual 

processes, can be due to either signal suppression, or neural noise induction, or a 

combination of both factors (Ruzzoli et al., 2011; Schwarzkopf, Silvanto, & Rees, 

2011). This implies that it may be possible to modulate neural noise and/or 

suppression with TMS in certain conditions. 

The next two sections will cover the most notable findings on the neural 

mechanisms underlying TMS, focusing in particular on TMS of the occipital lobe. 

The protocols covered are the most commonly used TMS methods for 

establishing causal links between brain areas and behaviours at present day. 

Offline 1Hz repetitive TMS (rTMS) will not be covered as it has largely been 

replaced in the field by offline theta burst simulation (TBS). Furthermore, paired-

pulse TMS is beyond the scope of this thesis as it involves measuring the effect of 

a TMS pulse on another TMS pulse, therefore complicating the interpretation of 

neural mechanisms. 
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1.5.2 Effects of online TMS 

Online TMS refers to magnetic stimulation applied during a behavioural task. 

Most commonly, one (spTMS) or three pulses (repetitive, rTMS) are delivered on 

each trial of a task. Online TMS is the most commonly used type of TMS 

methodology in order to produce suppression of perceptual processing in the 

occipital cortex (Mckeefry et al., 2009). However, several studies have attempted 

to investigate whether online TMS protocols do suppress visual signals or whether 

they induce neural noise in the visual system. 

The first study to investigate the neural mechanisms of TMS in humans used a 

contrast detection in broadband white noise masks (Harris, Clifford, & Miniussi, 

2008) and a single pulse stimulation protocol. Harris et al. found multiplicative 

effects of V1 TMS stimulation on masking curves indicating that spTMS 

suppressed stimulus-related signals in the visual cortex. Steeper psychometric 

curves indicative of signal suppression by spTMS were also found when applying 

to V5 during a motion coherence task (Ruzzoli et al., 2011). On the other hand, 

Rahnev, Maniscalco, Luber, Lau & Lisanby (2012) suggested that TMS increases 

noise in the visual system as predicted by their single-channel model. However, 

this is a rather counterintuitive conclusion as their results showed lower accuracy 

and higher confidence ratings on an orientation discrimination task resulting from 

spTMS. Usually, confidence ratings are interpreted as being indicative of the 

amount of noise in the system, whereas accuracy as a measure of stimulus-related 

signal. Two other studies used similar paradigms and found that spTMS decreased 

both accuracy and confidence on symbol and orientation discrimination tasks 

(Koivisto, Harjuniemi, Railo, & Salminen-Vaparanta, 2017; Koivisto, Railo, & 

Salminen-Vaparanta, 2011). This contradicts Rahnev et al. (2012) and indicates 

that both neural noise and signal levels are affected by this protocol. 

Interestingly, Rahnev et al. (2012) relate their findings to two other studies that 

found increased neural noise as a result of TMS stimulation: Ruzzoli, Marzi, & 

Miniussi, (2010) and Schwarzkopf, Silvanto, & Rees, (2011). However, both of 

these studies used three-pulse rTMS protocols, which are likely to affect neural 

signalling differently, perhaps affecting neural noise levels rather than suppressing 

sensory signals. Ruzzoli et al. (2010) found shallower motion coherence threshold 
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slopes, which suggest increased noise in area V5 when applying rTMS. Applying 

rTMS to V1 did not have any affect on thresholds. Schwarzkopf et al. (2011) also 

claim to demonstrate increased neural noise during motion coherence when using 

rTMS through a process called “stochastic resonance”, in which noise can 

improve performance under specific conditions. 

So far it seems likely that spTMS and rTMS suppress sensory signals and affect 

neural noise in differential ways. However, the findings so far are mixed and, in 

some cases, tenuous. For example, the findings of Harris, Clifford, & Miniussi, 

(2008) are based on the assumption that white noise masks increase the variability 

of neural signals, however, evidence suggests that broadband white noise 

suppresses signals (Baker & Meese, 2012; Baker & Vilidaite, 2014). 

 

1.5.3 Effects of theta burst stimulation 

A similar debate about underlying neural mechanisms exists for offline TMS 

protocols, i.e. theta burst stimulation. Unlike online protocols, theta burst 

stimulation is applied before a perceptual or cognitive task, and is presumed to 

have lasting effects of about 25-60 minutes (Cárdenas-Morales, Nowak, Kammer, 

Wolf, & Schönfeldt-Lecuona, 2010; Huang, Edwards, Rounis, Bhatia, & 

Rothwell, 2005). Two types of stimulation patterns (Cárdenas-Morales et al., 

2010; Huang et al., 2005) are usually used (although some other variation also 

exist): 

(1) Continuous TBS (cTBS) – three pulses at 50Hz are delivered at 5Hz 

(2) Intermittent TBS (iTBS) – three pulses at 50Hz are delivered at 5Hz 10 

times every 10 seconds (0.1Hz). 

Although TBS is routinely used in to investigate sensory processing in low-level 

(Cai, Chen, & Zhou, 2014; Rounis et al., 2010) and high-level vision (Pitcher, 

Duchaine, & Walsh, 2014) as well as other senses (Ragert et al., 2008; Rai, 

Premji, Tommerdahl, & Nelson, 2012), research into the effects of TBS on 

stimulus-related signals is scarce. 
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Most of the research regarding the neural mechanisms of TBS used motor evoked 

potentials (MEPs) in a passive state (no task or action). The first TBS study 

(Huang et al., 2005) applied either cTBS, iTBS or intermediate TBS to the motor 

cortices of passive participants and subsequently measured MEPs in hand muscles 

to single TMS pulses. They found that cTBS suppressed subsequent activation, 

indicating overall suppression of neural activation in the motor cortex; whereas 

iTBS increased MEP amplitudes suggesting an overall increase in excitability. 

Similar conclusions on inhibitory cTBS effects and excitatory iTBS effects were 

made in other studies that used motor activation paradigms (Di Lazzaro et al., 

2005, 2008; Moliadze et al., 2014). Two studies have extended these findings to 

perceptually-relevant neural signalling during sensory tasks. One study found that 

cTBS decreased accuracy on a visual orientation discrimination task (Rahnev et 

al., 2013), indicating that this stimulation protocol had suppressive effects. 

Another experiment measured the effects of iTBS on a tactile discrimination task 

and showed that iTBS improved task performance (Ragert et al., 2008), 

suggesting the enhancement of sensory signals. 

However, these results have not always been replicated. Gentner, Wankerl, 

Reinsberger, Zeller, & Classen (2008) found that short cTBS durations (20 

seconds) decreased MEPs, whereas longer durations (40 seconds) increased MEPs 

suggesting variability in TBS effects even within protocol. Another study that 

measured protein expression, intracranial multiunit somatosensory potentials and 

EEG gamma band power in the rat visual cortex, found that cTBS affected neither 

somatosensory potentials, nor gamma band power, whereas iTBS increased the 

strength of both. Both protocols affected protein expression but in different 

classes of inhibitory neurons. Besides differences between TBS protocols and 

stimulation lengths, different individuals seem to also experience different effects 

when stimulated using the same methodology. López-Alonso, Cheeran, Río-

Rodríguez, & Fernández-del-Olmo (2014) applied iTBS and then measured 

resting and active motor thresholds: lowest intensity of spTMS to elicit 50µV a 

resting first dorsal interosseous muscle, and 200µV MEPs in an active muscle, 

respectively. Using cluster analysis the study found a bimodal split in subject 

muscle responses with 43% of individuals (total N = 56) showing increased 

resting and active MEPs and 57% showing no change or slightly lowered MEPs. 



	 36	

No significant change in MEPs was found when subjects were analysed as one 

group. These findings shed light on a previous study with a similar design 

(Hamada, Murase, Hasan, Balaratnam, & Rothwell, 2013), which found no 

significant change in mean group MEPs after cTBS or iTBS, although some 

subjects exhibited this change and there was high variability in the sample. 

The findings of these studies suggest that there might be individual differences in 

whether or not and how individuals are affected by TBS, or perhaps TMS in 

general. It may be that some people have a natural susceptibility to TMS or that 

TBS effects are unpredictable or have highly complex underlying neural 

mechanisms which are yet to be understood. 

 

1.5.4. TMS: summary 

Previous research into the effects of TMS on sensory processing suggests the 

potential of affecting neural noise and/or suppression in particular conditions. 

However, so far only the offline TBS protocols have been compared to one 

another using the same paradigm. Previous research mostly indicates that spTMS 

suppresses neural signals (Harris et al., 2008; Ruzzoli et al., 2011) and rTMS 

affects neural noise (Ruzzoli et al., 2010; Schwarzkopf et al., 2011). However, so 

far sub-optimal behavioural paradigms have been used and there has not yet been 

a direct comparison of these TMS protocols. Uncovering how different types of 

TMS influence sensory processing could be useful for investigating the effects of 

neural noise and suppression in sensory systems. 

 

1.6 Suppression and neural noise in ASC 

Along with a host of social and language impairments, autism spectrum 

conditions encompass pervasive sensory symptoms (American Psychiatric 

Association, 2013). These include hyper- and hypo-sensitivity to intense stimuli 

such as bright lights and loud noises, unusual sensory interests and 

overstimulation (Ben-Sasson et al., 2009; Jones, Quigney, & Huws, 2003). Both 

impairments and enhancements of sensory processing in several sensory 
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modalities have been found (see Bennetto, Kuschner, & Hyman, 2007; Cascio et 

al., 2008; Haesen, Boets, & Wagemans, 2011 for reviews), including in vision 

(see Simmons et al., 2009 for review). As these symptoms seem to be due to 

differences in the sensitivity of the sensory systems, neural noise and gain control 

may be important factors underlying these hyper- and hypo-sensitivities. 

 

1.6.1 Sensory differences in ASC 

The visual processing differences in ASC have been explained by a great many 

theories. Particularly attractive in its simplicity was the suggestion that the 

differences are due to enhanced visual acuity. In fact, one study (Ashwin, Ashwin, 

Rhydderch, Howells, & Baron-Cohen, 2008) reported that visual acuity in ASC 

individuals was much higher than in controls and approaching the range of birds 

of prey. However, many technical faults have been identified in the study (Bach & 

Dakin, 2009) and the results were not replicated (Bolte et al., 2012). Furthermore, 

contrast sensitivity (Koh, Milne, & Dobkins, 2010) has been found to be normal 

in individuals with ASC, suggesting that the sensory abnormalities are not due to 

enhanced or diminished eye-sight, or an overall reduction in visual signalling. 

However, the idiosyncrasies become apparent early on in the visual processing 

stream. For example, orientation discrimination in first-order (luminance 

modulated) contrast stimuli are enhanced in ASC individuals but reduced in 

second-order (contrast modulated) stimuli (Bertone, Mottron, Jelenic, & Faubert, 

2005). Amongst many other differences in low-level vision, motion perception 

has also been found abnormal with most studies suggesting higher motion 

coherence thresholds in ASC (Milne et al., 2002; Pellicano, Gibson, Maybery, 

Durkin, & Badcock, 2005; also see Simmons et al., 2009 for review). 

Several alternative hypotheses explaining these as well as other low- and high-

level visual processing differences in ASC have been suggested (Greenaway, 

Davis, & Plaisted-Grant, 2013; Pellicano et al., 2005; Rosenberg, Patterson, & 

Angelaki, 2015; Rubenstein, 2010). Of particular interest to this thesis is the 

suggestion that increased neural noise levels in ASC sensory systems could 

account for the wide variety of increased and decreased performance on visual 

tasks as well as the heightened variability in responses of ASC individuals 
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(Simmons et al., 2009). Another popular theory which this thesis will focus on is 

the imbalance of excitation and inhibition (E/I) which explains unusual changes in 

sensitivity as well as some of the findings in visual perception that seem to 

indicate a suppression-related impairment (Dickinson, Bruyns-Haylett, Smith, 

Myles, & Milne, 2016). 

 

1.6.2 Abnormal levels of neural noise 

Higher levels of neural noise in ASC brains were first suggested by Simmons et al 

(2009) and since have been investigated with EEG, fMRI and behavioural studies. 

Functional MRI BOLD responses were found to be more variable in ASC 

individuals during a motion coherence task (Dinstein et al., 2010, 2012) even 

though behavioural responses did not differ from the control group. Although the 

2012 study has been criticized for having a small sample, the finding was 

replicated in motion perception as well as in somatosensory and auditory tasks 

using the same fMRI paradigm (Haigh, Heeger, Dinstein, Minshew, & Hall, 

2016). Additional evidence comes from more variable P-100 ERP latency in 

response to Gabor patches, more variable α-band phase coherence within trials 

(Milne, 2011) and lower signal-to-noise ratios in VEPs (Weinger, Zemon, Soorya, 

& Gordon, 2014). However, a recent study with a larger sample of ASC 

individuals and well-matched control participants found no differences in either 

phase coherence or inter-trial responses (Butler, Molholm, Andrade, & Foxe, 

2016). 

Adding to the controversy, it has also been argued that individuals with ASC may 

in fact have lower internal noise than healthy controls (Davis & Plaisted-Grant, 

2014; Greenaway et al., 2013). This hypothesis has been based on the observation 

that ASC individuals exhibit higher contrast discrimination thresholds in a 

pedestal masking paradigm (Greenaway et al., 2013). However, the current 

understanding of sensory processing posits that elevation of thresholds cannot be 

indicative of lower internal noise. Increased internal noise produces higher 

thresholds as the signal-to-noise ratio is lower, as predicted by both the gain 

control model and LAM (Manning & Baker, 2015). Furthermore, the hypothesis 

is based on the assumption that the stimuli (4AFC luminance modulated squares) 
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in the study by Greenaway, Davis & Plaisted-Grant introduced variability into the 

detecting mechanism although no aspect of the stimulus was variable. On the 

other hand, higher discrimination thresholds give indirect support to the high 

noise theory. In light of these arguments and previous findings, it seems more 

plausible that patients with ASC have higher internal noise. 

The research on internal noise in ASC mostly suggests increased noise in the 

visual system and other parts of the brain, although the methods and models used 

have been inconsistent and have generated controversy. The hypothesis that ASC 

individuals exhibit behaviour indicative of higher internal noise would be best 

tested with a direct, sensitive measure of noise, such as the double-pass paradigm.	

Furthermore, with the large range of study designs and stimuli used to investigate 

this, it is also unclear what type of neural noise (if any) is implicated in ASC and 

at what stage of sensory processing (Simmons & Milne, 2014). As neural noise 

has a broad definition in many studies it often encompasses everything from 

cellular level noise in sensory systems to neural variability in response 

mechanisms, to changes in mental states and attention. An examination of neural 

noise in ASC vision at different levels of neural processing may be able to shed 

light on this subject. 

 

1.6.3 Imbalance of excitation/inhibition 

The balance of excitation/inhibition (E/I) has been suggested to differ between 

ASC and neurotypical populations (Markram & Markram, 2010; Rubenstein, 

2010; Rubenstein & Merzenich, 2003), independently of the increased noise 

theory. As excitatory and inhibitory connections underlie gain control, it is 

reasonable to assume that ASC individuals would exhibit gain control 

abnormalities (Rosenberg et al., 2015). Rosenberg et al. (2015) suggests that lack 

of inhibition, and therefore reduced gain control, or normalisation, may explain 

the behavioural and perceptual impairments in ASC. This unifying theory of a 

system-wide impairment is compelling in light of the argument that normalisation 

is a canonical computation, replicated throughout the brain (Carandini & Heeger, 

2012). Reduced inhibition is supported by findings of lower levels of GABA 

precursors (Harada, Taki, & Naa, 2011) and reduced GABAA receptor density 
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(Mori, Mori, Fujii, Toda, & Miyazaki, 2012) in the frontal lobes of ASC 

individuals. However, levels of both precursors and receptors were normal in 

other parts of ASC brains, which contradicts the hypothesis that E/I imbalance is 

system-wide. In fact, behavioural studies suggest that the balance of E/I may 

differ even within the visual-system. For example, luminance-modulated pattern 

orientation discrimination in ASC exhibits properties of higher inhibition 

(Dickinson, Jones, & Milne, 2014) whereas contrast-modulated texture orientation 

discrimination exhibits lower inhibition (Bertone et al., 2005). 

So far the direction of the E/I hypothesis is unclear as all four possible causes 

(increased or decreased excitation; and increased or decreased inhibition) for an 

E/I imbalance have been suggested and supported by empirical studies, as 

summarized by several large scale reviews (Coghlan et al., 2012; Dickinson, 

Bruyns-Haylett, Smith, Myles, & Milne, 2016; Nelson & Valakh, 2015; 

Rosenberg, Patterson, & Angelaki, 2015; Rubenstein & Merzenich, 2003; 

Rubenstein, 2010). A recent account by Nelson & Valakh (2015) acknowledges 

the complexity and variability of empirical findings and suggest that E/I 

imbalance is variable throughout the brain and even within circuits. This has also 

been demonstrated empirically: GABA marker concentrations in different sensory 

cortices of ASC participants have been shown to be different (Gaetz et al., 2014), 

suggesting that the differences between brain areas and between neural channels 

may be due to the complex genetic nature of the disorder. 

 

1.6.4 The role of genes in ASC 

Autism spectrum conditions have a strong but complex genetic basis with a large 

number of genes implicated (Miles, 2011). The past several decades of family 

genetics studies have shown that ASC is strongly hereditary (Folstein, Rosen-

Sheidley, & Street, 2001; Rutter, 2000): concordance rates in monozygotic twins 

are 60-90% (Rubenstein, 2010). The genetic aetiology of autism is far from being 

fully understood, however, current accounts suggest that ASC may be a “perfect 

storm” of genetic make up and environmental influences on the brain as well as 

on gene expression itself (Ciernia & Lasalle, 2016). 
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The genes implicated in ASC are typically involved in synapse formation (e.g. 

neuroligins), neurotransmitter and neuromodulator production (e.g. SLC6A4) and 

ion transportation (e.g. SLC9A3), amongst other signalling-level processes 

(Rubenstein, 2010). Genes encoding GABA receptors have also been linked to 

autism (Coghlan et al., 2012; Shao et al., 2003). It is not surprising, therefore, that 

the E/I imbalance, and by extension, gain control abnormalities in ASC can also 

be traced to genetic causes (Rosenberg, Patterson, & Angelaki, 2015; Rubenstein, 

2010). This is also demonstrated by the finding that neurotypical parents of ASC 

children exhibit significantly more variable gamma-band oscillations than 

neurotypical controls without ASC children (Rojas et al., 2001), suggesting that 

subclinical populations that possess some of the ASC-related genotype also 

exhibit neurological differences (Robertson & Simmons, 2013). 

Such synapse-level genetic influences would predict that people of the ‘broader 

autistic phenotype’, i.e. individuals that exhibit autistic traits but do not have 

clinical ASC, would also show some of the perceptual hyper- and hypo-

sensitivities found in ASC. This has indeed been demonstrated by Robertson & 

Simmons, (2013) who correlated autism spectrum quotient (AQ) scores (Baron-

Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001) with a novel measure of 

sensory difficulties in the neurotypical population. The findings revealed a very 

high correlation (R = 0.78) between Sensory Questionnaire scores and AQ. This 

would predict that if gain control and/or neural noise are in fact implicated in 

autism, evidence of this may also be detectable in the neurotypical population. 

 

1.6.5 Animal models of ASC sensory abnormalities 

Amongst the many rodent and other animal models of autism and related 

disorders (Ey, Leblond, & Bourgeron, 2011), there is a distinct lack of sensory 

symptom models. There is, however, one exception to this. LeBlanc et al., (2015) 

recorded VEPs in heterozygous mutants of gene Mecp2, which causes Rett 

syndrome in humans, as well as VEPs in 34 human children with Rett syndrome. 

They found comparably reduced evoked potentials in both species. However, 

individuals with Rett syndrome do not usually exhibit hypo- and hyper-

sensitivities typical to autism, meaning that the model may not be generalizable. 
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In this thesis I present a novel model of ASC in Drosophila melanogaster. The 

genetic model uses an ortholog of the human gene SLC9A3 (or NHE9), which has 

been linked to several autism spectrum disorders (Kondapalli et al., 2013; 

Schwede, Garbett, Mirnics, Geschwind, & Morrow, 2013). Nonsense mutations of 

the gene in humans have been found in individuals with ASC and their parents but 

not in neurotypicals (Morrow et al., 2008). This model is a good candidate for 

research into sensory abnormalities in ASC as it is not related to GABA-ergic or 

glutaminergic systems, for which the findings in ASC individuals have so far been 

mixed. Rather, SLC9A3 is a sodium-hydrogen ion exchanger and directly 

influences electrical neural signalling. Furthermore, this model is novel in linking 

an ASC-related genetic mutation to the sensory symptoms of autism. 

The use of Drosophila as a model organism may provide a cheap, quick medium 

in which to carry out future sensory studies of autism. Drosophila have been 

successfully used to model several human neurological disorders, including 

Parkinson’s, Alzheimer’s, schizophrenia (Afsari et al., 2014b; Van Alphen & Van 

Swinderen, 2013) and autism (Hahn et al., 2013). Hahn et al. (2013) used a dnl2 

deficiency in fruit flies to model ASC social behaviour impairments. Mutant dnl2 

flies exhibited differences in acoustic communication, such as mating calls, and 

social interactions, such as male-male aggression. Drosophila are also particularly 

advantageous as sensory model organisms because of the similarities of neural 

dynamics and neural hierarchy to those of human visual systems (Behnia & 

Desplan, 2015; Borst & Euler, 2011; Clark et al., 2014). 

 

1.7 Outline of thesis 

The main aim of the empirical chapters of this thesis is to examine suppression 

and neural noise in the visual system under normal viewing conditions, when 

altering sensory signals using TMS and in ASC. Chapter 2 investigates whether 

and how spontaneous activity in the visual cortex and the brain as a whole 

influences perception and perceptual decision making. Previous studies (e.g. Ress 

& Heeger, 2003) have already demonstrated crude differences in activation 

dependent on the subjects’ percept rather than the physical stimulus, but the 
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evidence is mixed (Mostert et al., 2015). Furthermore, it is unclear what the origin 

of the neural noise affecting perception is: early sensory or late decision-making. 

In the experiments of Chapter 2, a machine learning algorithm is used to predict 

subjects’ perceptual decisions from EEG and MEG data. The use of EEG and 

MEG also allows for the examination of the time-course of visual responses and 

spontaneous neural activity. 

Chapter 3 addresses the psychophysical measurement of neural noise and 

attempts to separate its behavioural effects from neural suppression. So far it is 

unclear which psychophysical paradigm is best at measuring noise and 

dissociating it from gain control. This issue is addressed in Chapter 3, in which 

three psychophysical paradigms are empirically evaluated and refined for 

measuring internal noise. This chapter also investigates individual differences in 

neural noise and suppression, and develops two convenient and quick ways of 

measuring these neural processes. 

Chapter 4 addresses the issue of distinguishing neural noise and suppression in 

the neural effects of TMS on perceptual task performance. The short form of the 

double-pass paradigm, developed in Chapter 3, is employed to compare four 

types of TMS stimulation: spTMS, online rTMS, cTBS and iTBS. This direct 

comparison of these protocols aims to inform future studies into artificial 

modulation of neural noise and suppression in sensory systems. Additionally, 

Chapter 4 investigates differences in TMS susceptibility by comparing 

individuals who perceive and do not perceive TMS phosphenes. 

The aforementioned methods are crucial for understanding the implications of 

noise and suppression in typical sensory processing. However, the novel 

psychophysical methodology can also be used to measure internal noise in 

relation to sensory symptoms in ASC. Chapter 5 aims to measure neural noise as 

a function of number of autistic traits (AQ score) during several sensory and 

cognitive discrimination tasks: contrast, facial expression intensity and number 

summation. These tasks allow for the assessment of neural noise at low, mid and 

high levels of processing and in different areas of the brain and can inform the 

source of neural noise in sensory perception in ASC. 
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Chapter 6 explores the other main explanation of ASC sensory symptoms, which 

suggests that hyper- and hypo-sensitivity in ASC can be explained by differences 

in neural suppression. This is taken a step further to assess the genetic link to 

sensory signal processing in ASC by developing a Drosophila model of autism. 

Suppressive neural properties are measured using electrophysiology in 

neurotypical adults, individuals with ASC and the fruit fly model. Furthermore, 

Chapter 6 addresses the development of sensory processing in ASC individuals 

by assessing VEPs of children/young fruit flies and adults/older fruit flies. 

Finally, Chapter 7 summarises the findings presented in this thesis and discusses 

the broader implications and future directions. 

	 	



	 45	

 

 

Chapter 2 

 

Internal noise in contrast discrimination 

propagates forwards from early visual cortex 

This chapter has been adapted from: Vilidaite, G., Marsh, E. & Baker, D. H. 

(submitted). Internal noise in contrast discrimination propagates forwards from 

early visual cortex. Neuroimage.1 

 

 

 

2.1 Abstract 

Human contrast discrimination performance is limited by transduction 

nonlinearities and variability of the neural representation (noise). Whereas the 

nonlinearities have been well characterised, there is less agreement about the 

specifics of internal noise. Psychophysical models assume that it impacts late in 

sensory processing, whereas neuroimaging and intracranial electrophysiology 

studies suggest that the noise is much earlier. We investigated whether 

perceptually-relevant internal noise arises in early visual areas or later decision 

																																																								
1 The author, Greta Vilidaite designed the Experiment 2, collected and analysed the 

majority of the data, the results and wrote the manuscript under the supervision of Dr 

Daniel Baker. Experiment 1 was designed and some of the analysis was performed jointly 

with Dr Daniel Baker. Emma Marsh collected some of the data. 
2 The author, Greta Vilidaite collected the data, analysed the results and wrote the 

manuscript under the supervision of Dr Daniel Baker. The experiments were designed 
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making areas. We recorded EEG and MEG during a two-interval-forced choice 

contrast discrimination task and used multivariate pattern analysis to decode 

target/non-target and selected/non-selected intervals from evoked responses. We 

found that perceptual decisions could be decoded from both EEG and MEG 

signals, even when the stimuli in both intervals were physically identical. Above-

chance decision classification started <100ms after stimulus onset, suggesting that 

neural noise affects sensory signals early in the visual pathway. Classification 

accuracy increased over time, peaking at ~700ms. Applying multivariate analysis 

to separate anatomically-defined brain regions in MEG source space, we found 

that occipital regions were informative early on but then information spreads 

forwards across temporal and frontal regions. This is consistent with neural noise 

affecting sensory processing at multiple stages of perceptual decision making. We 

suggest how early sensory noise might be resolved with Birdsall’s linearisation, in 

which a dominant noise source obscures subsequent nonlinearities, to allow the 

visual system to preserve the wide dynamic range of early areas whilst still 

benefitting from contrast-invariance at later stages. 

 

2.2 Introduction 

Cortical responses to visual stimuli are largely invariant to changes in absolute 

luminance, being instead determined primarily by stimulus contrast –changes in 

relative luminance across a region of an image. Consequently, a widely studied 

perceptual task is the ability to discriminate between visual stimuli of different 

contrasts. Human contrast discrimination performance is constrained by the 

nonlinearity mapping physical contrast to internal response, and the intrinsic 

variability of the neural representation (‘internal noise’). Psychophysical, 

neurophysiological and neuroimaging work have converged on a nonlinearity that 

is expansive at low contrasts and compressive at higher contrasts (Boynton et al., 

1999; Busse, Wade, & Carandini, 2009; Legge & Foley, 1980). However, there is 

substantially less agreement regarding the details of performance-limiting internal 

noise. 



	 47	

Most psychophysical models make the assumption that the dominant source of 

noise for contrast discrimination is additive (i.e. independent of signal strength) 

and impacts late stages of processing. The primary justification for this 

arrangement is the observation that a dominant source of noise occurring before a 

nonlinearity will neutralise the effects of that nonlinearity, rendering it invisible to 

inspection (Klein & Levi, 2009; Smith & Swift, 1985). Since contrast transduction 

is observably nonlinear, any early sources of noise must be negligible in 

comparison to the magnitude of late additive noise. On the other hand, most 

electrophysiological and neuroimaging studies have suggested that perceptually 

relevant noise is located in early sensory areas (Campbell & Kulikowski, 1972; 

Carandini, 2004; Roelfsema & Spekreijse, 2001). Ress and Heeger (2003) 

demonstrated the influence of early sensory noise by measuring fMRI blood-

oxygen-level dependent (BOLD) responses in areas V1-V4 during contrast 

detection. They found that false alarms evoked higher responses than misses, 

suggesting that these areas encoded conscious percepts of the stimuli rather than 

the presence of the stimulus itself. The origin of the spurious activity in the case 

of false alarms must be neural noise in these early areas. Similarly, several 

intracranial primate electrophysiology studies have been able to predict the 

perceptual decisions of monkeys from neural activity recorded in early visual 

areas (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Britten, Shadlen, 

Newsome, & Movshon, 1992; Michelson, Pillow, & Seidemann, 2017). This 

suggests that sensory decisions are influenced by neural noise at an early stage of 

processing.  

In this study, we attempt to resolve this discrepancy by investigating whether the 

dominant source of neural noise is located in early sensory or later (more frontal) 

brain areas involved in making decisions. To do this we examined the timecourse 

of perceptual decision making in a two-interval-forced-choice (2IFC) contrast 

discrimination paradigm. We used multivariate pattern analysis to decode 

participants’ percepts from EEG (Experiment 1) and MEG (Experiment 2) data. 

The high temporal resolution (~1ms) of both techniques enabled us to closely 

examine the timecourse of perceptual decision making, and the spatial resolution 

of MEG source space allowed us to investigate the involvement of discrete 

anatomical brain areas. 
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2.3 Methods 

2.3.1 Participants 

Twenty-two adults with normal or corrected-to-normal vision took part in 

Experiment 1 and ten took part in Experiment 2. All participants gave written 

informed consent. Experiment 1 was approved by the Ethics Committee of the 

Department of Psychology at the University of York, and Experiment 2 was 

approved by the York Neuroimaging Centre Ethics Committee. 

 

2.3.2 Stimuli and psychophysical task 

Stimuli were horizontally oriented sine wave gratings with a spatial frequency of 

1c/deg and a diameter of 10 degrees. The edges of the gratings were blurred by a 

cosine function. On each trial, two stimuli were presented: a pedestal stimulus of 

50% contrast (where percent contrast is defined as 100*(Lmax−Lmin)/(Lmax+Lmin), 

where L is luminance), and a pedestal+target stimulus consisting of the 50% 

contrast pedestal plus a target contrast increment. Five target contrast conditions 

were used in Experiment 1: 0% (no target), 2%, 4%, 8% and 16%. In Experiment 

2 only the 0% (no target) and 16% target contrast conditions were used. 

The two stimuli on each trial were presented sequentially for 100ms each, with an 

inter-stimulus interval between 400ms and 600ms. The inter-trial interval 

followed the participant’s response, and was of variable length between 1000ms 

and 1200ms as to avoid entrainment effects. The order of target and non-target 

intervals within trials was counterbalanced. Trials of different target contrasts 

were intermixed and the order was randomized. Stimulus onsets and participant 

responses were recorded on the M/EEG trace by way of low-latency digital 

triggers. 

 

2.3.3 EEG data collection 

Event-related potentials were recorded using an ANT Neuroscan EEG system and 

a 64-channel Waveguard cap with electrodes arranged according to the 10/20 
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system. Data were digitised at 1kHz using the ASALab software. Stimuli were 

presented on a ViewPixx display (VPixx Technologies Inc., Quebec, Canada) 

with a mean luminance of 51cd/m2 and a refresh rate of 120Hz.  

Participants were seated in a darkened room 57cm away from the display. 

Instructions for the task were to ‘indicate the grating that appeared higher in 

contrast’. They were asked to fixate on a central fixation cross throughout the task 

and used a mouse to indicate their responses. There were 200 trials per target 

contrast (1000 trials total). The task was run in 5 blocks of ~8min with short 

breaks in between. 

 

2.3.4 MEG data collection 

MEG signals were recorded using a 4D Neuroimaging Magnes 3600 Whole Head 

248 Channel MEG scanner housed in a purpose-built Faraday cage. The data were 

recorded at 1017.25Hz, with 400Hz Bandwith using a High Pass DC filter. Nine 

channels were identified as having failed and were removed from all analyses. 

The location of the head inside the dewar was continuously monitored throughout 

the experiment using 5 position indicator head coils. Stimuli were presented on an 

Epson EB-G5900 3LCD projector (refresh rate 60Hz; mean luminance 160cd/m2) 

with a 2-stop ND filter, using Psychopy v1.84 (Peirce, 2007). 

Participants were seated in a hydraulic chair in front of the projector screen in a 

dark room. Prior to the task the three dimensional shape of the participant’s head 

was registered using a Polhemus fast-track headshape digitization kit. Five 

fiducial points were used for this over two registration rounds. If the distance in 

location between the first and second round was >2mm, the registration was 

repeated. When successful, the headshape was then traced and recorded using a 

digital wand. This was later coregistered with T1-weighted anatomical MRI scans 

of each participant acquired in separate sessions using a 3T GE Signa Excite HDx 

scanner (GE Healthcare). 

Participants fixated on a central fixation cross throughout the task. The 

experiment was completed in a single block consisting of 240 trials per contrast 

condition (480 trials in total), with a total acquisition duration of around 20 
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minutes. A single hand response pad was used to make responses in the 

experiment. 

  

2.3.5 EEG data analysis 

EEG recordings were bandpass filtered (from 0.1Hz to 30Hz) and then epoched 

into 1 second-long windows (200ms before stimulus onset to 800ms after) for 

each interval of every trial. Each epoch was then baselined at each electrode 

independently by subtracting the mean response over the 200ms preceding 

stimulus onset. ERPs were then sorted by target/non-target intervals for stimulus 

classification analysis and then again by selected/non-selected intervals for 

decision classification. 

A support vector machine (SVM) with a linear kernel (implemented in Matlab) 

was used to classify the data independently at each sample point (i.e. in 1ms 

steps). A second stage of normalization was applied at each time-point and each 

electrode by subtracting the mean response across all intervals and conditions for 

that time/sensor combination. The data were then randomly averaged in five 

subsets of 40 trials for each category (target/non-target or selected/non-selected), 

of which four subsets were used to train the model and one was used to test it. The 

SVM algorithm creates a parameter space of all data points and then fits a 

hyperplane boundary that maximizes the distances between the support vectors of 

each category (see Figure 2.1). Classifier accuracy for categorising the test data 

was averaged across 100 repetitions of the analysis (with different random 

allocations of trials on each repetition), and was repeated for each target contrast 

condition. Timecourses of classifier accuracy were then averaged across 

participants, and periods of above-chance performance were determined using a 

non-parametric cluster correction procedure (Maris & Oostenveld, 2007). 
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Figure 2.1. Classifier training and testing procedure. At each time point, a pattern of 
responses across all electrodes (or sensors/sources) for the target and non-target (or 
selected/non-selected) intervals was fed into the classifier algorithm (panel a, top). The 
classifier created a hyperplane boundary between the categories (panel a, lower plot). 
After training, a new pattern of responses at the same timepoint was presented to the 
algorithm for classification (panel b, top). This was repeated across all time points, and 
across 100 bootstrap resamples of the data, to build a timecourse of classifier accuracy 
(panel b, lower panel). 
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2.3.6 MEG data analysis 

Cortical reconstruction and volumetric segmentation was performed with the 

Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) using each 

individual participant’s anatomical MRI scan. Initial MEG analyses were then 

performed in Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). First 

the MEG sensor array was aligned with the anatomical model of the participant’s 

head using an automated error minimisation procedure. Covariance matrices were 

estimated from the data, and a head model comprising overlapping spheres was 

generated. A minimum norm solution was used to calculate a source model, with 

dipole orientations constrained to be orthogonal to the cortical surface. The model 

consisted of a set of linear weights at each location on the cortical surface that 

transformed the sensor space representation into source space. 

MEG data were then imported into Matlab using Fieldtrip (Oostenveld, Fries, 

Maris, & Schoffelen, 2011), bandpass filtered and epoched. Pattern classification 

was performed in the same way as described for the EEG data in section 2.3.5. 

This was done using the sensor space representation (with 239 working sensors), 

the source space representation at approximately 500 vertices evenly spaced 

across the cortical mesh, and also within discrete regions of cortex defined by the 

Mindboggle atlas (Klein et al., 2017). The mean number of vertices in each 

cortical region is given in Table A.1 in the Appendix. 
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Figure 2.2. EEG data and classifier performance. Panel (a) shows the grand average 
ERP, pooled over 10 occipital electrodes (marked black in the inset), all contrast 
conditions and participants, with the shaded region showing bootstrapped 95% 
confidence intervals across participants. Dotted vertical lines indicate prominent time-
points for which scalp topographies of voltages are displayed in panel (b). Target/non-
target classification for the five contrast conditions is displayed in panel (c) and 
selected/non-selected classification in panel (d). Thin blue traces indicate the classifier 
performance as a function of time. Shaded regions indicate 95% correct confidence 
intervals across participants. Horizontal blue lines denote times when the classifier 
performed significantly above chance (determined using a nonparametric cluster 
correction procedure). The red traces in panel (d) indicate accuracy when the classifier 
was trained on the 16% target contrast condition data and tested on the remaining four 
conditions. Grey rectangles in (a,c,d) indicate the period of stimulus presentation. 
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2.4 Results 

2.4.1 Experiment 1: EEG reveals above-chance classification of percepts 

Task performance in the five target contrast conditions ranged from chance in the 

0% target contrast condition (where there was no correct answer as the ‘target’ 

interval was determined arbitrarily) to close to ceiling in the 16% target contrast 

condition (94% correct). Mean event-related potentials (ERPs) averaged over ten 

occipital electrodes (where the changes in response from baseline were greatest) 

showed a typical response to brief visual stimulation (Figure 2.2a). Early time-

points (126ms and 225ms after stimulus onset) displayed the largest positive 

response voltages over occipital electrodes. A later time-point (594ms) showed 

negative voltages in occipital areas and positive voltages in frontal electrodes 

(Figure 2.2b). 

To test whether neural responses encoded stimulus contrast, we trained the 

classifier to discriminate between target and non-target intervals at each time 

point. Classification accuracy was not significantly above chance at any time-

point in the 0%, 2% or 4% target conditions (Figure 2.2c). In the 8% and 16% 

conditions the classifier performance rose significantly above chance during 

several time windows, from 236ms at 8% contrast, and from 59ms at 16% 

contrast. 

We then trained the classifier to discriminate between selected and non-selected 

intervals. In contrast to stimulus decoding, above chance classification of the 

decision was found in all five target contrast conditions (Figure 2.2d). Of 

particular interest was the 0% target condition, in which stimuli in both intervals 

were physically identical, but could appear different to the participant. In this 

condition, the choices of the participant could be classified above chance 64 - 

98ms after stimulus onset as well as at several time windows after ~300ms. 

Similar timecourses of above chance classification were also observed in the 2% 

and 4% target conditions, although the early time cluster was less clear. The 

longest above chance classification window and highest classifier performance 

was observed in the 16% contrast condition. The significant time clusters in the 
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8% and 16% conditions were similar to those in the case of target/non-target 

classification (~220–300ms and ~50-750ms, respectively). 

To test the robustness of decoding perceptual experience, we trained the classifier 

on responses from the highest target contrast condition and tested it on data from 

the other four target contrast conditions (red traces in Figure 2.2d). Once again, 

there were several above chance classification time windows in each target 

contrast condition, with increasing length and accuracy as a function of target 

contrast. This suggests that the patterns of neural activity associated with higher 

physical contrast (in the 16% target contrast condition) were similar to those 

associated with higher perceived contrasts when the target contrast was lower 

(e.g. 0%). 

 

2.4.2 Experiment 2: source space decoding is more sensitive than sensor space 

decoding  

In order to obtain better spatial resolution and a higher signal-to-noise ratio we 

repeated the experiment using MEG with 0% and 16% target contrast conditions. 

Similarly to Experiment 1, the mean ERPs, averaged over occipital sensors, 

showed two large early deflections (negative at 112ms and positive at 193ms; 

Figure 2.3a). Unsurprisingly, these two time-points showed dominant magnetic 

activity in occipital sensors (upper row of Figure 2.3b). A later sustained positive 

response that peaked at 583ms showed more wide-spread magnetic fields with a 

boundary between positive and negative amplitudes over frontal and parietal 

sensors. In source space, the early components are focussed around early visual 

regions at the occipital pole, with more widespread frontal activity evident at later 

time points (lower row of Figure 2.3b). 
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Figure 2.3. MEG data and classifier performance. Panel (a) shows the grand average 
ERP over the occipital sensors highlighted black in the upper left montage inset (red 
points indicate broken sensors). Shaded regions show bootstrapped 95% confidence 
intervals across participants, and dotted lines indicate three time-points for which activity 
is displayed in panel (b) both in sensor space (upper row) and in source space (lower 
row). Both representations are averages across participants, with the source space 
representations projected onto a standard reference (MNI152) brain inflated to 80% 
smoothness. Panels (c) and (d) show target/non-target classification in 0% and 16% target 
contrast conditions respectively, and panels e and f display selected/non-selected 
classification over time. Each panel shows sensor space (black) and source space (blue) 
classification (traces), 95% confidence intervals (shaded regions) and significant clusters 
(straight lines). Grey rectangles in (a, c-f) indicate the period of stimulus presentation. 
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The classification results replicated the key findings from Experiment 1. The 

target/non-target classification in the 16% target contrast condition showed a 

prolonged window of above chance performance, beginning at around 134ms 

(sensor space) or 91ms (source space) (Figure 2.3d). The target interval was not 

classified above chance in the 0% target condition apart from in two very brief 

time windows, which necessarily constitute Type 1 errors as this condition did not 

contain a target (and so the ‘target’ interval was arbitrarily assigned). The selected 

interval was decoded above chance during several time windows in both target 

contrast conditions (Figure 2.3e,f). Classification in the 0% target contrast 

condition reached 70% correct in sensor space and 75% correct in source space, 

with the earliest significant clusters beginning at 99ms (sensor space) and 104ms 

(source space). 

 

2.4.3 Classification in anatomically-defined brain regions 

We next asked which brain regions contribute information that can be used to 

determine perception and performance at different time points. We divided the 

cortex into 31 discrete non-overlapping anatomical regions using the Mindboggle 

atlas (Klein et al., 2017). Maximal evoked potentials in these regions showed 

clear differentiation (see Figure A.1). Because regions differed in size, each area 

contributed a different number of vertices on the cortical mesh for pattern 

classification (see Table A.1).  

At early time points, around 100ms, information in three adjacent regions around 

the occipital pole (the peri-calcarine region, the cuneus and the lateral occipital 

cortex) could be used to decode the observer’s percept in the 0% target contrast 

condition (final three traces in Figure 2.4a). Over time, this information spreads 

forward to frontal and temporal cortex (see Figure 2.4c). By 300ms following 

stimulus onset, almost the entire brain contains information relevant to the task. 

This includes regions that do not appear to respond directly to presentation of 

visual stimuli (i.e. there is no measurable evoked response, see Appendix A). A 

similar pattern of results is evident in the 16% target contrast condition (see 

Figure A.2), suggesting that differences in physical and perceived contrast are 

processed in a similar fashion. 
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Figure 2.4. Atlas-based classification of decisions in the 0% target condition. 
Timecourses in panel (a) indicate classifier performance for each brain region, organised 
from anterior (top) to posterior (bottom) (see legend in panel b). Shaded regions in panel 
(a) indicate clusters in which classification performance was significantly above chance. 
In panel (c), regions containing significant clusters within a given time window are 
shown in blue. 
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EEG and MEG data. Our results show that perceptual decisions are encoded in 

early visual cortex even when the two stimuli in a discrimination task are 

physically identical. This indicates that perceptually relevant neural noise impacts 

at the initial stages of processing and affects stimulus encoding in the visual 

system. We will now discuss the implications of this finding for our 

understanding of how internal noise influences perceptual decisions. 

 

2.5.1 Superior classification in MEG source space 

Classifier performance overall was much higher for MEG data than for EEG data 

in identical conditions, despite the larger sample size of the EEG study (N = 22 

for EEG vs. N = 10 for MEG). This is presumably due to the greater intrinsic 

sensitivity of MEG sensors, and the greater sampling density across the scalp (N = 

64 for EEG vs. N = 239 for MEG). Classifier accuracy was also consistently 

higher in source space than in the sensor space representation primarily used in 

previous MEG studies (Cichy, Pantazis, & Oliva, 2014; Clarke, Devereux, 

Randall, & Tyler, 2015; Mostert et al., 2015). Since the source space 

representation is a weighted linear combination of activity at the sensors, this 

might be somewhat surprising. However, the source reconstruction presumably 

weights out signals from outside the brain (e.g. heart rate, breathing and blinking 

artefacts, and noise from outside of the scanner), resulting in a cleaner signal. 

Some form of source localisation may therefore be a useful processing step in 

future studies attempting multivariate classification of MEG signals. Additionally, 

combining the source space representation with atlas-based multivariate analysis 

permits questions to be asked about the information contained in specific brain 

regions at different points in time. 

 

2.5.2 Single interval versus 2IFC 

One distinction between this and most previous studies on the neural correlates of 

perceptual decision making is that previous work has used single interval (yes/no) 

paradigms (Hesselmann, Kell, Eger, & Kleinschmidt, 2008; Hillyard et al., 1971; 

Jolij, Meurs, & Haitel, 2011; Mostert et al., 2015; Ress & Heeger, 2003; 
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Schölvinck, Friston, & Rees, 2012; Squires, Squires, & Hillyard, 1975), whereas 

here we used a 2IFC design. Since most psychophysical studies of contrast 

discrimination have used 2IFC, this choice has more direct relevance to previous 

work. Additional benefits are that the number of evoked potentials in the selected 

and non-selected categories were necessarily balanced; and it was possible to 

compare neural responses to two physically identical stimuli. However in 2IFC 

participants must hold information about the stimulus from the first interval in 

memory until after the second stimulus has been presented. This process may 

account for the sustained patterns of activity that permit classification long after 

stimulus presentation (see Figures 2.2-2.4). Additionally, 2IFC cannot distinguish 

between hits and correct rejections (as these comprise ‘correct’ trials) or between 

misses and false alarms (incorrect trials), so direct comparisons of these trial 

categories is not possible in our design. Lastly, 2IFC designs avoid problems with 

differences in bias (or response criteria) between participants, as pairs of stimuli 

are compared directly on a given trial (rather than against an internal standard). 

 

2.5.3 Multiplicative noise 

An alternative account of contrast discrimination performance at high pedestal 

contrasts is that transduction is linear but internal noise is signal-dependent (Pelli, 

1985). If the dominant source of noise were early and multiplicative, this would 

avoid any issues relating to Birdsall’s theorem, as the transducer could be linear. 

It has proven difficult to distinguish between the multiplicative and additive noise 

accounts purely from contrast discrimination experiments (Georgeson & Meese, 

2006; Kontsevich, Chen, & Tyler, 2002). At a single neuron level there is well-

established evidence of multiplicative noise (Tolhurst, Movshon, & Dean, 1983b), 

yet it appears that across populations of neurons with different sensitivities the 

overall noise is effectively additive (Chen et al., 2006). Since evidence from fMRI 

(Boynton et al., 1999), EEG (Busse et al., 2009) and psychophysics (Kingdom, 

2016) all argue strongly against a linear transducer, we think this explanation is 

unlikely to account for the body of available data.  
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2.5.4 Resolving early noise and Birdsall’s theorem 

Early noise has typically been considered at very early stages, including 

photoreceptor noise in the retina (Barlow, 1962). Late additive noise is often 

assumed (either implicitly or explicitly) to be added at the decision stage, long 

after the nonlinearities of early visual processing (Cabrera, Lu, & Dosher, 2015; 

Mueller & Weidemann, 2008). The results here point to a perceptually-relevant 

source of noise that is present in the early evoked response, at around 100ms or 

earlier. However we note that classification performance improves after this point 

in processing, reaching a maximum around 700ms after target onset (see Figure 

2.3e). This is consistent with a cascade of multiple noise sources at different 

stages of processing. Since mathematical treatment of complex systems involving 

multiple nonlinearities and noise sources is currently lacking, it is unclear what 

implications this would have for the visibility of early nonlinearities. 

One possibility is that a strong source of noise occurs immediately after the initial 

contrast transduction nonlinearity in V1, leaving that nonlinearity visible but 

obscuring later ones. This would explain why psychophysical contrast perception 

maps closely onto the neural response from early visual areas (Baker & Wade, 

2017; Barlow, Hawken, Parker, & Kaushal, 1987; Boynton et al., 1999), but not 

the highly compressive contrast-invariant response in later regions (Avidan et al., 

2002; Rolls & Baylis, 1986). Indeed, this might enable the visual system to 

harness the properties of Birdsall linearisation to preserve the dynamic range of 

early representations through later processing (that is more compressive) when 

making comparisons across stimuli (as in a discrimination paradigm). Object 

recognition, and other operations that benefit from invariance to features such as 

contrast, position and size, but do not require comparisons across multiple stimuli, 

would be immune to the Birdsall effect and benefit from the later nonlinearities. 

Furthermore, a strong early source of noise would make the study of later ‘mid-

level’ visual processes much more challenging, perhaps explaining why vision 

research has typically focussed on earlier mechanisms and can be caricatured as 

being ‘stuck’ in V1 (Graham, 2011; Peirce, 2007). 
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2.5.5 Conclusion 

To summarise, in this study we investigated the timecourse of the neural 

operations involved in contrast discrimination. We demonstrated that internal 

noise impacting early in time and in the visual pathway can affect sensory 

processing and perceptual decisions. Our novel application of multivariate 

analysis methods to spatially-parcellated MEG source space representations offers 

the capability of studying how the brain represents information in both space and 

time. 
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Chapter 3 

 

Individual differences in internal noise are 

consistent across two measurement techniques  

This chapter has been adapted from: Vilidaite, G., & Baker, D. H. (2016). 

Individual differences in internal noise are consistent across two measurement 

techniques. Vision Research, in press.2 

 

 

 

3.1 Abstract 

Internal noise is a fundamental limiting property on visual processing. Internal 

noise has previously been estimated with the equivalent noise paradigm using 

broadband white noise masks and assuming a linear model. However, in addition 

to introducing noise into the detecting channel, white noise masks can suppress 

neural signals, and the linear model does not satisfactorily explain data from other 

paradigms. Here we propose estimating internal noise from a nonlinear gain 

control model fitted to contrast discrimination data. This method, and noise 

estimates from the equivalent noise paradigm, are compared to a direct 

psychophysical measure of noise (double- pass consistency) using a detailed 

dataset with seven observers. Additionally, contrast discrimination and double-
																																																								
2 The author, Greta Vilidaite collected the data, analysed the results and wrote the 

manuscript under the supervision of Dr Daniel Baker. The experiments were designed 

jointly with Dr Daniel Baker. 
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pass paradigms were further examined with a refined set of conditions in 40 

observers. We demonstrate that the gain control model produces more accurate 

double-pass consistency predictions than a linear model. We also show that the 

noise parameter is strongly related to consistency scores whereas the gain control 

parameter is not; a differentiation of which the equivalent noise paradigm is not 

capable. Lastly, we argue that both the contrast discrimination and the double- 

pass paradigms are sensitive measures of internal noise that can be used in the 

study of individual differences. 

 

3.2 Introduction 

Internal noise is intrinsic to the assumptions of signal detection theory (Green & 

Swets, 1974; Macmillan & Creelman, 2005) and signal degradation due to 

internal variability is evident in both electronic systems (e.g. amplifiers) and 

living organisms. Neural internal noise is inherent to sensory neurons and acts as a 

limiting factor in signal transduction (Faisal et al., 2008). In psychophysics, this 

leads to the psychometric function taking the shape of a sigmoid rather than 

transitioning sharply between sub-threshold and supra-threshold stimuli (Burgess 

& Colborne, 1988). A substantial body of research has attempted to measure noise 

psychophysically for many different visual cues, including luminance (Barlow, 

1956), orientation (Jones, Anderson, & Murphy, 2003), shape (Sweeny et al., 

2011), motion perception (Barlow & Tripathy, 1997) and contrast (Burgess & 

Colborne, 1988; Lu & Dosher, 2008; Pelli, 1985). 

Differences in internal noise have been reported in normal human development 

(Skoczenski & Norcia, 1998) and ageing (Pardhan, 2004) and in clinical 

conditions such as amblyopia (Levi, Klein, & Chen, 2007), macular degeneration 

(McAnany, Alexander, Genead, & Fishman, 2013) and autism (Dinstein et al., 

2012; Milne, 2011). Furthermore, individual differences in contrast sensitivity for 

neurotypical adults have also been explained as being partly due to noise (Baker, 

2013). In order to assess differences in internal noise levels between observers it 

is crucial to use a paradigm that is capable of distinguishing internal noise effects 

from other performance-influencing factors (such as sensitivity, suppression, 
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uncertainty or efficiency). We now discuss several candidate psychophysical 

methods that might be used to achieve this aim. 

 

3.2.1 Equivalent noise 

Most commonly, the influence of internal noise on psychophysical task 

performance is assessed by purposefully degrading the performance of the 

observer by presenting external stimulus noise (such as 2D isotropic white noise; 

Pelli, 1985). The most widely adopted method is the equivalent noise (EN) 

paradigm (Legge et al., 1987; Pelli, 1985) which observers perform a two-

alternative-forced- choice (2AFC) detection experiment with white noise masks 

shown in both intervals and a target stimulus added to one. Detection thresholds 

are obtained for several mask contrast levels, and the mask noise level at which 

performance begins to decline is taken as an estimate of the amount of internal 

noise in the system. 

The EN paradigm assumes a linear amplifier model (Pelli, 1985), that defines 

thresholds as: 

   𝐶!!!"#! =  
!!"#
! !!!"#

!

!
    (Eq. 3.1) 

 

where Cthresh is the threshold target contrast level, β is a parameter reflecting 

efficiency (Lu & Dosher, 2008) and σext and σint are the levels of external 

(stimulus) noise and internal noise respectively. The model posits a linear 

relationship between stimulus input and signal output, with additive internal noise. 

External stimulus noise introduces variability into the detecting mechanism that 

impairs performance at high noise contrasts (when σext > σint). 

However, there is abundant evidence that the relationship between stimulus 

contrast and visual response is not linear but rather accelerating at low contrasts 

and saturating at high contrasts (Baker, 2013; Boynton et al., 1999; Legge & 

Foley, 1980; Tsai et al., 2012). Furthermore, due to the broad frequency and 

orientation profile of white noise masks, non-target channels will also be activated 
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by the mask and in turn inhibit the target channel. It has recently been 

demonstrated that broadband white noise has a strong suppressive effect similar to 

that of narrowband cross-oriented masks (Baker & Vilidaite, 2014). This suggests 

that impaired performance at high mask contrasts in the EN paradigm could be 

due to cross-channel suppression from white noise rather than within-target-

channel noise (Baker & Meese, 2012). 

One potential solution to this is to inject variability only to the detecting channel 

tuned to the target. This is possible by removing from the mask all off-channel 

spatial frequency and orientation information. The result is a mask that is spatially 

identical to the target grating, but with a randomly selected contrast – a ‘zero-

dimensional’ (0D) noise mask (Baker & Meese, 2012). Similar approaches have 

been previously used in luminance (Cohn, 1976), orientation (Dakin et al., 2009) 

and auditory tone perception (Jones, Moore, Amitay, & Shub, 2013). The contrast 

level of the mask is randomly sampled from a Gaussian distribution to create 

interval-by- interval contrast jitter. It has been shown that this type of mask 

produces stronger masking effects than white noise (Baker, 2013; Baker & Meese, 

2012), and does not show evidence of cross-channel suppression, so it may offer a 

more suitable alternative to white noise masks. 

However, it has been pointed out (Allard & Faubert, 2013) that zero-dimensional 

noise masks tend to produce near perfect efficiency, implying that estimates of 

internal noise using this paradigm are determined entirely by detection thresholds 

in the absence of a noise mask! In addition, the EN paradigm still assumes a linear 

model that is at odds with contemporary accounts of contrast transduction (e.g. 

Baldwin, Baker, & Hess, 2016). In order to take into account the nonlinearity of 

the human visual system, paradigms and models that have more accurate 

underlying assumptions must be considered. 

 

3.2.2 Pedestal masking 

One possible alternative to the equivalent noise approach is to obtain an estimate 

of internal noise by measuring and modelling discrimination data. This type of 

noise estimate has been used in auditory research where the fitted noise parameter 
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was shown to be a good predictor of other measures of internal noise in the 

auditory system (Buss, Hall, & Grose, 2009; Jones, Moore, Amitay, & Shub, 

2013). The same method can be implemented in visual contrast discrimination 

(Baker, 2013; Baldwin et al., 2016). In this paradigm, a fixed contrast pedestal 

stimulus is presented in both intervals of a 2AFC experiment with a target contrast 

increment added to one of the intervals. A staircase procedure is used to obtain 

discrimination thresholds at several pedestal contrast levels. The resulting 

function takes the shape of a dipper (Nachmias & Sansbury, 1974), with a 

facilitatory effect at low pedestal levels and threshold elevation from masking at 

higher levels of pedestal contrast. The contrast response function underlying the 

dipper (e.g. Boynton, Demb, Glover, & Heeger, 1999) is well described by a 

transducer nonlinearity (Legge & Foley, 1980; Tsai et al., 2012) adapted from the 

Naka-Rushton equation (Naka & Rushton, 1966): 

   𝑟𝑒𝑠𝑝 =  𝐶𝑝

𝑍+ 𝐶𝑞
+  𝜎!"#   (Eq. 3.2) 

 

where C is the stimulus contrast, p and q are exponents that produce an 

accelerating response across low contrasts and a compressive response across high 

contrasts, Z is the saturation constant (the gain control parameter) and σint is 

proportional to the participant’s internal noise. To simulate contrast discrimination 

experiments, a response (resp) is generated for each of the two intervals (with 

zero mean Gaussian noise added to each), and the interval with the larger response 

is selected. The influences of gain control and internal noise can be differentiated 

(see Figure 3.1): increasing the gain control parameter (Z) elevates thresholds only 

at low pedestal levels, whereas changing the noise parameter (σint) shifts the 

function vertically at all pedestal contrasts. Fitting the model to empirical contrast 

discrimination data will therefore provide an estimate of internal noise that is 

decoupled from estimates of sensitivity (or gain). However, it is currently 

unknown how accurate noise estimates using this method are, so it would be 

useful to compare it to a more direct measure. 
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Figure 3.1. Model predictions for contrast discrimination with different model 
parameters. The red curve shows a typical dipper function for reference (parameter 
values: σint = 0.2, Z = 8); the green curve shows the vertical shift of the whole dipper 
function when the noise parameter (σint) is increased by a factor of 3.5; and the blue curve 
shows the diagonal shift of the function when the gain control parameter (Z) is increased 
by a factor of 4 (at low pedestal contrasts thresholds increase, but the dipper handles 
converge at high contrasts).  

 

3.2.3 Double-pass consistency 

When there is no variability in the stimulus, most variability in an observer’s 

responses must be due to internal noise. One way of estimating internal noise, 

therefore, is to present a sequence of noisy stimuli multiple times and look at the 

consistency of responses across repetitions. This method is considered to be a 

direct way of measuring internal noise (Burgess & Colborne, 1988; Lu & Dosher, 

2008), and is typically performed with two passes (and referred to as the double 

pass method). Double-pass methods are well established both in auditory (Green, 

1964; Jones, Moore, Amitay, & Shub, 2013) and visual modalities (Burgess & 

Colborne, 1988; Hasan, Joosten, & Neri, 2012; Lu & Dosher, 2008), and have 

also been extended to more cognitive tasks (Diependaele, Brysbaert, & Neri, 

2012). To estimate double pass consistency for contrast transduction, a 2AFC 

detection-in-noise experiment is run twice with identical sequences of noise in the 

two passes. If the consistency of responses between passes is high, there is low 

internal noise, if the consistency is low, the internal noise is high. 
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3.2.4 Aim 

All three of the above-mentioned paradigms are widely used in contrast 

perception research, with double-pass and equivalent noise specifically aimed at 

estimating internal noise. There has been some attempt to compare pedestal 

masking and EN paradigms (Baker, 2013; Baldwin et al., 2016) as well as EN and 

double-pass (Baker & Meese, 2012; Lu & Dosher, 2008). However, estimates of 

internal noise from pedestal masking and double-pass consistency experiments are 

yet to be compared. Given that internal noise is an important limiting factor in 

signal transduction and an underlying cause of individual and, in clinical research, 

group differences it is of importance to determine the most accurate way of 

measuring it. This paper compares all three methods with detailed data sets for 

seven observers and a further investigation of double-pass and pedestal masking 

paradigms with a larger sample. 

 

3.3 Methods 

3.3.1 Observers 

Seven observers (three males) completed Study 1 and 46 observers (16 males) 

completed Study 2. Six of the 46 observers were excluded from the analysis as 

their performance was at chance for most or all of the conditions, suggesting 

either poor understanding of the task or an inability to follow instructions. All 

participants were reportedly neurotypical adults and reported normal or corrected 

to normal vision. Informed consent was obtained from all observers. 

 

3.3.2 Materials 

The stimuli were displayed on a gamma corrected Iiyama VisionMaster Pro 510 

monitor running at 100Hz. To enable accurate rendering of low contrast stimuli, 

we used a ViSaGe device (Cambridge Research Systems Ltd., Kent, UK) running 

in 14- bit mode. Responses were made using a computer mouse. 
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The stimuli were patches of 0.5c/deg sine-wave grating with horizontal stripes, 

windowed by a circular raised cosine envelope (i.e. a circle blurred by a cosine 

function, with a full-width at half-height of 2.4 degrees, and blur width of 0.6 

degrees, see Figure 3.2 for examples). The equivalent noise and double-pass 

experiments used zero-dimensional (0D) noise masks (see Baker & Meese, 2012). 

The mask was identical to the target and had a contrast level randomly drawn 

from a Gaussian distribution of contrasts centred around 0% (negative contrasts 

constitute a polarity inversion). Stimuli flickered sinusoidally between zero and 

their maximum contrast at a rate of 7Hz (three cycles, lasting 430ms), preserving 

the phase polarity of the stimulus during presentation. Contrast levels were 

expressed as percent Michelson contrast (C% = 100*(!!"#!!!"#
!!"#!!!"#

), where Lmax and 

Lmin are the maximum and minimum luminances of the grating), or in decibels 

(dB), defined as CdB = 20*log10(C%). 

 

3.3.3 Procedure 

Experiments in Study 1 were completed over several days in sessions lasting 30-

60 minutes. All observers completed the experiments in the same following order: 

pedestal masking, noise masking and double-pass experiment. Study 2 was 

completed by each individual in a single 50-60 minute session. The pedestal 

masking took approximately 20 minutes and the double-pass experiment took 30-

35 minutes to complete with short breaks in between blocks. For all experiments, 

the observers sat in a darkened room 105cm from the monitor with their heads 

supported by a chin rest. The instructions for all experiments were to ‘Choose the 

interval in which the bar in the middle looks brighter’. The stimuli were presented 

foveally, along with a continuously presented central fixation cross. Each interval 

within a trial was presented for 430ms with an inter-stimulus interval of 400ms. 
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Figure 3.2. Illustration of methods used in the study with relation to a common 
contrast intensity space (panel A). For the equivalent noise paradigm (model curve 
shown in panel C) two independent mask contrast samples are selected for each trial with 
the target contrast being added to one sample. Example selections for two trials can be 
seen in blue circles (panel B) with blue dotted lines connecting intervals within a trial. 
The same procedure applies for the double-pass paradigm (model curve shown in panel 
D) with green circles and dotted lines showing example stimuli used. Each pair of 
contrasts in the double-pass experiment was presented twice. Panel B shows four more 
examples of trials for both EN and double-pass experiments with blue circles indicating 
the higher positive contrast that the observer would be expected to select. The red arrows 
in panel A indicate the range of possible target values for each pedestal contrast in the 
pedestal masking experiment. The orange dotted line indicates 0% contrast below which 
the sine-wave gratings reverse in phase polarity. Thresholds for contrast discrimination 
experiments follow a characteristic dipper shape (panel E). 

 

3.3.3.1 Study 1 methods 

3.3.3.1.1 Equivalent noise experiment 

Each trial contained a mask only interval and a mask + target interval (example in 

Figure 3.2B). The mask contrast was drawn from a normal distribution with a 

mean of 0 and standard deviations of 0, 0.5, 1, 2, 4, 8, 16 and 32% Michelson 

contrast. Negative contrast values reversed the polarity of the stimulus. A 3-down-
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1-up staircase procedure with a step size of 3dB controlled the target contrast. The 

staircase terminated after the lesser of 12 reversals or 70 trials and was repeated 3 

times. We used Probit analysis (Finney, 1971) to fit a psychometric function to 

the pooled data across all repetitions, to estimate a threshold at 75% correct. 

 

3.3.3.1.2 Double-pass experiment 

The method of constant stimuli was used in these experiments. The stimuli had 

the same temporal and spatial configuration as in the equivalent noise 

experiments, with the mask and target + mask intervals presented in a random 

order on each pass (see Hasan, Joosten, & Neri, 2012). In the second pass, the 

samples of noise used in the first pass were repeated. Three levels of noise 

standard deviation were used with six target contrast levels each: i) 0% mask, 

target levels 0.5, 0.7, 1, 1.4, 2 and 3%; ii) 2% mask, target levels 1, 1.4, 2, 3, 4 and 

5.6%; iii) 32% mask, target levels 8, 11, 16, 22, 32, 45%. Each mask standard 

deviation also had a target absent condition where the target contrast was set to 

0% (21 conditions in total). Each condition had 200 trials (100 trials in each pass). 

The accuracy of responses was calculated as the proportion of correct responses 

out of all 200 trials in a condition; the consistency scores were calculated as the 

proportion of consistent responses across the two passes (Burgess & Colborne, 

1988). For target absent trials nominal accuracy was calculated relative to an 

arbitrarily determined ‘target’ interval. 

 

3.3.3.1.3 Pedestal masking experiment 

Pairs of three-down-1-up staircases (terminating after 12 reversals or 70 trials) 

were used to obtain 75% correct thresholds (estimated using Probit analysis) for 9 

pedestal contrasts (0.25, 0.5, 1, 2, 4, 8, 16, 32, 64%) and also in a detection 

condition where the pedestal contrast was set to zero. Participants completed four 

repetitions of each condition. 

Equivalent noise data were fitted with the linear amplifier model (Eq. 3.1) with 

two free parameters (β and σint) for each observer and for the average data across 
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observers. The gain control model (Eq. 3.2) was also used to simulate and predict 

EN masking data (100,000 stimulated trials for each condition) with p and q 

parameters fixed at 2.4 and 2 (Legge & Foley, 1980) in order to keep the same 

number of free parameters as for the LAM. The two free parameters were the 

saturation constant (Z) and the internal noise (σint) parameters. Data from each 

observer and the average were fitted 50 times each with random starting values 

and the model that produced the lowest mean square error was chosen. This same 

procedure was used for fitting dipper data in Study 2. All models were fitted using 

a downhill simplex algorithm.  

Pedestal masking data were fitted with the gain control model using a downhill 

simplex algorithm with the same two free parameters. The parameters obtained 

from modelling EN with LAM and pedestal masking with the gain control model 

were then used to simulate the double-pass experiment (100000 simulations with 

the gain control model and 1000000 simulations with LAM) and compare the 

predictions to the empirical data.  

 

3.3.3.2 Study 2 methods  

In Study 2, a smaller selection of the most informative conditions from the 

pedestal masking and double-pass experiments were run on a large number of 

observers in order to further compare the two methodologies. For pedestal 

masking, the same procedure and stimuli were used as in Study 1, albeit with 

pedestal contrast levels of 0, 2, 8 and 32%. Staircases for each condition were 

repeated 3 times. The double-pass procedure in Study 2 was kept the same, 

however, there were only two conditions: no target and 4% contrast target. In both 

conditions the noise standard deviation was 4% contrast. All observers completed 

the pedestal masking experiment first. 

 

3.4 Results  

The raw data are available online at: 

https://dx.doi.org/10.6084/m9.figshare.3824250  
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3.4.1 Study 1  

3.4.1.1 Equivalent noise  

Results for the equivalent noise paradigm had the typical form, with thresholds 

increasing as a function of noise contrast, and the upper limb of the masking 

functions having a slope of 1 (Figure 3.3). 

 

Figure 3.3. Noise masking thresholds from the equivalent noise experiment plotted 
as a function of noise contrast level. Blue dots show data points for all observers (panels 
S1-S7) with error bars indicating the standard error of the Probit fits. In panel H data 
points show the mean data averaged across observers (error bars show ±1SE across 
observers). Blue curves in all panels show simulated fits of the linear amplifier model and 
red dashed curves show simulated predictions of the gain control model. Values of 
parameters σint and β and the RMS error is shown at the top left corner of each panel.  

 

The largest differences between participants can be seen at low noise levels (up to 

0dB) where thresholds range between 0 and 5dB. At higher mask contrasts, all 

thresholds converge on the line of unity, x = y, consistent with previous reports 

that observer efficiency is near perfect for this task (Allard & Faubert, 2013). Best 

fits of the LAM (blue curves) described the data well (all RMS errors < 1.54dB), 

but estimates of the efficiency parameter (β) were similar across subjects (see 

values in each panel of Figure 3.3). This means that the only meaningful degree of 

freedom in this model was the internal noise parameter (σint), which determined 

both detection threshold and the inflection point on the noise masking function.  
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3.4.1.2 Pedestal masking 

Figure 3.4 shows contrast discrimination data for 7 observers and their average, 

all of which display the characteristic ‘dipper’ shape first reported by Campbell & 

Kulikowski (1966).  

 

Figure 3.4. Individual and mean contrast discrimination curves. Thresholds at 75% 
correct plotted against the levels of pedestal contrast for each observer (green dots) and 
the mean data across observers (red dots, right-most bottom panel). Error bars in panels 
S1-S7 show ±1SE of the Probit fit; error bars in panel H show ±1SE across observers. 
Green curves are the gain control model fits with two free parameters for each observer 
separately; red dashed curves are the model fit to the mean data and can be used as a 
reference for how different values of saturation constant (Z) and internal noise (σint) 
influence the curves. Values of both parameters used for each model are indicated in the 
lower right of each panel along with the RMS error in dB units. 

 

The gain control model with two free parameters was fitted to each observer’s 

data individually and also to the mean data (fits to the mean data are duplicated in 

each panel with a red dashed curve, for comparison with the data of each 

observer). The model provided good fits to the data for all subjects (root mean 

square errors of less than 2.3dB). There is a noticeable influence of the gain 

control parameter (Z) on the threshold at the first four levels of pedestal contrast. 

For example, S4 with Z = 10.57 has a much higher threshold at low pedestal 

conditions compared to the mean whereas S2 with a lower Z = 2.78 has lower 

thresholds at those pedestal levels. 
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3.4.1.3 Double-pass consistency 

Accuracy and consistency scores were calculated for each noise mask and target 

contrast condition in the double pass experiment (Figure 3.5). Increasing the 

variance of external noise produced increasingly consistent responses, whereas 

increasing target contrast levels produced increasingly accurate responses. 

Simulated predictions for double-pass data were made using LAM fits to the EN 

data and gain control model fits to the pedestal masking data individually for each 

observer. For the majority of the observers the predictions for 0% and 2% mask 

contrasts were reasonably accurate from both the LAM and the gain control 

model. Both models produced comparatively poorer predictions for the 32% mask 

contrast conditions, tending to overestimate the level of consistency relative to 

that in the data (see also Lu & Dosher, 2008). The errors between double-pass 

data points and model predictions were calculated and averaged over conditions 

for each observer. A paired-samples t-test showed the gain control model 

predictions had significantly smaller errors (mean = 0.11, SD = 0.03) than the 

LAM predictions (mean = 0.14, SD = 0.01, t = -4.14, p = 0.004). 

 

Figure 3.5. Double-pass consistency and accuracy for the seven observers and their 
average (panel H) at (i) 0% (green squares), (ii) 2% (purple circles) and (iii) 32% mask 
standard deviation (blue triangles). Target contrast levels are not specified on the plots 
but generally follow an upward trend with increasing target contrast. Red curves show 
gain control model predictions for the three mask contrast levels for each observer and 
mean data; blue curves show LAM predictions. The error bars in panel H indicate ±1SE 
of the mean for accuracy (vertical) and consistency (horizontal) across observers. 
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Akaike’s Information Criteria (AIC = n * log(RMS) +2p, where n is the number 

of data points modelled, RMS is the root mean squared error and p is the number 

of free parameters in the model) were calculated for these the two original models 

as well as for LAM with a single free parameter (β fixed at 1) and for a four free 

parameter gain control model (exponents p and q were also free). The gain control 

model with two free parameters performed best (AIC = 20.17) compared to other 

models even when the number of free parameters is taken into account. 

As it is difficult to draw population-level inferences about the consistency of noise 

measurements on a between observer basis with only seven observers, the 

conditions that seemed to show the strongest individual differences were selected 

for a follow up experiment with 40 observers. 

 

3.4.2 Study 2  

3.4.2.1 Pedestal masking  

Using similar methods to Study 1, contrast discrimination thresholds were 

obtained for 40 observers (Figure 3.6A) and the same modelling procedure was 

implemented as described above. Thresholds varied between observers by 12dB 

(a factor of 4) or more at all pedestal levels. Pearson’s correlations were carried 

out between the Z and σint parameters obtained from the gain control model fits 

and the thresholds at each pedestal level of the dipper function in order to examine 

the influence of these parameters at different pedestal contrasts. 

Scatterplots for these correlations are shown in Figure 3.7, however, most 

importantly, the Z parameter significantly correlated with individual thresholds at 

detection (no pedestal condition; R= 0.60, p < 0.0001) and at low pedestal contrast 

(R = 0.56, p = 0.0002) but did not significantly correlate at higher pedestal 

contrasts of 18 and 30dB (R = -0.13, p = 0.426 and R = -0.17, p = 0.283 

respectively). This is in line with the prediction (see Figure 3.1) that changes in 

gain produce changes in threshold only at low pedestal contrasts. Conversely, the 

internal noise parameter σint significantly correlated with thresholds throughout 

the dipper function (0.69 ≤ R ≥ 0.87, p < 0.0001) demonstrating that changes in 

the internal noise parameter shift the whole dipper function vertically in 
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proportion to the magnitude of internal noise.  

 

Figure 3.6. Contrast discrimination and double-pass data in Study 2. Panel A. 
Contrast discrimination thresholds as a function of pedestal contrast. Grey dots show data 
points for each of the pedestal levels for all 40 observers and grey lines show the gain 
control model fits to each observer’s data. Blue dots show the mean of 40 observers with 
white error bars signifying inter-observer standard error of the mean. Thicker curves 
show the model fit for the 40 observers (blue) and model fit for 7 observers from Study 1 
(red dashes). Panel B. Accuracy and consistency scores from the double-pass experiment 
of Study 2 for all 40 observers (grey dots and lines) and mean scores (red), with white 
error bars showing inter-observer standard error of the mean. Dotted lines show chance 
performance levels and the black curve shows the expected performance with no external 
noise (Klein & Levi, 2009). 

 

Figure 3.7. Correlations between parameters and dipper thresholds. Correlations 
between the gain control parameter Z and pedestal masking (dipper) thresholds (top row); 
and correlations between the internal noise parameter σint and thresholds (bottom row). 
Black lines represent Deming regression lines. R and p values from the Pearson’s 
correlations are shown in the top left hand corner of each plot.  
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3.4.2.2 Double-pass consistency  

Double-pass consistency and accuracy scores for the target and no target 

conditions were calculated in the same manner as in Study 1 with data from all 

individual observers and their mean plotted in Figure 3.6B. For comparison with 

other variables, we averaged the consistency scores across the two target contrast 

conditions, with high levels of consistency implying low levels of internal noise. 

This measure was then correlated with the four pedestal masking thresholds and Z 

and σint parameters from the fits shown in Figure 3.8A. The double-pass 

consistency and the fitted internal noise parameter (σint) showed a significant 

strong negative correlation (R = -0.68, p < 0.0001) indicating consistency between 

these two methods of estimating internal noise. On the other hand, double-pass 

consistency did not significantly correlate with the gain control parameter Z (R = -

0.14, p = 0.378) indicating that contrast gain control estimated from pedestal 

masking data is not a measure of internal noise, and does not confound double 

pass consistency estimates. 

 

Figure 3.8. Correlations between parameters and consistency. Scatterplots showing 
correlations between fitted parameters σint (left panel) and Z (right panel) and double-pass 
consistency scores averaged over the no target and target present conditions. Black lines 
represent Deming regression lines. R and p values from the Pearson’s correlations are 
shown at the bottom left hand corner of the scatterplots. 

 

Pearson’s correlations showed that double-pass consistency was negatively 

correlated with dipper thresholds at all pedestal contrasts (-0.65 ≤ R ≥ -0.44, p < 

0.005), see Figure 3.9. This reiterates the point that internal noise has an influence 

across the entire contrast discrimination function.  
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Figure 3.9. Correlations between consistency and discrimination thresholds. 
Scatterplots showing correlations between double-pass consistency scores averaged over 
the no target and target present conditions and pedestal masking thresholds at pedestal 
contrasts of 0, 2, 8 and 32% (from left to right). Black lines represent Deming regression 
lines. R and p values from the Pearson’s correlations are shown at the bottom left hand 
corner of the scatterplots. 

 

3.5 Discussion 

We compared three different techniques for estimating internal noise. In our first 

study, we showed that a nonlinear model fitted to contrast discrimination data was 

able to predict performance in both an equivalent noise experiment and a double 

pass consistency experiment. In our second study, we showed that the noise 

parameter from a model fitted to contrast discrimination data was strongly 

correlated with double pass consistency, indicating that these two paradigms 

measure the same internal variable. We now discuss further details of the 

methods, and the practicalities of running experiments to estimate internal noise.  

 

3.5.1 Comparing 2AFC discrimination with yes/no tasks  

The suggestion to use contrast discrimination paradigms as a measure of internal 

noise is reasonably novel (Baker, 2013; Baldwin et al., 2016), and may seem 

surprising to some. However, the general approach is entirely orthodox in studies 

that use a yes/no paradigm, where it is equivalent to measuring the slope of the 

yes/no psychometric function, or a just-noticeable-difference (JND). In such 

experiments, stimulus intensity (contrast, luminance, pitch, facial expression etc.) 
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for a single target is typically compared to a standard (either explicit or implicit), 

with participants indicating whether the target appears higher (‘yes’) or lower 

(‘no’) in intensity than the standard. The results are plotted on a linear x-axis, with 

steep psychometric functions indicating low internal noise (good 

discriminability), and shallow functions indicating high internal noise (poor 

discriminability). Often a JND ‘threshold’ is also estimated at some criterion 

performance level (typically 25% and 75%). Two example simulated 

psychometric functions for this paradigm are shown in Figure 3.10A, illustrating 

that individuals with higher internal noise produce shallower functions with larger 

JNDs.  

 

 

Figure 3.10. Illustration of the relationship between yes/no and 2AFC paradigms for 
intensity discrimination experiments. Panel A shows simulated yes/no psychometric 
functions for an intensity discrimination task in which a target was compared to a 
standard with an intensity of 50 units (given by the vertical dashed line). A low noise 
participant (blue) will have a steep psychometric function, with small just noticeable 
differences (JNDs) at the 25% and 75% points. A high noise participant (red) will have a 
shallower psychometric function and larger JNDs. Panel B shows psychometric functions 
for a 2AFC discrimination task, with a pedestal level of 50 units, and a range of target 
increments, which are always added to the pedestal. Again, the functions are shallower 
for the higher noise observer when plotted on a linear x-axis, and the 75% correct 
threshold is higher. Panel C shows the same data replotted on a logarithmic x-axis. Now 
the psychometric functions are approximately parallel, and the high noise observer is 
differentiated only by having a higher threshold. All simulations used the gain control 
model given by Eq. 3.2, with parameters fixed at p = 2.4, q = 2, Z = 1, and involved 
1000000 simulated trials per target level. 
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In two alternative forced choice discrimination experiments, such as those 

described here, a pedestal is presented in one interval, and a pedestal plus target 

increment in the other. The pedestal level is fixed, and target stimuli constitute an 

increment to the pedestal contrast (though some studies have also examined 

decrements, i.e. (Foley & Chen, 1999). As such, effectively only the upper portion 

of the yes/no function is measured, as shown in Figure 3.10B. However, for 

contrast discrimination experiments the target values are conventionally plotted 

on a logarithmic x-axis (or alternatively converted to logarithmic units, such as 

the dB units used here). The log scaling of the target contrast values means that a 

zero point is not present, and the functions do not change in slope with changes in 

internal noise (see Figure 3.10C). Instead, only the threshold (at 75% correct) 

varies as noise increases. Given the close relationship between these paradigms, 

estimating noise levels from the dipper function is not particularly radical, and we 

are somewhat surprised that it has rarely been attempted.  

 

3.5.2 Why is consistency overestimated? 

We attempted to predict the double pass consistency data using models fit to 

either the equivalent noise thresholds or the contrast discrimination thresholds 

(see Figure 3.5). Both models overestimated the empirical double-pass 

consistency, especially at high mask levels. This is similar to findings from 

previous studies using white noise, which also found that a linear model fitted to 

threshold data overestimated consistency (Lu & Dosher, 2008). One possible 

solution is to invoke additional processes, such as induced multiplicative noise 

that is caused by the mask. However direct tests of this approach have not 

provided evidence for changes in consistency via such mechanisms (Baker & 

Meese, 2013). Alternatively, lower than predicted response consistency could be 

explained by several biases and higher level decision strategies that are relatively 

independent of perception, such as interval bias, finger error (lapsing), and 

‘superstitious’ behaviours (i.e. choosing the opposite interval to the one selected 

on the previous trial). These low frequency events are difficult to isolate, 

particularly for binary decision tasks. Future work could use reports of confidence 

(e.g. Baker & Cass, 2013), involve an explicit mechanism for remediating trials 
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on which an observer believes they have lapsed (Meese & Harris, 2001), or 

measure eye movements or other physiological variables to provide a basis for 

rejecting some trials. For our zero-dimensional noise, it is conceivable that 

observers might erroneously make judgments based on absolute contrast (ignoring 

phase polarity) on some trials, which would further reduce consistency estimates.  

 

3.5.3 What is the best way to measure internal noise?  

As previous studies have demonstrated, detection in white noise experiments is 

confounded by suppression from the mask (Baker & Meese, 2012; Baker & 

Vilidaite, 2014). However, using a zero-dimensional noise mask to avoid this 

problem results in near-perfect efficiency (Allard & Faubert, 2013), so that the 

inflection point of the noise masking function merely reflects detection threshold 

(see Figure 3.3). One alternative presented here and elsewhere (Baker, 2013; 

Baldwin et al., 2016) is to estimate internal noise using a discrimination paradigm. 

This is feasible for well-characterised processes such as contrast transduction, and 

previous findings can be reinterpreted in this context. For example, Greenaway, 

Davis, & Plaisted-Grant (2013) recently reported a contrast discrimination deficit 

in autism spectrum disorders, that could well be a consequence of increased 

internal noise in this population (Dinstein et al., 2012; Milne, 2011). 

However, discrimination paradigms may not be suitable for more complex 

stimulus domains, in which the mapping between stimulus and internal 

representation is unknown, and perhaps nonmonotonic. In such cases, the double 

pass method can still be applied, as it is relatively invariant to differences in the 

underlying transfer function, since the addition of external noise causes ‘Birdsall 

linearisation’ (Smith & Swift, 1985) that neutralises nonlinearities. For example, 

Baker & Meese (2013) recently showed that double pass consistency is unaffected 

by strong gain control suppression from a narrowband mask. The method has 

been successfully adapted to lexical decision tasks (Diependaele et al., 2012) and 

pitch discrimination (Jones, Moore, Amitay, & Shub, 2013), and we have recently 

run experiments using faces that vary in emotional expression, as well as value 

judgement tasks (Vilidaite, Yu, & Baker, 2016). Data can be obtained without 

prohibitively large numbers of trials (here we used 200 trials per target level), and 
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the interpretation of results is reasonably straightforward. Additionally, double-

pass shows good internal reliability with split-half analysis showing a very high 

correlation (R = 0.88, p < 0.0001). 

 

3.5.4 Implications for understanding individual differences  

A previous analysis of 18 studies concluded that individual differences in gain 

control could account for more of the variance in contrast sensitivity than could 

internal noise (Baker, 2013). To see if this was also the case here, we conducted a 

further analysis of study 2. Individual observer data from the dipper experiment 

(Figure 3.6A) were fitted as before but allowing only one free parameter, either Z 

or σint, fixing the other to the value obtained from modelling the average data. 

This procedure should reveal which of the free parameters can explain the largest 

proportion of the population variance. A paired samples t-test was used to 

compare mean RMS errors between these two fits, and revealed that RMS errors 

were significantly lower when σint was a free parameter (mean = 2.89dB, SD = 

1.34dB) than when Z was a free parameter (mean = 3.86dB, SD = 1.75dB, t(39) = 

5.52,  p < 0.001). This suggests that internal noise had a larger influence on 

individual differences in contrast discrimination in this study than did gain 

control.  

The discrepancy between studies could be due to the fixed, low spatial frequency 

(0.5c/deg) used here, and the variety of spatial frequencies included in the analysis 

by Baker (2013). This seems a plausible explanation given that differences in 

sensitivity caused by changes in spatial frequency are largely due to differences in 

gain control, and not internal noise (Baldwin et al., 2016). This could imply that 

noise accounts for a greater proportion of inter-individual variation at some spatial 

frequencies than others, perhaps because optical and neural factors limit 

sensitivity more at higher spatial frequencies. Indeed, previous work that has 

addressed individual differences in contrast sensitivity has revealed independently 

varying factors that likely relate to channels tuned to different spatiotemporal 

scales (Peterzell & Teller, 1996; Peterzell, Werner, & Kaplan, 1995). Although it 

may be tempting to relate these channels to magnocellular and parvocellular 
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systems, we note that disambiguating these psychophysically is fraught with 

problems (e.g. Goodbourn et al., 2012; Skottun, 2000). 

In general, we take the theoretical position that internal noise is a stable and 

measureable property of the visual system that could, in principle, vary across 

individuals and clinical groups. Our aim here was to determine which 

experimental techniques might best be used to measure internal noise, with the 

intention of applying them in specific contexts (i.e. with different clinical groups). 

Because they are highly correlated with each other, double pass consistency and 

contrast discrimination appear to be suitable measures. Future work might use 

these tools to focus on how internal noise changes as a function of both genetic 

and environmental factors (e.g. ageing, diet, visual experience etc.), and how 

noise in one system (i.e. vision) relates to noise in other senses and tasks, or 

measured using different methodologies. 

 

3.5.5 Conclusions  

We compared three methods for estimating internal noise in contrast processing. 

Estimates from contrast discrimination and double pass consistency paradigms 

were highly correlated, and so are likely to be measuring the same underlying 

phenomenon. Depending on the dimension of interest, one or both of these 

methods appear to provide a good measure of internal variability, and could be 

used in individual differences research, or with different clinical groups.  
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Chapter 4 

 

The effects and non-effects of TMS on 

contrast perception 

This chapter has been adapted from: Vilidaite, G., & Baker, D. H. (under review). 

The effects and non-effects of TMS on contrast perception. Journal of Cognitive 

Neuroscience.3 

 

 

 

4.1 Abstract 

TMS is widely used to establish causal relationships between brain areas and 

behaviors, but the effects on task performance are not fully understood and have 

never been directly compared between protocols. The impairments in task 

performance due to TMS may be due to signal suppression, neural noise induction 

or a combination of both. Here we compare the effects of four common 

stimulation protocols: single-pulse (spTMS), online repetitive (rTMS), continuous 

(cTBS) and intermittent theta burst stimulation (iTBS) during a low-level visual 

task. We dissociate the effects of neural noise and neural suppression during 

perception using psychophysics and computational model predictions. Double-

pass contrast discrimination was used to estimate neural noise by measuring 

response consistency between two repetitions of the task for each TMS protocol 
																																																								
3 The author, Greta Vilidaite, designed the experiment, collected the data, analysed the 

results and wrote the manuscript under the supervision of Dr Daniel Baker. 
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and control condition. The strength of stimulus-related neural signals was also 

measured as task accuracy. Single pulse TMS suppressed sensory signals and did 

not change the level of neural noise in the visual system. Conversely, rTMS 

increased neural noise but did not change the strength of stimulus-related signals. 

Theta burst stimulation did not have any effect on task performance. Furthermore, 

spTMS and rTMS only influenced task performance in the group of subjects who 

were able to perceive phosphenes during screening. We conclude that care is 

needed when choosing the exact stimulation protocol when assessing functionality 

of brain areas. Furthermore, individual differences in overall TMS susceptibility 

may be a large factor in the TMS reproducibility crisis. 

 

4.2 Introduction 

Transcranial magnetic stimulation (TMS) is widely used to establish causal links 

between behavior and anatomy by targeting a brain area during an associated 

behavioral task (Beauchamp, Nath, & Pasalar, 2010; Moser et al., 2002; Silson et 

al., 2013). Although the ‘virtual lesion’ metaphor of TMS (Pascual-Leone et al., 

2000) has been largely dismissed, the neural mechanisms by which TMS 

influences behavior and perceptual processing are still poorly understood. 

Furthermore, different types of TMS protocols (e.g. online, offline, repetitive, 

single pulse) can have vastly different effects on neural signals and behavior 

(Cárdenas-Morales et al., 2010; Ragert et al., 2008; Ruzzoli et al., 2011). Despite 

this, these TMS protocols are often used interchangeably. 

Within the framework of signal detection theory (Green & Swets, 1974), 

decreases in accuracy on psychophysical tasks, such as those observed when 

applying TMS, can be attributed to either (a) suppression of stimulus-related 

neural signals; (b) increased random activity, i.e. neural noise; or (c) a 

combination of both (also see Vilidaite and Baker, 2016). In the case of online 

TMS, some studies using single-pulse TMS (spTMS) have found that stimulation 

suppresses stimulus-related signals (Harris et al., 2008; Ruzzoli et al., 2011). 

Contrastingly, other studies using repetitive protocols (rTMS) showed that TMS 

influences task performance by increasing neural noise (Ruzzoli et al., 2010; 
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Schwarzkopf et al., 2011). One explanation of this is that spTMS and rTMS affect 

neural signaling in distinct ways. However, another spTMS study in rats found 

both suppressive and noise inducing effects (Moliadze, Zhao, Eysel, & Funke, 

2003).  

The two widely used offline TMS protocols, continuous (cTBS) and intermittent 

TBS (iTBS), have also been shown to have different effects on neural signals 

(Huang et al., 2005). Huang et al. claimed cTBS suppressed neural signals 

whereas iTBS enhanced them. This has been supported by several subsequent 

studies (Di Lazzaro et al., 2005, 2008; Moliadze et al., 2014; Ragert et al., 2008; 

Rahnev et al., 2013). Conversely, other studies showed that TBS had variable 

(Harada et al., 2011) or even bimodal (López-Alonso et al., 2014) effects on 

motor evoked potentials between subjects as well as between exact stimulation 

protocols (Gentner et al., 2008), whereas Benali et al., (2011) found no effect of 

cTBS. 

The discrepancies in the findings are likely due to the use of different tasks 

(contrast masking, orientation discrimination, motion coherence or no task) and 

different brain areas. Furthermore, some paradigms, such as white noise masking, 

used by Harris et al. (2008), cannot adequately distinguish between signal 

suppression and neural noise induction (Baker & Vilidaite, 2014). Furthermore, 

although TBS is widely used for perceptual research, most studies on the neural 

mechanisms of TBS were conducted using electromyographic motor evoked 

potentials (Di Lazzaro et al., 2005, 2008; Moliadze et al., 2014). The lack of task 

in these studies means it is impossible to dissociate TMS effects on behaviorally 

relevant signals and effects of overall activity, including neural noise. 

Here we directly compared the neural effects of four most commonly used TMS 

protocols (spTMS, rTMS, cTBS and iTBS) on a well-understood neural 

computation – contrast transduction. We compare all stimulation protocols using 

the same paradigm and brain area. We use a highly sensitive double-pass 

paradigm (Burgess & Colborne, 1988; Vilidaite, Yu, & Baker, 2017) to dissociate 

TMS induced changes in stimulus-related signal strength (i.e. suppression) and in 

neural noise. As a secondary objective, we investigated natural TMS-
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susceptibility by comparing subjects who could and could not perceive 

phosphenes to address inter-subject variability in TMS effectiveness. 

We simulated predictions using a linear amplifier model (LAM) (Pelli, 1985) 

which indicated that if TMS reduced neural signal strength (lowered sensitivity β), 

we would observe a steep drop in task accuracy but no change in double-pass 

consistency (see section 4.3.5 on double-pass). Alternatively, if TMS increases 

neural noise (σneural), we would see a small reduction in accuracy and a larger drop 

in consistency. Finally, if TMS both reduces stimulus-related signals and 

increases noise, we would observe a large reduction in both measures (Figure 

4.1). 

 

Figure 4.1. Stimuli and model predictions for changes in noise and suppression. Each 
interval during a trial was drawn from the target (blue) and non-target (yellow) stimulus 
distributions (A). Subjects were asked to choose the interval with the more positive 
contrast (B; example correct intervals are shown with a blue circle). Stochastic 
simulations were used to generate model predictions of double pass data (C-E). Light bars 
in all panels indicate a system with low neural noise (σneural = 4%)  and low suppression 
(high sensitivity) in the system (β = 1). Dark bars model an increase in either suppression, 
noise, or both. If TMS suppresses neural signals (lowers sensitivity, β = 0.5) then we 
should expect double pass data to be similar to the prediction in panel C. On the other 
hand, if TMS increases neural noise (σneural = 4%) the data should resemble panel D. If 
both suppression and neural noise are increased we would expect data to be similar to 
panel E. 
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4.3 Methods 

4.3.1 Subjects 

Twenty-five subjects were initially screened for perception of phosphenes in order 

to precisely place the stimulus in the stimulated region of the visual field. Six 

subjects (4 females, age range 22 - 34) were initially recruited due to consistent 

perception of phosphenes and made up the ‘phosphene group’. Another six 

subjects (3 females, age range 23 - 55) were then recruited without phophene 

localization and made up the ‘no phosphene group’. Five of these subjects were 

previously tested for phosphene perception and found not to perceive phosphenes 

during screening. All twelve subjects had normal vision and no neurological or 

psychiatric conditions. The subjects met all criteria for TMS safety and gave 

informed consent. 

 

4.3.2 TMS protocol 

A Magstim Rapid 2 with a ‘figure of 8’ coil was used throughout the study. Four 

TMS protocols were used: online spTMS, online rTMS, offline cTBS and offline 

iTBS. Online spTMS and rTMS were applied at 70% stimulator output. Either one 

(spTMS) or three (rTMS) pulses were delivered 50ms after stimulus onset during 

each interval of each trial (see Figure 4.2C). In the case of rTMS, a train of 3 

pulses at 20Hz was presented at stimulus onset so that the pulses were timed at 0, 

50 and 100ms. The length of the stimulus presentation was 200ms and the inter-

stimulus interval (ISI) was 1100m. The minimum length of the inter-trial interval 

(ITI) was 2000ms with each new trial triggered by the subject’s response (the ITI 

was longer if they responded after 2000ms). The coil was swapped 1-2 times 

during each session to avoid overheating. During the task, subjects fixated on a 

central fixation cross whilst stimuli were presented in the peripheral location of 

the phosphenes. 
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Figure 4.2. Stimulation protocols and phosphene localization. The TMS coil was 
positioned (red dot) approximately 2cm above and 1cm to the right of the inion (blue line 
intersection) to induce phosphenes (A). Before phosphene localization subjects were 
trained to indicate the location and shape of a simulated phosphene on the screen (B; see 
section 4.3.3). During spTMS and rTMS protocols either one or three pulses were 
delivered during each stimulus interval (C; see section 4.3.2 for more details). Pulses 
during offline cTBS and iTBS were delivered as shown in D. 

	
For offline cTBS and iTBS protocols, stimulation was performed before the start 

of the task but after phosphene localization. Standard TBS protocols were 

employed (Cárdenas-Morales et al., 2010; Huang et al., 2005; see Figure 4.2D) at 

a typical intensity (30% stimulator output).  
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4.3.3 Phosphene localization 

Task stimulus location was determined for each subject in the phosphene group 

separately using phosphene localization. Subjects were first trained to use an in-

house developed interface (Matlab) for reporting perceived phosphenes. They 

were asked to position a circle around a simulated phosphene (a patch of pink 

noise windowed by a Gaussian envelope) on the screen several times. 

Subjects were then asked to wear a rubber swimming cap and position their heads 

in front of the screen against a chin and forehead rest. The experimenter 

positioned the TMS coil approximately 2cm above and 1cm to the right of the 

inion (Figure 4.2A). Seven TMS pulses at 20Hz (70% stimulator output) were 

delivered whilst subjects looked at a dark blank screen. They were asked to then 

adjust the position and size of a circle on the screen to match their perceived 

phosphene. This was repeated up to 9 times or until five phosphenes were 

perceived consecutively. If phosphenes were not perceived during the first few 

attempts, the coil was repositioned slightly. 

For subjects in the no phosphene group phosphene localization was not performed 

(or was unsuccessful) and so the stimuli were presented in the average location of 

phosphenes from the other six subjects. The location of the phosphenes was 

similar for all subjects in the phosphene group (left visual field, see Figure 4.3A) 

and so it is reasonable to assume that a similar area of the visual field was 

stimulated in the cases where no phosphenes were perceived. 

 

 

 



	 93	

 
Figure 4.3. Phosphene locations and double-pass accuracy and consistency for the 
phosphene group. Phosphene locations were similar for all six subjects, centered around 
the midline of the left visual field (A), within 15 degrees of the fixation cross. The four 
stimulation protocols: spTMS (pink), rTMS (yellow, averaged over four sessions), cTBS 
(green) and iTBS (brown) produced similar phosphenes within subjects, as indicated by 
filled ovals. For the phosphene group, single pulse TMS (B) significantly reduced the 
mean accuracy scores with TMS stimulation (dark bars) compared to the no-TMS 
condition (light bars) but not consistency scores which indicates increased suppression 
resulting from TMS stimulation. Repetitive TMS (C) significantly reduced consistency 
but not accuracy on the task, indicating a TMS-induced increase in neural noise. Neither 
cTBS (D) nor iTBS (E) produced any significant change in task performance. Error bars 
indicate bootstrapped 95% confidence intervals (see section 4.3.7). 
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4.3.4 Stimuli 

The stimuli were sinusoidal gratings of 0.5 cycles/degree spatial frequency in 

cosine phase with the stimulus centre. They were presented in the previously 

established phosphene location, determined individually for each subject and each 

TMS session. The size of the gratings was 3 degrees of visual angle (at 57cm 

viewing distance). The stimuli were surrounded with a black circle to decrease 

spatial uncertainty. The contrast of the gratings were expressed in percentage 

Michelson contrast: defined as C%=100*(!!"#! !!"#
!!"# ! !!"#

), where Lmax and Lmin are the 

maximum and minimum luminances of the grating. Negative contrast values 

reversed the polarity of the grating (bright bars became dark and vice versa). 

Stimuli were presented with 14-bit luminance resolution on a gamma corrected 

Diamond Pro 2070SB monitor (Mitsubishi) with a refresh rate of 86Hz using a 

ViSaGe stimulus generator (Cambridge Research Systems Ltd., Kent, UK) 

controlled by a PC. 

 

4.3.5 Double-pass consistency 

The psychophysical estimates of neural noise and signal suppression were 

acquired using a variation of the double-pass consistency paradigm (Burgess & 

Colborne, 1988; Vilidaite & Baker, 2016; Vilidaite et al., 2017). In this paradigm, 

noisy stimuli are presented to an observer twice (pass 1 and pass 2) and the 

consistency of responses to these stimuli is calculated between the passes. As the 

stimuli and conditions are kept the same, any differences in responses between 

pass 1 and pass 2 must be due to random activity in the observer’s brain (neural 

noise). The lower the consistency between passes, the more neural noise there is 

in the system. A measure of accuracy, calculated over both passes, is a function of 

the intensity of neural response to the stimuli. For example, a decrease in accuracy 

when applying TMS compared to the control condition would indicate signal 

suppression. Accuracy and consistency were calculated as a proportion of trials 

(chance level being 0.5).  

Here we used a two-interval-forced-choice (2IFC) contrast discrimination task, 

where subjects were asked to choose the interval with the more positive contrast 
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(Figure 4.1B). The instruction given to the subjects was: “Choose the stimulus 

which is brighter in the middle”. On each trial (200 trials per pass), two 

luminance-modulated gratings were presented sequentially, for 200ms each, with 

a 1100ms inter-stimulus interval. There were two stimulus conditions: target 

absent and target present. In the target absent condition, both stimuli had contrast 

values that were randomly drawn from a Gaussian distribution of contrast values 

centered around 0% Michelson contrast (Figure 4.1A). The standard deviation 

(σstim) of the distribution was 4%. In the target present condition, a 4% contrast 

increment was added to one of the stimuli. Accuracy on the task was calculated 

from the target present condition, as the target absent condition had no correct 

answer. Consistency was calculated from the target absent condition. The order of 

the intervals in each trial and the order of the trials were randomized in pass two. 

 

4.3.6 Procedure 

Each TMS stimulation type was administered in a separate session. Online rTMS 

was split into four sessions (100 trials each) due to restrictions on the amount of 

TMS stimulation that can be safely administered in a session (Rossi et al., 2009; 

Wassermann, 1998). Online TMS sessions were counterbalanced between 

subjects, i.e. the spTMS session occurred first for S1, whereas for S2 the first 

session was rTMS, then spTMS, then rTMS again, etc. Each of the four rTMS 

sessions had separate phosphene localization. For each online TMS session, the 

control conditions (no TMS) were performed in the following session before the 

new TMS condition was administered. Each session after the first one followed 

this sequence: control task (no TMS condition using phosphene locations of the 

previous session), TMS set up, phosphene localization for current session, 

psychophysical task for current session. The control conditions did not differ from 

TMS conditions, except that no TMS was applied and the stimuli were presented 

in the previously established phosphene location. 

TBS sessions were also counterbalanced: half of subjects received cTBS first and 

the other half received iTBS first. TBS sessions always followed after online TMS 

sessions. During the task, the minimum inter-trial interval in these conditions was 

500ms. The psychophysical task was split into four blocks, ~5min each in length, 
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between which subjects were able to have a short break. In the phosphene group, 

these blocks were interspersed with passive viewing of flickering gratings whilst 

EEG was recorded (~4min each, data not presented here). In these cases EEG cap 

set up took place immediately after TBS stimulation and took 3-4min. Control 

sessions (no TBS) were done on a different day. 

The task was performed in a dark room in all cases. Subjects were able to rest 

with the lights turned on during dedicated breaks in TBS sessions or when the 

coils were swapped during online TMS sessions. All sessions were 25-70min 

long, including set up time. There were gaps of at least 24 hours between sessions 

and no more than three sessions occurred in any one week. Subjects were 

debriefed after the last session about the purpose of the experiment. 

 

4.3.7 Model predictions 

Predicted double-pass accuracy and consistency scores were obtained by 

simulating the double-pass experiment using a linear amplifier model. Neural 

responses were simulated for the target and the null intervals: 

 

resp = σneural + σstim + β * Ctarg  (Eq. 4.1) 

 

where resp is the numerical representation of a neural response to each interval; 

σneural is neural noise; σstim is stimulus noise; β is sensitivity (the inverse of 

suppression); Ctarg is the contrast of the target. For null intervals Ctarg was set to 

zero. Low and high internal noise (σneural) as well as sensitivity (β) values were 

used to model three possible outcomes of TMS stimulation (Figure 4.1 C-E). 
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4.4 Results 

4.4.1 With phosphene localization 

All six subjects in the phosphene group perceived phosphenes in similar locations 

of the center-left visual field, consistent with the stimulation of the right visual 

cortex (Figure 4.3A). The centers of the phosphenes, and therefore the locations 

of the presented stimuli, were within 15 degrees of visual angle from the central 

fixation cross for all subjects. The variation in phosphene location was ~10 

degrees visual angle between subjects and <5 degrees within subjects. 

We performed statistical analyses (t-tests) between accuracy and consistency 

scores within each stimulation protocol (TMS versus no TMS conditions). Bayes 

Factors (BFs) were calculated to quantify probabilities of the experimental (there 

is a difference between TMS and control conditions) and null hypotheses (there is 

no difference between TMS and control conditions). BFs >1 indicated support for 

the experimental hypothesis, whereas BFs < 1 indicated support for the null 

hypothesis. 

As shown in Figure 4.3B, a significant drop in accuracy (t(5) = 2.83, p = 0.037, 

BF = 2.83) is seen when spTMS is applied compared to the control condition but 

no change in consistency was observed (p = 0.601, BF = 0.29). This indicates a 

suppressive effect of spTMS on stimulus-related neural signals but no effect on 

neural noise. This pattern of data closely resembles our LAM model predictions 

(Figure 4.1C) for an increase in neural suppression. Conversely, applying rTMS 

shows a small non-significant change in accuracy p = 0.848, BF = 0.33) compared 

to the no-TMS condition and a significant decrease in consistency (t(5) = 2.74, p = 

0.041, BF = 2.38; Figure 4.3C) – consistent with model predictions for an increase 

in neural noise, as predicted by model simulations (Figure 4.1D). Neither protocol 

produced data consistent with change in both suppression and neural noise (Figure 

4.1E). 

No effects on the accuracy (p = 0.790) or consistency (p = 0.132) were observed 

when applying cTBS (Figure 4.3D; Table 4.1), indicating that the stimulation 

protocol did not change the level of neural noise or the amount of signal in the 

visual system. Similarly, no change in accuracy (p = 0.773) or consistency (p = 
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0.244) was observed when applying iTBS (Figure 4.3E). Bayes Factors for these 

conditions were all below 1, indicating support for the null hypothesis. 

 

4.4.2 Without phosphene localization 

None of the four TMS protocols had any significant effect on accuracy or 

consistency scores in the no phosphene group (Figure 4.4). All comparisons 

between no-TMS and TMS conditions were non-significant (p > 0.05) and 

produced Bayes Factors around 0.3, indicating support for the null hypothesis (see 

Table 4.1). 

 

 

Figure 4.4. Double-pass accuracy and consistency for the no phosphene group. No 
significant change was observed when using spTMS (A), rTMS (B), cTBS (C) or iTBS 
(D) when phosphene localization was not used. Error bars indicate bootstrapped 95% 
confidence intervals (see section 4.3.7). 
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To compare the phosphene and no phosphene groups, we calculated control-TMS 

condition differences. Figure 4.5A shows that bootstrapped 95% confidence 

intervals of the no phosphene group were overlapping the ‘no change’ line (where 

the difference between no-TMS and TMS conditions was equal to zero) for all 

TMS protocols. As expected, confidence intervals of spTMS for this group were 

above the line for accuracy and not consistency and vice versa for rTMS (Figure 

4.5B). 

 

Table 4.1. Statistical analysis outcomes comparing no-TMS and TMS conditions 

	 	

Accuracy	 Consistency	

	 	

p	 t	 BF	 p	 t	 BF	

W
ith

	p
ho

sp
he

ne
s	

spTMS	 0.037	 2.83	 2.61	 0.848	 0.2	 0.29	

rTMS	 0.591	 0.57	 0.33	 0.041	 2.74	 2.38	

cTBS	 0.79	 0.28	 0.3	 0.132	 -1.8	 0.93	

iTBS	 0.773	 0.3	 0.3	 0.244	 -1.32	 0.58	

W
ith

ou
t	p

ho
sp
he

ne
s	 spTMS	 0.601	 0.56	 0.33	 0.975	 0.03	 0.29	

rTMS	 0.794	 -0.27	 0.3	 0.399	 0.92	 0.42	

cTBS	 0.39	 -0.94	 0.42	 0.509	 0.71	 0.36	

iTBS	 0.474	 -0.77	 0.38	 0.63	 0.51	 0.33	
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Figure 4.5. Change in accuracy and consistency between no TMS and TMS 
conditions. The 95% confidence intervals for the differences between no-TMS and TMS 
conditions in accuracy (A) were above zero (the ‘no-change’ line) only for spTMS and 
only in the phosphene group, compared to other protocols in both subject groups. This 
was also true for no-TMS to TMS change in consistency (B) for the rTMS protocol in the 
no phosphene group but none of the other protocols 

	

4.5 Discussion 

The results indicate that spTMS reduced accuracy in the double-pass paradigm by 

suppressing stimulus-related neural signals, as predicted by the low sensitivity (β) 

model simulations. Conversely, rTMS did not significantly change the accuracy 

but reduced consistency, indicating neural noise induction, predicted by the high 

noise (σneural) model simulations. No change in accuracy or consistency was 

observed when applying cTBS or iTBS. Furthermore, none of the stimulation 

protocols affected task performance in subjects that were not able to perceive 

phosphenes. 

The suppressive effects of spTMS and the noise induction observed using rTMS 

are in accordance with previous literature using these protocols (Harris et al., 

2008; Ruzzoli et al., 2011, 2010; Schwarzkopf et al., 2011). Previously these 

findings were considered to be opposing, as online TMS was assumed to have 

similar neural effects regardless of the stimulation protocol. The current direct 

comparison between single- and triple-pulse protocols suggest suppressive and 

noise-inducing mechanisms are protocol-specific. It may be that a single pulse 
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induces synchronous neural firing in non-detecting channels which then inhibit 

the stimulus-selective channel (Silvanto & Muggleton, 2008; Silvanto, 

Muggleton, Cowey, & Walsh, 2007). Contrastingly, three pulses in succession 

may affect interconnected neurons variably thus creating a noisy cascade of neural 

activity and interrupting the brain's endogenous rhythms. 

Although spTMS and rTMS have distinct underlying neural mechanisms, both 

protocols only affected subjects who were able to perceive phosphenes, which 

suggests individual differences in TMS susceptibility. It is important to note that 

the stimulation intensity used for eliciting phosphenes was the same as that used 

for spTMS and online rTMS during the task. Indeed, previous research found a 

bimodal distribution of TMS effectiveness in the population (López-Alonso et al., 

2014). These differences are most likely due to differences in skull thickness or 

folding of the visual cortex, as this would determine the distance between the coil 

and the targeted visual area. Stokes et al. (2013) demonstrated computationally 

that the TMS-induced electric field strength is linearly dependent on the distance 

between the coil and the brain. Although the justification for using rTMS is often 

the increased strength of neural effects, therefore increasing the number of 

subjects exhibiting behavioral change, here we show that individual differences, 

rather than choice of protocol, determine if TMS has an effect.  

Offline TBS was found to not influence subjects’ behavior regardless of 

phosphene perception or stimulation pattern (continuous or intermittent). At first 

glance, this contradicts the original TBS study’s findings that cTBS suppresses 

neural signals whereas iTBS is excitatory (Huang et al., 2005). Other studies have 

also found suppressive cTBS (Di Lazzaro et al., 2005, 2008; Rahnev et al., 2013) 

and excitatory iTBS effects (Di Lazzaro et al., 2008; Moliadze et al., 2014; Ragert 

et al., 2008). However, most of the research into TBS effects measures motor 

evoked potentials (MEPs), which reflect an overall increase or decrease in neural 

activity whilst the subject is passive. It may be that TBS changes overall 

activation levels of the cortical neurons but does not have particular effects on 

perceptually-relevant signals that would affect task performance or consistency of 

responses. 
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Alternatively, the effectiveness of TBS may be overstated in the literature as 

indicated by a recent large scale meta-analysis (Chung, Hill, Rogasch, Hoy, & 

Fitzgerald, 2016), which found a large positive publication bias in the TBS 

literature. TBS has been shown to have highly unreliable effects on MEPs 

(Hamada et al., 2013; López-Alonso et al., 2014; Martin, Gandevia, & Taylor, 

2006) and, in a large-sample study, no overall effects at all (Hamada et al., 2013). 

Similarly, an empirical study measuring several different neurophysiological 

outcomes of cTBS showed poor reproducibility of effects (Vernet et al., 2014). 

Experiments in which TBS has shown no significant effects often succumb to the 

‘file drawer’ problem and remain unpublished, whereas experiments showing 

significant TBS effects have a much higher chance of getting published (Héroux, 

Taylor, & Gandevia, 2015). 

Another possibility is that TBS produces long-term effects through synaptic 

plasticity but is not effective immediately. Recent literature suggests TBS as an 

effective treatment for several neurological disorders (Lorenzo et al., 2013; 

Nyffeler, Cazzoli, Hess, & Muri, 2009; Talelli, Greenwood, & Rothwell, 2007), in 

particular, depression (Bakker et al., 2015; Li et al., 2014). Typically, the positive 

therapeutic effects in depression appear after several sessions of regular treatment 

suggesting a long-term change in brain function and connectivity. However, it is 

perhaps not surprising that TBS would not produce immediate changes in sensory 

signaling as the stimulation intensities are below the neural activation threshold 

(Huang et al., 2005). Therefore, although TBS is a valuable clinical tool, the 

applicability of TBS to basic research of brain function is questionable. 

In sum, the inter-subject and inter-protocol differences in TMS effects shed light 

on the interpretation of findings in the existing TMS literature as well as 

informing future methodological choices. The individual differences in 

responsivity, demonstrated in the current experiment, as well as the use of 

different stimulation protocols in the literature may be some of the major factors 

in the TMS ‘replication crisis’. Here we suggest that screening for overall TMS 

susceptibility in subjects (such as phosphene perception) may be crucial for 

successful TMS research and reproducibility because of previously discussed 

anatomical differences. However, screening for a specific behavioural effect 

should be strictly avoided. Furthermore, the effectiveness of TBS stimulation 
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protocols as alternatives to online TMS for linking behavior to brain function 

should be evaluated appropriately in the light of current findings and previous 

meta-analyses.  
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Chapter 5 

 

Internal noise estimates correlate with autistic 

traits 

This chapter has been adapted from: Vilidaite, G., Yu, M. & Baker, D. H. (2017). 

Internal noise estimates correlate with autistic traits. Autism Research, 10, 1384-

1391.4 

 

 

5.1 Abstract 

Previous neuroimaging research has reported increased internal (neural) noise in 

sensory systems of autistic individuals. However, it is unclear if this difference 

has behavioural or perceptual consequences, as previous attempts at measuring 

internal noise in ASD psychophysically have been indirect. Here we use a ‘gold 

standard’ psychophysical double-pass paradigm to investigate the relationship 

between internal noise and autistic traits in the neurotypical population (n = 43). 

We measured internal noise in three tasks (contrast perception, facial expression 

intensity perception and number summation) to estimate a global internal noise 

factor using principal components analysis. This global internal noise was 

positively correlated with autistic traits (rs = 0.32, p = 0.035). This suggests that 

increased internal noise is associated with the ASD phenotype even in subclinical 

																																																								
4 The author, Greta Vilidaite, designed the experiment, analysed the results and wrote the 

manuscript under the supervision of Dr Daniel Baker. Some of the data was collected by 

Miaomiao Yu. Yu also designed one of the tasks. 
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populations. The finding is discussed in relation to the neural and genetic basis of 

internal noise in ASD. 

 

5.2 Introduction 

Internal variability (noise) is an inherent property of neural systems and a limiting 

factor in neural signal transduction.  Internal noise results from many sources at 

several processing scales from molecular and synaptic fluctuations (Faisal, Selen, 

& Wolpert, 2008; Schneeweis & Schnapf, 1999; Clifford et al., 2007) through to 

changes in internal states such as attention, arousal and top-down cognitive 

modulation (Fontanini & Katz, 2011). The collective internal noise resulting from 

these sources can be observed in electrophysiology and neuroimaging studies as 

signal variability (see Dinstein, Heeger, & Behrmann, 2015 for review) and 

behaviourally as varying responses to multiple presentations of a stimulus. 

It has been proposed that internal noise is higher in Autism Spectrum Disorders 

(ASDs). This idea could account for a variety of abnormal sensory experiences 

associated with the condition (Horder, Wilson, Mendez, & Murphy, 2014; 

Robertson & Simmons, 2013; Simmons et al., 2009). Consistent with this theory, 

visual event-related potentials were found to be more variable in ASD individuals 

(Milne, 2011). Similarly, fMRI BOLD responses in the visual and auditory 

systems (Dinstein et al., 2012) are also more variable compared to neurotypical 

controls. Conversely, it has also been argued that internal noise may be unaltered 

(Butler, Molholm, Andrade & Foxe, 2017) or reduced (Davis & Plaisted-Grant, 

2014) in ASD. In support of this latter idea, a study using a luminance increment 

paradigm targeting the magnocellular pathway found increased discrimination 

thresholds in individuals with high-functioning autism compared to neurotypical 

controls (Greenaway et al., 2013). Greenaway et al. attribute this to stochastic 

resonance, a process by which low levels of internal noise would yield worse 

performance on the task, although evidence for this phenomenon is tenuous 

(Manning & Baker, 2015). Additionally, as Manning & Baker point out, increased 

discrimination thresholds are indicative of increased rather than decreased internal 

noise since higher neural variability degrades the neural signal during processing, 

impairing performance. As this should increase discrimination thresholds, the 
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Greenaway et al study could be interpreted as evidence for increased internal 

noise in ASD. 

Furthermore, mixed evidence for internal noise levels comes from motion 

coherence studies some of which show increased motion coherence thresholds 

indicating higher internal noise (Manning, Tibber, Charman, Dakin, & Pellicano, 

2015; Milne et al., 2002; Pellicano, Gibson, Maybery, Durkin, & Badcock, 2005);  

and some show decreased thresholds suggesting lower noise (Manning et al., 

2015). However, interpretation of motion studies is complicated by the possibility 

that participants might use different strategies, such as different sized pooling 

windows, in order to perform the task, and not all studies take this into account. 

So far, straightforward evidence for increased internal noise comes from EEG and 

fMRI research, however, it is unclear if and how increased variability in these 

measures affects perception and behaviour in ASD. It is therefore important to 

measure internal noise with a direct psychophysical paradigm. 

One consequence of internal noise is that responses to the same stimulus over 

multiple repetitions will be inconsistent. This can be measured quantitatively 

using the ‘double-pass’ method, that was originally developed in auditory 

psychophysics (Green, 1964) and has subsequently been used to estimate noise in 

the visual system (Burgess & Colborne, 1988; Lu & Dosher, 2008), as well as in 

higher level cognitive tasks (Hasan et al., 2012). The double-pass method has 

mostly been used in contrast perception research using white pixel noise to inject 

variability (Burgess & Colborne, 1988). However, white pixel noise confounds 

adding external noise with increased cross-channel suppression (Baker & Meese, 

2012), and so poses limitations on the accuracy of internal noise estimation 

(Baldwin et al., 2016) and is not applicable outside of low-level visual properties. 

An alternative way to render a stimulus ‘noisy’ (and so able to induce variability 

into the detecting neural system) is to jitter the intensity of the stimulus along a 

continuum (Baker & Meese, 2012, 2013), such as contrast, tone, frequency, facial 

expression intensity, etc.  

The double-pass paradigm measures internal noise by repeating noisy stimuli 

twice (two passes) and calculating the consistency of responses between the 

passes (Burgess & Colborne, 1988; see Figure 5.1). In a two-alternative forced-
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choice design two stimulus samples are drawn for each trial from a continuous 

normal distribution of stimulus intensities (e.g. contrast, tone frequency, etc.). The 

participant is asked to choose the more intense stimulus every time (first pass). 

This same procedure is then repeated again (second pass) with the exact same 

stimuli in each trial, and the consistency of responses across the first and second 

passes is calculated. The lower the consistency between passes, the higher the 

internal noise of the participant, because strong internal noise results in more 

highly variable responses. 

Given the complexity and range of symptoms in ASD, the novel method (Baker & 

Meese, 2012, 2013) of introducing noise into the stimuli paired with the double-

pass method can be applied to many perceptual and cognitive tasks in which 

internal noise may be implicated. To date, very little is known about internal noise 

throughout the brains of ASD individuals as research has been limited to low level 

visual properties. It is also not known how internal noise relates to autistic traits in 

subclinical populations. The current study investigates three tasks in which ASD 

individuals’ performance has been reported to be differential from neurotypical 

individuals: contrast perception (CP; Bertone, Mottron, Jelenic, & Faubert, 2003, 

2005; Greenaway et al., 2013), facial expression intensity (FE; see Harms, Martin, 

& Wallace, 2010 for review) and mathematical number summation (NS; Iuculano 

et al., 2015). The study aimed to investigate the relationship between autistic traits 

as measured with the Autism Spectrum Quotient (AQ; Baron-Cohen, 

Wheelwright, Skinner, Martin, & Clubley, 2001) and internal noise in three neural 

systems. We hypothesised that if internal noise is a general factor associated with 

autistic traits, there would be a relationship between AQ and a global estimate of 

internal noise in all three tasks.  

 

5.3 Methods 

5.3.1 Participants 

Forty-five neurotypical participants (aged 18-39, 16 males) with normal or 

corrected-to-normal vision were recruited for the study. Two of the participants 

were not included in the analysis because of missing data in one or more of the 

tasks.  
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Figure 5.1. Stimuli and model predictions used in the study. Panel A. Stimuli used for 
the double-pass 2AFC discrimination tasks: contrast (top row), facial expression intensity 
(middle row) and number summation (bottom row). In 50% of trials (no target condition) 
a stimulus was drawn for each of the two intervals from a stimulus intensity distribution 
(orange) centered around 0% contrast, 50% facial expression morph and 200 sum for the 
numbers task. In the other 50% of trials (target present condition) one of the intervals was 
drawn from a higher stimulus intensity distribution (e.g. 4% contrast), shown in purple. 
Panel B. Examples of the two intervals in four hypothetical trials of the CP task with 
correct choices indicated by green borders. The same trials are repeated in a double pass 
experiment, with interval order randomized. Panel C. Estimation of internal noise by 
model simulations. The red dots and connecting line shows accuracy and consistency 
scores from an example participant for the two conditions (target present condition at the 
top). The green and grey dots and solid lines show simulated curves (see text for details) 
for an example range of internal noise levels (expressed in dB). Errors between 
participant scores for each condition were calculated (shown as dotted lines) and the 
internal noise level which produced the smallest error (averaged over conditions) was 
assigned to the participant (in this case green, 12dB). In the main analysis, we used a finer 
sampling of internal noise levels (0.1dB steps) than depicted here. The solid black line 
represents the expected performance in the absence of external noise (Klein & Levi, 
2009) and the dashed lines show chance levels. 



	 109	

5.3.2 Materials 

Stimuli for all tasks were presented on a gamma corrected Iiyama VisionMaster 

Pro 510 CRT monitor running at 100Hz, with a mean luminance of 32 cd/m2. To 

enable accurate rendering of low contrast stimuli in the CD experiment, we used a 

ViSaGe device (Cambridge Research Systems Ltd., Kent, UK) running in 14- bit 

mode. Participants used a computer mouse to make their responses. The AQ 

questionnaire was delivered and scored automatically by computer. 

 

5.3.3 Stimuli and paradigm 

Examples of the stimuli are displayed in Figure 5.1. Stimuli were presented in 

pairs in each trial and the participants were asked to pick the more intense 

stimulus. CD stimuli were horizontal sine-wave gratings with a spatial frequency 

of 0.5c/deg in cosine phase. Stimuli flickered between 0 and their maximum 

intensity (on/off flicker) at 7Hz for 429ms (3 cycles). The stimulus intensity for 

CD was the contrast level of the stimulus. There were two conditions, target 

present and target absent. In the target absent condition, the stimuli in the two 

intervals of each trial had random contrast levels drawn from a Gaussian 

distribution centred around 0% Michelson contrast (defined as C% = 

100*( !!"#! !!"#
!!"# ! !!"#

), where Lmax and Lmin are the maximum and minimum 

luminances of the grating), with a standard deviation of 4%. Negative values 

reversed the polarity of the grating so that it became dark in the centre. In the 

target present condition, a positive contrast increment of 4% was added to one of 

the intervals in each trial, so that the distribution in that interval had a mean and 

standard deviation of 4%. 

Similarly to CD, facial expression intensity was drawn from a Gaussian 

distribution of a continuous morph between a neutral and an expressive face 

(Figure 5.1), with a mean of 32% and a standard deviation of 16%. In the target 

absent condition both intervals within a trial were selected from the same 

Gaussian distribution whereas in target present an expression increment of 16% 

was added to one of the intervals (we imposed a floor of 0% so that expressions 

could not become negative). Six emotional expressions (anger, sadness, 
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happiness, fear, surprise and disgust) were used and data were collapsed over 

expressions. The RMS contrast of each expression was equated before morphing, 

ensuring that all stimuli had equal contrast. Facial stimuli were within-gender 

averages of from the NIMSTIM face database (Ekman & Friesen, 1971), with 23 

male models and 19 female models (Adams, Gray, Garner, & Graf, 2010). Face 

gender was randomly determined on each trial, but was constant for both intervals 

of each trial. The faces were windowed by an oval raised cosine envelope, and 

spanned 10x16 degrees of visual angle. Face stimuli were presented for 100 ms. 

In the NS task, two boxes, each containing four double-digit numbers were 

presented. In the target absent condition the four numbers in each box on each 

trial were selected from a distribution centred around 50, with a standard 

deviation of 10 (and an average sum of 200). In the target present condition one of 

the boxes had a mean of 50 and the other had a mean of 60.  

For all tasks, each trial was repeated twice (pass one and pass two), preserving the 

exact samples of stimulus intensity, once in each half of the experiment. 

 

5.3.4 Procedure 

The method of constant stimuli was used. There were 100 trials in each target 

condition in each pass (400 trials in total per participant in each experiment). All 

experiments were carried out in a dark room at 57cm distance from the computer 

monitor using a chin-rest. Participants had breaks between sessions and the entire 

experiment took approximately two hours in total per participant.  

 

5.3.5 Estimating noise from model 

Accuracy and consistency scores were used to obtain accurate estimates of 

internal noise for each participant. In order to obtain a single measure of internal 

noise that averages out measurement error, double-pass accuracy and consistency 

scores were simulated for different levels of internal noise using a noisy linear 

model. We then determined the level of internal noise that best described the data 
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for each observer. Simulated responses to the target and the null intervals within a 

trial were given by:  

  𝑟𝑒𝑠𝑝!"#$%! =  𝜎!"# +  𝜎!"# + 𝐶!"#$ + 𝐶!"#$%!  

  𝑟𝑒𝑠𝑝!"## =  𝜎!"# +  𝜎!"# +  𝐶!"#$ 

 

where resptarget and respnull are the responses in the target and null intervals 

respectively, σint and σext represent internal and external noise, Cmean is the mean 

intensity of the stimulus and Ctarget is the target intensity added in the target 

interval. The noise variables (σint and σext) were drawn on each simulated trial 

from Gaussian distributions with a mean of zero, and the appropriate standard 

deviation for each experiment. The interval with the larger response was selected. 

This was repeated twice with identical values of σext, but different values of σint, in 

order to simulate both accuracy and consistency scores. There were 100000 

simulated trials for each internal noise level and this was done for 801 noise levels 

(ranging from -40dB to 40dB in steps of 0.1dB). The errors between the model 

simulations and empirical data points in each condition (in the accuracy-

consistency space) were calculated for each participant. The internal noise level 

that produced the smallest absolute error (averaged over conditions) was then 

assigned to that participant. This was repeated for each of the three experiments. 

 

5.4 Results 

Mean accuracy in the target present condition was 0.67 (SD = 0.06) for CP, 0.67 

(SD = 0.05) for FE and 0.68 (SD = 0.06) for NS, indicating participants were 

performing above chance. The consistency scores were also above chance for CP 

(mean = 0.81, SD = 0.10), FE (mean = 0.70, SD = 0.08) and NS (mean = 0.69, SD 

= 0.06) tasks. We used these values along with the modelling approach described 

above to derive an estimate of internal noise for each participant in each 

experiment. The noise estimates from the CP and FE tasks were not normally 

distributed when tested with the Shapiro-Wilk test of normality (p < 0.001 and p = 
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0.009 respectively) therefore two-tailed Spearman signed rank correlations were 

used throughout the analysis. 

Internal noise was significantly correlated with AQ in the CP (rS = 0.34, p = 

0.028) and NS (R = 0.31, p = 0.042) but not the FE task (rS = 0.26, p = 0.091). 

There were strong significant positive correlations between noise estimates across 

all three tasks (rS ≥ 0.60, see Figure 5.2 for rS and p values). Since this suggested 

the presence of a single underlying factor, we performed principal component 

analysis (PCA) on the model estimates of internal noise. PCA is a dimension-

reduction technique that attempts to condense a multivariate dataset of correlated 

variables into a smaller number of uncorrelated factors. Internal noise estimates 

from the CP, FE and NS tasks loaded onto a single factor, ‘global internal noise’, 

which was extracted by Keiser’s criterion (eigenvalue of 2.30) explaining 76.81% 

of the variance. Factor loadings were extracted for participants and the inverse 

values were taken as a global measure of noise (such that small values indicate 

low noise).  

 

Figure 5.2. Scatterplots showing correlations between the estimated noise levels in 
all three tasks, expressed in logarithmic (dB) units. Black lines represent best-fit Deming 
regression lines. 

 

The global internal noise factor was positively correlated with AQ scores (rS = 

0.32 p = 0.035) suggesting that higher internal noise is related to higher levels of 

autistic traits. As raw double-pass consistency scores are sometimes used as a 

measure of internal noise (low consistency means high internal noise), the PCA 

was repeated on mean consistency scores (averaged over the two target 

conditions). The internal noise factor extracted in this way explained 77.13% of 
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variance and was also significantly correlated with AQ (rS = 0.33, p = 0.032). This 

suggests higher levels of autistic traits are related to higher internal noise (see 

Figure 5.3). However, as the accuracy scores in the NS task were significantly 

correlated with AQ (R = -0.43, p = 0.004), the modelled estimates of internal 

noise which take into account both the accuracy and consistency are preferred. 

AQ was not significantly correlated with accuracy in CP (R = -0.14, p = 0.384) or 

in FC (R = -0.14, p = 0.364). 

 

 

Figure 5.3. Scatterplot showing the significant positive correlation between AQ 
scores and internal noise. The black line represents a Deming regression line. 

 

5.5 Discussion 

The current study reports the first direct psychophysical estimate of internal noise 

in relation to autistic traits. Using the double-pass method in three different tasks 

we found a positive relationship between autistic traits in the neurotypical 

population and overall levels of internal noise. Individual differences in internal 

noise in the CP, FE and NS tasks were largely accounted for (76.81% of the 

variance) by a single internal noise factor suggesting a common noise source. This 

factor was positively correlated with autism spectrum quotient (AQ) scores. We 

suggest that this factor is either global internal noise affecting perception and 

behaviour regardless of task complexity or neural mechanism involved, or it is 

late decision making noise. 
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5.5.1 Neural basis of internal noise in ASD 

The current finding of increased internal noise being associated with more autistic 

traits supports previous electrophysiological and neuroimaging studies that found 

more variable responses to sensory stimuli in clinical ASD populations (Dinstein 

et al., 2010, 2012; Milne, 2011). Increased internal noise can also manifest as 

decreased coherence in natural neural oscillations such as γ-band activity. Rojas, 

Maharajh, Teale, & Rogers (2008) found reduced phase-locking in γ-band 

oscillations, indicative of increased neural noise, in adults with ASD and also in 

neurotypical parents of ASD children compared to controls. Increased neural 

variability in neurotypical first-order relatives of ASD individuals suggests a 

genetic influence of an ASD genotype on the level of internal noise in the brain. 

This is not surprising as ASD has a complex but strong genetic basis (see Miles, 

2011 for review) which may, at least in part, be mediated by neural noise factors. 

The finding of the present study, as well as Rojas et al. (2008), suggest that 

internal noise is intrinsic to the ASD phenotype and extends beyond clinical ASD 

populations. As others have proposed, noisier sensory processing throughout 

development could plausibly lead to several of the social difficulties (i.e. facial 

expression perception) typically associated with ASD (Simmons et al., 2009). 

 

5.5.2 Early versus late noise 

It is unclear from the current study whether the internal noise we measured affects 

the neural signal early or late in processing. Noise in early sensory regions will be 

passed forward to decision making processes and so produce variable responses. 

As we find that internal noise is common across our three tasks, this type of noise 

would need to span multiple regions of the brain to account for our data. Autistic 

traits may be related to early sensory noise as previous research suggests 

increased neural variability in several sensory regions of the brain (Dinstein et al., 

2012). Alternatively, the internal noise we measured may be a late decision-

making noise that influences behaviour at the level of executive processing. This 

possibility is consistent with research showing poorer executive function (Hughes, 

Russell, & Robbins, 1994; Kenworthy, Black, Harrison, della Rosa, & Wallace, 

2009) and abnormal connectivity of white matter in frontal lobes (Sundaram et al., 
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2008) in clinical ASD populations. In either case, internal noise may pose a 

limitation on brain function for individuals high on the autistic spectrum. 

 

5.5.3 Innovation in noise measurement 

This study benefits from a novel implementation of the double-pass paradigm for 

measuring internal noise. The application of intensity jitter rather than traditional 

white pixel noise (as often used in contrast detection experiments; Burgess & 

Colborne, 1988) extends the viability of double-pass methods to other sensory and 

cognitive modalities. We have also developed accurate model-based estimates of 

internal noise that take into account any sensitivity differences between 

individuals. Previous studies (Burgess & Colborne, 1988) used raw consistency 

scores as a measure of internal noise. However, we observed a high correlation 

between accuracy and consistency scores in our data (rS ≥ 0.41, p ≤ 0.006). This is 

not surprising since it follows that higher performance on a task would yield more 

consistent responses (in the limiting case of perfect performance, consistency is 

necessarily 100%). The modelled estimates of noise take into account both 

accuracy and consistency scores and so are not biased by individual differences in 

sensitivity. 

The current methodology measures noise more directly than previous 

psychophysical studies (Greenaway et al., 2013; Manning et al., 2015). The 

equivalent noise approach used in other work (Manning et al., 2015; Manning, 

Charman, & Pellicano, 2013; Milne et al., 2002; Pellicano et al., 2005), relies on a 

specific (usually linear) model of the underlying mechanism that may not 

accurately reflect how stimuli are processed, and cannot disambiguate differences 

in noise from differences in sensitivity (see Baldwin, Baker & Hess, 2016). 

Double-pass techniques avoid these problems, and additionally have high internal 

reliability and produce internal noise estimates consistent with those from another 

psychophysical paradigm (Chapter 3). As this study investigated the relationship 

between internal noise and autistic traits in neurotypical individuals, it would be 

of great interest to use the double-pass method to measure internal noise in 

clinical ASD. Considering current findings and previous studies we would expect 

higher internal noise in ASD individuals when compared to controls. 
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5.5.4 Summary and conclusions 

Neurotypical individuals exhibiting higher levels of autistic traits had higher 

internal noise, measured using three psychophysical tasks. This finding supports 

previous studies that found higher internal noise in ASD populations using 

neuroimaging methods. Increased internal noise seems to be a fundamental 

feature associated with ASD in clinical and subclinical populations, and may 

explain some of the symptoms and traits of ASD (Simmons et al., 2009). We 

suggest that a genetic link between the autistic phenotype and internal noise could 

account for the current findings.  
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Chapter 6 

 

Autism sensory dysfunction in an 

evolutionarily conserved system 

This chapter has been adapted from: Vilidaite, G., Norcia, A. M., West, R. J. H. 

Elliott, C. J. H., Pei, F., Wade, A. R. & Baker, D. H. (under review). Autism 

sensory dysfunction in an evolutionarily conserved system. PNAS.5 

 

 

 

6.1 Abstract 

Individuals with Autism Spectrum Disorder (ASD) report a host of sensory 

symptoms, which suggests a fundamental, genetic (Miles, 2011) neural signaling 

deficit in autistic brains (Rubenstein & Merzenich, 2003). However, neither 

animal models nor previous theories explaining sensory symptoms have been able 

to predict neurophysiological data in autistic humans. Here we show a strikingly 

similar trajectory of visual development in a genetic Drosophila Nhe3 model of 

autism and in autistic human participants. We report a dissociation between first- 

																																																								
5 The author, Greta Vilidaite, designed the adult human and fruit fly experiments under 

the supervision of Dr Daniel Baker, Prof Alex Wade and Dr Chris Elliott. Greta Vilidaite 

collected all of the data except for the children’s data, which were collected by Dr 

Francesca Pei. Greta Vilidaite analysed the results and wrote the manuscript under the 

supervision of Dr Daniel Baker and Prof Anthony Norcia and with advice from other co-

authors.  
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and second-order electrophysiological visual responses to steady-state stimulation 

in adults with ASD as well as a large sample of neurotypical individuals with high 

numbers of autistic traits. We also report a strikingly similar impairment in the 

adult fruit fly model of ASD. We explain this as a selective signaling abnormality 

in the transient response mechanisms in the visual system. In contrast to adults, 

autistic children show decreases in both first- and second-order responses, which 

are closely matched by the fruit fly model, suggesting a compensatory change in 

processing occurs over the course of development. Our results provide the first 

animal model of autism comprising a developmental sensory pathway phenotype. 

 

6.2 Significance statement 

Autism Spectrum Disorder exhibits strong and widespread sensory symptoms that 

have not yet been explained by previous research. Here we have developed a 

novel Drosophila model of sensory deficits in autism that is highly predictive of 

electrophysiological visual data in both autistic adults and children. Both the 

animal model and human data, from three samples (total N = 154), point towards 

a deficit of a fundamental signaling mechanism in early parts of the sensory 

system. This deficit shows signs of change during development indicating a 

possible partial rescue of function at later stages of life. Our findings can explain 

previous inconsistencies in research into visual perception in autism. The 

Drosophila model can be used in future biomarker and treatment development. 

 

6.3 Introduction 

Autistic individuals report a host of sensory symptoms including unusual sensory 

interests, overstimulation and hyper- and hyposensitivity to intense stimuli such as 

bright lights or loud noises (Ben-Sasson et al., 2009; Jones et al., 2003). Several 

theories have been proposed to account for sensory abnormalities in autism – one 

of the most common proposing an imbalance in excitation/inhibition (E/I) 

(Rubenstein & Merzenich, 2003). The E/I imbalance theory of autism has gained 

mixed but largely supportive evidence from neurochemical, neurobiological and 
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genetic investigations (Green et al., 2013; Hahn et al., 2013; Nelson & Valakh, 

2015), implicating GABA-ergic mechanism deficits (Gao & Penzes, 2015). 

Alternatively, a vision-specific theory has linked visual processing abnormalities 

in ASD to a selective deficit in the magnocellular pathway (Milne et al., 2002; 

Plaisted, Swettenham, & Rees, 1999). Such signaling-level impairments indicate a 

genetic cause of ASD sensory symptoms (Miles, 2011). However, neural 

measurements that can convincingly delineate these competing explanations are 

yet to be reported. 

One attempt in mice to model a related developmental condition, Rett syndrome, 

found similar cross-species decreases in visual neural responses and poor visual 

acuity (LeBlanc et al., 2015). However, Rett syndrome lacks the pervasive 

sensory symptoms characteristic of autism, thus it is difficult to link cellular and 

genetic abnormalities to ASD sensory deficits (Burd & Gascon, 1988). As an 

alternative to rodents, Drosophila have provided successful models of human 

neurological disorders such as Parkinson’s (West et al., 2015) and Alzheimer’s 

(Moloney, Sattelle, Lomas, & Crowther, 2009). Fruit flies share 75% of human 

disease causing genes (Reiter, Potocki, Chien, Gribskov, & Bier, 2001) and have a 

visual system exhibiting similar nonlinear neural properties, including a color- 

and luminance-selective module as well as a motion-selective module (Fischbach 

& Dittrich, 1989). The neural dynamics of these modules closely resemble those 

of the transient and sustained neural populations in humans (Afsari et al., 2014; 

Behnia & Desplan, 2015; Clark et al., 2014). This provides an excellent 

framework for modeling low-level changes in sensory neuronal signaling (Clark 

et al., 2014) which may lie behind sensory abnormalities in autism. 

In this study we aimed to develop an animal model of sensory abnormalities in 

human ASD and to investigate the mechanism underlying these impairments. We 

measured visual neural responses both in autistic humans and in Drosophila with 

a genetic mutation linked to autism. In humans, loss-of-function mutations in the 

gene SLC9A9 have been linked to ASD (Kondapalli et al., 2013). Here we used a 

Drosophila orthologue of SLC9A9 – Nhe3. A homozygous P-element insertion 

loss-of-function mutants (Nhe3KG08307) and Nhe3 hemizygotes 

(Nhe3KG08307/Df(2L)BSC187) were used to inhibit Nhe3 function in fly. To assess 

the functionality of sustained and transient pathways in these species, we 



	 120	

measured two steady-state electrophysiological responses: first harmonic 

(stimulation) and second harmonic frequencies, in both humans and fruit flies. 

The use of two Nhe3 mutations in different genetic backgrounds ruled out the 

possibility of other mutations influencing the flies’ visual responses. The 

dynamics of the sustained pathway manifest in the electrophysiological 

stimulation frequency (first harmonic) response whereas the dynamics of the 

transient pathway can be observed in the second harmonic response (Afsari et al., 

2014; Skottun & Skoyles, 2007). Furthermore, to investigate the progression of 

ASD sensory abnormalities over the course of development, we also measured 

visual responses at two stages of fruit fly maturation and acquired similar 

responses from autistic children. Finally, as the ASD phenotype is complex and 

non-binary, we validated our sensory model with a large sample of neurotypical 

participants with high and low numbers of autistic traits. 

 

6.4 Results 

6.4.1 Increased sustained/transient response ratio in Nhe3 fruit flies 

Using a steady-state visual evoked potential (ssVEP) paradigm (West et al., 2015) 

(see Figure 6.1) we measured fruit fly visual responses to flickering stimuli via an 

electrode on the fly’s eye. Wild type, eye-color matched flies (a cross between 

isogenic and Canton-S) were used as controls (+). Flies from each genotype (n = 

12) were tested at three days (when the flies are young) and at 14 days post 

eclosion (older). First harmonic (12Hz) and second harmonic (24Hz) response 

amplitudes were derived by fast Fourier transform (see Methods, section 6.6). 

Although the first harmonic responses of mutant and wild-type flies were the 

same, the second harmonic response was significantly reduced in the Nhe3 

mutants (Figure 6.2A, 6.2B). 
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Figure 6.1. Human and Drosophila steady-state electrophysiology methods. Panel A 
illustrates an example of electrophysiological responses (in the adult AQ dataset) as a 
function of time (red trace) in response to stimulus flicker (black trace). Two peaks can 
be observed after each increase in stimulus contrast giving rise to the first (1F) and 
second (2F) responses, which are evident in the frequency domain after Fourier transform 
(lower panel A). Adult subjects (for both the ASD vs. neurotypical dataset and the 
neurotypical AQ dataset) were presented with a grid of sinusoidal gratings flickering at 
7Hz whilst SSVEPs were recorded using a 64-channel EEG cap (C). Children were tested 
with a binary noise stimulus flickering at 5.12Hz and a 128-channel EEG cap (D). 
SSVEPs were measured from the occipital electrode Oz (indicated by green dots in e, f, 
g) where the highest first harmonic amplitude was centered, indicated by the heatmaps for 
the adult AQ data set (E), adult ASD data set (F) and child data set (G). Fruit fly 
electrophysiological data was acquired as shown (B) using square wave stimulus flicker; 
see Methods (section 6.6) for more details.  



	 122	

 

Figure 6.2. Older ASD-mimic flies and autistic humans have visual deficits in the 
transient pathway. Contrast response functions for adult Nhe3 mutant flies (Nhe3KG08307 

homozygotes, red squares and Nhe3KG08307 /Df(2L)BSC187, purple diamonds) were 
similar at the 1st harmonic (a one-way ANOVA showed no effect of group F2,33 = 0.05, P 
= 0.95, panel A) but responses were reduced for P/P (simple contrast, P = 0.025) and P/Df 
mutants compared to controls at the 2nd harmonic (simple contrast P = 0.001; ANOVA 

group effect F2,33 = 6.71, P < 0.01; panel B). Ratios between frequencies (!!!!!
!!!!!

) were 
significantly higher for P/P (P < 0.001) and for P/Df (P < 0.0001) than for the control 
genotype (C). First harmonic responses were also similar for the high AQ and low AQ 
groups (panel D) and for adults with and without ASD (panel G). However, 2nd harmonic 
responses were reduced for both adults with high AQ (panel E) and with ASD compared 
to controls (panels H). The ratio between harmonics was also higher in both experimental 
groups compared to controls (panels F and I, P = 0.005 and P = 0.04, respectively). 
Curved lines are hyperbolic function fits to the data. Frequency ratios are baselined in 
respect to the mean over groups of each comparison for display purposes. 
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To quantify this functional dissociation between the two response components we 

calculated a normalized ratio between first (1F) and second (2F) harmonics 

(!!!!!
!!!!!

) and averaged over the highest contrast conditions (where the response 

rises above the noise floor, see Methods, section 6.6). This allowed us to measure 

the differences between sustained and transient responses whilst normalizing for 

overall responsiveness of the visual pathway.  The ratio was significantly higher 

in both mutant strains than in the controls (ANOVA, F2,33 = 20.53, P < 0.0001, 

both paired contrasts P < 0.001; Figure 6.2C). These data suggest an impairment 

in the post-receptoral neural pathways (structures downstream of the 

photoreceptors) of the older mutant flies. 

Interestingly, unlike the older flies, the young 3 day old flies showed a reduced 

response at both frequencies (see Figure 6.3A, 6.3B) relative to controls. 

Importantly, there was no effect of genotype on the ratio between harmonics (F2,33 

= 1.38, P = 0.27; Figure 6.3C). These results suggest a deficit in the sustained 

visual module of young mutant flies, which most likely causes a cascading 

impairment in the transient module. These differences between visual responses at 

two stages of life suggest a change in visual processing over the course of 

development. 
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Figure 6.3. Young ASD-mimic flies and children with ASD have visual deficits in the 
sustained pathway. Young fruit flies showed reduced responses at the 1st harmonic (F2,33 
= 3.73, P = 0.035; panel A) with P/P and P/Df flies showing a significant difference from 
control flies (respectively, P = 0.016 and P = 0.040). There was also a significant effect of 
genotype at the 2nd harmonic (F2,33 = 3.39, P = 0.046, panel B). P/Df flies showed a 
significant difference from control flies (P = 0.018), however, P/P showed a non-
significant difference from controls (P = 0.064). The flies had normal frequency ratios 
(panel C). Children with ASD also showed reduced 1st harmonic (t28 = 2.065, P = 0.048; 
panel D) but not 2nd harmonic responses (t28 = 1.26, P = 0.22; panel E) and had frequency 
ratios similar to that of control children (t28 = 1.21, P = 0.24; panel F). Curved lines are 
hyperbolic function fits to the data. Frequency ratios are baselined in respect to the mean 
over groups of each comparison for display purposes. 

 

6.4.2 High autistic trait population show similar ssVEPs to Nhe3 flies 

To assess the relevance of the Nhe3 model to the human ASD phenotype we used 

a comparable and equally sensitive steady-state EEG paradigm in human 

participants. One hundred neurotypical participants with putative autistic traits 

measured using the Autism Spectrum Quotient (AQ) questionnaire (Baron-Cohen 

et al., 2001) were tested with the ssVEP paradigm. Visual responses were 

recorded from an occipital electrode (Oz, located at the back of the head over the 
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visual cortex) to grating stimuli flickered at 7Hz. Seven contrast conditions (each 

repeated eight times) were presented in a randomized order. First and second 

harmonic ssVEP responses were again derived via Fourier analysis. The evoked 

response data were averaged separately over participants split by their median AQ 

score: high (n = 53, AQ mean = 11.53, SD = 3.68) and low (n = 47, AQ mean = 

5.32, SD = 1.81) AQ (high AQ implying many autistic traits). The first harmonic 

response was similar in both groups whereas the second harmonic was notably 

reduced in the high AQ group (Figure 6.2D, 6.2E). A two-way ANOVA showed 

the interaction between group and frequency to be significant (F1,98 = 6.17, P = 

0.015). The high AQ group also had a significantly higher frequency ratio than the 

low AQ group (t98 = 2.86, P < 0.01, Figure 6.2F). Moreover, a regression analysis 

showed that AQ scores correlated with the frequency ratio, with high AQ scores 

being predictive of higher ratios (R = 0.26 F1,98 = 6.87, P = 0.01; see Figure 6.4). 

This result shows a relationship between the amplitude of the second harmonic 

response and the severity of the subclinical ASD phenotype, however, this effect 

cannot be directly generalized to clinical autism as the AQ is not diagnostic of 

full-blown ASD. 

Figure 6.4. Positive relationship between the number of autistic traits and 
first/second harmonic ratio. Scatterplot showing a significant positive relationship 
between AQ scores and frequency ratios in the 100 neurotypical adult dataset indicating a 
gradual increase of impairment with the number of reported autistic traits. The black line 
indicates the regression line of best fit. Shaded grey areas show histograms of AQ scores 
and frequency ratios. Blue-red color transition indicates number of AQ traits with 
subjects split by median into low and high AQ groups as presented in Figure 6.2. 



	 126	

6.4.3 Autistic individuals show the same pattern of responses as Nhe3 flies 

We assess this difference between harmonics in clinical ASD by testing 12 

typical-IQ autistic adults (diagnosis confirmed with the Autism Diagnostic 

Observation Schedule, Second Edition (ADOS-2), Lord et al., 2000) and 12 age- 

and gender-matched controls using the same human ssVEP paradigm. The pattern 

of data again mimicked that of the previous adult data sets: there was a significant 

interaction between group and frequency (F1,22 = 5.85, P = 0.02; Figures 6.2G, 

6.2h). The ratio between harmonics was again significantly larger in the ASD 

group than in the control group (t22 = 2.13, P = 0.04; Figure 6.2I). 

 

6.4.4 Young Nhe3 fly responses predict autistic children’s responses 

Considering the striking similarity between the adult human data sets and the 

adult fruit fly model, it is reasonable to ask if similarities also exist between 

younger humans and young Drosophila ASD models. Specifically, our fly model 

predicts that the visual system of autistic children should show reduced responses 

in both the first and second harmonics. To examine this, we recorded from 13 

autistic children (5 – 13 years old) and 17 neurotypical age- and gender-ratio-

matched controls using an ssVEP contrast-sweep paradigm. Artifact rejection was 

employed to control for movement and blinking in both groups. The stimulus in 

each sweep trial increased continuously in contrast from 0% to 50% in 

logarithmic steps. Data were binned into 9 contrast levels before being Fourier 

transformed to compute response amplitudes. 

As predicted by the fly data, the ASD group showed impaired processing in the 

sustained response (t28 = 2.07, P = 0.04; Figure 6.3D, 6.3E). A two-way ANOVA 

also revealed a significant group effect over both frequencies (F1,28  = 4.23, P = 

0.049). Unlike adults, children exhibited no difference in frequency ratios 

between the groups (t = 1.41, P = 0.17; Figure 6.3F). Children showed impaired 

processing in the sustained pathway as predicted by the fruit fly model. However, 

the smaller effect of amplitude reduction observed in the fruit fly second harmonic 

responses was present, but not statistically reliable in the children (t28 = 1.26, P = 

0.219). This may be due to the more variable nature of human EEG data. 



	 127	

6.5 Discussion 

We found a selective deficit in second order responses in autistic adults, 

individuals with high levels of autistic traits and Nhe3 fruit flies suggesting that 

this impairment is specific to the autistic phenotype. Autistic children and young 

Nhe3 flies showed a more global deficit in visual processing at early stages of life. 

The Nhe3 fruit fly model of autism was highly predictive of these ASD visual 

response deficits both in children and in adults, suggesting a fundamental and 

pervasive change in visual impairment during development. High AQ individuals 

showed consistent visual responses to participants with diagnosed ASD 

suggesting robust visual response properties between samples. This was 

unsurprising as previous research has found that AQ scores in the general 

population are highly correlated (R = 0.77) with sensory processing difficulties, as 

measured by the Glasgow Sensory Questionnaire (Robertson & Simmons, 2013), 

indicating that high AQ individuals exhibit milder forms of sensory difficulties. 

The intact first harmonic response in adult flies and humans indicates normal 

functioning of mechanisms which give rise to the sustained response. Conversely, 

the reduced second harmonic response suggests a deficit in the transient dynamics 

of the visual system. In fly, the first harmonic has been associated with sustained 

photoreceptor polarization and the second harmonic with second-order lamina 

cells (Afsari et al., 2014b). In human, an association has been made between 

simple cell and sustained responses to pattern onset and complex cells and 

transient responses at both stimulus onset and offset (Mckeefry, Russell, Murray, 

& Kulikowski, 1996). Although simple cells exhibit some transient response 

properties as well (Mckeefry et al., 1996; Mclelland, Baker, Ahmed, & Bair, 

2010), the intact first harmonic suggests that the impairment is specific to human 

complex cells that only generate even-order response components. This early, 

cell-type-specific deficit may explain previous findings of atypical neural 

dynamics of spatial frequency processing in ASD in the face of normal sensitivity 

thresholds (Jemel, Mimeault, Saint-Amour, Hosein, & Mottron, 2010; Pei, 

Baldassi, & Norcia, 2014). 

The differential impairment of sustained and transient modules observed in our 

Nhe3 model mimics the pathway abnormality in autistic adults. Nhe3 affects the 
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exchange of sodium and hydrogen ions in cell membranes directly affecting 

neural signaling (Kondapalli et al., 2013; Schwede et al., 2013). Differential 

expression of Nhe3 and other genes in ASD, which has been observed in other 

parts of the brain (Kondapalli et al., 2013; Voineagu et al., 2013) may extend to 

differential expression in color and motion modules in the Drosophila visual 

system. As Nhe3 (SLC9A9 in humans) is only a single gene in a multifaceted 

genetic etiology of autism, it is likely that the expression of several genes in 

human autism affects simple and complex cell dynamics, producing similar 

effects on the neural population level. Furthermore, such abnormality in gene 

expression in other parts of autistic brains,	 as well as environmental influences 

and gene-environment interactions, may give rise to a wide range of cognitive and 

social impairments in childhood and adulthood. 

Our data indicate little or no over-responsivity in the visual responses predicted by 

the E/I theory, consistent with some previous studies (Dickinson et al., 2016; Said 

et al., 2013). However, it is possible that E/I imbalance in autism, stemming from 

GABA-ergic mechanism deficits, affects different neuron types or processing 

pathways in distinct ways and to different extents. Regardless, cell-type level 

processing abnormalities may explain previous inconsistencies in sensory deficits 

in ASD in which pathways were not differentiated (Simmons et al., 2009). 

Furthermore, the current results can provide an amended explanation to the 

magnocellular (M pathway) dysfunction hypothesis. As it is difficult to isolate the 

M pathway by changing stimulus properties (Skottun & Skoyles, 2007), the 

paradigms previously used to investigate magnocellular dysfunction in ASD may 

have been selectively activating complex cells rather than the M pathway in 

particular (Greenaway et al., 2013; Sutherland & Crewther, 2010).  

Developmentally, the observed change in the nature of the abnormality in both 

species with increasing age is in accordance with previous findings showing 

reduction or complete rescue of neuroanatomical abnormalities present in early 

ASD childhood over the course of maturation (Courchesne, Redcay, & Kennedy, 

2004).	 Previous longitudinal research has also shown that symptom severity in 

individuals diagnosed with ASD in childhood decreases over time (Mcgovern & 

Sigman, 2005; Seltzer et al., 2003). McGovern & Sigman (2005) found that 48 

adolescents, who were diagnosed with ASD as children, showed marked 
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improvement in social interaction, repetitive/stereotyped behaviors and other 

symptoms, with two no longer meeting criteria for ASD under ADI-R criteria, and 

four under ADOS criteria. This might be explained by a change in neural 

processing during development, which would likely affect both behavioral and 

sensory outcomes. 

One possible mechanism that would explain the present results is that the neural 

signaling abnormalities (such as ion balance in the case of Nhe3), change over 

time. In flies, reduced Nhe3 expression may reduce the rate at which sodium ions 

and protons are exchanged across the cell membrane. At least in Mosquito, this 

exchanger is found in the gut, and Malpighian tubules (the fly equivalent of the 

kidney) (Pullikuth, Aimanova, Kang’ethe, Sanders, & Gill, 2006). Failure to 

properly regulate ionic balance in young adult flies might affect the sodium 

concentration, or proton levels in the body and brain, and affect the speed and 

intensity of action potentials. Later in life, the normal balance may be restored. A 

similar reduction in efficacy of SLC9A9, linked to ASD may also be present and 

explain the homology. In this respect, we note that another transporter, the 

potassium/chloride exchanger, has been linked to epilepsy in young people: with 

age the kcc/KCC2 eventually achieves a normal ionic balance and proper 

inhibitory GABA signaling (Ben-Ari, 2014). 

The Nhe3 model may serve for further research into the development of ASD in 

young brains as well as early biomarkers and treatments. Consistency between the 

fly and human datasets at both ages indicates a breakdown of a fundamental 

sensory mechanism comprising two components that have been conserved over 

500 million years of evolution. The conservation of the phenotype and 

mechanisms from fly to human opens up the option to utilize the unrivaled genetic 

tractability of the fly to dissect the molecular mechanisms underpinning the 

disorder. 
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6.6 Methods 

6.6.1 Drosophila stocks 

Two Drosophila melanogaster genotypes were used as ASD models. The Nhe3 

loss-of-function P-element insertion (Nhe3KG08307 homozygotes) mutation was 

homozygous P{SUPor-P}Nhe3KG08307 (Bloomington Drosophila Stock Center 

(BDSC) 14715). The deficiency was Df(2L)BSC187 (BDSC 9672). To avoid 

second site mutations in the P-element stock, we used the hemizygote Nhe3KG08307 

/Df(2L)BSC187 as a second experimental genotype.  

For our control cross we mated the lab stock of Canton-S (CS) flies with those 

with isogenic chromosomes 2C and 3J (Sharma et al., 2005). All tested flies had 

dark red eyes.  All genotypes were raised in glass bottles on yeast-cornmeal-

agar-sucrose medium (10g agar, 39g cornmeal, 37g yeast, 93.75g sucrose per 

litre). They were kept at 25°C on a 12 hour light-dark cycle. Male flies were 

collected on CO2 the day after eclosion and placed on Carpenter (1950) 

(Carpenter, 1950) medium in the same environmental conditions for either 3 days 

or 14 days. Flies were tested approximately between the 4th and 9th hour of the 

daylight cycle. 

 

6.6.2 Drosophila electroretinography 

Steady-state visual evoked potentials (SSVEPs) were obtained from the fruit flies 

(Afsari et al., 2014b; West et al., 2015). Flies were recorded in pairs in a dark 

room. They were placed in small pipette tips and secured in place with nail 

varnish. One glass saline-filled electrode was placed inside the proboscis of the 

fly and another on the surface of the eye. A blue (467nm wavelength) LED light 

(Prizmatix FC5-LED) with a Gaussian spectral profile (FWHM 34nm) was placed 

in front of the flies together with a diffuser screen and used for temporal contrast 

stimulation. Flies were dark adapted for at least two minutes and then tested for 

signal quality with six light flashes. Steady-state stimulation lasted 12 min and 

comprised seven contrast levels (0 – 69% in linear steps) each with five 

repetitions. The frequency of the light flicker was 12Hz. Each trial (contrast level 
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repetition) was 11 s. The order of the contrast conditions was randomized. The 

stimulation and the recording from the fly was controlled by in-house MATLAB 

(Mathworks) scripts (scripts can be found in https://github.com/wadelab/flyCode). 

 

6.6.3 Adult EEG 

One-hundred neurotypical adult (32 males, mean age 21.87, range 18 – 49, no 

reported diagnosis of ASD, reportedly normal or corrected to normal vision) 

subjects took part in the autism spectrum quotient (AQ) measurement study. The 

AQ is an instrument used for quantifying autistic traits in the neurotypical 

population and has been shown to have high face validity and reliability in these 

populations (Baron-Cohen et al., 2001). The AQ consists of 50 Likert scale items 

and the scores in this study were calculated according to Baron-Cohen et al. 

(Baron-Cohen et al., 2001). Each participant completed the AQ questionnaire on a 

computer in the laboratory. 

For the autistic adult ssVEP study, 12 typical-IQ autistic participants and 12 

gender- and age- matched controls (11 males, mean age 23.53, range 18 – 39, 

reportedly normal or corrected to normal vision) were recruited. Autistic 

participants were recruited through advertisements in an autism charity (Aspire), 

and in the University of York Disability Services. Control participants were 

recruited by word of mouth and through the Department of Psychology at the 

University of York participant database. ASD diagnosis was confirmed with the 

Autism Diagnostic Observation Schedule, second edition (ADOS-2).	Although IQ 

was not explicitly measured in this study, all adults had normal speech and a high 

level of independence (the majority were university students). The absence of 

ASD diagnosis in the neurotypical participants was also confirmed with ADOS-2 

(none of the control participants met criteria for ASD). All participants in the 

study gave informed consent and were debriefed on the purposed of the study 

after the experiment. The experiments were approved by the Department of 

Psychology Ethics Committee at the University of York. 

Steady-state VEPs were recorded using the ANT Neuro system with a 64-channel 

Waveguard cap. EEG data were acquired at 1kHz and were recorded using 
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ASALab, with stimuli presented using MATLAB. The timing of the recording 

and the stimulation was synchronized using 8-bit low-latency digital triggers. All 

sessions were performed in a darkened room, testing lasted 45-60min with 

approximately 20min set up time. 

Stimuli were presented on a ViewPixx display (VPixx Technologies Inc., Quebec, 

Canada) with a mean luminance of 51cd/m2 and a refresh rate of 120Hz. Stimuli 

were 0.5 cycle/deg sine-wave gratings enveloped by a raised cosine envelope. 

Gratings subtended 3 degrees of visual angle and were tiled in a 17x9 grid. The 

participants fixated on a circle in the middle of the screen and performed a 

fixation task (two-interval-forced-choice contrast discrimination) to maintain 

attention. All participants were able to perform the task at above chance levels. 

There were seven contrast conditions for the flickering gratings (0%, and 2 - 64% 

in logarithmic steps, where C% = 100(Lmax−Lmin)/(Lmax+Lmin), L is luminance) and 

eight repetitions. Stimuli flickered on/off sinusoidally at 7Hz. Trials were 

presented in random order in four testing blocks with short breaks in between. 

Each trial was 11 seconds long and contained gratings of a random spatial 

orientation to avoid orientation adaptation effects. These trials were intermixed 

with orthogonal masking trials that are not presented as part of this study. Data 

were taken from the occipital electrode Oz. 

 

6.6.4 Child EEG 

Thirteen children with a diagnosis of ASD and 20 neurotypical controls matched 

on gender ratio (10 and 12 males respectively) and average age (mean age 9.31 

and 8.94 respectively, range 5 – 13) completed the study. Three of the 

neurotypical children were tested but excluded due to having autistic siblings (17 

participants were included). 

Steady state EEG data were acquired with a 128-channel HydroCell Geodesic 

Sensor Net (Electrical Geodesics Inc.). Data were digitized at 432Hz and band-

pass filtered from 0.3Hz to 50Hz and were recorded using NetStation 4.3 

Software. Highly noisy data were excluded by removing repetitions with 

amplitudes that were four standard deviations away from the group mean (for 
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each contrast level and harmonic individually). There were 10 repetitions in total, 

however, two autistic and one neurotypical child only completed 8 repetitions. 

Increasing contrast sweep ssVEPs were used. Stimuli for this experiment were 

presented on an HP1320 CRT monitor with 800x600 pixel resolution, 72Hz 

refresh rate and mean luminance of 50cd/m2. Stimuli were random binary noise 

patterns of two luminance levels that increased in contrast in 9 logarithmic steps 

(0% – 50%) of 1 second each. Each trial contained a prelude at the initial value of 

the sweep and a postlude at the final sweep value, lasting 12 seconds in total. 

Stimuli flickered at 5.12Hz. Data from the middle 9 seconds during the sweep 

were binned according to contrast steps. Methodological differences between the 

adult and child datasets were due to different conventions being used by the two 

laboratories in which data were collected. 

 

6.6.5 Data analysis 

A Fast Fourier transform (in MATLAB) was used to retrieve steady-state 

response amplitudes at the stimulation frequency (12Hz for fruit flies, 7Hz for 

adult participants and 5.12Hz for children) and at the second harmonic (24Hz, 

14Hz and 10.24Hz respectively). Fourier transforms were applied to 10 s of each 

trial (first 1s discarded; total trial length was 11s) for the fruit fly and the adult 

participant data sets and to 1 second binned data for the children’s data set. 

Contrast response functions were obtained by coherently averaging the amplitudes 

over repetitions for each contrast level within a participant. Group/genotype scalar 

means over response amplitude (discarding phase angle) were then calculated for 

each contrast across participants/flies. 

Two-way (harmonic x group) ANOVAs were performed on amplitudes at the 

highest contrast level amplitudes to investigate the interactions and group effects 

in all human data sets where only two groups were compared. To identify at 

which harmonic the autistic children showed a decreased response, two 

independent samples t-tests were also conducted. One-way ANOVAs with simple 

planned contrasts were conducted to assess the genotype differences in fruit fly 
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first and second harmonic responses separately as that aided the interpretability of 

the results between the three genotypes.  

To investigate the dissociation between first and second harmonic responses a 

scaled ratio !!!!!
!!!!!

 (where 1F is the first and 2F is the second harmonic) was 

calculated for each participant/fly and each contrast condition. To increase the 

power of statistical analyses and to decrease the type I error rate, the ratios were 

then averaged over the contrast conditions that had first harmonic amplitudes 

significantly above the baseline response (0% contrast condition). For fruit flies 

this was six conditions (11.5 – 69%), for adult participants this was four 

conditions (8 – 64%) and for children this was five conditions (8.5 – 50%). This 

procedure resulted in a single frequency-ratio index for each participant/fly. One-

way ANOVAs with simple planned contrasts (comparing mutant genotypes with 

the control genotype) were conducted on the fly frequency ratios for each age 

separately. Independent t-tests were used to compare frequency ratios in all 

human data sets between groups. Additionally, a linear regression was conducted 

on the adult AQ measurement data set to assess the predictive power of AQ scores 

on the ratios between frequencies. All statistical tests were two-tailed. 
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Chapter 7 

 

General discussion 

 

 

 

 

 

 

7.1 Summary of findings 

This thesis addressed several aspects of two properties of the visual system: neural 

noise and suppression (gain control). The first study presented in the thesis 

(Chapter 2) investigated the source of neural noise during sensory processing. It 

was found that the percept rather than the stimulus was encoded in early visual 

cortex, meaning that the perceptually-relevant neural noise is located early in the 

visual stream. The experiments in Chapter 3 compared three psychophysical 

paradigms for measuring noise and found that contrast discrimination thresholds 

and double-pass consistency were more suited for estimating internal noise than 

the equivalent noise paradigm. The chapter also demonstrated the suitability of 

both paradigms, in particular double-pass, for fast, easy and reliable measurement 

of noise. 

In pursuit of a way to experimentally manipulate the levels of neural noise and 

sensory signal suppression, Chapter 4 investigated the neural mechanisms behind 
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transcranial magnetic stimulation. It was found that online TMS protocols have 

the potential to selectively change suppression and neural noise levels in the 

visual system but offline protocols had little or no effect on sensory signal 

processing. 

Chapter 5 related neural noise levels to autism spectrum traits by 

psychophysically measuring noise when processing contrast, facial expressions 

and number summation. A global neural noise term was found to underlie 

individual variability in all three tasks. This noise was correlated with autistic 

traits, indicating that the sub-clinical ASC phenotype is related to higher levels of 

neural noise. Chapter 6 further investigated visual processing in clinical ASC, 

neurotypical individuals and in a Drosophila model of autism. The results were 

indicative of abnormal visual processing, likely due to gain control deficits in 

ASC individuals, participants with high numbers of autistic traits and in the Nhe3 

model fruit flies. The findings also indicate that this abnormality in processing 

changes over the course of development. 

The remainder of this chapter will discuss the wider implications of the findings 

and common themes throughout the empirical chapters. It will also address the 

possible directions for future research. 

 

7.2 Psychophysical measurement of neural noise and suppression 

7.2.1 Comparing three noise measurement methods 

Chapter 3 addressed the issue of measuring neural noise psychophysically with 

three different paradigms. Using high numbers of trials and contrast conditions in 

seven subjects, the equivalent noise (EN) paradigm (Pelli, 1985) was compared to 

estimating neural noise from contrast discrimination data fitted with the 

normalisation model. It was found that the normalisation model was better at 

predicting double-pass consistency data than the EN paradigm with the linear 

amplifier model (LAM). The difference between both model predictions was 

marginal: Akaike’s Information Criterion was 20.17 for the normalisation model 

with two free parameters and 21.61 for LAM. This suggests that although contrast 
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discrimination noise measures are more accurate than EN, EN (when used with 

LAM) is still a good estimate of internal noise, provided that zero-dimensional 

noise is used in stimuli instead of white noise. In some cases LAM can be used for 

simplicity when predicting double-pass data, such as when only a small selection 

of double-pass conditions can be tested. For example, in Chapter 4 LAM was 

used to model double-pass data as it provided better differentiation between the 

efficiency and noise parameters than the normalisation model in which the role of 

some of the parameters is less clear. 

Double-pass consistency was highly correlated with normalisation model 

estimates of noise as well as with the thresholds of TvC curves (dipper functions). 

Considering that double-pass is a well established and (relatively) model free 

method of measuring noise, it is reasonable to ask whether there are situations 

when contrast discrimination is the preferred method. Indeed, double-pass 

consistency can be measured in only several minutes and can be implemented in 

challenging conditions (e.g. Chapter 4). Furthermore, it can be applied to any 

stimulus dimension that is measured on a continuum, e.g. facial expressions, 

number sums (Chapter 5), auditory tones (Green, 1964; Jones et al., 2013) and 

lexical difficulty (Diependaele et al., 2012). However, normalisation model 

estimates of noise can be applied to existing contrast discrimination data. For 

example, the contrast discrimination experiment comparing ASC and neurotypical 

individuals in Greenaway, Davis, & Plaisted-Grant (2013) could be reanalyzed to 

test whether the differences in thresholds are due to neural noise.  

 

7.2.2 Differentiating neural noise and suppression 

Another advantage of the normalisation model fits is that neural noise and gain 

control can be measured as parameters. In study 1 of Chapter 3 all seven subjects 

had well-fitted models with RMS errors below 2.23, suggesting accurate estimates 

of the free parameters. Furthermore, the normalisation model can be used with 

three or four free parameters, with the p and q exponents being also allowed to 

vary. As the ratio of p and q govern the saturation of contrast response functions, 

it can be used to assess neural suppression at high contrast levels. In fact, both the 

Z parameter and the p/q ratio have been shown to correlate, suggesting that they 
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represent properties of the same suppressive mechanism in neural processing 

(Vilidaite et al., 2015). 

In Chapter 3, double-pass consistency was highly correlated with the 

normalisation noise parameter (R = 0.68) but not the gain control parameter (R = 

0.14). This indicates that double-pass consistency is a good measure of neural 

noise and is not influenced by gain control, unlike the noise parameter in EN, 

when used with white noise masking (Pelli, 1985). Although it may be tempting 

to use double-pass accuracy as a measure of stimulus-related signal strength (the 

opposite of suppression), this must be done with caution. Consider a situation 

where the accuracy is at ceiling in both passes: the consistency between the passes 

will also be at ceiling. Therefore, accuracy and consistency must be related. This 

was found to be true in Chapter 5 where accuracy and consistency were correlated 

in all three tasks (R > 0.41). To get around this problem, model simulations were 

used to take into account both accuracy and consistency when estimating neural 

noise. This was taken a step further in Chapter 4 in order to simulate TMS-

induced changes in neural noise, signal suppression or both. As can be seen in 

Figure 4.1, each case produced distinct patterns of double-pass consistency and 

accuracy. 

 

7.3 Origin of neural noise in sensory processing 

Previous psychophysical studies investigating neural noise levels in sensory 

systems have either averaged the neural noise estimates over observers (Jones et 

al., 2013; McAnany, Alexander, Genead, & Fishman, 2013; Pardhan, 2004) or 

used very small samples (Burgess & Colborne, 1988; Legge et al., 1987; 

Skoczenski & Norcia, 1998). However, it is important to consider variability in 

neural noise levels between individuals as well as between areas of the brain in 

order to better understand sensory processing. The findings of Chapter 3 indicate 

that a large proportion of variance in contrast discrimination is due to individual 

differences in levels of neural noise. 

Furthermore, high correlations in neural noise were observed between three 

different tasks in Chapter 5. This study was designed to measure neural noise 
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using double-pass in three different tasks that require different levels of sensory-

cognitive processing. The first task, contrast discrimination, can be regarded as a 

purely sensory, low level visual process; the second, facial expression intensity 

discrimination, is likely to engage higher sensory areas of the visual system (e.g. 

fusiform face area; Kanwisher, Mcdermott, & Chun, 1997) as well as temporal 

areas (Winston, Henson, & Dolan, 2004); the third, number summation, can be 

assumed to involve higher cognitive processing that can be traced to parietal 

regions (Arsalidou & Taylor, 2011). A single factor (‘global internal noise’) was 

found to underlie 76.81% of the variance across the double-pass consistency 

scores in the three tasks. This can be explained in two ways. 

First, each observer’s brain has a natural level of neural noise, which is correlated 

between different parts of the brain and different neural systems. This view is 

partly supported by the suggestion that neural computations across the brain are 

canonical (Carandini & Heeger, 2012; Rosenberg, Patterson, & Angelaki, 2015) 

and so the neural noise term may also be common across the brain. Furthermore, 

Fox, Snyder, Zacks, & Raichle (2006) showed that fluctuations in spontaneous 

neural activity covary across the two hemispheres, indicating that neural noise can 

be correlated across large distances in the brain. 

The second explanation is that the neural noise observed psychophysically in all 

three tasks stems from neural fluctuations in the decision making mechanism of 

the brain, most likely located in prefrontal cortical areas (Heekeren, Marrett, 

Bandettini, & Ungerleider, 2004). However, the findings of Chapter 2 suggest 

that this is most likely not the case. It was found that the behavioural decision of 

the observer during contrast discrimination could be decoded from occipital 

regions, but not the stimulus being presented. Furthermore, the decision could be 

decoded very early after stimulus onset and coincided with the timing of visual 

signals reaching V1 (Wibral, Bledowski, Kohler, Singer, & Muckli, 2009). This 

suggests that neural noise affects the representation of the stimulus very early in 

the visual processing stream and the resulting ‘noisy’ percept influences the 

subsequent perceptual decision. If early sensory noise, rather than late decision 

making noise influences contrast perception, this may also apply to other 

perceptual and cognitive processes. These findings shed light on the results of 

Chapter 5 and indicate that neural noise levels may be correlated across the 
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sensory and cognitive regions rather than stemming from a single decision making 

mechanism. However, it should be noted that Chapter 2 did not investigate the 

source of neural noise during face and number processing, thus caution must be 

used when generalizing these findings beyond contrast perception. Furthermore, 

although neural noise seems to affect sensory signals early in the visual system, 

the current studies cannot determine whether this noise originates from the 

occipital cortex or is inherited from sub-cortical structures. 

If the origin of neural noise is the visual cortex, it would be expected that the 

stimulus representation would be intact to some extent, and could be decoded at 

above chance levels from occipital responses. In the EEG experiment of Chapter 

2 this was not the case for either of the low target contrast conditions (2% or 4%). 

However, this may be due to a lower signal-to-noise ratio of EEG compared to 

MEG. It is possible that some above-chance stimulus decoding could have been 

achieved if these conditions were repeated in the MEG experiment. Unfortunately, 

due to MEG experiment time constraints and participant fatigue, these conditions 

could not be included. However, if that were the case, it would suggest that 

cortical neural connections are the dominant source of neural noise in sensory 

processing. 

The effects of induced cortical neural noise on task performance are demonstrated 

by the results of Chapter 4, where TMS induced noise affected performance in 

double-pass. In this study, noise could not have originated from sub-cortical areas 

as TMS cannot penetrate the cortex under normal conditions (Deng, Lisandby, & 

Peterchev, 2013; Stokes et al., 2013). However, this does not rule out the 

existence of naturally occurring sub-cortical neural noise.  

In summary, the origin of sensory processing noise is likely to be early sensory 

regions and the inter-observer differences in neural noise levels are likely 

correlated between brain regions. 
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7.4 Modulating neural noise and suppression 

In Chapter 4 it was found that certain types of TMS independently increase neural 

noise levels or suppress sensory signals during contrast discrimination. In 

particular, spTMS produced decreases in double-pass accuracy and consistency, 

as predicted by a decrease in the sensitivity parameter in LAM simulations. This 

was unsurprising as previous studies also found suppressive effects of spTMS 

(Harris et al., 2008; Ruzzoli et al., 2010) and TMS has long been assumed to 

induce “virtual lesions” in the cortex (Pascual-Leone et al., 2000; Walsh & 

Cowey, 1998). Of more interest was the fact that rTMS had no suppressive effect 

but rather elevated neural noise levels. This was the first direct comparison of 

these two protocols using consistent conditions and the same behavioural task. 

Previous investigations into the neural effects of TMS assumed that rTMS and 

spTMS would affect neural processing in the same manner and attributed mixed 

findings to differences in conditions and tasks (Ruzzoli et al., 2011; Schwarzkopf 

et al., 2011). However, it is clear from Chapter 4 that the most likely explanation 

of these discrepancies is to do with the stimulation protocols themselves. These 

differences may also account for some of the ‘replicability crisis’ in TMS research 

as inappropriate protocols would produce different effects in experiment 

replications (Héroux et al., 2015). These findings are particularly important in 

informing TMS protocol choices in future research. 

It is unclear why three magnetic pulses would act differently on neural processing 

than a single pulse. One explanation is that during the window of temporal 

integration a single TMS pulse depolarizes neurons in the gain pool, producing a 

suppressive effect on the detecting channel (Silvanto & Muggleton, 2008; 

Silvanto et al., 2007). Yet when three pulses are applied during this temporal 

integration window each pulse produces a similar depolarisation, which cascades 

through synaptic connections. Combinations of these cascading signals may act as 

neural noise in the sensory system. This is similar to the origin of endogenous 

multiplicative noise, which stems from random combinations of stimulus-related 

neural signals (Carandini, 2004). 

Online TMS only had an effect on sensory processing in the group of participants 

that could reliably perceive phosphenes during screening. This is unsurprising as 
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anatomical differences in skull thickness and cortical folding are likely to have 

substantial effects on magnetic field strength and depth (Herbsman et al., 2009; 

Janssen et al., 2013). Magnetic field attenuation also explains why offline cTBS 

and iTBS did not have any behavioural effects on either group of participants, as 

it was applied at below neural activation threshold levels. This was deliberate as 

TBS was originally intended to be used below this threshold intensity (Huang et 

al., 2005) and has continued to be used that way both in basic science (Allen et al., 

2014; Di Lazzaro et al., 2008; Rahnev et al., 2013) and in clinical applications 

(Hanlon et al., 2017; Li et al., 2014). It may be that TBS has no particular effect 

on sensory signal transduction but rather induces more subtle and long-term 

changes in neural signalling and connectivity (Hanlon et al., 2017; Li et al., 2014). 

In either case, it does not seem to be suitable for research into sensory processing. 

 

7.5 Neural mechanisms in ASC 

This thesis presents several major findings on sensory processing in individuals 

with ASC and neurotypicals with high numbers of ASC traits. Firstly, levels of 

global neural noise in the brain were found to be correlated with the number of 

autistic traits in neurotypical participants (Chapter 5). Secondly, an impairment of 

early visual processing was observed in both adults with ASC and neurotypical 

adults with high numbers of autistic traits. Thirdly, this impairment was found to 

be different in children with ASC, suggesting a change in neural signalling occurs 

over the course of development. Lastly, this impairment was also found in a fruit 

fly model of ASC, suggesting a possible genetic link. 

 

7.5.1 Noise in ASC 

Several previous studies have suggested high neural noise levels in ASC visual 

systems (Dinstein et al., 2012; Milne, 2011; Simmons et al., 2009; Weinger et al., 

2014). Chapter 5 extends these findings to sub-clinical populations with high 

numbers of autistic traits, as measured by AQ. Previous research has found that 

AQ scores in the general population were highly correlated (R = 0.77) with 
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sensory processing difficulties (Robertson & Simmons, 2013). The current 

findings suggest that one of the neural correlates of both sensory difficulties and 

autistic traits might be the level of neural noise in sensory systems. Considering 

that neural noise was highly correlated between three different tasks in Chapter 5 

(contrast, facial expression and number sum discrimination); and that 

perceptually-relevant neural noise lies within early sensory cortex (Chapter 2), it 

is likely that high neural noise affects neural structures beyond the occipital 

cortex. The increased ‘noisiness’ of the brain may contribute to sensory and 

cognitive processing leading to more complex social and behavioural symptoms. 

 

7.5.2 Suppression in ASC 

The experiments of Chapter 6 indicate a robust transient visual response 

impairment is linked to the autistic phenotype in humans, and to the Nhe3 gene 

mutation in fruit flies. The reduced 2nd harmonic and increased 1st harmonic 

ssVEP responses in ASC and high AQ individuals suggest a differential 

impairment in two neural cell populations. In humans, the 1st harmonic response 

has been related to sustained simple cell responses that respond to the onset of a 

stimulus. Conversely, the 2nd harmonic response has been related to transient 

On/Off responses of complex cells (Mckeefry et al., 1996). This suggests that in 

ASC, neural signalling in complex cells is reduced but simple cells show a 

possible hyper-responsivity. However, in Nhe3 mutant fruit flies only the transient 

(2nd harmonic) response reduction is apparent. 

The reduction in transient responses in adults and fruit flies was contrast 

dependent: there was little or no difference between the ASC and neurotypical 

groups at low contrast levels but a marked impairment at high contrast. This 

suggests that the response reduction is due to a gain control mechanism of 

complex cells. These results are compatible with the view that gain control 

observed in V1 is primarily the product of pre-cortical depression (Carandini, 

Heeger, & Senn, 2002; Priebe & Ferster, 2006). In particular, this theory explains 

how transient visual responses posses non-linear properties that can be traced to 

the lateral geniculate nucleus (Carandini, Heeger, & Senn, 2002). This particular 
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gain control mechanism seems to be impaired in ASC individuals and 

neurotypicals with high numbers of autistic traits. 

Although the original purpose of the experiments in Chapter 6 was to investigate 

the E/I balance in ASC, evidence for a straightforward E/I impairment was not 

found. Previous accounts of this theory have suggested an overall hyper-reactivity 

to sensory stimulation in ASC (Markram & Markram, 2010; Rubenstein, 2010; 

Rubenstein & Merzenich, 2003), which would predict increased responses in both 

1st and 2nd harmonics. The findings of Chapter 6 do not support this increase in 

E/I balance. However, the results are compatible with differential levels of E/I in 

different parts of the visual system, suggesting increased suppression in complex 

cells (reduced E/I) but decreased suppression in simple cells (increased E/I). This 

may explain why ASC individuals show inconsistent deficits and enhancements in 

processing stimuli of different levels of complexity. For example, orientation 

discrimination tuning curves in clinical ASC suggest increased rather than 

decreased inhibition (Dickinson, Bruyns-Haylett, Smith, Myles, & Milne, 2016). 

Furthermore, differences between the processing of luminance and contrast 

modulated stimuli (Bertone et al., 2003, 2005; Simmons et al., 2009) may also be 

to do with differential properties of simple and complex cells. 

An important finding is that the visual response impairment in children with ASC 

lay in the sustained response and not the transient response. The main difference 

between ASC and neurotypical children was the reduction in the 1st harmonic 

response in ASC. The 2nd harmonic responses were comparable between groups. 

The difference between ASC children and adults suggests that a change in the 

neural dynamics of the visual system occurs during development. It also means 

that the development of the visual system in ASC is different from neurotypical 

development. It may be that the initial impairment lies in simple cell signalling 

but over time this deficit affects complex cells further down the visual processing 

stream. At the same time, simple cells increase their sensitivity to compensate for 

reduced responses resulting in increased sustained responses in adulthood. As 

these results were replicated in young Nhe3 model flies, this developmental 

compensation seems to be universal to vertebrate and invertebrate animals. 

Although it is unusual to see such similarities between insects and humans, it 

should be noted that the pathways and computations in the fruit fly’s visual 
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system closely resembles that of humans (Afsari et al., 2014; Behnia & Desplan, 

2015; Borst & Euler, 2011; Clark et al., 2014; Olsen et al., 2011). 

 

7.5.3 Genetic influences 

It is unclear whether the impairments in gain control in ASC found in Chapter 6 

are due to GABA-ergic neural connections. Although the Nhe3 gene mutation was 

partly chosen because it does not directly affect the GABA-ergic system, such an 

effect is difficult to rule out. It may be that the sodium/hydrogen ion exchange 

was disproportionately affected in inhibitory GABA-ergic neural connections thus 

producing gain control abnormalities. On the other hand, one study into human 

Nhe9 found that this gene modulated the pH of excitatory glutaminergic cells. 

This is also a probable explanation for the gain control-like deficits seen in 

Chapter 6 as previous studies suggest that sensory suppression is also regulated 

by excitatory synapses (Katzner et al., 2011).  

In fruit flies the sustained response is produced by photoreceptors whilst the 

transient response originates in the lamina (Afsari et al., 2014), which is a 

structure a few synapses later in the visual stream. The lamina combines visual 

signals from the photoreceptors in order to produce transient responses, similarly 

to complex cells in humans. Considering that the neural deficit caused by Nhe3 

was localized to the lamina in older fruit flies, it is highly likely that other parts of 

the brain show various levels of Nhe3 expression (Voineagu et al., 2013). This is 

supported by previous studies that have found differences in Nhe6 and Nhe9 gene 

expression and location in post-mortem ASC brains compared to controls 

(Schwede et al., 2013).  

Widespread variability in ion concentrations in the brain could cause a host of 

neural signalling deficits leading to behavioural and sensory symptoms, such as 

those seen in ASC. The change in the neural dynamics of ASC individuals over 

the course of development is likely to also be genetically driven. In the Nhe3 

mutant fruit flies the lack or excess of inhibitory signalling can be explained by 

abnormal concentrations of sodium and hydrogen ions. During development this 

balance may be restored in certain cell populations. An analogy of this has 
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previously been found in the potassium/chloride exchanger gene (kcc), which 

regains normal functioning over time in epilepsy patients (Ben-Ari, 2014). 

However, it is extremely unlikely that all our participants with ASC and 

neurotypicals with high AQ had Nhe3 mutations. In fact, single genes can only 

account for a small number of clinical ASC cases (Ciernia & Lasalle, 2016; 

Morrow et al., 2008). More commonly, a complex and diverse selection of gene 

mutations and gene-environment interactions produce the ASC phenotype and the 

broader autism phenotype (Ciernia & Lasalle, 2016; Folstein, Rosen-Sheidley, & 

Street, 2001; Miles, 2011). This collection of gene mutations and gene-

environment interactions are likely to be what causes sub-clinical and clinical 

ASC-like traits in the participants of Chapter 6. This is supported by previous 

studies suggesting that non-ASC relatives of individuals with clinical ASC exhibit 

milder forms of autistic symptoms (Eisenberg, 1957; Folstein & Rutter, 1977). 

Furthermore, gamma-band phase locking, indicative of increased neural noise has 

been found both in ASC individuals and their parents (Rojas et al., 2008). It 

follows from this that the sensory ASC deficits found in Chapter 5 and Chapter 6 

might also have genetic origins. 

 

7.6 Future directions 

7.6.1 Measuring noise 

This thesis presented major advances in quick and accurate measurement of 

neural noise, in particular the double-pass methodology paired with zero-

dimensional stimulus noise. This method could be used to re-investigate research 

questions in which neural noise levels may implicated. Of particular interest 

would be early and late stages of life in normal development, as increased neural 

noise has been suggested to account for poorer sensory processing in childhood 

and infanthood (Brown, 1994; Skoczenski & Norcia, 1998) as well as in old age 

(Pardhan, Gilchrist, Elliot, & Beh, 1996). Similarly, neurological disorders in 

which neural noise levels may be influencing sensory processing, such as dyslexia 

(Sperling, Lu, Manis, & Seidenberg, 2005), could also be investigated. Improved 
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measurement methodology would help distinguish between neural noise and other 

sensory processing differences. 

The type of neural noise detected psychophysically and when measured with 

neuroimaging technology differs (additive versus multiplicative noise; Carandini, 

2004). It is therefore important to find a way to link these two ways of 

measurement and investigate how these types of noise influence neural 

processing. A possible solution would be an EEG double-pass paradigm in which 

the consistency of neural responses is taken as a measure of neural noise. The 

ssVEP method is particularly well suited for this, as two stimuli (with contrast 

values drawn from Gaussian distributions) can be presented simultaneously at 

different frequencies (e.g. 5Hz and 7Hz). This frequency tagging would stand in 

for the two intervals in a normal psychophysical double-pass paradigm. The 

amplitude of neural responses at both frequencies would be measured and 

compared to extract a binary ‘decision’ (which stimulus elicited the higher 

amplitude). Then the same trial could be repeated (pass two) to test whether the 

same stimulus would elicit the higher response. From this a double-pass 

consistency score could be calculated over many trials. Such a paradigm would be 

useful as behavioural double-pass responses could also be collected at the same 

time and therefore psychophysical and electrophysiological comparison of neural 

noise in sensory processing could be achieved. 

 

7.6.2 Further research in TMS 

Directions of future research in TMS, stemming from this thesis are two-fold. 

First, rTMS and spTMS could be used to differentiate between neural noise and 

suppression at different stages of sensory processing. For example to test whether 

rTMS to fronto-temporal executive areas would affect perceptual decision 

making. This could shed light on whether neural noise in the decision making 

stage of perceptual processing has an effect on behavioural responses. A 

stimulation study has previously been done with intracranial electrical stimulation 

in monkey visual cortex (Salzman, Britten, & Newsome, 1990), but TMS 

provides the opportunity to do stimulation research in humans. Furthermore, the 

links between neural noise and signal suppression can be established in other 
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stimuli using the methodology from Chapter 4. For example, TMS could be used 

to see how induction of neural noise or suppression of signals in V5/MT would 

affect detection thresholds on motion coherence tasks that are commonly used to 

measure internal noise (Manning et al., 2015; Strong, Silson, Gouws, Morland, & 

Mckeefry, 2017). 

Secondly, the successful application of the double-pass paradigm to measure the 

neural mechanisms of TMS opens doors to investigate other TMS protocols as 

well as electrical stimulation methods in a similar way. Offline 1Hz repetitive 

TMS (Lozeron et al., 2017) was a widely used stimulation protocol before the 

introduction of TBS. The neural effects of this protocol could prove to be more 

suitable for researching task-related neural processing than TBS, which was 

shown to not influence sensory signals in Chapter 4. In a similar manner, paired-

pulse TMS as well as transcranial direct-current stimulation protocols could be 

investigated. 

 

7.6.3 Further research in ASC 

The experiments in Chapter 5 and Chapter 6 link autistic traits in the neurotypical 

population to elevated levels of sensory neural noise and a selective impairment in 

transient visual responses. As this line of research aims to further the 

understanding of sensory symptoms in ASC, it would be particularly useful to 

investigate whether these impairments relate to the strength and numerosity of 

sensory traits in neurotypical and ASC individuals. Specifically, the Glasgow 

Sensory Questionnaire (Robertson & Simmons, 2013) could be used to measure 

sensory difficulties and relate them to ssVEP responses and double-pass 

consistency scores. 

The Nhe3 fruit fly model of sensory processing in ASC is also a promising avenue 

for future research. To test the suitability of this model beyond the sensory 

domain, fruit fly social behaviour paradigms could be employed. Such paradigms 

on fruit fly interaction, mating calls and male-male aggressiveness have 

previously been used to validate other ASC models (Hahn et al., 2013). 
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Furthermore, Nhe3 fruit fly visual responses could be used as a starting point for 

developing an easy early diagnosis paradigm for children with ASC. Previously, 

machine learning has been used successfully to classify Parkinson’s model fruit 

flies from wild type flies (Himmelberg, West, Elliott, & Wade, 2017). A similar 

approach could be used first on ASC model flies and then on visual responses of 

children with ASC. 

 

7.7 Conclusions 

This thesis demonstrated that the effects of neural noise and suppression on 

sensory processing are best measured using contrast discrimination curves with a 

fitted non-linear model or with a double-pass paradigm. The double-pass 

paradigm was shown to have wide applicability to measuring neural noise (and 

suppression) in a wide range of stimuli and under various challenging conditions. 

By applying this method to transcranial magnetic stimulation, it was found that 

online single pulse and repetitive stimulation protocols have differential effects on 

neural noise and suppression. This has wide-reaching implications for future TMS 

methodology and additionally adds to the arsenal of techniques that can be used to 

further investigate the neural mechanisms of sensory processing. 

Furthermore, neural noise and suppression were found to both be implicated in 

autism spectrum conditions, neurotypical individuals with high autistic traits and a 

fruit fly model of autism. Although autistic traits were related to an increase in 

brain-wide sensory neural noise, the suppression mechanism deficit in ASC was 

found to be more specific. Gain control-like impairment was found to exist in 

sustained visual responses of children with ASC. However, this impairment was 

found to change over the course of development, suggesting a differential 

trajectory of sensory system development in ASC individuals. Taken together, a 

genetic cause could explain neural signalling deficits that appear both as neural 

noise and suppression impairments. 
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Appendix A 

 

Supplementary data for Chapter 2 

 

 
Figure A.1: Maximal evoked responses in different anatomical regions. Each trace in 
panel A plots the timecourse of the vertex in the named region (see legend in panel B) 
with the largest absolute deflection from baseline. Panel C shows absolute activity 
averaged across four time windows, demonstrating that the majority of activity occurs in 
occipito-temporal regions. 
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Figure A.2. Atlas-based classification of decisions in the 16% target condition. 
Plotting conventions mirror those of Figure 2.4.  
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Table A.1: Numbers of vertices on the cortical mesh. Individual regions were taken 
from a mesh consisting of around 3000 vertices, and pooled across hemispheres. The 
‘whole brain’ mesh (final row) was subsampled to around 500 vertices. Precise numbers 
of vertices varied across individual participants owing to individual differences in brain 
size and morphology. Entries in the ‘Colour’ column correspond to the colours used in 
Figures 2.4, A.1 & A.2. 
 

Region Colour Mean size Minimum size Maximum size 
Rostral Middle Frontal  157 145 173 
Superior Frontal  342 317 384 
Rostral Anterior Cingulate  31 27 37 
Lateral Orbitofrontal  100 83 113 
Medial Orbitofrontal  53 45 62 
Pars Triangularis  63 56 69 
Pars Orbitalis  31 27 35 
Caudal Anterior Cingulate  29 25 34 
Pars Opercularis  53 43 61 
Caudal Middle Frontal  75 59 91 
Insula  60 53 69 
Entorhinal  16 9 25 
Pre-central  140 124 155 
Superior Temporal  166 150 183 
Posterior Cingulate  38 32 45 
Transverse Temporal  9 6 11 
Post-central  142 130 156 
Para-central  48 41 61 
Middle Temporal  134 123 152 
Parahippocampal  21 17 25 
Inferior Temporal  118 96 149 
Supramarginal  123 102 155 
Isthmus Cingulate  28 23 34 
Fusiform  81 73 87 
Precuneous  119 93 140 
Superior Parietal  148 136 168 
Inferior Parietal  149 131 157 
Lingual  101 69 125 
Cuneus  67 58 74 
Peri-calcarine  38 24 45 
Lateral Occipital  162 139 181 
Whole brain  503 503 504 
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