
Measuring and modelling lung
microstructure with hyperpolarised

gas MRI

Ho-Fung Chan

Supervised by
Professor Jim Wild
Dr. Guilhem Collier

A thesis submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy

POLARIS Group
Academic Unit of Radiology

Infection, Immunity, and Cardiovascular Disease
Faculty of Medicine, Dentistry & Health

The University of Sheffield

March 2018





Abstract
This thesis is concerned with the development of new techniques for measuring and modelling
lung microstructure with hyperpolarised gas magnetic resonance imaging (MRI). This aim
was pursued in the following five chapters:

1. Development of a framework for lobar comparison of lung microstructure measurements
derived from computed tomography (CT) and 3He diffusion-weighted MRI evaluated in
an asthmatic cohort. Statistically significant linear correlations were obtained between
3He diffusion-weighted MRI and CT lung microstructure metrics in all lobar regions.

2. Implementation of compressed sensing (CS) to facilitate the acquisition of 3D
multiple b-value 3He diffusion-weighted MRI in a single breath-hold for whole lung
morphometry mapping. Good agreement between CS-derived and fully-sampled whole
lung morphometry maps demonstrates that CS undersampled 3He diffusion-weighted
MRI is suitable for clinical lung imaging studies.

3. Acquisition of whole lung morphometry maps with 129Xe diffusion-weighted MRI
and CS. An empirically-optimised 129Xe diffusion time (∆=8.5 ms) was derived and
129Xe lung morphometry values demonstrated strong agreement with 3He equivalent
measurements. This indicates that 129Xe diffusion-weighted MRI is a viable alternative
to 3He for whole lung morphometry mapping.

4. Implementation of an in vivo comparison of the stretched exponential and cylinder
theoretical gas diffusion models with both 3He and 129Xe diffusion-weighted MRI.
Stretched exponential model diffusive length scale was related to cylinder model mean
chord length in a non-linear power relationship; while the cylinder model mean alveolar
diameter demonstrated excellent agreement with diffusive length scale.

5. Investigation of clinical and physiological changes in lung microstructure with
3He and 129Xe diffusion-weighted MRI. Longitudinal studies with 3He and 129Xe
diffusion-weighted MRI were used investigate changes in lung microstructure in cystic
fibrosis and idiopathic pulmonary fibrosis. Lung inflation mechanisms at the acinar
level were also investigated with 3He and 129Xe diffusion-weighted MRI acquired at two
different lung volumes.
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Chapter 1

Introduction

The potential for imaging pulmonary ventilation with inhaled hyperpolarised gas magnetic
resonance imaging (MRI) was first demonstrated in 1994 with the noble gas isotope xenon-129
(129Xe) in excised mouse lungs [1]. Within a few years, the feasibility of in vivo human
lung imaging with inhaled helium-3 (3He) [2, 3] and 129Xe [4] was demonstrated. Through
advancements in optical polarisation and imaging techniques, hyperpolarised gas MRI has
now become a robust imaging technique used for the functional assessment of various aspects
of lung physiology in a range of pulmonary diseases. One of the most novel and proven
aspects of hyperpolarised gas MRI is its sensitivity to changes in lung microstructure through
the measurement of restricted Brownian gas diffusion. With the development of theoretical
gas diffusion models [5, 6], in vivo measurements of alveolar length scales, that are analogous
to direct histological morphometry measurements, can now be extracted from hyperpolarised
gas diffusion-weighted MR imaging.

The principle goal of this thesis was to develop new techniques to measure and model lung
microstructure with hyperpolarised gas MRI. Specific objectives were:

• The development of a 3D diffusion-weighted MRI sequence to acquire higher resolution
diffusion data in a single breath-hold with hyperpolarised 3He.

• Extend these image acquisition techniques to hyperpolarised 129Xe gas.

• Further development of existing diffusion models to derive in vivo parameters of lung
microstructure, and validation of these quantitative models with both hyperpolarised
gases, and against each other.

This thesis is organised into seven separate chapters. Chapter 2 provides a brief introduction
into the basics of lung physiology with a focus on lung morphometry. A review of the
different techniques used to image lung microstructure is also presented. Chapter 3 covers
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2 Chapter 1. Introduction

the theoretical background of MR physics, hyperpolarised gas MRI, and diffusion-weighted
MRI. These two chapters provide the reader with an overview of the hyperpolarised gas MR
imaging techniques used in the subsequent chapters of original research.

Chapter 4 is the first chapter of original research, and presents a framework for lobar
comparison of lung microstructure measurements derived from computed tomography (CT)
and 3He diffusion-weighted MRI evaluated in an asthmatic cohort. A statistical compari-
son of the lung microstructure metrics between the two imaging modalities for all lobar
regions is implemented.

In Chapter 5 the implementation of the MR imaging acceleration technique of compressed
sensing (CS) for 3D multiple b-value 3He diffusion-weighted MRI is explored. The feasibility
of CS with 3D 3He diffusion-weighted MRI is first investigated through retrospective CS
undersampling simulations. Prospective CS diffusion-weighted MRI datasets are then ac-
quired, and CS-derived whole lung morphometry maps are validated against fully-sampled
measurements to demonstrate the clinical potential of this technique. Finally, the possibility
of a 3D multi-interleaved CS sequence for the simultaneous acquisition of multi-parametric
maps of lung microstructure and function is explored.

Chapter 6 builds upon the 3D CS acquisition techniques introduced in Chapter 5 to acquire
129Xe whole lung morphometry maps in a single breath-hold. A 129Xe diffusion time is
empirically-optimised and benchmarked against 3He measurements. 129Xe lung morphometry
maps derived from two theoretical gas diffusion models are compared against 3He equivalent
measurements to assess the viability of this empirically-optimised diffusion time for 129Xe
whole lung morphometry with different diffusion models.

Chapter 7 presents an in vivo comparison of the stretched exponential and cylinder the-
oretical gas diffusion models in a range of patient groups with the newly developed 3D
3He and 129Xe diffusion-weighted MR imaging sequences. The estimates of alveolar dimen-
sions from each diffusion model are compared to determine possible relationships between
the lung morphometry parameters.

Chapter 8, the last chapter of original research, contains three different clinical and physi-
ological investigations of lung microstructure with 3He and 129Xe diffusion-weighted MRI.
Lung microstructural changes in early cystic fibrosis (CF) lung disease are investigated with
3He diffusion-weighted MRI in a longitudinal study of children with mild CF. In a separate
longitudinal study, a cohort of idiopathic pulmonary fibrosis (IPF) patients are imaged with
3He and 129Xe to investigate if lungs with IPF demonstrate changes in diffusion-weighted
MRI metrics. Finally, 3He and 129Xe diffusion-weighted MRI acquired at two different lung
volumes are used to investigate lung inflation mechanisms at the acinar level.



Chapter 2

Imaging lung microstructure

The purpose of this chapter is to review imaging techniques, across multiple modalities
and length scales, which are used to measure lung microstructure. The imaging modali-
ties of stereology through microscopy, bronchoscopy-based imaging, computed tomography
(CT), and magnetic resonance imaging (MRI) will be covered and their different appli-
cations will be discussed.

2.1 Lung structure and function

The main function of the lungs is to provide efficient gas exchange between airspaces and the
pulmonary vasculature. Gas exchange occurs in the alveoli, where oxygen (O2) diffuses into
capillaries and carbon dioxide (CO2) is removed. The complex structure of the human lung is
optimised for this function, with an effective gas exchange surface area of approximately 130
m2 [7]. The right lung consists of three lobes (upper, middle, and lower) split by right oblique
and horizontal fissures; while the left lung consists of only two lobes (upper and lower, split
by the left oblique fissure), due to the cardiac notch area that accommodates the heart.

2.1.1 Static lung volumes and spirometry

The lung can be characterised by sub-divisions that correspond to four lung volumes and
four lung capacities (Figure 2.1). Tidal volume (TV) is the volume of air between resting
inspiratory and expiratory levels during normal breathing conditions. Inspiratory reserve
volume (IRV) is the maximum volume that can be inspired from resting inspiratory level;
while expiratory reserve volume (ERV) is the maximum volume that can be expired from
resting expiratory level. The vital capacity (VC) is a combination of ERV+TV+IRV, and
represents the total volume that can be inspired or expired. Inspiratory capacity (IC) is the

3



4 Chapter 2. Imaging lung microstructure

total volume that is inspired from resting expiratory level and is the sum of TV and IRV.
All the aforementioned volumes or capacities can be measured with spirometry, the most
commonly used pulmonary function test (PFT). Spirometry also includes the measurement
of forced vital capacity (FVC) and forced expiratory volume after 1 second (FEV1). Forced
spirometry metrics are typically quoted as predicted values or ‘z-scores’, that are derived from
empirical reference equations representing normative values from a representative sample of
healthy subjects with similar characteristics (e.g. age, sex, height, and ethnicity).
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Figure 2.1: Diagram of the different lung volume sub-divisions. A volume-time graph
depicts a typical spirometry test where steady tidal breathing is followed by forced maximum
inspiration and expiration. The majority of sub-divisions can be calculated from this test,
and an alternative test (e.g. body plethysmography) can be used to derive the sub-divisions
of FRC, RV, and TLC.

The remaining lung volume and capacities can be determined from alternative methods,
and are derived from the measurement of functional residual capacity (FRC). FRC is the
volume of the lung at resting expiratory level, and represents the volume at which the elastic
force of the chest wall and elastic recoil of the lungs are equal, and the lung is considered
at equilibrium. Three common techniques used to measure FRC are body plethysmography
(FRCpleth), multiple-breath He dilution (FRCHe), and multiple-breath N2 washout (FRCN2).
In healthy lungs, all three methods show good agreement; however, in obstructive lung diseases,
gas dilution methods (FRCHe and FRCN2) potentially underestimate FRC [8]. FRCpleth is
considered the most accurate method for measuring FRC, and entails the measurement of
thoracic cage gas volume through Boyle’s law. After FRC is determined, the residual volume
(RV) is derived by subtracting FRC with ERV, and represents the volume of gas remaining
after maximum expiration. Finally, total lung capacity (TLC), the volume of the lung after
maximum inspiration, is calculated as the sum of FRC and IC.
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2.1.2 Lung morphometry

The lung airways start at the trachea with a single trunk, and the airways branch according
to a dichotomous pattern [9]. The lung airways consists on average 23 airway generations,
and are separated into two main zones: the conducting zone containing airways up to
the 14th generation, and the transitional and respiratory zone where gas exchange occurs
(Figure 2.2). The conducting zone does not participate in gas exchange and has little
air volume (∼150 ml); in contrast, the transitional and respiratory zones represent over
90% of the lung air volume [10]. Typical adult lung morphometric data for each airway
generation is summarised in Figure 2.2.
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Figure 2.2: Weibel model of human lung airways with associated airway dimensions for an
average adult lung volume of 4800 ml at 3/4 maximum inflation [9]. Adapted from Weibel
[7].

The transitional and respiratory zones start with the respiratory bronchioles and the distal
structural unit of the lung that participates in gas exchange is defined as the pulmonary acinus
(Figure 2.3a). The morphometry of the acinus was characterised with silicone rubber casts of
adult lungs by Haefeli-Bleuer and Weibel [11], and a summary of typical pulmonary acinus
morphometric data is presented in Table 2.1. The volume of an average adult lung acinus
is 185 mm3. The inner diameter of intra-acinar airways range from 270 to 500 µm; while
the outer diameter is relatively constant at ∼700 µm for all acinar airway generations [11].
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Alveoli first appear on respiratory bronchioles and increase in number with each subsequent
airway generation, until the airways terminate into alveolar sacs that consist entirely of
alveoli (Figure 2.3b). The mean diameter of an alveolus, equivalent to the inner diameter
of the alveolar sacs, is found to be approximately 250 µm [9, 11]. The number of alveoli
in both lungs was initially determined to be ∼300 million across a range of lung volumes
[9]; however, more accurate counting methods have determined that number to be closer
to 480 million and related to lung volume [12].
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TB

500 µm

(a)
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Figure 2.3: Scanning electron micrograph of human acinus. (a) The terminal bronchioles
(TB), the terminal conducting airways, branch into respiratory bronchioles (RB). Airways
distal to RB are surrounded by alveoli and form the pulmonary acinus. (b) Scanning electron
micrograph of an alveolar sac (AS). The approximate equivalent area is denoted by the red
rectangle in (a). The alveolar sac consists of an alveolar duct (AD) that is surrounded by
multiple alveoli (A). Each alveolus can be characterised by a depth (d) or diameter (2r), and
both parameters are on average ∼250 µm. Adapted from Weibel [7].

Table 2.1: Summary of pulmonary acinus and intra-acinar airway morphometric data. Data
derived from [11] and [12].

Morphometric parameter Mean ± SD

Acinus Volume (ml) 0.185 ± 0.079

A
ci
nu

s
du

ct
a Length (µm) 730 ± 258

Outer diameter (µm) 699 ± 122
Inner diameter (µm) 323 ± 60

A
lv
eo
la
r

sa
c

Length (µm) 1012 ± 323
Outer diameter (µm) 656 ± 127
Inner diameter (µm) 251 ± 40

Number of alveoli (millions) b 240 ± 89
a Acinar airway duct includes the respiratory bronchioles and alveolar ducts
b Mean alveoli number for a single lung
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2.1.3 Lung stereology

Lung stereology is the gold standard for measuring lung morphometry, and is based on
histological methods and mathematical foundations. Stereology utilises unbiased tissue
sampling and assumption-free methods to quantify lung microstructure through the analysis
of 2D representative samples of the 3D lung tissue structure with light or electron microscopy.
Excised lung tissue samples are typically prepared for histological measurements by a series of
lung fixation, tissue processing, embedding and staining methods that ensures the sample is
adequate for quantitative analysis [13]. Stereological parameters that describe lung structure
are well established, and provide quantitative data on lung microstructure such as the
morphometry of the pulmonary acinus [9, 11, 14, 15].

Commonly used or ‘standard’ stereology parameters that characterise lung morphometry
are mean linear intercept (chord) length (Lm), parenchyma surface-to-volume ratio (S/V ),
and alveoli number density (Na) [16]. Lm is defined as the mean length of segments
or ‘chords’ along random test lines between sequential alveolar wall intersections (Figure
2.4). Lm can be estimated either directly through the frequency distribution of inter-
cepts from random test lines, or indirectly by counting the number of intersection points
[17]. The entire airspace is characterised with Lm, and is related to the estimated volume
and surface area of the airspace by:

Lm = 4Va
Sa

(2.1)

where Va is the volume of the airspace that includes the alveoli and alveolar ducts, and
Sa is the surface area of the alveoli.

Figure 2.4: Estimation of mean linear inter-
cept length (Lm) based on intercept distribution.
Random test line segments (solid line) are fol-
lowed by a guard line (dashed line). Each time
the test line intersects the alveolar wall, the dis-
tance (chord length) to the next wall is measured.
Double-headed arrows correspond to boundaries
of measurements within the alveolar airspace (A)
or ductal airspace (D). Reproduced from Knud-
sen et al. [17].

The estimation of Lm provides a rapid and reliable method to assess chronic obstructive
pulmonary disease (COPD) or emphysema [18, 19]. However, Lm only represents airspace
enlargement, and does not necessarily reflect the underlying geometry of alveolar structures
which may change with lung physiology (e.g. inflation) [17]. Lm may therefore be unsuitable
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for distinguishing between emphysema and other conditions, such as healthy ageing lung, for
which increased Lm has been reported [20]. In more recent stereological analyses, alveolar
surface area is used in conjunction with Lm to quantify emphysema airspace enlargement
and alveolar wall destruction [21, 22]. Even though lung stereology is considered the gold
standard for quantifying lung morphometry, the histological foundation prevents in vivo
whole lung or volumetric measurements of lung morphometry. This limitation is one of the
motivations for the development of non-invasive imaging techniques for in vivo volumetric
measurements of lung morphometry.

2.2 Imaging techniques

2.2.1 Optical coherence tomography

Optical coherence tomography (OCT) is an optical tomography technique that uses optical
interferometry to visualise the airway microstructure at near histological level resolution in
real-time [23–25]. The advantages of OCT include no exposure to ionising radiation and
high spatial resolution. OCT can acquire subsurface mucosa images of 1–15 µm resolution
with a depth penetration of 2–4 mm by directing a near-infrared light beam onto the target
tissue and capturing the back-scattered light from the tissue [23]. The amount of back-
scattered light varies for different tissues; this allows interferometry to resolve the light
signals and differentiate layers of tissue.

Figure 2.5: Fifth-generation airways im-
ages obtained using CT and OCT. Images
(A, C) were obtained from a normal subject
(FEV1 118% predicted), and (B, D) were
obtained from a subject with FEV1 52%
predicted. The percentage of airway wall
area measured using CT (A, B) is 5% differ-
ent, while with OCT (C, D) the difference
was 29%. Reproduced with permission from
Coxson et al. [26]. Copyright American Tho-
racic Society.

Clear images of small airways, unresolved in advanced CT scanners, can be obtained with
OCT. In Coxson et al. [26], airway wall dimensions were obtained with OCT to monitor
airway wall changes in COPD and asthma. Airway wall dimensions, such as airway wall
and lumen area, in medium to large airways were shown to correlate well with CT and
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lung function tests. In fifth generation airways, OCT was superior to CT in measuring
the difference in airway wall thickness [26] (Figure 2.5). More recent advancement in OCT
techniques involving needle probes have been used to image alveoli, with image resolutions
of ∼12 µm [27]. The imaging of individual alveoli was not previously feasible due to low
image resolution and alveoli access limitations. McLaughlin et al. [27] imaged the alveoli of
excised rat and fetal lamb lungs with this technique, and good matching with corresponding
histological sections was observed (Figure 2.6). In the same work, dynamic OCT images
were also acquired with OCT needle probes, allowing the tracking of individual alveoli in
simulations of lung inflation and deflation.

Figure 2.6: 3D visualisation of fetal lamb lung
with OCT needle probes showing alveoli and
bifurcation of bronchioles. Reproduced from
McLaughlin et al. [27].

Optical coherence tomography is a local microscopy technique that provides partially-invasive
high resolution, real-time in vivo images of lung microstructure as an alternative to lung
stereology. However, its limited optical penetration depth and lack of volumetric imaging
restricts the more widespread use of OCT in research and clinical settings.

2.2.2 Computed tomography

Computed tomography (CT) is a non-invasive imaging technique developed in the early
1970s, and its invention is credited to Hounsfield [28] and Cormack [29]. The first prototype
CT scanner, developed by Hounsfield [28] in the UK, acquired images with a 80×80 pixel
resolution in a 4–5 minute examination. Modern scanners such as multi-detector row CT
(MDCT) can now acquire high resolution 3D images of the lungs within a single breath-hold.
Reconstructed CT images represent the linear attenuation coefficient map or densitometry of
the scanned subject. The amount of x-rays absorbed by the lung tissue is directly proportional
to its density, and provides excellent contrast in CT images. CT is currently considered the
clinical gold standard imaging modality for structural assessment of the lungs; however, the
ionising radiation dose (standard CT ∼8 mSv; low dose CT ∼1.5 mSv [30]) can limit its use in
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longitudinal pulmonary studies. Healthy lung tissue has a mean value of approximately -800
HU [31, 32], and changes to the density distribution can be indicative of structural changes
in the lung tissue due to disease. The enlargement of airspaces and destruction of alveolar
walls can be detected through changes in CT attenuation values [33].
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HU15%
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15%

Expiratory CT (HU)

-1000
-856
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Figure 2.7: Representative densitometry attenuation curves from inspiratory and expiratory
CT. (a) Common inspiratory CT metrics are: mean HU (HUinsp); percentage of voxels with a
value less than -950 HU (RA950); 15th percentile cut-off point corresponding to 15% of voxels
with the lowest density (HU15%). Example inspiratory CT image from a COPD patient with
regions of emphysema (red arrows). (b) Common expiratory CT metrics are: mean HU
(HUexp); percentage of voxels with a value less than -856 HU (RA856). Example expiratory
CT image from a COPD patient with evidence of gas trapping (yellow arrows).

A primary application of pulmonary CT imaging is therefore lung parenchyma density
analysis for emphysema evaluation [34–36]. Common methods for quantifying emphysema
from inspiratory and expiratory CT (see Figure 2.7) include: mean lung density, emphysema
index with -950 HU threshold [37], lowest 5th percentile [35] or 15th percentile [38], and gas
trapping index at -856 HU in expiratory CT images [39]. The quantification of lung surface
area from CT tissue density is an alternative method to quantify emphysema, and shows good
correlation with histological estimations allowing for the monitoring of emphysema progression
[40]. Fractal analysis are computer-based, texture methods that use complex metrics to
differentiate normal lung from emphysematous regions, and are capable of detecting early
emphysema by measuring size of regional airspace enlargement [36, 41]. COPD phenotypes
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can be differentiated using CT-based parametric response mapping (PRM) derived from
CT attenuation maps providing information of COPD disease distribution within the lungs
[42]. Inspiratory and expiratory CT volumes are registered and each image voxel is classified
by specific expiration and inspiration thresholds.

The development of CT analysis software packages (e.g. VIDA Diagnostics (Coralville,
IA, USA) and CALIPER (Mayo Clinic, Rochester, MN, USA)) have enabled automated
segmentation of the lungs for density and airway analysis. With MDCT, the 3D airway tree
down to the sixth generation can be visualised and quantified. Airway wall area percent and
lumen area significantly correlates with FEV1, and stronger correlations are observed in the
more distal airways [43]. Quantitative assessment of lungs with interstitial lung disease (ILD)
is challenging due to the complex morphological patterns of ILD. Through the development
of automated analysis tools, the different radiological patterns of ILD can be characterised
reliably for longitudinal monitoring of disease progression [44, 45].

CT densitometry analysis can however be influenced by factors that may affect the accuracy of
disease analysis. In Soejima et al. [46], CT evaluation of emphysema was shown to be altered
by age, lung remodelling and smoking-related inflammation effects. Scanning parameters such
as radiation dose and slice thickness have also been shown to affect attenuation values and
densitometry distribution curves [47, 48]. Lung volume can additionally influence densitometry
analysis; where correlations between CT measurements and PFTs are stronger for expiratory
CT volumes than for inspiratory due to the appearance of abnormal permanent enlargements
of airspaces at the smaller lung inflation state [49–51].

2.2.3 Micro-CT

Even with the advancements in CT scanner technology, the smallest airways visualised with
high resolution in vivo CT of human lungs are 1.5–2 mm in size [52], corresponding to
approximately the seventh to ninth generation of airways [9]. Studies of distal airways or
acinus morphometry have therefore been restricted to silicone rubber casts of the lungs [11]
or through 3D mathematical models of the human acinus [53–55]. These models simulate
the acinar structure through an airway-tree growing algorithm and compare well with lung
morphology obtained from histology. The emergence of micro-CT technology allows 3D lung
structures to be imaged at a resolution of 5 µm [56]. At this resolution, previously unseen
lung microstructure, such as the 3D acinus structure (Figure 2.8), can be imaged [57, 58].

Micro-CT imaging provides an alternative method for the assessment of pulmonary acinus and
parenchyma morphometry. With mice lungs, morphometric measurements from micro-CT
were validated against conventional histology, and comparable measurements were obtained [59,
60]. The additional 3D information of micro-CT enables 3D visualisation and quantification of
the acinus that is not possible with histology. Micro-CT has been used to quantify emphysema
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Figure 2.8: Pulmonary acinus imaged with micro-CT. (A) Axial slice with a voxel size of 4
µm3 with a terminal bronchiole (red star). (B) The micro-CT data was converted into binary
images and the acinus was then segmented from the volume data set (C). Reproduced with
permission from Litzlbauer et al. [58]. Copyright John Wiley and Sons.

in mice [61, 62] and human lungs [63, 64]. Mouse lungs can be imaged in vivo; however, due
to their size, human lungs are currently imaged from excised lung specimens.

(a) (b)

1 cm 1 mm

Figure 2.9: Images from an explanted idiopathic pulmonary fibrosis (IPF) lung that
demonstrates overt cyst formation and honeycombing. (a) CT image with a distorted region
(circle) with inlying cysts along a blood vessel. (b) Micro-CT image of the circled CT region
shows a large area of increased attenuation containing multiple cysts. Reproduced with
permission from Mai et al. [65]. Copyright Radiological Society of North America.

Micro-CT imaging is typically used in conjunction with in vivo MDCT, and has been used
to investigate the relationship of small airways and emphysematous destruction in COPD
[66–68]. In early stage COPD, a decrease in the number of small airways (∼2 mm diameter)
was observed with CT, alongside a reduction in cross-sectional surface area of terminal
bronchioles with micro-CT. This loss and narrowing of small airways was also shown to
precede emphysematous destruction in early COPD. Other studies with micro-CT and
MDCT imaging have investigated morphometric changes in end-stage cystic fibrosis [69]
and idiopathic pulmonary fibrosis [65] (Figure 2.9).
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Micro-CT imaging is currently limited by resolution, respiratory artefacts (for in vivo imag-
ing), and poor signal-to-noise ratio (SNR). In small animals, computer-controlled respiratory
gating can facilitate the acquisition of in vivo micro-CT images [70]. With more advance-
ments in micro-CT technology, there is potential for in vivo imaging of human lungs in
the near future, but the increased radiation dose needed for high resolution imaging will
always be a limitation of this modality.

2.2.4 Magnetic resonance imaging

Conventional proton (1H) magnetic resonance imaging (MRI) detects subtle changes in the
nuclear spin of hydrogen atoms in an applied magnetic field, and provides high contrast
imaging without the use of ionising radiation. MRI was first proposed as a medical imaging
diagnostic tool in 1971, when mouse tumours were discovered to exhibit different relaxation
times when compared to normal tissue [71]. For an overview of the theoretical background
of MR image acquisition, the reader is referred to Section 3.2.

1H MR imaging of the lung is relatively difficult, when compared to other organ systems,
due to the inherent low tissue density of the lungs (0.1–0.2 g/cm3), translating to low MR
signal [72]. Imaging can be further complicated by cardiac and respiratory motion, and the
bulk magnetic susceptibility difference observed at lung-air interfaces due to paramagnetic
oxygen in air and diamagnetic tissue. This susceptibility difference creates microscopic
inhomogeneous magnetic field gradients at the surfaces of airways and alveoli, causing a
very short apparent transverse relaxation time (T ∗2 ). A T ∗2 value of ∼2 ms [73] has been
observed at B0 = 1.5 T, with an even shorter T ∗2 of ∼0.5 ms [74] found at B0 = 3 T due
to the increase in magnetic field inhomogeneity. Therefore, MRI sequences with short echo
times (TE<1–2 ms) are required to image the lung parenchyma [72].

While CT is considered the gold standard when it comes to measuring lung tissue density,
techniques have been developed to quantify regional proton lung density from MR images
to reduce ionising radiation exposure. Lung proton (water) density is calculated in each
image voxel by relating the voxel signal with the signal of a water phantom [75, 76]. Lung
proton density calculated from MRI is shown to linearly correlate with CT signal in a study
of canine lungs, indicating its potential as an alternative to CT tissue density [77]. Lung
proton density reflects the tissue and blood content of the lung, however, is influenced by coil
inhomogeneity and T ∗2 decay [78]. T ∗2 in the lung is shown to vary considerably with lung
volume (1.2 ± 0.1 ms at total lung capacity when compared to 1.8 ± 0.2 ms at functional
residual capacity); therefore T ∗2 correction of MR signal is required for accurate quantification
of lung density [78]. Maps of lung proton density can also be generated from fitting multiple
MR images, obtained with different inversion times, to the inversion recovery signal equation
[79]. From these density maps, mean, 15th percentile and relative lung area below a threshold
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were determined in healthy and COPD subjects, and compared to equivalent CT metrics.
MRI and CT measures were strongly correlated and suggests lung MR signal mapping is
a viable alternative to CT for emphysema assessment.

Figure 2.10: Comparison of 3D UTE lung slices with HRCT. (a) Axial and sagittal slices of
HRCT. (b) 3D UTE images. (c) Second echo of UTE sequence (TE = 2.1 ms). Both HRCT
and 3D UTE show similar fibrosis patterns, which is not seen in the longer echo MRI slices.
Reproduced with permission from Johnson et al. [80]. Copyright John Wiley and Sons.

The short T ∗2 of lung is a significant constraint in pulmonary MR imaging, however, sequences
with radial trajectories can reduce echo times and minimise some of this T ∗2 dephasing effect
[81]. Ultra-short echo time (UTE) sequences with TE<0.1 ms can increase lung MRI signal
such that the tissue density contrast is comparable to that of CT. In UTE, the data acquisition
can start without delay after the RF pulse during the ramping up of the gradient [82]. These
acquisition strategies enable UTE sequences to have very short echo times and significant
improvement in pulmonary image quality is observed (Figure 2.10) [80]. UTE-derived tissue
density measurements are shown to agree with CT tissue density in healthy subjects [83],
and patients with emphysema or COPD [84, 85]. Imaging of neonatal lungs is also possible
through free-breathing UTE acquisitions with retrospective gating [86], and UTE-derived
tissue density are also in good agreement with CT measures of tissue density [87].
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2.2.5 Hyperpolarised gas MRI

The inhalation of hyperpolarised noble gas isotopes (3He and 129Xe) enables functional
assessment of pulmonary ventilation, structure, and gas exchange (see Section 3.3). Noble
gas isotopes have low MR signal at thermal equilibrium, but their signal can be enhanced up
to five orders of magnitude larger through optical polarisation techniques [88]. One of the
most powerful and proven aspects of hyperpolarised gas MRI is its sensitivity to gas diffusion
through random Brownian motion of the inhaled hyperpolarised gas atoms. The free diffusion
coefficients of 3He and 129Xe in air (at atmospheric pressure and standard temperature) are
0.86 cm2/s and 0.14 cm2/s, respectively [89]. Over a time-scale of several milliseconds, 3He
and 129Xe gas atoms can travel ∼1 mm. In the lungs, where the alveoli are the smallest
restricting structure with a diameter of ∼0.2 mm [9], the gas atoms can encounter the alveolar
tissue walls multiple times. The confinement by the alveolar walls leads to gas diffusion
restriction and the measured apparent diffusion coefficient (ADC) is hence reflective of the
underlying alveolar dimension and sensitive to changes in lung microstructure.

The first hyperpolarised gas diffusion measurements with 3He were reported for healthy
volunteers at 1.5 T, where a mean ADC of around 0.25 cm2/s was obtained [90]. Further
studies in healthy volunteers obtained a similar mean 3He ADC of ∼0.2 cm2/s [91, 92].
In these same studies, lungs with emphysema were demonstrated to have approximately
2.5 times larger mean 3He ADC (∼0.5 cm2/s [91, 92]), indicating good sensitivity to lung
tissue destruction (Figure 2.11). In emphysematous lungs, ADC is shown to significantly
correlate with pulmonary function tests (FEV1 [92, 93], diffusing capacity of the lung for
carbon monoxide (DLCO) [94, 95]), and established metrics of emphysema from CT (mean
lung density [95], and emphysema index [93]). Crucially, ADC demonstrates significant
correlation with histologically-derived mean linear intercept [96, 97], and surface area to
lung volume ratio [96]. Subsequent hyperpolarised gas diffusion studies have utilised 3He
ADC to elucidate early emphysematous changes in smokers [94, 98], bronchodilator effects
in severe COPD [99], postural and anatomical gradients within the lung [100], and changes
related to lung growth [101], ageing [102], lung inflation [103–105], asthma [106], radiation
induced lung injury [107] and pulmonary fibrosis [108].

Studies with hyperpolarised gas diffusion-weighted MRI have predominately utilised 3He over
129Xe due to its higher gyromagnetic ratio translating to approximately a three-fold MR
signal advantage in equivalent experimental conditions. However, with the shortage and rising
cost of 3He gas [110], recent hyperpolarised gas MRI research has focused on the transition
from 3He to the more cost-effective 129Xe gas. In vivo 129Xe ADC values in healthy subjects
lungs (0.035–0.040 cm2/s) [111–113] are 5–6 times smaller than the respective 3He ADC value,
reflecting the lower diffusivity of the 129Xe gas. In patients with emphysema, 129Xe ADC is
elevated with global values of ∼0.055 cm2/s reported [113, 114]. Other studies with 129Xe
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Figure 2.11: Single slice 3He ADC map and corresponding whole lung histogram from a
healthy subject and emphysema patient. Higher ADC values observed in the emphysema
patient reflect increased 3He diffusion due to lung microstructure damage. Reproduced with
permission from Wild et al. [109]. Copyright Springer Nature.

ADC have demonstrated significant correlation with histology [115], and elevated ADC in ex-
smokers with COPD [116]. Importantly, 129Xe ADC demonstrates excellent linear correlation
with 3He ADC in subjects across a range of microstructural length scales [116–118].

All the aforementioned hyperpolarised gas diffusion-weighted MRI studies have utilised short
diffusion times (3He ∆<2 ms; 129Xe ∆<10 ms) corresponding to a theoretical free diffusion
length of less than 1 mm; enabling the diffusion MR experiment to probe a single acinar
airway. It is however possible with longer diffusion times to probe diffusion length scales
in the lungs associated with inter-acinar connectivity and disease processes that lead to
different gas mixing and wash-out times. The problem with longer diffusion times in the
order of tens of milliseconds is that T ∗2 decay (T ∗2 ∼25 ms for both 3He and 129Xe in the
lungs at 1.5 T [119, 120]) can significantly attenuate the MR signal before application of
the second diffusion gradient pulse. Various pulse sequences have been proposed to address
this that involve storing the diffusion-encoded magnetisation in the longitudinal direction
(T1 ∼20 s in the lungs [121]), such that measurements of long time scale diffusion can be
made [122–126]. In all these studies, the reported ADC values were approximately an order
of magnitude less than those measured with short diffusion times. Long time scale diffusion
measurements are thought to be more representative of inter-acinar connectivity rather than
alveolar morphometry in short diffusion time experiments [127]. Preliminary comparisons of
short and long time scale diffusion measurements suggest there may be difference in sensitivity
to diseases that affect different aspects of lung microstructure [106].
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Theoretical models of hyperpolarised gas diffusion

The average ADC value over the lung is clearly an indicator of mean alveolar size and hence
disease severity in the case of emphysema. However, the diffusion regime of hyperpolarised
gases in the lungs results in a non-Gaussian phase dispersion and non-mono-exponential
signal decay that is not accounted for in the calculation of ADC. The non-Gaussian dispersion
causes difficulties when extracting quantitative information about lung microstructure from in
vivo diffusion-weighted MR imaging, and as such there is no direct one-to-one correspondence
between measured ADC value and histological lung morphometry parameters. Theoretical
models of gas diffusion have been proposed to extract lung morphometry measurements from
the diffusion MR signal. To date, only cylindrical geometrical models [5, 128], stretched
exponential models [129], and q-space transforms [130] have been used to provide in vivo
estimates of alveolar length scales from hyperpolarised gas diffusion measurements akin
to those obtained from histology. A fundamental requirement for the application of these
models is that multiple (>2) b-value diffusion measurements are acquired to sufficiently
sample the non-mono-exponential diffusion signal.
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Figure 2.12: Example healthy subject and COPD patient 3He lung morphometry maps of R,
h, and mean linear intercept (Lm) derived from the cylindrical geometric model. Reproduced
with permission from Wild et al. [109]. Copyright Springer Nature.

The first reported in vivo measurements of lung geometrical parameters at the acinar level were
by Yablonskiy et al. [5] using a theoretical analytical model of infinitely long cylinders based
upon the Weibel model of airway geometry (see Section 3.5.2). Multiple b-value measurements
were used to estimate alveolar duct diameters from a model of anisotropic diffusion in healthy
subjects and emphysema patients (Figure 2.12). The cylindrical geometrical model was
subsequently updated to permit the evaluation of lung morphometry parameters (mean linear
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intercept (Lm), surface-to-volume ratio (S/V ), and alveoli density (Na)) from acinar airway
radii (R) and alveolar depth (h) parameters [6, 128] (see Figure 3.26 for a schematic of
cylinder model parameters). Lm measurements derived from 3He diffusion MRI have been
found to be strongly correlated with histological measurements of Lm in specimens of healthy
and emphysematous lungs [6]. Various groups have since used this model to study changes in
lung microstructure associated with smoking-related early emphysema [131, 132], age [133],
lung inflation [134], and adult lung growth [135]. More recently, the cylindrical geometry
model was adapted for 129Xe [136], and 129Xe lung morphometry parameters were comparable
to 3He and demonstrated in healthy volunteers and COPD patients [137–139].

An alternative theoretical model of hyperpolarised gas diffusion signal behaviour in the
lungs is the stretched exponential model [129, 140, 141] (see Section 3.5.2 for more details).
This mathematical model does not include any assumptions about the lung geometry to
derive in vivo estimates of alveolar length scales. In the stretched exponential model, a
probability distribution of diffusive length scales is derived, representative of the distribution
of microscopic dimensions of the airways (i.e. the diffusion-restricting boundaries) contained
within a given voxel. The shape of this distribution is comparable to that of intercept
lengths measured in histology, and is used to derive a mean diffusion length scale (LmD).
Example stretched exponential model data is presented in Figure 2.13. The first in vivo
LmD values were reported in a population of asthmatic subjects, and LmD was shown to
significantly correlate with %-predicted functional residual capacity (FRC) measurements
from spirometry, in addition to mean CT density [129].
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Figure 2.13: Example healthy subject and COPD patient 3He parameter maps of effective
distributed diffusion coefficient (DDC), heterogeneity index (α) and mean diffusion length
scale (LmD) derived from the stretched exponential model. Reproduced with permission
from Wild et al. [109]. Copyright Springer Nature.
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Global spectroscopic measurements of hyperpolarised gas diffusion can also provide an alterna-
tive means to obtain lung microstructural information. At the expense of spatial information,
diffusion-weighted spectroscopy experiments offer shorter acquisition times and require less
hyperpolarised gas than the imaging-based methods discussed above, and therefore may be
ideally suited for longitudinal monitoring of paediatric patients. Multiple b-value diffusion-
weighted spectroscopy data can be analysed using q-space theory [142] to derive displacement
probability profiles and root-mean-square displacements (Xrms1 and Xrms2) in healthy chil-
dren and adults, and COPD patients [130]. Xrms1 and Xrms2 correspond to two different
diffusion length scales in the lung, and both values correlated well with age and conventional
ADC measurements, suggesting that these displacements may be similarly sensitive to lung
microstructural changes. q-Space was used in a study of alveolarisation in children, and Xrms

results suggested that neo-alveolarisation occurs through childhood [143, 144]. However, due
to the long diffusion times (>5 ms) used, the 3He atoms are sampling structures beyond the
alveoli. Therefore the validity of the Xrms results need to be further demonstrated. Recent
developments in 3He MR q-space imaging have utilised an under-sampled radial stack-of-stars
acquisition to obtain 3D spatially resolved maps of Xrms [145].

2.3 Conclusion

Multiple imaging modalities and techniques can been used to measure lung microstructure
across a range of resolutions from a single alveolus to whole lung coverage. Hyperpo-
larised gas MRI, a non-invasive and non-ionising radiation technique, is of particular interest
to this work, and the development of new hyperpolarised gas MR imaging techniques is
the emphasis of subsequent chapters.





Chapter 3

Theoretical background

This chapter covers the theoretical background of the experimental work presented in the
subsequent chapters, and is divided into five sections: nuclear magnetic resonance (Section
3.1), magnetic resonance imaging (MRI) (Section 3.2), hyperpolarised gas MRI (Section 3.3),
sub-Nyquist imaging (Section 3.4) and diffusion-weighted MRI (Section 3.5). The majority
of material is derived from the following textbooks [146–150].

3.1 Nuclear magnetic resonance

The physical phenomenon of nuclear magnetic resonance (NMR) was first observed and
measured by Rabi [151] in 1938, and this work was expanded upon by Bloch [152] and Purcell
[153] in 1946 where the effects of spin precession in a magnetic field were quantified. This
section aims to provide an overview of the fundamentals of NMR theory.

3.1.1 Spin and polarisation

Spin angular momentum or spin is an intrinsic property of all nuclei, and the detection of
this nuclear spin within a magnetic field forms the principle of NMR. The overall spin of an
atomic nucleus is given by its spin quantum number (~I) and is dependent on the number
of protons and neutrons within the nucleus. Atomic nuclei, such as 1H, 3He, and 129Xe,
that have non-zero nuclear spin (~I > 1/2) are suitable for NMR. At ground state, nuclei
with non-zero spin have an associated magnetic moment (~µ):

~µ = γ~~I (3.1)

where γ is the gyromagnetic ratio that is unique to each nuclei, and ~ is the reduced Planck’s
constant (h/2π). When observed along an arbitrary axis (z) associated with an applied

21
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magnetic field ( ~B = B0ẑ), the spin quantum number (Iz) can have 2I + 1 values or levels
ranging from −I to +I. In the absence of an external magnetic field, these levels are degenerate
because each level is energetically equivalent and equally populated. This degeneracy is lifted
when spins interact with an external magnetic field ~B, and the energy levels are separated
according to the Zeeman interaction. The Hamiltonian H (energy) operator describing this
interaction for a constant B0 along the z-axis:

H = −γ~B0Iz (3.2)

The difference in energy (∆E) between each level is therefore given by:

∆E = γ~B0 = ~ω0 (3.3)

where ω0 is the Larmor frequency:

ω0 = γB0 (3.4)

From a quantum mechanics perspective, the Larmor frequency corresponds to the photon
frequency associated with the transition between energy levels. For a spin-1/2 nucleus (e.g.
protons), spins experience two energy levels due to the Zeeman interaction (Figure 3.1),
corresponding to ‘spin-up’ Iz = +1/2 and ‘spin-down’ Iz = −1/2 levels.

Figure 3.1: Energy level diagram for spin-1/2
nucleus (with a positive gyromagnetic ratio) ex-
periencing a Zeeman interaction due to a mag-
netic field B0. The energy separation between
the levels is given by ∆E = γ~B0, corresponding
to a larger relative spin population in the lower
energy ground state (m = +1/2).

m = -1/2

m = +1/2

ΔE

B0

When an ensemble of nuclei with quantum number Iz = m at thermal equilibrium is
considered, the Boltzmann law of statistical mechanics states that the populations (Pm) of
the different energy levels (Em) are proportional to:

Pm ∝ exp(−Em/kT ) = exp(γ~mB0/kT ) (3.5)

where k is the Boltzmann constant, and T is the temperature. The net magnetisation of a
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sample containing N spins per unit volume can be described by:

M = Nγ~

I∑
m=−I

m exp(γ~mB0/kT )

I∑
m=−I

exp(γ~mB0/kT )
(3.6)

At room temperature, the energy difference ∆E is over five magnitudes smaller than
the Boltzmann energy (kT ), therefore, a linear expansion of Equation 3.6 can be
performed to derive:

M = Nγ2~2I(I + 1)
3kT B0 (3.7)

For a spin-1/2 nucleus, the net magnetisation can be simplified to:

M = Nγ2~2

4kT B0 = NµP (3.8)

where µ is γ~/2 (Equation 3.1), and P is the Boltzmann polarisation that describes the
population difference between the two energy levels. Protons, therefore have very small
polarisation at thermal equilibrium (P ∼ 5×10−6), but the net magnetisation is compensated
by the large proton spin density within water (6.7× 1022 atoms/cm3). In the case of a gas
at room temperature, such as 3He and 129Xe, the spin density is three orders of magnitude
lower (2.7× 1019 atoms/cm3 [88]), and therefore techniques such as ‘hyperpolarisation’ are
used to increase their net magnetisation for the purposes of MRI (see Section 3.3.1).

3.1.2 Excitation and relaxation

Excitation and rotating frame

A nuclear spin, with an associated magnetic moment (~µ), in the presence of a magnetic field ~B

will experience a torque (τ) that results in a change in microscopic angular momentum:

τ = d~I

dt
= ~µ× ~B (3.9)

When Equation 3.9 is combined with Equation 3.1, the equation of motion of a spin is:

d~µ

dt
= γ~µ× ~B (3.10)

In the semi-classical description of magnetisation, the change of macroscopic angular momen-
tum is described by the net magnetisation vector ~M , a sum of all magnetic moments
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per unit volume, to derive:

d ~M

dt
= γ ~M × ~B (3.11)

Equation 3.11 can be considered in a rotating coordinates system, where the static lab-
oratory frame (x, y, z) rotates at an angular frequency ω, and is denoted by primed
coordinates (x′, y′, z′):

∂ ~M

∂t
= γ ~M × ~Beff = γ ~M × ~B + ω

γ
(3.12)

In a static magnetic field along the z-axis ( ~B = B0ẑ), if ω = ω0 = −γ/B0, the effective field
Beff disappears, and the magnetisation ~M is constant. This indicates that, with respect to
the laboratory frame, ~M precesses at the Larmor frequency (Equation 3.4).

A radiofrequency (RF) pulse with a frequency (ω), will create an oscillating magnetic field ~B1

in the perpendicular direction to B0. The application of the RF pulse will displace the magneti-
sation vector from the z-axis by an angle α. This angle is the flip angle, and is given by:

α = ωt = γ ~B1t (3.13)

The total magnetic field is now a sum of the static field B0 along z-axis and the
rotating field ~B1:

~B = B1(cosωt x̂− sinωt ŷ) +B0ẑ (3.14)

If the rotating frame system is chosen such that B1 is static along the x′ direction,
Equation 3.12 becomes:

∂ ~M

∂t
= γ ~M × ~Beff = γ ~M × [(B0 −

ω

γ
)ẑ′ +B1x̂

′] (3.15)

Equation 3.15 indicates that, in the laboratory frame, in the presence of a static (B0) and
rotating (B1) magnetic field, the magnetisation precesses around both fields (Figure 3.2a).
Within the rotating frame, when ω = ω0 this is called on resonance, and the effective
magnetic field is reduced to B1x̂

′ and ~M rotates around x̂′ at a frequency ω1 (Figure
3.2b). When ω 6= ω0, off resonance behaviour occurs, and the effective longitudinal (ẑ′)
field in the rotating frame is non-zero (B0 − ω/γ), and the magnetisation precesses around
Beff at an effective frequency (ωeff ).
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Figure 3.2: Evolution of the nuclear spin magnetisation in the presence of a longitudinal
static field B0, and transverse rotating field B1 when ω = ω0 or on resonance. (a) In the
laboratory frame, the magnetisation vector M precesses simultaneously about B0 at ω0, and
B1 at ω1. (b) In the rotating frame, where a rotation about the z-axis is set to −ω, the
fields B0 and B1 are stationary, and the magnetisation M precesses about B1 (aligned to
the x′-axis) at ω1.

Relaxation and Bloch equations

Equation 3.15 suggests that after the application of a RF pulse, the net magnetisation vector
( ~M) is displaced from equilibrium and precesses indefinitely; however, in reality, the net
magnetisation is returned to its equilibrium state through relaxation processes. Within a
static magnetic field pointing along the z-axis ( ~B = B0ẑ), Equation 3.11 can be modified
to include relaxation processes to form the Bloch equation [152]:

d ~M

dt
= γ ~M × ~B + 1

T1
(M0 −Mz)−

1
T2

~Mxy (3.16)

This equation describes the relationship between parallel or longitudinal (Mz), and perpen-
dicular or transverse ( ~Mxy) magnetisation components, and two relaxation parameters (T1

and T2) related to the interaction of spins with the surrounding lattice and with each other,
respectively. From Equation 3.16, the rate of change in longitudinal magnetisation (Mz)
is characterised by the spin-lattice relaxation time, T1:

dMz

dt
= 1
T1

(M0 −Mz) (3.17)

The solution for Equation 3.17 is in the form of an exponential growth that describes the
change in longitudinal magnetisation from initial value, Mz(0), to equilibrium value, M0:

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) (3.18)



26 Chapter 3. Theoretical background

where after a duration T1, the initial longitudinal magnetisation has recovered to approx-
imately 63% of the equilibrium M0.

The individual spins in the transverse plane experience local magnetic fields that are a
combination of the external (B0) applied field and the fields created by neighbouring spins.
Each spin experiences a slight variation in local fields that leads to different local precession
frequencies, and causes spin isochromats to disperse and dephase in coherence over time
leading to a reduction of net transverse magnetisation. The overall rate of reduction is defined
as the spin-spin relaxation time, T2, and is described by:

d ~Mxy

dt
= γ ~Mxy × ~Bext −

1
T2

~Mxy (3.19)

The solution to Equation 3.19 describes the exponential decay of the magnitude of the
transverse magnetisation; which reduces to approximately 37% of the initial transverse
magnetisation after a T2 time constant:

~Mxy(t) = ~Mxy(0)e−t/T2 (3.20)

In addition to spin-spin interactions, inhomogeneities in the external B0 field, caused by
intrinsic magnetic field inhomogeneities or susceptibility differences, introduce additional
dephasing of the transverse magnetisation and further reduces the spin-spin relaxation
time. The effective relaxation time, T ∗2 is a combination of T2 and the inhomogeneity
relaxation time, T ′2, such that:

1
T ∗2

= 1
T2

+ 1
T ′2

(3.21)

It is possible to recover the dephasing caused by T ′2 through a spin echo sequence where
an additional RF pulse rephases the spins and effectively reverses the dephasing caused by
external field inhomogeneity. However, the intrinsic dephasing caused by spin-spin interactions
is permanent and not recoverable. ~Mxy in Equation 3.19 can also be decomposed into its
Mx and My components as follows:

dMx

dt
= ω0My −

1
T2
Mx (3.22)

dMy

dt
= −ω0Mx −

1
T2
My (3.23)

where ω0 is the Larmor frequency. The exponential solutions are described by:

Mx(t) = e−t/T2(Mx(0) cosω0t+My(0) sinω0t) (3.24)

My(t) = e−t/T2(My(0) cosω0t−Mx(0) sinω0t) (3.25)
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The combination of Equations 3.18, 3.24, and 3.25 describe a ‘corkscrew’ trajectory for the
magnetisation vector initially tipped into the transverse plane. The transverse components
precess at the Larmor frequency and decay due to T2; while the longitudinal component
relaxes to equilibrium value with T1. Equations 3.24, and 3.25 can also be represented in
a complex representation (M+ = Mx + iMy):

M+(t) = e−t/T2e−iω0tM+(0) (3.26)

The application of an RF pulse to tip the magnetisation from equilibrium produces its own
rotating RF field (B1), which in the rotating frame is parallel to x̂′, such that ~B ≡ ~Beff as per
Equation 3.15. The Bloch equations, in primed coordinates, can now be described by:

dMx′

dt
= (ω0 − ω)My′ −

1
T2
Mx′

dMy′

dt
= (−ω0 + ω)Mx′ + ω1Mz′ −

1
T2
My′

dMz′

dt
= ω1My′ +

1
T1

(M0 −Mz′)

(3.27)

where ω0 is the Larmor frequency, ω1 is the RF field spin frequency, and ω is the RF oscillation
frequency. RF pulses typically have very short durations, therefore relaxation during its
application can be neglected. The relaxation processes after RF application can still be
described by Equations 3.18, 3.24, and 3.25, after the transformation into the RF rotating
reference frame where ω0 is replaced by ∆ω ≡ ω0 − ω.

3.1.3 Signal detection

In NMR, the precessing components of the transverse magnetisation after RF excitation causes
a time varying magnetic flux that, according to Faraday’s law, induces an electromotive force
(emf ) that can be detected by a receiver coil. The emf induced in the coil is described by:

emf = − d

dt

∫
sample

~M(~r, t) · ~B(~r)d3r (3.28)

where emf is the free induction decay (FID), ~r is the spatial location vector, and ~B is
the magnetic field per unit current produced by the coil at position ~r. Typically, the Lar-
mor frequency is significantly larger in magnitude than 1/T1 and 1/T2; therefore when
Equations 3.18 and 3.26 are inserted into 3.28, e−iω0t is the dominant factor and the ob-
served signal s(t) is proportional to:

s(t) ∝ ω0

∫
M+(~r, t) · B+(~r)d3r (3.29)
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and can be further simplified to give:

s(t) ∝ ω0

∫
e−t/T2(~r)Mxy(~r, 0) · Bxy(~r)ei(ω0t+θB(~r)−φ0(~r))d3r (3.30)

where φ0 and θB are the initial phases for M+ and B+, respectively. Equation 3.30 demon-
strates that the dominant signal induced in the receiver coil is related to the rapid oscillations
of the transverse magnetisation at Larmor frequency. In practice, the signal is demod-
ulated to remove the rapid oscillations at Larmor frequency by multiplication of both a
sinusoid or cosinusoid at Larmor frequency, corresponding to data storage in two (real and
imaginary) channels. An effective spin density parameter ρ(~r) that incorporates all pro-
portionality constants and time-independent components can be introduced to describe
the simplified demodulated signal:

s(t) =
∫
e−t/T2(~r)ρ(~r)e−iφ(~r,t)d3r (3.31)

3.2 Magnetic resonance imaging

The development of magnetic resonance imaging (MRI) originated from the seminal work
of Lauterbur [154] and Mansfield [155], where magnetic field gradients were used to distin-
guish NMR signals from different spatial locations. This section provides the theoretical
background for the spatial encoding and sampling processes associated with image acquisition
in common MR imaging sequences.

3.2.1 Spatial encoding and k-space

The objective of MR imaging is to determine the effective spin density ρ(~r) at a spatial
location ~r from the measured signal as a function of time. If a spatial magnetic field
gradient G(~r, t) is applied, the total magnetic field becomes dependent on position (~r),
and the Larmor equation is given by:

ω(~r, t) = γB0 + γG(~r, t) · ~r (3.32)

In the B0 rotating reference frame the net change in precession frequency is:

ω(~r, t) = γG(~r, t) · ~r (3.33)

For a gradient duration t, the spatially varying phase (φ) accumulated by G(~r, t)
is then given by:

φ(x, t) = γ~r

∫ t

0
G(~r, t′)dt′ (3.34)
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A spatial frequency vector, ~k(t) can be defined that resides in ‘k-space’, and has units
of inverse distance (typically cm-1):

~k(t) = γ

2π

∫ t

0
G(~r, t′)dt′ (3.35)

Neglecting relaxation effects, the signal from Equation 3.31 is now expressed by:

s(~k) =
∫
ρ(~r)e−i(2π~k~r)d3r (3.36)

The measured signal is therefore the Fourier transform of the effective spin density ρ(~r), and
thus ρ(~r) at position (~r) can be obtained with the inverse Fourier transform:

ρ(~r) =
∫
s(~k)e+i(2π~k~r)d3r (3.37)

In Equation 3.35, the spatial frequency vector ~k(t) was introduced that describes the trajectory
through k-space in the presence of magnetic field gradients. Each location in k-space
represents a spatial frequency, and its magnitude denotes how much this spatial frequency
is represented in the imaged object. A 2D image is described by k-space with two spatial
frequency dimensions (kx and ky) (Figure 3.3); while a 3D image corresponds to a 3D
k-space with an additional dimension (kz).

2D FT

Figure 3.3: Example of 2D k-space (left) and its corresponding image (right) that are
related by the 2D Fourier transform (FT). The majority of signal is found in the centre of
k-space corresponding to low spatial frequencies.

The application of linear magnetic field gradients on all three axis directions (Gx, Gy, Gz) cre-
ates spatial magnetic field variations in the object of interest and results in a controlled change
in the frequency or phase of the precessing nuclear spins. This process is termed spatial encod-
ing, and enables the acquisition of the k-space, required for image reconstruction. The different
spatial encoding processes for 2D and 3D imaging are discussed in the following sections.
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Frequency (read) encoding

Frequency encoding is one method of spatial localisation that assigns a unique Larmor
frequency to each spatial location along a gradient direction (conventionally Gx), such that
the frequency is linearly related to the spin isochromat location along the gradient direction.
The frequency encoding gradient waveform consists of two gradient lobes; a prephasing
(dephasing) lobe and a readout gradient lobe. For gradient echo sequences, the two lobes are
typically combined with different polarity (Gx in Figure 3.4); while in spin echo sequences,
the gradient lobes have the same polarity but are separated by a 180° refocusing pulse.

Figure 3.4: Pulse sequence diagram for
frequency encoding on the Gx axis in a gra-
dient echo sequence. Two gradient lobes,
the prephasing lobe, and readout lobe, have
opposite polarity and are played out after
the RF pulse. DAQ corresponds to the po-
sition of the data acquisition window. The
formation of the gradient echo is shown on
the signal axis.
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The purpose of the negative prephasing gradient is to dephase spins such that an echo
can be formed at the centre of k-space when the positive readout gradient is applied. The
readout gradient reverses the accumulated phase to form an echo, such that the peak echo
signal (techo) occurs when the area under the prephasing gradient lobe is cancelled out
by the readout (see Figure 3.4), corresponding to the centre of k-space (kx = 0). The
duration of data acquisition (Tacq) is determined by receiver bandwidth (±BW ) and the
number of k-space points along the readout direction (nx); and can also be described by
the sampling or dwell time (∆t) such that:

Tacq = nx
2BW = nx∆t (3.38)

For a constant readout gradient the spacing in k-space (∆kx) is given by:

∆kx = γGx∆t
2π (3.39)

and for a given field of view (FOV) (Lx) along the readout direction, the k-space expres-
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sion can be described by:

∆kx = 1
nx∆x = 1

Lx
(3.40)

The amplitude of the readout gradient lobe (Gx) can therefore be derived by combin-
ing Equations 3.38 to 3.40:

Gx = 4πBW
γLx

(3.41)

This relationship implies that for fixed receiver bandwidth, large readout gradient amplitudes
are required for smaller FOVs. For a full echo acquisition, techo is in the centre of the
readout gradient; while for partial or fractional echo acquisitions, the readout gradient is
applied asymmetrically around techo to allow fewer points sampled before techo. These ac-
quisitions can reduce echo time (TE) and exploit redundancies in k-space to synthesise
missing kx data (see Section 3.4).

Phase encoding

The second method for spatial localisation in conventional MR imaging is phase encoding,
where linear variations are made to the transverse magnetisation phase in a direction (typically
Gy for 2D or Gy and Gz for 3D imaging) that is orthogonal to the frequency encoding direction.
Phase encoding is implemented by applying a gradient lobe after the RF pulse (when the
magnetisation is in the transverse plane) but before the readout gradient. Phase differences
induced by gradients in one direction are permanent, and do not cancel out when the
readout gradient is applied. In contrast to frequency encoding where the entire kx range
(corresponding to one line in the k-space) is sampled with one readout gradient, only one
phase encoding value can be acquired during one readout. Therefore the acquisitions must
be repeated for each desired phase encoding step to fill the required k-space, and this is
implemented by varying the area under each phase encoding gradient (see Gy Figure 3.5)
for each repetition of the pulse sequence (TR).

To resolve N phase components, N phase encodes are required; typically this is an even number
such that phase encoding is symmetric about ky = 0. Assuming sequential phase encoding
that starts at the edge of k-space, the location of a specific phase encode is given by:

ky(m) =
(
N − 1

2 −m
)

∆ky (3.42)

where m = 0, 1, ..., N − 1, and ∆ky is the phase encoding step size. Similar to Equa-
tion 3.40, ∆ky is related by:

∆ky = 1
N∆y = 1

Ly
(3.43)



32 Chapter 3. Theoretical background

Figure 3.5: Pulse sequence diagram for
phase encoding on the Gy axis in a gradient
echo sequence. Phase encoding gradients
are depicted as a stack of different gradient
amplitudes representing how each phase en-
code amplitude corresponds to one ky line
in 2D k-space acquired for each repetition
time (TR). Frequency encoding occurs on
the Gx axis after phase encoding.
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TR

The maximum area of the phase encoding gradient lobe Ay,max (when m = 0 in Equa-
tion 3.42) can be derived from:

Ay,max = 2π
γ
ky,max = π(N − 1)

γLy
(3.44)

In practice, to minimise the TE and TR, phase encoding gradient lobes are designed to be as
short as possible. Therefore, Ay,max is usually achieved using maximum gradient amplitude
and slew rate. For the 2D sequence depicted in Figure 3.5, the full 2D k-space is acquired
in N × TR. Phase encoding can also be extended to the Gz axis to enable 3D acquisitions;
where the number of required phase encodes to cover 3D k-space is now Ny × Nz. It is
possible to avoid the Nz times increase in acquisition time by selectively imaging 2D slices
using slice selection gradients, and this is described in the following section.

Slice selection

Slice encoding uses a slice selection gradient in combination with a spatially selective RF
pulse to selectively sample an image section or slice. The simplest selective RF pulse is a
sinc waveform, that has a rectangular/boxcar frequency profile after the Fourier transform
in the spatial domain. Typically slice selection occurs on the z axis, and when the RF
pulse is played out concurrently with a constant slice select gradient (Gz), the range of
frequencies (bandwidth, ∆f) excited can be translated into range of spatial locations (∆z),
corresponding to the desired slice thickness (Figure 3.6).

Assuming a RF pulse that is played during the plateau of the constant slice select gradient,
the change in Larmor frequency in relation to position along z is described by:

f(z) = γ

2πGzz (3.45)
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Figure 3.6: Diagram for slice select encoding on the Gz axis. (a) A selective RF sinc pulse
is applied concurrently during the plateau of a slice selection gradient (Gz,1 or Gz,2). (b)
The bandwidth of this RF pulse (∆f) encodes a range of spatial locations (∆z1 or ∆z2) that
form the image slice. For a given RF pulse bandwidth, the amplitude of the slice selection
gradient controls the thickness of the image slice.

For a slice located at the gradient iso-centre, the bandwidth (∆f) of RF pulse frequencies
and slice select gradient amplitude is related to the spatial range (∆z) by:

∆z = 2π∆f
γGz

(3.46)

Therefore, for a fixed RF pulse bandwidth, a thinner slice can be obtained by using a
larger slice select gradient amplitude. If the desired slice is located at an offset from
the gradient iso-centre (δz), the frequency of the RF pulse must be offset by a factor δf
from the Larmor frequency such that:

δz = 2πδf
γGz

(3.47)

The slice selection gradient causes some phase dispersion (dephasing) across the image slice
that leads to signal loss. To compensate for this, a slice rephasing gradient lobe of opposite
polarity is typically applied following the slice selection gradient. The area of the slice
rephasing is calculated based on the RF pulse (half of the RF pulse width) and corresponds
to half the area of the slice selection gradient.

A combination of the frequency, phase and slice selection encoding is used in MR imaging.
A 2D sequence utilises slice selection to encode slices of thickness ∆z with frequency and
phase encoding in the other two dimensions; while a 3D sequence has phase encoding on an
additional dimension and can be implemented with or without slice select encoding. The
choice of either 2D or 3D acquisition is predominantly dependent on the desired slice resolution,
spatial coverage needs, and acquisition time constraints. Equation 3.46 indicates that the
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thickness of a slice select 2D image slice can be limited by maximum gradient amplitude
and RF bandwidth, therefore 3D acquisitions typically have smaller ∆z than 2D acquisitions.
However, this comes at the expense of increased acquisition time because the entire FOV of
the object needs to be acquired to avoid aliasing. 3D acquisitions also typically involve the
excitation of the whole FOV, therefore the measured signal is higher than in 2D, and can
avoid slice bleeding effects characterised by imperfect RF pulse excitation profiles.

The signal of an MR acquisition is proportional to the image voxel volume (∆x, ∆y, and
∆z) and any sequence-dependent relaxation factors (Fseq). The source of noise in MR
acquisitions is random fluctuations in electrical currents from the MR coil and the con-
ducting tissues of the body. These fluctuations in current generate small magnetic fields
and induce a noise voltage in the coil. The amount of inherent noise in an acquisition is
proportional to the bandwidth (BW ), number of k-space samples (Nx, Ny, and Nz), and
the number of signal averages (NSA). The signal to noise ratio (SNR) per voxel of a 2D
MR acquisition can therefore be represented by:

SNR2D ∝
∆x∆y∆z Fseq

√
NxNyNSA√

BW
(3.48)

For 3D acquisitions, the signal has an extra Nz term representing the additional
phase encoding:

SNR3D ∝
∆x∆y∆z Fseq

√
NxNyNz NSA√

BW
(3.49)

and it can be seen that the 3D acquisition SNR is
√
Nz times larger than the 2D equiv-

alent. However, the SNR per time is the same between 2D and 3D acquisitions, as Nz

separate acquisitions are required for 3D.

3.2.2 Discrete sampling

The spatial frequency vector ~k(t) describes a continuous trajectory through k-space that
would require an infinite number of samples to fully describe its trajectory. In practice,
this is not feasible, and discrete sampling of a finite number of measurements is made at a
sampling interval (∆k). Discrete sampling of k-space is achieved through the multiplication
of a sampling (comb) function with the continuous signal s(k):

sacq(k) = s(k) · comb(k) (3.50)



3.2. Magnetic resonance imaging 35

where the comb function is equal to a sum of n Dirac delta functions (δ) evenly
spaced by ∆k:

comb(k) = ∆k
∑
n

δ(k − n∆k) (3.51)

The process of discrete sampling is demonstrated in Figure 3.7 where a sinc function is
shown in k-space (Fig. 3.7a), and its Fourier transform is a rectangular function (Fig.
3.7d). When k-space is multiplied by a comb function with a sampling interval of ∆k
(Fig. 3.7b), a discrete sampled version of the sinc function is obtained (Fig. 3.7c). The
Fourier transform of the comb function is the comb function; therefore in image space, the
resulting discrete sampled rectangular object (Fig. 3.7f) is obtained with the convolution
of the Fourier transform of the rectangular function and the comb function (Fig. 3.7e).
By definition the Fourier transform operates on continuous functions, therefore a discrete
Fourier transform is derived from the Fast Fourier transform (FFT) to reconstruct images
acquired from the discrete sampled k-space.
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Figure 3.7: Depiction of the process of discrete sampling of a sinc function.

The periodic nature of the comb function indicates that the reconstructed images is also
periodic, and the spatial interval of the image (L) is inversely related to the sampling
interval or spacing of k-space (∆k):

L = 1
∆k (3.52)

Therefore, the size of L denotes the field of view (FOV) of the image and if L is smaller than
the object then images of adjacent periods will overlap causing aliasing (Figure 3.8).
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Figure 3.8: Depiction of image aliasing with discrete sampling. Compared to Figure 3.7,
the sampling interval ∆k is larger corresponding to a smaller FOV (L). L is now smaller
than the rectangular object causing overlapping of adjacent periods and aliasing.

The Nyquist criterion states aliasing is avoided when the object size (A) is smaller than L:

∆k = 1
L
<

1
A

(3.53)

Nyquist criterion is applicable on all three spatial encoding directions. In the frequency
encoding direction, for a constant readout gradient (Gx), Equation 3.39 can be related
to the Nyquist criterion by:

∆kx = γGx∆t
2π = 1

Lx
<

1
Ax

(3.54)

For a constant Gx, the receiver bandwidth (BWx) determines the range of precession fre-
quencies and Equation 3.54 can be rewritten as:

BWx = 1
∆t = γGxLx

2π >
γGxAx

2π (3.55)

BWx is the full receiver bandwidth (i.e ±BW ), and satisfies the Shannon-Nyquist theorem
that states if the sampling rate is at least twice the size of the bandwidth there is no
information loss. In the phase encoding direction(s), the duration of phase gradient lobe
(τy) is fixed and the area under the gradient lobe is varied by changing the amplitude
(∆Gy). To satisfy Nyquist criterion:

∆ky = γ∆Gyτy
2π = 1

Ly
<

1
Ay

(3.56)
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Equation 3.56 can also be re-arranged to:

∆Gy = 2π
γτyLy

<
2π

γτyAy
(3.57)

3.2.3 MR imaging pulse sequences

Cartesian MR imaging sequences can be split into two main branches: gradient echo and
spin echo sequences. This section aims to provide a brief introduction to the common
MR imaging sequences used in this work.

Gradient echo

Gradient echo sequences are characterised by small flip angles that enable short repetition
times (TR) between individual phase encodes. A common gradient echo sequence is the
spoiled gradient echo (SPGR) sequence; a typical 2D SPGR pulse sequence timing diagram
is shown in Figure 3.9. A slice selection gradient (GSS), applied during the low flip angle
RF pulse, is followed by a rewinder gradient. Phase encoding (GPE) occurs on one axis
direction, and is then followed by frequency encoding (GFE) on an orthogonal axis direction.
Finally, the remaining transverse magnetisation is dephased with the application of a large
spoiling gradient such that transverse coherence between acquisitions is removed. Spoiling
gradients can be applied on all axis directions, but in practice, spoiling on one axis direction
is usually sufficient. The amplitude of the spoiling gradient can be also varied to avoid any
remaining coherence, and this is termed gradient spoiling.

RF

GFE

GPE

DAQ

GSS

Figure 3.9: 2D spoiled gradient echo (SPGR)
pulse sequence diagram. A small flip angle is used
to tip the magnetisation into the transverse plane,
and a spoiler gradient is employed after frequency
encoding to spoil the remaining transverse mag-
netisation.

The short TR times in gradient echo sequences are usually shorter than T1, such that the
longitudinal magnetisation does not fully recover after TR. This allows, after a few RF pulses,
the proportion of longitudinal magnetisation excited to be equivalent to the longitudinal
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magnetisation recovered from T1, and a steady state longitudinal magnetisation is reached.
For a SPGR sequence, when the longitudinal and transverse magnetisation is considered,
the steady state signal (SSPGR) is given by:

SSPGR = M0 sin θ(1− e−TR/T1)e−TE/T ∗2
1− cos θe−TR/T1

(3.58)

where the SSPGR is dependent on flip angle (θ) for a fixed TR and T1. The θ that provides the
maximum signal is defined as the Ernst angle (θE), and lies between 0° and 90° when
TR<T1. θE can be calculated by:

θE = arccos(e−TR/T1) (3.59)

An alternative gradient echo based sequence is the balanced steady state free precession
(bSSFP) sequence (Figure 3.10), that re-uses or recycles some of the remaining transverse
magnetisation instead of spoiling it. In bSSFP all gradients on the three axes are balanced
before the next RF pulse, and partial rephasing of the transverse magnetisation occurs
leading to steady state of the transverse magnetisation, in conjunction with the longitudinal
magnetisation. This approach leads to comparatively higher signal than SPGR sequences due
to the more efficient use of the transverse magnetisation. The RF pulse is typically alternated
to yield optimal steady state signal at resonance frequency. bSSFP sequences are however very
sensitive to magnetic field inhomogeneity, and this manifests in the appearance of banding
artefacts. The accumulation of phase from field inhomogeneities is proportional to TR,
therefore bSSFP sequences typically have very short TRs to minimise banding artefacts.

Figure 3.10: 2D balanced steady state free
precession (bSSFP) pulse sequence diagram.
Gradients on each axis direction are balanced
to enable partial rephasing of the transverse
magnetisation.
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Spin echo

The second main branch of MR imaging sequences are spin echo sequences that use at least
two RF pulses, an excitation and a refocusing pulse, to generate a spin echo. Typically, a
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90° is used for excitation, and a 180° refocusing pulse is then applied after phase encoding.
An example spin echo pulse sequence timing diagram is shown in Figure 3.11. In contrast
to the SPGR sequence in Figure 3.9, the prephasing frequency encoding lobe of the spin
echo sequence has positive polarity, and is separated from the readout gradient by the
180° refocusing pulse. The echo in spin echo sequences is therefore RF-induced; while in
gradient echo it is gradient-induced.
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GFE

GPE

DAQ

GSS

90° 180°

Figure 3.11: 2D spin echo pulse sequence
diagram. An additional 180° refocusing pulse is
applied before the frequency encoding readout
gradient to rephase the spins such that an echo
can be formed.

The application of the refocusing pulse has the advantage of reversing spin dephasing from
magnetic field inhomogeneities or susceptibility differences, therefore spin echo sequences
are T2-weighted, in contrast, to the T ∗2 -weighting of gradient echo sequences. Spin echo
sequences also offer the additional advantage of specific contrast weighting through the
selection of sequence timing parameters (TE and TR). For a short TE, a short TR will
result in T1-weighting; while a long TR will lead to spin density-weighted images. Finally,
a long TE and TR will result in T2-weighted images. However, the larger flip angles used
in spin echo sequences requires more RF power that may not always be achievable due to
patient safety concerns or hardware limitations.

3.3 Hyperpolarised gas MRI

In vivo human lung images from inhaled hyperpolarised noble gas isotopes were first demon-
strated approximately 20 years ago [2–4]. Through advancements in optical polarisation and
MR acquisition techniques, hyperpolarised gas MRI is now a robust imaging technique capable
of the functional assessment of various aspects of lung physiology in a range of pulmonary
diseases. This section provides an overview of the technical methods and considerations
for hyperpolarised gas MR imaging of the lungs.
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Helium-3 (3He) and xenon-129 (129Xe) are stable, non-radioactive, noble gas isotopes that
have a nuclear spin 1/2 and relatively high gyromagnetic ratios; therefore are sensitive to NMR
techniques. The NMR properties of 3He and 129Xe, in comparison to 1H, are summarised
in Table 3.1. The T1 of pure 3He and 129Xe gases are very long (744, and 55 hours at
room temperature and atmospheric pressure, respectively) [156]. However, in the presence of
paramagnetic oxygen (i.e. when inhaled into the lungs), the T1 of both gases reduces to tens
of seconds. The T1 of 3He in the lungs is demonstrated to be inversely proportional to the
oxygen concentration (Equation 3.65) [121]. The chemically inert nature of 3He alongside its
larger gyromagnetic ratio (in relation to 129Xe) provides 3He with inherent sensitivity over
129Xe for probing pulmonary structure and function down to the alveolar length scale.

Table 3.1: Summary of physical properties of 3He and 129Xe, in comparison to 1H.

Properties 1H 3He 129Xe

Isotope abundance (%) a 99.99 1.37×10−4 26.44
Nuclear spin, I a 1/2 1/2 1/2

Gyromagnetic ratio, γ (MHz/T) a 42.58 -32.43 -11.78
Spin density, (1019 atoms/cm3) b 6690 2.37 2.37
Chemical shift range, (ppm) c - ∼0.8 ∼250

Self diffusion coefficient, D (cm2/s) d,e 2× 10−5 2.05 0.062
Free diffusion coefficient (air), D0 (cm2/s) e - 0.86 0.14

Ostwald solubility in water f - 0.0098 0.083
Ostwald solubility in blood f - 0.0083 0.146

a From ref [156].
b From ref [88], proton density in water.
c From ref [157, 158], chemical shift offset from gaseous phase resonance (0 ppm).
d From ref [159], self diffusion coefficient of water at 25°C.
e From ref [89], assuming gas at 1 atm and 37°C and air mixture of 79% N2 and 21% O2.
f From ref [160], for gas at 1 atm and 37°C.

However, the rapidly increasing cost and dwindling supply of 3He gas, associated with its very
low natural abundance (1.37× 10−4 %), limits the widespread application in clinical settings.
129Xe, in contrast, has a non-negligible natural abundance (0.087 ppm in the atmosphere
[161] of which 26.44% is 129Xe), therefore is seen as the more cost-effective hyperpolarised gas
isotope. 129Xe also exhibits solubility in the blood and tissue, and coupled with a large chemical
shift range, can be used to probe additional aspects of lung function related to the dissolved
environment (i.e. gas exchange) that 3He cannot. Despite the signal disadvantage of 129Xe,
related to its approximately three-fold smaller gyromagnetic ratio, recent developments in
pulse sequence acquisition and polarisation strategies have demonstrated equivalent structural
and functional information can be obtained with both hyperpolarised gases; enabling the
transition from 3He to the clinically viable 129Xe for future pulmonary studies.
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3.3.1 Spin exchange optical pumping

In Table 3.1, the small spin densities of 3He and 129Xe in relation to 1H in water, permits
only very small MR signals in their thermal equilibrium state. However, through optical
pumping polarisation techniques, the MR signal can be enhanced or ‘hyperpolarised’ by
a few orders of magnitude. Optical pumping can be classified into two main techniques;
spin exchange optical pumping (SEOP) [162], and meta-stability exchange optical pumping
(MEOP) [163]. SEOP is currently the more popular technique due to its ability to polarise
both 3He and 129Xe, and its reliability in extraction of large volumes of polarised gases
for in vivo MRI applications. The following section provides an introduction to the SEOP
technique only; for a more detailed summary of SEOP and MEOP, the reader is referred
to the reviews by Goodson [164] and Oros and Shah [161].

Laser optical pumping involves utilising circularly polarised light at specific wavelengths to
drive the electronic spins of certain atoms into non-Boltzmann energy distributions. In SEOP,
the electronic spin polarisation of an alkali metal atom vapour (e.g. rubidium) is transferred
to the nuclear spin of noble gas isotopes through collision and spin exchange [162]. This two
step process of SEOP is depicted in Figures 3.12 and 3.13. In step one, the spins of unpaired
electrons of rubidium (Rb) are polarised by a circularly polarised laser (σ+) tuned to the
wavelength of 794.7 nm. This wavelength corresponds to the D1 transition resonance of Rb,
and drives the electron spins from the ground state sublevel (52S1/2, m = −1/2) to the excited
state sublevel (52P1/2, m = +1/2). The electron spins in the excited state sublevels mix and
equalise through collisions, and relax to their respective ground state sublevels. This causes a
net accumulation of polarised electron spin in the ground state sublevel (m = +1/2).

m = -1/2 m = +1/2 

Collisional mixing

Ground state

(52S1/2)

Excited state

(52P1/2)

σ+

λ = 794.7 nm

Relaxation

50%

Relaxation

50%

Figure 3.12: Optical pumping process for
rubidium (Rb) electron polarisation. Vapor-
ised Rb electrons are transferred from the
ground state (52S1/2) to an excited state
(52P1/2) through the interaction with po-
larised laser light with a wavelength (λ) of
794.7 nm.

In the second step, the electronic spin polarisation of Rb electrons can be transferred to
3He or 129Xe nuclei by spin exchange through either binary or 3-body collisions. In binary
collisions, molecules are bound for 10−12 s and dominate Rb-3He spin exchange (Figure
3.13a); while 3-body collisions involve a third molecule (N2) to form van der Waal molecules
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Figure 3.13: Spin exchange process
between Rb electrons and noble gas iso-
topes. (a) Rb-3He spin exchange typi-
cally occurs through binary collisions.
(b) For the heavier isotope 129Xe, spin
exchange can occur through the forma-
tion of van der Waal molecules from
3-body collisions between Rb, 129Xe,
and N2 molecules.
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that are bound for a longer time-scale (10−8 s), and are typical for Rb-129Xe spin exchange
(Figure 3.13b) [162]. The size of the respective electron clouds of 3He and 129Xe directly
influences the probability of spin exchange interactions; therefore, SEOP takes longer for
3He and occurs over many hours [165]. While the probability of spin exchange interaction
is increased for 129Xe, a corresponding increase in spin destruction probability also occurs.
In order to minimise polarisation destruction through Rb-129Xe collisions, gas mixtures of
1–3% 129Xe are balanced with buffer gases (N2 or 4He) for 129Xe SEOP [166, 167]. The
polarised 129Xe is subsequently cryogenically separated from the buffer gases with liquid
nitrogen. After a required period of time (minutes to hours), the accumulated frozen 129Xe
is sublimated and the hyperpolarised 129Xe gas can be administered.

The nuclear polarisation of 3He or 129Xe after a given duration of SEOP (t) can
be described by [164]:

P (t) = ρSE
ρSE + ρLoss

PRb[1− e−(ρSE+ρLoss)t] (3.60)

where PRb is the electron spin polarisation of Rb, ρSE is the rate of spin exchange between
the 3He or 129Xe nuclei and Rb electrons, and ρLoss is the rate of noble gas polarisation loss
associated with relaxation mechanisms (e.g. wall collisions). Initial applications of SEOP
could only produce hyperpolarised gases with low polarisation (≤5%) and in small quantities.
However, advancements in polarisation technology (e.g. high powered narrow linewidth lasers)
have enabled hyperpolarised gases to be produced at the rate and polarisation sufficient
for in vivo imaging exams. Prototype commercial 3He polarisers are capable of producing
approximately 1L of hyperpolarised 3He per day at polarisation levels ranging from 25–40%;
while custom home-built polarisers have demonstrated the feasibility of polarising 3L of
3He per day at 50–60% polarisation [168].

Due to the continuous flow and accumulation process of 129Xe SEOP, the final polarisation
of 129Xe after sublimation (P fXe) is dependent on the flow rate of the gas mixture in the
optical pumping cell (QXe), polarisation of 129Xe exiting the cell, and solid state 129Xe T1
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decay [166]. The dose equivalence rate (DErate = fP fXeQXe) [169] is a recently proposed
metric for evaluating polariser performance and provides an expression representing the
129Xe volume production rate of 100% polarised 129Xe from 100% enriched 129Xe (f = 1)
that is derived from the respective polariser operation parameters (P fXe and QXe). The
majority of polarisers used in 129Xe imaging studies have a DErate ranging from 100 to 200
ml/h [169]; corresponding to approximately 400 to 800 ml of P fXe ∼25% per hour. Recent
129Xe polariser development has demonstrated the feasibility of on demand 129Xe production
(DErate ∼1000 ml/h; 300 ml of 129Xe at P fXe ∼30% in 5 mins) for clinical 129Xe MR imaging
[170]. All 129Xe imaging acquired in this work used this 129Xe polariser (Figure 3.14) and
was operated at the DErate ∼1000 ml/h.

(a) (b)

(1)

(3)

(2)

(4)

(5)

Figure 3.14: (a) Photo of 129Xe spin exchange optical pumping polariser used in this work.
(1) Laser diode array (170 W, 794.77 nm wavelength) (BrightLock 200W, QPC, CA, US); (2)
temperature-controlled ceramic oven. (3) B0 coils. (b) Ceramic oven with the lid off. (4)
SEOP cell (Volume = 3500 ml, 7.5 cm diameter, 80 cm length); (5) the pool of rubidium is
visible at the cell gas entrance. Gas mixture used throughout: 3% Xe, 87% He, 10% N2.

3.3.2 Considerations for hyperpolarised gas MRI

Hardware considerations

The available 3He or 129Xe polarisation from SEOP is independent of the static magnetic
field (B0) strength and hyperpolarised gas imaging in human lungs has been demonstrated
at B0 ranging from 3 mT [171] to 3 T [172]. The respective T ∗2 of 3He and 129Xe is
however dependent upon B0 [119, 120], with shorter T ∗2 times observed at higher field
strengths as a result of the bulk susceptibility difference between the microscopic air and
tissue interfaces within the lungs. This also manifests as increased B0 inhomogeneity and
susceptibility artefacts at higher field strengths [119]. While low field imaging may seem
promising, due to less susceptibility artefacts, the majority of conventional clinical (1H)
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MR imaging is performed on 1.5 T and 3 T scanners, and as such multi-nuclear imaging
is predominantly focused on these field strengths.

MR imaging with hyperpolarised gases requires separate transmit and receive radiofrequency
(RF) coils to be tuned to the respective Larmor frequency of the gas. Typical coils used for
lung imaging are either vest or birdcage coils; both of which cover the entire chest area of the
subject. Hyperpolarised gas MRI is very sensitive to flip angle, therefore, it is desirable for
the transmit coil to provide a uniform flip angle across the imaging field of view. Birdcage
coils provide more B1 homogeneity than vest coils [173], but are generally less power efficient
and less sensitive for reception. A combination of a birdcage transmit coil with a multi-
channel receiver array is a possible compromise that offers increased receive sensitivity and
the possibility of parallel imaging (see Section 3.4) for accelerated acquisitions [174].

Pulse sequence considerations

In conventional proton MRI, T1 is the time constant for the recovery of the longitudinal
magnetisation. However, for hyperpolarised gas MRI, T1 is the ‘recovery’ to thermal equilib-
rium polarisation; therefore the time constant is representative of polarisation decay. The
short T1 coupled with patient breath-hold limits further constrains in vivo acquisitions, and
requires short hyperpolarised gas MRI pulse sequences. Furthermore, the induced hyper-
polarisation is not renewable; as such, pulse sequences are optimised to effectively utilise
this finite initial magnetisation (M0) for high SNR imaging. The most common pulse se-
quence for hyperpolarised gas MRI is the SPGR sequence (Figure 3.9) with constant low
flip angles to slowly deplete the magnetisation. For a series of RF pulses (n = 1 to N),
a portion of the longitudinal magnetisation (Mz) is consumed with each RF pulse. The
Mz for the nth RF pulse with a flip angle (α) is:

Mz(n) = M0(cosα)n−1 (3.61)

and the corresponding transverse magnetisation (Mxy) decays according to:

Mxy(n) = M0(cosα)n−1 sinα exp[−(n− 1)TR/T1] (3.62)

The T1 decay is assumed to be negligible, because typically the TR << T1 for hyperpolarised
gas experiments. For sequential phase encoding, the optimal flip angle (αopt) that maximises
the signal at the centre of k-space (n = N/2) can be derived from the differentiation of
Equation 3.62 and is given by [175]:

αopt = tan−1( 1√
N/2− 1

) (3.63)
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The decay in magnetisation as a function of RF pulse number imposes a k-space filter on
the data in the phase encoding direction leading to image blurring or signal attenuation
[175]. The specific phase encoding trajectory determines the shape of the k-space filter.
Figure 3.15 illustrates this with k-space filter profiles for sequential and elliptical-centric phase
encoding of a 3D SPGR sequence using a constant flip angle (2°). A centric or elliptical-
centric encoding order will result in higher SNR at the expense of image blurring and a
k-space filter that is symmetrical around N/2; while sequential encoding results in lower
SNR but fine structures in the image are preserved.

Sequential phase-encoding Elliptical-centric phase-encoding

Figure 3.15: k-space filter profiles for sequential and elliptical-centric phase encoding of a
3D SPGR sequence (ky = 78, kz = 24) with a constant flip angle of 2°. The flip angle was
selected such that ∼30% of the initial magnetisation remains at the end of the acquisition.

The k-space filtering effects can be minimised by maintaining a constant Mxy through a
variable flip angle (VFA) approach by increasing the flip angle for each RF pulse [176]. The
flip angle for the nth RF pulse can be calculated by:

αn = tan−1( 1√
N − n

) (3.64)

This VFA approach is in theory the optimum strategy for SPGR sequences, however, RF
amplifier limitations may constrain the use of high flip angles (αN = 90°) and a precise flip
angle calibration and a homogeneous transmit coil is required to ensure the whole k-space
is acquired before all available magnetisation is depleted.

In SPGR sequences, the residual transverse magnetisation is spoiled, but sequences such
as balanced steady state free precession (bSSFP) allow for the refocusing and recycling
of the residual transverse magnetisation. Hyperpolarised gas MR images acquired with
bSSFP can use higher flip angles that lead to increased image SNR [177]. However, due
to high diffusivity of 3He or 129Xe (in comparison to 1H, see Table 3.1), pulsed gradient
diffusion attenuation of the transverse magnetisation can reduce the effective T2 in bSSFP
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imaging. The majority of this diffusion attenuation occurs from the readout gradient and
can be derived from Equations 3.75 and 3.78.

3.3.3 Imaging techniques

This section provides an overview of the imaging techniques utilised in hyperpolarised gas
MRI to probe lung function and structure. Techniques for imaging the gas-phase will be
considered only, and diffusion-weighted imaging with hyperpolarised gases is discussed in
Section 3.5.1. For a review of dissolved-phase imaging techniques for hyperpolarised 129Xe,
the reader is referred to the following reviews [178, 179].

Static ventilation imaging

The simplest and most common technique for hyperpolarised gas MRI is static ventilation
imaging where the distribution of the inhaled gas during breath-hold is used to visualise lung
ventilation and homogeneity. Unventilated regions of the lung appear as hyperpolarised gas sig-
nal void and directly correspond to regional ventilation abnormalities. High resolution images
(4–5 mm3) of lung ventilation can now be routinely acquired in a single breath-hold using 2D or
3D SPGR or bSSFP sequences. As mentioned previously, bSSFP sequences provide an image
SNR advantage over SPGR through the use of higher flip angles [177]. Example 3He bSSFP
ventilation images (Figure 3.16) acquired from a range of patients demonstrates differences in
ventilation distribution and heterogeneity associated with different pulmonary diseases.

Ventilation distribution can be quantified through either an index or percentage ventilated
volume (VV%) or its reciprocal measure – the ventilation defect percentage (VDP); where
VV% + VDP = 100% [180]. Structural 1H lung images are typically acquired, in separate- or
same-breath [181] acquisitions, in conjunction with ventilation images to provide additional
information of the lung cavity volume to aid the calculation of VV% or VDP. These quantitative
metrics of lung ventilation demonstrate good same-day and 1-week repeatability [182, 183],
and significant correlation with spirometry in normal and smoker volunteers [180], and
patients with asthma [184], cystic fibrosis (CF) [185], and chronic obstructive pulmonary
disease (COPD) [186]. 3He ventilation MRI has also been used to assess response to treatment
[183, 187], and longitudinal studies suggest increased sensitivity, when compared to spirometry,
in detecting disease progression [188, 189].

While VV% or VDP are robust metrics of lung ventilation, they do not provide a quantitative
measure of lung ventilation heterogeneity. Several analysis techniques have been proposed to
quantify regional heterogeneity on a voxel-by-voxel basis including calculation of the coefficient
of variation of voxel signal [190, 191] or linear binning [192]. Advancements in imaging and
polarising techniques have enabled static ventilation imaging with 129Xe to be acquired with
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Figure 3.16: Representative 3He ventilation images for a healthy, smoker, chronic throm-
boembolic pulmonary hypertension (CTEPH), cystic fibrosis (CF), chronic obstructive pul-
monary disease (COPD), and asthmatic patient. All images were acquired with a 3D 3He
bSSFP sequence [177].

the same diagnostic quality as 3He. Initial comparison studies between the two noble gases
suggest that 129Xe may more readily detect ventilation defects (Figure 3.17) due to the lower
diffusivity and/or increased density and viscosity of 129Xe gas [117, 191, 193].

3He

129Xe

Smoker Asthma COPD

Figure 3.17: Comparison of 3D bSSFP 3He and 129Xe ventilation images from the lungs of
a ‘healthy’ smoker, a patient with asthma, and a patient with COPD. Additional or larger
ventilation defects (white arrows) can be observed in the 129Xe ventilation images due to the
lower diffusivity and/or increased density and viscosity of 129Xe.
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Dynamic imaging

Due to the non-renewable longitudinal magnetisation, there are no signal saturation recovery
constraints for hyperpolarised gas MRI. Therefore, images can be acquired with short TRs
allowing for the possibility of imaging gas flow dynamics and regional gas ventilation over
multiple breaths. Non-Cartesian methods, such as spiral [194] or radial [195] sequences, are
typically used to acquire rapid time-resolved images with temporal resolutions as short as 20
ms. These 2D acquisitions have been used to measure gas flow rates in the major airways
in patients with COPD [195] and CF [196], but images can be susceptible to radial streaks,
susceptibility or motion-induced artefacts. Mapping of gas flow profiles and turbulence in
the upper airways is also feasible by combining radial or compressed sensing acquisitions
with phase contrast velocity maps [197, 198].

An alternative approach is the imaging of the hyperpolarised gas signal over multiple breaths
to derive regional measurements of fractional ventilation, defined as the volume of gas turned
over per breath [199]. Regional gas ventilation can be quantified either through wash-in [199]
or wash-out [200] dynamics, and more recently, these techniques were combined in a scheme
for simultaneous mapping of fractional ventilation, alveolar oxygen tension (pO2, see below),
and apparent diffusion coefficient (ADC, see Section 3.5.1) [201].

Oxygen partial pressure (pO2) mapping

The T1 of hyperpolarised gases decreases significantly in the presence of oxygen, and
this dependence of T1 with oxygen concentration was demonstrated by Saam et al. [121].
The inverse of the longitudinal decay (1/T1 or ΓO2) is proportional to the oxygen par-
tial pressure (pO2) by:

1
T1

= ΓO2(t) = pO2(t)
ζ

(3.65)

where ζ is temperature dependent coefficient that was found empirically to be 2.61 bar·s
at 37°C. This relationship was subsequently used to derive in vivo estimates of regional
pO2 in pigs and humans with breath-hold experiments [202]. For a single breath-hold,
the decrease in longitudinal magnetisation or image signal intensity can be assumed to be
related to only RF depletion and T1(pO2) effects [202]. This allows the regional pO2 to be
estimated from a time series of images acquired with different image delay times or flip
angles, assuming that pO2 decay in the lungs is linear.

The effects of inter-slice diffusion in 2D slice selective imaging is significant for long image
delay times due to the high diffusivity of 3He gas, therefore 3D imaging sequences have been
proposed to avoid this possible source of error [203]. A major limitation of this technique is
the effect of collateral ventilation observed in emphysematous lungs that provide an additional
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source of signal change that is unrelated to oxygen concentrations [204]. pO2 mapping with
129Xe is feasible, but the quantification of pO2 is complicated by the solubility properties
of 129Xe [205], and the longer T1 due to dipole-dipole effects [206].

3.4 Sub-Nyquist imaging strategies

Undersampling of k-space beyond the Nyquist criterion can shorten the number of required
RF excitations and thus acquisition time. However, as demonstrated in Figure 3.8, when the
Nyquist criterion is violated, aliasing artefacts manifest in the reconstructed images and differ-
ent strategies have been proposed to minimise these artefacts. One strategy is the generation of
artefacts that are incoherent or less visible through variable density-weighted phase encoding
[207, 208] or reduced FOV in dynamic imaging [209, 210]. Another strategy exploits redundan-
cies in k-space through parallel imaging [211–213] or partial Fourier reconstructions [214]. The
final strategy is exploiting spatial or temporal redundancies through undersampling of the k-t
space, which contains spatial and temporal information, for dynamic imaging [215–217].

Hyperpolarised gas MRI is limited by both the non-renewable longitudinal magnetisation
that is depleted with RF excitations and patient breath-hold limits (∼15s). Therefore, it is a
prime candidate for undersampling schemes that can shorten the number of RF excitations
and acquisition time. Moreover, the flip angle can be increased with sub-Nyquist sampling
such that image SNR is preserved. The focus of this section is to provide a summary of the
undersampling techniques that are applicable for hyperpolarised gas MR imaging of the lungs
including: partial Fourier reconstructions, parallel imaging, and compressed sensing.

Partial Fourier

In partial Fourier acquisitions, the k-space is not sampled symmetrically around its centre;
instead k-space is asymmetrically sampled with one half of the k-space fully-sampled and
only a small portion of the other half sampled. A real object can be reconstructed from
a partial k-space acquisitions because k-space exhibits conjugate or Hermitian symmetry,
and for 2D k-space this can be described by:

S(kx, ky) = S∗(−kx,−ky) (3.66)

where S∗ is the complex conjugate. This indicates that in theory, a real object can be
reconstructed from half of k-space. However, in practice, magnetic field inhomogeneities cause
phase shifts around k = 0 that require correction for accurate reconstruction. Therefore,
additional data (typically 5 to 25%) is generally acquired in the incomplete half of k-space
and used to generate phase correction maps.
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Figure 3.18: Partial Fourier acquisition of 2D k-space. (a) Partial echo acquisition in the
kx direction. k-space is sampled symmetrically (−kx,s to kx,s) around the centre of k-space,
and then asymmetrically sampled from kx,s to kx,max. (b) The equivalent partial acquisition
of phase encodes in the ky direction.

Partial Fourier acquisition is feasible in either the readout direction (kx), called partial echo,
(Figure 3.18a) or the phase encoding direction (ky) (Figure 3.18b). Both techniques reduce
overall acquisition time by either reducing echo time and hence sequence TR or the number
of phase encodes at the expense of lower SNR. Partial acquisition in the frequency encoding
direction shifts the position of the echo away from the centre of the readout gradient (for full
echo), and reduces the time to echo (TE), and the absolute size of readout gradients. Even
though from Equation 3.48, acquiring fewer k-space samples theoretically reduces image SNR,
the shorter TE can also improve SNR by reducing T ∗2 relaxation effects. The simplest method
for reconstructing the partially acquired k-space is zero-filling by filling the missing data with
zeros. The image can be reconstructed with the standard FFT; however, due to the truncation
of k-space, blurring effects and Gibbs artefacts are introduced. Alternative algorithms such
as homodyne reconstruction [218] and projection over convex sets (POCS) [219] have been
developed for phase correction to accurately reconstruct partial Fourier acquisitions.

Homodyne utilises conjugate symmetry to generate the missing real components of the data,
and then corrects the phase of the imaginary components. The undersampled k-space is
initially zero-filled and the real component is reconstructed with a homodyne high-pass
filter, that doubles the asymmetrically sampled high frequencies (kx,s to kx,max region in
Figure 3.18a). A low-pass filter is applied to the symmetrically sampled region of low
frequencies (−kx,s to kx,s), and a low frequency image is reconstructed. From this image, an
estimate of the zero order phase is derived and used to correct the full image. Homodyne
reconstruction utilises the phase of a low frequency image, and therefore performs poorly
in regions with rapid changes in phase.

Algorithm such as POCS can further improve the estimation of the missing k-space data
by iteratively applying phase correction and conjugate symmetry. In the first iteration,
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the missing data is zero-filled and phase-corrected in a similar fashion as homodyne. The
asymmetric portion of the reconstructed real image component is then used to replace
the zero-filled estimate of the missing data. This process is repeated until a stopping
criteria is reached such as the number of iterations or the differences between iterations
reaches a certain threshold. Iterative algorithms typically converge very quickly, with the
majority of the image improvement occurring within the second iteration. Homodyne
can be implemented with iterative reconstruction as well, where zero-filling is replaced
with the homodyne high pass filtering.

Parallel imaging

The concept of parallel imaging consists of utilising prior knowledge of discrete multiple
receiver coil sensitivity profiles to reduce the number of RF pulses required to reconstruct
an image. Parallel imaging with hyperpolarised gases is not constrained by the typical SNR
trade-off in thermally polarised parallel imaging when the number of RF pulses is reduced
because hyperpolarised gas signal can be increased with larger flip angles [220]. Parallel
imaging is therefore an attractive option for accelerated hyperpolarised gas lung imaging and
high SNR 3He ventilation images have been demonstrated with multiple-channel receiver
coils at reduction factors of 2 to 4 [174, 220, 221].

Two common approaches for reconstructing the undersampled k-space are Sensitivity Encoding
(SENSE) [212] and Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)
[213]. Both approaches utilise coil sensitivity profiles to reconstruct the k-space that is
undersampled in the phase-encoding direction. In a 2D acquisition, undersampling of phase
encodes will correspond to missing lines in 2D k-space. Each acquired k-space line is now
separated by an increased ∆k spacing that corresponds to the undersampling or reduction
factor (R); while the maximum coverage of k-space is fixed to preserve spatial resolution.
The increased ∆k corresponds to a decreased FOV and aliasing, which is unwrapped with
a parallel imaging reconstruction strategy.

In SENSE reconstruction, each receiver coil acquires an undersampled k-space simultaneously,
and an aliased image is reconstructed. Each pixel in the aliased image is a superposition
of signal from each receiver coil, however the specific contribution of each coil at each
spatial location is dependent on the local coil sensitivity. Therefore, the full image can be
reconstructed from each aliased image, and this is demonstrated schematically in Figure
3.19. In contrast to SENSE, GRAPPA reconstruction occurs entirely in k-space where the
missing k-space lines for each coil are estimated from the weighting factors of each coil. A
non-aliased image for each coil can then be reconstructed and combined to form the final
image. The weighting factors represent the spatial frequency dependencies of each coil and
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is usually calculated from auto-calibration, where the undersampled k-space from each coil
has a fully sampled region in the centre of k-space.

Sensitivity – Coil 1

Aliased 

images

Image

Coil 1

Coil 2

Unwrap 

aliasing

Sensitivity – Coil 2

Figure 3.19: Schematic diagram for parallel imaging with SENSE reconstruction. Two
receiver coils are used simultaneously to acquire undersampled k-space. The reconstructed
undersampled images are aliased, but can be unwrapped with the information of the local
spatial sensitivity of each receiver coil.

As for partial Fourier acquisitions, the reduction in k-space sampling leads to SNR reduction.
Additionally, a geometry factor g, that is characteristic of the array coil and related to
the arrangement of individual coils, leads to sub-optimal SNR. The parallel imaging SNR
can be related to a fully sampled equivalent by:

SNRPI = SNRfull

g
√
R

(3.67)

However, as mentioned above, the
√
R SNR trade-off can be avoided for hyperpolarised

gas imaging by increasing the flip angle accordingly.

3.4.1 Compressed sensing

Natural images, including MR images, can be compressed with negligible information loss
through compression algorithms such as JPEG or JPEG-2000 [222]. Underpinning these
compression algorithms are the sparsifying transformations: discrete cosine transform (DCT)
and wavelet transform, respectively. These transformations allow the original image to be
compressed by encoding it with a few significant sparse coefficients. With the widespread
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success of compression algorithms, the following questions are raised: since natural images
are compressible, is it necessary to acquire all the data? If not, is it possible to acquire
the significant sparse coefficient information only and accurately reconstruct an image? In
2006, the mathematical framework developed by Candes [223] and Donoho [224] demon-
strated that it is feasible to reconstruct an undersampled signal given that the signal is
sufficiently sparse or has a sparse representation, and this forms the theory behind com-
pressed sensing (CS) or sparse sampling.

In MRI, CS exploits the sparsity of MR images, in either the image or transformation
domains, such that images can be reconstructed from acquired data that does not fulfil the
Nyquist sampling criteria [225]. In contrast to parallel imaging, CS does not require the
use of multiple-channel RF coils, facilitating translation of the technique across different
sites and scanners with transmit and receive coils. Implementation of CS techniques in
MRI allows for the reduction of scan acquisition time, and can be used to improve spatial
resolution. There are numerous applications for CS in MRI including cardiac perfusion
imaging [226], dynamic contrast enhanced MRI [227], angiography [228], functional MRI
[229], and hyperpolarised gas lung MRI (see Section 5.1).

Three requirements must be satisfied to ensure good CS image reconstruction: (1) image
data must be sparse in either the image domain or a transform domain; (2) k-space must be
undersampled randomly with variable-density schemes to ensure that associated artefacts
produced during reconstruction are incoherent or noise-like and can be smoothed by the
CS algorithm; (3) a non-linear reconstruction method must be used to enforce sparsity
and data fidelity. An example of CS implementation is shown in Figure 3.20, where a 3He
diffusion-weighted MR image is reconstructed from a three-fold undersampled k-space.

Sparsity

An image is said to be sparse if it can be represented with only a few non-negligible coefficients
in either the image or transform domains. Mathematically, an image (x) is considered K -
sparse when it can be represented by less than K non-zero coefficients (i.e. the `0 norm or
‖x‖0 ≤ K). However, if the image is not naturally sparse, a transform (ψ) can be used to
provide a sparse representation (c), and as such, x is still K -sparse given that:

x = ψc, where ‖c‖0 ≤ K (3.68)

Numerous sparsifying transformations exist to produce sparse representations of different
types of images. MR images, for example, are known to be sparse in the wavelet trans-
form or DCT domains [230]. However, some types of MR images, such as angiograms,
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Figure 3.20: Example of compressed sensing with 3D 3He diffusion-weighted MRI. (a)
Three-fold variable-density undersampled k-space pattern with undersampling in the ky and
kz phase-encoding directions (white pixels correspond to phase encodes that are sampled), and
with associated point spread function (PSF). (b) Fully-sampled image from a 3D DW-MRI
acquisition. (c) Zero-filled reconstruction of the retrospectively undersampled image in (b)
using the three-fold undersampling k-space pattern. (d) The CS reconstructed image obtained
from the non-linear reconstruction algorithm.

have very few significant pixels with non-zero values, and therefore are naturally sparse
or sparse in the image domain.

From the sparse image representation, an approximation image can be reconstructed from a
subset of the largest transform coefficients of the original fully-sampled image (Figure 3.21).
Numerical experiments have determined that for accurate reconstruction, the number of mea-
surements required should be approximately two to five times that of the number of transform
coefficients (K) needed for the image to be K -sparse [225, 231]. For MR images, the percent-
age of transform coefficients sufficient for diagnostic-quality reconstruction is typically used as
a measure of sparsity. This is of course subjective, but from Figure 3.21d, a sufficient quality
3He image can be reconstructed from only the largest 5% of wavelet transform coefficients.

Random sampling

When the k-space is undersampled coherently, spatially coherent artefacts (e.g. aliasing or
overlapping) will be generated in the reconstructed images. However, with incoherent or
random undersampling, noise-like artefacts will be produced during reconstruction that can
be removed through thresholding or smoothing algorithms. While true or uniform random
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Figure 3.21: (a) 3D 3He bSSFP ventilation image acquired from a healthy volunteer. (b)
Wavelet (Daubechies D4) transformation of 3He image. (c) Corresponding transform image
with the discrete cosine transform (block size, 8; overlap pixels, 4). (d) Reconstructed 3He
image from a subset of the largest 2, 5, and 10% of wavelet transform coefficients.

sampling of k-space is preferable, this is hard to implement in practice due to hardware-
gradient switching or physiological (peripheral nerve stimulation) limitations. In addition,
most of the information of MR images is located in the centre of k-space, therefore the density
of undersampling should decrease from the centre to the periphery of k-space.

For MR imaging, Lustig et al. [225] proposed a pseudo-random variable-density undersampling
scheme that mimics the interference pattern of a true random sampling, and this scheme was
shown to perform better than uniform density random sampling. The point spread function
(PSF) is a good measure of the incoherence, and is defined as:

PSF (i, j) = (F ∗uFu)(i, j) (3.69)

where Fu is defined as the Fourier transform of an undersampled subset (u) of k-space, and
F ∗u is the adjoint operation represented by zero-filling of the undersampled k-space followed
by the inverse Fourier transform. When the k-space is fully-sampled, the PSF is the identity
matrix and there are no off-diagonal terms (i.e. PSF (i, j)|i 6=j = 0). However, if k-space is
undersampled, non-zero off-diagonal terms appear in the PSF (i, j) due to interference in the
form of energy leakage from the true underlying source pixel to other pixels [230]. Random
sampling aims to spread this energy leakage uniformly across the undersampled image, such
that the maximum value is small. The incoherence of the PSF (i, j) is thus defined as the
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maximum normalised off-diagonal entry or maximum sidelobe-to-peak ratio (SPR):

SPR = maxi 6=j
∣∣∣∣PSF (i, j)
PSF (i, i)

∣∣∣∣ (3.70)

For an image that is sparse in the transform domain through a sparsifying transform (ψ),
then a transform point spread function (TPSF) is denoted instead by:

TPSF (i, j) = (ψ∗F ∗uFuψ)(i, j) (3.71)

and the incoherence is measured by the maximum off-diagonal entry in the TPSF. A Monte
Carlo algorithm can be used to iteratively generate pseudo-random k-space undersampling
patterns, and the PSF is utilised to select the k-space pattern with the maximum inco-
herence or minimum SPR [225].

Non-linear reconstruction

The final step of CS is the recovery of the sparse image coefficients from a subset of mea-
surements. This can be achieved by using the `0 norm, which represents the number of
non-zero coefficients, to find the sparsest representation that is consistent with the acquired
measurements. However, the minimisation of the `0 norm is a non-convex optimisation
problem and can be difficult to solve [232]. The `1 norm (where ‖x‖1 = ∑

i |xi|) minimisation
is the convex alternative and more computationally feasible to solve. The reconstruction is
therefore obtained by solving the constrained convex optimisation problem:

minimise ‖ψm‖1

subject to ‖Fum− y‖2 < ε
(3.72)

where m is the reconstructed image, ψ is a sparsifying transformation, Fu is the undersampled
Fourier transform, y is the acquired k-space data, and ε controls the fidelity of the reconstruc-
tion and is usually set below the expected noise level. By minimising the `1 norm in ‖ψm‖1,
sparsity is promoted; while, the `2 norm (where ‖x‖2 =

√∑
i |xi|2) in ‖Fum−y‖2 < ε, enforces

data consistency. Minimising `1 norm encourages sparse solutions because many small coeffi-
cients will carry larger penalty compared to a few larger coefficients, therefore small coefficients
are suppressed. A total variation (TV ) penalty term is sometimes included in Equation (3.72)
representing the sum of the absolute variations in the image or the `1 norm of the differences
between image pixels. The convex optimisation problem can now be expressed as:

minimise ‖ψm‖1 + λTV (m)

subject to ‖Fum− y‖2 < ε
(3.73)
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where λ is the penalty weight used for regularisation to ensure that the reconstructed image
is sparse in both the transform and finite differences domains. The `1 minimisation algorithm
used in this work is based on the algorithm proposed by Lustig et al. [225] that utilises
non-linear conjugate gradients and backtracking line-search. The convex optimisation problem
in Equation 3.73 can be expressed as an unconstrained problem:

arg min
m
{‖Fum− y‖22 + λ1‖ψm‖1 + λ2 TV (m)} (3.74)

where λ1 and λ2 are penalty weighting parameters that balance data fidelity and artefact reduc-
tion. Alternative algorithms have been proposed to recover the sparse signal/image, and these
can be classified as iterative or Greedy methods. Examples of iterative/Greedy algorithms
include: orthogonal matching pursuit [233], iterative hard thresholding [234], and iterative soft
thresholding [235]. These algorithms all adopt an iterative approach to obtain an improved esti-
mate of the sparse signal, and their performance are similar to `1 minimisation algorithms.

3.5 Diffusion-weighted MR imaging

The application of magnetic field gradients causes an accumulation of spatially varying phase
and enables MRI spatial encoding (Section 3.2.1). Magnetic field gradients can also be used
to sensitise MR signals to molecular diffusion through random Brownian motion. The first
diffusion-weighted sequence, a pulsed gradient spin echo (PGSE) sequence developed by
Stejskal and Tanner [236], applies additional bipolar diffusion-weighted gradients lobes to a
conventional spin echo sequence. The two gradient lobes have equal area and are separated
by the 180° refocusing pulse. A spoiled gradient echo equivalent can be implemented with
two diffusion-weighted gradients of opposite polarity (Figure 3.22).

Equation 3.34 describes the phase accumulation in relationship to an applied magnetic
field gradient. In random Brownian motion, the spins within a voxel move randomly and
accumulate different amounts of phase. Under the assumption of Gaussian phase distribu-
tion, the average phase accumulated is zero, and the MR signal is related to the vari-
ance of the phase (<φ2>) by:

S = S0e
<φ2> = S0e

−bD (3.75)

where S0 is the MR signal in the absence of diffusion gradients, and the variance <φ2> is equiv-
alent to the product of the b-value (b) and diffusion coefficient (D). The diffusion-weighted
MR signal can also be derived from the Bloch equations (Equation 3.16), where an additional
term is included to describe the change in transverse magnetisation due to diffusion [237].

d ~M

dt
= γ ~M × ~B + 1

T1
(M0 −Mz)−

1
T2

~Mxy +D∇2 ~M (3.76)
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Figure 3.22: A typical hyperpolarised gas diffusion-weighted SPGR pulse sequence, based
upon the PGSE sequence. Depicted here is a 3D SPGR sequence with phase encoding on
both Gy and Gz, and two bipolar diffusion gradient waveforms on the Gz axis.

The solution for the transverse magnetisation from the Bloch-Torrey equation is given by:

~Mxy = M0e
−t/T2e−bD (3.77)

When the MR signal is measured with and without diffusion-weighted gradients, Equation
3.77 can be used to derive Equation 3.75. The b-value represents all magnetic field gradients
that contribute to diffusion-weighted signal attenuation, and is given by:

b = (2π)2
∫ TE

0
~k(t) · ~k(t)dt = γ2

∫ TE

0

[ ∫ t

0
~G(t′) dt′

]2
dt (3.78)

where the relation between the k-space vector and magnetic field gradient is given by
Equation 3.35. For the typical trapezoid gradient waveforms used in hyperpolarised
gas diffusion-weighted MRI (Figure 3.22), the b-value can be analytically derived
from the waveform parameters:

b = γ2G2
[
δ2(∆− δ

3) + τ(δ2 − 2∆δ + ∆τ − 7
6δτ + 8

15τ
2)
]

(3.79)

where G is the gradient amplitude (ranging from 0 to Gmax), ∆ is the diffusion time, δ is
the gradient plateau time, and τ is the ramp time. The duration of one gradient lobe and
time between lobes is defined as the diffusion time (∆). In practice, the diffusion-weighted
sequence is implemented in an interleaving fashion, where each line of k-space is repeated for
each diffusion-weighting (b-value) before proceeding to the next line. This ensures that each
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interleave has the same TE and TR, and that motion artefacts and signal decay associated
with the flip angle and T1 are minimised.

3.5.1 Hyperpolarised gas diffusion-weighted MRI

Diffusion-weighted MRI with hyperpolarised gases and its sensitivity to changes in lung
microstructure was introduced in Section 2.2.5. Once inhaled, random Brownian motion causes
hyperpolarised gas atom diffusion, and the average distance (x̄) an atom can travel in a given
direction over a time interval or diffusion time (∆) is defined by the 1D diffusion equation:

x̄ =
√

2D∆ (3.80)

whereD is the respective diffusion coefficient of the 3He or 129Xe gas atom, which in the absence
of restricting boundaries is the free diffusion coefficient (D0) diluted in air/N2 (see Table 3.1).
For the typical diffusion times used in hyperpolarised gas MR experiments (<10 ms), the gas
atoms can travel distances of approximately 1 mm. The alveolar structure (∼0.2 mm in diame-
ter [9]) causes diffusion restriction (Figure 3.23), and under the assumption of Gaussian phase
distribution, Equation 3.75 can be described by an apparent diffusion coefficient (ADC):

S(b) = S0e
−b·ADC

ADC = ln(S0/S(b))
b

(3.81)

The ADC of 3He (∼0.2 cm2/s [91]) and 129Xe (∼0.035 cm2/s [113]) is approximately four times
smaller than their respective free diffusion coefficients (D0) in healthy lungs. In diseases such
as emphysema, the diffusion restriction is altered by tissue destruction leading to increased
diffusion and larger ADC values. The most commonly-used method for hyperpolarised gas
diffusion-weighted MRI is a modified SPGR sequence based upon the pulsed gradient spin
echo (PGSE) sequence [236]. This sequence (Figure 3.22) is typically implemented with short
diffusion times (∆) because of limitations imposed by T1 and T ∗2 decay.

Healthy Alveoli
3He ADC ~0.2 cm2/s

Emphysema Alveoli
3He ADC ~0.5 cm2/s

Figure 3.23: In healthy alveoli, the
gas atoms are restricted and therefore
results in a small ADC (∼0.2 cm2/s for
3He). While in emphysema, where the
alveolar walls are damaged, diffusion is
less restricted and larger ADC values
(∼0.5 cm2/s) are obtained.



60 Chapter 3. Theoretical background

The relationship between the PGSE diffusion experiment timing parameters and the un-
derlying geometry size determines the hyperpolarised gas diffusion MR signal behaviour.
This relationship can be defined through three different length scales (`S , `D, `G) [238, 239].
The underlying size of the confining structure (alveolar diameter) determines the structural
length (`S). `D corresponds to the 1D theoretical diffusion length (Equation 3.80) for the free
diffusion coefficient (D0). Finally, `G is the gradient dephasing length, defined as the average
length a spin must diffuse before it dephases by 2π radians for a given gradient strength G:

`G = (D0/γG)1/3 (3.82)

For a given PGSE diffusion experiment, the relative sizes of each length scale determines
the specific diffusion regime (free, restricted, and localised) of the experiment. A schematic
diagram of these three asymptotic diffusion regimes for 3He diffusion experiments with
different gradient amplitudes, and structure sizes is shown in Figure 3.24.

Localised diffusion

ℓG << ℓS & ℓD

Restricted diffusion

ℓS << ℓG & ℓD

Free diffusion

ℓD << ℓS & ℓG

ℓD/ℓS

ℓ
G
/ℓ

S

Increasing 

gradient 

(b-value)
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diameter

Figure 3.24: Schematic diagram of the three asymptotic diffusion regimes for 3He diffusion
experiments with D0 = 0.88 cm2/s, and ∆ = 1.6 ms (as typically used in most 3He ADC
experiments). Restricting structure sizes of 0.25 (circles), 0.50 (squares), 0.75 (triangles),
and 1.00 (diamonds) mm are shown. Each data point corresponds to a diffusion gradient
amplitude (G = 1–30 mT/m), with the downward trajectory representing increasing gradient
strength and b-value.

The assumption of Gaussian phase distribution that underpins Equation 3.81 is valid for
the free and restricted diffusion regimes. In the free diffusion regime (`D � `S , `G), the
derived ADC is constant and equivalent to the D0. In the restricted regime (`S � `D, `G),
the ADC is constant for all gradient amplitudes, and is determined by the confining geometry
size and experimental diffusion time. The final asymptotic regime corresponds to localised
diffusion (`G � `D, `S) [240], where the phase distribution strongly deviates from a Gaussian
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distribution and the MR signal is non-uniform. The observed signal becomes spatially
dependent where spins further away from the restricting boundaries have dephased more
than those within a distance `G, leading to an edge enhancement effect [241].

3.5.2 Theoretical models of hyperpolarised gas diffusion

The ADC value derived from hyperpolarised gas diffusion experiments, which assumes a
Gaussian distribution of phases and mono-exponential decay of MR signal, is an indicator
of changes in alveolar size. However, the ADC value is also dependent upon experimen-
tal acquisition parameters such as field strength [104], and diffusion sensitising gradient
strength, orientation and timings (Figure 3.25) [97, 242, 243] . This dependence indicates
that care should be taken when making a direct comparison of ADC results, between dif-
ferent sites, acquired with different diffusion-weighting sequence parameters. The numer-
ous airways with varying sizes and orientations with respect to the diffusion-sensitising
gradient contained within one voxel contribute to a non-Gaussian phase dispersion and a
non-mono-exponential signal decay [244].
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Figure 3.25: The dependence of ADC values on experimental acquisition parameters is
demonstrated in a healthy volunteer with 3He diffusion-weighted MRI acquired using a range
of different b-values and diffusion gradient durations. For each diffusion-sensitising scheme,
3He ADC data from ten regions-of-interest are plotted for each b-value (b = 1.438, 2.695,
4.377, and 6.932 s/cm2). The TE and TR for each diffusion interleave was fixed. ADC
value is observed to decrease with increasing diffusion time, increasing gradient strength, and
increasing b-value. Adapted with permission from Fichele et al. [242]. Copyright Elsevier.
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The non-Gaussian effects lead to different apparent diffusion rates, which are not fully
compensated by motional averaging for the relatively short diffusion times used in typical
3He or 129Xe diffusion-weighted MR measurements [245]. The heterogeneity of the apparent
diffusivity is further enhanced by localised diffusion effects caused by strong gradients at
structural edges [239], and effects related to the airway branching [245] and background
susceptibility gradients [104]. All of these contributing factors cause difficulties when extracting
quantitative information about lung microstructure from in vivo diffusion-weighted MR
imaging, and as such there is no direct one-to-one correspondence between measured ADC
value and lung morphometry parameters of lung microstructure.

Theoretical models of hyperpolarised gas diffusion have been proposed to extract lung
morphometry measurements from the non-Gaussian diffusion MR signal. Much work has been
performed in modelling the effect of restricted diffusion of 3He and 129Xe inside geometrical
models of lung microstructure that include: cylindrical geometries [5, 128, 136], acinar trees
[246], branching structures [242, 247, 248], and alveolar ducts [249]. To date, cylindrical
geometrical models [5, 128, 136], stretched exponential models [129], and q-space transforms
[130] are the only theoretical models that derive estimates of alveolar length scales from in
vivo hyperpolarised gas diffusion measurements, akin to those from obtained from histology.
The following sections provide the theoretical background for the cylinder and stretched
exponential models that are used in the subsequent experimental chapters.

Cylinder model

Studies into the geometry of the acinus by Haefeli-Bleuer and Weibel, through silicone
casts, determined that alveoli surround the acinar airways forming alveolar sleeves, and
there is very little variation in the outer and inner acinar airway radii (350 ± 60 µm
and 160 ± 30 µm, respectively) throughout the acinar airway tree in healthy lungs [11].
The relatively small variation in acinar airway radii is utilised in the cylinder model to
characterise acinar airway geometry.

In the cylinder model, the acinar airway is approximated as infinitely long cylinders covered
by alveoli according to the Haefeli-Bleuer and Weibel [11] geometry (see Figure 3.26). With
the typical diffusion times used in 3He diffusion-weighted MRI experiments (∆ ∼1.6 ms), the
characteristic 1D free diffusion length (`1) of 3He atoms is approximately 550 µm (assuming free
diffusion of 3He in air is 0.88 cm2/s). This indicates that during the typical 3He experimental
diffusion times, 3He atoms can diffuse out of the alveolus (radius ∼150 µm [9]) and into the
acinar airway. However, the `1 is significantly shorter than the length of acinar ducts (∼730 µm)
and sacs (∼1000 µm) [11], therefore each cylinder is treated as an individual, non-connected
airway and as such branching and interconnectivity effects are considered negligible.
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(a) (b)
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Figure 3.26: (a) Model of acinar airway geometry for the cylinder model based upon the
acinar geometry of Haefeli-Bleuer and Weibel [11]. The acinar airway is depicted as cylinders
surrounded by an alveolar sleeve, and is defined by two geometrical parameters - outer radii
(R), and inner radii (r). (b) Cross-section of the cylinder model geometry. The alveolar
sleeve contains eight alveoli, therefore the length or diameter of an alveolus (LAlv) is defined
as 2R sin(π/8) = 0.765R. The depth of the alveolar sleeve (h) is defined as R− r, and the
alveolar volume (Va) includes the volume of the alveolus and the alveolar duct. Adapted with
permission from Sukstanskii et al. [128] (Copyright Elsevier), and Yablonskiy et al. [250]
(Copyright John Wiley and Sons).

From the underlying geometry of the cylinder model, more diffusion restriction exists perpendic-
ular to the airway axis due to the alveolar walls, while less restriction is observed along the air-
way axis. This anisotropic diffusion was initially characterised by Callaghan et al. [251] as two
orthogonal diffusion coefficients, longitudinal DL and transverse DT . For a diffusion gradient
direction at an arbitrary angle (φ) to the airway axis, the ADC can be approximated as:

ADC (φ) = DL cos2 φ+DT sin2 φ (3.83)

A typical diffusion-weighted MR imaging voxel is of the order of several millimetres, there-
fore within each voxel are hundreds of airways with different orientations. Under the
assumption of a uniform distribution of cylinders in all orientations within a measured
voxel, the total signal attenuation, for given diffusion-weighted b-values, can be obtained
by integration over all possible angles [251]:

S(b)
S0

=
∫ π

0 exp [−b(DL cos2 φ+DT sin2 φ)] sinφ dφ∫ π
0 sinφ dφ (3.84)

where S0 is the diffusion signal in a given voxel in the absence of diffusion-weighting. Inte-
gration of Equation 3.84 derives an expression for the non-mono-exponential signal observed
in 3He DW-MRI lung experiments as a superposition of mono-exponential signals from
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each individual airway [5]:

S(b)
S0

= exp (−bDT )( π

4 bDAN
)1/2 · Φ[(bDAN )1/2]

DAN = DL −DT , Φ(x) = 2√
π

∫ x

0
e−t

2
dt

(3.85)

where Φ(x) is defined as the error function. The anisotropic diffusion coefficients DL and
DT , derived from the fitting of Equation 3.85, are subsequently related to the cylinder model
airway geometrical parameters (R and h) with phenomenological expressions determined
through Monte-Carlo simulations. The expressions originally developed by Yablonskiy et
al. [5] have subsequently been updated to account for non-Gaussian effects and a more
complex geometry that incorporates alveoli [6, 128]. The model implemented in this work was
based upon an eight alveolar model [6] (Figure 3.26), where the effective alveolar diameter
(LAlv) is equivalent along the airway and across the alveolus, therefore is 1/8 of the chord
length of the cylindrical acinar airway:

LAlv = 2R sin(π/8) = 0.765R (3.86)

This enables the cylinder model to be characterised by two geometrical parameters (R and
h) that are related to DL and DT by the following expressions [6]:

DL = DL0(1− βL · bDL0); DT = DT0(1 + βT · bDT0) (3.87)

DL0
D0

= exp[−2.89 · (h/R)1.78]; βL = 35.6 · (R/`1)1.5 · exp[−4/
√
h/R] (3.88)

DT0
D0

= exp[−0.73·(`2/R)1.4] · [1 + exp(−A · (h/R)2) · u(h/R)]

u(h/R) = exp(−5 · (h/R)2) + 5 · (h/R)2 − 1

A = 1.3 + 0.25 · exp(14 · (R/`2)2)

(3.89)

Within the physiological range of the cylinder model (h/R < 0.6), the βT parameter is
observed to be constant at 0.06. `1 =

√
(2D0∆) and `2 =

√
2 `1 are the respective 1D

and 2D characteristic free diffusion lengths of 3He in air. The above expressions are valid
only for R = 300–400 µm, and ∆ = 1.5–2 ms; therefore incorporating alveolar parameters
ranging from healthy to mild emphysema [252]. After the estimation of R and h, additional
parameters, including alveolar volume (Va) and alveolar surface area (Sa), can be derived
based upon the cylindrical airway geometry (Figure 3.26).

Va = π

8R
2LAlv; Sa = π

4R · LAlv + π

4h · (2R− h) + 2h · LAlv (3.90)

The alveolar volume includes both the volume of the alveolar duct and the alveolus. With Sa
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and Va, alveolar number density (Na) and mean chord length (Lm) can be estimated using
the histological relationship between Lm and surface-to-volume ratio [9]. In the calculation
of Lm, the thickness of the alveolar wall (∼10 µm), is neglected such that the mean linear
intercept is equivalent to the mean chord length.

Na = 1
Va

; Lm = 4Va
Sa

(3.91)

129Xe Cylinder model

The inherent differences in diffusivity (D0) and gyromagnetic ratio (γ) of 3He and
129Xe prevents the direct application of the cylinder model phenomenological expressions,
derived for 3He in Equations 3.88 and 3.89, for 129Xe diffusion-weighted MRI. In the cylinder
model, the anisotropic diffusion coefficients DL and DT are dependent upon R/`1 and bD0.
Therefore, if 129Xe acquisition parameters were scaled to allow for the same R/`1 and bD0 as
3He, Equations 3.88 and 3.89 can be applied for 129Xe diffusion-weighted MRI. However,
for this to occur, the 129Xe diffusion time would need to be approximately 6× longer than
that for 3He, significantly increasing acquisition time. Therefore, through Monte Carlo
simulations, new phenomenological expressions for 129Xe diffusion-weighted MRI were derived
by Sukstanskii and Yablonskiy [136], and these expressions are valid for 129Xe D0 = 0.14
cm2/s, R = 300–400 µm, and 129Xe ∆ = 4–6 ms, and are as follows:

DL0
D0

= exp[−2.81 · (h/R)1.76]; βL = 21.2 · (R/`1)1.5 · exp[−3.65/
√
h/R] (3.92)

DT0
D0

= exp[−0.74 · (`2/R)1.47] · [1 + u(h/R)]

u(h/R) = c1(R) · (h/R) + c2(R) · (h/R)2

c1(R) = 1.13 · (R/`2)− 1.40 · (R/`2)2

c2(R) = 3.55− 11.27 · (R/`2) + 7.44 · (R/`2)2

(3.93)

βT = c′0(R) + c′1(R) · (1− h/R) + c′2(R) · (1− h/R)2

c′0(R) = 1.89 + 5.82 · (R/`2) + 3.60 · (R/`2)2

c′1(R) = −4.21 + 14.1 · (R/`2)− 9.52 · (R/`2)2

c′2(R) = 2.14− 7.35 · (R/`2) + 5.03 · (R/`2)2

(3.94)
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Stretched exponential model

An alternative theoretical model of hyperpolarised gas diffusion signal behaviour in the
lungs is the mathematical stretched exponential model [129], that does not require any
assumptions about the lung microstructural geometry in order to derive in vivo estimates
of alveolar length scales. Within each 3He or 129Xe MR lung imaging voxel, the diffusion
of gas atoms is restricted by the walls of airways with different sizes and orientations with
respect to the diffusion sensitising gradient leading to different local diffusion regimes. Hence,
the measured macroscopic voxel signal can be represented as the superposition of signals
with different apparent diffusivities (D):

Sb
S0

=
D0∫
0

p(D)e−bDdD (3.95)

where S0 is the signal when b = 0, Sb is the signal corresponding to a non-zero b-value, D0 is
the free diffusion coefficient of 3He or 129Xe in air or N2, and p(D) is the probability density
function. A numerical expression of p(D) can be obtained for the non-mono-exponential signal
decay by using a stretched exponential function, that addresses the non-Gaussian nature of
the diffusion MRI signal [140]. The stretched exponential function is defined as follows:

Sb
S0

= e[−b·DDC]α (3.96)

where DDC is the distributed diffusivity coefficient term, and α is the heterogeneity index
that describes how much deviation there is from a mono-exponential decay (α = 1). The
p(D) can be estimated from stretched exponential function parameters using the approach
developed by Berberan-Santos et al. [253]:

p(D) = τ0
B

Dτ
(1−α/2)/(1−α)

0
· exp

[
− (1− α)αα/(1−α)

Dτ
α/(1−α)

0

]
· f(D), (3.97)

where τ0 is 1/DDC, and f(D) is defined by:

f(D) =

1/[1 + C(Dτ0)δ], δ = α(0.5− α)/(1− α), α ≤ 0.5,

1 + C(Dτ0)δ], δ = α(α− 0.5)/(1− α), α > 0.5,
(3.98)

The parameters B and C are functions of α, and parameters at specific α values can be
found in Table 1 of Berberan-Santos et al. [253]. For other α values, interpolation can be
used to derive corresponding B and C parameters. The expression for p(D) can subsequently
be related to a probability distribution of diffusion length scales p(LD) associated with the
different apparent diffusivities (D) through the 1D diffusion equation (i.e. root mean squared
displacements in Equation 3.80). The p(LD) distributions are a measure of the distribution of
microscopic dimensions of the airways, such as the different diffusion-restricting boundaries,
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contained within a given voxel. In Figure 3.27, for the p(LD) distributions for different alpha
(α) values demonstrates a change in distribution profile.
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Figure 3.27: Probability distribution of diffusive length scales (LD) for different alpha (α)
values. For a constant DDC value (0.25 cm2/s), a larger alpha value results in more narrow
probability distribution. The p(LD) distribution is set to zero when LD > L1 corresponding
to the 1D free diffusion length (black arrow).

From the p(LD) distribution a mean diffusive length scale (LmD) can be derived
for each voxel by:

LmD =
∑

p(LD) · LD (3.99)

LmD values therefore provide quantitative estimates of the mean acinar airway dimensions
within a voxel. The diffusive length scale distributions for the representative healthy and
emphysema subjects in Figure 2.13, are shown in Figure 3.28 and correspond to global
mean LmD values of 208 and 316 µm, respectively. The representative distributions of
alveolar diffusive length scales seem to match the distribution of mean intercept length
derived from histology (Figure 3.29).
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Figure 3.28: Diffusive length scale (LD) distributions for a representative healthy (global
mean DDC = 0.14 cm2/s, global mean α = 0.83) and emphysema (DDC = 0.45 cm2/s, α =
0.74) subjects. The smaller α and larger DDC value in the emphysema subject corresponds
to a right-shifted and wider distribution of LD that reflects increased heterogeneity due to
emphysematous disease.

Figure 3.29: Histologically-derived frequency distribution of measurements of mean linear
intercept in four control lungs, compared to the frequency distribution in four lungs affected
by centrilobular emphysema (CLE) and ten lungs affected by panlobular emphysema (PLE).
Reproduced with permission from McDonough et al. [66]. Copyright Massachusetts Medical
Society.



Chapter 4

Lobar comparison of lung
microstructure with CT and 3He
diffusion-weighted MRI

4.1 Introduction

Lung microstructure encompasses the pulmonary acinus, the structural unit of the airways
that participates in gas exchange. Changes to this lung microstructure affect the function of
the lungs, therefore it is important to measure or model this microstructure to improve our
understanding of lung physiology and disease. A range of non-invasive imaging techniques
and modalities can be used to measure lung microstructure (see Chapter 2); with each
technique and modality offering unique lung structure and function information with different
spatial resolutions and volumetric coverage. Reconciling this complementary microstructural
information from multi-modality imaging can help improve the understanding of pulmonary
disease mechanisms and help develop or validate computational models of lung physiology.
In this chapter, the lung microstructure metrics from CT and 3He diffusion-weighted MR
imaging were investigated in a cohort of subjects with asthma.

The enlargement of airspaces and destruction of alveolar walls can be detected through
changes in CT attenuation values [33], where a change in CT density distribution is indicative
of structural changes in the lung tissue due to disease. Areas of gas trapping can be assessed
in expiratory CT images, and the amount of gas trapping correlates with asthma severity
[254, 255]. Changes to structural dimensions of airway trees segmented from CT images
are also indicative of asthma disease severity [256, 257]. Diffusion-weighted MRI (DW-MRI)
with hyperpolarised gases is sensitive to changes in lung microstructure through restricted
Brownian diffusion [91, 92, 117]. In asthmatic patients, 3He apparent diffusion coefficient
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(ADC) value is demonstrated to be elevated (9% increase) in comparison to healthy subjects,
and may be representative of localised regions of air-trapping [106].

The lung microstructure information from CT and 3He DW-MRI has been previously compared
in emphysema patients, and a significant correlation between CT metrics and 3He ADC was
demonstrated [93, 116, 117]. However, these comparisons were global and did not regionally
compare the two imaging modalities. More recent comparisons of CT and hyperpolarised
gas 3He and 129Xe ADC have demonstrated the potential for regional [114] and voxel-by-
voxel comparison [258] of the two imaging modalities. Lung morphometry parameters from
3He models of gas diffusion have also demonstrated significant correlation with both CT
emphysema index [131], and mean CT lung density [129]. However, to date, there has been
no regional comparison of CT metrics and 3He DW-MRI derived lung morphometry.

The aim of this chapter was therefore to compare the stretched exponential model derived
mean diffusive length scale (LmD) and CT metrics in a cohort of asthmatic patients on a
lobar level. The lung lobes were segmented in both 3He DW-MRI and CT images, allowing
for a regional comparison of CT and DW-MRI metrics in each lobar region.

4.2 Methods

Study subjects and image acquisition

29 patients (17 male, 12 female) with moderate to severe asthma (Global Initiative for Asthma
(GINA) 2–5) were recruited for high resolution computed tomography (HRCT) imaging and
hyperpolarised 3He DW-MRI. This study was performed with national ethics research commit-
tee approval. Inclusion criteria were physician diagnosis of asthma, GINA 2–5, and sputum
eosinophil count >2%; exclusion criteria included recent lower respiratory tract infection and
acute illnesses. The mean ± standard deviation age for all patients was 53.4 ± 11.6.

Each asthmatic patient was imaged at lung inflation states of function residual capacity
(FRC) and total lung capacity (TLC) with HRCT, corresponding to expiratory and in-
spiratory lung volumes, respectively. CT scanner settings were: Sensation 16 (Siemens,
Forchheim, Germany), 120 kV tube voltage, 120 mA tube current, and B30f reconstruction
kernel. The HRCT image slice thickness was 1 mm with approximately 600 slices for each
patient. Images were reconstructed to an in-plane resolution of approximately 0.86×0.86
mm2 and an image matrix of 512×512.

3He DW-MRI was acquired for all patients on a 1.5 T GE HDx MRI scanner using 350 ml of
hyperpolarised 3He gas (∼25% polarisation) mixed with 650 ml of N2. Patients were instructed
to breath 1L of gas mixture from FRC. Five coronal image slices (15 mm thickness and 10 mm
spacing) of the lungs were acquired with a 2D spoiled gradient echo (SPGR) imaging sequence
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with bipolar diffusion gradients (64×64 matrix, TE/TR = 4.8/9.0 ms, FOV = 38.4×28.8 cm2,
diffusion time (∆) = 1.6 ms, DW gradient strength = 30 mT/m, ramp = 0.3 ms, plateau = 1.0
ms, flip angle = 5.8° (sinc RF pulse), and bandwidth = ±31.25 kHz). For each image slice, four
interleaved acquisitions were obtained corresponding to b-values of 0, 2.4, 4.8, 7.2 s/cm2.

HRCT and 3He DW-MRI analysis

The major fissures for both inspiratory and expiratory CT volumes were identified using
medical image segmentation software (Mimics; Materialise, Leuven, Belgium), and indi-
vidual lobes were segmented automatically. Due to the difficulty in identifying minor fis-
sures within the right lung of some patients, the right middle and right upper lobes were
combined forming a right upper lobar region. This resulted in four lobar regions for re-
gional lung microstructure comparison – left lower (LLL), left upper (LUL), right lower
(RLL), and right upper (RUL) regions.

Quantitative CT metrics, including mean lung tissue density, emphysema index, 15th percentile
and gas trapping index, were derived for each lobar region (see Figure 2.7). Mean lung tissue
density was calculated for both inspiratory (HUinsp) and expiratory (HUexp) CT lobar
regions from the summation of all voxels within each lobar region. Emphysema index
(RA950) was defined as the percentage of inspiratory CT voxels that are below -950 HU;
while gas trapping index (RA856) was the proportion of expiratory CT voxels below -856
HU. Finally, 15th percentile (HU15%) cut off is the inspiratory CT HU value at which
15% of voxels have a lower HU value.

3D Inspiratory CT Slice 2D 3He DW-MRI Slice

Figure 4.1: Manual segmentation of
3He DW-MRI lobar regions. CT coro-
nal slices were selected to approxi-
mately correspond to 3He DW-MRI
slices. Lobar regions in the segmented
CT were used to guide manual selec-
tion of 3He DW-MRI lobar regions.

Due to the relatively low resolution of 3He DW-MRI in comparison to CT, segmentation
of the lobar regions on MRI was performed manually (Figure 4.1). To guide the manual
segmentation, the axial 3D CT images were reformatted into coronal slices and approximate
corresponding CT slices were chosen. Using the CT segmented lobar regions in the chosen
corresponding slices as reference, lobar regions of interest (ROI) were manually selected
in the DW-MRI. The left and right lungs were first segmented, and to ensure that there
was no overlap in manually selected lobar regions, the upper lobar region (LUL and RUL)
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was only selected for each lung. The complementary mask region corresponds to respective
lower lobar regions (LLL and RLL).

After the segmentation of the four lobar regions from 3He DW-MRI, measures of lung
microstructure were calculated for each lobar region. Maps of ADC were generated from the
mono-exponential fit (Equation 3.81) of the first two diffusion-weighted interleaves (b = 0 and
2.4 s/cm2). Maps of distributed diffusivity coefficient (DDC) and alpha were derived from
the stretched exponential model fit from all four diffusion-weighted interleaves (Equation
3.96). Finally, mean diffusion length scale estimates (LmD) were calculated using Equations
3.97 to 3.99, deriving estimates of alveolar dimension for each voxel.

Lung microstructure measurements from CT imaging and 3He DW-MRI were calculated
in each lobar region in a cohort of 29 asthmatic subjects. Correlations between the lung
microstructure metrics of the two imaging modalities were determined through statistical
analysis using SPSS (IBM Corp. Version 22.0. Armonk, NY: IBM Corp). Repeated measures
one-way analysis of variance (ANOVA) with Bonferroni post-hoc adjustment was conducted
to compare the lung microstructure metrics within each lobar region. Significance was
determined at the adjusted p-value<0.05 level.

4.3 Results

Lobar regions were identified in all asthmatic patients’ CT images and manually matched
to 3He DW-MRI data. Table 4.1 and Table 4.2 summarises the mean lung microstructure
metrics in each lobar region for CT and 3He DW-MRI, respectively. All lobar CT and 3He
DW-MRI metrics (except alpha value) were significantly different (P<0.001) across the four
lobar regions as determined through repeated measures ANOVA.

Table 4.1: Summary of mean CT metrics from each lobar region from the lungs of a cohort
of asthmatic patients.

Inspiratory CT Expiratory CT
HUinsp (HU) RA950 (%) HU15% (HU) HUexp (HU) RA856 (%)

LLL -791 ± 54 11.3 ± 9.0 -928 ± 32 -670 ± 71 19.7 ± 19.7
LUL -817 ± 46 14.1 ± 8.5 -939 ± 28 -716 ± 52 25.7 ± 16.6
RLL -801 ± 48 11.5 ± 7.9 -931 ± 30 -677 ± 67 19.6 ± 19.0
RUL -821 ± 42 13.5 ± 8.3 -940 ± 25 -735 ± 44 29.8 ± 15.6
Whole -809 ± 46 12.7 ± 8.2 -935 ± 27 -704 ± 53 24.4 ± 16.6
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Table 4.2: Summary of mean 3He DW-MRI metrics from each lobar region from the lungs
of a cohort of asthmatic patients.

3He diffusion-weighted MRI
ADC (cm2/s) DDC (cm2/s) Alpha LmD (µm)

LLL 0.207 ± 0.042 0.178 ± 0.048 0.809 ± 0.046 230 ± 22
LUL 0.227 ± 0.039 0.205 ± 0.044 0.814 ± 0.039 245 ± 20
RLL 0.214 ± 0.036 0.187 ± 0.042 0.803 ± 0.040 233 ± 20
RUL 0.225 ± 0.037 0.201 ± 0.042 0.808 ± 0.036 242 ± 19
Whole 0.220 ± 0.037 0.196 ± 0.042 0.809 ± 0.037 239 ± 20

Bonferroni’s multiple comparison tests between lobar regions are summarised in Figure 4.2 for
selected CT and 3He DW-MRI metrics. A significant difference (adjusted P<0.05) between
lower and upper lobar regions for all CT metrics was obtained. A statistically significant
decrease in HUinsp, HUexp, and HU15% between lower and upper lobar regions was observed;
while a significant increase in RA950 and RA856 was observed. Similarly, a statistically
significant (adjusted P<0.05) increase in all 3He DW-MRI metrics was observed between
the lower and upper lobar regions (apart from RLL and RUL ADC).

CT-based measures were significantly correlated (P<0.05) with all 3He DW-MRI lung
microstructure measurements for all lobar regions, with the exception of alpha value which
was only significantly correlated with RA856 for all lobar regions except RLL. Pearson
correlation coefficients and significant correlations are summarised in Table 4.3. Generally,
expiratory CT-based measurements (HUexp and RA856) exhibited stronger linear correlations
with DW-MRI measures of ADC, DDC and LmD when compared with inspiratory CT
measurements (HUinsp, RA950, and HU15%).

The linear correlations suggest that acinar microstructural metrics (ADC, DDC and LmD) are
strongly related to CT metrics of tissue density in the lungs of patients with asthma. Patients
with lower mean tissue density or more severe indices of disease (RA950 and RA856) have larger
corresponding lung microstructure dimensions. Scatter plots depicting the linear correlation
between mean diffusive length scale (LmD) and CT metrics are shown in Figures 4.3 to 4.6.
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Figure 4.2: Box and whisker plots of CT (HUinsp, RA950, HUexp, and RA856) and 3He DW-
MRI (ADC and LmD) metrics for each lobar region. Adjusted p-values for each statistically
significant lobar comparison are given.
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Table 4.3: Summary of correlations between CT and 3He DW-MRI metrics of lung mi-
crostructure for each lobar region.

LLL ADC LLL DDC LLL Alpha LLL LmD

LLL HUinsp -0.511 ** -0.571 ** 0.023 -0.562 **
LLL RA950 0.633 *** 0.586 *** -0.326 0.491 **
LLL HU15% -0.608 *** -0.553 ** 0.254 -0.492 **
LLL HUexp -0.713 *** -0.698 *** 0.367 -0.692 ***
LLL RA856 0.721 *** 0.691 *** -0.410 * 0.584 ***

LUL ADC LUL DDC LUL Alpha LUL LmD

LUL HUinsp -0.499 ** -0.497 ** 0.154 -0.501 **
LUL RA950 0.513 ** 0.478 ** -0.282 0.424 **
LUL HU15% -0.564 ** -0.526 ** 0.274 -0.489 **
LUL HUexp -0.616 *** -0.644 *** 0.316 -0.585 ***
LUL RA856 0.625 *** 0.638 *** -0.400 * 0.536 **

RLL ADC RLL DDC RLL Alpha RLL LmD

RLL HUinsp -0.552 ** -0.602 *** 0.039 -0.614 ***
RLL RA950 0.590 *** 0.559 ** -0.350 0.445 *
RLL HU15% -0.614 *** -0.597 *** 0.238 -0.527 **
RLL HUexp -0.647 *** -0.663 *** 0.350 -0.564 **
RLL RA856 0.576 ** 0.584 *** -0.365 0.536 **

RUL ADC RUL DDC RUL Alpha RUL LmD

RUL HUinsp -0.605 *** -0.617 *** 0.168 -0.620 ***
RUL RA950 0.659 *** 0.638 *** -0.233 0.616 ***
RUL HU15% -0.690 *** -0.671 *** 0.213 -0.671 ***
RUL HUexp -0.711 *** -0.712 *** 0.380 -0.649 ***
RUL RA856 0.725 *** 0.716 *** -0.421 * 0.639 ***

Whole ADC Whole DDC Whole Alpha Whole LmD

Whole HUinsp -0.589 *** -0.609 *** 0.168 -0.625 ***
Whole RA950 0.643 *** 0.610 *** -0.233 0.560 ***
Whole HU15% -0.659 *** -0.632 *** 0.213 -0.606 ***
Whole HUexp -0.759 *** -0.764 *** 0.380 -0.708 ***
Whole RA856 0.742 *** 0.734 *** -0.423 * 0.659 ***
* P<0.05; ** P<0.01; *** P<0.001
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4.4 Discussion

This work demonstrates that CT and 3He DW-MRI can be analysed at a lobar level in order
to compare regional measures of tissue density and acinar microstructure, respectively. The
statistically significant differences between upper and lower lobar microstructural metrics
matches the previously observed trend between apex and basal regions with CT [259] and
3He DW-MRI [100, 260]. The average whole lung ADC for the asthmatic cohort (0.22 cm2/s)
is elevated in comparison to the reported values in healthy volunteers (0.16 cm2/s) that
were acquired with the same diffusion time (∆ = 1.6 ms) but different b-value (b = 1.6
s/cm2) [104]. The b-value used to calculate ADC in this comparison, b = 2.4 s/cm2, is
slightly larger than the more routinely utilised b = 1.6 s/cm2 for 3He ADC calculation
[92, 93, 103, 117]. This discrepancy in b-value is due to an oversight in the DW-MRI protocol,
and will lead to smaller estimates of ADC at b = 2.4 s/cm2 [242]. Wang et al. [106] reported
a similar ADC value (0.25 cm2/s) for asthmatic patients at 1.5 T, and also a slight increase
in average ADC value when compared to healthy controls. The smaller ADC values obtained
in this asthmatic cohort could be attributed to the longer diffusion time (1.6 ms vs. 1.0
ms) and larger b-value (b = 2.4 vs. 1.6 s/cm2).

Statistically significant correlations suggest that in lungs with asthma, measurements of lung
microstructure from 3He DW-MRI and CT tissue density are inter-related. In a separate
study of the same asthmatic cohort [129], the whole lung mean LmD was also found to
significantly correlate with CT HUexp (P<0.001, r = -0.79). This correlation is similar to the
one observed in this analysis (P<0.001, r = -0.71). The slightly lower correlation strength
found in this analysis may be a result of fewer asthmatic patients (29 vs. 33) or inter-observer
differences in CT and DW-MRI lobar analysis. The correlation between HUexp and LmD for
individual lobar regions were all smaller than for the entire lung; this could be attributed to
errors in lobar segmentations associated with manual selection of lobar regions.

The differences in statistical correlation strength between HUinsp and HUexp for all DW-MRI
lung microstructure metrics suggests that a smaller lung volume provides stronger correlations
between lung alveolar size and mean tissue density. One possible explanation for this trend
could be that 3He DW-MRI inflation state (FRC+1L) is closer to FRC (expiratory CT) than
TLC (inspiratory CT). An alternative explanation is related to the higher lung tissue density
at smaller lung volumes, thus providing better SNR of the parenchyma in the CT image.
The improvement in image SNR leads to better contrast between tissue density in healthy
and non-healthy regions in the CT images, which could explain the stronger correlations
between the lung microstructural measurements of the two imaging modalities. A stronger
correlation with expiratory CT volumes was also obtained in other studies comparing CT
densitometry and PFTs in emphysema evaluation [49, 50].
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Previously reported in vivo comparisons of 3He DW-MRI and CT [93, 116, 117] have predom-
inantly been focused on patients with varying degrees of emphysematous disease. Therefore,
in these studies mean ADC value was observed to strongly correlate with RA950 and HU15%

(r = 0.9, and -0.9, respectively); while HUinsp (r = -0.59 [93]) and RA856 (r = 0.67 [116])
exhibited weaker correlations. Nevertheless, in our asthmatic patient cohort, statistically
significant correlations between 3He DW-MRI measurements and all CT metrics were ob-
served on a global lung and lobar level. The weaker correlation (r = 0.5 to 0.7) is likely the
result of a smaller range of alveolar dimensions and hence range of measurements within
this cohort when compared to that observed in patients with emphysema. However, in
contrast to the patients with emphysema, the CT metrics with the strongest correlations
in the asthmatic cohort were HUexp and RA856. This metric of gas trapping in expiratory
CT images is more relevant in asthmatic patients when compared to emphysema metrics
(RA950 and HU15%). The strong correlation of 3He DW-MRI with gas trapping matches the
trend seen in a previous analysis of quantitative CT parameters in a cohort of asthmatic
patients, where the percentage proximal airway wall area and gas trapping index (RA856)
were the strongest predictor of lung function impairment [261].

A major caveat in this 3He DW-MRI and CT comparison is that only ventilated regions
of the lungs receive hyperpolarised gas and have detectable MR signal in 3He DW-MRI.
Therefore, diffusion-weighted images of asthmatic patients with ventilation defects have
areas of the lung with no signal corresponding to areas of the lung that the 3He gas cannot
reach after a single inhalation. However, in CT imaging which utilises X-ray radiation, the
entire lung and body cavity is imaged; this means the lung/lobar regions compared are
not identical to those in the lung microstructure analysis. Stronger correlations might be
obtained if 3He DW-MRI were compared to CT images with excluded unventilated lung
regions. This could be achieved through image registration where CT images are registered
to 3He DW-MRI using a similar methodology where 3He ventilation images are registered
to CT via the registration of a 1H structural scan acquired in the same-breath as the 3He
ventilation images [262] (see Figure 9.1).

This lobar analysis was developed and implemented retrospectively after the acquisition of
all CT and 3He MR imaging. The goal of the original study was to monitor the effect of a
new therapeutic drug treatment over time in a cohort of patients with asthma. Patients were
imaged pre-bronchodilator (BD) therapy with 3He DW-MRI but CT imaging was acquired
post-BD. This slight oversight in imaging protocol could potentially affect the correlation
strength of the multi-modality lung microstructure comparison. In patients with asthma, a
significant decrease in 3He or 129Xe ventilated defect percentage (i.e. the percentage of lung
volume un-ventilated) has been observed between pre- and post-BD therapy [191, 263]. In
COPD patients, Kirby et al. [99] demonstrated no significant difference in whole lung ADC
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pre- and post-BD therapy; however, the effects of bronchodilator therapy on ADC or other
DW-MRI metrics in asthmatics patients is currently unknown.

A small subset (9 patients) of the asthmatic patient cohort were imaged with 3He DW-MRI
both pre- and post-BD therapy. In this sub-cohort analysis, DW-MRI lung microstructure
metrics were not significantly different pre- and post-BD; consistent with previous reported
results in COPD patients [99]. However, some of the CT and 3He DW-MRI lobar correla-
tions were stronger post-BD therapy. This was predominantly observed between expiratory
CT and 3He DW-MRI metrics, and Table 4.4 demonstrates this for correlations between
expiratory CT and LmD in all lobar regions. The stronger post-BD correlations observed
in lower lobar regions and on a whole lung basis, may simply be the result of increased
number of DW-MRI voxels becoming ventilated following BD therapy. In COPD patients, a
significant change in anterior-posterior (AP) ADC gradient was observed with application
of BD therapy [99]. This observation was related to regional reductions in gas trapping
and could explain the small regional lobar improvements in correlation of expiratory CT
and DW-MRI metrics. Although limited by the size of the cohort, the results suggest that
post-BD DW-MRI metrics may correlate better with CT than pre-BD. Further work is
required to confirm these preliminary results.

Table 4.4: Effect of bronchodilator therapy on lobar correlations between expiratory CT
metrics and 3He mean diffusive length scale (LmD).

Lobar HUexp Lobar RA856

Pre-BD Post-BD Pre-BD Post-BD

LLL LmD -0.831 ** -0.886 ** 0.797 * 0.872 **
LUL LmD -0.704 * -0.621 0.664 0.630
RLL LmD -0.778 * -0.919 ** 0.713 * 0.883 **
RUL LmD -0.717 * -0.678 * 0.678 * 0.700 *
Whole LmD -0.852 ** -0.859 ** 0.785 * 0.828 **
* correlations at a significance level of P<0.05
** correlations at a significance level of P<0.01

The manual lobar segmentation of the DW-MRI remains the largest source of error in
this analysis framework. Due to the limited spatial resolution of the 2D 3He DW-MRI,
it was difficult to delineate individual lobar regions from the DW-MRI. The manual MRI
segmentation process was guided by visual comparison with approximate corresponding CT
coronal image slices, and is inherently prone to observer error. The segmentation process could
be improved by the acquisition of 3D 3He DW-MRI data at a smaller voxel resolution that
ensures whole lung coverage. This would allow CT lobar segmentations to be registered to the
new 3D diffusion images increasing MRI lobar segmentation accuracy, and ultimately allowing
a voxel-wise comparison of DW-MRI microstructure metrics with 3D CT. 3D 3He DW-MRI
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datasets could also have a higher resolution and subsequently contain more pixels in each
lobar region, potentially further improving accuracy of the lung microstructure analysis.

This current analysis of lung microstructure metrics across image modalities is limited to
asthmatic patients only. The inclusion of different patient groups and healthy volunteers with
CT and 3He MRI measurements of lung microstructure is of interest because each patient
group exhibits different changes to the lung microstructure due to disease. For example, in
emphysema, the destruction of lung tissue corresponds to decreased tissue density values
and larger alveolar size. A wider range of lung microstructure measurements could increase
the statistical strength of correlations in the lobar analysis.

4.5 Conclusion

In this chapter, a framework for a lobar comparison of lung microstructure metrics derived
from CT and 3He DW-MRI was developed and implemented in a cohort of asthmatic patients.
Significant correlations across all microstructure metrics suggests the metrics from the two
imaging modalities are inter-related. Expiratory CT-derived metrics were more strongly
correlated due to better image SNR and are more applicable to asthmatic patients.

The major limitation of this lobar comparison is the manual segmentation of 2D DW-MRI
due to low spatial resolution. The implementation of 3D DW-MRI would open the possibility
for image registration of CT and MRI lobar regions. Currently the limitation of 3D DW-
MRI is the long scan times associated with multiple b-value acquisitions. Undersampling
techniques, such as compressed sensing, could potentially reduce scan time to a single
breath-hold, and the feasibility of compressed sensing for 3D multiple b-value 3He and 129Xe
DW-MRI is explored in Chapters 5 and 6.





Chapter 5

Whole lung morphometry with 3D
multiple b-value 3He
diffusion-weighted MRI and
compressed sensing

5.1 Introduction

The non-Gaussian phase behaviour of hyperpolarised gases in the lungs was introduced in
Section 3.5.2, where the interplay of experimental and microstructural factors causes non
mono-exponential signal attenuation with increasing b-value [104, 242, 244]. Various models of
gas diffusion in the lungs have been proposed to address the non-Gaussian diffusion-weighted
signal behaviour and provide estimates of lung alveolar length scales from the hyperpolarised
gas signal [5, 6, 129, 130]. All of these models have a common requirement for the acquisition
of multiple b-value DW-MRI data in order to sample the non mono-exponential diffusion
signal. The acquisition of multiple b-value DW-MRI in a single breath-hold requires long scan
times, and as such multi-slice 2D sequences have been used to date, which do not provide
whole lung volumetric coverage for lung morphometry. This limitation was demonstrated
in Chapter 4 where the lobar analysis of 3He DW-MRI estimates of lung microstructure
was restricted by the lung coverage and low spatial resolution of the 2D multi-slice 3He
multiple b-value DW-MRI acquisitions.

In our previous work, 2D 3He DW-MRI sequences permitted acquisition of approximately
five slices with four to six b-values in a single breath-hold (∼15s) (see Section 4.2 and
[104, 129]). 3D DW-MRI sequences designed with a similar slice thickness (∼10–15 mm) and
the same number of b-values would require an acquisition time of almost one minute to obtain

85
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whole lung coverage, which is beyond the limits of a tolerable breath-hold (<18 seconds).
Acquisition methods such as radial [195], spiral [194], and parallel radiofrequency (RF) coil
encoding [220] have been previously applied to hyperpolarised 3He lung MRI to decrease
image acquisition time. However, these techniques require the use of non-Cartesian gradient
trajectories or custom-built multi-channel RF coils. Compressed sensing (CS) presents an
alternative acceleration technique that can be used to reduce the total scan time to within
the limits of a breath-hold by exploiting the sparsity (or compressibility) of lung MR images
to acquire a randomly undersampled k-space [225] (see Section 3.4.1).

The feasibility of acquisition and reconstruction of hyperpolarised 3He lung MR images
with CS was first investigated by retrospectively undersampling and reconstructing 2D and
3D Cartesian fully-sampled ventilation images [264]. Initial results showed that acquisition
time could be improved by a factor of two in 2D, and four to five in 3D 3He ventilation
images without compromising image quality and information. In the same work, prospective
undersampled 2D 3He DW-MRI data acquired with CS demonstrated preservation of spatial
resolution and mean ADC values when compared with fully-sampled data. The reduction
in acquisition time offered by CS has since enabled 3D isotropic resolution 3He and 1H
lung MR images to be acquired in the same breath-hold [265]. Furthermore, the acquisition
of 1H structural images as prior knowledge for use in the CS reconstruction was shown
to reduce error in the reconstruction of 3He ventilation images [266]. CS techniques have
also been implemented to enable high temporal resolution 3He gas flow measurements in
the upper airways with phase contrast velocimetry for validation of computational fluid
dynamic simulations [198]. Further hyperpolarised 3He studies have incorporated CS to
permit acquisition of additional functional or structural data within a single breath-hold,
such as 2D multi-interleaved 3He MRI data for mapping of ADC, T ∗2 and B1 [267].

In this chapter, CS was implemented to reduce scan time and facilitate 3D multiple b-value
3He DW-MRI within a single breath-hold. Simulations were first performed to investigate the
feasibility of 3D 3He multiple b-value DW-MRI with CS undersampling, and reconstructed
images were evaluated to ensure that quantitative microstructural information was preserved.
Prospective 3D 3He multiple b-value DW-MRI data was subsequently acquired in five
healthy volunteers and one COPD patient. DW-MRI data was used to calculate maps
of ADC values and mean diffusive length scale (LmD), and these were compared to values
obtained from fully-sampled 3D and 2D multiple b-value DW-MRI. Finally, the CS techniques
were further applied in a 3D 3He multi-interleaved sequence for the acquisition of whole-
lung coverage co-registered 3He ventilation images, and parametric maps of ADC, LmD,
and T ∗2 within a single breath-hold.

Parts of this chapter are based on the following publication:"Whole Lung Morphometry with
3D Multiple b-Value Hyperpolarized Gas MRI and Compressed Sensing". H.-F. Chan, N.
J. Stewart, J. Parra-Robles, G. J. Collier, J. M. Wild. Magnetic Resonance in Medicine,
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77(5):1916-25, 2017. Author contribution statement: study design, HFC, GJC, JMW;
acquisition of data, HFC, NJS, GJC; analysis of data, HFC, JPR, GJC, JMW; preparation
of manuscript, HFC, NJS, JPR, GJC, JMW.

5.2 Retrospective simulations of CS undersampling in 3D
3He DW-MRI

This section explores the feasibility of using CS for 3D multiple b-value 3He DW-MRI by
performing CS simulations on retrospectively undersampled data. All CS simulations and
subsequent calculations of mean absolute error (MAE), ADC and LmD were implemented
in-house using MATLAB (Mathworks, Natick, MA) software. All in vivo MRI experiments
were performed under the approval of the UK national research ethics committee.

5.2.1 Methods

Fully-sampled 3D hyperpolarised 3He diffusion-weighted MR images were acquired from the
lungs of a healthy male volunteer (30y) in a 22 second breath-hold on a GE HDx 1.5 T
MR scanner using a 3D spoiled gradient echo (SPGR) sequence based on that described
in [268] with additional diffusion-sensitising gradients (Figure 3.22). A flexible quadrature
transmit-receive RF coil (Clinical MR Solutions, Brookfield, WI), tuned to the Larmor
frequency of 3He (48.63 MHz) was used. The inhaled gas dose was 300 ml of hyperpolarised
3He (∼25% polarisation), mixed with 700 ml of N2. The lung inflation level at imaging
was functional residual capacity plus 1 litre (FRC+1L).

Images were acquired with sequential phase-encoding and the following acquisition parameters:
Two diffusion-weighted interleaves (b = 0, 1.6 s/cm2), 96×78×24 matrix, FOV = 40×32.5×28.8
cm3, effective slice thickness = 12 mm, TE/TR = 4.2/5.7 ms, diffusion time = 1.6 ms (diffusion-
weighted gradient strength = 14.1 mT/m, ramp = 0.3 ms, plateau = 1.0 ms), flip angle =
1.5° (hard RF pulse of 0.24 ms duration), bandwidth = ±31.25 kHz. A constant flip angle
was selected, using Equation 3.63, such that ∼25% of the initial non-renewable magnetization
remained at the end of the acquisition as a result of RF pulse depolarisation.

From the fully-sampled 3D image data, random k-space undersampling patterns were gener-
ated in the two orthogonal phase encoding directions (ky and kz) for acceleration factors (AF)
ranging from 2 to 5. For each AF, eight different probability density functions with polynomial
variable density sampling were generated by altering the size of the fully-sampled k-space
centre and the variable density polynomial power. A Monte Carlo-based algorithm was then
used to determine a k-space undersampling pattern with the maximum incoherence after
10000 iterations for each respective probability density function. The eight different k-space
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undersampling patterns for each AF were used to retrospectively undersample the full k-space
dataset, and corresponding images were reconstructed using the non-linear conjugate gradient
descent algorithm with back-tracking line search to solve Equation 3.74 [225]. In this work, no
sparsifying transformations were used in the retrospective CS simulations because 3D hyperpo-
larised 3He lung MR images are naturally sparse and reconstructed data from the simulations
were found to be equivalently accurate with and without sparsifying transformations.

In previous applications of CS with hyperpolarised gas MRI, reconstructed images from
CS simulations were optimised by minimising the MAE between the original fully-sampled
magnitude image (b = 0 for DW-MRI) and the CS-reconstructed magnitude image (MAEMAG)
[244, 265]. In contrast, the reconstructions in this work were optimised by minimising the
MAE between the fully-sampled ADC maps and the CS-reconstructed equivalent (MAEADC).
For the ultimate goal of quantitative lung microstructural analysis, MAEMAG, MAEADC

and ADC maps were evaluated on a pixel-by-pixel basis within a region of interest (ROI)
representing the lungs. MAEMAG was calculated using:

MAEMAG =
∑N
i=1

∑M
j=1 |CS(i, j)− FS(i, j)|

N ×M
(5.1)

where CS and FS denote the normalised pixel values in the CS-reconstructed and original fully-
sampled images respectively, and N ×M is the total number of pixels in the lung ROI. ADC
maps were computed using a pixel-by-pixel mono-exponential fit of signal intensities in the two
interleaves of the 3D 3He DW-MRI dataset (Equation 3.81). An asymmetric cut-off of negative
(ADC<0), or physically too high (ADC>D0 = 0.88 cm2/s) values was applied during the
creation of the ADC maps. MAEADC was calculated via a similar approach to MAEMAG:

MAEADC =
∑N
i=1

∑M
j=1 |CSADC(i, j)− FSADC(i, j)|

N ×M
(5.2)

except that CSADC and FSADC refer to the calculated ADC pixel values in the CS-
reconstructed and the original fully-sampled cases, respectively. Whole lung ADC histograms
were generated for each AF, and skewness and full width at half maximum (FWHM) values
were derived from each ADC histogram.

5.2.2 Results

CS simulations performed on the fully-sampled two interleaved 3D 3He DW-MRI dataset
led to optimal sampling patterns (Figure 5.1a) and penalty weight parameters for each
AF. An increase in MAEMAG was observed with increasing AF; however, this error (with a
maximum value of 3.8% at AF = 5) did not manifest in the appearance of image artefacts.
Reconstructed (b = 0) images for AFs of 2 and 3 showed good preservation of image details
when compared to the fully-sampled (AF = 1) image (examples are shown in Figure 5.1b).
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At AFs of 4 and 5, a loss in image detail was observed due to increased blurring resulting
from heavier undersampling of high frequency k-space components.

AF = 1 AF = 2 AF = 3 AF = 4 AF = 5

MAEMAG 0.023 0.032 0.035 0.038 

Difference 

images

k-space 

patterns
(a)

(b)

ky

kz

Figure 5.1: Results from 3D 3He CS simulations. (a) The optimal variable-density k-space
undersampling patterns (78×24 pixels) for each acceleration factor (AF) determined from CS
simulations. (b) Example reconstructed magnitude (b = 0) and difference images for each
AF, with corresponding MAEMAG values.

ADC maps were computed for each reconstructed 3D 3He CS dataset and compared to the
3D fully-sampled ADC maps. CS simulation ADC results are summarised in Table 5.1 and
Figure 5.2. MAEADC exhibited a similar trend to MAEMAG, where increased undersampling
resulted in larger error values. The skewness of the whole lung ADC histograms increased
with AF; skewness = 1.08 and 2.14 at AF = 1 and AF = 5, respectively. An opposite trend
was observed with the FWHM of the histogram, which decreased at higher AFs; FWHM =
0.141 cm2/s at AF = 1 and 0.118 cm2/s at AF = 5, respectively. In addition, a slight increase
in global ADC values was observed with increasing AF, reflecting the increase in MAEADC.
The maximum difference in global ADC value between CS and fully-sampled acquisitions was
4% at AF = 5. Despite this slight increase in global ADC values, single slice ADC maps and
whole lung ADC histograms for each AF (see Figure 5.2) appeared visually similar, indicating
good preservation of quantitative lung microstructural information.

5.2.3 Discussion

CS simulations performed on a fully-sampled 3D 3He DW-MRI dataset led to optimal sampling
patterns and penalty weight parameters for different acceleration factors (between 2 and 5).
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Table 5.1: Summary of global ADC values and whole lung ADC histogram results from 3D
3He CS simulations.

AF ADCGlobal (cm2/s) Skewness FWHM (cm2/s)

1a 0.198 ± 0.085 1.08 0.141
2 0.203 ± 0.094 1.79 0.127
3 0.202 ± 0.091 1.95 0.123
4 0.204 ± 0.093 2.12 0.120
5 0.206 ± 0.094 2.14 0.118

a AF = 1 corresponds to the fully-sampled dataset
ADCGlobal = mean global ADC value
FWHM = full width at half maximum

ADC (cm2/s)

AF = 1 AF = 2 AF = 3 AF = 4 AF = 5
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(cm2/s)
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Figure 5.2: ADC results from 3D 3He CS simulations. (a) ADC maps for an example slice
at each AF, with corresponding MAEADC values. (b) Whole lung ADC histograms for each
AF.

As expected, MAEMAG increased with AF in CS simulations, which manifested as blurring of
image detail due to a reduction in sampling of high frequency k-space components at higher
AFs. These blurring effects are an intrinsic result of the variable density k-space sampling
patterns used in the CS simulations. The majority of the information in hyperpolarised gas
lung images arises from low frequency k-space components, therefore, a probability density
function is used to sample the centre of k-space more heavily than the periphery. The
increasingly lower sampling density of high frequency components with increasing AF may
limit the implementation of high AFs (4 or 5) for 3D 3He lung MRI acquisitions due to the
increasing loss of spatial resolution of the reconstructed images at these high AFs. These
blurring effects could be mitigated by incorporating prior-knowledge into the CS reconstruction
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process to improve reconstruction accuracy [266], and thus improve the preservation of edge
details of the 3D CS multiple b-value diffusion-weighted MR lung images. This may permit
the use of higher AFs for higher nominal spatial resolutions or the acquisition of additional
diffusion interleaves in the same acquisition time.

In this work, a constant flip angle (∼2°) scheme was used that has an associated decrease in
signal with each phase encode due to depletion of the non-renewable magnetisation. This
results in a k-space filter (Figure 3.15), and in conjunction with random k-space sampling,
discontinuities in signal amplitudes may be generated that manifest as ringing image artefacts.
The implementation of a variable flip angle scheme, in theory, the optimal scheme for SPGR
sequences, could prevent this due to the increasing flip angle per phase encode that maintains
a constant transverse magnetisation. However, no ringing artefacts were observed in the
reconstructed CS undersampled images, therefore constant flip angles were used for all
undersampled DW-MRI acquisitions.

Mean ADC and skewness of the ADC histogram was observed to increase with AF. The
slight increase in mean ADC value observed with retrospective undersampling was within
the range of healthy lung ADC values (∼0.20 cm2/s) at b = 1.6 s/cm2 found in previous
studies [91, 92, 103]. Increased skew and mean ADC value can be attributed to the increase
in mean absolute error (MAEMAG and MAEADC) with increased undersampling. With CS,
some information loss is inevitable from the undersampling of k-space, which increases errors
and creates a noise-like artefact in the magnitude images.
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Figure 5.3: Whole lung ADC histograms for each AF without asymmetric ADC cut-off.
Less skew and more comparable global mean ADC values are observed with increased
undersampling.

The small increase in MAEADC results in a few physiologically-unrealistic low and high ADC
values in some pixels. Examples can be observed at the periphery of the single slice CS
undersampled ADC maps in Figure 5.2a. An asymmetric cut-off of negative (ADC<0), or
physically too high (ADC>D0 = 0.88 cm2/s) values was applied during the creation of the
ADC maps; however, some of the retained artificially high pixel values will still influence
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the mean and skewness of the histogram. If the whole histogram is considered (Figure
5.3) (i.e. no cut-off of lower and higher ADC limits is applied), the change in skewness
of the ADC histogram between AFs is much lower and the maximum difference in global
ADC value becomes only 1.0%, when compared to the 4.0% difference observed (see Table
5.1) when the asymmetric cut-off is applied.

ADC histograms also appeared narrower at larger AFs due to the smaller FWHM values
observed with increased undersampling. This trend can be explained by the properties of CS
reconstruction; in that de-noising is used to remove noise artefacts introduced by undersam-
pling [225]. Narrower ADC histograms from increasingly undersampled 3He ADC data were
also observed previously [264]. The standard deviation of the global and slice ADC values
from reconstructed CS datasets were larger than corresponding fully-sampled values; a trend
opposite to that reported by Ajraoui et al. [264]. This difference is likely the result of pixels
with high ADC value being introduced from increased MAEADC, causing a larger standard de-
viation of ADC values. The decrease in FWHM value observed with increased undersampling
more accurately reflects the de-noising and smoothing of the CS reconstruction process.
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Global ADC (cm2/s) 0.211 ± 0.113 0.215 ± 0.118 0.222 ± 0.132 0.219 ± 0.124

Figure 5.4: MAEMAG optimised ADC results from 3D 3He CS simulations. (a) ADC maps
for an example slice at each AF, with corresponding MAEADC and global ADC values. (b)
Corresponding whole lung ADC histograms for each AF.

In this work, CS simulations were optimised by minimising MAEADC, while in previous
work, only MAEMAG was minimised for 2D ADC mapping with 3He [264]. Here, the ADC
values obtained from simulations optimised with minimum MAEADC were found to be more
comparable with fully-sampled datasets than those using the minimum MAEMAG method.
In Figure 5.4a, the representative slice ADC maps optimised with the MAEMAG method
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demonstrated an increased number of physiologically-unrealistic high ADC pixels at the lung
periphery in comparison to the ADC maps in Figure 5.2a. These high ADC pixels, which can
also be observed on the far right (red arrows) of the whole lung ADC histograms in Figure
5.4b, resulted in increased MAEADC and global ADC values (in comparison to the MAEADC

optimisation method) for the MAEMAG optimised CS-reconstructed images.

The optimal penalty weight parameters (λ1 and λ2) for simulations resulting in minimum
MAEADC were also found to be smaller than those resulting from MAEMAG simulations.
Considering the non-linear CS reconstruction algorithm in Equation 3.74, this finding indicates
that the reconstructed images with minimum MAEADC have more total variation and less
sparsity when compared with images reconstructed with minimum MAEMAG, implying that
data consistency was better maintained during the reconstruction process, leading to improved
preservation of quantitative lung microstructural information.

5.3 Prospective acquisition of 3D multiple b-value 3He DW-
MRI with CS

This section implements the optimised three-fold undersampling k-space pattern from Section
5.2 for prospective CS undersampling of 3D multiple b-value 3He DW-MRI to obtain maps
of whole lung morphometry in a single breath-hold.

5.3.1 Methods

Prospective CS datasets with four diffusion-weighted interleaves were acquired in five healthy
volunteers and one COPD patient (spirometric forced expiratory volume in 1 second, FEV1

= 31.2% predicted) using the optimal undersampling pattern for AF = 3 (see Figure 5.1a).
Three-fold undersampling was chosen because it was the highest AF achievable without
introducing extensive image blurring, and allowed a scan time reduction from 45 seconds to
15 seconds, which is a tolerable breath-hold for most clinical subjects. The 3D CS multiple
b-value DW-MRI datasets were acquired in a similar fashion to the fully-sampled acquisition
in Section 5.2 with an identical 3He dose, FOV, and voxel size. Additional imaging parameters
were: 4 diffusion-weighted interleaves (b = 0, 1.6, 4.2, 7.2 s/cm2), TE/TR = 4.2/6.0 ms,
diffusion time = 1.6 ms (maximum diffusion-weighted gradient strength = 30 mT/m, ramp
= 0.3 ms, plateau = 1.0 ms), flip angle = 1.9° (hard RF pulse as above). ADC maps
were calculated from the first two interleaves, while LmD maps were derived from all four
interleaves using the stretched exponential model (see Section 3.5.2).

To validate the ADC and LmD microstructural measurements derived from prospective 3D
CS data, the same five healthy volunteers were imaged with fully-sampled 3D and 2D 3He
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DW-MRI using the scan parameters detailed in the Section 5.2 and below, respectively. 3D
fully-sampled data was also acquired from the COPD patient, however 2D fully-sampled
data was not acquired due to patient overall scan time constraints. The selection of b-values
used in all scans was consistent and chosen to ensure that one of the diffusion interleaves
corresponded to b = 1.6 s/cm2; the b-value most commonly used for 3He ADC calculation
in the literature to date [92–94, 101–104, 117]. 2D multiple b-value DW-MRI data was
acquired with similar FOV and slice thickness as the corresponding 3D datasets. Six slices
were acquired with 12 mm thickness and 12 mm gap, using a gas dosage of 300 ml 3He
(mixed with 700 ml N2) at a lung inflation state of FRC+1L. Additional imaging parameters
were: 4 diffusion-weighted interleaves (b = 0, 1.6, 4.2, 7.2 s/cm2), 96×72 in-plane matrix,
in-plane FOV = 40×30 cm2, TE/TR = 4.9/10 ms, diffusion time = 1.6 ms (maximum
diffusion-weighted gradient strength = 30 mT/m, ramp = 0.3 ms, plateau = 1.0 ms), flip
angle = 5° (sinc RF pulse), bandwidth = ±31.25 kHz.

Comparisons of ADC and LmD values were made between each corresponding dataset
acquired from each subject. ADC values were compared between 3D fully-sampled and 3D
CS acquisitions, while LmD estimates were compared between 2D fully-sampled and 3D
CS acquisitions from corresponding slices. To investigate the agreement between the two
sets of measurements, scatter plots and Bland-Altman analysis were used to compare the
relative difference in ADC and LmD values on a slice-by-slice level.

5.3.2 Results

The four-interleaved 3D 3He DW-MRI CS datasets were reconstructed from the three-fold
undersampled (AF=3) k-space using the optimal reconstruction parameters determined in
Section 5.2. Example 3D whole lung coverage maps of ADC (mean = 0.198 cm2/s) and LmD

(mean = 222.8 µm) are shown for a representative healthy subject in Figure 5.5.

A summary of global mean ADC and LmD values for all subjects imaged (five healthy
volunteers and one COPD patient) is presented in Table 5.2. For every subject, the global
mean ADC value derived from the 3D CS acquisition was equal to or higher than the value
obtained from the corresponding 3D fully-sampled acquisition. The difference in ADC values
between fully-sampled and CS datasets ranged from 0.0% to 5.9% with a mean difference of
3.4%. Global LmD values exhibited a similar increase for 3D CS acquisitions and a slightly
higher mean difference of 5.1% was calculated. LmD values provide an estimate of the alveolar
size, (example whole lung LmD maps from a healthy subject and the COPD patient are
shown in Figure 5.6) demonstrating the clinical potential of this 3D CS multiple b-value
DW-MRI sequence to provide volumetric, quantitative microstructural maps.
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3D 3He ADC Maps 3D 3He LmD Maps

Global Mean

0.198 ± 0.082 cm2/s

Global Mean

222.8 ± 25.3 µm

Figure 5.5: 3D ADC and mean diffusive length scale (LmD) maps derived from prospective
3D 3He DW-MRI CS acquisition from a healthy volunteer (15 s breath-hold) with three-fold
undersampling and four diffusion interleaves.

Table 5.2: Global ADC and LmD values calculated from fully-sampled and CS acquisitions
for the five healthy volunteers and one COPD patient.

Subject Imaging
Method

Global ADC
(cm2/s)

ADC
difference

Global LmD
(µm)

LmD
difference

Healthy
1

FS 0.198 ± 0.085
0.0%

208.6 ± 29.8
6.8%

3D CS 0.198 ± 0.082 222.8 ± 25.3

Healthy
2

FS 0.163 ± 0.082
4.3%

192.6 ± 27.0
6.0%

3D CS 0.170 ± 0.077 204.1 ± 23.2

Healthy
3

FS 0.152 ± 0.083
5.9%

184.5 ± 31.0
8.3%

3D CS 0.161 ± 0.069 199.8 ± 27.0

Healthy
4

FS 0.163 ± 0.068
1.8%

197.5 ± 24.2
3.6%

3D CS 0.166 ± 0.067 204.6 ± 23.6

Healthy
5

FS 0.169 ± 0.081
5.9%

207.5 ± 24.6
0.7%

3D CS 0.179 ± 0.078 209.0 ± 29.1

COPD
1

FS 0.525 ± 0.169
2.7%

-a
-

3D CS 0.539 ± 0.186 313.6 ± 56.1
a 2D fully-sampled DW-MRI was not acquired from the COPD patient due to overall scan time
constraints
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LmD

(μm)
Healthy Subject 

Mean LmD = 209.0 ± 29.1 μm

COPD Subject 

Mean LmD = 313.6 ± 56.1 μm 

Figure 5.6: Whole lung coverage LmD maps calculated from 3D multiple b-value 3He
DW-MRI with CS from a healthy (left) and COPD subject (right).

A scatter plot of single slice ADC values calculated from 3D fully-sampled and 3D CS datasets
(Figure 5.7a) shows excellent correlation (r = 0.995, P<0.001). Two clusters of data points
can be observed, corresponding to the healthy and COPD patient groups. The agreement
between the two measurements was confirmed by Bland-Altman analysis (Figure 5.7b). The
mean slice-by-slice ADC % difference between methods was +2.1% (absolute difference of
0.005 cm2/s), and 95% of the difference was within -9.2% to +13.4% (-0.024 to 0.034 cm2/s).
Similar levels of agreement in the LmD value was observed, as illustrated in the equivalent
scatter and Bland-Altman plots (see Figure 5.7c and 5.7d). The mean LmD % difference
of +4.7% (absolute difference of 9.29 µm) was larger than the mean ADC % difference, and
95% of the difference was within -2.1% to +11.4% (-4.65 to 23.23 µm).

5.3.3 Discussion

CS has facilitated the acquisition of 3D multiple b-value diffusion-weighted MR lung images
with hyperpolarised 3He in a single breath-hold, for the purpose of diffusion modelling
of lung microstructure using a stretched exponential model approach. Prospective three-
fold undersampled 3D 3He DW-MRI datasets were acquired in five healthy volunteers and
one COPD patient, and quantitative measures of lung microstructure were compared to
fully-sampled 2D and 3D DW-MRI datasets.
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Figure 5.7: (a) Slice-by-slice comparison of mean ADC values between 3D fully-sampled
and 3D CS datasets for all five healthy volunteers and one COPD patient. (b) Bland-Altman
plot showing the agreement between the two methods. The percentage difference in slice
ADC values is plotted against the mean slice ADC values between the two measurements. (c)
Equivalent slice-by-slice comparison of mean LmD values between 2D fully-sampled and 3D
CS datasets for all five healthy volunteers. (d) Equivalent LmD Bland-Altman plot showing
a similar agreement between the two methods.

A small positive bias in global mean ADC and LmD value was observed between 3D CS and
fully-sampled 2D and 3D datasets for all subjects (see Table 5.2), which could be attributed
to the increase in MAEADC due to undersampling. These values were however within typical
mean standard deviation ranges, and consistent with reported healthy and COPD lung
ADC values [91, 92, 103] and similar to mean linear intercept values obtained from human
lung histology samples (∼200 µm in healthy, ∼400 µm in COPD) [96]. A small positive
bias in undersampled ADC and LmD values is similar to the trend observed previously in
accelerated 2D 3He DW-MRI with parallel imaging [269]. In this feasibility study, GRAPPA
reconstructions enabled an effective AF of 1.74, and a similar small positive bias in lung
morphometry measurements, derived from the cylinder model, was reported.

The dependency of lung microstructural measurements on SNR has been explored previously
[270, 271], and it was determined with Monte Carlo simulations that in low SNR conditions,
ADC and cylinder model metrics can be biased leading to low mean values with high
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standard deviations. O’Halloran et al. [270] demonstrated that for SNR<15, ADC values
are SNR-dependent; while when SNR>15, ADC is independent of SNR for the typical
physiological range of ADC values (up to 0.6 cm2/s). In this work, the SNR for each dataset
was computed in the magnitude images (b = 0) by dividing the mean signal of the entire
segmented lung region by a background noise region corrected for Rician distribution bias
[272]. It should be noted that SNR calculated from CS images present a biased measure
of SNR, due to the denoising process associated with CS reconstruction. The average
global SNR for 3D CS undersampled and fully-sampled datasets used for ADC validation
(see Table 5.2) were 25 and 12, respectively. This indicates that derived ADC values are
predominantly SNR independent, and differences between CS and fully-sampled values are
likely attributed to the CS reconstruction process.

In a slice-by-slice comparison of fully-sampled and CS-derived ADC and LmD values, good
agreement was found with values close to the line of unity. In the quantitative comparisons
of both ADC and LmD, 95% of the difference between fully-sampled and CS datasets was
well within the standard deviation range of mean values. In the CS simulations (where
there is intrinsically no variability between scans, unlike the prospective acquisitions that
are performed in separate breath-holds) a ∼2% ADC mismatch was observed between
the fully-sampled and three-fold undersampled CS reconstruction, which was attributed
to CS reconstruction error.

Despite the observation of a small positive bias in CS-derived ADC and LmD values, the
biases are negligible when compared with the large differences in lung microstructure between
healthy and COPD subjects; ADC and mean linear intercept length values of emphysema
subjects vary depending on disease severity but are typically 2–2.5 times larger than those of
healthy subjects [91, 96]. Thus, our results indicate that 3D multiple b-value 3He DW-MRI
with CS has the potential to be used clinically to track changes in lung microstructure
associated with emphysematous disease. 3D multiple b-value data enables the derivation
of LmD across the entire lung volume from the stretched exponential model, allowing for
volumetric lung microstructural estimates and reformatting of lung morphometry maps in
any slice direction. The 3D multiple b-value acquisition strategy proposed here is also fully
compatible with alternative diffusion analyses and morphometric models, for instance the
cylinder model [5, 128] or q-space transform analysis [130].

One limitation of the slice-by-slice comparison of lung microstructural measurements between
fully-sampled and CS datasets was that the lung volume was assumed to be the same for
each acquisition. Subjects were instructed to inhale the 3He and N2 gas dosage from FRC
to produce a lung volume of FRC+1L. However, this inflation volume may not have been
reproduced exactly for each acquisition. A difference in lung inflation level of 6% when
compared with 15% of total lung capacity (TLC) has been shown to have a relatively minor
effect on global mean ADC values [103]. However, this could also result in mismatched slices
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from the fully-sampled and CS datasets that can be additionally affected by the gravitational
dependence of lung ventilation. For example, in the supine position, 3He ADC values have been
shown to be larger in the anterior regions of the lung when compared to the posterior regions,
due to the gravitational compression of lung tissue in the posterior dependent lung [100].

5.4 3D 3He multi-parametric mapping with multi-interleaved
sequence and CS

Hyperpolarised 3He gas MRI has been shown to provide quantitative measures of regional
lung ventilation [181], and lung microstructure through ADC [91] and lung morphometry
parameters [5, 6, 129, 130]. The effective transverse relaxation time (T ∗2 ) is also sensitive
to lung microstructure through changes in microscopic magnetic field inhomogeneity [273].
Equation 3.21 states that T ∗2 is the combination of relaxation from spin-spin interactions
(T2) and magnetic field inhomogeneities (T ′2). In hyperpolarised gas MRI, the majority
of magnetic field inhomogeneity is due to air-tissue interfaces that cause bulk magnetic
susceptibility, and leads to short T ∗2 times (3He T ∗2 at 1.5 T ∼28 ms [119]). T ∗2 is therefore
representative of the underlying lung microstructure and has been demonstrated to be sensitive
to changes in the air-tissue interface [274], lung inflation [275], and alveolar dimension
through gravitational gradients [276].

The acquisition of all these complementary metrics of lung structure and function requires
multiple 3He acquisitions, a process that is currently unsustainable due to shortage and
expensive cost of 3He gas [110]. Previously, hybrid gradient echo sequences have been
developed to allow the acquisition of 2D 3He ADC maps with ventilation images [277] and
T ∗2 maps [278] in a single breath-hold. Further advances in imaging techniques have allowed
single breath-hold acquisition of 2D 3He ventilation, ADC, T ∗2 , and B1 maps at 3 T with
CS [267]. This 2D multi-slice acquisition however, did not provide whole lung coverage or
multiple b-value data for LmD or lung morphometry calculation. The purpose of this section
was to investigate the feasibility of implementing a 3D 3He multiple-interleaved sequence
with CS for acquisition of whole lung co-registered 3He ventilation images, and parametric
maps of ADC, LmD, and T ∗2 within a single breath-hold.

5.4.1 Methods

A schematic of the 3D multi-interleaved sequence is presented in Figure 5.8. This is based
upon the 3D multiple b-value DW-MRI sequence developed in Section 5.3 with an ad-
ditional interleave at a different echo time to enable the calculation of T ∗2 maps from a
two-point exponential fit. The first interleave, that has no diffusion-weighting gradients,
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was used as ventilation images. ADC maps were computed from the first and second in-
terleaves; while the first four interleaves were used to calculate LmD by fitting data with
the stretched exponential model (Section 3.5.2). Lastly, the first and fifth interleaves were
used to compute T ∗2 maps as follows:

T ∗2 = TE2 − TE1
ln (S1/S2) (5.3)

where TE1 and TE2 are two different echo times with corresponding signal intensities
of S1 and S2, respectively.

Interleave 1 Interleave 2 Interleave 3 Interleave 4 Interleave 5

TE1 TE1 TE1 TE1

RF

DAQ
TR2TR1 TR1 TR1 TR1

GY

GZ

TE2

αα α α α

Diffusion 
gradient

Phase 
encode

Spoiler 
gradient

Figure 5.8: 3D multi-interleave sequence schematic. TE1 and TE2 are the two echo times
used for T ∗2 mapping, with respective repetition times TR1 and TR2.

A fully-sampled three-interleaved dataset (interleaves 1, 2 and 5 in Figure 5.8) was acquired
in a healthy volunteer (M, 25y) on a GE HDx 1.5 T MR scanner using 400 ml of 3He (∼25%
polarisation) and 600 ml of N2 at FRC. Imaging parameters were: 3D SPGR, b = 0, 1.6
s/cm2, 80×66×22 matrix, FOV = 40×32.5×26.4 cm3, TE1/TR1 = 4.1/5.7 ms, TE2/TR2 =
9.8/11.4 ms, diffusion time = 1.6 ms (diffusion-weighted gradient strength = 14.1 mT/m,
ramp = 0.3 ms, plateau = 1.0 ms) flip angle = 1.4°, bandwidth = ±31.25 kHz. Retrospective
CS undersampling of the fully-sampled dataset was implemented to determine optimal k-
space undersampling patterns for AFs between 2 to 5. CS simulations were optimised by
minimising the MAE between retrospectively undersampled and fully-sampled ventilation
images (MAEMAG), ADC maps (MAEADC), and T ∗2 maps (MAET2*).

The five-interleaved sequence was then implemented with CS in a prospective acquisition
in the same healthy volunteer. Three-fold undersampling was introduced as a compromise
between scan time reduction (∼17 s) and preservation of ADC and T ∗2 information. Imaging
parameters were as above, except four b-values (0, 1.6, 4.2, 7.2 s/cm2), DW gradient strength
= 30.0 mT/m, and flip angle = 1.9° were used. Prospectively acquired CS ADC and T ∗2

maps were compared to corresponding fully-sampled maps calculated from the fully-sampled
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dataset. LmD maps were compared to those acquired previously in the same volunteer using
2D fully-sampled multiple b-value DW-MRI (see ‘Healthy 5’ in Table 5.2).

A second set of prospective CS multi-interleaved 3He and 3D 1H anatomical images were
acquired in the same breath-hold from the same healthy volunteer to enable the calculation
of percentage ventilated volume (VV%) from co-registered 3He and 1H images [181] for
comparison with the 3He multi-parametric maps demonstrated in the previous prospective
acquisition. Prospective CS imaging parameters were the same, apart from a decrease in
effective slice thickness from 12 to 10 mm, and elliptical-centric phase encoding to maximise
SNR lost through increased slice resolution. The 1H anatomical scan was acquired at the
same voxel size as prospective CS multi-interleaved 3He; additional parameters were: 3D
SPGR, TE/TR = 0.5/1.3 ms, bandwidth = ±83.3 kHz, and flip angle = 5°.

VV% was calculated using a custom-built semi-automated image segmentation workflow
[279]. Briefly, 3He and 1H images were filtered using a bilateral filter, and then clustered
using a spatial fuzzy C-means algorithm to create binary masks. VV% was subsequently
calculated from the respective binary masks by dividing the 3He ventilated volume (VV)
by the 1H total lung volume (TLV):

VV% = VV
TLV × 100% (5.4)

5.4.2 Results

Optimal k-space undersampling patterns and penalty weight parameters for each AF were
established from retrospective CS simulations. Table 5.3 summarises the CS simulation results
for each retrospective CS dataset reconstructed from optimal undersampling patterns. The
MAEMAG value, the MAE between fully-sampled and reconstructed ventilation images (b =
0), increased for each AF; however, ventilation images showed good qualitative preservation
of main spatial details and no additional artefacts were observed at high AFs (Figure 5.9a).
Reconstructed ADC maps exhibited a similar trend; the global mean ADC value slightly
increased with increasing MAEADC, and ADC maps appeared visually similar indicating a
good preservation of lung microstructural information (Figure 5.9b). The comparatively large
MAET2* values observed with increasing AF are reflected in decreased global T ∗2 values (up to
30% smaller at AF=5) and increased homogeneity of reconstructed T ∗2 maps (Figure 5.9c).

The prospective CS five-interleaved dataset has enabled whole lung coverage, 3D co-registered
3He ventilation images, parametric maps of ADC, LmD, and T ∗2 to be acquired in a single
breath-hold. Prospective CS-derived global mean ADC (0.172 ± 0.069 cm2/s) and LmD

(210.7 ± 28.6 µm) values were 0.6% and 1.7% larger than the corresponding 3D and 2D
fully-sampled equivalent values (0.171 ± 0.070 cm2/s and 207.2 ± 24.6 µm, respectively).
The global mean T ∗2 value for the prospective CS dataset (21.3 ± 19.5 ms) was 11.3% smaller
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Table 5.3: Summary of 3D 3He multi-interleaved sequence CS simulations.

AF MAEMAG
Global ADC
(cm2/s)

MAEADC
(cm2/s)

Global T ∗
2

(ms)
MAET2*
(ms)

1 - 0.171 ± 0.070 - 24.0 ± 20.2 -
2 0.018 0.172 ± 0.076 0.048 20.7 ± 18.5 12.7
3 0.024 0.173 ± 0.077 0.053 18.7 ± 16.9 13.7
4 0.029 0.173 ± 0.074 0.056 17.9 ± 16.6 14.1
5 0.034 0.173 ± 0.072 0.056 16.8 ± 15.4 14.1

AF = 1 AF = 2 AF = 3 AF = 4 AF = 5

(a)

(b)

(c)

ADC 

(cm2/s)

T2* 

(ms)

Figure 5.9: Example lung slice 3He ventilation images, ADC maps and T ∗2 maps for each
acceleration factor obtained from CS simulations.

than the fully-sampled mean value (24.0 ± 20.2 ms); however, the CS value was 13.9%
larger than the simulated AF=3, T ∗2 value.

The combined 3He prospective CS and 1H anatomical scan was acquired in a single 22
second breath-hold. Maps of ventilated volume, ADC, LmD, and T ∗2 were calculated and
shown in Figure 5.10. Global ADC and LmD were comparable to values obtained in the
same volunteer previously. In contrast, global T ∗2 (16.1 ± 12.5 ms) was notably smaller
than previous prospective CS acquisition, and 32.9% smaller than the fully-sampled T ∗2

value. Semi-automated segmentation of 3He ventilation (b = 0) and 1H images derived a
global 90.7% VV% for the healthy volunteer.
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Global VV% = 90.7% 

Global ADC = 0.175 ± 0.068 cm2/s 

Global LmD = 211.1 ± 22.7 µm 

Global T2* = 16.1 ± 12.5 ms 

Figure 5.10: Maps of percentage ventilated volume (VV%), ADC, LmD, and T ∗2 for
a healthy volunteer imaged with prospective CS 3He multi-interleaved sequence and 1H
anatomical scan in a single breath-hold.
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5.4.3 Discussion

Global mean ADC and T ∗2 values from the fully-sampled three-interleaved dataset were
consistent with reported values for healthy lungs at b = 1.6 s/cm2 [92] and 1.5 T [119].
Increases in MAEMAG, MAEADC and global ADC value with increased undersampling
matched the results observed in previous 3D 3He DW-MRI CS simulations (Section 5.2).
MAET2* value also increased with AF, corresponding to a decrease in global T ∗2 values
that may be attributed to the smoothing process associated with CS reconstruction [267].
The small positive bias in prospective CS-derived ADC and LmD values is consistent with
previous observations in CS-derived microstructure measurements. The prospective CS
acquired T ∗2 value was considerably smaller than the fully-sampled T ∗2 value; this was in
agreement with the T ∗2 CS simulations.

The choice of ∆TE for the multi-interleaved sequence was 5.7 ms, which was significantly
shorter than the ∆TE = 13 ms used previously for T ∗2 estimation at 1.5 T [119]. This
∆TE was chosen to minimise acquisition time and maximise image SNR, whilst attempting
to sample the T ∗2 signal decay to reliably calculate T ∗2 . For validation, a multi-slice two
interleaved fully-sampled dataset with a ∆TE of 13 ms and a 3D fully-sampled three-
interleaved dataset with ∆TE = 10.7 ms were acquired in the same healthy subject. The
voxel size for the validation datasets were identical to the 3D multi-interleaved sequence.
Global T ∗2 estimates for the fully-sampled ∆TE = 13 ms, and ∆TE = 10.7 ms datasets
were 23.7 ± 17.6 ms and 23.7 ± 18.4 ms respectively; consistent with the fully-sampled
T ∗2 value obtained for ∆TE = 5.7 ms (24.0 ± 20.2 ms).

Table 5.4: Summary of mean % biases between CS simulation undersampled (AF) and
fully-sampled signal intensities for each interleave of the fully-sampled three-interleaved
dataset. The mean bias in the ratio signal intensities used to derive ADC and T ∗2 values are
shown as well.

Mean % bias in signal intensity (undersampled (AF) – fully-sampled)

AF
Interleave 1

(TE1 = 4.1 ms)
(b = 0)

Interleave 2
(TE1 = 4.1 ms)
(b = 1.6 s/cm2)

Interleave 3
(TE2 = 9.8 ms)

(b = 0)

ADC
signal ratio
(Int 1/Int 2)

T ∗
2

signal ratio
(Int 1/Int 3)

2 -5.7 -5.5 -12.0 -0.2 6.3
3 -7.7 -7.6 -17.7 -0.1 10.0
4 -9.6 -9.4 -22.8 -0.2 13.4
5 -11.3 -11.3 -26.9 0.0 16.1

To investigate if the observed smaller CS-derived T ∗2 values are related to CS reconstruction,
the signal intensities of each interleave in the fully-sampled three-interleaved dataset were
compared to the corresponding signal intensities of the CS-simulated datasets in Table 5.3.
The mean % bias in signal intensity between undersampled and fully-sampled datasets for
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each interleave is summarised in Table 5.4. For all three interleaves, an increase in mean %
bias was observed with increasing AF that is reflective of the increase in MAEMAG value (see
Table 5.3). However, even in the presence of increased bias in each individual interleave with
undersampling, the mean bias of the signal intensity ratio used to calculate ADC (between b
= 0 and b = 1.6 s/cm2/s interleaves) was almost zero and did not increase with AF (Table
5.4). Bland-Altman plots of this ADC ratio of signal intensities for every pixel of each AF
(Figure 5.11) confirms this trend, and a small spread of ADC ratio bias is observed. The
absence of change in the ratio of ADC signal intensities, according to Equation 3.81, will
therefore result in a preservation of ADC values, as observed in Table 5.3.
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Figure 5.11: Bland-Altman plots of mean bias for each pixel between undersampled (AF)
and fully-sampled (AF=1) ratios of signal intensities of b = 0 and b = 1.6 s/cm2 interleaves,
used to derive ADC values. Mean % bias and 95% confidence intervals are given for each
plot.

In contrast, a larger increase in mean % bias was obtained for the longer TE (9.8 ms)
interleave in comparison to the other two interleaves with TE = 4.1 ms, and this translates
to the observed increase in mean bias of the signal ratio used to derive T ∗2 (between TE1

= 4.1 and TE2 = 9.8 ms) with increased undersampling. Corresponding Bland-Altman
plots of this T ∗2 ratio of signal intensities (Figure 5.12) demonstrates this increase in mean
bias, and a larger spread of biases was obtained with T ∗2 signal ratio when compared to
ADC ratio biases in Figure 5.11. According to Equation 5.3, an increase in the ratio of
signal intensities will correspond to smaller T ∗2 values, and this is in agreement with the
observed decreased global T ∗2 value in Table 5.3. The larger error obtained for the longer
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TE interleave may be related to the inherently lower SNR of this interleave due to T ∗2 decay,
and the CS reconstruction error of hyperpolarised gas MR images has been demonstrated
to be SNR-dependent [264]. This error manifests in a decrease of T ∗2 value, and suggests
that heavy undersampling with CS may not be suitable for T ∗2 mapping.
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Figure 5.12: Bland-Altman plots of mean bias for each pixel between undersampled (AF)
and fully-sampled (AF=1) ratios of signal intensities of TE = 4.1 and TE = 9.8 ms interleaves,
used to derive T ∗2 values. Mean % bias and 95% confidence intervals are given for each plot.

With the addition of a 1H anatomical scan, VV%, ADC, LmD, and T ∗2 were derived from a
single 3He scan of 22 seconds. The VV% for the healthy volunteer was 90.7% and is lower
than the reported VV% for healthy volunteers (96%) [117]. The smaller than expected VV%
in this volunteer is likely a result of the un-ventilated region of the left lower lobe, possibly
due to partial lung obstruction observed in the first five slices (white arrows) in Figure 5.10.
The volunteer had normal spirometry and was referred for CT that found no evidence of any
structural changes. The difference in mean T ∗2 between the two prospective CS scans is likely
associated with the implemented phase encoding trajectories. Elliptical-centric phase encoding
increases image blurring when compared to sequential encoding due to the RF depolarisation
k-space filter that originates from the centre of k-space [175]. Whilst this maximises SNR, the
introduced image blurring will correspond to less image heterogeneity and decreased T ∗2 values.
SNR is crucial for accurate CS reconstruction of 3He images [264], and preservation of T ∗2 has
been shown to be SNR-dependent [267]. However, the prospective CS T ∗2 results indicate that
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SNR increase achieved through a different k-space filter will have a negative effect on T ∗2 , and
as such subsequent prospective acquisition should consider sequential phase encoding.

A positive gravitational gradient (posterior to anterior) was observed for both mean slice
ADC (Figure 5.13a) and T ∗2 (Figure 5.13b) values in fully-sampled and CS acquisitions.
The gravitational gradients are also demonstrated in prospective CS reconstructed axial
maps of ADC and T ∗2 , respectively. The smaller ADC and T ∗2 obtained in posterior slices
are probably related to the gravitational compression of parenchymal tissue in the supine
posture corresponding to decreased alveolar dimensions and thus causes an increase in bulk
susceptibility and microscopic field inhomogeneity [276]. In Figure 5.13b, the dip in mean
slice T ∗2 value around 30 to 60 mm can be observed in the right lung of the respective axial
T ∗2 map, and appears to correspond to a region with a large number of blood vessels and
subsequently increased localised field inhomogeneity.
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Figure 5.13: Mean slice ADC and T ∗2 results for healthy volunteer. (a) A positive gravita-
tional gradient in mean slice ADC value is observed from the posterior to anterior lung in
both fully-sampled (FS) and CS prospective acquisitions. Corresponding CS reconstructed
axial ADC map demonstrates this gravitational trend. (b) A similar positive gravitational
trend is observed with mean slice T ∗2 value, and in the reconstructed axial T ∗2 map.

A statistically significant correlation between ADC and T ∗2 in both fully-sampled and CS acqui-
sitions (r=0.66, P=0.011, and r=0.78, P=0.001, respectively) supports the gravitational trends
observed and suggests the measurements are related. Previously, the gravitational gradient in
T ∗2 , and ADC and T ∗2 correlation was only observed in fully-sampled acquisitions [267, 276].
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The T ∗2 of hyperpolarised gases in the lungs has been demonstrated to be affected by diffusion
dephasing from imaging gradients [177]. Therefore, due to the contribution of diffusion in the
effective T ∗2 , it stands to reason that ADC and T ∗2 are significantly correlated.

In this work, ventilation images are obtained from the b = 0 diffusion interleave, and therefore
have a longer, less optimal minimum TE. Previously at 3 T, a shorter TE interleave was
acquired before the longer TE diffusion-weighted interleaves, and this enabled higher SNR 3He
ventilation images to be obtained [267]. In theory, this implementation could be applied to 1.5
T; however, the comparatively smaller ∆TE in this implementation may be insufficient due to
the longer T ∗2 of 3He observed at 1.5 T (∼28 ms [119]) when compared to 3 T (∼14 ms [119]).
Further work is required to investigate this, but this implementation could be promising and
may allow diagnostic quality hyperpolarised gas ventilation images to be acquired in the
same-breath as diffusion-weighted imaging. This sequence could potentially reduce the number
of required scans, and therefore cost and duration, of hyperpolarised gas MRI sessions.

5.5 Conclusions

In this chapter, compressed sensing has been implemented for the acquisition of 3D multiple
b-value diffusion-weighted MR lung images with hyperpolarised 3He in a single breath-hold
for quantitative whole lung microstructural assessment and multi-parametric mapping. The
feasibility of 3D 3He DW-MRI with CS was investigated with retrospective undersampling.
Simulation results optimised by MAEADC demonstrated good preservation of spatial resolution
and quantitative lung microstructure information.

Prospective 3D multiple b-value 3He DW-MRI CS datasets were acquired in five healthy
volunteers and one COPD patient using an optimised three-fold undersampled k-space pattern,
and CS-derived ADC and LmD results were validated against fully-sampled 3D and 2D 3He
DW-MRI. Good agreement between prospective CS and fully-sampled datasets was found,
with a mean difference of +3.4% and +5.1% in global mean ADC and LmD values, respectively.
These results confirm that CS acquisition of undersampled 3D 3He MRI datasets with multiple
b-values for whole lung morphometry is ready for use in clinical lung imaging studies.

Finally, 3D multi-parametric mapping with a CS undersampled multi-interleaved sequence
was demonstrated. Prospective CS multi-interleaved 3He data enabled the simultaneous
acquisition of co-registered 3He ventilation, ADC, LmD, and T ∗2 maps in a single breath-hold.
This sequence has the potential to reduce the number of 3He scans required in hyperpolarised
gas lung imaging studies. However, the results from a healthy volunteer indicate that CS
reconstruction does not preserve T ∗2 value to the same extent as DW-MRI metrics, and
suggests that CS may not be suitable for T ∗2 mapping of 3He in lungs.



Chapter 6

Whole lung morphometry with 3D
129Xe diffusion-weighted MRI and
compressed sensing

6.1 Introduction

Chapter 5 demonstrated the feasibility of whole lung morphometry mapping in a single
breath-hold, for quantitative regional assessment of lung microstructure, with 3D multiple
b-value 3He DW-MRI and compressed sensing (CS). With the limited availability of 3He gas
[110], 129Xe provides a cost-effective alternative for pulmonary MRI, and with advancements
in polarisation levels [167, 170], recent studies have shown that comparable lung ventilation
and microstructural information can be obtained using both nuclei [116–118, 191, 193].

However, DW-MRI with 129Xe is inherently more challenging due to the lower diffusivity and
lower gyromagnetic ratio of 129Xe when compared to 3He, resulting in longer diffusion gradient
times, low bandwidth readouts, longer sequence TR and lower image SNR. Theoretical gas
diffusion models have been proposed for interpreting the 129Xe DW-MRI signal from multiple
b-value acquisitions [136], and estimates of alveolar length scales have been derived from
healthy subjects, and COPD patients [137–139]. Due to the associated long scan times,
the multiple b-value interleaves in previous studies were acquired using non-contiguous and
relatively thick 2D slices without whole lung coverage – and in some cases, with separate
breath-holds. Furthermore, to our knowledge, no direct comparison of alveolar length scales
derived from the application of theoretical diffusion models of 3He and 129Xe diffusion-
weighted MRI in vivo has yet been presented.

CS is an acceleration technique that has the potential to reduce the acquisition time of
3D multiple b-value 129Xe DW-MRI to a single tolerable breath-hold. Previous `1-norm
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minimisation and sparse sampling strategies for 3He CS reconstruction, developed by our
group [198, 264, 266, 267], should be readily transferable to 129Xe due to inherent similarities
between acquisition techniques, and the spatial similarity and sparsity of the lung images.
The feasibility of CS with 129Xe was first demonstrated for the acquisition of respiratory-gated
129Xe lung MR images of mice [280]. Recently, the feasibility of in vivo 129Xe MRI with CS
was demonstrated, and facilitated the acquisition of co-registered 3D 129Xe ventilation and
1H structural images in a single breath-hold [281]. However, to date, the viability of 129Xe
DW-MRI with CS for single breath whole lung acquisitions has not been explored.

In this chapter, the feasibility of acquiring 3D multiple b-value 129Xe DW-MRI data with
CS was first assessed through retrospective undersampling simulations. Prospective CS was
used to acquire multiple b-value 129Xe diffusion-weighted MR images in a single breath-
hold, and 3D morphometry maps of mean diffusive length scale (LmD) were generated
using the stretched exponential model (SEM). Results were compared against equivalent
3D 3He LmD morphometry maps acquired with CS, and an optimal 129Xe diffusion time of
∆=8.5 ms was derived empirically. Prospective acquisitions with the empirically-optimised
129Xe diffusion time were then benchmarked against 3He equivalent measurements in healthy
volunteers, ex-smokers, and COPD patients with both SEM-derived LmD and cylinder model
(CM)-derived mean chord length (Lm) measurements.

This chapter is based on the following publication: "3D Diffusion-Weighted 129Xe MRI for
Whole Lung Morphometry". H.-F. Chan, N. J. Stewart, G. Norquay, G. J. Collier, J. M. Wild.
Magnetic Resonance in Medicine, doi:10.1002/mrm.26960, 2017. Author contribution state-
ment: study design, HFC, NJS, GJC, JMW; acquisition of data, HFC, NJS, GN, GJC; analysis
of data, HFC, GJC, JMW; preparation of manuscript, HFC, NJS, GN, GJC, JMW.

6.2 3D 129Xe DW-MRI with CS

The feasibility of CS undersampling for 3D multiple b-value 129Xe DW-MRI was investigated
in this section. Retrospective undersampling of fully-sampled 3D 129Xe DW-MRI data were
performed to optimise k-space undersampling patterns. Prospective CS datasets from four
healthy volunteers were acquired with the reported 129Xe diffusion time of 5 ms [136] and
LmD results were compared against equivalent 3He measurements.

6.2.1 Methods

A fully-sampled 3D 129Xe DW-MRI dataset was acquired from a healthy male volunteer
(HV1) on a 1.5 T (GE HDx) MR scanner using a flexible quadrature transmit-receive vest
coil (Clinical MR Solutions, Brookfield, WI) which was tuned to the Larmor frequency of
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129Xe at 1.5 T (17.66 MHz). Imaging was performed at a lung volume of functional residual
capacity plus 1L following inhalation of a dose of 800 ml enriched 129Xe (86% 129Xe, ∼30%
polarisation [167, 170]) balanced with 200 ml of N2. Image acquisition parameters were:
3D SPGR sequence; 2× interleaves (b = 0, 12 s/cm2); elliptical-centric phase encoding;
in-plane resolution 64×52 (6.25 mm pixel dimension); 18 effective coronal slices (15 mm slice
thickness); FOV = 40×32.5×27 cm3; TE/TR = 11.2/14.4 ms; diffusion time (∆) = 5 ms
(diffusion gradient strength = 22.7 mT/m, ramp time = 0.3 ms, plateau time = 3 ms, gap
between lobes = 1.4 ms); flip angle = 2.2°; and bandwidth = ±6.97 kHz.

A 129Xe diffusion time of ∆ = 5 ms was first chosen as it corresponds to the diffusion time
originally proposed by Sukstanskii and Yablonskiy for 129Xe lung morphometry with the
CM [136]. This diffusion time was derived theoretically such that acinar airway geometrical
parameters from the CM would be the same with both 129Xe and 3He [136], and these values
have been subsequently used in 2D 129Xe DW-MRI experimental studies at University of
Virginia and Robarts Research Institute sites [137–139]. Retrospective CS simulations of
the fully-sampled dataset with acceleration factors (AF) between 2 – 5 were implemented
using the methodology described in Section 5.2. The Wilcoxon signed-rank test was employed
to assess differences between fully-sampled and retrospectively reconstructed ADC maps
for each AF on a pixel-by-pixel basis.

The optimum k-space sampling pattern for three-fold (AF=3) undersampling was chosen
based on the simulation results and used for prospective acquisition of 3D 129Xe multiple
b-value DW-MRI data from four healthy volunteers (HV1 – HV4). Prospective data was
then acquired with an inhaled gas mixture of 750 ml 129Xe and 250 ml N2, with imaging
parameters as for the fully-sampled acquisition apart from the following: four interleaves (b =
0, 12, 20, 30 s/cm2); TE/TR = 11.7/15.0 ms; ∆ = 5 ms (maximum diffusion gradient strength
= 31.9 mT/m, ramp time = 0.3 ms, plateau time = 3.5 ms, gap = 0.9 ms); and flip angle
= 2.7°. The AF of 3 reduces the scan time from 57 s to a tolerable 19 s breath-hold. 129Xe
LmD maps were calculated using the SEM (see Section 3.5.2), and results were compared
to LmD maps derived from the same volunteers’ lungs using 3D 3He DW-MRI as described
in Section 5.3. 3He LmD with ∆ = 1.6 ms was chosen for comparison because healthy and
COPD LmD values derived at this diffusion time have been demonstrated to be comparable
to histologically-derived healthy and COPD mean linear intercept values [6, 96].

6.2.2 Results

A range of k-space undersampling patterns with different variable density weighting functions
were generated for each AF, and optimal sampling patterns were determined from the CS
simulations. Retrospectively reconstructed datasets from each optimal sampling pattern
showed a small increase in mean absolute error (MAE) of normalised signal intensity value for
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the b = 0 data (from 2.27% at AF = 2 to 4.25% with AF = 5); however, a good preservation
of image details was still observed with increased undersampling (Figure 6.1). Whole lung
mean ADC histogram and single slice ADC maps generated from the reconstructed CS
datasets also showed a good preservation of quantitative information and low MAE of ADC
(MAEADC) (Figure 6.2). Wilcoxon signed-rank tests for each AF indicated no significant
differences between CS-reconstructed and fully-sampled ADC maps on a pixel-by-pixel basis,
confirming preservation of quantitative information and indicating that CS is suitable for
3D 129Xe multiple b-value DW-MRI.

AF = 3AF = 1 AF = 4AF = 2 AF = 5

MAE (%) 2.27% 3.32% 3.64% 4.25%

Difference 

images

k-space 

patterns
(a)

(b)

ky

kz

Figure 6.1: CS simulation results for 3D 129Xe DW-MRI. (a) Optimal k-space undersam-
pling patterns (52×18 pixels) for each acceleration factor (AF). (b) Example reconstructed
magnitude (b = 0) and difference images for each AF, with corresponding MAE values.

Prospective 3D 129Xe multiple b-value DW-MRI were then acquired in four healthy volunteers
with AF = 3 and 129Xe ∆ = 5 ms, and the resulting ADC and LmD maps were compared
with previously calculated lung microstructural maps acquired using 3D 3He multiple b-value
DW-MRI. The prospective CS whole lung mean 129Xe ADC value for volunteer HV1 (0.0329
cm2/s) was very similar (+1.2% difference) to the fully-sampled mean ADC value (0.0325
cm2/s) that was obtained from CS simulations. Example 129Xe and 3He LmD maps from
comparative slices in HV1 are shown in Figure 6.3 and a summary of mean ADC and LmD

values for each volunteer is provided in Table 6.1. At 129Xe ∆ = 5 ms, mean 129Xe LmD values
for all subjects were ∼50 µm (∼25%) smaller than the corresponding mean 3He values.
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Figure 6.2: ADC results for 3D 129Xe DW-MRI CS simulations. (a) Single slice ADC maps
with the MAEADC, and mean global ADC values for each AF. (b) Corresponding whole lung
ADC histograms for each AF.

Table 6.1: Summary of global mean ADC and LmD values for four healthy volunteers
derived from prospective 3D multiple b-value 129Xe and 3He DW-MRI with CS.

Subject
129Xe ADC
(cm2/s)

129Xe LmD
(µm)

3He ADC
(cm2/s)

3He LmD
(µm)

(∆ = 5 ms) (∆ = 5 ms) (∆ = 1.6 ms) (∆ = 1.6 ms)

HV1 0.033 ± 0.012 161 ± 23 0.182 ± 0.085 208 ± 30
HV2 0.039 ± 0.012 176 ± 20 0.196 ± 0.077 223 ± 24
HV3 0.030 ± 0.011 157 ± 19 0.166 ± 0.068 205 ± 23
HV4 0.030 ± 0.011 156 ± 18 0.169 ± 0.065 210 ± 20

6.2.3 Discussion

CS has enabled the acquisition of 3D multiple b-value 129Xe DW-MRI in a single breath-hold
for the generation of whole lung maps of alveolar diffusion length scale with a voxel size of
6.25×6.25×15 mm3. Retrospectively undersampled 129Xe datasets, reconstructed with CS
sampling patterns (optimised through simulations), demonstrated good preservation of image
details and microstructural information with increased undersampling. MAE and MAEADC

values from 129Xe CS simulations were similar to those reported with 3He (Section 5.2).

The presence of image blurring in the fully-sampled 129Xe images (AF=1 in Figure 6.1) is
likely the result of elliptical-centric phase encode ordering used with 129Xe in contrast to the
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3He LmD (Δ = 1.6 ms) = 208 ± 30 µm

(b)

(µm)

129Xe LmD (Δ = 5 ms) = 161 ± 23 µm

(a)

Figure 6.3: Prospective CS results for a healthy volunteer (HV1). (a) Example 129Xe LmD

maps derived from 3D multiple b-value 129Xe DW-MRI. (b) Example 3He LmD maps in
comparative slices demonstrate a mismatch in LmD values between the two nuclei.

sequential encoding used previously with 3He. Elliptical-centric phase encoding maximises
SNR at the consequence of increased image blurring with an RF depolarisation k-space
filter that originates from the centre of k-space (Figure 3.15) [175]. The full width at half
maximum (FWHM) values of retrospectively undersampled 129Xe ADC histograms decreased
with AF; this trend matches the results of 3He CS simulations (Section 5.2) and demonstrates
decreased spatial heterogeneity associated with the de-noising reconstruction process of CS.
However, this loss of spatial heterogeneity did not result in a statistically significant difference
between fully-sampled ADC and undersampled CS ADC maps.

Prospective three-fold undersampled 3D multiple b-value 129Xe DW-MRI were acquired in
four healthy volunteers at ∆ = 5 ms. The difference of +1.2% between CS (0.0329 cm2/s)
and fully-sampled mean 129Xe ADC (0.0325 cm2/s) for one volunteer (HV1) is similar to
the small differences previously reported between fully-sampled and CS undersampled 2D
and 3D 3He ADC values (see [264] and Table 5.2). The whole lung mean 129Xe ADC values
for all four healthy volunteers (∼0.033 cm2/s) was also consistent with previously reported
healthy subject ADC values acquired with b = 12 s/cm2 at 1.5 T [113]. The observed mean
LmD mismatch of approximately 50 µm (∼25%) between 3He and 129Xe suggests that the
129Xe diffusion time of ∆ = 5 ms, previously proposed for in vivo lung morphometry with
the CM [136], is not applicable for 129Xe lung alveolar length scale measurements derived
from the SEM and other diffusion times need to be explored.
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6.3 Empirical optimisation of 129Xe diffusion time

129Xe LmD values, calculated from prospective 3D 129Xe multiple b-value with ∆ = 5
ms, were approximately 50 µm smaller than 3He LmD values acquired in the same four
healthy volunteers. In this section, an optimal 129Xe diffusion time was derived empirically
from a single volunteer to obtain comparable 129Xe and 3He LmD values. The empirically-
optimised 129Xe diffusion time was subsequently validated with both SEM-derived LmD

and CM-derived Lm in a cohort of subjects with a varying range of alveolar sizes expected
due to age and smoking-related emphysema.

6.3.1 Methods

The observed difference in SEM-derived LmD values suggests that the optimal diffusion time
of ∆ = 5 ms proposed in the cylinder model for 129Xe [136] is not suitable for the SEM. With
the aim of obtaining best agreement between 129Xe and 3He lung morphometry results, rather
than simply implementing the 129Xe ∆ = 5 ms, HV1 was imaged at additional 129Xe diffusion
times (∆ = 5, 7, 8 and 10 ms). 129Xe ∆ = 10 ms was chosen specifically as it corresponds
to the same 1D characteristic free diffusion length (

√
2D0∆ = 530 µm) as experienced in

the reference 3He experiment (assuming D0
Xe-air = 0.14 cm2/s, D0

He-air = 0.88 cm2/s, and
∆He = 1.6 ms). Each additional 129Xe DW-MRI scan was acquired with an identical gas
mixture and b-values as per the previous prospective CS acquisitions at 129Xe ∆ = 5 ms
(Section 6.2), and LmD maps were calculated from each dataset.

The resulting empirically-optimised diffusion time (129Xe ∆ = 8.5 ms – see Results 6.3.2) was
then benchmarked against 3He equivalent measurements for lung morphometry mapping over
different ranges of acinar length scales that are experienced with smoking-related emphysema.
Five healthy volunteers (31.0 ± 3.1 years), six ex-smokers (51.3 ± 2.7 years, 20.3 ± 10.8
pack years), and two COPD patients (63.0 ± 1.4 years, GOLD II-IV) were recruited for this
preliminary study. Subject demographics and pulmonary function test (PFT) data for each
subject are summarised in Table 6.2. All in vivo MRI experiments were performed under the
approval of the UK national research ethics committee and the local NHS research office.

Each subject was imaged with 3D multiple b-value 129Xe DW-MRI, using 750 ml of 129Xe and
the following imaging parameters: TE/TR = 14.0/17.3 ms; maximum DW gradient strength
= 32.6 mT/m; ∆ = 8.5 ms; ramp time = 0.3 ms; plateau time = 2.3 ms; gap = 5.6 ms; and flip
angle = 3.1°. Utilising a 129Xe ∆ = 8.5 ms, the duration of three-fold undersampled CS scans
was consequently increased by 3 s due to the associated increased diffusion time. Therefore,
four-fold undersampling (AF = 4) was now implemented in the subsequent prospective CS
acquisitions to further reduce the scan time and keep the breath-hold within 16 s. This value
is similar to the 15 s acquisition for 3He, and was chosen to demonstrate the clinical-viability
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Table 6.2: Subject demographics and pulmonary function test data for five healthy volunteers
(HV), six ex-smokers (ES), and two COPD patients in the 129Xe and 3He comparison cohort.

Subject Age
(Sex)

FEV1
(% pred)

FEV1/FVC
(%)

TLC
(% pred)

RV
(% pred)

TLCO
(% pred)

Pack
Years

HV1 26 (M) 102.9 81.2 105.6 107.0 – –
HV2 31 (M) 102.0 82.8 100.3 85.0 – –
HV3 34 (M) 77.0 88.0 91.7 107.2 – –
HV4 31 (M) 105.0 87.0 91.6 70.7 – –
HV5 33 (M) 85.1 76.0 84.0 74.1 – –

Mean
HV 31.0 94.4 83.0 94.6 88.8 – –

ES1 47 (F) 86.7 68.8 108.4 105.3 93.0 30.0
ES2 51 (M) 95.2 69.2 106.7 100.9 97.2 30.0
ES3 53 (F) 90.1 59.7 130.0 139.2 99.2 4.1
ES4 55 (M) 107.7 67.5 132.0 127.0 86.5 10.0
ES5 52 (F) 90.9 71.0 101.9 106.6 89.3 25.0
ES6 50 (M) 111.6 96.1 109.0 89.4 98.4 22.5

Mean
ES 51.3 97.0 72.1 114.7 111.4 93.9 20.3

COPD1 62 (F) 39.6 36.5 – – 37.4 –
COPD2 64 (F) 69.7 50.0 – – 61.0 –

Mean
COPD 63.0 54.7 43.3 – – 49.2 –

of this sequence. To verify that good agreement in LmD values was obtained between three-
and four-fold undersampling, all five healthy volunteers were imaged with an additional AF
= 3, 129Xe CS acquisition at ∆ = 8.5 ms, and a slice-by-slice comparison of mean LmD

values was performed. 3D 3He DW-MRI was acquired on the same-day session for all subjects
(except for HV1 – HV3, where 3He data was acquired approximately 1 year previously),
with the experimental parameters previously described in Section 5.3. 129Xe and 3He LmD

maps were derived and compared for each subject.

Finally, the applicability of 129Xe ∆ = 8.5 ms to the CM derivations of lung morphometry
parameters was assessed. The 129Xe-based CM phenomenological expressions are optimised
for 129Xe ∆ = 5 ms; however, if the same 1D theoretical free diffusion length is probed with
both nuclei (i.e. ∆He = 1.6 ms and ∆Xe = 10 ms), the original 3He-based phenomenological
expressions should in theory be applicable for derivation of 129Xe lung morphometry parame-
ters [136]. Initial CM analysis of 129Xe DW-MRI data, with the 3He-based CM expressions,
in healthy subjects at 129Xe ∆ = 8.5 ms and 129Xe ∆ = 10 ms, suggested that, as with
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the SEM, more consistent 129Xe lung morphometry results were obtained with 129Xe ∆ =
8.5 ms (see Discussion 6.3.3). The 3D multiple b-value 129Xe DW-MRI data at 129Xe ∆ =
8.5 ms was therefore analysed using the 3He-based CM phenomenological expressions [6],
and the 129Xe mean chord length (Lm) was hence derived and compared to the 3He-derived
Lm for each subject in the preliminary study.

6.3.2 Results

A strong positive linear correlation (r = 0.998, P<0.001) was established between 129Xe
LmD and 129Xe diffusion times, and at ∆ = 8.5 ms, the 129Xe LmD value best matched the
volunteer’s 3He LmD value (Figure 6.4a). In contrast to LmD, mean 129Xe ADC decreased
with increasing diffusion time; a 12.5% decrease in mean 129Xe ADC was observed from ∆ =
5 to 10 ms. The relationship between 129Xe ADC and diffusion time was however non-linear,
and best fitted a logarithmic function (R2 = 0.961) (Figure 6.4b).
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Figure 6.4: Global mean 129Xe LmD and ADC results at different 129Xe diffusion times
for one healthy volunteer. A strong linear dependence between 129Xe diffusion time and
mean 129Xe LmD value was observed (left). At 129Xe ∆ = 8.5 ms, the 129Xe LmD matches
the volunteer’s corresponding 3He LmD value. Mean 129Xe ADC decreases with increasing
diffusion time in a non-linear logarithmic relationship (right).

Bland-Altman analysis of mean slice 129Xe LmD values acquired with AF = 3 and AF = 4 in
the five healthy volunteers confirmed a mean bias of +1.5% (+2.9 µm) for AF = 4 with a 95%
confidence interval of -6.9% to +10.0% (-13.4 to 19.3 µm) (Figure 6.5). A summary of whole
lung mean 129Xe and 3He LmD values, and corresponding 129Xe and 3He Lm values for each
subject are shown in Table 6.3. An improved matching of mean 129Xe and 3He LmD was
obtained with the empirically-optimised diffusion time, and this is visible in the example LmD

maps from three representative subjects (Figure 6.6). A difference in LmD of less than 7%
was observed in all subjects, with a mean difference (129Xe – 3He) in all subjects of -2.2%.

Figure 6.7a shows a very strong correlation (r = 0.987, P<0.001) between individual lung 3He
and 129Xe mean LmD values in all subjects. LmD values fall around the line of equality, and
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Table 6.3: Summary of 129Xe whole lung SEM-derived LmD and CM-derived Lm values
for five healthy volunteers, six ex-smokers, and two COPD patients acquired with AF = 4
and 129Xe ∆ = 8.5 ms, and their corresponding 3He mean lung morphometry values (AF =
3, 3He ∆ = 1.6 ms) (see Chapter 5).

Stretched Exponential Model Cylinder Model a

Subject
129Xe LmD

(µm)
3He LmD
(µm)

LmD
(% Diff)

129Xe Lm
(µm)

3He Lm
(µm)

Lm
(% Diff)

HV1 205 208 -1.4 183 183 0.0
HV2 218 224 -2.7 222 210 +5.6
HV3 206 205 +0.5 196 171 +12.5
HV4 200 210 -4.8 173 178 -3.1
HV5 192 205 -6.3 164 170 -3.6

Mean
HV 204 210 -2.9 188 182 +2.3

ES1 232 234 -0.9 259 222 +14.3
ES2 230 234 -1.7 254 240 +5.3
ES3 234 236 -0.8 266 250 +6.0
ES4 245 246 -0.4 326 335 -2.7
ES5 221 231 -4.3 222 226 -2.1
ES6 217 215 +0.9 217 201 +7.2

Mean
ES 230 233 -1.2 257 246 +4.7

COPD1 317 323 -1.9 639 671 -5.0
COPD2 251 263 -4.6 318 381 -19.8

Mean
COPD 284 293 -3.2 478 526 -12.4

Overall
Mean – – -2.2 – – +1.1

a Both 3He and 129Xe data was analysed with 3He-based cylinder model expressions [6].

this good agreement was confirmed by Bland-Altman analysis (Figure 6.7b) of individual lung
LmD values, where a mean bias of -2.1% (-4.8 µm) for 129Xe mean LmD, with a 95% confidence
interval of -6.7 to 2.5% (-14.8 to 5.2 µm), was observed. The corresponding mean difference
in 129Xe and 3He CM Lm values was +1.1% (Table 6.3); demonstrating a similar level of
agreement in CM-derived Lm at 129Xe ∆ = 8.5 ms as seen for the SEM-derived LmD. 3He and
129Xe CM single lung Lm values were also strongly correlated (r = 0.980, P<0.001) (Figure
6.7c), and Bland-Altman analysis of mean single lung Lm values indicated a mean bias of
+2.3% in 129Xe Lm values with a 95% confidence interval of -15.2 to 19.9% (Figure 6.7d).
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Figure 6.5: Bland-Altman analysis of AF
= 3 and AF = 4 mean slice LmD values.
The percentage difference between the two
AFs is plotted against the mean slice LmD

value for all five healthy volunteers. The
solid line represents the mean percentage
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Figure 6.6: Comparison of 129Xe and 3He example slice LmD maps for a representative
healthy, ex-smoker and COPD subject. 129Xe LmD maps derived using 3D multiple b-value
129Xe DW-MRI at an empirically-optimised diffusion time ∆ = 8.5 ms demonstrate good
visual agreement with 3He LmD maps.
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Figure 6.7: (a) Comparison of 129Xe and 3He mean single (left and right) lung LmD values
derived from the stretched exponential model for all subjects. Dotted line represents the line
of equality. (b) Bland-Altman analysis of mean single lung LmD values. The percentage
difference (129Xe –3He) between the two nuclei is plotted against the mean single lung LmD

value of the two nuclei for all subjects. The solid line represents the mean percentage difference,
and the two dotted lines indicate the 95% limits of agreement. (c) Comparison of 129Xe
and 3He mean single lung Lm values derived from the cylinder model for all subjects. Both
129Xe and 3He data were analysed with the 3He-based cylinder model. (d) Corresponding
Bland-Altman analysis of mean single lung Lm values.

6.3.3 Discussion

Mean 129Xe ADC values (at b = 12 s/cm2) decreased non-linearly with increasing diffusion
time, a trend observed previously in 3He ADC measurements [97, 242]. The logarithmic
relationship observed between 129Xe ADC and diffusion time also matches the trend observed
for 3He ADC [97]. We believe this to be the first demonstration of non-Gaussian diffusion
with in vivo 129Xe diffusion-weighted MRI. The SEM-derived LmD values exhibited a strong
positive linear dependence with diffusion time over the range of 5 – 10 ms. The dependence
of LmD upon diffusion time reflects the changes in the theoretical characteristic free diffusion
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lengths probed in each experiment. At 129Xe ∆ = 10 ms, corresponding to the characteristic
free diffusion length of 129Xe (

√
2D0∆ = 530 µm) which is identical to the free diffusion length

of 3He in air for the diffusion time used in Chapter 5 (∆He = 1.6 ms), a mismatch of LmD

values was still observed in the data from the three healthy volunteers (see Figure 6.9).

This mismatch suggests that even at the same characteristic free diffusion length there may
be inherent differences in the specific diffusion dephasing regime of the respective gases in
the lung alveoli which makes this assumption of Gaussian relation between diffusion length
and diffusion time inexact. The differences in diffusion dephasing regime stems from intrinsic
properties (i.e. gyromagnetic ratio, and diffusivity) of each gas, and thus leads to different
mechanisms which contribute to non-Gaussian diffusion signal behaviours which are not
accounted for in the calculation of characteristic free diffusion length. For example, differences
in the diffusional dephasing regime due to microscopic background susceptibility gradients may
exist between 129Xe and 3He at the same field strength due to the smaller gyromagnetic ratio
of 129Xe. These effects would manifest themselves in a similar way to the effects of background
susceptibility gradients observed at different B0 field strengths on 3He ADC values [104].

The intrinsic difference in the two gases may also go towards explaining the different diffusion
signal decays observed between the two nuclei with increasing b-value (see Figure 6.8), where
a more pronounced non-mono-exponential signal decay was observed with 3He than with
129Xe. The SEM corrects for this non-Gaussian behaviour by incorporating a heterogeneity
index parameter (α) that determines the extent of the deviation of the signal decay from
a mono-exponential decay. A tendency towards a more mono-exponential signal decay (i.e.
α→1) with 129Xe will result in larger estimates of LmD, for the same DDC value (Figure
3.27). The mismatch in α value observed in Figure 6.8 therefore may explain the discrepancy
between 3He and 129Xe LmD values even when the same theoretical diffusion length is probed.
However, more analysis is required to confirm this observation. A similar mismatch in α value
is also observed in example 3He (Figure 7.1) and 129Xe (Figure 7.5) α maps in Chapter 7.

The decision to further accelerate with four-fold undersampling was motivated by the need to
reduce the breath-hold duration for 129Xe diffusion times that exceed 5 ms. Good agreement in
LmD values (mean bias of +1.5%, 95% confidence interval of -6.9% to +10.0%) was obtained
with three- and four-fold undersampling, in all five healthy volunteers. This slight increase
in mean slice LmD values obtained with AF = 4 is likely the result of CS reconstruction
error associated with increased undersampling. In addition, the broad 95% confidence
interval range could also be explained in part by inexact co-registration of image slices
due to slight changes in subject position between the AF = 3 and AF = 4 scan sessions.
However, the small increase in LmD justifies the implementation of AF = 4 in prospective
acquisitions with 129Xe ∆ = 8.5 ms. The reduction of scan time to within 16 s is more
tolerable for a wider range of subjects, therefore AF = 4 was utilised in all subsequent
3D multiple b-value 129Xe DW-MRI acquisitions.
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Figure 6.8: Comparison of 3He (∆ = 1.6 ms) and 129Xe (∆ = 10 ms) mean diffusion signal
decay for a healthy volunteer (HV1). (a) The stretched exponential fit (solid line) of the mean
3He diffusion signal decay deviates from the mono-exponential fit (dotted line) with an alpha
value (α) = 0.84. (b) The mean 129Xe diffusion signal decay (∆ = 10 ms) is more similar
to the mono-exponential decay corresponding to a larger α value (0.90) and subsequently a
larger LmD value even when the same 1D theoretical diffusion length is probed with 3He
and 129Xe.

Utilising the empirically-optimised 129Xe diffusion time, 129Xe-derived LmD values demon-
strated improved agreement with 3He LmD at 129Xe ∆ = 8.5 ms than with 129Xe ∆ =
5 ms. The mean difference between whole lung mean 129Xe and 3He LmD values across
all subjects was -2.2%, and the mean bias in individual lung 129Xe LmD was -2.1%. The
diffusion time 129Xe ∆ = 8.5 ms was derived from preliminary data and subsequently this
small bias may suggest that a different optimal diffusion time (slightly longer than ∆ =
8.5 ms) may bring the bias towards 0%.

When the 129Xe ∆ = 8.5 ms LmD result for HV1 was considered alongside the results from
other diffusion times (129Xe ∆ = 5, 7, 8, 10 ms, see Figure 6.4), a 129Xe ∆ = 9.1 ms was
found to match HV1’s 3He LmD value (Figure 6.9). Additionally, when the previous 129Xe
∆ = 5 and 8.5 ms LmD results for HV2 and HV3 were considered in conjunction with an
additional acquisition at 129Xe ∆ = 10 ms, a similar optimal diffusion time of around 9 ms
was obtained as well (Figure 6.9). Nevertheless, the obtained bias of -2.1% at 129Xe ∆ = 8.5
ms is equivalent to the same-day reproducibility error (2.1%) of Lm values calculated from
multiple b-value 3He DW-MRI using the cylinder model [282]. Therefore, we conclude that
comparable lung morphometry maps can be obtained with 129Xe at ∆ = 8.5 ms.

One of the limitations of this study is that the 129Xe diffusion time was optimised based
upon the LmD results from healthy volunteers only. In subjects with emphysematous changes
to alveolar length scales, a different relationship between 129Xe LmD and diffusion time
may well exist. However, the strong agreement between 129Xe and 3He LmD results from
the subsequent prospective acquisitions in healthy normals, ex-smokers and COPD patients
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Figure 6.9: Mean 129Xe LmD results at
different 129Xe diffusion times for three
healthy volunteers. With the addition of
the 129Xe ∆ = 8.5 ms LmD result for HV1,
a 129Xe ∆ = 9.1 ms corresponded to HV1’s
3He LmD value. A strong linear correlation
in 129Xe diffusion time and mean LmD value
was still observed (r = 0.98, P=0.015). In
the other two healthy volunteers (HV2 and
HV3), 3He and 129Xe LmD values match at
a similar 129Xe diffusion time (∼9 ms).

suggests to us that 129Xe ∆ = 8.5 – 9 ms is valid across a range of alveolar sizes subject to
age and smoking-related emphysema. The empirically-optimised 129Xe ∆ = 8.5 ms used in
this work is however significantly longer than the diffusion time proposed for 129Xe CM lung
morphometry (∆ = 5 ms [136]). The associated increase in acquisition time, was compensated
by implementation of increased CS undersampling (discussed above). The longer diffusion
time also corresponds to a longer echo time and subsequent increased T ∗2 decay and lower
image SNR. However, the increase in echo time from ∆ = 5 ms (TE = 11.7 ms) to 8.5 ms
(TE = 14.0) only results in a ∼10% increase in T ∗2 decay (for 129Xe T ∗2 at 1.5 T = 25 ms
[120]), and high SNR images were still obtained with the longer echo time.

The mean 129Xe ADC was observed to decrease with increasing diffusion time in Figure
6.4b. Therefore, with the implementation of the new empirically-optimised 129Xe diffusion
time, a reduction in mean 129Xe ADC values across all acinar length scales is expected. In
this preliminary study cohort, four out of five healthy volunteers were previously imaged
with 3D 129Xe DW-MRI at ∆ = 5 ms in conjunction with the acquisition at 129Xe ∆ =
8.5 ms. The 129Xe ADC at ∆ = 5 ms was on average 10% larger than the ∆ = 8.5 ms
equivalent. This has implications when directly comparing 129Xe ADC results at this new
empirically-optimised diffusion time with previously reported results in different patient
groups. Despite this reduction in mean 129Xe ADC, a strong linear correlation (r = 0.967,
P<0.001) between whole lung mean 3He and 129Xe ADC in the preliminary study cohort
was observed (Figure 6.10). The linear regression fit (y = 0.150x + 0.003) is comparable
to the linear fit between 2D 3He and 129Xe ADC (∆ = 5 ms) in similar patient groups
(y = 0.143x+ 0.011) [118]. The mismatch in regression fits further illustrates the difference
in 129Xe ADC resulting from the different 129Xe diffusion times.

Cylinder model implementation of optimal 129Xe diffusion time

The empirically-optimised 129Xe ∆ = 8.5 ms used in this work is different to the ∆ = 5
ms implemented in other 129Xe lung morphometry studies at different centres [136–139]. In
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Figure 6.10: Comparison between whole
lung mean 3He and 129Xe (∆ = 8.5 ms)
ADC in all preliminary study subjects. A
significant linear correlation (r = 0.967,
P<0.001) was obtained (y = 0.150x+0.003).
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Sukstanskii and Yablonskiy [136], 129Xe ∆ = 5 ms was chosen and 3He-based CM phenomeno-
logical expressions for acinar airway geometrical parameters were re-calibrated for 129Xe such
that lung morphometry results would theoretically match those obtained with 3He. These ex-
pressions were implemented in previous studies at 3 T, and lung morphometry metrics derived
from applying the cylinder model to 129Xe were demonstrated to be similar to those with
3He, albeit without a direct comparison between the two nuclei in the same subjects’ lungs
[137–139]. However, it was noted that if the same theoretical free diffusion length is probed
with both nuclei (i.e. ∆He = 1.6 ms and ∆Xe = 10 ms), the 3He-based phenomenological
expressions can be applied to derive 129Xe lung morphometry parameters [136].

In a small subset of the preliminary study cohort (HV1–HV4), the assumption that (like
the SEM) the CM will give more comparable lung morphometry results at 129Xe ∆ = 8.5
ms than with 129Xe ∆ = 10 ms was explored. The four healthy volunteers with 3D 129Xe
DW-MRI at 129Xe ∆ = 5, 8.5 and 10 ms, and 3D 3He DW-MRI were used to investigate this
hypothesis. The 3He-based CM phenomenological expressions [6] (Method 1) were used to
analyse the 3He, 129Xe ∆ = 8.5 ms, and 129Xe ∆ = 10 ms acquisitions, and to derive mean
chord length (Lm); while the 129Xe equivalent phenomenological expressions [136] (Method
2) were implemented for the analysis of the 129Xe ∆ = 5 ms, and 129Xe ∆ = 8.5 ms datasets.
The mean Lm value from each 129Xe dataset was subsequently compared against the 3He
Lm value, and a summary of the percentage differences in Lm are found in Table 6.4.

The mean 3He-based Lm value for the healthy volunteers (186 µm) was consistent with
reported CM-derived Lm values in healthy adults [133]. The 129Xe Lm results derived from
the 129Xe ∆ = 5 ms data with Method 2 (129Xe CM) (mean difference = +1.4%) were
the most comparable with 3He Lm derived with Method 1 (3He CM). This was expected
due to the re-calibration of 3He phenomenological expressions for 129Xe at ∆ = 5 ms. The
results from the implementation of 129Xe ∆ = 8.5 ms with Method 1 (mean difference =
+4.3%) were similar to those from 129Xe ∆ = 5 ms with Method 2. The 4.3% difference
was heavily skewed by one subject (HV3), and if excluded, a mean difference of +1.0% is
obtained, comparable to that observed with 129Xe ∆ = 5 ms (Method 2). It is important
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Table 6.4: A summary of the percentage difference in derived Lm value between mean
129Xe Lm, acquired at different diffusion times and analysed with either 3He- (Method 1)
or 129Xe-based (Method 2) cylinder model parameters, and 3He-derived Lm in four healthy
volunteers.

Difference (129Xe – 3He) in Lm (%)

Subject
3He Lm (µm)
(∆ = 1.6 ms)
(Method 1)

129Xe Lm
(∆ = 5 ms)
(Method 2)

129Xe Lm
(∆ = 8.5 ms)
(Method 2)

129Xe Lm
(∆ = 8.5 ms)
(Method 1)

129Xe Lm
(∆ = 10 ms)
(Method 1)

HV1 183 +1.6 +5.6 0.0 +9.2
HV2 210 +5.4 +11.3 +5.9 +21.8
HV3 171 +1.5 +19.9 +14.3 +11.2
HV4 178 -2.8 +2.6 -3.0 +3.6

Mean 186 +1.4 +9.8 +4.3 +11.5
Method 1 = 3He-based cylinder model [6]
Method 2 = 129Xe-based cylinder model [136]

to draw attention to the larger mean difference (+11.5%) obtained with 129Xe ∆ = 10 ms
when compared with 129Xe ∆ = 8.5 ms, with Method 1 used for both diffusion times. This
matches the trend seen previously with the SEM and supports the implementation of the
3He-based CM (Method 1) with 129Xe ∆ = 8.5 ms acquisitions.

To further investigate whether the empirically-optimised diffusion time of ∆ = 8.5 ms is also
applicable for the cylinder model derivation of mean chord length (Lm), the 3He and 129Xe
DW-MRI data for each subject in the preliminary study was analysed using the 3He-based
cylinder model expressions [6]. The mean 3He Lm values for healthy volunteers (∼180 µm),
ex-smokers (∼250 µm), and COPD patients (∼500 µm) were consistent with previously
reported 3He Lm values [6, 131, 133]. A range of Lm and LmD values, for both 3He and
129Xe, were obtained for the healthy volunteers in Table 6.3, and this could be related to
the role of height, age, and/or FRC lung volume on alveolar airspace size. The mean 129Xe
Lm for ex-smokers (with 129Xe ∆ = 8.5 ms) are also in agreement with previous 129Xe Lm
values reported at 3 T obtained with 129Xe ∆ = 5 ms [138, 139]. The 129Xe Lm for the
GOLD II COPD subject (318 µm) is also comparable to the 129Xe Lm (∼350 µm) reported
in COPD patients (GOLD I–III) [138, 139].

When 129Xe Lm from the 129Xe ∆ = 8.5 ms data was evaluated with 3He-based CM (Method
1), an overall mean difference of +1.1% (see Table 6.3) was obtained between 129Xe and 3He
Lm values. This good agreement was confirmed when comparing 3He and 129Xe cylinder
model single lung Lm values (Figure 6.7c). Bland-Altman analysis of mean individual lung
Lm values indicated a mean bias of +2.3% in 129Xe Lm values with a 95% confidence interval
of -15.2 to 19.9% (Figure 6.7d). The small biases for Lm are of a similar magnitude as that
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observed for the SEM LmD on an individual lung and global level, and therefore suggests that
129Xe lung morphometry results obtained with ∆ = 8.5 ms are comparable to 3He results
analysed with both the cylinder and stretched exponential models.

6.4 Conclusions

With limited availability of 3He, there is a strong motivation to evaluate functional and
structural information that can be derived from the readily available and cheaper 129Xe
gas isotope. Compressed sensing has facilitated acquisition of single-breath 3D multiple
b-value 129Xe DW-MRI for whole lung morphometry mapping. SEM-derived LmD results
demonstrated a linear dependence with diffusion time, and the best agreement between
129Xe and 3He LmD results was obtained with an empirically-optimised 129Xe ∆ = 8.5 ms.
Prospective CS acquisitions were used to validate 129Xe ∆ = 8.5 ms in healthy volunteers,
ex-smokers, and COPD patients, and a strong agreement (mean LmD bias of -2.2%) in
3He and 129Xe LmD values was obtained. A similar level of agreement (mean Lm bias of
+1.1%) was obtained with CM-derived Lm, indicating that 129Xe DW-MRI acquired with
129Xe ∆ = 8.5 ms is a viable alternative to 3He for 3D whole lung morphometry assessment
with both cylinder and stretched exponential models.

Further validation of this empirically-optimised 129Xe ∆ = 8.5 ms will involve DW-MRI
acquisitions and finite element diffusion simulations in either in-vitro phantoms with known
geometries or ex vivo lungs. These acquisitions and simulations in different sized phantoms
or lungs with both 3He and 129Xe, and analysed with both theoretical gas diffusion models,
can be used determine if 129Xe ∆ = 8.5 ms is valid across a range of different length scales.
The B0 dependence of DW-MRI metrics has been previously demonstrated with 3He [104].
However, the effect of B0 on 129Xe-derived lung morphometry metrics and 129Xe diffusion time
dependence at a different B0 is currently unknown and requires further investigation.



Chapter 7

Comparison of in vivo lung
morphometry models with 3D 3He
and 129Xe diffusion-weighted
MRI

7.1 Introduction

The diffusion-weighted signal of hyperpolarised noble gases in the lungs demonstrates non-
Gaussian phase behaviour that leads to a non-mono-exponential signal attenuation with
increasing b-value. Different hyperpolarised gas diffusion models have been proposed to
account for the non-Gaussian diffusion-weighted signal behaviour and provide estimates of lung
alveolar length scales from the hyperpolarised gas signal. These models include: geometrical
models [5, 128, 242, 246, 248, 249], q-space analysis [130], and stretched exponential model
[129]. To date, the cylinder geometrical model (CM), and the stretched exponential model
(SEM) are the only gas diffusion models to provide in vivo measurements of acinar length
scale on a voxel-by-voxel basis, and have been utilised to study changes in lung microstructure
in a range of different pulmonary diseases (see Section 2.2.5).

Currently the relationship between estimates of alveolar dimension from these two in vivo
diffusion models is relatively unknown. Ouriadov et al. [283] derived estimates of mean chord
length (Lm) and mean diffusive length scale (LmD) in older never smokers, ex-smokers,
and COPD patients with 3He DW-MRI at 3 T. A linear correlation between Lm and LmD

was obtained suggesting the lung morphometry parameters are related but not equivalent.
However, in this analysis the SEM-derived LmD was incorrectly implemented (see Discussion
in Section 7.4), potentially affecting the observed correlation.

127
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This chapter aims to reproduce the in vivo SEM and CM comparison with 3He at 1.5 T
and expand the analysis to 129Xe DW-MRI to further demonstrate the clinical viability
of 129Xe MRI. 3D multiple b-value 3He and 129Xe DW-MRI was acquired in a range of
patients representing a range of different acinar length scales. The two theoretical gas
diffusion models, SEM and CM, were used to evaluate each dataset and derive in vivo
lung morphometry parameters. For each 3He and 129Xe dataset, the CM-derived mean
chord length (Lm), and mean alveolar diameter (LAlv) were compared to the SEM-derived
mean diffusive length scale (LmD).

7.2 Methods

In this retrospective analysis, 3D multiple b-value 3He and 129Xe DW-MRI from different
pulmonary patient groups (healthy normals, ex-smokers, idiopathic pulmonary fibrosis (IPF),
and COPD) representing a range of acinar length scales were acquired on a 1.5 T GE HDx
scanner in 51 and 31 subjects, respectively. 3He and 129Xe DW-MRI was acquired with
compressed sensing according to the scan parameters in Sections 5.3 and 6.3, and relevant
acquisition parameters are summarised in Table 7.1. Lung regions of interest were manually
segmented from each subjects’ reconstructed DW-MRI dataset, and the multiple b-value
diffusion signal decay was fitted to the two lung morphometry models on a voxel-by-voxel basis.
One-way analysis of variance (ANOVA) with Tukey post-hoc multiple comparison adjustment
was conducted to compare lung morphometry metrics across the different patient groups.

Table 7.1: Scan parameters for 3D multiple b-value 3He and 129Xe DW-MRI acquisitions.

3D 3He DW-MRI 3D 129Xe DW-MRI

Gas dose (ml) 250 550
b-values (s/cm2) [0, 1.6, 4.2, 7.2] [0, 12, 20, 30]
Voxel size (mm3) 4.17×4.17×12 6.25×6.25×15

Diffusion time (ms) 1.6 8.5
Scan time (s) 15 (3×CS) 16 (4×CS)

Stretched Exponential Model

The multiple b-value diffusion signal decay was fitted to the stretched exponential function
(Equation 3.96) to obtain a distributed diffusivity coefficient (DDC) and heterogeneity index
value (α). A probability distribution of diffusivity p(D) within each 3He and 129Xe image
voxel was then derived using DDC and α (Equations 3.97 and 3.98). This probability
distribution of diffusivity represents all the possible diffusivities, ranging from 0 to the
respective free diffusion coefficient of each gas in air (D0

He-air = 0.88 cm2/s, and D0
Xe-air
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= 0.14 cm2/s), that may be found within each voxel due to the diffusion restriction of
the complex acinar airway structure. A probability distribution of diffusive length scales
p(LD) can then be derived from the transformation of p(D) using root-mean-square diffusion
displacements (Equation 3.80) relating diffusivity and diffusion time to length scale. The
respective diffusion times of the two gases (∆He = 1.6 ms, and ∆Xe = 8.5 ms, respectively)
were empirically optimised (see Section 6.3) to enable comparable mean diffusive length
scale (LmD) measurements with both 3He and 129Xe.

Cylinder Model

For the cylinder model, the diffusion signal decay from the 3He and 129Xe data was fitted
to the Equation 3.85 to derive the anisotropic diffusion coefficients (DL and DT ). The 3He
DL and DT were related to the cylindrical model geometrical parameters (R and h) through
the phenomenological expressions in Equations 3.87 – 3.89. Acinar airway radii (R) and
alveolar sleeve depth (h) were then used to derive the 3He mean chord length (Lm), and
mean alveolar diameter (LAlv). LAlv is defined as chord length of one alveolus in the CM
cylindrical airway geometry and is equivalent to 2R sin(π/8) (see Figure 3.26). Lm is derived
from the volume to surface area ratio (4V/S) as used in histological measurements of lung
morphometry [9]. The volume and surface area of a single alveolar unit was calculated from
R, h, and LAlv with the expressions in Equation 3.90.

The 129Xe-based R and h were related to 129Xe DL and DT coefficients using the same
phenomenological expressions as for the 3He data. The implementation of 3He-based ex-
pressions for 129Xe DW-MRI is in contrast to the 129Xe-based phenomenological expressions
(Equations 3.92 – 3.94) proposed for the cylinder model. The 129Xe expressions are optimised
for a 129Xe ∆ = 5 ms; however, with the derivation of an empirically-optimised 129Xe ∆
= 8.5 ms, it was concluded that comparable 3He and 129Xe CM Lm can be obtained at
this diffusion time (see Section 6.3.3).

7.3 Results

7.3.1 3He lung morphometry comparison

Maps of lung morphometry parameters were generated for each 3He dataset, and a summary
of mean 3He DW-MRI metrics for each patient group is provided in Table 7.2. A statistically
significant (P<0.001) difference in mean global value across the patient groups was obtained
via ANOVA for each 3He DW-MRI metric. Mean ADC, DDC, LmD, R, LAlv, and Lm

was significantly increased (P<0.05) between all patient groups, except between healthy
and ex-smoker patients. In contrast, mean α and h was significantly decreased (P<0.05)
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between all groups, except between healthy and ex-smoker patients. Example maps of lung
morphometry indices from the SEM (Figure 7.1) and CM (Figure 7.2) illustrate this difference
in lung microstructure between each patient group.

Table 7.2: Summary of mean global 3He diffusion-weighted metrics derived from the cylinder
and stretched exponential models in healthy normals, ex-smokers, IPF, and COPD patients.

3He Lung Morphometry Metrics
Healthy Ex-smoker IPF COPD

No. of subjects 15 6 18 12
Age 26.4 ± 10.5 51.3 ± 2.7 70.8 ± 5.3 62.1 ± 7.9

ADC (cm2/s) 0.18 ± 0.07 0.22 ± 0.08 0.33 ± 0.13 0.47 ± 0.15

SE
M

m
et
ric

s DDC (cm2/s) 0.14 ± 0.05 0.18 ± 0.05 0.30 ± 0.14 0.47 ± 0.20
Alpha (α) 0.84 ± 0.16 0.82 ± 0.16 0.77 ± 0.17 0.73 ± 0.17
LmD (µm) 212 ± 24 233 ± 25 272 ± 34 312 ± 43

C
M

m
et
ric

s

R (µm) 275 ± 65 296 ± 61 351 ± 57 408 ± 67
h (µm) 129 ± 78 105 ± 77 56 ± 69 25 ± 48

LAlv (µm) 210 ± 50 227 ± 47 268 ± 44 312 ± 51
Lm (µm) 186 ± 50 246 ± 89 448 ± 183 656 ± 228

A statistically significant correlation (P<0.001) between 3He LmD and Lm was observed.
Three different curve regression fits (linear, exponential, and power) were performed, and
all three fits had similar R-square values (Table 7.3). For each regression fit, Lm was the
dependent variable (β0), and LmD was set as the independent variable (β1). The power
model had the largest R2 (0.960) and is presented in Figure 7.3a. The parameters LmD

and LAlv (from the CM) were also significantly correlated (P<0.001) in a linear relationship
(Figure 7.3b). A similar linear regression fit, with LAlv as the dependent variable β0, derived
β1 = 1, suggesting excellent agreement between the two parameters. Bland-Altman analysis
confirmed this agreement with a mean bias in LmD value of +1.0% and a 95% confidence
interval of -3.2% to 5.1% (Figure 7.4).

Table 7.3: Summary of regression fit model parameters for 3He LmD and Lm, and LmD

and LAlv comparisons.

Regression
Fit

3He Lm Estimate 3He LAlv Estimate
R2

β0 (Lm) β1 (LmD) R2
β0 (LAlv) β1 (LmD)

Linear 0.956 -802.3 4.63 0.981 -2.96 1.00
Exponential 0.942 16.1 0.012 – – –

Power 0.960 9.1E-06 3.15 – – –
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Figure 7.1: Representative 3He maps of ADC, and SEM-derived metrics of DDC, alpha (α),
and mean diffusive length scale (LmD) for a healthy, ex-smoker, IPF, and COPD subject.
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Figure 7.2: Representative 3He maps of CM-derived metrics of acinar airway radius (R),
alveolar sleeve depth (h), mean chord length (Lm), and mean alveolar diameter (LAlv) for a
healthy, ex-smoker, IPF, and COPD subject.
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Figure 7.3: (a) Global 3He LmD and Lm for all subjects are strongly correlated (P<0.001)
in a power relationship. (b) Lung morphometry parameters LmD and LAlv are strongly
correlated (P<0.001) in a linear relationship, demonstrating excellent agreement between
the two parameters.
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7.3.2 129Xe lung morphometry comparison

The equivalent 129Xe lung morphometry parameters are summarised in Table 7.4. Similar to
the 3He lung morphometry parameters, all 129Xe metrics (except for α value) were significantly
different (P<0.001), via ANOVA, across the patient groups. The 129Xe α value for all subject
groups was also larger than the 3He α value in the healthy subject group, and this could
be attributed to the more mono-exponential signal decay (i.e. larger α values) observed
with 129Xe when compared to 3He DW-MRI (see Section 6.3.3). A statistically significant
increase (P<0.05) for ADC, DDC, LmD, R, Lm, and LAlv value, and a significant decrease
for h, was obtained only between healthy vs. IPF, healthy vs. COPD, and ex-smoker vs.
COPD patient groups. Example 129Xe lung morphometry maps from the SEM and CM
for each patient group are shown in Figure 7.5 and 7.6.
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Table 7.4: Summary of mean global 129Xe diffusion-weighted metrics derived from the
cylinder and stretched exponential models in healthy normals, ex-smokers, IPF, and COPD
patients.

129Xe Lung Morphometry Metrics
Healthy Ex-smoker IPF COPD

No. of subjects 7 6 8 10
Age 29.4 ± 4.0 51.3 ± 2.7 69.9 ± 4.3 60.9 ± 4.8

ADC (cm2/s) 0.030 ± 0.009 0.037 ± 0.009 0.046 ± 0.011 0.051 ± 0.013

SE
M

m
et
ric

s DDC (cm2/s) 0.025 ± 0.007 0.033 ± 0.007 0.042 ± 0.010 0.049 ± 0.014
Alpha (α) 0.86 ± 0.15 0.86 ± 0.15 0.86 ± 0.12 0.86 ± 0.12
LmD (µm) 205 ± 23 230 ± 22 257 ± 24 270 ± 29

C
M

m
et
ric

s

R (µm) 273 ± 79 306 ± 66 346 ± 56 364 ± 59
h (µm) 132 ± 88 111 ± 85 85 ± 78 76 ± 75

LAlv (µm) 209 ± 61 234 ± 51 264 ± 43 279 ± 45
Lm (µm) 187 ± 62 257 ± 96 365 ± 157 422 ± 174

A statistically significant correlation (P<0.001) between 129Xe LmD and Lm was obtained.
The same three curve regression fits (linear, exponential, and power) were performed, and
as for 3He, all three fit curves had similar R2 values (Table 7.5). 129Xe LmD and Lm can
be described by a power model with R2 = 0.971 and is presented in Figure 7.7a. The 129Xe
parameters LmD and LAlv were also significantly correlated (P<0.001) in a linear relationship
(Figure 7.7b), and the β1 = 1.05 suggests excellent agreement. This was confirmed with
Bland-Altman analysis, and a mean bias in LmD value of -2.6% and a 95% confidence
interval of -7.9% to 2.7% was obtained (Figure 7.8).

Table 7.5: Summary of regression fit model parameters for 129Xe LmD and Lm, and LmD

and LAlv comparisons.

Regression
Fit

129Xe Lm Estimate 129Xe LAlv Estimate
R2

β0 (Lm) β1 (LmD) R2
β0 (LAlv) β1 (LmD)

Linear 0.953 -644 3.96 0.965 -4.51 1.05
Exponential 0.964 17.3 0.012 – – –

Power 0.971 3.3E-05 2.92 – – –
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Figure 7.5: Representative 129Xe maps of ADC, and SEM-derived metrics of DDC, alpha
(α), and mean diffusive length scale (LmD) for a healthy, ex-smoker, IPF, and COPD subject.
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Figure 7.6: Representative 129Xe maps of CM-derived metrics of acinar airway radius (R),
alveolar sleeve depth (h), mean chord length (Lm), and mean alveolar diameter (LAlv) for a
healthy, ex-smoker, IPF, and COPD subject.
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Figure 7.7: (a) Global 129Xe LmD and Lm for all subjects are strongly correlated (P<0.001)
in a power relationship. (b) Lung morphometry parameters LmD and LAlv are strongly
correlated (P<0.001) in a linear relationship and demonstrate excellent agreement between
the two parameters.
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Figure 7.8: Bland-Altman analysis of
mean global 129Xe LmD and LAlv values.
A mean bias of -2.6% towards LmD values
is obtained with a 95% confidence interval
between -7.9% and 2.7%.

7.4 Discussion

7.4.1 Comparison of LmD with Lm and LAlv

In this comparison of 3He and 129Xe hyperpolarised gas diffusion lung morphometry models,
significant differences (P<0.001) between patient groups was observed. Lung morphometry
parameters were significantly increased (ADC, DDC, LmD, R, LAlv, and Lm) or decreased
(α and h) (P<0.05) between healthy subjects and IPF and COPD patients. These significant
differences reflect the respective changes to acinar microstructure mainly related to fibrosis
in IPF patients, and emphysema for ex-smokers and COPD patients. Mean 3He cylinder
model-derived parameters of R, h and Lm (Table 7.2) are comparable to the values reported
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in the literature for healthy (R = 304 µm, h = 154 µm, Lm = 186 µm) [133], ex-smokers
(R = 304, h = 130, Lm = 220) [131], and COPD patients (R = 450, Lm = 450) [283].
Mean 3He SEM metrics for healthy and COPD subjects also match previously reported DDC
(healthy = 0.14 cm2/s, COPD = 0.39 cm2/s), α (healthy = 0.86, COPD = 0.69), and LmD

(healthy = 210 µm, COPD = 293 µm) values (from [141], and Table 6.3). Ex-smoker SEM
metrics were also comparable to reported values (DDC = 0.21 cm2/s, α = 0.81) [283].

To our knowledge, in vivo DW-MRI metrics of patients with IPF have not been reported
before. This is the focus of Section 8.2, where multiple b-value DW-MRI was used to assess
changes in lung microstructure at baseline and after 6 months in a cohort of patients with
IPF. The IPF patients in this comparison are part of this cohort, therefore the ADC and
SEM metrics are identical to those presented in Table 8.2. However, CM microstructure
metrics for this IPF cohort are not reported in Section 8.2. Lung morphometry metrics for
IPF patients from both the SEM and CM appear to lie between the ranges of metrics from the
ex-smokers and COPD patient groups. Mean 129Xe DW-MRI metrics of lung morphometry
were comparable to the 3He across all subject groups. This was expected because 129Xe
DW-MRI was acquired at 129Xe ∆ = 8.5 ms, which represents a 129Xe diffusion time that
was empirically-tuned such that equivalent lung morphometry parameters (LmD and Lm)
were derived from both 3He and 129Xe DW-MRI (see Section 6.3).

The R2 values for the three different regression curve fits of the 3He and 129Xe comparison
of Lm and LmD were very similar. The linear regression fit R2 (0.956) was very similar
to the power regression model (0.960); however, the power relationship matched the 3He
and 129Xe data best. To date, the only previous comparison between the CM and SEM
models of gas diffusion was made at 3 T with 2D 3He multiple b-value DW-MRI [283].
In this previous comparison, a statistically significant linear trend was observed between
LmD and Lm parameters (Figure 7.9).

Figure 7.9: The linear correlation (blue
line) between 3He LmD and Lm morphome-
try parameters for the previous 3 T analysis
of Ouriadov et al. [283] is compared against
the power relationship (orange curve) ob-
served in the comparison at 1.5 T performed
here. The dotted line corresponds to the
1D free diffusion length of 3He (530 µm) for
the acquisition parameters in Table 7.1. 150 200 250 300 350 400
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The first contributing factor to this observed difference in lung morphometry parameter
relationships is the discrepancy in the derivation of LmD between the two studies. In
Ouriadov et al. [283], LmD was calculated, using the 1D theoretical diffusion length equa-
tion (see Equation 3.99), from a mean diffusivity value (D̄) obtained from a probability
distribution of diffusivities p(D):

D̄ =
∑

p(D) ·D

LmD =
√

2∆D̄
(7.1)

While in our comparison, LmD is the mean diffusive length scale derived from a probability
distribution of length scales, p(LD), obtained by transforming p(D) using the 1D theoretical
diffusion length equation, and can be summarised as follows:

p(LD) = p(
√

2∆D)

LmD =
∑

p(LD) ·
√

2∆D
(7.2)

The order in which the non-linear transformation in the 1D diffusion equation is applied
in the derivation of LmD will correspond to slightly different LmD values, and this is
demonstrated graphically in Figure 7.10.

Method 1 

Ouriadov et al. [271] 

𝑝(𝐷)

DDC = 0.25 cm2/s

α = 0.80

ഥ𝐷 = 0.26 cm2/s

𝐿𝑚𝐷 = 2∆ഥ𝐷 = 289 μm

𝑝(𝐿𝐷)

𝐿𝐷 = 2∆𝐷

𝐿𝑚𝐷 = 279 μm

Method 2 – This thesis

Parra-Robles et al. [118] 

Figure 7.10: The difference in LmD derivation between Ouriadov et al. [283] (Method
1), and in this thesis based on Parra-Robles et al. [129] (Method 2). Method 1 will derive
larger LmD values than Method 2 for the same DDC and α value due to the non-linear
transformation occurring at the end of the LmD derivation, rather than at the start in
Method 2.
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A second factor is the different subject cohorts; for example, the healthy cohort in the 3 T
comparison were older never-smokers (mean age = 69), while the cohort in this comparison
at 1.5 T were considerably younger (mean age = 26). In Figure 7.9, the inclusion of young
healthy volunteers with smaller alveolar dimensions contributes significantly to the non-linear
power relationship observed at 1.5 T. If healthy subjects were excluded, a linear correlation
with a gradient of 5.0 is obtained that is similar to the one observed at 3 T by Ouriadov et al.
[283]. The last factor that could contribute to the different lung morphometry relationships
is the difference in magnetic field strength. Susceptibility gradients are induced at the tissue
and air interfaces within the acinar airspace, and these background field gradients are field
strength dependent and have been shown to affect ADC and theoretical gas diffusion model
parameters with 3He at 1.5 T vs. 3 T [104]. Measurements of cylinder model Lm at 3 T in
healthy volunteers were up to 17% larger than the equivalent measurements at 1.5 T [104],
and this could in part explain the larger 3He Lm values observed at 3 T.

The power relationship between Lm and LmD, observed in Figure 7.3a and 7.7a, suggests
that even though the two lung morphometry parameters are significantly related, they are
not equivalent measures of alveolar dimension. The linear correlation and linear regression
parameters (Figures 7.3b and 7.7b) between LmD and LAlv for both 3He and 129Xe indicates
excellent agreement between the two lung morphometry parameters. Bland-Altman compari-
son of mean LmD and LAlv values (Figures 7.4 and 7.8) confirmed this excellent agreement
with a mean bias of 1.0% (95% difference range of -3.2% and 5.1%) and -2.6% (95% difference
range of -7.9% and 2.7%) obtained for 3He and 129Xe, respectively.

In the representative patient 3He and 129Xe LAlv maps (shown in Figure 7.2 and 7.6), regions
of elevated LAlv appear to qualitatively match those observed in the corresponding LmD maps
(Figure 7.1 and 7.5). This regional matching is further demonstrated by pixel-by-pixel analysis
of LmD and LAlv in a healthy volunteer and a COPD patient (Figure 7.11). A statistically
significant correlation between the two morphometry parameters was observed in both subjects
(P<0.001); however, linear regression fits resulted in R2 of 0.71 and 0.13 for the COPD patient
and the healthy volunteer, respectively. The comparatively small R2 for the healthy volunteer
can be attributed to the small range of LmD and LAlv values associated with healthy lung
microstructure. In contrast, the COPD patient has a larger range of microstructural values
resulting in a wider range of data point distribution and a better resultant linear fit. The linear
regression equations for both representative subjects (see Figure 7.11) were similar to the
regression equation obtained for global 3He LmD and LAlv (Figure 7.3b) in all subjects.

The pixel-by-pixel analysis of LmD and Lm in the same representative healthy volunteer and
COPD patient (Figure 7.12) yielded a similar statistically significant correlation (P<0.001)
between the lung morphometry parameters. Non-linear regression fits with a power model de-
termined an R2 value of 0.34 and 0.56 for the healthy and COPD subject, respectively. The β1
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Figure 7.11: Pixel-by-pixel comparison of 3He LmD and LAlv values in a representative
healthy volunteer and a COPD patient. A statistically significant correlation was obtained
in both subjects (P<0.001) with a linear regression fit of R2 = 0.13 and R2 = 0.71 for the
healthy volunteer and the COPD patient, respectively.

coefficient for both subjects was smaller than the corresponding value (β1 = 3.15, Table 7.3) ob-
tained on a global level in all subjects. A difference in this coefficient is expected due to different
subject groups considered, but the pixel-by-pixel results in Figure 7.12 appear to demonstrate
a similar power relationship between LmD and Lm as that observed in Figure 7.3a.
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Figure 7.12: Pixel-by-pixel comparison of 3He LmD and Lm values in a representative
healthy volunteer and a COPD patient. A statistically significant correlation was obtained in
both subjects (P<0.001) with a non-linear power model regression fit of R2 = 0.34 and R2 =
0.56 for the healthy volunteer and the COPD patient, respectively.
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7.4.2 SEM and CM differences and limitations

The in vivo results suggest that mean diffusive length scale (LmD) from the SEM is more
analogous to the mean alveolar diameter (LAlv) than the mean chord length (Lm) from the
CM. Due to the differences in how each parameter is calculated, the portion of the acinar
airway geometry that is represented by each parameter is slightly different, and this may go
towards explaining the two distinct relationships of LmD between Lm and LAlv. In the SEM,
where no assumptions of acinar airway geometry are made, LmD is directly reflective of the
apparent distance 3He or 129Xe gas atoms diffuse within the acinar airspace. The maximum
LmD is defined by the theoretical free diffusion length of the DW-MRI experiments (∼500
µm) which is dependent upon the experimental diffusion time and respective free diffusion
coefficient of the gas. According to histological measurements of lung morphometry, the
mean alveolar diameter in healthy adult lungs is approximately 200 to 250 µm [9, 12, 284],
and the mean alveolar duct diameter ranges from 200 to 600 µm [9]. Therefore, in these
experiments, gas atoms are predominantly restricted by the alveolar geometry and as such
LmD is reflective of alveolar dimensions.

In contrast, the CM-derived mean chord length (Lm) is calculated through an inferred
relationship between the volume and surface area of a single alveolus unit (Equation 3.91).
It is important to note that mean chord length is not a measurement of alveolar size, but
rather a measurement of the acinar airspace that includes the alveolus and alveolar ducts
[17]. This is apparent in the calculation of Va (Equation 3.90) in the cylinder model (Figure
3.26) which includes both alveolus and alveolar duct volumes. The inclusion of the alveolar
duct volume could in theory allow the calculation of Lm values that exceed the theoretical
free diffusion length of the gas alone.

This could explain why in predominantly healthy subjects where the gas atoms can diffuse
out of the alveoli and into the alveolar duct, there is a reasonable matching of LmD and Lm
values. However, in patients with more advanced disease where alveolar walls are destroyed,
the gas atoms diffuse more freely between enlarged alveoli and alveolar ducts. While a Lm
measurement can still be derived, it may exceed the theoretical free diffusion length (see
data points above dotted line in Figure 7.9). These conditions can cause a large mismatch
in LmD and Lm values when large microstructural changes occur, and is demonstrated
in the IPF and COPD patients in Figures 7.3a and 7.7a. With increasingly advanced
disease the LmD will plateau towards the theoretical free diffusion length, while the Lm
value will theoretically continue to increase, and this accounts for the power relationship
obtained in the in vivo comparisons.

In the latest iteration of the cylinder model, the cylinder duct is surrounded by an alveolar
sleeve containing eight alveolus units (Figure 3.26) [6]. The number of alveoli was chosen such
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that the chord length or diameter of an alveolus unit (LAlv) would empirically match the alveo-
lar diameter obtained from histological measurements. The LAlv values demonstrated excellent
agreement with LmD values with both 3He and 129Xe, indicating that the two parameters
may be equivalent. Previous studies of in vivo lung morphometry with the cylinder model did
not report LAlv values, but LAlv can be retrospectively calculated from the published acinar
airway radii (R) values (LAlv = 0.765R). The retrospectively calculated 3He LAlv in healthy
(∼230 µm [133]), ex-smokers (∼250 µm [131]), and COPD (∼340 µm [283]) patients are similar
to those for 3He and 129Xe derived in this in vivo comparison (see Table 7.2 and 7.4).

The cylinder model has a specific prescribed physiological range of operation, such as h/R < 0.6
and R = 300 to 400 µm, where the phenomenological expressions relating the anisotropic
diffusion coefficients and alveolar duct dimensions are considered valid (see Section 3.5.2).
In this work, an upper limit of R = 700 µm and r = 600 µm was prescribed. DW-MRI
voxels that exceed this limit were excluded from the cylinder model morphometry maps
and represent regions where alveolar duct dimensions are no longer within the physiological
range stipulated for the cylinder model [6, 128]. Within the theoretical boundaries of the
cylinder model, anisotropic diffusion in a cylindrical acinar airway geometry can be assumed.
However, in lungs with significant destruction of the alveolar wall due to advanced lung
disease, the diffusion in the enlarged acinar airspace is more isotropic and can no longer
be described by anisotropic restricted diffusion.

Stretched Exponential Model 3He LmD Maps

Cylinder Model 3He LAlv Maps

Figure 7.13: Representative LmD and LAlv maps for three COPD patients. In the cylinder
model derived LAlv maps regions of missing voxels (white arrows) indicate areas where the
physiological range of the cylinder model is exceeded. These corresponding regions exist in
the stretched exponential model LmD maps and also coincide with large LmD value areas.
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These ‘missing’ voxel areas can be observed in the COPD LAlv maps from three patients
in Figure 7.13, and it is important to emphasise that they are not associated with unventi-
lated lung regions. In contrast, the corresponding regions exist in the LmD maps because
the stretched exponential model has no underlying geometrical assumptions and can fit
the diffusion signal in voxels containing advanced emphysema or those corresponding to
conducting airways that show free and/or localised diffusion behaviour. This limitation of
the cylinder model suggests that the two gas diffusion models have different operational
ranges of length scale estimation accuracy, perhaps due to inherent differences in their
geometrical and mathematical assumptions.

Even though the stretched exponential model appears to derive estimates of diffusive length
scale across all ranges of acinar structural length scales (up to the theoretical free diffusion
length), we emphasise that it has not been directly validated against histology or in phantoms
with known geometries. Validating the LmD value would increase the clinical potential of this
diffusion model in longitudinal monitoring of lung microstructural changes with hyperpolarised
gas DW-MRI. Currently, LmD results are either qualitatively compared to lung morphometry
measurements derived from histology in similar subject populations or validated against
cylinder model measurements from the same diffusion data. However, the results in Section
6.3 demonstrate that the SEM-derived LmD is dependent upon experimental diffusion time.
Therefore, it is possible that the 3He, and subsequently the 129Xe, diffusion time will need to
be tuned such that derived LmD results match those in the validation geometry.

7.5 Conclusions

This chapter presents the first in vivo comparison of stretched exponential model and
cylinder model lung morphometry parameters with both 3He and 129Xe DW-MRI at 1.5
T. The morphometry parameters from the two diffusion models are related where mean
chord length (Lm) and mean diffusive length scale (LmD) are related by a non-linear power
relationship; while LmD and mean alveolar diameter (LAlv) demonstrate excellent linear
agreement. The two distinct relationships are thought to be representative of the different
parts of the acinar airway geometry that are measured with each lung morphometry parameter.
Future work will focus on the validation of the stretched exponential model with in vitro
experiments using phantoms of simple and realistic acinar geometries and finite element
simulations (see Section 9.2 for more details).



Chapter 8

Clinical and physiological
investigations of lung
microstructure with 3He and 129Xe
diffusion-weighted MRI

In Chapters 5 and 6, 3D multiple b-value 3He and 129Xe DW-MRI with compressed sensing
acquisition strategies were developed to enable whole lung mapping of ADC and lung
morphometry metrics. The clinical evaluation of these methods in several different lung
MRI research studies are now summarised.

• In Section 8.1, children with mild cystic fibrosis (CF) lung disease are imaged with 2D
multiple b-value 3He DW-MRI to investigate if changes in lung microstructure can be
detected in early CF lung disease.

• In Section 8.2, both 3D 3He and 129Xe DW-MRI are used for the assessment of acinar
microstructural changes in a cohort of idiopathic pulmonary fibrosis (IPF) patients.
The reproducibility of these DW-MRI metrics in patients with IPF and correlations
with current clinical measures of IPF disease are also explored.

• Finally, in Section 8.3, 3D 3He and 129Xe DW-MRI are used to investigate changes in
acinar dimensions with lung inflation in healthy volunteers.

145
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8.1 Hyperpolarised 3He diffusion-weighted MRI in children
with mild cystic fibrosis

8.1.1 Introduction

Cystic fibrosis (CF) is the most common genetic disorder in the Caucasian population [285],
and is caused by a mutation in the gene that encodes the CF transmembrane conductance
regulator. Advancements in treatment for CF have greatly improved the survival rate in
the modern era, however, lung disease is still the primary cause of mortality in the CF
population [285]. Measuring early lung disease is crucial in maintaining long-term lung health.
In CF, early lung disease is typically characterised by small airways obstruction and increased
lung ventilation heterogeneity (Figure 8.1). The current clinical standard in assessing lung
disease severity in CF is forced expiratory volume in 1 second (FEV1), but FEV1 has been
demonstrated to be insensitive to early changes in lung disease [286].

Healthy

Cystic Fibrosis

Figure 8.1: Cross-section of normal and cystic fibrosis (CF) airways (left) with corresponding
3He ventilation images (right). In early CF, mucus causes obstruction in the small airways
that result in the ventilation defect areas observed in the corresponding 3He ventilation image.
Adapted with permission from the National Heart, Lung, and Blood Institute; National
Institutes of Health; U.S. Department of Health and Human Services.

Hyperpolarised 3He ventilation MR imaging has been demonstrated to be sensitive to changes
in lung ventilation heterogeneity in both children with mild CF disease [286, 287], and in
adult CF patients [185, 288]. The global metrics, ventilation defect percentage (VDP) and
coefficient of variation (CV) determined from ventilation MRI are highly repeatable in CF
patients [185, 289], and were found to be more sensitive than FEV1, lung clearance index
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(LCI), and CT in detecting abnormalities in early CF [286]. 3He ventilation MR imaging is
also more sensitive than FEV1 in detecting longitudinal changes in CF disease [132, 189], and
has subsequently been used to assess the efficacy of CF treatments such as chest physiotherapy
[183], inhaled bronchodilators [290], and gene-specific mucolytic drugs (e.g. Ivacaftor) [291].
More recently, ventilation MR imaging with hyperpolarised 129Xe in CF has demonstrated
similar sensitivity to changes in ventilation heterogeneity as 3He [292, 293].

However, to date, little is known as to whether changes in acinar lung microstructure
accompany this early CF lung disease process. Hyperpolarised gas diffusion-weighted MRI
has been shown to be sensitive to changes in lung microstructure at the acinar level [91, 113].
The aim of this study was to investigate if the observed changes in ventilation heterogeneity
are related to changes in lung microstructure in children with mild CF disease. 3He DW-MRI
metrics were compared in the same mild CF children and age-matched healthy controls
cohorts of Marshall et al. [286], and microstructural metrics were also reassessed after a
2-year interval in the same group of CF children.

8.1.2 Methods

This cross-sectional and longitudinal observational study was approved by the Leeds East
Research and Ethics committee. Parents/guardians signed informed consent and paediatric
subjects provided assent. All subjects (6–16 years old) underwent lung function and MRI
assessments during the same visit. 19 children with CF, that were clinically stable and with
normal spirometry (FEV1 z-score>-1.96), and 10 age-matched healthy controls were recruited
for this study. 14 of the children with CF returned for a 2-year follow-up visit.

All 3He ventilation and diffusion-weighted MRI scans were performed on a 1.5 T GE HDx
scanner. The 3He ventilation imaging parameters for this study can be found in the supple-
mentary material of Marshall et al. [286]. A 2D SPGR multiple b-value diffusion-weighted
sequence was used for 3He DW-MRI with the following imaging parameters: five diffusion-
weighted interleaves (b = 0, 1.6, 3.2, 4.8, 6.4 s/cm2), 64×48 in-plane matrix, in-plane FOV
= 35×26.25 cm2, slices = 5, slice thickness = 15 mm, slice gap = 10 mm, TE/TR = 4.8/8
ms, diffusion time = 1.6 ms (maximum diffusion-weighted gradient strength = 28.3 mT/m,
ramp = 0.3 ms, plateau = 1.0 ms), flip angle = 4.8° (sinc RF pulse), bandwidth = ±31.25
kHz. The 3He dose (∼25% polarisation) was scaled according to subjects’ height (Equation
8.1) (between 150 to 250 ml 3He, and was mixed with N2 in a 1:1 ratio), and the total gas
volume was inhaled from functional residual capacity (FRC).

Apparent diffusion coefficient (ADC) and estimates of alveolar diffusive length scale (LmD),
derived from the stretched exponential model (see Section 3.5.2), were calculated voxel-wise,
and a global mean value was obtained for each subject. In the baseline study, quantitative
lung microstructural metrics derived from DW-MRI, and previously-calculated VDP and
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FEV1 scores [286] were compared between healthy controls and children with mild CF.
Phase III slope indices (Scond and Sacin) [294] derived from multiple breath inert gas washout
with SF6 (performed in both the sitting and supine postures) were also compared between
healthy controls and children with mild CF. For the longitudinal study, ADC, LmD, and
previously calculated VDP, and FEV1 [189] metrics for the children with mild CF were
reassessed after 2-years, and compared to the metrics derived at baseline. An anterior to
posterior (A-P) ADC gradient was also derived for each DW-MRI dataset from the mean
ADC value of each image slice. This ADC gradient was compared between baseline and
2-year follow-up visits in the children with mild CF.

All statistical analysis was performed using GraphPad Prism (San Diego, USA). To test for sig-
nificant differences between the quantitative metrics for healthy control and CF patient groups,
a 2-tailed t-test was performed; for significant differences baseline and 2-year follow up quantita-
tive metrics, a paired 2-tailed t-test was implemented. Significance level was set at P<0.05.

8.1.3 Results

Table 8.1: Summary of global mean (± standard deviation) lung microstructural and
functional metrics for healthy controls and children with CF in the baseline comparison, and
also for CF patients at baseline and 2-year follow-up visits.

Baseline Study Longitudinal Study
Healthy
Controls Mild CF Baseline 2-year

Follow-up

No. of subjects 10 19 14 14
Age 11.3 ± 2.8 10.9 ± 2.5 10.3 ± 2.3 12.1 ± 2.3

ADC (cm2/s) 0.158 ± 0.016 0.161 ± 0.014 0.158 ± 0.014 0.158 ± 0.017
LmD (µm) 204 ± 15 207 ± 10 205 ± 10 204 ± 12

FEV1 z-score 0.00 ± 1.02 -0.30 ± 0.85 -0.12 ± 0.80 -0.26 ± 0.66
VDP (%) 1.53 ± 0.24 4.34 ± 2.00 4.86 ± 1.76 11.11 ± 5.37

Scond sitting 0.01 ± 0.01 0.05 ± 0.02 0.05 ± 0.03 0.06 ± 0.03
Scond supine 0.02 ± 0.01 0.05 ± 0.02 0.05 ± 0.02 0.07 ± 0.03
Sacin sitting 0.11 ± 0.04 0.13 ± 0.07 0.13 ± 0.08 0.13 ± 0.08
Sacin supine 0.08 ± 0.03 0.12 ± 0.08 0.12 ± 0.09 0.13 ± 0.10

ADC gradient
(A-P) (cm/s) – – -0.0004 ± 0.0012 -0.0008 ± 0.0013
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A summary of all DW-MRI lung microstructure and lung function metrics for both the
baseline comparison and longitudinal study can be found in Table 8.1. The global mean
ADC value for both healthy control and children with mild CF was ∼0.160 cm2/s; while the
mean LmD value for the children in this study was ∼205 µm. No significant difference in
mean ADC, LmD, and FEV1 z-score was observed between healthy controls and children
with CF (Figure 8.2). However, in comparison, VDP was significantly elevated (P<0.001) in
the CF group. The presence of ventilation heterogeneity in the form of unventilated lung
regions in children with mild CF are demonstrated in Figure 8.3; however, even though similar
unventilated regions are observed in the corresponding ADC and LmD maps, this did not
translate to changes in DW-MRI metrics of lung microstructure in ventilated lung regions. A
summary of the phase III slope indices derived from multiple breath inert gas washout can be
found in Table 8.1. Sitting and supine Scond parameters were significantly different (P<0.001)
between healthy controls and CF patients. In contrast, sitting and supine Sacin parameters
were not significantly different between the healthy controls and CF patients.
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Figure 8.2: Box and whisker plots comparing lung microstructure (ADC and LmD) and
lung function (FEV1 and VDP) metrics between children with mild CF and age-matched
healthy controls.
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Figure 8.3: Comparative 3He ventilation images, and ADC and LmD maps for two
representative healthy control and mild CF children. Unventilated lung regions can be
observed in the mild CF ventilation images, but this ventilation heterogeneity did not
correspond to elevated ADC and LmD values.

In the longitudinal study, after 2 years, the children with mild CF did not show a signifi-
cant change in ADC, LmD, and FEV1 z-score; while a statistically significant increase in
VDP was observed (P=0.002) (Figure 8.4). In Figure 8.7, representative static ventilation
images and maps of ADC and LmD at baseline and after 2-years are presented for the
same patients. The presence of new unventilated regions indicated increased ventilation
heterogeneity and progression of CF lung disease. However, this disease progression was
not associated with changes in lung microstructure. An increase in anterior to posterior
(A-P) ADC gradient was observed after 2-years (see example in Figure 8.5), albeit not
statistically significant (P=0.29) (Figure 8.6).

8.1.4 Discussion

The mean ADC value for both healthy age-matched subjects and children with mild CF
(∼0.160 cm2/s) matches the value reported for healthy subjects (0.158 cm2/s) of this age
range (∼11 years) at 1.5 T and with b = 1.6 s/cm2 [101]. There are currently no reported
LmD values for paediatric subjects; however, the LmD parameter is similar to the mean
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Figure 8.4: Box and whisker plots comparing lung microstructure (ADC and LmD) and
lung function (FEV1 and VDP) metrics between mild CF children at baseline and 2-year
follow-up visits.
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at baseline and after 2-years. An increase in the
gravitational ADC gradient (baseline = 0.0005
cm/s; 2-years = -0.0016 cm/s) is observed.

linear intercept length obtained from histological lung samples. The mean LmD value (∼205
µm) was comparable to the average intercept distance obtained from explanted paediatric
lungs, with no history of respiratory disease, of a similar age (∼215 µm) [295].

A significant increase in VDP, and subsequently in ventilation heterogeneity, was observed for
mild CF children when compared to the healthy controls, and after 2-years in the mild CF
children. However, no significant difference in ADC and LmD was observed; indicating that
no lung microstructural changes at the acinar level accompany the increase in ventilation
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Figure 8.6: Comparison of ADC gradient in the anterior to posterior (A-P) gravitational
direction at baseline and after 2-years. The absolute value of the ADC gradient increased in
9 of the 14 CF subjects. However, this was not statistically significant (P=0.29).
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Figure 8.7: Comparative 3He ventilation images, and ADC and LmD maps for two mild
CF children at baseline and after 2-years. Increased ventilation heterogeneity after 2-years
did not result in elevated ADC and LmD values.

heterogeneity in early CF lung disease. This trend is expected as CF pathophysiology
predominantly starts to affect the small conducting airways rather than acinar regions
associated with early lung disease in emphysema. The 3He DW-MRI acquisition in this work
was tuned to be sensitive to changes on the acinar length scale by using a 3He diffusion
time (∆) of 1.6 ms, which corresponds to a characteristic 1D free diffusion length (∼530
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µm) that allows 3He atoms to diffuse out of the alveoli and into the alveolar duct but not
beyond the length of the alveolar duct (∼730 µm [11]). Therefore, the small conducting
airways where obstruction occurs through mucous plugging are not probed for the diffusion
times used in this 3He DW-MRI sequence.

However, one important limitation of hyperpolarised gas DW-MRI is the absence of lung
microstructure metrics in areas of non-ventilated lung, because these regions represent areas of
the lung not probed by the 3He gas atoms. There is a possibility that the acinar microstructure
in these obstructed regions may undergo change through the CF disease progress, and cannot
be measured with hyperpolarised gas DW-MRI. However, in a recent morphometric analysis
of explanted lungs from CF patients with micro-CT, no significant difference in mean linear
intercept length was determined between lung sample cores of healthy controls and CF
patients (FEV1 = 24% predicted); while a significant decrease in terminal bronchiole diameter
and cross-sectional area was observed in CF [69]. These results from advanced CF patients
with micro-CT are in agreement with those obtained in mild CF patients with 3He DW-MRI
metrics of lung microstructure, and demonstrates that in mild and advanced CF, changes
occur in the conducting airways but not in the alveoli.

Comparison with Scond and Sacin

Phase III slopes calculated from multiple breath inert gas washout are used to derive indices
(Scond and Sacin) that are related to the different contributions of conducting and acinar
airways to the observed gas mixing process [296]. Scond represents the convective gas mixing
in the conducting airways; while Sacin is the interaction between diffusion and convection
gas mixing in the acinar zone. These two indices have been shown to be elevated, when
compared to healthy normals, in diseases such as COPD [297] and CF [298]. A statistically
significant difference in the Scond observed between healthy controls and mild CF patients
reflects the increase in ventilation heterogeneity associated with mild CF lung disease. In a
previous comparison of children with CF and healthy children, Sacin was significantly elevated
in CF [298]; a similar increase in mean Sacin was observed in this comparison, albeit not
statistically significant. The slight differences in the paediatric populations between the two
studies could explain this small discrepancy in the Sacin parameter.

3He DW-MRI metrics of ADC and LmD were not significantly correlated with either sitting
or supine Sacin, a measure of acinar ventilation heterogeneity. The simplest explanation is that
the paediatric patients in this study have very mild/early CF lung disease, it could be possible
that in older CF patients that have more advanced CF lung disease a correlation between
DW-MRI metrics and Sacin could be observed. In Horsley et al. [298] it was demonstrated that
Sacin correlates strongly with the lung clearance index (LCI) in adult CF patients. However,
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it is likely that even in more advanced CF patients, no correlation would be observed due
to the inherent differences between the two parameters.

Hyperpolarised gas DW-MRI metrics are a measure of acinar microstructure; in contrast, Sacin

is a measurement of ventilation heterogeneity in regions of the lung peripheral to diffusion-
convection front which is located in the pulmonary acinus [296]. The Sacin incorporates the
acinar airways; while for the short diffusion times used for 3He DW-MRI, gas atom diffusion
restriction occurs predominantly within the alveoli. A previous study of asthmatic subjects
with long scale 3He DW-MRI illustrates this difference where a stronger correlation between
ADC and Sacin was obtained with 3He diffusion times of 1 s when compared to 13 ms [299]. At
these comparatively longer diffusion times, 3He gas atoms can diffuse out of the acinar airways,
and therefore appear to be more strongly correlated to Sacin than at shorter diffusion times.

Longitudinal changes in gravitational ADC gradient

A trend towards increased anterior to posterior (A-P) ADC gradient was observed after
2-years in the children with mild CF. It is unclear what the increase in mean A-P ADC
gradient corresponds to; it is possible that this trend is associated with an increase in disease
severity between visits. However, one possible explanation for the change in gravitational
gradient is a difference in the imaging lung inflation state between the two visits. Changes in
lung inflation states have been demonstrated to affect the gravitational gradient of 3He ADC
values (see Section 8.3), and this gradient is observed to disappear at TLC [105].

In this study, to account for differences in lung volume across the age range of the paediatric
CF cohort, 3He doses were scaled according to the subject’s predicted FRC volume. An
empirical equation was derived, from the relationship between FRC volume and height in a
subset of the CF cohort, to estimate FRC volume from the height of a CF patient. The 3He
dose regimen was subsequently calculated from the estimated FRC volume as follows:

3He dose (L) = 104.5× FRC + 51.3
1000 (8.1)

The final inhaled bag volume consisted of equal parts 3He and N2 gas. However, as demon-
strated in Figure 8.8, the rate that FRC increases with lung growth after 2-years was around
half of the rate of TLC increase. Therefore, DW-MRI at baseline was likely acquired at an
inflation state that was closer to TLC than the imaging performed after 2-years, resulting
in the observed increase in A-P ADC gradient (see Figure 8.6).

To our knowledge, the only other previous study of CF with 3He DW-MRI was a study of
adult CF subjects scanned at baseline and after 1 week [300]. This study found a statistically
significant decrease in both whole lung ADC, and a decrease in anterior to posterior difference
in ADC (∆AP) at re-scan after 1 week. The ∆AP metric is different to the A-P ADC gradient
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Figure 8.8: Plot of the changes in TLC and
FRC, measured by body plethysmography, of the
mild CF subjects between baseline and 2-year
follow-up visits. The changes in FRC and TLC
were linearly correlated (P<0.001, R2=0.91), and
TLC changes at a faster rate than FRC.

as it only represents the difference in ADC value between the most peripheral anterior and
posterior slices. It was hypothesised that these short-term changes to ADC are indicative
of the movement of mucus plugs and gas trapping regions. The large time-scale differences
between the adult CF and children with mild CF studies may explain the difference in
ADC results between the respective studies. In Kirby et al. [300], the 1 week follow-up
scan represents short-term changes to the lung in adult CF patients; while in contrast, 2
year follow-up scans are more likely to reflect longitudinal changes related to long term CF
disease progression or lung volume changes with growth. However, the differences observed
between baseline and 1 week re-scan mean ADC value was very small (0.01 cm2/s) and could
also be explained by inter-scan variability of ADC values or differences in lung inflation
volumes between scans. The morphometric results by Boon et al. [69] appear to support
this hypothesis by demonstrating no difference in mean linear intercept length between
healthy controls and end-stage CF patients.

8.1.5 Conclusion

This is the first study to compare hyperpolarised gas 3He DW-MRI metrics in children with
mild CF and age-matched healthy controls. No significant difference in ADC and LmD metrics
was observed between the two groups, despite an increase in ventilation defect percentage in
mild CF. After 2 years, where a statistically significant increase in ventilation heterogeneity
through ventilation defect percentage was detected, no difference in DW-MRI metrics was
still observed in the mild CF patients. These results indicate that in early CF lung disease,
acinar microstructural changes do not accompany increased ventilation heterogeneity.
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8.2 Assessment of acinar airway microstructure in idiopathic
pulmonary fibrosis with hyperpolarised 3He and 129Xe
diffusion-weighted MRI

8.2.1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive and usually fatal disease of older
age, characterised by lung fibrosis extending from basal and peripheral lung tissue [301].
Heterogeneous changes to the lung due to fibrosis are observed on both the macro- and micro-
scale, as seen in Figure 8.9. On the macro-scale of CT imaging, fibrotic regions are characterised
by high CT density attenuation; while in micro-CT images of these fibrotic regions, microscopic
changes to the alveolar microstructure (resulting in cyst formation and honeycombing) are
observed in addition to interstitial thickening. In spite of recently available therapies which
slow the rate of disease progression [302, 303], the current measures of IPF disease severity are
insensitive and non-specific, prompting searches for novel clinical markers of disease in order to
assist with phenotyping, prognostication and the development of new therapies [45, 304].

Healthy IPF

Figure 8.9: Representative CT (top) and micro-CT (bottom) images of a healthy subject
and IPF patient. Lung fibrosis can be observed in the basal and peripheral lung regions
of the IPF CT image. In the micro-CT image, the fibrosis results in microscopic changes
to alveolar microstructure. Healthy CT image reproduced courtesy of Dr. Andrew Dixon,
Radiopaedia.org.
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MRI with inhaled hyperpolarised noble gases (3He or 129Xe) has enabled in vivo functional and
structural imaging of the lungs. In addition, 129Xe is soluble in the lung tissue and red blood
cells, allowing for the opportunity to quantitatively assess pulmonary gas exchange through the
distinct spectroscopic chemical shift of 129Xe associated with each dissolved phase environment
[157]. This physical property of xenon is of particular interest in diseases such as IPF that are
characterised by gas exchange impairment. One spectroscopic technique is 129Xe chemical shift
saturation recovery (CSSR) which can be used to estimate interstitial septal thickness (ST),
and has been demonstrated to be elevated in patients with interstitial lung disease including
IPF [305, 306]. An alternative technique is high resolution spectroscopy of the dissolved 129Xe
spectra to derive a ratio (RBC/TP) of dissolved xenon in the red blood cell (RBC) and in
the tissue plasma/barrier (TP). This RBC/TP ratio has been shown to be diminished in IPF
patients, resulting from gas exchange impairment [307]. Recently, the development of a 3D
radial, 1-point Dixon sequence has enabled the image acquisition of both dissolved phases of
129Xe in the lungs, which allows for regional analysis of RBC/TP ratio in IPF [308, 309].

Diffusion-weighted MRI (DW-MRI) with hyperpolarised gases provides non-invasive and
quantitative assessment of microstructural acinar changes that are comparable to lung histology
(see Section 2.2.5). Interest in this field has mainly been focused on demonstrating acinar
airway enlargement in emphysema, and to our knowledge, no in vivo studies of IPF patients
with DW-MRI exist. Previous DW-MRI studies of patients with IPF have been restricted to
the imaging of explanted lungs [108, 115], where in some cases IPF lungs were used as control
specimens in comparisons against COPD lungs. However, in these studies, ADC results in
IPF patient lungs, with both 3He and 129Xe, appear to demonstrate an increase in ADC
when compared to healthy normals. This contrasts with findings from studies with 3He ADC
from rats instilled with bleomycin [310], a commonly utilised animal model for IPF.

The aim of this work was therefore to investigate whether lungs of patients affected by
IPF demonstrate increased DW-MRI metrics of ADC and LmD, representative of acinar
airway enlargement and damage, using in vivo measurements of hyperpolarised 3He and
129Xe DW-MRI. In addition, the reproducibility of these microstructural imaging indices
is assessed with a future view to their prognostic sensitivity and their correlation with
existing clinical measures of IPF disease severity.

8.2.2 Methods

In a prospective study with ethics approval from Liverpool Central NHS Research Ethics
Committee, 20 participants with IPF underwent DW-MRI with hyperpolarised 3He gas. 10
participants underwent a second identical scan on the same day for baseline reproducibility
assessment; while 14 of the 20 participants returned after six months for a follow-up 3He
DW-MRI scan. 3He gas was polarised under regulatory licence, and 250 ml of 3He was
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mixed with nitrogen (N2) to make up a total inhaled dose of 1L. Participants were coached
to achieve functional residual capacity (FRC) and practised inhaling 1L of room air prior
to imaging. Images were acquired during a 15 second breath-hold manoeuvre following
inhalation of the gas mix from FRC.

All imaging was performed on a 1.5 T clinical MRI scanner (GE HDx), using a quadrature
vest design chest radiofrequency coil (Clinical MR Solutions, Brookfield, Wisconsin) tuned
to the 3He Larmor frequency (48.63 MHz). A 3D multiple b-value spoiled gradient echo
sequence with compressed sensing was used to acquire 3D 3He DW-MRI as previously
described in Section 5.3. Relevant diffusion-weighted imaging parameters include: voxel size
= 4.17×4.17×12 mm3, b = [0, 1.6, 4.2, 7.2] s/cm2, diffusion time = 1.6 ms, DW gradient
strength = 30 mT/m, ramp = 0.3 ms, and plateau = 1.0 ms. Pulmonary function tests
(PFTs) were performed on the same day, including spirometry to measure forced vital capacity
(FVC) and single-breath carbon monoxide gas transfer/coefficient (TLCO and KCO). Percent
predicted values were calculated in accordance with usual clinical practice. High-resolution
computed tomography (HRCT) of the thorax was performed as close as practically possible
to the baseline MR imaging session (mean 55.7 ± 61.7 days).

Undersampled images were reconstructed using in-house MATLAB code with the optimal
parameters determined from previous CS simulations (see Section 5.2). 3He DW-MRI metrics
of lung microstructure were calculated for each imaging voxel; 3He ADC from a mono-
exponential fit of the first two diffusion-weighted interleaves (b = 0, 1.6 s/cm2), and 3He LmD

from a stretched exponential function fit (see Section 3.5.2) of all four diffusion-weighted
interleaves. ADC and LmD histograms encompassing all image voxels within the lung cavity
were analysed for mean, skewness, and kurtosis in each subject.

Each baseline 3He DW-MRI dataset was analysed by two different observers using the same
MATLAB code (HFC and NW) to assess inter-observer reproducibility using two-way mixed ef-
fects model intraclass correlations coefficient. Same day reproducibility was assessed using one-
way random effects model intraclass correlations coefficient. Non-parametric analysis (Spear-
man’s rho) determined strength of correlation between PFTs and imaging metrics. Two tailed
p-values<0.05 determined statistical significance. The DW-MRI metrics for the 6-month follow-
up datasets were compared to baseline metrics with Wilcoxon matched-pairs signed rank test
to determine any statistical difference between the DW-MRI metrics in a given subject.
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8.2.3 Results

Baseline DW-MRI Results and Reproducibility

Mean ADC and LmD values for each IPF patient scanned at baseline and after 6 months are
summarised in Table 8.2. The mean age for this IPF cohort was 71.1 years old, and the mean
3He ADC and LmD at baseline, was 0.332 cm2/s and 274 µm, respectively. Regions of relatively
high ADC and LmD values appear qualitatively related to fibrotic changes on accompanying
HRCT imaging slices (Figure 8.10). A representative ADC map from a coronal slice is shown
alongside ADC histograms for two patients with varying disease severity in Figure 8.11.

(a)

(b)

(c)

ADC

(cm2/s)

LmD

(μm)

Figure 8.10: Representative IPF patient. (a) Coronal HRCT slices demonstrating fibrotic
regions of the lung. Corresponding 3He ADC (b) and LmD (c) maps where areas of elevated
values are qualitatively related to the fibrotic regions observed with CT.

3He DW-MRI histogram metrics were compared to FVC, TLCO, and KCO metrics from
pulmonary function tests (Table 8.3). Both % predicted KCO and TLCO were significantly
correlated (P<0.05) with mean ADC (r = -0.479 and r = -0.473, respectively) and LmD

(r = -0.467 and r = -0.463, respectively) (Figure 8.12). ADC histogram kurtosis and LmD

skewness were also significantly correlated with % predicted KCO. FVC (% predicted)
was however not significantly correlated with any of the 3He DW-MRI metrics (except
for LmD histogram skewness).
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Figure 8.11: Two representative IPF patients (IPF09 and IPF15) with different disease
severity. The ADC map of IPF15 demonstrates more elevated ADC regions than IPF09. This
corresponds to increased mean ADC, and a decrease in ADC histogram metrics of skewness
and kurtosis.

Table 8.3: Summary of correlations between 3He DW-MRI histogram metrics and pulmonary
function test metrics of FVC and carbon monoxide gas transfer in IPF patients.

FVC (% Pred) KCO (% Pred) TLCO (% Pred)

Mean ADC -0.165 -0.479 * -0.473 *
ADC Skewness -0.417 0.403 0.066
ADC Kurtosis 0.074 0.471 * 0.415
Mean LmD -0.150 -0.467 * -0.463 *

LmD Skewness -0.522 * -0.638 ** -0.355
LmD Kurtosis -0.414 -0.316 -0.126
* correlations at a significance level of P<0.05
** correlations at a significance level of P<0.01

Intraclass correlation coefficients (ICC) for both ADC and LmD histogram metrics can be
found in Table 8.4. Same day intra-subject DW-MRI scan metrics were highly reproducible,
including mean ADC (ICC = 0.924), mean LmD (0.804), histogram skewness (ADC = 0.776,
LmD = 0.965) and kurtosis (ADC = 0.825, LmD = 0.876). Bland-Altman analysis of mean
ADC and LmD values between the two baseline DW-MRI scans resulted in negligible bias
of -0.9% and +0.6%, respectively (Figure 8.13). Strong inter-observer agreement was also
obtained for all DW-MRI metrics; ICC for all DW-MRI metrics were all larger than the
intra-subject equivalent (except for LmD skewness). Bland-Altman comparison of mean
ADC and LmD values between the two observers resulted in a similar small bias, -1.1% and
+0.9%, respectively, as the intra-subject comparison (Figure 8.14).
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Figure 8.12: Scatter plots of mean ADC and LmD with % predicted TLCO and KCO

demonstrating significant linear correlation between the metrics.
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Figure 8.13: Bland-Altman comparison of whole lung mean ADC and LmD values for 11
baseline and same-day repeat DW-MRI scans. A small mean ADC and LmD bias is obtained
indicating intra-subject DW-MRI metrics are highly reproducible.
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Figure 8.14: Bland-Altman comparison of whole lung mean ADC and LmD values between
two independent observers. A small mean ADC and LmD bias is obtained indicating a good
agreement of DW-MRI metrics measured by different observers.

Table 8.4: Mean 3He DW-MRI histogram metrics and intraclass correlation coefficients
(ICC) for the intra-subject and inter-observer reproducibility comparisons. Intra-subject
reproducibility was assessed between the two same-day baseline scans; while inter-observer
reproducibility was determined between two observers using the first baseline scan.

Intra-subject Reproducibility Inter-observer Reproducibility
(n = 11) (n = 20)

Baseline
Scan 1

Baseline
Scan 2 ICC Observer

1
Observer

2 ICC

Mean ADC
(cm2/s) 0.317 0.319 0.924 0.332 0.336 0.997

ADC
Skewness 1.042 0.946 0.776 0.992 1.007 0.858

ADC
Kurtosis 2.978 2.482 0.825 2.736 2.446 0.976

Mean LmD

(µm) 266.0 267.6 0.804 273.8 271.6 0.992

LmD

Skewness -0.012 0.049 0.965 0.081 0.047 0.948

LmD

Kurtosis 0.918 1.047 0.876 0.974 1.020 0.895

Longitudinal DW-MRI Results

After 6 months, 14 participants from the IPF cohort returned for a follow-up DW-MRI scan.
The majority of ADC and LmD histogram metrics were not significantly different between
baseline and after 6 months (Wilcoxon rank test P>0.05), apart from a significant increase in
mean LmD (P=0.003) and LmD kurtosis (P=0.035) (Figure 8.15). A significant decrease in
FVC (P=0.005) was also observed, but there was no significant difference in either TLCO and
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KCO. Figure 8.16 demonstrates the increase in lung microstructural metrics in a representative
IPF patient. An increase in regions with elevated ADC and LmD can be observed after 6
months in the basal and peripheral regions of the coronal DW-MRI maps.
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Figure 8.15: Plots of ADC, LmD, FVC, and TLCO at baseline and after 6 months for the
IPF cohort. A statistically significant difference was observed for mean LmD and FVC.

8.2.4 Discussion

Baseline DW-MRI results and reproducibility

Hyperpolarised 3He ADC and LmD is elevated in the lungs of patients with IPF when
measured with DW-MRI, reflecting increased Brownian gas diffusion in the acinar length
scale airways. The mean ADC for the IPF cohort (0.33 cm2/s, age = 71) is higher than
what has been demonstrated in healthy subject cohorts, even accounting for the apparent
increase in ADC with advancing age (0.26 cm2/s, age = 71 at 1.5 T [102], and 0.22 cm2/s,
age = 67 at 3 T [116]). The elevated ADC in IPF matches the results obtained in explanted
lungs with fibrosis [108]. The increase in ADC in IPF is however in contrast to the decrease
in ADC observed in rats induced with bleomycin as an animal model of IPF [310]. This
disagreement may highlight the differences between IPF and drug-induced interstitial lung
disease models. Mean LmD (274 µm) for the cohort is also elevated when compared to values
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ADC Baseline – 0.32 cm2/s

ADC 6 Months – 0.37 cm2/s

LmD 6 Months – 295 μm

(a)

(b)

LmD Baseline – 256 μm

Figure 8.16: Baseline and 6 month follow-up DW-MRI results for IPF12. Selected ADC
(a) and LmD (b) maps after 6 months demonstrate an increase in mean ADC and LmD, and
new regions of elevated DW-MRI metrics in the basal and peripheral regions of the lung.

obtained previously in younger (210 µm in Table 6.3) and older healthy subjects (190 µm at
3 T [283]). Elevated ADC and LmD reflects loss of acinar integrity due to microstructural
changes related to fibrosis. This is qualitatively substantiated by the increase in ADC and
LmD evident in peripheral and basal regions on the reconstructed MR images, congruous
with the expected distribution of disease from CT.

3He DW-MRI metrics demonstrated excellent same day intra-subject and inter-observer
reproducibility. The same-day variability for whole lung mean ADC (0.9%) and LmD (0.6%)
in IPF are smaller than those reported for ADC (∼5%) and lung morphometry (2.1%)
parameters in healthy volunteers and patients [282, 311], and are also smaller than the
same-day variability of FVC (5%) and DLCO/TLCO (7%) [312]. The improved same-day
reproducibility observed in this cohort could be associated with the 3D 3He DW-MRI sequence
used that ensures the DW-MRI metrics are acquired across the entire lung volume in each



166 Chapter 8. Investigations of lung microstructure with 3He and 129Xe DW-MRI

scan making slice-by-slice comparison easier, which was not possible in 2D selective multi-slice
DW-MRI sequences used in previous reproducibility studies. The mean bias of ADC (1.1%)
and LmD (0.9%) in the inter-observer comparison was comparable to the intra-subject bias;
however, the smaller 95% difference range for inter-observer metrics (Figure 8.14) and larger
intraclass correlation coefficients indicates ADC and LmD are more reproducible between
observers than across multiple scans. This was expected and demonstrates that the DW-MRI
segmentation and analysis workflow is robust and highly reproducible.

A wide range of mean ADC and LmD values were obtained for this IPF cohort in Table 8.2,
suggesting a range of disease severity. The whole lung ADC and LmD histogram peak shifts to
the right in patients with higher mean value, corresponding to decreased skewness and kurtosis,
and this reflects the increased heterogeneity in lung microstructure at the acinar length scale.
Presumably, this occurs as healthy lung tissue succumbs to fibrotic change. These changes are
highly visible on coronal imaging slices and whole lung ADC histogram in Figure 8.11.

In addition, mean ADC and LmD significantly correlates with carbon monoxide gas transfer
KCO and TLCO, suggesting that the elevated DW-MRI metrics accompany deteriorating
alveolar gas transfer associated with the concomitant loss of alveolar surface area. Slightly
stronger correlations were obtained with KCO when compared to TLCO, and this may be
related to the differences between the two gas transfer metrics. KCO is normalised for alveolar
volume (VA) and is an index of gas exchange efficiency; while TLCO is the gas exchange
potential of the lung derived from both KCO and VA. KCO may therefore be more comparable
metric to DW-MRI metrics because both techniques are measured in the areas of the lung
that are ventilated (i.e. where tracer or hyperpolarised gas can enter).

For the whole histogram metrics, only ADC kurtosis and LmD skewness were correlated
with KCO, and no histogram metrics were significantly correlated with TLCO. This suggests
that mean ADC and LmD values may be a better marker for IPF disease progression. The
intraclass correlation coefficients (ICC) in Table 8.4 appear to support this – with larger ICCs
observed in mean ADC and LmD than other histogram metrics. This could be related to
the sensitivity of histogram metrics to the noise thresholding in the DW-MRI segmentation
process. The standard deviation of ADC and LmD values appear more dependent on the
chosen noise threshold than mean values.

The elevated ADC and LmD fibrotic regions are visually similar to those found in emphysema-
tous lungs, as seen in Figure 8.17, where emphysematous and fibrotic regions were observed in
the same IPF patient. Even though the disease processes of IPF and emphysema are different,
both appear to be characterised by an increase in acinar airspace size corresponding to
increased ADC or LmD values. In emphysema, destruction and loss of elasticity of the alveoli
leads to enlarged alveolar airspaces; however, in IPF, thickening of the alveoli wall by fibrotic
scarring causes tethering and traction bronchiectasis which in turn leads to increased alveolar
dimensions. Qualitatively, emphysematous regions appear to have higher ADC and LmD
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Figure 8.17: CT slice from an IPF patient (IPF10) with regions of bullous emphysema
(red arrows) in the upper lobes and fibrotic regions (green arrows) in the lower lobes. In the
corresponding ADC map, these emphysematous and fibrotic regions both result in elevated
ADC values.

values than fibrotic regions (see mean values for COPD patients in Chapters 5 and 6); a trend
that was previously observed in explanted lungs with emphysema and IPF [108]. Interestingly,
patients with combined pulmonary fibrosis and emphysema (CPFE) have shown a preservation
of FVC [313], due to the confounding effect of the two disease processes, and as such may not
demonstrate decline in FVC, a predictor of mortality, with disease progression [314].

Longitudinal changes in DW-MRI results

A significant decrease in FVC (∼4%) was observed in this IPF cohort after 6 months. Even
though this decline was less than the validated endpoint for disease progression in IPF (a
≥10% FVC decline) [314], it suggests some progression of IPF disease. Mean ADC was not
significantly different after 6 months; however, mean LmD was significantly elevated by 8
µm. This discrepancy could be related to the mono-exponential fit used to derive ADC, in
contrast to the multiple b-value stretched exponential fit used to calculate LmD which takes
into account more information about the diffusion signal decay. The decline in FVC in this
cohort appears to be correlated to the increase in mean LmD value (Figure 8.18). The outlier
subject (circled in red in Figure 8.18) is of particular interest, as ADC and LmD maps after
6 months (Figure 8.16) demonstrated increased number of fibrotic regions in the base and
apex of the lungs, and this resulted in a large increase in mean ADC and LmD. However,
the associated small increase in FVC may be related to the large variability in longitudinal
FVC measurements in IPF patients [314]. No significant change after 6 months in TLCO or
KCO may suggest that DW-MRI metrics such as LmD are more sensitive; however, small
patients numbers limit drawing wide-ranging conclusions from this study.

A concomitant significant decrease in red blood cell (RBC) and tissue plasma (TP) peak
ratio (RBC/TP) from 129Xe high resolution spectroscopy after 6 months was also observed
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Figure 8.18: Plot of FVC (% predicted) and
mean LmD change after 6 months in the IPF
cohort. When all subjects are considered, no sig-
nificant correlation is obtained. However, when
the outlier subject (red circle) is excluded, a sig-
nificant negative linear correlation is observed
(r=-0.64, P=0.021).
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in the same IPF cohort [315]. RBC/TP ratio, representative of the relative amounts of
dissolved 129Xe in the RBC and TP compartments, was also significantly correlated with
TLCO and KCO reflecting sensitivity to gas exchange efficiency of the lungs. However in
this IPF cohort, mean LmD or ADC was not significantly correlated with RBC/TP ratio
at baseline, and no correlation between the respective changes after 6 months was obtained.
In a previous study 3He ADC and 129Xe spectroscopy-derived (CSSR) interstitial septal
tissue thickness was found to be linearly correlated in healthy and interstitial lung disease
patients [316]. The differences in patient populations could explain the absence of significant
correlation in this IPF cohort. It is important to note that the two techniques are sensitive
to different compartments of the lung gas exchange unit; where DW-MRI measures the
acinar airspace, and 129Xe spectroscopy measurements are made at the point of alveolar
gas transfer. Therefore, more work is required to explore the possible similarities of these
measurements and their representation of IPF disease progression.

129Xe DW-MRI in IPF

With the limited supply of 3He, currently there is an emphasis for the transition of hyperpo-
larised lung MRI research to the more cost-effective 129Xe gas. To demonstrate the feasibility
of longitudinal monitoring of lung microstructural changes in IPF patients, a subset of the
cohort was imaged with 129Xe DW-MRI in the same session as 3He. To date, eight IPF
patients have had same-session 3D 3He and 129Xe multiple b-value DW-MRI; 129Xe DW-MRI
was acquired as described in Section 6.3 with 550 ml 129Xe, b = [0, 12, 20, 30] s/cm2, and
129Xe ∆ = 8.5 ms. The mean 129Xe ADC and LmD for this subset of the IPF cohort was
0.046 cm2/s and 257 µm, respectively. Matching the trend observed in 3He ADC, the mean
129Xe ADC for IPF was higher than those previously reported for healthy subjects with both
129Xe ∆ = 5 (0.036 cm2/s [113]) and 8.5 ms (0.030 cm2/s, see Figure 6.10), but was smaller
than reported values for COPD patients with emphysema (0.056 cm2/s [113]).
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Figure 8.19: Statistically significant correlations between mean 3He and 129Xe ADC and
LmD in eight IPF patients. Both lung microstructural metrics were significantly correlated
with a Spearman’s correlation coefficient r = 0.95, and P = 0.001.

Considering the same-day 3He and 129Xe DW-MRI metrics, a significant correlation (Spear-
man’s r = 0.95, P=0.001) was observed between the two hyperpolarised gases for both whole
lung mean ADC and LmD (Figure 8.19). The strong correlation between 3He and 129Xe ADC
in IPF is in agreement with previous comparisons of ADC in a range of patients at 1.5 T [118]
and 3 T [117]. A mean difference of 5.5% was obtained between 3He and 129Xe LmD; similar
to the difference of 2.2% observed in Section 6.3 in subjects over a range of acinar length
scales. Representative ADC and LmD maps with both nuclei are qualitatively similar in
appearance, and elevated ADC and LmD fibrotic regions are visible with both 3He and 129Xe
(Figure 8.20). These results suggest that the same microstructural changes, with respect to
healthy normals, are detected with both 129Xe and 3He. However, more longitudinal 129Xe
data is required to determine if 129Xe is equally sensitive to IPF disease progression.

8.2.5 Conclusions

In this first in vivo study of acinar microstructure measurements with hyperpolarised gas MRI
in IPF, DW-MRI results with both 3He and 129Xe demonstrated an increase in ADC and LmD,
representative of acinar airway enlargement. 3He DW-MRI metrics were highly reproducible
and correlated with clinically relevant measures of gas transfer factor and coefficient. In
the absence of changes in TLCO and KCO after 6 months, longitudinal changes in LmD

were detected, suggesting that hyperpolarised gas DW-MRI may be sensitive to longitudinal
changes in lung microstructure in fibrotic lung disease. Whether the observed changes relate
pathologically to bronchiolisation of terminal airways with honeycomb formation, traction
bronchiectasis, or another pathological element of IPF is as yet unclear. Further work is needed
to assess whether longitudinal changes in lung microstructure are evident in a larger population
of deteriorating patients, before assessing the prognostic ability of this novel imaging modality
in IPF and determining how this may differ in other forms of fibrotic lung disease.
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3He ADC = 0.34 cm2/s

129Xe ADC = 0.050 cm2/s

3He LmD – 283 μm

129Xe LmD – 267 μm

(a)

(b)

Figure 8.20: A representative IPF patient imaged with both 3He and 129Xe DW-MRI.
Elevated regions of ADC (a) and LmD (b) corresponding to fibrosis can be observed with
both 3He and 129Xe.
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8.3 Exploring lung inflation mechanisms with 3D 3He and
129Xe whole lung morphometry mapping

8.3.1 Introduction

Alveolar dimensions change with lung inflation, however, there is currently no consensus
on how this lung expansion occurs at the alveolar level. Greaves et al. [317] proposed
five different possible lung inflation mechanisms (Figure 8.21): (A) isotropic (symmetrical)
expansion; (B) decrease in alveolar depth (‘cup to saucer’); (C) increase in alveolar depth
(‘saucer to cup’); (D) accordion-like expansion where the surface area does not change; (E)
alveolar recruitment. The emergence of hyperpolarised gas diffusion-weighted (DW) MRI
provides a non-invasive technique that is sensitive to changes in lung microstructure at the
acinar level. With the mapping of the apparent diffusion coefficient (ADC), changes in lung
inflation have been demonstrated to correspond in respective changes in ADC [103–105].
However, the ADC parameter, with its reported assumptions and limitations [104, 242, 244]
(see Section 3.5.2), is reflective of changes in diffusion restriction and does not provide a
true measurement of alveolar length scales.

Figure 8.21: Diagrams of different
possible alveolar expansion mecha-
nisms proposed by Greaves et al. [317].
n represents the exponent on lung vol-
ume, and reflects how surface area
changes (S∝Vn). Adapted from Smal-
done and Mitzner [318].

In vivo lung morphometry with a cylinder model and multiple b-value DW-MRI enables the
derivation of non-invasive quantitative acinar geometrical parameters from the cylindrical
geometry, and this technique has been used to explore inflation mechanisms [134]. In this
feasibility study of healthy volunteers, a 143% increase in lung volume was accompanied by a
7% increase in alveolar duct radius (R), 21% decrease in alveolar duct depth (h), and 96%
increase in the number of alveoli units (Ntot) (see Figure 3.26 for more details of the underlying
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geometry of the cylinder model). These in vivo results suggested that a combination of alveolar
recruitment and expansion of alveolar ducts occurs during lung expansion.

However, this study and previous ADC studies of lung inflation have used low resolution 3He
DW-MRI without whole lung coverage. The development of 3D 3He and 129Xe DW-MRI
sequences in Chapters 5 and 6 has enabled high resolution whole lung morphometry maps
to be obtained in a single breath-hold with both nuclei. These sequences were developed in
conjunction with the stretched exponential model, an alternative gas diffusion model that is
not based on an assumption of acinar airway geometry, that derives alveolar diffusive length
scales (LmD) from the multiple b-value diffusion signal. The aim of this section was therefore
to utilise 3D 3He and 129Xe multiple b-value DW-MRI and the stretched exponential model
to investigate lung inflation mechanisms at different inflation states.

8.3.2 Methods

Five healthy volunteers were recruited and underwent 3D multiple b-value DW-MRI with
both hyperpolarised 3He and 129Xe at two different lung inflation states (functional residual
capacity + 1L (FRC+1L) and total lung capacity (TLC)). For the FRC+1L inflation state,
volunteers inhaled a 1L mixture of hyperpolarised gas and N2 at FRC. For the TLC inflation
state, they performed the same manoeuvre and continued inhaling room air until TLC. All
imaging acquisitions were performed on a 1.5 T GE HDx scanner with 3D SPGR 3He and
129Xe DW-MRI sequences and compressed sensing as described in Sections 5.3 and 6.3. Both
3D 3He and 129Xe was implemented with three-fold CS undersampling. A summary of relevant
3He and 129Xe DW imaging parameters is shown in Table 8.5.

Table 8.5: Summary of imaging parameters for 3D 3He and 129Xe DW-MRI sequences.

Imaging
Parameters

3He 129Xe

Gas dose (ml) 250 700
Voxel size (mm3) 4.17 × 4.17 × 12 6.25 × 6.25 × 15
TE/TR (ms) 4.2/6.0 14.0/17.3

Breath-hold (s) 15 21
b-values (s/cm2) [0, 1.6, 4.2, 7.2] [0, 12, 20, 30]

Diffusion time (ms) 1.6 8.5
Diffusion gradient
parameters (ms)

δ = 1.0, τ = 0.3,
gap = 0

δ = 2.3, τ = 0.3,
gap = 5.6

δ = gradient plateau time, τ = ramp time

Undersampled 3He and 129Xe DW-MRI datasets were reconstructed, and maps of ADC and
stretched exponential model LmD and alpha (α) values were calculated for each acquisition as
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described in Chapters 5 and 6. Each 3He and 129Xe dataset was also fitted to the 3He-based
cylinder model (see Sections 6.3.3) to derive lung morphometry parameters R, h, and alveoli
density (Na) (Section 3.5.2). The total number of alveoli (Ntot) was subsequently estimated
by multiplying the mean Na per voxel by the imaging lung volume (Vtot):

Ntot = N̄a × Vtot (8.2)

where Vtot is the product of the image voxel volume and the total number of ventilated voxels.
Vtot derived from the diffusion-weighted imaging is comparable to the alveolar volume (VA)
measurement determined from PFTs, and represents the volume of ventilated alveolar units.
Voxels with an alveoli density greater than 5×105 cm-3 appear to correspond to major airways
in the maps of Na, and were excluded from the calculated of Ntot and Vtot. Any statistical
difference in lung morphometry parameters between lung inflation states was assessed with
paired t-tests, and statistical significance was determined at the P<0.05 level.

The parameters R, h, and Ntot were derived to ascertain if the same lung expansion mechanism
of alveolar recruitment and expansion, proposed by Hajari et al. [134], are observed. To
determine if a similar trend can also be observed with the stretched exponential model, LmD

results were compared to an isotropic expansion model based upon imaging lung volumes.
FRC+1L and TLC volumes were utilised to estimate the expected lung volume expansion
between the two inflation states. For an isotropic volume expansion model, this volume
increase can be used to predict an LmD expansion value as follows:

LmD
TLC isotropic = (% volume increase)1/3 × LmD

FRC+1L (8.3)

8.3.3 Results and Discussion

All 3He and 129Xe lung morphometry results for each volunteer at FRC+1L and TLC are
summarised in Tables 8.6 and 8.7, respectively. A statistically significant difference between
FRC+1L and TLC was observed for ADC (3He P=0.002, 129Xe P=0.020); LmD (P=0.011,
P=0.007); α (3He P=0.018); R (P=0.039, P=0.005); h (3He P=0.005); Ntot (P<0.001,
P=0.010). 129Xe α (P=0.101) and h (P=0.425) was not significantly different between
inflation states. On average, for 3He DW-MRI, a 58.7% increase in imaging lung volume
(Vtot) from FRC+1L to TLC results in a 18.9% increase in mean ADC, a 8.1% increase
in LmD, a 2.3% decrease in α, a 6.5% increase in R, a 13.6% decrease in h, and a 38.6%
increase in Ntot. While for 129Xe, a 79.9% increase Vtot was observed leading to a 13.3%
increase in mean ADC, a 10.5% increase in LmD, a 5.2% increase in α, a 14.9% increase
in R, a 2.5% increase in h, and a 54.3% increase in Ntot.
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The increase in mean ADC observed between FRC+1L and TLC with both 3He and 129Xe is
in agreement with previous studies [103–105, 134]. The increase in 3He ADC (18.9%) matches
the previously reported results (18.1%) at 1.5 T and with b-value = 1.6 s/cm2 [104]. A strong
linear correlation between 3He and 129Xe ADC has been reported previously suggesting that
equivalent structural information is probed with both nuclei [117, 118]. Therefore, the smaller
increase in 129Xe ADC (13.3%) could be attributed to variability between scan sessions or
effects related to differences in D0 and diffusion regimes.

The changes to 3He cylinder model lung morphometry parameters are very similar to the
those observed previously (Vtot, +56.9%; R, +3.5%; h, -11.8%; Ntot, +40.2%) in a cohort of
healthy volunteers from FRC+1L to TLC [134]. The 129Xe cylinder model parameters all
demonstrated a similar trend except for alveolar sleeve depth h, which was 2.5% larger at
TLC, but not statistically different. It is likely the opposite trend with inflation observed
between 3He and 129Xe h value may be related to intersubject scan variability. Nevertheless,
the results with both nuclei suggests that lung expansion leads to alveolar duct expansion
and alveolar recruitment; this is in agreement with previous studies with the cylinder model
[134]. The derived total number of alveoli from the cylinder model is larger the reported
average number estimated from histology (∼480 million) [12]. The larger estimated alveoli
number obtained with DW-MRI could in part be related to partial volume effects leading
to an over-estimation of the Vtot and subsequently Ntot.

Stretched exponential model LmD value increased from FRC+1L to TLC by 8.1% and 10.5%
for 3He and 129Xe, respectively; which is similar to the increase in R values. For the FRC+1L
inflation state, a mean difference of 3.5% (7.2 µm) was observed between 3He and 129Xe LmD

values; similar to the 2.9% difference (Table 6.2) seen in the same healthy volunteers with
four-fold undersampling of 129Xe DW-MRI with an empirically-optimised 129Xe diffusion
time (see Section 6.3). A smaller difference between 3He and 129Xe of 2.9% (6.6 µm) was
detected at TLC, and this improved matching may in part be explained by the fact that the
TLC inflation state is more reproducible than FRC [319]. The heterogeneity index parameter
(α) was significantly decreased with 3He. This change of -2.3% matches the variation in α
(∼2%) observed previously in healthy subjects between FRC+1L and TLC inflation states
[141]. However, when compared to other lung morphometry parameters, the change in α is
relatively small and suggests that α may be relatively constant with lung expansion.

In conjunction with the increase in 3He and 129Xe ADC and LmD values between inflation
states, statistically significant differences in the posterior to anterior (P-A) gradients at
the two inflation states were also observed (Figure 8.22). A significant decrease in P-
A ADC of -0.003 cm2s-1cm-1 (P=0.006), and -0.001 cm2s-1cm-1 (P=0.001) was observed
from FRC+1L to TLC volume for 3He and 129Xe, respectively. A significant decrease in
LmD gradient was also observed for both 3He and 129Xe, -2.072 µm·cm-1 (P=0.005), and
-2.316 µm·cm-1 (P=0.011), respectively.
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Figure 8.22: Changes in ADC and LmD posterior to anterior gradients between FRC+1L
and TLC inflation states for the five healthy volunteers. HV1 and HV4 are highlighted, as
representative examples of the two gradient trend groups.

The reduction in P-A gradient at TLC was observed previously with 3He ADC mapping [105],
and can be explained by the regional differences in pleural pressure leading to an uneven
distribution of ventilation at FRC+1L that reduces when the lung fully expands [320]. The
P-A gradients for the five healthy volunteers can be classified in two distinct groups with
either small or large differences between FRC+1L and TLC. HV1 LmD data is shown in
Figure 8.23a, where a large P-A gradient can be seen at FRC+1L; at TLC, this P-A gradient
is reduced. HV4 (Figure 8.23b) in contrast, exhibits a small P-A gradient at FRC+1L and
this gradient reduces slightly at TLC. These differences in P-A gradient between healthy
volunteers could be the result of inter-subject variations in lung anatomy and body mass
which may affect regional differences of lung ventilation.

Table 8.8 summarises imaging volume (Vtot) for each volunteer that was used to derive an
isotropic predicted TLC LmD value for 3He and 129Xe. Each volunteer’s predicted TLC 3He
and 129Xe LmD value was larger than the experimentally measured TLC equivalent. These
results suggest that a simple model of isotropic alveolar expansion does not fully explain
the changes to alveolar dimensions during lung inflation. A possible explanation for the
smaller mean LmD value is alveolar recruitment (Figure 8.21E), where previously closed
alveoli become ventilated at TLC, thereby contributing to increased lung volume but not to
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mean LmD value. These results support the hypothesis of alveolar expansion and recruitment
during lung inflation observed with the cylinder model lung morphometry parameters.

Table 8.8: Measured 3He and 129Xe TLC LmD values and predicted TLC LmD calculated
from an isotropic expansion model using the imaging volume (Vtot) at each inflation state.

Subject Nuclei
Imaging volume (Vtot) (L) TLC LmD (µm)

FRC+1L TLC Scaling Isotropic Measured

HV1
3He 4.27 7.85 1.23 255 236

129Xe 4.67 7.56 1.17 240 228

HV2
3He 4.19 7.36 1.21 270 246

129Xe 4.33 7.12 1.18 257 245

HV3
3He 3.76 6.01 1.17 240 219

129Xe 3.64 5.39 1.14 227 204

HV4
3He 4.72 6.01 1.08 223 216

129Xe 2.48 6.19 1.36 255 210

HV5
3He 3.87 5.77 1.14 234 219

129Xe 2.79 5.92 1.29 243 217

The accuracy of the scaling factor in the isotropic expansion model is dependent on the
estimated Vtot of the FRC+1L and TLC datasets. With the relatively large effective slice
thickness of 3He (12 mm) and 129Xe DW-MRI (15 mm), a more accurate estimation of Vtot
could be achieved with a higher resolution 1H SPGR dataset acquired in the same-breath as
the hyperpolarised gas DW-MRI [181]. Body plethysmography is the standard pulmonary
function test used to estimate lung volumes. However, in body plethysmography, FRC and
TLC volumes are measured in the sitting posture, in contrast to MR imaging in supine.
Previous studies have demonstrated the effect of posture on lung volumes; where the supine
FRC and TLC volumes were approximately 30% and 5% smaller than the sitting volumes [321].
It is also important to note that body plethysmography provides a measurement of total lung
volume (TLV); which in healthy volunteers is very similar to Vtot or VV% (96%) [117]. However,
in obstructed patients, regions of the lung become unventilated and a difference in TLV and
Vtot may be be observed. Therefore, while the estimated lung volume may be more accurate
with body plethysmography, the differences in lung volume between postures alongside the
potential mismatch of TLV and Vtot in obstructed patients, suggests that Vtot may be the
most accurate estimation of lung volume for the derivation of the volume scaling factor.

The LmD results in the study confirm that lung inflation is not through isotropic alveolar
expansion alone. One limitation of the stretched exponential model is that an estimate of
alveoli numbers cannot be derived, therefore the hypothesis of alveolar recruitment cannot
be investigated with this model. However, in a recent comparison of hyperpolarised gas
ventilation imaging at different lung inflation in healthy volunteers, the quantitative metrics of
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lung ventilation appear to support this alveolar recruitment hypothesis [319]. The coefficient
of variation (CV), representative of the standard deviation of ventilation image voxel intensity,
is a measurement of ventilation heterogeneity [190]. In Hughes et al. [319], the CV% of
healthy volunteers was observed to increase at smaller lung inflation volumes (residual volume
(RV)) and decreased with lung expansion. The increased CV% at RV, in conjunction with
areas of unventilated lung visible in the dependent lung were suggested to be related to airway
closure at small inflation states. While the decrease in CV% at TLC was associated with
the opening of airways resulting in a more homogeneous ventilation signal intensity. These
ventilation imaging results complement the diffusion-weighted imaging metrics and suggests
alveolar recruitment plays a significant role during lung inflation.

The derivation of lung morphometry parameters from the cylinder and stretched exponential
models were derived under the assumption that the free diffusion coefficient of 3He (0.88
cm2/s) or 129Xe (0.14 cm2/s) in the lungs stayed the same at the two lung inflation states. The
concentration dependent diffusion coefficient D0(C) can be calculated as follows [322]:

1
D0(C) = 1− C

D0(C → 0) + C

D0(C → 1) (8.4)

where D0(C → 0) is the free diffusion coefficient in air, and D0(C → 1) is the self diffusion
coefficient for either 3He or 129Xe (see Table 3.1). The 3He and 129Xe D0(C) were estimated
from the respective Vtot (Table 8.8) and gas doses (Table 8.5). The average 3He D0(C) for the
five healthy volunteers at FRC+1L and TLC was 0.89 and 0.88 cm2/s, respectively; while the
average 129Xe D0(C) was 0.11 and 0.12 cm2/s, respectively. These results suggests that the
assumed 129Xe D0 (0.14 cm2/s) may have been slightly over-estimated, and this may have a
small effect on the derived 129Xe lung morphometry metrics. However, the minimal difference
in 129Xe D0 between FRC+1L and TLC indicates that any changes to lung morphometry
metrics will be negligible between the lung inflation states.

8.3.4 Conclusion

This is the first study of lung inflation with 3D multiple b-value 3He and 129Xe DW-MRI
in healthy volunteers. Good matching of LmD values and changes in the P-A gravitational
gradient were observed between FRC+1L and TLC inflation states with both hyperpolarised
gases. An increase in alveolar duct radius R and total number of alveoli Ntot were observed
along with measured TLC LmD values that were smaller than predicted TLC values from
an isotropic alveolar expansion model. These results suggests that a combination of both
alveolar expansion and recruitment may occur during lung inflation. In this preliminary
study, lung inflation mechanisms were explored in healthy volunteers only. Additional imaging
in patients experienced with pulmonary diseases could be used to further explore if lung
inflation mechanisms change in response to disease.



Chapter 9

Summary and further work

The focus of this thesis has been on the development and implementation of 3D hyperpolarised
gas diffusion-weighted MRI techniques for measuring and modelling lung microstructure. This
chapter presents a summary of the main research findings from each experimental chapter,
and provides a brief overview along with preliminary results for some work in progress that
builds upon the methods developed in this thesis.

9.1 Summary

In Chapter 4, a framework for lobar comparison of lung microstructure measurements
derived from CT and 3He DW-MRI in an asthmatic cohort was presented. CT lobar regions
were used to guide the manual lobar segmentation of 3He DW-MRI. Statistically significant
linear correlations were obtained between 3He DW-MRI lung microstructure metrics of ADC
and LmD, and CT metrics in all lobar regions. Significant correlation suggested that the lung
microstructure metrics from CT and DW-MRI are inter-related in asthmatic patients.

Compressed sensing was implemented in Chapter 5 to facilitate the acquisition of 3D
multiple b-value 3He DW-MRI in a single breath-hold for whole lung morphometry mapping.
An optimised three-fold undersampled k-space pattern was validated in healthy volunteers
and COPD patients, and good agreement between CS-derived and fully-sampled whole lung
morphometry maps indicates that CS undersampled 3He DW-MRI is fit for clinical lung
imaging studies. CS techniques were further implemented for the simultaneous acquisition
of co-registered 3He ventilation, ADC, LmD, and T ∗2 maps to reduce the number of 3He
doses required in clinical imaging studies.

Chapter 6 builds upon the 3He DW-MRI CS techniques to acquire whole lung morphometry
maps with the more cost-effective 129Xe isotope. An empirically-optimised 129Xe diffusion
time (∆ = 8.5 ms) was derived and benchmarked against 3He DW-MRI in healthy volunteers,
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ex-smokers, and COPD patients. Strong agreement was demonstrated between 3He and
129Xe lung morphometry values derived from both stretched exponential and cylinder models;
indicating that 129Xe DW-MRI at 129Xe ∆ = 8.5 ms is a viable alternative to 3He for whole
lung morphometry mapping in clinical imaging studies.

Chapter 7 presents an in vivo comparison of the stretched exponential and cylinder theoretical
gas diffusion models in a range of patient groups with the newly developed 3D 3He and 129Xe
DW-MRI sequences. The mean diffusive length scale (LmD), derived from the stretched
exponential model, was related to cylinder model mean chord length (Lm) in a non-linear
power relationship; while the cylinder model mean alveolar diameter (LAlv) demonstrated
excellent linear correlation with LmD. The results indicate that the two theoretical gas
diffusion models are inter-related and the distinct relationships are representative of different
sections of the acinar airway geometry measured during DW-MRI.

In Chapter 8, the implementation of 3He and 129Xe DW-MRI in three different investigations
of lung microstructure was demonstrated. First, 3He DW-MRI was used in a longitudinal
study comparing children with mild cystic fibrosis and healthy controls at baseline and after
2 years. No significant difference in DW-MRI metrics was observed both at baseline between
the two groups, and after 2 years in mild CF despite increased ventilation heterogeneity.
This indicated that acinar microstructural changes do not accompany the observed increased
ventilation heterogeneity in early CF lung disease.

A cohort of idiopathic pulmonary fibrosis (IPF) patients were imaged with 3He and 129Xe DW-
MRI in a longitudinal study to investigate changes in DW-MRI metrics in IPF lung disease.
ADC and LmD were elevated in IPF, when compared to healthy subjects, and significantly
correlated with carbon monoxide gas transfer factor and coefficient. DW-MRI metrics were
also highly reproducible and LmD demonstrated significant increase after 6 months, suggesting
sensitivity to longitudinal changes in lung microstructure from fibrotic lung disease.

Finally, 3D 3He and 129Xe DW-MRI were acquired at two different lung volumes to investigate
lung inflation mechanisms at the acinar level. An increase in alveolar duct radius (R) and
total number of alveoli (Ntot) at TLC from the cylinder model was observed; while the
stretched exponential model LmD TLC measurements were smaller than the respective values
predicted with isotropic expansion. These results suggest that a combination of both alveolar
expansion and recruitment may occur during lung inflation.

In conclusion, compressed sensing has facilitated the acquisition 3D 3He and 129Xe DW-
MRI in a single breath-hold. These sequences allow for the derivation of 3D whole lung
morphometry mapping to validate quantitative gas diffusion models and investigate clinical
and physiological changes in acinar microstructure.



9.2. Further work 183

9.2 Further work

9.2.1 Multi-modality PRM

One of the main motivations for the development of 3D multiple b-value 3He and 129Xe DW-
MRI sequences was the additional microstructural information that can be ascertained from 3D
whole lung morphometry mapping. The framework developed in Chapter 4 for a lobar multi-
modality comparison of CT and DW-MRI metrics of lung microstructure could be improved
with the inclusion of 3D DW-MRI. Image registration of 3D CT and 3D DW-MRI would
improve the accuracy of lobar region segmentations, and following registration, a more quanti-
tative voxel-by-voxel comparison of lung microstructure metrics would be possible through a
similar approach taken with the parametric response mapping (PRM) method [42, 258].

The feasibility of this is demonstrated in Figure 9.1 where an image registration methodology,
adapted from Tahir et al. [262], was used to register CT and 3D 3He DW-MRI from an
IPF patient. 3D 3He DW-MRI was up-sampled and registered to the same spatial domain
of 3He ventilation images acquired in the same patient; while inspiratory CT images were
down-sampled and registered to the spatial domain of the 1H anatomical images that were
acquired in the same-breath as the 3He ventilation images [181].

CT Original 3He ADC Original Same-breath 
3He-1H

CT Warped 3He ADC Warped

(a) (b)

(d) (e)

(c)

Figure 9.1: Multi-modality image registration framework. Inspiratory CT (a) and 3D 3He
ADC (b) maps are registered to the same spatial domain of same-breath 3He ventilation and
1H anatomical images (c). The warped CT image (d) and 3He ADC map (e).
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A multi-modality PRM was developed by combining the registered CT and 3He ADC maps.
For CT, a threshold of <-950 HU corresponds to the emphysema threshold of inspiratory
CT (white pixels in Fig. 9.2a); while ADC thresholds of 0.25 (orange in Fig. 9.2b) and 0.35
cm2/s (yellow in Fig. 9.2b) were selected corresponding to the reported mean ADC in older
healthy never smokers [116], and IPF patients (see Section 8.2.3), respectively. These CT
and ADC thresholds were defined to classify each co-registered image voxel: group 1 (green),
CT>-950 HU and 0<ADC<0.25 cm2/s; group 2 (yellow), CT>-950 HU and 0.25<ADC<0.35
cm2/s; group 3 (red), CT>-950 HU and ADC>0.35 cm2/s; group 4 (blue), CT≤-950 HU
and ADC>0.25 cm2/s; group 5 (white), ADC = 0 (i.e. ventilation defects).

(d)

CT threshold 3He ADC threshold ADC/CT PRM

(c)(b)(a)

Figure 9.2: Multi-modality parametric response mapping. (a) Inspiratory CT map with
emphysema threshold. (b) 3He ADC map with thresholds for older healthy and IPF ADC
values. (c) These threshold were used to produce a combined ADC and CT PRM.

In the example multi-modality PRM image in Figure 9.2c, the defined voxel thresholds
appears to represent the expected IPF disease pattern. No areas of blue voxels, corresponding
to emphysema in the PRM, are visible confirming that the observed elevated ADC voxels
are related to fibrosis. The yellow and red thresholds, defined to separate mild and severe
IPF regions, also appear to correspond well with the distribution of fibrotic regions in
this IPF patient. The preliminary results are promising and demonstrate the feasibility
of PRM with multi-modality imaging. Further work will be focused on defining optimal
ADC or LmD thresholds to differentiate DW-MRI voxels in different patient groups and
also including expiratory CT metrics, to extrapolate complementary lung microstructural
information from multi-modality imaging.

9.2.2 Validation of theoretical gas diffusion models

Another area of future work is the validation of alveolar dimension estimates from the
stretched exponential model in known geometries. Diffusion experiments in realistic acinar
geometry phantoms derived from micro-CT images of lung samples could improve the vali-
dation of lung morphometry gas diffusion models. Phantoms with realistic acinar geometry
derived from micro-CT images have been previously demonstrated [323, 324], where a 3D
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rendering of micro-CT images of a lung tissue sample (Figure 9.3a) was used to segment a
pulmonary acinus (Figure 9.3b) using a region growing algorithm with Simpleware ScanIP
(Synopsys, Mountain View, USA). The segmented acinus was 3D-printed with stereolithog-
raphy technology (TuskT, Materialise NV, Leuven, Belgium) to create 3D acinar phantom
geometries at different volume scalings (Figure 9.3c). Finally, to verify the accuracy of 3D
printed geometries, the phantoms were re-imaged with micro-CT and the internal geometry
was segmented and finite element meshes (Figure 9.3d) were created to validate in vitro
diffusion measurements through diffusion simulations.

(a) (b)

(d)(c)

1x 1.5x 2x

Figure 9.3: Realistic acinar geometry phantoms derived from micro-CT. (a) A 3D render
of micro-CT images of an ex vivo lung tissue sample. (b) The acinus is segmented from
micro-CT images. (c) 3D printing technology is then used to create acinus phantoms. (d)
The phantoms were re-imaged with micro-CT to verify 3D printing quality and to validate in
vitro diffusion measurements through finite element diffusion simulations.

Diffusion MR measurements can be obtained from these acinus phantoms using a modified
3D multiple b-value SPGR sequence that has no phase and readout gradients to allow for
a free induction decay (FID) acquisition following bipolar diffusion gradients. An imaging
sequence could also be possible in the larger phantom sizes, but SNR limitations may prevent
imaging of the 1× scale phantom. The finite element meshes generated from micro-CT of
the acinus phantoms in Figure 9.3d will allow finite element simulations of gas diffusion to
validate in vitro diffusion MR measurements. These realistic acinar geometry phantoms could
also provide an opportunity to explore changes to acinar geometry through inflation and
provide experimental validation to the in vivo results obtained in Section 8.3. In conjunction,
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experiments in phantoms modified to reflect emphysema or fibrosis disease patterns could
help improve the understanding of these disease processes.

9.2.3 Alternative accelerated acquisition strategies

The final potential area of future work is the development of different and complementary
acceleration strategies for the acquisition of 3D multiple b-value diffusion-weighted MRI
with hyperpolarised gases. Parallel imaging (see Section 3.4) with multiple-channel receiver
coils has facilitated accelerated hyperpolarised gas MR imaging [174, 220, 221], and can be
combined with compressed sensing techniques (e.g. `1-SPIRiT [325]) to improve the quality
of reconstructed undersampled images. Non-Cartesian acquisitions, such as spiral [194]
and radial [195] trajectories, offer an alternative method to accelerate hyperpolarised gas
imaging. Recently, this has been demonstrated with the simultaneous interleaved acquisition
of 3D isotropic 129Xe images of the gas and dissolved phases with 3D radial imaging [308].
These alternative acceleration techniques could be translated to 3D hyperpolarised gas
diffusion-weighted MRI, and provide an alternative to CS undersampling for 3D whole lung
coverage diffusion-weighted MRI acquisitions.
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