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Abstract

This thesis focuses on two distinct projects on the bounded derived category of coherent

sheaves of surfaces and group actions from different directions.

The first project studies bielliptic surfaces, which arise as quotients of products of
elliptic curves by a finite group acting freely. We prove a structure theorem describing
the group of exact autoequivalences of the bounded derived category of coherent sheaves

on a bielliptic surface over C. We also list the generators of the group in some cases.

The second project studies semi-orthogonal decompositions of the bounded equivariant
derived category of a surface S with an effective action of a finite abelian group G.
These semi-orthogonal decompositions are constructed by studying the geometry of the
quotient stack [S/G]. We produce new examples of semi-orthogonal decompositions
of the equivariant derived category of surfaces with a finite abelian group action. We
give a new proof of the Derived McKay correspondence in dimension 2. Using this,
we construct semi-orthogonal decompositions of the equivariant derived category of C?
with an effective action of the Dihedral group Das,. Moreover, we show that these

semi-orthogonal decompositions satisfy a conjecture of Polishchuk and Van den Bergh.
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Chapter 1

Introduction

1.1 The Derived Category

In homological algebra, we often define properties using resolutions. The derived cat-
egory allows us to consider objects and their different resolutions as “the same” in a
precise way. A consequence of this idea is how it allows us to define derived functors as

functors between derived categories.

Although appearing abstract at first, the bounded derived category of coherent sheaves
D(X) = D?Coh(X) of a variety X contains a great deal of geometric information about
the projective variety. Suppose the variety is smooth and projective over an algebraically
closed field of characteristic zero and the (anti)-canonical bundle is ample. Then the
variety is determined uniquely up to isomorphism by its derived category. Moreover,
the derived category of a variety contains information about the connectedness of the
variety, properties of the canonical bundle, and the Cox ring. If two varieties X and
Y have equivalent derived categories they have the same dimension, the same Kodaira
dimension, and the canonical bundle wyx is ample or nef if and only if wy is ample or

nef.

The derived category is a powerful tool which allows us to understand different relation-
ships between varieties. For example, two K3 surfaces which have equivalent derived
categories can be expressed as moduli spaces of sheaves on each other, generalizing the
Torelli Theorem. This interaction has allowed people to prove results on moduli spaces

of sheaves which do not mention derived categories using derived techniques.

This thesis is the culmination of two distinct projects. The first studies the group
of symmetries of the derived category for bielliptic surfaces - a surprisingly difficult
problem. The second studies decompositions of the equivariant derived category with
respect to a finite group acting effectively on a smooth projective variety. This allows us
to describe new semi-orthogonal decompositions of equivariant derived categories for a
minimal surface of general type, give a new proof of the derived McKay correspondence

in dimension 2, and prove a conjecture of Polishchuk and Van den Bergh for an action
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of the dihedral group Ds, on C2.

1.2 Autoequivalences of the Derived Category

Let X be a smooth projective variety over the complex numbers. An important ques-
tion in the study of the derived category D(X) is to describe its group of symmetries:
the group Aut D(X) of exact C-linear autoequivalences of D(X) considered up to iso-
morphism as functors. We think of these autoequivalences as “higher” symmetries of

the variety.

Several autoequivalences of D(X) arise naturally forming the subgroup
Autg D(X) = (Aut X x Pic X) x Z

of standard autoequivalences of Aut D(X). This subgroup is generated by pulling back
along automorphisms of X, tensoring by line bundles and by powers of the shift functor.
These autoequivalences always exist. The central question becomes: are there any non-

standard autoequivalences? Can we classify them?

When the (anti-)canonical bundle of X is ample, Bondal and Orlov [13, Theorem 3.1]
showed that Aut D(X) = Autg D(X), i.e. there are no non-standard autoequivalences
of D(X). The first example of a non-standard autoequivalence was observed by Mukai
[55] for principally polarized abelian varieties. Many have studied non-standard autoe-
quivalences of the derived category but the full group Aut D(X) is only understood in
a small number of cases. The only complete description in all dimensions of Aut D(X)
for varieties X with neither wyx ample or w;(l ample is given by Orlov [60] for Abelian

varieties.

Together with Bondal and Orlov’s result, this classifies the group of autoequivalences

of the derived category of smooth projective curves.

Theorem 1.2.1 (Bondal-Orlov, Orlov). Let X be a smooth projective curve of genus g

over an algebraically closed field of characteristic zero.

o I[fg=0o0rg>2, then
Aut D(X) = Auts D(X) = (Aut X x Pic X) x Z.
o If g =1, there is a short exact sequence of groups
1 — Zx(Aut(X) x Pic’(X)) — Aut D(X) — SL(2,Z) — 1.
Substantial progress has been made for surfaces. Broomhead and Ploog [19] computed

the group for many rational surfaces (including most toric surfaces). Bayer and Bridge-

land [5] described the group for K3 surfaces of Picard rank 1 using the theory of stability
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conditions. Uehara [74] conjectured a description of the group for smooth projective
elliptic surfaces of non-zero Kodaira dimension and proved the conjecture when each
reducible fibre is a cycle of (—2)-curves. Furthermore, he describes the group for elliptic
ruled surfaces [75]. Ishii and Uehara [41] computed the group for smooth projective
surfaces (not necessarily minimal) of general type whose canonical model has at worst
A, singularities. However, these are the only examples that are completely understood

at this time for surfaces. We describe the group Aut D(S) when S is a bielliptic surface.

Bielliptic surfaces are minimal projective surfaces S of Kodaira dimension zero with
geometric genus p, = dimgc H%(S,Og) = 0 and irregularity ¢ = dim¢ H'(S, Og) = 1.
They were classified by Bagnera and de Franchis as quotients of products of elliptic
curves A X B by a finite group acting freely. They have torsion canonical bundle of
order n = 2,3,4,6. Using the torsion canonical bundle we can construct an abelian
surface S , the canonical cover of S, realizing S as the quotient of S by a free action of

a cyclic group of order 2, 3,4 or 6 respectively.

Bielliptic surfaces come equipped with two elliptic fibrations ps: S — A/G and
pp: S — B/G induced by the projections from the product A x B onto each fac-
tor. The first is smooth with fibres isomorphic to B, the second has smooth fibres

isomorphic to A and multiple fibres over the fixed points of the action of G on B.

We study the group of autoequivalences of the bielliptic surface S by studying the action
of Aut D(S) on the numerical Grothendieck group N(S) of S, which is a quotient of
the Grothendieck group K(S). To any complex E® € D(S), we associate its class
[E*] = Y, (1) [H(E®)] in N(S) as the alternating sum of its cohomology sheaves.
This gives a natural action of Aut D(S) on N(S) by

p: Aut D(S) — Aut N(5)

where p(®)([E®]) = [®(E*®)]. As autoequivalences preserve Hom sets, their image under
p preserves the Euler form on N(S). So p(®) is an isometry of N(S). Moreover, p(®)

preserves the subgroup

A= {[E] c N(S)‘[E] = m([E]) for some [E] € N(S)} c N(S)

where m: N(S) — N(S) is induced by the pushforward on K-theory. Denote by
OA(N(S)) the subgroup of isometries of N(S) which preserve A. The main Theorem
of Chapter 3 is the following:

Theorem 1.2.2. There is an exact sequence
1 — (Aut S x Pic® S) x Z — Aut D(S) 2 OA(N(S))

where Z is generated by the second shift [2]. The map p is induced by the natural action
of Aut D(S) on N(S) given by p(®)[E] = [®(E)]. Furthermore, the image of p is a
subgroup of OA(N(S)) of index 4 if S of type A2 or B2 and index 2 otherwise (see
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Table 3.1).

Bridgeland in [14] describes a family of autoequivalences associated to an elliptic fibra-
tion called relative Fourier-Mukai Transforms. As a bielliptic surface has two elliptic
fibrations we get two families of autoequivalences. When the canonical cover of S is a

product of elliptic curves (we call such S cyclic) we describe the generators of Aut D(S).

Theorem 1.2.3. Suppose S is a cyclic bielliptic surface. Then Aut D(S) is generated by
standard autoequivalences and relative Fourier-Mukat transforms along the two elliptic

fibrations.

We expect Theorem 1.2.3 to extend to all bielliptic surfaces.

1.3 Semi-orthogonal Decompositions of Equivariant Derived

Categories

We now introduce the second project which studies decompositions of the equivariant
derived category with respect to finite group actions. First, we review the McKay
correspondence which focuses on the local case before explaining the approach we will

take to studying the global case using the language of Deligne-Mumford stacks.

1.3.1 The McKay Correspondence

The McKay correspondence, and its derivatives, originated from an observation by John
McKay in [52] of a bijection between non-trivial irreducible representations of finite
subgroups G C SL(2,C) and rational curves in the exceptional locus of the minimal
resolution Y — C? /G of the quotient singularity. Precisely, McKay gave an argument
that links affine Dynkin diagrams arising from the representation theory (the McKay
graph) of a finite group G C SLy(C) with the dual intersection graph of irreducible

exceptional curves on the resolution of the singularity C? /G.

This bijection was realized geometrically by Gonzalez-Springberg and Verdier [34] us-
ing vector bundles £, called tautological bundles on the minimal resolution, which are
constructed from non-trivial irreducible representations p of G. Moreover, this bijec-
tion gives an isomorphism between the Grothendieck group K& (C?) of G-equivariant
coherent sheaves on C? and K (Y) the Grothendieck group of the minimal resolution Y’
of C?/G.

The bounded derived category of coherent sheaves on a smooth projective variety can

)

be thought of as a “categorification” of the Grothendieck group. We would expect the
isomorphism

KC(CH=K(Y)

to lift to an equivalence of derived categories. Kapranov and Vasserot [44] proved that

it does.
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Theorem 1.3.1. Let X be a surface equipped with a holomorphic symplectic form w

and suppose that the G-action on X preserves w. Then
Db(Y)=DY(X)

where Y — X/G is the minimal resolution of X/G and D%(X) = DP(Coh® (X)) is the

bounded derived category of G-equivariant coherent sheaves on X.

As a corollary, we have the following version of the McKay Correspondence often referred

to as the derived McKay Correspondence for subgroups of SLa(C).

Corollary 1.3.2. Let G C SL(2,C) be a finite subgroup and Y — C? /G the minimal

resolution of C? /G. Then there is an equivalence

Db(Y) = DE(C?).

This equivalence was extended by Bridgeland, King, and Reid [16] to 3-folds.

The philosophy behind the McKay Correspondence is, as stated by Reid [65], that

any question about the G-equivariant geometry of C"™ should have an

answer related to the geometry of a crepant resolution Y — C" /G.
Further work on the McKay Correspondence has diverged in two different directions:

1. Studying the higher dimensional case where we consider finite subgroups G C
SL(n,C) and crepant resolutions (see [65] for a survey) with the aim of relating
the representation theory of G to the geometry of a crepant resolution (when one
exists) of C" /G.

2. Considering more general groups G C GL(2,C) and try to relate the representa-
tion theory of G to the geometry of the minimal resolution ¥ — C2? /G.

We will follow the second case.

1.3.2 The Special McKay Correspondence

Finite subgroups of G C GL,(C) may contain elements which fixed a codimension
1 hyperplane in C", which we call pseudo-reflections. A subgroup which contains no

pseudo-reflections is called small.

If we are only interested in properties of the singularity we can reduce to the study
of small subgroups of GL2(C). Let N C G be the subgroup generated by pseudo-
reflections. Then by the Chevalley-Shephard-Todd Theorem [69] C" /N = C", so

C"/G=(C"/N)/(G/N).
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Thus if we only were interested in the singularity and bijections arising from resolving

the singularity we are reduced to studying small subgroups G of GL,(C).

We now consider small finite subgroups of GL2(C). Unlike in the SLy(C) case there is no
bijection between irreducible exceptional curves and non-trivial irreducible exceptional

curves - the representation theory of G can be strictly larger.

Wunram |78| and Riemenschneider [66] re-established a bijection by considering a subset
of special representations of G corresponding to reflexive modules on the quotient C? /G
which lift to full sheaves supported on irreducible components of the exceptional locus.

This bijection is referred to as the special McKay correspondence.

The non-special representations of G measure the failure of the minimal resolution
to capture the equivariant geometry of G. On the level of the derived category, this

measure of failure will be expressed using a semi-orthogonal decomposition.

1.3.3 Semi-orthogonal Decompositions

The derived category is a complicated object. One way to simplify it is to decompose
the derived category into simpler pieces. A semi-orthogonal decomposition does this by

filtering objects.

A semi-orthogonal decompositions of a triangulated category D is a pair of strict full

triangulated subcategories A, B such that:

1. For all A€ A and B € B, Homp(B, A) = 0.

2. The triangulated category D is generated by A and B by taking shifts, cone of
morphisms and direct sums from objects. Equivalently, any object D € D has a

decomposition
D D Ds T(D.A)

where T is the shift functor encoded in the triangulated structure on D, D4 € A
and Dg € B.

We write D = (A, B) for such a semi-orthogonal decomposition. Using induction we can
define a semi-orthogonal decomposition with more than two pieces. A semi-orthogonal
decomposition D = (A, B) is orthogonal if additionally for all A € A and B € B,
Homp(A4, B) = 0.

The derived category of a connected noetherian scheme has no orthogonal decomposi-
tions by Bridgeland [15, Example 3.2]. However, many connected varieties have semi-

orthogonal decompositions. The most famous example was given by Beilinson [§].

Theorem 1.3.3 (Beilinson). There is a semi-orthogonal decompositions
DP(P") = (Opn, Opn(1),...,0pn(n — 1))

where Opn (i) denotes the full triangulated subcategory generated by Opn (7).
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Let GG be a finite group acting faithfully on a curve X over an algebraically closed field
of characteristic zero. Denote by Dy, ..., D, the special fibres of 7: X — X /G with the
non-reduced scheme structure. Denote by myq, ..., m, the multiplicities of the special
fibres. Then we have the following due to Polishchuk [63].

Theorem 1.3.4 (|63, Theorem 1.2]). For eachi =1,...,n, denote the full triangulated
subcategory of DY (X) generated by Okp, for1 <k <m; —1 by

Bi - <O(mi—l)Dia ) OQD“ OD,>

Note that the subcategories B; and B; are mutually orthogonal for i # j. There is a

semi-orthogonal decomposition

DE(X) = <7T*Db(X/G), Bi,... ,Bn> .

Ishii and Ueda [40] interpreted the special McKay correspondence in terms of the derived

category using semi-orthogonal decompositions in the following way.

Theorem 1.3.5 ([40, Theorem 1.2]). Let G be a finite small subgroup of GL(2,C)
and let Y — C? /G be the minimal resolution of the quotient. Then there is a semi-

orthogonal decomposition
DG((CQ) = <(I)YDb(Y)7 E17 s 7En>

where E; are exceptional objects and n is the number of non-special representations of

G.

Kawamata extended this to general G C GL2(C) in [45] and G C GL3(C) in [46] by
understanding how the Toric Minimal Model program affects the derived category of

smooth Deligne-Mumford stacks associated to pairs (X, B).

1.3.4 Stacks and the McKay Correspondence

We are interested in global versions of the McKay correspondence when X is a smooth
projective surface over a field k£ and G an arbitrary finite group acting effectively on
X. Tt is easy to construct examples where G acts via SLy(C) on an affine chart but via

GL(C) on another (consider the action (z:y: 2) = (—x : —y : 2) of Zy on P?).

In this thesis, we will study G-equivariant sheaves on X by studying sheaves on the

quotient stack [X/G] as we have the following equivalence of categories

Coh%(X) = Coh([X/@]).

In Chapter 5 we construct semi-orthogonal decompositions of
D([X/G]) = D*(Coh([X/G]) by studying the geometry of the quotient stack [X/G].
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This uses previous work by Satriano and Geraschenko who give a structure theorem
for smooth separated tame Deligne-Mumford stacks X in terms of their coarse moduli
space X. They use two constructions in their theorem: the canonical stack construction
and the root stack construction. The former contains information about “stackiness” in
codimension greater than one and the later about codimension one “stackiness”. The
reduction in the McKay correspondence to studying small groups amounts to reducing

to the canonical stack.

Both of these constructions were studied by Ishii and Ueda in [40] and recently in further
generality by Bergh, Lunts, and Schniirer [9]. They prove the following which we state

in more generality below.

Theorem 1.3.6. Let X be a smooth separated tame Deligne- Mumford stack with trivial

generic stabilizer. Then we have a decomposition
s

T yen

X Xeam <5 X

of the coarse moduli space map. Assume:

1. That the morphism m: X — X is an isomorphism outside a simple normal crossing

diwisor D =Y | D;. Denote by D =>""" | D; the pullback of D to X"
2. The pull back f*(D;) is a multiple of a prime divisor of order r;.
Then there exists a semi-orthogonal decomposition of D(X) with one piece given by

the derived categories of XY and the rest by derived calegories of intersections of the

divisors D;.
We derive the immediate Corollary below for a quotient stack [X/G] when G is an
abelian group.

Corollary 1.3.7. Let X be a smooth quasi-projective variety over k and G a finite
abelian group whose order is coprime to the characteristic of k. Let D = Y " | D;
on X/G be the branch divisor. Denote by D the pullback of D to the canonical stack
(X/G)en.

Then there is a semi-orthogonal decomposition of DY (X) = D([X/G]) with pieces given
by:

o The derived category D((X/G)™™) of the canonical stack (X/G)™.

o The derived category D(D;) of the irreducible components of the branch divisor.

o The derived category of the intersections of branch divisors.

More generally, for any non-abelian group smooth quotient stack [X/G] (or smooth

separated Deligne-Mumford stacks X’) we have the following theorem.
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Theorem 1.3.8. Let X be a smooth separated Deligne-Mumford stack with trivial
generic stabilizer over a field k of characteristic zero with coarse moduli space X. De-
note the canonical stack associated to X by X" and let f: X — X" be the unique

map given by the universal property of X" . Then the functor
ff: D(X“") — D(X)

18 fully faithful.

1.3.5 Applications

Using the theory developed in Chapter 5 we give several applications in Chapter 6.

1. We describes new semi-orthogonal decompositions of equivariant derived cate-
gories of minimal surfaces of general type with actions of finite groups in several
examples. We also discuss the case for smooth abelian Galois covers of smooth

projective varieties in sections 6.2 and 6.3.

2. We give a new proof of the derived McKay correspondence in dimension 2 in
Section 6.4:

Theorem 1.3.9. Let G C GL(2,C) be a finite subgroup acting faithfully on C2.

Then there is a semi-orthogonal decomposition of the equivariant derived category

DE(C?) = <E1, oo Bn, @5 D(Dy), .. .,@ELD(INDm),<I>{,D(17)>

where Y is the minimal resolution of C? /G, D; are the normalizations of the
irreducible components of the branch divisor D = Z:Z1 D; and E,...,E, are

exceptional objects.

3. Using our new proof of the derived McKay correspondence in dimension two we

compute semi-orthogonal decompositions for the action of the Dihedral group

2

Dy, = {T,U‘Tn =0“=e, TOT = U}.

acting effectively on C? by p: Do, — GL(2,C), given by

(e 0 (o1
o= (6 2 wo=(0)

where € = 1 is an n-th root of unity. Denote by D C C? /Ds,, the branch divisor.
Theorem 1.3.10. Let Do, act on C? as above. Then we have two cases:

Odd n: There is a semi-orthogonal decomposition

DP2n(C?) = <7T*D(<c2), ®5(D(D)), Er, ... E;>

2
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where D is the normalization of D.

Even n: There is a semi-orthogonal decomposition

DD2n (C2) — <7T*D((C2), (I)ﬁ1 (D(El))’ CI)E2 (D(ﬁz))7 Fy,... ,E%>

where D = D1 U Dy s reducible and 151 are the normalization of D;.

Furthermore, we verify that these semi-orthogonal decompositions agree with the

motivic decomposition conjecture of Polishchuk and Van den Bergh [64].

Conjecture 1.3.11 (Motivic Decomposition). Assume that a finite group G acts
effectively on a smooth quasi-projective variety X over an algebraically closed field
and that all the quotients X9/C(g) are smooth for g € G. Then there exists a
semi-orthogonal decomposition of the derived category D (X) of G-equivariant
sheaves on X such that the pieces Cjg) of this decomposition are in bijection with
the conjugacy classes of g in G and Cg = D(X9/C(g)).

We expect that the theory of developed in Chapter 5 will allow us to prove Con-

jecture 1.3.11 for all abelian groups.

1.4 Structure of this Thesis

This thesis is structured as follows:

In Chapter 2 we review the necessary background on derived categories and derived
functors before introducing properties of autoequivalences and semi-orthogonal decom-

positions.

In Chapter 3 we prove the main theorems in section 1.2 on the group of autoequivalences

of the derived category of a bielliptic surface.

In Chapter 4 we review the background on Deligne-Mumford stacks that will be used
in Chapters 5 and 6. We also introduce the derived category of a stack and derived

functors between them.

In Chapter 5 we review the theorem of Ishii and Ueda and the structure theorem for
smooth separated Deligne-Mumford stacks by Geraschenko and Satriano. Using their
description we describe semi-orthogonal decompositions of the derived categories for
quotient stacks [X/G] when G is abelian. We also prove that for a general smooth
Deligne-Mumford stack X with coarse moduli space X, the derived category of the
canonical stack X" associated to X embeds fully faithfully into D(X).

In Chapter 6 we give several application of the results in Chapter 5. In particular, we
construct new examples of semi-orthogonal decompositions for abelian groups acting
on smooth projective surfaces. These include explicit examples for surfaces of general

type, Godeaux surfaces, and Burniat surfaces. We give a new proof of the derived
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McKay Correspondence in dimension 2. As a consequence of this, we describe new semi-
orthogonal decompositions for Dihedral groups Da,, acting on C? and prove Polishchuk

and Van den Bergh’s Motivic decompositions conjecture for them.

1.4.1 Notation and Conventions

We denote the category of schemes over S by Sch /S.

We will consider all schemes and stacks over a base scheme S. All stacks in this thesis

are Deligne-Mumford stacks over a base scheme S.
We will denote the cyclic group Z /nZ by Z,,.

For an abelian category A we denote the unbounded derived category by D(A) and
by D*(A) where x = 4+, — b the bounded below, bounded above and bounded derived

categories of A.

We will denote the bounded category of coherent sheaves on a scheme X by D(X) =
D?(Coh(X)) compared to D(Coh(X)) which denotes the unbounded derived category

of coherent sheaves on X.
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Chapter 2

Background on Derived Categories

In this chapter, we review background material on the derived category of an abelian

category before focusing on the derived category of coherent sheaves on a scheme.

First, we recall the basic construction of the derived category of an abelian category and
properties of the derived category in section 2.1. We then recall some basic properties of
the derived categories of (quasi)-coherent sheaves on a noetherian scheme and derived
functors between them in section 2.2. Next, we review the theory of Fourier-Mukai
transforms and autoequivalences in section 2.3. Finally, we review semi-orthogonal

decompositions of triangulated categories in section 2.4 and give some examples.

2.1 Constriction and Properties of Derived categories

We give an overview of the construction of the derived category and properties it has
following chapters III and IV in [29]. The derived category was first constructed by
Grothendieck and studied by Verdier in his thesis [76] to generalize Serre duality and

put the theory of derived functors on a more conceptual level.

2.1.1 Basic Construction

Let A be an abelian category. Denote by Ch(A) the category of chain complexes over
A which has objects chain complexes denoted by A®. Throughout this thesis we will

use ascending degree notation, i.e. the i-th differential increases degree d;: A* — A1

Recall that a morphism of chain complexes f: E®* — F* is a quasi-isomorphism if the
induced maps f.: H(E®*) — H'(F*®) are isomorphisms for all i € Z. The derived
category can be constructed by localizing the category Ch(.A) of chain complexes by

quasi-isomorphisms.

Definition 2.1.1. Let A be an abelian category and Ch(A) the category of chain com-
plexes over A. The derived category of A is a category D(A) and a functor Q: Ch(A) —
D(A) which satisfies the following properties:
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(i) For any quasi-isomorphism f, Q(f) is an isomorphism,

(11) The pair (Q, D(A)) is universal in the following way: given any other functor
F: Ch(A) — D such that for an quasi-isomorphism f, F(f) is an isomorphism
there exists a unique functor G: D(A) — D such that F = G o Q.

Ch(A) —2— D(A)

F

D

We call the category D(A) the derived category of A.

The above definition asserts, if it exists, that the derived category is unique up to
unique equivalence of categories. However, it does not guarantee that it does exists.
An elementary proof of existence can be found in [29, TII §2.2] which constructs D(.A)
formally by adjoining inverses to quasi-isomorphisms. This does not, however, give a
concrete description of the morphisms between any two objects. To get a better grasp

of the morphism we construct D(.A) by localization.

Let K(A) denote the homotopy category of Ch(A) whose objects are chain complexes
over A and morphisms are homotopy classes of morphisms between chain complexes
(see [29, III §4]). We often impose the following finiteness conditions on complexes.
Denote by K1 (A) the subcategory of K(A) with objects with

E' =0 for i > io(E®) for some ig(E®) € Z
and K~ (A) the subcategory of K(A) with objects with
E' =0 for i < io(E®) for some ig(E®) € Z.

Let K%(A) = K+(A) N K~ (A) which has objects with E? = 0 for |i| > io(E®) € Z.

We construct D(A) by localizing K (A) by quasi-isomorphisms using a generalization of

localization for non-commutative rings using the Ore conditions (see [29, III §2.6-2.10]).

Proposition 2.1.2 ([29, IIT §4 Proposition 2|). The localization of K(A) by quasi-
isomorphisms is canonically isomorphic to the derived category D(A). The same holds

for K*(A) and D*(A) with + =+, —,b.

The objects of D(.A) are the same as objects of K(.A) and Ch(A). A morphism between

two chain complexes E® and F* in D(A) is an equivalence class of diagrams called a

700f.
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where f and s are morphisms in K(A) and s is a quasi-isomorphism. Two diagrams are
equivalent if there is a further roof that makes everything commute.
2.1.2 Properties of the Derived Category

The derived category (and K (A)) are not usually abelian. They do, however, possess a

triangulated structure.

Definition 2.1.3. Let D be an additive category. A triangulated structure on D is
specified by the data:

a) An additive endomorphism T: D — D.

b) A class of distinguished triangles

X Y "= 7Z "> T(X).
A morphism of distinguished triangles is given by a diagram

Ly Yy 7 Y T(X)

Vb E

vy Yz 2 (XY,

We require that this data satisfies the following azioms:

1. For any X € D,
X M, x 0 T(X)

15 a distinguished triangle.
2. The set of distinguished triangles is closed under isomorphism.

8. Any morphism u: X — Y can be extended to a distinguished triangle

X sy Yy 7 % T(X).

4. Any triangles

X =Y " 7 "> T(X).
is distinguished if and only if

—T(u)

Y s 7 U T(X) S T(Y).

1s distinguished.
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5. Given a diagram

Then the diagram can be completed to a morphism of distinguished triangles by a

morphism (not necessarily unique) h: Z — 7.

6. (The Octahedral Aziom) Given a commutative diagram

us3 U3

X, X, Z3 —25 T(X,)

iXm ul mi idT(Xl)

X 22 Xy 2 Zy 2 T(X))

u3 tdx my T(u3)
Xy 2 X3 2 7 s T(Xy)
v3 v idz, T(vs)
mi ms T (v3)owy
Zs Zy A T(Zg)

such that the top three rows are distinguished triangles and the maps induce maps

of distinguished triangles. Then the bottom row is a distinguished triangle.
The triangulated structure on K (A) is given as follows:

1. The additive endomorphism is given by the shift functor [1]: K(A) — K(A) where
E*[1] is defined by

(B*[1)" = B, dgepyy = —digh': B = B2,

2. The set of distinguished triangles are given by the cone construction. Let f: EF®* —
F* be a morphism of chain complexes. Then define C(f), the cone of f, by

fl1]  dpe

A distinguished triangle in K(A) is any diagram isomorphic to

B* —%s F* —Ys O(u) —“ E*[1).

This triangulated structure of K (A) induces triangulated structure on K*(A) for * =
4+, —,b. Because the triangulated structure is compatible with quasi-isomorphisms, the
derived category inherits a triangulated structure from K (A) with the shift functor as
the additive endomorphism and the image of distinguished triangles under
Q: K(A) = D(A) defining distinguished triangles in D(.A).
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There is a natural way to view A sitting inside D(A) by considering an object E € A

as a complex concentrated in degree 0.
Proposition 2.1.4 (|29, 111 §5.2|). Denote by F': A — D*(A) the inclusion defined by
FA)=---50—>2A—>0—---.
Then F is fully faithful and the essential image of F is the full subcategory given by
{E* € D(A)|H'(E®) =0 for all i # 0} .
Remark 2.1.5. Using this we define for E,F € A,
Ext’(E, F) = Homp4)(E, F[i]).

One can show that this definition of Ext’ is equivalent to the definition using derived

functors if A admits enough injectives.

2.1.3 Derived Functors

We now define derived functors associated to left (resp. right) exact functors between

abelian categories. In this section, we follow [29, III §6].

First note that exact functors between abelian categories induce exact functors between

derived categories.

Proposition 2.1.6 (|29, III §6.2]). Assume that F': A — B is ezact.

1. Then the induced functor
K*(F): K*(A) — K*(B)

defined by K*(F)(E®)! = F(E") sends quasi-isomorphisms to quasi-isomorphisms
and induces o functor
D*(F): D*(A) — D*(B).

2. The functor D*(F) is an exact functor, i.e. it sends distinguished triangles to

distinguished triangles.

For left (resp. right) exact functors we define right (resp. left) derived functors as

follows.

Definition 2.1.7. The derived functor of an additive left exact functor F: A — B is
a pair consisting of an exact functor RF: DT (A) — DV (B) and a natural transforma-
tion (morphism of functors) ep: Qo KT (F) — RF o Q4 where Q4 and Qg are the
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localization functors and K*(F): Kt(A) — K1 (B) is the induced functor.

D+

(A)
QA RF
K +(A)/ \DWB’)
o
(B)

\K*(F)

K+

This pair satisfies the following universal property: for any ezact functor G: DT (A) —
D™ (B) and any morphism of functors e: Qg o KT (F) — G o Q 4, there exists a unique
morphism of functors n: RF — G such that

Qo KT (F)

RFoQ.4 1094 GoQu

commutes.

Stmilarly, the left derived functor of a right exact functor F': A — B is a pair consisting
of an ezact functor LF: D™ (A) — D™ (B) and a natural transformation ep: LFoQ 4 —
Qpo K~ (F) satisfying a universal property similar to above but with a morphismn: G —
LF.

Remark 2.1.8. By a standard categorical arqgument the right (resp. left) derived functor

of an additive left (resp. right) exact functor is unique up to unique isomorphism.

We now explain how to construct the right (resp. left) derived functor of a left (resp.

right) exact functor using adaptive classes of objects.

Definition 2.1.9. Let F: A — B be a left (right) exact functor. A class of object
R C Ob(A) is said to be adapted to F if it is stable under finite direct sums and

satisfies the following two conditions:

a) A left (right) exact functor F maps any acyclic complex from Cht(R) (Ch™(R))

mto an acyclic complex.

b) For a left (right) exact functor F, any object of A is a sub-object (quotient) of an
object from R.

Proposition 2.1.10 (|29, III §5.4 and §5.8]). Let R be a class of objects adapted to a
left exact functor F: A — B and S be a class of quasi-isomorphisms in K™ (R). Then

Sr is a localizing class of morphisms in KT(R) and the canonical functor
K*(R)[Sz'] = DF(A)

is an equivalence of categories. A similar statement holds for right exact functors.
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Following [29, III §5.5] we construct the right derived functor RF of a left exact functor
F as follows. First, we define F': K*(R)[Sz'] — D*(B) by

F(E®) = F(E")
for E* € KT (R). Using Proposition 2.1.10 we choose an equivalence ®: DT (A) —

K*(R)[Sz']. Using this, we define RE': D*(A) — DT (B) by

RF(E®) = F(®(E®)).

There is a similar construction for the left derived functor of a right exact functor. By
[29, IIT §5.8] the functor RF defined above is the right derived functor of F.

For applications, we will need to produce an adaptive class of objects. Two classes of
adaptive objects are given by injective and projective objects of A if we have enough of
them.

Definition 2.1.11. We say an abelian category A has enough injectives (resp. enough
projectives) if for every object A € Ob(A) is a sub-object (resp. quotient object) of an

injective (resp. projective) object.

Theorem 2.1.12 ([29, IIT §6.12]). If A contains enough injective (resp. projective)
objects, then the class T (resp. P) of injective (resp. projective) objects is adapted to
any left (resp. right) exact functor F: A — B.

Remark 2.1.13. Let F': A — B be a left exact functor and RF: DT (A) — D™ (B)
its Tight derived functor. Then we can define the classical i-th derived functor of F by
R'F = H°(RF[i]) = H'(RF). A similar statement holds for left derived functors.

Example 2.1.14. Let A be an abelian category with enough injectives. Fix an object
X € A and consider Homy (X, —): A — Ab. This functor is left exact. Then we have

Ext’y (X, —) = R'Homy(X, —).

We will use the following criteria to see when a derived functor descends to a derived

functor between bounded derived category.

Proposition 2.1.15 ([38, Corollary 2.68|). Suppose that F: KT (A) — K*(B) is an
exact functor that admits a right derived functor RF: DT (A) — DT (B).

If RF(A) € DY(B) for any object A € A, then RF(E®) € D°(B) for any complex
E* € D*(A), i.e. RF descends to an exact functor

RF: D*(A) — D°(B).
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2.1.4 Serre Functors

We now introduce the notion of a Serre functor on a triangulated category. This ab-
stracts the notion of Serre Duality for sheaves to arbitrary triangulated categories. One

use of Serre functors is to construct adjoints. We follow [38, §1.1 and §1.2].

Definition 2.1.16. A k-linear category is an additive category A such that the group

Homy (A, B) are k-vector spaces and all compositions are k-bilinear.

All additive functors F: A — B between two k-linear categories over a common base
field k will be assumed to be k-linear, i.e. for any two objects A, B € A the induced map
Hom 4(A, B) — Hompg(F(A), F(B)) is k-linear.

Definition 2.1.17. Let A be a k-linear category. A Serre functor is a k-linear equiva-

lence S: A — A such that for any two objects A, B € A there exists an isomorphism
nas: Hom (A, B) = Hom (B, S(4))"

which is functorial in A and B.

One use for Serre functors is to construct adjoints using the remark below.

Remark 2.1.18 ([38, Remark 1.31]). Let F: A — B be a functor between k-linear
categories endowed with Serre functors Sy and Sp respectively. Also, assume that all

Hom sets are finite dimensional. Then
GAF=F-4S40Go0Sg".

A similar argument holds for the construction of a left adjoint given a right adjoint.
Thus for functors between categories with Serre functors the existence of the left or

right adjoint guarantees the existence of the other.

2.2 The Derived Category of a Scheme

We now focus on the abelian category of quasi-coherent and coherent sheaves on a
scheme X. We follow [38, §3].

Definition 2.2.1. Let X be a scheme. Its derived category D(X) is the bounded derived
category of the abelian category Coh(X), i.e.

D(X) := D*(Coh(X)).

Definition 2.2.2. Two schemes over a field k are called derived equivalent if there is
a k-linear exact equivalence D(X) = D(Y). We say that Y is a Fourier-Mukai partner
of X if X and Y are derived equivalent.
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Proposition 2.2.3 ([38, Proposition 3.3]). Suppose X is a noetherian scheme. Then

any quasi-coherent sheaf F' admits a resolution
0 F -1 57— ...

by quasi-coherent sheaves I' which are injective as Ox-modules, i.e. QCoh(X) has

enough injectives.

Proposition 2.2.4 (|38, Proposition 3.5|). Let X be a noetherian scheme. Then the
natural functor
D(X) — D°(QCoh(X))

defines an equivalence between the bounded derived category D(X) and the full triangu-

b
coh

lated subcategory D? , (QCoh(X)) of bounded complexes of quasi-coherent sheaves with

coherent cohomology.

Remark 2.2.5. Let X be a noetherian scheme of finite type over a field k. Then the
derived categories D*(QCoh(X)) and D*(Coh(X)) are k-linear categories.

When X is a smooth projective variety over a field, Serre Duality endows D(X) with a

Serre functor.

Theorem 2.2.6 (|38, Theorem 3.12|). Let X be a smooth projective variety of dimension
n over a field k. Define the exact functor

Sx: D(X)— D(X)
by Sx(E®) = E®* @ wx|[n|. Then their exists functorial isomorphisms
ne,r: Hompx)(E®, F*) = Hompx)(F*, Sx (E£*))" = Hompx)(F*, E* ® wx[n])*

where Hompx)(F'®, Sx (E*®))* is the dual vectorspace to Hompx)(F'*®, S(E®)), i.e. Sx
is a Serre functor for D(X).

The above theorem can be used to prove the following Proposition.

Proposition 2.2.7 ([38, Proposition 3.13|). Suppose F' and G are coherent sheaves on

a smooth projective variety of dimension n. Then

Ext (F,G) = 0 fori > n.

A consequence of the above Proposition is the following characterization of the derived

category of a curve.

Corollary 2.2.8 (|38, Corollary 3.15]). Let C' be a smooth projective curve. Then any
object E* of D(C) is isomorphic to a direct sum €, E; where E; are coherent sheaves
on C.
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2.2.1 Derived Functors and Schemes

We now derived the left and right exact functors between categories of quasi-coherent
and coherent sheaves such as the direct image functor, Hom functor, tensor product

functor — ® — and pullback functor. Throughout we will assume that X is noetherian.

Direct Image

As QCoh(X) contains enough injectives, we can derive the direct image functor on the
level of QCoh(X).

Let f: X — Y denote a quasi-compact quasi-separated morphism of schemes. Then

the direct image functor maps quasi-coherent sheaves to quasi-coherent sheaves and
f«: QCoh(X) — QCoh(Y)
is left exact. As QCoh(X) contains enough injectives, there is a right derived functor
Rf.: DT (QCoh(X)) — D*(QCoh(Y)).

Remark 2.2.9. If X is a scheme over a field k, the global section functor': QCoh(X) —

Vecy, is a special case of the direct image under the structure morphism f: X — Speck.

Theorem 2.2.10. For any quasi-coherent sheaf F' on X, and a morphism f: X =Y
of noetherian schemes, the classical higher direct image sheaves R'f, are trivial for
i > dim(X).

Thus using Theorem 2.2.10 and Proposition 2.1.15, Rf, induces an exact functor

Rf,: D*(QCoh(X)) — D?(QCoh(Y)).

To descend to the coherent level we need the following Theorem

Theorem 2.2.11. If f: X — Y is a proper morphism of noetherian schemes, then the
higher direct images R'f.(F) of a coherent sheaf F are again coherent.

Thus for any proper morphism between noetherian schemes, we obtain a right derived

functor

Rf.: D(X) — D(Y).

The Hom Functor
Let F' € QCoh(X). Then

Homx (F,—): QCoh(X) — QCoh(X)
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is a left exact functor. Note if F' € Coh(X) Hom descends to
Homx (F,—): Coh(X) — Coh(X).
As X is noetherian, QCoh(X) contains enough injectives. Thus the derived functors
RHomx (F,—): DT (QCoh(X)) — DT (QCoh(X))

exists. We define
Ext'y(F,E) = R"Homx (F, E)

for any quasi-coherent sheaves F, F'.

If F is coherent we have the following description of the stalk of £zt (F, E) at x € X
Ext'y(F,E)y = Ext, (Fy, Ex).

Note that Exth (F, E) is coherent if F' and E are.

If additionally, we assume that X is regular, then Hom descends to the level of the
bounded derived category for F' € Coh(X)

Homx (F,—): D(X) — D(X).
To prove this we use the following

Proposition 2.2.12. If X s regular, then F* € D(X) is isomorphic to a bounded
complez of locally free sheaves G* € D(X).

Remark 2.2.13. The above proposition can also be used to replace F' by a complex of
locally free sheaves and compute RHom(F*®, —) using Hom(G®,—).

Tensor Product

As X is noetherian, any coherent sheaf F' admits a resolution by locally free sheaves,
i.e. there exists a surjection
' F

with FO locally free. If E is an acyclic bounded complex with all E? locally free, then
F ® FE is still acyclic. Thus the class of locally free sheaves in Coh(X) is adapted to the
right exact functor F' ® —. Thus the left derived functor

F &Y —: D™(Coh(X)) = D™ (Coh(X))
exists (c.f. [38, pp.78-79]). By definition

Tory(F,E) :=H {(F oL E).
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When X is regular, F ® — restricts to
F @Y —: D(X) - D(X)

because any coherent sheaf E admits a locally free resolution of length n, so Tor;(F, E) =

0 for 7 > n.

Pullback

Let f: X = Y be a morphism of schemes. Then the pullback functor
f*: Oy — Mod — Ox — Mod
is the composite of the exact functor
' Oy —Mod = O-10, — Mod
and the right exact functor
Ox ®@p-10y) —: Op-10,, — Mod = Ox — Mod.

Then f* is right exact and if Ox ®}Lf—loy (—) if the left derived functor of Ox ®;-10, (—)
then
Lf: = ((’)X ®% 10, —) o f~1: D=(Y) = D™ (X)

is the left derived functor of f*.

Remark 2.2.14. Note that the previous discussion deriving the tensor product functor

does not strictly apply but can be adapted to this more general situation.

Remark 2.2.15. Often f will be flat, so f* is exact and we will not need to derive f.

Projection Formula

We will use the following compatibility relation frequently. Let f: X — Y be a proper
morphism of projective schemes over a field k. For any F* € D(X) and E*®* € D(Y)

there exists a natural isomorphism
Rf.(F*) @ E* —— Rf.(F* @ Lf*E*).

This is a consequence of the classical projection formula f.(F) ® E= f.(F ® f*FE) for
a locally free sheaf E' and arbitary sheaf F.
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Grothendieck-Verdier Duality

Let f: X — Y be a morphism of smooth proper schemes over a field k of relative
dimension dim(f) = dim(X) — dim(Y’). Then the relative dualizing bundle is

wr=wx ® ffwy.

Consider the functor

f' DY) = D(X)
Ebullet N Lf*(E‘) ® wf[dim(f)]

Then Grothendieck-Verdier duality states that f' is right adjoint to f.

Theorem 2.2.16. For any F* € D(X) and E®* € D(Y) there exists a functorial iso-
morphism
Rf.RHomx (F*, f(E®)) = RHom(Rf.(F*), E®).

Moreover, f' is right adjoint to Rf.. Thus we have

Lf* 4 Rf. A f.

2.2.2 Support of a Complex
Recall that the support of a coherent sheaf F on X is the closed subset
supp(E) = {zx € X|E, # 0} .

Definition 2.2.17. The support of a complex E®* € D(X) is the union of the support

its cohomology sheaves. Explicitly, it is the closed subset

supp(E*®) := | supp(H'(E*)).

Lemma 2.2.18 ([38, Lemma 3.9]). Suppose E®* € D(X) and supp(E®) = Z1 ][] Z>
where Z1,Zy C X are disjoint closed subsets. Then E®* = E} & ES with supp(E?) C Z;
fori=1,2.

A consequence of this lemma is the following result due to Bridgeland.
Proposition 2.2.19 (|38, Proposition 3.10]). Let X be a noetherian scheme. Then
D(X) is an indecomposable triangulated category if and only if X is connected.

We will frequently use the following

Proposition 2.2.20. Let E and F be coherent sheaves on X such that supp(E) N
supp(F) = 0. Then
Ext’ (E, F) =0 for all i.
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Proof. Consider the following spectral sequence
EM = HP(X,Ext?(E, F)) = Ext?™(E, F).

Then Ext'(E,F), = Extl('ng(Ex,Fx) is zero for all x € X as one of F, or F} is
zero because E and F have disjoint support. Hence E¥? = 0 for all p and ¢. Hence
Ext!(E, F) = 0 for all 4. O

Notation 2.2.21. From now on we will write fi, f*,®, Hom for the derived functors
Rf., Lf*,®%, RHom between derived categories.

2.3 Autoequivalences and Fourier-Mukai Transforms

We now review the theory of Fourier-Mukai transforms and autoequivalences of the
bounded derived category of a smooth projective variety X over a field k. In this
section, we study the group Aut D(X) of k-linear exact autoequivalences of D(X). We
follow [38, §5]. All functors between derived categories will be derived appropriately.

First, we give some examples of autoequivalences of D(X) which arise naturally

Example 2.3.1.

1. Let f: X — X be an automorphism of X. Then f.: D(X) — D(X) is an autoe-
quivalence of D(X) with inverse f*.

2. Let L € Pic(X) be a line bundle. Then the functor — @ L: D(X) — D(X) is an

autoequivalence with inverse — ® L*.

3. Let n € Z. The shift functor [n]: D(X) — D(X) is an autoequivalence of D(X)

with inverse [—n).
These autoequivalence form the subgroup of standard autoequivalences
Autgygng D(X) = Z x(Aut(X) x Pic(X))
of Aut D(X).

When the (anti)-canonical bundle of X is ample, the following result of Bondal and

Orlov tells us there are no other autoequivalences.

Theorem 2.3.2 ([13, Theorem 2.5|). Let X be a smooth projective variety with ample
(anti- Jcanonical bundle. Then the group of autoequivalences is just the group Autgigng D(X)

of standard autoequivalences.

We now recall the notion of a Fourier-Mukai transform (or integral transform) between

derived categories following 38, §5]
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Definition 2.3.3. Let X and Y be smooth projective varieties and P* € D(X x Y).

Denote the two projections by

The Fourier-Mukai transform with kernel P*® is the functors
@730: D(X) — D(Y)

defined by ®pe(—) = pi(¢*(—)®RP*). Note that p«,q* and @ denote the derived functors
between derived categories. We have the usual pullback functor q¢* because q is flat. Note
that ¢*(—) ® P* is the usual tensor product if P® is a complex of locally free sheaves.
As py,¢* and ® are all exact, so is Op.

Example 2.3.4. Let f: X — Y be a morphism. Then
fe= <I>(9Ff : D(X) — D(Y)
where I'y C X XY is the graph of f. This is because the following string of equivalences

q®or, (E*) =p.(¢"(E*) © Or,) = p(q"(E* @ (id, f)+Ox))
p, o (id, f«((id, f)*¢"(E®*) @ Ox) (Projection Formula)
=(po (id, f))«((q o (id, £))"(E*))
~f. (" (E*) = f.(B").

—~~

using the commutativity of the diagram

X
[N
d X xY
p
q
X Y

and Or, = (id, f)+(Ox).

We have the following properties of Fourier-Mukai transforms.

Facts 2.3.5.

1. Fourier-Mukai Transforms are exact because they are the composition of exact

functors.

2. The composite of Fourier-Mukai transforms is a Fourier-Mukai transform [38,
Proposition 5.10].
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3. A Fourier-Mukai transform ®pe admits left and right adjoints ®p, and ®p,, re-

spectively where

Pr = (P*) @p wy[dim(Y)], Pk = (P*)" ® ¢"wx[dim(X)].

The following theorem gives a criterion for when a functor between derived categories
is a Fourier-Mukai transform whose proof we omit (see [38, Theorem 5.14| for more
details).

Theorem 2.3.6 (Orlov). Let X and Y be two smooth projective varieties and let
F:D(X)— D(Y)

be a fully faithful exact functor. If F' admits left and right adjoints, then their exists an
object P* € D(X xY) unique up to isomorphism such that F is isomorphic to ®pe.

Remark 2.3.7. Theorem 2.3.6 is usually applied to functors which are equivalences
[38, Corollary 5.17].

Remark 2.3.8. Rizzardo and Van den Bergh [67] have shown that the result is false if

we remove the fully faithfulness assumption.

We can use Theorem 2.3.6 to give a criterion for when an autoequivalence is standard

using the following.

Corollary 2.3.9 ([38, Corollary 5.23|). Suppose ®: D(X) — D(Y) is an equivalence
such that for any closed point x € X there exists a closed point f(x) € Y with

Then f: X — Y defines an tsomorphism and ® is the composite of fi with a twist by
some line bundle M € Pic(Y), i.e.

o= fi(M @ (-)).

Example 2.3.10. Let E = C /T be an elliptic curve defined by a lattice ' C C. Denote
by P the Poincaré line bundle on E x E. Note that P s the universal family for the
moduli functor parameterizing degree 0 line bundles on E. Then the Fourier-Mukasi

transform
&p: D(E) —» D(E)

with kernel P is an autoequivalence of D(E).

Moreover, for any closed point x € E, ®p(Oy) is the degree zero line bundle O ([0] —z)
where [0] is the image of 0 € C is E. This shows that ®p is not standard.
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2.4 Semi-orthogonal Decompositions

The derived category of a projective variety is a complicated object and we might
want to decompose the derived category into simpler pieces. As long as the variety is
connected there are no direct sum decompositions of the derived category. So we search

for weaker decompositions called semi-orthogonal decomposition. We follow [38, §1.4].

Definition 2.4.1. Let D be o triangulated category. A semi-orthogonal decomposition
of D is a pair of strictly full triangulated subcategories A, B of D such that:

1. For any B € B and A € A, Hom(B, A) = 0.

2. The largest triangulated category generated by A and B by taking cones, shifts and
direct sums is D. Le. for all D € D, there is a distinguished triangle

DB —— D —— DA Em— DB[l]
with Dy € A and Dp € B.
We call the distinguished triangle

Dg D Dy Dgl[1]

the decomposition triangle for D. Moreover, this decomposition is functorial in D, i.e.

the projections

D — Dy
D—)DB

are functors.

We can generalize this definition to a semi-orthogonal decomposition of more than two

strictly full triangulated subcategories of D as follows.

Definition 2.4.2. A semiorthogonal decomposition of D with n components is a collec-

tion A1, ..., A, of strictly full triangulated subcategories in D such that

1. For any A; € A; and A; € Aj, Hom(A;, Aj) =0 fori > j.

2. For all T € D we have a filtration

OZDn%Dn_l D1 DOZD
such that Cone(D; — D;—1) € A;.

For n = 2 we can see this definition is equivalent to the previous one as we have a
filtration
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and we have that
C(0— Dp)=DpeB

and
C(Dp—D)=Dye A

If we have a semi-orthogonal decomposition of D by A4,..., A, we write
D - <A1,...,An>

Now assume that a: A — D is a full embedding of a triangulated subcategory of D.

Definition 2.4.3. We call A a right (resp. left) admissible subcategory of D if there
is a right (resp. left) adjoint o' : D — A (resp. a*: D — A). We call a subcategory
admissible if it is both right and left admissible.

Right and left admissible subcategory are the foundation of constructing semi-orthogonal

decompositions due to the following.

Proposition 2.4.4. Suppose that A is a right (resp. left) admissible subcategory of D.

Then one has a semi-orthogonal decomposition
D= (AL A)
(resp. D = (A, A) ) where
At = {D e D|Hom(D, A) = 0}
and

LA ={D e D|Hom(A,D) = 0}.

This is proved using the following general argument. Suppose that a: A — D is a right
admissible subcategory of D and let o': D — A denote the right adjoint to . Then

the required semi-orthogonal decomposition is given by
D = (ker(al),im(«))

where ker(a') = {D € D|o!(D) = 0} and im(«) is the essential image of a.

If D admits a Serre functor and the Hom-spaces of D are finite dimensional, then any

left admissible subcategory is right admissible and vice versa by Remark 2.1.18.
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2.4.1 Exceptional Collections

We now give the simplest collection of examples of semi-orthogonal decompositions.We
follow [38, §1.4 and §8.3].

Definition 2.4.5. An object E of a triangulated k-linear category D is called excep-
tional if

. 1 ifi=0,
dimy Hom’, (E, E) = Homp(FE, E[i]) =
0 otherwise

Now assume that D has finite dimensional Hom sets over k and
@D dimy, Homp(4, Bli]) < oo
€L
for any pair A, B € D. Denote for A, B € D
Hom$, (4, B) = @) Hom),(4, B) = @5 Homp (A, Bli]).
€7 i€Z
which is a finite dimensional vectorspace over k.

Let Vecyq denotes the abelian category of finite dimensional vector spaces over k and
E € D. Consider the functor
ap: D(Vecyq) = D

given by V*® — V*® ®; E. This admits a right adjoint
a!E: D — D(VeCfd)

given by a'y(D) = Hom®*(E, D). Then af is fully faithful (ie. ayoap = idpy) if
and only if F is exceptional. Thus when F is exceptional we get a semi-orthogonal
decomposition

D = (ker(ay), ap(D(k))) = (E*, E).

Example 2.4.6. Let X be a smooth projective variety over k and suppose that h0(X) =
0 fori >0 (e.g. X Fano). Then any line bundle L on X is exceptional and we have a

semi-orthogonal decomposition
D(X) = (Lt,L).

Definition 2.4.7. An exceptional collection is a collection of objects E1,. .., E, such
that

1. Each E; is exceptional fori=1,...,n.

2. For i > j, the vector space Hom®(E;, E;) = 0 (i.e. there are no maps from right

to left).
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We call E, ..., Ey, a full exceptional collection if Eq, ..., E, is an exceptional collection
and they generate D, i.e. D = (Ey...,Ep).

Any exceptional collection gives rise to a semi-orthogonal decomposition of the derived

category
D= (FE{NEyN---NEL E, Fs, ..., E,).

Note that Ej, ..., B, is a full exceptional collection if and only if E{- NE3-N---NE;+ = 0.

Example 2.4.8. Suppose that X is a Fano variety of Picard rank 1. Then —Kx =
Ox(r.H) for some generator H of the Picard group. Here r is the Fano index of X.
Then

Ox,0x(H),...,Ox((r—1)H)

s an exceptional collection because
Ext*(Ox(iH),Ox(jH)) = HP(X,0x((j —9)H) =0 (fori > j).

So
D(X)=(A,0x,0x(H),...,0x((r—1)H)).

Understanding the derived category in this way using semi-orthogonal decompositions

often is reduced to understanding the orthogonal component A.

Example 2.4.9. Let X =P". Then —Kx = O(n+1) and
D'(X) =(0,0(1),...,0(n))
s a full exceptional collection due to Beilinson.
It is not too difficult to extend this to the relative setting
m: PNV) - X

where A is a vector bundle on X and P(N) is the projectivization of N.

Proposition 2.4.10 ([38, Corollary 8.36]). Let N be a vector bundle of rank r. Then

for any a € Z the sequence if full subcategories
7 D(X)X @ O(a),...,7*D(X)® O(a+7r —1) C D(P(N))

gives a semi-orthogonal decomposition of D(P(N)).

2.4.2 Orlov’s Blow Up Formula

We now discuss Orlov’s famous blow-up formula for a smooth variety blown up in a

smooth centre of codimension > 2. The semi-orthogonal decomposition of the blow up
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contains terms corresponding to the blown up variety and several copies of the centre.
We follow [38, §11.2]. The original paper is [59].

Proposition 2.4.11 (|38, Proposition 11.13|). Suppose f: S — T is a projective mor-
phism of smooth projective varieties such that f,Og=Op in D(T). Then

f*: D(T) — D(S)

is fully faithful. Thus f* realizes D(T') as an admissible subcategory of D(S).

Proof. This follows from the adjunction of f* and f, and the projection formula to show
that ¢d = f, f*. The second statement follows from f* admitting a right adjoint. O

Example 2.4.12. Suppose q: X — X is the blow up of Y C X with X andY smooth.

As the fibres are projective spaces O =Ox. So using ¢*: D(X) — D(X) we can
view D(X) as an admissible subcategory of D(X).

We now describe the orthogonal pieces to ¢*D(X) in D(X). We consider the following
setup: let X be a smooth projective variety over k£ and Y C X a smooth projective
subvariety of codimension ¢ > 2 and X the blow up of X in Y. Denote by j: E — X
the inclusion of the exceptional divisor and 7n: £ — Y the projection so we have the

diagram
E—1.,X
™ l‘]
y L. X

Proposition 2.4.13. Suppose Y C X has codimension ¢ > 2. Then the functor

By,: = j(Op(kE) @ 7*(—)): D(Y) — D(X)

18 fully faithful for any k. Moreover, ®; admits a right adjoint functor.

To prove Proposition 2.4.13 we will need the following results. First, we will use the

following criteria for when a functor is fully faithful due to Bondal and Orlov.

Proposition 2.4.14 ([38, Proposition 7.1|). Let ®p: D(X) — D(Y) be a Fourier-
Mukai transform with kernel P. Then ®p is fully faithful if and only if for any two

closed points x,y € X one has

kE ifr=yandi=0
Hompx)(®p(Oz), 2p(Oy)) =
0 ifx#yori<0ori>dm(X).

We will also need the following description of self Ext groups of the push forward of the

structure sheaf along an arbitrarily closed embedding.
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Proposition 2.4.15 (|38, Proposition 11.8]). Let j: Y < X be an arbitrarily closed

embedding of smooth varieties. Then there exist isomorphisms
A —i
H (5" 5.0v) = \ Ny x
‘ i
Ext'x (j«Oy, j«Oy) = /\NY/X

where Ny/X is the normal bundle of Y in X.

Proof of Proposition 2.4.13. Note that ®j is a Fourier-Mukai transform with kernel
Og(kE) considered as an object of D(Y x X). We will use Proposition 2.4.14 to prove
that @y is fully faithful.

First, let us show that Hompy(Px(Oy), Px(Oy)[i]) = 0 for all i and = # y. If x # y,
then ®4(0;) = j«OF,(—k) and ®x(0y) = j.OF,(—k) where F, and F, are the fibres of
7w over x and y respectively. This is because they have disjoint support so there are no

non-trivial maps between them.
Suppose z = y. Then we show that
Ext'; (j:Or, (=), j:OF, (—k)) = Ext% (. OF, , j+OF, )

vanishes for ¢ out side the interval [0,d] (where d = dim X') and has dimension 1 for

i = 0. We do this using the spectral sequence

EP = HP(X, Eat’(j.Or,, jxOF,)) = Ext% *(j.OF,, j:OF, ).
By Proposition 2.4.15 we have

AN, 5z =€t (5.0, , j.OF,).

so the spectral sequence becomes

q
P = HP(X, /\/\/Fz/)?) = Ext’)';q(j*OFx,j*OFx)-

We need to understand N P, Consider the short exact sequence

/X

0 —— NFI/E E— NFI/)? E— NE/)?’FI — 0.

As Ny 3 2 Op(E) = Ox(E)|p and Nry /5 2(’)%?, we see that NV, 5 is an extension
of Op, (—1) by O%ﬁ. As F, is isomorphic to a projective space, there are no non-trivial

extensions of Ox(—1). Hence Np % %O%j ® Op,(-1).



2.4. SEMI-ORTHOGONAL DECOMPOSITIONS 35

So EB? =0 for all pairs p,q with p > 0 or p =0 and ¢ > d. Therefore,
Ext% (j.OF,, j:OF,) = E®? =0

for ¢ > d and
Ext% (j.OF,, j+OF,) = Ey° k.

Since the negative Ext groups vanish for the usual reasons, ®; satisfies the conditions
of Proposition 2.4.14. O

We now introduce some notation to describe the semi-orthogonal decomposition of the

derived category of the blow up X. For k= —c+ 1,...,—1 denote the essential images

Dy = im(®_j,: D(Y) — D(X)).
The full subcategory ¢*D(X) will be denoted Dy.

Theorem 2.4.16 (Orlov,[38, Proposition 11.18|). There is a semi-orthogonal decom-
position
D(X)={(D_c41,...,D_1,Dy) .

Proof. We show semi-orthogonality, then we prove fullness.

First, we show that
Dy C Dy for —c+1<1<k<0.

Let E*, F* € D(Y), then the adjunction between j* - j,. gives

Hom , 3 (ju(1* F* © Op(—kE)),ju(n* E* © Op(~IE)))
=~ Homp(p) (j*jum* F*, 7" E* @ Op((k — 1)E)).

By taking the cone of the unit morphism we have a distinguished triangles
T*F* @ Op(—E)[l] —— j*jn*F®* —— 7*F* —— 71" F* Q@ Op(—F)[2].
This reduces the claim to showing the following vanishing

Hom ) (7" F* 7" E* @ Op((k — ) E)) = 0
— Hom ) (7" F* @ Op(—E), 7*E* @ Og((k — 1) E))

for all E*, F* € D(Y). These both follow from the adjunction 7* - ., the projection
formula and 7, (Og((k — )E)) = 0 for —c+ 1 < 1 — k < 0 as the fibres of 7 are all

projective spaces.

Next, we show
Dy C Dy for —c+1<1<0.
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Again, we use m,(Og(—IF)) =0 for —c+1 <1 < 0 to deduce for all E®* € D(X) and
F* € D(Y) that
HomD()?(q*E°,j*(7r*F' ® Op(—1E))) = Homp(x)(E*, ¢:js (7" F* ® Op(—IE)))
= Homp(x) (E*, joma (1" F* © Op(~1E)))
= 0.

Finally, we prove fullness. Assume that E°® € DlL for all —c+1 <1 < 0. Then we will
show there exists G* € D(Y) with j*E®* ® Og((1 — ¢)E) 2 7*G".

By our assumption on E*® we have

Hom 5, (ja (7" F* @ Op(~1E)), E*) = 0

for all —c+1 < [ < 0 and all F* € D(Y). Grothendieck-Verdier Duality and
j'E* > j*E* @ Op(E)[—1] show that

Hom (7" F* © Op(—1E), j*E*) = 0

for all —c+2 <1 < 1and F* € D(Y). Then by the semi-orthogonal decomposition
of the projectivization P(N) of a locally free sheaf N' we have that the pullback j*E*®
is contained in 7*D(Y) ® Og((1 — ¢)E) which is the semi-orthogonal complement of
<7T*D(Y)(k)>k:7c+2,‘..,o in D(E).

Suppose that Ej € D(X) such that j*E§ = 7*G* for some G* € D(Y). If G*=0, then
E§ has support outside the exceptional divisor E and E® € Dy. Suppose G* 2 0. Then

for some closed point x € Y and m € Z, Hom (E5,q*Ozlm]) # 0. To see this

D(X)
consider the spectral sequence

Ey® = Hom , ¢ (EG, H*(q"Oz)[r]) = Homp, & (EG, ¢" Oxlr + 5]).

By applying [38, Proposition 11.12] to Z = x C Y we have H*(¢*0,) = Q% (—s). This

and our assumption j*Ej = 71*G*® gives

B = Homp g, (B8, jo(2, (5)) 1)) & Hom ey (G B3, 95, (1)
=Hompp) (7" G*, QF, (s)[r]) =Hompy) (G*, mQF, (s)[r]) = 0

except for s = 0. Hence
Hom 5 (E§, ¢ Oxlm]) = 3" = Homp(y)(G®, Ox[m]) # 0

for some m € Z and x € Y as the closed points of Y span the derived category D(Y').



2.4. SEMI-ORTHOGONAL DECOMPOSITIONS

37

By applying this to the complexes E* and E§ = E* ® Og(—(c —1)E) we get

0 # Hom (E*®O0gz(—(c—=1)E),q"O[m])

D(X)
%HomD()?)(q*(’)z, E*®Og(—(c—1)E) @ wg[dim(X) —m])*
%HomD(g)(q*Ox,E'[dim(X) —m])*.

Thusif E® € DlL for all —c+1 <[ < 0 we cannot have E® € D({. SoD_ct1, ..

generate D(X).

. 7D—15D0
O
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Chapter 3

Derived Autoequivalences of

Bielliptic Surfaces

In this chapter, we describe the group of autoequivalences of the bounded derived cate-
gory of a bielliptic surface over the complex numbers. First we review some background
on bielliptic surfaces in section 3.1, the numerical Grothendieck group of these surfaces
in section 3.2 and their canonical cover in section 3.3. In section 3.4 we review some

background on moduli space of sheaves.

In section 3.5 we review the construction of relative Fourier-Mukai transforms along an
elliptic fibration and prove Theorem 1.2.3. In section 3.6 we sketch an argument to
fix a gap in the proof of Theorem 3.6.1 concerning Fourier-Mukai partners of bielliptic
surfaces. In section 3.7 we construct some non-standard autoequivalences for bielliptic
surfaces using moduli spaces of sheaves. Finally, in section 3.8 we prove Theorem 1.2.2.

Throughout this chapter, all varieties will be over the complex numbers.

3.1 Bielliptic Surfaces

Bielliptic surfaces are minimal surfaces which are to Abelian surfaces what Enriques
surfaces are to K3 surfaces. Precisely, we define a bielliptic surface in the following

way:

Definition 3.1.1. A bielliptic (or hyperelliptic) surface S is a minimal projective sur-

face of Kodaira dimension zero with ¢ =1 and p, = 0.

Bielliptic surfaces are constructed by taking the quotient of the product of two elliptic
curves A X B by a finite subgroup G of A acting on A by translations and on B via
automorphisms, which are not all translations. These surfaces are classified by Bagnera
and De Franchis into seven families [3, §V.5| determined by the group G, the lattice T
such that B = C/I', and the action of G on B (see Table 3.1).
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Type r G Action of G on B

Al | Arbitrary Zo br— —b

A2 Arbitrary | Zo ®Zo | b— —b,

b— b+ 3, where 28 =0
B1 YASYAS; Z3 b — wb

B2 7®ZLw | Zs®Zsg | b wb,

b— b+ 3, where wf =8
C1 YASY A Zy b+— b

C2 L2OZLi | ZaDZo | b 1b,

b+ b+ B, where if = 3
D 707w Zg b— —wb

Table 3.1: (w3 =1 and i* = 1 are complex roots of unity.)

Definition 3.1.2. We call o bielliptic surface cyclic if it is of type A1,B1,C1, or D

and non-cyclic otherwise (see Table 3.1).

Remark 3.1.3. By construction bielliptic surfaces have torsion canonical bundle of

order 2,3,4 and 6 for bielliptic surfaces of type A, B,C and D respectively.

Remark 3.1.4. Associated with o bielliptic surface S are two elliptic fibrations:

pa: S — A/G
pp: S — B/G

with A/G an elliptic curve and B/G =P!.

The projection A — A/G is étale, so all the fibres of pa are smooth. The fibre of pp
over a point P € B/G is a multiple of a smooth elliptic curve. The multiplicity of the
fibre of pp at P is the same as the multiplicity of the projection B — B/G=P!. As
all smooth fibres of pa (respectively pg) are isomorphic to B (respectively A) we will
denote the class of the smooth fibre of pa and pp in H?(S,Q) by B and A respectively.

3.2 The Numerical Grothendieck Group

We will study the group of autoequivalences by studying how it acts on the numerical

Grothendieck group of the surface.

The Grothendieck group K(X) of a smooth projective variety X is the free abelian group
generated by isomorphism classes of objects in D(X) modulo an equivalence relation
given by distinguished triangles [38, §5]. There is a natural bilinear form on this group,

the Euler form, given by

X([E), [F]) = Y (1) dimc Homjy ) (B, F).
1€Z
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Consider the left radical of the Euler form
Ly ={ve K(X)|x(v,w) =0 for all w € K(X)}.

Serre duality implies that x(v,w) = 0 for all w if and only if x(w,v) = 0 for all w.
Thus when we take the quotient N(X) = K (X)/*x, the Euler form descends to a non-
degenerate bilinear form on N(X). We call N(X) the numerical Grothendieck group of
X. Recall that Num(X) is the (free abelian) group of divisors on X modulo numerical

equivalence =.
Proposition 3.2.1. Let S be a bielliptic surface. Then the Chern character
ch: K(S) — H**(S,Q)
induces an isomorphism between N(S) and the group
H°(S,7) ® Num(S) ® H*(S,7) =7 ®Num(S) & Z.

Under this identification, for ch(E) = (r, D, s) and ch(F) = (r',D’,s") the Euler form
becomes x(E,F)=rs' +r's—D-D'.

Proof. For v = (v, va,v4) € H**(S,Q) define vV = (v, —va,v4) € H**(S,Q). Recall
that the Mukai pairing on H?*(S, Q) is defined by

<’U,v'>—/va~1/

where the product in the integral is the cup product of cohomology classes. The Todd
classes td(X) of abelian and bielliptic surfaces X are (1,0,0) because x(Ox) = 0 and
Kx is trivial in cohomology. Then by Hirzebruch-Riemann-Roch for [E], [F] € K(S)

X([E], [F]) = (ch(E), ch(F)).
Thus the Euler form for ch(E) = (r, D, s) and ch(F) = (+/, D’,s’) can be written as
x([E], [F]) = ((r,D,s),(r',D',s")) =rs' +r's—D-D".

A class lies in the radical of the Euler form if and only if it lies in the radical of the
Mukai pairing. As the Mukai pairing is non-degenerate an element of K (S) lies in the
radical of the Euler form if and only if it has zero Chern Character. Hence ker(ch) =t y
and im(ch) =2 N(S).

Using this alternative description of the Euler form, we see that the class of a numerically
trivial divisor D, [Og(D)] is equivalent to [Og]. Therefore, the image of the Chern
character restricted to the group H?(S,Q) is the group Num(S). Furthermore, by
Hirzebruch-Riemann-Roch we have chy(E) = x(E) € Z for all E. Thus we have an
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isomorphism
N(S)= H(X,Z) ® Num(S) & HY(X,Z) = Z & Num(S) ® Z.

O

Remark 3.2.2. These isomorphisms generalize to other surfaces using the Mukai vector
and Mukas lattice. The Mukai vector of a sheaf E on X is defined by

v(E) = ch(E)y/td(X)

where td(X) is the Todd class of the surface. For bielliptic and abelian surfaces we have
td(X) = \/td(X) =1, so the Mukai vector coincides with the Chern character.

Remark 3.2.3. We will study the group Aut D(S) by studying its action on the nu-

merical Grothendieck group given by the homomorphism
p: Aut D(S) — Aut(N(9))

defined by p(®)([E]) = [®(F)]. Autoequivalences of D(S) preserve the Homly groups,
thus the Fuler form. Hence the image of p is contained in the group of isometries

O(N(S)) of N(S).

3.3 Canonical Covers of Bielliptic Surfaces

To any bielliptic surface S we can associate an étale cover S which has trivial canonical

bundle. This cover is called the canonical cover of S.

Proposition 3.3.1 (|17, §2], [38, §7.3|,|4, §7.2]). Let X be a smooth projective variety
whose canonical bundle wyx has finite order, i.e. there exists n such that w?é"%(’)x.
Then there exists a smooth projective variety X with trivial canonical bundle, and an

étale cover m: X — X of degree n such that
n—1
T (O5) = @w?}l.
=0

Furthermore, X is uniquely defined up to isomorphism, and there is a free action of the

cyclic group G =17, on X such that 7: X — X = )?/é is the quotient morphism.

The canonical cover of a bielliptic surface will play an important role in determining
the group of autoequivalences. We list the following facts about the canonical cover of

a bielliptic surface.

Proposition 3.3.2. Let S be a bielliptic surface which is realized as a quotient of AX B
be a finite group G of order | as in Table 3.1. Then there exists an abelian surface S

which is the canonical cover of S. Moreover,



3.3. CANONICAL COVERS OF BIELLIPTIC SURFACES 43

o [f S is cyclic, then S~ A x B.

o If S is non-cyclic, then S is a quotient of A X B by a cyclic subgroup H C G of
order k acting on A x B purely by translations. We have G = Z,, ® Zy,.

Remark 3.3.3. The canonical cover S has two fibrations

pa:S— A/H
pp:S— B/H.

Both pa and pp are smooth fibrations with fibres isomorphic to B and A respectively.
We will denote the class of these fibres by B and A in Num(g) respectively. The degree
of the intersection B - A = k = |H|.

Serrano |68, §1] described the structure of Num(.S) in the following way.

Lemma 3.3.4. Let S be a bielliptic surface constructed as a quotient of A X B by a

finite abelian group G where A and B are elliptic curves.

Recall that S admits a canonical cover m: S — S where S is an abelian surface. The
canonical cover S is constructed as a quotient of Ax B by a cyclic group of order 1,2 or
3 with quotient map 7: (A x B) — S = (A x B)/H. Denote degm = n and deg7 = k.

Recall that S has two elliptic fibrations and pa: A/G and pg: S — B/G whose smooth
fibres are isomorphic to B and A respectively. We will write B and A to denote the
classes of these fibres in H?(S,Q).

The pairing on H?(S,Q) is the intersection pairing.

Then:

1. The second rational cohomology group H?(S,Q) is generated by A and B.

2. The second integral cohomology group H?(S,7) is generated by %A and %B.

3.3.1 Canonical Covers and the Derived Category

Consider the category Sp-Coh(S) of coherent 7,(Og)-modules on S. A sheaf E lies in
the essential image of the forgetful map Sp-Coh(S) — Coh(S) if and only if E®wg = E.

We call such sheaves special.

Denote by Cohé(g) the category of G-equivariant sheaves on S. An object of Cohé(g )
is a pair (E, {)\g}geé) which satisfies some axioms (see [16] for more details - later we
will see that Coh%(S) 2= Coh([S/G] where [S/G] is the quotient stack). As G is cyclic,
an object of Cth(g) is given by a pair (F, A\j) where \j: E = g*E where g is generator
of G.

The following results relate these categories to the category of coherent sheaves on S

and S respectively.
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Lemma 3.3.5 ([17, Lemma 2.4|). The functors

m«: Coh(S) — Sp-Coh(S)
7 Coh(S) — Coh%(S)

are equivalences.

On the level of derived categories, we have

Proposition 3.3.6 ([17, Proposition 2.5 |). Let E be an object of D(S). Then there is
an object E of D(g) such that R?T*(E) > Fif and only if EQ wg = E.

Remark 3.3.7. Recall m: N(S) — N(S) is defined by ([38, §5.2])

mlE] = (-1 R (B)]
iE€EL
After taking Chern characters, m coincides with the pushforward m, on cohomology by
Grothendieck-Riemann-Roch. This is due to the Todd classes 0f§ and S being (1,0,0).

First note that the composite m: K(S) — K(S) — N(S) descends to amap m: N(S) —
N (S) because for v € +x, m(v) = 0 because for any w € N(S)

X(W!(U)aw) = X(Ua W*w) =0

by adjunction. As x is non-degenerate on N(S), m(v) = 0.

On the level of the numerical Grothendieck group N(S) we are interested in the sub-

group A of special classes defined by
A = im(m) = {[E] c N(S)‘[E] = m([E))) for some [E] € N(§)} .

Remark 3.3.8. Note that the class [E]| of a special object E € D(S) lies in A by
Proposition 3.8.6 as there exists E € D(S) such that [E] = [1.(E)] = m[E).

The subgroup A is important because the image of Aut D(S) under p preserves A. We
recall the following results on functors between derived categories of smooth projective
varieties with torsion canonical bundles and functors between the derived categories of

the canonical cover.

Definition 3.3.9 (|38, Definition 7.15]|[17, Definition 4.2]). Suppose X and Y are
smooth projective varieties whose canonical bundles are torsion of order n and X and
Y are their canonical covers respectively. Then a lift of a functor ®: D(X) — D(Y) is
a functor ®: D(X) — D(Y) such that the following diagram commutes:

DX) -2 DY) DX) -

WX,*\L lﬂ' % W}T

(
dl

)
(¥).

>

>-<
3

3
>
Je
S
3
>
s
>
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Theorem 3.3.10 ([38, Proposition 7.18] [17, Theorem 4.5|). Suppose X and Y are
smooth projective varieties whose canonical bundles are torsion of order n with canonical
covers X and Y respectively. Then for any equivalence ®: D(X) — D(Y) there is a lift
o D()Z') — D(?) Moreover, ® is an equivalence of categories and equivariant in the

following way: there is an automorphism 7 of G such that
gio® = dor(g).

for every g € G.

Proposition 3.3.11. Let ® € Aut D(S). Then p(P) preserves A.

Proof. Any autoequivalence ® € Aut D(S) lifts to an equivariant autoequivalences P e

Aut D(S) by Theorem 3.3.10 such that

Rmo%%fboRm.

Consider v € A and w € N(S) such that v = m(w). Then

Therefore p(®)(A) C A. O

3.3.2 Autoequivalences which act trivially on N(95)
We now show for any bielliptic surface S that any autoequivalence ® of the derived
category D(9S) is a sheaf transform, i.e. ®(F) is a shift of a sheaf for any sheaf E.

First, recall that any autoequivalence of belian surfaces is a sheaf transform.

Lemma 3.3.12 ([18, Corollary 2.10]). Let S be an abelian surface and Y any surface.
Then any equivalence ®: D(Y) — D(S) is a sheaf transform.

Lemma 3.3.13. Let S be a bielliptic surface, Y any surface and ®: D(Y') — D(S) an

equivalence. Then ® is a sheaf transform.

Proof. We proceed by contradiction. Let E € D(S) be a sheaf such that ®(F) is not a
shift of a sheaf. As Y is derived equivalent S, it admits a canonical cover Y which is

derived equivalent to S.

Consider the commutative diagram

where S is the canonical cover of S and ® is a lift of ®.
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One way around the diagram gives &)(TFE(E)), which is a sheaf by Lemma 3.3.12 because

7 is flat. The other way gives 7*(®(F)), which is a complex. This is a contradiction.

Hence @ is a sheaf transform. O

A corollary of this is a description of those autoequivalences in the kernel of p.

Corollary 3.3.14. Let p: Aut D(S) — N(S) be the natural representation of Aut D(S)
given by p(®)([E]) = [®(FE)]. Then

ker p = (Aut S x Pic® S) x Z[2].

Proof. Let ® be a autoequivalences that act trivially on N(S). Then ch(®(0Oy)) =
(0,0,1). By Lemma 3.3.13, ®(Os) is an even shift of a sheaf. Thus ®(O;)[—2k] = Oy
for some s’ € S and k € Z. By Corollary 2.3.9 ® = f,(L ® —)[2k] where k € Z, L is a

line bundle, and f: S — S is an automorphism.

As @ acts trivially on N(S), n is even. Tensoring by a line bundle L act trivially on
N(S) if and only if L has degree zero. Thus L € Pic?(S).

As automorphisms of S preserve effective divisors, they cannot exchange the fibres of
the two different elliptic fibrations. This is because one has multiple fibres and the other

does not. Hence f can be any automorphism of S. O

3.3.3 Structure of A

To describe the group of autoequivalences which preserve A we need the following results

which describe the structure of A.

Lemma 3.3.15. A class (r,D,s) € A if and only if n | r and (0,D,0) € A. Thus

A =nZ&m,(Num(S)) @Z C Z&Num(S) @ Z= N(S5).

Proof. Suppose n |  and (0,D,0) € A. Then r = #n and there exists D € Num(S)
such that (0, D,0) = (0, m(D),0) = (0, D, 0). Then

(7, D,s) = m(7,0,0) + m(0, D,0) +m(0,0,s) = (r, D, s)

as m(0,0,1) = (0,0, 1).

Suppose that (r,D,s) € A. Then there exists [E] € N(S) such that m([E]) = (r, D, s).
Note that 7%(0,0,1) = (0,0,n) as 7 is étale of degree n and 7*(1,0,0) = (1,0,0). Also,
7+(1,0,0) = (n,0,0) by construction of the canonical cover and 7,.(0,0,1) = (0,0,1) as

7 is étale.

Using the adjunction between 7, and 7* and by computing the Mukai pairing of (r, D, s)
with the classes (1,0,0) and (0,0,1) we see that chy([E]) = s and r = nrk(E). So



3.3. CANONICAL COVERS OF BIELLIPTIC SURFACES 47

(1,0,0),(0,0,s) € A as m(rk(E£)[Og]) = (r,0,0) and m(s[Oz]) = (0,0, s). Then

(r,D,s)—(0,0,s) — (r,0,0) = (0,D,0) € A.

We now describe some elements of A N Num(S). We will write D € A for D € Num(5)
if (0, D,0) € A. Recall that Num(S) is generated by 1A and 1 B.

Lemma 3.3.16.

1. The classes A, B € A.
2. The classes Tt A never lies in A for m # 0 (mod k).

8. If S is non-cyclic, then ' B never lies in A for m # 0 (mod k).

Proof. 1. The classes A, B € A as m,(A) = A and m.(B) = B.

2. To show that ™A ¢ A for m # (modk) it is enough to show that %A ¢ A. We

proceed by contradiction.

Suppose that 1A € A. Then there exist 0 # D € Num(S) such that 7, (D) = LA As

T n
D-D = n(n.D,m.D) = n(%A, %A) = 0, by [43, Proposition 2.3|, D = mFE for some
0 # m € Z and FE an elliptic curve. Then by the push-pull formula we have

0=A -1 (mE) =m.(n"A-mE).
As the pushforward of points is injective on cohomology, we have
0=n"A-mE =nA-mE =nm(A-E).

So A-E =0. As F and A are irreducible curves, by [43, Proposition 2.1] E = Tg(ﬁ), S0
E = A. But m,(mE) = m,(mA) = mA # +A, which is a contradiction. Hence ;A ¢ A.

3. A similar argument holds for 7' B when S is a non-cyclic bielliptic by replacing A by

B. O

Remark 3.3.17. Note that the only non-zero isotropic elements (0,D,0) € A have
D =aA,bB with a,b € Z,a,b # 0 by Lemma 3.3.4 and Lemma 3.3.16.

Remark 3.3.18. Note that we prove nothing about classes of the form T7'(A+ B).

A consequence of the above Lemmas is the following description of A when S is cyclic.

Corollary 3.3.19. Suppose that S is a cyclic bielliptic surface. Then A is generated
by the classes (n,0,0), (0, A,0), (0, B,0),(0,0,1).
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3.4 Moduli Spaces of Sheaves

In general, the moduli space of coherent sheaves on a variety will form a stack. In
order to produce a moduli space of sheaves which is a scheme, we need to impose extra
conditions on our sheaves. We introduce the notions of Gieseker and slope stability

which allow us to define schemes which parameterize stable coherent sheaves on X.

Moduli spaces of stable sheaves play an important role in understanding equivalences
between two objects. Mukai first explored this for abelian varieties and their dual using a
universal family of sheaves as a kernel for a Fourier-Mukai transform. This was extended
to K3 surfaces by Mukai and Orlov who showed that for any derived equivalent K3

surfaces X and Y, we can express one as a moduli space of stable sheaves on the other.

3.4.1 Stability of Sheaves

We recall the notions of Gieseker and slope stability as well as simple facts about stable

and semistable sheaves with respect to these two different notions of stability.

Definition 3.4.1 (Gieseker stability). Fiz an ample divisor H. Define the normalized
Hilbert polynomial of a torsion-free coherent sheaf E with respect to H by

_ ~ X(E®O(mH))
pe = pu.p(m) = rank '

A torsion-free coherent sheaf E is stable (resp. semistable) if py p(m) < pm gp(m)
(resp. if pu.r(m) < pa,p(m)) for m >0 and all proper sub-sheaves F' C E.

A semistable sheaf is called polystable if all its direct summands are stable sheaves.

Definition 3.4.2 (Slope stability). Fiz an ample divisor H on X. Define the slope of
a torsion-free coherent sheaf E with respect to H by

Cl(E> -H

FE) = .
HE) rank F

A torsion-free coherent sheaf E is p-stable (resp. p-semistable if u(F) < u(E) (resp.
w(F) < u(E)) for all non-trivial sub-sheaves F C E with 0 < rank F' < rank E.

A p-semistable sheaf is called polystable if all its direct summands are u-stable sheaves.

Remark 3.4.3. By Hirzebruch-Riemann-Roch we can write

(B @ O(mH)) = /X ch (B © O(mH)) - td(X).
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If X is a surface with td(X) = (1,0,0) (i.e. X is bielliptic or abelian) then we have

X(E®O(mH)) = /X ch(E) - exp(mH)

_ / (rank(E), ¢ (E), cha(E)) - (1, mH, %m2H2)
X
= cho(E) + (e1(F) - H)m + —————m~.

So

These notions of stability are related in the following ways.

Lemma 3.4.4 ([39, Lemma 1.2.13]). We have the following implications
E is p-stable = E is stable = E is semi-stable = E is p-semistable.

Proposition 3.4.5 (|39, Proposition 1.2.7]). Let F' and G be semi-stable torsion free

coherent sheaves.

(1) If p(F) < p(G), then Homx (F,G) = 0. If p(F) = p(G) and f: F — G is non-

trivial then f is injective if F' is stable and surjective if G is stable.

(ii) If p(F) = p(G) and rank(F) = rank(G) then any non-trivial homomorphism
f: F — G is an isomorphism provided F or G is stable.

Recall that a sheaf E on X is simple if Homx (E, E) = C.

Proposition 3.4.6. Stable sheaves are simple. Moreover, any simple polystable sheaf

1s stable.

Proof. The first statement follows from Proposition 3.4.5 part (ii) and that any finite
dimensional division algebra over an algebraically closed field is trivial [39, Corollary
1.2.8].

Suppose F be a simple polystable sheaf. Then E = @®;F; where E; are stable. Then we
have
Hom(E, E) = P Hom(E;, E;).
i,J
As F is simple, all except one of the factors on the right hand side must be zero. Hence
E =2 E; for some i, thus stable. O

3.4.2 Moduli Spaces of Sheaves and Universal Families

By considering families of Gieseker semi-stable sheaves we can construct moduli spaces

which are schemes. This was first done by Gieseker in [32] and a modern treatment
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can be found in [39, §4.3-4.4|. This is achieved using the theory of geometric invariant
theory which we will not discuss. We will denote the moduli space of H-semistable
sheaves on X by My and the open subset of H-stable sheaves by M7, C M.

Recall that a family of sheaves on X parameterized by S (an S-family) is a coherent
Oxxs-module F flat over S. Let s € S be a closed point and denote F§ the restriction
of F' to the fibre X, over s.

Definition 3.4.7 (|39, Definition 4.6.1]). A flat family £ of stable sheaves on X pa-
rameterized by My, (v) is called quasi-universal if the following holds: if F' is an S-flat
family of stable sheaves on X with Hilbert polynomial P and ¢r: S — Mj the mor-
phism induced by F', which on closed points takes a point s € S to the sheaf Fy € M.
Then there is a locally free sheaf W of finite rank on S such that FF @ p*W = ¢7.(E). A

quasi-universal family s universal if W is a line bundle.

There always exists a (not necessarily unique) quasi-universal family on X x M* by [39,
Proposition 4.6.2|. However, universal families exist if and only if Mj,; is a fine moduli
space of stable sheaves. In our situation, we have the following sufficient criteria for the

existence of a universal family.

Corollary 3.4.8 (|38, Lemma 10.22 and Corollary 10.23|). Let X be a smooth surface
and v = (r,D,s). Suppose their exists v' such that (v,v') = 1. Then there exists an
ample class H such that gcd(r, D - H,s) =1 and M} (v) is fine moduli space, i.e. there

exists is a universal family on M (v) x X.

3.4.3 Properties of the Moduli Space of Sheaves
We now describe some properties of elements v € H?*(X,Z) which give nice properties
of the moduli space of (semi)stable sheaves of class v.

If we assume some generality conditions on our ample divisor H then we can say more.

Definition 3.4.9. Let v € H**(X,Z). We say H is general with respect to v (or does
not lie on a wall with respect to v) if for every p-semistable sheaf E with v(E) = v and
every 0 # F C E which satisfies p(F) = p(E) then

alF) _ a(p)
rank ' rank E’

Remark 3.4.10. The notion of H being general can be defined by defining open subsets

mn the ample cone which are complementary to codimension one subspaces called walls.

Recall the following notions for an element v € H**(X,Z).

Definition 3.4.11. Let v = (r,D,s) € H**(X,Z) with D € NS(X).

1. A class v is primitive if v is indivisible. Le. if v = dvy with d € Z then d = +1.
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2. A wvector v is isotropic if (v,v) = D? — 2rs = 0.

The following theorem guarantees non-emptiness of moduli spaces for abelian surfaces.

Theorem 3.4.12 (|79, Lemma 1.2]). Let X be an abelian surface and H an ample
divisor. Assume that v = (r,D,s) € H*(X,Z) with r > 0 is primitive and isotropic.

Then the moduli space My (v) is non-empty and consists of p-stable locally free sheaves.

Remark 3.4.13. By [79, Remark 1.1] My (v) does not depend on H.

3.4.4 Smoothness

We can understand smoothness of My at a point [F|, where F is a stable sheaf on a
projective scheme X, by studying the self Ext groups of F'. Through understanding the
deformation theory of F' we have the following characterization of the tangent space

TipyMp and smoothness at [F].

Corollary 3.4.14 ([39, Corollary 4.5.2]). Let F' be a stable sheaf on a projective scheme
X represented by a point [F] € My. Then the Zariski tangent space to My at F is
given by

T My = Extx (F, F).

If Ext% (F,F) = 0, then My is smooth at [F].

If we assume X is smooth, then we can improve upon the Corollary above. Let E be a

locally free sheaf on X, then the trace map tr: End(E) — Ox induces maps
tri: BExty (E,E) — H(Endx (E)) — H(Ox).

We can construct these trace maps even when F' is not locally free by taking resolu-
tions. These homomorphisms are surjective if the rank of F' is non-zero. Denote by
Ext’ (E, E)q the kernel of tr'.

Theorem 3.4.15 (|39, Theorem 4.5.4]). Let X be a smooth projective variety and let
F be a stable Ox-module of rank r > 0. If Ext%(F, F)o = 0, then My is smooth at [F].

3.5 Relative Fourier-Mukai Transforms and Bielliptic Sur-

faces

Given any elliptic fibration X — C' of a smooth projective surface we can consider
sheaves supported on a smooth fibre of the fibration. When this moduli space is repre-
sentable, certain sheaves on the product gives rise to equivalences between the derived
category of the moduli space and of the surface. This was used to great effect by
Bridgeland and Maciocia [18] to determine the Fourier-Mukai partners of surfaces with

Kodaira dimension 0 and 1.
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Bielliptic surfaces come with two elliptic fibrations. Thus we expect to get derived
equivalences between certain moduli spaces of sheaves supported on the smooth fibres
and the original surface. By Proposition 3.6.1 these induce autoequivalences of the
derived category. Finally, we prove Theorem 1.2.3 which describes the generators of the

group of autoequivalences for cyclic bielliptic surfaces.

3.5.1 Relative Fourier-Mukai Transforms

Recall that a relatively minimal elliptic surface is a projective surface X together with a
fibration w: X — C whose generic fibre is isomorphic to an elliptic curve and there are

no (—1)-curves in the fibres. We will only consider relatively minimal elliptic surfaces.

For an elliptic surface, m: X — C define A, to be the smallest positive integer such that

7 has a holomorphic A -multisection. This is equivalent to
Ar =min{f - D > 0|D € Num(X)},

where f is the class of a smooth fibre of m. We call the D such that D - f = Ay a A

multi-section for .

Suppose a > 0,b € Z with ged(al;,b) = 1. Then we can construct the moduli space
Jx(a,b) of pure dimension 1 stable sheaves of class (a,b) supported on fibres of =.
By [18, Lemma 4.2] we see that Jx(a,b)=Jx(1,b) =: Jx(b) for all a. Bridgeland
constructed equivalences between the derived category of X and the derived category

of Jx(b) [14]. We call these equivalences relative Fourier-Mukai transforms.

Theorem 3.5.1. [14, Theorem 5.3] Let m: X — C be an elliptic surface and take an

element
c a
€ SLo(Z
( ‘ b) 2(2)

such that A; divides d and a > 0. Then there exists a derived equivalence ®: D(Jx (b)) —
D(X) such that for any closed point y € Jx(b), ®(Oy) has Chern character (0,af,b),

where [ is the class of a fibre. Moreover, the functor satisfies

for all objects E of D(Jx(b)).

For a bielliptic surface 9, relative Fourier-Mukai transforms with respect to either elliptic
fibration p4 or pp give rise to autoequivalences of D(S) in the following way. The

following argument is due to Bridgeland.

Proposition 3.5.2. Let S be a bielliptic surface and ps: S — A/G and pp: S — B/G
its two relatively minimal elliptic fibrations. Then a relative Fourier-Mukai trans-
form with respect to either fibration induces an autoequivalence on D(S) which is non-

standard.
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Proof. Denote by A the relative fibre degree of one of the elliptic fibration. Then we
need to show that all relative Jacobians Jg(b) are isomorphic to S for either elliptic
fibration. By [18, Lemma 4.2| we can reduce to the case where b is coprime to \. After
tensoring by the line bundle corresponding to the multi-section we need only consider
b modulo A by [18, Remark 4.5]. So we are interested in invertible elements of Zy. As
A =1,2,3,4 or 6, the only invertible elements in Zy are £1. As Jg(1)= Js(—1) =S by
[18, Remark 4.5] we are done.

Let ®: D(Jg(b)) — D(S) be a relative Fourier-Mukai transform induced by one of the
two fibrations. By the above argument Js(b) is isomorphic to S. After choosing an
isomorphism g: Jg(b) — S, the composite ¥ = ®p.; 0 g* is an autoequivalence of D(S).
It is non-standard because ch(¥(Os)) = (0,af,b) where f is the fibre of the elliptic
fibration. O

To prove Theorem 1.2.3 we will need the following two autoequivalences induced by

relative Fourier-Mukai transforms:

Example 3.5.3. Note that for either fibration ps or pp of S we have an autoequivalence

-0

given by Theorem 3.5.1. We have an autoequivalence Vg, constructed by composing the

corresponding to the matriz

relative Fourier-Mukai transform along pa associated to P and tensoring by a suitable
line bundle, which acts on N(S) by

(1
0,
1

)

0,0) — (1,0,0)
0,1) — (0, B,1)

1
(07 %B,O) = (Oa EBa 0)
1 1
(0,~4,0) = (Ap,s ~A,0).

Note U sends (0,A,0) to (n, A,0).

Suppose that S is cyclic. Then the fibration pa: S — A/G admits a section, i.e. Ay, =

1. Then there is a relative Fourier-Mukai functor U that corresponds to the matriz

(5
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given by Theorem 3.5.1 which acts on N(S) by

(1,0,0
(0,0, 1
(0, B,0
(0,(1/n)A,0

(0,(=1/n)A,0)
(0, B,0)
(0,0,1)
(1,

)
)
)
) 0,0).

—
—
—
—

3.5.2 Proof of Theorem 1.2.3

We now prove Theorem 1.2.3.

Theorem 3.5.4 (Theorem 1.2.3). Suppose S is a cyclic bielliptic surface. Then Aut D(S)

is generated by standard autoequivalences and relative Fourier-Mukai transforms along

the two elliptic fibrations.

Proof. As S is cyclic, k = 1 and |G| = n = degm and S= A x B. Let ® € Aut D(S).
Consider v = p(®)(0,0,1). Then v € A, v?> = 0 and there exists v’ = p(®)(1,0,0) such

that (v, v’

)= 1.

We will construct an autoequivalence ¥ € Aut D(S) which is the composite of standard

autoequivalences and relative Fourier-Mukai transforms along p4 and pp such that
p(V)(0,0,1) =

We separate the argument into three cases:

1. Suppose that v = £(0,0,1). Then ¥ = id or [1].

2. Suppose that v = (0,D,s). As (v,v) =0, D = aA or bB for a,b € Z, a,b # 0.

Suppose that D = aA. As there exists v' = ¢(1,0,0) = (1, (a’/n)A+V B, s’) such
that (v,v') =1, we have
a(B- A —sr' =1.

As A\, = B- A, ged(adp,,
transform, ®, along pp such that p(®) sends (0,0,1) to v = (0,aA, s). Then set
U =&, A similar argument for D = bB will work to construct a relative Fourier-
Mukai transform along p4 which sends (0,0, 1) to (0,bB,s).

s) = 1. Therefore there exists a relative Fourier-Mukai

. Suppose that v = (r,aA + bB,s) with r # 0. We can assume that r > 0 after

applying p([1]). Then r = nc with ¢ € N, as v € A. As v? = 0 we have
v = (nc,aA +bB,ab/c) .

Note one of a, b is non zero as otherwise v would be divisible.
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Suppose a = 0, so v = (nc,bB,0). Then we can apply the relative Fourier-Mukai

transform W which sends
(nc,bB,0) — (0,—cA,b)

and reduce to case (2).

Suppose that a # 0. After tensoring by A we can assume a > 0. Let ged(c,a) = d
for some d € N. We can write ¢ = d¢’ and a = da’ with ged(a’,¢’) = 1. Thus v

has the form
v = (ndc,da’ A+bB,ad'b/c).

We have two operations given by p(— ® (—1/n)A) and p(¥3") which act on ndc’

and da’ in the following way:

p(—= ® (=1/n)A) :(ndd,da") — (ndc,d(a’ — ))
p(U5) :(ndc,dd’) = (nd(c' — d'),dd’).

This is just the Euclidean algorithm on ¢ and a’. Thus we can reduce a’ to 1 and

¢ to 0 and reduce to case (2).

Consider the autoequivalence ¥~! o ® whose image under p sends (0,0,1) to (0,0,1).
So U~1o® is a standard autoequivalence by Corollary 3.3.14. Thus we can express ® as

a composite of standard autoequivalences and relative Fourier-Mukai transforms. O

3.6 Fourier-Mukai Partners for Bielliptic Surfaces

The derived category of a bielliptic surface S is a strong invariant of the surface due to

the following result of Bridgeland and Maciocia.

Proposition 3.6.1 (|18, Proposition 6.2]). Let S be a bielliptic surface and S" be a

smooth projective minimal surface derived equivalent to S. Then S is isomorphic to S’.

The proof of the above result only holds when the canonical cover S of S is the product
of elliptic curves, i.e. S is cyclic. We sketch an argument due to Bridgeland (private

correspondence) below for the non-cyclic case.

Assume that S is non-cyclic. Without loss of generality, assume S is of type A2. A
similar argument should hold for bielliptic surfaces of type B2 and C2. Let ®: D(Y) —
D(S) be an equivalence of derived categories where Y is a smooth projective surface

which is derived equivalent to S. Consider
ch(®(0y)) =v = (r,aA+bB,s)

where r > 0, a, b are either integers or 1/2-integers and A - B = 4.
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As v2 = 0 we see that rs = 4ab. As ® lifts to a equivariant equivalence ®: D(Y) —
D(g), v € A so 2|r. Therefore a and b cannot be both 1/2 integers, since then 2 would
not divide 4ab = rs. Hence as aA 4+ bB € A by Lemma 3.3.16, a,b € Z. But then
(@A +bB) - C is divisible by 2 for any class C € Num(S) since 34 and 1B generate

Num(S). By primitivity of v, s is not divisible by 2.

Now consider the elliptic fibration pp which admits a 2-multisection. Sheaves of class v
restrict to the general fibre to give sheaves of rank r and degree d = 4b. Let h = ged(r, d).
By the relation rs = ad and as ged(2, s) = 1, the rank r contains as big a factor of 2 as
d, i.e. 2F divides d implies 2¥ divides r. Then h is the greatest common divisor of 2r

and d. Thus we can find z and y with yd — 2xr = h. Consider the matrix

d/h —r/h
2x Y

which has determinant 1. It maps a column vector (r,d) to (0, —h). Then this matrix

induces an autoequivalence of D(S) by Proposition 3.5.2.

By composing with the relative Fourier-Mukai transform we get an equivalence
®’': D(Y) — D(S) which sends (0,0,1) to v = (0,—hA,s). By primitivity of v" we
can compose with a another relative Fourier-Mukai transform to get an equivalence
®": D(Y) — D(S) which sends (0,0,1) to (0,0,1). By Lemma 3.3.13, ®” sends a
skyscraper sheaf to the shift of a skyscraper sheaf and so induces an isomorphism
f:Y — S by Corollary 2.3.9.

3.7 Moduli Spaces of Sheaves and Equivalences of Derived

Categories

Mukai first observed [55] that the Poincaré line bundle on the product A x A of an

abelian variety and its dual can be used as the kernel of an integral transform to give an

A~
~

equivalence of derived categories D(A)= D(A). Since then there has been an intimate
relationship between moduli space of sheaves M on X and functors between the derived
categories D(M) and D(X) given by integral transforms whose kernel is the universal

family of the moduli space.

The following Proposition due to Bridgeland gives sufficient criteria on the moduli space

of sheaves for the integral transform to be an equivalence.

Recall that a sheaf E on a variety X is special if E ® wx = E.

Proposition 3.7.1 ([18, Corollary 2.8]). Let X be a smooth projective surface with a
fixed polarization, and let Y be a smooth, fine, complete, two-dimensional moduli space
of special, stable sheaves on X. Then there is a universal sheaf P on'Y x X and the
functor ®F . D(Y) — D(X) is an equivalence.

To prove Theorem 1.2.2 we will construct autoequivalences using certain moduli spaces
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of sheaves of our bielliptic surface.

Proposition 3.7.2. Let S be a bielliptic surface and m: S — S the canonical cover of
S. Letv = (r,D,s) € A, r > 0, which is isotropic and (v,v') =1 for some v' € N(S).
Choose an ample line bundle H general with respect to v. Then there exists a two
dimensional, projective, smooth, fine moduli space M of stable, special sheaves on S of

class v.

Moreover, the universal sheaf on M xS induces an autoequivalence ® of D(S) such that

[®(O;)] = v for any closed point s € S.

Proof. We first show that M is non-empty. As v € A, there exists w = (7, D, 5) € N(S)
such that m(w) =v. Asr >0, then 7 > 0 as m,(7) = degm -7 =r.

As v is isotropic, so is w because 0 = (v,v) = (Tw, Tw) = n{w,w). As v is primitive,

we can see that w is primitive by applying adjunction and 1 = (m,w,v") = (w, 7*vV’).

As w is isotropic and primitive with # > 0, the moduli space of 7* H-semistable sheaves
of class w on the abelian surface S is non-empty and consists of p«p-stable locally free

sheaves of class w by Theorem 3.4.12.

Let F be a pg«p-stable locally free sheaf of class w. By [72, Proposition 1.7] m.(F) is
w-polystable. We now show that m, F' is simple, therefore pp-stable.

Note that F' is not the pullback of any sheaf on S because if so with F=7*E’,
1= (mF,v) = (ma* B v') = n(E')0')

as n > 1 we get a contradiction.

As G is cyclic, choose a generator § of G. Then

n—1
Homg(m, F, 7, F) = Homg(r*m.(F), F) = Homg <€B(g*)"(F), F>

=0
n—1
~ P Homg((3")'(F), F)
=0

As F does not lie in the essential image of
7*: Coh(S) — Coh%(S) — Coh(S)

F % (¢*)(F). Therefore F % (¢*)*(F) for any i.

As F is pr+pg-stable, so is (¢*)*(F) with the same slope. As they are not isomorphic,
Homg((¢g*)"(F),F) = 0 for all i # 0. Hence dim¢ Homg(m.F,m.F) = 1. Thus mF is

simple, hence p-stable. By construction, ch(mF') = m(w) = v.

Therefore, the moduli space My of stable sheaves of class v is non-empty. As H is

general with respect to v, all H-semistable sheaves are stable, so the moduli space
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My (v) = Mpy(v) is projective. By [39, Proposition 4.6] there exists a quasi-universal
family on My x S. This family can be chosen to be universal as there exists v’ such
that (v,v') = 1 by Corollary 3.4.8.

Let E be a H-stable sheaf of class v corresponding to a point of M}. As v = [E] is
isotropic and F is stable, dim¢ Homg(FE, F) = 1 and

dimc Exty(E, E) = 1 + dimc Ext%(E, E).

By Serre Duality, dime Ext%(E, E) = dime Homg(E, EQus). As ch(E) = ch(E®uws) €
H*(S,Q) as Kg is numerically trivial, so p(E) = p(E ® ws) and rk(F) = 1k(E ®
wg). As FE is stable, by Proposition 3.4.5, dim¢ Homg(E, E ® wg) = 0 or 1. Hence
dim¢ Ext}(E, E) < 2.

By construction, My contains at least one closed point corresponding to a sheaf F' which
is a u-stable sheaf which is the pushforward of a p,« g-stable sheaf on the canonical cover.
Thus F is special by Proposition 3.3.6, so F ® wg = F and dim¢ Ext%(F, F) = 1. Hence
dime Extg(F, F) = 2. By Serre Duality and [39, §4.5] My is smooth at F because the
trace map on Ext%(F, F') has zero kernel due to F being special.

As M is smooth at F, dim M}, = dim¢ Ext§(F, F') = 2 for some connected irreducible
Mj; of Mpy. Hence dimg Ext}g(E,E) > 2 for all sheaves F corresponding to points of
M};. So dime Ext}(E, E) = 2 for all such E. Thus M}, is smooth of dimension 2. Set
M = M. Note that E is special as dim¢ Homg(F, F ® wg) = dim¢ Ext}(E, E) = 1
and as F is H-stable, F=2 F ® wg.

Thus M is a two-dimensional, projective, smooth, fine moduli space of special stable

sheaves on S of class v.

By [18, Corollary 2.8] the universal sheaf P on M x S induces an equivalence
Op: D(M) — D(S5).

By Proposition 3.6.1, M is isomorphic to S. Thus the equivalence ®p induces an
autoequivalence ® of D(S) after choosing an isomorphism M =S. By construction
[@(0s)] = [Ps] = v. O

3.8 Proof of Theorem 1.2.2

We now prove Theorem 1.2.2.

Theorem 3.8.1 (Theorem 1.2.2). There is an exact sequence
1 — (Aut S x Pic’ §) x Z — Aut D(S) 2 OaA(N(S))

where Z is generated by the second shift [2]. The map p is induced by the natural action
of Aut D(S) on N(S) given by p(®)[E] = [®(E)]. Furthermore, the image of p is a
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subgroup of Oa(N(S)) of index 4 if S of type A2 or B2 and index 2 otherwise.

Proof. To prove Theorem 1.2.2 we will compute the kernel and image of
p: Aut D(S) — O(N(S9))

given by p(®)([E]) = [®(E)].

The description of the kernel is given in Corollary 3.3.14.

We now characterize the image of p. Let ¢ € Oa(N(5)) and consider v = ¢(0,0,1) € A.
Then v € A, v?2 = 0 and there exists v = (1,0,0) such that (v,v') = 1. We will
construct an autoequivalence W such that p(¥)) sends v to (0,0,1). We treat three

separate cases:

1. Suppose v = £(0,0,1). Then we can apply p([1]) to make v = (0,0,1) if needed.

2. Suppose that v = (0, D, s). As (v,v) =0 and v € A, D = aA or bB for a,b € Z,
a,b # 0. Suppose that D = aA. As there exists v' = ¢(1,0,0) = (', (a//n)A +
b' B, s') such that (v,v") = 1, we have

a(B- A —sr’ =1.

As A\, = B- A, ged(aNp,, s) = 1. Therefore there exists a relative Fourier-Mukai
transform, ®, along pp such that p(®) sends (0,0,1) to v = (0,aA,s). Then
set U = &1 A similar argument for D = bB will work to construct a relative

Fourier-Mukai transform along p4 which sends (0,0,1) to (0,bB, s).

3. Suppose that v = £(r, D, s). After applying p([1]) we can assume that r > 0.
Hence by Proposition 3.7.2 there ® € Aut D(S) such that p(®)(0,0,1) = v. Set
U=0"lorU=0"1o]1].

Consider the isometry

Then ¢'(0,0,1) = (0,0,1). As ¢'(1,0,0) = (1,D,s) is isotropic, D?* = 2s. Thus
s = D?/2 and ¢'(1,0,0) = (1, D, D?/2) is the class of a line bundle L with ¢;(L) = D.
Consider the isometry
¢ =p(L* @ (=) oy
Notice that ¢” acts by
idgo © Y D idya

on N(S) where v is an isometry of Num(S). Note that ¢” respects the grading and is
an element of Oa(N(S)) as it is a composite of elements of Oa(N(5)).
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The group Num(.S) is isomorphic as a lattice to a single hyperbolic plane U with under-
lying group Z? [68, §1]. The group of isometries O(U) is isomorphic to Z /2 x Z /2. Tt
is generated by the involutions ¢, which acts by —id on U, and ¢ which exchanges the
two copies of Z. Both of these give rise to isometries of N(S) by acting by the identity
on HY(S,Z) and H*(S,Z) which we will denote by « and ¢ by an abuse of notation.

Suppose the isometry ¢ is induced by an autoequivalence. As ¢ fixes the class of a point
and acts non-trivially on N(S), ¢ is induced by a standard autoequivalence which acts
non-trivially on N (). But standard autoequivalences which act non-trivially on N(.5)
act by tensoring by +(1, D, D?/2) for some line bundle L with ¢; (L) = D # 0. However,
¢ does not acts on N(S) in this way as ¢(1,0,0) = (1,0,0). Hence ¢ is not induced by
an autoequivalence. Similarly, o and ¢ o ¢ are not induced by autoequivalences. Thus

the image of p intersected with O(Num(S)) is trivial.

Note that ¢ preserves A. However, 0 may not preserve A. The index of the image of p
will 2 or 4 in OA(N(S)) depending on whether o preserves A. As o acts trivially on the
two copies of Z in N (S) it is sufficient to study the action on Num(S) by the following

Lemma.

If (r,D,s) € A then o(r,D,s) = (r,o(D),s) € A if and only if (0,0(D),0) € A. To
determine whether o preserves A we reduce to studying classes of the form (0, D,0). By
abuse of notation, we will denote the class (0, D,0) € N(S) by D and we write D € A
for (0,D,0) € A.

Note that o interchanges the generators of Num(S). We will consider separate cases to

determine the index of the image of p.

We will use the following repeatedly: A class D € A if and only if D' = D+ (aA+bB) €
A with a,b € Z. Clearly if D € A then D’ € A. Conversely, if D' € A, then
D=D"—(aA+bB) € A as A is a subgroup.

Cyclic Bielliptic Suppose that S is cyclic. Then ¢ interchanges %A and B. But by
Lemma 3.3.16 %A ¢ A but B € A, so o does not preserve A. Hence the index is
2.

Bielliptic of type A2 By Lemma 3.3.16 we have %A, %B ¢ Aand A,B € A. Con-
sider D = $A + %B with a,b € Z. Then o(D) = %A + §B. By adding or
subtracting multiples of A and B we can reduce to the cases when a,b € {0,1}.

We have 3 cases:

1. fa=b=0then D € A and o(D) € A.

2. Suppose @ = 0 and b = 1. Then o(D) = A ¢ Aand D = B ¢ A. A
similar argument show that D,o(D) ¢ A for a =1 and b = 0.

3. Suppose that a = b= 1. Then D = LA+ 1B = ¢(D). Hence D € A if and
only if o(D) € A.

Thus o preserves A and the index is 4.
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Bielliptic of type B2 By Lemma 3.3.16 we have %A, 1B ¢ Aand A, B € A. Consider
D= 35A+ gB with a,b € Z and o(D) = %A + §B. By adding or subtracting
multiples of A and B we can reduce to the cases when a,b € {0,1,—1}. We have

4 cases:

1. Ifa=b=0. Then D € A and o(D) € A.

2. Suppose that @ = b =1 Then o(D) = 1A+ {B = D. Hence D € A if and
only if o(D) € A. A similar argument works for a = b= —1.

3. Suppose that m = a and b = 1. Then D = 1B ¢ A and 0(D) = $A € A.
Similarly for ¢ = 0,b = —1 and @ = 1,—1,b = 0 we have D ¢ A and
(D) ¢ A.

4. Suppose that a = 1 and b = —1. Then o(D) = —%A + %B =-D. As A
is a subgroup —D € A if and only if D € A. Hence D € A if and only if

o(D) € A. A similar argument works for a = —1 and b = 1.

Thus o preserves A and the index is 4.

Bielliptic of type C2 Note that %A ¢ A by a similar argument to Lemma 3.3.16.
Then as o interchanges £A and 2(3B) = B, o does not preserve A. Hence the

index is 2.



62

3. DERIVED AUTOEQUIVALENCES OF BIELLIPTIC SURFACES




Chapter 4
Background on Stacks

In this Chapter we review the background material on stacks required for Chapters 5
and 6. In section 4.1 review the definition of a Deligne-Mumford stack and properties
of them. In section 4.2 we discuss presentations of Deligne-Mumford stacks which will
be useful for performing calculations. In section 4.3 we define the category of (quasi-
Jcoherent sheaves on a Deligne-Mumford stack and construct the associated derived

category and derived functors.

4.1 Deligne-Mumford Stacks

Throughout this thesis, we will only consider Deligne-Mumford stacks. In this section,
we summarize the basic definitions and properties of these stacks giving references for
further details. These definitions can primarily be found in the Appendix of [77] and
in [58]. We will give specific references in each section. We will fix a base scheme S.
In Chapters 5 and 6 we will assume that S = Speck where k is a field of arbitrary

characteristic and not necessarily algebraically closed.

4.1.1 Etale Topology

In this section we introduce the étale topology following [36, §1| (see also [70, Tag
02GH]).

Let A be a local ring and denote by m4 its maximal ideal and k(A) its residue field.
Recall that a morphism of local rings f: A — B is a ring homomorphism such that
f(ma) C mp. Recall that a field extension L over K is separable if for every element

a € L, its minimal polynomial y,, is separable, i.e. its formal derivative p., is non-zero.

Definition 4.1.1.

1. A morphism f: A — B of local rings is unramified if f(ma)B = mp and k(B)

is a finite separable extension of k(A).
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2. A morphism of finite type f: X — Y of schemes is unramified at x € X if the
associated morphism f7# Oy.f(x) = Ox of local rings at x 1s unramified. The

morphism f: X — Y 4s unramified if it is unramified ot every point of x.

Definition 4.1.2.

1. A morphism f: A — B of local rings is étale if f is flat and unramified.

2. A morphism of finite type of schemes f: X — Y is étale at x € X if the induced

map of local rings at x is étale. A morphism is étale if it is étale at every point.
Example 4.1.3. Suppose f: Spec B — Spec A. Then f induces the map on rings
f#: A— B. Note f is étale if and only if f# is. Then f is étale if
1. B is a finitely generated A-algebra

2. B is a flat A-algebra

3. For all mazimal ideals m of B, By,/mBy, is a finite separable extension of Ap/pAp
where p = (f7#)71(m).

Example 4.1.4.

o Let f: U — X be an open immersion. Then f is étale.

o Let G be a finite group acting freely on o quasi-projective variety X over an alge-
braically closed field. Then the quotient map w: X — X/G is étale.

o Ifi: Z — X 1s a closed immersion, then i is unramified but not flat, hence i is

not étale.

Remark 4.1.5. Note that étale maps are open as they are flat. Moreover, étale mor-

phisms are stable under composition and base change (c.f. [70, Tag 02GH]).

Remark 4.1.6. Suppose X and Y are smooth projective varieties over C. Then a

morphism between X and Y 1s étale if it is a local isomorphism in the analytic topology.

The étale topology on Sch /S will be an example of a Grothendieck topology on Sch /S

which specifies a collection of coverings.

Definition 4.1.7. Let C be a category. A Grothendieck topology on C consists of a set
Cov(X) of collections of morphisms {X; — X }ier for every object X € C such that

1. If V.— X is an isomorphism, then {V — X} € Cov(X).

2. If {X; - X}ier € Cov(X) and Y — X is any morphism in C, then the fibre

products X; X x Y exist and the collection of compositions
{X1 xxY = Ythier

is in Cov(Y).
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3. If {X; = Xt}ier € Cov(X) and for every i € I we are given {Vi; — X;}jey, €

Cov(X;), then the collection of compositions
{Vij = Xi = Xtierjey,
is in Cov(X).

A category with a Grothendieck topology is called a site.

Example 4.1.8 (Small Classical Site). Let X be a topological space and consider the
subcategory top(X) of Top /X whose objects are topological spaces U and an open imbed-
ding U — X and morphisms are continuous maps f: U =V such that

v—J1 vy
X
commutes. Then for U — X we define Cov(U) to be the collection of morphisms

{U; = U}ier in top(X) for which U = U;erU;. This defines a Grothendieck topology on
top(X) called the small classical site on X.

Example 4.1.9 (Big Classical Site). Let Top /X be the category of topological spaces

with a continuous morphism to X, with morphisms continuous maps f: U — V such

that
U % \%4
X
commutes.

For a topological space U define Cov(U) to be the collection of morphisms {U; — U }ier
over Y for which each U; — U is an open imbedding and U = U;c;U;. Note than only
the covering maps are open imbeddings. Then Top /X equipped with this topology is the
big classical site of X.

Example 4.1.10 (Small Etale Site). Let S be a scheme and define ét(S) to be the full
subcategory of the category Sch /S of schemes over S whose objects are étale morphisms

X — S and morphism are morphisms f: X — Y such that
x— 1 iy
S
commutes. A collection of morphisms {X; — X }ier is in Cov(X) if the map

HXZ- —~ X
el

is surjective. Note that all the morphisms in ét(S) are étale as the composite of étale
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morphisms is étale. We call ét(S) the small étale site of X.

Example 4.1.11 (Big Etale Site). Let S be a scheme and let Sch /S be category of
schemes over S. For X € Sch /S define Cov(X) to be the collections {X; — X }ier of
morphisms in Sch /S for which each morphism X; — X is étale and the map

HXZ-—>X

il

is surjective. Note that only the covering maps are étale. We will write Et(S) for the
category Sch /S with this topology. We call Et(S) the big étale site of .

From now one we will only consider the big étale site of S (and write étale topology for

the big étale topology).

We now define a sheaf on Sch /S equipped with the étale or classical Zariski topology.

Definition 4.1.12 (|70, Tag 00VL|). Consider Sch /S with the étale or classical topol-
ogy. A presheaf F on Sch /S is a functor

F: Sch /S — Set .

We say that F is a sheaf if for any covering {U; — U };cs the sequence
pr}
F(U) — e F(Ui) Wﬁ* i jer F Ui xu Uj)
j
is exact, i.e. the first arrow is the equalizer of pr; and pr;.

4.1.2 Categories Fibred in Groupoids

For this section, we follow the appendix in [77, §7]. A more general discussion can be
found in [58, §3].

Definition 4.1.13. A category fibred in groupoids over a scheme S is a category F and
a functor p: F — Sch /S such that

(1) If f: X — Y is a morphism of S-schemes and y is an object of F such that
p(y) = Y, then there exists a morphism ¢: © — y in F such that p(¢p) = f.

Diagrammatically,
R Yy
f
X —Y

where the vertical dashes denote p(x) = X and p(y) = p(y).

(2) If ¢: x — y and ¢ z — y are morphisms in F and there exists h: p(x) — p(z) in
Sch /S such that p(1p) o h = p(¢p). Then there exists a unique arrow p: x — z such
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that 1 o p = ¢ and p(p) = h. Diagrammatically,

X () %
N e
7.

Remark 4.1.14. Note that (2) guarantees that the object in (1) is unique up to canonical
1somorphism. We think of the object x as the pullback of y along f and write x = f*y.

Definition 4.1.15. Let p: F — Sch /S be a category fibred in groupoids over S. Denote
by F(X) the category whose objects are objects x of F such that p(x) = X and mor-
phisms are morphisms ¢ in F such that p(¢) = idx. The category F(X) is a groupoid

by (2).

Example 4.1.16. Suppose that F: (Sch /S)? — Set is a functor. Then we can as-
sociate to F' a category fibred in groupoids F. An object of F is a pair (X,x) where
x € F(X) and X is an S-scheme. A morphism ¢: (X,x) — (Y,y) is a morphism
¢: X =Y such that F(¢)(y) = x. The functor p: F — Sch /S sends (X, x) to X.

Let Z € Sch /S and consider the functor F = Hom(—, Z). The associated category fibred
in groupoids is F = Sch /Z and the functor p: Sch /Z — Sch /S is given by composing
with the structure map Z — S. We will denote the category fibred in groupoids associated
to the functor of points Homg(—, Z) of a scheme Z by Z.

Definition 4.1.17. A morphism of categories fibred in groupoids is a functor ®: F — G
such that the following diagram

F L G

Sch /S

commutes. Here pg o ® = pr as functors.

Suppose &, V: F — G are morphisms of fibred categories, then a base preserving natural
transformation a: ® — V¥ is a natural transformation of functors such that for every

u € F the morphism o, : ®(u) — V(u) in G projects to the identity morphism in Sch /S.

We denote by HO Mg, /5(F,G) the category whose objects are morphisms of fibred cat-

egories F — G and whose morphisms are base preserving natural transformations.
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Lemma 4.1.18 (2-Yoneda lemma). The functor
n: HOMgey, y5(X, F) — F(X)
sending a morphism of fibred categories
& X - F
to ®(idx) gives an equivalence of categories.

Proposition 4.1.19. Consider the diagram

Fy

e

F2L>F3

of categories fibred in groupoids over Sch /S. Then the fibred product G = F| X p, Fy

exists and is unique up to unique isomorphism.

Proof. We only prove existence and refer [58, Proposition 3.4.13| for complete details.
Let p;: F; — Sch /S be the given functors to C.

Define G to be the category of triples (x1,x2,0) where z; € F; are objects such that
p1(x1) = pa(x2), and o: ¢(x1) — d(x2) is an isomorphism in F3(p1(z1)) = F(p2(x2)).

A morphism

(x1,29,0) — (2], 25, 0")

is a pair of morphisms f;: 2} — x; in F; (i = 1,2) such that pi(f1) = p2(f2) and the

diagram
/ C(fl)
o(zy) — c(z1)
l d(f2)
d(zh) —=> d(s)
commutes.

Let a: G — Fi be the functor sending (x1,z2,0) to 1 and 5: G — F, the functor
sending (x1, x2,0) to x2. The isomorphisms o define an isomorphism v: coaw — dof3. [J
We now explain the main example of a category fibred in groupoids we will encounter.

Example 4.1.20. Let X € Sch /S and G be a finite group (or more generally a flat
group scheme of finite type) acting on X on the right:

a: X xg G — X.
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Define the category fibred in groupoids [X /G| having objects objects triples (B, E, f)

where

e B is a scheme over S.
o F is a principal G-bundle over B which is locally trivial in the étale topology,
o f: B — X is a G-equivariant morphism.
A morphism from E' — B’ with equivariant morphism f': E' — X to E — B is a

commutative diagrams
E 2+ F

I

B"—— B
where g: E' — E is a G-equivariant morphism such that gf = f'.

There is a natural morphism [X/G] — Sch /S forgetting everything except the base
scheme B. There is also a morphism q: X — [X/G] given by the trivial bundle

XXSGL>X

|

X.

Thus we have the commutative diagram

X xgG —% 5 X

o

X —— [X/qG].

Note that if X = S we denote the category fibred in groupoids [S/G]| by BsG. When
S = Spec k where k is a field we recover the classifying space of G-torsors BG over k.

If G acts freely and the quotient X/G exists in the category of schemes (i.e. the orbit of
every point of X is contained in an affine open subset of X [36, Expose V, Proposition
1.8]) then there is an equivalence of calegories m: [X/G] — X/G.

4.1.3 Deligne-Mumford Stacks

We can now define a stack over S following sections [58, §4] on stacks and [58, §8.3] on

Deligne-Mumford stacks.

Definition 4.1.21. A category fibred in groupoids over S is a stack if:
(i) For any X € Sch /S and any two objects x,y € F(X), the functor

Isomx (z,y): Sch /X — Set
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which associates to a morphism f:Y — X the set of isomorphisms in F(Y)
between f*x and f*y is a sheaf in the étale topology.

(11) Let {X; — X} be a covering in the étale topology. Let z; € F(X;) and let
¢Z] xj|Xi><XXj — $i‘Xi><XXj

be isomorphisms in F(X; X x X;) satisfying the cocycle relation. Then there is an

x € F(X) with isomorphisms ;: x|x, — x; such that
Gij = Vil xixx X, © (Wil x,xxx,) "

A morphism of stacks is a morphism of categories fibred in groupoids.

Example 4.1.22. Let X € Sch /S be an S-scheme and X the associated category fibred

wn groupotds. Then X s a stack.

It is easy to see that X satisfies condition (i) because if f,g: T — X are two elements
of X(T) then Isomp(f,g)(T") is either empty or one point if f|l = g|p. Therefore
Isomx(f,q) is either the constant or empty sheaf.

Another way to see this is that for f,g: T — X, Isomx/(f,g) is the fibred product of

categories fibred in groupoids
Isomx(f,g) —— T

T— 1 . x

<«

which is simply the fibred product T X7 x o T. Thus to see Isomy(f,g) is a sheaf it
suffices to show that T' X ¢ x 4T is a sheaf.

Condition (i1) is non-trivial and follows from showing that Homg(—, X) is a sheaf in the
étale topology for any X € Sch /S. Condition (ii) is true in the Zariski topology and in
the étale topology. It follows from the following theorem, originally due to Grothendieck.

Theorem 4.1.23 (|70, Tag 02W4| and |70, Tag 023P]). For any S-scheme X, the
functor
Homg(—, X): (Sch /S)°? — Set

15 a sheaf in the étale topology.

Example 4.1.24 (|25, Proposition 2.2]). Recall that the category fibred in groupoids
[X/G] where X € Sch /S and G a finite group (this holds more generally for any flat
affine group scheme) acting on X on the right

CL:XXSG—>X.

Let e,€': B — [X/G] correspond to G-principal bundles E — B and E' — B with G-
equivariant morphisms f: E — X and f': E' — X. Then Isomp(e,€’) is the étale sheaf
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which is the quotient of X Xxxx E xg E' by the free product action of G. Moreover,

this sheaf is a scheme.

When E = E' and f = [ these isomorphism correspond to elements of G which preserve
I

Since any principal G-bundle is locally trivial in the étale topology it determines descent
data in the following way. Let {B; — B} be an étale cover on which E — B is trivial.

Then we have G-equivariant morphisms
d)iZEXBBi—)GXBi

If ¢ij is the pullback of ¢; to B; x g Bj then the ¢;; satisfy the cocycle condition.

Descent theory for principal G-bundles gives the opposite direction. Given principal
bundles (not necessarily trivial) E; — B; and isomorphisms Ei|p,xzB;, — Fj|B;xpB;
satisfying the cocycle condition, there exists a principal G-bundle E — B such that
E;~F xp B;. Thus condition (ii) is satisfied.

The definition of a stack is too general to do algebraic geometry. Thus we impose
extra conditions which will allow us to define geometric properties of stacks that closely

resemble properties of schemes.

Definition 4.1.25. A morphism of stacks f: X — Y is representable by schemes if for
every scheme U and morphism y: U — Y the fibre product

XXyQ

1s isomorphic to V. for some scheme V.

Remark 4.1.26. The above definition means that we can pull back elements of Y(U)
to elements of X(X xy U) =X (V).

The following proposition motivates why we will ask for the diagonal to be representable.

Proposition 4.1.27. Let X /S be a stack over S. Then the following two conditions

are equivalent:

1. The diagonal map A: X — X xg X is representable.

2. BEwvery morphism U — X from o scheme U 1is representable.

Proof. Suppose that A is representable and f: X — X and ¢g: Y — X are morphisms
with X and Y schemes. Then the fibred product obtained in the diagram

XY*>
f

X x
|
X

><<T\“<

—_
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is equivalent to the fibred product in the diagram

XXXXsX (X XSY) E— XXSY

| |t

X —— 8 L X xgAX.

Hence X xy Y is a scheme.

Suppose that every morphism from a scheme to X is representable. Let h: X — X xgX
be a morphism with X a scheme given by a pair of maps f: X — X and g: X — X.

Then we have a tower of commutative squares

X Xpxgax X — X

| PX

XXy X —— X xgX

| Lo

X — 8% L xxex

As X x x X is a scheme (as f and g are representable by our assumption), so X' X xx x X
is a scheme. Hence A is representable. ]
Now we can define a Deligne-Mumford stack following the definition in [58].

Definition 4.1.28. A stack X' /S is a Deligne-Mumford stack if the following holds:

1. The diagonal
Ay: X - X Xg X

15 representable by schemes.

2. There exists an étale surjective morphism w: X — X with X a scheme. That is,

for any morphism from a scheme T — X the induced morphism of schemes
XxxyT—>T

is étale and surjective. Note that X xx T is a scheme by (1). We call X an atlas
for X.

A morphism of Deligne-Mumford stacks f: X — Y is a morphism of the underlying

stacks.

Example 4.1.29. [t is easy to see that for any X € Sch /S, X is a Deligne-Mumford
stack as every morphism from a scheme is representable, so the diagonal is representable

and id: X — X is a surjective étale cover.
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Another characterization of Deligne-Mumford stacks is using the notion of formally
unramified. Recall that a morphism of schemes g: V- — W is formally unramified if for
any closed embedding of affine schemes i: Xy < X defined by a square zero ideal, the
natural map

Homyy (X, V) — Homy (Xo, V')

is injective.
Remark 4.1.30. A morphism of schemes g: V. — W s unramified as defined in Defi-
nition 4.1.1 if W is locally noetherian, g is formally unramified and locally of finite type

(c.f. [70, Tag 024Q)]).
Proposition 4.1.31 ([77, Proposition 7.15] and [58, Theorem 8.3.3]). Let X be a
Deligne-Mumford stack over S. Then the diagonal

A/\/:X—>X><SX

if formally unramified.

Example 4.1.32 ([25, Corollary 2.2|). Let X/S be a noetherian scheme of finite type
and G a finite group (more generally, a smooth affine group scheme of finite type over

S) acting on X such that the stabilizers of geometric points are finite and reduced. Then
[X/G] is a Deligne-Mumford stack.

The condition on the stabilizers ensure that Isomp(FE, E) is formally unramified over E
for any B — [X/G|. This implies that the diagonal is unramified. As Isomp(E,E') is
isomorphic to a scheme from Example 4.1.24 we have that the diagonal is representable.
The atlas condition is satisfied by the morphism q: X — [X/G].

4.1.4 Properties of Stacks

We now define properties of Deligne-Mumford stacks and properties of morphisms fol-
lowing [58, §8.2] and [70, Tag 04X8].

We first define properties of Deligne-Mumford stacks using any atlas

Definition 4.1.33 (|70, Tag 0348|). Let P be a property of schemes. We say that P is
local in the étale topology if for any covering {U; — U }ier we have

U has P < each U; has P for all i.

Definition 4.1.34. Let P be a property of schemes which is local with in the étale
topology. We say that a Deligne-Mumford stack X has property P if there exists a
surjective étale morphism X — X with X being a scheme having property P.

Remark 4.1.35. The following properties are local with respect to the étale topology:
reqular, locally noetherian, locally of finite type, quasi-compact, proper. Thus we can talk
about Deligne-Mumford stacks of finite type over a field k (taking S = Speck) which

are reqular.
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4.1.5 Properties of Morphisms
Now we define properties of morphisms of Deligne-Mumford stacks following [70, Tag
04XB].

Definition 4.1.36 (|70, Tag 02KN]). Let P be a property of schemes over a base S. We
say P is local on the target if for any étale covering {Y; — Y }ier and any morphism
of schemes f: X =Y over S we have

fhas P& Y; Xy X — Y, has P for all i.

We say P is local on the source if for any étale covering { X; — X }ier and any morphism
of schemes f: X — Y over S we have

f has P < each X; =Y has P.

Definition 4.1.37. We say a property P of schemes is stable with respect to the étale

topology if P is local on the target and preserved under arbitary base change.

Definition 4.1.38. Let P be a property of morphisms of schemes which is stable with
respect to the étale topology. A representable morphism of algebraic stacks f: X — Y
has property P if for every morphism T — Y with T a scheme, the morphism of schemes

X Xy T—>T
has property P.

To define properties of arbitary morphisms we use the following notation following |58,
§8.2.5]. Let f: X — ) be a morphism of Deligne-Mumford stacks over S. A chart for

f by schemes is a diagram

where X and Y are schemes, the squares in the diagram are commutative, the right

square is cartesian, and g and p are surjective and étale.

Definition 4.1.39 ([58, §8.2.6]). Let P be a property of morphisms of schemes that is
stable and local on the source with respect to the étale topology. Let f: X — Y be a
morphism of Deligne-Mumford stacks. We say f has property P if there exists a chart
for f such that h has property P.

Remark 4.1.40. The above definition allows us to define flat morphisms of Deligne-
Mumford stacks.

We now define the image of a morphism from a Deligne-Mumford stack to a scheme.
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Definition 4.1.41 (|58, S 8.5]). Let X'/S be a Deligne-Mumford stack over S. For a
morphism f: X =Y to a scheme Y C Sch /S, define the image of f to be the subset
of Y which is the image of the composite

U%X%Y

where u: U — X is an étale surjective morphism with U a scheme.

4.1.6 Open and Closed Substacks

We now define various substacks of Deligne-Mumford stacks.

Definition 4.1.42. A morphism of Deligne-Mumford stacks f: Z — X is an open
(respectively closed) embedding if it is representable and has property P in 4.1.38 where

P is the property of being a closed (respectively open) embedding (also called immersion).
An open substack is a stack U and an open imbedding U — X.

A closed substack of an algebraic stack X is defined by an equivalence class of closed
imbeddings Z — X where two closed imbeddings fi: Z; — X (i = 1,2) are equivalent if

there exists a pair (g,0) with g: 21 — Z9 and o: fa 0 g= f1 an isomorphism.

Example 4.1.43. Let Zo act on A,lC by x — —x. Then the inclusion
iz: Speck — [A} ) 7o)

which corresponds to the trivial principal Zo-bundle over Spec k and the equivariant map
Zo — A,lc sending the identily element to x € A,lc and non-identity element to —x is a

closed immersion of stacks.

The morphism 1, is representable because [A,lc/Zg] is a Deligne- Mumford stack and

Ty —— AL

| !

Speck —— [A}. ] 7o)

is the fibre product Speck XAl /2] Spec k[x] is isomorphic to Z /2. The induced map

Zo — A}C 1s the equivariant map which is a closed immbedding.

4.1.7 Separated and Proper Morphisms

Recall that a morphism f: X — Y of schemes is separated if the relative diagonal
Ay: X — X Xy X is a closed imbedding.

Recall that a morphism f: X — Y of schemes is universally closed if for any morphism
Z — 'Y the induced morphism X xy Z — Z is closed (i.e. the image of closed subsets

are closed). Then a morphism f: X — Y of schemes is proper if it is separated, of finite
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type and universally closed. Two examples of proper morphisms of schemes are closed

imbeddings and finite morphisms.

We now extend the definition of separated to Deligne-Mumford stacks.

Definition 4.1.44. Let f: X — Y be a morphism of Deligne-Mumford stacks over S
and let

be the (relative) diagonal morphism.

o We say f is quasi-separated if the diagonal Ay is quasi-compact and quasi-separated.

o We say [ is separated if the diagonal Ay y is proper.
If Y =5 and f s the structure morphism, then we say that X is separated.

The following gives a way of characterizing whether a quotient stack is separated. Recall

that a group action of G on X on the left is a morphism
a: Gx X — X.

The action is proper if
(a,idx): Gx X - X x X

is proper.

Proposition 4.1.45 (|25, Corollary 2.2]). Let X/S be a noetherian scheme of finite
type over S and G a finite group (more generally a smooth affine group scheme of finite
type over S) acting on X on the right such that the stabilizer groups of geometric points
are finite and reduced. Then [X/G)| is separated if and only if the action is proper.

Example 4.1.46 (Example of a seperated stack). Consider the quotient stack X =
(Al / Zs] where Zy acts on A' by z +— —z. Then X is a seperated because the action is
proper. We will give a different proof in Example 4.2.16 in Section 4.2.2 using groupoid

presentations.

Now we define proper morphisms for non-representable morphisms following [58, §10.1]
and [70, Tag 0CL4].

Definition 4.1.47. A morphism f: X — Y from a Deligne-Mumford stack X to a
scheme Y is closed if for every closed substack Z C X the image of Z in'Y 1is closed.

A morphism f: X — Y of Deligne-Mumford stacks is universally closed if for every
morphism Y — Y where Y is a scheme, the morphism X xyY —Y s closed.

A morphism f: X — Y of Deligne-Mumford stacks is proper if it is separated, of finite

type, and universally closed.
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This new definition recovers our previous definition of proper morphism when the mor-

phism is representable due to the following.

Proposition 4.1.48 (|58, Proposition 10.1.4|). Let f: X — Y be a representable sepa-
rated morphism of finite type. The f is universally closed if and only if f is proper in

the previous sense.

Example 4.1.49. A closed imbedding of Deligne-Mumford stacks is proper.

We now list some properties of proper morphisms of Deligne-Mumford stacks.

Proposition 4.1.50 (|58, Proposition 10.1.6]).
e For a composite of morphisms of Deligne-Mumford stack

x 1,y 9.2

if f and g are proper, so if gf. If gf is proper and g is separated (e.g. proper)
then f is proper.

e Proper morphisms are closed under arbitary base change.

4.1.8 Automorphism Groups of Points

We now define properties of Deligne-Mumford stacks which are dependent on properties

of automorphism groups of points.

Definition 4.1.51. Let X/S be a Deligne-Mumford stack over S and k be a field. For
x: Spec(k) — X define the automorphism group of = to be the finite group scheme G
defined as the fibred product of the diagram

G, — Spec(k)

! |

Spec(k) ———— X.

Definition 4.1.52. Let X be a Deligne-Mumford stack separated and of finite type over
S. We say that X is tame if for every geometric point (a morphism z: Spec(k) — X

where k is algebraically closed) the automorphism group Gz has order invertible in k.

Remark 4.1.53. If S is a scheme over a field of characteristic zero, then every separated

Deligne-Mumford stack of finite type over S is tame.

We also need the notion of trivial generic stabilizer which means that our stabilizer

groups will be as small as possible.

Definition 4.1.54. A Deligne-Mumford stack X over S has trivial generic stabilizer if
for any atlas U — X the automorphism group of the generic point of U in X is trivial.

Example 4.1.55. Let G be a finite group acting effectively on a quasi-projective scheme
X over k. Then the quotient stack [X/G] has trivial generic stabilizer.
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4.2 Presentations of stacks

In this section, we summarize the definitions and properties of algebraic groupoids and
the stack associated to an algebraic groupoid. We give a dictionary between properties
of a stack and properties of a groupoid presentation for that stack. More details (in
greater generality) can be found in [58, §3.4], [70, Tag 04TJ] and [7].

4.2.1 Stack Associated to an Algebraic Groupoid

Recall that a groupoid is a small category in which every morphism has an inverse. It

comprises of:

e a set of objects U

a set of morphisms R,

e source and target maps s,t: R — U,

e a composition map m: R X,y R — R,

e an inverse map i: R = R

e a map giving identity map €: U — R.
This can be abstracted in the following way where the sets of objects and morphisms
are schemes.

Definition 4.2.1. An algebraic groupoid over S is a collection of data
(R,U,s,t,€,i,m)
with

1. Objects R and U of Sch /S.

2. Morphisms over S

s:R—U,t: R—>U,e: U — R,
1t R—Rm: Rxsys R— R.

This data is required to satisfy the “obvious” axioms of a groupoid where R denotes
the morphisms, U the objects, s,t the source and target, € is the identity map, ¢ the
wmwerse, and m describes how to compose morphisms. We will write R = U to denote

the groupoid (R, U, s,t,€,i,m).

Note that for any scheme T, the groupoid in sets (U(T), R(T), s,t,€,i,m) is a groupoid

in the usual sense.
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Definition 4.2.2 ([70, Tag 0230]). A morphism ®: (R = U) — (R’ = U’) of algebraic
groupoids over Sch /S is a pair of morphisms of schemes ®: U — U’ and ®: R — R’
such that for any scheme T over S the map ® defines a functor

®(T): (R(T)=U(T)) = (R(T) = U'(T))
between groupoid categories.

We now explain how to construct a category fibred in groupoids associated to an alge-

braic groupoid R = U following [70, Tag 04TJ|. For every X € Sch /S, consider the
category {R = U}(X) whose objects are elements z € U(X) = Homg, ,5(X,U), and
a morphism x — 2’ is an element £ € R(X) for which s(§) = x and ¢(§) = 2/,

P

X:;U

Given a composition

Ty Ty
we define £ o7 to be the image under m of the element
(§;m) € R(X) X4 ux) R(X).

The axioms of a groupoid in Sch /S imply that {R = U}(X) is a category. In fact, it
is a groupoid as the inverse of £ € R(X) is given by (&).

To any morphism f: X — Y there is a functor
AR = UNY) = {R = UHX),
induced by the pullback maps
ffUY)—=UX), f*@RY)— RX).
This allows us to define a fibred category
p: {R=2U} — Sch/S
with objects given by pairs (X, z) with X € Sch /S and x € {R = U}(X). A morphism
(X,2) = (Y, y)

in {R = U} is a pair (f,«a) where f: X — Y is a morphism in Sch /S and a: x — f*y
is a isomorphism in {R = U}(X). The functor p sends a pair (X,z) to X and a mor-
phism (f,a) to f.
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To get a stack from {R = U} — Sch /S we stackify the category fibred in groupoids.
To do this we construct the category [R =2 U] — Sch /S as category which has objects
over T' € Sch /S the collection of data

({Ts — Thier, (ti, ¢i5)) »

where {T; — T'} is an étale covering of 7 and (¢;, ¢;5) is an object of {R = U}({T; —
T}).
A morphism

(T = T} (e vs) = (T = T ({8}, 645))

is a pair (f,p) where f: T — T is a morphism in Sch/S and
p: ({tL}, (t%)) — f*({ti}, (¢i;)) is a morphism between the induced objects of

{R = U}({TS/ X T X7 T%}i,s — T/).

More explicitly, an object of [R = U](T) is a tuple

(T = T3, (i, ¢i))

where {T; — T'} is a covering in Sch /S and ¢;: T; — U and ¢;;: T; X x, T; — R such
that s o gbij = ti and to gf)z'j = tj.

Remark 4.2.3. There is a more general way to get a stack from a category fibred in

groupoids [58, Theorem 4.6.5] which follows a similar procedure.

Remark 4.2.4. The stack [R = U] associated to an algebraic groupoid is not necessarily
a Deligne-Mumford stack (c.f. [70, Tag 06PI]) as it need not admit an atlas.

Definition 4.2.5. An algebraic groupoid R = U 1is étale if the two maps s: R — U
and t: R — U are étale.

Theorem 4.2.6 (|70, Tag 04TJ|). Let R = U be an étale groupoid over S. Then the
associated stack [R = U] is a Deligne- Mumford stack over S with atlas U.

Definition 4.2.7. A presentation of a Deligne-Mumford stack X /S is an étale groupoid
R = U such that [R =2 U] = X.

Remark 4.2.8. Note that any Deligne-Mumford stack X has a presentation R = U
where U is an atlas for X and R =U xx U with s and t given by the projection maps.
As any Deligne- Mumford stack has many atlases there are many different presentations.
Thus an étale groupoid can be thought of as a Deligne-Mumford stack and a choice of

an atlas.

Example 4.2.9. Let X be a quasi-projective variety and G a finite group acting effec-
tively on the left on X with action map a: G x X — X. Then we can form the étale
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groupoid
GxX =3 X
and the Deligne- Mumford stack |G x X = X| is isomorphic to the quotient stack [ X/G].

Thus we can interpret properties of [ X/G] in terms of the étale groupoid above.

4.2.2 Properties of Stacks in Terms of Groupoids

Throughout this section let X be a Deligne-Mumford stack over a scheme S and R = U
a presentation for X so [R = U] = X. Note that U is an atlas for X and s,t: R - U

are étale.

First, we observe the following proposition which follows from Definition 4.1.34.

Proposition 4.2.10. Let P be a property local in the étale topology. Then X has
property P if and only if U does.

We now show that any morphism of algebraic stacks induces a morphism of presentation.

Lemma 4.2.11 (|70, Tag 04Y6]). Let f: X — Y be a morphism of Deligne-Mumford
stacks over S represented by schemes. Let [R = U] be a presentalion for Y. Set
U =UxyX and R' = R xy X. Then there is a groupoid of the form [R' = U’| which

15 a presentation for X and o diagram

R =U] — X

lpr f

R=U] —— Y
where pr is induced by a morphism of groupoids (R’ = U) — (R = U).

We can also relate locally closed, open and closed substacks of X to invariant subspaces
a presentation groupoid [R = U]. We follow [70, Tag 04YK].

Definition 4.2.12 (|70, Tag 03LN]). Let R = U be an étale groupoid over S.

1. A open subset W C U is R-invariant if t(s—1(W)) Cc W.

2. A closed subscheme Z C U is R-invariant if s=1(Z) = t=1(Z) where we take the

scheme theoretic inverse image.

If W is an R-invariant open subscheme of U, the restriction of R to W is Ry =
sTYW) = t=Y(W). Similarly if Z is an R-invariant open subscheme of U, the restric-
tion of R to Z is Ry = s~ Y(2) =t71(Z)

Lemma 4.2.13. Let R = U be an étale groupoid over S. Let i : Z — [U/R] be

an immersion. Then there exists an R-invariant locally closed subspace Z C U and a
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presentation [Rz = Z| — Z where Ry is the restriction of R to Z such that

[Rz = Z] Z

~

[R = U]

is 2-commutative. If i is a closed (resp. open) immersion then Z is a closed (resp. open)

subspace of U.

Proposition 4.2.14. Let [R = U] be a presentation of a Deligne-Mumford stack X

over S. Then there is a canonical bijection
locally closed substacks Z of X <— R-invariant locally closed subspace Z of U

sending Z to Z X x U. Similarly for closed and open substacks.

We now relate properties of the diagonal Ay: X - X xg X toj = (s,t): R— U x U.

Proposition 4.2.15 (|70, Tag 0DTX]). Let X' be a Deligne-Mumford stack over S and
R 3 U a presentation for X.

Then

1. If j: R — U x U is separated, then Ay is separated.

2. If U and R are separated, so is Ay.

3. If j: R— U x U is proper, then X is separated.

4. If s,t: R — U are proper and U is separated, then X is separated.

Example 4.2.16. Consider the quotient stack X = [A' | Zs] where Zo acts on Al by
z v+ —z. We claimed earlier that this stack is separated. Consider the presentation

Al X Zy =2 Al of X where s,t are given by pr1 and the action map a: Al x Zy — Al.

By Proposition 4.2.15 (3) we see that X is separated as Al is separated, t = a is proper
as Zs acts properly, and s = pri: Al x Zy — Al is proper.

4.3 Sheaves on Stacks

In this section, we first define quasi-coherent and coherent sheaves on Deligne-Mumford
stacks following |77, Appendix §7.18 |. For more general algebraic stacks see [58, §9].
We then define the bounded derived category of coherent sheaves on a Deligne-Mumford
stack using the construction from Section 2.1.1. Finally, we define derived push forward,

pullback, tensor product, and Hom functors in the context of Deligne-Mumford stacks.
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4.3.1 Coherent Sheaves on a Stack

Definition 4.3.1. Let X /S be a Deligne-Mumford stack over S. A quasi-coherent sheaf
F on X is the following collection of data:

1. For each atlas U — X a quasi-coherent sheaf Fyy on U.

2. For each commutative diagram
v—J v
X
with U,V atlases an isomorphism oy: Fy — f*Fy.

These isomorphisms are required to satisfy the cocycle condition.

Suppose that X is locally noetherian. Then a quasi-coherent sheaf F on X is coherent
if X is locally noetherian (so every atlas U — X is locally noetherian) and all sheaves

Fyr are coherent.

If E and F are quasi-coherent sheaves on X, a homomorphism ¢: E — F is a collection

of homomorphisms ¢y : Ey — Fy for any atlas U which is compatible with the oy.

We will denote the categories of quasi-coherent (resp. coherent) sheaves on X by QCoh(X)
(resp. Coh(X)).

Example 4.3.2.

1. The structure sheaf Oy is defined by (Ox)y = Oy for any atlas U — X [70, Tag
06TU].

2. The sheaf of differentials Qx /g is defined by (Qx/s)v = Quys. Since the map f
has to be étale, there is a natural isomorphism Qs = f*Qyyg.

Remark 4.3.3. The more general theory of quasi-coherent sheaves on an algebraic stack
can be developed using the lisse-étale topology on Sch /S but this has difficulties defining
the pullback of quasi-coherent sheaves (see [58, §9.3]). For Deligne-Mumford stacks
the categories of quasi-coherent sheaves with respect to the lisse-étale topology and with

respect to the étale topology are equivalent, allowing us to avoid these complications.

Definition 4.3.4 ([70, Tag 06 TN] and [70, Tag 06TI]). Let ®: X — Y be a morphism of
Deligne-Mumford stacks over S and F a quasi-coherent sheaf on Y. Define the inverse
mmage of F' along ®, *F by

(@ 'F)y = Fa.

Just as for schemes, we can define the pullback ®*F of F' by

(*F)u = Fa) ®p-10,, Ox.
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Let ®: X — Y be a morphism of Deligne- Mumford stacks over S and F a quasi-coherent
sheaf on X. Define the push forward of F', &, F by

&, F)y = lim Fy.
(P F)y s,

By construction, these give an adjoint pair
Homy (®*G, F) =ZHomy (G, ¢, F).

Remark 4.3.5. If ®: X — Y is a representable morphism of Deligne-Mumford stacks
over S, then we can compute the push forward of a sheaf F' on X by ® as follows.

Consider the diagram
X Xy Vv——V

|

X —2®* Ly

where V. — ) is an atlas. Then X xy V — X is an atlas for X and ®.(F)y =
P (Faxyv)-

4.3.2 Coarse Moduli Space

We now define the coarse moduli space of a Deligne-Mumford stack following [58, §11].
Definition 4.3.6. Let X' /S be a Deligne-Mumford stack over S. A coarse moduli space

for X is a scheme X over S and a morphism w: X — X such that:

(i) m is initial for maps to a scheme over S.

(11) For every algebraically closed field k the map |X (k)| — X (k) is bijective where
|X (k)| denotes the set of isomorphism classes in X (k).

The following theorem of Keel and Mori guarantee the existence of coarse moduli spaces

for many Deligne-Mumford stacks.

Theorem 4.3.7 ([58, Theorem 11.1.2]). Assume that S is locally noetherian and X a
Deligne-Mumford stack of finite presentation over S with finite diagonal. Then there

exists a coarse moduli space m: X — X. In addition:

1. X/S is locally of finite type, and if X/S is separated, so if X/S.
2. w is proper and Ox — m.Ox is an isomorphism.

3. If X' — X s a flat morphism, then ©': X' = X xx X' — X' is a coarse moduli

space.

Example 4.3.8. Let X be a smooth quasi-projective variety over k and G a finite group
acting on X. Then the quotient stack [X /G| satisfies the assumptions above and has
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a coarse moduli space X/G given locally as the invariant ring of functions (c.f. [77,
Proposition 2.11]).

We will use the following Proposition to characterize morphism between Deligne-Mumford

stacks with isomorphic coarse moduli spaces

Proposition 4.3.9. Suppose f: X — X' is a morphism of Deligne-Mumford stacks

and we have a commutative diagram

X f X
N,
X.

where X is the coarse moduli space for both X and X'. Then f is proper.

Proof. The Proposition follows from the maps X — X and X’ — X being proper and
Proposition 4.1.50 as 7 = 7’ o f. O

We will use the following concerning the push forward of quasi-coherent sheaves from a

tame Deligne-Mumford stack to its coarse moduli space.

Proposition 4.3.10 (|58, Proposition 11.3.4|). Let X' /S be a Deligne-Mumford stack
locally of finite presentation over a locally noetherian scheme S with finite diagonal. Let

m: X = X be its coarse moduli space. If X is tame, then the functor
e : QCoh(&X) — QCoh(X)

18 exact.

4.3.3 Effective Cartier Divisors

Just as for schemes we have a bijection between closed subschemes Z and ideal sheaves
Tz we have a similar bijection for closed substacks [50, Application 14.2.7]. We will

denote by Zz the quasi-coherent ideal sheaf associated to a closed substack Z.

Definition 4.3.11. Let X be a Deligne-Mumford stack over S. An effective Cartier
divisor on X is a closed substack D C X whose ideal sheaf Ip is a line bundle.

Example 4.3.12. Let G = Z /27 act on C? by the matriz

(1)

Consider the quotient stack [C? /G] Then the closed substack D = [D/G] C [C? /G]
where D =V (z) C C? is an effective Cartier divisor.
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4.3.4 Coherent Sheaves on a Groupoid

We now relate sheaves on a Deligne-Mumford stack X to sheaves on a presentation
R = U. See [70, Tag 03LH] for more details.

Definition 4.3.13. A quasi-coherent sheaf on an algebraic groupoid R = U is a quasi-
coherent sheaf F' on U with respect to the étale topology together with an isomorphism
a: s*F2=t*U which satisfies a cocycle condition given by associativity of the groupoid
multiplication and that €' = id. A quasi-coherent sheaf F on R = U 1is coherent if U

15 locally noetherian and F' on U s coherent.

A morphism of quasi-coherent sheaves ¢: (F,a) — (G, ) of sheaves on R = U is a
morphism of Oy-modules ¢: FF — G such that

S*F —% 5 t*F

Al

G P g

commutes.

We will denote the category of quasi-coherent (resp. coherent) sheaves on R = U by
QCoh(R = U) (resp. Coh(R =2 U)).

Proposition 4.3.14 (|70, Tag 06WT|). Let R == U be an étale groupoid over S and
X = [R = U] the associated algebraic stack. Then the category of quasi-coherent sheaves

on X is equivalent to the category of quasi-coherent sheaves on the étale groupoid R = U.

Proof. Recall that an object x = (T',u) is ascheme T and amap u: T'— U. A morphism
(T,u) — (T',u') is given by a pair (f,r) where f: T — T’ such that v’ o f = u and
r: T — R such that sor =w and tor =u'o f.

Let F' be a quasi-coherent sheaf on X. Then we obtain for every atlas u: T — X €
[R(T) = U(T)] a quasi-coherent sheaf v*F = Fp on T. Moreover, for any morphism

f:(T,u) — (T",u') of atlases we have an isomorphism
of: f*FT/ — Fr.

These isomorphisms are compatible with compositions. We construct a quasi-coherent
sheaf on R = U in the following way: First the object (U, id) € [R = U](U) corresponds
to the quasi-coherent sheaf Fy7;q on U.

Recall that as s,t: R — U are surjective étale maps as they admit a section e. Hence
we have sheaves F(p ) and F(g; on R corresponding to the elements s,t: R — U €
[R = U](R).

The isomorphism «: t*Fyy = s* Fy is obtained in the following way:

1. First, the element idgr gives an isomorphism between (R,s) and (R,t) in X'(R)

and so an isomorphism of sheaves F(g o) = F(Ry).
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2. The morphism (R, s) — (U, id) gives an isomorphism s*F(y;q) = F(R.s)-

3. The morphism (R,t) — (U, id) gives an isomorphism t*F{y;q) = Fpy.

By composing these we obtain the necessary isomorphism a. This isomorphism satisfies

the cocycle relation as the multiplication on R = U is associative.

Conversely, suppose that (F,«) is a quasi-coherent sheaf on R = U. Then we define a
presheaf Fy of Oy-modules on X by for any atlas u: T — X € [R = U|(T)

Fx(T,u) =T(T,u"F).

Given a morphism (f,r): (T,u) — (T",4) there is a map

P(T" ') =I(T", (u)"F)
=I(T, f*(u')"F) = T(T, (u o f)*F)
=I(T,(tor)"F) =T(T,r"t"F)
=TT, r*s*F) =T(T,(sor)"F)

(T, u*F)
F(T,u).

The cocycle condition guarantees that this defined a presheaf of modules. Pulling Fly
back to Sch /T shows that Fly is quasi-coherent. O

Example 4.3.15. Let X = [X/G| where G is a finite group acting on a locally noethe-
rian scheme X. Then X x G =% X is a presentation for [X/G|. Thus quasi-coherent
sheaves on [X/G| correspond to pairs (E,a) on X where a: priE — a*E is an iso-
morphism which satisfies a cocycle condition. This is by definition a G-equivariant

quasi-coherent sheaf on X. Thus we have equivalences of categories
QCoh([X/G]) = QCoh%(X), Coh([X/G])=Coh%(X)
between (quasi-)coherent sheaves on X and G-equivariant sheaves on X.

Given a morphism of groupoids, we get two functors relating sheaves between the two

groupoids.

Proposition 4.3.16. Let ®: (R = U) — (R’ = U) be a morphism of algebraic
groupoids. Then ® defines a functor

&*: QCoh(R = U’) — QCoh(R = U)
by ®*: (F', ) — (P*F', *d/).

Proposition 4.3.17. Let ®: (R = U) — (R’ = U) be a morphism of algebraic
groupoids. Suppose that
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1. ®: U — U’ is quasi-compact and quasi-separated

2. The square

commutes, and

3. The morphisms s and t are flat.

Then ® gives a functor
®,: QCoh(R =U) — QCoh(R' = U")

defined by ®.: (F,a) — (P, F, Prav).

4.4 Derived Category of a Stack

We now construct the derived category (quasi)-coherent sheaves on a Deligne-Mumford
stack and explain how to derive the usual functors between categories of (quasi)coherent

sheaves.

Proposition 4.4.1 ([70, Tag 06WU]). Let X be an Deligne-Mumford stack over S.
Then the category QCoh(X) is abelian. Moreover, if X is locally noetherian then
Coh(X) is an abelian subcategory of QCoh(X).

Proof. By Proposition 4.3.14 we have an equivalence QCoh(X)=QCoh([R = U]).
Thus it suffices to show that QCoh([R = U] is abelian. This follows from [70, Tag
06VZ] and we sketch the argument below.

Recall that R = U is an étale groupoid, so s and t are both flat. Let ¢: (F,a) — (G, 8)

be a morphism of quasi-coherent sheaves on R = U. As s is flat the sequence

s*¢p

0 —— s*ker¢ s*F $*G —— s*coker¢p —— 0

is exact. Moreover, we have a similar exact sequence for t*. Then the isomorphisms
s*a and s*f induce isomorphisms k: s*ker¢ — t* ker ¢ and A: s* coker ¢ — t* coker ¢.
The result then follows from showing (ker ¢, x) and (coker ¢, \) satisfy the universal
property for kernels and cokernels using that QCoh(U) is abelian.

Suppose X is locally noetherian. Then U and R are also locally noetherian. Then s
and t preserve coherent sheaves. Then Coh(R = U) is an abelian subcategory we use

the fact that s* and t* preserve coherent sheaves. O
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Remark 4.4.2. The above proposition allows us to apply the machinery in Section
2.1.1 to construct the following derived categories D*(QCoh(X)) and D*(Coh(X)) for
* =+, —,b. Following Section 2.1.1 we will write D(X) = D*(Coh(X)).

The following result generalizes a well-known result for noetherian schemes [38, Propo-
sition 3.5 to noetherian Deligne-Mumford stacks.
Proposition 4.4.3 ([9, Proposition A.1]). Let X be a noetherian Deligne-Mumford

stack. Then the obvious functor defines an equivalence

D™ (Coh(X)) = Dg,, (QCoh(X)).

4.4.1 Derived Functors and Stacks

In this section we derive several of the common functors including — ® — and for a
morphism f: X — Y the functors f* and f., echoing Section 2.2.1 which treated the

case of schemes.

Derived Tensor Product and Pullback

First, we treat the case of left derived functors for tensor product and pullback along
a morphism of Deligne-Mumford stacks. On the level of bounded above complexes of

(quasi)-coherent sheaves, we can derive the tensor product bi-functor.

Proposition 4.4.4 ([50, 13.2.6(i) and 15.6(i) and (ii)]). Let X be a Deligne-Mumford

stack over S.

1. IfE and F are quasi-coherent sheaves on X, then E®Qo, F is also a quasi-coherent

sheaf. More generally, the functor — ®éX — induces a functor
—®4, —: D™(QCoh(X)) x D~(QCoh(X)) — D™ (QCoh(X)).
Moreover, if X is locally noetherian, then — ®o, — induces a functor

—®%, —: D™(Coh(X)) x D~ (Coh(X)) — D~ (Coh(&X)).

For a morphism f: X — ) we have a similar result on the level of bounded above

complexes

Proposition 4.4.5 (|70, Tag 07BD]). Let f: X — Y be a morphism of Deligne-
Mumford stacks. Then the functor f* induces a left derived functor

Lf*: D~(QCoh(Y)) — D~ (QCoh(X)).

To descend these functors to the bounded derived category we will need the language

of perfect complexes.
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Perfect Objects and the Bounded Derived Category

We refer to [70, Tag 08CL| and [9, Appendix A] for the following results.

Definition 4.4.6. Let X be a scheme over S. An object E € D(QCoh(X) is perfect if
it is locally (in the étale topology) quasi-isomorphic to a bounded complex of finite free

Ox -modules.

Let X be a Deligne-Mumford stack over S. An object E € D(QCoh(X)) is perfect if
for any atlas U — X, Ey is perfect.

We will denote the triangulated subcategory of D(QCoh(X)) of perfect objects in D(QCoh(X))
by Dy (X).

It is useful to talk about perfect complexes when considering the functors — ® — and

f* for a morphism f: X — Y of stacks due to following results

Proposition 4.4.7 ([70, Tag 08CL]). 1. Let E*,F* € Dy,s(X). Then E®* ®" F* €
Dpp(X). Thus —® — descends to a bi-functor

—®% —: Dyp(X) x Dpy(X) = Dy ().

2. Let f: X — Y be a morphism of Deligne-Mumford stacks. Then if E® € Dp(Y),
Lf*(E®) € Dpp(X). Thus we have a functors

Lf*: Dps(Y) = Dps(&X).

The category of perfect complexes is useful as it gives a way to descend to the bounded

derived category using the following result

Proposition 4.4.8 (|9, Proposition A.2|). Let X be a regular and quasi-compact. Then
we have an equality

Dyy(X) = D(Coh(X)).

Combining the previous two Propositions we have the following

Corollary 4.4.9. Let X be a reqular, noetherian Deligne-Mumford stack over S. Then

there exists a derived bi-functor

— @ —: DY(Coh(X)) x D*(Coh(X)) — D®(Coh(X))

Let f: X — Y be a morphism of regular, noetherian Deligne-Mumford stacks over a

scheme S. Then there exists a derived functor

Lf*: D°(Coh(Y)) — D°(Coh(X)).

Often the map f: X — )Y will be flat. The the following result means that, as for

schemes, we will not have to derive f*.
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Lemma 4.4.10 ([70, Tag 076W|). Let f: X — Y be a flat morphism of Deligne-
Mumford stacks. Then

f*: QCoh(Y) — QCoh(X)

15 ezact.

Derived Hom Functor

As QCoh(X) contains enough injective we can derive Homy (F, —).

Proposition 4.4.11 (|57, Proposition 6.4]). Let X be a locally noetherian Deligne-
Mumford stack. Then the functor RHomy(—, —) induces functors

RHomy(—,—): D™ (Coh(X)) x DT(QCoh(X)) — DT (QCoh(X))
RHomy(—,—): D~ (Coh(X)) x D*(Coh(X)) — D*(Coh(X))

To descend to the bounded level we have to assume that X is regular, just as for schemes.

Derived Pushforward Functor

In Section 2.2.1 we used for a scheme X that QCoh(X) has enough injectives. For a
Deligne-Mumford stack X we also have that QCoh(X) enough injectives.

Proposition 4.4.12 (|70, Tag 06WU]). Let X be a Deligne-Mumford stack over S.
Then the category QCoh(X) has enough injectives.

Thus on the level of QCoh(X') we can derive f, assuming f is a quasi-compact morphism

of quasi-compact quasi-separated Deligne-Mumford stacks.

Lemma 4.4.13 (|57, Lemma 6.5|). Let f: X — Y be a quasi-compact morphism
of quasi-compact quasi-separated Deligne-Mumford stacks. Then for any any quasi-
coherent sheaf E on X, the sheaf foE is a quasi-coherent sheaf on ).

As QCoh(X) has enough injectives, by Section 2.1.3 there exists a derived functor

Rf.: DT(QCoh(X)) — D' QCoh(Y).
Similarly, as for schemes, we have the following Theorem for on the level of coherent
sheaves.

Theorem 4.4.14 ([57, Theorem 10.13]). Let f: X — Y be a proper morphism between
locally noetherian Deligne-Mumford stacks. Then for any coherent sheaf E on X and

i > 0, the sheaves R'f,E are coherent on ). More generally, we have a functor

Rf,: D (Coh(X)) — DT (Coh()).
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To descend to the bounded derived category we use the following theorem.

Theorem 4.4.15 (|58, Theorem 11.6.5]). Let f: X — Y be a proper morphism of
finite type Deligne-Mumford stacks over S and assume that S is quasi-compact. For
a geometric point T — X, let Gz(resp. Hjy(z)) denote the stabilizer group of T (resp.
f(Z)), and let Kz denote the kernel of the natural map Gz — Hp). If for every
geometric point T the order of the group Kz is invertible in the field k(Z), then there
exists an integer ng such that for any quasi-coherent sheaf E on X we have R1f,E =0

for g > nyg.

Corollary 4.4.16. Let f: X — Y be a proper morphism of locally noetherian tame

Deligne-Mumford stacks over a quasi-compact scheme S. Then Rf, induces a functor
Rf.: D°(Coh(X)) — D®(Coh(Y)).

Proof. This follows from apply Proposition 2.1.15 using Theorem 4.4.15. O

Remark 4.4.17. Just as for schemes, the projection formula holds for Deligne- Mumford
stacks as it holds for perfect objects [70, Tag 0943].

Duality for Stacks

We now explain when Grothendieck-Verdier Duality lifts to stacks. For schemes Grothendieck

Verdier Duality centers around constructing a right adjoint to f..

Theorem 4.4.18 ([56, Theorem 1.16]). Let f: X — ) be a separated quasi-compact
morphism of Deligne-Mumford stacks. Then the functor Rf.: DT (X) — DT (Y) has a
right adjoint f': DY () — DT(X).

For proper morphisms, we have the following description

Proposition 4.4.19 ([56, Corollary 2.10]). Let f: X — ) be a proper morphism of
Deligne-Mumford stacks and F* € D} (X),G®* € D" (Y). Then the natural morphism

Rf.RHomx(F*, f'G*) = RHomy(Rf.F*, Rf.f'G*) = RHomy(Rf.F*,G*)
1S an 1somorphism.

For smooth proper Deligne-Mumford stacks we have Serre Duality just as for schemes.

Theorem 4.4.20. Let X be a smooth proper Deligne-Mumford stack over k of dimen-
sion n. Then wx[n] is a dualizing complex for X. Hence Sy = — @ wx[n] is a Serre
functor for X.



Chapter 5

Semi-orthogonal Decompositions for
Deligne-Mumford Stacks

In this chapter, we recall the main tools used to construct semi-orthogonal decompo-
sitions of the bounded derived category of coherent sheaves on smooth separated tame

Deligne-Mumford stacks over a field k.

In Sections 5.1 and 5.2 we describe the main constructions used to understand the
geometry of these stacks: canonical stacks and root stacks. We then in Section 5.3

describe the geometry of these stacks using these constructions following [31].

In Section 5.4 we recall semi-orthogonal decompositions of root stacks and iterated root
stacks constructed by Ishii and Ueda [40]. We then apply these results to describe semi-
orthogonal decompositions of Deligne-Mumford quotient stacks. As far as the author

knows, this perspective is new and not in the literature.

In Section 5.5 we prove that for any smooth separated tame Deligne-Mumford stack
X over a field k with trivial generic stabilizer and coarse moduli space X, the derived
category D(X ") of the canonical stack X" embeds fully faithfully into D(X’). Again,

this result appears to be new.

The article [73] follows a similar approach from the perspective of Gromov-Witten

theory which may be of interest to the reader.

Notation and Conventions

Throughout this chapter, a Deligne-Mumford stack will be a quasi-separated quasi-
compact Deligne-Mumford stack of finite type over a field k, i.e S = Spec k. We do not
impose any additional assumptions on k. Throughout we will write X both the scheme
X and the stack X associated to X.

We say a morphism between stacks is unique if it is unique up a unique 2-arrow. We

denote by Gy, the sheaf of invertible sections in Ox.
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5.1 Canonical Stacks

Canonical stacks were first studied by Vistoli in [77], as a way of associating a smooth
stack to a scheme of finite type over k with tame quotient singularities (étale locally the
quotient of a smooth variety by a finite group whose order is prime to the characteristic
of k). In particular, the canonical stack is the first example of a stacky resolution of
singularities. We hope to study schemes with tame quotient singularities by studying

the associated canonical stack.

The notion of a smooth Deligne-Mumford stack being canonical corresponds to the
subset of “stacky point" having codimension at least 2. We follow [26, §4]. Other

references are [77] and [31].

Definition 5.1.1. Let X be o smooth Deligne-Mumford stack with coarse moduli space
X. We call X canonical if the locus where the map m: X — X 1is not an isomorphism

has codimension > 2 in X.

Example 5.1.2. Let G C SL(n,C) be a finite subgroup. Then the quotient stack
[C™ /G] is canonical. This follows from Fix(G) = {0} € C". More generally, if G C
GL(n,C) is small (contains no psuedoreflections) then [C" /G] is canonical for similar

reasons.

We now recall some well known facts about canonical Deligne-Mumford stacks from |26,
§4]

Remark 5.1.3. Let X be a smooth canonical Deligne-Mumford stack with coarse moduli

space X.

e The locus where the coarse map 7: X — X is an isomorphism is precisely 7= (Xsm),

where Xgpy, s the smooth locus of X.

o If X is smooth, 7 is an isomorphism and X = X.

Definition 5.1.4.

1. A dominant morphism f:V — W of irreducible varieties is called codimension
preserving if codimy Zy = codimy Z for any irreducible closed subset Z C W

and every irreducible component Zy of f~1(Z).

2. A dominant morphism of Deligne-Mumford stacks with trivial generic stabilizers
is codimension preserving if the induced map on every irreducible component of

the coarse moduli space is codimension preserving.

Remark 5.1.5. Note that coarse moduli space map X — X is codimension preserving
because the induced map is the identity. Moreover, any flat morphism (therefore any
étale and smooth) morphism is codimension preserving. A composite of codimension
preserving maps 1s codimension preserving. Note that blowing up is not codimension

preserving.
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We will now characterize canonical stacks using a universal property.

Theorem 5.1.6 (|26, Theorem 4.6]). Let X be a canonical smooth Deligne-Mumford
stack, m: X — X the morphism to the coarse moduli space and g: Y — X a dominant
codimension preserving morphism with ) a smooth Deligne-Mumford stack with trivial
generic stabilizer. Then there exists a unique morphism f: Y — X such that the diagram

¥ TR

RN

=

€

%

>

commutes.

The following corollary asserts the uniqueness of a canonical stack for the coarse moduli

space X. This allows us to talk about the canonical stack with coarse moduli space X.

Corollary 5.1.7 (|26, Corollary 4.8]). Let X, be a canonical smooth Deligne-Mumford
stacks with coarse moduli spaces X,Y respectively. Let f: X — Y be an isomorphism.

Then there is a unique isomorphism f: X — Y inducing f.

We now describe the unique canonical Deligne-Mumford stack with trivial generic sta-
bilizer associated with a variety over a field k with (tame) quotient singularities. Recall
that a variety X over a field k is said to have tame quotient singularities if it is étale
locally the quotient of a smooth variety by a finite group whose order is prime to the

characteristic of k.

Theorem 5.1.8 ([77, Proposition 2.8] and [26, Corollary 4.9]). Let X be a variety over
a field k with tame quotient singularities. Then there exists a smooth canonical Deligne-
Mumford stack X" over k with coarse moduli space X. Moreover, X" is universal
in the following way. Given any other smooth Deligne-Mumford stack X with coarse
moduli space X there is a unique morphism f: X — X making the following diagram

commute

X f XC(Z'I’L

Y

Proof. Note that by Theorem 5.1.6 the canonical stack has the required universal prop-

erty and is unique up to unique isomorphism.

Now we construct X“". Let x € X be a closed point. Then there is a smooth scheme
V and a finite group G acting faithfully on V', with an étale morphism V/G — X whose
image contains z. Let v be the inverse image of z. If GG, is the stabilizer of G at v, the
morphism V/G, — X is étale at v. By restricting V', we can assume that v is a fixed
point of G. An element of G will be called a pseudo-reflection at v if it acts trivially
on a divisor of V passing through v. By the Chevalley-Shephard-Todd Theorem [69], a
subgroup H C G is generated by psuedoreflections at v if and only if the quotient V/H
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is smooth. By quotienting by the (normal) subgroup generated by psuedoreflections at
v and restricting V' we can assume the set of fixed points of any element of G lie in
codimension at least 2. Thus the morphism V — X is étale in codimension 1. Thus

there exists a finite set of schemes V,, and morphisms V,, — X such that:

1. The V,’s are smooth,
2. The morphisms V, — X are étale in codimension 1,

3. For each o, there is a finite group G, acting on V,, in such a way that V, — X is the
composite of the projections V,, — V, /G with an étale morphism V,, /G, — X,

4. The union of the images of the V,’s cover X.

Denote by Vs the normalization of V,, xx V3. Then the two projections from V3 to
Vo and Vg are étale in codimension 1. As V,, is smooth, the only ramification of the
map Vo3 — V4 is in codimension 1 by Zariski’s Theorem on the purity of the branch
locus [80]. As the maps V,3 — V, are étale in codimension 1 V.3 are all smooth and

the projections are étale. Thus we can form the étale algebraic groupoid
[TVes =] Ve
a7/8 Q@

The canonical stack X“¥* is the stackification of the fibred category associated to the
above groupoid with atlas [ [, Va. By construction it follows from [33, Proposition 9.2]

that X is the coarse moduli space for X", O

Example 5.1.9. Let G = %(1,2) be the cyclic group of order 4 acting on A% =
Spec Clx,y]. The image of this group in GL(2,C) is generated by the matriz

i 0
0 -1)
One can then compute the quotient X = A% /G as

X = SpecClz, y]G > Spec C[z?, 32, 22y] = Spec|u, v, w]/ (uv — w?)

2

which is the cone in A(‘?’: cut out by the equation uv — w*. It is easy to compute that

X’EA(QC /o where uy acts by the matrix

-1 0
0 -1
on AL. Thus X" =[A2 /us]. The map [A% /G] — [AL /ua] is given by the quotient

map G — G/H = s where H =< g% > for a generator g of G.

Example 5.1.10. Let G acting effectively on A} be generated by psuedoreflections.
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Then by Chevalley-Shepard-Todd [69] the quotient AL /G = A} is smooth. Thus
(AF /G)™" = AT /G = A

Remark 5.1.11. Note that by Proposition 4.1.50 the canonical morphism f: X — X"

1S proper.

5.2 Root Stacks

The birational geometry of singular varieties often requires the treatment of Q-Cartier
divisors. This is equivalent to taking roots of line bundles. Whilst for schemes this is
problematic, this can be achieved in the world of stacks using roots stacks. Root stacks
were first constructed by Cadman in [22| and independently by Abramovich, Graber
and Vistoli [1]. In this section, we define the notion of a root stack in several contexts:
root stack of a line bundle, root stack of a line bundle with a section, and the iterated

root stack.

5.2.1 The Root Stack of a Line Bundle

Let X be a Deligne-Mumford stack and £ a line bundle on X'. We use the same notation
as in [40, §5]. Let r € Z be a postive integer. The the r-th root stack of £, denoted
{/L]X, is the fibred product

L/ X —— BGy,

lw lw

X —%£ 4 BG,

where the morphism 7,.: B Gy, — B Gy, is induced by the power map on Gy,.

Explicitly, the objects over a scheme T is a triple (¢, M, ¢) consisting of a morphism
@: T — X of stacks, a line bundle M on T and an isomorphism ¢: M®" =2 ¢*L of line
bundles on T'.

We will denote by (M, ®) the universal object on {/L/X where M is a line bundle on
/L)X and &: MO X g* L.

5.2.2 The Root stack of a Line Bundle with a Section

In [22] the author defines the notion of a root of a line bundle and a global section.
Let (L, s) be the pair of a line bundle £ on X and a global section s € I'(X, £). Then
we can form the root stack of (£,s) in the following way. Recall that [A} / Gy,] is the

category of line bundles with a section.
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Lemma 5.2.1 (|22, Lemma 2.1.1|). Let X be a Deligne-Mumford stack. Then their is
an equivalence of categories between the category of morphisms X — [A,lg/Gm] and the
category whose objects are pairs (L,s) where L is a line bundle on X and s € T'(X, L)

and whose morphisms
(L,s) — (L,§)

are isomorphisms ¢: L — L' such that p(s) = t.

Denote by 6,: [A} /Gu] — [A} /Gp] the morphism induced by the power maps on A},
and G,.

Definition 5.2.2. Let X be a Deligne-Mumford stack, r be a positive integer and (L, s)
a pair consisting of & line bundle £ on X and a global section s € T'(X, L). Then define
the r' root stack /(L,s)/X of (L,s) on X as the fibred product

J(L,8)]X —— [Al /Gy

Pk

X —~% 5 [A'/ Gl

The universal object is a pair (M,t) of a line bundle M on {/(L,s)/X and a section
teT'(/(L,8)/X,M).

More explicitly, an object of \/D/X over a scheme T is a quadruple (o, M, ¢, T) consist-
ing of an object (o, M, ®) of {/D/X over T and a section 7 of M such that ¢(7%") =
©*s.

Let D be a Cartier divisor on X and denote by 1p the canonical section corresponding
to the inclusion Ox (D) — Ox. We will denote the r-th root stack of X of (Ox(D), 1p)

by {/D/X.

Example 5.2.3. Suppose that X = Spec(A) is an affine scheme and 0 # f € A is a
non-zero divisor and let D =V (f) be the associated effective Cartier divisor. Then the
root stack {/D/X is isomorphic to the quotient stack [Spec (A[t]/(t" — f)) / Z,]. Note
that this generalizes to any scheme X and L = Ox s the trivial line bundle and f a
global section of Ox.

5.2.3 The Iterated Root Stack

The construction above can be iterated. Let L = (£4,...,L,) be a collection on n line
bundles on X and s = (s1,...,8,) a collection of global sections with s; € T'(X, L;)
and r = (r1,...,r,) with r; € Z,r; > 0. Denote by ©,: [A} /Gy"] — [AL /Gn"] the

morphism induced by the power morphism = — 2" and ¢ — t" on A} and G,,".

Definition 5.2.4. Using the notation defined above, define the r-th root stack of (L,s)
on X as the fibred product
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s)/X —— [Af/Gn"]

)l( l@T

) L rAn G

For a collection of divisors D = (Dj, ..., D,,) we denote the r-th root stack of (Ox(D;), 1p,)i-,
by {/D/X.

We have the following properties of iterated root stacks by |22, §2|, [26, §1.3b] and |9,
Proposition 3.3]

1. If X is a Deligne-Mumford stack then so is ¢/D/X.

2. The fibre product of all %§/D;/X over X for all i is isomorphic to {/D/X.

w

. The morphism {/D/X — X is an isomorphism over X'\ |, D;.

4. If X is smooth, each D; are smooth and D; have simple normal crossings then

{/D/X is smooth.

5. The morphism /(L,s)/X — X is proper, faithfully flat and birational.

Remark 5.2.5. Let Dy, Dy be two effective Cartier divisors on X which intersect. Then

the root stacks /(D1 UDy)/X and "/(D1,D3)/X are not isomorphic. Consider a
point x € D1 N Dy and it’s preimage T in /D1 UDs/X and "N/(D1,D2)/X. In the

former T has stabilizer group Z, while in latter it has Z, X Z.,.

Remark 5.2.6. Let X — [A} /Gy be induced by Dy and X — [Azfl/Gm””] be
induced by the n — 1 tuple (Da,...,Dy) and let v = (ro,...,7m,). Then there is a

canonical isomerism

[AL / Gm] Xy (a1 /6] X X[an—1 /Gt AR/ G112 /D)X

where D = (Dy,...,Dy) See [22, Remark 2.2.5] for more details.

5.2.4 Root stacks and Groupoid Presentations

If we restrict ourselves to Deligne-Mumford stacks of the form [Z/G] where Z is a
scheme and G a finite abelian group we can give a more concrete description of a root

stack over [Z/G] using groupoid presentations.

Let Z be a subvariety of C™ of codimension greater than or equal to two. Let G be a
group acting on on Z such that [Z/G] is a Deligne-Mumford stack. Then, as all line
bundles on Z are trivial, a line bundle on [Z/G] is Oz and a representation x: G — C*.

Lemma 5.2.7 (|26, Lemma 7.1|). Let Z be a subvariety of C" of codimension equal
or higher than two and G an abelian finite group acting on Z such that [Z/G] is a
Deligne-Mumford stack.
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Let (L,s) = ((L1,51),---,(Ln,sn)) be a collection of n line bundles on [Z/G]| with a
global sections s; € T'(X, L;). Denote by x = (x1,- .., Xn) the representations associated
to the line bundles L;. Let r = (rq,...,ry) € ZZ,.

Then the root stack X = I/(L,s)/[Z]G] is isomorphic to [Z)G] where Z and G are
defined by the fibred products:

N — N\
>
[oR
«—
«—
>
[}

The action of G on Z is given by

(g, (A1, o An)) - (2, (1, ymp)) = (92, (A1, ..o, Apy))

Jor any (g, M\1,..., ) € G and (z, (x1,...,2,)) € Z.

Remark 5.2.8. Note that Lemma 5.2.7 extends to any wvariety Z on which all line
bundles are trivial (e.g. C").

We now use this to compute some examples.

Example 5.2.9. Suppose G = i(l, 2) C GL(2,C) acts on C%. The group G is generated

by the matriz
i 0
0 -1

Denote by m: X = [C? /G] — C? /G = X. Note that X is not canonical and we have a

factorization
™

x ZL xem <3 x

The coarse moduli space is isomorphic to
C? /G = Spec Clz, y]¢ = Spec Clz*, 42, 2%y] =V (uwv — w?) c C3

the Aj-singularity. The canonical stack X is [C? / Zs] with Zy generated by

-1 0
0 -1/
The branch divisor D lifts to the divisor D = ¢ 1(D) C X, The branch divisor D is

isomorphic to the quotient stack [V (a)/Z /2 Z] where Zz acts by b — —b on V(a).

This divisor is an effective Cartier divisor and we construct the 2™ root stack of X"
along D. By Lemma 5.2.7 we have have [C* /G = 3/D/Xcan,
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Example 5.2.10. Let G =Z /27 x Z /27 act on C? by the matrices

() 60

Then as G acts on C? by psuedoreflections, in accordance with the theorem of Chevalley-

Shephard-Todd [69],
X =C?%/G = SpecClz, y]¥ = Spec C[x?,y?] = Spec C[a, b] = C? .

The branch divisor is the simple normal crossing divisor given by the coordinate azes

on the quotient.

As X is smooth, X" = X. Let D = Dy + Dy be the branch divisor with D1 = V(a)

and Dy = V(b) the divisors corresponding to the coordinate axes on X.

We first form the 2" root stack 3/D1/X of X along D1. By Ezample 5.2.3 we have

X = /D1/X = [Spec(Cla, b,t]/(a® — 1))/ Zs] = [Spec C[b, t]/ Zs)]

with Zsy acting by t — —t on Cla, b,t]/(a® —t).

The pulled back divisor Dy of Da to X is Cartier. Like in Example 5.2.9, D is the
quotient stack Dy = [Dy/ Zs] C X. By Lemma 5.2.7 we have

[C? /G =3/Dy/X.

5.3 Structure Theorems for Smooth Deligne-
Mumford Stacks

Much work has gone into understanding the geometric relationship between a smooth
separated Deligne-Mumford stack X with trivial generic stabilizer and its coarse moduli
space X. One might hope that there is a way to “bootstrap” a “stacky” structure to X

to recover X. This is, in fact, the case under certain conditions.

For Deligne-Mumford stacks of dimension 1 we have the following:

Theorem 5.3.1 ([6, Theorem 1.187]). Let X' be a smooth separated Deligne-Mumford
stack with trivial generic stabilizer and of finite type over an algebraically closed field k
with char(k) = 0. Suppose that the coarse moduli space X is an irreducible curve. Then
there exists an effective divisor D = (P,...,P,) on X and r= (r1,...,1,) € Z% such
that

X{/D/X.

The main result in [31] generalizes this idea to higher dimensions. A Deligne-Mumford

stack ) has (tame) quotient singularities if there exist an atlas U — ) where U is a
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scheme with (tame) quotient singularities. Omne can associate to a Deligne-Mumford
stack )Y with tame quotient singularities a canonical smooth Deligne-Mumford stack
Y™ in a similar way to schemes with tame quotient singularities following [31, Back-

ground|.

Theorem 5.3.2 (|31, Theorem 1]). Let X/S be a smooth separated tame Deligne-

Mumford stack with trivial generic stabilizer.

Denote by X its coarse moduli space, D C X the branch divisor of the coarse moduli
map m: X — X and D =" | D; C X" the pullback of D to X,

Let r; be the ramification index of m over the irreducible components D; of D =" | D;.
Denote by /D /X the root stack along D = (Dy,...,Dy) of order v = (r1,...,75).

Then /D)X has tame quotient singularities and 7 factors as

X /D) Xean™ 5 3/DjXcan 5 X X

Moreover, if D is Cartier, then /D/X has tame quotient singularities and 7 factors

as

xX=/D/ X" 5 YD/X = X.

Remark 5.3.3. In [31], the authors give a local description of this Theorem [31, The-
orem 11] that the reader may find insightful. We give the statement below.

Let'V be a vectorspace over k and G an abstract finite group acting linearly and faithfully
whose order is coprime to the characteristic of k. Let H C G be the subgroup generated
by psuedoreflections and H' C H be its commutator subgroup (H' = {h' € H : h =
hh'}). Then the coarse moduli space map w: X = [V/G] — V/G = X factors as

P l"/D/)(cancan - s r D/Xcan X can X

V/G) ——— [(V/H")/(G/H")] —— [(V/H)/(G/H) —— V/G

A corollary of this theorem ([30]) is the following description for abelian global quotient

stacks.

Corollary 5.3.4 (|30, Corollary 5.6]). Suppose that X is a smooth quasi-projective
variety over k and G a finite abelian group acting on X whose order is coprime to the

characteristic of k. Then the induced map
[ X/G) = (X/G)="

to the canonical stack of X/G is a root stack morphism along a collection of smooth
connected divisors with simple normal crossings, i.e. one can construct [X/G] as an
iterated root stack along a collection of smooth connected divisors D =Y D; with simple

normal crossings from (X/G)“*".
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Proof. This follows from Theorem 5.3.2 and is a consequence of the root stack /D /X
being smooth so [X/G]| = /D /(X/G)cn. O

5.4 Semi-orthogonal Decompositions for Root Stacks

Root stacks behave much like blow ups for schemes. The derived category of root stacks
have been extensively studied, first by Ishii and Ueda in [40] and generalized by Bergh,
Lunts and Schniirer in [9]. We shall only need the content of the theorem by Ishii and

Ueda in this thesis and so refer to those. We describe the results below.

Theorem 5.4.1 (|40, Theorem 1.6]). Let D be a smooth divisor on a smooth Deligne-
Mumford stack X and let Y = /D/X be the r-th root stack of D with v > 1. Then
there are full and faithful functors

Sy: D(X) — DY)
®p: D(D) — D(Y)

embedding D(X) and D(D) as admissible subcategories of D(Y). Moreover, there is a

semi-orthogonal decomposition
D) = (op(D(D) @ ME",..., 0p(D(D)) @ M, D (D(X)) )

where Mg is the universal line bundle on Y corresponding to the universal object.

Proof. Consider the commutative diagram

— DD sy
l 7. x

D—71 L x

where j sends a line bundle M over T to the same line bundle M over T' with the zero
section. We will denote by € = {/D/D the effective Cartier divisor on ).

First, we note that proof that ®y is fully faithful is omitted in [40]. It does however
follow from |9, Lemma, 4.4, Lemma 4.5 and Example 4.6].

Now we show that the functor
dp :j*wik): D(D) — D(y)

is fully faithful. Let E*®, F'* be objects of D(D) and g € Z. We show that the natural

morphism

Hom D(D )(E. F*) = Homqp(y)(j*W%E.aj*W%F.) gHomqD(g)(j*j*W;EE.ﬂT*DF.) (%)
(5.1)
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is an isomorphism. As £ is a smooth divisor in ) we can use a stacky version of [12,
Lemma 3.3] to obtain for E* € D(D) a distinguished triangle

THE®* ® Og(=E)[1] —— j*jumpE® —— mHE® —— mHE* ® Og(—E)[2]

The original proof uses a spectral sequence arguement but we feel using the above

distinguished triangle is clearer.
Since r > 1, by [40, Theorem 1.5] the functor

®: Coh(D)®" — Coh(€)

defined by
r—1 r—1
(P Ei) = Pk @ Mi
i=0 i=1

where Mg is the universal line bundle on £ is an equivalence.

Thus we see that
Hom%(g)(ﬂ%E ® Og(=E&),mpF) = 0.

Also, as 77, is fully faithful
Hom%(g) (npE, mHF)=Hom?(E, F)

for any ¢. By applying Hompg)(—, 75 F*®) to the above triangle and using the above

identities we see that () is an isomorphism.

The essential images of ®y and ®p are admissible subcategories as 73 and ®p = j. 77,
admit left and right adjoints as j. and 7}, admit left right and left adjoints and the

functor (—) ® ME’ is an equivalence.
We see that ®p D% (D) ® M?i is right orthogonal to 7% D?(X) for 1 <i <r —1 by

Homp(y) (75 E®, jx(tp F* @ ME')) 2 Hompe) (j*my E*, mH F* @ ME")
= Homp g (7p) " E®, mpF* © ME")
= 0.

Similarly, we have
Homp(y)(j«mpE®* ® MEF GrhF @ ME) =0
for1<k<I<r-—1.

We now show fullness by showing that any object E® of D()) is obtained from an object
of jumhD(D) @ M® for 1 <i <r—1and 7% D(X) by taking shifts and cones. Since

myx is an isomorphism outside of D, the mapping cone in the triangle induced by the
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adjunction morphism

Ty L E* F* T mx E0[1]

has F' supported on £. Hence E*® can be obtained from 7y7y.E® and an object

supported on &£ by taking cones.

By definition, any object F supported on £ has cohomology sheaves supported on £.
By considering the standard filtration of E in terms of the cohomology sheaves of E,
we see that F can be obtained from shifts of sheaves supported on £ by taking cones.

Thus any object supported on £ is obtained from objects of j,D(E) by taking cones.

As @: Coh(€)X(Coh(D)®" is an equivalence, objects of j,D(E) can be obtained from
Jsmi DY (D) @ ME" for 0 < i <7 — 1 by taking cones.

Finally, we show that an objectF® € j,n5,D(D) is obtained from objects of 7% D(X)
and j,m5D(D) ® M?i for 1 <i<r—1. Then ﬂ}E*F’ has a filtration whose factors
are Jxmpl* ® M?i for0<i<r-—1as supp(w}i*F') C &. Thus jumpF*® is obtained
from 7% j, F® and j,mhF* ® M?i for 1 <1i <r —1 by taking shifts and cones. O

By applying Theorem 5.4.1 iteratively we get a semi-orthogonal decomposition for iter-
ated root stacks. Theorem 5.4.2 is an immediate generalization of [40, Proposition 7.2]
whose proof is contained in the first part of the proof of [40, Proposition 7.2] which we

give below (see [9, §4] for a more general version).

Theorem 5.4.2. Let X be a smooth separated Deligne-Mumford stack with trivial

generic stabilizer and coarse moduli space X. Assume:

1. The canonical morphism ¢: X — X from X to the canonical stack of the

coarse moduli space X 1s an isomorphism outside a simple normal crossing divisor
n . can
Y D; on X,

2. The pull back ¢*(D;) = 1 E; for some prime divisor E; fori=1,...,n.

Then there ezists a semi-orthogonal decomposition of D(X) with pieces given by the
derived category of X" and the derived categories of D; and their intersections of

wreducible components.

Proof. We proceed by induction. Consider

Xl = T%/ DQ/Xcan X xcan +++ X ycan Tn\/Dn/Xcan

and let Dy C X} be the prime divisor corresponding to D;. Then X is isomorphic to
"{/D1/X and we have a semi-orthogonal decomposition

D(x) = (@p(D(D)) ® M, 0p(D(D)) & M, D, (D(X1)) )
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by Theorem 5.4.1. We obtain the required semi-orthogonal decomposition by induction.
O

Example 5.4.3. We use the semi-orthogonal decomposition for iterated root stacks to

construct the semi-orthogonal decompositions
D([C? /(2 % Z3)] = { D(pt), D(Dy), D(Dy), D(C?))

As the coarse moduli space of [C? /(Zy x Z3)] is smooth and as [C? /(7o x 73)] is a

iterated root stack over (D1, Dy) we have the decomposition

D(IC? /(2 x Z3)] = { D(D1), D(D2), D(C?)).

where Dy is the pullback of the divisor Dy to ¢/ D3/ C%. Then D(D1) = (D(pt), D(Dy))

as Dy = [D1/ Zs]. Hence we obtain the semi-orthogonal decomposition.

Remark 5.4.4. Note that if G is abelian then the branch divisor is a simple normal

crossing divisor with smooth components by [30, Lemma 5.5].

A corollary of these semi-orthogonal decompositions is the following new result for

abelian groups acting on smooth quasi-projective varieties.

Corollary 5.4.5. [Corollary 1.3.7] Let X be a smooth quasi-projective variety over k
and G a finite abelian group whose order is coprime to the characteristic of k. Let
D =3"",D; on X/G be the simple normal crossing branch divisor and D = """ | D;
the pullback of the branch divisor to the canonical stack (X/G)“*".

Then there is a semi-orthogonal decomposition of D% (X) = D*([X/G]) with pieces given
by

o The derived category D((X/G)™) of the canonical stack (X/G)“",

o The derived category D(D;) of the irreducible components of the branch divisor
D => D,

o The derived category of the intersections of divisors.

Proof. Tt follows from 5.3.4 that [X/G] is an iterated root stack over the canonical stack

along a simple normal crossing divisor. The result then follows from 5.4.2. O

Remark 5.4.6. Note that when G is non-abelian, the irreducible components of the
branch divisor need not be smooth. Consider the unique two-dimensional irreducible
representation S3 = Dg. Then the branch divisor is singular as it is the cubic cusp. In

this case, the root stack will be singular. See [31] for a more detailed explanation.
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5.5 Semi-orthogonal Decompositions and the Canonical Stack

The above semi-orthogonal decompositions provide evidence that we should expect for
any quotient stack [X/G| with G a finite group acting faithfully on a smooth quasi-
projective variety X (or more generally, any smooth, separated tame Deligne-Mumford
stack X with trivial generic stabilizer) the derived category of [X/G] to have a semi-
orthogonal decomposition with one piece given by the canonical stack associated to the

coarse moduli space X/G (respectively X).

By the universal property of the canonical stack, we have a decomposition of the coarse

moduli map 7

f Xcan € X.

w

Theorem 5.5.1. Let X be a smooth separated tame Deligne- Mumford stack with trivial

X

generic stabilizer over an algebraically closed field k of characteristic zero with coarse
moduli space X. Denote the canonical stack associated to X by X" and let f: X —

X be the unique map in the decomposition above. Then the functor
f*: Db(Xcan) N Db(X)

18 fully fasthful.

Proof. By adjunction and the projection formula
HOme(X)(f*E’ f*F) gHOH’lDb(Xcan)(E, f*f*F) %Home(xcan)(E, f*O)( & F)

To prove fully faithfulness it suffices to show that Rf,Ox = Oxcan. The following ar-
gument from [71]| generalizes the argument of [20, Theorem 3.1] to Deligne-Mumford

stacks.

Let g: Z — X" be an atlas for X“*". Then we have a diagram

!

X,:XXXcanZ—>Z

Js 5
X f XCGTL

As g is flat, by base change we have
Rf(9)" Ox = Rf,Ox = g"Rf.Ox.

Thus to prove that Rf,Oy = Oxecan it suffices to show that f.Oy 2Oy as Z is an atlas
for Xcom,

Denote by 7’: X’ — X’ be the map from X" its coarse moduli space X’. By the universal
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property of the coarse moduli space, we have a factorization of f’

As char(k) = 0, X’ is a tame Deligne-Mumford stack. Hence 7,0y = Oy and
Ri7! Oy = 0 for all ¢ > 0 by Proposition 4.3.10 . Also, h.Ox: =2 Oz and R%h,Ox: =0
for all ¢ > 0 as f’ is surjective and X’ has rational singularities [48, Proposition 5.13|

and [20, §3].
Hence RfIOx 2Oy so f* is fully faithful. O



Chapter 6

Semi-orthogonal Decompositions for

Surfaces

In this chapter, we apply the theory developed in Chapter 5.

In section 6.1 we describe semi-orthogonal decompositions for abelian groups acting on
smooth quasi-projective surfaces over a field of characteristic zero. In section 6.2 we
give examples of semi-orthogonal decompositions related to abelian Galois covers. Then
in section 6.3 we give explicit examples of semi-orthogonal decompositions for Godeaux

surfaces with an action of Zs, and for Burniat surfaces with an action of Zy X Zs.

In section 6.4 we give a new proof of the derived McKay Correspondence in dimension
2. Finally, using this new proof of the derived McKay Correspondence we describe
semi-orthogonal decompositions for a natural action of Da, on C? and show that they

satisfy a conjecture of Polishchuk and Van den Bergh.

Throughout this chapter, k& will be a field of characteristic zero.

6.1 Semi-orthogonal Decompositions for Surfaces

Let X be a quasi-projective variety of dimension 2 over k. Then by Hironaka the minimal
resolution of X /G exists and is unique. We can use this to give a finer semi-orthogonal
decomposition of D([X/G]).

Following Ishii and Ueda we have the following description of the canonical stack asso-

ciated with a surface over k£ with at worst quotient singularities.

Theorem 6.1.1 ([40, Theorem 1.6]). Let X" be the canonical stack associated with
a surface X with at worst quotient singularities, and Y the minimal resolution of X.
Then there is a fully faithful functor

By : D(Y) — D(X™)
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and a semi-orthogonal decomposition
D(X™) = (Ey,...,En, @y (D(Y)))
where E1, ..., E, are exceptional objects.

The following corollary follows from Corollary 5.4.5 and Theorem 6.1.1.

Corollary 6.1.2. Suppose that X is a smooth quasi-projective surface over k and G a
finite abelian group acting faithfully on X. Let D =" | D; denote the branch divisor
of m: [ X/G] — X/G. Let'Y be the minimal resolution of X/G.

Then there is a semi-orthogonal decomposition of D% (X) with pieces given by

1. The derived category of the minimal resolution D(Y)

2. Multiple copies of the derived category of the irreducible components of the branch
divisor D(D;) determined by the order of the stabilizer group of D;.

3. Ezceptional objects E; arising from the intersection of the divisors D; and Dj,
where stabilizers jumps along o divisor at a point, and non-special representations
of G acting by GLa(k) at an isolated fized point.

We give two examples of semi-orthogonal decompositions of surfaces with group actions.

Example 6.1.3. Following on from Ezxample 5.2.9, Corollary 6.1.2 we have a semi-

orthogonal decompositions
D%(C2) = D((C? /(Z4))) = (0pD(D), &y D(Y))

where Y is the minimal resolution of X = C% /(Z4) and D is the branch divisor in X"
We have a further decomposition as D = [D'/(Zs2)] so

D(D) = (E.w}, D(D'/ )

where wp: D' — D' Zy is the quotient map. Notice that D'/ Zo=D C X. Thus we

have a semi-orthogonal decomposition
D*(C?) = (E,®p(D(D)), oy D(Y)).

Example 6.1.4. Let G = Zy x Zs act on C? as in Example 5.2.10. Then we can express
the quotient stack [C* /G] as a root stack

(C?/G] = /D1 /X xx /D2/X

which can also be expressed as

[C?/G] = \/D/Y/D1/X.
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Thus we get a semi-orthogonal decomposition
DY(C?) = D([C?/G]) = (®pD(D), ®p, D(D1), 82 D(C?)).
As D = [D'/ Zs] where D" =V (b) on SpecClb,t], by [63, Theorem 1.2] we have
D(D) =(E,n5, D(D'/ Zs)).

where wpr: D' — D'/ 7y and E is a exceptional object. As D'/ 7= Dy we have a

semi-orthogonal decomposition
D([C? /G)) = (E,®p,D(Ds), ®p, D(D1), @2 D(C?)).

which is the semi-orthogonal decomposition as described in [64, §6.4].

6.2 Abelian Galois Covers

The theory of abelian Galois covers was first used by Catanese to produce surfaces of
general type to prove that the moduli of surfaces of general type with fixed K? and
X is not equidimensional. This idea was expanded upon by Pardini [61] to describe
a recipe for constructing such Galois covers. When the Galois cover is smooth, the
associated quotient stack is smooth and we can describe semi-orthogonal decompositions
of the derived category using Corollary 6.1.2. Moreover, these ideas provide a geometric

realization of the root stack construction outlined in 5.2.

Throughout this section, we will assume that all varieties are defined over an alge-
braically closed field k.

6.2.1 Construction

Recall that a Galois covering is a finite surjective morphism of quasi-projective algebraic
varieties m: X — Y where the function field k£(X) is a Galois extension of k(YY) with
Gal(k(X)/k(Y)) =G. If m: X — Y is a Galois cover then Y = X/G. A Galois covering

is abelian if G is abelian. A Galois covering is smooth if X and Y are smooth.

Let m: X — Y be a smooth Galois cover. Denote by R and D the ramification and
branch locus of w. We will characterize 7 in terms of two pieces of data: the algebra
structure of m,(Ox) and the action of the inertia groups on the irreducible components

of the branch divisor.

Note that we have a decomposition

m.Ox = @ L;l.

xE€G*

where G acts on Ly ! by the character x. The invariant summand is isomorphic to Oy
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Let R; be a smooth irreducible component of R and define the inertia group of R; by
H; ={h € Glhz = z for all x € R;}

As R; is smooth has codimension 1, H is cyclic and acts faithfully on the tangent space
to T'. Denote by x; a generator of H. For any component D; of the branch locus D, all
components of 771(D;) have the same inertia groups and isomorphic representations.
Thus we can associated to each irreducible component D; an inertia subgroup H; and

character x; € H; .

Denote by € the set of cyclic subgroups of G and for H € €, the set of generators Sy, of

the group of characters of H*. Thus we get a decomposition

D=Y" > Dy,

HeC ¢peSy

We call the pair {Dp 4, Ly} the building data of the abelian cover 7: X — Y.
The central theorem of [61] is the following:
Theorem 6.2.1. Let G be an abelian group, Y a smooth variety and X a normal

variety with m: X — 'Y an abelian cover with group G. The building data of ™ satisfies

the following linear equivalences

_ 6
Lyt Ly =Ly + > > Do
He€ ¢peSy

where ef;f, are defined by

Hé 0, Z'f’L'X-}-’L'X/<|H|

€. =
X5 X .
1, otherwise

where X |g= ¢ and X' |g= PN .

Conversely, to any data {Ly, Dy} satisfying the above equivalences we can associated

an abelian cover m: X — 'Y whose building data 1s given by L, Dy 4.

Moreover, if Y is proper, then m is determined uniquely up to isomorphism of Galois

COUVETS.

Remark 6.2.2. Suppose that the abelian Galois cover m: X — Y is smooth. Then
by Corollary 5.4.5 we get a semi-orthogonal decompositions of D([X/G]) in terms the

derived categories of intersections of the divisors Dy 4 and D(Y').

6.2.2 Examples

We now focus on a few explicit examples of abelian covers and the induced semi-

orthogonal decomposition.
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Example 6.2.3 (Cyclic Covers). Suppose that G is a cyclic group of order n and choose
a generator x € G*. The building data for the abelian Galois cover X —'Y = X/G
consists of a line bundle L = L, and a collection of divisors Dy 4, possibly empty, for

each (cyclic) subgroup H C G such that the following relations are satisfied:

,
nl = Z 7”1,7H’(z> DH7¢
e

where x|g = ¢"¢ with 0 < rp g < |H| =m. Here ¢ is a root of unity of order at most

m.

The quotient stack [X/G] is the iterated root stack over Y of order m along the divisor

(D) and we get the induced semi-orthogonal decomposition.
D(X/G]) = (D(Y),D(Dug), D(Dpg) @ X, ..., D(Dpg) @ X", ...).

This recovers results due to Lim [51] and Krug, Ploog and Sosna [49] when the inertia

group for all divisors is G.

Example 6.2.4 ((Z /27Z)%-covers). Suppose that G = (Z /2Z)°. Then G-covers are
particular easy to describe. Let x1,...,Xs be a basis for G* and let Hy, ..., H, r =2%—1
be the subgroups of order 2. Define €;; =0 if x;|u, =1 and €;; = 1 otherwise. Then the
building data consists of line bundles L1, ..., Ls and effective divisors Dy, ..., D, such
that

2Lj:ZeijDi, j=1,...,s
i
So the quotient stack [X/G| is the root stack *X/(D;)/Y. Thus we get a semi-

orthogonal decomposition
D([X/GD = <D(Y)7 D(Dl)v e 7D(D7’)7 {Ek}>

where the number of exceptional objects is given by #Zi,j,i;ﬁj D; N Dj.

6.3 Semi-orthogonal Decompositions of Surfaces of Gen-

eral Type

We now describe semi-orthogonal decompositions of the equivariant derived categories of
surfaces of general type with an abelian group action. Some of these equivariant derived
categories with have full exceptional collections which are in contrast to the case for
ordinary derived categories where Alexeev-Orlov, Gorchinskiy- Orlov, Boohning-Graf
von Bothmer-Katzarkov-Sosna, Bo6hning-Graf von Bothmer-Sosna, Galkin-Shinder and
Galkin-Katzarkov-Mellit-Shinder have discovered (quasi)-phantom categories (see [2],
[35], [11], [10], [28], [27] ). We will focus on two examples: numerical Godeaux sur-

faces with an involution and Burniat surfaces with an action of the Klein four group.
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Throughout this section, we will assume that all varieties are over the complex numbers.

6.3.1 Godeaux Surfaces with an Involution

One of the first surfaces of general type with p, = 0 was constructed by Godeaux in
the 1931. Consider the Fermat quintic surface X = V(2° 4+ ¢® + 2° +t°) C P?. Then
the weighted diagonal action of Zs acting by (z:y: z: w) = (€x: €2y : 32« €tw) acts
freely on P* where €5 = 1 and preserves the quintic. Then S = X / Zs is a surface of
general type with p, = ¢ = 0 and K? =13, VII §11]. Now we call any minimal surface

of general type with these numerical invariants a numerical Godeaux surface.

Definition 6.3.1. A numerical Godeauz surface S is a smooth minimal surface of

general type with p; = q =0 and Kg =1.

Numerical Godeaux surfaces have been studied by several authors over the last 40 years.
Many attempts have been made to classify such surfaces and understand their moduli
space. An important invariant associated to a numerical Godeaux surface S is the
torsion subgroup Tors(S) = Pic(S)ier of the Picard group. Miyaoka [54, Lemma 11,
Theorem 2’| proved that Tors(S) is cyclic of order at most 5.

When Tors(S) = Zs, these surfaces fill up an irreducible component of the moduli
space with expected dimension 8. This component consists of quotients of quintics
in P? by a Zs action, recovering Godeaux’s original example. Godeaux surfaces with
smaller torsion subgroups have been constructed but no classification is known and their
moduli spaces are still a mystery [23, §1]. However, many of these are equipped with

an involution, an automorphism of order 2 of the surface.

Numerical Godeaux surfaces with an involution were first considered by Keum and Lee
|47| and generalized by Calabri, Ciliberto and Mendes Lopes [23].

Theorem 6.3.2. A numerical Godeauz surface S with an involution o is birationally

equivalent to one of the following:

1. A double plane of Campedelli type;

2. A double plane branched along a reduced curve which is the union of two distinct

lines and a curve of degree 12 with specified singularities.

3. A double cover of an Enriques surface branched along a curve of arithmetic genus
2.

In case (3), Tors(S) =7Z /AZ and in cases (1),(2) Tors(S) =Z /27 or Z ]AZ.

We will focus on the case (3) but a similar story holds for cases (1) and (2).

First start with some notation following [53]. Let S be a numerical Godeaux surface
and 0: S — S an involution of S. Let m: S — ¥ = S/o be the quotient map. Then by
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[23, Proposition 4.5] the fixed point set Fix(c) consists of a smooth (possible reducible)
curve R and 5 isolated fixed points pi,...,ps. Set ¢; = w(p;) and B = 7(R) the branch

locus. We have a diagram

Vv —— S
w—"53%
where € is the blow up of S at py,...,ps, n: W — 3 is the minimal resolution of X

and 7 is a flat double cover. The quotient 3 has 5 A; singularities at ¢; and is smooth

otherwise. Denote by C; C W the exceptional (—2)-curves over ¢; for 1 <i <5.

By [23, Proposition 3.9 and Lemma 4.11| there exists a birational morphism f: W — Y
with:

e Y a smooth Enriques surface

e the exceptional locus of f is disjoint from the C}

e there is a flat double cover p: X — Y fitting into the diagram

X« —V—5¢
I L,
Yoo W NS>

As Y is a Enriques, one can show that p,(B) = pa(R) = 2.

Thus we get the following Theorem.

Theorem 6.3.3. Let S be a numerical Godeaux surface with an involution o such that
the quotient ¥ = S/ Zso is birational to an Enriques surface. Then there is a semi-

orthogonal decomposition
D™ (S) = (D(Y),D(B), Ex,..., Ex)

where B is a curve of arithmetic genus 2, Y the minimal model of > and FE; exceptional

objects resulting from the birational map f- W —Y with k < 4.

Proof. This follows from applying Corollary 6.1.2 to the above diagram. OJ

Remark 6.3.4. There is a similar story for other Godeauzr surfaces with an involution
and numerical Campedelli surfaces with involutions (py = 0 and K? = 2) as outlined in
[24] which will give similar semi-orthogonal decompositions. As the ramification divisor
18 a disjoint union of rational curves and the quotient is rational, the equivariant derived

category will have an exceptional collection.
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6.3.2 Burniat Surfaces with a Klein Four Group Action

Burniat surfaces are minimal surfaces of general type constructed by Burniat in [21]
with p; = ¢ = 0 and K? =2,3,...,6. These surfaces can be constructed as a Klein four

group Galois cover of a multiple blow ups of P? branched over configurations of lines.

The case when K? = 6 was considered by Alexeev and Orlov [2] in which they show
that the derived category contains an exceptional collection of length 6 which is not
full. The orthogonal to this collection is an example of a “quasi”-phantom category (i.e.

it has trivial Hochschild homology and torsion K-group).

We will construct a full exceptional collection of length 60 for the Z /27 X Z /2 Z-
equivariant derived category of Burniat surfaces with K? = 6. We recall the con-
struction of the Burniat surface with K2 = 6 from [62]. Choose three points {p1, p2, p3}
in P2, not colinear. Consider 3 reducible curves C;, Cy, C5 with each C; consisting of 3
distinct lines passing through p; and p; 1 € C; but p;2 ¢ C; (indices are taken modulo
3). The curve C; corresponds to the red lines, Cy to the blue lines and C3 to the green

Vo

lines in the diagram below.

b1 p2

"

Let 0: P — P? be the blow up of P? at the points p1, p2, p3. Denote by @ the strict

transform of C; and the exceptional divisors by E; above the point p;. Then
Ci = 0*C; —3E; — E; 11 = 3H — 3E; — Ei )

Consider the curves D; = @ + Ejio. Then D; + Dj are 2-divisible. Set D; + D; =
2Fy for i,j,k a cyclic permutation of 1,2,3. Then the divisors {D;}3_; and the line
bundles {Op(—F;)}3_; give the building data for a Galois G = Z /27 x Z /27 cover of
P branched over D = D; + Dy + D3. Denote this cover by @ — P — P2, Then Q is
the Burniat surface with K2 =6 [3, V §11] [62].

The quotient stack [Q/G] is constructed as an iterated root stack over P along the
divisors (D1, Do, D3) of order (2,2,2). As D; - Dj =10 for ¢ # j € {1,2,3} we have 30
exceptional objects E;; arising from the points of intersection of D; and D;. We have
also have components arising from the derived categories of D; and of P. So we have a

semi-orthogonal decomposition

D([Q/G]) = ({Ei;}, D(Ds), D(Ds), D(D1), D(P)) -
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As P is the blow up of P? at 3 points we see that D(P) is generated by 6 exceptional
objects by Orlov’s blow up formula. Moreover, each D; is a sum of rational curves and
so D(D;) is generated by 4 x 2 = 8 exceptional objects. Thus we have that D([Q/G])
is generated by 30 4+ 8 x 3 4+ 6 = 60 exceptional objects.

6.4 Derived McKay Correspondence in Dimension 2

In this section, we give a new proof of the derived McKay Correspondence in dimension
2 for non-trivial finite subgroups of GL(2, C) compared with [45] which uses the McKay
Correspondence for subgroups of SL(2, C) [44] and for cyclic subgroups of GL(2, C) [40].

Theorem 6.4.1. Let G C GL(2,C) be a non-trivial finite subgroup acting on C*. Then

there is a semi-orthogonal decomposition of the equivariant derived category

DE(C?) = <E1, oo B, @5 D(Dy),.. .,@mp(ﬁm),%z}(?)>

where Y is the minimal resolution of C? /G, lN)l are the normalizations of the irreducible

components of the branch divisor D =" D; and E\, ..., E, are ezceptional objects.

Proof. Let G C GL(2,C) be a finite subgroup and set H = SL(2,C) N G. Then H
is a normal subgroup of G and A = G/H is a finite cyclic group of order r since
det: GL(2,C) — C* identifies A with a subgroup of C*. Let Y = H — Hilb(C?) be the
minimal resolution of C? /H by the McKay Correspondence for subgroups of SL(2, C).

There is a natural G action on Y where g € G sends a subscheme Z € Y = H —Hilb(C?)
to its image ¢ - Z under the action g: C? — C2. Since Z is H-invariant (by definition
of Y = H — Hilb(C?)), the G action on Y descends to a A = G/H action on Y.

Thus we have the following diagram

(CZ
2
C?/H M
/
; Y/A
S
C? /G Y

where M is the minimal resolution of Y/A and Y is the minimal resolution of C2 /G.
Note that f is a projective birational morphism (see [45, §7]). As Y/A is birational to
C? /G, M is a resolution of C? /G. By contracting (—1)-curves in M we obtain the

minimal resolution Y.
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We now follow the proof of [40, Theorem 4.1] to show that D([Y/A])= D([C?/G]).

Consider the diagram

where Z C Y x C? is the universal subscheme and p, ¢ are the natural projections. As
G acts diagonally on Y x C? and G preserves Z, we can take the the quotient of the
whole diagram with respect to the action of G. Thus we have a diagram
[Z2/G]
N
[V x C? /@]

3
Q

[Y/G] [€* /@]

Consider the natural morphism
p: [Y/G] = [Y/A]
from the surjection G — A. Then the pullback functor
¢*: D([Y/A]) = D([Y/G])

sends an A-equivariant coherent sheaf on Y to the same sheaf considered as a G-

equivariant sheaf through the surjective homomorphism G — A.

Then we can define the integral functor
®: D([Y/A]) = D([C? /G))

by
D(E®) = 4. (O1z/¢ @ P (9" (E*))).

This functor is an equivalence by [40, Theorem 4.1].

As A is abelian and Y is smooth, by Corollary 6.1.2 we have a semi-orthogonal decom-

position
D([C? /G]) = DE(C?) = <D(M),D(f)1), ..., D(D), B, ... Ek>

where FE; are exceptional objects and E are the irreducible components of the branch
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divisor on (Y /A)c",

As M is a blow up of 37, by Orlov’s blow up formula we have the further semi-orthogonal

decomposition
DE(C?) = <D(17),D(f)1), ..., D(Dp), Er, ... ,El>

where Y is the minimal resolution of C2 /G.

As the diagram above commutes, the branch divisors of Y — Y/A are the strict trans-
forms of the branch divisors of C* /H — C%/G. As C? — C? /H is only ramified in
codimension 2, the branch divisor of C?> — C? /G is the same as C>/H — C? /G. As

ﬁi — D, is birational and 152 is normal, E is isomorphic to the normalization of D;.

Thus we get the semi-orthogonal decomposition
DE(C?) = <D(?),D(f>1), ..., D(Dp), En, ... En>
O

Remark 6.4.2. Note that when G C SL(2,C) then G = H and A = id and we recover
the traditional McKay Correspondence.

When G C GL(2,C) is small (i.e. contains no psuedoreflections) the branch divisor on
C? /G is empty and so the category orthogonal to the minimal resolution is generated
by an exceptional collection as described by Ishii and Ueda in [40]. This recovers the
result of Ishii-Ueda but note their result for canonical stacks is central to the proof of

the theorem.

6.5 Motivic Decomposition for Dihedral Groups

In [64] Polishchuk and Van den Bergh propose the following conjecture. Recall that for
a group G the centralizer of g € G is

C(g) = {h € Glhg = gh}.

Conjecture 6.5.1 (|64, Conjecture Al). Assume that a finite group G acts effectively
on a smooth quasi-projective variety X over an algebraically closed field and that all
the quotients X9/C(g) are smooth for g € G. Then there exists a semi-orthogonal
decomposition of the derived category D% (X) of G-equivariant sheaves on X such that

the pieces Cg of this decomposition are in bijection with the conjugacy classes of g in

G and C ~D(X9/C(g)).

In this section, we describe a semi-orthogonal decomposition for a natural action of Doy,

on C? and prove that these semi-orthogonal decompositions satisfy Conjecture 6.5.1.
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Recall that the dihedral group Dy, of order 2n for n > 2 has a presentation

Dy, = {T,U}T” —o’=¢, ToT = 0} :

Define the effective action of Ds,, on C? by p: Do, — GL(2,C) where

(¢ o (o1
o 2) om0

with ¢™ = 1 a complex n*? root of unity. Let 7: C? — C2 / Day, denote the quotient map.
As Do, is generated by the reflections ¢ and o7, the quotient C* /Do, = Spec C|a, b]
is smooth by the Chevalley-Shepard-Todd Theorem. The ramification divisor R is a
collection of hyperplanes and the branch divisor m(R) = D is given by the equation
V(a? — b"), which is singular with an A,,_;-singularity at (0,0).

We now recall the following results on G-clusters and G — Hilb(C?) for cyclic groups
from [42, §12]. Let G = Z, be generated by 7 and n > 2. Define the action of G on C?
by 7(x,y) = (Cx, ¢ 'y) where ("t =1 is a complex n-th root of unity. Then C? /G is
the simple singularity of type A,_; and its minimal resolution Y — C? /G is isomorphic
to G — Hilb(C?). The following description of points of Y and affine charts covering Y’

will be useful.

Lemma 6.5.2 ([42, Lemma 12.2]). Any I € G —Hilb(C?) is one of the following ideals
of colength n:

I(X): = I_Im,J = (2" —a",zy — ab,y" —b"), (6.1)
peX

where ¥ = G - (a,b) is a G-orbit of C* disjoint from the origin; or
Li(pi: qi): = (pix’ — qiy" ™"y, 2"y 1), (6.2)
for some 1 <i<n—1 and some [p;: ¢;] € PL.

Theorem 6.5.3 (|42, Theorem 12.3]). Let a,b be parameters of C? on which the group
G acts by 7(a,b) = (Ca,(1b).

Let X = C*/G: = SpecCla™,ab, V"] and Y — X be its (toric) minimal resolution,
with affine charts U; defined by

U; = SpecCls;, t;] for 1 <i <mn,

where s;: = a' /b" " and t; = b"T171 /a’"L. Then the isomorphism of Y to G — Hilb(C?)

is given by (the morphism defined by the universal property of Hilb™(C?) from) two

dimensional flat families of subschemes defined by the G-invariant ideals of O
Ti(siyti): = (¢ — sy wy — siti, y" T — 21

for1<i<n.
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Theorem 6.5.4. Let Ds,, act on C? as above. Then we have two cases:

Odd n: There is a semi-orthogonal decomposition
DP2(C2) = <7T*D(<c2), &5 (D(D)),Ey, ... E;>
where D is the normalization of D.
Even n: There is a semi-orthogonal decomposition
DD (C2) = <7T*D(<c?), 5 (D(D1)), @5, (D(D2)), B, ... E,>

where D = D1 U Dy is reducible and ﬁl are the normalization of D;.

Proof. As p(Dsy) NSL(2,C) = Z,, we have a diagram
(C2

Y

/

C? /7y,

Y/ Zy

/

C? /Do,

where Y is the minimal resolution of C? /Z, and D = V(a? — b") is the branch divisor.

Recall from the proof of Theorem 6.4.1 that the Zs action on Y is induced by the action
of Zy on C2. Let o be a generator of Zs. Then o(a,b) = (b,a) for a point (a,b) € C2.

Using the description of points of Y in terms of ideals in Lemma 6.5.2 we see that
an ideal of the form in Equation (6.1) is fixed if and only if a = b, i.e. the cluster is
supported on the fixed loci of Zy acting on C2. These clusters form the fixed locus
of Zy acting on Y. By analyzing ideals of the form in Equation (6.2), we see that o
interchanges ideals I;(p;: ¢;) with ideals of the form I,,_;(g;: p;).

We now consider the cases when n is odd or even.

Odd n: Suppose that n is odd. Then n — 1 is even and Y contain n — 1 (—2)-curves
and the action of Z5 interchanges each pair of (—2)-curves. The only fixed point occurs
at the intersection of the (—2)-curves whose points correspond to ideals of the form
Ianl(pi: gi) and InTH(pi: gi). They meet at the point InT—l(l: 1) = InTH(l: 1).

By looking at the affine chart Unt1 = SpecCls,t] where s = anTH/bT%1 and t =
2

b / "7 in Theorem 6.5.3, we see that Zo acts by psuedoreflections at the only isolated

fixed point of Zy. Thus Y/ Zs is smooth.
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Hence (Y/Z5)* =Y /Zy and we have a semi-orthogonal decomposition
D([C* /Dan] = (D(B), D(Y/25))
where B is the branch divisor of Y — Y/ Zs.

Note that Y/Z, contains exactly 5 irreducible curves, which are the image of the (—2)-
curves on Y, that are contracted to a point by the birational morphism
f:Y/Zy — C% /Dy,. By [37, §V, Corollary 5.4] f can be factored as the composition of

”T_l blow ups of C2. Hence by Theorem 6.4.1 we have a semi-orthogonal decomposition

D([C? /Day]) 22 DP2n (C2) = <7T*D((C2), ®(D(B)), Ei, ... E%> .

As B is smooth and maps birationally to the branch divisor D, B = D is the nor-
malization of D. As D is irreducible, so is D. Hence we have the semi-orthogonal
decomposition

D([C? ) Don]) = DP2n(C2) = <7T*D(<c2), o (D(D)), Ey, ... E;> .

Even n: Suppose that n is even, so n — 1 is odd. Then the action of Zs interchanges
the (—2)-curves E; and E,_; on Y except when ¢ = n/2. Then the points correspond
to ideals of the form

In(pi: qi) = (paa"? = gy, wy, &> yn/2H0),
Then Zg acts freely on E,, 5 sending (p;: ¢;) to (—g;i: p;). Hence Zz acts without isolated
fixed points and the quotient Y/Z5 is smooth.

Note that Y/Z; contains exactly 5 irreducible curves, which are the image of the (—2)-
curves on Y, that are contracted to a point by the birational morphism
f:Y/Zy — C?/Dy,. By [37, §V, Corollary 5.4] f can be factored into the compo-
sition of ”T_l blow ups of C2. Hence by Theorem 6.4.1 we have a semi-orthogonal

decomposition

D([CZ /DQn]) gDD27L((C2) - <W*D(C2),(I)5(D(B)),E1, .. ,E%> .

Note that the branch divisor D = V(a2 — ") = V ((a2 —b2)(a® + b%)) is reducible
with D = Dq + Ds. Therefore the normalization D is reducible and D = l~?1 + 52 with
15,- the normalization of D;. As B maps birationally to the branch divisor D, B = D
is the normalization of D. Hence B = D = 51 + 52. By Theorem 6.4.1 we have a

semi-orthogonal decomposition

DD (C2) = <7T*D(<C2), 55, (D(Dy)), @, (D(D2)), B, .. E%>
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O

Corollary 6.5.5. The semi-orthogonal decompositions described in Theorem 6.5.4 sat-

1sfy Conjecture 6.5.1.

Proof. The bijection is given by
lg] = D(X7/C(g))

which we describe explicitly for n odd and even.

Odd n: The conjugacy classes of Do, are [e], [b],[a’] for 1 < i < (n — 1)/2. The

bijection is given by

[e] «— D(C? /Dy,)

[b] «+— D(D)

) -1
[a'] +— E; forlgignT.

Even n: The conjugacy classes of Dy, are [e], [0], [ab], [a2], [a!] for 1 <i < (n —2)/2.
The bijection is given by

. -2
[al]<—>Eifor1§z'§n :

O

Remark 6.5.6. For Dg = S5 the semi-orthogonal decomposition described in [64] agrees

with the one here.
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