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Abstract

This thesis focuses on two distinct projects on the bounded derived category of coherent

sheaves of surfaces and group actions from di�erent directions.

The �rst project studies bielliptic surfaces, which arise as quotients of products of

elliptic curves by a �nite group acting freely. We prove a structure theorem describing

the group of exact autoequivalences of the bounded derived category of coherent sheaves

on a bielliptic surface over C. We also list the generators of the group in some cases.

The second project studies semi-orthogonal decompositions of the bounded equivariant

derived category of a surface S with an e�ective action of a �nite abelian group G.

These semi-orthogonal decompositions are constructed by studying the geometry of the

quotient stack [S/G]. We produce new examples of semi-orthogonal decompositions

of the equivariant derived category of surfaces with a �nite abelian group action. We

give a new proof of the Derived McKay correspondence in dimension 2. Using this,

we construct semi-orthogonal decompositions of the equivariant derived category of C2

with an e�ective action of the Dihedral group D2n. Moreover, we show that these

semi-orthogonal decompositions satisfy a conjecture of Polishchuk and Van den Bergh.
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Chapter 1

Introduction

1.1 The Derived Category

In homological algebra, we often de�ne properties using resolutions. The derived cat-

egory allows us to consider objects and their di�erent resolutions as �the same� in a

precise way. A consequence of this idea is how it allows us to de�ne derived functors as

functors between derived categories.

Although appearing abstract at �rst, the bounded derived category of coherent sheaves

D(X) = Db Coh(X) of a variety X contains a great deal of geometric information about

the projective variety. Suppose the variety is smooth and projective over an algebraically

closed �eld of characteristic zero and the (anti)-canonical bundle is ample. Then the

variety is determined uniquely up to isomorphism by its derived category. Moreover,

the derived category of a variety contains information about the connectedness of the

variety, properties of the canonical bundle, and the Cox ring. If two varieties X and

Y have equivalent derived categories they have the same dimension, the same Kodaira

dimension, and the canonical bundle ωX is ample or nef if and only if ωY is ample or

nef.

The derived category is a powerful tool which allows us to understand di�erent relation-

ships between varieties. For example, two K3 surfaces which have equivalent derived

categories can be expressed as moduli spaces of sheaves on each other, generalizing the

Torelli Theorem. This interaction has allowed people to prove results on moduli spaces

of sheaves which do not mention derived categories using derived techniques.

This thesis is the culmination of two distinct projects. The �rst studies the group

of symmetries of the derived category for bielliptic surfaces - a surprisingly di�cult

problem. The second studies decompositions of the equivariant derived category with

respect to a �nite group acting e�ectively on a smooth projective variety. This allows us

to describe new semi-orthogonal decompositions of equivariant derived categories for a

minimal surface of general type, give a new proof of the derived McKay correspondence

in dimension 2, and prove a conjecture of Polishchuk and Van den Bergh for an action
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of the dihedral group D2n on C2.

1.2 Autoequivalences of the Derived Category

Let X be a smooth projective variety over the complex numbers. An important ques-

tion in the study of the derived category D(X) is to describe its group of symmetries:

the group AutD(X) of exact C-linear autoequivalences of D(X) considered up to iso-

morphism as functors. We think of these autoequivalences as �higher� symmetries of

the variety.

Several autoequivalences of D(X) arise naturally forming the subgroup

AutstD(X) = (AutX n PicX)× Z

of standard autoequivalences of AutD(X). This subgroup is generated by pulling back

along automorphisms of X, tensoring by line bundles and by powers of the shift functor.

These autoequivalences always exist. The central question becomes: are there any non-

standard autoequivalences? Can we classify them?

When the (anti-)canonical bundle of X is ample, Bondal and Orlov [13, Theorem 3.1]

showed that AutD(X) = AutstD(X), i.e. there are no non-standard autoequivalences

of D(X). The �rst example of a non-standard autoequivalence was observed by Mukai

[55] for principally polarized abelian varieties. Many have studied non-standard autoe-

quivalences of the derived category but the full group AutD(X) is only understood in

a small number of cases. The only complete description in all dimensions of AutD(X)

for varieties X with neither ωX ample or ω−1
X ample is given by Orlov [60] for Abelian

varieties.

Together with Bondal and Orlov's result, this classi�es the group of autoequivalences

of the derived category of smooth projective curves.

Theorem 1.2.1 (Bondal-Orlov, Orlov). Let X be a smooth projective curve of genus g

over an algebraically closed �eld of characteristic zero.

• If g = 0 or g ≥ 2, then

AutD(X) = AutstD(X) = (AutX n PicX)× Z.

• If g = 1, there is a short exact sequence of groups

1 Z×(Aut(X)n Pic0(X)) AutD(X) SL(2,Z) 1.

Substantial progress has been made for surfaces. Broomhead and Ploog [19] computed

the group for many rational surfaces (including most toric surfaces). Bayer and Bridge-

land [5] described the group for K3 surfaces of Picard rank 1 using the theory of stability
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conditions. Uehara [74] conjectured a description of the group for smooth projective

elliptic surfaces of non-zero Kodaira dimension and proved the conjecture when each

reducible �bre is a cycle of (−2)-curves. Furthermore, he describes the group for elliptic

ruled surfaces [75]. Ishii and Uehara [41] computed the group for smooth projective

surfaces (not necessarily minimal) of general type whose canonical model has at worst

An singularities. However, these are the only examples that are completely understood

at this time for surfaces. We describe the group AutD(S) when S is a bielliptic surface.

Bielliptic surfaces are minimal projective surfaces S of Kodaira dimension zero with

geometric genus pg = dimCH
2(S,OS) = 0 and irregularity q = dimCH

1(S,OS) = 1.

They were classi�ed by Bagnera and de Franchis as quotients of products of elliptic

curves A × B by a �nite group acting freely. They have torsion canonical bundle of

order n = 2, 3, 4, 6. Using the torsion canonical bundle we can construct an abelian

surface S̃, the canonical cover of S, realizing S as the quotient of S̃ by a free action of

a cyclic group of order 2, 3, 4 or 6 respectively.

Bielliptic surfaces come equipped with two elliptic �brations pA : S → A/G and

pB : S → B/G induced by the projections from the product A × B onto each fac-

tor. The �rst is smooth with �bres isomorphic to B, the second has smooth �bres

isomorphic to A and multiple �bres over the �xed points of the action of G on B.

We study the group of autoequivalences of the bielliptic surface S by studying the action

of AutD(S) on the numerical Grothendieck group N(S) of S, which is a quotient of

the Grothendieck group K(S). To any complex E• ∈ D(S), we associate its class

[E•] =
∑

i(−1)i[Hi(E•)] in N(S) as the alternating sum of its cohomology sheaves.

This gives a natural action of AutD(S) on N(S) by

ρ : AutD(S)→ AutN(S)

where ρ(Φ)([E•]) = [Φ(E•)]. As autoequivalences preserve Hom sets, their image under

ρ preserves the Euler form on N(S). So ρ(Φ) is an isometry of N(S). Moreover, ρ(Φ)

preserves the subgroup

∆ =
{

[E] ∈ N(S)
∣∣∣[E] = π!([Ẽ]) for some [Ẽ] ∈ N(S̃)

}
⊂ N(S)

where π! : N(S̃) → N(S) is induced by the pushforward on K-theory. Denote by

O∆(N(S)) the subgroup of isometries of N(S) which preserve ∆. The main Theorem

of Chapter 3 is the following:

Theorem 1.2.2. There is an exact sequence

1 (AutS n Pic0 S)× Z AutD(S) O∆(N(S))
ρ

where Z is generated by the second shift [2]. The map ρ is induced by the natural action

of AutD(S) on N(S) given by ρ(Φ)[E] = [Φ(E)]. Furthermore, the image of ρ is a

subgroup of O∆(N(S)) of index 4 if S of type A2 or B2 and index 2 otherwise (see
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Table 3.1).

Bridgeland in [14] describes a family of autoequivalences associated to an elliptic �bra-

tion called relative Fourier-Mukai Transforms. As a bielliptic surface has two elliptic

�brations we get two families of autoequivalences. When the canonical cover of S is a

product of elliptic curves (we call such S cyclic) we describe the generators of AutD(S).

Theorem 1.2.3. Suppose S is a cyclic bielliptic surface. Then AutD(S) is generated by

standard autoequivalences and relative Fourier-Mukai transforms along the two elliptic

�brations.

We expect Theorem 1.2.3 to extend to all bielliptic surfaces.

1.3 Semi-orthogonal Decompositions of Equivariant Derived

Categories

We now introduce the second project which studies decompositions of the equivariant

derived category with respect to �nite group actions. First, we review the McKay

correspondence which focuses on the local case before explaining the approach we will

take to studying the global case using the language of Deligne-Mumford stacks.

1.3.1 The McKay Correspondence

The McKay correspondence, and its derivatives, originated from an observation by John

McKay in [52] of a bijection between non-trivial irreducible representations of �nite

subgroups G ⊂ SL(2,C) and rational curves in the exceptional locus of the minimal

resolution Y → C2 /G of the quotient singularity. Precisely, McKay gave an argument

that links a�ne Dynkin diagrams arising from the representation theory (the McKay

graph) of a �nite group G ⊂ SL2(C) with the dual intersection graph of irreducible

exceptional curves on the resolution of the singularity C2 /G.

This bijection was realized geometrically by Gonzalez-Springberg and Verdier [34] us-

ing vector bundles Lρ called tautological bundles on the minimal resolution, which are

constructed from non-trivial irreducible representations ρ of G. Moreover, this bijec-

tion gives an isomorphism between the Grothendieck group KG(C2) of G-equivariant

coherent sheaves on C2 and K(Y ) the Grothendieck group of the minimal resolution Y

of C2 /G.

The bounded derived category of coherent sheaves on a smooth projective variety can

be thought of as a �categori�cation� of the Grothendieck group. We would expect the

isomorphism

KG(C2)∼=K(Y )

to lift to an equivalence of derived categories. Kapranov and Vasserot [44] proved that

it does.
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Theorem 1.3.1. Let X be a surface equipped with a holomorphic symplectic form ω

and suppose that the G-action on X preserves ω. Then

Db(Y )∼=DG(X)

where Y → X/G is the minimal resolution of X/G and DG(X) = Db(CohG(X)) is the

bounded derived category of G-equivariant coherent sheaves on X.

As a corollary, we have the following version of the McKay Correspondence often referred

to as the derived McKay Correspondence for subgroups of SL2(C).

Corollary 1.3.2. Let G ⊂ SL(2,C) be a �nite subgroup and Y → C2 /G the minimal

resolution of C2 /G. Then there is an equivalence

Db(Y )∼=DG(C2).

This equivalence was extended by Bridgeland, King, and Reid [16] to 3-folds.

The philosophy behind the McKay Correspondence is, as stated by Reid [65], that

any question about the G-equivariant geometry of Cn should have an

answer related to the geometry of a crepant resolution Y → Cn /G.

Further work on the McKay Correspondence has diverged in two di�erent directions:

1. Studying the higher dimensional case where we consider �nite subgroups G ⊂
SL(n,C) and crepant resolutions (see [65] for a survey) with the aim of relating

the representation theory of G to the geometry of a crepant resolution (when one

exists) of Cn /G.

2. Considering more general groups G ⊂ GL(2,C) and try to relate the representa-

tion theory of G to the geometry of the minimal resolution Y → C2 /G.

We will follow the second case.

1.3.2 The Special McKay Correspondence

Finite subgroups of G ⊂ GLn(C) may contain elements which �xed a codimension

1 hyperplane in Cn, which we call pseudo-re�ections. A subgroup which contains no

pseudo-re�ections is called small.

If we are only interested in properties of the singularity we can reduce to the study

of small subgroups of GL2(C). Let N ⊂ G be the subgroup generated by pseudo-

re�ections. Then by the Chevalley-Shephard-Todd Theorem [69] Cn /N ∼=Cn, so

Cn /G∼=(Cn /N)/(G/N).
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Thus if we only were interested in the singularity and bijections arising from resolving

the singularity we are reduced to studying small subgroups G of GLn(C).

We now consider small �nite subgroups of GL2(C). Unlike in the SL2(C) case there is no

bijection between irreducible exceptional curves and non-trivial irreducible exceptional

curves - the representation theory of G can be strictly larger.

Wunram [78] and Riemenschneider [66] re-established a bijection by considering a subset

of special representations of G corresponding to re�exive modules on the quotient C2 /G

which lift to full sheaves supported on irreducible components of the exceptional locus.

This bijection is referred to as the special McKay correspondence.

The non-special representations of G measure the failure of the minimal resolution

to capture the equivariant geometry of G. On the level of the derived category, this

measure of failure will be expressed using a semi-orthogonal decomposition.

1.3.3 Semi-orthogonal Decompositions

The derived category is a complicated object. One way to simplify it is to decompose

the derived category into simpler pieces. A semi-orthogonal decomposition does this by

�ltering objects.

A semi-orthogonal decompositions of a triangulated category D is a pair of strict full

triangulated subcategories A,B such that:

1. For all A ∈ A and B ∈ B, HomD(B,A) = 0.

2. The triangulated category D is generated by A and B by taking shifts, cone of

morphisms and direct sums from objects. Equivalently, any object D ∈ D has a

decomposition

DA D DB T (DA)

where T is the shift functor encoded in the triangulated structure on D, DA ∈ A
and DB ∈ B.

We write D = 〈A,B〉 for such a semi-orthogonal decomposition. Using induction we can

de�ne a semi-orthogonal decomposition with more than two pieces. A semi-orthogonal

decomposition D = 〈A,B〉 is orthogonal if additionally for all A ∈ A and B ∈ B,
HomD(A,B) = 0.

The derived category of a connected noetherian scheme has no orthogonal decomposi-

tions by Bridgeland [15, Example 3.2]. However, many connected varieties have semi-

orthogonal decompositions. The most famous example was given by Beilinson [8].

Theorem 1.3.3 (Beilinson). There is a semi-orthogonal decompositions

Db(Pn) = 〈OPn ,OPn(1), . . . ,OPn(n− 1)〉

where OPn(i) denotes the full triangulated subcategory generated by OPn(i).
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Let G be a �nite group acting faithfully on a curve X over an algebraically closed �eld

of characteristic zero. Denote by D1, . . . , Dn the special �bres of π : X → X/G with the

non-reduced scheme structure. Denote by m1, . . . ,mn the multiplicities of the special

�bres. Then we have the following due to Polishchuk [63].

Theorem 1.3.4 ([63, Theorem 1.2]). For each i = 1, . . . , n, denote the full triangulated

subcategory of DG(X) generated by OkDi for 1 ≤ k ≤ mi − 1 by

Bi = 〈O(mi−1)Di , . . . ,O2Di ,ODi〉.

Note that the subcategories Bi and Bj are mutually orthogonal for i 6= j. There is a

semi-orthogonal decomposition

DG(X) =
〈
π∗Db(X/G),B1, . . . ,Bn

〉
.

Ishii and Ueda [40] interpreted the special McKay correspondence in terms of the derived

category using semi-orthogonal decompositions in the following way.

Theorem 1.3.5 ([40, Theorem 1.2]). Let G be a �nite small subgroup of GL(2,C)

and let Y → C2 /G be the minimal resolution of the quotient. Then there is a semi-

orthogonal decomposition

DG(C2) =
〈

ΦYD
b(Y ), E1, . . . , En

〉
where Ei are exceptional objects and n is the number of non-special representations of

G.

Kawamata extended this to general G ⊂ GL2(C) in [45] and G ⊂ GL3(C) in [46] by

understanding how the Toric Minimal Model program a�ects the derived category of

smooth Deligne-Mumford stacks associated to pairs (X,B).

1.3.4 Stacks and the McKay Correspondence

We are interested in global versions of the McKay correspondence when X is a smooth

projective surface over a �eld k and G an arbitrary �nite group acting e�ectively on

X. It is easy to construct examples where G acts via SL2(C) on an a�ne chart but via

GL2(C) on another (consider the action (x : y : z) 7→ (−x : −y : z) of Z2 on P2).

In this thesis, we will study G-equivariant sheaves on X by studying sheaves on the

quotient stack [X/G] as we have the following equivalence of categories

CohG(X)∼= Coh([X/G]).

In Chapter 5 we construct semi-orthogonal decompositions of

D([X/G]) = Db(Coh([X/G]) by studying the geometry of the quotient stack [X/G].
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This uses previous work by Satriano and Geraschenko who give a structure theorem

for smooth separated tame Deligne-Mumford stacks X in terms of their coarse moduli

space X. They use two constructions in their theorem: the canonical stack construction

and the root stack construction. The former contains information about �stackiness� in

codimension greater than one and the later about codimension one �stackiness�. The

reduction in the McKay correspondence to studying small groups amounts to reducing

to the canonical stack.

Both of these constructions were studied by Ishii and Ueda in [40] and recently in further

generality by Bergh, Lunts, and Schnürer [9]. They prove the following which we state

in more generality below.

Theorem 1.3.6. Let X be a smooth separated tame Deligne-Mumford stack with trivial

generic stabilizer. Then we have a decomposition

X Xcan X
f

π

ε

of the coarse moduli space map. Assume:

1. That the morphism π : X → X is an isomorphism outside a simple normal crossing

divisor D =
∑n

i=1Di. Denote by D =
∑n

i=1Di the pullback of D to Xcan.

2. The pull back f∗(Di) is a multiple of a prime divisor of order ri.

Then there exists a semi-orthogonal decomposition of D(X ) with one piece given by

the derived categories of Xcan and the rest by derived categories of intersections of the

divisors Di.

We derive the immediate Corollary below for a quotient stack [X/G] when G is an

abelian group.

Corollary 1.3.7. Let X be a smooth quasi-projective variety over k and G a �nite

abelian group whose order is coprime to the characteristic of k. Let D =
∑n

i=1Di

on X/G be the branch divisor. Denote by D the pullback of D to the canonical stack

(X/G)can.

Then there is a semi-orthogonal decomposition of DG(X)∼=D([X/G]) with pieces given

by:

• The derived category D((X/G)can) of the canonical stack (X/G)can.

• The derived category D(Di) of the irreducible components of the branch divisor.

• The derived category of the intersections of branch divisors.

More generally, for any non-abelian group smooth quotient stack [X/G] (or smooth

separated Deligne-Mumford stacks X ) we have the following theorem.
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Theorem 1.3.8. Let X be a smooth separated Deligne-Mumford stack with trivial

generic stabilizer over a �eld k of characteristic zero with coarse moduli space X. De-

note the canonical stack associated to X by Xcan and let f : X → Xcan be the unique

map given by the universal property of Xcan. Then the functor

f∗ : D(Xcan)→ D(X )

is fully faithful.

1.3.5 Applications

Using the theory developed in Chapter 5 we give several applications in Chapter 6.

1. We describes new semi-orthogonal decompositions of equivariant derived cate-

gories of minimal surfaces of general type with actions of �nite groups in several

examples. We also discuss the case for smooth abelian Galois covers of smooth

projective varieties in sections 6.2 and 6.3.

2. We give a new proof of the derived McKay correspondence in dimension 2 in

Section 6.4:

Theorem 1.3.9. Let G ⊂ GL(2,C) be a �nite subgroup acting faithfully on C2.

Then there is a semi-orthogonal decomposition of the equivariant derived category

DG(C2) =
〈
E1, . . . , En,ΦD̃1

D(D̃1), . . . ,Φ
D̃n
D(D̃m),ΦỸD(Ỹ )

〉
where Ỹ is the minimal resolution of C2 /G, D̃i are the normalizations of the

irreducible components of the branch divisor D =
∑m

i=1Di and E1, . . . , En are

exceptional objects.

3. Using our new proof of the derived McKay correspondence in dimension two we

compute semi-orthogonal decompositions for the action of the Dihedral group

D2n =
{
τ, σ
∣∣τn = σ2 = e, τστ = σ

}
.

acting e�ectively on C2 by ρ : D2n → GL(2,C), given by

ρ(τ) =

(
ξ 0

0 ξ−1

)
, ρ(σ) =

(
0 1

1 0

)

where ξn = 1 is an n-th root of unity. Denote by D ⊂ C2 /D2n the branch divisor.

Theorem 1.3.10. Let D2n act on C2 as above. Then we have two cases:

Odd n: There is a semi-orthogonal decomposition

DD2n(C2) =
〈
π∗D(C2),Φ

D̃
(D(D̃)), E1, . . . , En−1

2

〉
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where D̃ is the normalization of D.

Even n: There is a semi-orthogonal decomposition

DD2n(C2) =
〈
π∗D(C2),Φ

D̃1
(D(D̃1)),Φ

D̃2
(D(D̃2)), E1, . . . , En

2

〉
where D = D1 ∪D2 is reducible and D̃i are the normalization of Di.

Furthermore, we verify that these semi-orthogonal decompositions agree with the

motivic decomposition conjecture of Polishchuk and Van den Bergh [64].

Conjecture 1.3.11 (Motivic Decomposition). Assume that a �nite group G acts

e�ectively on a smooth quasi-projective variety X over an algebraically closed �eld

and that all the quotients Xg/C(g) are smooth for g ∈ G. Then there exists a

semi-orthogonal decomposition of the derived category DG(X) of G-equivariant

sheaves on X such that the pieces C[g] of this decomposition are in bijection with

the conjugacy classes of g in G and C[g]
∼=D(Xg/C(g)).

We expect that the theory of developed in Chapter 5 will allow us to prove Con-

jecture 1.3.11 for all abelian groups.

1.4 Structure of this Thesis

This thesis is structured as follows:

In Chapter 2 we review the necessary background on derived categories and derived

functors before introducing properties of autoequivalences and semi-orthogonal decom-

positions.

In Chapter 3 we prove the main theorems in section 1.2 on the group of autoequivalences

of the derived category of a bielliptic surface.

In Chapter 4 we review the background on Deligne-Mumford stacks that will be used

in Chapters 5 and 6. We also introduce the derived category of a stack and derived

functors between them.

In Chapter 5 we review the theorem of Ishii and Ueda and the structure theorem for

smooth separated Deligne-Mumford stacks by Geraschenko and Satriano. Using their

description we describe semi-orthogonal decompositions of the derived categories for

quotient stacks [X/G] when G is abelian. We also prove that for a general smooth

Deligne-Mumford stack X with coarse moduli space X, the derived category of the

canonical stack Xcan associated to X embeds fully faithfully into D(X ).

In Chapter 6 we give several application of the results in Chapter 5. In particular, we

construct new examples of semi-orthogonal decompositions for abelian groups acting

on smooth projective surfaces. These include explicit examples for surfaces of general

type, Godeaux surfaces, and Burniat surfaces. We give a new proof of the derived
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McKay Correspondence in dimension 2. As a consequence of this, we describe new semi-

orthogonal decompositions for Dihedral groups D2n acting on C2 and prove Polishchuk

and Van den Bergh's Motivic decompositions conjecture for them.

1.4.1 Notation and Conventions

We denote the category of schemes over S by Sch /S.

We will consider all schemes and stacks over a base scheme S. All stacks in this thesis

are Deligne-Mumford stacks over a base scheme S.

We will denote the cyclic group Z /nZ by Zn.

For an abelian category A we denote the unbounded derived category by D(A) and

by D∗(A) where ∗ = +,−, b the bounded below, bounded above and bounded derived

categories of A.

We will denote the bounded category of coherent sheaves on a scheme X by D(X) =

Db(Coh(X)) compared to D(Coh(X)) which denotes the unbounded derived category

of coherent sheaves on X.
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Chapter 2

Background on Derived Categories

In this chapter, we review background material on the derived category of an abelian

category before focusing on the derived category of coherent sheaves on a scheme.

First, we recall the basic construction of the derived category of an abelian category and

properties of the derived category in section 2.1. We then recall some basic properties of

the derived categories of (quasi)-coherent sheaves on a noetherian scheme and derived

functors between them in section 2.2. Next, we review the theory of Fourier-Mukai

transforms and autoequivalences in section 2.3. Finally, we review semi-orthogonal

decompositions of triangulated categories in section 2.4 and give some examples.

2.1 Constriction and Properties of Derived categories

We give an overview of the construction of the derived category and properties it has

following chapters III and IV in [29]. The derived category was �rst constructed by

Grothendieck and studied by Verdier in his thesis [76] to generalize Serre duality and

put the theory of derived functors on a more conceptual level.

2.1.1 Basic Construction

Let A be an abelian category. Denote by Ch(A) the category of chain complexes over

A which has objects chain complexes denoted by A•. Throughout this thesis we will

use ascending degree notation, i.e. the i-th di�erential increases degree di : Ai → Ai+1.

Recall that a morphism of chain complexes f : E• → F • is a quasi-isomorphism if the

induced maps f∗ : H i(E•) → H i(F •) are isomorphisms for all i ∈ Z. The derived

category can be constructed by localizing the category Ch(A) of chain complexes by

quasi-isomorphisms.

De�nition 2.1.1. Let A be an abelian category and Ch(A) the category of chain com-

plexes over A. The derived category of A is a category D(A) and a functor Q : Ch(A)→
D(A) which satis�es the following properties:
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(i) For any quasi-isomorphism f , Q(f) is an isomorphism,

(ii) The pair (Q,D(A)) is universal in the following way: given any other functor

F : Ch(A) → D such that for an quasi-isomorphism f , F (f) is an isomorphism

there exists a unique functor G : D(A)→ D such that F = G ◦Q.

Ch(A) D(A)

D

Q

F
∃ !G

We call the category D(A) the derived category of A.

The above de�nition asserts, if it exists, that the derived category is unique up to

unique equivalence of categories. However, it does not guarantee that it does exists.

An elementary proof of existence can be found in [29, III �2.2] which constructs D(A)

formally by adjoining inverses to quasi-isomorphisms. This does not, however, give a

concrete description of the morphisms between any two objects. To get a better grasp

of the morphism we construct D(A) by localization.

Let K(A) denote the homotopy category of Ch(A) whose objects are chain complexes

over A and morphisms are homotopy classes of morphisms between chain complexes

(see [29, III �4]). We often impose the following �niteness conditions on complexes.

Denote by K+(A) the subcategory of K(A) with objects with

Ei = 0 for i ≥ i0(E•) for some i0(E•) ∈ Z

and K−(A) the subcategory of K(A) with objects with

Ei = 0 for i ≤ i0(E•) for some i0(E•) ∈ Z .

Let Kb(A) = K+(A) ∩K−(A) which has objects with Ei = 0 for |i| > i0(E•) ∈ Z.

We construct D(A) by localizing K(A) by quasi-isomorphisms using a generalization of

localization for non-commutative rings using the Ore conditions (see [29, III �2.6-2.10]).

Proposition 2.1.2 ([29, III �4 Proposition 2]). The localization of K(A) by quasi-

isomorphisms is canonically isomorphic to the derived category D(A). The same holds

for K∗(A) and D∗(A) with ∗ = +,−, b.

The objects of D(A) are the same as objects of K(A) and Ch(A). A morphism between

two chain complexes E• and F • in D(A) is an equivalence class of diagrams called a

roof.
Z•

E• F •

s f
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where f and s are morphisms in K(A) and s is a quasi-isomorphism. Two diagrams are

equivalent if there is a further roof that makes everything commute.

2.1.2 Properties of the Derived Category

The derived category (and K(A)) are not usually abelian. They do, however, possess a

triangulated structure.

De�nition 2.1.3. Let D be an additive category. A triangulated structure on D is

speci�ed by the data:

a) An additive endomorphism T : D → D.

b) A class of distinguished triangles

X Y Z T (X).u v w

A morphism of distinguished triangles is given by a diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′).

u

f

v

g

w

h T (f)

u′ v′ w′

We require that this data satis�es the following axioms:

1. For any X ∈ D,
X X 0 T (X)id

is a distinguished triangle.

2. The set of distinguished triangles is closed under isomorphism.

3. Any morphism u : X → Y can be extended to a distinguished triangle

X Y Z T (X).u v w

4. Any triangles

X Y Z T (X).u v w

is distinguished if and only if

Y Z T (X) T (Y ).u v −T (u)

is distinguished.
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5. Given a diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′).

u

f

v

g

w

T (f)

u′ v′ w′

Then the diagram can be completed to a morphism of distinguished triangles by a

morphism (not necessarily unique) h : Z → Z ′.

6. (The Octahedral Axiom) Given a commutative diagram

X1 X2 Z3 T (X1)

X1 X3 Z2 T (X1)

X2 X3 Z1 T (X2)

Z3 Z2 Z1 T (Z3)

u3

idX1

v3

u1

w3

m1 idT (X1)

u1◦u3

u3

v2

idX3

w2

m1 T (u3)

u1

v3

v1

v2

w1

idZ1 T (v3)

m1 m3 T (v3)◦w1

such that the top three rows are distinguished triangles and the maps induce maps

of distinguished triangles. Then the bottom row is a distinguished triangle.

The triangulated structure on K(A) is given as follows:

1. The additive endomorphism is given by the shift functor [1] : K(A)→ K(A) where

E•[1] is de�ned by

(E•[1])i = Ei+1, diE•[1] = −di+1
E• : Ei+1 → Ei+2.

2. The set of distinguished triangles are given by the cone construction. Let f : E• →
F • be a morphism of chain complexes. Then de�ne C(f), the cone of f , by

C(f)i = Ei+1 ⊕ F i, diC(f) =

(
−di+1

E• 0

f [1] dF •

)
.

A distinguished triangle in K(A) is any diagram isomorphic to

E• F • C(u) E•[1].u v w

This triangulated structure of K(A) induces triangulated structure on K∗(A) for ∗ =

+,−, b. Because the triangulated structure is compatible with quasi-isomorphisms, the

derived category inherits a triangulated structure from K(A) with the shift functor as

the additive endomorphism and the image of distinguished triangles under

Q : K(A)→ D(A) de�ning distinguished triangles in D(A).
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There is a natural way to view A sitting inside D(A) by considering an object E ∈ A
as a complex concentrated in degree 0.

Proposition 2.1.4 ([29, III �5.2]). Denote by F : A ↪→ D∗(A) the inclusion de�ned by

F (A) = · · · → 0→ A→ 0→ · · · .

Then F is fully faithful and the essential image of F is the full subcategory given by

{
E• ∈ D(A)

∣∣H i(E•) = 0 for all i 6= 0
}
.

Remark 2.1.5. Using this we de�ne for E,F ∈ A,

Exti(E,F ) = HomD(A)(E,F [i]).

One can show that this de�nition of Exti is equivalent to the de�nition using derived

functors if A admits enough injectives.

2.1.3 Derived Functors

We now de�ne derived functors associated to left (resp. right) exact functors between

abelian categories. In this section, we follow [29, III �6].

First note that exact functors between abelian categories induce exact functors between

derived categories.

Proposition 2.1.6 ([29, III �6.2]). Assume that F : A → B is exact.

1. Then the induced functor

K∗(F ) : K∗(A)→ K∗(B)

de�ned by K∗(F )(E•)i = F (Ei) sends quasi-isomorphisms to quasi-isomorphisms

and induces a functor

D∗(F ) : D∗(A)→ D∗(B).

2. The functor D∗(F ) is an exact functor, i.e. it sends distinguished triangles to

distinguished triangles.

For left (resp. right) exact functors we de�ne right (resp. left) derived functors as

follows.

De�nition 2.1.7. The derived functor of an additive left exact functor F : A → B is

a pair consisting of an exact functor RF : D+(A)→ D+(B) and a natural transforma-

tion (morphism of functors) εF : QB ◦ K+(F ) → RF ◦ QA where QA and QB are the
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localization functors and K+(F ) : K+(A)→ K+(B) is the induced functor.

D+(A)

K+(A) D+(B)

K+(B)

RFQA

K+(F ) QA

This pair satis�es the following universal property: for any exact functor G : D+(A)→
D+(B) and any morphism of functors ε : QB ◦K+(F )→ G ◦QA, there exists a unique

morphism of functors η : RF → G such that

QB ◦K+(F )

RF ◦QA G ◦QA

ε

η◦QA

εF

commutes.

Similarly, the left derived functor of a right exact functor F : A → B is a pair consisting

of an exact functor LF : D−(A)→ D−(B) and a natural transformation εF : LF ◦QA →
QB◦K−(F ) satisfying a universal property similar to above but with a morphism η : G→
LF .

Remark 2.1.8. By a standard categorical argument the right (resp. left) derived functor

of an additive left (resp. right) exact functor is unique up to unique isomorphism.

We now explain how to construct the right (resp. left) derived functor of a left (resp.

right) exact functor using adaptive classes of objects.

De�nition 2.1.9. Let F : A → B be a left (right) exact functor. A class of object

R ⊂ Ob(A) is said to be adapted to F if it is stable under �nite direct sums and

satis�es the following two conditions:

a) A left (right) exact functor F maps any acyclic complex from Ch+(R) (Ch−(R))

into an acyclic complex.

b) For a left (right) exact functor F , any object of A is a sub-object (quotient) of an

object from R.

Proposition 2.1.10 ([29, III �5.4 and �5.8]). Let R be a class of objects adapted to a

left exact functor F : A → B and SR be a class of quasi-isomorphisms in K+(R). Then

SR is a localizing class of morphisms in K+(R) and the canonical functor

K+(R)[S−1
R ]→ D+(A)

is an equivalence of categories. A similar statement holds for right exact functors.
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Following [29, III �5.5] we construct the right derived functor RF of a left exact functor

F as follows. First, we de�ne F̄ : K+(R)[S−1
R ]→ D+(B) by

F̄ (E•)i = F (Ei)

for E• ∈ K+(R). Using Proposition 2.1.10 we choose an equivalence Φ: D+(A) →
K+(R)[S−1

R ]. Using this, we de�ne RF : D+(A)→ D+(B) by

RF (E•) = F̄ (Φ(E•)).

There is a similar construction for the left derived functor of a right exact functor. By

[29, III �5.8] the functor RF de�ned above is the right derived functor of F .

For applications, we will need to produce an adaptive class of objects. Two classes of

adaptive objects are given by injective and projective objects of A if we have enough of

them.

De�nition 2.1.11. We say an abelian category A has enough injectives (resp. enough

projectives) if for every object A ∈ Ob(A) is a sub-object (resp. quotient object) of an

injective (resp. projective) object.

Theorem 2.1.12 ([29, III �6.12]). If A contains enough injective (resp. projective)

objects, then the class I (resp. P) of injective (resp. projective) objects is adapted to

any left (resp. right) exact functor F : A → B.

Remark 2.1.13. Let F : A → B be a left exact functor and RF : D+(A) → D+(B)

its right derived functor. Then we can de�ne the classical i-th derived functor of F by

RiF = H0(RF [i]) = H i(RF ). A similar statement holds for left derived functors.

Example 2.1.14. Let A be an abelian category with enough injectives. Fix an object

X ∈ A and consider HomA(X,−) : A → Ab. This functor is left exact. Then we have

ExtiA(X,−) = Ri HomA(X,−).

We will use the following criteria to see when a derived functor descends to a derived

functor between bounded derived category.

Proposition 2.1.15 ([38, Corollary 2.68]). Suppose that F : K+(A) → K+(B) is an

exact functor that admits a right derived functor RF : D+(A)→ D+(B).

If RF (A) ∈ Db(B) for any object A ∈ A, then RF (E•) ∈ Db(B) for any complex

E• ∈ Db(A), i.e. RF descends to an exact functor

RF : Db(A)→ Db(B).
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2.1.4 Serre Functors

We now introduce the notion of a Serre functor on a triangulated category. This ab-

stracts the notion of Serre Duality for sheaves to arbitrary triangulated categories. One

use of Serre functors is to construct adjoints. We follow [38, �1.1 and �1.2].

De�nition 2.1.16. A k-linear category is an additive category A such that the group

HomA(A,B) are k-vector spaces and all compositions are k-bilinear.

All additive functors F : A → B between two k-linear categories over a common base

�eld k will be assumed to be k-linear, i.e. for any two objects A,B ∈ A the induced map

HomA(A,B)→ HomB(F (A), F (B)) is k-linear.

De�nition 2.1.17. Let A be a k-linear category. A Serre functor is a k-linear equiva-

lence S : A → A such that for any two objects A,B ∈ A there exists an isomorphism

ηA,B : HomA(A,B)∼= HomA(B,S(A))∗

which is functorial in A and B.

One use for Serre functors is to construct adjoints using the remark below.

Remark 2.1.18 ([38, Remark 1.31]). Let F : A → B be a functor between k-linear

categories endowed with Serre functors SA and SB respectively. Also, assume that all

Hom sets are �nite dimensional. Then

G a F ⇒ F a SA ◦G ◦ S−1
B .

A similar argument holds for the construction of a left adjoint given a right adjoint.

Thus for functors between categories with Serre functors the existence of the left or

right adjoint guarantees the existence of the other.

2.2 The Derived Category of a Scheme

We now focus on the abelian category of quasi-coherent and coherent sheaves on a

scheme X. We follow [38, �3].

De�nition 2.2.1. Let X be a scheme. Its derived category D(X) is the bounded derived

category of the abelian category Coh(X), i.e.

D(X) := Db(Coh(X)).

De�nition 2.2.2. Two schemes over a �eld k are called derived equivalent if there is

a k-linear exact equivalence D(X)∼=D(Y ). We say that Y is a Fourier-Mukai partner

of X if X and Y are derived equivalent.
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Proposition 2.2.3 ([38, Proposition 3.3]). Suppose X is a noetherian scheme. Then

any quasi-coherent sheaf F admits a resolution

0→ F → I0 → I1 → · · ·

by quasi-coherent sheaves Ii which are injective as OX-modules, i.e. QCoh(X) has

enough injectives.

Proposition 2.2.4 ([38, Proposition 3.5]). Let X be a noetherian scheme. Then the

natural functor

D(X)→ Db(QCoh(X))

de�nes an equivalence between the bounded derived category D(X) and the full triangu-

lated subcategory Db
coh(QCoh(X)) of bounded complexes of quasi-coherent sheaves with

coherent cohomology.

Remark 2.2.5. Let X be a noetherian scheme of �nite type over a �eld k. Then the

derived categories D∗(QCoh(X)) and D∗(Coh(X)) are k-linear categories.

When X is a smooth projective variety over a �eld, Serre Duality endows D(X) with a

Serre functor.

Theorem 2.2.6 ([38, Theorem 3.12]). Let X be a smooth projective variety of dimension

n over a �eld k. De�ne the exact functor

SX : D(X)→ D(X)

by SX(E•) = E• ⊗ ωX [n]. Then their exists functorial isomorphisms

ηE,F : HomD(X)(E
•, F •)∼= HomD(X)(F

•, SX(E•))∗ = HomD(X)(F
•, E• ⊗ ωX [n])∗

where HomD(X)(F
•, SX(E•))∗ is the dual vectorspace to HomD(X)(F

•, S(E•)), i.e. SX
is a Serre functor for D(X).

The above theorem can be used to prove the following Proposition.

Proposition 2.2.7 ([38, Proposition 3.13]). Suppose F and G are coherent sheaves on

a smooth projective variety of dimension n. Then

ExtiX(F,G) = 0 for i > n.

A consequence of the above Proposition is the following characterization of the derived

category of a curve.

Corollary 2.2.8 ([38, Corollary 3.15]). Let C be a smooth projective curve. Then any

object E• of D(C) is isomorphic to a direct sum
⊕

iEi where Ei are coherent sheaves

on C.
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2.2.1 Derived Functors and Schemes

We now derived the left and right exact functors between categories of quasi-coherent

and coherent sheaves such as the direct image functor, Hom functor, tensor product

functor −⊗− and pullback functor. Throughout we will assume that X is noetherian.

Direct Image

As QCoh(X) contains enough injectives, we can derive the direct image functor on the

level of QCoh(X).

Let f : X → Y denote a quasi-compact quasi-separated morphism of schemes. Then

the direct image functor maps quasi-coherent sheaves to quasi-coherent sheaves and

f∗ : QCoh(X)→ QCoh(Y )

is left exact. As QCoh(X) contains enough injectives, there is a right derived functor

Rf∗ : D+(QCoh(X))→ D+(QCoh(Y )).

Remark 2.2.9. If X is a scheme over a �eld k, the global section functor Γ: QCoh(X)→
Veck is a special case of the direct image under the structure morphism f : X → Spec k.

Theorem 2.2.10. For any quasi-coherent sheaf F on X, and a morphism f : X → Y

of noetherian schemes, the classical higher direct image sheaves Rif∗ are trivial for

i > dim(X).

Thus using Theorem 2.2.10 and Proposition 2.1.15, Rf∗ induces an exact functor

Rf∗ : Db(QCoh(X))→ Db(QCoh(Y )).

To descend to the coherent level we need the following Theorem

Theorem 2.2.11. If f : X → Y is a proper morphism of noetherian schemes, then the

higher direct images Rif∗(F ) of a coherent sheaf F are again coherent.

Thus for any proper morphism between noetherian schemes, we obtain a right derived

functor

Rf∗ : D(X)→ D(Y ).

The Hom Functor

Let F ∈ QCoh(X). Then

HomX(F,−) : QCoh(X)→ QCoh(X)
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is a left exact functor. Note if F ∈ Coh(X) Hom descends to

HomX(F,−) : Coh(X)→ Coh(X).

As X is noetherian, QCoh(X) contains enough injectives. Thus the derived functors

RHomX(F,−) : D+(QCoh(X))→ D+(QCoh(X))

exists. We de�ne

ExtiX(F,E) = RiHomX(F,E)

for any quasi-coherent sheaves E,F .

If F is coherent we have the following description of the stalk of ExtiX(F,E) at x ∈ X

ExtiX(F,E)x = ExtiOX,x(Fx, Ex).

Note that ExtiX(F,E) is coherent if F and E are.

If additionally, we assume that X is regular, then Hom descends to the level of the

bounded derived category for F ∈ Coh(X)

HomX(F,−) : D(X)→ D(X).

To prove this we use the following

Proposition 2.2.12. If X is regular, then F • ∈ D(X) is isomorphic to a bounded

complex of locally free sheaves G• ∈ D(X).

Remark 2.2.13. The above proposition can also be used to replace F by a complex of

locally free sheaves and compute RHom(F •,−) using Hom(G•,−).

Tensor Product

As X is noetherian, any coherent sheaf F admits a resolution by locally free sheaves,

i.e. there exists a surjection

F 0 � F

with F 0 locally free. If E is an acyclic bounded complex with all Ei locally free, then

F ⊗E is still acyclic. Thus the class of locally free sheaves in Coh(X) is adapted to the

right exact functor F ⊗−. Thus the left derived functor

F ⊗L − : D−(Coh(X))→ D−(Coh(X))

exists (c.f. [38, pp.78�79]). By de�nition

T ori(F,E) := H−i(F ⊗L E).
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When X is regular, F ⊗L − restricts to

F ⊗L − : D(X)→ D(X)

because any coherent sheafE admits a locally free resolution of length n, so T ori(F,E) =

0 for i > n.

Pullback

Let f : X → Y be a morphism of schemes. Then the pullback functor

f∗ : OY −Mod→ OX −Mod

is the composite of the exact functor

f−1 : OY −Mod→ Of−1OY −Mod

and the right exact functor

OX ⊗f−1(OY ) − : Of−1OY −Mod→ OX −Mod .

Then f∗ is right exact and if OX⊗Lf−1OY (−) if the left derived functor of OX⊗f−1OY (−)

then

Lf∗ : =
(
OX ⊗Lf−1OY −

)
◦ f−1 : D−(Y )→ D−(X)

is the left derived functor of f∗.

Remark 2.2.14. Note that the previous discussion deriving the tensor product functor

does not strictly apply but can be adapted to this more general situation.

Remark 2.2.15. Often f will be �at, so f∗ is exact and we will not need to derive f .

Projection Formula

We will use the following compatibility relation frequently. Let f : X → Y be a proper

morphism of projective schemes over a �eld k. For any F • ∈ D(X) and E• ∈ D(Y )

there exists a natural isomorphism

Rf∗(F
•)⊗L E• Rf∗(F

• ⊗L Lf∗E•).∼

This is a consequence of the classical projection formula f∗(F ) ⊗ E∼= f∗(F ⊗ f∗E) for

a locally free sheaf E and arbitary sheaf F .
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Grothendieck-Verdier Duality

Let f : X → Y be a morphism of smooth proper schemes over a �eld k of relative

dimension dim(f) = dim(X)− dim(Y ). Then the relative dualizing bundle is

ωf := ωX ⊗ f∗ωY .

Consider the functor

f ! : D(Y )→ D(X)

Ebullet 7→ Lf∗(E•)⊗ ωf [dim(f)]

Then Grothendieck-Verdier duality states that f ! is right adjoint to f∗

Theorem 2.2.16. For any F • ∈ D(X) and E• ∈ D(Y ) there exists a functorial iso-

morphism

Rf∗RHomX(F •, f !(E•))∼=RHom(Rf∗(F
•), E•).

Moreover, f ! is right adjoint to Rf∗. Thus we have

Lf∗ a Rf∗ a f !.

2.2.2 Support of a Complex

Recall that the support of a coherent sheaf E on X is the closed subset

supp(E) = {x ∈ X|Ex 6= 0} .

De�nition 2.2.17. The support of a complex E• ∈ D(X) is the union of the support

its cohomology sheaves. Explicitly, it is the closed subset

supp(E•) :=
⋃

supp(H i(E•)).

Lemma 2.2.18 ([38, Lemma 3.9]). Suppose E• ∈ D(X) and supp(E•) = Z1
∐
Z2

where Z1, Z2 ⊂ X are disjoint closed subsets. Then E•∼=E•1 ⊕ E•2 with supp(E•i ) ⊂ Zi

for i = 1, 2.

A consequence of this lemma is the following result due to Bridgeland.

Proposition 2.2.19 ([38, Proposition 3.10]). Let X be a noetherian scheme. Then

D(X) is an indecomposable triangulated category if and only if X is connected.

We will frequently use the following

Proposition 2.2.20. Let E and F be coherent sheaves on X such that supp(E) ∩
supp(F ) = ∅. Then

ExtiX(E,F ) = 0 for all i.
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Proof. Consider the following spectral sequence

Ep,q2 = Hp(X, Extq(E,F ))⇒ Extp+q(E,F ).

Then Exti(E,F )x = ExtiOX,x(Ex, Fx) is zero for all x ∈ X as one of Ex or Fx is

zero because E and F have disjoint support. Hence Ep,q2 = 0 for all p and q. Hence

Exti(E,F ) = 0 for all i.

Notation 2.2.21. From now on we will write f∗, f∗,⊗,Hom for the derived functors

Rf∗, Lf
∗,⊗L, RHom between derived categories.

2.3 Autoequivalences and Fourier-Mukai Transforms

We now review the theory of Fourier-Mukai transforms and autoequivalences of the

bounded derived category of a smooth projective variety X over a �eld k. In this

section, we study the group AutD(X) of k-linear exact autoequivalences of D(X). We

follow [38, �5]. All functors between derived categories will be derived appropriately.

First, we give some examples of autoequivalences of D(X) which arise naturally

Example 2.3.1.

1. Let f : X → X be an automorphism of X. Then f∗ : D(X)→ D(X) is an autoe-

quivalence of D(X) with inverse f∗.

2. Let L ∈ Pic(X) be a line bundle. Then the functor −⊗ L : D(X) → D(X) is an

autoequivalence with inverse −⊗ L∗.

3. Let n ∈ Z. The shift functor [n] : D(X) → D(X) is an autoequivalence of D(X)

with inverse [−n].

These autoequivalence form the subgroup of standard autoequivalences

AutstandD(X) = Z×(Aut(X)n Pic(X))

of AutD(X).

When the (anti)-canonical bundle of X is ample, the following result of Bondal and

Orlov tells us there are no other autoequivalences.

Theorem 2.3.2 ([13, Theorem 2.5]). Let X be a smooth projective variety with ample

(anti-)canonical bundle. Then the group of autoequivalences is just the group AutstandD(X)

of standard autoequivalences.

We now recall the notion of a Fourier-Mukai transform (or integral transform) between

derived categories following [38, �5]
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De�nition 2.3.3. Let X and Y be smooth projective varieties and P• ∈ D(X × Y ).

Denote the two projections by

X × Y

X Y.

q p

The Fourier-Mukai transform with kernel P• is the functors

ΦP• : D(X)→ D(Y )

de�ned by ΦP•(−) = p∗(q
∗(−)⊗P•). Note that p∗, q∗ and ⊗ denote the derived functors

between derived categories. We have the usual pullback functor q∗ because q is �at. Note

that q∗(−) ⊗ P• is the usual tensor product if P• is a complex of locally free sheaves.

As p∗, q∗ and ⊗ are all exact, so is ΦP .

Example 2.3.4. Let f : X → Y be a morphism. Then

f∗ = ΦOΓf
: D(X)→ D(Y )

where Γf ⊂ X×Y is the graph of f . This is because the following string of equivalences

qΦOΓf
(E•) =p∗(q

∗(E•)⊗OΓf ) = p∗(q
∗(E• ⊗ (id, f)∗OX))

∼=p∗ ◦ (id, f)∗((id, f)∗q∗(E•)⊗OX) (Projection Formula)

∼=(p ◦ (id, f))∗((q ◦ (id, f))∗(E•))

∼=f∗(id∗(E•) = f∗(E
•).

using the commutativity of the diagram

X

X × Y

X Y

(id,f)

id

f

q

p

and OΓf = (id, f)∗(OX).

We have the following properties of Fourier-Mukai transforms.

Facts 2.3.5.

1. Fourier-Mukai Transforms are exact because they are the composition of exact

functors.

2. The composite of Fourier-Mukai transforms is a Fourier-Mukai transform [38,

Proposition 5.10].
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3. A Fourier-Mukai transform ΦP• admits left and right adjoints ΦPL and ΦPR re-

spectively where

P•L = (P•)∗ ⊗ p∗ωY [dim(Y )], P•R = (P•)∗ ⊗ q∗ωX [dim(X)].

The following theorem gives a criterion for when a functor between derived categories

is a Fourier-Mukai transform whose proof we omit (see [38, Theorem 5.14] for more

details).

Theorem 2.3.6 (Orlov). Let X and Y be two smooth projective varieties and let

F : D(X)→ D(Y )

be a fully faithful exact functor. If F admits left and right adjoints, then their exists an

object P• ∈ D(X × Y ) unique up to isomorphism such that F is isomorphic to ΦP• .

Remark 2.3.7. Theorem 2.3.6 is usually applied to functors which are equivalences

[38, Corollary 5.17].

Remark 2.3.8. Rizzardo and Van den Bergh [67] have shown that the result is false if

we remove the fully faithfulness assumption.

We can use Theorem 2.3.6 to give a criterion for when an autoequivalence is standard

using the following.

Corollary 2.3.9 ([38, Corollary 5.23]). Suppose Φ: D(X) → D(Y ) is an equivalence

such that for any closed point x ∈ X there exists a closed point f(x) ∈ Y with

Φ(Ox)∼=Of(x).

Then f : X → Y de�nes an isomorphism and Φ is the composite of f∗ with a twist by

some line bundle M ∈ Pic(Y ), i.e.

Φ∼= f∗(M ⊗ (−)).

Example 2.3.10. Let E = C /Γ be an elliptic curve de�ned by a lattice Γ ⊂ C. Denote
by P the Poincaré line bundle on E × E. Note that P is the universal family for the

moduli functor parameterizing degree 0 line bundles on E. Then the Fourier-Mukai

transform

ΦP : D(E)→ D(E)

with kernel P is an autoequivalence of D(E).

Moreover, for any closed point x ∈ E, ΦP(Ox) is the degree zero line bundle OE([0]−x)

where [0] is the image of 0 ∈ C is E. This shows that ΦP is not standard.
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2.4 Semi-orthogonal Decompositions

The derived category of a projective variety is a complicated object and we might

want to decompose the derived category into simpler pieces. As long as the variety is

connected there are no direct sum decompositions of the derived category. So we search

for weaker decompositions called semi-orthogonal decomposition. We follow [38, �1.4].

De�nition 2.4.1. Let D be a triangulated category. A semi-orthogonal decomposition

of D is a pair of strictly full triangulated subcategories A,B of D such that:

1. For any B ∈ B and A ∈ A, Hom(B,A) = 0.

2. The largest triangulated category generated by A and B by taking cones, shifts and

direct sums is D. I.e. for all D ∈ D, there is a distinguished triangle

DB D DA DB[1]

with DA ∈ A and DB ∈ B.

We call the distinguished triangle

DB D DA DB[1]

the decomposition triangle for D. Moreover, this decomposition is functorial in D, i.e.

the projections

D → DA

D → DB

are functors.

We can generalize this de�nition to a semi-orthogonal decomposition of more than two

strictly full triangulated subcategories of D as follows.

De�nition 2.4.2. A semiorthogonal decomposition of D with n components is a collec-

tion A1, . . . ,An of strictly full triangulated subcategories in D such that

1. For any Ai ∈ Ai and Aj ∈ Aj, Hom(Ai, Aj) = 0 for i > j.

2. For all T ∈ D we have a �ltration

0 = Dn Dn−1 · · · D1 D0 = D

such that Cone(Di → Di−1) ∈ Ai.

For n = 2 we can see this de�nition is equivalent to the previous one as we have a

�ltration
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0 DB D

and we have that

C(0→ DB) = DB ∈ B

and

C(DB → D) = DA ∈ A

If we have a semi-orthogonal decomposition of D by A1, . . . ,An we write

D = 〈A1, . . . ,An〉

Now assume that α : A → D is a full embedding of a triangulated subcategory of D.

De�nition 2.4.3. We call A a right (resp. left) admissible subcategory of D if there

is a right (resp. left) adjoint α! : D → A (resp. α∗ : D → A). We call a subcategory

admissible if it is both right and left admissible.

Right and left admissible subcategory are the foundation of constructing semi-orthogonal

decompositions due to the following.

Proposition 2.4.4. Suppose that A is a right (resp. left) admissible subcategory of D.
Then one has a semi-orthogonal decomposition

D = 〈A⊥,A〉

(resp. D = 〈A,⊥A〉 ) where

A⊥ = {D ∈ D|Hom(D,A) = 0}

and
⊥A = {D ∈ D|Hom(A, D) = 0} .

This is proved using the following general argument. Suppose that α : A → D is a right

admissible subcategory of D and let α! : D → A denote the right adjoint to α. Then

the required semi-orthogonal decomposition is given by

D = 〈ker(α!), im(α)〉

where ker(α!) =
{
D ∈ D|α!(D) = 0

}
and im(α) is the essential image of α.

If D admits a Serre functor and the Hom-spaces of D are �nite dimensional, then any

left admissible subcategory is right admissible and vice versa by Remark 2.1.18.
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2.4.1 Exceptional Collections

We now give the simplest collection of examples of semi-orthogonal decompositions.We

follow [38, �1.4 and �8.3].

De�nition 2.4.5. An object E of a triangulated k-linear category D is called excep-

tional if

dimk Homi
D(E,E) = HomD(E,E[i]) =

1 if i = 0,

0 otherwise

Now assume that D has �nite dimensional Hom sets over k and⊕
i∈Z

dimk HomD(A,B[i]) <∞

for any pair A,B ∈ D. Denote for A,B ∈ D

Hom•D(A,B) =
⊕
i∈Z

Homi
D(A,B) =

⊕
i∈Z

HomD(A,B[i]).

which is a �nite dimensional vectorspace over k.

Let Vecfd denotes the abelian category of �nite dimensional vector spaces over k and

E ∈ D. Consider the functor
αE : D(Vecfd)→ D

given by V • 7→ V • ⊗k E. This admits a right adjoint

α!
E : D → D(Vecfd)

given by α!
E(D) = Hom•(E,D). Then αE is fully faithful (i.e. α!

E ◦ αE = idD(k)) if

and only if E is exceptional. Thus when E is exceptional we get a semi-orthogonal

decomposition

D = 〈ker(α!
E), αE(D(k))〉 = 〈E⊥, E〉.

Example 2.4.6. Let X be a smooth projective variety over k and suppose that hi,0(X) =

0 for i > 0 (e.g. X Fano). Then any line bundle L on X is exceptional and we have a

semi-orthogonal decomposition

D(X) = 〈L⊥, L〉.

De�nition 2.4.7. An exceptional collection is a collection of objects E1, . . . , En such

that

1. Each Ei is exceptional for i = 1, . . . , n.

2. For i > j, the vector space Hom•(Ei, Ej) = 0 (i.e. there are no maps from right

to left).



32 2. BACKGROUND ON DERIVED CATEGORIES

We call E1, . . . , En a full exceptional collection if E1, . . . , En is an exceptional collection

and they generate D, i.e. D = 〈E1 . . . , Em〉.

Any exceptional collection gives rise to a semi-orthogonal decomposition of the derived

category

D = 〈E⊥1 ∩ E⊥2 ∩ · · · ∩ E⊥n , E1, E2, . . . , En〉.

Note that E1, . . . , En is a full exceptional collection if and only if E⊥1 ∩E⊥2 ∩· · ·∩E⊥n = 0.

Example 2.4.8. Suppose that X is a Fano variety of Picard rank 1. Then −KX =

OX(r.H) for some generator H of the Picard group. Here r is the Fano index of X.

Then

OX ,OX(H), . . . ,OX((r − 1)H)

is an exceptional collection because

Ext•(OX(iH),OX(jH)) = Hp(X,OX((j − i)H) = 0 (for i > j).

So

D(X) = 〈A,OX ,OX(H), . . . ,OX((r − 1)H)〉.

Understanding the derived category in this way using semi-orthogonal decompositions

often is reduced to understanding the orthogonal component A.

Example 2.4.9. Let X = Pn. Then −KX = O(n+ 1) and

Db(X) = 〈O,O(1), . . . ,O(n)〉

is a full exceptional collection due to Beilinson.

It is not too di�cult to extend this to the relative setting

π : P(N )→ X

where N is a vector bundle on X and P(N ) is the projectivization of N .

Proposition 2.4.10 ([38, Corollary 8.36]). Let N be a vector bundle of rank r. Then

for any a ∈ Z the sequence if full subcategories

π∗D(X)X ⊗O(a), . . . , π∗D(X)⊗O(a+ r − 1) ⊂ D(P(N ))

gives a semi-orthogonal decomposition of D(P(N )).

2.4.2 Orlov's Blow Up Formula

We now discuss Orlov's famous blow-up formula for a smooth variety blown up in a

smooth centre of codimension ≥ 2. The semi-orthogonal decomposition of the blow up
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contains terms corresponding to the blown up variety and several copies of the centre.

We follow [38, �11.2]. The original paper is [59].

Proposition 2.4.11 ([38, Proposition 11.13]). Suppose f : S → T is a projective mor-

phism of smooth projective varieties such that f∗OS ∼=OT in D(T ). Then

f∗ : D(T )→ D(S)

is fully faithful. Thus f∗ realizes D(T ) as an admissible subcategory of D(S).

Proof. This follows from the adjunction of f∗ and f∗ and the projection formula to show

that id∼= f∗f
∗. The second statement follows from f∗ admitting a right adjoint.

Example 2.4.12. Suppose q : X̃ → X is the blow up of Y ⊂ X with X and Y smooth.

As the �bres are projective spaces q∗OX̃ ∼=OX . So using q∗ : D(X) → D(X̃) we can

view D(X) as an admissible subcategory of D(X̃).

We now describe the orthogonal pieces to q∗D(X) in D(X̃). We consider the following

setup: let X be a smooth projective variety over k and Y ⊂ X a smooth projective

subvariety of codimension c ≥ 2 and X̃ the blow up of X in Y . Denote by j : E → X̃

the inclusion of the exceptional divisor and π : E → Y the projection so we have the

diagram

E X̃

Y X.

j

π q

j̄

Proposition 2.4.13. Suppose Y ⊂ X has codimension c ≥ 2. Then the functor

Φk : = j∗(OE(kE)⊗ π∗(−)) : D(Y )→ D(X̃)

is fully faithful for any k. Moreover, Φk admits a right adjoint functor.

To prove Proposition 2.4.13 we will need the following results. First, we will use the

following criteria for when a functor is fully faithful due to Bondal and Orlov.

Proposition 2.4.14 ([38, Proposition 7.1]). Let ΦP : D(X) → D(Y ) be a Fourier-

Mukai transform with kernel P. Then ΦP is fully faithful if and only if for any two

closed points x, y ∈ X one has

HomD(X)(ΦP(Ox),ΦP(Oy)) =

k if x = y and i = 0

0 if x 6= y or i < 0 or i > dim(X).

We will also need the following description of self Ext groups of the push forward of the

structure sheaf along an arbitrarily closed embedding.
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Proposition 2.4.15 ([38, Proposition 11.8]). Let j : Y ↪→ X be an arbitrarily closed

embedding of smooth varieties. Then there exist isomorphisms

Hi(j∗j∗OY )∼=
−i∧
N ∗Y/X

ExtiX(j∗OY , j∗OY )∼=
i∧
NY/X

where NY/X is the normal bundle of Y in X.

Proof of Proposition 2.4.13. Note that Φk is a Fourier-Mukai transform with kernel

OE(kE) considered as an object of D(Y × X̃). We will use Proposition 2.4.14 to prove

that Φk is fully faithful.

First, let us show that HomD(Y )(Φk(Ox),Φk(Oy)[i]) = 0 for all i and x 6= y. If x 6= y,

then Φk(Ox) = j∗OFx(−k) and Φk(Oy) = j∗OFy(−k) where Fx and Fy are the �bres of

π over x and y respectively. This is because they have disjoint support so there are no

non-trivial maps between them.

Suppose x = y. Then we show that

Exti
X̃

(j∗OFx(−k), j∗OFx(−k))∼= Exti
X̃

(j∗OFx , j∗OFx)

vanishes for i out side the interval [0, d] (where d = dimX) and has dimension 1 for

i = 0. We do this using the spectral sequence

Ep,q2 = Hp(X̃, Extq
X̃

(j∗OFx , j∗OFx))⇒ Extp+q
X̃

(j∗OFx , j∗OFx).

By Proposition 2.4.15 we have

i∧
N
Fx/X̃

∼= Exti
X̃

(j∗OFx , j∗OFx).

so the spectral sequence becomes

Ep,q2 = Hp(X̃,

q∧
N
Fx/X̃

)⇒ Extp+q
X̃

(j∗OFx , j∗OFx).

We need to understand N
Fx/X̃

. Consider the short exact sequence

0 NFx/E N
Fx/X̃

N
E/X̃
|Fx 0.

As N
E/X̃
∼=OE(E) = O

X̃
(E)|E and NFX/E ∼=O

⊕d
Fx
, we see that N

Fx/X̃
is an extension

of OFx(−1) by O⊕dFX . As Fx is isomorphic to a projective space, there are no non-trivial

extensions of OX(−1). Hence N
Fx/X̃

∼=O⊕dFx ⊕OFx(−1).
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So Ep,q2 = 0 for all pairs p, q with p > 0 or p = 0 and q > d. Therefore,

Extq
X̃

(j∗OFx , j∗OFx) = E(0,q) = 0

for q > d and

Ext0
X̃

(j∗OFx , j∗OFx) = E0,0
2
∼= k.

Since the negative Ext groups vanish for the usual reasons, Φk satis�es the conditions

of Proposition 2.4.14.

We now introduce some notation to describe the semi-orthogonal decomposition of the

derived category of the blow up X̃. For k = −c+ 1, . . . ,−1 denote the essential images

Dk = im(Φ−k : D(Y )→ D(X̃)).

The full subcategory q∗D(X) will be denoted D0.

Theorem 2.4.16 (Orlov,[38, Proposition 11.18]). There is a semi-orthogonal decom-

position

D(X̃) = 〈D−c+1, . . . ,D−1,D0〉 .

Proof. We show semi-orthogonality, then we prove fullness.

First, we show that

Dl ⊂ D⊥k for − c+ 1 ≤ l < k < 0.

Let E•, F • ∈ D(Y ), then the adjunction between j∗ a j∗ gives

Hom
D(X̃)

(j∗(π
∗F • ⊗OE(−kE)),j∗(π

∗E• ⊗OE(−lE)))

∼= HomD(E)(j
∗j∗π

∗F •, π∗E• ⊗OE((k − l)E)).

By taking the cone of the unit morphism we have a distinguished triangles

π∗F • ⊗OE(−E)[1] j∗j∗π
∗F • π∗F • π∗F • ⊗OE(−E)[2].

This reduces the claim to showing the following vanishing

HomD(E)(π
∗F •,π∗E• ⊗OE((k − l)E)) = 0

= HomD(E)(π
∗F • ⊗OE(−E), π∗E• ⊗OE((k − l)E))

for all E•, F • ∈ D(Y ). These both follow from the adjunction π∗ a π∗, the projection
formula and π∗(OE((k − l)E)) = 0 for −c + 1 ≤ l − k < 0 as the �bres of π are all

projective spaces.

Next, we show

Dl ⊂ D⊥0 for − c+ 1 ≤ l < 0.
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Again, we use π∗(OE(−lE)) = 0 for −c + 1 ≤ l < 0 to deduce for all E• ∈ D(X) and

F • ∈ D(Y ) that

Hom
D(X̃

(q∗E•, j∗(π
∗F • ⊗OE(−lE)))∼= HomD(X)(E

•, q∗j∗(π
∗F • ⊗OE(−lE)))

∼= HomD(X)(E
•, j̄∗π∗(π

∗F • ⊗OE(−lE)))

= 0.

Finally, we prove fullness. Assume that E• ∈ D⊥l for all −c+ 1 ≤ l < 0. Then we will

show there exists G• ∈ D(Y ) with j∗E• ⊗OE((1− c)E)∼=π∗G•.

By our assumption on E• we have

Hom
D(X̃)

(j∗(π
∗F • ⊗OE(−lE)), E•) = 0

for all −c + 1 ≤ l < 0 and all F • ∈ D(Y ). Grothendieck-Verdier Duality and

j!E•∼= j∗E• ⊗OE(E)[−1] show that

HomD(E)(π
∗F • ⊗OE(−lE), j∗E•) = 0

for all −c + 2 ≤ l < 1 and F • ∈ D(Y ). Then by the semi-orthogonal decomposition

of the projectivization P(N ) of a locally free sheaf N we have that the pullback j∗E•

is contained in π∗D(Y ) ⊗ OE((1 − c)E) which is the semi-orthogonal complement of

〈π∗D(Y )(k)〉k=−c+2,...,0 in D(E).

Suppose that E•0 ∈ D(X̃) such that j∗E•0 ∼=π∗G• for some G• ∈ D(Y ). If G•∼= 0, then

E•0 has support outside the exceptional divisor E and E• ∈ D0. Suppose G• � 0. Then

for some closed point x ∈ Y and m ∈ Z, Hom
D(X̃)

(E•0 , q
∗Ox[m]) 6= 0. To see this

consider the spectral sequence

Er,s2 = Hom
D(X̃)

(E•0 , H
s(q∗Ox)[r])⇒ Hom

D(X̃)
(E•0 , q

∗Ox[r + s]).

By applying [38, Proposition 11.12] to Z = x ⊂ Y we have Hs(q∗Ox)∼= Ωs
Fx

(−s). This
and our assumption j∗E•0 ∼=π∗G• gives

Er,s2 = Hom
D(X̃)

(E•0 , j∗(Ω
s
Fx(s))[r])∼= HomD(E)(j

∗E•0 ,Ω
s
Fx([r]))

∼= HomD(E)(π
∗G•,Ωs

Fx(s)[r])∼= HomD(Y )(G
•, π∗Ω

s
Fx(s)[r]) = 0

except for s = 0. Hence

Hom
D(X̃)

(E•0 , q
∗Ox[m]) = Em,02 = HomD(Y )(G

•,Ox[m]) 6= 0

for some m ∈ Z and x ∈ Y as the closed points of Y span the derived category D(Y ).
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By applying this to the complexes E• and E•0 ∼=E• ⊗O
X̃

(−(c− 1)E) we get

0 6= Hom
D(X̃)

(E• ⊗O
X̃

(−(c− 1)E), q∗Ox[m])

∼= Hom
D(X̃)

(q∗Ox, E• ⊗OX̃(−(c− 1)E)⊗ ω
X̃

[dim(X)−m])∗

∼= Hom
D(X̃)

(q∗Ox, E•[dim(X)−m])∗.

Thus if E• ∈ D⊥l for all −c+1 ≤ l < 0 we cannot have E• ∈ D⊥0 . So D−c+1, . . . ,D−1,D0

generate D(X̃).
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Chapter 3

Derived Autoequivalences of

Bielliptic Surfaces

In this chapter, we describe the group of autoequivalences of the bounded derived cate-

gory of a bielliptic surface over the complex numbers. First we review some background

on bielliptic surfaces in section 3.1, the numerical Grothendieck group of these surfaces

in section 3.2 and their canonical cover in section 3.3. In section 3.4 we review some

background on moduli space of sheaves.

In section 3.5 we review the construction of relative Fourier-Mukai transforms along an

elliptic �bration and prove Theorem 1.2.3. In section 3.6 we sketch an argument to

�x a gap in the proof of Theorem 3.6.1 concerning Fourier-Mukai partners of bielliptic

surfaces. In section 3.7 we construct some non-standard autoequivalences for bielliptic

surfaces using moduli spaces of sheaves. Finally, in section 3.8 we prove Theorem 1.2.2.

Throughout this chapter, all varieties will be over the complex numbers.

3.1 Bielliptic Surfaces

Bielliptic surfaces are minimal surfaces which are to Abelian surfaces what Enriques

surfaces are to K3 surfaces. Precisely, we de�ne a bielliptic surface in the following

way:

De�nition 3.1.1. A bielliptic (or hyperelliptic) surface S is a minimal projective sur-

face of Kodaira dimension zero with q = 1 and pg = 0.

Bielliptic surfaces are constructed by taking the quotient of the product of two elliptic

curves A × B by a �nite subgroup G of A acting on A by translations and on B via

automorphisms, which are not all translations. These surfaces are classi�ed by Bagnera

and De Franchis into seven families [3, �V.5] determined by the group G, the lattice Γ

such that B = C /Γ, and the action of G on B (see Table 3.1).
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Type Γ G Action of G on B
A1 Arbitrary Z2 b 7→ −b
A2 Arbitrary Z2⊕Z2 b 7→ −b,

b 7→ b+ β, where 2β = 0
B1 Z⊕Zω Z3 b 7→ ωb
B2 Z⊕Zω Z3⊕Z3 b 7→ ωb,

b 7→ b+ β, where ωβ = β
C1 Z⊕Z i Z4 b 7→ ib
C2 Z⊕Z i Z4⊕Z2 b 7→ ib,

b 7→ b+ β, where iβ = β
D Z⊕Zω Z6 b 7→ −ωb

Table 3.1: (ω3 = 1 and i4 = 1 are complex roots of unity.)

De�nition 3.1.2. We call a bielliptic surface cyclic if it is of type A1,B1,C1, or D

and non-cyclic otherwise (see Table 3.1).

Remark 3.1.3. By construction bielliptic surfaces have torsion canonical bundle of

order 2, 3, 4 and 6 for bielliptic surfaces of type A,B,C and D respectively.

Remark 3.1.4. Associated with a bielliptic surface S are two elliptic �brations:

pA : S → A/G

pB : S → B/G

with A/G an elliptic curve and B/G∼=P1.

The projection A → A/G is étale, so all the �bres of pA are smooth. The �bre of pB
over a point P ∈ B/G is a multiple of a smooth elliptic curve. The multiplicity of the

�bre of pB at P is the same as the multiplicity of the projection B → B/G∼=P1. As

all smooth �bres of pA (respectively pB) are isomorphic to B (respectively A) we will

denote the class of the smooth �bre of pA and pB in H2(S,Q) by B and A respectively.

3.2 The Numerical Grothendieck Group

We will study the group of autoequivalences by studying how it acts on the numerical

Grothendieck group of the surface.

The Grothendieck group K(X) of a smooth projective varietyX is the free abelian group

generated by isomorphism classes of objects in D(X) modulo an equivalence relation

given by distinguished triangles [38, �5]. There is a natural bilinear form on this group,

the Euler form, given by

χ([E], [F ]) =
∑
i∈Z

(−1)i dimC Homi
D(X)(E,F ).
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Consider the left radical of the Euler form

⊥χ = {v ∈ K(X)|χ(v, w) = 0 for all w ∈ K(X)} .

Serre duality implies that χ(v, w) = 0 for all w if and only if χ(w, v) = 0 for all w.

Thus when we take the quotient N(X) = K(X)/⊥χ, the Euler form descends to a non-

degenerate bilinear form on N(X). We call N(X) the numerical Grothendieck group of

X. Recall that Num(X) is the (free abelian) group of divisors on X modulo numerical

equivalence ≡.

Proposition 3.2.1. Let S be a bielliptic surface. Then the Chern character

ch: K(S)→ H2∗(S,Q)

induces an isomorphism between N(S) and the group

H0(S,Z)⊕Num(S)⊕H4(S,Z)∼=Z⊕Num(S)⊕ Z .

Under this identi�cation, for ch(E) = (r,D, s) and ch(F ) = (r′, D′, s′) the Euler form

becomes χ(E,F ) = rs′ + r′s−D ·D′.

Proof. For v = (v0, v2, v4) ∈ H2∗(S,Q) de�ne v∨ = (v0,−v2, v4) ∈ H2∗(S,Q). Recall

that the Mukai pairing on H2∗(S,Q) is de�ned by

〈v, v′〉 =

∫
X
v∨ · v′

where the product in the integral is the cup product of cohomology classes. The Todd

classes td(X) of abelian and bielliptic surfaces X are (1, 0, 0) because χ(OX) = 0 and

KX is trivial in cohomology. Then by Hirzebruch-Riemann-Roch for [E], [F ] ∈ K(S)

χ([E], [F ]) = 〈ch(E), ch(F )〉.

Thus the Euler form for ch(E) = (r,D, s) and ch(F ) = (r′, D′, s′) can be written as

χ([E], [F ]) = 〈(r,D, s), (r′, D′, s′)〉 = rs′ + r′s−D ·D′.

A class lies in the radical of the Euler form if and only if it lies in the radical of the

Mukai pairing. As the Mukai pairing is non-degenerate an element of K(S) lies in the

radical of the Euler form if and only if it has zero Chern Character. Hence ker(ch) =⊥ χ

and im(ch)∼=N(S).

Using this alternative description of the Euler form, we see that the class of a numerically

trivial divisor D, [OS(D)] is equivalent to [OS ]. Therefore, the image of the Chern

character restricted to the group H2(S,Q) is the group Num(S). Furthermore, by

Hirzebruch-Riemann-Roch we have ch2(E) = χ(E) ∈ Z for all E. Thus we have an
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isomorphism

N(S)∼=H0(X,Z)⊕Num(S)⊕H4(X,Z)∼=Z⊕Num(S)⊕ Z .

Remark 3.2.2. These isomorphisms generalize to other surfaces using the Mukai vector

and Mukai lattice. The Mukai vector of a sheaf E on X is de�ned by

v(E) = ch(E)
√
td(X)

where td(X) is the Todd class of the surface. For bielliptic and abelian surfaces we have

td(X) =
√
td(X) = 1, so the Mukai vector coincides with the Chern character.

Remark 3.2.3. We will study the group AutD(S) by studying its action on the nu-

merical Grothendieck group given by the homomorphism

ρ : AutD(S)→ Aut(N(S))

de�ned by ρ(Φ)([E]) = [Φ(E)]. Autoequivalences of D(S) preserve the Homi
S groups,

thus the Euler form. Hence the image of ρ is contained in the group of isometries

O(N(S)) of N(S).

3.3 Canonical Covers of Bielliptic Surfaces

To any bielliptic surface S we can associate an étale cover S̃ which has trivial canonical

bundle. This cover is called the canonical cover of S.

Proposition 3.3.1 ([17, �2], [38, �7.3],[4, �7.2]). Let X be a smooth projective variety

whose canonical bundle ωX has �nite order, i.e. there exists n such that ω⊗nX
∼=OX .

Then there exists a smooth projective variety X̃ with trivial canonical bundle, and an

étale cover π : X̃ → X of degree n such that

π∗(OX̃)∼=
n−1⊕
i=0

ω⊗iX .

Furthermore, X̃ is uniquely de�ned up to isomorphism, and there is a free action of the

cyclic group G̃ = Zn on X̃ such that π : X̃ → X = X̃/G̃ is the quotient morphism.

The canonical cover of a bielliptic surface will play an important role in determining

the group of autoequivalences. We list the following facts about the canonical cover of

a bielliptic surface.

Proposition 3.3.2. Let S be a bielliptic surface which is realized as a quotient of A×B
be a �nite group G of order l as in Table 3.1. Then there exists an abelian surface S̃

which is the canonical cover of S. Moreover,
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• If S is cyclic, then S̃∼=A×B.

• If S is non-cyclic, then S̃ is a quotient of A × B by a cyclic subgroup H ⊂ G of

order k acting on A×B purely by translations. We have G∼=Zn⊕Zk.

Remark 3.3.3. The canonical cover S̃ has two �brations

p̃A : S̃ → A/H

p̃B : S̃ → B/H.

Both p̃A and p̃B are smooth �brations with �bres isomorphic to B and A respectively.

We will denote the class of these �bres by B̃ and Ã in Num(S̃) respectively. The degree

of the intersection B̃ · Ã = k = |H|.

Serrano [68, �1] described the structure of Num(S) in the following way.

Lemma 3.3.4. Let S be a bielliptic surface constructed as a quotient of A × B by a

�nite abelian group G where A and B are elliptic curves.

Recall that S admits a canonical cover π : S̃ → S where S̃ is an abelian surface. The

canonical cover S̃ is constructed as a quotient of A×B by a cyclic group of order 1, 2 or

3 with quotient map π̃ : (A×B)→ S̃ = (A×B)/H. Denote deg π = n and deg π̃ = k.

Recall that S has two elliptic �brations and pA : A/G and pB : S → B/G whose smooth

�bres are isomorphic to B and A respectively. We will write B and A to denote the

classes of these �bres in H2(S,Q).

The pairing on H2(S,Q) is the intersection pairing.

Then:

1. The second rational cohomology group H2(S,Q) is generated by A and B.

2. The second integral cohomology group H2(S,Z) is generated by 1
nA and 1

kB.

3.3.1 Canonical Covers and the Derived Category

Consider the category Sp-Coh(S) of coherent π∗(OS)-modules on S. A sheaf E lies in

the essential image of the forgetful map Sp-Coh(S)→ Coh(S) if and only if E⊗ωS ∼=E.

We call such sheaves special.

Denote by CohG̃(S̃) the category of G̃-equivariant sheaves on S̃. An object of CohG̃(S̃)

is a pair (E, {λg̃}g̃∈G̃) which satis�es some axioms (see [16] for more details - later we

will see that CohG̃(S̃)∼= Coh([S̃/G̃] where [S̃/G̃] is the quotient stack). As G̃ is cyclic,

an object of CohG̃(S̃) is given by a pair (E, λg̃) where λg̃ : E∼= g̃∗E where g̃ is generator

of G̃.

The following results relate these categories to the category of coherent sheaves on S̃

and S respectively.
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Lemma 3.3.5 ([17, Lemma 2.4]). The functors

π∗ : Coh(S̃)→ Sp-Coh(S)

π∗ : Coh(S)→ CohG̃(S̃)

are equivalences.

On the level of derived categories, we have

Proposition 3.3.6 ([17, Proposition 2.5 ]). Let E be an object of D(S). Then there is

an object Ẽ of D(S̃) such that Rπ∗(Ẽ)∼=E if and only if E ⊗ ωS ∼=E.

Remark 3.3.7. Recall π! : N(S̃)→ N(S) is de�ned by ([38, �5.2])

π![E] =
∑
i∈Z

(−1)i[Riπ∗(E)].

After taking Chern characters, π! coincides with the pushforward π∗ on cohomology by

Grothendieck-Riemann-Roch. This is due to the Todd classes of S̃ and S being (1, 0, 0).

First note that the composite π! : K(S̃)→ K(S)→ N(S) descends to a map π! : N(S̃)→
N(S) because for v ∈ ⊥χ, π!(v) = 0 because for any w ∈ N(S)

χ(π!(v), w) = χ(v, π∗w) = 0

by adjunction. As χ is non-degenerate on N(S), π!(v) = 0.

On the level of the numerical Grothendieck group N(S) we are interested in the sub-

group ∆ of special classes de�ned by

∆ = im(π!) =
{

[E] ∈ N(S)
∣∣∣[E] = π!([Ẽ)]) for some [Ẽ] ∈ N(S̃)

}
.

Remark 3.3.8. Note that the class [E] of a special object E ∈ D(S) lies in ∆ by

Proposition 3.3.6 as there exists Ẽ ∈ D(S̃) such that [E] = [π∗(Ẽ)] = π![Ẽ].

The subgroup ∆ is important because the image of AutD(S) under ρ preserves ∆. We

recall the following results on functors between derived categories of smooth projective

varieties with torsion canonical bundles and functors between the derived categories of

the canonical cover.

De�nition 3.3.9 ([38, De�nition 7.15][17, De�nition 4.2]). Suppose X and Y are

smooth projective varieties whose canonical bundles are torsion of order n and X̃ and

Ỹ are their canonical covers respectively. Then a lift of a functor Φ: D(X)→ D(Y ) is

a functor Φ̃ : D(X̃)→ D(Ỹ ) such that the following diagram commutes:

D(X̃) D(Ỹ )

D(X) D(Y ),

Φ̃

πX,∗ πY,∗

Φ

D(X̃) D(Ỹ )

D(X) D(Y ).

Φ̃

Φ

π∗X π∗Y
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Theorem 3.3.10 ([38, Proposition 7.18] [17, Theorem 4.5]). Suppose X and Y are

smooth projective varieties whose canonical bundles are torsion of order n with canonical

covers X̃ and Ỹ respectively. Then for any equivalence Φ: D(X)→ D(Y ) there is a lift

Φ̃ : D(X̃) → D(Ỹ ). Moreover, Φ̃ is an equivalence of categories and equivariant in the

following way: there is an automorphism τ of G such that

g∗ ◦ Φ̃ = Φ̃ ◦ τ(g)∗

for every g ∈ G.

Proposition 3.3.11. Let Φ ∈ AutD(S). Then ρ(Φ) preserves ∆.

Proof. Any autoequivalence Φ ∈ AutD(S) lifts to an equivariant autoequivalences Φ̃ ∈
AutD(S̃) by Theorem 3.3.10 such that

Rπ∗ ◦ Φ̃∼= Φ ◦Rπ∗.

Consider v ∈ ∆ and ω ∈ N(S̃) such that v = π!(w). Then

ρ(Φ)(v) = ρ(Φ)(π!(w)) = π!(ρ(Φ̃)(w)) ∈ ∆.

Therefore ρ(Φ)(∆) ⊂ ∆.

3.3.2 Autoequivalences which act trivially on N(S)

We now show for any bielliptic surface S that any autoequivalence Φ of the derived

category D(S) is a sheaf transform, i.e. Φ(E) is a shift of a sheaf for any sheaf E.

First, recall that any autoequivalence of belian surfaces is a sheaf transform.

Lemma 3.3.12 ([18, Corollary 2.10]). Let S̃ be an abelian surface and Y any surface.

Then any equivalence Φ̃ : D(Y )→ D(S̃) is a sheaf transform.

Lemma 3.3.13. Let S be a bielliptic surface, Y any surface and Φ: D(Y )→ D(S) an

equivalence. Then Φ is a sheaf transform.

Proof. We proceed by contradiction. Let E ∈ D(S) be a sheaf such that Φ(E) is not a

shift of a sheaf. As Y is derived equivalent S, it admits a canonical cover Ỹ which is

derived equivalent to S̃.

Consider the commutative diagram

D(Ỹ ) D(S̃)

D(S) D(S)

Φ̃

π∗

Φ

π∗

where S̃ is the canonical cover of S and Φ̃ is a lift of Φ.
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One way around the diagram gives Φ̃(π∗S(E)), which is a sheaf by Lemma 3.3.12 because

π is �at. The other way gives π∗(Φ(E)), which is a complex. This is a contradiction.

Hence Φ is a sheaf transform.

A corollary of this is a description of those autoequivalences in the kernel of ρ.

Corollary 3.3.14. Let ρ : AutD(S)→ N(S) be the natural representation of AutD(S)

given by ρ(Φ)([E]) = [Φ(E)]. Then

ker ρ = (AutS n Pic0 S)× Z[2].

Proof. Let Φ be a autoequivalences that act trivially on N(S). Then ch(Φ(Os)) =

(0, 0, 1). By Lemma 3.3.13, Φ(Os) is an even shift of a sheaf. Thus Φ(Os)[−2k]∼=Os′
for some s′ ∈ S and k ∈ Z. By Corollary 2.3.9 Φ = f∗(L⊗−)[2k] where k ∈ Z, L is a

line bundle, and f : S → S is an automorphism.

As Φ acts trivially on N(S), n is even. Tensoring by a line bundle L act trivially on

N(S) if and only if L has degree zero. Thus L ∈ Pic0(S).

As automorphisms of S preserve e�ective divisors, they cannot exchange the �bres of

the two di�erent elliptic �brations. This is because one has multiple �bres and the other

does not. Hence f can be any automorphism of S.

3.3.3 Structure of ∆

To describe the group of autoequivalences which preserve ∆ we need the following results

which describe the structure of ∆.

Lemma 3.3.15. A class (r,D, s) ∈ ∆ if and only if n | r and (0, D, 0) ∈ ∆. Thus

∆ = nZ⊕π∗(Num(S̃))⊕ Z ⊂ Z⊕Num(S)⊕ Z∼=N(S).

Proof. Suppose n | r and (0, D, 0) ∈ ∆. Then r = r̃n and there exists D̃ ∈ Num(S̃)

such that π!(0, D̃, 0) = (0, π∗(D̃), 0) = (0, D, 0). Then

π!(r̃, D̃, s) = π!(r̃, 0, 0) + π!(0, D̃, 0) + π!(0, 0, s) = (r,D, s)

as π!(0, 0, 1) = (0, 0, 1).

Suppose that (r,D, s) ∈ ∆. Then there exists [E] ∈ N(S̃) such that π!([Ẽ]) = (r,D, s).

Note that π∗(0, 0, 1) = (0, 0, n) as π is étale of degree n and π∗(1, 0, 0) = (1, 0, 0). Also,

π∗(1, 0, 0) = (n, 0, 0) by construction of the canonical cover and π∗(0, 0, 1) = (0, 0, 1) as

π is étale.

Using the adjunction between π∗ and π∗ and by computing the Mukai pairing of (r,D, s)

with the classes (1, 0, 0) and (0, 0, 1) we see that ch2([E]) = s and r = n rk(Ẽ). So
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(r, 0, 0), (0, 0, s) ∈ ∆ as π!(rk(E)[O
S̃

]) = (r, 0, 0) and π!(s[Os̃]) = (0, 0, s). Then

(r,D, s)− (0, 0, s)− (r, 0, 0) = (0, D, 0) ∈ ∆.

We now describe some elements of ∆∩Num(S). We will write D ∈ ∆ for D ∈ Num(S)

if (0, D, 0) ∈ ∆. Recall that Num(S) is generated by 1
nA and 1

kB.

Lemma 3.3.16.

1. The classes A,B ∈ ∆.

2. The classes m
k A never lies in ∆ for m 6≡ 0 (mod k).

3. If S is non-cyclic, then m
k B never lies in ∆ for m 6≡ 0 (mod k).

Proof. 1. The classes A,B ∈ ∆ as π∗(Ã) = A and π∗(B̃) = B.

2. To show that m
nA /∈ ∆ for m 6≡ (mod k) it is enough to show that 1

nA 6∈ ∆. We

proceed by contradiction.

Suppose that 1
nA ∈ ∆. Then there exist 0 6≡ D̃ ∈ Num(S̃) such that π∗(D̃) = 1

nA. As

D̃ · D̃ = n(π∗D,π∗D) = n( 1
nA,

1
nA) = 0, by [43, Proposition 2.3], D̃ ≡ mE for some

0 6= m ∈ Z and E an elliptic curve. Then by the push-pull formula we have

0 = A · π∗(mE) = π∗(π
∗A ·mE).

As the pushforward of points is injective on cohomology, we have

0 = π∗A ·mE = nÃ ·mE = nm(Ã · E).

So Ã ·E = 0. As E and Ã are irreducible curves, by [43, Proposition 2.1] E = Ts̃(Ã), so

E ≡ Ã. But π∗(mE) = π∗(mÃ) = mA 6≡ 1
kA, which is a contradiction. Hence 1

kA /∈ ∆.

3. A similar argument holds for m
k B when S is a non-cyclic bielliptic by replacing Ã by

B̃.

Remark 3.3.17. Note that the only non-zero isotropic elements (0, D, 0) ∈ ∆ have

D = aA, bB with a, b ∈ Z, a, b 6= 0 by Lemma 3.3.4 and Lemma 3.3.16.

Remark 3.3.18. Note that we prove nothing about classes of the form m
k (A+B).

A consequence of the above Lemmas is the following description of ∆ when S is cyclic.

Corollary 3.3.19. Suppose that S is a cyclic bielliptic surface. Then ∆ is generated

by the classes (n, 0, 0), (0, A, 0), (0, B, 0), (0, 0, 1).
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3.4 Moduli Spaces of Sheaves

In general, the moduli space of coherent sheaves on a variety will form a stack. In

order to produce a moduli space of sheaves which is a scheme, we need to impose extra

conditions on our sheaves. We introduce the notions of Gieseker and slope stability

which allow us to de�ne schemes which parameterize stable coherent sheaves on X.

Moduli spaces of stable sheaves play an important role in understanding equivalences

between two objects. Mukai �rst explored this for abelian varieties and their dual using a

universal family of sheaves as a kernel for a Fourier-Mukai transform. This was extended

to K3 surfaces by Mukai and Orlov who showed that for any derived equivalent K3

surfaces X and Y , we can express one as a moduli space of stable sheaves on the other.

3.4.1 Stability of Sheaves

We recall the notions of Gieseker and slope stability as well as simple facts about stable

and semistable sheaves with respect to these two di�erent notions of stability.

De�nition 3.4.1 (Gieseker stability). Fix an ample divisor H. De�ne the normalized

Hilbert polynomial of a torsion-free coherent sheaf E with respect to H by

pE = pH,E(m) =
χ(E ⊗O(mH))

rankE
.

A torsion-free coherent sheaf E is stable (resp. semistable) if pH,F (m) < pH,E(m)

(resp. if pH,F (m) ≤ pH,E(m)) for m� 0 and all proper sub-sheaves F ⊂ E.

A semistable sheaf is called polystable if all its direct summands are stable sheaves.

De�nition 3.4.2 (Slope stability). Fix an ample divisor H on X. De�ne the slope of

a torsion-free coherent sheaf E with respect to H by

µ(E) =
c1(E) ·H

rankE
.

A torsion-free coherent sheaf E is µ-stable (resp. µ-semistable if µ(F ) < µ(E) (resp.

µ(F ) ≤ µ(E)) for all non-trivial sub-sheaves F ⊂ E with 0 < rankF < rankE.

A µ-semistable sheaf is called polystable if all its direct summands are µ-stable sheaves.

Remark 3.4.3. By Hirzebruch-Riemann-Roch we can write

χ(E ⊗O(mH)) =

∫
X

ch (E ⊗O(mH)) · td(X).
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If X is a surface with td(X) = (1, 0, 0) (i.e. X is bielliptic or abelian) then we have

χ(E ⊗O(mH)) =

∫
X

ch(E) · exp(mH)

=

∫
X

(rank(E), c1(E), ch2(E)) · (1,mH, 1

2
m2H2)

= ch2(E) + (c1(E) ·H)m+
rank(E)H2

2
m2.

So

pE =
ch2(E)

rank(E)
+ µ(E)m+

H2

2
m2.

These notions of stability are related in the following ways.

Lemma 3.4.4 ([39, Lemma 1.2.13]). We have the following implications

E is µ-stable ⇒ E is stable⇒ E is semi-stable⇒ E is µ-semistable.

Proposition 3.4.5 ([39, Proposition 1.2.7]). Let F and G be semi-stable torsion free

coherent sheaves.

(i) If p(F ) < p(G), then HomX(F,G) = 0. If p(F ) = p(G) and f : F → G is non-

trivial then f is injective if F is stable and surjective if G is stable.

(ii) If p(F ) = p(G) and rank(F ) = rank(G) then any non-trivial homomorphism

f : F → G is an isomorphism provided F or G is stable.

Recall that a sheaf E on X is simple if HomX(E,E)∼=C.

Proposition 3.4.6. Stable sheaves are simple. Moreover, any simple polystable sheaf

is stable.

Proof. The �rst statement follows from Proposition 3.4.5 part (ii) and that any �nite

dimensional division algebra over an algebraically closed �eld is trivial [39, Corollary

1.2.8].

Suppose E be a simple polystable sheaf. Then E = ⊕iEi where Ei are stable. Then we

have

Hom(E,E) =
⊕
i,j

Hom(Ei, Ej).

As E is simple, all except one of the factors on the right hand side must be zero. Hence

E∼=Ei for some i, thus stable.

3.4.2 Moduli Spaces of Sheaves and Universal Families

By considering families of Gieseker semi-stable sheaves we can construct moduli spaces

which are schemes. This was �rst done by Gieseker in [32] and a modern treatment
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can be found in [39, �4.3-4.4]. This is achieved using the theory of geometric invariant

theory which we will not discuss. We will denote the moduli space of H-semistable

sheaves on X by MH and the open subset of H-stable sheaves by M s
H ⊂MH .

Recall that a family of sheaves on X parameterized by S (an S-family) is a coherent

OX×S-module F �at over S. Let s ∈ S be a closed point and denote Fs the restriction

of F to the �bre Xs over s.

De�nition 3.4.7 ([39, De�nition 4.6.1]). A �at family E of stable sheaves on X pa-

rameterized by M s
H(v) is called quasi-universal if the following holds: if F is an S-�at

family of stable sheaves on X with Hilbert polynomial P and φF : S → M s
H the mor-

phism induced by F , which on closed points takes a point s ∈ S to the sheaf Fs ∈ M s
H .

Then there is a locally free sheaf W of �nite rank on S such that F ⊗ p∗W ∼=φ∗F (E). A

quasi-universal family is universal if W is a line bundle.

There always exists a (not necessarily unique) quasi-universal family on X×M s by [39,

Proposition 4.6.2]. However, universal families exist if and only if M s
H is a �ne moduli

space of stable sheaves. In our situation, we have the following su�cient criteria for the

existence of a universal family.

Corollary 3.4.8 ([38, Lemma 10.22 and Corollary 10.23]). Let X be a smooth surface

and v = (r,D, s). Suppose their exists v′ such that 〈v, v′〉 = 1. Then there exists an

ample class H such that gcd(r,D ·H, s) = 1 and M s
H(v) is �ne moduli space, i.e. there

exists is a universal family on M s
H(v)×X.

3.4.3 Properties of the Moduli Space of Sheaves

We now describe some properties of elements v ∈ H2∗(X,Z) which give nice properties

of the moduli space of (semi)stable sheaves of class v.

If we assume some generality conditions on our ample divisor H then we can say more.

De�nition 3.4.9. Let v ∈ H2∗(X,Z). We say H is general with respect to v (or does

not lie on a wall with respect to v) if for every µ-semistable sheaf E with v(E) = v and

every 0 6= F ⊂ E which satis�es µ(F ) = µ(E) then

c1(F )

rankF
=

c1(E)

rankE
.

Remark 3.4.10. The notion of H being general can be de�ned by de�ning open subsets

in the ample cone which are complementary to codimension one subspaces called walls.

Recall the following notions for an element v ∈ H2∗(X,Z).

De�nition 3.4.11. Let v = (r,D, s) ∈ H2∗(X,Z) with D ∈ NS(X).

1. A class v is primitive if v is indivisible. I.e. if v = dv0 with d ∈ Z then d = ±1.
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2. A vector v is isotropic if 〈v, v〉 = D2 − 2rs = 0.

The following theorem guarantees non-emptiness of moduli spaces for abelian surfaces.

Theorem 3.4.12 ([79, Lemma 1.2]). Let X be an abelian surface and H an ample

divisor. Assume that v = (r,D, s) ∈ H2∗(X,Z) with r > 0 is primitive and isotropic.

Then the moduli space MH(v) is non-empty and consists of µ-stable locally free sheaves.

Remark 3.4.13. By [79, Remark 1.1] MH(v) does not depend on H.

3.4.4 Smoothness

We can understand smoothness of MH at a point [F ], where F is a stable sheaf on a

projective scheme X, by studying the self Ext groups of F . Through understanding the

deformation theory of F we have the following characterization of the tangent space

T[F ]MH and smoothness at [F ].

Corollary 3.4.14 ([39, Corollary 4.5.2]). Let F be a stable sheaf on a projective scheme

X represented by a point [F ] ∈ MH . Then the Zariski tangent space to MH at F is

given by

T[F ]MH
∼= Ext1

X(F, F ).

If Ext2
X(F, F ) = 0, then MH is smooth at [F ].

If we assume X is smooth, then we can improve upon the Corollary above. Let E be a

locally free sheaf on X, then the trace map tr : End(E)→ OX induces maps

tri : ExtiX(E,E)→ H i(EndX(E))→ H i(OX).

We can construct these trace maps even when F is not locally free by taking resolu-

tions. These homomorphisms are surjective if the rank of F is non-zero. Denote by

ExtiX(E,E)0 the kernel of tri.

Theorem 3.4.15 ([39, Theorem 4.5.4]). Let X be a smooth projective variety and let

F be a stable OX-module of rank r > 0. If Ext2
X(F, F )0 = 0, then MH is smooth at [F ].

3.5 Relative Fourier-Mukai Transforms and Bielliptic Sur-

faces

Given any elliptic �bration X → C of a smooth projective surface we can consider

sheaves supported on a smooth �bre of the �bration. When this moduli space is repre-

sentable, certain sheaves on the product gives rise to equivalences between the derived

category of the moduli space and of the surface. This was used to great e�ect by

Bridgeland and Maciocia [18] to determine the Fourier-Mukai partners of surfaces with

Kodaira dimension 0 and 1.
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Bielliptic surfaces come with two elliptic �brations. Thus we expect to get derived

equivalences between certain moduli spaces of sheaves supported on the smooth �bres

and the original surface. By Proposition 3.6.1 these induce autoequivalences of the

derived category. Finally, we prove Theorem 1.2.3 which describes the generators of the

group of autoequivalences for cyclic bielliptic surfaces.

3.5.1 Relative Fourier-Mukai Transforms

Recall that a relatively minimal elliptic surface is a projective surface X together with a

�bration π : X → C whose generic �bre is isomorphic to an elliptic curve and there are

no (−1)-curves in the �bres. We will only consider relatively minimal elliptic surfaces.

For an elliptic surface, π : X → C de�ne λπ to be the smallest positive integer such that

π has a holomorphic λπ-multisection. This is equivalent to

λπ = min{f ·D > 0|D ∈ Num(X)},

where f is the class of a smooth �bre of π. We call the D such that D · f = λπ a λ

multi-section for π.

Suppose a > 0, b ∈ Z with gcd(aλπ, b) = 1. Then we can construct the moduli space

JX(a, b) of pure dimension 1 stable sheaves of class (a, b) supported on �bres of π.

By [18, Lemma 4.2] we see that JX(a, b)∼= JX(1, b) =: JX(b) for all a. Bridgeland

constructed equivalences between the derived category of X and the derived category

of JX(b) [14]. We call these equivalences relative Fourier-Mukai transforms.

Theorem 3.5.1. [14, Theorem 5.3] Let π : X → C be an elliptic surface and take an

element (
c a

d b

)
∈ SL2(Z)

such that λπ divides d and a > 0. Then there exists a derived equivalence Φ: D(JX(b))→
D(X) such that for any closed point y ∈ JX(b), Φ(Oy) has Chern character (0, af, b),

where f is the class of a �bre. Moreover, the functor satis�es(
r(Φ(E))

d(Φ(E))

)
=

(
c a

d b

)(
r(E)

d(E)

)

for all objects E of D(JX(b)).

For a bielliptic surface S, relative Fourier-Mukai transforms with respect to either elliptic

�bration pA or pB give rise to autoequivalences of D(S) in the following way. The

following argument is due to Bridgeland.

Proposition 3.5.2. Let S be a bielliptic surface and pA : S → A/G and pB : S → B/G

its two relatively minimal elliptic �brations. Then a relative Fourier-Mukai trans-

form with respect to either �bration induces an autoequivalence on D(S) which is non-

standard.



3.5. RELATIVE FOURIER-MUKAI TRANSFORMS AND BIELLIPTIC SURFACES 53

Proof. Denote by λ the relative �bre degree of one of the elliptic �bration. Then we

need to show that all relative Jacobians JS(b) are isomorphic to S for either elliptic

�bration. By [18, Lemma 4.2] we can reduce to the case where b is coprime to λ. After

tensoring by the line bundle corresponding to the multi-section we need only consider

b modulo λ by [18, Remark 4.5]. So we are interested in invertible elements of Zλ. As
λ = 1, 2, 3, 4 or 6, the only invertible elements in Zλ are ±1. As JS(1)∼= Js(−1)∼=S by

[18, Remark 4.5] we are done.

Let Φ: D(JS(b))→ D(S) be a relative Fourier-Mukai transform induced by one of the

two �brations. By the above argument Js(b) is isomorphic to S. After choosing an

isomorphism g : JS(b)→ S, the composite Ψ = ΦRel ◦g∗ is an autoequivalence of D(S).

It is non-standard because ch(Ψ(Os)) = (0, af, b) where f is the �bre of the elliptic

�bration.

To prove Theorem 1.2.3 we will need the following two autoequivalences induced by

relative Fourier-Mukai transforms:

Example 3.5.3. Note that for either �bration pA or pB of S we have an autoequivalence

corresponding to the matrix

P =

(
1 1

0 1

)
given by Theorem 3.5.1. We have an autoequivalence ΨB, constructed by composing the

relative Fourier-Mukai transform along pA associated to P and tensoring by a suitable

line bundle, which acts on N(S) by

(1, 0, 0) 7→ (1, 0, 0)

(0, 0, 1) 7→ (0, B, 1)

(0,
1

k
B, 0) 7→ (0,

1

k
B, 0)

(0,
1

n
A, 0) 7→ (λpA ,

1

n
A, 0).

Note ΨB sends (0, A, 0) to (n,A, 0).

Suppose that S is cyclic. Then the �bration pA : S → A/G admits a section, i.e. λpA =

1. Then there is a relative Fourier-Mukai functor Ψ̂ that corresponds to the matrix(
0 1

−1 0

)



54 3. DERIVED AUTOEQUIVALENCES OF BIELLIPTIC SURFACES

given by Theorem 3.5.1 which acts on N(S) by

(1, 0, 0) 7→ (0, (−1/n)A, 0)

(0, 0, 1) 7→ (0, B, 0)

(0, B, 0) 7→ (0, 0, 1)

(0, (1/n)A, 0) 7→ (1, 0, 0).

3.5.2 Proof of Theorem 1.2.3

We now prove Theorem 1.2.3.

Theorem 3.5.4 (Theorem 1.2.3). Suppose S is a cyclic bielliptic surface. Then AutD(S)

is generated by standard autoequivalences and relative Fourier-Mukai transforms along

the two elliptic �brations.

Proof. As S is cyclic, k = 1 and |G| = n = deg π and S̃∼=A × B. Let Φ ∈ AutD(S).

Consider v = ρ(Φ)(0, 0, 1). Then v ∈ ∆, v2 = 0 and there exists v′ = ρ(Φ)(1, 0, 0) such

that 〈v, v′〉 = 1.

We will construct an autoequivalence Ψ ∈ AutD(S) which is the composite of standard

autoequivalences and relative Fourier-Mukai transforms along pA and pB such that

ρ(Ψ)(0, 0, 1) = v.

We separate the argument into three cases:

1. Suppose that v = ±(0, 0, 1). Then Ψ = id or [1].

2. Suppose that v = (0, D, s). As 〈v, v〉 = 0, D = aA or bB for a, b ∈ Z, a, b 6= 0.

Suppose that D = aA. As there exists v′ = ϕ(1, 0, 0) = (r′, (a′/n)A+b′B, s′) such

that 〈v, v′〉 = 1, we have

a(B ·A)b′ − sr′ = 1.

As λpB = B ·A, gcd(aλpB , s) = 1. Therefore there exists a relative Fourier-Mukai

transform, Φ̂, along pB such that ρ(Φ̂) sends (0, 0, 1) to v = (0, aA, s). Then set

Ψ = Φ̂. A similar argument for D = bB will work to construct a relative Fourier-

Mukai transform along pA which sends (0, 0, 1) to (0, bB, s).

3. Suppose that v = (r, aA + bB, s) with r 6= 0. We can assume that r > 0 after

applying ρ([1]). Then r = nc with c ∈ N, as v ∈ ∆. As v2 = 0 we have

v = (nc, aA+ bB, ab/c) .

Note one of a, b is non zero as otherwise v would be divisible.
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Suppose a = 0, so v = (nc, bB, 0). Then we can apply the relative Fourier-Mukai

transform Ψ̂ which sends

(nc, bB, 0) 7→ (0,−cA, b)

and reduce to case (2).

Suppose that a 6= 0. After tensoring by A we can assume a > 0. Let gcd(c, a) = d

for some d ∈ N. We can write c = dc′ and a = da′ with gcd(a′, c′) = 1. Thus v

has the form

v = (ndc′, da′A+ bB, a′b/c′).

We have two operations given by ρ(−⊗ (−1/n)A) and ρ(Ψ−1
B ) which act on ndc′

and da′ in the following way:

ρ(−⊗ (−1/n)A) :(ndc′, da′) 7→ (ndc′, d(a′ − c′))

ρ(Ψ−1
B ) :(ndc′, da′) 7→ (nd(c′ − a′), da′).

This is just the Euclidean algorithm on c′ and a′. Thus we can reduce a′ to 1 and

c′ to 0 and reduce to case (2).

Consider the autoequivalence Ψ−1 ◦ Φ whose image under ρ sends (0, 0, 1) to (0, 0, 1).

So Ψ−1 ◦Φ is a standard autoequivalence by Corollary 3.3.14. Thus we can express Φ as

a composite of standard autoequivalences and relative Fourier-Mukai transforms.

3.6 Fourier-Mukai Partners for Bielliptic Surfaces

The derived category of a bielliptic surface S is a strong invariant of the surface due to

the following result of Bridgeland and Maciocia.

Proposition 3.6.1 ([18, Proposition 6.2]). Let S be a bielliptic surface and S′ be a

smooth projective minimal surface derived equivalent to S. Then S is isomorphic to S′.

The proof of the above result only holds when the canonical cover S̃ of S is the product

of elliptic curves, i.e. S is cyclic. We sketch an argument due to Bridgeland (private

correspondence) below for the non-cyclic case.

Assume that S is non-cyclic. Without loss of generality, assume S is of type A2. A

similar argument should hold for bielliptic surfaces of type B2 and C2. Let Φ: D(Y )→
D(S) be an equivalence of derived categories where Y is a smooth projective surface

which is derived equivalent to S. Consider

ch(Φ(Oy)) = v = (r, aA+ bB, s)

where r ≥ 0, a, b are either integers or 1/2-integers and A ·B = 4.
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As v2 = 0 we see that rs = 4ab. As Φ lifts to a equivariant equivalence Φ̃ : D(Ỹ ) →
D(S̃), v ∈ ∆ so 2|r. Therefore a and b cannot be both 1/2 integers, since then 2 would

not divide 4ab = rs. Hence as aA + bB ∈ ∆ by Lemma 3.3.16, a, b ∈ Z. But then

(aA + bB) · C is divisible by 2 for any class C ∈ Num(S) since 1
2A and 1

2B generate

Num(S). By primitivity of v, s is not divisible by 2.

Now consider the elliptic �bration pB which admits a 2-multisection. Sheaves of class v

restrict to the general �bre to give sheaves of rank r and degree d = 4b. Let h = gcd(r, d).

By the relation rs = ad and as gcd(2, s) = 1, the rank r contains as big a factor of 2 as

d, i.e. 2k divides d implies 2k divides r. Then h is the greatest common divisor of 2r

and d. Thus we can �nd x and y with yd− 2xr = h. Consider the matrix(
d/h −r/h
2x y

)

which has determinant 1. It maps a column vector (r, d) to (0,−h). Then this matrix

induces an autoequivalence of D(S) by Proposition 3.5.2.

By composing with the relative Fourier-Mukai transform we get an equivalence

Φ′ : D(Y ) → D(S) which sends (0, 0, 1) to v′ = (0,−hA, s). By primitivity of v′ we

can compose with a another relative Fourier-Mukai transform to get an equivalence

Φ′′ : D(Y ) → D(S) which sends (0, 0, 1) to (0, 0, 1). By Lemma 3.3.13, Φ′′ sends a

skyscraper sheaf to the shift of a skyscraper sheaf and so induces an isomorphism

f : Y → S by Corollary 2.3.9.

3.7 Moduli Spaces of Sheaves and Equivalences of Derived

Categories

Mukai �rst observed [55] that the Poincaré line bundle on the product A × Â of an

abelian variety and its dual can be used as the kernel of an integral transform to give an

equivalence of derived categories D(A)∼=D(Â). Since then there has been an intimate

relationship between moduli space of sheavesM on X and functors between the derived

categories D(M) and D(X) given by integral transforms whose kernel is the universal

family of the moduli space.

The following Proposition due to Bridgeland gives su�cient criteria on the moduli space

of sheaves for the integral transform to be an equivalence.

Recall that a sheaf E on a variety X is special if E ⊗ ωX ∼=E.

Proposition 3.7.1 ([18, Corollary 2.8]). Let X be a smooth projective surface with a

�xed polarization, and let Y be a smooth, �ne, complete, two-dimensional moduli space

of special, stable sheaves on X. Then there is a universal sheaf P on Y × X and the

functor ΦPY→X : D(Y )→ D(X) is an equivalence.

To prove Theorem 1.2.2 we will construct autoequivalences using certain moduli spaces
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of sheaves of our bielliptic surface.

Proposition 3.7.2. Let S be a bielliptic surface and π : S̃ → S the canonical cover of

S. Let v = (r,D, s) ∈ ∆, r > 0, which is isotropic and 〈v, v′〉 = 1 for some v′ ∈ N(S).

Choose an ample line bundle H general with respect to v. Then there exists a two

dimensional, projective, smooth, �ne moduli space M of stable, special sheaves on S of

class v.

Moreover, the universal sheaf on M×S induces an autoequivalence Φ of D(S) such that

[Φ(Os)] = v for any closed point s ∈ S.

Proof. We �rst show thatM is non-empty. As v ∈ ∆, there exists w = (r̃, D̃, s̃) ∈ N(S̃)

such that π∗(w) = v. As r > 0, then r̃ > 0 as π∗(r̃) = deg π · r̃ = r.

As v is isotropic, so is w because 0 = 〈v, v〉 = 〈π∗w, π∗w〉 = n〈w,w〉. As v is primitive,

we can see that w is primitive by applying adjunction and 1 = 〈π∗w, v′〉 = 〈w, π∗v′〉.

As w is isotropic and primitive with r̃ > 0, the moduli space of π∗H-semistable sheaves

of class w on the abelian surface S̃ is non-empty and consists of µπ∗H -stable locally free

sheaves of class w by Theorem 3.4.12.

Let F be a µπ∗H -stable locally free sheaf of class w. By [72, Proposition 1.7] π∗(F ) is

µH -polystable. We now show that π∗F is simple, therefore µH -stable.

Note that F is not the pullback of any sheaf on S because if so with F ∼=π∗E′,

1 = 〈π∗F, v′〉 = 〈π∗π∗E′, v′〉 = n〈E′, v′〉

as n > 1 we get a contradiction.

As G̃ is cyclic, choose a generator g̃ of G̃. Then

HomS(π∗F, π∗F )∼= Hom
S̃

(π∗π∗(F ), F )∼= Hom
S̃

(
n−1⊕
i=0

(g̃∗)i(F ), F

)

∼=
n−1⊕
i=0

Hom
S̃

((g̃∗)i(F ), F ).

As F does not lie in the essential image of

π∗ : Coh(S)→ CohG̃(S̃)→ Coh(S̃)

F � (g∗)(F ). Therefore F � (g∗)i(F ) for any i.

As F is µπ∗H -stable, so is (g∗)i(F ) with the same slope. As they are not isomorphic,

Hom
S̃

((g∗)i(F ), F ) = 0 for all i 6= 0. Hence dimC HomS(π∗F, π∗F ) = 1. Thus π∗F is

simple, hence µ-stable. By construction, ch(π∗F ) = π∗(w) = v.

Therefore, the moduli space MH of stable sheaves of class v is non-empty. As H is

general with respect to v, all H-semistable sheaves are stable, so the moduli space
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MH(v) = M̄H(v) is projective. By [39, Proposition 4.6] there exists a quasi-universal

family on MH × S. This family can be chosen to be universal as there exists v′ such

that 〈v, v′〉 = 1 by Corollary 3.4.8.

Let E be a H-stable sheaf of class v corresponding to a point of Mv
H . As v = [E] is

isotropic and E is stable, dimC HomS(E,E) = 1 and

dimC Ext1
S(E,E) = 1 + dimC Ext2

S(E,E).

By Serre Duality, dimC Ext2
S(E,E)∼= dimC HomS(E,E⊗ωS). As ch(E) = ch(E⊗ωS) ∈

H∗(S,Q) as KS is numerically trivial, so p(E) = p(E ⊗ ωs) and rk(E) = rk(E ⊗
ωS). As E is stable, by Proposition 3.4.5, dimC HomS(E,E ⊗ ωS) = 0 or 1. Hence

dimC Ext1
S(E,E) ≤ 2.

By construction,MH contains at least one closed point corresponding to a sheaf F which

is a µ-stable sheaf which is the pushforward of a µπ∗H -stable sheaf on the canonical cover.

Thus F is special by Proposition 3.3.6, so F ⊗ωS ∼=F and dimC Ext2
S(F, F ) = 1. Hence

dimC Ext1
S(F, F ) = 2. By Serre Duality and [39, �4.5] MH is smooth at F because the

trace map on Ext2
S(F, F ) has zero kernel due to F being special.

As M is smooth at F , dimM ′H = dimC Ext1
S(F, F ) = 2 for some connected irreducible

M ′H of MH . Hence dimC Ext1
S(E,E) ≥ 2 for all sheaves E corresponding to points of

M ′H . So dimC Ext1
S(E,E) = 2 for all such E. Thus M ′H is smooth of dimension 2. Set

M = M ′vH . Note that E is special as dimC HomS(E,E ⊗ ωS) = dimC Ext2
S(E,E) = 1

and as E is H-stable, E∼=E ⊗ ωS .

Thus M is a two-dimensional, projective, smooth, �ne moduli space of special stable

sheaves on S of class v.

By [18, Corollary 2.8] the universal sheaf P on M × S induces an equivalence

ΦP : D(M)→ D(S).

By Proposition 3.6.1, M is isomorphic to S. Thus the equivalence ΦP induces an

autoequivalence Φ of D(S) after choosing an isomorphism M ∼=S. By construction

[Φ(Os)] = [Ps] = v.

3.8 Proof of Theorem 1.2.2

We now prove Theorem 1.2.2.

Theorem 3.8.1 (Theorem 1.2.2). There is an exact sequence

1 (AutS n Pic0 S)× Z AutD(S) O∆(N(S))
ρ

where Z is generated by the second shift [2]. The map ρ is induced by the natural action

of AutD(S) on N(S) given by ρ(Φ)[E] = [Φ(E)]. Furthermore, the image of ρ is a
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subgroup of O∆(N(S)) of index 4 if S of type A2 or B2 and index 2 otherwise.

Proof. To prove Theorem 1.2.2 we will compute the kernel and image of

ρ : AutD(S)→ O(N(S))

given by ρ(Φ)([E]) = [Φ(E)].

The description of the kernel is given in Corollary 3.3.14.

We now characterize the image of ρ. Let ϕ ∈ O∆(N(S)) and consider v = ϕ(0, 0, 1) ∈ ∆.

Then v ∈ ∆, v2 = 0 and there exists v′ = ϕ(1, 0, 0) such that 〈v, v′〉 = 1. We will

construct an autoequivalence Ψ such that ρ(Ψ)) sends v to (0, 0, 1). We treat three

separate cases:

1. Suppose v = ±(0, 0, 1). Then we can apply ρ([1]) to make v = (0, 0, 1) if needed.

2. Suppose that v = (0, D, s). As 〈v, v〉 = 0 and v ∈ ∆, D = aA or bB for a, b ∈ Z,
a, b 6= 0. Suppose that D = aA. As there exists v′ = ϕ(1, 0, 0) = (r′, (a′/n)A +

b′B, s′) such that 〈v, v′〉 = 1, we have

a(B ·A)b′ − sr′ = 1.

As λpB = B ·A, gcd(aλpB , s) = 1. Therefore there exists a relative Fourier-Mukai

transform, Φ̂, along pB such that ρ(Φ̂) sends (0, 0, 1) to v = (0, aA, s). Then

set Ψ = Φ̂−1. A similar argument for D = bB will work to construct a relative

Fourier-Mukai transform along pA which sends (0, 0, 1) to (0, bB, s).

3. Suppose that v = ±(r,D, s). After applying ρ([1]) we can assume that r > 0.

Hence by Proposition 3.7.2 there Φ ∈ AutD(S) such that ρ(Φ)(0, 0, 1) = v. Set

Ψ = Φ−1 or Ψ = Φ−1 ◦ [1].

Consider the isometry

ϕ′ = (ρ(Ψ)) ◦ ϕ .

Then ϕ′(0, 0, 1) = (0, 0, 1). As ϕ′(1, 0, 0) = (1, D, s) is isotropic, D2 = 2s. Thus

s = D2/2 and ϕ′(1, 0, 0) = (1, D,D2/2) is the class of a line bundle L with c1(L) = D.

Consider the isometry

ϕ′′ = ρ(L∗ ⊗ (−)) ◦ ϕ′ .

Notice that ϕ′′ acts by

idH0 ⊕ ψ ⊕ idH4

on N(S) where ψ is an isometry of Num(S). Note that ϕ′′ respects the grading and is

an element of O∆(N(S)) as it is a composite of elements of O∆(N(S)).
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The group Num(S) is isomorphic as a lattice to a single hyperbolic plane U with under-

lying group Z2 [68, �1]. The group of isometries O(U) is isomorphic to Z /2× Z /2. It
is generated by the involutions ι, which acts by −id on U , and σ which exchanges the

two copies of Z. Both of these give rise to isometries of N(S) by acting by the identity

on H0(S,Z) and H4(S,Z) which we will denote by ι and σ by an abuse of notation.

Suppose the isometry ι is induced by an autoequivalence. As ι �xes the class of a point

and acts non-trivially on N(S), ι is induced by a standard autoequivalence which acts

non-trivially on N(S). But standard autoequivalences which act non-trivially on N(S)

act by tensoring by ±(1, D,D2/2) for some line bundle L with c1(L) = D 6= 0. However,

ι does not acts on N(S) in this way as ι(1, 0, 0) = (1, 0, 0). Hence ι is not induced by

an autoequivalence. Similarly, σ and ι ◦ σ are not induced by autoequivalences. Thus

the image of ρ intersected with O(Num(S)) is trivial.

Note that ι preserves ∆. However, σ may not preserve ∆. The index of the image of ρ

will 2 or 4 in O∆(N(S)) depending on whether σ preserves ∆. As σ acts trivially on the

two copies of Z in N(S) it is su�cient to study the action on Num(S) by the following

Lemma.

If (r,D, s) ∈ ∆ then σ(r,D, s) = (r, σ(D), s) ∈ ∆ if and only if (0, σ(D), 0) ∈ ∆. To

determine whether σ preserves ∆ we reduce to studying classes of the form (0, D, 0). By

abuse of notation, we will denote the class (0, D, 0) ∈ N(S) by D and we write D ∈ ∆

for (0, D, 0) ∈ ∆.

Note that σ interchanges the generators of Num(S). We will consider separate cases to

determine the index of the image of ρ.

We will use the following repeatedly: A class D ∈ ∆ if and only if D′ = D+(aA+bB) ∈
∆ with a, b ∈ Z. Clearly if D ∈ ∆ then D′ ∈ ∆. Conversely, if D′ ∈ ∆, then

D = D′ − (aA+ bB) ∈ ∆ as ∆ is a subgroup.

Cyclic Bielliptic Suppose that S is cyclic. Then σ interchanges 1
nA and B. But by

Lemma 3.3.16 1
nA /∈ ∆ but B ∈ ∆, so σ does not preserve ∆. Hence the index is

2.

Bielliptic of type A2 By Lemma 3.3.16 we have 1
2A,

1
2B /∈ ∆ and A,B ∈ ∆. Con-

sider D = a
2A + b

2B with a, b ∈ Z. Then σ(D) = b
2A + a

2B. By adding or

subtracting multiples of A and B we can reduce to the cases when a, b ∈ {0, 1}.
We have 3 cases:

1. If a = b = 0 then D ∈ ∆ and σ(D) ∈ ∆.

2. Suppose a = 0 and b = 1. Then σ(D) = 1
2A 6∈ ∆ and D = 1

2B 6∈ ∆. A

similar argument show that D,σ(D) 6∈ ∆ for a = 1 and b = 0.

3. Suppose that a = b = 1. Then D = 1
2A+ 1

2B = σ(D). Hence D ∈ ∆ if and

only if σ(D) ∈ ∆.

Thus σ preserves ∆ and the index is 4.
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Bielliptic of type B2 By Lemma 3.3.16 we have 1
3A,

1
3B /∈ ∆ and A,B ∈ ∆. Consider

D = a
3A + b

3B with a, b ∈ Z and σ(D) = b
3A + a

3B. By adding or subtracting

multiples of A and B we can reduce to the cases when a, b ∈ {0, 1,−1}. We have

4 cases:

1. If a = b = 0. Then D ∈ ∆ and σ(D) ∈ ∆.

2. Suppose that a = b = 1 Then σ(D) = 1
3A + 1

3B = D. Hence D ∈ ∆ if and

only if σ(D) ∈ ∆. A similar argument works for a = b = −1.

3. Suppose that m = a and b = 1. Then D = 1
3B 6∈ ∆ and σ(D) = 1

3A 6∈ ∆.

Similarly for a = 0, b = −1 and a = 1,−1, b = 0 we have D 6∈ ∆ and

σ(D) 6∈ ∆.

4. Suppose that a = 1 and b = −1. Then σ(D) = −1
3A + 1

3B = −D. As ∆

is a subgroup −D ∈ ∆ if and only if D ∈ ∆. Hence D ∈ ∆ if and only if

σ(D) ∈ ∆. A similar argument works for a = −1 and b = 1.

Thus σ preserves ∆ and the index is 4.

Bielliptic of type C2 Note that 1
2A /∈ ∆ by a similar argument to Lemma 3.3.16.

Then as σ interchanges 1
2A and 2(1

2B) = B, σ does not preserve ∆. Hence the

index is 2.
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Chapter 4

Background on Stacks

In this Chapter we review the background material on stacks required for Chapters 5

and 6. In section 4.1 review the de�nition of a Deligne-Mumford stack and properties

of them. In section 4.2 we discuss presentations of Deligne-Mumford stacks which will

be useful for performing calculations. In section 4.3 we de�ne the category of (quasi-

)coherent sheaves on a Deligne-Mumford stack and construct the associated derived

category and derived functors.

4.1 Deligne-Mumford Stacks

Throughout this thesis, we will only consider Deligne-Mumford stacks. In this section,

we summarize the basic de�nitions and properties of these stacks giving references for

further details. These de�nitions can primarily be found in the Appendix of [77] and

in [58]. We will give speci�c references in each section. We will �x a base scheme S.

In Chapters 5 and 6 we will assume that S = Spec k where k is a �eld of arbitrary

characteristic and not necessarily algebraically closed.

4.1.1 Étale Topology

In this section we introduce the étale topology following [36, �1] (see also [70, Tag

02GH]).

Let A be a local ring and denote by mA its maximal ideal and k(A) its residue �eld.

Recall that a morphism of local rings f : A → B is a ring homomorphism such that

f(mA) ⊂ mB. Recall that a �eld extension L over K is separable if for every element

α ∈ L, its minimal polynomial µα is separable, i.e. its formal derivative µ′α is non-zero.

De�nition 4.1.1.

1. A morphism f : A → B of local rings is unrami�ed if f(mA)B = mB and k(B)

is a �nite separable extension of k(A).



64 4. BACKGROUND ON STACKS

2. A morphism of �nite type f : X → Y of schemes is unrami�ed at x ∈ X if the

associated morphism f# : OY,f(x) → OX,x of local rings at x is unrami�ed. The

morphism f : X → Y is unrami�ed if it is unrami�ed at every point of x.

De�nition 4.1.2.

1. A morphism f : A→ B of local rings is étale if f is �at and unrami�ed.

2. A morphism of �nite type of schemes f : X → Y is étale at x ∈ X if the induced

map of local rings at x is étale. A morphism is étale if it is étale at every point.

Example 4.1.3. Suppose f : SpecB → SpecA. Then f induces the map on rings

f# : A→ B. Note f is étale if and only if f# is. Then f is étale if

1. B is a �nitely generated A-algebra

2. B is a �at A-algebra

3. For all maximal ideals m of B, Bm/mBm is a �nite separable extension of Ap/pAp

where p = (f#)−1(m).

Example 4.1.4.

• Let f : U → X be an open immersion. Then f is étale.

• Let G be a �nite group acting freely on a quasi-projective variety X over an alge-

braically closed �eld. Then the quotient map π : X → X/G is étale.

• If i : Z ↪→ X is a closed immersion, then i is unrami�ed but not �at, hence i is

not étale.

Remark 4.1.5. Note that étale maps are open as they are �at. Moreover, étale mor-

phisms are stable under composition and base change (c.f. [70, Tag 02GH]).

Remark 4.1.6. Suppose X and Y are smooth projective varieties over C. Then a

morphism between X and Y is étale if it is a local isomorphism in the analytic topology.

The étale topology on Sch /S will be an example of a Grothendieck topology on Sch /S

which speci�es a collection of coverings.

De�nition 4.1.7. Let C be a category. A Grothendieck topology on C consists of a set

Cov(X) of collections of morphisms {Xi → X}i∈I for every object X ∈ C such that

1. If V → X is an isomorphism, then {V → X} ∈ Cov(X).

2. If {Xi → X}i∈I ∈ Cov(X) and Y → X is any morphism in C, then the �bre

products Xi ×X Y exist and the collection of compositions

{X1 ×X Y → Y }i∈I

is in Cov(Y ).
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3. If {Xi → X}i∈I ∈ Cov(X) and for every i ∈ I we are given {Vij → Xi}j∈Ji ∈
Cov(Xi), then the collection of compositions

{Vij → Xi → X}i∈I,j∈Ji

is in Cov(X).

A category with a Grothendieck topology is called a site.

Example 4.1.8 (Small Classical Site). Let X be a topological space and consider the

subcategory top(X) of Top /X whose objects are topological spaces U and an open imbed-

ding U → X and morphisms are continuous maps f : U → V such that

U V

X

f

commutes. Then for U → X we de�ne Cov(U) to be the collection of morphisms

{Ui → U}i∈I in top(X) for which U = ∪i∈IUi. This de�nes a Grothendieck topology on

top(X) called the small classical site on X.

Example 4.1.9 (Big Classical Site). Let Top /X be the category of topological spaces

with a continuous morphism to X, with morphisms continuous maps f : U → V such

that

U V

X

f

commutes.

For a topological space U de�ne Cov(U) to be the collection of morphisms {Ui → U}i∈I
over Y for which each Ui → U is an open imbedding and U = ∪i∈IUi. Note than only

the covering maps are open imbeddings. Then Top /X equipped with this topology is the

big classical site of X.

Example 4.1.10 (Small Étale Site). Let S be a scheme and de�ne ét(S) to be the full

subcategory of the category Sch /S of schemes over S whose objects are étale morphisms

X → S and morphism are morphisms f : X → Y such that

X Y

S

f

commutes. A collection of morphisms {Xi → X}i∈I is in Cov(X) if the map∐
i∈I

Xi → X

is surjective. Note that all the morphisms in ét(S) are étale as the composite of étale
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morphisms is étale. We call ét(S) the small étale site of X.

Example 4.1.11 (Big Étale Site). Let S be a scheme and let Sch /S be category of

schemes over S. For X ∈ Sch /S de�ne Cov(X) to be the collections {Xi → X}i∈I of

morphisms in Sch /S for which each morphism Xi → X is étale and the map∐
i∈I

Xi → X

is surjective. Note that only the covering maps are étale. We will write Ét(S) for the

category Sch /S with this topology. We call Ét(S) the big étale site of S.

From now one we will only consider the big étale site of S (and write étale topology for

the big étale topology).

We now de�ne a sheaf on Sch /S equipped with the étale or classical Zariski topology.

De�nition 4.1.12 ([70, Tag 00VL]). Consider Sch /S with the étale or classical topol-

ogy. A presheaf F on Sch /S is a functor

F : Sch /Sop → Set .

We say that F is a sheaf if for any covering {Ui → U}i∈I the sequence

F (U)
∐
i∈I F (Ui)

∐
i,j∈I F (Ui ×U Uj)

pr∗i

pr∗j

is exact, i.e. the �rst arrow is the equalizer of pr∗i and pr∗j .

4.1.2 Categories Fibred in Groupoids

For this section, we follow the appendix in [77, �7]. A more general discussion can be

found in [58, �3].

De�nition 4.1.13. A category �bred in groupoids over a scheme S is a category F and

a functor p : F → Sch /S such that

(1) If f : X → Y is a morphism of S-schemes and y is an object of F such that

p(y) = Y , then there exists a morphism φ : x → y in F such that p(φ) = f .

Diagrammatically,

x y

X Y.

∃

f

where the vertical dashes denote p(x) = X and p(y) = p(y).

(2) If φ : x→ y and ψ : z → y are morphisms in F and there exists h : p(x)→ p(z) in

Sch /S such that p(ψ) ◦ h = p(φ). Then there exists a unique arrow ρ : x→ z such
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that ψ ◦ ρ = φ and p(ρ) = h. Diagrammatically,

x y

z

X Y

Z.

φ

∃!ρ
ψ

h

p(φ)

p(ψ)

Remark 4.1.14. Note that (2) guarantees that the object in (1) is unique up to canonical

isomorphism. We think of the object x as the pullback of y along f and write x = f∗y.

De�nition 4.1.15. Let p : F → Sch /S be a category �bred in groupoids over S. Denote

by F(X) the category whose objects are objects x of F such that p(x) = X and mor-

phisms are morphisms φ in F such that p(φ) = idX . The category F(X) is a groupoid

by (2).

Example 4.1.16. Suppose that F : (Sch /S)op → Set is a functor. Then we can as-

sociate to F a category �bred in groupoids F . An object of F is a pair (X,x) where

x ∈ F (X) and X is an S-scheme. A morphism φ : (X,x) → (Y, y) is a morphism

φ : X → Y such that F (φ)(y) = x. The functor p : F → Sch /S sends (X,x) to X.

Let Z ∈ Sch /S and consider the functor F = Hom(−, Z). The associated category �bred

in groupoids is F = Sch /Z and the functor p : Sch /Z → Sch /S is given by composing

with the structure map Z → S. We will denote the category �bred in groupoids associated

to the functor of points HomS(−, Z) of a scheme Z by Z.

De�nition 4.1.17. A morphism of categories �bred in groupoids is a functor Φ: F → G
such that the following diagram

F G

Sch /S .

Φ

pF pG

commutes. Here pG ◦ Φ = pF as functors.

Suppose Φ,Ψ: F → G are morphisms of �bred categories, then a base preserving natural

transformation α : Φ → Ψ is a natural transformation of functors such that for every

u ∈ F the morphism αu : Φ(u)→ Ψ(u) in G projects to the identity morphism in Sch /S.

We denote by HOMSch /S(F ,G) the category whose objects are morphisms of �bred cat-

egories F → G and whose morphisms are base preserving natural transformations.
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Lemma 4.1.18 (2-Yoneda lemma). The functor

η : HOMSch /S(X,F)→ F(X)

sending a morphism of �bred categories

Φ: X → F

to Φ(idX) gives an equivalence of categories.

Proposition 4.1.19. Consider the diagram

F1

F2 F3

c

d

of categories �bred in groupoids over Sch /S. Then the �bred product G = F1 ×F3 F2

exists and is unique up to unique isomorphism.

Proof. We only prove existence and refer [58, Proposition 3.4.13] for complete details.

Let pi : Fi → Sch /S be the given functors to C.

De�ne G to be the category of triples (x1, x2, σ) where xi ∈ Fi are objects such that

p1(x1) = p2(x2), and σ : c(x1)→ d(x2) is an isomorphism in F3(p1(x1)) = F (p2(x2)).

A morphism

(x1, x2, σ)→ (x′1, x
′
2, σ
′)

is a pair of morphisms fi : x′i → xi in Fi (i = 1, 2) such that p1(f1) = p2(f2) and the

diagram

c(x′1) c(x1)

d(x′2) d(x2)

c(f1)

σ σ

d(f2)

commutes.

Let α : G → F1 be the functor sending (x1, x2, σ) to x1 and β : G → F2 the functor

sending (x1, x2, σ) to x2. The isomorphisms σ de�ne an isomorphism γ : c◦α→ d◦β.

We now explain the main example of a category �bred in groupoids we will encounter.

Example 4.1.20. Let X ∈ Sch /S and G be a �nite group (or more generally a �at

group scheme of �nite type) acting on X on the right:

a : X ×S G→ X.
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De�ne the category �bred in groupoids [X/G] having objects objects triples (B,E, f)

where

• B is a scheme over S.

• E is a principal G-bundle over B which is locally trivial in the étale topology,

• f : E → X is a G-equivariant morphism.

A morphism from E′ → B′ with equivariant morphism f ′ : E′ → X to E → B is a

commutative diagrams

E′ E

B′ B

g

where g : E′ → E is a G-equivariant morphism such that gf = f ′.

There is a natural morphism [X/G] → Sch /S forgetting everything except the base

scheme B. There is also a morphism q : X → [X/G] given by the trivial bundle

X ×S G X

X.

a

pr1

Thus we have the commutative diagram

X ×S G X

X [X/G] .

a

pr1 q

q

Note that if X = S we denote the category �bred in groupoids [S/G] by BSG. When

S = Spec k where k is a �eld we recover the classifying space of G-torsors BG over k.

If G acts freely and the quotient X/G exists in the category of schemes (i.e. the orbit of

every point of X is contained in an a�ne open subset of X [36, Expose V, Proposition

1.8]) then there is an equivalence of categories π : [X/G]→ X/G.

4.1.3 Deligne-Mumford Stacks

We can now de�ne a stack over S following sections [58, �4] on stacks and [58, �8.3] on

Deligne-Mumford stacks.

De�nition 4.1.21. A category �bred in groupoids over S is a stack if:

(i) For any X ∈ Sch /S and any two objects x, y ∈ F(X), the functor

IsomX(x, y) : Sch /X → Set
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which associates to a morphism f : Y → X the set of isomorphisms in F(Y )

between f∗x and f∗y is a sheaf in the étale topology.

(ii) Let {Xi → X} be a covering in the étale topology. Let xi ∈ F (Xi) and let

φij : xj |Xi×XXj → xi|Xi×XXj

be isomorphisms in F (Xi×X Xj) satisfying the cocycle relation. Then there is an

x ∈ F (X) with isomorphisms ψi : x|Xi → xi such that

φij = ψi|Xi×XXj ◦ (ψj |Xi×XXj )
−1.

A morphism of stacks is a morphism of categories �bred in groupoids.

Example 4.1.22. Let X ∈ Sch /S be an S-scheme and X the associated category �bred

in groupoids. Then X is a stack.

It is easy to see that X satis�es condition (i) because if f, g : T → X are two elements

of X(T ) then IsomT (f, g)(T ′) is either empty or one point if f |T ′ = g|T ′. Therefore

IsomX(f, g) is either the constant or empty sheaf.

Another way to see this is that for f, g : T → X, IsomX(f, g) is the �bred product of

categories �bred in groupoids

IsomX(f, g) T

T X.

g

f

which is simply the �bred product T ×f,X,g T . Thus to see Isomx(f, g) is a sheaf it

su�ces to show that T ×f,X,g T is a sheaf.

Condition (ii) is non-trivial and follows from showing that HomS(−, X) is a sheaf in the

étale topology for any X ∈ Sch /S. Condition (ii) is true in the Zariski topology and in

the étale topology. It follows from the following theorem, originally due to Grothendieck.

Theorem 4.1.23 ([70, Tag 02W4] and [70, Tag 023P]). For any S-scheme X, the

functor

HomS(−, X) : (Sch /S)op → Set

is a sheaf in the étale topology.

Example 4.1.24 ([25, Proposition 2.2]). Recall that the category �bred in groupoids

[X/G] where X ∈ Sch /S and G a �nite group (this holds more generally for any �at

a�ne group scheme) acting on X on the right

a : X ×S G→ X.

Let e, e′ : B → [X/G] correspond to G-principal bundles E → B and E′ → B with G-

equivariant morphisms f : E → X and f ′ : E′ → X. Then IsomB(e, e′) is the étale sheaf
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which is the quotient of X ×X×X E ×B E′ by the free product action of G. Moreover,

this sheaf is a scheme.

When E = E′ and f = f ′ these isomorphism correspond to elements of G which preserve

f .

Since any principal G-bundle is locally trivial in the étale topology it determines descent

data in the following way. Let {Bi → B} be an étale cover on which E → B is trivial.

Then we have G-equivariant morphisms

φi : E ×B Bi → G×Bi

If φij is the pullback of φi to Bi ×B Bj then the φij satisfy the cocycle condition.

Descent theory for principal G-bundles gives the opposite direction. Given principal

bundles (not necessarily trivial) Ei → Bi and isomorphisms Ei|Bi×BBj → Ej |Bi×BBj
satisfying the cocycle condition, there exists a principal G-bundle E → B such that

Ei∼=E ×B Bi. Thus condition (ii) is satis�ed.

The de�nition of a stack is too general to do algebraic geometry. Thus we impose

extra conditions which will allow us to de�ne geometric properties of stacks that closely

resemble properties of schemes.

De�nition 4.1.25. A morphism of stacks f : X → Y is representable by schemes if for

every scheme U and morphism y : U → Y the �bre product

X ×Y U

is isomorphic to V for some scheme V .

Remark 4.1.26. The above de�nition means that we can pull back elements of Y(U)

to elements of X (X ×Y U) = X (V ).

The following proposition motivates why we will ask for the diagonal to be representable.

Proposition 4.1.27. Let X/S be a stack over S. Then the following two conditions

are equivalent:

1. The diagonal map ∆: X → X ×S X is representable.

2. Every morphism U → X from a scheme U is representable.

Proof. Suppose that ∆ is representable and f : X → X and g : Y → X are morphisms

with X and Y schemes. Then the �bred product obtained in the diagram

X ×X Y Y

X X

g

f
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is equivalent to the �bred product in the diagram

X ×X×SX (X ×S Y ) X ×S Y

X X ×S X .

(f,g)

∆

Hence X ×X Y is a scheme.

Suppose that every morphism from a scheme to X is representable. Let h : X → X×SX
be a morphism with X a scheme given by a pair of maps f : X → X and g : X → X .
Then we have a tower of commutative squares

X ×X×SX X X

X ×X X X ×S X

X X ×S X

∆X

(f,g)

∆X

As X×XX is a scheme (as f and g are representable by our assumption), so X×X×SXX
is a scheme. Hence ∆ is representable.

Now we can de�ne a Deligne-Mumford stack following the de�nition in [58].

De�nition 4.1.28. A stack X/S is a Deligne-Mumford stack if the following holds:

1. The diagonal

∆X : X → X ×S X

is representable by schemes.

2. There exists an étale surjective morphism π : X → X with X a scheme. That is,

for any morphism from a scheme T → X the induced morphism of schemes

X ×X T → T

is étale and surjective. Note that X ×X T is a scheme by (1). We call X an atlas

for X .

A morphism of Deligne-Mumford stacks f : X → Y is a morphism of the underlying

stacks.

Example 4.1.29. It is easy to see that for any X ∈ Sch /S, X is a Deligne-Mumford

stack as every morphism from a scheme is representable, so the diagonal is representable

and id : X → X is a surjective étale cover.
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Another characterization of Deligne-Mumford stacks is using the notion of formally

unrami�ed. Recall that a morphism of schemes g : V →W is formally unrami�ed if for

any closed embedding of a�ne schemes i : X0 ↪→ X de�ned by a square zero ideal, the

natural map

HomW (X,V )→ HomW (X0, V )

is injective.

Remark 4.1.30. A morphism of schemes g : V →W is unrami�ed as de�ned in De�-

nition 4.1.1 if W is locally noetherian, g is formally unrami�ed and locally of �nite type

(c.f. [70, Tag 024Q]).

Proposition 4.1.31 ([77, Proposition 7.15] and [58, Theorem 8.3.3]). Let X be a

Deligne-Mumford stack over S. Then the diagonal

∆X : X → X ×S X

if formally unrami�ed.

Example 4.1.32 ([25, Corollary 2.2]). Let X/S be a noetherian scheme of �nite type

and G a �nite group (more generally, a smooth a�ne group scheme of �nite type over

S) acting on X such that the stabilizers of geometric points are �nite and reduced. Then

[X/G] is a Deligne-Mumford stack.

The condition on the stabilizers ensure that IsomB(E,E) is formally unrami�ed over E

for any B → [X/G]. This implies that the diagonal is unrami�ed. As IsomB(E,E′) is

isomorphic to a scheme from Example 4.1.24 we have that the diagonal is representable.

The atlas condition is satis�ed by the morphism q : X → [X/G].

4.1.4 Properties of Stacks

We now de�ne properties of Deligne-Mumford stacks and properties of morphisms fol-

lowing [58, �8.2] and [70, Tag 04X8].

We �rst de�ne properties of Deligne-Mumford stacks using any atlas

De�nition 4.1.33 ([70, Tag 0348]). Let P be a property of schemes. We say that P is

local in the étale topology if for any covering {Ui → U}i∈I we have

U has P ⇔ each Ui has P for all i.

De�nition 4.1.34. Let P be a property of schemes which is local with in the étale

topology. We say that a Deligne-Mumford stack X has property P if there exists a

surjective étale morphism X → X with X being a scheme having property P .

Remark 4.1.35. The following properties are local with respect to the étale topology:

regular, locally noetherian, locally of �nite type, quasi-compact, proper. Thus we can talk

about Deligne-Mumford stacks of �nite type over a �eld k (taking S = Spec k) which

are regular.
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4.1.5 Properties of Morphisms

Now we de�ne properties of morphisms of Deligne-Mumford stacks following [70, Tag

04XB].

De�nition 4.1.36 ([70, Tag 02KN]). Let P be a property of schemes over a base S. We

say P is local on the target if for any étale covering {Yi → Y }i∈I and any morphism

of schemes f : X → Y over S we have

f has P ⇔ Yi ×Y X → Yi has P for all i.

We say P is local on the source if for any étale covering {Xi → X}i∈I and any morphism

of schemes f : X → Y over S we have

f has P ⇔ each Xi → Y has P.

De�nition 4.1.37. We say a property P of schemes is stable with respect to the étale

topology if P is local on the target and preserved under arbitary base change.

De�nition 4.1.38. Let P be a property of morphisms of schemes which is stable with

respect to the étale topology. A representable morphism of algebraic stacks f : X → Y
has property P if for every morphism T → Y with T a scheme, the morphism of schemes

X ×Y T → T

has property P .

To de�ne properties of arbitary morphisms we use the following notation following [58,

�8.2.5]. Let f : X → Y be a morphism of Deligne-Mumford stacks over S. A chart for

f by schemes is a diagram

X X ′ Y

X Y

g

h

q

f ′

p′ p

f

where X and Y are schemes, the squares in the diagram are commutative, the right

square is cartesian, and g and p are surjective and étale.

De�nition 4.1.39 ([58, �8.2.6]). Let P be a property of morphisms of schemes that is

stable and local on the source with respect to the étale topology. Let f : X → Y be a

morphism of Deligne-Mumford stacks. We say f has property P if there exists a chart

for f such that h has property P .

Remark 4.1.40. The above de�nition allows us to de�ne �at morphisms of Deligne-

Mumford stacks.

We now de�ne the image of a morphism from a Deligne-Mumford stack to a scheme.
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De�nition 4.1.41 ([58, S 8.5]). Let X/S be a Deligne-Mumford stack over S. For a

morphism f : X → Y to a scheme Y ⊆ Sch /S, de�ne the image of f to be the subset

of Y which is the image of the composite

U X Yu f

where u : U → X is an étale surjective morphism with U a scheme.

4.1.6 Open and Closed Substacks

We now de�ne various substacks of Deligne-Mumford stacks.

De�nition 4.1.42. A morphism of Deligne-Mumford stacks f : Z → X is an open

(respectively closed) embedding if it is representable and has property P in 4.1.38 where

P is the property of being a closed (respectively open) embedding (also called immersion).

An open substack is a stack U and an open imbedding U → X .

A closed substack of an algebraic stack X is de�ned by an equivalence class of closed

imbeddings Z → X where two closed imbeddings fi : Zi → X (i = 1, 2) are equivalent if

there exists a pair (g, σ) with g : Z1 → Z2 and σ : f2 ◦ g∼= f1 an isomorphism.

Example 4.1.43. Let Z2 act on A1
k by x 7→ −x. Then the inclusion

ix : Spec k → [A1
k /Z2]

which corresponds to the trivial principal Z2-bundle over Spec k and the equivariant map

Z2 → A1
k sending the identity element to x ∈ A1

k and non-identity element to −x is a

closed immersion of stacks.

The morphism ix is representable because [A1
k /Z2] is a Deligne-Mumford stack and

Z2 A1
k

Spec k [A1
k /Z2]

is the �bre product Spec k ×[A1
k /Z2] Spec k[x] is isomorphic to Z /2. The induced map

Z2 → A1
k is the equivariant map which is a closed immbedding.

4.1.7 Separated and Proper Morphisms

Recall that a morphism f : X → Y of schemes is separated if the relative diagonal

∆f : X → X ×Y X is a closed imbedding.

Recall that a morphism f : X → Y of schemes is universally closed if for any morphism

Z → Y the induced morphism X ×Y Z → Z is closed (i.e. the image of closed subsets

are closed). Then a morphism f : X → Y of schemes is proper if it is separated, of �nite
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type and universally closed. Two examples of proper morphisms of schemes are closed

imbeddings and �nite morphisms.

We now extend the de�nition of separated to Deligne-Mumford stacks.

De�nition 4.1.44. Let f : X → Y be a morphism of Deligne-Mumford stacks over S

and let

∆X/Y : X → X ×Y X

be the (relative) diagonal morphism.

• We say f is quasi-separated if the diagonal ∆f is quasi-compact and quasi-separated.

• We say f is separated if the diagonal ∆X/Y is proper.

If Y = S and f is the structure morphism, then we say that X is separated.

The following gives a way of characterizing whether a quotient stack is separated. Recall

that a group action of G on X on the left is a morphism

a : G×X → X.

The action is proper if

(a, idX) : G×X → X ×X

is proper.

Proposition 4.1.45 ([25, Corollary 2.2]). Let X/S be a noetherian scheme of �nite

type over S and G a �nite group (more generally a smooth a�ne group scheme of �nite

type over S) acting on X on the right such that the stabilizer groups of geometric points

are �nite and reduced. Then [X/G] is separated if and only if the action is proper.

Example 4.1.46 (Example of a seperated stack). Consider the quotient stack X =

[A1 /Z2] where Z2 acts on A1 by z 7→ −z. Then X is a seperated because the action is

proper. We will give a di�erent proof in Example 4.2.16 in Section 4.2.2 using groupoid

presentations.

Now we de�ne proper morphisms for non-representable morphisms following [58, �10.1]

and [70, Tag 0CL4].

De�nition 4.1.47. A morphism f : X → Y from a Deligne-Mumford stack X to a

scheme Y is closed if for every closed substack Z ⊂ X the image of Z in Y is closed.

A morphism f : X → Y of Deligne-Mumford stacks is universally closed if for every

morphism Y → Y where Y is a scheme, the morphism X ×Y Y → Y is closed.

A morphism f : X → Y of Deligne-Mumford stacks is proper if it is separated, of �nite

type, and universally closed.
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This new de�nition recovers our previous de�nition of proper morphism when the mor-

phism is representable due to the following.

Proposition 4.1.48 ([58, Proposition 10.1.4]). Let f : X → Y be a representable sepa-

rated morphism of �nite type. The f is universally closed if and only if f is proper in

the previous sense.

Example 4.1.49. A closed imbedding of Deligne-Mumford stacks is proper.

We now list some properties of proper morphisms of Deligne-Mumford stacks.

Proposition 4.1.50 ([58, Proposition 10.1.6]).

• For a composite of morphisms of Deligne-Mumford stack

X Y Zf g

if f and g are proper, so if gf . If gf is proper and g is separated (e.g. proper)

then f is proper.

• Proper morphisms are closed under arbitary base change.

4.1.8 Automorphism Groups of Points

We now de�ne properties of Deligne-Mumford stacks which are dependent on properties

of automorphism groups of points.

De�nition 4.1.51. Let X/S be a Deligne-Mumford stack over S and k be a �eld. For

x : Spec(k)→ X de�ne the automorphism group of x to be the �nite group scheme Gx
de�ned as the �bred product of the diagram

Gx Spec(k)

Spec(k) X .

x

x

De�nition 4.1.52. Let X be a Deligne-Mumford stack separated and of �nite type over

S. We say that X is tame if for every geometric point (a morphism x̄ : Spec(k̄) → X
where k̄ is algebraically closed) the automorphism group Gx̄ has order invertible in k.

Remark 4.1.53. If S is a scheme over a �eld of characteristic zero, then every separated

Deligne-Mumford stack of �nite type over S is tame.

We also need the notion of trivial generic stabilizer which means that our stabilizer

groups will be as small as possible.

De�nition 4.1.54. A Deligne-Mumford stack X over S has trivial generic stabilizer if

for any atlas U → X the automorphism group of the generic point of U in X is trivial.

Example 4.1.55. Let G be a �nite group acting e�ectively on a quasi-projective scheme

X over k. Then the quotient stack [X/G] has trivial generic stabilizer.
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4.2 Presentations of stacks

In this section, we summarize the de�nitions and properties of algebraic groupoids and

the stack associated to an algebraic groupoid. We give a dictionary between properties

of a stack and properties of a groupoid presentation for that stack. More details (in

greater generality) can be found in [58, �3.4], [70, Tag 04TJ] and [7].

4.2.1 Stack Associated to an Algebraic Groupoid

Recall that a groupoid is a small category in which every morphism has an inverse. It

comprises of:

• a set of objects U

• a set of morphisms R,

• source and target maps s, t : R→ U ,

• a composition map m : R×s,U,t R→ R,

• an inverse map i : R→ R

• a map giving identity map ε : U → R.

This can be abstracted in the following way where the sets of objects and morphisms

are schemes.

De�nition 4.2.1. An algebraic groupoid over S is a collection of data

(R,U, s, t, ε, i,m)

with

1. Objects R and U of Sch /S.

2. Morphisms over S

s : R→ U, t : R→ U, ε : U → R,

i : R→ R,m : R×s,U,t R→ R.

This data is required to satisfy the �obvious� axioms of a groupoid where R denotes

the morphisms, U the objects, s, t the source and target, ε is the identity map, i the

inverse, and m describes how to compose morphisms. We will write R ⇒ U to denote

the groupoid (R,U, s, t, ε, i,m).

Note that for any scheme T , the groupoid in sets (U(T ), R(T ), s, t, ε, i,m) is a groupoid

in the usual sense.
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De�nition 4.2.2 ([70, Tag 0230]). A morphism Φ: (R⇒ U)→ (R′ ⇒ U ′) of algebraic

groupoids over Sch /S is a pair of morphisms of schemes Φ: U → U ′ and Φ: R → R′

such that for any scheme T over S the map Φ de�nes a functor

Φ(T ) : (R(T ) ⇒ U(T ))→
(
R′(T ) ⇒ U ′(T )

)
between groupoid categories.

We now explain how to construct a category �bred in groupoids associated to an alge-

braic groupoid R ⇒ U following [70, Tag 04TJ]. For every X ∈ Sch /S, consider the

category {R ⇒ U}(X) whose objects are elements x ∈ U(X) = HomSch /S(X,U), and

a morphism x→ x′ is an element ξ ∈ R(X) for which s(ξ) = x and t(ξ) = x′,

R

X U.

ts
ξ

x

x′

Given a composition

x′′ x′ x
η′ η

we de�ne ξ ◦ η to be the image under m of the element

(ξ, η) ∈ R(X)×s,U(X),t R(X).

The axioms of a groupoid in Sch /S imply that {R ⇒ U}(X) is a category. In fact, it

is a groupoid as the inverse of ξ ∈ R(X) is given by i(ξ).

To any morphism f : X → Y there is a functor

f∗ : {R⇒ U}(Y )→ {R⇒ U}(X),

induced by the pullback maps

f∗ : U(Y )→ U(X), f∗ : R(Y )→ R(X).

This allows us to de�ne a �bred category

p : {R⇒ U} → Sch /S

with objects given by pairs (X,x) with X ∈ Sch /S and x ∈ {R⇒ U}(X). A morphism

(X,x)→ (Y, y)

in {R⇒ U} is a pair (f, α) where f : X → Y is a morphism in Sch /S and α : x→ f∗y

is a isomorphism in {R ⇒ U}(X). The functor p sends a pair (X,x) to X and a mor-

phism (f, α) to f .
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To get a stack from {R ⇒ U} → Sch /S we stackify the category �bred in groupoids.

To do this we construct the category [R⇒ U ]→ Sch /S as category which has objects

over T ∈ Sch /S the collection of data

({Ti → T}i∈I , (ti, φij)) ,

where {Ti → T} is an étale covering of T and (ti, φij) is an object of {R ⇒ U}({Ti →
T}).

A morphism (
{T ′s → T ′}, ({t′s}, ψst)

)
→ ({Ti → T}, ({ti}, φij))

is a pair (f, ρ) where f : T ′ → T is a morphism in Sch /S and

ρ : ({t′s}, (t′st))→ f∗({ti}, (φij)) is a morphism between the induced objects of

{R⇒ U}({T ′s ×T ′ T ′ ×T Ti}i,s → T ′).

More explicitly, an object of [R⇒ U ](T ) is a tuple

({Ti → T}, (ti, φij))

where {Ti → T} is a covering in Sch /S and ti : Ti → U and φij : Ti ×X0 Tj → R such

that s ◦ φij = ti and t ◦ φij = tj .

Remark 4.2.3. There is a more general way to get a stack from a category �bred in

groupoids [58, Theorem 4.6.5] which follows a similar procedure.

Remark 4.2.4. The stack [R⇒ U ] associated to an algebraic groupoid is not necessarily

a Deligne-Mumford stack (c.f. [70, Tag 06PI]) as it need not admit an atlas.

De�nition 4.2.5. An algebraic groupoid R ⇒ U is étale if the two maps s : R → U

and t : R→ U are étale.

Theorem 4.2.6 ([70, Tag 04TJ]). Let R ⇒ U be an étale groupoid over S. Then the

associated stack [R⇒ U ] is a Deligne-Mumford stack over S with atlas U .

De�nition 4.2.7. A presentation of a Deligne-Mumford stack X/S is an étale groupoid

R⇒ U such that [R⇒ U ]∼=X .

Remark 4.2.8. Note that any Deligne-Mumford stack X has a presentation R ⇒ U

where U is an atlas for X and R = U ×X U with s and t given by the projection maps.

As any Deligne-Mumford stack has many atlases there are many di�erent presentations.

Thus an étale groupoid can be thought of as a Deligne-Mumford stack and a choice of

an atlas.

Example 4.2.9. Let X be a quasi-projective variety and G a �nite group acting e�ec-

tively on the left on X with action map a : G × X → X. Then we can form the étale
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groupoid

G×X X
a

pr2

and the Deligne-Mumford stack [G×X ⇒ X] is isomorphic to the quotient stack [X/G].

Thus we can interpret properties of [X/G] in terms of the étale groupoid above.

4.2.2 Properties of Stacks in Terms of Groupoids

Throughout this section let X be a Deligne-Mumford stack over a scheme S and R⇒ U

a presentation for X so [R ⇒ U ]∼=X . Note that U is an atlas for X and s, t : R → U

are étale.

First, we observe the following proposition which follows from De�nition 4.1.34.

Proposition 4.2.10. Let P be a property local in the étale topology. Then X has

property P if and only if U does.

We now show that any morphism of algebraic stacks induces a morphism of presentation.

Lemma 4.2.11 ([70, Tag 04Y6]). Let f : X → Y be a morphism of Deligne-Mumford

stacks over S represented by schemes. Let [R ⇒ U ] be a presentation for Y. Set

U ′ = U ×Y X and R′ = R×Y X . Then there is a groupoid of the form [R′ ⇒ U ′] which

is a presentation for X and a diagram

[R′ ⇒ U ′] X

[R⇒ U ] Y

pr f

where pr is induced by a morphism of groupoids (R′ ⇒ U)→ (R⇒ U).

We can also relate locally closed, open and closed substacks of X to invariant subspaces

a presentation groupoid [R⇒ U ]. We follow [70, Tag 04YK].

De�nition 4.2.12 ([70, Tag 03LN]). Let R⇒ U be an étale groupoid over S.

1. A open subset W ⊂ U is R-invariant if t(s−1(W )) ⊂W .

2. A closed subscheme Z ⊂ U is R-invariant if s−1(Z) = t−1(Z) where we take the

scheme theoretic inverse image.

If W is an R-invariant open subscheme of U , the restriction of R to W is RW =

s−1(W ) = t−1(W ). Similarly if Z is an R-invariant open subscheme of U , the restric-

tion of R to Z is RZ = s−1(Z) = t−1(Z)

Lemma 4.2.13. Let R ⇒ U be an étale groupoid over S. Let i : Z → [U/R] be

an immersion. Then there exists an R-invariant locally closed subspace Z ⊂ U and a



82 4. BACKGROUND ON STACKS

presentation [RZ ⇒ Z]→ Z where RZ is the restriction of R to Z such that

[RZ ⇒ Z] Z

[R⇒ U ]

is 2-commutative. If i is a closed (resp. open) immersion then Z is a closed (resp. open)

subspace of U .

Proposition 4.2.14. Let [R ⇒ U ] be a presentation of a Deligne-Mumford stack X
over S. Then there is a canonical bijection

locally closed substacks Z of X ←→ R-invariant locally closed subspace Z of U

sending Z to Z ×X U . Similarly for closed and open substacks.

We now relate properties of the diagonal ∆X : X → X ×S X to j = (s, t) : R→ U × U .

Proposition 4.2.15 ([70, Tag 0DTX]). Let X be a Deligne-Mumford stack over S and

R⇒ U a presentation for X .

Then

1. If j : R→ U × U is separated, then ∆X is separated.

2. If U and R are separated, so is ∆X .

3. If j : R→ U × U is proper, then X is separated.

4. If s, t : R→ U are proper and U is separated, then X is separated.

Example 4.2.16. Consider the quotient stack X = [A1 /Z2] where Z2 acts on A1 by

z 7→ −z. We claimed earlier that this stack is separated. Consider the presentation

A1×Z2 ⇒ A1 of X where s, t are given by pr1 and the action map a : A1×Z2 → A1.

By Proposition 4.2.15 (3) we see that X is separated as A1 is separated, t = a is proper

as Z2 acts properly, and s = pr1 : A1×Z2 → A1 is proper.

4.3 Sheaves on Stacks

In this section, we �rst de�ne quasi-coherent and coherent sheaves on Deligne-Mumford

stacks following [77, Appendix �7.18 ]. For more general algebraic stacks see [58, �9].

We then de�ne the bounded derived category of coherent sheaves on a Deligne-Mumford

stack using the construction from Section 2.1.1. Finally, we de�ne derived push forward,

pullback, tensor product, and Hom functors in the context of Deligne-Mumford stacks.
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4.3.1 Coherent Sheaves on a Stack

De�nition 4.3.1. Let X/S be a Deligne-Mumford stack over S. A quasi-coherent sheaf

F on X is the following collection of data:

1. For each atlas U → X a quasi-coherent sheaf FU on U .

2. For each commutative diagram

U V

X

f

with U, V atlases an isomorphism αf : FU → f∗FV .

These isomorphisms are required to satisfy the cocycle condition.

Suppose that X is locally noetherian. Then a quasi-coherent sheaf F on X is coherent

if X is locally noetherian (so every atlas U → X is locally noetherian) and all sheaves

FU are coherent.

If E and F are quasi-coherent sheaves on X , a homomorphism φ : E → F is a collection

of homomorphisms φU : EU → FU for any atlas U which is compatible with the αf .

We will denote the categories of quasi-coherent (resp. coherent) sheaves on X by QCoh(X )

(resp. Coh(X )).

Example 4.3.2.

1. The structure sheaf OX is de�ned by (OX )U = OU for any atlas U → X [70, Tag

06TU].

2. The sheaf of di�erentials ΩX/S is de�ned by (ΩX/S)U = ΩU/S. Since the map f

has to be étale, there is a natural isomorphism ΩU/S
∼= f∗ΩV/S.

Remark 4.3.3. The more general theory of quasi-coherent sheaves on an algebraic stack

can be developed using the lisse-étale topology on Sch /S but this has di�culties de�ning

the pullback of quasi-coherent sheaves (see [58, �9.3]). For Deligne-Mumford stacks

the categories of quasi-coherent sheaves with respect to the lisse-étale topology and with

respect to the étale topology are equivalent, allowing us to avoid these complications.

De�nition 4.3.4 ([70, Tag 06TN] and [70, Tag 06TI]). Let Φ: X → Y be a morphism of

Deligne-Mumford stacks over S and F a quasi-coherent sheaf on Y. De�ne the inverse

image of F along Φ, Φ∗F by

(Φ−1F )U = FΦ(U).

Just as for schemes, we can de�ne the pullback Φ∗F of F by

(Φ∗F )U = FΦ(U) ⊗Φ−1OY OX .
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Let Φ: X → Y be a morphism of Deligne-Mumford stacks over S and F a quasi-coherent

sheaf on X . De�ne the push forward of F , Φ∗F by

(Φ∗F )V = lim
Φ(U)→V

FU .

By construction, these give an adjoint pair

HomX (Φ∗G,F )∼= HomY(G,Φ∗F ).

Remark 4.3.5. If Φ: X → Y is a representable morphism of Deligne-Mumford stacks

over S, then we can compute the push forward of a sheaf F on X by Φ as follows.

Consider the diagram
X ×Y V V

X Y.Φ

where V → Y is an atlas. Then X ×Y V → X is an atlas for X and Φ∗(F )V =

Φ∗(FX×YV ).

4.3.2 Coarse Moduli Space

We now de�ne the coarse moduli space of a Deligne-Mumford stack following [58, �11].

De�nition 4.3.6. Let X/S be a Deligne-Mumford stack over S. A coarse moduli space

for X is a scheme X over S and a morphism π : X → X such that:

(i) π is initial for maps to a scheme over S.

(ii) For every algebraically closed �eld k the map |X (k)| → X(k) is bijective where

|X (k)| denotes the set of isomorphism classes in X (k).

The following theorem of Keel and Mori guarantee the existence of coarse moduli spaces

for many Deligne-Mumford stacks.

Theorem 4.3.7 ([58, Theorem 11.1.2]). Assume that S is locally noetherian and X a

Deligne-Mumford stack of �nite presentation over S with �nite diagonal. Then there

exists a coarse moduli space π : X → X. In addition:

1. X/S is locally of �nite type, and if X/S is separated, so if X/S.

2. π is proper and OX → π∗OX is an isomorphism.

3. If X ′ → X is a �at morphism, then π′ : X ′ = X ×X X ′ → X ′ is a coarse moduli

space.

Example 4.3.8. Let X be a smooth quasi-projective variety over k and G a �nite group

acting on X. Then the quotient stack [X/G] satis�es the assumptions above and has
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a coarse moduli space X/G given locally as the invariant ring of functions (c.f. [77,

Proposition 2.11]).

We will use the following Proposition to characterize morphism between Deligne-Mumford

stacks with isomorphic coarse moduli spaces

Proposition 4.3.9. Suppose f : X → X ′ is a morphism of Deligne-Mumford stacks

and we have a commutative diagram

X X ′

X.

f

π

π′

where X is the coarse moduli space for both X and X ′. Then f is proper.

Proof. The Proposition follows from the maps X → X and X ′ → X being proper and

Proposition 4.1.50 as π = π′ ◦ f .

We will use the following concerning the push forward of quasi-coherent sheaves from a

tame Deligne-Mumford stack to its coarse moduli space.

Proposition 4.3.10 ([58, Proposition 11.3.4]). Let X/S be a Deligne-Mumford stack

locally of �nite presentation over a locally noetherian scheme S with �nite diagonal. Let

π : X → X be its coarse moduli space. If X is tame, then the functor

π∗ : QCoh(X )→ QCoh(X)

is exact.

4.3.3 E�ective Cartier Divisors

Just as for schemes we have a bijection between closed subschemes Z and ideal sheaves

IZ we have a similar bijection for closed substacks [50, Application 14.2.7]. We will

denote by IZ the quasi-coherent ideal sheaf associated to a closed substack Z.

De�nition 4.3.11. Let X be a Deligne-Mumford stack over S. An e�ective Cartier

divisor on X is a closed substack D ⊂ X whose ideal sheaf ID is a line bundle.

Example 4.3.12. Let G = Z /2Z act on C2 by the matrix(
−1 0

0 1

)
.

Consider the quotient stack [C2 /G] Then the closed substack D = [D/G] ⊂ [C2 /G]

where D = V (x) ⊂ C2 is an e�ective Cartier divisor.
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4.3.4 Coherent Sheaves on a Groupoid

We now relate sheaves on a Deligne-Mumford stack X to sheaves on a presentation

R⇒ U . See [70, Tag 03LH] for more details.

De�nition 4.3.13. A quasi-coherent sheaf on an algebraic groupoid R⇒ U is a quasi-

coherent sheaf F on U with respect to the étale topology together with an isomorphism

α : s∗F ∼= t∗U which satis�es a cocycle condition given by associativity of the groupoid

multiplication and that ε∗α = id. A quasi-coherent sheaf F on R ⇒ U is coherent if U

is locally noetherian and F on U is coherent.

A morphism of quasi-coherent sheaves φ : (F, α) → (G, β) of sheaves on R ⇒ U is a

morphism of OU -modules φ : F → G such that

s∗F t∗F

s∗G t∗G

α

s∗φ t∗φ

β

commutes.

We will denote the category of quasi-coherent (resp. coherent) sheaves on R ⇒ U by

QCoh(R⇒ U) (resp. Coh(R⇒ U)).

Proposition 4.3.14 ([70, Tag 06WT]). Let R ⇒ U be an étale groupoid over S and

X = [R⇒ U ] the associated algebraic stack. Then the category of quasi-coherent sheaves

on X is equivalent to the category of quasi-coherent sheaves on the étale groupoid R⇒ U .

Proof. Recall that an object x = (T, u) is a scheme T and a map u : T → U . A morphism

(T, u) → (T ′, u′) is given by a pair (f, r) where f : T → T ′ such that u′ ◦ f = u and

r : T → R such that s ◦ r = u and t ◦ r = u′ ◦ f .

Let F be a quasi-coherent sheaf on X . Then we obtain for every atlas u : T → X ∈
[R(T ) ⇒ U(T )] a quasi-coherent sheaf u∗F = FT on T . Moreover, for any morphism

f : (T, u)→ (T ′, u′) of atlases we have an isomorphism

αf : f∗FT ′ → FT .

These isomorphisms are compatible with compositions. We construct a quasi-coherent

sheaf on R⇒ U in the following way: First the object (U, id) ∈ [R⇒ U ](U) corresponds

to the quasi-coherent sheaf FU,id on U .

Recall that as s, t : R → U are surjective étale maps as they admit a section ε. Hence

we have sheaves F(R,s) and F(R,t) on R corresponding to the elements s, t : R → U ∈
[R⇒ U ](R).

The isomorphism α : t∗FU ∼= s∗FU is obtained in the following way:

1. First, the element idR gives an isomorphism between (R, s) and (R, t) in X (R)

and so an isomorphism of sheaves F(R,s)
∼=F(R,t).
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2. The morphism (R, s)→ (U, id) gives an isomorphism s∗F(U,id)
∼=F(R,s).

3. The morphism (R, t)→ (U, id) gives an isomorphism t∗F(U,id)
∼=FR,t.

By composing these we obtain the necessary isomorphism α. This isomorphism satis�es

the cocycle relation as the multiplication on R⇒ U is associative.

Conversely, suppose that (F, α) is a quasi-coherent sheaf on R ⇒ U . Then we de�ne a

presheaf FX of OX -modules on X by for any atlas u : T → X ∈ [R⇒ U ](T )

FX (T, u) = Γ(T, u∗F ).

Given a morphism (f, r) : (T, u)→ (T ′, u′) there is a map

F (T ′, u′) =Γ(T ′, (u′)∗F )

=Γ(T, f∗(u′)∗F ) = Γ(T, (u′ ◦ f)∗F )

=Γ(T, (t ◦ r)∗F ) = Γ(T, r∗t∗F )

∼=Γ(T, r∗s∗F ) = Γ(T, (s ◦ r)∗F )

=Γ(T, u∗F )

=F (T, u).

The cocycle condition guarantees that this de�ned a presheaf of modules. Pulling FX
back to Sch /T shows that FX is quasi-coherent.

Example 4.3.15. Let X = [X/G] where G is a �nite group acting on a locally noethe-

rian scheme X. Then X × G ⇒ X is a presentation for [X/G]. Thus quasi-coherent

sheaves on [X/G] correspond to pairs (E,α) on X where α : pr∗1E → a∗E is an iso-

morphism which satis�es a cocycle condition. This is by de�nition a G-equivariant

quasi-coherent sheaf on X. Thus we have equivalences of categories

QCoh([X/G])∼= QCohG(X), Coh([X/G])∼= CohG(X)

between (quasi-)coherent sheaves on X and G-equivariant sheaves on X.

Given a morphism of groupoids, we get two functors relating sheaves between the two

groupoids.

Proposition 4.3.16. Let Φ: (R ⇒ U) → (R′ ⇒ U) be a morphism of algebraic

groupoids. Then Φ de�nes a functor

Φ∗ : QCoh(R′ ⇒ U ′)→ QCoh(R⇒ U)

by Φ∗ : (F ′, α′) 7→ (Φ∗F ′,Φ∗α′).

Proposition 4.3.17. Let Φ: (R ⇒ U) → (R′ ⇒ U) be a morphism of algebraic

groupoids. Suppose that
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1. Φ: U → U ′ is quasi-compact and quasi-separated

2. The square

R R′

U U ′

Φ

t t′

Φ

commutes, and

3. The morphisms s and t are �at.

Then Φ gives a functor

Φ∗ : QCoh(R⇒ U)→ QCoh(R′ ⇒ U ′)

de�ned by Φ∗ : (F, α)→ (Φ∗F,Φ∗α).

4.4 Derived Category of a Stack

We now construct the derived category (quasi)-coherent sheaves on a Deligne-Mumford

stack and explain how to derive the usual functors between categories of (quasi)coherent

sheaves.

Proposition 4.4.1 ([70, Tag 06WU]). Let X be an Deligne-Mumford stack over S.

Then the category QCoh(X ) is abelian. Moreover, if X is locally noetherian then

Coh(X ) is an abelian subcategory of QCoh(X ).

Proof. By Proposition 4.3.14 we have an equivalence QCoh(X )∼= QCoh([R ⇒ U ]).

Thus it su�ces to show that QCoh([R ⇒ U ] is abelian. This follows from [70, Tag

06VZ] and we sketch the argument below.

Recall that R⇒ U is an étale groupoid, so s and t are both �at. Let φ : (F, α)→ (G, β)

be a morphism of quasi-coherent sheaves on R⇒ U . As s is �at the sequence

0 s∗ kerφ s∗F s∗G s∗ cokerφ 0
s∗φ

is exact. Moreover, we have a similar exact sequence for t∗. Then the isomorphisms

s∗α and s∗β induce isomorphisms κ : s∗kerφ → t∗ kerφ and λ : s∗ cokerφ → t∗ cokerφ.

The result then follows from showing (kerφ, κ) and (cokerφ, λ) satisfy the universal

property for kernels and cokernels using that QCoh(U) is abelian.

Suppose X is locally noetherian. Then U and R are also locally noetherian. Then s

and t preserve coherent sheaves. Then Coh(R ⇒ U) is an abelian subcategory we use

the fact that s∗ and t∗ preserve coherent sheaves.
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Remark 4.4.2. The above proposition allows us to apply the machinery in Section

2.1.1 to construct the following derived categories D∗(QCoh(X )) and D∗(Coh(X )) for

∗ = +,−, b. Following Section 2.1.1 we will write D(X ) = Db(Coh(X )).

The following result generalizes a well-known result for noetherian schemes [38, Propo-

sition 3.5] to noetherian Deligne-Mumford stacks.

Proposition 4.4.3 ([9, Proposition A.1]). Let X be a noetherian Deligne-Mumford

stack. Then the obvious functor de�nes an equivalence

D−(Coh(X ))∼=D−Coh(QCoh(X )).

4.4.1 Derived Functors and Stacks

In this section we derive several of the common functors including − ⊗ − and for a

morphism f : X → Y the functors f∗ and f∗, echoing Section 2.2.1 which treated the

case of schemes.

Derived Tensor Product and Pullback

First, we treat the case of left derived functors for tensor product and pullback along

a morphism of Deligne-Mumford stacks. On the level of bounded above complexes of

(quasi)-coherent sheaves, we can derive the tensor product bi-functor.

Proposition 4.4.4 ([50, 13.2.6(i) and 15.6(i) and (ii)]). Let X be a Deligne-Mumford

stack over S.

1. If E and F are quasi-coherent sheaves on X , then E⊗OX F is also a quasi-coherent

sheaf. More generally, the functor −⊗LOX − induces a functor

−⊗LOX − : D−(QCoh(X ))×D−(QCoh(X ))→ D−(QCoh(X )).

Moreover, if X is locally noetherian, then −⊗OX − induces a functor

−⊗LOX − : D−(Coh(X ))×D−(Coh(X ))→ D−(Coh(X )).

For a morphism f : X → Y we have a similar result on the level of bounded above

complexes

Proposition 4.4.5 ([70, Tag 07BD]). Let f : X → Y be a morphism of Deligne-

Mumford stacks. Then the functor f∗ induces a left derived functor

Lf∗ : D−(QCoh(Y))→ D−(QCoh(X )).

To descend these functors to the bounded derived category we will need the language

of perfect complexes.
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Perfect Objects and the Bounded Derived Category

We refer to [70, Tag 08CL] and [9, Appendix A] for the following results.

De�nition 4.4.6. Let X be a scheme over S. An object E ∈ D(QCoh(X) is perfect if

it is locally (in the étale topology) quasi-isomorphic to a bounded complex of �nite free

OX-modules.

Let X be a Deligne-Mumford stack over S. An object E ∈ D(QCoh(X )) is perfect if

for any atlas U → X , EU is perfect.

We will denote the triangulated subcategory of D(QCoh(X )) of perfect objects in D(QCoh(X ))

by Dpf (X ).

It is useful to talk about perfect complexes when considering the functors − ⊗ − and

f∗ for a morphism f : X → Y of stacks due to following results

Proposition 4.4.7 ([70, Tag 08CL]). 1. Let E•, F • ∈ Dpf (X ). Then E• ⊗L F • ∈
Dpf (X ). Thus −⊗− descends to a bi-functor

−⊗L − : Dpf (X )×Dpf (X )→ Dpf (X ).

2. Let f : X → Y be a morphism of Deligne-Mumford stacks. Then if E• ∈ Dpf (Y),

Lf∗(E•) ∈ Dpf (X ). Thus we have a functors

Lf∗ : Dpf (Y)→ Dpf (X ).

The category of perfect complexes is useful as it gives a way to descend to the bounded

derived category using the following result

Proposition 4.4.8 ([9, Proposition A.2]). Let X be a regular and quasi-compact. Then

we have an equality

Dpf (X ) = Db(Coh(X )).

Combining the previous two Propositions we have the following

Corollary 4.4.9. Let X be a regular, noetherian Deligne-Mumford stack over S. Then

there exists a derived bi-functor

−⊗L − : Db(Coh(X ))×Db(Coh(X ))→ Db(Coh(X ))

Let f : X → Y be a morphism of regular, noetherian Deligne-Mumford stacks over a

scheme S. Then there exists a derived functor

Lf∗ : Db(Coh(Y))→ Db(Coh(X )).

Often the map f : X → Y will be �at. The the following result means that, as for

schemes, we will not have to derive f∗.
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Lemma 4.4.10 ([70, Tag 076W]). Let f : X → Y be a �at morphism of Deligne-

Mumford stacks. Then

f∗ : QCoh(Y)→ QCoh(X )

is exact.

Derived Hom Functor

As QCoh(X ) contains enough injective we can derive HomX (F,−).

Proposition 4.4.11 ([57, Proposition 6.4]). Let X be a locally noetherian Deligne-

Mumford stack. Then the functor RHomX (−,−) induces functors

RHomX (−,−) : D−(Coh(X ))×D+(QCoh(X ))→ D+(QCoh(X ))

RHomX (−,−) : D−(Coh(X ))×D+(Coh(X ))→ D+(Coh(X ))

To descend to the bounded level we have to assume that X is regular, just as for schemes.

Derived Pushforward Functor

In Section 2.2.1 we used for a scheme X that QCoh(X) has enough injectives. For a

Deligne-Mumford stack X we also have that QCoh(X ) enough injectives.

Proposition 4.4.12 ([70, Tag 06WU]). Let X be a Deligne-Mumford stack over S.

Then the category QCoh(X ) has enough injectives.

Thus on the level of QCoh(X ) we can derive f∗ assuming f is a quasi-compact morphism

of quasi-compact quasi-separated Deligne-Mumford stacks.

Lemma 4.4.13 ([57, Lemma 6.5]). Let f : X → Y be a quasi-compact morphism

of quasi-compact quasi-separated Deligne-Mumford stacks. Then for any any quasi-

coherent sheaf E on X , the sheaf f∗E is a quasi-coherent sheaf on Y.

As QCoh(X) has enough injectives, by Section 2.1.3 there exists a derived functor

Rf∗ : D+(QCoh(X))→ D+ QCoh(Y ).

Similarly, as for schemes, we have the following Theorem for on the level of coherent

sheaves.

Theorem 4.4.14 ([57, Theorem 10.13]). Let f : X → Y be a proper morphism between

locally noetherian Deligne-Mumford stacks. Then for any coherent sheaf E on X and

i ≥ 0, the sheaves Rif∗E are coherent on Y. More generally, we have a functor

Rf∗ : D+(Coh(X ))→ D+(Coh(Y)).
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To descend to the bounded derived category we use the following theorem.

Theorem 4.4.15 ([58, Theorem 11.6.5]). Let f : X → Y be a proper morphism of

�nite type Deligne-Mumford stacks over S and assume that S is quasi-compact. For

a geometric point x̄ → X , let Gx̄(resp. Hf(x̄)) denote the stabilizer group of x̄ (resp.

f(x̄)), and let Kx̄ denote the kernel of the natural map Gx̄ → Hf(x̄). If for every

geometric point x̄ the order of the group Kx̄ is invertible in the �eld k(x̄), then there

exists an integer n0 such that for any quasi-coherent sheaf E on X we have Rqf∗E = 0

for q > n0.

Corollary 4.4.16. Let f : X → Y be a proper morphism of locally noetherian tame

Deligne-Mumford stacks over a quasi-compact scheme S. Then Rf∗ induces a functor

Rf∗ : Db(Coh(X ))→ Db(Coh(Y)).

Proof. This follows from apply Proposition 2.1.15 using Theorem 4.4.15.

Remark 4.4.17. Just as for schemes, the projection formula holds for Deligne-Mumford

stacks as it holds for perfect objects [70, Tag 0943].

Duality for Stacks

We now explain when Grothendieck-Verdier Duality lifts to stacks. For schemes Grothendieck

Verdier Duality centers around constructing a right adjoint to f∗.

Theorem 4.4.18 ([56, Theorem 1.16]). Let f : X → Y be a separated quasi-compact

morphism of Deligne-Mumford stacks. Then the functor Rf∗ : D+(X ) → D+(Y) has a

right adjoint f ! : D+(Y)→ D+(X ).

For proper morphisms, we have the following description

Proposition 4.4.19 ([56, Corollary 2.10]). Let f : X → Y be a proper morphism of

Deligne-Mumford stacks and F • ∈ D+
c (X ), G• ∈ D+(Y). Then the natural morphism

Rf∗RHomX (F •, f !G•)→ RHomY(Rf∗F
•, Rf∗f

!G•)→ RHomY(Rf∗F
•, G•)

is an isomorphism.

For smooth proper Deligne-Mumford stacks we have Serre Duality just as for schemes.

Theorem 4.4.20. Let X be a smooth proper Deligne-Mumford stack over k of dimen-

sion n. Then ωX [n] is a dualizing complex for X . Hence SX = − ⊗L ωX [n] is a Serre

functor for X .



Chapter 5

Semi-orthogonal Decompositions for

Deligne-Mumford Stacks

In this chapter, we recall the main tools used to construct semi-orthogonal decompo-

sitions of the bounded derived category of coherent sheaves on smooth separated tame

Deligne-Mumford stacks over a �eld k.

In Sections 5.1 and 5.2 we describe the main constructions used to understand the

geometry of these stacks: canonical stacks and root stacks. We then in Section 5.3

describe the geometry of these stacks using these constructions following [31].

In Section 5.4 we recall semi-orthogonal decompositions of root stacks and iterated root

stacks constructed by Ishii and Ueda [40]. We then apply these results to describe semi-

orthogonal decompositions of Deligne-Mumford quotient stacks. As far as the author

knows, this perspective is new and not in the literature.

In Section 5.5 we prove that for any smooth separated tame Deligne-Mumford stack

X over a �eld k with trivial generic stabilizer and coarse moduli space X, the derived

category D(Xcan) of the canonical stack Xcan embeds fully faithfully into D(X ). Again,

this result appears to be new.

The article [73] follows a similar approach from the perspective of Gromov-Witten

theory which may be of interest to the reader.

Notation and Conventions

Throughout this chapter, a Deligne-Mumford stack will be a quasi-separated quasi-

compact Deligne-Mumford stack of �nite type over a �eld k, i.e S = Spec k. We do not

impose any additional assumptions on k. Throughout we will write X both the scheme

X and the stack X associated to X.

We say a morphism between stacks is unique if it is unique up a unique 2-arrow. We

denote by Gm the sheaf of invertible sections in OX .
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5.1 Canonical Stacks

Canonical stacks were �rst studied by Vistoli in [77], as a way of associating a smooth

stack to a scheme of �nite type over k with tame quotient singularities (étale locally the

quotient of a smooth variety by a �nite group whose order is prime to the characteristic

of k). In particular, the canonical stack is the �rst example of a stacky resolution of

singularities. We hope to study schemes with tame quotient singularities by studying

the associated canonical stack.

The notion of a smooth Deligne-Mumford stack being canonical corresponds to the

subset of �stacky point" having codimension at least 2. We follow [26, �4]. Other

references are [77] and [31].

De�nition 5.1.1. Let X be a smooth Deligne-Mumford stack with coarse moduli space

X. We call X canonical if the locus where the map π : X → X is not an isomorphism

has codimension ≥ 2 in X.

Example 5.1.2. Let G ⊂ SL(n,C) be a �nite subgroup. Then the quotient stack

[Cn /G] is canonical. This follows from Fix(G) = {0} ∈ Cn. More generally, if G ⊂
GL(n,C) is small (contains no psuedore�ections) then [Cn /G] is canonical for similar

reasons.

We now recall some well known facts about canonical Deligne-Mumford stacks from [26,

�4]

Remark 5.1.3. Let X be a smooth canonical Deligne-Mumford stack with coarse moduli

space X.

• The locus where the coarse map π : X → X is an isomorphism is precisely π−1(Xsm),

where Xsm is the smooth locus of X.

• If X is smooth, π is an isomorphism and X ∼=X.

De�nition 5.1.4.

1. A dominant morphism f : V → W of irreducible varieties is called codimension

preserving if codimV ZV = codimW Z for any irreducible closed subset Z ⊂ W

and every irreducible component ZV of f−1(Z).

2. A dominant morphism of Deligne-Mumford stacks with trivial generic stabilizers

is codimension preserving if the induced map on every irreducible component of

the coarse moduli space is codimension preserving.

Remark 5.1.5. Note that coarse moduli space map X → X is codimension preserving

because the induced map is the identity. Moreover, any �at morphism (therefore any

étale and smooth) morphism is codimension preserving. A composite of codimension

preserving maps is codimension preserving. Note that blowing up is not codimension

preserving.
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We will now characterize canonical stacks using a universal property.

Theorem 5.1.6 ([26, Theorem 4.6]). Let X be a canonical smooth Deligne-Mumford

stack, π : X → X the morphism to the coarse moduli space and g : Y → X a dominant

codimension preserving morphism with Y a smooth Deligne-Mumford stack with trivial

generic stabilizer. Then there exists a unique morphism f : Y → X such that the diagram

Y X

X

∃!f

g
ε

commutes.

The following corollary asserts the uniqueness of a canonical stack for the coarse moduli

space X. This allows us to talk about the canonical stack with coarse moduli space X.

Corollary 5.1.7 ([26, Corollary 4.8]). Let X ,Y be a canonical smooth Deligne-Mumford

stacks with coarse moduli spaces X,Y respectively. Let f̄ : X → Y be an isomorphism.

Then there is a unique isomorphism f : X → Y inducing f̄ .

We now describe the unique canonical Deligne-Mumford stack with trivial generic sta-

bilizer associated with a variety over a �eld k with (tame) quotient singularities. Recall

that a variety X over a �eld k is said to have tame quotient singularities if it is étale

locally the quotient of a smooth variety by a �nite group whose order is prime to the

characteristic of k.

Theorem 5.1.8 ([77, Proposition 2.8] and [26, Corollary 4.9]). Let X be a variety over

a �eld k with tame quotient singularities. Then there exists a smooth canonical Deligne-

Mumford stack Xcan over k with coarse moduli space X. Moreover, Xcan is universal

in the following way. Given any other smooth Deligne-Mumford stack X with coarse

moduli space X there is a unique morphism f : X → Xcan making the following diagram

commute

X Xcan

X.

f

π ε

Proof. Note that by Theorem 5.1.6 the canonical stack has the required universal prop-

erty and is unique up to unique isomorphism.

Now we construct Xcan. Let x ∈ X be a closed point. Then there is a smooth scheme

V and a �nite group G acting faithfully on V , with an étale morphism V/G→ X whose

image contains x. Let v be the inverse image of x. If Gv is the stabilizer of G at v, the

morphism V/Gv → X is étale at v. By restricting V , we can assume that v is a �xed

point of G. An element of G will be called a pseudo-re�ection at v if it acts trivially

on a divisor of V passing through v. By the Chevalley-Shephard-Todd Theorem [69], a

subgroup H ⊂ G is generated by psuedore�ections at v if and only if the quotient V/H
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is smooth. By quotienting by the (normal) subgroup generated by psuedore�ections at

v and restricting V we can assume the set of �xed points of any element of G lie in

codimension at least 2. Thus the morphism V → X is étale in codimension 1. Thus

there exists a �nite set of schemes Vα and morphisms Vα → X such that:

1. The Vα's are smooth,

2. The morphisms Vα → X are étale in codimension 1,

3. For each α, there is a �nite groupGα acting on Vα in such a way that Vα → X is the

composite of the projections Vα → Vα/Gα with an étale morphism Vα/Gα → X,

4. The union of the images of the Vα's cover X.

Denote by Vαβ the normalization of Vα ×X Vβ . Then the two projections from Vαβ to

Vα and Vβ are étale in codimension 1. As Vα is smooth, the only rami�cation of the

map Vαβ → Vα is in codimension 1 by Zariski's Theorem on the purity of the branch

locus [80]. As the maps Vαβ → Vα are étale in codimension 1 Vαβ are all smooth and

the projections are étale. Thus we can form the étale algebraic groupoid∐
α,β

Vαβ ⇒
∐
α

Vα.

The canonical stack Xcan is the stacki�cation of the �bred category associated to the

above groupoid with atlas
∐
α Vα. By construction it follows from [33, Proposition 9.2]

that X is the coarse moduli space for Xcan.

Example 5.1.9. Let G = 1
4(1, 2) be the cyclic group of order 4 acting on A2

C =

SpecC[x, y]. The image of this group in GL(2,C) is generated by the matrix(
i 0

0 −1

)
.

One can then compute the quotient X = A2
C /G as

X = SpecC[x, y]G∼= SpecC[x4, y2, x2y]∼= Spec[u, v, w]/(uv − w2)

which is the cone in A3
C cut out by the equation uv − w2. It is easy to compute that

X ∼=A2
C /µ2 where µ2 acts by the matrix(

−1 0

0 −1

)

on A2
C. Thus Xcan∼=[A2

C /µ2]. The map [A2
C /G] → [A2

C /µ2] is given by the quotient

map G→ G/H ∼=µ2 where H =< g2 > for a generator g of G.

Example 5.1.10. Let G acting e�ectively on Ank be generated by psuedore�ections.
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Then by Chevalley-Shepard-Todd [69] the quotient Ank /G∼=Ank is smooth. Thus

(Ank /G)can∼=Ank /G∼=Ank .

Remark 5.1.11. Note that by Proposition 4.1.50 the canonical morphism f : X → Xcan

is proper.

5.2 Root Stacks

The birational geometry of singular varieties often requires the treatment of Q-Cartier
divisors. This is equivalent to taking roots of line bundles. Whilst for schemes this is

problematic, this can be achieved in the world of stacks using roots stacks. Root stacks

were �rst constructed by Cadman in [22] and independently by Abramovich, Graber

and Vistoli [1]. In this section, we de�ne the notion of a root stack in several contexts:

root stack of a line bundle, root stack of a line bundle with a section, and the iterated

root stack.

5.2.1 The Root Stack of a Line Bundle

Let X be a Deligne-Mumford stack and L a line bundle on X . We use the same notation

as in [40, �5]. Let r ∈ Z be a postive integer. The the r-th root stack of L, denoted
r
√
L/X , is the �bred product

r
√
L/X BGm

X BGm

π τr

L

where the morphism τr : BGm → BGm is induced by the power map on Gm.

Explicitly, the objects over a scheme T is a triple (ϕ,M, φ) consisting of a morphism

ϕ : T → X of stacks, a line bundle M on T and an isomorphism φ : M⊗r ∼=ϕ∗L of line

bundles on T .

We will denote by (M,Φ) the universal object on r
√
L/X whereM is a line bundle on

r
√
L/X and Φ: M⊗r ∼=π∗L.

5.2.2 The Root stack of a Line Bundle with a Section

In [22] the author de�nes the notion of a root of a line bundle and a global section.

Let (L, s) be the pair of a line bundle L on X and a global section s ∈ Γ(X ,L). Then

we can form the root stack of (L, s) in the following way. Recall that [A1
k /Gm] is the

category of line bundles with a section.
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Lemma 5.2.1 ([22, Lemma 2.1.1]). Let X be a Deligne-Mumford stack. Then their is

an equivalence of categories between the category of morphisms X → [A1
k /Gm] and the

category whose objects are pairs (L, s) where L is a line bundle on X and s ∈ Γ(X ,L)

and whose morphisms

(L, s)→ (L′, s′)

are isomorphisms ϕ : L → L′ such that ϕ(s) = t.

Denote by θr : [A1
k /Gm]→ [A1

k /Gm] the morphism induced by the power maps on A1
k

and Gm.

De�nition 5.2.2. Let X be a Deligne-Mumford stack, r be a positive integer and (L, s)
a pair consisting of a line bundle L on X and a global section s ∈ Γ(X ,L). Then de�ne

the rth root stack r
√

(L, s)/X of (L, s) on X as the �bred product

r
√

(L, s)/X [A1 /Gm]

X [A1 /Gm].

π θr

L

The universal object is a pair (M, t) of a line bundle M on r
√

(L, s)/X and a section

t ∈ Γ( r
√

(L, s)/X ,M).

More explicitly, an object of r
√
D/X over a scheme T is a quadruple (ϕ,M, φ, τ) consist-

ing of an object (ϕ,M, φ) of r
√
D/X over T and a section τ of M such that φ(τ⊗r) =

ϕ∗s.

Let D be a Cartier divisor on X and denote by 1D the canonical section corresponding

to the inclusion OX (D)→ OX . We will denote the r-th root stack of X of (OX (D), 1D)

by r
√
D/X .

Example 5.2.3. Suppose that X = Spec(A) is an a�ne scheme and 0 6= f ∈ A is a

non-zero divisor and let D = V (f) be the associated e�ective Cartier divisor. Then the

root stack r
√
D/X is isomorphic to the quotient stack [Spec (A[t]/(tr − f)) /Zr]. Note

that this generalizes to any scheme X and L = OX is the trivial line bundle and f a

global section of OX .

5.2.3 The Iterated Root Stack

The construction above can be iterated. Let L = (L1, . . . ,Ln) be a collection on n line

bundles on X and s = (s1, . . . , sn) a collection of global sections with si ∈ Γ(X ,Li)
and r = (r1, . . . , rn) with ri ∈ Z, ri > 0. Denote by Θr : [Ank /Gm

n] → [Ank /Gm
n] the

morphism induced by the power morphism x 7→ xr and t 7→ tr on Ank and Gm
n.

De�nition 5.2.4. Using the notation de�ned above, de�ne the r-th root stack of (L, s)

on X as the �bred product
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r
√

(L, s)/X [Ank /Gm
n]

X [An /Gm
n].

Θr

(Lk,sk)

For a collection of divisorsD = (D1, . . . ,Dn) we denote the r-th root stack of (OX (Di),1Di)ni=1

by r
√
D/X .

We have the following properties of iterated root stacks by [22, �2], [26, �1.3b] and [9,

Proposition 3.3]

1. If X is a Deligne-Mumford stack then so is r
√

D/X .

2. The �bre product of all ri
√
Di/X over X for all i is isomorphic to r

√
D/X .

3. The morphism r
√

D/X → X is an isomorphism over X \
⋃
iDi.

4. If X is smooth, each Di are smooth and Di have simple normal crossings then
r
√
D/X is smooth.

5. The morphism r
√

(L, s)/X → X is proper, faithfully �at and birational.

Remark 5.2.5. Let D1,D2 be two e�ective Cartier divisors on X which intersect. Then

the root stacks r
√

(D1 ∪ D2)/X and (r,r)
√

(D1,D2)/X are not isomorphic. Consider a

point x ∈ D1 ∩ D2 and it's preimage x̃ in r
√
D1 ∪ D2/X and (r,r)

√
(D1,D2)/X . In the

former x̃ has stabilizer group Zr while in latter it has Zr ×Zr.

Remark 5.2.6. Let X → [A1
k /Gm] be induced by D1 and X → [An−1

k /Gm
n−1] be

induced by the n − 1 tuple (D2, . . . ,Dn) and let r = (r2, . . . , rn). Then there is a

canonical isomerism

[A1
k /Gm]×r1,[A1

k /Gm] X ×[An−1 /Gm
n−1],r [An−1

k /Gm
n−1]∼= r

√
D/X

where D = (D1, . . . ,Dn) See [22, Remark 2.2.5] for more details.

5.2.4 Root stacks and Groupoid Presentations

If we restrict ourselves to Deligne-Mumford stacks of the form [Z/G] where Z is a

scheme and G a �nite abelian group we can give a more concrete description of a root

stack over [Z/G] using groupoid presentations.

Let Z be a subvariety of Cn of codimension greater than or equal to two. Let G be a

group acting on on Z such that [Z/G] is a Deligne-Mumford stack. Then, as all line

bundles on Z are trivial, a line bundle on [Z/G] is OZ and a representation χ : G→ C∗.

Lemma 5.2.7 ([26, Lemma 7.1]). Let Z be a subvariety of Cn of codimension equal

or higher than two and G an abelian �nite group acting on Z such that [Z/G] is a

Deligne-Mumford stack.



100 5. SEMI-ORTHOGONAL DECOMPOSITIONS FOR DELIGNE-MUMFORD STACKS

Let (L, s) = ((L1, s1), . . . , (Ln, sn)) be a collection of n line bundles on [Z/G] with a

global sections si ∈ Γ(X ,Li). Denote by χ = (χ1, . . . , χn) the representations associated

to the line bundles Li. Let r = (r1, . . . , rn) ∈ Zn>0.

Then the root stack X = r
√

(L, s)/[Z/G] is isomorphic to [Z̃/G̃] where Z̃ and G̃ are

de�ned by the �bred products:

Z̃ An G̃ Gnm

Z An G Gnm

∧d ∧d

s χ

The action of G̃ on Z̃ is given by

(g, (λ1, . . . , λn)) · (z, (x1, . . . , xn)) = (gz, (λ1x1, . . . , λnxn))

for any (g, λ1, . . . , λn)) ∈ G̃ and (z, (x1, . . . , xn)) ∈ Z̃.

Remark 5.2.8. Note that Lemma 5.2.7 extends to any variety Z on which all line

bundles are trivial (e.g. Cn).

We now use this to compute some examples.

Example 5.2.9. Suppose G = 1
4(1, 2) ⊂ GL(2,C) acts on C2. The group G is generated

by the matrix (
i 0

0 −1

)
Denote by π : X = [C2 /G]→ C2 /G = X. Note that X is not canonical and we have a

factorization

X Xcan X.
f

π

ε

The coarse moduli space is isomorphic to

C2 /G∼= SpecC[x, y]G = SpecC[x4, y2, x2y]∼=V (uv − w2) ⊂ C3

the A1-singularity. The canonical stack Xcan is [C2 /Z2] with Z2 generated by(
−1 0

0 −1

)
.

The branch divisor D lifts to the divisor D = ε−1(D) ⊂ Xcan. The branch divisor D is

isomorphic to the quotient stack [V (a)/Z /2Z] where Z2 acts by b 7→ −b on V (a).

This divisor is an e�ective Cartier divisor and we construct the 2nd root stack of Xcan

along D. By Lemma 5.2.7 we have have [C2 /G]∼= 2
√
D/Xcan.
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Example 5.2.10. Let G = Z /2Z×Z /2Z act on C2 by the matrices

σ =

(
−1 0

0 1

)
, τ =

(
1 0

0 −1

)
.

Then as G acts on C2 by psuedore�ections, in accordance with the theorem of Chevalley-

Shephard-Todd [69],

X = C2 /G = SpecC[x, y]G = SpecC[x2, y2]∼= SpecC[a, b]∼=C2 .

The branch divisor is the simple normal crossing divisor given by the coordinate axes

on the quotient.

As X is smooth, Xcan∼=X. Let D = D1 + D2 be the branch divisor with D1 = V (a)

and D2 = V (b) the divisors corresponding to the coordinate axes on X.

We �rst form the 2nd root stack 2
√
D1/X of X along D1. By Example 5.2.3 we have

X = 2
√
D1/X ∼=

[
Spec(C[a, b, t]/(a2 − t))/Z2

]∼= [SpecC[b, t]/Z2]

with Z2 acting by t 7→ −t on C[a, b, t]/(a2 − t).

The pulled back divisor D2 of D2 to X is Cartier. Like in Example 5.2.9, D is the

quotient stack D2 = [D2/Z2] ⊂ X . By Lemma 5.2.7 we have

[
C2 /G

]∼= 2
√
D2/X .

5.3 Structure Theorems for Smooth Deligne-

Mumford Stacks

Much work has gone into understanding the geometric relationship between a smooth

separated Deligne-Mumford stack X with trivial generic stabilizer and its coarse moduli

space X. One might hope that there is a way to �bootstrap� a �stacky� structure to X

to recover X . This is, in fact, the case under certain conditions.

For Deligne-Mumford stacks of dimension 1 we have the following:

Theorem 5.3.1 ([6, Theorem 1.187]). Let X be a smooth separated Deligne-Mumford

stack with trivial generic stabilizer and of �nite type over an algebraically closed �eld k

with char(k) = 0. Suppose that the coarse moduli space X is an irreducible curve. Then

there exists an e�ective divisor D = (P1, . . . , Pn) on X and r = (r1, . . . , rn) ∈ Zn>0 such

that

X ∼= r

√
D/X.

The main result in [31] generalizes this idea to higher dimensions. A Deligne-Mumford

stack Y has (tame) quotient singularities if there exist an atlas U → Y where U is a
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scheme with (tame) quotient singularities. One can associate to a Deligne-Mumford

stack Y with tame quotient singularities a canonical smooth Deligne-Mumford stack

Ycan in a similar way to schemes with tame quotient singularities following [31, Back-

ground].

Theorem 5.3.2 ([31, Theorem 1]). Let X/S be a smooth separated tame Deligne-

Mumford stack with trivial generic stabilizer.

Denote by X its coarse moduli space, D ⊂ X the branch divisor of the coarse moduli

map π : X → X and D =
∑n

i=1Di ⊂ Xcan the pullback of D to Xcan.

Let ri be the rami�cation index of π over the irreducible components Di of D =
∑n

i=1Di.

Denote by r
√
D/Xcan the root stack along D = (D1, . . . ,Dn) of order r = (r1, . . . , rn).

Then r
√
D/Xcan has tame quotient singularities and π factors as

X ∼= r
√

D/Xcan
can
→ r
√

D/Xcan → Xcan → X.

Moreover, if D is Cartier, then
√
D/X has tame quotient singularities and π factors

as

X ∼= r
√

D/X
can
→ r
√
D/X → X.

Remark 5.3.3. In [31], the authors give a local description of this Theorem [31, The-

orem 11] that the reader may �nd insightful. We give the statement below.

Let V be a vectorspace over k and G an abstract �nite group acting linearly and faithfully

whose order is coprime to the characteristic of k. Let H ⊂ G be the subgroup generated

by psuedore�ections and H ′ ⊂ H be its commutator subgroup (H ′ = {h′ ∈ H : h′h =

hh′}). Then the coarse moduli space map π : X = [V/G]→ V/G = X factors as

X ∼= r
√

D/Xcancan r
√
D/Xcan Xcan X

[V/G] [(V/H ′)/(G/H ′)] [(V/H)/(G/H) V/G

A corollary of this theorem ([30]) is the following description for abelian global quotient

stacks.

Corollary 5.3.4 ([30, Corollary 5.6]). Suppose that X is a smooth quasi-projective

variety over k and G a �nite abelian group acting on X whose order is coprime to the

characteristic of k. Then the induced map

f : [X/G]→ (X/G)can

to the canonical stack of X/G is a root stack morphism along a collection of smooth

connected divisors with simple normal crossings, i.e. one can construct [X/G] as an

iterated root stack along a collection of smooth connected divisors D =
∑
Di with simple

normal crossings from (X/G)can.
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Proof. This follows from Theorem 5.3.2 and is a consequence of the root stack r
√
D/Xcan

being smooth so [X/G]∼= r
√

D/(X/G)can.

5.4 Semi-orthogonal Decompositions for Root Stacks

Root stacks behave much like blow ups for schemes. The derived category of root stacks

have been extensively studied, �rst by Ishii and Ueda in [40] and generalized by Bergh,

Lunts and Schnürer in [9]. We shall only need the content of the theorem by Ishii and

Ueda in this thesis and so refer to those. We describe the results below.

Theorem 5.4.1 ([40, Theorem 1.6]). Let D be a smooth divisor on a smooth Deligne-

Mumford stack X and let Y = r
√
D/X be the r-th root stack of D with r > 1. Then

there are full and faithful functors

ΦX : D(X )→ D(Y)

ΦD : D(D)→ D(Y)

embedding D(X ) and D(D) as admissible subcategories of D(Y). Moreover, there is a

semi-orthogonal decomposition

D(Y) =
〈

ΦD(D(D))⊗M⊗(r−1)
E , . . . ,ΦD(D(D))⊗ME ,ΦX (D(X ))

〉
whereME is the universal line bundle on Y corresponding to the universal object.

Proof. Consider the commutative diagram

E = r
√
D/D Y

D X

j

πD πX

j̄

where j sends a line bundle M over T to the same line bundle M over T with the zero

section. We will denote by E = r
√
D/D the e�ective Cartier divisor on Y.

First, we note that proof that ΦX is fully faithful is omitted in [40]. It does however

follow from [9, Lemma, 4.4, Lemma 4.5 and Example 4.6].

Now we show that the functor

ΦD = j∗π
∗
D : D(D)→ D(Y)

is fully faithful. Let E•, F • be objects of D(D) and q ∈ Z. We show that the natural

morphism

Homq
D(D)(E

•, F •)∼= Homq
D(Y)(j∗π

∗
DE
•, j∗π

∗
DF
•)∼= Homq

D(E)(j
∗j∗π

∗
EE
•, π∗DF

•) (∗)
(5.1)
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is an isomorphism. As E is a smooth divisor in Y we can use a stacky version of [12,

Lemma 3.3] to obtain for E• ∈ D(D) a distinguished triangle

π∗DE
• ⊗OE(−E)[1] j∗j∗π

∗
DE
• π∗DE

• π∗DE
• ⊗OE(−E)[2]

The original proof uses a spectral sequence arguement but we feel using the above

distinguished triangle is clearer.

Since r > 1, by [40, Theorem 1.5] the functor

Φ: Coh(D)⊕r → Coh(E)

de�ned by

Φ(

r−1⊕
i=0

Ei) =

r−1⊕
i=1

π∗DEi ⊗Mi
E

whereME is the universal line bundle on E is an equivalence.

Thus we see that

Homq
D(E)(π

∗
DE ⊗OE(−E), π∗DF ) = 0.

Also, as π∗D is fully faithful

Homq
D(E)(π

∗
DE, π

∗
DF )∼= Homq(E,F )

for any q. By applying HomD(E)(−, π∗DF •) to the above triangle and using the above

identities we see that (∗) is an isomorphism.

The essential images of ΦX and ΦD are admissible subcategories as π∗X and ΦD = j∗π
∗
D

admit left and right adjoints as j∗ and π∗D admit left right and left adjoints and the

functor (−)⊗M⊗iE is an equivalence.

We see that ΦDD
b(D)⊗M⊗iE is right orthogonal to π∗XD

b(X ) for 1 ≤ i ≤ r − 1 by

HomD(Y)(π
∗
XE
•, j∗(π

∗
DF
• ⊗M⊗iE ))∼= HomD(E)(j

∗π∗XE
•, π∗DF

• ⊗M⊗iE )

∼= HomD(E)(π
∗
D j̄
∗E•, π∗DF

• ⊗M⊗iE )

= 0.

Similarly, we have

HomD(Y)(j∗π
∗
DE
• ⊗M⊗kE , j∗π

∗
DF
• ⊗M⊗lE ) = 0

for 1 ≤ k ≤ l ≤ r − 1.

We now show fullness by showing that any object E• of D(Y) is obtained from an object

of j∗π∗DD(D) ⊗M⊗i for 1 ≤ i ≤ r − 1 and π∗XD(X ) by taking shifts and cones. Since

πX is an isomorphism outside of D, the mapping cone in the triangle induced by the
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adjunction morphism

π∗XπX ,∗E
• E• F • π∗XπX ,∗E

•[1]

has F supported on E . Hence E• can be obtained from π∗XπX ,∗E
• and an object

supported on E by taking cones.

By de�nition, any object E supported on E has cohomology sheaves supported on E .
By considering the standard �ltration of E in terms of the cohomology sheaves of E,

we see that E can be obtained from shifts of sheaves supported on E by taking cones.

Thus any object supported on E is obtained from objects of j∗D(E) by taking cones.

As Φ: Coh(E)∼=(Coh(D)⊕r is an equivalence, objects of j∗D(E) can be obtained from

j∗π
∗
DD

b(D)⊗M⊗iE for 0 ≤ i ≤ r − 1 by taking cones.

Finally, we show that an objectF • ∈ j∗π∗DD(D) is obtained from objects of π∗XD(X )

and j∗π∗DD(D) ⊗M⊗iE for 1 ≤ i ≤ r − 1. Then π∗X j̄∗F
• has a �ltration whose factors

are j∗π∗DF
• ⊗M⊗iE for 0 ≤ i ≤ r − 1 as supp(π∗X j̄∗F

•) ⊂ E . Thus j∗π∗DF • is obtained
from π∗X j̄∗F

• and j∗π∗DF
• ⊗M⊗iE for 1 ≤ i ≤ r − 1 by taking shifts and cones.

By applying Theorem 5.4.1 iteratively we get a semi-orthogonal decomposition for iter-

ated root stacks. Theorem 5.4.2 is an immediate generalization of [40, Proposition 7.2]

whose proof is contained in the �rst part of the proof of [40, Proposition 7.2] which we

give below (see [9, �4] for a more general version).

Theorem 5.4.2. Let X be a smooth separated Deligne-Mumford stack with trivial

generic stabilizer and coarse moduli space X. Assume:

1. The canonical morphism φ : X → Xcan from X to the canonical stack of the

coarse moduli space X is an isomorphism outside a simple normal crossing divisor∑n
i=1Di on X can.

2. The pull back φ∗(Di) ≡ riEi for some prime divisor Ei for i = 1, . . . , n.

Then there exists a semi-orthogonal decomposition of D(X ) with pieces given by the

derived category of Xcan and the derived categories of Di and their intersections of

irreducible components.

Proof. We proceed by induction. Consider

X1 = r2
√
D2/X can ×X can · · · ×X can rn

√
Dn/X can

and let D1 ⊂ X1 be the prime divisor corresponding to D1. Then X is isomorphic to
r1
√
D1/X1 and we have a semi-orthogonal decomposition

D(X ) =
〈

ΦD(D(D))⊗M⊗(r1−1), . . . ,ΦD(D(D))⊗M,ΦX1(D(X1))
〉
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by Theorem 5.4.1. We obtain the required semi-orthogonal decomposition by induction.

Example 5.4.3. We use the semi-orthogonal decomposition for iterated root stacks to

construct the semi-orthogonal decompositions

D([C2 /(Z2×Z2)] =
〈
D(pt), D(D1), D(D2), Db(C2)

〉
.

As the coarse moduli space of [C2 /(Z2×Z2)] is smooth and as [C2 /(Z2×Z2)] is a

iterated root stack over (D1, D2) we have the decomposition

D([C2 /(Z2×Z2)] =
〈
D(D̃1), D(D2), D(C2)

〉
.

where D1 is the pullback of the divisor D1 to 2

√
D2/C2. Then D(D1) = 〈D(pt), D(D1)〉

as D1 = [D1/Z2]. Hence we obtain the semi-orthogonal decomposition.

Remark 5.4.4. Note that if G is abelian then the branch divisor is a simple normal

crossing divisor with smooth components by [30, Lemma 5.5].

A corollary of these semi-orthogonal decompositions is the following new result for

abelian groups acting on smooth quasi-projective varieties.

Corollary 5.4.5. [Corollary 1.3.7] Let X be a smooth quasi-projective variety over k

and G a �nite abelian group whose order is coprime to the characteristic of k. Let

D =
∑n

i=1Di on X/G be the simple normal crossing branch divisor and D =
∑n

i=1Di
the pullback of the branch divisor to the canonical stack (X/G)can.

Then there is a semi-orthogonal decomposition of DG(X) = Db([X/G]) with pieces given

by

• The derived category D((X/G)can) of the canonical stack (X/G)can,

• The derived category D(Di) of the irreducible components of the branch divisor

D =
∑
Di,

• The derived category of the intersections of divisors.

Proof. It follows from 5.3.4 that [X/G] is an iterated root stack over the canonical stack

along a simple normal crossing divisor. The result then follows from 5.4.2.

Remark 5.4.6. Note that when G is non-abelian, the irreducible components of the

branch divisor need not be smooth. Consider the unique two-dimensional irreducible

representation S3 = D6. Then the branch divisor is singular as it is the cubic cusp. In

this case, the root stack will be singular. See [31] for a more detailed explanation.
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5.5 Semi-orthogonal Decompositions and the Canonical Stack

The above semi-orthogonal decompositions provide evidence that we should expect for

any quotient stack [X/G] with G a �nite group acting faithfully on a smooth quasi-

projective variety X (or more generally, any smooth, separated tame Deligne-Mumford

stack X with trivial generic stabilizer) the derived category of [X/G] to have a semi-

orthogonal decomposition with one piece given by the canonical stack associated to the

coarse moduli space X/G (respectively X).

By the universal property of the canonical stack, we have a decomposition of the coarse

moduli map π

X Xcan X.
π

f ε

Theorem 5.5.1. Let X be a smooth separated tame Deligne-Mumford stack with trivial

generic stabilizer over an algebraically closed �eld k of characteristic zero with coarse

moduli space X. Denote the canonical stack associated to X by Xcan and let f : X →
Xcan be the unique map in the decomposition above. Then the functor

f∗ : Db(Xcan)→ Db(X )

is fully faithful.

Proof. By adjunction and the projection formula

HomDb(X )(f
∗E, f∗F )∼= HomDb(Xcan)(E, f∗f

∗F )∼= HomDb(Xcan)(E, f∗OX ⊗ F ).

To prove fully faithfulness it su�ces to show that Rf∗OX ∼=OXcan . The following ar-

gument from [71] generalizes the argument of [20, Theorem 3.1] to Deligne-Mumford

stacks.

Let g : Z → Xcan be an atlas for Xcan. Then we have a diagram

X ′ = X ×Xcan Z Z

X Xcan

g′

f ′

g

f

As g is �at, by base change we have

Rf∗(g
′)∗OX ∼=Rf ′∗OX ′ ∼= g∗Rf∗OX .

Thus to prove that Rf∗OX ∼=OXcan it su�ces to show that f ′∗OX ′ ∼=OZ as Z is an atlas

for Xcan.

Denote by π′ : X ′ → X ′ be the map from X ′ its coarse moduli spaceX ′. By the universal
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property of the coarse moduli space, we have a factorization of f ′

X ′

X ′ Z

hπ′

f ′

As char(k) = 0, X ′ is a tame Deligne-Mumford stack. Hence π′∗OX ′ ∼=OX′ and
Rqπ′∗OX ′ = 0 for all q > 0 by Proposition 4.3.10 . Also, h∗OX′ ∼=OZ and Rqh∗OX′ = 0

for all q > 0 as f ′ is surjective and X ′ has rational singularities [48, Proposition 5.13]

and [20, �3].

Hence Rf ′∗OX ∼=OZ so f∗ is fully faithful.



Chapter 6

Semi-orthogonal Decompositions for

Surfaces

In this chapter, we apply the theory developed in Chapter 5.

In section 6.1 we describe semi-orthogonal decompositions for abelian groups acting on

smooth quasi-projective surfaces over a �eld of characteristic zero. In section 6.2 we

give examples of semi-orthogonal decompositions related to abelian Galois covers. Then

in section 6.3 we give explicit examples of semi-orthogonal decompositions for Godeaux

surfaces with an action of Z2, and for Burniat surfaces with an action of Z2×Z2.

In section 6.4 we give a new proof of the derived McKay Correspondence in dimension

2. Finally, using this new proof of the derived McKay Correspondence we describe

semi-orthogonal decompositions for a natural action of D2n on C2 and show that they

satisfy a conjecture of Polishchuk and Van den Bergh.

Throughout this chapter, k will be a �eld of characteristic zero.

6.1 Semi-orthogonal Decompositions for Surfaces

LetX be a quasi-projective variety of dimension 2 over k. Then by Hironaka the minimal

resolution of X/G exists and is unique. We can use this to give a �ner semi-orthogonal

decomposition of D([X/G]).

Following Ishii and Ueda we have the following description of the canonical stack asso-

ciated with a surface over k with at worst quotient singularities.

Theorem 6.1.1 ([40, Theorem 1.6]). Let Xcan be the canonical stack associated with

a surface X with at worst quotient singularities, and Y the minimal resolution of X.

Then there is a fully faithful functor

ΦY : D(Y )→ D(Xcan)
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and a semi-orthogonal decomposition

D(Xcan) = 〈E1, . . . , En,ΦY (D(Y ))〉

where E1, . . . , En are exceptional objects.

The following corollary follows from Corollary 5.4.5 and Theorem 6.1.1.

Corollary 6.1.2. Suppose that X is a smooth quasi-projective surface over k and G a

�nite abelian group acting faithfully on X. Let D =
∑n

i=1Di denote the branch divisor

of π : [X/G]→ X/G. Let Y be the minimal resolution of X/G.

Then there is a semi-orthogonal decomposition of DG(X) with pieces given by

1. The derived category of the minimal resolution D(Y )

2. Multiple copies of the derived category of the irreducible components of the branch

divisor D(Di) determined by the order of the stabilizer group of Di.

3. Exceptional objects Ei arising from the intersection of the divisors Di and Dj,

where stabilizers jumps along a divisor at a point, and non-special representations

of G acting by GL2(k) at an isolated �xed point.

We give two examples of semi-orthogonal decompositions of surfaces with group actions.

Example 6.1.3. Following on from Example 5.2.9, Corollary 6.1.2 we have a semi-

orthogonal decompositions

DZ4(C2)∼=D([C2 /(Z4)]) = 〈ΦDD(D),ΦYD(Y )〉

where Y is the minimal resolution of X = C2 /(Z4) and D is the branch divisor in Xcan.

We have a further decomposition as D = [D′/(Z2)] so

D(D) =
〈
E, π∗D′D(D′/Z2)

〉
where πD′ : D′ → D′/Z2 is the quotient map. Notice that D′/Z2

∼=D ⊂ X. Thus we

have a semi-orthogonal decomposition

DZ4(C2) = 〈E,ΦD(D(D)),ΦYD(Y )〉 .

Example 6.1.4. Let G = Z2×Z2 act on C2 as in Example 5.2.10. Then we can express

the quotient stack [C2 /G] as a root stack

[
C2 /G

]
= 2
√
D1/X ×X 2

√
D2/X

which can also be expressed as

[
C2 /G

]
=

2

√
D/ 2
√
D1/X.
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Thus we get a semi-orthogonal decomposition

DG(C2) = D([C2 /G]) =
〈
ΦDD(D),ΦD1D(D1),ΦC2D(C2)

〉
.

As D = [D′/Z2] where D′ = V (b) on SpecC[b, t], by [63, Theorem 1.2] we have

D(D) =
〈
E, π∗D′D(D′/Z2)

〉
.

where πD′ : D′ → D′/Z2 and E is a exceptional object. As D′/Z2
∼=D2 we have a

semi-orthogonal decomposition

D([C2 /G]) =
〈
E,ΦD2D(D2),ΦD1D(D1),ΦC2D(C2)

〉
.

which is the semi-orthogonal decomposition as described in [64, �6.4].

6.2 Abelian Galois Covers

The theory of abelian Galois covers was �rst used by Catanese to produce surfaces of

general type to prove that the moduli of surfaces of general type with �xed K2 and

χ is not equidimensional. This idea was expanded upon by Pardini [61] to describe

a recipe for constructing such Galois covers. When the Galois cover is smooth, the

associated quotient stack is smooth and we can describe semi-orthogonal decompositions

of the derived category using Corollary 6.1.2. Moreover, these ideas provide a geometric

realization of the root stack construction outlined in 5.2.

Throughout this section, we will assume that all varieties are de�ned over an alge-

braically closed �eld k.

6.2.1 Construction

Recall that a Galois covering is a �nite surjective morphism of quasi-projective algebraic

varieties π : X → Y where the function �eld k(X) is a Galois extension of k(Y ) with

Gal(k(X)/k(Y )) = G. If π : X → Y is a Galois cover then Y = X/G. A Galois covering

is abelian if G is abelian. A Galois covering is smooth if X and Y are smooth.

Let π : X → Y be a smooth Galois cover. Denote by R and D the rami�cation and

branch locus of π. We will characterize π in terms of two pieces of data: the algebra

structure of π∗(OX) and the action of the inertia groups on the irreducible components

of the branch divisor.

Note that we have a decomposition

π∗OX =
⊕
χ∈G∗

L−1
χ .

where G acts on L−1
χ by the character χ. The invariant summand is isomorphic to OY .
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Let Ri be a smooth irreducible component of R and de�ne the inertia group of Ri by

Hi = {h ∈ G|hx = x for all x ∈ Ri}

As Ri is smooth has codimension 1, H is cyclic and acts faithfully on the tangent space

to T . Denote by χi a generator of H∗i . For any component Di of the branch locus D, all

components of π−1(Di) have the same inertia groups and isomorphic representations.

Thus we can associated to each irreducible component Di an inertia subgroup Hi and

character χi ∈ H∗i .

Denote by C the set of cyclic subgroups of G and for H ∈ C, the set of generators Sh of

the group of characters of H∗. Thus we get a decomposition

D =
∑
H∈C

∑
φ∈SH

DH.,φ.

We call the pair {DH,φ, Lχ} the building data of the abelian cover π : X → Y .

The central theorem of [61] is the following:

Theorem 6.2.1. Let G be an abelian group, Y a smooth variety and X a normal

variety with π : X → Y an abelian cover with group G. The building data of π satis�es

the following linear equivalences

Lχ + Lχ′ = Lχχ′ +
∑
H∈C

∑
φ∈SH

εH,φχ,χ′DH,φ

where εH,φχ,χ′ are de�ned by

εH,φχ,χ′ =

0, if iχ + iχ′ < |H|

1, otherwise

where χ |H= φiχ and χ′ |H= φiχ′ .

Conversely, to any data {Lχ, DH,φ} satisfying the above equivalences we can associated

an abelian cover π : X → Y whose building data is given by Lχ, Dη,φ.

Moreover, if Y is proper, then π is determined uniquely up to isomorphism of Galois

covers.

Remark 6.2.2. Suppose that the abelian Galois cover π : X → Y is smooth. Then

by Corollary 5.4.5 we get a semi-orthogonal decompositions of D([X/G]) in terms the

derived categories of intersections of the divisors DH,φ and D(Y ).

6.2.2 Examples

We now focus on a few explicit examples of abelian covers and the induced semi-

orthogonal decomposition.
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Example 6.2.3 (Cyclic Covers). Suppose that G is a cyclic group of order n and choose

a generator χ ∈ G∗. The building data for the abelian Galois cover X → Y = X/G

consists of a line bundle L = Lχ and a collection of divisors DH,φ, possibly empty, for

each (cyclic) subgroup H ⊂ G such that the following relations are satis�ed:

nL =
∑
H,φ

n
rH,φ
m

DH,φ

where χ|H = φrH,φ with 0 ≤ rH,φ < |H| = m. Here φ is a root of unity of order at most

m.

The quotient stack [X/G] is the iterated root stack over Y of order m along the divisor

(DH,φ) and we get the induced semi-orthogonal decomposition.

D([X/G]) =
〈
D(Y ), D(DH,φ), D(DH,φ)⊗ χ, . . . ,D(DH,φ)⊗ χm−1, . . .

〉
.

This recovers results due to Lim [51] and Krug, Ploog and Sosna [49] when the inertia

group for all divisors is G.

Example 6.2.4 ((Z /2Z)s-covers). Suppose that G = (Z /2Z)s. Then G-covers are

particular easy to describe. Let χ1, . . . , χs be a basis for G∗ and let H1, . . . ,Hr r = 2s−1

be the subgroups of order 2. De�ne εij = 0 if χj |Hi = 1 and εij = 1 otherwise. Then the

building data consists of line bundles L1, . . . , Ls and e�ective divisors D1, . . . , Dr such

that

2Lj =
∑
i

εijDi, j = 1, . . . , s

So the quotient stack [X/G] is the root stack (2,...,2)
√

(Di)/Y . Thus we get a semi-

orthogonal decomposition

D([X/G]) = 〈D(Y ), D(D1), . . . , D(Dr), {Ek}〉

where the number of exceptional objects is given by #
∑

i,j,i6=j Di ∩Dj.

6.3 Semi-orthogonal Decompositions of Surfaces of Gen-

eral Type

We now describe semi-orthogonal decompositions of the equivariant derived categories of

surfaces of general type with an abelian group action. Some of these equivariant derived

categories with have full exceptional collections which are in contrast to the case for

ordinary derived categories where Alexeev-Orlov, Gorchinskiy- Orlov, Boöhning-Graf

von Bothmer-Katzarkov-Sosna, Boöhning-Graf von Bothmer-Sosna, Galkin-Shinder and

Galkin-Katzarkov-Mellit-Shinder have discovered (quasi)-phantom categories (see [2],

[35], [11], [10], [28], [27] ). We will focus on two examples: numerical Godeaux sur-

faces with an involution and Burniat surfaces with an action of the Klein four group.
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Throughout this section, we will assume that all varieties are over the complex numbers.

6.3.1 Godeaux Surfaces with an Involution

One of the �rst surfaces of general type with pg = 0 was constructed by Godeaux in

the 1931. Consider the Fermat quintic surface X = V (x5 + y5 + z5 + t5) ⊂ P3. Then

the weighted diagonal action of Z5 acting by (x : y : z : w) 7→ (ξx : ξ2y : ξ3z : ξ4w) acts

freely on P4 where ξ5 = 1 and preserves the quintic. Then S = X/Z5 is a surface of

general type with pg = q = 0 and K2 = 1 [3, VII �11]. Now we call any minimal surface

of general type with these numerical invariants a numerical Godeaux surface.

De�nition 6.3.1. A numerical Godeaux surface S is a smooth minimal surface of

general type with pg = q = 0 and K2
S = 1.

Numerical Godeaux surfaces have been studied by several authors over the last 40 years.

Many attempts have been made to classify such surfaces and understand their moduli

space. An important invariant associated to a numerical Godeaux surface S is the

torsion subgroup Tors(S) = Pic(S)tor of the Picard group. Miyaoka [54, Lemma 11,

Theorem 2'] proved that Tors(S) is cyclic of order at most 5.

When Tors(S) = Z5, these surfaces �ll up an irreducible component of the moduli

space with expected dimension 8. This component consists of quotients of quintics

in P3 by a Z5 action, recovering Godeaux's original example. Godeaux surfaces with

smaller torsion subgroups have been constructed but no classi�cation is known and their

moduli spaces are still a mystery [23, �1]. However, many of these are equipped with

an involution, an automorphism of order 2 of the surface.

Numerical Godeaux surfaces with an involution were �rst considered by Keum and Lee

[47] and generalized by Calabri, Ciliberto and Mendes Lopes [23].

Theorem 6.3.2. A numerical Godeaux surface S with an involution σ is birationally

equivalent to one of the following:

1. A double plane of Campedelli type;

2. A double plane branched along a reduced curve which is the union of two distinct

lines and a curve of degree 12 with speci�ed singularities.

3. A double cover of an Enriques surface branched along a curve of arithmetic genus

2.

In case (3), Tors(S) = Z /4Z and in cases (1), (2) Tors(S) = Z /2Z or Z /4Z.

We will focus on the case (3) but a similar story holds for cases (1) and (2).

First start with some notation following [53]. Let S be a numerical Godeaux surface

and σ : S → S an involution of S. Let π : S → Σ = S/σ be the quotient map. Then by
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[23, Proposition 4.5] the �xed point set Fix(σ) consists of a smooth (possible reducible)

curve R and 5 isolated �xed points p1, . . . , p5. Set qi = π(pi) and B = π(R) the branch

locus. We have a diagram

V S

W Σ

ε

π̃ π

η

where ε is the blow up of S at p1, . . . , p5, η : W → Σ is the minimal resolution of Σ

and π̃ is a �at double cover. The quotient Σ has 5 A1 singularities at qi and is smooth

otherwise. Denote by Ci ⊂W the exceptional (−2)-curves over qi for 1 ≤ i ≤ 5.

By [23, Proposition 3.9 and Lemma 4.11] there exists a birational morphism f : W → Y

with:

• Y a smooth Enriques surface

• the exceptional locus of f is disjoint from the Ci

• there is a �at double cover p : X → Y �tting into the diagram

X V S

Y W Σ

p

g
ε

π̃ π

f

η

As Y is a Enriques, one can show that pa(B) = pa(R) = 2.

Thus we get the following Theorem.

Theorem 6.3.3. Let S be a numerical Godeaux surface with an involution σ such that

the quotient Σ = S/Z2 is birational to an Enriques surface. Then there is a semi-

orthogonal decomposition

DZ2(S) = 〈D(Y ), D(B), E1, . . . , Ek〉

where B is a curve of arithmetic genus 2, Y the minimal model of Σ and Ei exceptional

objects resulting from the birational map f : W → Y with k ≤ 4.

Proof. This follows from applying Corollary 6.1.2 to the above diagram.

Remark 6.3.4. There is a similar story for other Godeaux surfaces with an involution

and numerical Campedelli surfaces with involutions (pg = 0 and K2 = 2) as outlined in

[24] which will give similar semi-orthogonal decompositions. As the rami�cation divisor

is a disjoint union of rational curves and the quotient is rational, the equivariant derived

category will have an exceptional collection.
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6.3.2 Burniat Surfaces with a Klein Four Group Action

Burniat surfaces are minimal surfaces of general type constructed by Burniat in [21]

with pg = q = 0 and K2 = 2, 3, . . . , 6. These surfaces can be constructed as a Klein four

group Galois cover of a multiple blow ups of P2 branched over con�gurations of lines.

The case when K2 = 6 was considered by Alexeev and Orlov [2] in which they show

that the derived category contains an exceptional collection of length 6 which is not

full. The orthogonal to this collection is an example of a �quasi�-phantom category (i.e.

it has trivial Hochschild homology and torsion K-group).

We will construct a full exceptional collection of length 60 for the Z /2Z×Z /2Z-
equivariant derived category of Burniat surfaces with K2 = 6. We recall the con-

struction of the Burniat surface with K2 = 6 from [62]. Choose three points {p1, p2, p3}
in P2, not colinear. Consider 3 reducible curves C1, C2, C3 with each Ci consisting of 3

distinct lines passing through pi and pi+1 ∈ Ci but pi+2 /∈ Ci (indices are taken modulo

3). The curve C1 corresponds to the red lines, C2 to the blue lines and C3 to the green

lines in the diagram below.

p1 p2

p3

Let σ : P → P2 be the blow up of P2 at the points p1, p2, p3. Denote by C̃i the strict

transform of Ci and the exceptional divisors by Ei above the point pi. Then

C̃i = σ∗Ci − 3Ei − Ei+1 = 3H − 3Ei − Ei+1

Consider the curves Di = C̃i + Ei+2. Then Di + Dj are 2-divisible. Set Di + Dj =

2Fk for i, j, k a cyclic permutation of 1, 2, 3. Then the divisors {Di}3i=1 and the line

bundles {OP (−Fi)}3i=1 give the building data for a Galois G = Z /2Z×Z /2Z cover of

P branched over D = D1 + D2 + D3. Denote this cover by Q → P → P2. Then Q is

the Burniat surface with K2 = 6 [3, V �11] [62].

The quotient stack [Q/G] is constructed as an iterated root stack over P along the

divisors (D1, D2, D3) of order (2, 2, 2). As Di ·Dj = 10 for i 6= j ∈ {1, 2, 3} we have 30

exceptional objects Eij arising from the points of intersection of Di and Dj . We have

also have components arising from the derived categories of Di and of P . So we have a

semi-orthogonal decomposition

D([Q/G]) = 〈{Eij}, D(D3), D(D2), D(D1), D(P )〉 .
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As P is the blow up of P2 at 3 points we see that D(P ) is generated by 6 exceptional

objects by Orlov's blow up formula. Moreover, each Di is a sum of rational curves and

so D(Di) is generated by 4 × 2 = 8 exceptional objects. Thus we have that D([Q/G])

is generated by 30 + 8× 3 + 6 = 60 exceptional objects.

6.4 Derived McKay Correspondence in Dimension 2

In this section, we give a new proof of the derived McKay Correspondence in dimension

2 for non-trivial �nite subgroups of GL(2,C) compared with [45] which uses the McKay

Correspondence for subgroups of SL(2,C) [44] and for cyclic subgroups of GL(2,C) [40].

Theorem 6.4.1. Let G ⊂ GL(2,C) be a non-trivial �nite subgroup acting on C2. Then

there is a semi-orthogonal decomposition of the equivariant derived category

DG(C2) =
〈
E1, . . . , En,ΦD̃1

D(D̃1), . . . ,Φ
D̃n
D(D̃m),ΦỸD(Ỹ )

〉
where Y is the minimal resolution of C2 /G, D̃i are the normalizations of the irreducible

components of the branch divisor D =
∑m

i=1Di and E1, . . . , En are exceptional objects.

Proof. Let G ⊂ GL(2,C) be a �nite subgroup and set H = SL(2,C) ∩ G. Then H

is a normal subgroup of G and A = G/H is a �nite cyclic group of order r since

det : GL(2,C)→ C∗ identi�es A with a subgroup of C∗. Let Y = H −Hilb(C2) be the

minimal resolution of C2 /H by the McKay Correspondence for subgroups of SL(2,C).

There is a natural G action on Y where g ∈ G sends a subscheme Z ∈ Y = H−Hilb(C2)

to its image g · Z under the action g : C2 → C2. Since Z is H-invariant (by de�nition

of Y = H −Hilb(C2)), the G action on Y descends to a A = G/H action on Y .

Thus we have the following diagram

C2

Y

C2 /H M

Y/A

C2 /G Ỹ

f

f̄

where M is the minimal resolution of Y/A and Ỹ is the minimal resolution of C2 /G.

Note that f̄ is a projective birational morphism (see [45, �7]). As Y/A is birational to

C2 /G, M is a resolution of C2 /G. By contracting (−1)-curves in M we obtain the

minimal resolution Ỹ .
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We now follow the proof of [40, Theorem 4.1] to show that D([Y/A])∼=D([C2 /G]).

Consider the diagram

Z
∩

Y × C2

Y C2

p q

where Z ⊂ Y × C2 is the universal subscheme and p, q are the natural projections. As

G acts diagonally on Y × C2 and G preserves Z, we can take the the quotient of the

whole diagram with respect to the action of G. Thus we have a diagram

[Z/G]

∩

[Y × C2 /G]

[Y/G] [C2 /G]

.

p q

Consider the natural morphism

ϕ : [Y/G]→ [Y/A]

from the surjection G� A. Then the pullback functor

ϕ∗ : D([Y/A])→ D([Y/G])

sends an A-equivariant coherent sheaf on Y to the same sheaf considered as a G-

equivariant sheaf through the surjective homomorphism G� A.

Then we can de�ne the integral functor

Φ: D([Y/A])→ D([C2 /G])

by

Φ(E•) = q∗(O[Z/G] ⊗ p∗(ϕ∗(E•))).

This functor is an equivalence by [40, Theorem 4.1].

As A is abelian and Y is smooth, by Corollary 6.1.2 we have a semi-orthogonal decom-

position

D([C2 /G]) = DG(C2) =
〈
D(M), D(D̃1), . . . , D(D̃m), E1, . . . , Ek

〉
where Ei are exceptional objects and D̃i are the irreducible components of the branch
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divisor on (Y/A)can.

AsM is a blow up of Ỹ , by Orlov's blow up formula we have the further semi-orthogonal

decomposition

DG(C2) =
〈
D(Ỹ ), D(D̃1), . . . , D(D̃m), E1, . . . , El

〉
where Ỹ is the minimal resolution of C2 /G.

As the diagram above commutes, the branch divisors of Y → Y/A are the strict trans-

forms of the branch divisors of C2 /H → C2 /G. As C2 → C2 /H is only rami�ed in

codimension 2, the branch divisor of C2 → C2 /G is the same as C2 /H → C2 /G. As

D̃i → Di is birational and D̃i is normal, D̃i is isomorphic to the normalization of Di.

Thus we get the semi-orthogonal decomposition

DG(C2) =
〈
D(Ỹ ), D(D̃1), . . . , D(D̃m), E1, . . . , En

〉
.

Remark 6.4.2. Note that when G ⊂ SL(2,C) then G = H and A = id and we recover

the traditional McKay Correspondence.

When G ⊂ GL(2,C) is small (i.e. contains no psuedore�ections) the branch divisor on

C2 /G is empty and so the category orthogonal to the minimal resolution is generated

by an exceptional collection as described by Ishii and Ueda in [40]. This recovers the

result of Ishii-Ueda but note their result for canonical stacks is central to the proof of

the theorem.

6.5 Motivic Decomposition for Dihedral Groups

In [64] Polishchuk and Van den Bergh propose the following conjecture. Recall that for

a group G the centralizer of g ∈ G is

C(g) = {h ∈ G|hg = gh} .

Conjecture 6.5.1 ([64, Conjecture A]). Assume that a �nite group G acts e�ectively

on a smooth quasi-projective variety X over an algebraically closed �eld and that all

the quotients Xg/C(g) are smooth for g ∈ G. Then there exists a semi-orthogonal

decomposition of the derived category DG(X) of G-equivariant sheaves on X such that

the pieces C[g] of this decomposition are in bijection with the conjugacy classes of g in

G and C[g]
∼=D(Xg/C(g)).

In this section, we describe a semi-orthogonal decomposition for a natural action of D2n

on C2 and prove that these semi-orthogonal decompositions satisfy Conjecture 6.5.1.
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Recall that the dihedral group D2n of order 2n for n ≥ 2 has a presentation

D2n =
{
τ, σ
∣∣τn = σ2 = e, τστ = σ

}
.

De�ne the e�ective action of D2n on C2 by ρ : D2n → GL(2,C) where

ρ(τ) =

(
ζ 0

0 ζ−1

)
, ρ(σ) =

(
0 1

1 0

)

with ζn = 1 a complex nth root of unity. Let π : C2 → C2 /D2n denote the quotient map.

As D2n is generated by the re�ections σ and στ , the quotient C2 /D2n
∼= SpecC[a, b]

is smooth by the Chevalley-Shepard-Todd Theorem. The rami�cation divisor R is a

collection of hyperplanes and the branch divisor π(R) = D is given by the equation

V (a2 − bn), which is singular with an An−1-singularity at (0, 0).

We now recall the following results on G-clusters and G − Hilb(C2) for cyclic groups

from [42, �12]. Let G = Zn be generated by τ and n ≥ 2. De�ne the action of G on C2

by τ(x, y) = (ζx, ζ−1y) where ζn+1 = 1 is a complex n-th root of unity. Then C2 /G is

the simple singularity of type An−1 and its minimal resolution Y → C2 /G is isomorphic

to G−Hilb(C2). The following description of points of Y and a�ne charts covering Y

will be useful.

Lemma 6.5.2 ([42, Lemma 12.2]). Any I ∈ G−Hilb(C2) is one of the following ideals

of colength n:

I(Σ): =
∏
p∈Σ

mp = (xn − an, xy − ab, yn − bn), (6.1)

where Σ = G · (a, b) is a G-orbit of C2 disjoint from the origin; or

Ii(pi : qi) : = (pix
i − qiyn−i, xy, xi+1, yn+1−i), (6.2)

for some 1 ≤ i ≤ n− 1 and some [pi : qi] ∈ P1.

Theorem 6.5.3 ([42, Theorem 12.3]). Let a, b be parameters of C2 on which the group

G acts by τ(a, b) = (ζa, ζ−1b).

Let X = C2 /G : = SpecC[an, ab, bn] and Y → X be its (toric) minimal resolution,

with a�ne charts Ui de�ned by

Ui = SpecC[si, ti] for 1 ≤ i ≤ n,

where si : = ai/bn−i and ti = bn+1−i/ai−1. Then the isomorphism of Y to G−Hilb(C2)

is given by (the morphism de�ned by the universal property of Hilbn(C2) from) two

dimensional �at families of subschemes de�ned by the G-invariant ideals of OC2

Ii(si, ti) : = (xi − siyn−i, xy − siti, yn+1−i − tixi−1)

for 1 ≤ i ≤ n.
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Theorem 6.5.4. Let D2n act on C2 as above. Then we have two cases:

Odd n: There is a semi-orthogonal decomposition

DD2n(C2) =
〈
π∗D(C2),Φ

D̃
(D(D̃)), E1, . . . , En−1

2

〉
where D̃ is the normalization of D.

Even n: There is a semi-orthogonal decomposition

DD2n(C2) =
〈
π∗D(C2),Φ

D̃1
(D(D̃1)),Φ

D̃2
(D(D̃2)), E1, . . . , En

2

〉
where D = D1 ∪D2 is reducible and D̃i are the normalization of Di.

Proof. As ρ(D2n) ∩ SL(2,C)∼=Zn we have a diagram

C2

Y

C2 /Zn

Y/Z2

C2 /D2n

where Y is the minimal resolution of C2 /Zn and D = V (a2− bn) is the branch divisor.

Recall from the proof of Theorem 6.4.1 that the Z2 action on Y is induced by the action

of Z2 on C2. Let σ be a generator of Z2. Then σ(a, b) = (b, a) for a point (a, b) ∈ C2.

Using the description of points of Y in terms of ideals in Lemma 6.5.2 we see that

an ideal of the form in Equation (6.1) is �xed if and only if a = b, i.e. the cluster is

supported on the �xed loci of Z2 acting on C2. These clusters form the �xed locus

of Z2 acting on Y . By analyzing ideals of the form in Equation (6.2), we see that σ

interchanges ideals Ii(pi : qi) with ideals of the form In−i(qi : pi).

We now consider the cases when n is odd or even.

Odd n: Suppose that n is odd. Then n − 1 is even and Y contain n − 1 (−2)-curves

and the action of Z2 interchanges each pair of (−2)-curves. The only �xed point occurs

at the intersection of the (−2)-curves whose points correspond to ideals of the form

In−1
2

(pi : qi) and In+1
2

(pi : qi). They meet at the point In−1
2

(1 : 1) = In+1
2

(1 : 1).

By looking at the a�ne chart Un+1
2

= SpecC[s, t] where s = a
n+1

2 /b
n−1

2 and t =

b
n+1

2 /a
n−1

2 in Theorem 6.5.3, we see that Z2 acts by psuedore�ections at the only isolated

�xed point of Z2. Thus Y/Z2 is smooth.
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Hence (Y/Z2)can∼=Y/Z2 and we have a semi-orthogonal decomposition

D([C2 /D2n] = 〈D(B), D(Y/Z2)〉

where B is the branch divisor of Y → Y/Z2.

Note that Y/Z2 contains exactly n−1
2 irreducible curves, which are the image of the (−2)-

curves on Y , that are contracted to a point by the birational morphism

f : Y/Z2 → C2 /D2n. By [37, �V, Corollary 5.4] f can be factored as the composition of
n−1

2 blow ups of C2. Hence by Theorem 6.4.1 we have a semi-orthogonal decomposition

D([C2 /D2n])∼=DD2n(C2) =
〈
π∗D(C2),Φ

D̃
(D(B)), E1, . . . , En−1

2

〉
.

As B is smooth and maps birationally to the branch divisor D, B = D̃ is the nor-

malization of D. As D is irreducible, so is D̃. Hence we have the semi-orthogonal

decomposition

D([C2 /D2n])∼=DD2n(C2) =
〈
π∗D(C2),Φ

D̃
(D(D̃)), E1, . . . , En−1

2

〉
.

Even n: Suppose that n is even, so n − 1 is odd. Then the action of Z2 interchanges

the (−2)-curves Ei and En−i on Y except when i = n/2. Then the points correspond

to ideals of the form

In
2
(pi : qi) = (pix

n/2 − qiyn/2, xy, xn/2+1, yn/2+1).

Then Z2 acts freely on En/2 sending (pi : qi) to (−qi : pi). Hence Z2 acts without isolated

�xed points and the quotient Y/Z2 is smooth.

Note that Y/Z2 contains exactly n
2 irreducible curves, which are the image of the (−2)-

curves on Y , that are contracted to a point by the birational morphism

f : Y/Z2 → C2 /D2n. By [37, �V, Corollary 5.4] f can be factored into the compo-

sition of n−1
2 blow ups of C2. Hence by Theorem 6.4.1 we have a semi-orthogonal

decomposition

D([C2 /D2n])∼=DD2n(C2) =
〈
π∗D(C2),Φ

D̃
(D(B)), E1, . . . , En

2

〉
.

Note that the branch divisor D = V (a2 − bn) = V
(

(a2 − b
n
2 )(a2 + b

n
2 )
)
is reducible

with D = D1 +D2. Therefore the normalization D̃ is reducible and D̃ = D̃1 + D̃2 with

D̃i the normalization of Di. As B maps birationally to the branch divisor D, B = D̃

is the normalization of D. Hence B = D̃ = D̃1 + D̃2. By Theorem 6.4.1 we have a

semi-orthogonal decomposition

DD2n(C2) =
〈
π∗D(C2),Φ

D̃1
(D(D̃1)),Φ

D̃2
(D(D̃2)), E1, . . . , En

2

〉
.
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Corollary 6.5.5. The semi-orthogonal decompositions described in Theorem 6.5.4 sat-

isfy Conjecture 6.5.1.

Proof. The bijection is given by

[g] 7→ D(Xg/C(g))

which we describe explicitly for n odd and even.

Odd n: The conjugacy classes of D2n are [e], [b], [ai] for 1 ≤ i ≤ (n − 1)/2. The

bijection is given by

[e]←→D(C2 /D2n)

[b]←→D(D̃)

[ai]←→Ei for 1 ≤ i ≤ n− 1

2
.

Even n: The conjugacy classes of D2n are [e], [b], [ab], [a
n
2 ], [ai] for 1 ≤ i < (n− 2)/2.

The bijection is given by

[e]←→D(C2 /D2n)

[b]←→D(D̃1)

[ab]←→D(D̃2)

[an/2]←→E0

[ai]←→Ei for 1 ≤ i ≤ n− 2

2
.

Remark 6.5.6. For D6
∼=S3 the semi-orthogonal decomposition described in [64] agrees

with the one here.
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