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Abstract 

Pre-colonisation of plants with arbuscular mycorrhizal fungi (AMF) before trans-planting 

has been proposed as a method for protecting crops against biotic and abiotic stresses 

and/or increasing plant productivity. Strawberry (Fragaria x ananassa) production 

systems make AMF pre-inoculation at the weaning stage relatively straightforward for in 

vitro and runner-derived plantlets. Strawberry plugs were pre-inoculated with different 

AMF species to study (1) whether AMF could pre-colonise different strawberry cultivars 

under high moisture and soil-less substrate during the weaning process, (2) whether AMF 

could survive the required artificial freezing cold storage of strawberry plugs for several 

months, and (3) whether AMF could enhance plant tolerance against Verticillium dahliae, 

Phytophthora fragariae and P. cactorum. In addition, (4) AMF was inoculated at planting 

to study whether AMF could increase strawberry growth and yield when cultivated in coir, 

and (5) a simple in vitro autotrophic system was also designed to investigate strawberry-

AMF-pathogen interactions under axenic and controlled conditions. The study 

demonstrated that the soil-less substrates tested and high moisture conditions during 

tipping did not prevent different AMF from colonising roots of strawberry plugs. Pre-

inoculated AMF species could also survive cold storage at -2°C with strawberry plugs for 

several months. However, AMF pre-colonisation and/or AMF inoculation at planting did 

not increase plant tolerance against root pathogens. It was demonstrated that AMF 

inoculation in coir did not significantly increase plant growth and yield. Finally, 

micropropagated strawberry were successfully infected by P. fragariae in vitro with the 

corresponding disease symptoms, while V. dahlia and AMF could germinate but did not 

colonise the strawberry roots in the autotrophic culture system. This is, to the best of our 

knowledge, the first research focusing on the AMF-strawberry interaction as a model 

system to study the possibility to pre-colonise strawberry plug materials to increase plant 

productivity and tolerance against major strawberry root diseases.  
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Chapter 1. General introduction 

1.1. Fragaria x ananassa in commercial horticulture 

The commercial strawberry (Fragaria x ananassa Duch) is a perennial crop that belongs 

to the Rosaceae family. It comes from a cross between F. virginiana and F. chiloensis 

(Hancock, 1999). Strawberry is an important horticultural crop worldwide in terms of its 

commercial, nutritional and medicinal values (Hancock, 1999). According to FAO 

statistics the total global land area used for strawberry cultivation was 373,435 ha in 2014 

(FAO, 2017). In the UK alone, strawberry cultivation in 2014 accounted for ca. 4500 ha 

of land with a yield of ca. 23 t ha-1 (FAO, 2017). Strawberry represented 78% of all soft 

fruit production in the UK, worth an estimated £253 million in 2016 (DEFRA, 2017), and 

this is expected to rise significantly over the coming few years (Boyer et al., 2016). 

 

Strawberry transplants are usually obtained via micro-propagation using meristems or by 

vegetative multiplication using tips or cuttings from strawberry runners. Since the early 

1990s, rooted module plants called strawberry plugs have become the most commonly 

used planting materials in Europe (Durner et al., 2002). Plug transplants are currently 

replacing the bare-rooted transplants commonly lifted from the field during winter. The 

popularity of plug transplants is mainly explained by the fact that bare-rooted strawberries 

are harder to store for a long period due to absence of substrate around the roots and 

because they are often infected by root pathogens (Lieten, 2000; Durner et al., 2002). The 

production of strawberry plugs usually occurs between July-August and it is divided into 

several stages. First, unrooted runner tips with root pegs are collected from mother plants 

that are actively producing stolons. Tips are planted in cells of specially designed plastic 

trays usually filled up with a peat/perlite mix. These tips are then weaned under misting 

for at least two weeks to allow rooting. Once the runner tips have rooted they are called 

http://journal.frontiersin.org/article/10.3389/fpls.2016.01237/full#B7
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plugs. Plugs are then usually kept for another four weeks under glasshouse conditions to 

grow and establish a stronger root system. Finally, plugs are then ready for shipping, 

transplantation or cold storage. Before transplantation strawberry plugs are usually cold 

stored at -2°C for various lengths of time (on average four months) to achieve sufficient 

chilling to induce flower buds and to schedule cropping (Lieten et al., 2005). 

 

Strawberries generally prefer sunny locations with well drained, sandy loam soils with an 

optimum pH range of 5.5-7.0 (Hancock, 1999). In the UK, strawberries were commonly 

cultivated in open fields in matted rows and raised beds up until 1991-1992 (Carter et al., 

1993). By the end of the 1990s, protected table-top cropping systems using soil-less 

substrates become more common, and represent today two-thirds of the total UK 

strawberry acreage and more than 50% of the total European soil-less acreage (Boyer et 

al., 2016; López-Aranda et al., 2016).  

 

Many cultivars including ‘Vibrant’, ‘Elsanta’, ‘Red Glory’ and ‘Malling Centenary’ are 

cultivated in the UK. Strawberry cultivars can be generally classified into two categories: 

a) short day June-bearers that can grow and initiate flower buds during short daylight 

seasons, giving a single, but large yield, and b) long day ever-bearers insensitive to light, 

producing fruits over a much longer period of time (usually 4-5 months; Hancock, 1999). 

Strawberries are high in vitamin C, phenolic compounds (e.g. anthocyanins) and minerals 

such as potassium and manganese (Debnath & Teixeira da Silva, 2007). The red colour of 

strawberries is due to the anthocyanins, pelargonidin-3-glucoside and cyanidin-3-

glucoside (Debnath & Teixeira da Silva, 2007). The medicinal value of strawberries results 

from their high level of phenolic compounds, reported to have anti-cancer, antioxidant and 

anti-inflammatory effects (Debnath & Teixeira da Silva, 2007; Giampieri et al., 2013). 
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1.2. Diseases in strawberry and disease control 

Fungal pathogens are the principal cause of disease on strawberry (Sigee, 2005). In Europe, 

the main fungal pathogens of strawberry include: Verticillium dahliae Kleb. (resulting in 

strawberry wilt), Phytophthora fragariae (causing red core or red stele), Phytophthora 

cactorum (causing crown rot), Podosphaera aphanis (causing powdery mildew) and 

Botrytis cinerea (causing grey mould; Parikka, 2004). Different control measures (e.g. 

cultivation practices, breeding, crop rotation and use of pesticides and biocides) are 

practised to mitigate crop losses caused by these pathogens (Guerena & Born, 2007).  

 

In the field, the soil-borne pathogen Verticillium dahliae causes a serious threat to 

strawberry growing in field soil (Pegg & Brady, 2002), and the European and 

Mediterranean Plant Protection Organization (EPPO) has listed Verticillium spp. as the 

‘principal strawberry disease’ (Garrido et al., 2011). It forms conidia and microsclerotia 

that can germinate in the presence of root exudates and enter the plant through primary 

roots or wounds. Verticillium will then invade the vascular tissues of the roots and crown, 

depriving the leaves and stems of water and inducing wilt symptoms (Bhat & Subbarao, 

1999; Lovelidge, 2004). Other symptoms such as reddish-yellow leaves curling up along 

the mid vein, and stunted growth are also observed. The pathogen overwinters in the soil 

in the form of microsclerotia on dead plant tissues. The microsclerotia can remain viable 

for 10 years or more even in the absence of a host plant (Pegg & Brady, 2002).  

 

Previously, the soil fumigant methyl bromide (MB) was routinely applied to control 

strawberry wilt. However, MB was banned in 2008 from Europe due to its high ozone-

depleting potential, but its chemical alternatives, 1,3-dichloropropene and chloropicrin, 

face an uncertain future due to potential changes in the legislation (López-Aranda et al., 

2016). Therefore, alternative methods are urgently needed to control V. dahliae 
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(Klosterman et al., 2009). Different strategies, such as biofumigation, solarisation, 

catch/cover crops, anaerobic soil disinfestation and crop rotation, contribute to disease 

control, but they are usually not as effective as chemical fumigants (Tahmatsidou et al., 

2006; Korthals et al., 2014; López-Aranda et al., 2016). Consequently, extensive effort has 

gone into finding other economically effective alternatives to mitigate the threat of 

strawberry wilt (Martin, 2003; Goicoechea et al., 2010). Two main methods are currently 

being explored to reduce the risk of strawberry soil-borne diseases in the UK. The first 

proposed method relies on the exploitation of beneficial microbial organisms against 

strawberry root pathogens by introducing biological control agents at planting or during 

propagation. Therefore, sufficient colonisation of strawberry plug roots before 

transplanting is expected to increase the positive effects of inoculated beneficial microbes 

on plant health. The second approach is to move away from traditional field soil 

cultivation, towards table-top systems, where strawberry plants are grown in soil-less 

substrates (Boyer et al., 2016). This second approach is increasingly being adopted in the 

UK and more than 66% of the UK strawberry production is now produced in soil-less 

substrates, usually coir (coconut fibre), and mainly under polythene tunnels or in 

glasshouses on table-top systems (López-Aranda et al., 2016). There are also several 

significant benefits in adopting soil-less substrates in commercial strawberry production 

including: reduced cost of picking, better control of fertigation and pollination regimes as 

well as the possibility to extend the growing season and reduce the risk of V. dahliae 

infections (Boyer et al., 2016). However, soil-less substrates are usually depleted of 

beneficial microbes, while root pathogens such as P. fragariae and P. cactorum continue 

to pose a serious threat (Schnitzler, 2004; Martínez et al., 2010) as they can infect planting 

materials in nurseries if the water supply is contaminated (Durner et al., 2002). In addition, 

this practice relies on high inputs of water and nutrients through fertigation, which are 

estimated to be more than double those of field grown crops (Boyer et al., 2016). 
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Therefore, inoculation of beneficial microbes in soil-less substrate offers a potential means 

to both increase plant tolerance to root pathogens and reduce fertiliser and water inputs 

(Boyer et al., 2016).  

 

1.3. Role of arbuscular mycorrhiza fungi  

Arbuscular mycorrhizal fungi (AMF) are ubiquitous and form obligate symbioses with 

over 75% of all vascular plants (Smith & Read 2008). The origin and divergence of AMF 

is dated to more than 480 million years and AMF symbiosis is believed to have helped the 

adaption of the first land plants to the terrestrial environment (Pozo et al., 2013; Schüßler 

& Walker, 2011). AMF belong to the phylum Glomeromycota (divided into five orders: 

Glomerales, Gigasporales, Archaeosporales, Paraglomerales and Diversisporales) and 

present very peculiar biological and genetic traits (Schüßler & Walker, 2011). For years 

AMF were considered asexual. However, the recent identification of dikaryote-like 

Rhizophagus irregularis isolates and the discovery of a mating type (MAT) locus like 

region in its genome, together suggested the potential existence of AMF mating (Corradi 

& Brachmann, 2016). Sequences within individual AMF spores have also shown to present 

multiple variants, as well as within and between species of the phylum Glomeromycota 

(Rodriguez et al., 2015).  

 

AMF colonisation can be initiated from three main types of propagules: spores, 

extraradical hyphae and colonised root fragments. When AMF propagules approach a host 

root (asymbiotic stage) an exchange of molecule signals between the plant and the fungi 

occurs and several plant and fungal regulatory genes are activated (Pozo et al., 2013). AMF 

responds to the presence of the plant roots by an intense branching of the hyphae (pre-

symbiotic phase). Strigolactones contained in the host root exudates were identified to be 

the signalling compounds that induce AMF hyphal branching and respiration (Besserer et 
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al., 2006). When AMF hypha finally get in contact with a plant root an hyphopodium (or 

appressorium) is formed, marking the initiation of the symbiotic phase which terminates 

with the formation of arbuscules, where most of the nutrient exchange between the host 

plant and the AMF is thought to occur (Smith & Read, 2008; Wang et al., 2017). AMF are 

found associated with several key crop families (e.g. Gramineae, Palmae, Leguminosae 

and Rosaceae), including some tree species and many vegetable and ornamental plants 

(Prakash et al., 2015). AMF colonise the root cortex and produce extraradical hyphae that 

are specialised in the acquisition of mineral nutrients and increase the exchange surface 

between root and surrounding soil (Smith & Read, 2008). AMF associations are of high 

interest for agriculture and horticulture. In fact, AMF can support plants in increasing 

nutrient uptake, particularly of poorly mobile phosphate ions. AMF can also help plants in 

tolerating drought and metal toxicity, as well as pathogen and herbivore attacks both 

above- and below-ground (Smith et al., 2010; Prakash et al., 2015). More recently, AMF 

were shown to actively assist plant in nitrogen and zinc uptake (Hodge & Fitter, 2010; 

Prakash et al., 2015). In return, AMF obtain a carbon supply from their associated host 

plant. The importance of AMF in crop growth and development is becoming increasingly 

clear and AMF are now recognised as a vital component in agroecosystems. Traditionally, 

the role of AMF was believed to be one of nutrient provision only. However, it is now 

recognised that AMF contribute a wider range of benefits to their host plant as well as 

playing an important role in ecosystem services (Gianinazzi et al., 2010; Smith et al., 

2010). One of these benefits is in priming, inducing or otherwise improving plant defences 

against attacks from pathogens and/or insects (Pozo et al., 2013). 

 

1.4. The interaction between strawberry and AMF  

The oldest description of AMF structures in strawberry roots was reported in 1924 (Jones, 

1924), while the first detailed description of an AMF-strawberry interaction was done by 
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O’Brian and McNaughton (1928), who regarded AMF as a root pathogen and believed it 

to be the fundamental cause of the Lanarkshire strawberry disease. In 1953, Mosse became 

the first researcher to describe hyphal connections between spores and strawberry roots 

(Mosse, 1953). This study by Mosse was conducted at East Malling Research (now called 

NIAB EMR), where the current project was carried out. From 1924 to 2017 there were 

approximately 150 publications dealing with strawberry-AMF interactions. Most of those 

studies have reported the beneficial effects of AMF symbiosis on strawberry plants: (a) 

increased fruit colouring and concentration of phenolic compounds (Plenchette et al., 

1983; Castellanos-Morales et al., 2010), (b) increased runner production (Niemi & 

Vestberg, 1992), (c) increased berry yield (Boyer et al., 2016) and (d) improved fruit 

quality (Lingua et al., 2013). AMF inoculation has also shown to increase both growth 

(crowns, roots and leaf area) and tolerance to water stress in micro-propagated strawberry 

plants (Borkowska, 2002). AMF colonisation prior to transplantation of micro-propagated 

strawberries also helped plants to tolerate water stress during the weaning stage 

(Hernández-Sebastià et al., 1999). Finally, AMF inoculation has shown to reduce the 

incidence of various strawberry root pathogens (Murphy et al., 2000; Vestberg, et al., 

2004; Sowik et al., 2016) and even reduced larval survival and biomass  of a black vine 

weevil (Gange, 2001). Interestingly, there is a limited number of reports of neutral effect 

and conclusive negative effect of AMF inoculation on strawberry health and/or 

productivity report in the literature (O’Brian & McNaughton,1928; Nemec, 1974; Bååth 

& Hayman et al., 1984; Vestberg, et al., 2004). Could it be a bias in reporting or the 

evidence that AMF inoculation have a great potential to be used as a biocontrol agent 

and/or as a bio-fertiliser in strawberry production? Therefore, strawberry appears to be an 

ideal crop system to study the degree to which cultivar and/or growing practices affects 

the formation of the AMF symbiosis and its functioning. However, several essential 
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questions regarding the ecological and molecular aspects of this interaction remain to be 

answered.  

 

The model plant Medicago truncatula has been a useful system to investigate AMF 

symbiotic interactions at a molecular level (Rose, 2008), but there is not, as yet, a standard 

non-legume model plant. The wild strawberry, F. vesca could be proposed as a versatile 

plant model for investigating molecular aspects of the AMF symbiosis in fruit crop 

belonging to the Rosaceae family. In fact, the wild strawberry is an herbaceous perennial 

with a small genome (240 Mb) that was sequenced in 2011, amenable to genetic 

transformation and shares substantial sequence identity with F. x ananassa as well as other 

economically important rosaceous crops and ornamentals (e.g. apples, pears, peach, 

apricot, raspberries, roses; Shulaev et al., 2011).  

 

1.5. Plant root diseases controlled by AMF 

Plant root diseases caused by soil-borne pathogens (including fungi, nematodes and 

bacteria) are by far the hardest to control (Koike et al., 2003). The importance of AMF in 

protecting plants from soil-borne pathogens has been reported on different crops, including 

strawberry (Cano, 2014; Prakash et al., 2015). For example, inoculating AMF at planting 

increased strawberry plant tolerance to V. dahliae (Ma et al., 2004; Tahmatsidou et al., 

2006; Sowik et al., 2016). AMF inoculation also reduced incidence of P. cactorum and/or 

P. fragariae (Norman et al., 1996, Murphy et al., 2000; Vestberg, et al., 2004). In addition, 

similar protective effects were reported in other crops (e.g. tomato, potato, aubergine and 

cotton) and various aspects of this concept have been extensively reviewed (Borowiez, 

2001; Whipps, 2004; St-Arnaud & Vujanovic, 2007; Akhtar & Siddiqui, 2008; Pozo et al., 

2013). Although different mechanisms have been proposed to be involved in protection 

against soil-borne pathogens these are still poorly understood particularly with the regard 
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to: (a) inhibiting pathogen growth, (b) damage compensation, (c) increasing development 

of plant growth promoting rhizobacteria (PGPR) and/or suppressive microbial population, 

(d) increasing nutrients uptake, (e) competing for photosynthates, (f) competing for 

exudates external to the root, (g) competing for colonisation/infection sites, (h) inducing 

plant hormonal changes, (i) inducing changes in root morphology, branching and/or root 

exudation pattern, and  (j) inducing systemic resistance (ISR) and/or changes associated 

with plant defences mechanisms,  (Pozo et al., 2002; Whipps, 2004; Pozo et al., 2013).  

 

All in all, inoculating the rhizosphere of strawberry plants with AMF is expected to 

increase protection against biotic and abiotic stresses (Vestberg, et al., 2004; Boyer et al., 

2016). Strawberry is an ideal production system to study beneficial effects of AMF because 

planting materials (micro-propagated or runner-derived plugs) can be easily inoculated 

during their propagation and/or at planting.  

 

1.6. Factors limiting AMF establishment in commercial strawberry 

production 

Although the availability of commercial AMF inocula has increased in the past decade, 

AMF products are still rarely used in commercial horticulture. There are several factors 

that may limit the use of AMF in commercial strawberry production and other crops: (a) 

difficulties in producing high quality AMF inocula in large quantities, (b) high cost for 

growers, (c) variable beneficial effects, (d) uncertainties in the benefits of added AMF in 

the presence of resident indigenous AMF populations, and (e) unwillingness of growers to 

risk low production through reduced fertiliser and pesticide inputs that are often necessary 

for functioning symbiosis (Ryan & Graham, 2002; Boyer et al., 2016).  
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Many horticultural practices as well as environmental conditions can also influence the 

outcome of the symbiosis in term of plant productivity and protection against root diseases 

(Johnson & Pfleger, 1992). Several characteristics of artificial growing media and 

substrates commonly used in strawberry nurseries can influence the formation of and/or 

effect AMF symbiosis (Azcon-Aguilar & Barea, 1997; Boyer et al., 2016). For example, 

certain types of peat have been reported to have negative effects on AMF root colonisation 

of strawberry in vitro derived plantlets during propagation (Niemi & Vestberg, 1992; 

Vestberg et al., 2000; Corkidi et al., 2004; Palencia et al., 2013). It remains unclear, 

however, whether the negative effect of peat on AMF colonisation was due to high input 

of fertilisers (e.g. phosphorus), high humidity during the propagation phase and/or 

biological properties of the peat itself (Martinez et al., 2013; Palencia et al., 2013). Because 

the majority of the strawberry runner-tips are rooted in peat-based media (Durner et al., 

2002), tests are therefore required to verify whether or not strawberry runner-tips can be 

pre-colonised by AMF under such conditions.  

 

Moreover, the high fertilisation regime usually used in commercial strawberry production 

could inhibit the establishment of AMF symbiosis. For example, it has been demonstrated 

for several crops that an increase of soluble phosphate fertilisers reduces the overall level 

of AMF colonisation (Barea, 1991). Excess of nitrogen fertilisers has also been reported 

to decrease AMF root colonisation in strawberry and other crops (Azcon-Aguilar 1997; 

Salgado-Barreiro et al., 2012). Therefore, the fertilisation regime should be adjusted to 

achieve maximum strawberry yield and maintain AMF colonisation. 

 

Aside from the effect of growing media and fertiliser application on AMF, other cultivation 

practices of strawberry may affect the ability of AMF to establish a symbiosis. Among 

these are irrigation practices (e.g. misting), cold storage of plug transplants and pesticide 
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application. Plant propagators or misting systems are required to maintain damp conditions 

for at least two weeks to ensure acclimatisation and rooting of strawberry tips (Durner et 

al., 2002; Treder et al., 2015). Some evidence suggests that AMF root colonisation may 

be limited under wet conditions because of a lower oxygen availability thereby reducing 

AMF propagule survival and root colonisation (Thormann et al., 1999; Miller, 2000). 

Before transplantation, strawberry plugs need to be cold stored at -2°C for various lengths 

of time. The potential consequences of a prolonged cold storage at freezing temperatures 

on the survival and infectivity of AMF propagules (i.e. spores, colonised roots and 

extraradical hyphae) in the root ball of strawberry plugs is unknown. However, several 

studies have suggested that AMF propagules of Glomus species have the ability to endure 

cold, including winter freezing, conditions (Safir et al., 1990; Addy et al., 1994; Addy et 

al., 1997; Kabir et al., 1997; Addy et al., 1998; Klironomos et al., 2001; Juge et al., 2002). 

Therefore, tests need to be carried out to study the freeze tolerance of AMF colonising 

strawberry plug roots. 

 

Conventional strawberry production usually requires high input of pesticides that may 

affect the AMF symbiosis establishment and/or its functioning. The composition of the 

pesticides, the doses applied, the combination applied, the application methods, the 

substrate types, the growing conditions, the cropping systems and AMF species within the 

system might all mediate the effect that pesticides may have on AMF symbiosis (Johnson 

& Pfleger, 1992). Therefore, there is not general rules about the effect the pesticides may 

have on the AMF symbiosis. Some pesticides (e.g. Captan) have been shown to be 

compatible or even stimulate the development of AMF mycelium in horticultural 

substrates (Lovato et al., 1995). In contrast, foliar applications of fosetyl-Al (fosetyl 

aluminium) on strawberry reduced AMF root colonisation in a pot experiment (Mark & 

Cassells, 1999).  
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Future research efforts should focus upon understanding the outcomes of the interaction 

between AMF species (or strains) and cultivation practices to confirm whether or not the 

AMF have a great potential to be used as biocontrol agent and/or bio-fertiliser in various 

strawberry production systems and other horticultural crops. The outcomes of this type of 

research will help growers to select the best AMF species (or isolates) combinations and 

cultivation practices to maximise AMF beneficial effects during propagation and/or after 

transplantation. 

 

1.7. Project objectives 

Sustainable horticulture has become high on the agenda for global governments and policy 

makers. The growing demands on water supply, land use, fertilisers and pesticides all lead 

to an increasing concern about global food security and environmental impact (Gianinazzi 

et al., 2010; Fitter, 2012). Strawberry is an important horticultural crop worldwide with a 

high economical, nutritional and medicinal value. Nevertheless, soil-borne pathogens such 

as V. dahlia, P. fragariae and P. cactorum cause a serious threat to strawberry production 

especially since the soil fumigant methyl bromide was banned in Europe due to its high 

ozone-depleting potential and risk to human health (Ristaino & Thomas, 1997; Martin, 

2003). In addition, strawberry production is currently moving toward cultivation in 

substrates such as peat and coir, which are usually devoid of beneficial microbes such as 

AMF; therefore, introducing AMF and/or PGPR into soil-less substrates is more likely to 

generate benefits (Boyer et al., 2016). AMF associations are multi-functional, assisting the 

plants in nutrient and water uptake, and they can act as biocontrol agents by protecting 

roots from pathogens. Most importantly, the earlier AMF colonisation is established the 

greater the benefit (Azcón-Aguilar & Barea, 1997). In this context, the early introduction 

of sufficient AMF establishment of initial propagation and subsequent planting materials 
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in nurseries could be a useful strategy. If successful, AMF pre-inoculation could become 

an integral part of strawberry production in a near future. 

 

However, several studies have highlighted the variability of the beneficial effects offered 

by AMF against root pathogens in different crops (Akhtar & Siddiqui, 2008). For example, 

the effects of AMF against root pathogens has been shown to differ among AMF species 

as well as among root diseases (Whipps, 2004). In addition, such disease suppressive 

effects may be further dependent on substrates, host cultivars and crop management 

practices (Baum et al., 2015). Therefore, there is still limited knowledge on the interaction 

among AMF, strawberry cultivars and root pathogens and the mechanisms underlying 

AMF-induced bio-protection under commercial conditions.  

 

In an attempt to fill these knowledge gaps, the present study used the AMF-strawberry 

association as a model system to investigate the possibility of pre-colonising strawberry 

plugs to increase tolerance against major strawberry root diseases and/or increase 

strawberry productivity. Specifically, a series of experiments were conducted either under 

controlled conditions or under open field situations to investigate the following hypotheses 

(Figure 1.1): 

 

• H1: It is feasible to apply AMF inoculum during strawberry tipping in different 

soil-less substrates under misting conditions and obtain highly AMF-colonised 

strawberry plugs. (Chapter 3) 

• H2: AMF in colonised strawberry plug roots can survive a prolonged period of 

storage at -2°C. (Chapter 3) 

• H3: AMF pre-colonisation of strawberry plugs increases plant tolerance against 

V. dahlia under glasshouse and open field conditions. (Chapter 4) 
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• H4: AMF pre-colonisation and/or inoculation of AMF and/or PGPR at planting 

increases plant tolerance against P. fragariae and P. cactorum in soil-less 

substrates. (Chapter 5) 

• H5: AMF and/or PGPR inoculations increase strawberry productivity in coir 

bags under glasshouse conditions. (Chapter 5). 

• H6: In an attempt to control for the influence of fluctuating environmental 

conditions that occur under both field and glasshouse conditions a simple in vitro 

autotrophic system can be established and used as a tool to investigate different 

aspects of the strawberry-AMF-pathogen interactions. (Chapter 6) 
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Figure 1.1: Overview of the strawberry cultivation systems examined and the six hypotheses. 

Hypotheses are not fully stated for clarity (Section 1.7).
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Chapter 2.  General methods 

2.1. Arbuscular mycorrhiza fungi inoculum 

2.1.1. Inoculum source and inoculation 

Pure cultures of five AMF species (Table 2.1) and a commercial mix of the same five 

species were obtained from Plantworks Ltd, Kent, UK, as attapulgite clay/pumice/zeolite 

mix containing spores, mycelium, and colonised host plants root fragments. For strawberry 

plugs, AMF inoculum was incorporated as a powder layer comprising 10% (v/v) and 

applied ca. 1 cm below the surface of the potting substrate, before transplantation of the 

strawberry runner-tips. The use of different AMF species and even different isolates of the 

same species have showed to provide different beneficial effects on the same plant host 

due to their different ecological strategies (Rodriguez & Sanders, 2015). Nevertheless, the 

link between function and taxonomy of AMF species is still a poorly resolved subject (van 

der Heijden et al., 2004). Therefore, the AMF species used in this study were primarily 

selected for their commercial availability and because of beneficial effects on strawberry 

productivity reported in a previous work (Boyer et al., 2016). Therefore, if beneficial 

effects on strawberry health and/or productivity are identified, strawberry growers will be 

able to source and use those inocula.  

 

Table 2.1: Arbuscular mycorrhiza fungi (AMF) species used in the studies (courtesy of Plantworks 

Ltd, Kent, UK). 

AMF species Authorities 

Funneliformis mosseae [T.H. Nicolson & Gerd.] C. Walker & A. Schüeßler 2010 

Rhizophagus irregularis [N.C. Schenck & G.S. Sm.] C. Walker & A. Schüeßler 2010 

Claroideoglomus claroideum  [N.C. Schenck & G.S. Sm.] C. Walker & A. Schüeßler 2010 

Funneliformis geosporus [T.H. Nicolson & Gerd.] C. Walker & A. Schüeßler 2010 

Glomus microaggregatum Koske, Gemma & P.D. Olexia 1986 
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2.1.2. Most probable number bioassay 

A most probable number (MPN) bioassay was undertaken to determine the infectivity and 

estimate the number of propagules in each inoculum sample (Cochran, 1950; Alexander, 

1982). Samples were diluted to 1/10, 1/100 and 1/1000 using autoclaved (two cycles at 

121°C for 20 min with 4 d between cycles) attapulgite clay substrate (AgSorb®, Oil-dri 

Ltd, Cambridgeshire, UK). For this bioassay, maize (Zea mays L.) was used as the trap 

plant as it was described to be a suitable host for Glomus spp. (Vestberg, 1995; Boyer pers. 

comm.); there were five replicate pots, each planted with three maize seeds (Figure 2.1).  

The pots were then placed either in a glasshouse (temperature 20-23°C, light:dark 16 h/8 

h, additional 400 W halogen bulbs were also used) or a growth room (day and night 21-

22°C, ca. 70% relative humidity (RH), light:dark 16 h/8 h, photosynthetic photon flux 

density (PPFD) of ca. 40 μmol m−2 s−1). Plants were watered as required with tap water 

and roots were harvested six weeks after sowing. Harvested roots from each pot were then 

stained with trypan blue (see Section 2.3.1) and assessed microscopically for the presence 

of AMF structures. Based on the incidence of the microscopic presence of AMF structures 

in the sampled roots, MPN was then estimated, using MPN tables (Cochran, 1950).  
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Figure 2.1: Zea mays used as trap plants growing under glasshouse conditions to estimate AMF 

inoculum concentration. Five replicate pots were used at each AMF inoculum dilution: 1/10, 1/100 

and 1/1000. 

 

2.2. Plant materials  

2.2.1. Production of micro-propagated strawberry plants 

To be certain of the absence of pre-existing mycorrhizal colonisation, micro-propagated 

plants (hereafter named microplants) were used in several experiments. Microplants of 

Fragaria x ananassa cv. ‘Calypso’ and of F. vesca var. alpina were purchased from 

Hargreaves Plants Ltd, Norfolk, UK, whilst microplants of F. x ananassa cv. ‘Vibrant’, 

‘Red glory’ and accession ‘EM-1996’, and of F. vesca clone VSI were provided by the 

NIAB EMR tissue culture laboratory, Kent, UK. Microplants were all established for at 

least two months on Murashige & Skoog (M&S) medium (Murashige & Skoog, 1962) 

supplemented with 0.75% agar, 3% sucrose, 1.2 mL L-1 GA3 (phytohormone) and 8 mL L-

1 IBA (phytohormone) to induce rooting. In vitro plants were incubated in a growth room 
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(21°C, light:dark 16 h/ 8 h PPFD of 40 μmol m−2 s−1) until roots had developed sufficiently 

for plantlets to be transplanted. 

 

2.2.2.  Production of runner-tips 

Pre-established strawberry mother plants (cv. ‘Elsanta’, ‘Malling Centenary’, ‘Vibrant’, 

‘Red Glory’) were grown in coir bags (Botanicoir Ltd, London, UK) in a poly-tunnel or a 

glasshouse compartment at NIAB EMR. Runner-tips were produced within three months 

either under greenhouse conditions (in winter; temperature 20-23°C, light:dark 16 h/8 h, 

additional lightning in the form of 400 W halogen bulbs was used with ample irrigation, 

appropriate fertilisation regimes and pest control) or poly-tunnel conditions (in spring and 

summer; natural light and temperatures, ample irrigation, appropriate fertilisation regimes 

and pest control). Inflorescences emerging from the mother plants were removed regularly 

to stimulate runnering. Once runner plantlets contained at least three compound leaves they 

were cut away from the mother plants and used for experiments (weaning and AMF 

inoculation). Runner-tips were also purchased from two commercial nurseries: R W 

Walpole Ltd, Norfolk, UK for ‘Vibrant’ and Edward Vinson Plants Ltd, Kent, UK for ‘Red 

Glory’.  

 

2.2.3.  Growth medium and strawberry plantlet weaning 

The roots of the microplants were washed with purified water to remove any adhering agar 

and nutrients and transplanted into individual tray cells (40 cells, ca. 46 cm3 per cell, B&Q 

40 Cell Insert 08535B, Kent, UK; or 56 cells, 70 cm3 per cell, Agrii Ltd, Kent, UK). Cells 

were filled with either non-autoclaved coir (Botanicoir Ltd, London, UK) or autoclaved 

(two cycles at 121°C for 20 min with 4 d between cycles) vermiculite medium (Sinclair 

horticulture Ltd, Lincoln, UK) fertilised with 0.25 g L-1 of autoclaved (one cycle at 121°C, 

20 min) bone-meal, a complex nitrogen (N) and phosphorus (P) source to encourage AMF 
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development (3.5% N, 7.4% P; Verve, Hampshire, UK). Plantlets were then weaned in 

plastic propagator units with transparent vented lids (52 × 42.5 × 24 cm, Stewart Plastics 

Ltd, Oxon, UK) kept in a growth room (Meridian Refrigeration Ltd, Croydon, UK; day 

and night 21-22°C, ca. 70% RH, light:dark 16 h/8 h, PPFD of ca. 40 μmol m−2 s−1; Figure 

2.2). Both adjustable vents present on the lid of the propagator were kept closed initially 

(1 week), and then left open (1 week) before the lid was completely removed. Each plantlet 

was then watered as needed with 10 mL of purified water and no additional fertiliser was 

added. Inter plant contamination was prevented by spacing the plantlets over the plastic 

module tray (i.e. one empty tray cell between each plant), by using a syringe to water each 

plant and by avoiding a direct contact of the module tray cell with the bottom of the 

propagator.  

 

 

 

 

 

 

 

 

Figure 2.2: Microplants weaned inside plant propagators that were kept under growth room 

conditions.  

 

Freshly cut runner tips were immediately pinned-down in standard plastic module trays 

(56 cells, 70 cm3 per cell, Agrii Ltd, Kent, UK; or 48 cells, 70 cm3 per cell, Desch Plantpak 

Ltd, Essex, UK) filled with the potting mix consisting of 7 parts Irish dark peat (Clover 

Peat Products Ltd, Dungannon, Ireland) and 3 parts 2.0-5.0 mm perlite (Sinclair 
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Horticulture Ltd, Lincoln, UK; Figure 2.3A). The potting mix was limed with 16 g L-1 of 

non-autoclaved dolomite lime (Omya UK Ltd, Derbyshire, UK) to provide a pH of 7 and 

fertilised with 0.25 g L-1 of autoclaved (one cycle at 121°C, 20 min) bone-meal (Verve, 

Hampshire, UK). Immediately after transplantation in plastic trays, runner-tips were placed 

in a misting cabinet (daily mean temperature: > 20°C, no artificial light, daily mean RH > 

90% ) and intermittently sprayed with tap water using a Macpenny Solarmist VTL misting 

system (Wright Rain Ltd, Hampshire, UK) for 15 d (misting continuously for ca. five 

seconds at a frequency depending on light conditions, ranging from six minute intervals 

on bright days to 20 minutes intervals on dull days according to the manufacturer 

guidelines; Figure 2.3B). Plant propagation was carried out in a glasshouse compartment 

(ca. 19°C, daily mean RH of 70%, 16 h/8 h light:dark cycle with additional lighting 

supplied in the form of 400 W halogen bulbs; Figure 2.3C). The plug plants were watered 

once a day with tap water. No additional fertiliser was added. Inter plant contamination 

was prevented by spacing the plants over the plastic module tray (i.e. one empty tray cell 

between each plant) and by avoiding a direct contact of the module tray with the bottom 

of the propagator and/or greenhouse tables.  
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Figure 2.3: (A) Runner-tips ready to be pinned down on Irish dark peat/perlite mix (7:3, v/v). (B) 

Strawberry plug transplants inside misting system cabinet. (C) Plug plants growing under 

glasshouse condition at 7 weeks post transplantation.  
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2.3. Arbuscular mycorrhiza fungi quantification 

2.3.1. Root sampling and staining 

To observe AMF structures within strawberry roots, root samples were randomly picked, 

placed into histocassettes (Simport, Beloeil, Canada) to facilitate handling and cleaned 

with tap water to remove substrate particles. The roots were then cleared in 2% (w/v) 

potassium hydroxide solution (KOH) for 1 h at 90°C. Cassettes containing roots were then 

rinsed three times with tap water before being submerged for 30 min in 2% (v/v) 

hydrochloric acid (HCl) at room temperature. The HCl was then discarded and the root 

samples covered with 0.05% (w/v) trypan blue in lactoglycerol (lactic acid, glycerol, water 

– 1:1:1 as Kormanik & McGraw, 1982, but omitting phenol) for 1 h at 90°C in water bath. 

After de-staining in 50% (v/v) glycerol-water, root segments (30 per sample) were 

permanently mounted (using polyvinyl alcohol lactoglycerol (PVLG)) on two slides (15 

root fragments per slide = ca. 60 cm of root in total per slide) as described in  

www.invam.wvu.edu/methods/recipes. Root cells were gently separated by applying slight 

pressure to the root (Figure 2.4). 

 

 

 

 

 

 

Figure 2.4: Method of stained root mounting on slides (figure adapted from 

www2.dijon.inra.fr/mychintec/Protocole/Image3.pdf)  

http://www.invam.wvu.edu/methods/recipes
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2.3.2. Root length colonisation assessment 

To quantify total root length colonised by AMF (% RLC) in the sample, the grid-line 

intersect method of McGonigle et al. (1990) was used. AMF colonisation was assessed on 

100 intersects of root tissue and expressed as a percentage of root length colonisation. 

Slides were examined under a Leitz Diaplan microscope (Leitz, Wetzlar, Germany) with 

250 × magnification. Sections of root were recorded as either positive or negative for any 

mycorrhizal structures as they crossed an intersect line of an eyepiece gratitude 

(McGonigle et al., 1990). One hundred intersects were assessed for each sample. Figure 

2.5 shows examples of intersects observed. 

 

 
 

Figure 2.5: A microscopic method to assess strawberry root length colonisation (% RLC) by 

arbuscular mycorrhiza fungi. Randomly selected microscope field of view and cross-hair position 

are showing different possible intersects. 
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Chapter 3. Strawberry plug weaning practices and freezing 

cold storage do not prevent arbuscular mycorrhiza fungi root 

colonisation deriving from early inoculation 

3.1. Introduction 

Pre-inoculation of horticultural crops with AMF before transplanting has been proposed 

as an environmentally-friendly method to promote plant growth and health by protecting 

crops against biotic and abiotic stresses (Varma & Schüepp, 1994; Corkidi et al., 2004; 

Vestberg et al., 2004; Rouphael et al., 2015). Strawberry (Fragaria x ananassa) 

production systems make AMF pre-inoculation at the weaning stage relatively 

straightforward for both in vitro and runner derived plantlets. AMF can colonise strawberry 

roots in different types of substrates and growing conditions (Holevas, 1966; Daft & 

Okusanya, 1973; Robertson et al., 1988; Hršelová et al., 1989; Vestberg, 1992a; Williams 

et al., 1992; de Silva et al., 1996). However, similar studies have not been carried out with 

runner-derived strawberry plants during the weaning stage. 

 

The substrates commonly used to propagate strawberry plantlets deriving from in vitro and 

runner-tips are coir, peat, perlite and vermiculite (Vestberg et al., 2000; D'Anna et al., 

2002; Corkidi et al., 2004; Rouphael et al., 2015; Treder et al., 2015), but AMF propagules 

are not usually present in these growing media (Azcón-Aguilar & Barea, 1997). AMF 

inoculation of substrates containing peat mixed with sand, perlite, zeolite and/or 

vermiculite has been demonstrated to result in successful AMF colonisation of strawberry 

plantlets (Vosatka et al., 1992; Williams et al., 1992). In contrast, other studies have 

reported that certain types of peat had negative effects on AMF root colonisation of 

strawberry in vitro derived plantlets during propagation (Niemi & Vestberg, 1992; 

Vestberg et al., 2000; Corkidi et al., 2004; Palencia et al., 2013). Therefore, it remains 



  Chapter 3 

~ 46 ~ 
 

unclear whether the negative effect of peat on AMF colonisation was due to high input of 

fertilisers (e.g. phosphorus) or to other chemical and biological properties of the peat itself 

(Martinez et al., 2013; Palencia et al., 2013). Because the majority of the strawberry 

runner-tips are rooted on peat-based media (Durner et al., 2002), tests are therefore 

required to verify whether or not strawberry runner-tips can be pre-colonised by AMF 

under such conditions. Moreover, plant propagators or misting systems are required to 

maintain damp conditions for at least two weeks to ensure plant acclimatisation and rooting 

(Durner et al., 2002; Treder et al., 2015). Whereas many studies have been conducted on 

the effect of water deficiency on AMF development and influence on the host plant fitness 

(e.g. Boyer et al., 2015), less work has been done on the conditions of excess water. There 

are evidences to suggest that AMF root colonisation may be limited under wet conditions 

as a result of lower oxygen availability reducing AMF propagule survival (Thormann et 

al., 1999; Miller, 2000), althought some wetland and aquatic plants often associate with 

AMF (Clayton & Bagyaraj, 1984; Miller, 2000).  

 

Differences in the levels of AMF root colonisation among different strawberry cultivars 

have previously been documented under field (Robertson et al., 1988) and glasshouse 

conditions (Chávez & Ferrera-Cerrato, 1990; Vestberg, 1992b), while other studies have 

found no significant variation under glasshouse conditions (Robertson et al., 1988; Cekic 

& Yilmaz, 2011). Furthermore, the positive effect of AMF inoculation on strawberry plant 

growth is still open to debate. Several studies demonstrated the beneficial effects of AMF 

inoculation on strawberry growth during propagation (Kiernan et al., 1984; Chavez & 

Ferrera-Cerrato, 1987; Hršelová et al., 1989; Niemi & Vestberg, 1992; Vestberg, 1992b; 

Vestberg et al., 2000; Borkowska, 2002; Stewart et al., 2005; Castellanos-Morales et al., 

2010; Fan et al., 2011; Boyer et al., 2015), whilst others reported either limited (Cekic & 
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Yilmaz, 2011; Garland et al., 2011; Palencia et al., 2015) or negative effects (Chávez & 

Ferrera-Cerrato, 1990; Hršelová et al., 1990; Vestberg et al., 2004). 

 

Before transplantation strawberry plugs need to be cold stored at -2°C for various lengths 

of time in order to achieve sufficient chilling to enhance flower initiation and to schedule 

cropping (Lieten et al., 2005). The potential consequences of a prolonged cold storage at 

freezing temperatures on the survival and infectivity of AMF propagules (i.e. spores, 

colonised roots and extraradical hyphae) in the root ball of strawberry plugs are unknown, 

although several studies suggested that AMF propagules of Glomus species have the ability 

to endure cold, including winter freezing conditions (Safir et al., 1990; Addy et al., 1994; 

Addy et al., 1997; Kabir et al., 1997; Addy et al., 1998; Klironomos et al., 2001; Juge et 

al., 2002).  

 

Microscopic assessments of strawberry root have previously showed the presence of dark 

septate endophytes (DSE; Lizarraga et al., 2015; Boyer pers. comm.). These DSE fungi 

have been described as ‘miscellaneous fungi’ that colonise the root tissue of a large array 

of plant species without causing any noticeable damage to their host (Jumpponen, 2001; 

Newsham, 2011). DSE have been frequently reported to co-exist with AMF under field 

conditions (Urcelay, 2002; Lizarraga et al., 2015; Boyer pers. comm.). Hence, it is 

reasonable to expect that AMF and DSE share the same spatial niche and interact with each 

other. Whilst the AMF symbiosis is well investigated, the DSE association remains 

relatively under-studied, despite the fact that it seems to be as common as mycorrhizas in 

the field (Newsham, 2011). There is some evidence that DSE can improve plant growth 

under controlled conditions, but other reports indicate that these endophytes can also have 

negative or neutral effects on plant fitness (Jumpponen, 2001). Further studies on plant 

responses to DSE inoculation and/or interaction with AMF are clearly needed. 
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Four experiments were conducted to investigate whether inoculation with AMF during 

weaning of ex-tissue culture (hereafter named microplants) and runner-tip derived 

strawberry plantlets of different cultivars could result in plug transplants well-colonised 

by AMF. The following hypotheses were tested: (1) AMF can colonise roots of strawberry 

plantlets under damp conditions in different soil-less substrates; (2) inoculated AMF 

species differ in their ability to colonise strawberry cultivars; (3) AMF species differ in 

their capacity to colonise roots of different plant sizes; (4) early AMF colonisation 

increases growth of strawberry plugs during the weaning and propagation. Finally, one 

experiment was carried out to study the freezing tolerance (i.e. tolerance to the formation 

of ice in the strawberry root ball for several months) of AMF in colonised strawberry plug 

roots. Three commercially available AMF species were screened to test the hypothesis that 

AMF can survive several months at -2°C. 

 

3.2. Materials and methods 

A total of five experiments were carried out in 2014-2015; the duration of each experiment 

varied from six to 45 weeks. The objective of experiments 1-4 was to investigate the 

capacity of AMF to colonise strawberry plugs in different soil-less substrates under damp 

conditions, while the aim of experiment 5 was to study the freezing tolerance of AMF in 

colonised strawberry plug roots. A schematic representation of the experiment setup is 

shown in Figure 3.1 (colonisation during the weaning stage) and Figure 3.2 (freezing 

tolerance of AMF), whilst Table 3.1 gives the summary of experimental details for each 

experiment. 
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Figure 3.1: Schematic representation of the experimental setup to study the effect of arbuscular 

mycorrhiza fungi (AMF) pre-inoculation of strawberry transplants during weaning and 

propagation. Microplants and runner-tips were produced (Step 1), pinned down in vermiculite, coir, 

or Irish dark peat/perlite mix (7:3, v/v) and then weaned for ca. 2 weeks inside a propagator or 

misting cabinet (Step 2). Newly formed roots were assessed for the extent of AMF colonisation at 

the end of the plug transplant propagation (Step 3). 
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Figure 3.2: Schematic representation of the experimental setup to study the effect of cold storage 

on the survival of arbuscular mycorrhizal fungi (AMF) in colonised strawberry roots. Cold storage 

at -2°C of AMF pre-inoculated strawberry plug transplants (Step 1). Plants were re-potted at 

monthly intervals (1 to 5 months) in autoclaved attapulgite clay and placed in a growth room at 

22°C (Step 2). Newly formed roots were assessed for the extent of AMF colonisation one month 

after transplantation (Step 3). 
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Table 3.1: Details of five experiments to study arbuscular mycorrhizal fungi (AMF) pre-inoculation of strawberry plug during the weaning stage (experiment 1-4) and the 

effect of cold storage at -2°C on the survival of AMF in colonised strawberry roots (experiment 5). 

a Abbreviations F.m, R.i, C.c, G.m and F.g respectively stand for the single AMF species inoculated: Funneliformis mosseae, Rhizophagus irregularis, Claroideoglomus claroideum, 

Glomus microagregatum, Funneliformis geosporum. Cb-: a control inoculated with autoclaved attapulgite clay; Cb+: a control inoculated with an autoclaved equal mix of AMF species 

used and inoculated with bacterial washing. 
b Abbreviations E, MC, RG, and V respectively stand for the strawberry cultivars: ‘Elsanta’, ‘Malling Centenary’, ‘Red Glory’ and ‘Vibrant’. 
c See Section 2.2.1 for vermiculite or coir and Section 2.2.2 for peat/perlite mix. 
d See Section 2.2.3 for experimental details.

 Experiment 

  1 2 3 4     5 

Total no. treatments 5 4 10 48 30 

AMF species and controlsa F.m, R.i, C.c, Cb-, Cb+ R.i, Cb+ F.m, R.i, C.c, Cb-, Cb+ F.m, R.i, C.c, G.m, F.g, Cb+  F.m, R.i, C.c 

Plant cultivarsb EM-1996 V RG, V E, MC, RG, V RG, V 

Plant (runner) size categories - - - Small/Large - 

Weaning substratesc Vermiculite Vermiculite or Coir Peat/perlite mix Peat/perlite mix Peat/perlite mix 

Re-growth substrate - - - - Attapulgite clay 

Cold storage duration at -2°C (months) - - - - 1, 2, 3, 4, 5 

No. replicates per treatment 12 21 10 6 11 

No. blocks (trays) 3 3 5 6 - 

Plant material typesc Microplant Microplant Runner-tip Runner-tip Runner-tip 

Weaning substrate autoclaved Yes No No No No 

AMF inoculum washing per plant (v/plant) 1 mL 10 mL 1.5 mL 10 mL - 

Plastic tray size (no. cells)d 40  56 48 48 56 

Substrate fertilisationd Bone-meal - Bone-meal Bone-meal Bone-meal 

Dolomite lime amendmentd - - Limed Limed Limed 

Weaning methodsd Propagator Propagator Misting system Misting system Misting system 

Experiment locations Growth room Growth room Glasshouse Glasshouse Growth room 

Start dates 31/01/14 31/03/15 03/03/14 03/06/14 23/09/14 

Duration of weaning + propagation (weeks) 2 + 4 2 + 6 2 + 4 2 + 5 2 + 16 

Chapter 3 
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3.2.1. Inoculation of arbuscular mycorrhiza fungi  

All AMF species used in the experiments (Table 3.1) were provided by Plantworks Ltd, 

Kent, UK, and inoculated as described in Section 2.1.1. The number of infective 

propagules of each AMF inoculum (Table 3.2) was determined using a most probable 

number (MPN) bioassay procedure described in Section 2.1.2. In addition, two non-AMF 

controls were included: (1) control inoculated with autoclaved (two cycles at 121°C for 20 

min with 4 d between cycles) attapulgite clay (AgSorb®, Oil-dri Ltd, Cambridgeshire, UK) 

to assess possible physico-chemical effects of the main AMF inoculum carrier (Cb-), and 

(2) control inoculated with autoclaved (one cycle, 121°C, 20 min) inoculum or an equal 

mix of the single AMF species used (Cb+; Table 3.2). To equalise the starting microbial 

community, 1 mL, 1.5 mL or 10 mL of AMF inoculum washing solution was also added 

to each plantlet (Table 3.1). This was produced by suspending 1 g of live inoculum in        

10 mL of purified water, then vortexed for ca. 10 min and filtered through a 45 μm sieve 

(Laboratory test sieve, Endecotts Ltd, London, UK). 

 

Table 3.2: Number of arbuscular mycorrhiza fungi (AMF) infective propagules per mL of 

inoculum substrate carrier used to inoculate strawberry plants in experiments 1-5.  

Experiment AMF species Propagules mL-1  

1, 3, 4 Funneliformis mosseae > 1600  

5 Funneliformis mosseae 170 

1, 3, 4 Rhizophagus irregularis > 1600  

2 Rhizophagus irregularis 70 

5 Rhizophagus irregularis 170 

1, 3, 4 Claroideoglomus claroideum > 1600  

5 Claroideoglomus claroideum 23  

4 Glomus microagregatum 79 

4 Funneliformis geosporum 350 
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3.2.2. Source of plant materials, weaning and propagation 

Microplants (Table 3.1; Figure 3.3; 3.4) or runner-tips (Table 3.1; Figure 3.5; 3.6; 3.7A) 

were used for the experiments. A randomised block design was used except for experiment 

5 (see Section 3.2.4 below). In experiment 4, there were also two plant crown size groups 

named grade ‘Large’ and ‘Small’ (Table 3.3). Experiments were all carried out in plastic 

trays that were either filled up with vermiculite, coir or Irish dark peat/perlite mix (Table 

3.1). The pH (e.g. low pH: < 5.1) and nutrient status (e.g. high P level: > 25 ppm) of the 

growing media can negatively influence AMF symbiosis and its effect on plant growth 

(Azcón-Aguilar & Barea, 1997; Horneck et al., 2011). Therefore, the background nutrient 

status of the weaning substrates was analysed before plant transplantation and showed a 

neutral or alkaline pH and a low P level for all substrates tested (Table 3.4). The 

microplants or runner-tips were transplanted and weaned as described in Section 2.2.3. In 

experiment 1 and 2, each plantlet was watered as required with 10 mL of purified water, 

while in the other three experiments plants were watered once a day with tap water. No 

additional fertiliser was added. However, the absence of fertilisation resulted in rapid 

occurrence of nutrient deficiency symptoms in experiment 1. Thus, each plant received 10 

mL of half-strength Rorison’s nutrient solution minus phosphate, three times per week 

(Hewitt & Bureaux, 1966), which rapidly alleviated the nutrient deficiency symptoms. 

During the growing period of experiment 2, the plants were infested by spider-mites, which 

was controlled by weekly release of spider-mite predators (Phytoseiulus persimilis; 

Phytoline p; Syngenta Bioline Ltd, Essex, UK) until the end of the experiment.  

 

In experiment 5, after weaning plants were first grown for 48 d under glasshouse conditions 

(see Section 2.2.3) and then transferred to a poly-tunnel with natural shorter days and 

cooler temperatures for 51 d to induce plant dormancy (Figure 3.7A). Plants continued to 

be watered daily with tap water. At the end of the propagation period, plants were 
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acclimated to lower temperatures for 24 d in a dark compartment cooled to 2°C. Watering 

ceased from this point onwards. Finally, strawberry plugs were cold stored at -2°C for 

different periods of time (Figure 3.7B; see Section 3.2.4 below).  

 

Table 3.3: Average strawberry runner crown diameter for the explant size of ‘large’ and ‘small’ in 

experiment 4. 

Strawberry cultivar 
Crown diameter (mm)* 

 ‘Large’  ‘Small’ 

‘Elsanta’ 8.9 ± 0.4 5.2 ± 0.3 

‘Malling Centenary’ 6.9 ± 0.4 4.4 ± 0.2 

‘Red Glory’ 5.9 ± 0.2 4.1 ± 0.2 

‘Vibrant’ 7.8 ± 0.3 4.4 ± 0.1 

* mean ± SE, n = 21  

 

Table 3.4: Background nutrient status analysisa of the growing media used in the experiments.  

Experiment Medium pH 

NO
3
 NH

4
 P K Mg Ca 

ppm = mg kg
-1

 

1, 2 Vermiculite 8.1 < 1.2 29.8 < 1.2 36.2 21.9 1.2 

2 Coir 6.6 < 3.7 19.8 < 6.2 30.9 < 1.2 1.9 

3 Irish dark peat/perlite mix 7.0 13.9 63.1 2.1 8.8 40.2 25.1 

4 Irish dark peat/perlite mix 7.2 39.9 35.2 2.5 6.2 58.4 37.7 

5 Attapulgite clay 6.4 < 0.7 18.8 3.2 81.0 117.6 142.9 
 

 

a Available nutrient status of each growth medium was provided by NRM Laboratories (Berkshire, UK) in 

mg L-1 and it was converted to mg kg-1. NO3 was determined by ion chromatography and NH4 by colorimetric 

analysis. P, K, Mg and Ca were analysed by ICP-OES (Inductively Coupled Plasma-Optical Emission 

Spectroscopy). Note that the nutrient status analysis of each growing medium could not be replicated due to 

high cost. Only the substrate attapulgite clay used for plant re-growth was analysed in experiment 5. Hence, 

the Irish dark peat/ perlite mix used for plant weaning in experiment 5 was not analysed for background 

nutrient status. 
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Figure 3.3: (A) Microplants (experiment 1) weaned on autoclaved vermiculite inside plant 

propagators kept under growth room conditions at 22°C. (B) Strawberry plugs at 6 weeks post 

transplantation. 

 

 

Figure 3.4: (A) Strawberry plugs at the end of experiment 2 (8 weeks post transplantation). (B) A 

strawberry plug grown on non-autoclaved vermiculite. (C) A strawberry plug grown on non-

autoclaved coir with the AMF inoculum powder layer visible (see red arrow). 
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Figure 3.5: (A) Experiment 3 strawberry plug transplants weaned in Irish dark peat/perlite mix 

(7:3, v/v) inside a misting cabinet. (B) Plug plants growing under glasshouse conditions for ca. 4 

weeks with additional lightning. (C) A strawberry plug cv. ‘Red Glory’ from the non-mycorrhizal 

treatment and (D) strawberry plug cv. ‘Red Glory’ inoculated with Claroideoglomus claroideum 

at 6 weeks post transplantation. 

 

 

Figure 3.6: (A) Experiment 4 strawberry plug transplants weaned in Irish dark peat/perlite mix 

(7:3, v/v) inside a misting cabinet. (B) Plug plants were grown under glasshouse conditions for 7 

weeks.  
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Figure 3.7: (A) Experiment 5 strawberry plug transplants propagated in Irish dark peat/perlite mix 

(7:3, v/v) under natural temperature and light conditions in a poly-tunnel. Note the first signs of 

dormancy shown by yellow leaves (red arrows). (B) Module trays cold stored in the dark at -2°C. 

(C) Strawberry plugs re-potted in autoclaved attapulgite clay producing new leaves after one week 

in a growth cabinet at 22°C. (D) A strawberry plug producing new roots after one month of re-

potting. 

 

3.2.3. Re-growth of strawberry plugs after freezing cold storage 

In experiment 5, strawberry plants stored at -2°C were moved out of the cold store, re-

potted into 250 mL plastic pots (7 × 7 × 8 cm, Desch Plantpak Ltd, Essex, UK) and placed 

to a growth room after 1, 2, 3, 4 or 5 months in the cold store. The dead leaves were cut-

off and the attapulgite clay substrate (AgSorb®, Oil-dri Ltd, Cambridgeshire, UK) was 

autoclaved (two cycles at 121°C for 20 min with 4 d between cycles). A square piece of 

filter paper was placed inside each pot to avoid substrate loss and so inter contamination 
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during watering. Pots were randomised on a single plastic tray (Figure 3.7C). Plants were 

grown for one month in the growth room (Meridian Refrigeration Ltd, Croydon, UK; day 

and night 21-22°C, light: dark 16 h/8 h; photosynthetically active radiation (PPFD) of 40 

μmol m−2 s−1 with RH ca. 70%; Figure 3.7C) and watered from the bottom twice a week 

with 4 L of purified water. No additional fertiliser was added. 

 

3.2.4. Root sample analysis and plant growth 

For all experiments, fresh roots were sampled at the end of the experimental period (with 

an additional root sampling before cold storage in experiment 5) then stained (Section 

2.3.1) to assess endophyte and AMF colonisation (Section 2.3.2). Aseptate inter- or 

intracellular linear hyphae associated with vesicle and/or arbuscule structures were 

characterised as AMF colonisation. Microsclerotium like structures, moniliform group of 

fungal cells and non-linear hyphae not associated with vesicles or arbuscules were recorded 

as dark septate endophyte (DSE) colonisation. In experiment 1, each root sample were 

assessed (n = 12) for each treatment, whereas a subset of individual samples was used in 

experiment 2 (n = 9), experiment 3 (n = 3) and experiment 4 (n = 3) for each AMF treatment 

and plant cultivar tested. In experiment 5, each root sample originated from two pooled 

individual plants and a subset (n = 3) was assessed for each AMF treatment and plant 

cultivar tested. 

 

Plant crown size was measured by a calliper measurement at the widest point (experiment 

1-4). Plant height was measurement by a calliper measurement of the highest leaf stalk, 

measured from the crown to the tip of the stalk (experiment 1 and 3). To measure the total 

plant fresh weight (experiment 1 and 2), plants were harvested, and roots were gently 

washed with tap water to remove substrates particles and plants were weighted. For the 
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dry weight (experiment 2), plants were oven dried at 80°C for at least 3 d before weighing. 

To calculate the root weight ratio (RWR: root dry weight as a fraction of total plant dry 

weight), roots were weighted after being separated from the shoot. Strawberry plugs that 

were non-destructively harvested in experiment 1 and 3 were used in other experiments 

(See Chapter 4).  

 

3.2.5. Data analysis 

All data were analysed using GenStat 13th edition (VSN International Ltd, Hemel 

Hempstead, UK). AMF root length colonisation (% RLC) was analysed by ANOVA after 

arcsine square root transformation to satisfy normality. In experiment 1, treatment effects 

were tested using a one-way ANOVA while a two-way ANOVA was used to test for 

treatment effects in experiment 2 and 3. In experiment 4, treatment effects were analysed 

using an unbalanced three-way ANOVA. In experiment 5, the effect of cold storage 

duration on % RLC was assessed using a three-way ANOVA with storage time (1 to 5 

months), AMF treatment (single AMF species inoculated: F. mosseae or R. irregularis or 

C. claroideum) and strawberry cultivar (‘Vibrant’ or ‘Red Glory’) as factors. The main 

objective of this analysis was to test the effect of cold storage duration on AMF survival 

in colonised roots. However, it was suspected that plant roots with high DSE colonisation 

were more likely to have lower AMF root colonisation due to competition for space or 

other indirect effects. Therefore, DSE root colonisation level was included as a covariate 

in the ANOVA to remove its influence on AMF root colonisation. The significant 

differences among individual treatments were determined using a least significant 

difference (LSD) post-hoc test once the overall effect was significant for a specific 

treatment factor. Additionally, proportions of plant survival between AMF inoculated and 

control treatments in experiment 4 were analysed using a generalised linear model (GLM) 
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with residual errors assumed to follow binomial distributions; the logit link function was 

used.  

 

Only significant differences are reported in the text. For the plant growth parameter data, 

there was no significant difference among the AMF species, the data from different AMF 

species were hence pooled to form a single group (AMF inoculated). The non-mycorrhizal 

(NM) control (Cb+ and Cb-) data were treated similarly. Therefore, only the overall effect 

AMF cf. NM for plant growth parameters has hereafter been presented.  

 

3.3. Results 

3.3.1. Influence of weaning conditions on AMF colonisation 

Microscopic assessments of strawberry plug roots showed the presence of arbuscules 

and/or vesicles for all the plants tested irrespective of the type of plant material, growing 

substrate, plant size and cultivar, confirming the presence of AMF (Figure 3.8; 3.9; 3.10). 

The occurrences of microsclerotium-like structures and/or moniliform group of fungal 

cells were sporadically observed in the root cortex of plants in experiment 4, while they 

were more abundant in experiment 5, suggesting the presence of DSE (Figure 3.11).  
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Figure 3.8: Root colonisation by arbuscular mycorrhiza fungi (AMF) of Fragaria x ananassa plug 

(‘EM-1996’) after 6 weeks cultivation in autoclaved vermiculite in a growth room at 22°C 

(experiment 1). The numbers represent the AMF species: (1) Funneliformis mosseae; (2) 

Rhizophagus irregularis; (3) Claroideoglomus Claroideum while the adjoining letters represent 

various mycorrhizal structures (a) or arbuscules (b). Letters next to black arrows are A: arbuscule, 

V: vesicle, H: hypha, S: spore. The scale bar feature was not available in the camera used for image 

acquisition. Thus, the magnification is reported instead.  

 

 

Figure 3.9: Root colonisation by arbuscular mycorrhiza fungi (AMF) of Fragaria x ananassa plug 

cv. ‘Vibrant’ after 8 weeks cultivation in (a) coir and (b) vermiculite in a growth chamber at 22°C 

(experiment 2). Longitudinal squash of roots stained with trypan blue colonisation by single AMF 

species Rhizophagus irregularis. Letters next to black arrows are A: arbuscule and V: vesicle (red 

scale bars represent 100 μm).  
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Figure 3.10: Root colonisation by arbuscular mycorrhiza fungi (AMF) of Fragaria x ananassa 

plug cv. ‘Vibrant’ (a-c) and ‘Red Glory’ (d-f) after 6 weeks of cultivation in the Irish peat/perlite 

mix (7:3; v/v) under glasshouse conditions (experiment 3). Longitudinal squash of roots stained 

with trypan blue colonisation by single AMF species: (a, d) Funneliformis mosseae; (b, e) 

Rhizophagus irregularis; (c, f) Claroideoglomus claroideum. Letters next to black arrows are A: 

arbuscule, V: vesicle, H: hypha (red scale bars represent 100 μm).  
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Figure 3.11: Root colonisation by dark septate endophytes (DSE) of Fragaria x ananassa of cv. 

‘Elsanta’ after 7 weeks of cultivation in the Irish dark peat/perlite mix (7:3; v/v) under glasshouse 

conditions (experiment 4). Letters next to black arrows are H: hypha, Mo: moniliform cell and Me: 

microsclerotium (red scale bars represent 100 μm). 

 

In experiment 1, the use of vermiculite as a substrate proved equally optimal for F. 

mosseae, R. irregularis and C. claroideum root colonisation. Irrespective of the AMF 

species tested, average % RLC at 6 weeks was ca. 94% (Figure 3.12A) and there were no 

significant differences in the frequency of arbuscules or vesicles among the three AMF 

species tested (Figure 3.12B, C). 

 

In experiment 2, vermiculite and coir were both conducive for root colonisation by R. 

irregularis. However, there was a significant difference in % RLC between the two 
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substrates (Figure 3.12D; F1,14 = 54.7; P < 0.001). Average % RLC for coir was 40% and 

76% for vermiculite at 8 weeks post inoculation. 

 

In experiment 3, the Irish dark peat/perlite mix used for the weaning of runner-tips allowed 

F. mosseae, R. irregularis and C. claroideum to equally colonise plant roots. No significant 

differences were found between ‘Vibrant’ and ‘Red Glory’ cultivars. Average % RLC at 6 

weeks ranged from 67 to 81%. In addition, there were no significant interactions between 

AMF and cultivar (Figure 3.12E). Similarly, the frequency of arbuscules (Figure 3.12F) 

and vesicles (Figure 3.12G) did not depend on the AMF species inoculated and strawberry 

cultivar. Finally, there were no significant interactions between AMF and cultivar for 

arbuscule or vesicle frequencies.  
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Figure 3.12: Percentage of root colonisation by arbuscular mycorrhizal fungi (AMF, % RLC), 

arbuscules and vesicles in experiment 1 (A-C), experiment 2 (D) and experiment 3 (E-G). The 

abbreviations F.m, R.i and C.c respectively stand for Funneliformis mosseae, Rhizophagus 

irregularis and Claroideoglomus claroideum. In experiment 2, R. irregularis was the only AMF 

species used. Root samples originated from two plants in experiment 2, but from individual plants 

in all the other experiments. No AMF colonisation observed in non-mycorrhizal controls (Cb- 

and/or Cb+). Bars represent standard error (+ 1 SE), and n is the number of replicates assessed (per 

treatment). Treatments that did not differ significantly share at least one common letter (Pairwise 

comparisons, P ≤ 0.05). ns indicates the absence of statistical significance between AMF species 

inoculated for each strawberry cultivar tested (E-G; Pairwise comparisons, P ≤ 0.05). Note some 

scales do not start at 0. 
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In experiment 4, the Irish dark peat/perlite mix also supported the establishment of AMF 

root colonisation of the strawberry plugs. However, differences among AMF species 

inoculated were evident (Table 3.5; F4,78 = 19.6; P < 0.001), except between F. mosseae 

and G. microagregatum. Average % RLC was in the order: R. irregularis (64%) > F. 

mosseae (42%) > G. microagregatum (40%) > C. claroideum (26%) > F. geosporum 

(12%). A significant effect (Table 3.5; F3,78 = 3.5; P = 0.018) of strawberry cultivar on % 

RLC was also detected as % RLC for cultivars ‘Elsanta’, ‘Red Glory’ and ‘Vibrant’ was 

ca. 40%, but only 27% for ‘Malling Centenary’. There was no significant difference of % 

RLC between the two runner size groups (Table 3.5); there were no significant interactions 

among factors (Table 3.5). 

 

Table 3.5: Results of the three-way ANOVA of the total percentage root colonisation by arbuscular 

mycorrhiza fungi (AMF, % RLC) in strawberry plugs grown for 7 weeks in Irish dark peat/perlite 

mix (7:3, v/v) under glasshouse conditions (experiment 4). Significant differences are shown by 

bold font (P ≤ 0.05). 

Source of variation 
% RLC 

df Mean square F P 

Cultivar 3 0.23 3.54 0.018 

AMF 4 1.28 19.62 < 0.001 

Plant (runner) size 1 0.06 0.92 0.340 

Cultivar × AMF  12 0.08 1.21 0.294 

Cultivar × Plant (runner) size 3 0.10 1.58 0.201 

AMF × Plant (runner) size 4 0.01 0.09 0.986 

Cultivar × AMF × Plant (runner) size 12 0.03 0.51 0.902 

Residual 78 0.07   

df = degrees of freedom. Fixed effects include cultivar (refers to ‘Elsanta’, ‘Malling Centenary’, ‘Red Glory’ 

and ‘Vibrant’), AMF (refers to plants inoculated singly with the AMF species: Funneliformis mosseae, 

Rhizophagus irregularis, Claroideoglomus claroideum, Funneliformis geosporum, Glomus 

microagregatum).  
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In experiment 5, AMF colonisation of roots of strawberry plugs cultivated in peat/perlite 

mix grown under glasshouse/poly-tunnel conditions was observed. DSE were also present 

in the roots. Before cold storage % RLC and % DSE colonisation ranged from 1-16%, and 

11-16% respectively (Table 3.6). 

 

Table 3.6: Percentage of root length colonisation by arbuscular mycorrhiza fungi (AMF, % RLC) 

and by dark septate endophytes (DSE, % DSE) of Fragaria x ananassa plug cv. ‘Vibrant’ and 

‘Red Glory’ inoculated with single AMF species (Funneliformis mosseae, Rhizophagus 

irregularis, or Claroideoglomus claroideum) after 113 d of cultivation in the Irish dark peat/perlite 

mix (7:3, v/v) under glasshouse/poly-tunnel conditions (experiment 5). 

Plant cultivar AMF species  % RLC * % DSE* 

Vibrant 

F. mosseae 1 ± 1 12 ± 2 

R. irregularis 16 ± 2 14 ± 2 

C. claroideum 9 ± 3 12 ± 1 

Red Glory 

F. mosseae 15 ± 5 16 ± 4 

R. irregularis 4 ± 2 15 ± 2 

C. claroideum 10 ± 5 11 ± 4 

* mean ± SE; n = 3, each root sample was pooled from five individual plants. 

 

3.3.2. Effect of AMF on strawberry plug transplant growth 

In experiment 1, all plants survived and grew normally. Plant crown diameter was affected 

by AMF inoculation (F1,56 = 11.7; P = 0.001). AMF inoculated plants had bigger crowns 

(mean 3.2 ± 0.1 mm; n = 36; Figure 3.13A) than the NM plants (mean 2.7 ± 0.1 mm; n = 

24; Figure 3.13A), while plant height was not modified by AMF inoculation. Plant fresh 

biomass was influenced by AMF inoculation (F1,56 = 5.8; P = 0.021). AMF-inoculated 

plants produced less fresh biomass (mean 2.4 ± 0.1 g; n = 36; Figure 3.13B) than the non-

mycorrhizal treatment (mean 2.7 ± 0.1 g; n = 24; Figure 3.13B).  
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Figure 3.13: (A) Mean plant crown diameter (mm) and (B) mean fresh biomass (g) in experiment 

1. Non-mycorrhizal (NM = Untreated) treatments are the white bars and the black bars represent 

the AMF inoculated treatments. Bars represent mean + 1 SE. For NM treatment n = 24 and for 

AMF inoculated treatment n = 36. Treatments that did not differ significantly share at least one 

common letter (Pairwise comparisons, P ≤ 0.05). Note the scales do not start at 0. 

 

In experiment 2, despite the infestation by spider mites, no plants died or showed visual 

differences in terms of growth. Plant crown diameter was not affected by AMF inoculation 

or by substrate. However, the interaction between the two factors was close to statistical 

significance (F1,78 = 3.89; P = 0.052). Plant fresh biomass was not affected by AMF 

inoculation or by substrate and neither was the interaction term. Plant dry biomass did not  

vary with AMF inoculation and substrate. However, a significant disordinal interaction 

between AMF inoculation and substrate was detected for plant dry biomass (F1,78 = 3.9; P 

= 0.033; Figure 3.14). Plants without AMF performed better in coir (i.e. higher dry 

biomass), whereas when growing in vermiculite plant with AMF did better (Figure 3.14). 

Finally, RWR was significantly affected by the substrate (F1,78 = 18.3; P < 0.001). The root 

weight ratio (RWV) was smaller in vermiculite (mean 0.168 ± 0.004; n = 42) than in coir 

(mean 0.189 ± 0.003; n = 42).  
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Figure 3.14: (A) Mean plant dry biomass (g) in experiment 2. Non-mycorrhizal (NM) treatments 

are the white bars and the black bars represent the AMF inoculated treatments. Bars represent mean 

+ 1 SE. For NM treatment and AMF inoculated treatment n = 21. A significant disordinal 

interaction between AMF inoculation and substrate was detected (F1,78 = 3.9; P = 0.033). ns 

indicates the absence of statistical significance between NM treatment and AMF inoculated 

treatment for each substrate tested (Pairwise comparisons, P ≤ 0.05). 

 

In experiment 3, all plants appeared to be healthy. Plant crown diameter was not affected 

by AMF inoculation but by cultivar (Figure 3.15A; F1,89 = 9.5; P = 0.003). Average crown 

size of ‘Vibrant’ (mean 6.8 ± 0.1 mm; n = 47) was bigger than ‘Red Glory’ (mean 6.4 ± 

0.1 mm; n = 50). The interaction between AMF treatment and cultivar was not significant. 

Similarly, plant height was not affected by AMF inoculation but by plant cultivar (Figure 

3.15B; F1,89 = 8.5; P = 0.004) with ‘Vibrant’ higher (mean 89.2 ± 2.2 mm; n = 47) than 

‘Red Glory’ (mean 81.1 ± 1.8 mm; n = 50). There was no interaction between AMF and 

cultivar. 

 

ns ns 
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Figure 3.15: (A) Mean plant crown diameter (mm) and (B) mean plant height (mm) in experiment 

3. Non-mycorrhizal (NM) treatments are the white bars and the black bars represent the AMF 

inoculated treatments. Bars represent mean + 1 SE. For NM treatment n = 20 and for AMF 

inoculated treatment n = 27-30. Cultivar had significant effects on (A) crown diameter (F1,89 = 9.5; 

P = 0.003) and (B) height (F1,89 = 8.5; P = 0.004). ns indicates the absence of statistical significance 

between NM treatment and AMF inoculated treatment for each strawberry cultivar tested (Pairwise 

comparisons, P ≤ 0.05). 

 

In experiment 4, both plant cultivars (P = 0.023) and plant runner-tip size (P < 0.001) 

significantly affected plant survival (Table 3.7). The dead plants came mostly from the 

plant size ‘Small’ and cultivar ‘Malling Centenary’. Mycorrhiza inoculation did not affect 

plant crown size or plant survival (Table 3.7). In addition, there were no interactions 

between these three factors (Table 3.7). 

 

ns 

ns 

ns 

ns 



  Chapter 3 

~ 71 ~ 
 

 

Table 3.7: Results of three-way ANOVA of plant crown diameter (mm) and generalised linear model (GLM) of survival (%) of plants pre-inoculated with arbuscular 

mycorrhiza fungi (AMF) and grown for 7 weeks in the Irish dark peat/ perlite mix (7:3, v/v) under glasshouse conditions (experiment 4). Significant differences are 

shown by bold font (P ≤ 0.05). 

Source of variation 
Plant crown diameter (mm) Plant survival (%) 

df Mean square F P df deviance P 

Cultivar 3 49.5 24.2 < 0.001 3 9.5 0.023 

AMF 1 2.7 1.3 0.251 1 2.1 0.146 

Plant (runner) size 1 215.4 105.4 < 0.001 1 26.2 < 0.001 

Cultivar × AMF  3 1.9 0.9 0.427 3 6.3 0.097 

Cultivar × Plant (runner) size 3 1.4 0.7 0.555 3 6.2 0.103 

AMF × Plant (runner) size 1 0.6 0.3 0.578 1 9.7 0.458 

Cultivar × AMF × Plant (runner) size 3 0.5 0.2 0.872 3 0.9 0.446 

Residual 239 2.0   271 125.4  

df = degrees of freedom. Fixed effects include cultivar (refers to ‘Elsanta’, ‘Malling Centenary’, ‘Red Glory’ and ‘Vibrant’), AMF (refers to plants inoculated with AMF) and runner-

tips size (‘Large’ and ‘Small’).  

Chapter 3 
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3.3.3. Effect of cold storage on AMF and DSE survival 

After a month of plant re-growth under growth room conditions, microscopic assessments 

of newly formed strawberry roots showed the presence of arbuscules and/or vesicles for 

both cultivars (‘Vibrant’ and ‘Red Glory’) irrespective of the length of cold storage (up to 

5 months), confirming the presence of AMF. The presence of microsclerotium-like 

structures and septate hyphae in the root cortex indicated the presence of DSE (Figure 

3.16A-F). In addition, smaller microsclerotia and moniliform group of fungal cells 

coexisting with dark septate hyphae were occasionally observed (Figure 3.16B, E, F), 

suggesting presence of different species or developmental stages of DSE. Overlapping of 

AMF and DSE structures was rarely observed. 
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Figure 3.16: Root colonisation by dark septate endophytes (DSE) of Fragaria x ananassa plug cv. 

‘Vibrant’ (A-C) and ‘Red Glory’ (D-F) cold stored at -2°C for 2 months, after 30 d of cultivation 

in autoclaved attapulgite clay in a growth cabinet at 22°C. Similar structures were observed in roots 

of plants cold stored at -2°C for 1, 3, 4 and 5 months (data not shown). Letters next to black arrows 

are H: hypha, Mo: moniliform cells and Me: microsclerotium (red scale bars represent 100 μm). 
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3.3.4. AMF root colonisation level in relation to DSE and cold storage  

Strawberry plugs that were stored for five months at -2°C had the highest AMF 

colonisation level (mean 58 ± 4%, n = 18; Figure 3.17), whereas the plugs stored for one 

month had the lowest level of AMF colonisation (mean 24 ± 4%, n = 18; Figure 3.17). 

DSE colonisation was lowest in the strawberry plugs that were stored for five months at    

-2°C (mean 15 ± 3%, n = 18; Figure 3.17) and highest in plants stored for one month (mean 

51 ± 4%, n = 18; Figure 3.17). When DSE was included as a covariate in the three-way 

ANOVA, there were significant effects of cold-storage duration (F4,59 = 2.8, P = 0.032), 

AMF species (F2,59 = 8.3, P < 0.001) and the three-way interaction between cold storage 

duration, cultivar and AMF (F8,59 = 2.5, P = 0.023) on % RLC (Table 3.8). Overall, plants 

pre-inoculated with C. claroideum (mean 54 ± 3%, n = 30) had a significantly higher level 

of colonisation than the plants pre-inoculated with F. mosseae (mean 34 ± 4%, n = 30) or 

R. irregularis (mean 35 ± 3%, n = 30) regardless the cultivars and duration of cold storage.  

 

 

 

 

 

 

 

Figure 3.17: Percentage arbuscular mycorrhiza fungi (AMF, % RLC) and dark septate endophytes 

(DSE, % DSE) root length colonisation means (± SE, n = 18; each root sample was pooled from 

three individual plants) after different cold storage duration (one to five months) followed up by 

30 d of re-growth in a growth room at 22°C.  
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Table 3.8: Results of the three-way ANOVA of percentage arbuscular mycorrhiza fungi (AMF, % 

RLC) colonisation levels in strawberry roots pre-inoculated with AMF, cold stored at -2°C for one 

to five months and re-grown for 30 d in a growth room at 22°C. Significant differences are shown 

by bold font (P ≤ 0.05). 

Source of variation 
AMF colonisation (% RLC) 

df Mean square F P 

Duration (of cold storage) 4 0.051 2.8 0.032 

Cultivar 1 0.003 0.2 0.699 

AMF 2 0.149 8.4 <0.001 

Duration × Cultivar 4 0.023 1.3 0.293 

Duration × AMF 8 0.034 1.9 0.079 

Cultivar × AMF 2 0.019 1.1 0.356 

Duration × Cultivar × AMF 8 0.043 2.5 0.023 

Covariate (DSE colonisation) 1 0.695 39.2 <0.001 

Residual 59 0.018   

df = degrees of freedom. Five cold-storage durations (1, 2, 3, 4 and 5 months) at -2°C, cultivar (‘Vibrant’ 

and ‘Red Glory’), and AMF species inoculated (Funneliformis mosseae or Rhizophagus irregularis or 

Claroideoglomus claroideum); DSE colonisation percentage was included as a covariate.  

 

3.4. Discussion 

3.4.1. Influence of weaning conditions on AMF colonisation  

The soil-less substrates used for weaning, propagation and/or cultivation of horticultural 

crops usually lack AMF (Azcón-Aguilar & Barea, 1997; Vestberg et al., 2004). By 

introducing AMF at a very early stage of the strawberry propagation process, it might be 

possible to decrease fertiliser and pesticide application rates without adverse effects on 

plant growth and health. However, the effect of the misting conditions and/or soil-less 

substrates necessary for weaning strawberry plantlets may negatively impact on the 

establishment of AMF symbiosis. This study represents the first attempt to examine the 

combined effects of high moisture conditions and different soil-less substrates on 

strawberry root colonisation by AMF during the weaning phase. The results indicated that 
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AMF can colonise roots of strawberry plugs under damp conditions in different soil-less 

substrates.  

 

Plant propagators or misting systems are required to maintain damp conditions for at least 

two weeks to ensure strawberry plant acclimatisation and rooting (Durner et al., 2002; 

Treder et al., 2015). Previous evidence suggested that AMF root colonisation is limited 

under damp conditions and declines with increasing amount of water in the substrate due 

to lower oxygen availability (Khan & Belik, 1995; Muthukumar et al., 1997; Thormann et 

al., 1999; Miller, 2000). Even though the soil-substrates tested (i.e. coir, peat/perlite mix 

and vermiculite) were rather wet during the weaning period, AMF could successfully 

colonise the strawberry plug roots in this study. These results agreed with the literature 

reporting AMF presence in wet land habitats (Søndergaard & Laegaard, 1977; Miller, 

2000) or successful root colonisation of crops under irrigation (Baslam et al., 2011). 

Therefore, AMF establishment is possible during the weaning stage of microplants and 

runner derived strawberry plants. 

 

This study highlighted the capacity of several AMF species to colonise strawberry root 

when cultivated in different types of soil-less substrates. Microplants inoculated with AMF 

and grown in vermiculite (experiment 1 and 2) showed the highest level of AMF 

colonisation (80-90%). Thus, use of vermiculite as a soil-less substrate is recommended 

for establishment of the AMF symbiosis in the roots of strawberry microplants during their 

weaning stage. This agrees with previous reports describing vermiculite as a suitable 

substrate for commercial AMF inocula production (de Santana et al., 2014; Rouphael et 

al., 2015). Several other studies have successfully colonised strawberry plants with AMF 

using vermiculite as amendment in their potting mixes (Mark & Cassells, 1996; Murphy 

et al., 2000; Sinclair et al., 2013), but this study is the first to report strawberry root 
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colonisation by AMF in vermiculite only. In experiment 2, strawberry plantlets were also 

successfully colonised by AMF in coir, which agreed with the findings of other studies 

(Linderman & Davis, 2003a, Boyer et al. 2016). Nevertheless, the level of colonisation 

obtained in vermiculite was about twofold higher (80%) than in coir (40%). Therefore, 

lower levels of AMF colonisation in coir compared to vermiculite may indicate that (1) 

coir is a less suitable environment for AMF colonisation, (2) coir inhibits the movement 

or production of extraradical hyphae or other propagules, or that (3) plant root physiology 

may have been modified in coir. Boyer et al. (2016) also reported a lower level of AMF 

colonisation of maize and strawberry grown in coir (overall 13%) compared to attapulgite 

clay (overall 29%). The reasons for the negative effect of coir on AMF colonisation remain 

unclear, but the biological, physical and chemical properties of the substrate have been 

suggested as possible reasons for the phenomenon (Boyer et al. 2016).  

 

Peat based mixes are commonly used by nurseries as a substrate to propagate strawberry 

plants (Vestberg et al., 2000; D'Anna et al., 2002; Treder et al., 2015). The results of this 

study demonstrated that different AMF species could colonise strawberry roots in an Irish 

peat/perlite mix (7:3 v/v). The results are in contrast with many studies reporting the 

negative effects of peat-based substrates on AMF root colonisation in strawberry and other 

crops (Vestberg et al., 2000; Linderman & Davis, 2003a; Linderman & Davis, 2003b; 

Vestberg et al., 2004; Vestberg & Kukkonen, 2007). The successful AMF colonisation 

observed in the current study may be the result of the dilution of the peat with perlite. The 

commonly observed negative effect of peat substrates on AMF root colonisation was 

shown to be partially alleviated by mixing peat substrates with mineral components such 

as sand or clay (Vestberg & Kukkonen, 2008).  
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In experiments 3, 4 and 5 strawberry plugs were cultivated with the same limed peat/perlite 

mix (7:3 v/v) and weaned under misting conditions (Table 3.1). However, the % RLC in 

experiment 5 was lower (1-16%) compared to experiment 3 and 4 (40-81%). Several 

factors may explain this difference in AMF root colonisation levels among those 

experiments. Firstly, the AMF inoculants used had a much lower number of infective 

propagules in experiment 5 (23-170 propagule mL-1) than in experiments 3 and 4 (1,600 

propagule mL-1). By increasing the number of infective propagules added to the strawberry 

plugs, similar colonisation percentage might have been obtained, assuming that the 

‘colonisation capacity’ (Tommerup, 1992) is similar between F. mosseae, R. irregularis 

and C. claroideum. Secondly, the lower AMF colonisation level may be related to the 

growing season. In experiment 5, the runner-tips were inoculated with AMF at the end of 

September, while in the other trials the plants were inoculated during a period from March 

to June. The growing conditions of the plugs were also relatively different in experiment 

5. The plugs were grown under glasshouse conditions and then under poly-tunnel 

conditions (with natural light and cooler temperatures). Further, plant roots were sampled 

in January (during vegetative dormancy), while plant roots were sampled between April-

July (months of maximum vegetative growth) in the other experiments. In addition, the 

plants had an extended growing period in experiment 5 (18 weeks cf. 6-8 weeks in 

experiment 3 and 4). Seasonal variations of AMF colonisation were previously 

documented under glasshouse (Niemi & Vestberg, 1992) and field conditions (Branzanti 

et al., 2002). Nevertheless, additional studies are needed to characterise the effects of the 

physical, chemical and biological properties of peat-based substrates and investigate how 

these could affect AMF colonisation. 

 

Microscopic assessments suggested that strawberry plug roots were sometimes colonised 

by DSE (experiment 4 and 5). The DSE inocula seemed to originate from the Irish dark 
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peat used during plant weaning stage. This is supported by the fact that DSE were not 

observed in the other experiments with other soil-less substrates. Occurrence of DSE has 

mostly been described from soil systems (Wagg et al., 2008; Lizarraga et al., 2015; 

Vandegrift et al., 2015) but has also been reported from peat (Fuchs & Haselwandter, 2004; 

Thormann, 2006; Weishampel & Bedford, 2006). The interest in DSE has recently 

increased but thus far only 30 DSE species have been identified and their phylogenetic 

identity or functional roles are uncertain (Andrade-Linares & Franken, 2013; Knapp et al., 

2015). In the present investigation, the DSE observed in the strawberry roots were 

unidentified. Future phylogenetic analysis of DSE in strawberry root and studies on their 

potential effect on plant growth may provide insight into their identity and functions. 

 

3.4.2. Effect of strawberry cultivar and plant size on root colonisation level  

Different strawberry cultivars were tested in combination with several AMF species 

(strains) to study the potential presence of specific interactions between the hosts and the 

fungal symbionts (experiment 3 and 4). Results showed that AMF species generally did 

not differ in their ability to colonise strawberry cultivars. In experiment 3, there were no 

cultivar effects on AMF colonisation. This contrasted with the results from experiment 4 

where cultivar ‘Malling Centenary’ had a lower level of colonisation, while ‘Elsanta’, ‘Red 

Glory’ and ‘Vibrant’ had similar levels of AMF colonisation. Variability of AMF 

colonisation among strawberry cultivars grown under field conditions has previously been 

reported (Robertson et al., 1988). Moreover, studies conducted under glasshouse 

conditions showed that strawberry cultivars were either colonised equally (Robertson et 

al., 1988) or differentially (Chávez & Ferrera-Cerrato, 1990; Vestberg, 1992b) by AMF. 

Therefore, further work is needed to characterise the origin of the lower root colonisation 

of ‘Malling Centenary’ growing in the peat-based substrate and to confirm the low AMF 
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colonisation level relative to other cultivars (e.g. ‘Elsanta’, ‘Red Glory’ and ‘Vibrant’). 

The next step is to assess root growth, morphology, exudation, and the rhizosphere 

microbial community to determine whether these traits are responsible for low AMF 

colonisation in strawberry roots. Previous reports have highlighted the presence of a 

relationship between root morphology and mycotrophy with AMF (Tawaraya, 2003). The 

root architecture of different strawberry cultivars and their root exudate composition have 

been reported to vary greatly (Vestberg, 1992b). The lack of AMF colonisation of some 

wheat varieties has previously been linked to the absence of root sugar exudates (Azcon & 

Ocampo, 1981). Therefore, a potential difference in root morphology and/or 

qualitative/quantitative differences in root exudates of ‘Malling Centenary’ may have 

influenced rhizosphere microbial communities or signalling pathways affecting AMF 

colonisation. The tripartite interaction between host plant, AMF and other microbes have 

been reported to influence positively (Rouphael et al., 2015) or negatively AMF root 

colonisation (Germida & Walley, 1996). Characterisation of soil microbial community 

function remains at present limited, but the enhanced application of metagenomic tools 

will allow us to access such information in the near future.  

 

The results from experiment 4 suggested that AMF species do not differ in their capacity 

to colonise roots of different sized plants; both plant size groups were colonised equally 

by AMF. This finding agrees with a previous report showing that total root colonisation 

by AMF and DSE were not affected by the difference in size of Gentianella campestris 

(L.) Börner plants (Piippo et al., 2011). 

 

3.4.3. Effect of AMF pre-inoculation on strawberry plug growth 

This study showed that strawberry microplants and runner-tip derived plants could be 

AMF colonised during the weaning stage, however, the results indicated that early AMF 
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inoculation does not necessarily increase plug growth during propagation and indeed could 

even lead to growth reductions. AMF colonisation reduced the total fresh biomass of 

microplants (experiment 1), perhaps due to non-optimal conditions for photosynthesis 

resulting in a carbon drain on the host plant (Bethlenfalvay et al., 1982). Despite the 

reduction of fresh weight, plants crown size was significantly increased by AMF 

inoculation although the reasons for this remained unclear. AMF colonisation may have 

resulted in changes in hormonal and/or nutritional conditions but further investigation 

would be required to characterise this. In a similar experiment (experiment 2), AMF 

colonisation did not affect plant crown size or total fresh biomass, but a significant 

disordinal interaction between AMF and substrates on the total plant dry biomass was 

observed. In coir, AMF root colonisation with R. irregularis reduced total plant biomass, 

whereas in vermiculite the AMF increased the total plant biomass. This result agreed with 

previous studies showing that the response of strawberry plants to AMF colonisation 

depends on specific host-AMF combinations (Chávez & Ferrera-Cerrato, 1990; Vestberg, 

1992b), which may be linked to host preference and soil adaptation (Hayman, 1982). 

 

In peat-based substrate AMF had no effect on development of runner-derived plants. In 

contrast, another study reported that certain combinations of strawberry cultivars and AMF 

species resulted in the increase of plant biomass in peat based substrate (Vestberg, 1992b). 

Perhaps, the neutral effect of AMF inoculation observed in the current experiment could 

be explained by the fact that nutrients were not limiting in the Irish dark peat/perlite mix 

used and/or the plant growth window may have been too short to detect an effect.  

 

3.4.4. Effect of cold storage on the presence of AMF after plug re-growth 

Experiment 5 was the first study to explore the effect of cold storage on the survival of 

AMF in pre-inoculated strawberry plug roots. The results indicated that AMF propagules 
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in pre-inoculated strawberry roots did not suffer from several months of storage at -2°C. 

AMF structures were observed in newly formed roots of both cv. ‘Red Glory’ and 

‘Vibrant’ for all three AMF species screened (F. mosseae, R. irregularis, C. claroideum), 

irrespective of the duration of cold storage. Thus, propagules of the three AMF species 

were able to survive and to retain their infectivity after several months of cold storage. This 

result is in agreement with previous studies in which Glomus species propagules remained 

infective in frozen soil over winter (Addy et al., 1994; Addy et al., 1997) or after artificial 

freezing treatment at -12°C for 7 d in soil (Addy et al., 1998) and at -5°C for 4 weeks in 

silica sand (Klironomos et al., 2001). Addy et al. (1997) reported that extraradical 

mycelium of R. irregularis and G. fasciculatum survived freezing treatment and mycelia 

were much effective as inoculum compared to the spores of the same fungi. Therefore, 

AMF propagules can survive freezing temperature for several months given the 

environment in which they inhabit.  

 

3.4.5. Effect of DSE and cold storage on AMF root colonisation level 

Microscopic assessments showed that strawberry plug roots grown in peat were regularly 

associated with DSE. These DSE fungi have been described as ‘miscellaneous fungi’ that 

colonise the root tissue of a large array of plant species (Jumpponen & Trappe, 1998) 

without causing any noticeable damage to their host (Jumpponen, 2001) and have been 

frequently reported to co-exist with AMF (Urcelay, 2002). Lizarraga et al. (2015) reported 

the co-existence of DSE and AMF in F. x ananassa grown under field conditions. Hence, 

it is reasonable to expect that AMF and DSE share the same spatial niche and interact with 

each other. Microscopic analysis revealed that strawberry roots heavily colonised by DSE 

rarely contained mycorrhizal structures, suggesting niche competition for space. This 

observation agrees with previous reports showing that plants with the highest AMF 

colonisation generally showed the lowest DSE colonisation and vice versa (Kandalepas et 
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al., 2010; Urcelay et al., 2011). Additional studies are needed to characterise the nature of 

AMF and DSE interaction in strawberry roots (e.g. competition for spaces, for carbon 

and/or mineral nutrients, and effect of DSE exudates) as well as their effects on the host 

fitness. 

 

It was suspected that plant roots with high DSE colonisation were more likely to have 

lower AMF root colonisation due to competition for root space. Therefore, DSE root 

colonisation level was included as a covariate in ANOVA to remove its influence on AMF 

root colonisation. Against all expectations the colonisation by AMF remained different 

between plants cold stored for 1 and 4 months. Hence, the decline of DSE in the roots was 

not the only factor responsible for the increase of AMF root colonisation over time. 

Perhaps, prolonged cold storage resulted in the breakage of spore dormancy that might 

have resulted in additional spore germination and so a higher root colonisation. To study 

the effect of various cold storage periods on spore dormancy, future experiments need to 

occur in an environment that does not suppress or interfere with the strawberry–AMF 

interaction. Therefore, tests should be conducted in the absence of DSE (e.g. by using 

autoclaved peat substrates during the plug propagation). In addition, to verify if there is a 

correlation between better spore dormancy breakage and higher RLC, assessment of spore 

viability and a spore germination bioassay on minimal (M) medium should be run in 

parallel (Juge et al., 2002). 

 

Additionally, AMF species used in experiment 5 resulted in a different level of strawberry 

root colonisation. The plants pre-inoculated with C. claroideum presented a significantly 

higher level of root colonisation although the MPN test revealed the lowest number of 

viable propagules for this AMF species compared to R. irregularis and F. mosseae. 

Therefore, assuming that the three AMF species tested had similar colonisation capacities, 
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it was hypothesised that the cold storage treatment resulted in a higher breakage of spore 

dormancy for C. claroideum and/or C. claroideum spores presented a better tolerance to 

freezing injures. Previous studies have highlighted that the requirement to break spore 

dormancy varied greatly among AMF species (Douds & Schenk, 1991; Juge et al., 2002) 

as well as their tolerance to freezing temperatures (Klironomos et al., 2001). 

. 

3.5. Conclusion and prospects 

The results presented in this chapter have confirmed that AMF propagules can colonise 

strawberry roots of several commercial cultivars when incorporated as a powder layer in 

an Irish peat/base mix, vermiculite and coir under misting conditions or plant propagators. 

Therefore, AMF inoculated during the weaning stage of microplants or runner tips can 

result in a high level of mycorrhizal colonisation, independently of plant material size 

and/or the strawberry cultivar inoculated (apart from ‘Malling Centenary’). However, pre-

inoculation of strawberry transplants with AMF does not necessarily translate to improved 

plant growth during weaning and propagation. In addition, AMF propagules can tolerate 

the formation of ice in the root ball induced by the cold storage at -2°C for several months. 

Therefore, commercial AMF inocula may be applied during strawberry tipping without 

reducing the mycorrhiza viability during subsequent cold storage of pre-colonised plants. 

Interestingly, this study has also highlighted the presence of DSE in Irish dark peat that 

may have competed with AMF root colonisation, but this requires further investigation. 

The main results of the five experiments were summarised in Table 3.9 (note the 

interaction terms were not presented for clarity).  

 

Furthermore, with the respect to commercial introduction of AMF during weaning of 

strawberry transplants, the results of these five experiments are valuable for the strawberry 

nurseries that may consider introducing AMF via pre-inoculated strawberry plugs in their 
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fumigated field or soil-less substrate system, both systems often lacking beneficial 

microbes. Future research efforts should focus upon understanding the outcomes of the 

interaction among strawberry cultivars, AMF species (or strains), other root endophytes 

(e.g. DSE) and substrate (e.g. coir- and peat-based substrates). This will help the growers 

to select the best AMF-strawberry-substrate combinations to maximise AMF beneficial 

effects during propagation and after transplantation. Further research should also focus on 

testing lower amounts of AMF inoculum to reduce the costs for growers, improving the 

inoculation method to make the technology cheaper and less labour intense.
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Table 3.9: Results summary of the five experiments presented in Chapter 3. Only the main factors are hereafter presented and interactions between factors are omitted 

for clarity.

a Abbreviations F.m, R.i, C.c, G.m and F.g respectively stand for the single AMF species inoculated: Funneliformis mosseae, Rhizophagus irregularis, Claroideoglomus claroideum, 

Glomus microagregatum, Funneliformis geosporum. Cb-: a control inoculated with autoclaved attapulgite clay; Cb+: a control inoculated with an autoclaved equal mix of AMF species 

used and inoculated with bacterial washing. 
b Abbreviations E, MC, RG, and V respectively stand for the strawberry cultivars: ‘Elsanta’, ‘Malling Centenary’, ‘Red Glory’ and ‘Vibrant’. 

‘ns’ stands for ‘not significant’, *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001.  

 

 Experiment 

  1 2 3 4     5 
Total no. treatments 5 4 10 48 30 

AMF species and controlsa F.m, R.i, C.c, Cb-, Cb+ R.i, Cb+ F.m, R.i, C.c, Cb-, Cb+ F.m, R.i, C.c, G.m, F.g, Cb+ F.m, R.i, C.c 

Plant cultivarsb EM-1996 V RG, V E, MC, RG, V RG, V 

Plant (runner) size categories - - - Small/Large - 

Weaning substrate Vermiculite Vermiculite or Coir Peat/perlite mix Peat/perlite mix Peat/perlite mix 

Re-growth substrate - - - - Attapulgite clay 

Cold storage duration at -2°C (months) - - - - 1, 2, 3, 4, 5 

      

% RLC (range) 94% 40-76% 67-81% 12-64% 34-54% 

Effect of AMF species on % RLC ns - ns *** *** 

Effect of plant cultivar on % RLC - - * * ns 

Effect of plant size on % RLC - - - ns - 

Effect of cold storage duration on % RLC - - - - * 

Effect of substrate on % RLC - * - - - 

Effect of AMF inoculation on plant survival - - - ns - 

Effect of AMF inoculation on plant crown size *** ns ns ns - 

Effect of AMF inoculation on plant height ns - ns - - 

Effect of AMF inoculation on fresh biomass * ns - - - 
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Chapter 4. Evaluation of the potential of pre-colonised 

strawberry plugs with mycorrhizal inoculants to increase 

tolerance to Verticillium wilt  

4.1. Introduction 

The soil-borne pathogen Verticillium dahliae (Kleb.) is a serious threat to strawberry 

production in soil (Pegg & Brady, 2002). This pathogen invades the vascular tissues of the 

roots and crown depriving the leaves and stems of water (Bhat & Subbarao, 1999; 

Lovelidge, 2004). The soil fumigant methyl bromide has been routinely applied for the 

past 40 years to control strawberry wilt; however, it was banned in Europe due to its high 

ozone-depleting potential and its chemical alternatives, chloropicrin, faces an uncertain 

future due to possible legislation (Ristaino & Thomas, 1997; Martin, 2003). Alternative 

measures, such as biofumigation, solarisation and crop rotation, contribute to disease 

control, but they are usually not as effective as commercial chemical fumigants 

(Tahmatsidou et al., 2006; Korthals et al., 2014). Consequently, extensive effort has gone 

into finding other economically effective alternatives to mitigate the threat of strawberry 

wilt (Martin, 2003; Goicoechea et al., 2010). One approach is to exploit AMF as a bio-

protectant against strawberry wilt. Inoculation of AMF at planting could increase 

strawberry plant tolerance to V. dahliae (Ma et al., 2004; Tahmatsidou et al., 2006; Sowik 

et al., 2016). Pre-colonisation of horticultural plants with AMF before transplanting has 

been proposed as a method protecting plants against soil-borne pathogens (Azcón-Aguilar 

& Barea, 1997; Vestberg et al., 2004). Although strawberry is an ideal production system 

to study such a control method, thus far there has not been any published information 

regarding the use of AMF pre-inoculated strawberry plug transplants to control V. dahliae.  
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The aim of this study was to investigate whether strawberry plugs pre-inoculated with 

commercially available AMF could enhance plant growth and reduce strawberry wilt 

incidence in contaminated soils. Several strawberry cultivars susceptible to wilt were 

screened to test the hypothesis that pre-inoculation with AMF can increase tolerance to 

wilt after transplantation under glasshouse or open field conditions. 

 

4.2. Materials and methods 

A total of seven experiments were conducted in 2014-2016. Three experiments were 

carried out with wilt conidial suspensions and one experiment with mycelia under 

controlled conditions. However, none of these inoculations resulted in wilt development; 

hence are not discussed further. The other three experiments were carried out with soils 

[naturally contaminated with V. dahliae inoculum] under glasshouse (Figure 4.1A) or open 

field (Figure 4.1B) conditions as summarised in Table 4.1. 
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Figure 4.1: Schematic representation of the experimental setup to study the effect of arbuscular mycorrhiza fungi (AMF) pre-inoculation against Verticillium dahliae: 

(A) glasshouse experiments (experiment 1 and 2) and (B) field experiment (experiment 3). Microplants or runner-tips were AMF inoculated and propagated in soil- 

less substrates (Step 1). Plugs were cold stored for seven weeks at -2°C only for experiment 3, while plugs were kept under glasshouse conditions for experiment 1 

and 2 (Step 2). Plugs were transplanted in field soil contaminated with V. dahliae microsclerotia (Step 3) and disease development assessed (Step 4). 

A B 
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Table 4.1: Summary of the three experiments to study the effect of early arbuscular mycorrhizal fungi (AMF) colonisation of strawberry plug transplants on the 

development of wilt caused by Verticillium dahliae.  

AMF treatment 
Experiment number 

1 2 3 

Total no. treatments 5 10 12 

AMF species and controlsa F.m, R.i, C.c, Cb-, Cb+ F.m, R.i, C.c, Cb-, Cb+ F.m, R.i, C.c, Cb+ 

Plant cultivarsb EM-1996 RG, V MC, RG, V 

Total no. of replicates 12 10 96 

No. blocks  3 5 6 

    

Type of plant material  Plug plant Plug plant Cold stored plug plant 

Location Glasshouse Glasshouse Field 

Pathogens propagule densityc 22.2 CFU g-1 of soil 22.2 CFU g-1 of soil 1.9 CFU g-1 of soil 

Start date (i.e. transplantation) 19/03/14 16/04/14 22/05/15 

Experimental duration 27 weeks 25 weeks 18 weeks 

a Abbreviations F.m, R.i, C.c, G.m and F.g respectively stand for the single AMF species inoculated: Funneliformis mosseae, Rhizophagus irregularis, Claroideoglomus 

claroideum, Glomus microagregatum, Funneliformis geosporum. Cb-: non-AMF control inoculated with autoclaved attapulgite clay; Cb+:  non-AMF control inoculated with an 

autoclaved equal mix of AMF species used and inoculated with bacterial washing. 
b Abbreviations E, MC, RG, and V respectively stand for strawberry cultivars: ‘Elsanta’, ‘Malling Centenary’, ‘Red Glory’ and ‘Vibrant’. 
c The pathogen propagules were microsclerotia naturally present in the field soil. CFU stands for colony-forming unit. 
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4.2.1. Plant materials 

All strawberry cultivars used are known to be susceptible to V. dahliae. The AMF pre-

colonised strawberry plug transplants used in experiment 1 and 2 were derived from plugs 

produced in Chapter 3 (see Section 3.2.2 experiment 1 and 3). For experiment 3, AMF pre-

colonised strawberry plugs were produced as described in Section 3.2.2 with the following 

modifications: (1) after cultivation for 82 d under glasshouse conditions, plants were 

transferred to a poly-tunnel with natural shorter days and cooler temperatures for 76 d to 

induce dormancy, (2) plants were acclimated to lower temperatures for 8 d in the dark at 

2°C and (3) strawberry plugs were cold stored at -2°C for 7 weeks. At the end of the cold 

storage period, plants were transferred to a poly-tunnel for six weeks (spring time) to 

induce plant growth before field transplantation. 

 

4.2.2. Determination of wilt inoculum density in field soils 

Estimation of V. dahliae microsclerotia concentration in the soils was carried out using the 

Harris method (Harris et al., 1993). In experiment 3, soil samples deriving from each of 

the 72 plots of the experiment were pooled together for this analysis. Microsclerotia 

concentrations are expressed in colony-forming unit (CFU) per gram of soil. 

 

4.2.3. Plug transplantation in wilt contaminated soils 

A randomised block design was used in all three experiments (Table 4.1). In experiment 1 

and 2, plugs were re-potted into 1 L plastic pots (11 x 11 x 12 cm, Desch Plantpak Ltd, 

Essex, UK) filled up with soil collected from a non-fumigated commercial strawberry field 

at NIAB EMR, UK (N 51°17’20.93’’, E 00°27’11.52’’; soil: Barming series, loamy fine 

sand). The background nutrient status of the field soil was analysed before plant 

transplantation to identify potential elements that could negatively influence AMF 
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colonisation in this study (e.g. low pH and/or high P level; Table 4.2). The soil was sieved 

beforehand with a garden riddle (square hole wire mesh ca. 5 mm). Strawberry plugs were 

then kept under standard greenhouse conditions (22-23°C, ca. 40% RH, natural light:dark 

cycle, adequate pest control; Figure 4.2A, B) as outlined in Table 4.1. Plants from 

experiment 1 and 2 were watered daily with tap water and fertilised once a week with 50 

mL of full-strength Rorison’s nutrient solution but with phosphate omitted (Hewitt & 

Bureaux, 1966). To induce a moderate water stress to encourage wilt development for the 

last seven weeks of experiment 1 and 2, plants were watered only two or three times per 

week (one of those watering event included fertilisation).  

 

Experiment 3 was carried out in raised double-row beds at NIAB EMR, UK (N 

51°17’19.90’’, E 00°27’13.38’’ soil: Barming series, loamy fine sand) in open-field. The 

background nutrient status of the field soil was also analysed before transplantation in this 

experiment (Table 4.2). The soil was not fumigated before planting. Plastic drip irrigation 

was laid down in the middle of the bed, which was covered with blue plastic mulch (Figure 

4.2C, D). A spacing of 30 cm between rows and between plants was used. There was a 

spacing of ca. 100 cm between neighbouring plots (each containing 16 plants) in the same 

bed (i.e. block). Irrigation, fertilisation and pest control followed standard commercial 

practices.  
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Figure 4.2: Strawberry plants were grown in pots filled up with field soil under glasshouse 

conditions in experiment (A) 1 and (B) 2. Strawberry plants in experiment 3 were grown in field 

plots at (C) one week and (D) 15 weeks post transplantation. 

 

Table 4.2: Background nutrient status analysisa of the field soil (Barming series) used in the three 

experiments. 

Experiment pH 
NO

3
 NH

4
 P K Mg 

ppm = mg kg
-1

 

1, 2 5.9 8.1 0.9 31.1 198.6 69.6 

3 7.9 2.4 2.0 30.4 188.5 52.1 
 

a Available nutrient status of each growth medium was provided by NRM Laboratories (Berkshire, UK) 

in mg L-1 and it was converted to mg kg-1. NO3
- was determined by ion chromatography and NH4

+ by 

colorimetric analysis. P, K, Mg and Ca were analysed by ICP-OES (Inductively Coupled Plasma-Optical 

Emission Spectroscopy). Note that the nutrient status analysis of each growing medium could not be 

replicated due to high cost. 

 

 

4.2.4. Root sample analysis and plant growth  

Plant growth and percentage of AMF root colonisation were assessed at the end of 

experiment 1 and 2 and a subset of three samples (= three individual plants) was used for 

AMF colonisation assessments of each treatment. In experiment 3, percentage of AMF 

root colonisation was not assessed due to the presence of resident AMF confirmed in the 

soil samples used in experiment 1 and 2. Fresh roots were randomly sampled and stained 
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(Section 2.3.1) to assess AMF colonisation (Section 2.3.2). No attempt was made to 

distinguish between indigenous and pre-inoculated AMF.  

 

The number of plants producing runners, crown size and plant dry weight were only 

assessed in experiment 1 and 2. To measure total dry weight, plants were harvested and 

washed with tap water to remove soil particles. The plants were then oven dried at 80°C 

for 3 d and then weighed. To calculate the root weight ratio (RWR: root dry weight as a 

fraction of the total plant dry weight), roots were weighed after being separated from the 

shoot. In experiment 1, nutrient content in strawberry shoots was analysed by inductively 

coupled plasma-optical emission spectroscopy (ICP-OES) for P, K, Mg, Ca and micro-

elements (Cu, Fe, Zn, B, Mn), while the total nitrogen and sulphur were measured with the 

Dumas method (AOAC, 1989). Each strawberry shoot sample analysed was pooled from 

four individual plants from the same block. The shoot nutrient analysis was conducted by 

NRM Laboratories, Berkshire, UK. 

 

In experiment 1 and 2, fruit yield was not recorded because plants had not been subjected 

to adequate chilling and insect pollinators were not provided in the confined compartment 

(natural pollinators could not enter the compartment since the facility was completely 

sealed for the purpose of controlled isolation). In experiment 3, the fruit yield was also not 

assessed. Cultivars ‘Malling Centenary’ and ‘Vibrant’ showed an abnormal cropping 

behaviour (i.e. low flower production) for unknown reasons, while ‘Red Glory’ flowered 

normally but most of the fruits were eaten by birds before harvest.   

 



  Chapter 4 

~ 95 ~ 
 

4.2.5. Disease assessment 

Wilt development was scored on the following scale: 0: no wilt symptoms and 1: presence 

of strawberry wilt symptoms such as wilted leaves, brown leaves, stunted or plant death.  

 

4.2.6. Data analysis 

All data were analysed using GenStat 13th edition (VSN International Ltd, Hemel 

Hempstead, UK). AMF root length colonisation (% RLC) and RWR data were analysed 

by ANOVA after arcsine square root transformation to satisfy normality. In experiment 1, 

there was only one treatment factor (AMF species). In experiment 2, there were two 

treatment factors (AMF treatment and strawberry cultivar); an unbalanced two-way 

ANOVA was used to analyse the data. Significant differences among individual treatments 

were determined by LSD post-hoc test if the overall treatment effect was significant (P ≤ 

0.05).  

 

The number of plant producing runners (experiment 1) and disease incidence (experiment 

3) were analysed using GLM with residual errors assumed to follow binomial distributions; 

the logit link function was used.  

 

Only significant differences are reported in the text. For plant growth variables, i.e. crown 

diameter, RWR and plant dry weight, there were no significant differences among the 

AMF species tested, the data from different AMF species were hence pooled to form a 

single group (AMF inoculated). The non-mycorrhizal (NM) control (Cb+ and Cb-) data 

were treated similarly. Therefore, only the overall effect AMF c.f. NM for plant growth 

parameters was hereafter presented. 
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4.3. Results 

4.3.1. Establishment of AMF inoculants after plug transplantation 

After cultivation in non-sterilised field soil, microscopic assessment of strawberry roots 

from experiment 1 and 2 showed the presence of AMF structures in the roots of AMF pre-

inoculated plants and NM controls (Figure 4.3). In experiment 1, at 27 weeks post 

transplantation all treatments were colonised by AMF to a similar extent (average % RLC 

across all treatments: ca. 93%; arbuscules and vesicles frequency ca. 32% and 46%, 

respectively).  

 

In experiment 2, average % RLC at 25 weeks reached ca. 90% across all treatments 

including the NM controls. There was a significant difference in % RLC between 

strawberry cultivars ‘Vibrant’ and ‘Red Glory’ (Figure 4.4A; F1,18 = 6.53; P = 0.020); % 

RLC was 92% and 87% for ‘Red Glory’ and ‘Vibrant’, respectively. Arbuscule frequency 

differed with AMF treatment (Figure 4.4B; F4,18 = 3.08; P = 0.043) but not with strawberry 

cultivar. Plants pre-inoculated with C. claroideum had a higher frequency of arbuscules 

(14%) than the other AMF treatments (4%). However, AMF treatment and cultivar did not 

affect vesicle frequency (average ca. 46%). There were no significant interactions between 

AMF treatment and cultivar for any AMF parameters measured.  
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Figure 4.3: Root colonisation by arbuscular mycorrhiza fungi (AMF) of strawberry plants in experiment 1 (cv. ‘EM-1966’) and experiment 2 (cv. ‘Vibrant’ 

and ‘Red Glory’) respectively after 25 and 27 weeks of cultivation in pots filled up with field soils in a glasshouse compartment. Longitudinal squash of 

roots stained with trypan blue colonisation by AMF, in non-AMF plant controls (a) Cb- and (b) Cb+, as well as plants pre-inoculated with (c) Funneliformis 

mosseae, (d) Rhizophagus irregularis and (e) Claroideoglomus claroideum. Letters next to the arrows are A: arbuscule, H: hyphae, S: spore, V: vesicle 

(red scale bars represent 100 μm).  
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Figure 4.4: Percentage of strawberry root colonisation by (A) arbuscular mycorrhiza fungi (AMF, 

% RLC) and (B) arbuscules in experiment 2. The abbreviations Cb-, Cb+, F.m, R.i and C.c represent 

non-AMF control (Cb-), non-AMF control with bacterial washing (Cb+), Funneliformis mosseae 

(F.m), Rhizophagus irregularis (R.i) and Claroideoglomus claroideum (C.c). Bars are standard 

error (+ 1 SE), and n is the number of replicates per treatment. Strawberry cultivar had a significant 

effect on (A) % RLC (F1,18 = 6.53; P = 0.020). AMF treatment had a significant effect on (B) % 

arbuscules (F4,18 = 3.08; P = 0.043). Note that one of the scale does not start at 0 

 

4.3.2. Effect of AMF pre-inoculation on plant growth 

In experiment 1, all plants survived transplantation and grew normally. The AMF pre-

inoculated plants appeared to have larger crown size (16.2 ± 0.4 mm; n = 36) than the NM 

control plants (14.8 ± 0.6 mm; n = 24); this difference was close to statistical significance 

(F1,56 = 3.88; P = 0.054). Plant dry weight and RWR were not influenced by AMF pre-

inoculation. The GLM analysis showed that the production of runners was affected by 

treatment (P = 0.032); the number of plants producing runners was less in the non-AMF 

control with bacterial washing (Cb+) and C. claroideum treatments compared to the non-

AMF control (Cb-; Figure 4.5). Foliar concentrations of both macro-elements (N, S, P, K, 

Mg and Ca) and micro-elements (Cu, Fe, Zn, B and Mn) were not influenced by AMF pre-

inoculation. 
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Figure 4.5: Results of generalised linear models fitting number of plants producing runners 

without pre-inoculated mycorrhiza (non-AMF control (Cb-) and non-AMF control with bacterial 

washing (Cb+)) or pre-inoculated with single AMF species: Funneliformis mosseae (F.m), 

Rhizophagus irregularis (R.i) and Claroideoglomus claroideum (C.c) in experiment 1. Data are 

number of plants producing runners (n = 12). The overall treatment effect was significant (GLM, 

P = 0.032). Treatments that did not differ significantly share at least one common letter (Pairwise 

comparisons, P ≤ 0.05).  

 

In experiment 2, crown diameter was not affected by AMF pre-inoculation but it was by 

cultivar (F1,89 = 23.1; P < 0.001). Average crown size of ‘Vibrant’ (15.6 ± 0.3 mm; n = 47) 

was bigger than ‘Red Glory’ (13.8 ± 0.3 mm; n = 50). RWR was not affected by AMF pre-

inoculation but by cultivar (F1,89 = 6.6; P = 0.010). Average RWR value of ‘Vibrant’ (0.42 

± 0.01; n = 47) was higher than ‘Red Glory’ (0.38 ± 0.01; n = 50). Plant dry weight did not 

vary with AMF treatment, but the two cultivars differed significantly in total dry weight 

(F1,89 = 49.4; P < 0.001) as ‘Vibrant’ produced more dry biomass (10.6 ± 0.4 g; n = 47) 

than ‘Red Glory’ (7.9 ± 0.2 g; n = 50). The interaction between AMF treatment and cultivar 

was not significant. None of the plants produced runners in experiment 2. 
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4.3.3. Effect of AMF pre-inoculation on strawberry wilt incidence 

In experiment 1, 27 weeks after transplantation in soil with an average wilt inoculum 

density of 22.2 CFU g-1 of soil, only a few plants showed wilt symptoms (Figure 4.6a-d). 

In the plants without AMF pre-inoculation two out of 24 plants showed typical wilt 

symptoms; while in the plants pre-inoculated with AMF, five out of 36 plants were wilted. 

Such differences were not statistically significant.  

 

In experiment 2, 25 weeks after transplanting in soil containing 22.2 CFU g-1 of soil, only 

a few ‘Vibrant’ plants showed wilt symptoms (Figure 4.6e-f), whilst all ‘Red Glory’ plants 

remained healthy (Table 4.3). The number of diseased plants was too low to allow for 

meaningful statistical comparison.  

 

In experiment 3, 18 weeks after cultivation under field conditions with an average wilt 

inoculum density of 1.9 CFU g-1 of soil, wilt symptoms were observed (Figure 4.6g-i). 

AMF pre-inoculation increased or decreased the number of diseased plants depending on 

individual AMF species but differences were not statistically significant. The three 

strawberry cultivars differed significantly in the incidence of wilt (P = 0.029; Table 4.4). 

The wilt incidence was in the order of ‘Malling Centenary’ (41%: 158 out of 384) > 

‘Vibrant’ (36%: 137 out of 384) > ‘Red Glory’ (21%: 82 out of 384; Figure 4.7). There 

were no significant interactions between AMF species and cultivar. The spatial map of 

strawberry wilt indicated two foci with high numbers of wilted plants (i.e. ≥ 10 diseased 

plants per plot indicated by orange to red colour; Figure 4.8).  
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Figure 4.6: Strawberry wilt symptoms observed across experiments were characterised by wilted 

leaves, brown leaves and stunted plants: (a-d) experiment 1; (e-f) experiment 2; (g-i) experiment 

3.  
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Table 4.3: Number of wilted and healthy plants in experiment 2 for treatments without or with 

AMF pre-inoculation of strawberry cultivars ‘Vibrant’ and ‘Red Glory’. 

 No. of plants 

Cultivar AMF pre-inoculation diseased Healthy 

Vibrant 
No 2 18 

Yes 3 24 

Red Glory 
No 0 20 

Yes 0 30 

 

Table 4.4: Generalised linear model (GLM, analysis of deviance) of the number of diseased plants 

in experiment 3, 18 weeks after cultivation under field conditions. Significant differences are 

shown by bold font (P ≤ 0.05). 

Source of variation 
Number of diseased plants 

df Deviance P 

Cultivar  2 42.6 0.029 

AMF  3 11.8 0.559 

Cultivar × AMF 6 20.9 0.716 

Residual 55 310.6  
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Figure 4.7: Number of diseased plants in experiment 3 without pre-inoculated mycorrhiza (Cb+) 

or pre-inoculated with single AMF species (Funneliformis mosseae (F.m), Rhizophagus irregularis 

(R.i) and Claroideoglomus claroideum (C.c)) of three strawberry cultivars (‘Vibrant’, ‘Malling 

Centenary’ and ‘Red Glory’), 18 weeks after cultivation under field conditions. Data are number 

of diseased plants (n = 96). Strawberry cultivars that did not differ significantly share at least one 

common letter (Pairwise comparisons, P ≤ 0.05). 

 

 

 

 

 

 

Figure 4.8: Spatial map of Verticillium dahliae on strawberry field at 18 weeks post transplantation 

showing two foci with high numbers of wilted plants per plot. The legend bar represents a colour 

key for the number of diseased plants per plot. There were six blocks (i.e. six planting beds) and 

72 plots each with 16 plants (AMF treatment and strawberry cultivar for each individual plot are 

not presented for clarity). 
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4.4. Discussion 

Since AMF have been shown to have positive effects on strawberry growth and health 

(Khanizadeh et al., 1995; Norman et al., 1996; Tahmatsidou et al., 2006; Sowik et al., 

2016), there is an increasing interest to use them in commercial horticulture to increase 

yield and fruit quality while reducing fertiliser and biocide inputs. After several months in 

pots filled up with non-autoclaved field soil, AMF colonisation of strawberry roots reached 

on average 90% in experiment 1 and 2, agreeing with a previous study showing high % 

RLC (70%) in strawberry plants cultivated in soil (Santos-González et al., 2011). This is 

the first report of such a high level of root colonisation for strawberry plants grown in pot 

filled up with non-autoclaved field soil. At the end of experiment 1 and 2, the controls and 

AMF pre-inoculated treatments showed similar levels of AMF root colonisation, indicating 

the presence of indigenous AMF propagules in the field soil used for both pot experiments. 

In addition, ‘Vibrant’ showed overall a lower AMF root colonisation level than ‘Red glory’ 

in experiment 2. This is in agreement with other studies showing that strawberry cultivars 

could differ in their response to AMF colonisation under both glasshouse or field 

conditions (Robertson et al., 1988; Chávez & Ferrera-Cerrato, 1990; Vestberg, 1992; 

Khanizadeh et al., 1995). However, it was not possible to confirm whether pre-inoculated 

AMF species persisted in the pot experiments due to the presence of AMF root colonisation 

in the controls. A number of studies have already discussed the fact that soils containing 

native AMF propagules are problematic in the sense that inoculated fungi cannot be 

distinguished easily from the indigenous AMF (Niemi & Vestberg, 1992; Tahmatsidou et 

al., 2006; Rodriguez & Sanders, 2015). Therefore, a metagenomic approach may be used 

in the future to assess whether pre-inoculated AMF species persisted temporally and 

spatially and if they altered the composition of the native AMF community in the field soil 

(Rodriguez & Sanders, 2015). However, this will be only possible if there are significant 

genetic differences between field and inoculated AMF strains and species. 
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Pre-colonisation by AMF did not result as expected in an enhanced plant growth (e.g. plant 

dry biomass) after transplantation in pots containing non-sterile field soils. It was 

suggested that in such long-term experiments the indigenous AMF inocula present in the 

soil could have masked the initial positive effect on plant growth provided by AMF pre-

colonisation. Nevertheless, future experiments with other strawberry cultivars and 

sampling times closer to the transplantation time may reveal whether the pre-inoculation 

was of any advantages for plant growth and nutrition in the early stage of establishment in 

the field. Moreover, non-mycorrhizal control plants inoculated with bacterial filtrate in 

experiment 1 indicated a negative effect of the background bacterial community of the 

commercial AMF inoculants on the number of plants producing runners. Several authors 

have discussed the potential of some bacterial strains to positively influence the production 

and quality of strawberry runners (Aslantaş & Güleryüz, 2004; Pirlak & Köse, 2010), but 

this is the first report of a negative effect of bacteria associated with the AMF inoculants 

on the production of strawberry runners. Therefore, additional work is needed to confirm 

this result and identify candidate microbe(s) responsible for this phenomenon.  

 

It was not possible to confirm that early AMF colonisation can improve plant tolerance to 

wilt in pot experiments under glasshouse conditions (experiment 1 and 2). In fact, natural 

Verticillium inoculum (microsclerotia) only resulted in a very low level of wilt symptoms 

on susceptible strawberry cultivars despite the sufficient level of viable microsclerotia in 

the soil (22 CFU g-1 of soil). Even as little as 1 CFU g–1 of soil can normally lead to 

significant wilt symptoms on strawberry in naturally infested field soil (Harris and Yang 

1996). However, the reasons for the low level of wilt symptoms observed in experiment 1 

and 2 are unknown. The transfer of the wilt infected soil under pot conditions may have 

reduced the microsclerotia infectivity. Therefore, other inoculation methods using a mix 
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of wilt isolates were also tested: (a) drenching soil with wilt conidial suspension without 

root injury in soil or sandy compost, (b) direct injection of conidial suspension in 

strawberry crown, (c) root dipping in conidial suspension with artificial root injury before 

transplantation in autoclaved sandy compost (Bhat & Subbarao, 1999), (d) inoculation of 

wilt hyphae with colonised potato dextrose agar (PDA) media plates buried at the bottom 

of the pots filled up with attapulgite clay. However, none of these methods led to wilt 

symptoms under controlled conditions (data not presented). Hence, it is of great 

importance to optimise another wilt inoculation method to enable further research under 

controlled conditions.  

 

Nonetheless, the results of pot experiments cannot be directly compared to open field 

conditions, where much more complex systems of invertebrates, microbes and nutrients 

prevail. When the field soil was transferred into pots (experiment 1 and 2), its structure 

was dramatically modified (e.g. by sieving) and glasshouse conditions were rather different 

from those in the open field. In the current study, these differences may have modified 

complex interactions between plants, soil borne pathogens and/or beneficial microbes 

resulting in the low number of wilted plants observed despite the high wilt propagule 

density in the soil tested.  

 

In the open field study (experiment 3), all three susceptible strawberry cultivars tested 

suffered from Verticillium wilt. The typical strawberry wilt symptoms developed across 

plots contaminated in average with 1.9 CFU g-1 of soil. However, results showed that none 

of the pre-inoculated AMF species could significantly reduce wilt incidence under field 

conditions. Although AMF inoculants were not effective under the conditions tested, this 

does not rule out their utility with other strawberry cultivars and/or in other locations. In 

addition, there was a high degree of spatial aggregation of plants with Verticillium wilt 



  Chapter 4 

~ 107 ~ 
 

(Figure 4.8), with two apparent foci. This aggregation pattern, as observed with V. dahliae 

on other crops (Xiao et al., 1997; Johnson et al., 2006; Wei et al., 2015), is most likely due 

to the heterogeneity in soil pathogen inoculum. This aggregation may have masked any 

treatment effects – random assignment of treatments to individual plots is not able to 

reduce the negative influence caused by aggregated inoculum. If soil samples from each 

experimental plot had been tested for wilt propagule concentration (e.g. via wet-sieving 

plating or wet-sieving qPCR methods) before plantation, it could be possible to use these 

inoculum concentrations as covariates to analyse the data. Therefore, it is advisable for 

future open field experiments to carry out wilt propagule density tests before strawberry 

plugs transplantation.   

 

4.5   Conclusion and prospects 

In summary, the present study highlighted the difficulty in conducting strawberry wilt 

inoculation experiments in pots under glasshouse conditions even when using a field soil 

naturally contaminated with Verticillium dahliae microsclerotia. This study also showed 

that AMF pre-inoculation of strawberry plugs failed to enhance plant growth after 

transplantation in a soil already inhabited by native AMF and it did not improve plant 

tolerance to V. dahliae under field conditions.  

 

The use of beneficial microbes such as AMF to control strawberry soil-borne diseases is 

still in its infancy, but it must be considered and studied as a potential alternative to 

chemical soil fumigants. Although few attempts have been made previously to select 

effective AMF species/strains, none of them have yet achieved a complete control of 

strawberry root diseases under field conditions (Martin & Bull, 2002; Tahmatsidou et al., 

2006). In fact, small changes in field conditions may result in greater changes in the 
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biological control abilities of non-native AMF inoculants (Vestberg, 1992; Vestberg et al., 

2005; Rodriguez & Sanders, 2015). The variation of AMF inoculants effectiveness against 

soil-borne pathogens under field conditions is context dependent because of (1) 

environmental factors, (2) production practices (e.g. use of fertilisers and biocides), (3) 

host species/cultivars, (4) competition with indigenous AMF communities, and (5) 

multiple pathogens. Another important aspect is that English strawberry cropping is 

currently moving away from traditional field cultivation toward production in soil-less 

substrate to mitigate the threat of strawberry wilt and other soil-borne pathogens. 

Therefore, strawberry wilt is expected to be less of a problem in strawberry production in 

the UK. Nevertheless, strawberry cultivation in substrate still relies on high water and 

fertiliser inputs and other types of root pathogens such as Phytophthora remain an issue. 

Therefore, the use of AMF inoculation for strawberry plants grown in soil-substrates may 

help to reduce chemical inputs, water use, and increase plant tolerance to root pathogens. 

In conclusion, management programs of strawberry root diseases using AMF should be 

specifically designed for soil-less production systems. 
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Chapter 5. Evaluation of the potential of arbuscular 

mycorrhiza fungi and plant growth promoting rhizobacteria to 

increase strawberry productivity and tolerance to Phytophthora 

fragariae and Phytophthora cactorum in soil-less substrates 

5.1.  Introduction 

Control of soil-borne pathogens is a major problem in strawberry field production because 

of the withdrawal of methyl bromide, an effective broad-spectrum chemical fumigant 

(Ristaino & Thomas, 1997; Tahmatsidou et al., 2006). Recently, UK strawberry 

production has been rapidly moving away from traditional field cultivation towards table-

top system, where strawberry plants are grown in soil-less substrate (e.g. coir and/or peat) 

under protection (e.g. polythene tunnel or glasshouse; Boyer et al., 2016). There are several 

advantages to the adoption of soil-less substrates in commercial strawberry production, 

including reduction in picking cost, extension of the growing season and reduced risk of 

soil-borne diseases (Paranjpe et al., 2008; Martínez et al., 2010; Lieten, 2013). 

Nevertheless, Phytophthora fragariae and P. cactorum continue to pose a serious threat to 

strawberry growing in soil-less substrate as they may have infected initial planting 

materials in nurseries (Schnitzler, 2004; Martínez et al., 2010). 

 

By inoculating strawberry rhizosphere with beneficial microbes, plants may be protected 

against biotic (e.g. pathogens) and abiotic (e.g. drought) stresses, while water and nutrient 

uptake could also be improved (Vestberg et al., 2004; Boyer et al., 2016). Strawberry is 

an ideal production system to study such methods as planting materials (e.g. micro-

propagated or runner derived plug plants) can be easily inoculated with beneficial microbes 

during their propagation and/or at planting. Several biological inoculants have already 

been shown to reduce the threat of strawberry root diseases in soil-less substrates when 
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introduced at planting (Martinez et al., 2013; Rouphael et al., 2015). Amongst those 

beneficial microbes, AMF showed to enhance plant growth, increase fruit yield and/or 

improve fruit quality in soil-less substrates (Cekic & Yilmaz, 2011; Boyer et al., 2015; 

Palencia et al., 2015; Boyer et al., 2016; Cecatto et al., 2016) and/or increased tolerance 

to root pathogens such as P. cactorum and P. fragariae (Murphy et al., 2000; Vestberg et 

al., 2004). In addition, plant growth-promoting rhizobacteria (PGPR) are commonly 

growing on the root surface, or rhizoplane, and increase plant growth and/or productivity 

by one or more mechanisms such as improved mineral nutrition, protection against 

pathogens or production of phytohormones (Glick, 1995; Vestberg  et al., 2004). Various 

symbiotic (Rhizobium, Bradyrhizobium, Mesorhizobium) and non-symbiotic 

(Pseudomonas, Bacillus, Klebsiella, Azotobacter, Azospirillum, Azomonas) PGPR are 

currently being used as bio-inoculants to promote plant health and productivity (Ahemad 

et al., 2014). Several studies have highlighted beneficial effects of PGPR on various crops 

including strawberry (Esitken et al., 2010; Ipek et al., 2014; Hautsalo et al., 2016). For 

example, PGPR inoculation showed to increase growth, chlorophyll content, nutrient 

element content, yield of strawberry plants and even mitigated deleterious effects of salt 

stress (Karlidag et al., 2013).  Some works have also reported a strong stimulatory impact 

of PGPR on AMF symbiosis and its functioning (Artursson et al., 2006). Interestingly, 

synergistic effects on strawberry growth following co-inoculation with PGPR and AMF 

were reported (Vosatka et al., 1992) and PGPR were also found to stimulate AMF root 

colonisation (Vosatka et al., 2000). Therefore, additional studies should strive towards an 

improved understanding of the functional mechanisms behind AMF-PGPR interactions, 

thus that optimized combinations of those beneficial microbes could be used as effective 

inoculants within sustainable strawberry production systems. 
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The first aim of this study was to investigate whether commercially available AMF and/or 

PGPR inoculants can reduce P. cactorum or P. fragariae development in soil-less 

substrates. Strawberry cultivars ‘Malling Centenary’ or ‘Vibrant’ were used to test the 

hypothesis that AMF pre-inoculation and/or inoculation of AMF and/or PGPR at planting 

time can enhance tolerance to P. fragariae in sandy compost. Then ‘Malling Centenary’ 

was used to study whether AMF pre-inoculation can increase tolerance to P. cactorum. 

The second objective was to assess whether commercially available AMF and PGPR 

inoculants can increase strawberry yield in coir. The strawberry cultivar ‘Malling 

Centenary’ was used to test the hypothesis that inoculation of AMF and/or PGPR at 

planting time can increase strawberry yield and plant growth. 

 

5.2. Materials and methods 

A total of four experiments were conducted in 2015-2016. Experiment 1 and 2 were carried 

out to study the protective effect of AMF and/or PGPR against P. fragariae under growth 

room conditions. Experiment 3 was carried out under glasshouse conditions to test whether 

AMF can reduce P. cactorum development. Finally, experiment 4 was conducted under 

glasshouse conditions to evaluate the effect of AMF and/or PGPR on strawberry plant 

growth and productivity in coir. Table 6.1 gives the summary of each experiment. 
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 a M: commercial AMF mix inoculum (RootgrowTM) containing five species, Funneliformis mosseae, F. geosporum Rhizophagus irregularis, Claroideoglomus claroideum, 

Glomus microagregatum, (provided by Plantworks Ltd, Kent, UK). P: commercial bacterial preparation containing four PGPR species, Rhizobium (Agrobacterium) strain 

IRBG74, Derxia lacustris HL-12, Bacillus megaterium and B. amyloliquefaciens (disclosed by PlantWorks Ltd, Kent, UK). M+P: AMF and PGPR. PreM: plug plants pre-

inoculated with RootgrowTM during tipping. PreM+M: AMF pre-inoculated plugs inoculated with RootgrowTM. PreM+P: AMF pre-inoculated plugs were inoculated with 

PGPR. PreM+M+P: AMF pre-inoculated plugs were inoculated with RootgrowTM and PGPR. Cb-: negative control without AMF pre-inoculation and no microbial inoculum. 

All microbial treatments were added at planting, except for treatment PreM. 
b In experiment 4, each coir bag (replicate) was planted with 10 strawberry plants.  
c The number of time the experiment was conducted. 
d CFU: colony-forming unit. 

Table 5.1: Summary of the four experiments to study the effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on 

strawberry plant health or productivity in soil-less substrates under controlled conditions. 

Microbial treatment 
Number of experiment 

1 2 3 4 

Number of treatments 4 8 2 4 

Treatmentsa M, P, M+P, Cb- M, P, M+P, PreM, PreM+M, PreM+P, PreM+M+P, Cb- M, Cb- M, P, M+P, Cb- 

Plant cultivars ‘Vibrant’ ‘Malling Centenary’ ‘Malling Centenary’ ‘Malling Centenary’ 

Total no. of replicatesb 20 16 20 3 

No. blocks  4 4 - - 

No. of experimental repeatsc 1 1 2 2 

     

Storage temperature of plugs -2°C +2°C -2°C -2°C 

Location Growth room Growth room Glasshouse (chilled) Glasshouse 

Growing substrate Sandy compost Sandy compost Compost Coir 

Pathogen inoculated P. fragariae P. fragariae P. cactorum - 

Pathogen inoculation method Slurry Slurry Wound + zoospores  - 

Pathogens concentrationd - - 103 CFU mL-1 - 

Experimental duration 5 weeks 6 weeks 7 weeks 13 weeks 

Chapter 5 
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5.2.1. Plant material 

Cold stored (-2°C) strawberry plugs used in experiment 1, 3 and 4 (Table 6.1) were 

obtained from Hargreaves Plants, Norfolk, UK; plants derived in this way have shown in 

previous work to be free from AMF colonisation (Xu, pers. comm.) and several plants 

were tested prior to the main experiments to confirm this. 

 

For experiment 2, AMF pre-inoculated and non-mycorrhizal strawberry plugs were 

obtained from R W Walpole Ltd, Norfolk, UK. Plastic trays (40 cells, ca. 132 cm3 per cell; 

PG Horticulture Ltd, Northampton, UK) were filled up with a peat/perlite/coir mix (7:2:1, 

v/v; fertilised by the supplier with Osmocote® [added at 3 kg m-3] and Micromax® premium 

[trace elements and magnesium fertiliser added at 0.3 kg m-3]; Legro Beheer b.v., Asten, 

The Netherlands) using an automatic Javo tray filler (Javo b.v., Noordwijkerhout, The 

Netherlands; Figure 6.1A-C). For the AMF inoculated plants, Rootgrow™ (PlantWorks 

Ltd, Kent, UK) was mixed homogeneously with the potting mix at 10% (v/v), while only 

the potting mix was used for the non-mycorrhizal treatment. On 7th July 2015, runner tips 

of cv. ‘Malling Centenary’ were harvested and then pinned-down under glasshouse 

conditions at R W Walpole Ltd, Norfolk, UK. The plantlets were firstly weaned (using a 

misting system spraying water every hour for the first 5 d aiming for RH 80% and then 

every three hours for the next 5 d, while plants were protected from direct sunlight; Figure 

5.1D). The misting system was then switched off. The plants were irrigated as needed, no 

additional fertiliser was added and direct sunlight was progressively introduced. The plug 

plants were grown for seven weeks (Figure 5.1E). On 27th August 2015, plug plants were 

sent to NIAB EMR, where they were cold stored at 2°C for 14 weeks. A few plants were 

tested prior to the experiment to determine whether the pre-inoculation was successful (10 

samples, each with five plants); the results indicated the presence of a low level of AMF 

structures in root (Figure 5.2) with average % RLC of ca. 3%. 
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Figure 5.1: (A) Bale breaker loading the tray filler machine with potting substrate (i.e. 

peat/perlite/coir mix: 7:2:1, v/v), here inoculated with the commercial AMF inoculum RootgrowTM. 

(B) Javo tray filler loading the plastic trays with potting mix. (C) View of a plastic tray filled with 

potting mix. (D) Strawberry plugs weaned under a misting system. (E) Plug plants grown under 

glasshouse conditions seven weeks post transplantation.   
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Figure 5.2: Root colonisation by arbuscular mycorrhiza fungi (AMF) of strawberry plugs in 

experiment 2 after 21 weeks (i.e. after 7 weeks under glasshouse conditions and 14 weeks in a dark 

storage compartment at 2°C) of cultivation. Letters next to the arrows are A: arbuscule, H: hyphae, 

V: vesicle (red scale bars represent 100 μm).  

 

5.2.2. Beneficial microbe inoculations 

Inoculum of AMF and PGPR were provided by PlantWorks Ltd, Kent, UK. The AMF 

granular formulation was applied as commercially available Rootgrow™, a 

clay/pumice/zeolite mix containing spores, mycelium, and colonised host plants root 

fragments of five different AMF species (Funneliformis mosseae, F. geosporum 

Rhizophagus irregularis, Claroideoglomus claroideum, Glomus microagregatum). 

Rootgrow™ contained ca. 350 propagules mL-1 as determined by MPN analysis (Section 

2.1.2; Cochran, 1950). The PGPR inoculum contained 108 CFU mL-1 and was supplied as 

a fine grade (0.5-1.0 mm) pumice containing four different rhizobacterial species 

(Rhizobium strain IRBG74, Derxia lacustris HL-12, Bacillus megaterium and B. 

amyloliquefaciens). This PGPR mix was used because it was commercially available and 

because it contained bacteria species (i.e. Bacillus) reported to have beneficial effects on 

strawberry productivity and to inhibit the growth of the strawberry pathogen 
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Colletotrichum acutatum in vitro (Erturk et al., 2012; Ipek et al., 2014, Es-Soufi et al., 

2017). In each experiment, the negative control (Cb-) was not pre-inoculated or inoculated 

at planting. At time of planting the granular AMF and/or PGPR inoculum were placed into 

each planting hole before transplantation of the strawberry plug. In experiment 1 and 2, 

the volume of granular inoculum added per planting hole was ca. 7.6 mL for AMF and 

PGPR. In experiment 3, each pot received 25 mL of granular AMF inoculum. In 

experiment 4, each planting hole received 20 mL of AMF inoculum and/or 2 mL of PGPR 

inoculum. 

 

5.2.3. Pathogen inoculation 

A mixture of three P. fragariae isolates (BC-1, BC-16 and Nov-9), from the pathogen 

collection of NIAB EMR, Kent, UK was used to inoculate plants in experiment 1 and 2. 

The isolates were cultured separately in Petri dishes on sterile modified kidney bean agar 

(KBA) for at least 30 d in the dark at 18 ± 1°C (Wynn, 1968; Maas, 1972). For each isolate, 

one piece (1-4 mm2) of colonised KBA (from each stock culture) was then transferred to 

new Petri dishes containing fresh KBA and incubated separately as above. Mycelia were 

then harvested 30-60 d after plate inoculation. The excised colonies of the three isolates 

(including the agar beneath) were put into a blender with ice H2O (1 g culture: 1 g ice H2O) 

in equal ratio and blended twice for 2-5 s. The resulting inoculum slurry was transferred 

to a cooled beaker, which was kept on ice during the entire inoculation procedure. Before 

transplantation, roots were gently washed with tap water to remove substrate particles. 

Plants were then inoculated by dipping the roots into the inoculum slurry.  

 

One P. cactorum isolate (P414; known to be pathogenic against ‘Malling Centenary’) from 

NIAB EMR was used in experiment 3. The stock culture was cultured in Petri dishes on a 
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sterile V8 (Campbell's V8 juice) agar for 7 d in the dark at 18 ± 1°C (Harris et al., 1997). 

Then a sterilised cork borer was used to cut 10 mm discs from the margins of actively 

growing cultures. Discs were immersed in a non-sterile compost extract (2 L distilled water 

drained through 50 g compost and diluted two-fold before usage) and incubated for 2 d at 

20°C in an illuminated incubator. A suspension of 103 zoospores mL-1 was then produced 

following the method described by Harris et al. (1997). A vertical slit (ca. 10 mm long) 

was made using scalpel blade at the base of an internal leaf (close to the crown). The 

inoculum was then directly sprayed onto the wounded area using a garden sprayer, 5 mL 

per plant. Inoculated plants were placed into a chilled glasshouse compartment (ca. 20°C) 

and covered with a clear polythene sheet for 48 h to prevent the zoospores from drying out.  

 

5.2.4. Transplantation 

In experiment 1, there were four treatments: plug inoculated at planting with (1) AMF [M], 

(2) PGPR [P], (3) both AMF and PGPR [M+P], and (4) a negative control without 

microbial inoculation [Cb-]. Each treatment contained 20 replicate plants giving 80 plants 

in total; a randomised block design was used. About three weeks prior to the start of the 

experiment, ca. 100 cold stored (-2°C) plugs of cv. ‘Vibrant’ were transferred to a poly-

tunnel with natural temperature and light conditions for ca. two weeks to induce plant 

growth. Plants were watered once per day with tap water. No additional fertiliser was 

added.  

 

All plants were inoculated with P. fragariae as described in Section 5.2.3. Immediately 

after pathogen inoculation, plants were transplanted into 500 mL plastic pots (9 x 9 x 10 

cm, Desch Plantpak Ltd, Essex, UK) filled up with ca. 400 mL of autoclaved (two cycles 

at 121°C for 20 min with about 4 d between cycles) sandy compost (Table 5.2). The potting 
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mix consisted of one part sand (Sinclair horticulture Ltd, Lincoln, UK) and one part sieved 

compost (reduced peat mixes with added bark and grit from Sinclair Pro, Cheshire, UK) 

fertilised with Multi-Mix® (added at 1 kg m-3; Sinclair Pro, Cheshire, UK). Pots were 

placed in a growth cabinet (Meridian Refrigeration Ltd, Croydon, UK; constant 15°C, ca. 

72% RH, light: dark 16 h/8 h, PPFD of 40 μmol m−2 s−1). Plants stood in a shallow layer 

of water (2-7 mm) during the entire experiment. The experiment was terminated five weeks 

after transplanting. 

 

In experiment 2, eight inoculation treatments were tested. There were plants inoculated at 

planting time with (1) AMF [M], (2) PGPR [P] and (3) both microbes [M+P]. There were 

also (4) AMF pre-inoculated plant [PreM] and AMF pre-inoculated plants inoculated at 

planting with (5) AMF [PreM+M], (6) PGPR [PreM+P], and (7) both AMF and PGPR 

[PreM+M+P]. A negative control (8) without microbes inoculated [Cb-] was also included. 

Each treatment contained 16 replicate plants giving 128 plants in total; a randomised block 

design as used. About two weeks prior to the start of the experiment, ca. 320 cold stored 

(2°C) plugs of cv. ‘Malling Centenary’ were transferred to a growth cabinet (Meridian 

Refrigeration Ltd, Croydon, UK; day and night 15°C, ca. 72% RH, light: dark 16 h/8 h, 

PPFD of 40 μmol m−2 s−1) to induce plant growth. Plants were watered once per week with 

tap water and no additional fertiliser was added. Finally, plugs were inoculated with P. 

fragariae and treated as in experiment 1. The experiment was terminated after six weeks.  

 

In experiment 3, there were two treatments: (1) plug pre-inoculated with AMF [PreM] and 

(2) negative control without AMF pre-inoculation [Cb-]. Each treatment contained 20 

replicate plants giving 40 plants in total. This experiment was conducted on two separate 

occasions (Table 5.1). Before pathogen inoculation, cold stored (-2°C) plugs of cv. 

‘Malling Centenary’ were transplanted into 500 mL plastic pots (9 × 9 × 10 cm, Desch 
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Plantpak Ltd, Essex, UK) filled up with ca. 450 mL of standard compost mix (reduced peat 

with added bark and grit, fertilised with Multi-Mix® [added at 1 kg m-3] and Osmocote® 

[added at 4.44 kg m-3], from Sinclair Pro, Cheshire, UK; Table 5.2). Plants were then 

transferred to a poly-tunnel under natural temperature and light conditions for ca. five 

weeks to induce plant growth and AMF colonisation. Plants were manually watered once 

per day with tap water and no additional fertiliser was added. All plants were then 

inoculated with P. cactorum as described in Section 5.2.3. Finally, each plant was 

randomly placed into a chilled glasshouse compartment (temperature set at 20°C during 

the day and 15°C during the night, with natural light cycle). Plants were watered as above. 

The experiment ran for seven weeks before destructive sampling. 

 

In experiment 4, there were four treatments: plug inoculated at planting time with (1) AMF 

[M], (2) PGPR [P], (3) both AMF and PGPR [M+P], and (4) a negative control with no 

microbes inoculated [Cb-]. This experiment was conducted on two separate occasions. 

There were three replicate coir bags and a randomised design was used (Table 5.1). Cold 

stored (-2°C) plugs of cv. ‘Malling Centenary’ were planted in coir bags (BotaniCoir, 

London, UK), 10 plants per bag and inoculated with AMF and/or PGPR at planting as 

described in Section 5.2.2. Irrigation was delivered to plants via four irrigation lines using 

drippers (four per bag), controlled by Galcon irrigation timer (DC15: City Irrigation Ltd, 

Kent, UK). Three were three coir bags per irrigation line. The volume of irrigation was 

adjusted over time and reached 1 L per day per bag at 6 weeks from plantation. 

Concentrated nutrient solution of Vitafeed 102 (100 g L-1; Vitax Ltd, Leicester, UK) was 

injected into the irrigation lines by a dosatron injector (D3 Green line: City Irrigation Ltd, 

Kent, UK) set at a dose rate of 0.5% (v/v) for two weeks from plantation and then adjusted 

at a dose rate of 1% (v/v) and thereafter remained at this rate. After the onset of flowering 

a mini hive of bumblebees (Bombus terrestris audax; Agralan, Wiltshire, UK) was 
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introduced to the compartment to pollinate flowers. Plants were grown in a glasshouse 

compartment set at 23°C day/20°C night with natural light cycle. Experiment 4 was 

terminated after the final fruit harvest (i.e. 13 weeks post transplantation). 

 

Table 5.2:  Background nutrient status analysisa of the substrate used in experiments. 

Experiment Substrate pH 
NO

3
 NH

4
 P K Mg 

ppm = mg kg
-1

 

1 Sandy compost 5.8 75 27 16 200 45 

2 Sandy compost 4.9 175 131 62 267 51 

3 Compost 4.7 236 75 101 380 130 

4 Coir 6.6 < 4 20 < 6 31 < 1 

a Available nutrient status of each growth medium was provided by NRM Laboratories (Berkshire, UK) in 

mg L-1 and it was converted to mg kg-1. NO3
- was determined by ion chromatography and NH4

+ by 

colorimetric analysis. P, K, Mg and Ca were analysed by ICP-OES (Inductively Coupled Plasma-Optical 

Emission Spectroscopy). Note that the nutrient status analysis of each growing medium could not be 

replicated due to high cost. 

 

5.2.5. Disease assessment, plant productivity and root sample analysis 

In experiment 1, 2 and 3, plants were assessed once a week for aboveground disease 

symptoms on a rating scale:  

1 – no symptoms,  

2 – flaccid foliage,  

3 – totally collapsed and dead.  

 

In experiment 3, after the final aboveground disease assessment, the crowns were cut 

longitudinally and the extent of internal necrosis was recorded:  

1 – no necrosis,  

2 – up to 25% necrosis,  

3 – 25 to 50% necrosis,  

4 – 50 to 75% necrosis,  

5 – 75 to 100% necrosis.  
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In experiment 4, ripe fruits were picked twice weekly. Total and Class I fruits (> 18 mm 

diameter) were obtained for individual coir bags and the number of fruit was recorded for 

every pick. After the final fruit pick, total fresh shoot weight of the plants from individual 

bags was also determined. A few plants died during the experiment; average number of 

fruits (total and Class I fruit), average plant yields (total and Class I fruit), and average 

fresh shoot weight were calculated per plant for each individual coir bag and used in 

subsequent statistical analysis. 

 

At the end of each experiment, a composite sample of roots was taken for each pot or coir 

bag (i.e. roots deriving from three plants out of 10 were pooled together) for assessment of 

AMF root colonisation (preferentially on younger roots). The roots were then cleared with 

2% KOH before being stained with Trypan blue (Section 2.3.1) and microscopically 

assessed for root length colonisation (RLC; Section 2.3.2).  

 

5.2.6. Data analysis 

All data were analysed using GenStat 13th edition (VSN International Ltd, Hemel 

Hempstead, UK). Only significant differences were reported in the text. For experiments 

with more than one factor, the interactions were statistically tested. In experiments 1-3, the 

disease data were all analysed using generalised linear models (GLM) with residual errors 

assumed to follow Poisson distribution; the log link function was used. There were two 

treatments factors (M and P) in experiment 1, three factors in experiment 2 (PreM, M and 

P) and one factor in experiment 3 (M). In experiment 3, individual experiments conducted 

at different times were treated as a blocking factor. In experiment 4, for each bag average 

fruit yields (total and Class I fruit), average number of fruits (total and Class I fruit) and 

average plant fresh shoot weight per plant were analysed by two-way ANOVA. There were 
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two treatment factors (M and P). Individual replicate experiments were treated as a 

blocking factor. Common diagnostic plots (e.g. q-q plots, residual-fitted value plot) did 

reveal apparent violation of the normality and homoscedasticity assumption. Hence, 

average number of fruit data were square root transformed, while average yield and fresh 

shoot weight were both log transformed to satisfy normality. If ANOVA indicated 

significant effects of a specific treatment factor or interaction, pairwise comparison was 

performed based on the LSD test. In all experiments, the AMF root colonisation data were 

not statistically tested due to a very low level of AMF within roots.  

 

5.3. Results 

5.3.1. Establishment of AMF in the substrates 

Experiment 1 and 2 were carried out to study the protective effect of AMF and/or PGPR 

against P. fragariae, while experiment 3 was undertaken to test whether AMF can control 

P. cactorum. Finally, experiment 4 was conducted to evaluate the effect of AMF and/or 

PGPR on strawberry plant growth and productivity in coir. In experiments 1-3, there was 

no AMF colonisation observed in the roots of AMF treated plants. In experiment 2, AMF 

pre-colonised plugs showed an average of 3% RLC before transplantation; but no AMF 

colonisation was observed at the end of the experiment. In experiment 4, 13 weeks post 

inoculation, AMF colonisation was observed at a low level (average 15% RLC) and varied 

greatly among samples; there was no AMF colonisation in many AMF inoculated root 

samples. There were no obvious differences in RLC between M and M+P treatments.  

 

5.3.2. Effect of beneficial microbes against red core and crown rot 

The effects of AMF and PGPR inoculations against P. fragariae (red core) were studied 

in experiments 1 and 2. In experiment 1, the first wilting symptoms appeared eight days 
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after pathogen inoculation. In general, the number of plants with visible symptoms 

remained stable after 20 d from inoculation (Figure 5.3A, B); 60 out of 80 plants showed 

disease symptoms at the end of the experiment. The number of diseased plants was 

decreased by AMF inoculation at planting (P = 0.020; Figure 5.4), while PGPR treatment 

did not affect the number of diseased plants. There was no significant interaction between 

AMF and PGPR.  

 

In experiment 2, the first wilting symptoms appeared in less than a week after inoculation. 

No more symptoms appeared after 20 d from pathogen inoculation and the overall number 

of wilted plants was lower than in experiment 1; 40 out of 128 plants showed disease 

symptoms. However, there were no significant treatment (PreM, M, P) effects on the 

number of diseased plants; neither were there significant interactions among treatment 

factors.  
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Figure 5.3: Plants inoculated with Phytophthora fragariae in experiment 1 (view of block 4 only) 

at two different time points: (A) at planting and (B) three weeks after planting. Diseased plants 

were wilted and showed brown leaves (red arrows). 

 

 

Figure 5.4: Influence of arbuscular mycorrhiza fungi (AMF) addition in experiment 1 on disease 

score 35 d after inoculation of Phytophthora fragariae. Data are the total number (n = 40) of plants 

in each of the following disease category: 1 - no symptoms, 2 - floppy foliage, 3 - totally collapsed 

and dead. White bars show plants inoculated with mycorrhiza at planting (AMF+; i.e. M and M+P 

treatments) and black bars show plants without mycorrhiza (AMF-; i.e. P and Cb- treatments). 

 

The effect of mycorrhizal inoculation against P. cactorum (crown rot) was studied in 

experiment 3. The first wilting symptoms appeared about two weeks after inoculation 

(Figure 5.4A) and the number of plants with visible symptoms remained stable after five 

weeks from pathogen inoculation. In total, 31 and 33 out of 40 plants showed crown 

necrosis for the 1st and 2nd replicate experiment, respectively (Figure 5.5A, B). However, 

there were no significant effects of AMF pre-inoculation on the number of diseased plants 

and crown necrosis level. 
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Figure 5.5: Plant inoculated with Phytophthora cactorum in experiment 3 (replicate 1) seven 

weeks after pathogen inoculation: (A) severely wilted plant and (B) observation of crown necrosis 

(level 4, see Section 5.2.5). 

 

5.3.3. Effect of AMF and PGPR on strawberry production in coir 

Strawberry plants in experiment 4 grew normally and there were no visual differences in 

plant growth among treatments (Figure 5.6). A single plant in each coir bag produced on 

average nine and ten fruits for the 1st and 2nd replicate experiment, respectively; the 

corresponding average fruit weight was 60 and 67 g. There were no significant differences 

in the average plant yields (total and Class I fruit) and average plant number of fruits (total 

and Class I fruit) among treatments. The interaction involving the factors M and P was not 

statistically significant. For the average plant fresh weight, none of the treatments resulted 

in significant differences and there was no significant interaction. Despite the absence of 

a significant effect on the average plant yields and number of fruits (total and Class I fruit) 

followed the same treatment order: P > M+P > M > Cb- (Figure 5.7A), whereas the 

treatment order for average plant shoot fresh weight was: M > M+P > P > Cb- (Figure 

5.7B).  
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Figure 5.6: Strawberry cv. ‘Malling Centenary’ plants in experiment 4 growing in coir bags, 13 

weeks after plantation. 

 

 

 

 

Figure 5.7: Average plant Class I fruit yield (A) and average plant shoot fresh weight (B). The 

treatments were plugs inoculated at planting time with AMF (M), PGPR (P), both AMF and PGPR 

(M+P) and a negative control with neither AMF nor PGPR added (Cb-). Note the scales do not start 

at 0. Treatments that did not differ significantly share at least one common letter (Pairwise 

comparisons, P ≤ 0.05). Note the scales do not start at 0. 
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5.4. Discussion  

The soil-less substrates used in horticultural production usually lack beneficial microbes 

(Postma et al., 2008). By inoculating commercial AMF and PGPR alone or together to the 

plant rhizosphere, it might be possible to reduce chemical inputs and grow strawberry more 

sustainably (Boyer et al., 2016). Bacteria and mycorrhizal fungi occurring naturally in 

plant rhizosphere could be excellent candidates for the development as a biocontrol agent 

or a biofertiliser because they are already part of the balance between plants, pathogens 

and soil (Whipps, 2004). The main objective of this study was to investigate whether 

commercially available AMF and/or PGPR inoculants could reduce development of root 

pathogens such as P. fragariae (red core), and P. cactorum (crown rot) in peat-based 

composts and test whether AMF and/or PGPR can improve strawberry productivity in coir 

under controlled conditions.  

 

In experiment 1-3, AMF inoculation in compost mixes containing peat and fertilisers did 

not result in strawberry root colonisation. However, a low level of root colonisation 

(average 15%) was detected in coir bags in experiment 4. Therefore, soil-less substrates 

used in those experiment appeared not to be conducive for AMF root colonisation, in 

contrast to the results obtained in Chapter 3. Nevertheless, previous studies reported 

negative effects of certain peat types and coir on strawberry RLC (Vestberg et al., 2004; 

Boyer et al., 2016). For example, fertilised compost mixes were previously used to test the 

effect of AMF against Phytophthora on strawberry plants and results were rather 

disappointing in term of disease severity reduction and/or AMF root colonisation that was 

associated to the high level of available P measured in the substrates (Murphy et al., 2000; 

Vestberg et al., 2004). In addition, high inputs of fertilisers under commercial practices 

have been shown to reduce AMF root colonisation in strawberry (Niemi & Vestberg, 

1992). For example, excessive P inputs showed to often reduce AMF colonisation in 
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several crops when applied to the substrate in pot experiments under controlled conditions 

(Olsson et al., 1997). Consequently, the absence of root colonisation in the compost mixes 

used in experiment 13 may have been the results of a high concentration of available P 

(16-101 ppm; Table 5.2) and a low pH (i.e. < 5.3; Table 5.2) or the combination of other 

chemical, physical and biological properties of the substrates themselves. In contrary, even 

low, AMF root colonisation was observed in coir used in experiment 4, that presented a 

relatively neutral pH (6.6) and a very low P level (i.e. < 6 ppm; Table 5.2). Therefore, 

further investigations on the role of commercial fertilisers and substrate properties on AMF 

colonisation are needed.  

 

In experiment 1, the number of diseased plants was reduced by AMF inoculation at 

planting time. This agrees with several studies highlighting the positive effect of AMF 

inoculation against red core (Mark & Cassells, 1996; Norman et al., 1996; Norman & 

Hooker, 2000). However, PGPR alone and co-inoculation with AMF did not result in 

reduced disease development in experiment 1. In contrast, Vestberg et al. (2004) reported 

an increase in disease development of P. fragariae after AMF inoculation (alone or in 

mixture with PGPR). However, it should be noted that although the AMF inoculation 

showed a positive effect against red core in experiment 1, AMF colonisation was not 

detected in the roots. Either the sampling method failed to detect a low level of AMF 

colonisation or the substrate containing the AMF inoculum (i.e. attapulgite 

clay/pumice/zeolite mix) could have achieved this as attapulgite clay has previously been 

found to limit the development of Phytophthora symptoms in strawberry plants (Hautsalo 

et al., 2016; pers. obervation). In experiment 2, neither AMF pre-inoculation, nor microbial 

(i.e. AMF and/or PGPR) inoculations at planting, nor the combination of both inoculation 

methods reduced disease development. Fewer plants in experiment 2 suffered from red 

core (31%) than in experiment 1 (75%). It is, however, unclear whether the lower level of 
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diseased plants in experiment 2 was due to the differences in susceptibility between the 

two cultivars and/or an effect of the growing season. Previous studies have highlighted the 

difference of red core susceptibility between strawberry cultivars (Van de Weg, 1997) and 

the growing season has also been shown to modify the effect of the beneficial microbes 

against Phytophthora (Vestberg et al., 2004). The reasons for the difference in disease 

development may be the physiological status of the strawberry plants that may modify the 

root exudation and the microbial community composition in the rhizosphere, either 

introduced or natural. In experiment 3, disease reduction was also not achieved by AMF 

pre-inoculation during the season favourable for strawberry growth. The reason for this is 

unknown. Nevertheless, in experiment 2 and 3, the absence of AMF root colonisation 

might have explained the absence of the biological control effect expected. It is now 

essential to establish a reliable experimental system to study the potential bioprotective 

effect of AMF against P. fragariae and P. cactorum. 

 

In experiment 4, inoculation of plants with AMF and/or PGPR at planting time in coir had 

a consistent positive trend of increasing shoot fresh weight, fruit yield and number of fruits 

produced. These observations agree with previous reports of AMF inoculation of 

strawberry in coir (Boyer et al., 2016). Co-inoculation of AMF and PGPR did not give 

better results than the inoculation of either AMF or PGPR alone for strawberry growth and 

yield, supporting a previous study (Vestberg et al., 2004). However, the positive effects of 

AMF and PGPR observed in the current study were not statistically significant. The nature 

of the experimental design (i.e. random design) could have been responsible for large 

experimental residual errors, leading to the absence of significant treatment effects. Four 

irrigation lines were used for this study to deliver water into coir substrate. Although the 

irrigation lines are supposed to provide equal amounts of water and fertiliser, they are 

known to often introduce systematic differences in experimental results (Xu pers. Comm.). 
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Consequently, the use of a randomised block design with a single irrigation line as a block 

may have been more appropriate than a randomised design to minimise experimental 

residual errors.  

 

5.5. Conclusion  

Use of AMF and PGPR to reduce disease development and to improve crop production in 

commercial strawberry production remains a challenge despite extensive evidences of their 

beneficial impacts. In fact, for biological agents to have real potential to be developed as a 

commercial product and used by strawberry growers, their positive effects need to be 

consistent and reliable. Unfortunately, the beneficial impact of AMF and PGPR appear to 

be context dependent and variable, highlighting the complexity of plant-microbe 

interactions and so the difficulty to establish AMF symbiosis in different soil-less 

substrates. This study highlighted the difficulty for AMF to establish in soil-less substrates 

containing high P level and/or presenting a low pH. Therefore, strawberry cultural 

practices such as the amount of fertiliser, the irrigation regime and the type of substrate 

may have to be adjusted to improve AMF and/or PGPR colonisation. In addition, AMF 

and PGPR inoculum production methods may need to be improved for better application 

and establishment of those beneficial microbes in commercial soil-less strawberry 

production systems. To take this research forward, it is imperative to find a substrate that 

could be commercially relevant and conducive for AMF and/or PGPR. Although microbial 

inoculation did not result in significant positive effects on strawberry health and yield in 

this study, further optimisations and understanding of the strawberry-microbe interactions 

in soil-less substrates is needed before this technology can be adopted by the strawberry 

industry. 
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Chapter 6. Can an axenic autotrophic in vitro system be 

established to explore the nature of interactions between AMF 

and soil-borne pathogens in strawberry plants? 

6.1. Introduction 

Among other benefits, AMF colonisation is known to alter strawberry plant response to 

biotic stresses, leading to increased tolerance to attacks by root pathogens (Norman et al., 

1996; Tahmatsidou et al., 2006; Sowik et al., 2016). However, the interactions among 

AMF and pathogens are complex; a further complicating factor is that most of these studies 

have been conducted under glasshouse or field conditions where changes in the 

environmental conditions also affect the nature of these interactions. Therefore, 

investigating the nature of the interaction between pathogens and AMF under in vitro 

conditions may help to reveal the role of AMF in increased tolerance/resistance to 

strawberry soil-borne pathogens.  

 

The application of autotrophic systems (i.e. in vitro culture systems with photosynthetic 

active plant tissues) may therefore be a useful approach to study various aspects of plant–

AMF interactions. The AMF symbiosis has been successfully established under axenic or 

semi-axenic controlled conditions with several plant species (e.g. banana, barrelclover, 

clover, ficus, potato and vine; (Hepper, 1981; Voets et al., 2005; Koffi et al., 2009; Voets 

et al., 2009; Nogales et al., 2010; Lovato et al., 2014), including strawberry (Elmeskaoui 

et al., 1995; Cassells et al., 1996). Autotrophic systems may facilitate the study of 

biochemistry, molecular and physiological aspects of the plant–AMF–pathogen 

interaction, allowing more accurate assessments than in conventional pot systems.  
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Recently, several autotrophic systems have been developed and demonstrated the 

protective effect of AMF against pathogens (Nogales et al., 2010; Koffi et al., 2013; 

Lovato et al., 2014; Oye Anda et al., 2015). In addition, the in vitro system developed by 

Sowik et al. (2008) allowed the successful association of strawberry plantlets with 

Verticillium dahliae under axenic conditions, speeding up screening for wilt resistance. 

Although strawberry roots were successfully associated with AMF under in vitro 

conditions (Elmeskaoui et al., 1995; Nuutila et al., 1995; Cassells et al., 1996), the study 

of the interactions among strawberry cultivars, AMF and pathogens has not been reported 

yet under axenic conditions. 

 

The objective of this study was to establish a simple experimental culture system 

associating micropropagated strawberry plantlets with AMF and a single root pathogen 

under a controlled and axenic environment. Two autotrophic systems developed by Müller 

et al. (2013) and Voets et al. (2009) were adapted into a single in vitro system to study the 

effects of AMF against strawberry root pathogens. Rhizophagus irregularis (MUCL 

43194) was used as the AMF inoculant and two strawberry pathogens were tested 

separately: V. dahliae was inoculated onto Fragaria vesca (one diploid parent of cultivated 

strawberry) and P. fragariae was inoculated onto F. ananassa cv. ‘Calypso’. AMF spore 

germination, spread of the pathogen on the medium, disease scores and intraradical root 

colonisation by AMF and the pathogen were assessed.  

 

6.2. Materials and methods 

This study aimed to investigate the protective effects of AMF against V. dahliae or P. 

fragariae under an axenic in vitro culture system. Two experiments were carried out and 

a schematic representation of the experimental setup is shown in Figure 6.1.  
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Figure 6.1: A schematic representation of the experimental setup to study the interaction of 

arbuscular mycorrhiza fungi (AMF) and Verticillium dahliae or Phytophthora fragariae under in 

vitro culture: (1) strawberry microplants were rooted on Modified Strullu Romand (MSR) medium; 

(2) microplants were then inoculated with commercial sterile Rhizophagus irregularis spores; (3) 

microplants were inoculated with plugs of medium overgrown with pathogen mycelium, and (4) 

disease severity in addition to AMF or pathogen root colonisation was assessed. 
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isolate culture 

Plugs of medium 
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6.2.1. Plant materials  

Tissue culture plants of an F. vesca clone VSI and F. x ananassa cv. ‘Calypso’ produced 

as described in Section 2.2.1 were used in experiment 1 and 2, respectively. 

 

6.2.2. Arbuscular mycorrhiza fungus 

Rhizophagus irregularis (N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessler 2010, 

strain MUCL 43194, was purchased from Premier Tech Biotechnologies (Mycorise® 

ASP, Rivière-du-Loup, Canada) as a sterile suspension of spores (400 spores mL-1) and 

used to inoculate in vitro strawberry plants. 

 

6.2.3. Strawberry plantlets establishment in axenic conditions 

The autotrophic in vitro system was adapted from axenic culture systems developed by 

Müller et al. (2013) and Voets et al. (2009). Square Petri dishes (12 x 12 cm) were used as 

in Müller et al. (2013) to maintain axenic conditions. The plates were filled with Modified 

Strullu Romand (MSR) medium (Declerck et al., 1998), lacking sucrose and vitamins as 

in as in Voets et al. (2009), but the medium was solidified with 5 g L-1 Phytogel™ instead 

of 4 g L-1 Gel Gro™. After solidification, the upper half of the medium was removed from 

the Petri dishes. Two microplants were then transferred into each square plate, with the 

roots placed on the surface of the MSR medium and the shoot extending into the empty 

part of the plate. The square plates were then sealed with parafilm and incubated vertically 

in a growth room (21°C, light:dark 16 h/8 h, PPFD of 40 μmol m−2 s−1) for 3 weeks to 

allow plants to produce new roots. 



  Chapter 6 

~ 135 ~ 

 

6.2.4. Strawberry plantlets inoculation with AMF 

After 3 weeks on the MSR medium, each plant was inoculated with 250 μL (ca. 100 spores) 

of the sterile R. irregularis spore suspension. For each experiment, 20 square plates with 

AMF (+AMF treatment) and 20 plates without AMF (-AMF treatment) were set up. The 

plates were sealed again with parafilm and the root area was covered with aluminum foil 

to allow the roots and AMF to grow under darkened conditions. The plates were incubated 

for 7-8 weeks after AMF inoculation.  

 

6.2.5. Soil-borne pathogens  

Three isolates of both V. dahliae and P. fragariae from the collection held at NIAB EMR 

(Kent, UK) were used.  

 

In experiment 1, three V. dahliae isolates (12251, 12252 and 12253) were recovered from 

NIAB EMR cryostore and cultured separately on sterile prune lactose yeast agar (PLYA) 

medium (Talboys, 1960) for ca. 1 month in the dark at 22 ± 1°C. Sterile purified water was 

pipetted onto each Petri dish (5 mL) and the medium surface gently rubbed to make a 

conidial suspension. Finally, 0.2 mL conidial suspension of each isolate was pipetted onto 

the same fresh PYLA plate; the plates were then incubated for 18 d at ambient conditions 

close to a natural light source. 

 

In experiment 2, three P. fragariae isolates (BC-1, BC-16 and Nov-9) were cultured 

separately on sterile modified KBA medium (Maas, 1972) for 1-2 months in the dark at 18 

± 1°C. Then one piece (1-4 mm2) of colonised KBA was transferred to a fresh KBA 

medium plate, and then incubated in the dark at 18 ± 1°C for ca. 3 weeks.  
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6.2.6. Inoculation of strawberry plantlets with pathogens 

In experiment 1, after 8 weeks of growth in plates with or without AMF, the plantlets were 

randomly divided in four treatments: inoculated with (1) wilt and AMF (+AMF+Wilt), (2) 

AMF only (+AMF-Wilt), (3) wilt only (-AMF+Wilt), and (4) no AMF or wilt (-AMF-

Wilt). Each treatment had ten replicate plates each with two plantlets. Inoculation with V. 

dahlia was as follows: hyphal plugs, 5 mm in diameter, were harvested from 18 d old 

colonised PLYA Petri dishes using a sterilised cork borer and transferred onto the roots 

(three plugs per plant). The plates were then sealed, shaded with aluminium foil and 

incubated in a growth room (Meridian Refrigeration Ltd, Croydon, UK; day and night 21-

22°C, light: dark 16 h/8 h, PPFD of 40 μmol m−2 s−1). The position of each plate in the 

growth room was randomised. 

 

In experiment 2, after 7 weeks of growth, the plantlets were randomly divided in four 

treatments: inoculated with (1) P. fragariae and AMF (+AMF+Pf), (2) AMF only (+AMF-

Pf), (3) P. fragariae only (-AMF+Pf), and (4) no AMF or P. fragariae (-AMF-Pf). 

Inoculation with P. fragariae was as follows: Hyphal plugs, 5 mm in diameter, were cut 

from the growing edge of three weeks old colonised KBA Petri dishes and transferred onto 

the plants roots (one plug from each of the three isolates per plant). The plates were sealed, 

covered with foil, and incubated in a growth room (Meridian Refrigeration Ltd, Croydon, 

UK, day and night 15-16°C, light: dark 16 h/8 h, PPFD of 40 μmol m−2 s−1; Figure 6.2); 

the position of each plate in the growth room was randomised. 
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Figure 6.2: A photo depicting the square plates of experiment 2 incubated in a growth room at 15-

16°C after inoculation of plantlets with Phytophthora fragariae hyphal plugs. 

 

6.2.7. Estimation of disease severity and assessment of root colonisation by 

AMF and pathogens 

In both experiments, disease severity was assessed five weeks after inoculation with hyphal 

plugs. The symptom was assessed on a rating scale from 0 to 5: 0 - no symptoms, 1 - shoot 

with a single leaf showing symptoms (yellowish-brown appearance), 2 - up to 25% of 

leaves showing symptoms, 3 - up to 50% of leaves showing symptoms, 4 - up to 75% of 

leaves showing symptoms, and 5 - plant death.  

 

After disease severity assessment, AMF root colonisation (i.e. hyphae, arbuscules and 

vesicles) was assessed on the plantlets in the mycorrhizal treatments (+AMF). Similarly, 

pathogen structures (i.e. hyphae and microsclerotia for V. dahliae and oospores for P. 

fragariae) were assessed in those plantlets inoculated with the pathogens. The plantlet 

roots were removed from the plates with a pair of forceps and stained as described in 

Section 2.3.1. Each root sample was pooled from four individual plantlets (i.e. two plates). 
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6.2.8. Data analysis 

All data were analysed using GenStat 13th edition (VSN International Ltd, Hemel 

Hempstead, UK). In both experiments, AMF colonisation was not observed in the 

mycorrhizal treatments. Therefore, to analyse the disease severity, data from the AMF 

treatments were pooled with their respective non-AMF treatments. The disease severity 

data were all analysed using a generalised linear model with the Poisson distribution and 

a log-link function. There was no evidence of over-dispersion in the residual deviance.   

 

6.3. Results 

Fragaria vesca and F. x ananassa cv. ‘Calypso’ plantlets were able to produce new roots 

and leaves on modified MSR medium in a completely sealed environment (Figure 6.3A, 

B). In addition, R. irregularis (MUCL 43194) could germinate on modified MSR medium 

(Figure 6.4A, B), but no AMF intraradical colonisation was observed after trypan blue 

staining of F. x ananassa and F. vesca roots. The mycelium of both pathogens was able to 

grow and spread on MSR medium in the presence of plant roots (Figure 6.5A, B). Staining 

of F. vesca roots with trypan blue failed to detect wilt infection (i.e. presence of hyphae 

and/or microsclerotia). Nevertheless, the shoot showed symptoms of wilt (Figure 6.6A). 

F. x ananassa cv. ‘Calypso’ plantlets were highly infected by P. fragariae (Figure 6.6B) 

with the presence of abundant oospore in the root tissues (Figure 6.5C) and the petiole of 

the leaves (Figure 6.6D). For both experiments, the number of diseased plants was 

increased by pathogen inoculation (P < 0.001; Figure 6.7A, B), 
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Figure 6.3: (A) Fragaria vesca and (B) F. x ananassa cv. ‘Calypso’ plantlets with well-established 

root systems and healthy shoots after one month of culture on Modified Strullu Romand (MSR) 

medium under axenic conditions.  

 

 

Figure 6.4: Germinated Rhizophagus irregularis spores (black arrow = mycorrhizal hyphae) on 

Modified Strullu Romand (MSR) medium. Photos were taken after two months of culture under 

axenic conditions with (A) Fragaria vesca and (B) F. x ananassa cv. ‘Calypso’ plantlets. The scale 

was not available in the camera used for image acquisition, thus the magnification is reported 

instead. 
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Figure 6.5: (A) Fragaria vesca plantlets inoculated with hyphal plugs of Verticillium dahliae and 

(B) F. x ananassa cv. ‘Calypso’ plantlets inoculated with hyphal plugs of Phytophthora fragariae 

5 weeks after pathogen inoculation. Both pathogens could spread and establish on the surface of 

Modified Strullu Romand (MSR) medium (black arrows highlight areas where the mycelium grew 

around the mycelial plugs). 
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Figure 6.6: Disease symptoms of (A) Fragaria vesca plantlets inoculated with Verticillium dahliae 

and (B) F. x ananassa cv. ‘Calypso’ plantlets inoculated with Phytophthora fragariae, 5 weeks 

after pathogen inoculation. Longitudinal squash of ‘Calypso’ (C) root and (D) leave petiole stained 

with trypan blue showing the presence of P. fragariae oospores (red arrows). The black scale bars 

represent 100 μm. 
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Figure 6.7: Influence of pathogen inoculation on disease score of (A) Fragaria vesca plantlets 

inoculated with Verticillium dahliae and (B) F. x ananassa cv. ‘Calypso’ plantlets inoculated with 

Phytophthora fragariae, 5 weeks after pathogen inoculation. Data are the total number (n = 40) of 

plants in the following disease categories: 0 - no symptoms, 1 - shoot with a single leaf showing 

symptoms, 2 - up to 25% of leaves showing symptoms, 3 - up to 50% of leaves showing symptoms, 

4– up to 75% of leaves showing symptoms, and 5 - plant death. White bars show plant inoculated 

with pathogen (Wilt+ or Phytophthora+) and black bars show plants without pathogens (Wilt- or 

Phytophthora-). 
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6.4. Discussion  

In this study, both V. dahlia or P. fragariae could induce disease symptoms of strawberry 

plantlets grown in vitro on MSR medium. However, the root colonisation by V. dahlia 

could not be confirmed by microscopic observations. The absence of observable pathogen 

colonisation could be the result of sampling issues or the trypan blue stain was not adequate 

to detect the presence of the pathogens in the strawberry root tissues. Therefore, other 

detection methods should be tested when strawberry wilt is inoculated in vitro on MSR 

medium. For example, the use of WGA-AF488/Propidium Iodide has been suggested to 

be suitable to stain V. dahliae within in vitro plant roots (Liang, 2012; Taylor pers. comm.); 

alternatively, a PCR bioassay could be also used to confirm the presence of pathogen DNA 

within the root tissues (Mirmajlessi et al., 2015). The presence of plants with yellow and/or 

brown leaves was observed in both experiments, but to a lesser extent in culture plates 

without pathogens. Those observations might be the result of natural aging and/or nutrient 

depletion of the growing medium. Therefore, to improve this culture system and the 

precision of disease severity assessments, fresh MSR medium could be added to the plates 

to avoid nutrient depletion in the in vitro system (Voets et al., 2009; Oye Anda et al., 2015).  

 

Unfortunately, the potential protective effect of AMF against V. dahliae or P. fragariae 

could not be tested using the current culture system as AMF root colonisation was not 

achieved. The reason for this is unknown. The sterile spores of R. irregularis were viable 

as observed by their germination on the MSR medium in both experiments. In parallel, R. 

irregularis spores were also inoculated onto microplants of F. vesca and F. x ananassa cv. 

‘Calypso’ during their weaning stage on attapulgite clay to confirm they viability. R. 

irregularis was able to highly colonise plantlets roots (data not shown). In the context of 

in vitro culture conditions, several factors may have affected the interaction between the 

plant and AMF. For example, the limited gas exchange in this completely sealed in vitro 
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environment may have been responsible for high humidity that may have lower PPFD due 

to water condensation (see Figure 6.3A). In addition, the PPFD provided to plants in the 

growth room was low in comparison to previous studies (300 μmol m−2 s−1, Voets et al., 

2005; 200 μmol m−2 s−1, Müller et al., 2013). Therefore, the combination of water 

condensation and low PPFD may have prevented the establishment of the symbiosis. In 

addition, substrate conditions should also be considered. For example, inadequate pH, low 

porosity and/or high thickness have also been mentioned to altered AMF hyphal 

development and function in vitro (Mosse, 1988; Liu & Yang, 2008; Costa et al., 2013).  

 

Other culture autotrophic systems may be able to overcome the problem of water 

condensation and lack of light that were potentially responsible for the absence of AMF 

colonisation in this study. The adaptation to strawberry plantlets of the semi-axenic 

systems developed by Voets et al. (2005) and improved by Koffi et al. (2009) appear to be 

an interesting solution. However, semi-axenic systems are more complex to manipulate 

than axenic ones. Semi-axenic systems are more sensitive to contamination due to 

additional interventions on the growing plates (i.e. small opening on the plate lid) and there 

is a higher risk of microplant death during acclimatisation. Nevertheless, in semi-axenic 

systems, because the shoots of the plantlets can grow outside of the culture plate, risks of 

water condensation and reduction of PPFD will be reduced. Furthermore, a modified 

mycelium donor plant (MDP) semi-axenic system may also be used to allow a faster and 

homogenous colonisation of strawberry roots. Voets et al. (2009) developed the MPD 

semi-axenic system and they showed a successful AMF colonisation of Medicago 

truncatula roots transferred on already actively growing extraradical hyphae extending 

from M. truncatula donor plants. This method was also successfully adapted by Koffi et 

al. (2012) to study the interactions between R. irregularis, banana and the nematode 

pathogen Radopholus similis.  
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6.5. Conclusions 

In this study, micropropagated strawberry plantlets were successfully infected by P. 

fragariae on MSR medium with the corresponding disease symptoms, while infection with 

V. dahlia resulted in corresponding symptoms but root infection could not be confirmed. 

Despite AMF spores germinating on MSR, AMF-strawberry symbiosis could not establish 

in the present axenic autotrophic system. The reasons for the absence of AMF root 

colonisation are unknown, but the future adaptation of the MDP in vitro growing system 

and increase of PPFD might be able to solve this problem. As far as autotrophic in vitro 

cultivation systems are concerned, there are very limited data about interactions among 

environmental factors, plant cultivars, AMF species and species of pathogens. In 

conclusion, this first attempt to use a simple axenic autotrophic system with strawberry 

plantlets opens new avenues to explore the role of AMF in affecting major strawberry root 

pathogens under in vitro conditions. 
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Chapter 7. General discussion 

7.1.  Overview 

This is to the best of our knowledge, the first research focusing on the AMF-strawberry 

interaction as a model system to study the possibility of pre-colonising strawberry plug 

materials with AMF to increase plant growth, productivity and tolerance against major 

strawberry root diseases. This study aimed to investigate the following hypotheses: 

• H1: It is feasible to apply AMF inoculum during strawberry tipping in different 

soil-less substrates under misting conditions and obtain highly AMF-colonised 

strawberry plugs. (Chapter 3) 

• H2: AMF in colonised strawberry plug roots can survive a prolonged period of 

storage at -2°C. (Chapter 3) 

• H3: AMF pre-colonisation of strawberry plants increases plant tolerance against 

Verticillium dahlia under glasshouse and open field conditions. (Chapter 4) 

• H4: AMF pre-colonisation and/or inoculation of AMF and/or PGPR at planting 

increases plant tolerance against Phytophthora fragariae and P. cactorum in 

soil-less substrates. (Chapter 5) 

• H5: AMF and/or PGPR inoculations increase strawberry productivity in coir 

bags. (Chapter 5) 

• H6: In an attempt to control for the influence of fluctuating environmental 

conditions that occur under both field and glasshouse conditions a simple in vitro 

autotrophic system can be established to investigate strawberry-AMF-pathogen 

interactions. (Chapter 6) 

 

Figure 7.1 gives an overview of the results obtained on the impact of AMF on plant health 

and/or productivity at different stages of various strawberry growing systems.  
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Figure 7.1: Overview of the impact of arbuscular mycorrhizal fungi (AMF) on strawberry health 

and productivity in growing systems. Hypotheses are displayed as ‘accepted’, ‘rejected’ or 

validation/rejection ‘to be confirmed’. Hypotheses are not fully stated for clarity (Section 7.1).  
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7.1.1. Strawberry plug weaning practices and freezing cold storage do not prevent 

AMF root colonisation deriving from early inoculation 

Pre-inoculation of strawberry plants with AMF before trans-planting has been proposed as 

an environmentally-friendly method to improve plant growth and health by alleviating 

biotic and abiotic stresses. Strawberry production systems make AMF pre-inoculation at 

the weaning stage relatively straightforward for both in vitro and runner derived plantlets. 

The results presented in Chapter 3 confirmed the feasibility of applying AMF inoculum 

during strawberry tipping in different soil-less substrate media commonly used in 

commercial situations. AMF propagules can in fact colonise strawberry roots of several 

commercial cultivars when incorporated as a powder layer in an Irish peat/base mix, 

vermiculite and coir under misting conditions and/or plant propagators. Therefore, AMF 

pre-colonisation of strawberry planting material can be commercially adopted by 

strawberry nurseries. A larger scale study was also designed to investigate the feasibility 

of incorporating AMF pre-inoculation in a commercial strawberry nursery, which 

confirmed that strawberry roots could be colonised by AMF. However, the level of RLC 

remained low (average 3%). This result highlighted the necessity to identify the limiting 

factors that reduce AMF colonisation under commercial productions. Different cultivation 

practices and AMF inoculation methods should be tested separately and together to 

identify the best combinations and growing conditions. To achieve this, it may be 

necessary to incorporate AMF inoculum as a powder layer, select a soil-less substrate 

suitable for AMF colonisation and adjust the cultivations practices such as the amount of 

fertiliser and/or irrigation regimes.  

 

AMF inoculated during the weaning stage of microplants or runner tips resulted in a high 

level of RLC (average 70%), independently of plant material size and/or the strawberry 

cultivar inoculated (with the exception of ‘Malling Centenary’). However, early AMF 
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inoculations of strawberry plugs did not necessarily translate to improved plant growth 

during weaning and propagation phase. Plant genotype has also been shown to have a 

selective effect on the microbes that colonise the rhizosphere (Edel et al., 1997). To a 

limited extent this was observed in strawberry, with different cultivars displaying either a 

negative or positive interaction with specific AMF species (Khanizadeh et al., 1995). 

Therefore, to completely exploit the beneficial effect of AMF on strawberry in soil-less 

substrates, further work is also required to explain to what extent the ability of specific 

strawberry genotypes being colonised by AMF in soil-less substrate is heritable. If this trait 

is controlled genetically, this could be exploited in breeding programmes to breed 

strawberry plants that can be easily colonised by AMF in substrate to increase their 

cropping potential and tolerance to root pathogens (Boyer et al., 2016; Hohmann et al., 

2017).  

 

Strawberry plugs need to be cold stored (-2°C) for various length of time to achieve chilling 

requirements and to schedule cropping. Therefore, it was necessary to investigate whether 

AMF could survive freezing temperatures for several months. In chapter 3, results showed 

that AMF propagules could tolerate the formation of ice in the root ball during cold storage 

at -2°C up to five months. This was the first evidence that commercial AMF inocula can 

be applied during strawberry tipping without reducing the mycorrhiza viability during 

subsequent cold storage of pre-colonised plants. This study has also indirectly highlighted 

the potential presence of DSE propagules in Irish dark peat; the extent of DSE in the root 

was negatively associated with AMF root colonisation after cold storage. Further studies 

are needed to identify the origin and identity of the DSE and the nature of their relationship 

with AMF and/or the plant host under commercial conditions.  
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7.1.2. Evaluation of the potential of pre-colonised strawberry plugs with 

mycorrhizal inoculants to increase tolerance to Verticillium wilt 

AMF have been shown to be able to reduce the negative effects of strawberry soil-borne 

diseases (Vestberg et al., 2004). There are clear examples of how AMF could alleviate 

strawberry wilt in non-fumigated soil and so considered as a potential alternative to 

chemical soil fumigants (Ma et al., 2004; Tahmatsidou et al., 2006; Sowik et al., 2016). 

For unknown reasons, it was very difficult to induce wilt symptoms under growth chamber 

and glasshouse conditions when using naturally contaminated field soil or soil-less 

substrate mixes artificially inoculated with different types of wilt propagules (Chapter 4). 

Therefore, it was very challenging to study the effect of AMF inoculations against 

strawberry wilt under pot conditions. This was not an isolated case; other studies conducted 

at NIAB EMR on the interaction between strawberry and V. dahliae also experienced 

similar issues (Cockerton pers. comm.). The strawberry cultivars used for those trials have 

all been selected for their susceptibility to V. dahliae. Therefore, the reasons for the 

absence or very low levels of wilt symptoms in pot experiments remains unknown. 

Unfavourable culture conditions when using naturally contaminated field soil or prolonged 

culture of wilt isolates on artificial media may have affected fungal pathogenicity. Further 

studies are needed to optimise experimental cultural conditions, select very susceptible 

strawberry cultivars (e.g. ‘Elsanta’, ‘Emily’), use more virulent wilt strains and/or improve 

preparation of wilt inoculum and inoculation methods. By contrast, in the field experiment 

wilt symptoms were observed on the same susceptible strawberry cultivars used in some 

of the pot experiments. However, AMF pre-inoculation did not reduce the incidence of 

plants with wilt symptoms. Variability in the effectiveness of AMF inoculants against soil-

borne diseases under field conditions depends on various environmental factors (Vestberg, 

1992; Vestberg et al., 2005; Rodriguez & Sanders, 2015). Therefore, small changes in field 

conditions may have resulted in greater changes in the biological control abilities of the 
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non-native AMF inoculants used in this study. Indigenous AMF inoculum present in the 

field could have also negated the initial positive effects of AMF pre-colonisation against 

strawberry wilt. Nevertheless, future experiments with other strawberry cultivars and 

sampling times closer to the transplantation time may reveal whether AMF pre-inoculation 

can be of any advantage for plant growth and nutrition in the early stage of establishment 

in the field. Further studies based on soil metagenomics should also be carried out to find 

the functional roles of the microbial communities that respond to AMF pre-inoculations. 

This would enable us to understand the mechanisms underlying the changes in community 

composition in strawberry rhizosphere. The experimental design may also need to be 

adapted and include soil samplings to identify the level of pathogen inoculum and its 

distribution before plant transplantation. In fact, there was a high degree of spatial 

aggregation of plants with Verticillium wilt. This aggregation pattern was observed with 

V. dahliae on other crops (Xiao et al., 1997; Johnson et al., 2006; Wei et al., 2015), which 

is most likely due to the heterogeneity in soil pathogen inoculum. This aggregation may 

have also masked any treatment effects – random assignment of treatments to individual 

plots is obviously not able to reduce this negative influence caused by aggregated 

inoculum.  

 

Most importantly, strawberry wilt is expected to become less of a problem for strawberry 

production in the UK. The current restriction on methyl bromide, the necessity to mitigate 

the threat of strawberry wilt, the requirements to extend growing season and increase the 

ease of picking are leading to new strawberry production systems in the UK. Strawberry 

cropping is currently moving away from traditional field cultivation toward production 

into soil-less substrates under protection (glasshouse or polythene tunnel). Therefore, the 

management programs of strawberry root diseases and increase of productivity need to 

focus now on soil-less production systems. 
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7.1.3. Effects of AMF and PGPR on strawberry productivity and tolerance to 

Phytophthora diseases in soil-less substrates 

Other root pathogens such as P. fragariae and P. cactorum continue to pose a serious threat 

to strawberry growing in soil-less substrates even on a table-top system (Schnitzler, 2004; 

Martínez et al., 2010). In fact, strawberry plugs can be initially infected by both pathogens 

in nurseries or during cultivation via contaminated water supply. In addition, strawberry 

table-top systems rely heavily on high input of fertiliser, pesticides and water; the soil-less 

substrates used (e.g. coir or peat) are usually devoid of beneficial microbes which can also 

affect plant growth and productivity even in the absence of pathogens. Therefore, 

inoculations of AMF and/or PGPR in soil-less substrate such as coir were proposed as a 

sustainable method to improve strawberry health and yield (Boyer et al., 2016). A series 

of pot experiments were carried out to test whether commercially available AMF and/or 

PGPR inoculants could reduce development of P. fragariae and P. cactorum in peat-based 

composts and improve strawberry productivity in coir under controlled conditions. Results 

of the current study showed in one occasion the potential of AMF inoculation alone to 

reduce symptoms caused by P. fragariae, although the presence of AMF colonisation was 

not here confirmed. Unfortunately, neither AMF root colonisation nor typical red core 

symptoms were observed in a repeat experiment. Thus, it was not possible to conclude 

whether AMF could reduce red core severity or incidence during those two experiments. 

The absence of AMF symbiosis was also observed in the P. cactorum experiment 

conducted under glasshouse conditions in commercially used compost. The difficulty to 

establish AMF colonisation during those three experiments was probably the result of 

chemicals (i.e. high P level and/or low pH), physical and/or biological properties of the 

compost mixes used, but the reasons for this remained unknown. Regarding the microbial 

inoculations in the coir bag study, AMF root colonisation was successfully established 

under semi-commercial conditions but remained quite low (average 15% RLC). Despite 
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the presence of AMF root colonisation, AMF did not significantly influence strawberry 

yield or plant growth although there was a trend of higher fruit yield associated with AMF 

inoculation at planting. The PGPR inoculation alone or coupled with AMF also failed to 

provide a significant increase of fruit yield and plant growth in this occasion. The nature 

of the experimental design (i.e. random design) was identified to be potentially responsible 

for large experimental residual errors, leading to the absence of significant treatment 

effects. It was also unfortunate that the AMF pre-colonised plugs could not be used in this 

work. In fact, they were not properly cold stored by the supplier and resulted in the death 

of most of the plants that could not be used. Further optimisations and understanding of 

the strawberry-microbe interactions in soil-less substrates on table-top system are needed 

to ensure consistent beneficial effect of AMF and/or PGPR inoculations.  

 

7.1.4. The use of an axenic autotrophic in vitro system to explore the nature of 

interactions between AMF and soil-borne pathogens 

Plant-microbe interactions involve very complex mechanisms and pathways that are very 

sensitive to environmental conditions. The use of a simple autotrophic system was 

presented as a useful tool to dissect various aspects of strawberry-AMF interactions by 

reducing the influences of environmental factors and interaction with other microbes 

occurring in the field and glasshouse conditions. Micropropagated strawberry plantlets 

were for the first time successfully grown with V. dahlia or P. fragariae on MSR medium. 

Unfortunately, the symbiotic interaction between AMF and strawberry did not establish in 

the present axenic system. The reasons for the absence of AMF root colonisation are 

unknown, but they were most likely associated with the low level of light quality provided 

during the tests. Nevertheless, plantlets were successfully associated with V. dahlia or P. 

fragariae on MSR medium with the corresponding disease symptoms, which was difficult 

to obtain in various pot experiments and never attempted before. Regarding the absence of 
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establishment of the AMF symbiosis, future adaptations of this system are necessary. The 

modified mycelium donor plant (MDP) in vitro growing system and the increase of light 

quality are both expected to provide better conditions for the establishment of the AMF 

symbiosis and should be the second step forward to improve this in vitro system. This 

study may open new avenues to explore the strawberry-AMF-root pathogens interaction 

under axenic controlled conditions on MSR medium. 

 

7.2.  Recommendations and future work 

Plant-microbe interactions play an important role in plant health and productivity (Jeffries 

et al., 2003). The interest of strawberry growers in the role that AMF and other beneficial 

microbes could play in the control of root diseases has increased over recent years. 

However, the mechanisms involved in the mycorrhizal protection against plant pathogens 

are still poorly understood (Pozo & Azcon-Aguilar, 2007). Investigations of this field are 

made complex because of different parameters and growing conditions that may affect 

AMF symbiosis quantitatively and qualitatively: i) the model system is a combination of 

interactions between three different partners (strawberry-AMF-root pathogens), ii) the 

growth conditions should be favourable for the plant and AMF but also meet commercial 

standards, and iii) the identity of the partners defines the specificity of the system. 

Therefore, understanding each interaction independently is a prerequisite for improving 

our knowledge in this field and for identifying processes behind the bio-protective effects 

of the AMF symbiosis under commercial situations. I have successfully demonstrated the 

possibility to inoculate strawberry plugs at an early stage in different soil-less substrates 

and I have tested several methods that allow the study of the effect of AMF inoculation 

against different strawberry root pathogens. Those protocols could easily be adapted to 

study the interaction between other AMF species, other beneficial microbes, other 

strawberry cultivars, and other pathogens in different growing conditions. The methods 
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used here could also be applied to other important horticultural crops grown in soil and/or 

soil-less substrates. Many interesting observations in this study have resulted in a number 

of thought-provoking recommendations for the use of AMF in commercial strawberry 

production and future research in the area: 

 

• The potential benefits of AMF in strawberry production seem to be currently 

ignored by the strawberry industry. This may be partially due to inadequate 

methods for large-scale inoculum production and the price of the commercial 

inocula. Thus, it is important to improve inoculum production techniques for 

introducing AMF to strawberry production systems and other horticultural crops. 

In addition, research should also focus on testing lower amounts of AMF inoculum 

to reduce the costs for growers and improving inoculation methods. Other AMF 

formulations or inoculation methods should be considered. For instance, a liquid 

formulation delivered through the fertigation system or mixing the granular AMF 

formulation in the potting mix are both expected to be cheaper but will need further 

optimisations to avoid losses of inoculum and to ensure they are reachable by 

strawberry roots. 

 

• Pre-inoculation of strawberry plugs with AMF resulted in high levels of root 

colonisations in different soil-less substrates (e.g. vermiculite, peat/perlite mix and 

coir) when incorporated as a powder layer during the weaning stage (Chapter 3). 

However, when thousands of strawberry plugs would need to be pre-inoculated 

with AMF, the ‘powder layer’ inoculation method appears to be difficult to 

implement in a commercial situation, and it may not be the most cost-effective 

option for the grower. Therefore, the design of a new tray filling machinery that 
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could form an inoculum powder layer in the compost in pots/cells may help 

strawberry nurseries to optimise the plant pre-inoculation with AMF.  

 

• Approximately 230 species of AMF have been recognized so far (Krüger et al., 

2012) and this is surely an underestimate of the real diversity (Young 2012). 

Sequences within individual AMF spores and isolates have also shown to present 

multiple variants, as well as within and between species of the Glomeromycota 

(Rodriguez et al., 2001). It is imperative to identify how different growing 

conditions and different strawberry cultivars could influence AMF genomic 

changes and consequently their positive effects on plant health and productivity. 

This type of research may help to design new AMF products and use them under 

the most appropriate conditions to maximise their positive effects.  

 

• The potential of AMF to increase strawberry plant growth and health might be 

partially controlled by host and AMF genotypes and their interactions. Genotype-

dependent plant reaction has been demonstrated in strawberry and other crops (e.g., 

wheat) that showed differences in the level to which they form a symbiotic 

relationship with AMF (Vestberg, 1992b; Al-Karaki & Al-Raddad, 1997). Further 

work is required to determine the extent to which mycorrhizal responsiveness of 

strawberry cultivars in a soil-less substrate is heritable. If this feature is controlled 

genetically, it could be exploited for breeding strawberry that could be easily 

colonised by AMF in substrate (e.g. coir) to enhance their productivity and 

tolerance to pests and pathogens.  

 

• The presence of DSE together with AMF was observed inside the root of 

strawberry plants when grown in Irish peat-based substrate. Therefore, additional 
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studies are needed to characterise the identity and origin of the DSE and the nature 

of AMF and DSE interactions in strawberry roots (e.g. competition for root space, 

for carbon and/or mineral nutrients, and effect of DSE exudates). It will be also 

necessary to investigate the effect of DSE colonisation on the host fitness. For 

example, DSE inoculations on tomato has showed to improve plant growth, to 

influence fruit yield and fruit quality parameters and to decrease the negative effect 

of V. dahliae (Andrade-Linares et al., 2011). If similar positive effects are 

identified for strawberry, DSE could also be used a beneficial microbe that will 

complement the current biological agent armoury.  

 

• A single biocontrol agent is often inoculated to control a single pathogen (Wilson 

& Backman, 1999). However, this commonly used procedure might be responsible 

for the inconsistent performance provided by AMF. In fact, a single AMF species 

or strain is not active in all substrates and/or against all root pathogens. Therefore, 

it is advisable to mix different AMF species together and/or with other types of 

beneficial microbes (e.g. PGPR, Trichoderma) presenting different colonisation 

patterns. This might be useful to increase strawberry tolerance against pathogens 

via different mechanisms of disease suppression, biogeochemical cycling of 

nutrients and by creating a more stable rhizosphere community. For example, co-

inoculations of AMF and PGPR have been reported to enhance plant growth and/or 

health in many occasions (Esitken et al., 2010; Ipek et al., 2014; Hautsalo et al., 

2016). Interestingly, synergistic effects on strawberry growth following co-

inoculation with PGPR and AMF have been reported (Vosatka et al., 1992) and 

PGPR were also found to stimulate AMF root colonisation (Vosatka et al., 2000). 

This mixture may coexist without exhibiting adverse effects on each other and 

suitable combinations of AMF and PGPR may improve plant health and 
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productivity. Further studies are now required to investigate the functional 

complementarity between the AMF and PGPR when co-inoculated in substrate 

(e.g. coir) with different strawberry cultivars to develop suitable biocontrol of 

strawberry pathogens.  

 

• Strawberry root colonisation by AMF can establish in coir during weaning stage or 

cultivation on table-top, which is of great importance for strawberry production. 

However, AMF colonisation was generally shown to be reduced in coir compared 

to other substrates (e.g. vermiculite). AMF inoculation in coir has been shown to 

increase plant biomass as well as the size and the number of Class I fruits (Chapter 

6), which was consistent with a previous study (Boyer et al., 2016). However, the 

positive effects of AMF inoculations were not statistically significant in this 

occasion. The nature of the experimental design (i.e. random design) was identified 

to be responsible for large experimental residual errors, leading to the absence of 

significant treatment effects. Further studies are needed to shed light on the AMF-

strawberry interaction in coir and find the best cultivation practices to establish an 

increased level of root colonisation in this substrate and potentially more consistent 

protection against root diseases.  

 

• To confirm whether pre-inoculated AMF species can persist temporally and 

spatially in soil or substrate and if they altered the composition of the native AMF 

and/or microbial community metagenomic approach should be used in the future. 

There have been many studies that have examined the effects of biological control 

agents on pathogen populations, and other microbial communities. This has been 

done in both the soil and inside the roots. However, the effects of AMF on microbial 

communities in soil-less substrate have not been the focus of most studies. 



  Chapter 7 

~ 159 ~ 

 

Therefore, metagenomic analysis should be used to investigate changes in 

microbial communities in the rhizosphere or within the root of strawberry plant 

cultivated in coir.  

 

• In the context of strawberry table-top systems, cropping sequences and high use of 

fertilisers and pesticides may affect AMF root colonisation under commercial 

situations. Several reports of pesticide/AMF interactions showed that pesticides 

(e.g. fungicides, fumigants, herbicides and insecticides) fertilisers and irrigation 

regimes all affect AMF symbiosis (Johnson & Pfleger, 1992). Nevertheless, it is 

hard to make simple generalisations from those studies because of the variability 

in pesticide formulations, fertiliser compositions and experimental conditions. 

Specifically, a series of experiments are needed to answer the following questions:  

Are pesticides and fertilisers responsible for the difficulty of AMF to establish in 

coir and other peat-based substrates when cultivated on a table-top system? 

 

• Finally, strawberry plants are also the target of many other pests and pathogens 

occurring above- and/or below-ground. The effect of AMF has been reported 

previously against foliar and systemic pathogens as well as insects and nematodes 

on several other crops (Comby et al., 2017). For example, strawberry plants root 

colonisation by F. mosseae and G. fasciculatum reduced larval survival and 

biomass of black vine weevil (Otiorhynchus sulcatus) when inoculated singly, but 

not together (Gange, 2001). Additional studies like those are needed to increase our 

knowledges in this field. 

 

• AMF inoculation has showed effects against insect pests but few studies have 

addressed the impact upon beneficial insects such as pollinators and insect 
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predators (e.g. parasitoids). Studies in these areas are still scarce and need further 

attention. 

 

The future success of the biological control in horticultural crops will benefit from research 

like this. With the respect to commercial introduction of AMF in strawberry production 

systems, the results of this work demonstrated that AMF pre-colonisation with 

commercially available inocula is possible under misting conditions and can result in the 

production of highly colonised strawberry plugs. In addition, pre-inoculated strawberry 

plugs could be cold stored for several months at -2°C without losing their AMF root 

colonisation. Those results are very encouraging for the strawberry growers interested in 

AMF biotechnology. However, the early establishment of the AMF symbiosis when using 

AMF Plantworks Ltd inocula did not promote strawberry health, growth or productivity 

under controlled and/or open field conditions. Although the experiments were set up in a 

robust way, it seemed that the initial AMF and/or the pathogens inocula used and/or 

cultivation conditions were not appropriate. Therefore, several experiments were not 

conclusive. It is clear that strawberry production systems are currently not designed to host 

AMF symbiosis (i.e. high fertilisation and/or irrigation regimes, use of substrates not 

conducive for AMF and dependency on high pesticides inputs) and the commercial AMF 

inocula quality is often variable. In conclusion, it is essential to optimise AMF inocula 

quality, inoculation techniques and AMF growing conditions before strawberry growers 

should use AMF biotechnology to control pathogens and/or increase plant productivity.  
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List of abbreviations 

Ammonium         NH4
+  

Arbuscular mycorrhizal fungi      AMF 

Analysis of Variance       ANOVA 

Association of Official Agricultural Chemists    AOAC 

Besloten Vennootschap       b.v. 

Boron          B  

Calcium         Ca 

Centimetre        cm 

Circa          ca. 

Colony-forming unit        CFU 

Confer (compare)        cf. 

Copper         Cu 

Cultivar        cv. 

Dark septate endophytes       DSE 

Day         d 

Department for Environment Food & Rural Affairs   DEFRA 

Degrees Celsius       oC 

Degrees of freedom        df 
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Deoxyribonucleic acid       DNA 

Doctor         Dr 

Doctor of Philosophy       PhD 

et alia          et al. 

East Malling Research      EMR 

European and Mediterranean Plant Protection Organization  EPPO 

European Bank of the Glomeromycota    BEG 

Ex. gr.          e.g. 

Food and Agriculture Organization     FAO 

Generalised linear model       GLM 

Glomeromycota in vitro collection     INVAM 

Gibberellic acid       GA3 

Gram          g 

Hour         h 

Hydrochloric acid       HCl 

Indole-3-butyric acid        IBA 

Inductively Coupled Plasma-Optical Emission Spectroscopy ICP-OES 

Id est  `       i.e. 

Iron         Fe 

Kidney bean agar        KBA 
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Kilogram        kg 

Least significant difference       LSD 

Litre          L 

Magnesium        Mg 

Manganese         Mn 

Mating type         MAT 

Metre          m 

Microlitre        µL 

Micromole        µmol 

Micrometre        µm 

Milligram        mg 

Millilitre        mL 

Millimetre        mm 

Modified mycelium donor plant     MDP 

Modified Strullu Romand       MSR 

Most probable number      MPN 

Murashige & Skoog        M&S 

Mycothèque de l'Université catholique de Louvain    MUCL 

National Institute of Agricultural Botany    NIAB 

Nitrate         NO3
- 
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Nitrogen        N 

Number of replicates        n 

Number        no. 

Parts per million        ppm 

Percent        % 

Phosphorus or PGPR treatment in Chapter 5 (see context)  P 

Photosynthetic photon flux density      PPFD 

Plant growth-promoting rhizobacteria    PGPR 

Polymerase chain reaction      PCR 

Polyvinyl alcohol-lactic acid-glycerol    PVLG 

Potassium        K 

Potassium hydroxide        KOH 

Pound sterling        £ 

Power of hydrogen       pH 

Prune lactose yeast agar      PLYA 

Quantitative polymerase chain reaction    qPCR   

Relative humidity       HR 

Root length colonisation      RLC 

Root weight ratio        RWR 

Second         s 
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Species pluralis        spp. 

Standard error        SE 

Sulphur         S 

Tonne          t 

United Kingdom        UK 

Volume/Volume percent      v/v 

Watt         W 

Weight/Volume Percent      w/v 

Wheat Germ Agglutinin, Alexa Fluor 488 Conjugate  WGA-AF488 

Zinc         Zn
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