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Abstract

The deposition and subsequent growth of inorganic scale on completion
equipment is a major problem in the oil and gas industry. Several studies have
been conducted on the kinetics of both bulk precipitation and surface
deposition of barium sulphate. These studies were often conducted in a closed
system and measurements were taken off-line and in this study, a flow cell
was designed to study both kinetic processes in-situ and in an open system.
The set-up allows real-time analysis of a metallic sample by following various
scaling parameters such as surface coverage, number and size of crystals
formed on the scaling surface. The experimental results were fitted to a
diffusion-controlled model to study the mechanism of the surface

crystallisation process.

The kinetics and mechanisms of barium sulphate bulk precipitation and
surface deposition with the absence and presence of scale inhibitors
(diethylene triamine penta methylene phosphonic Acid (DETMP),
VinylSulphonate Acrylic acid co-polymer (VS-Co) and poly-phosphino
carboxylic acid (PPCA)) were studied. The influence of saturation ratio, flow
rate, pre-scaled surface and interval injection on the surface inhibition
performance of PPCA scale inhibitor was studied. In addition, the formation of

barium sulphate in a multiphase environment was investigated.

The results showed that the deposition of barium sulphate on a metallic steel
could occur simply by heterogeneous nucleation and grow and not always by
the adhesion of pre-precipitated crystals from the bulk solution. It also
revealed the strong effect of saturation ratio and temperature on the

nucleation mechanism of barium sulphate deposition on surfaces.

In terms of preventing surface growth by the application of scale inhibitor, the
study showed that scale inhibitor could act as a promoter of the crystallization
process rather than hindering the crystal growth. Furthermore, the study
highlights the importance of starting the chemical treatment as early as



possible to limit the pre-existing layer of scale which can considerably disrupt

the efficiency of scale inhibitors.

It was found from the study that pre-existing layers of crystals can act as active
sites for nucleation and further growth of crystals. The results also show the
significance of taking into account the injection of scale inhibitor from the
control valve into a process line; inappropriate injection could affect the

prevention of scale during continuous injection.

The study demonstrated that the presence of oil droplets can influence the
deposition of barium sulphate on surfaces. This suggests in choosing an anti-
scaling surface to prevent scale formation, tests should be conducted to
evaluate the performance of the surfaces both in an aqueous environment and

multiphase environment.



Table of contents

Y o3 g g o1V A T=To Lo o 1 1=T o1 £ i
ADSIIACT. .. iv
Table Of CONTENTS ... e Vi
LISt OF fIQUIES oo Xiii
LiSt OF tADIES c.eiiiiiiiiiiiiieeeeee e XXiii
PUDIICAIONS ..ottt eees XXIV
NOMENCIATUI ... e e e XXV
ADDIeVIatioNS ... XXVil
Chapter 1 INtrodUCTION ....ccccc i 1
1.1 Oil and gas formation and production ...........cccceeeeevvvveiiiiiiiieeeeeee, 2
1.2 Scale formation and the economic impact in the oil industry......... 3
1.3 AIMms and ODJECHIVES .......coooiiii 6
1.4 ThesSiS OULHNE ...ccoeeeiiiiie e 7

Chapter 2 Theory and literature review of scale formation and

INNTDTTION Lo 8
2.1 SUPEISAtUrAtION ......uuiii ettt e et 11
2.2 INAUCHION tIME ...ttt eeeeees 13
2.3 NUCIEALION ...t 14
2.3.1 Primary NUCIEAtioN ............couuveiiieieeeeeieeiciie e 15
2.3.2 Secondary NUCIEAtION..........uuuuiiiiee e 18
2.4 Crystal growWth .........ooiiiii e 19
2.4.1 Surface energy theory ..........ceiieiieeeeieeccee e 19
2.4.2 Adsorption layer theory .........cccoveieeeiiieiiiciee e 20
2.4.3 Screw dislocation theory .........cccoeeviiiiiiiiiiiii e 21

Vi



2.5 AANESION ..o 22
2.5.1 Adhesion theOories ..........cccuiiiiiiiieee e 22
2.6 Barium SUIPNAte ........coooiiiiie e 23
2.7 Factors affecting scale formation ..............cceeveeiiiiiiiiiiiiiiiee e, 24
2.7.1 Effect of temperature and pressure.........cccoeeeeeeeeveevvvnnnnnnn. 24
2.7.2 Effect of saturation ratio ............cccccoeeiiiiiiiiiiieeeineeeen 25
2.7.3 Effect of solution pH ..o 26
2.7.4 Effect of divalent cations ................eevvviiieeiiiiiiiiiiiiiiiiieeeeeee 28
2.7.5 Effect of ionic Strength ...........ccooeeiiiiiiiic e, 28
2.8 Scale control Strategy.........ceuuurriiiiieeeeeieeeeie e e 29
2.8.1 Fluid modifiCatioN .............uueeeeereiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeees 29
2.8.2 Flow mOdifiCation ..............eeveeeueemeiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeees 29
2.8.3 Substrate modification.................eevveiiiiiiiiiiiiiiiiiiiieieeeee 30
2.8.4Damage remoVval..........ccovviviieiiiiiie e 34
2.8.5 Chemical scale inhibitors. ... 35
2.9 Types of scale iNNIDItOrS...........eoiiiii i 37
2.9.1 PhOSPNONALES .....vviiieieeeceeee e 37
2.9.2 Polycarboxylic acid...............ceeiiiiiiiiiicciee e 38
2.9.3 POIYEIECIIOIVLES ...uuoe e 39
2.10 INNibItIoN MECNANISM ....eviiiiiiiiiiiieiee e 40
2.10.1 Threshold effeCt ...........uvveeiiiiiiiiiiiiiieeeeee e 40
2.10.2 Crystal distortion/ modification .............cccoeeeeeeiviveeiiiiinnnnn. 41
2.10.3 DISPEISION ..ccevvviiiiie e e ee ettt e e e e e e e e e e as 41
2.11 Factor affecting inhibitor performance............ccccoovveiiiiiiiinneeeeee, 41
2.11.1 Structural fEatUreS...........euueveriiiiiiiiiiieieeieeeeeeeeeeee e 41

vii



2.11.2 Environmental fEatUres .......couveeeeieeeee e 42

2.11.3 SOIULION PH..cceeiiiiiee e 42
2.12 Bulk CharaCterization .................eeeveeeeereeeeiiieeeiieeeeeeeeeeeeseeeeeeeeeeeeees 46
2.12.1 Turbidity measurement...........coooeeeevieeiiiiiiiee e 47
2.12.2 Change in barium ion concentration..............cccceevvvvvvnnnnnn. 47
2.12.3 Conductivity measurement..........ccovvvvvveriiieeeeeeereeriiinenn 47

2.13 Surface deposition characterization ..............cccceeeeeeeiiiiiiiineeeeeeeee. 48
2.14 Bulk precipitation vs surface deposition Kinetics ..................c...... 51
2.15 Summary Of literature reVIEW.........ccceevveeririiiieeeeeee e e e e e e 54
Chapter 3 Methodology ...cooooeieeeece e 56
3.1 INrOAUCTION .ottt eeees 56
3.2 Metal SAMPIE ..o 57
3.2.1 Sample preparation..............ueeiiiieeiiiiiiii e 57

3.3 REAGENTS. ... 58
3.3.1 Brine COMPOSILION......ccceieiiiiiiiiiee e 58
3.3.2 Chemical iNhibItOrS .............vvviiiiiiiiiiie e 59
3.3.3 BUFfer SOIULION .........eviiiiiiiiiiiiieeeeeeeeeee e 60
3.3.4 Quenching SOIULION............couuiiiiee e 61
3.3.5 DiISSOIVET SOIULION ....cceeeiiiiiiieiiee e 61
3.3.6 Hydrocarbon..........ccoooooiiiiiiii e 61

34 TSt SBI-UPD et 62
3.4.1 Static bulk jar teStS .......ccvvvviiiiiiie e 62
3.4.2 Rotating Cylinder Electrode (RCE)........ccccoovviviiviviiiiiinnnn. 62
3.4.3 IN-SitU FIOW tEST ....eeeeiiieeee e 64

3.5 Growth and nucleation model.................oouiiiiiiiiiiiiiiiiiiiee 68

viii



3.6

3.7

3.8

TSt CONAILIONS ... 69

Experimental proCeduUres .........cooovieiviiiiiiiiiiiee e 70
.7 L BUIK JAr tESE . 70
3.7.2 Rotating Cylinder Electrode (RCE) teSt..........ccovvveiiivvnnnnnnn. 71
3.7.31IN- SitU FIOW tEST ....eeiieieiie e 71
[0 U] o] 41T | R 73

3.8.1 Scanning Electron Microscopy (SEM) and Energy
Dispersive X-ray analysis system (EDX).......ccccoeeeeeiiveiinnnns 73

3.8.2 JY138 Ultrace model Inductively Coupled Plasma -

Atomic Emission Spectroscopy (ICP-AES) ..........cccevvveennens 74
3.8.3 Surface profilometer............uuuiiiiiiiiiiii e 74
3.8.4 Contact angle measurement ..........ccooeeuveiiiineeeeeeeeeiiiinnn 76
3.8.5 X-Ray Diffraction (XRD) .......uuuiiiiiiiiiiiiiiiiiiiie e 77

Chapter 4 The kinetics of barium sulphate bulk precipitation and

SUIface dEPOSITION ..uuuiiiii i 79
4.1 INTOTUCTION ... s 79
4.2 BriN€ COMPOSITION. .....coiiiiiiiiiiiiee e et e et e e e e e eeeeaenes 80
4.3 Bulk precipitation measurement of barium sulphate.................... 81
4.4 Barium sulphate surface deposition kinetics study...................... 83
4.4.1 Average Size of Crystals .......ccooveiiiiiiiiiiiiii e 83
4.4.2 Number of CrystalS .........ooovuiiiiiie e 85
4.4.3 SUIfaCe COVEIAgE .....cceeeeeeeeiiiee e e e 87
4.5 Effect of scale inhibitor on surface growth.............ccccoeeeeeeivinnnnne. 91
4.5.1 Effect of PPCA on surface scaling .........cccooevveeiiiieiiiiinnnnnnn. 92
4.5.2 Effect of VS-Co on surface scaling.........cccooeeeeevieeiiiiinnnnnnn. 94
4.5.3 Effect of DETPMP on surface scaling ...........ccceevevvvvvvnnnnnnn. 97

iX



4.6

SUMMIAIY et e e e a e e e e e eanns 101

Chapter 5 Factors affecting barium sulphate surface growth

INNTDTTION Lo 102
5.1 INrOAUCTION ..eviiiiiiiiiieeieeeeeeee ettt eeeeeees 102
5.2 Brine COMPOSITION.....cciiiiiiiieiiiiiiee e e e e e 103
5.3 BUIK PreCipitation..........ccovvieiiiiiiiie e e e 104
5.4 Effect of saturation ratio on surface inhibition efficiency of

P P C A e 104
5.5 Effect of flow rate on surface inhibition efficiency of PPCA....... 108
5.6 Effect of a pre-scaled surface on surface inhibition efficiency

5.7

Of PP CA e aaene 110
Effect of inhibitor interval injection............ccoooooiiiiiiiiiiin, 113

5.7.1 Evaluating the optimum time required to prevent

nucleation and growth of crystals...........cccoeeeeveiiiiiiiieennn. 118

5.8 SUMMAIY ...t 122

Chapter 6 Surface scaling in multiphase conditions ..........c......cooouuee.. 124

6.1 INrOAUCTION ..eviiiiiiiiieeieeeee ettt 124

6.2 Experimental detailS.............ouviiiiiiiiiiii e 125

6.2.1 Surface characterization..............cccoeecvivriiieieiiiinee 125

6.2.2 Multiphase conditionS...........ccuuuiiiiiiiiiiieei e 126

6.2.3 Brine COMPOSItION .....uuiiiiiiiiiiiiiiiiie e 126

6.3 BUIK PreCipitation..........coovviviiiiiiie e 127

6.3.1 Static barium sulphate performance test...............c.......... 127

6.4 Surface scaling at various water: oil ratios............cccceeeeevevnnnnnnn. 129
6.5 Surface scaling in multiphase environment in presence of

SCAlE INNIDITOIS ..o e 133



6.6 SUMMAIY ...ttt e e e eaa s 134

Chapter 7 DISCUSSION . ...t ieeiieeeeeee e e e e e e e e e e e e e e e e e e eeeeannnnns 136
4% R [ 01 o o 18 [ox i (o o RS RRPRP 136
7.2 Bulk precipitation and surface deposition.............ccouuveceiireeeeeee. 137

7.3 Mechanism of barium sulphate deposition on metallic surface . 138
7.4 Kinetics of barium sulphate on a metallic surface ..................... 141

7.4.1 Effect of scale inhibitor on the kinetics and morphology

of barium sulphate scale formation ..............ccceevviiiinnnnn. 144
7.5 Factors that affect surface scale inhibition .............c.ccoveiiiiinn. 149
7.5.1 Effect of saturation ratio on BaSQOa surface inhibition....... 149

7.5.2 Effect of pre-scaled surface on BaSOa surface inhibition

.......................................................................................... 151
7.5.3 Effect of flow rate on BaSOa4 surface inhibition................. 152
7.5.4 Intermittent injection of scale inhibitors................cccccc.... 153
7.6 Scaling in multiphase conditions .............cceiieieieeeeeeicee e, 156
7.6.1 Effect of surfaces in multiphase condition ........................ 156
7.6.2 Effect of scale inhibitors on multiphase condition............. 161
Chapter 8 CONCIUSIONS ....coiiiiiieeece e e e e e eanannes 164
8.1 Kinetics of barium sulphate bulk precipitation and surface
deposition with and without the presence of scale inhibitor....... 164
8.2 Factors influencing surface inhibition of barium sulphate.......... 165
8.3 Surface scaling in multiphase environment............cccccceeeeeeeeee, 166
Chapter 9 FULUIE WOTK .....cooeeeeeeeeci e e e e e e e e e eannenes 168
9.1 Improving the in-situ flow rig design .........ccccooveeiiiiiiiiiiiiie e, 168
9.2 The influence of other chemicals on surface scale formation
and iNNIDIOT. ... 168

Xi



9.3 Effect of impurities on the barium sulphate surface inhibition.... 169
9.4 Scaling in multiphase environment............cccoeeeevviviiiiiiiiieeeeeee, 169

RO I BN S .. e 170

Xii



List of figures

Figure 1-1: World market fuel used fuel types [1].......ccceevvveverviiiiiieeeeeeeeeiinne 1
Figure 1-2: An illustration of oil reservoir [6]..........ccceeveieeeiiieeiiiiiiiiie e, 2
Figure 1-3: Secondary recovery teChniques...........cccooeveiiiiiiiiiiiiiii e, 3
Figure 1-4: Global cost of SCale [13]......uiiiiiiiiiiiiiiiiie e 4
Figure 2-1: Possible location of barium sulphate scale deposit [43]............ 10
Figure 2-2: Kinetic processes involved in precipitation [43].......ccccccevvvvvnnnnns 11

Figure 2-3: A two-dimensional representation of the three major

SAtUration ZONES:[45]...coiiiiiiiiie e 13
Figure 2-4: Types of nucleation [48]........cccoevviiiiiiiiiie e 14
Figure 2-5: Process of primary nucleation [35]......cccceeeviviviiiiiiiiieeeeeeeeiiinns 15
Figure 2-6: Free energy diagram for nucleation and critical radius ............. 16

Figure 2-7: Visualisation of the difference between the mechanical

breeding and the surface breeding mechanism [54] ..........ccccovvvvnnnnn... 19

Figure 2-8: Representation of a crystal surface complete with defects

510 PO SRTTUURRTRRIS 21
Figure 2-9: Diagram of screw dislocation mechanism [37]............ccceeeeeinens 22
Figure 2-10: Barium Sulphate mineral [61]............cooviiriiiiiiiiiiiiii s 23
Figure 2-11: Barium sulphate solubility in water [49]..........ocvieieiiiiiiiieiinnns 25

Figure 2-12: (a) Scale core with brine with BaSO4 supersaturation of 15
and SrSOs4 of 3.7 (b) Scale core with brine with BaSOa4
supersaturation of 30 and SrSO4 of 7.5 (c) Effect of supersaturation
of BaS04 and SrSO4 permeability decline [12] .......coeeveiieievveeiiiiieenn. 26

Figure 2-13: SR (barite) vs. pH, 60/40 NSSW/FW Base Case, 95°C [25] ... 27

Figure 2-14: SR (barite) vs. pH, 80/20 NSSW/FW Base Case, 95°C [25] ... 27

Xiii



Figure 2-15: Schematic diagram illustrating Ca inclusion into the barite
[ALEICE [B8]. . eeeeeeereieee e e e e ettt e e e e e e e e

Figure 2-16: Result of 1hr deposition test at 1800 rpm to assess the
scaling tendency of each test surface [15] .........cooviiiiiiiiiieiieiiii.

Figure 2-17: Mass gain (mg) vs water contact angle measurement (°)

Figure 2-18: Mass gain surface 2h immersion in complex scaling brine
(a): Laminar (b): Turbulent flow condition [81]...........cccoovveiiiiiiieeerinnnnn.

Figure 2-19: Surface coverage (%) formed from Brine A on the different

surface before and after erosion [78] .......cccoeevvvvviiiiiiiiiii e

Figure 2-20. The effect of different coatings on CaCOs scaling rate (300
mg.I"t CaCOs, 70°C, 5 repeats) [82].......ccevueeeeiuieeeiiieeeiiee e,

Figure 2-21. The effect of surface finish on CaCOs scaling rate (300 mg
I1 CaCOs, 70°C, 5 repeats) [82] ......cccvvuveeeeeeiiiiee e

Figure 2-22: Diethylene-triamine-penta-acetic acid (DTPA) structure..........

Figure 2-23: A schematic illustration of scale inhibitor squeeze treatment

PIOCESS [BB] «evvvvvruiieieeeiieieiiii e e e e e e e e et e e e e e e e e e e e e e e e e e e eneaan s

Figure 2-24: Diethylenetriamine penta methylphosphonic acid
(DETPMP) StIUCKUIE ...t

Figure 2-25: Structure of polymalaic acid (PMA) and polyacrylate acid

Figure 2-26: Schematic representation of polyelectrolytes used as scale

INNIDITOTS ...
Figure 2-27: Three main inhibition mechanisms [38]...........cccccceiiiiiiiiiiiiinnns

Figure 2-28: BaSOa inhibition efficiency at pH 2 for DETPMP, PPCA and
PVS [B8] ..o

Figure 2-29: BaSOs inhibition efficiency at pH 7 for DETPMP, PPCA and
S T [T

Xiv



Figure 2-30: BaSOs inhibition efficiency of DETPMP, PVS and PPCA vs.
Temp.; 50:50 Brent/SW brine mix after 22 hours [68] ............c.ccceee.... 45

Figure 2-31: BaSOa4 inhibition efficiency of DETPMP, PVS and PPCA vs.
Temp.; 50:50 Forties/SW brine mix after 22 hours [68]...............cc..... 45

Figure 2-32: BaSOsgrowth  with Ca-SI complex inclusion and Ca

inclusion and No Mg-SI1inclusion [68].......cccooveeiiiiiiiiiiiiie e 46
Figure 2-33: Electrochemical cell [101] ......ccovveiiiiiiiiiieieeeeeee e 50

Figure 2-34: (a) Effect of 4ppm of PPCA on the mean diameter of the
crystals of CaCOs nucleated and grown for 10 minutes in absence
of inhibitors (b) Effect of 4ppm of PMA on the mean diameter of the
crystals of CaCOs nucleated and grown for 10 minutes in absence
of inhibitors (c) Effect of 4ppm of CMI on the mean diameter of the
crystals of CaCOs nucleated and grown for 10 minutes in absence
(o) T 0] 1T o1 (0] £ 1 10 1 PP 51

Figure 2-35: Schematic diagram illustrating the surface scaling and bulk

precipitation according to inhibitor concentration and temperature...... 52

Figure 2-36 Comparison of morphology of bulk precipitate and surface
deposit after 24 hours (a) bulk precipitate (b) surface deposit [25]...... 53

Figure 2-37 Surface and bulk measurements for the three different

brines focusing on the lower scale measurements [91]..........ccccccunnne.. 54
Figure 3-1: Outline of chapter 3...........iiiii e 56

Figure 3-2: (a) Rotating cylinder electrode (RCE) sample (scale forms

on the cylinder surface) (b) In-situ test sample (scale forms on the

Flat SUMACE). ... 58
Figure 3-3: Chemical structure of DETPMP .........cciiiiiiiiiiiiiiiiee e 60
Figure 3-4: Chemical structure of VS-CoO.........covvviiiiiiiiieeeeciiee e 60
Figure 3-5: Chemical structure of PPCA ..o 60

XV



Figure 3-6: (a) Schematic diagram of rotating cylinder electrode (RCE)

device (b) RCE electrode unit with metallic cylinder samples (c)

] (= SRR 63
Figure 3-7: In situ flow cell Set-UP........cooviiiiiiiiieicie e 64
Figure 3-8: Schematic of experimental Set-Up........ccceeeevvvvieiiiiiiiiee e, 65

Figure 3-9: Flow cell consists of: (a) two PPMA plates and (b) a Teflon
gasket with volume of 15 ml..........ooiiiiiiii e, 65

Figure 3-10: CFD modelling of flow channel showing the flow velocity

with the cell (flow rate of 20mI/min). ...........ccceeiiiiiiiii e, 66
Figure 3-11: Schematic diagram illustrating turbidity curve.......................... 67
Figure 3-12: Schematic diagram of turbidity probe..........cccccccoeiiiiiiiiiiiiinnnns 67

Figure 3-13: Schematic illustration of experimental procedure using RCE

............................................................................................................ 72
Figure 3-15: Scanning Electron Microscopy (SEM)........ccccouviiiiiiieiiiiieinnnnns 73
Figure 3-16: Schematic of an ICP-AES ... 74
Figure 3-17. Evaluation of surface roughness profile .............ccccooeeevvvvnnnnnns 75
Figure 3-18. The distribution curve of surface skewness ..............ccccevvevnnns 76
Figure 3-19: Definition of the contact angle formed at a solid surface......... 77
Figure 3-20: The part of a XRD GONIOMELEr ........uovvieiiiiiiiiiiiiiieee e 78
Figure 4-1: Outline of Chapter............uuiiiiiiie e 79
Figure 4-2: Turbidity measurement of different brines (SR 15, 20, 30 and

80) at 25°C for 4 hours of eXpPeriment ..........cooovvvvieiiiiiie e 82
Figure 4-3: Turbidity measurement of different brines (SR 15, 20, 30 and

80) at 50°C for 4 hours of exXperiment ...........ccccvvevviiiiiee e 82

XVi



Figure 4-4: Average size of crystals formed on the stainless steel 25°C
for a range of SR15, 20, 30 and 80........cccovvvviiiiiiiee e

Figure 4-5: Average size of crystals formed on the stainless steel at 50°C
for a range of SR15, 20, 30 and 80........cceeviiiiiiiiiiiieee e

Figure 4-6: Number of crystals deposited on the stainless steel at 25°C
for a range of SR15, 20, 30 and 80........ccovvveviiiiiiiie e

Figure 4-7: Number of crystals deposited on the stainless steel at 50°C
for a range of SR15, 20, 30 and 80........cceeviiiiiiiiiiiie e

Figure 4-8: Images of BaSO4 scale deposition on the stainless steel at 1
and 4 hours for brine with SR (a) 20, (b) 30 and (c) 80 at 25°C...........

Figure 4-9: Surface coverage of BaSO4 formed at 25°C for a range of
SR15, 20,30 @Nd 80 .....coviiiiiieeeeeeeeeeee e

Figure 4-10: Surface coverage of BaSOa4 formed at 50°C for a range of
SR15, 20,30 @Nd 80 .....ceeieiiiiiiieeieieeeee ettt

Figure 4-11: Images of BaSOa4 scale deposition at 1 and 4 hours at 50°C
for brine with SR (a) 20, (b) 30 and (C) 80........uuveiiiiieiiiiieiiiciee e

Figure 4-12: Schematic diagram showing the possible effects of inhibitor

on surface growth of crystals...............ceeiiiiiiiiiiiec e

Figure 4-13: Effect of PPCA on crystal growth of BaSOa4 (a) Surface
coverage and (b) Average size of crystals for SR = 80 at 50°C...........

Figure 4-14: XRD diffraction pattern of BaSOa4 on stainless steel in the

PresencCe Of PPCA. .. ..o e

Figure 4-15: Image of BaSOa4 crystals captured using the camera at (a)
1 ppm (b) 4 ppm of PPCA; and SEM images of BaSOa4 crystals

formed on the stainless steel surface at (c) 1 ppm (d) 4 ppm of

Figure 4-16: Effect of VS-Co on crystal growth of BaSO4 (a) Surface
coverage and (b) Average size of crystals for SR = 80 at 50°C...........

XVii



Figure 4-17: Image of BaSOa4 crystals captured using the camera at (a)
1 ppm (b) 4 ppm of VS-Co; and SEM images of BaSOa4 crystals
formed on the stainless steel surface at (c) 1 ppm (d) 4 ppm of VS-

Figure 4-18: XRD diffraction pattern of BaSOa4 on stainless steel in the

PreSENCE Of VS-CO...ciiiiiiiiieieiiie et e e e e e e eaannne

Figure 4-19: Effect of DETPMP on crystal growth of BaSO4 (a) Surface
coverage and (b) Average size of crystals for SR = 80 at 50°C.........

Figure 4-20: Image of BaSOa4 crystals captured using the camera at (a)
1 ppm (b) 4 ppm of DETPMP; and SEM images of BaSO4 crystals
formed on the stainless steel surface at (¢) 1 ppm (d) 4 ppm of
DETPMP .t

Figure 4-21: Higher magnification of SEM image with 1 ppm of DETPMP

Figure 4-22: XRD diffraction pattern of BaSOa4 on stainless steel in the
presence Of DETPMP ...

Figure 5-1: Outline of chapter 5.

Figure 5-2: BaSOa Inhibition Efficiency test of brine solutions (SR 30, 60
and 80) using 1 ppm Of PPCA ...

Figure 5-3: Effect of PPCA (1 ppm) on crystal growth of BaSO4 (a)

Surface coverage and (b) Average size of crystals at SR = 30 and

Figure 5-4: Effect of PPCA (1 ppm) on crystal growth of BaSO4 (a)
Surface coverage and (b) Average size of crystals at SR = 60 and

Figure 5-5: Effect of PPCA (1 ppm) on crystal growth of BaSOas (a)
Surface coverage and (b) Average size of crystals at SR = 80 and

XVili



Figure 5-6: Image of BaSO4 crystals formed on a metal surface at (a)
SR=30 (b) SR=60 and (C) SR=80........cccceiiirrrrrrrirreeeeeeiiiiiiiireeee e 108

Figure 5-7: Effect of flow rate on crystal growth of BaSOa4 (a) Surface
coverage and (b) Average size of crystalS .........ccccovvviiiieiiiiiiie e, 109

Figure 5-8: BaSO4 deposited on the stainless steel at a flow rate of (a)
20 mimint (b) 40 mimint and (c) 60 mimint after 4 hours............... 110

Figure 5-9: Surface coverage of BaSO4 at different pre-scaling time (15,
30 and 60 MINUEES) ...eeeeeiiiiiiieee et e e e e e ar s 111

Figure 5-10: Effect of pre-scaled surface on crystal growth of BaSO4 (a)

Surface coverage and (b) Average size of crystalS..........ccccevvvvnnnnnn.. 112

Figure 5-11: Image captured of BaSO4 scale deposited on stainless steel
(a) pre-scaled for 15 minutes, (b) and 4 hours after injecting scale
inhibitor, (c) pre-scaled for 30 minutes, and (d) 4 hours after

injecting scale INNIDITOT .............oiiii i 113

Figure 5-12: Schematic diagram illustrating the periodic injection of scale
inhibitor for 15 and 30 MINULES. .........ooiiiiiiiiii e 114

Figure 5-13: Effect of 30 minutes interval injection of PPCA (1 and 4
ppm) on crystal growth of BaSO4 (a) Surface coverage and (b)
Average Size Of Crystals ... 115

Figure 5-14: SEM image of BaSO4 formed on the metal surface during

30 minutes interval injection after 4 hours............ccccooveeeeiiiieeiiceenn. 116
Figure 5-15: Volume of scale inhibitor used ............cccoooeiiiiviiiiiiiiiieeeeeee 116

Figure 5-16: Effect of 15 minutes interval injection of PPCA (1 and 4
ppm) on crystal growth of BaSO4 on (a) Surface coverage and (b)

Average Size Of CrystalS ........oovvvviiiiiii e 117

Figure 5-17: SEM image of BaSO4 formed on the metal surface during

15 minutes interval injection after 4 hourS...........ccooevviiiiiei e, 118

Figure 5-18: Schematic diagram simulating optimum time required to

prevent surface growth during periodic injection of scale inhibitor .... 119

XixX



Figure 5-19: Surface coverage of BaSO4 deposited on stainless steel
surface when the system was uninhibited for 10 minutes and
inhibited for 30 minutes for 4 hours...........cccovvi i, 120

Figure 5-20: SEM image of BaSO4 formed on the stainless steel surface

leaving the system uninhibited every 10 minutes for 4 hours............ 120

Figure 5-21: Surface coverage of BaSO4 deposited on stainless steel
surface when the system was uninhibited for 5 minutes and
inhibited for 30 minutes for 4 hours...........cccovvi i, 121

Figure 5-22: SEM image of BaSO4 formed on the metal surface leaving

the system uninhibited every 5 minutes for 4 hours ............cc.cc.cc.... 122
Figure 6-1: Outline of Chapter 6............uuiiiiiiiiiii e 125

Figure 6-2: Static barium sulphate efficiency test for DETPMP of brine at

Figure 6-4: Surface barium content at various o/w system on AISI 316L.. 129

Figure 6-5: SEM micrographs of alloy AISL 316L subjected to barium

sulphate scaling environment single phase and multiphase (5% oil)

.......................................................................................................... 130
Figure 6-6: SEM micrographs of AISL 316L subjected to barium sulphate

scaling environment multiphase (20% Oil)............ceeeeeeeeeieveeeiiieen. 130
Figure 6-7: Surface barium content at various o/w on fluoropolymer

(oo = 1] o [ PPRTTR 131
Figure 6-8: SEM micrographs of fluoropolymer coating subjected to

single phase barium sulphate scaling environment................cccc...... 132

Figure 6-9: SEM micrographs of Fluoropolymer coating subjected to

barium sulphate scaling environment multiphase (20% oil content).. 132

XX



Figure 6-10: Barium content measured on surface single and multiphase
condition with the influence of scale inhibitor (DETPMP and PPCA)
DEIOW MIC. .. e eeaanee 133

Figure 6-11: Barium content measured on surface single and multiphase
condition with the influence of scale inhibitor (DETPMP and PPCA)
ADOVE MIC. ... e ——————— 134

Figure 7-1: Surface and bulk induction time [127] ..........ccoovviiiiiiiiiinneeeeeee. 137

Figure 7-2. (a) Progressive nucleation corresponds to the continuous
formation of new nuclei coupled with the growth of nuclei, and (b)
Instantaneous nucleation corresponds to a constant number of

nuclei, while the growth of nuclei continues. ..............cccoooeeiiiiiieen, 139

Figure 7-3. Extended surface area as a function of time for experiment
brine with SR =80 @t 50°C.......coiiiiiiieiiecir e 140

Figure 7-4: Extended surface area as a function of time for experiment
brine with SR =20 @t 50°C......uiiiiiiiiiiiiiie e 140

Figure 7-5: Extended surface area as a function of time for experiment
brine with SR = 15 @t 50°C......uiiiiiiiieiieccr e 141

Figure 7-6: Surface growth as a function of saturation ratio...................... 143

Figure 7-7: Schematic diagram illustrating the growth rate of barium
SUIPNALE <. 144

Figure 7-10. SEM image with 1 ppm of DETPMP ......ccccooiiiiiiiiiiiiiieeee, 146

Figure 7-11: Crystal formed on metallic surface when (a) 1 ppm, and (b)
4 ppm of DETPMP Was iNJECted.......ccovveiiiiiiiiiiiiiee e 146

Figure 7-10: Morphology of BaSOas in the absence of scale inhibitor
showing the dominant faces ((210) and (001))......cccceeeeeervrveerinnnnnnnnn. 148

Figure 7-11: Morphology of BaSO4 deposited on stainless steel sample
in the presence of PPCA scale inhibitor. PPCA binds to (210) and
(001) faces to stop the growth...........cooeeviiiiiinii i 148

XXi



Figure 7-12: Schematic of step growth inhibition by blocking the active
site using same concentration at (a) low pre-scaled surface and (b)

High pre-scaled SUMace ............cooiviiiiiiiiiiiii e

Figure 7-13: Comparison between (a) Untreated stainless steel surface
and (b) treated stainless steel (with PPCA) in a solution of calcium

carbonate brine SOIULION ... ...

Figure 7-14: Barium sulphate crystal formed on the metallic surface
when the scale inhibitor was injected (a) Continuously, and (b)

[0 L=T o To [ [F= 1 YRR

Figure 7-15: Crystal growth of barium sulphate when scale inhibitor is

injected periodiCally ..o

Figure 7-16: Light interferometry 3D scheme of surface of (a)

fluoropolymer and (b) Stainless steel.............cceeiieiiiieivieiiciie e,

Figure 7-17: (a) Formation of contact angle of a drop on a rough surface
(b) Rough surface promoting nucleation and growth of BaSOa4
CIYSTALL e

Figure 7-18: High affinity of stainless steel to water exposing the surface

(0 JRST o7 1] o TN o] o =

Figure 7-19: Stable oil film formed on the substrate preventing contact

Of the Water PRASE........covuiiiie e

Figure 7-20: Schematic diagram illustrating the absorption of BaSO4

crystals on the o/w emulSIiON ...........covvviiiiiei i

XXli



List of tables

Table 2-1: Type of scale formed in the oil and gas industry ......................
Table 2-2: Chemical properties of barium sulphate [30].........cccccevvvvinnnnnn..
Table 3-1: Composition of the stainless steel [118]........cccooeeeeiviiiiiiiiinnnnnn.
Table 3-2: Inorganic salts for the brines ...
Table 3-3: Chemical properties of Isopar M ........cccoovvviiiiiieeieceeeee,
Table 3-4: HydrodynamicC parameters .........ccceeeeeeeeeeeeeeiniiiieeeeeeeeeeevinneeens
Table 3-5: Experimental conditions ..............cooviiiiiiiiiiiiiiiii e
Table 4-1: Brine COMPOSITION.......oiiiiiiiiiiiiiiiii s
Table 4-2: SO4? and Ba?* concentrations in PpmM .........cccccvveeeeeviiveeeeeeennen.
Table 5-1: Composition of brine SoIUtioN ............ccovvvvviiiiiiiee e,
Table 5-2: SO42 and Ba* i PPM ...ececvieiiiiee et

Table 6-1: Surface energy and roughness of AISI 316L and

1180 0] 0o ] Y/ 1.4 1T R

Table 6-2: Water and isopar M contact angle values measured on AlSI

316L and fluOrOPOIYMET .......iiiiieie e
Table 6-3: Composition Of DINE ...

Table 7-1: Summary of nucleation mechanism suggested for each

experimental CONAITION ........coviii i

Table 7-2: Growth rate barium sulphate deposition at different conditions

Table 7-3: Growth rate evaluated from the change in the average size of

crystal (um.mint) from 60 minutes to the end of the experiment ......

XXili

145



Publications
Journal paper

Bukuaghangin, Ogbemi, Olujide Sanni, Nikil Kapur, Michael Huggan, Anne
Neville, and Thibaut Charpentier. "Kinetics study of barium sulphate surface
scaling and inhibition with a once-through flow system." Journal of Petroleum
Science and Engineering 147 (2016): 699-706.

Conference proceedings

Bukuaghangin, Ogbemi, Olujide Sanni, Anne Neville, and Thibaut
Charpentier. "A Kinetic Study of Barium Sulphate Formation in Presence of
Scale Inhibitor in a Flowing System." In Proceedings of a meeting held 6-10
March 2016, Vancouver, Canada, vol. 5, pp. 3398-3411. NACE International,
2016.

Sanni, Olujide, Ogbemi Bukuaghangin, Thibaut Charpentier, Nikil Kapur, and
Anne Neville. "Using a real-time visualisation technique for the assessment of
surface scale kinetics and mechanisms of inhibition.” In SPE International
Oilfield Scale Conference and Exhibition. Society of Petroleum Engineers,
2016.

Bukuaghangin, Ogbemi, Anne Neville, and Thibaut VJ Charpentier. "Scale
Formation in Multiphase Conditions.” In Proceedings of the Oil Field
Chemistry Symposium, Gielo. 2015.

XXIV



Nomenclature

Terms Definition Units
Y Free surface energy J.m?
o Interfacial energy J.m?
No Number of particles
P Density g/m?3
kspx  Solubility product
T Temperature K
Na  Avogadro number mol?
R Gas constant molt.K?
G Overalls excess free energy K.Jt.mol?
AGs  Volume free energy K.J1.mol?
AGv  Surface excess free energy K.Jt.mol?
r Equivalent radius of the crystals m
Ic Critical radius m
J Nucleation rate Number of nuclei/s.m?
K Constant
N Number of crystals
M Mass of solid deposit G
A(t)  Surface area of crystals m?
Ke Crystal growth constant
C Solute concentration mol?!

XXV



Terms Definition Units

Re Reynolds number

No Active nucleation sites

YL Liquid surface tension N.m

YsL Solid/liquid interfacial free energy N.m-

yS Solid surface free energy N.m?

T Time S

S(t)  Surface coverage %
Sext(t) Extended surface coverage %

tind Induction time S

Tr Relaxation time S

Th Period of nucleation S

F Shape ratio

@ Wetting angle °
0 Incident angle °
C(t)  Ba?* concentration at sampling time ppm

Co(t)  Ba?* concentration in the blank solution  ppm

Co control sample Ba?* concentration at ppm
time,t=0

XXVI



Abbreviations

Abbreviation

Definition

SR

Sl

PPCA

DETPMP

VS-Co

FAU

RCE

PVS

SEM

ICP-AES

XRD

PBTC

MIC

EDX

FW

SW

Saturation Ratio

Saturation Index

Poly-phosphino carboxylic acid

Diethylene triamine penta methylene phosphonic Acid
VinylSulphonate Acrylic acid co-polymer

Formazin Attenuation Units

Rotating Cylinder Electrode

Polyvinyl sulphonate

Scanning electron microscopy

Inductively Coupled Plasma - Atomic Emission
Spectroscopy

X-Ray Diffraction

2-Phosphono-butane-1, 2, 4-tricarboxylic acid
Minimum Inhibitor Concentration

Energy Dispersive X-ray analysis system
Formation water

Sea water

XXVil



Chapter 1 Introduction

Crude oil and gas for decades have been a major source of energy used in
the world. The emergence of new technologies, increase in both population
and standard of living, has led to the continual increase in demand for energy.
According to the United State Energy International Administration (EIA), it is
estimated that the energy consumption would increase by 57% from 2004 to
2030 as shown in Figure 1-1[1].
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Figure 1-1: World market fuel used fuel types [1]

The high demand of energy in the world has led to the exploitation and
production of more oil reservoirs. As the reservoirs mature (i.e. reservoir initial
pressure decline), various techniques (such as water injection and steam
injection) are used to increase the pressure of these reservoirs to increase oil
production. The major challenges faced by using these techniques are
corrosion, bio-fouling and mineral scale deposition [2]. This research focuses
mainly on mineral scale formation both in the bulk solution and on the

surfaces.



1.1 Oil and gas formation and production

Oil and gas are formed from the remains of organisms that are decayed in the
sedimentary rock alongside with the minerals of the rock. When these rocks
are buried by overlying sediment, the organic matter decomposes and
converts to oil and natural gas through bacterial processes coupled with high
temperature and pressure [3, 4]. Furthermore, the oil and gas along with water
migrate from the rock into adjacent porous reservoir rock (which is usually
sandstones, limestone’s, or dolomites) [5]. The movement continues until they
meet an impermeable rock. Due to the difference in density, gas is found at
the top followed by oil and water; an oil reservoir is presented in Figure 1-2

showing the different layers formed by gas, oil and water.

gas-oil contact

free gas cap

oll-water contact

salt water

=
Fi

1 S e N
o i o Tl T ay T s,
T %

¥

Figure 1-2: An illustration of oil reservoir [6]

After the oil exploration and drilling process has been achieved, during the
production stage of oil and gas, there are three different recovery techniques
used; primary, secondary and tertiary recovery techniques [7, 8]. In the
primary recovery technique oil is forced to the surface by the reservoir
pressure, and pumps could be used when the pressure reduces. The primary
recovery techniques account for 10% of oil production [8]. When the reservoir
matures and if there is no aquifer water to replace the producing oil, water or
gas is been injected into the reservoir to increase the pressure, this technique
2



is known as secondary recovery; it results in the recovery of 20-40 % of the
reservoir's original oil in place. Figure 1-3 gives a vivid explanation of

secondary recovery techniques.

Lastly, tertiary recovery techniques (otherwise known as enhanced oil
recovery) involve the injection of steam, solvent or bacterial and detergent to
improve the oil recovery; these techniques account for 30-70 % of reservoir
original oil in place. One of the drawbacks for the use of the last two
techniques is that it could lead to the precipitating of solid (scale). The types
of scales formed in the oil and gas industry will be discussed in the next

section.
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Figure 1-3: Secondary recovery techniques

1.2 Scale formation and the economic impact in the oil
industry

Oilfield scales are inorganic deposits that form due to the precipitation of solid

from brines that are present in the reservoir and production system. They have
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been seen over the years as the major cause of formation damage either in
injection or production [9, 10]. In addition, it influences equipment wear and
corrosion, restricts flow and causes a reduction in heat exchanger efficiency.
This leads to an increase in maintenance costs, emergency shutdown,
reduction in production and production—equipment failures; thus increasing
the operational and production costs. Scales are usually formed in perforation
and tubes; mostly where the temperature and/or pressure are very low [11].
They could be formed during secondary recovery when sea water is used to
increase the pressure in the reservoir; knowing that formation water contains
cations (Ba?*, Ca?*, Sr?*) and sea water contains SO4?" ions. When these two
incompatible waters are mixed, it leads to changes in the supersaturation of
the mixture, thereby leading to precipitation of scales [12]. In addition, they
may also occur when brine evaporates due to high temperature/pressure
(HT/HP) gas wells (i.e. when high-temperature steam comes in contact with

brine increasing its solubility, which results in precipitation) [13].

The economic impact of scale formation in oilfield operation is very crucial,
considering that millions of dollars have been spent in the mitigation and
removal of scale during production [14]. Moreover, it is estimated that the
global cost of scale is about USD 1.4 billion every year; Figure 1-4 shows the
percentage of money spent on scale all over the world. In the future, it is
expected that the cost of scale will increase since more oil reservoir would be
mature and would require secondary recovery to increase production.
Common scales formed in oil and gas production are gypsum, calcite, barite,
iron carbonate and sulphide [10].
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Figure 1-4: Global cost of scale [13]
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The most common scale formed in the oil and gas industries are calcium
carbonate (CaCO3) and barium sulphate (BaSOa4). Although BaSOa is rarely
formed when compared with other sulphate scales, it is particularly tenacious
and resistant to acid treatment. It is therefore of paramount importance to
understand the mechanism and kinetics of barium sulphate formation in order
to accurately predict its occurrence. In preventing mineral scale fouling, there
are various techniques used [15-19]. A recent study by Charpentier et al. [20]
shows the prospective of using novel coating for the prevention of mineral
scale fouling. In this work, infused porous surfaces were used to reduce the
deposition of calcium carbonate. Nevertheless, the most popular approach for
mitigating barium sulphate is generally through the use chemical scale
inhibitors. These chemicals tend to reduce the driving force for crystallization
and successive growth of crystals by disrupting the thermodynamic stability of
growing nuclei and/or by blocking the active sites of crystals, thus preventing
further growth [21-23]. The performance of scale inhibitors in oilfield
operations is the foremost concern of field operators. Information is needed to
make efficient decisions that ensure the control and prevention of scale.
These decisions are based on evaluating the performance of scale inhibitors
under various environmental conditions such as temperature, pH,

hydrodynamic conditions and brine composition.

Although an extensive body of literature is available for bulk precipitation
reactions [24-28]; only limited numbers focus on evaluation of surface studies
focusing on fouling mechanisms and crystals growth at solid interfaces.
Studies have shown that the mechanisms and kinetics controlling bulk and
surface deposition are different [29-31]. If wrongly applied common chemical
inhibitors such as a Polyphosphinocarboxylic acid (PPCA) can reduce bulk
precipitation while at the same time enhance surface deposition [32-35].

A study by Morizot and Neville [35] illustrated the difference of inhibition
mechanisms of PPCA on barite scale both in bulk precipitation and surface
deposition. The results from this research showed that when 25ppm of PPCA
was applied, bulk scaling was greatly reduced; but enhanced surface
deposition occurred. A similar study by Graham et al. [32-34] showed that

using inhibitor concentration below the Minimum Inhibitor Concentration (MIC,
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from standard bulk jar test determination) reduced bulk precipitation, but
enhanced surface scaling. These studies mentioned were carried out in a
closed system (i.e. brines are recirculated) and as such the saturation ratio

was decreasing as a function of time.

In addition, oil and gas field operations rarely take place in single phase
conditions, they are usually more complex due to the presence of multiphase
environment (oil/water mixtures). However, to date, very limited research has
been conducted in an oil phase conditions. Hence, there is a need for test to
be carried out in the multiphase environment to mimic more realistic oilfield
condition, by so doing, reducing the inconsistencies between laboratory test

and what is observed in the oilfield.

1.3 Aims and objectives

The aim of this study is to develop a better understanding of the kinetics of
barium sulphate formation and inhibition. The precise objectives of the thesis

are described as follows:

e Understanding the kinetics of barium sulphate formation both in bulk

and on metallic surface: To investigate the relationship between bulk

precipitation and surface deposition of barium sulphate in a flowing
system. Furthermore, understanding the nucleation mechanism of
barium sulphate on a metallic surface at different thermodynamic
conditions. Knowledge gained from this research will improve the

understanding of scale formation in oil and gas production facilities.

e |Investigate the effect of scale inhibitor on the growth of barium

sulphate: To evaluate the different mechanisms of three scale inhibitors
on the growth of barium sulphate crystals on surfaces. In addition,
understanding factors that could affect surface scale inhibition. This
information would help improve the use to scale inhibitor during

application.



e Investigate scale formation in a multiphase environment: Developing

an understanding of surface fouling of barium sulphate using different
surfaces and scale inhibitors, both in an aqueous and oil phase
environment. Information achieved from this investigation would help

reduce the gap between laboratory test and real oilfield conditions.

1.4 Thesis outline

The thesis is structured as follows:

Chapter one. This chapter presents a brief overview of scale formation in the
oil and gas industry, the economic impact of scale formation and the objective
of this work.

Chapter two: This chapter gives a review of scaling process fundamentals,

scaling control/prevention and factors that affect scale inhibition.

Chapter three: This chapter describes the various experimental procedures

and materials used in achieving the project objectives.

Chapter four: In this chapter, results regarding the kinetics of bulk
precipitation and surface deposition of barium sulphate with and without the

presence of scale inhibitors are presented.

Chapter five: In this chapter, result of factors that could influence the
efficiency of scale inhibitor are presented.

Chapter six: This chapter presents scale formation results conducted in

multiphase conditions.

Chapter Seven: In the chapter, results presented in chapter 4 to chapter 6
are analysed and discussed.

Chapter Eight: The key conclusions obtained from this study are presented

in this chapter.

Chapter Nine: This chapter provides the suggested future work for this study.



Chapter 2 Theory and literature review of scale formation
and inhibition

The formation of inorganic scales coupled with the production of hydrocarbon
has been a major concern in oilfield operations. These mineral scale deposits
result in the reduction of production regardless of where they are formed.
Deposits formed in the reservoir block the formation matrix, restricting fluid
flow leading to formation damage. Scale mineral formed in the production
facilities will block pipes causing several operational problems [13, 36, 37].
However, scale can act as suppression of corrosion, on the contrary when
these scales contain defects, voids and cracks, they can lead to enhanced
localized corrosion [38]. The common oilfield scales are shown in Table 2-1,
relating to their solubility in acid and primary variables that affect their solubility
[39]. They include calcium carbonate (CaCQg3), iron carbonate (FeCQO3), iron
sulphide (FeS), barium sulphate (BaSOas), strontium sulphate (SrSOa),
calcium sulphate (CaSOa4). There are three basic mechanisms by which

scales could be formed in the oil and gas industry [40, 41]:

1. Increase in temperature and/or in pressure drop of a brine, which
reduces the solubility of the salt in the solution.

2. Mixing of two incompatible brines (i.e. formation water and injection

water).

3. Evaporation of brine resulting in an increase of the salt concentration

above the solubility limit.

Historically, the most common mineral scales formed in the oil and gas
industry are the calcium carbonate and barium sulphate. Calcium carbonate
is formed due to the presence of bicarbonate ions and calcium ions found in
production water, which is precipitated due to the reduction in pressure during
production. The change of condition allows the release of carbon dioxide from



the solution resulting to increase in pH of the solution and the precipitation of
calcium carbonate scale; this is shown in Equation 2-1.

Ca“(aq) +2HCO3 (4 ¢ CaCOs(sy L+ CO; (g + Hy0q i

Barium sulphate occurs due to the mixing of formation water that is highly rich
in barium cations and injection seawater that is enriched with sulphate anions.
The formation of barium sulphate is very troublesome since scales formed are
insoluble in most fluids and cannot be dissolved by acid, making it difficult to
be removed once it is formed and deposited during oilfield operations, most

especially in the reservoir.

Ba** + 507~ & BaS0, (s 2-2

(aq) (aq)

Table 2-1: Type of scale formed in the oil and gas industry

Chemical Primary Variables Acid

Formula Solubility

Calcium Carbonate CaCO0s3 Partial pressure of CO,, Yes

temperature, TDS

Calcium Sulphate: CaS04.2H20 Partial pressure of CO,, No
Gypsum CaS04.1/2H,0 temperature, TDS
CaS0q4
Barium Sulphate BaSO4 Temperature, pressure No
Strontium Sulphate SrSO4 TDS No

Iron Compounds:
Ferrous Carbonate FeCOs3 Corrosion, dissolved

Ferrous Sulphide FeS gases, pH Yes

Barium sulphate could be formed at any point in the production system
depending on where the formation and seawater mix. Figure 2-1 shows
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possible case locations of where barium sulphate could be formed throughout

the flow path of water during production [42].

1. At the surface facility where incompatible water mixed;

2. When injected water start to mix with reservoir formation water;

3. Down-hole the formation where the injection water displace the
reservoir water;

4. Location in the reservoir where the mixed injection water and formation
water are about to reach the producing well;

5. Location down-hole the reservoir where the mixed water is in the range
of producing well;

6. The connection of branched zone where each branch produce different
water;

7. At the manifold of producing zone where water is produced from
different block within the same producing zone;

8. Topside of side facilities where produced fluids are mixed from different
production zones to separate the oil and gas from water or in pipelines
that do transports produced fluids to onshore processing facilities;

9. Discarding well where the produced water is injected for final disposal.

On-Shore Processing Facility

: . o Water Injection Facility
Off-Shore Topsides Processing Facility 2

Disposal
Well
Case 9 Pipeline Case 8 o
Case 7 o
Case 2
\ Cased  Cases Injection Well

Producing Well

Figure 2-1: Possible location of barium sulphate scale deposit [43]
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Precipitation of barium sulphate can only occur when the solution
concentration has exceeded its solubility; when the solution has attained
supersaturation, then after nucleation and crystal growth takes place which is
illustrated in Figure 2-2. The next three sections explain in details the various

kinetic processes in precipitation.
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Figure 2-2: Kinetic processes involved in precipitation [43]

2.1 Supersaturation

From a thermodynamic point of view, precipitation usually takes place when
the solubility of mineral salt is exceeded. This condition normally occurs when
the solution is been supersaturated [44]. Therefore, supersaturation is the
primary cause of the formation of scales in a solution. The extent of
supersaturation can be expressed in term of supersaturation index (Sl), which
corresponds to the logarithm of saturation ratio (SR); mathematically

saturation ratio can be expressed:
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_ 1AP 2-3

kPSX

Where IAP is the ion activity product and Kpsx is the solubility product for
mineral salt [45]. Although the saturation index can be used to estimate the
scaling tendency of any scale; a limitation of the saturation index is that it does
not give information about the interaction of ionic species and information
about the precipitation kinetics [44]. Below shows the three tendencies for the

scale to form, from a thermodynamic point of view:

SR < 1 Undersaturated solution: there is no tendency of scale to form and the

scale is likely to dissolve.

SR = 1 Equilibrium solution: both scale formation and dissolution rate occurs

at the same rate. This implies that scale will not be formed in the solution.

SR > 1: Supersaturation solution: implies that scale is likely to occur, which is
thermodynamically possible.

The saturation of a solution is a key factor for crystallization in the bulk solution
and in seeded crystals. This is shown in Figure 2-3 representing the
crystallization potential under different kinds of solution. From Figure 2-3
which is divided into three major zones: Undersaturated, saturated and
supersaturated. The undersaturated region corresponds to the area under the
solubility curve, solution conditions are undersaturated with respect to the
macromolecule, spontaneous homogeneous nucleation would unable to

occur and crystals placed in the solution will dissolve.

The next region (saturated) is measured experimentally and is represented by
the two-dimension solubility curve. Alongside the saturation, spontaneous
homogeneous nucleation would not take place and any crystals added to the
solution will not dissolve or increase in size. The last region can be further
divided into three regions (metastable supersaturation, liable supersaturation
and precipitation zone). The metastable supersaturation occurs when the
spontaneous homogeneous nucleation does not take place in a reasonable
length of time but the crystal will continue to grow in the solution. The liable

supersaturation represents the region where spontaneous homogeneous

12



nucleation could occur and the crystal added to the solution will grow. Further,
this region is not appropriate for seeding when compared to the metastable
region; and the crystal added to the region can shock the solution, resulting in

excessive nucleation [46].

Finally, precipitation zone is an area that is always supersaturated with
respect to crystal growth. The crystallization of barium sulphate occurs like
other crystallisation processes, which consist of three stages: induction,
nucleation and growth. These three different stages are explained in the next

four sections below.
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Figure 2-3: A two-dimensional representation of the three major

saturation zones:[45]

2.2 Induction time

Induction time is the time elapsed from creation of supersaturation of a system

to the first appearance of secondary solid phase (critical nuclei). It is a function

of the supersaturation and the temperature of the solution. The induction time

could be determined by the change in concentration or conductivity,
13



turbidimetrically and visually depending on the physical property being
followed [43]. The induction time is the total sum of the time needed to reach
steady-state nucleation (tr), the time necessary for the crystal to grow to a
visible size (tg) and the time for critical nuclei to be formed (t) as shown in the
equation 2.2[43].

ting = ter T Lt Ly 2-4

It can be related to the nucleation rate when the nucleation time is greater
than the growth time. It is assumed that the induction time is inversely
proportional to the nucleation rate as expressed below [43, 47]:

ting X J1 2-5

2.3 Nucleation

Nucleation is the process of formation of stable nuclei after the solution has
attained supersaturation and induction time. This process occurs at a very
high-supersaturated region. Nucleation can either be primary or secondary as
illustrated in Figure 2-4: Primary nucleation results in the absence of
crystalline surface, while secondary nucleation result from the presence of the
crystalline surfaces [48], both nucleation processes are explained in the next

subsection.

Nucleation

l l

Primary Nucleation Secondary Nucleation

l l

Homogenous Heterogeneous

Figure 2-4: Types of nucleation [48]
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2.3.1 Primary nucleation

Primary nucleation occurs when the solution has attained very high saturation.
When it occurs in the absence of foreign crystal/particles in the solution is
called homogeneous nucleation. On the other hand, when it occurs with the
presence of a foreign particle in the solution or due to the roughness of a
substrate it is known as heterogeneous nucleation. The Figure 2-5 gives a

pictorial illustration of both nucleation processes.
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Figure 2-5: Process of primary nucleation [35]

2.3.1.1 Homogeneous Nucleation

Nucleation occurs when ions start to pair by electrostatic interaction to reach
a critical size. Classical nucleation theory based on vapour condensation is
one of the most famous starting points to explain this process. The nucleation
is initiated when there is excess free energy available in the system, resulting

from the supersaturation of the system [49]. The excess of the free energy
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variation during a homogeneous nucleation process is described in Equation
2.8
AG = AGs + AG, = 4rr?y +§nr3AG,, 26

Where AG is the total for the excess free energy between the solute in the
solution and the small spherical particle of radius (r), AGyv (volume free energy)
is the excess free energy between the very large particle and the solute in the
solution. And AG:s is the excess free energy between the surface of the particle
and the bulk of the particle. The graphical representation of the equation is
shown in Figure 2-6, the role of both the volume and surface free energy
charge. The net free energy change increases with the increase of the particle
size to attain a maximum size known as AGgcrit) [49, 50]. The AG(crity must be
attained for the formation of stable particle, which relates to the critical size of
the nuclei. This implies that particle formed below the critical radius cannot be
able to grow and it will re-dissolve into the system.

>
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Figure 2-6: Free energy diagram for nucleation and critical radius
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The critical radius can be evaluated by differentiating equation 2.6 with respect
tor:

dAG
—— =8nro + 4nr?AG, =0 2-7
dr
—20
_ 2-8
= AG,

Therefore the free energy change AGciit) can be calculated by substituting AGy
from equation into the equation.

4nor, )
AGyyir = < 2-9

3

The cluster growth is governed by Gibbs-Thompson equation
20v 2-10

Where c is the concentration of the cluster size r. substituting for rc in equation

4mor, 2-11

AGopip = =———
it T 3(kTIn S)>2

The rate of nucleation, which is the number of nuclei formed per unit time per
unit volume, can be expressed using Arrhenius type as:

—AGm-t] 2-12

=B
J = Bew |

Substituting AGcriry from equation 2.11

—16ma3V? 2-13

— B 7
J = Bexp l3k3T3(In $)2

Where T denotes the temperature, V the molecular volume, k Boltzmann
constant, B constant and will vary depending on the order of the reaction, ¢ is

interfacial tension and S is the saturation ratio.
2.3.1.2 Heterogeneous Nucleation

The presence of foreign particle and surface can induce nucleation at very low

supersaturation. This type of nucleation is known as heterogeneous
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nucleation. It requires a lower energy when compared with homogeneous
nucleation; since the foreign particle and surface allows the adsorption of
crystal material and lowers the critical free energy of the system [51].
Furthermore, the rate at which the free energy decrease depends on the

wetting angle of the solid phase:

AGpom = DAGpet 2-14

¢ = % (2 + cos ) (1 — cos 0)? 2-15

@ denotes wetting angle and 6 is contact angle between the crystalline deposit
and the foreign solid surface.

2.3.2 Secondary nucleation

Secondary nucleation results from the parent crystals present in the
supersaturated solution. Due to the presence of the parent crystal which has
a catalytic effect on the nucleation process, a lower supersaturation is needed
when compared to primary nucleation (both homogeneous and
heterogeneous nucleation) [50]. The mechanism of secondary nucleation can
is divided into two cases: Catalytic mechanism which involves the sweeping
away of solute aggregate from the adsorption layer on the crystal surface and
generation of nuclei in the supersaturated solution. Breaking mechanism
involves the formation of fine particles by reduction in size. The breaking
mechanism can occur via abrasion, attrition and fracture [52]. Abrasion is the
removal of a tiny particle from a growing crystal; attrition involves the
disintegration of a parent particle into two different parts, while fracture
denotes the fragmentation of crystals into two or more similar pieces.

In a similar research conducted by Daudely et al. [53], they distinguished the
mechanism of secondary nucleation into two: Surface breeding which relates
to surface structure during the growth of nuclei, while mechanical breeding
mechanism denote from crystalline material being removed by mechanical
action exerted on the parent crystal [53, 54]. The mechanisms are shown in
Figure 2-7.
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Figure 2-7: Visualisation of the difference between the mechanical

breeding and the surface breeding mechanism [54]

2.4 Crystal growth

As discussed in the previous section, after nucleation process, the next stage
involves the growth of particle (nuclei) into larger particle by the addition of the
molecule from the supersaturated solution. This process is known as crystal
growth, and alongside with nucleation determines the final particle size and
distribution of the system [51]. The mechanism of crystal growth is described
by three theories: Surface energy, adsorption layer theory, and screw

dislocation theory, which are explained in next subsections.

2.4.1 Surface energy theory

The surface energy theories are based on the thermodynamic equilibrium
state proposed by Gibbs. It was postulated that growth of crystal is similar to

an isolated droplet of fluid; which implies that in equilibrium, crystals will be
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stable when their surface free energy is in minimum for a given volume [49].
Curie calculates the end forms and shapes of crystal in equilibrium with a
solution or vapour using Gibbs principle. In 1901 Wulff gave an extension of
Currie's thoughts and relates the connection between surface free energy and
growth rate of different faces [50]. Other researchers extended and modified
this theory but the surface energy theories of crystals have not been generally
acceptable based on the fact that the theory did not explain the effect of
supersaturation and solution movement of the crystal growth rate [49, 50].

2.4.2 Adsorption layer theory

This theorem was developed by Kossel, Stranki and Volmer based on the role
of surface and volume free energy changes associated with the formation of
stable nuclei on the surface [49, 55]. In their study, they showed the role of
homogeneities on the growth sites. A crystal surface consists of the surface
site, ledge-kink site and ledge site, which is shown in Figure 2-8. In the surface
site, the atom will be attached to the surface of the growing layer, while that
of the ledge site molecule will be attached to both the growing step and
surface. But ledge-kink site, the molecule will be attached to the three
surfaces. Showing that binding energy is at maximum in the ledge-kink site
when compared to that of the surface and ledge site. Hence, the molecule on
the crystal surface will move to the ledge-kink site and get incorporated [49].
This process will continue until the whole layer is completed. Furthermore, the

crystal growth continues in a layer-by-layer manner.
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Figure 2-8: Representation of a crystal surface complete with defects
[50]

2.4.3 Screw dislocation theory

One of the limitations of the previous theories discussed above was that they
did not consider the growth of crystals at a low supersaturation and it is
indecisively the reason that they consider the crystal growth rate as a
continuous process, with the formation of critical size nucleus the rate-
determining step. Frank was the first to propose a theory of crystal growth at
low supersaturation and he suggested that dislocation (screw dislocation) in
the crystal was the source of continuous creation of new steps, which can be
spread across the surface of the crystal and promote crystal growth [49, 55].
This growth occurs by rotating of the steps around the dislocated point as

shown in Figure 2-9.
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Figure 2-9: Diagram of screw dislocation mechanism [37]

2.5 Adhesion

As discussed previously, the problem faced by the oil and gas industries is the
build-up of scale on surfaces. Adhesion is one of the mechanisms by which
scale can be formed on surfaces. It can be defined as a phenomenon where
two different bodies are held together by interfacial forces, such as valences
forces and ions interlocking forces [56, 57]. There are several theories that
could explain this phenomenon; the next subsection explains some of the
theories.

2.5.1 Adhesion theories

The study of the mechanism of the adhesion is the major concern of most
research; however, the interpretation of the mechanism is as complicated as
the phenomenon itself [58]. Classical theories of adhesion have been
developed to explain these mechanisms. For details regarding the theories,

the various reviews could be consulted [56, 57].

In term of fouling process, the interaction between the fouling particle and
surface is usually explained using the DLVO theory named after B. V.
Derjaguin, L. D.,Landau, E. J. W. Verwey, and J. Th. G. Overbeek [59]. The
reason is that fouling process could only occur with particulate materials of
colloidal size with a dimension of <1um; making the effect of gravitational force
on the material negligible [60]. However, the larger particle would not be able

to adhere to the surface, due to the effect of gravitational and hydrodynamic
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force which is strong enough to remove them. The theory explains that the
attractive forces between colloidal particles are as a result of van der Waal
interaction [60]. Whereas when the patrticle is been immersed in a liquid, an
electrostatic force is formed which is very repulsive.

In addition, a study by Oliveira [60] shows that van der Waal and electrostatic
double—layer repulsion is not sufficient enough to explain the scaling process.
Furthermore, the study shows that physiochemical factors play a major role in
fouling; some practical findings that could help prevent or mitigate fouling were
discussed [60]. Some of these factors that could affect scaling process are

explained in section 2.7.

2.6 Barium sulphate

Barium sulphate exists as a white orthorhombic crystal or powder; they are
also referred to as barite. It is moderately soft crystalline white opaque to
transparent mineral as shown in Figure 2-10. Barium sulphate is formed by

mixing of fluid containing Barium and sulphate ion in the sea floor.

BaCl, + Na,SO, - BaSO, ! +2NaCl 2-16

Figure 2-10: Barium Sulphate mineral [61]
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The mass composition of barium sulphate is 58.84% of barium, 13.74% of
sulphur and 27.42% of oxygen; the chemical properties are summarized in
Table 2-2.

Table 2-2: Chemical properties of barium sulphate [30]

Chemical formula BaSO,

Density 4.5g/cm?

Solubility 2.33mg/l

Melting point 1580°C
Molecular Weight 233.38g/mol

2.7 Factors affecting scale formation

This section presents various factors that influence the formation of barium
sulphate scale in the bulk precipitation and surface deposition.

2.7.1 Effect of temperature and pressure

The variation of temperature controls the scaling trend of barium sulphate,
knowing that temperature is related to the supersaturation ratio of a system.
The solubility of barium sulphate increases with respect to increase in
temperature because the dissociation of BaSO4 is an endothermic reaction
[37, 39, 62, 63]; as shown in Figure 2-11. Subsequently, barium sulphate
crystallization and adhesion will take place when the temperature of the
system is reduced. Furthermore, the effect of temperature is more significant

when evaluating the inhibition efficiency of chemical inhibitors.

The sulphate of barium, calcium and strontium are more soluble at high
pressure. Consequently, barium sulphate will be precipitated when there is a
reduction in pressure [39, 62]; nevertheless the effect of pressure in scaling

tendency of BaSOa is less when compared to that of temperature. Moreover,
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the influences of scaling tendency of BaSO4 by pressure variation must occur

with a synergistic effect of an increase in temperature.
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Figure 2-11: Barium sulphate solubility in water [49]

According to research performed by Dyer and Graham [11] to study the effect
of temperature and pressure on oil scale formation of barium sulphate and
calcium carbonate using dynamic tube blocking. The scaling tendency of
barium sulphate scale increases with a decrease in temperature, while that of
carbonate increase with an increase in temperature. Furthermore, the
increase in pressure reduces the scaling tendency in both carbonate and
sulphate scale. At lower pressure condition of 1.37 x 10° Pa, the rapid
increase of differential pressure of 6.9 x 10° Pa was observed at higher

pressures, indicating that at a lower pressure the scaling tendency increased.

2.7.2 Effect of saturation ratio

As discussed in section 2.1 saturation ratio is the thermodynamic driving force
of scale formation. Todd and Yuan [12] showed the effect of supersaturation

ratio of barium and strontium sulphate scale on formation damage. From their
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study as shown in Figure 2-12, the crystal formed at high supersaturation ratio
was larger than the ones formed at low supersaturation ratio. Also, in Figure
2-12 at higher supersaturation ratio 67% of initial permeability was lost in a
short time of injection of the brine; while at lower saturation ratio <15% of the
initial permeability was lost. This shows that the saturation ratio influences the

scaling tendency, morphology and size of crystal formed.

DRINE  SUFERIATURATION

4—>& gaSOu 15 5:504 37
gy BaSOs« 30 5S04 75

V Initial Permeability

Time (mins)
[}

Figure 2-12: (a) Scale core with brine with BaSO4 supersaturation of 15
and SrSOs4 of 3.7 (b) Scale core with brine with BaSO4
supersaturation of 30 and SrSOa4 of 7.5 (c) Effect of supersaturation

of BaS04 and SrSO4 permeability decline [12]

2.7.3 Effect of solution pH

The pH is a measure of [H*], and range of pH is found to be generally between
4 and 7 in a different location in the oil plant [64]. Nevertheless, the solubility
of barium compounds increases with respect to decrease in pH, the solubility

of barium sulphate is unaffected by the variation of pH [62, 65]. This was
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checked by using a Multiscale prediction software, by comparing the
saturation ratio of North Sea Sea water (NSSW), formation water (FW) brine
mixing at two different ratios (60/40 and 80/20) in pH range of between 5 and
9 at 95°C [25]. The saturation ratio variation was less than 1 unit in both mixing
ratios shown in Figure 2-13 and Figure 2-14. However, a study by Peyvandi
et al [66], shows that the pH affects the morphology of BaSOa. In addition, the

effect of pH is more significant during the presence of chemical scale

inhibitors.
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Figure 2-13: SR (barite) vs. pH, 60/40 NSSW/FW Base Case, 95°C [25]
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Figure 2-14: SR (barite) vs. pH, 80/20 NSSW/FW Base Case, 95°C [25]
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2.7.4 Effect of divalent cations

The divalent cations Ca?*, Sr>* and Mg?* that are present in the formation
water and seawater affect the nucleation and growth process of barium
sulphate; although their concentration differs depending on origin source. The
presence of calcium ions during the formation of barium sulphate results in
co-crystallization of calcium in the barium sulphate lattice [67-69]. Also, it has
been reported that about 6% of Ba?* is substituted by calcium, as illustrated
in Figure 2-15 [67]. This calcium ion inclusion tends to decrease the barium
lattice parameter, which retards the lattice growth (i.e. increasing the solubility
of barium sulphate in the solution) or makes the lattice growth easy for
inhibition [67-70]. Similarly, the Sr>* may also have the same effect as the Ca?*
[71], but the concentration of strontium ions in the formation water is very low;

making the effect less important than that of Ca?*[25, 72].
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Figure 2-15: Schematic diagram illustrating Ca inclusion into the barite
lattice [68]

2.7.5 Effect of lonic Strength

The salt content of the brine plays a vital role in the scaling tendency of barium

sulphate; since the barium sulphate solubility is strongly affected by the ionic
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strength of the solution [39, 73]. Furthermore, the ionic strength is a function
of the concentration of ions present in the solution. Consequently, an increase
of sodium and chloride ions will increase the solubility of BaSO4. On the
contrary, a reduction of the ionic strength will increase the scaling tendency of
barium sulphate [74]. For instance, an increase in NaCl concentration of the
brine would increase the effect of temperature on the barium sulphate
solubility. This explains why barium sulphate occurs in a hot well that produces
high salinity brines [74].

2.8 Scale control strategy

Basically, there are five categories by which scale may be controlled during
the production of oil and gas [19] (namely: fluid modification, flow modification,

substrate modification, damage removal and chemical scale inhibitors).

2.8.1 Fluid modification

Generally, it is known that the formation of barium sulphate scale results from
the scaling ions from formation water and seawater. An approach to reduce
the barium sulphate scale is by partially removing the sulphate ions from the
injection seawater by the use of desulphation plant [41, 75, 76]. This could
reduce the sulphate content of the injection seawater from a range of 2700-
3000ppm to range of 40-120ppm. Conversely, the use of aquifer water and
re-injecting produced brine during production could also reduce the scaling

tendency.

2.8.2 Flow modification

Since the formation of scale is as a result of precipitation of ions from water,
scale could be mitigated by good well production strategy. For instance,
choking back well that produce water that could lead to mixing of incompatible
water. Furthermore, the separation of incompatible brine before they could

mix to form sulphate scales if promising this could mitigate the mineral scale
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formed during production. A drawback to this technique is that scale may form
in pumps due to a reduction in pressure and increase in temperature, leading

to failure in pumps [19].

2.8.3 Substrate modification

The use of modified surfaces has been shown to affect the kinetics and
morphology of the fouling process [77, 78]. This technique has drawn various
researchers to conduct studies in this area because of the role of these
surfaces on the influence of the amount and kinetics of fouling [77]. Bio-fouling
industry has taken more advantage of the application of this method to reduce
or mitigate the marine biological species on surface [15]. In most of their
research, the system that has lower surface energy is shown to reduce the
induction time for heat transfer through the surface and lower the fouling
adhesion [15, 77, 79]. In recent time, researchers in the inorganic fouling
industry have also applied the use of modified surface due to some similarity
with bio-fouling process [15].

Cheong et al. [15] studied the mechanism of calcium carbonate on polymer
surfaces and stainless steel surfaces treated with commercially-available
coatings, using stainless steel as the reference surface. The study shows that
surface coating such as Tech 23, Tech 100 and DLC offer brilliant potential to
mitigate the formation of calcium carbonate during the initial stage of scale
formation as shown in Figure 2-16. In terms of the effect of surface energy
relating to scaling process, although the surface coating followed the normal
trend of lower surface energy, which implies lower scaling tendency; in the
case of the polymer surface, it was found that the reverse was the case. A
higher scaling tendency for lower surface energy surface was observed which
is contrary to most research finding on the effect of surface energy on fouling
(either inorganic or organic) as shown by the dotted line in Figure 2-17.
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Figure 2-16: Result of 1hr deposition test at 1800 rpm to assess the

scaling tendency of each test surface [15]
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Jaouhari et al. [80] studied the influence of nature and surface of three
different substrates (gold, bronze and stainless steel) on deposition kinetics
of calcium carbonate using an electrochemical method based on oxygen
reduction. It was observed that gold scaled very quickly followed by bronze
and stainless steel was the slowest. According to the researchers, they related
the deposition partly as a result of the presence of oxide at the electrode
surface, which blocks the calcium carbonate precipitation by slowing oxygen
reduction. Furthermore, they concluded that substrate determines the

nucleation rate and subsequently the polymorphs formed on it.

Charpentier et al. [81] investigated the ability of chemically and
morphologically modified coatings in the prevention of mineral scaling
conducted under laminar and turbulent dynamic conditions using a rotating
cylinder electrode in a complex scaling environment. According to the
authors, anti-fouling properties with coating F1, F4, SG3, 4 and 5 are the most
promising in terms of mass gain reduction as shown in Figure 2-18. Also, it
was found that material with lower surface energy with the presence of micro
or nanometer scale texture, tends to scale more due to offering multitude
nucleation site (heterogeneous surface nucleation) for scaling; thus facilitating

the growth of crystals on the surface.
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Eroini et al. [78] investigated the effect of different substrates (stainless steel,
stainless steel pre-treated with (PPCA), Polytetrafluoroethylene (PTFE),
Diamond-Like Carbon (DLC), ceramic and polymer coated stainless steels
and an isotropic super-finished stainless steel surface) on the ability to reduce
scaling of calcium carbonate. The study showed that super-finished surfaces
have most efficiency in terms of preventing scaling, whereas polymer and
ceramic coatings performed worse both before and after erosion as illustrated
in Figure 2-19. Also, different morphologies of crystals were observed with the

different surface, which occurs as a result of the shape of asperities on the

surface.
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Figure 2-19: Surface coverage (%) formed from Brine A on the different

surface before and after erosion [78]

In a research by MacAdam and Parsons [82], the effect of different materials
(diamond-like carbon (DLC), PTFE, stainless steel (306a) and TiN3) and
finishing on the deposition kinetics of calcium carbonate formation was
investigated. It was observed that despite PTFE coating having the lowest
surface free energy when compared to the other material, there was no
reduction in scaling which is shown in Figure 2-20. While in the case of the

DLC coating, it reduces the scale formation by 60%. Figure 2-21 shows the
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effect of material roughness on scale rate; it could be seen that the scaling

rate increases with increase in the level of roughness.

mg CaCOs per repeat

PTFE TiN3 DLC 1 DLC 2

Steel (306a)

Figure 2-20. The effect of different coatings on CaCOzs scaling rate (300
mg.I"t CaCOs, 70°C, 5 repeats) [82]

mg CaCOx per repeat

Figure 2-21. The effect of surface finish on CaCOs scaling rate (300 mg
I+ CaCOs, 70°C, 5 repeats) [82]

2.8.4 Damage removal

When the scale cannot be prevented during production, the scale needs to be

removed. The scale can be removed chemically and mechanically or by the
application of both methods when formed [48].
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2.8.4.1 Chemical removal

In most cases, the use of chemical removal is preferable than mechanical
removal since it is less expensive when compared to that of mechanical
removal. This method involves the use of an acid such as hydrochloric acid
for insoluble scales (calcium carbonate). But for barium sulphate which is
soluble in acid, strong chelating agent such as an ethylene-diamine-tetra-
acetic acid (EDTA) or diethylene-triamine-penta-acetic acid (DTPA) are
normally used for their removal. The chelating agents are molecules that
break up the scale by isolating and locking up metallic ions in solution within
their closed ring-like structure [48]. A drawback to this method is that the

effectiveness is affected by the surface to volume ratio of the scale.
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Figure 2-22: Diethylene-triamine-penta-acetic acid (DTPA) structure

2.8.4.2 Mechanical removal

They are different methods that could be applied to remove scale
mechanically. They include explosive, milling, jet blasting just to mention a
few. However, the various method applied depends on the type and location
of scale formed. For instance, explosive and impact techniques are used for
brittle scale, while jet blasting techniques are used to remove soft scale. A
shortcoming of this technique is that it is expensive, difficult to perform and

required to be repeated in a short period of time [83].

2.8.5 Chemical scale inhibitors

The most common and successful method used in the prevention of scales in
the oil and gas industry is the use of scale inhibitors; when applied it prevents
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the scale crystal from nucleating, growing and adhering to the solid surface.
In the application of scale inhibitor for scale prevention and down-hole
treatments in the oil and gas industry “squeeze treatment” is the desired
method used [74, 84]. It involves the injection of scale inhibitors into the
surrounding near-well reservoir, which is then further pushed into the reservoir
by a brine over-flush; before the application of the main scale inhibitor, a pre-
flush or spearhead is usually injected to prepare the rock surface for the scale
inhibitor shown as illustrated in Figure 2-23. The well is then shut in for a
particular time to allow the scale inhibitor to be phase separate or adsorb onto
the rock. For a successfully squeeze treatment, it is required that the produced
fluid contains a critical concentration needed to prevent scaling, which is also
known as minimum inhibitor concentration (MIC). Therefore, the concentration
of the inhibitor inside the wellbore has to be retained and maintained above
the MIC, which then leaches slowly back into the produced-water protecting

the well from scale damage.

In general, there are two retention mechanisms, which allow the scale inhibitor
to be retained and released in the reservoir; precipitation and adsorption. The
precipitation process is based on the formation of insoluble inhibitor/calcium
salt in the formation pore space; which is achieved by adjusting the calcium
ions concentration, inhibition concentration, pH and temperature [85]. On the
other hand, the adsorption process occurs due to the van der Waals and
electrostatic interaction between the inhibitor and formation minerals (rock);
and the scale is absorbed from the solution to the formation minerals [85]. It
is required that the chemical scale inhibitor provides long-term protection for
the well formation and tubular. In addition, the scale should be compatible with
the brine formation and relatively stable to thermal degradation under the well

down-hole conditions.
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Figure 2-23: A schematic illustration of scale inhibitor squeeze
treatment process [86]

2.9 Types of scale inhibitors

In the application of scale inhibitor in the oilfield, the main families of scale

inhibitor are explained in this section.

2.9.1 Phosphonates

Phosphonates are substance that comprises of one or more group of C-PO

(OH)2. Their inhibition mechanism involves the prevention of crystal growth,

making them less ineffective in the nucleation inhibition. Phosphonate scale

inhibitors are widely used in the oil and gas industry due to high inhibition

retention and high inhibitor efficiency [13, 14]; they are thermal/hydrolytically

stable, making them very effective at a wide range of temperature down-hole
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reservoir without breaking down into orthophosphate [87, 88]; their
concentration in the formation water is easily detected [89]. Nevertheless,
thermal ageing reduces their performance against sulphate scale [19].The
widely used phosphonate is the diethylenetriamine penta methylphosphonic
acid (DETPMP). Figure 2-24 shows the chemical structures of DETPMP.

POSH, POH,
. P N\/\N PN PO,
PO3H; POsH,

Figure 2-24: Diethylenetriamine penta methylphosphonic acid
(DETPMP) structure

2.9.2 Polycarboxylic acid

Polycarboxylic acid is a generic name for compounds comprises of multiple
carboxylic acid functional group (-COOH). The commonly used polycarboxylic
acid used in the oil and gas industry is the polymalaic acid PMA and
polyacrylate acid (PAA). The effectiveness of the polycarboxylic group
depends on the relative molecular weight spacing and the number of
carboxylic groups. On the reason that when they have same molecular weight,
the more number of carboxyl on carbon chain and if the carboxyl group are
gathered in high density. It reduces the freedom of adjacent carbon atom,
which in turn increases the degree of association of alkaline-earth metal
lattice; leading to increase in scale efficiency. In contrast, their efficiency is
greatly affected by high temperature. Examples of polycarboxylic acid scale

inhibitors are shown in Figure 2-25.

COOH

n
COOH
(a) (b)

COOH

Figure 2-25: Structure of polymalaic acid (PMA) and polyacrylate acid
(PAA)
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2.9.3 Polyelectrolytes

These are polymers whose repeating unit produces an electrolyte group.
Subsequently, the polymer contains at least one of the following groups:
sulfonic acid (-SOsH); ester (-COOR); carboxylic acid (-COOH), phosphonic
acid (-POszHz2), acrylamide (-CONH2). Due to the ability of this inhibitor having
the properties of different groups, they could function as both for nucleation
and crystal growth inhibition [90]. However, their efficiency is greatly affected
by their molecular weight [28, 90]. Examples of polyelectrolytes are
phosphonocarboxylic acid (POCA) and 2-Phosphono-butane-1, 2, 4-
tricarboxylic acid (PBTC), Polyphosphinocarboxylic acid (PPCA), polyvinyl
sulfonate and polyacrylic acid copolymer (PVS). The structures of each of the
chemical inhibitors are shown in Figure 2-26.

The various chemical scale inhibitors have their different mechanism by which
they function. The next section explains the various mechanisms exhibited by

scale inhibitors.
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Polyphosphinocarboxylic acid (PPCA) Polyviny! sulfonate and Polyacrylic
acid copolymer (PVS)
P03H2 POiHZ
HOOC :
PO,H, . R \/l\/\
hn COC
COOH
COOH
Phosphonocarboxylic acid (POCA) 2-phosphono-butane-1,2,4-

tricarboxvlic acid (PBTC)

Figure 2-26: Schematic representation of polyelectrolytes used as

scale inhibitors
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2.10 Inhibition mechanism

As discussed in section 2.8.5 chemical scale inhibitors are the most cost-
effective method for the prevention/mitigation of scale formation in the oil and
gas industry. Each type of chemical inhibitor possesses its own mechanism
by which it functions. Generally, they are three mechanism in which scale

inhibitors typically works as illustrated in Figure 2-27.

Inorganic microcrystal with
adsorbed inhibitors

wal modification
Dispersion

Threshold
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Crystal morphology 1s
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No crystal agglomeration due

to electrostatic charge formation of a regular,
repulsion. No crystal adherence 3 crystalline lattice and the

to a surface and growth to form buildup of an adherent scale.
ascale.

No further crystal growth
(active crystal growth sites
are blocked).

Figure 2-27: Three main inhibition mechanisms [38]

2.10.1 Threshold effect

This mechanism involves the prevention of crystal at the initial stage of
nucleation. These chemicals tend to prevent the ion (Ba?* and S04%) from
aggregating together by promoting the formation of small crystals that act as
a nucleation site but prevent crystal growth. Consequently, reducing the

supersaturation of solution and preventing nucleation.
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2.10.2 Crystal distortion/ modification

Crystal distortion involves the reduction of crystal growth by changing their
morphology. This occurs by inhibitors being absorbed on the surface changing
their properties. This tends to limit their sizes, preventing -crystal
agglomeration and surface deposition. Further, the modified shape usually
has less contact forces to the surface, which can be swept away by the

process flow.

2.10.3 Dispersion

Dispersion involves the prevention of microcrystal adsorption and
agglomeration. This is achieved by inhibitors being absorbed onto the growing
crystal, increasing the anionic on the crystal surface, by so doing increasing
the electrostatic charge repulsion between crystals; resulting in the formation

of a more stable dispersion of microcrystal.

2.11 Factor affecting inhibitor performance

In the application of scale inhibitors in the oilfield, the performance of scale
inhibitors could be affected by two features: Structural and environmental
features [91].

2.11.1 Structural features

The variation of chemicals could affect the scale inhibition performance. For
instance, the presence of functional groups such as hydroxyl and sulphuric
group is seen to enhance the inhibitor efficiency, while that of the hydrophobic
group is seen to block the action of other functional groups in the scale
inhibitor causing steric hindrance [92-95]. In addition, the location of functional
group and the molecular weight distribution could also have a significant
impact on the scale performance [92, 93]. According to Bromley et al. [96], it
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was reported that the greatest inhibitors of barite growth occurs when the link
between two sets of phosphonate group was greater than 6 A and allow at

least two of the four molecules to incorporated on the surface.

2.11.2 Environmental features

These features are associated with the change of environmental conditions in
the reservoir and during the course of the squeeze treatment [11, 25, 85, 97,
98]; Some of these environmental changes are explained below.

2.11.3 Solution pH

It is generally understood that the scale inhibitor performance will be reduced
below a certain pH level. This occurs for the reason that the efficiency of scale
inhibitor depends on the functional groups being ionized in order to bind
strongly with the scaling mineral lattice [91]. For illustration, phosphonate
(DETPMP) and polyacrylate (PPCA) species are greatly affected by variation
of pH because they are very weak; having less dissociated at low pH. In
contrast, functional groups containing strong acid like sulphonic acid (-SO3H)
will completely dissociate to —SOs: making them effective even at very low pH
value [91]. In a study by Sorbie and Laing [67], they show the effect of variation
of three inhibitors (DETPMP, PPCA and PVS). From Figure 2-28 and Figure
2-29, it is seen that both DETPMP and PPCA were unable to function at pH 2
since the performance of the inhibitor were low at 0.5 hours and 1 hour. On
the contrary, the inhibitor performance of PVS was high at low pH level, with

inhibition efficiency greater than 50%.
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Figure 2-28: BaSOu4 inhibition efficiency at pH 2 for DETPMP, PPCA and
PVS [68]
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Figure 2-29: BaSOa inhibition efficiency at pH 7 for DETPMP, PPCA and
PVS [68]
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2.11.3.1 Temperature

The crystal inhibition is dominated by the thermodynamic properties of
adsorption of inhibitors on the scale crystal (i.e. Free Energy (Gads)). On the
other hand, free energy depends on the change in enthalpy and entropy as

shown in the equation below.
AGadS = Hads - TASadS 2‘17

Therefore, it is anticipated that temperature will have a major impact on the
effectiveness of an inhibitor. From literature, it was found that phosphonates
are less effective at low temperature, whilst co-polymer and sulphonated
polymer perform better at lower temperature [67, 99, 100]. The reason for
phosphonate ability not to perform at a lower temperature is that since they
function more as a crystal growth blocking and the barium sulphate
supersaturation ratio is high at low temperature; it implies that more
concentration of phosphonate will be needed to prevent scaling [99].
Conversely, the sulphonate polymer species have high performance at a
lower temperature is because of reaction kinetics. At lower temperature
barium sulphate saturation ratio is high, but the rate of formation is very low
and knowing they function as nucleation inhibition it allows the inhibitor to act
on scaling crystals [25, 67]. To emphasize this point, research carried out by
Sorbie and Laing [67] identified the effect of temperature on inhibitors
performance on three different inhibitors (DETPMP, PPCA, and PVS) using
two scaling conditions (mild and severe). The study revealed that the
performance of DETPMP was high at 95°C, while that of PPCA and PVS were
high at a low temperature of 5°C and 50°C as shown in Figure 2-30 and Figure
2-31.
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Figure 2-30: BaSOa4 inhibition efficiency of DETPMP, PVS and PPCA vs.
Temp.; 50:50 Brent/SW brine mix after 22 hours [68]
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Figure 2-31: BaSOa4 inhibition efficiency of DETPMP, PVS and PPCA vs.
Temp.; 50:50 Forties/SW brine mix after 22 hours [68]

2.11.3.2 Effect of Divalent Cation Concentration

The concentration of Ca?* present in the injection and produced brine could
affect the ability of scale inhibitor being retained in the formation through

precipitation and adsorption [85]. This occurs through the influence of calcium
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ions involved in the formation of surface/inhibitor complexes [21, 25, 26, 85,
97, 98]. Furthermore, the binding takes place by hydrogen bonding or calcium
bridging between the surface or crystal and the functional group of the scale
inhibitors depending on pH, temperature, and concentration of the inhibitors.
In the presence of high concentration of calcium ions, phosphonate inhibitor
tends to be very effective due to the formation of Ca?*/ phosphonate
complexes; on the other hand, polymers are not effective at a low
concentration of calcium ions [67, 91]. Similarly, the presence of Mg?* is
known to poison scale inhibitors reducing their performance. Phosphonates
are more affected by Mg?* ion when compared to polymeric series. This
reduction of the scale inhibitor occurs due to the fact that Mg?*/inhibitor
complexes are unable to be incorporated into the barite lattice unlike that of

Ca?*/inhibitor complexes as illustrated in Figure 2-32.
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Figure 2-32: BaSO4growth with Ca-SI complex inclusion and Ca

inclusion and no Mg-Sl inclusion [68]

2.12 Bulk characterization

Conventionally, the study of scale formation has been focused on the bulk
precipitation using static bulk jar test. The kinetics of scale formed in the bulk

solution can be measured by the various techniques listed below:
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2.12.1 Turbidity measurement

Turbidity is the measure of the degree of ‘cloudiness’ of a solution due to the
presence of suspended particles in the solution. As the barium sulphate
precipitate, the solution becomes cloudier. The turbidity meter measures the
amount of light that is scattered by the suspended patrticles in the solution.
Mavredaki [30] studied the kinetics of bulk phase during the initial stage of
precipitation of barium sulphate in the presence and absence of scale
inhibitors using a turbidity measurement. Tantayakom et al. [64], studied scale
inhibition using a turbidity measurement; in their research, they found out that
the critical supersaturation ratio increases with scale inhibitors concentration
and solution pH, while it decreases with increase in elapsed time after mixing

the precipitating solution.

2.12.2 Change in barium ion concentration

The change in concentration of barium ions in a solution due to precipitation
of barium sulphate can be used to characterise the bulk precipitation process.
The analysis of the concentration of barium ions in the solution after tests can
be measured using an Inductively Coupled Plasma - Atomic Emission
Spectroscopy (ICP-AES) [25, 101, 102]. Also, barium ion selective electrode

can be used to measure the change in concentration of barium ions [103].

2.12.3 Conductivity measurement

Conductivity is the ability of a solution to carry electrical current. It is directly
proportional to the ionic species and concentration present in solution. Hence,
the concentration of barium ions can be measured with a conductivity meter.
As the scaling process in the bulk solution occurs, the conductivity of the
solution reduces. Jones et al. [69] used the conductivity techniques to monitor
the effect of calcium ions on the precipitation of barium sulphate. In their study,
they found that the solubility of barium sulphate was as a result of an increase

in ionic strength of the solution. In another research by Jones et al. [104], they
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studied the interaction of EDTA with barium sulphate by using conductivity

measurement [104, 105].

2.13 Surface deposition characterization

In most research scale studies, the focus has been the precipitation processes
in the bulk phase. Nevertheless, it has been reported that jar test does not
correlate with plant information [106]. Also, studies have shown that the
mechanisms and kinetics controlling bulk and surface deposition are different.
During the last few decades focus has shifted to study the scaling on the metal
substrate using various techniques. The next few paragraph below gives
some techniques used in surface deposition studies.

Pina et al. [107] studied the effect of five different phosphonate scale inhibitors
on barium sulphate (001) face using in-situ AFM techniques. In their research,
they found that the techniques provided both quantitative and qualitative data
about the inhibition growth of barium sulphate (001) face.

Teng et al. [108] investigated the kinetics of calcium carbonate growth rate
using in-situ AFM techniques. From their studies, they observed that at low
supersaturation, the growth is initiated solely by surface imperfections, while
as the supersaturation increases the two-dimensional surface nucleation and
crystal defects become dominate which is consistent with the prediction of
classical BCF theories. Ruiz et al. [109] investigated the effect of copolymer
inhibitor on barium sulphate precipitation using an in-situ AFM. From their
study, AFM techniques show to be a good tool to investigate scale formation
and inhibition.

Abdel-Aal et al. [110] investigated the scaling of calcium carbonate by
combining Ca?* ion measurements with QCM techniques. They found that the
scaling process occurs mainly by direct growth of calcite on the surface of the
metal at high supersaturation, while at low supersaturation ratio leaf-like
vaterite is adhered to the surface. Also, they found that the rate and amount
of scale formed were affected by the inclination angle of the surface to the
solution and the stirring rate. Garcia et al. [111] investigated the efficiency of
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three different scale inhibitors and the scaling process using the QCM. From
their study, they concluded that the QCM was an effective tool to evaluate the

scale formation and inhibition process.

Hennessy et al. [68] used an in-situ pressure flow cell to study the formation
of barite under a non-ambient condition with Synchrotron X-Ray Diffraction.
According to their investigation, the precipitation of barite was successfully
monitored using realistic oilfield information. Moreover, they suggested that
the technique will be useful for oilfield application to understand the effect of
the scale-inhibition mechanism. Chen et al. [112] developed an in-situ cell to
study the formation of calcium carbonate and effect of scale inhibitor (PPCA)
on crystal growth by using synchrotron radiation wide-angle X-ray scattering
(WAXS). It was found that scale deposition on the surface is divided into two
phase (unstable and stable phase). In addition, it was reported that the
inhibitor reduces surface deposition by suppressing calcite formation,

resulting in vaterite-dominated scale.

In a study by Quddus and Allam [113], Rotating Cylinder Electrode (RCE)
apparatus was used to determine the effect of fluid hydrodynamic on barite
formation. According to their study, the scale deposition rate increased with
respect to increase in the Reynolds number. And they further suggest since
the hydrodynamic plays a role in scale formation process, it must be

considered in any part of the scale management system.

A new method was developed by Euvrard et al. [114] in order to visualize and
monitor the kinetics of calcium carbonate scale in real time, the set-up
comprises of an electrochemical cell coupled with a video set-up. A schematic
illustration of the flow cell is shown in Figure 2-33.The system was able to
guantify in real time the morphometric characteristic of the crystal and also

enable the continuous study of nucleation and growth of crystal.

In a similar research, Martinod et al. [105] studied the effect of a conventional
phosphorus scale inhibitor (polyphosphinocarboxylic acid (PPCA) and two
environmentally friendly inhibitors (polymaleic acid (PMA) and carboxymethyl
inulin (CMI)) on calcium carbonate using an electrochemical cell, optical and

measurement set-up. During the study, different mechanisms were observed,
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which depended on when the inhibitors were applied during the crystallization
process. PPCA and PMA tend to inhibit the growth of crystal, however PPCA
had higher efficiency when compared to PMA. In contrast, CMI seems to have
no significant effect on the kinetics of crystal regardless of when it been

applied; Figure 2-34 gives a pictorial explanation of the effect of the three scale
inhibitors.
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Figure 2-33: Electrochemical cell [101]
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Figure 2-34: (a) Effect of 4ppm of PPCA on the mean diameter of the
crystals of CaCOs nucleated and grown for 10 minutes in absence
of inhibitors (b) Effect of 4ppm of PMA on the mean diameter of the
crystals of CaCOs nucleated and grown for 10 minutes in absence
of inhibitors (c) Effect of 4ppm of CMI on the mean diameter of the

crystals of CaCOs nucleated and grown for 10 minutes in absence

of inhibitors [101]

(c)

2.14 Bulk precipitation vs surface deposition kinetics

Ever since the application of scale inhibitors to prevent precipitation of scale,

T0

it has been assumed that scale chemical functions same way in the bulk

solution and on surfaces of the substrate. As discussed in section 2.14, the

studies of scale formation using traditional beaker/jar test do not give reliable

information. Also, it has been shown that there are extensive dissimilarities

between scaling rate estimated by predictive model (i.e. based on scaling

indices and thermodynamic to predict precipitation tendency) and actual
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deposition on the component surface. However, research on the relationship
between the scale deposition on a solid surface and bulk precipitation has
been carried out by few researchers [32, 101, 113, 115, 116].

Graham et al. [101] compared the efficiency of scale inhibitor (PPCA) in
preventing bulk precipitation and surface deposition of BaSO4 at different
temperature (5°C, 50°C and 95°C) and inhibitor concentration (below and
above MIC). From their investigation, they summarise their main findings with
a schematic diagram shown in Figure 2-35. Regarding the inhibited
experiment, they observed bulk precipitation and surface deposition was
greatly reduced at a concentration above-MIC. Furthermore, at a
concentration below-MIC bulk precipitation was reduced but enhanced
surface deposition. It was postulated that the promotion of surface deposition
(below-MIC), was due to low film coverage of the scale inhibitor on the metallic
sample, as well as, a high concentration of barium ions in the bulk solution. In
the uninhibited case, an opposite trend was observed. Low surface deposit of
barium sulphate was formed on the metallic steel compared to bulk
precipitation. This was attributed to high supersaturation of the brine, resulting
in fast precipitate of barium sulphate in the bulk solution rather than depositing

on the metallic surface.
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Figure 2-35: Schematic diagram illustrating the surface scaling and
bulk precipitation according to inhibitor concentration and

temperature
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A study conducted by Chen et al. [29] to investigate the initial stages of bulk
precipitation and surface deposition of calcium carbonate, using three different
brine solutions having different saturation ratio. From their research, they were
able to validate that the induction time for both bulk precipitation and surface
deposition are different; surface deposition tends to occur sooner when
compared to bulk precipitation at low supersaturation ratio. Also, in their
studies the size of crystals formed in both processes was different. In the bulk
solution, the size of the crystal was 5 micron, while that of the surface
deposition was 10-20 micron shown in Figure 2-36. This confirmed that
heterogeneous condition promotes crystal growth when related to the

homogeneous condition.

In similar research by Mavredaki [30], the study of the initial stages of barium
sulphate scale formation was investigated, using QCM for surface deposition
measurement; while turbidity measurement was used to characterise the bulk
solution. From the studies, when comparing the bulk precipitation and surface
deposition, she found that the kinetics of surface precipitation was different
from bulk phase. As shown in Figure 2-37 the mixture of B and C reached a
plateau but the scaling activities on the surface still continue. In conclusion,
from the two studies, it implies that both processes (bulk precipitation and
surface deposition) have different kinetics.
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Figure 2-36 Comparison of morphology of bulk precipitate and surface

deposit after 24 hours (a) bulk precipitate (b) surface deposit [25]
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Figure 2-37 Surface and bulk measurements for the three different

brines focusing on the lower scale measurements [91]

2.15Summary of literature review

From the review presented in this chapter, it is clear that the mechanisms of
barite scale formation are a complex and are affected by various factors. The
most effective method to prevent the occurrence of barite scale in the oilfield
is the application of chemical scale inhibitors. These scale inhibitors are
generally used in squeeze treatments because of the various benefits
mentioned during the review. Also, the determination of the scale inhibition
mechanisms is challenging since scale inhibitors are being affected by various
factors. The effects of these factors have been studied by various researchers
considering only the bulk precipitation (primary homogeneous nucleation)
rather than the surface deposition and growth (primary heterogeneous
nucleation) [32, 38, 101]. On the contrary, studies have shown that the kinetics
of both bulk precipitation and surface deposition are different [30]. Therefore,
it is important for studies to be carried out to investigate these factors under
more realistic simulated oilfield conditions in the laboratory: considering both

the influence of both bulk precipitation and surface deposition.
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In recent times, in-situ visualization methods have been used to study scale
formation kinetics on surfaces; most studies have been carried out in a closed
system [58, 117]. There is a serious limitation of this if the intention is to
guantify the scale kinetics as a function of the saturation ratio seen by the
surface. For this reason, in-situ visualization methods in an open system were
developed and used to study the kinetics of barium sulphate scale and
mechanism of scale inhibitor action on both bulk precipitation and surface
deposition. This gives a more realistic simulation of the oil field processes

when compared to a closed system.

In addition, in terms of preventing the formation of scale by using modified
substrates, the use of these surfaces from the reviews has shown to
significantly reduce the amount of scale formed. Furthermore, these studies
were carried out in the aqueous phase, but oilfield operations barely occur in
the aqueous phase. Surface scaling tests on multiphase environment have
not been conducted. In this study of scaling tests were conducted both in the

aqueous phase and multiphase environment.

This study is aimed at improving the understanding of the kinetics of barium
sulphate precipitation in the bulk solution and deposition on the surface with
and without the influence of scale inhibitors. Also, it will improve the
understanding of how different conditions (such as flow rate, pre-scaled
surface and saturation ratio) can affect the surface scale inhibition. Lastly, it
will expand the knowledge of how the presence of oil phase could influence
the surface scaling and inhibition of barium sulphate. The next chapter
presents the experimental techniques and procedures that were used during

the study.
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Chapter 3 Methodology

3.1 Introduction

In order to understand the processes of bulk precipitation and surface
deposition of barium sulphate and their interactions, several methodologies
are required. In this chapter, the various test setups, experimental procedures
and materials used to achieve the thesis objectives mentioned in chapter 1
are described. The schematic diagram in Figure 3-1 shows the structure of
the chapter.

Materials and Methods
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Figure 3-1: Outline of chapter 3
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3.2 Metal sample

The substrate used for surface fouling is stainless steel UNS S31603. The
composition of the stainless steel material is presented in Table 3-1. This
material is chosen due to its high resistance to corrosion in a wide range of

pH values.

Table 3-1: Composition of the stainless steel [118]

Carbon 0.030
Manganese 2.00
Silicon 0.75
Chromium 16.00-18.00
Nickel 10.00-14.00
Molybdenum 2.00-3.00
Phosphorus 0.045
Sulphur 0.030
Nitrogen 0.10
Iron 7.0

3.2.1 Sample preparation

Two different geometries of stainless steel samples were used during the
project as shown in Figure 3-2. The first sample (hollow cylindrical sample)
with a diameter (12 mm), which was used for to study surface scaling in
multiphase condition did not require any preparation prior to the test. The
second sample (10 mm diameter) required some preparation before the test.
The sample preparation was divided into three steps (namely: grinding,
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polishing and cleaning). First, the samples were mounted in epoxy resin. The
next step which is grinding and polishing were carried out on the manual

polishing machine (Buehler Beta Grid Polisher).

m

(a

(b)

Figure 3-2: (a) Rotating cylinder electrode (RCE) sample (scale forms
on the cylinder surface) (b) In-situ test sample (scale forms on the
flat surface).

Grinding was performed using diamond bonded discs (MetPrep), while the
polishing steps were done with polishing cloths (MicroCloth, Buehler) and
diamond suspensions (3 um). In the grinding process, the samples were wet-
ground progressively using P300, P600 and P1200. During this process,
samples are cleaned in between each step with deionized water then dried
with compressed air. Final cleaning followed by rinsing with deionized water,

acetone was used before and after each polishing step.

3.3 Reagents

3.3.1 Brine composition

The mixture of two incompatible brines provides the supersaturation
conditions for the precipitation of barium sulphate formation. In this study, the
North Sea seawater (NSSW) which is the source of sulphate ions (S04%) and
Forties Formation Water (FW) which is the source of barium ions (Ba?*) are
used during the experiment. During the project, the brine composition was
varied in each of the results chapters. The concentration of the salts was

adjusted to reach a specific saturation ratio (SR). Hence, the exact brine
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composition is given in the respective results chapters. The BaSOa4 saturation
ratios (SR) for various ratios were predicted using Multiscale Software. Table
3-2 presents an overview of the inorganic salts used during the making of the

brines.

Table 3-2: Inorganic salts for the brines

NSSW FW
NacCl NaCl
CaCl2.6H20 CaCl2.6H20
MgCl2.6H20 MgCl2.6H20
KCI KCI

- BaCl2.2H20
- SrCl2.6H20
Na2SO04 -

3.3.2 Chemical inhibitors

Three scale inhibitors were selected to examine their performance on the
surface deposition and bulk precipitation of barium sulphate on stainless steel.
These scale inhibitors are commonly used in the oil and gas industries. The
first applied was Diethylenediamine Penta MethylenePhosphonic Acid
(DETPMP) with an active concentration of 45 % and molecular weight of 573
g/mol was supplied by Italmach chemicals. The second scale inhibitor used
was VinylSulphonate Acrylic Acid Co-Polymer (VS-Co) with an active
concentration of 60% was provided by Nalco Champion. Lastly,
PolyPhosphinoCarboxylic Acid (PPCA) with an active concentration of 47 %
and molecular weight of 3600 g/mol supplied by BWA was applied. The
structures of each of the chemical inhibitors are presented in Figure 3-3 to

Figure 3-5 respectively.
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Figure 3-3: Chemical structure of DETPMP
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Figure 3-4: Chemical structure of VS-Co
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Figure 3-5: Chemical structure of PPCA

3.3.3 Buffer solution

A 10% v/v of a buffer solution was added to the brine solution to adjust the pH
value of the solution to 5.5. The buffer solution was prepared by dissolving
349 of sodium acetate tri-hydrate and 1g of acetic acid in 250ml of distilled

water.
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3.3.4 Quenching solution

Quenching solution samples were used to stop further precipitating of scale
during sampling. The solution consists of 1000 ppm of polyvinyl sulphonate
(PVS) and 3000 ppm of potassium chloride (KCI) which is adjusted to pH 8-
8.5 by dropping of 0.1N NaOH and/or 10% HCI.

3.3.5 Dissolver solution

In order to analyse the surface deposition of scale on the metallic steel, the
sample was dissolved in a solution containing 25g of Ethylene-diamine-tetra-
acetic acid (EDTA) and 25g of potassium hydroxide (KOH) in 500 ml of
distilled water giving a pH of approximately 11.

3.3.6 Hydrocarbon

The hydrocarbon used in this study under multiphase conditions was Isopar
M. It is a high-purity iso-paraffinic hydrocarbon having carbon number ranging
from Ci1 to Ci1s and was supplied by VWR. The chemical properties of Isopar
M are shown in Table 3-3.

Table 3-3: Chemical properties of Isopar M

Max. sulphur content (mg/kg) 1

Max. carbonyl content (mg/kg) 10

Max. aromatic content (mg/kg) 500
Density at 25 °C (kg/dm3) 0.7771
Viscosity at 25 °C (mPas) 2.08
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3.4 Test set-up

In the course of this project, three different set-ups were used to study the
kinetics of bulk precipitation, surface deposition and the performance of scale

inhibitors. They are described below:

3.4.1 Static bulk jar tests

This test was used to determine the performance of scale inhibitor (SI) [119].
The experiment consists of scaling brines, which are mixed in 250 ml bottles.
The BaSOs precipitation was then followed by measuring the concentration of
barium as a function of time (t) and the efficiency of the inhibitor is calculated
by using Equation 3-1;

C(t) — Cp(t) 3-1

I.LE=100|—mm=
lco - Cp(t)

Where,

C (t) = test sample Ba?* concentration at sampling time, (ppm)

Cb(t) = Ba?* concentration in the blank solution (no scale inhibitor) and
Co = control sample Ba?* concentration at time, t = 0 (ppm).

When the scale inhibitor has an inhibition efficiency of above 95% at both 2
and 22 hours residence time, the concentration is referred to as the “minimum

inhibitor concentration (MIC)".

3.4.2 Rotating Cylinder Electrode (RCE)

The RCE set-up allows the study of the effect of flow condition on surface
fouling. This set-up was used to perform a test on single and multiphase

condition. The RCE consist of a rotating electrode module and a control unit
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which allows perfect regulation of the rotating velocity. The electrode is made
of insulating material with the metallic cylindrical stainless steel sample that
revolves within the shaft.

The RCE electrode, temperature probe and an overhead stirrer are placed in
a 2 L beaker as shown in Figure 3-6. The beaker is placed on a hot plate that
is incorporated with a thermometer thermostat which ensures the solution
temperature remains constant during the tests. Prior to the test, the
temperature probe is placed inside a Hastelloy tube containing a heating fluid
to prevent deposition of scale on the temperature probe; thus reducing
possible errors during experiments.

Support Stand

(@)

Temperature Probe

RCE Rotating Shaft

C;‘ﬁ'ldrl:d Sample
'orking Bechodef

Rotating Speed Contol

Figure 3-6: (a) Schematic diagram of rotating cylinder electrode (RCE)
device (b) RCE electrode unit with metallic cylinder samples (c)
stirrer
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3.4.3 In-situ flow test

In the in-situ flow test, both surface deposition and bulk precipitation are
studied under laminar conditions. The set-up includes an in-situ flow cell,
pump, water bath, turbidity probe, camera, and conductivity meter as shown
in Figure 3-7.

Vessel
Computer
Water bath
Conductivity meter
Digital pump
Camera
Flow cell

Turbidity Probe

Figure 3-7: In situ flow cell set-up

A schematic illustration of the set-up is shown in Figure 3-8. The set-up
allowed surface fouling and bulk precipitation to be assessed simultaneously.
The design is inspired from the cell developed by Euvrard et al. [114]. In the
initial setup the brines are recirculated (closed system), whereby the
saturation ratio would decrease with time; therefore restricting kinetic studies
to short periods of time. In this work, the set-up was adjusted to include a
once-through flow system (open system) [120]. The flow cell was designed to
work under atmospheric pressure and can be adjusted to allow experimental
conditions (e.g. saturation ratio, inhibitor concentration) to be kept constant at

the point where the imaging is done.

A more detailed geometry of the flow cell (cell volume of 15 ml) where the
surface deposition occurs is shown in Figure 3-9. Prior to the design of the
flow cell, a CFD modelling was conducted using COMSOL to evaluate the flow
velocity across the cell. From Figure 3-10, results show that the flow in the cell

is uniform and the maximum Reynold number for each of the flow rates used
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during the test were laminar flow regimes as shown in Table 3-4. Also, it was
observed that there was no recirculation in the flow cell. The flow regime of
other two flow rates used are presented in Appendix A. The surface deposition
was analysed using a camera (produced by Ximea) to allow real-time
observation of surface fouling.

SW FW
Pump Water Bath Mixer
I —> i
Flow Cell
<
Waste
Turbidity
probe

Figure 3-8: Schematic of experimental set-up

Mirror Sample

4
Spar:.eI for glass PPM{\ Plates (b)

(c)

Figure 3-9: Flow cell consists of: (a) two PPMA plates and (b) a Teflon
gasket with volume of 15 ml. (c) Assembly of the three different

parts

65



m/s

0.05
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b °

Figure 3-10: CFD modelling of flow channel showing the flow velocity
of the cell (flow rate of 20ml/min).

Table 3-4: Hydrodynamic parameters

Flowrate (ml/min) Flowrate (m/s) Average velocity Maximum

at centre m/s Reynolds

number
20 3.34 x 107 0.0032 7
40 6.67 x 1077 0.0127 15
60 7.02 x 10”7 0.0187 23

The images were processed to assess the number of particles and their size
as well as the barium sulphate surface coverage. Similarly, real-time
measurements of the bulk precipitation were performed using a turbidity
probe. As the scaling process occurs, the solution becomes more turbid during
the initial stages of precipitation of barium sulphate. The induction time and
the kinetics of the reaction can be followed. Figure 3-11 shows a schematic

illustration of a typical turbidity curve, showing the three regimes (namely: (a)
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induction time, (b) crystal growth, and (c) further growth and agglomeration).
The turbidity probe consists of a steel fibre optic probe placed in front of the
flow cell. The turbidity probe consists of two optical fibres: the first optical fibre
emitted light into the flow cell, while the second optical fibre transmits the
responding scattered light reflected by the mirror place behind the flow

channel as shown in Figure 3-12.

Bulk precipitation is detected when the light transmitted is reduced due to
disruption of reflected light initiated by the formation of crystals in the bulk
solution. The change in transmittance reading is recorded to a computer in
voltage (ranging from 1 to O volts). In order to relate the voltage signal to
turbidity value, a known turbidity standard (0, 50, 200, 400 and 800 FAU)
produced by HACH were used for the calibration.

Turbidity (FAU)

» 5042,

» Ba?*

Time (min)

Figure 3-11: Schematic diagram illustrating turbidity curve

Figure 3-12: Schematic diagram of turbidity probe
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3.5 Growth and nucleation model

A model developed by Beaunier et al. [121] which was further modified by
Euvard et al. [114] and data generated by the in-situ flow visualization cell
were used to determine whether the nucleation is either progressive or
instantaneous. Progressive nucleation is the nucleation that occurs when the
formation of new nuclei and the growth of crystal occurs currently.
Instantaneous nucleation is described as a process where nuclei are formed
at beginning of the crystallization process but remains constant afterwards.
The model assumes that crystallization is controlled by diffusion. Also, it
suggests that the unit area of the substrate has a finite humber of nucleation
actives sites No (um) and that all nucleation events are independent of each
other. Thus, the probability of nucleation at time (t) depends on the number of
free sites. For non-growing crystals, the number density of nuclei follows:

N(t) = Ny[1 — exp(—At)] 3-2

Where A(s?) is the nucleation rate constant (conversion of a site into nucleus);
in our approach, the density of active sites No is the detected number of
crystals. Two different cases exist according to the nucleation rate constant

value:

e When At<<1, it implies progressive nucleation; N(t) is close to NoAt, the

number of converted sites increases linearly with time.

e When At>>1, N(t) is close to No, which indicates that all active sites
have generated nuclei in the very early stages of the process

(instantaneous nucleation).

A drawback in the analysis of the data is the overlapping of crystals and the
actual covered surface is S(t) is different from the extended surface area Sex(t)
that would be covered by all the nuclei at time t without overlapping effects.

The correlation between the S(t) and Sex(t):

S() = 1 = exp(=Sex: (1)) 3-3
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MKj 1 —At 3-4

Where K1 the lateral growth rate (mol/um/s), p is the density of crystal (g/um3),
A is the nucleation rate and M is the molar mass of BaSO4(233.38 g/mol).

From the equation the surface coverage S(t) is:

S =1 (MK1> -t exp 2t 35
= exp p ( 7 texp— )
For an extended time, S(t) is simplified as follows:
MK 1 -
S(t)=1—exp< pl).(t—z) 36
For instantaneous nucleation:
MK, Nyt 7
Sext(t) = —Ln(1=S(t)) = —— 3
For progressive nucleation:
MKlNotz 3'8

Sext() = —Ln(1—S(@)) = 5

The instantaneous nucleation Sex(t) is directly proportional to time, while for

progressive nucleation Sex(t) is a linear function of t2.

3.6 Test conditions

The test conditions for both in-situ test and RCE tests are shown in Table 3-5.
The temperatures were chosen since the temperature varies in the oil industry

from 50°C in top surface facilities and 95°C above in the reservoirs [34].
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Table 3-5: Experimental conditions

Parameters Conditions

Pressure Atmospheric
Flow rate 20, 40 and 60 ml/min Static
Duration of test 4 hours
Mixing Ratio 50:50 10:90
Temperature 25°C and 50°C 80°C

3.7 Experimental procedures

3.7.1 Bulk jar test

The two brines NSSW and FW are prepared by dissolving the appropriate salt
in distilled water and vacuum filtered separately through a 0.45um membrane
to remove any form of impurities or crystals. Also, the inhibitors are prepared
by weighing and dissolving the scale inhibitors in distilled water to create a
stock solution of 1000 ppm active Sl. The stock solution of inhibitor is then

added to the NSSW to give the required concentration.

The appropriate volume of NSSW/SI and FW are measured into separate
bottles. To each of the brine, buffer solution is added to produce the required
pH for the experiment. Both bottles are placed in the water bath and are
heated up to the required temperature for 60 minutes. The two brines are
mixed after 60 minutes and the tests are sampled (1 ml of solution) after 2 and
22 hours. The 1ml taken is added to a test tube containing 9 ml of quenching

solution preventing further precipitation of BaSOa.
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3.7.2 Rotating Cylinder Electrode (RCE) test

The same methodology described in section 3.7.1 was followed during the
brines (NSSW and FW) and Sl preparation. In addition, Isopar M is added to
the FW prior to the experiment and the overhead stirrer was set at 500 rpm

throughout the experiment to maintain the emulsion.

The metal sample is placed in the beaker containing the FW/oil. Both vessels
are placed in the hot plate are heated up to 80 °C for 60 minutes. The
NSSWY/SI and FW/oil are mixed in a 2-litre vessel containing the metal sample.
Figure 3-13 gives a schematic illustration of the experimental procedure.
Scaling tests were carried out at oil-to-water (o/w) ratios of 0:100, 5:95, 20:80
and 50:50 by adding Oml, 53ml, 250 ml and 1000ml of paraffinic oil in 2000ml
of scaling brine. The metal sample is removed at the end of the experiment,
cleaned with distilled water and placed in 10ml of EDTA solution to dissolve

the scale deposit and analysed using ICP.

Stirrer

Oil —f——

Metal sample

FW

Figure 3-13: Schematic illustration of experimental procedure using
RCE set-up

3.7.3 In- situ flow test

The similar methodology described in section 3.7.1 was followed during the
brines (NSSW and FW) and Sl preparation. Prior to the start of the experiment,
the thermostatic bath is set to the desired operating temperature of the test.

The two brine solutions are pumped from the vessel through the thermostatic
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bath to heat them up to the desired experimental temperature, they are mixed
in a tee chamber before entering the flow cell. In the flow cell, the camera
takes images of the scale formed on the substrate every 5 minutes during the
course of the experiment. The image is analysed by a software to assess
number of particle, particle size and surface coverage formed on the surface.

Furthermore, turbidity probe measures the turbidity of the solution.

3.7.3.1 Repeatability tests and analysis for surface crystallization

Preliminary tests were carried out to assess the precision and the repeatability
of the in-situ flow techniques. Brine solution with SR=60 at 50°C was run
through the in-situ flow cell at 20 ml/min for 4 hrs. The scaling test was
repeated three times (R1, R2 and R3) using different stainless steel samples,
under same experimental conditions. As stated previously, the images were
captured every 5 minutes interval and analysed. Figure 3-14 presents the
surface coverage with time, repeated three times for SR=60 using the in-situ
flow rig and image analysis program. The repeatability results indicate that the

techniques are suitable to study the surface crystallization process with high

accuracy.
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Figure 3-14: Repeatability test for surface coverage at SR =60, T = 50°C
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3.8 Equipment

3.8.1 Scanning Electron Microscopy (SEM) and Energy Dispersive
X-ray analysis system (EDX)

The Scanning Electron microscope (SEM) Philips ® X130 is used after the
deposition test to assess the morphology and size of the scale deposits
formed on the metallic surface. Prior to the analyses, the metal is coated with
3 nm gold to make it conductive and when electrons strike the sample (with a
high-energy beam of 10keV or 20keV); a variety of signal is generated and
the detected signal is then converted into images.

In addition to the SEM, energy dispersive X-ray micro-analysis (EDX) is
incorporated in the system. It is a powerful tool used to identify the elemental
composition of sample surface down to their atomic level. Similarly to the SEM
sample preparation for analysis, the sample is coated with gold to make it
conductive. Therefore the surface is strike with the beam, and the surface
emits an array of scattered signals (backscattered electrons, secondary
electrons, characteristics X-rays and other photons) which is detected by a
sensor and the composition of the assessed; Figure 3-15 shows an example

of a SEM machine.

Figure 3-15: Scanning Electron Microscopy (SEM)
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3.8.2JY138 Ultrace model Inductively Coupled Plasma - Atomic
Emission Spectroscopy (ICP-AES)

Measuring the barium ion concentration in the solution after sampling was
performed using JY138 Ultrace model Inductively Coupled Plasma - Atomic
Emission Spectroscopy (ICP-AES). The ICP-AES is a technique commonly
used for element analysis. The technique involves using a plasma source to
make a specific element emit light after which a spectrometer separates the
light in a characterisation wavelength as shown in Figure 3-16. At the outset,
the sample is converted to an aerosol by a nebulizer. At the core of the ICP
sustains a temperature of 10000k, the aerosol tends to vaporise quickly due
to the high temperature; thus the element are liberated as a free atom in their

gaseous state.

Also, in the plasma additional energy is transferred to the atom and ion,
promoting the excitation of the electron to higher energy level. And when the
excited atoms and ions return to the ground state through the emission of
photons, the wavelength of the photons are used to characterize the particular

elements.

Spectrometer Multi-element

Plasma detector

Figure 3-16: Schematic of an ICP-AES

3.8.3 Surface profilometer

A surface profilometer is a device used to measure the roughness of a

surface. In this work, a Taylor Hobson surface profiler was used to measure
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surface roughness of the substrate. The roughness of the substrate could be
determined by measuring the deviation from a mean line representing the
surface profile. A number of standard parameters are used to describe the
surface roughness. Few of these parameters are explained below;

e Average Roughness (Ra): is the average of individual height and
depth from the mean line.

1 im 3_9
Ry = e j |2(2)| dx

Im
0

Z zzl L Reax Zu|  Zs

e

Im - 5! '.
Run-in length Run-out lcngr;7.I

Figure 3-17. Evaluation of surface roughness profile

e Skewness (Rsk): is the measure of the symmetry of the profile about

the mean line.

! i
1 (1 , 3-10
R, = 7 7J|Z ()] dx
a
0
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Skewness

Negative
Skewness

Figure 3-18. The distribution curve of surface skewness

3.8.4 Contact angle measurement

As discussed in chapter 2, the surface property (such as wettability) of a
substrate tends to affect the surface deposition of scale. In order to
characterise the surface affinity of the different surfaces with water and isopar
M, contact angle measurement was used. The contact angle is defined as the
angle formed by the intersection of a liquid-solid interface and the liquid-
vapour interface as shown in Figure 3-19. For a perfect (smooth and
chemically homogeneous) solid surface, the surface free energy can be
evaluated by determining the contact angle measurement using Young’s

equation:
Ys =Ys. + 7y, Cos 0 3-11

Where ys .y, and y; represent the solid surface free energy (N/m), the solid-
liquid interfacial tension (N/m), liquid surface tension (N/m), respectively, and

0 is the contact angle (°).
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Figure 3-19: Definition of the contact angle formed at a solid surface

3.8.5 X-Ray Diffraction (XRD)

X-ray diffraction is a well-known surface analyses technique used to identify
unknown crystalline materials (e.g. mineral, inorganic compounds, solid
solution, clay). The goniometer which represents the mechanical assembly
consists of three basic elements namely (X-ray tube, sample holder and an X-
ray detector) as shown in Figure 3-20. This technique function by emitting x-
ray with fixed wavelength to the sample and the intensity of the reflected

radiation is recorded.

In this research, x-ray diffraction investigation of crystals on the metallic
surface was performed using Philips PanAlytical X'pert PRO diffractometer.
The PanAlytical X'pert X-ray generator was setup at a voltage of 40 kV and
an intensity of 40 mA using a dual copper CuKa1+2 radiation with 10 X10 mm
divergence slit. The diffraction pattern of the deposited scale on the stainless
steel was collect at 26=20 ° — 60 ° at a 5 min -1 scanning rate. After each test,
product identification was conducted using the Phillips X'Pert HighScore Plus
program. The software helps to identify a compound by comparing with the
diffraction pattern with of data banks available in the program. Prior to each
product identification, the diffraction pattern was also treated using the

HighScore Plus.

This chapter has discussed the materials, equipments and experimental

procedures used in achieving the research objectives. The next three chapter
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(chapter 4, chapter 5 and chapter 6) present the results obtained from the

experiments conducted.

Detector
X-ray source

Sample Holder

Figure 3-20: The part of a XRD Goniometer
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Chapter 4 The kinetics of barium sulphate bulk precipitation
and surface deposition

4.1 Introduction

In this chapter, surface crystallization and bulk precipitation of barium sulphate
in the absence and presence of three scale inhibitors (Diethylene Triamine
penta Methylene Phosphonic acid (DETMP), VinylSulphonate Acrylic acid co-
polymer (VS-Co) and Poly-Phosphino Carboxylic Acid (PPCA) were studied
using a once-through flow system. An optical technigue was used to follow the
nucleation and growth process of barium sulphate on a stainless steel in-situ
and in real time. Conversely, a turbidity probe was used to assess crystals
formed in the bulk solution. This technique allows the observation of the
surface growth of crystals, thereby improving the understanding of scale
inhibition mechanism on surface growth. The outline of this chapter is

described in Figure 4-1

Kinetics of Barium sulphate and inhibition

Bulk Precipitation

I Temperature of 25°C and 50°C results |
I (SR=15, SR=20, SR=30 & SR=80) 1

(SR=15, SR=20, SR=30 & SR=80)

1 |
| Temperature of 25°C and 50°C results 1
| |

|

Figure 4-1: Outline of chapter
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4.2 Brine composition

The supersaturation conditions necessary for the formation of barium sulphate
scale were achieved by mixing two incompatible brines as explained in
chapter 3. North sea seawater (NSSW) provided the source of anions (SO4?)
while Formation Water (FW) the source of cations (Ba?*). The compositions
of the brines used in this chapter are presented in Table 4-1 and Table 4-2;
the brines were mixed in a 50:50 ratio at a temperature of 25°C and 50°C.

Table 4-1: Brine composition

Formula Conc./ppm Conc./ppm
(NSSW) (FW)

Na NaCl 10890 31275
Ca? CaCl2.6H20 428 2000
Mg?* MgCl2.6H20 1366 739

K KCI 460 654
Ba?* BaClz2.2H20 0 See table 4-2
Sr2+ SrCl2.6H20 0 771

S04 Naz2SOa4 See table 4-2 0

Table 4-2: SO4%> and Ba?* concentrations in ppm

Temp 25°C 50°C
SR S04 Ba?* S04 Ba?*
15 145 52 300 57
20 150 54 350 64
30 300 54 500 65
80 700 60 800 110
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4.3 Bulk precipitation measurement of barium sulphate

In this section, the kinetics of bulk precipitation of barium sulphate with
saturation ratios (15, 20, 30 and 80) at 25°C and 50°C are presented. In order
to characterise the kinetics of the bulk phase, a turbidity probe was used to
assess the precipitation of barium sulphate. The turbidity of the solution was
measured in the flow cell next to the steel sample as previously explained in
chapter 3. It is important in this study to understand whether when the flow
passes the stainless steel coupon, there are any particles precipitated in the
flow. As scaling progresses, the solution becomes more turbid during the initial
stages of precipitation of barium sulphate. The induction time and the kinetics

of the reaction can be measured as explained in section 3.4.3.

Figure 4-2 shows the turbidity measurement of barium sulphate precipitation
over a period of 4 hours for the 4 different brines at 25°C. The turbidity value
was found to be 0 FAU which indicates that no bulk precipitation of barium
sulphate occurred in the flow cell for the range of saturation ratios considered.
BaSO4 bulk precipitation was observed in the collection vessel but this
occurred after the fluid had passed the working section of the flow cell. This
implies that the induction time of the different brines used is greater than the

residence time (i.e. time it takes for the fluid to pass through the flow cell).

Figure 4-3 shows the turbidity value measured for the four supersaturated
brines at 50°C. Although, the temperature was increased to 50°C the turbidity
value was still 0 FAU. As previously explained at 25°C, the results indicate
that no precipitation of barium sulphate was formed in the bulk solution for

these set of brines during the test duration of 4 hours.
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Figure 4-2: Turbidity measurement of different brines (SR 15, 20, 30 and
80) at 25°C for 4 hours of experiment
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Figure 4-3: Turbidity measurement of different brines (SR 15, 20, 30 and
80) at 50°C for 4 hours of experiment
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4.4 Barium sulphate surface deposition kinetics study

This section focuses on the barium sulphate surface crystallization kinetics on
a stainless steel surface. As explained in chapter 3, the barium sulphate
surface deposition is assessed by using a camera which allows a real-time
observation of surface scaling. Subsequently, the images captured were
processed to assess the number of particles and their size as well as the
barium sulphate surface coverage. The same conditions used for the bulk

scaling measurement assessment were applied in the surface kinetics study.

4.4.1 Average size of crystals

Figure 4-4 shows the average size of barium sulphate crystals formed on the
stainless steel surface for all brines at 25°C after 4 hours. At SR 15, there
were no crystals formed on the surface of the metal in the first 5 minutes of
the test. Crystals were formed on the metallic surface between 5 -10 minutes
after the start of the experiment. Also, the average size of crystals formed was
fairly constant, which was due to slow growth of crystals and the formation of
new nuclei on the metal surface. The same trend was observed at SR 20,
although crystals were formed on the surface in the first 5 minutes of the

experiment.

At SR=30, the average size of crystals increased for the first 15 minutes, but
experience a slight decrease due to the formation of new nuclei. However,
towards the end of the experiment it slightly increased. From the images
captured as shown in Figure 4-8, it can be observed that the slight increase in
the average size of crystals was attributed to the agglomeration of crystals on
the metal surface. At SR=80, the average size of crystals was fluctuating for
the first 15 minutes due to the surface growth of crystals and the formation of
new crystal formed on the metallic surface. After 60 minutes, the average size
increased linearly throughout the experiment reaching a maximum size of 76
um?2. It can be assumed after 60 minutes, nucleation has stopped and only

growth of crystals was observed.
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Figure 4-4: Average size of crystals formed on the stainless steel 25°C
for arange of SR15, 20, 30 and 80

Figure 4-5 shows the average size of crystals formed on the metallic steel
surface at 50°C for the four different brines. At SR=15, there was no induction
time, crystals were formed during the first 5 minutes on the surface unlike at
a lower temperature (25°C). However, the average size of particle was
relatively constant throughout the experiment. At SR=20, the average size of
crystals increase for the first 10 minutes, and then it slightly reduced due to
the formation of new crystals. However, the average size of crystals start to
increase slowly after 90 minutes and attained an average size of 50 pm? at
the end of the experiment. For SR=30, a different trend was observed when
the temperature was increased to 50°C, the average size of crystals increased
linearly through throughout the experiment. At SR=80, it shows a similar linear
trend, however the growth of crystals was faster when compared to the same

experiment run at 25°C as expected.
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Figure 4-5: Average size of crystals formed on the stainless steel at
50°C for a range of SR15, 20, 30 and 80

4.4.2 Number of crystals

Figure 4-6 shows the number of crystals formed on the surface as a function
of time for the different brines at 25°C. Indeed, at lower saturation ratio
(SR=15, 20 and 30) the number of crystals formed on the metallic surface
increases throughout the test; but the rate of nuclei formation was faster with
increase in the saturation ratio. At SR=80, the number of crystals increased
rapidly in the first 75 mins, afterwards, the number of crystals reaches a

plateau.

Figure 4-7 shows the number of crystals growing on the stainless steel
surfaces as a function of time for the different brines at 50°C. At lower
saturation ratios (SR=15 and SR=20) the number of crystals growing on the
surface increases throughout the experiment as observed for the same SR at
25°C. However, at SR=30 a different trend was observed when the
temperature was increased, the population of crystals reaches a plateau
within an hour. Also, a different trend was observed when the temperature

was increased for SR=80. From the result, it appears that there was a slight
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reduction in the population of the crystals formed on the metal surface. This

reduction was attributed to the agglomeration of crystals.
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Figure 4-6: Number of crystals deposited on the stainless steel at 25°C
for a range of SR15, 20, 30 and 80
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Figure 4-7: Number of crystals deposited on the stainless steel at 50°C
for arange of SR15, 20, 30 and 80
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4.4.3 Surface coverage

As expected the surface coverage increased as the SR was increased as
shown in Figure 4-8 [122]. Figure 4-9 and Figure 4-10 presents the surface
coverage of barium sulphate surface scaling of brines used at 25°C and 50°C.
The surface coverage was higher for all brines at 50°C when compared to
25°C; most especially the brine with high SR. This can be seen by visual
comparison of Figure 4-8 and Figure 4-11, it can be observed that the surface
coverage of barium sulphate on the metallic samples for all brines at 50°C is
higher when compared to 25°C. However, the factors controlling surface
scaling changes, depending on the saturation ratio considered. For SR=15,
no surface coverage was observed for the first 5 minutes of the experiment.
From Figure 4-5 and Figure 4-7, it shows that the increase of the surface
coverage was due to the formation of new nuclei on the surface of the

stainless steel rather than an increase in the average size of crystals.

A similar trend was observed for SR=20 and SR=30, but the kinetics were
faster due to an increase in the saturation ratio. A different trend was observed
at SR=80, initially, the surface coverage increased quickly in the first 60 mins;
due to the formation of new crystals. Afterwards, there was a slight increase
of barium surface crystals on the metal surface. In this case, the slow increase

of the surface coverage was predominantly caused by the growth of crystals.

Figure 4-10 shows the surface coverage of barium sulphate crystals deposited
on the stainless steel surface for brine with SR 15, 20, 30 and 80 at 50°C. As
explained previously, factors controlling the increase of the surface coverage
depend on the saturation ratio considered. For SR of 30 and 80, the surface
coverage was controlled by an increase in nucleation and subsequent growth
of crystals. However, at a lower SR=15 and SR=20, the surface coverage was

controlled by the constant formation of new nucleation sites.
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Figure 4-8: Images of BaSOsscale deposition on the stainless steel at 1
and 4 hours for brine with SR (a) 20, (b) 30 and (c) 80 at 25°C

88



H
~
J

—0—SR=15 ——SR=20 ——SR=30 —e—SR=80

=
N

=
o

Surface coverage (%)

0 50 100 150 200 250
Time (mins)

Figure 4-9: Surface coverage of BaSO4 formed at 25°C for a range of
SR15, 20, 30 and 80

25 , —*—SR=15 ——SR=20 ——SR=30 —e—SR=80
3?20
Q
[=)]
S 15
@
>
(o]
[&]
§ 10
b =
=
5

0« 2 e AR

0 50 100 150 200 250
Time (min)

Figure 4-10: Surface coverage of BaSO4 formed at 50°C for a range of
SR15, 20, 30 and 80
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4 hours

Figure 4-11: Images of BaSOas scale deposition at 1 and 4 hours at 50°C
for brine with SR (a) 20, (b) 30 and (c) 80
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4.5 Effect of scale inhibitor on surface growth

The use of scale inhibitors is the most effective method used in preventing the
formation of nucleation and subsequent growth of crystals [26]. The effect of
three different scale inhibitors (VS-Co, PPCA and DETPMP) on subsequent
growth of crystal was studied. The experiment was carried out using scaling

brine with SR=80 at 50°C and a constant flow rate of 20 ml min-1.

In order to evaluate this effect, prior to adding of scale inhibitors the stainless
steel surface was pre-scaled for a period of 1 hour. Figure 4-12 presents a
schematic diagram illustrating the possible effect of adding scale inhibitor after
1 hour. The images of stainless steel samples were captured and analysed as
explained previously. Also, SEM and XRD analyses were carried out on the
scale deposited on the steel surface at the end of the test. Measurement of
the turbidity with the influence of scale inhibitors is not required since it has
been shown previously that during the uninhibited condition there was no bulk

precipitation in this experimental conditions.
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Figure 4-12: Schematic diagram showing the possible effects of

inhibitor on surface growth of crystals.

91



4.5.1 Effect of PPCA on surface scaling

Figure 4-13 shows the effect of scale inhibitor concentration (1ppm and 4ppm)
on the surface scaling of barium sulphate at SR=80. At 1ppm, the result shows
that surface growth continued for about 60 minutes before it stopped; reducing
the final surface coverage of barium sulphate crystals from 22 % to 21 %.
However, when the concentration of the PPCA was increased to 4ppm the
surface growth of crystals stopped immediately after injection. In this case, the
surface coverage and average size of crystals were reduced by 45 % and 48

% respectively.

Figure 4-15 shows the images of scale deposited on the metal surface when
1 ppm and 4 ppm of PPCA were used. The image indicates that the addition
of PPCA (1 ppm and 4 ppm) did not change the morphology of the crystals.
The crystals formed on the metal surface were rhombic as expected. The XRD
pattern provided in Figure 4-14 also confirmed that the addition of PPCA (1
and 4 ppm) affected the growth of crystals. At 1 ppm of PPCA, it was observed
that all the crystal faces were suppressed by the inhibitor. This inhibition effect
was more noticeable at a concentration of 4 ppm. In this case, most of the
dominant faces were totally inhibited, except for (200), (021) and (210) faces;

with them having low intensity when compared to the uninhibited case.
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Figure 4-13: Effect of PPCA on crystal growth of BaSOa (a) Surface
coverage and (b) Average size of crystals for SR =80 at 50°C
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Figure 4-14: XRD diffraction pattern of BaSO4 on stainless steel in the

presence of PPCA
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Figure 4-15: Image of BaSO4 crystals captured using the camera at (a)
1 ppm (b) 4 ppm of PPCA; and SEM images of BaSOs crystals
formed on the stainless steel surface at (c) 1 ppm (d) 4 ppm of
PPCA

4.5.2 Effect of VS-Co on surface scaling

The effect of VS-Co (1 and 4 ppm) on the subsequent growth of barium
sulphate is shown in Figure 4-16. According to the results, the addition of 1
ppm of VS-Co does not have any impact on the growth of barium sulphate
crystals. The growth of crystals has a similar kinetics trend as the uninhibited
case, and a final surface coverage and average crystals size of 19 % and 121

um?2.
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On the other hand, the surface growth of crystals remains constant from the
point of injection to the end of the experiment when 4 ppm of VS-Co was
injected. Again, it clear that higher concentration of scale inhibitor is needed
to stop the crystal growth.
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Figure 4-16: Effect of VS-Co on crystal growth of BaSOs4 (a) Surface

coverage and (b) Average size of crystals for SR =80 at 50°C
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The SEM images of crystals formed on the stainless steel surface after adding
VS-CO (1 and 4 ppm) are presented in Figure 4-17. From the images, it is
obvious that there was no change in the geometry of the crystals formed in
the presence of VS-Co at 1 ppm and 4 ppm. The morphology of crystals

formed on the surface was similar to the uninhibited case.

The inhibition effect of VS-Co (1 and 4ppm) on the barium sulphate crystals
was also confirmed using a XRD as shown in Figure 4-18. It could be observed
from the results that at 1 ppm of VS-Co, the crystals faces do not seem to be
influenced. The intensity of most crystal faces presented on the pattern shows
no changes when 1 ppm was used. When the concentration of VS-Co was
increased to 4 ppm, the result shows that the dominant face of barium
sulphate crystal faces were all inhibited.

.

(d)

Figure 4-17: Image of BaSO4 crystals captured using the camera at (a)
1 ppm (b) 4 ppm of VS-Co; and SEM images of BaSOa4 crystals
formed on the stainless steel surface at (¢c) 1 ppm (d) 4 ppm of VS-
Co
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Figure 4-18: XRD diffraction pattern of BaSO4 on stainless steel in the

presence of VS-Co

4.5.3 Effect of DETPMP on surface scaling

The surface coverage and the average size of crystals of barium sulphate on
the metal surface in the presence of 1 ppm of DETPMP is shown in Figure
4-19. From the result, it was interesting to see that the growth of crystals
promotes the formation of barium sulphate rather than reducing it. The surface
coverage and average size were increased by 14 % and 33 % respectively.
Whereas, the addition of 4 ppm of DETPMP instantly stopped the growth of
crystals. Reducing the surface coverage and average size of crystal on the

metal surface by 40 % and 35 % respectively.

97



N w
ol o

N
o

Surface coverage (%)
= =
o ol

(€3]

§

—0—Blank —@—1ppm 4ppm (a)

DETPMP

!

Vg

50 100 150 200 250
Time (min)

250

= = )
o a1 o
o o o

Average size of crystals (um?)
a1
o

o
)

y

—e—Blank —@—1ppm 4ppm (b)

DETPMP

l

50 100 150 200 250
Time (min)

Figure 4-19: Effect of DETPMP on crystal growth of BaSOa4 (a) Surface

coverage and (b) Average size of crystals for SR =80 at 50°C

Figure 4-20 shows the images captured and SEM images of the crystals
formed when DETPMP (1 and 4 ppm) was used. It was observed that the
crystals formed on the surface when 1 ppm of DETPMP were different from
crystal formed in the uninhibited test. The crystals formed seems to have

different geometry and the crystals edges were feathery, which is clearly
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shown at a higher magnification in Figure 4-21. However, when 4 ppm of
DETPMP was used the morphology of the crystals formed were rhombic as
expected. It was obvious from the image that the surface coverage was greatly
reduced when 4 ppm was applied. The XRD pattern is shown in Figure 4-22
also illustrates the effect of DETPMP (1 and 4 ppm) on barium sulphate
crystallography. From the results, it is observed that 1 ppm of DETPMP did
not affect any of the crystal faces. However, the intensity of the dominant
crystal faces were similar to the uninhibited case. At 4 ppm, all the dominant
faces were very low, which reveal at this concentration the inhibitor

suppresses the subsequent growth of the dominant faces.

NM N D59 x1.0k 100um

(d)

Figure 4-20: Image of BaSOa4 crystals captured using the camera at (a)
1 ppm (b) 4 ppm of DETPMP; and SEM images of BaSOs crystals
formed on the stainless steel surface at (c) 1 ppm (d) 4 ppm of
DETPMP
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Figure 4-21: Higher magnification of SEM image with 1 ppm of DETPMP

350000 Blank
1 — 1 ppm DETPMP
300000 - —4 pPpm DETPMP
250000
2
g 200000 200
8
=
150000 11 211
100000
101 120
310 o514 002230 202 \ 041
50000 A
0 - St

' T ' | ' T ' T T ' |
20 25 30 35 40 45 50

2 - Theta (deg)

Figure 4-22: XRD diffraction pattern of BaSOa4 on stainless steel in the

presence of DETPMP
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4.6 Summary

The novel flow cell used allows experiments to be carried out under constant
thermodynamic conditions which provide a more realistic scaling environment
than conventional bulk jar tests. Also, the results show a valuable insight in
the crystallization process of barium sulphate. The major key findings are:

e The results show that despite the absence of bulk precipitation of

barium sulphate, surface scaling can occur.

e Temperature and saturation ratio not only affect the kinetics of surface
deposition of nucleation and growth, it also affects the mechanism of
barium sulphate deposition on surfaces.

e The results show that PPCA was effective to stop the growth of BaSO4

even at low concentration (1 ppm).

e DETEMP was seen to enhance surface scaling at 1 ppm, and it also
changes the morphology of the BaSOa4 crystals formed.

e VS-Co was not effective to stop the growth of barium sulphate at 1 ppm.

e All scale inhibitors instantly stopped the growth of crystals at high

concentration of 4 ppm.

The results have shown that the three scale inhibitors performed differently at
a low concentration. Also, it was shown that PPCA was seen to have a better
surface inhibition at a lower concentration to stop the subsequent growth of
crystals. The next chapter present factors that could affect the surface

inhibition of mineral scale using PPCA.
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Chapter 5 Factors affecting barium sulphate surface growth
inhibition

5.1 Introduction

The performance of scale inhibitors in oilfield operations is the main concern
of field operators. Data is needed to enable them to make efficient decisions
that ensure the control and prevention of scale. These decisions are based on
assessing the performance of scale inhibitors under various operating
conditions such as pressure, temperature, hydrodynamic conditions and brine
composition. In terms of evaluating the effectiveness of these conditions on
scale inhibitor efficiency, extensive studies have been conducted to
understand the kinetics of scale bulk precipitation [24-26]. In spite of the
research conducted on bulk precipitation, there is still a lack of understanding
of surface deposition and growth of crystals on equipment surfaces. Moreover,
studies have shown that the kinetics of bulk and surface deposition are
different [29, 30].

In this chapter, the in-situ flow cell was used to study factors that could affect
the performance of Polyphosphinocarboxylic acid (PPCA) scale inhibitor in
preventing surface fouling of BaSO4 on stainless steel. The experiment
examined distinct conditions, such as saturation ratio, pre-scaled surfaces,
flow rate, and interval injection of scale inhibitor. The structure of the

experimental results presented in this chapter is shown in Figure 5-1.

Factors that affecting BaSO,

surface inhibition

Saturation ratio

Pre-scaled surface

Flowrate of scale inhibitor

| Interval injection of scale inhibitor |

Figure 5-1: Outline of chapter 5
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5.2 Brine composition

The supersaturation conditions required for the formation of barium sulphate
scale were achieved by mixing two incompatible brines as mentioned in
chapter 3. North sea seawater (NSSW) provided the source of anions (SO4?)
while Formation Water (FW) the source of cations (Ba?*). In this chapter, three
different brines with SR = 30, 60 and 80 were used. The composition of the
brines used is presented in Table 5-1 and Table 5-2; the brines were mixed
50:50 at a temperature of 50°C

Table 5-1: Composition of brine solution

Formula Conc./ppm Conc./ppm(FW)
(NSSW)
Na NacCl 10890 31275
Ca?* CaCl2.6H20 428 2000
Mg?* MgCl2.6H20 1366 739
K KCI 460 654
Ba?* BaCl2.2H20 0 See table 5-2
Sr2* SrCl2.6H20 0 771
S04 Naz2SO04 See table 5-2 0

Table 5-2: SO4? and Ba?*in ppm

Temp 50°C
SR
30 500 65
60 700 80
80 800 110
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5.3 Bulk precipitation

The inhibition efficiency test of 1 ppm of PPCA on bulk precipitation was
determined for the three different brine solutions at 2 and 22 hours using the
bulk jar test. For the three brines used, the inhibition efficiency values were
above 95 % (i.e. above the MIC) for both 2 and 22 hours as shown in Figure
5-2.

Inhibitor efficiency (%)

SR =30 SR =60 SR =80

m2hrs m22hrs

Figure 5-2: BaSOasInhibition Efficiency test of brine solutions (SR 30, 60
and 80) using 1 ppm of PPCA

5.4 Effect of saturation ratio on surface inhibition efficiency
of PPCA

The effect of saturation ratio has been shown in chapter 4 to greatly influence
the surface fouling of barium sulphate on metallic surfaces. In this section, the
effect of saturation ratio (30, 60 and 80) on surface inhibition using 1 ppm of
PPCA scale inhibitor was examined. The flow rate used for this study was 20
mlmin* and test duration was 4 hours. In all three scenarios, prior to the
injection of scale inhibitor, the metallic surface was pre-scaled for a period of

1 hour during which no inhibitors were present.

Figure 5-3 shows the effect of continuous injection of 1 ppm PPCA on surface
fouling at SR = 30. From the results, it is clear that surface growth of crystals

104



stopped almost immediately after injecting the inhibitor, with a surface
coverage and an average crystal size of 3 % and 53 um? respectively. PPCA
is known to have good adsorption properties on minerals [26, 105, 116].
Hence, the instantaneous inhibition indicates that the active sites were
completely blocked after injecting the inhibitor. When 1 ppm of PPCA was
injected at SR = 60, the growth of crystals continued for about 15 minutes
before it stopped as shown in Figure 5-4. In this case, the surface coverage
and average size of crystals were 6 % and 55 % respectively.
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Figure 5-3: Effect of PPCA (1 ppm) on crystal growth of BaSOa (a)
Surface coverage and (b) Average size of crystals at SR = 30 and
50°C
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Figure 5-4: Effect of PPCA (1 ppm) on crystal growth of BaSOa (a)
Surface coverage and (b) Average size of crystals at SR = 60 and
50°C

However, when PPCA is injected at higher saturation ratio (SR = 80), surface
growth continued for 60 minutes before reaching a plateau as shown in Figure
5-5. In this case, there was only a slight impact of the scale inhibitor on the
surface growth of crystals. The surface coverage and average size of crystals
were 20 % and 132 % respectively. From these results, it can be observed
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that the inhibition of surface scaling by PPCA was significantly affected by the
increase of saturation ratio. The time required to stop crystal growth increased
as the SR was increased. This is not as expected since 1 ppm of PPCA

showed similar performance in preventing bulk precipitation for all brines.
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Figure 5-5: Effect of PPCA (1 ppm) on crystal growth of BaSOa (a)
Surface coverage and (b) Average size of crystals at SR = 80 and
50°C

In terms of the effect of PPCA (1 ppm) on the morphology of the scale formed,

the crystals formed for the three brines with SR (30, 60 and 80) are presented

in Figure 5-6. From the images captured, it was observed that there was no
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change in morphology of the crystals on the stainless steel surface for the
three brines used; the crystals formed were all rhombic as expected.
However, the size of crystals formed on the stainless steel surface increase
as the saturation ratio was increased. This can be ascribed to the increase in
thermodynamic driving force, which promotes the nucleation and growth of

crystals.

Figure 5-6: Image of BaSOa4 crystals formed on a metal surface at (a)
SR=30 (b) SR=60 and (C) SR=80

5.5 Effect of flow rate on surface inhibition efficiency of
PPCA

It is well understood that flow rate plays a vital role on the scale precipitation
and surface deposition processes [120]. It is also important to understand the
effect of flow rate on surface inhibition, since the transport of scale inhibitor
molecules to the active sites of the crystal is often controlled by mass
transport. The surface inhibition studies were conducted using three flow rates

(20 mimin-t, 40 mimint and 60 mimin-t). All flow rates used during the test
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were laminar as discussed in chapter 3. A brine with SR=80 and 1 ppm of
PPCA was used during the experiment. Prior to injection of the scale inhibitor
at different flow rates, the stainless steel surface was pre-scaled for 1 hour at
a flow rate of 20 mimin-t. Figure 5-7 presents the effect of surface fouling at
different flow rates.
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Figure 5-7: Effect of flow rate on crystal growth of BaSOa4 (a) Surface

coverage and (b) Average size of crystals

From the results presented, it is obvious that increase in flow rate reduces the
surface growth of BaSOa. For instance, at a flow rate of 60 ml/min-t it took
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about 5 minutes for the surface growth of crystals to stop, whereas when the
flow rate was reduced to 20 mimin-, it took about 1 hour for surface growth of
crystals to stop. The image of BaSOa4 formed on the stainless steel in the
presence of PPCA at different flow rates at the end of each test are presented
in Figure 5-8. From the figure, it is evident that the performance of PPCA was

favoured by increasing the flow rate.

Figure 5-8: BaSO4 deposited on the stainless steel at a flow rate of (a)

20 mimin? (b) 40 mimin-t and (c) 60 mimin- after 4 hours

5.6 Effect of a pre-scaled surface on surface inhibition
efficiency of PPCA

In oilfield operations, pipelines are often used for several years before

inhibitors are required. Hence, prior to the injection of inhibitors, the pipelines
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would have been covered with different scale products such as iron carbonate,
calcium carbonate, and barium sulphate scale. These products might
significantly affect the performance of the scale inhibitors. Thus, there is a
need to investigate the problem associated with pre-scaled product on the
performance of scale inhibitor. In order to determine the effect of pre-scaled
surfaces on surface inhibition efficiency, surfaces were subjected to scaling
with a brine of SR=80 for a different period of time (15, 30 and 60 minutes);
before 1 ppm of PPCA was injected. The different time of pre-scaling
increases the amount of scale formed on the metal sample before injecting
the scale inhibitor as shown in Figure 5-9.
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Figure 5-9: Surface coverage of BaSOg at different pre-scaling time (15,

30 and 60 minutes)

Figure 5-10 presents the effect of a pre-scaled surface on the surface
coverage and average size of crystals formed when 1 ppm of PPCA was
injected. The results show that the time necessary to fully stop crystal growth
increased with increase in injection time. For example, the percentage surface
coverage of crystals at 15 minutes and 60 minutes of injection were 7% and
12% respectively. From Figure 5-11, it is obvious that the performance of

PPCA was favoured as the amount of pre-scaled surface decreases.
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Figure 5-10: Effect of pre-scaled surface on crystal growth of BaSOa (a)
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Figure 5-11: Image captured of BaSO4 scale deposited on stainless
steel (a) pre-scaled for 15 minutes, (b) and 4 hours after injecting
scale inhibitor, (c) pre-scaled for 30 minutes, and (d) 4 hours after

injecting scale inhibitor

5.7 Effect of inhibitor interval injection

In previous sections, experiments were carried out by injecting the scale
inhibitors continuously. However, when scale inhibitors are injected downhole,
it faces some challenges, many of which are associated with the efficiency of
injection valves [123, 124]. One of the functions of injection valves is to prevent
fluid from entering the injection line. The valve closes when the wellbore
pressure is higher than the crack pressure; thus preventing wellbore fluids
from flowing into the injection line. The valve remains closed until the pressure
in the injection line increases to start the flow. This change in pressure implies
that the injection of the chemical inhibitor into the wellbore would not be
constant as required but fluctuate due to the periodic opening and closing of

the check valve [125]. Hence, the application of scale inhibitor during down-
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hole continuous injection may not be continuous; chemicals are sometimes

injected into the wellbore intermittently.

The question is how does this periodical injection of scale inhibitor affect the
scale inhibition efficiency? In order to evaluate this effect, 1 and 4 ppm of
PPCA were injected periodically (15 and 30 minutes) using SR=80 at 50°C.
For simplicity, Figure 5-12 give a graphical illustration of the experiment
procedure. Figure 5-13 presents the surface coverage and crystal size as
PPCA is injected at 30 minute intervals. From the results, it was observed that
after injecting the scale inhibitor the growth of crystals stopped after some
minutes. However, it continued to grow when the system was uninhibited. This
process continued until the end of the experiment. The final surface coverage
and the average size of crystals were 19 % and 113 um? respectively, which
is higher when compared to continuous injection of scale inhibitor. This is
expected as a higher volume of scale inhibitor was used during continuous
injection when compared to interval injection of scale inhibitor as shown in
Figure 5-15.

Surface Coverage (%)

250

Time (min)

Figure 5-12: Schematic diagram illustrating the periodic injection of

scale inhibitor for 15 and 30 minutes.

Nevertheless, when the inhibitor concentration was increased to 4 ppm there

was little change in scale inhibitor performance. The surface coverage and

average were 18 % and 107 pm? respectively. With such a similar surface
114



coverage and average size of crystals, it shows that there is no benefit of
increasing the concentration of PPCA. Figure 5-14 shows the SEM image of
scale formed at 30 minutes interval of PPCA. It was observed that the scale
formed on the metallic sample was different from when scale formed when
the inhibitor was injected continuously. In the case of the interval injection

barite scale was formed layer by layer.
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Figure 5-13: Effect of 30 minutes interval injection of PPCA (1 and 4
ppm) on crystal growth of BaSOa4 (a) Surface coverage and (b)

Average size of crystals
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Figure 5-14: SEM image of BaSO4 formed on the metal surface during

30 minutes interval injection after 4 hours
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Figure 5-15: Volume of scale inhibitor used

Figure 5-16 shows the surface coverage and average size of crystals when
PPCA (1 and 4 ppm) was injected for 15 minutes periodically. The surface
coverage and average size of crystals show a similar trend when compared

to 30 minutes interval injection of PPCA. However, the results show a better
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surface inhibition when compared to 30 minutes interval injection. Also, it can
be observed that the crystals formed on the stainless steel surface were
different from that of 30 minutes interval injection. In this cases, smaller

crystals were formed on the steel surface as shown in Figure 5-17.
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Figure 5-16: Effect of 15 minutes interval injection of PPCA (1 and 4
ppm) on crystal growth of BaSO4 on (a) Surface coverage and (b)

Average size of crystals
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Figure 5-17: SEM image of BaSO4 formed on the metal surface during

15 minutes interval injection after 4 hours

5.7.1 Evaluating the optimum time required to prevent nucleation
and growth of crystals

From section 5.7, it was observed that the periodic injection of chemical scale
injector reduces the efficiency of scale inhibitors. The surface growth of
crystals continues when the injection of scale inhibitor was stopped. However,
it can be seen that the scale performance was better when the time of interval
injection was reduced from 30 minutes to 15 minutes. This implies that an
optimum time (i.e. time required for the system to be inhibitor-free, without
observing nucleation and subsequent growth of crystals) can be evaluated
during the interval injection of scale inhibitor.

In order to investigate the optimum time, the same condition used in section
5.7 was used. However, 1 ppm of PPCA is injected periodically for 30 minutes
in the first 1 hour, afterwards the system is left uninhibited (5 and 10 minutes)
before re-injecting the scale inhibitor for another 30 minutes. This process is
repeated till the end of the experiment. For simplicity, Figure 5-18 gives a

schematic illustration of the experimental procedure.
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Figure 5-18: Schematic diagram simulating optimum time required to

prevent surface growth during periodic injection of scale inhibitor

Figure 5-19 shows the surface coverage of scale deposited on the stainless
steel surface when the system was left uninhibited for 10 minutes. It was
observed from the results that the surface growth of crystal stopped when the
scale inhibitor was injected, but slightly increased when the system was left
uninhibited. The surface coverage was reduced to 14 % at the end of the
experiment. The SEM image shown in Figure 5-20 shows little crystals growth
on edges of crystals already formed on the metal surface. This suggests that
the shorter the system is left uninhibited, the lesser scale deposit on the

stainless steel surface.
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Figure 5-19: Surface coverage of BaSO4 deposited on stainless steel
surface when the system was uninhibited for 10 minutes and
inhibited for 30 minutes for 4 hours
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Figure 5-20: SEM image of BaSO4 formed on the stainless steel surface

leaving the system uninhibited every 10 minutes for 4 hours

120



Figure 5-21 shows the surface coverage of scale deposited on the stainless
steel surface when the system was left uninhibited for 5 minutes. The results
show that there was no increase in the percentage of surface coverage of the
crystal on the stainless steel surface. The SEM image presented in Figure
5-22 also revealed that no crystals formed on the pre-existing crystals as
previously shown in Figure 5-20. This result suggests that 5 minutes interval
is the optimum time the system could be left uninhibited to prevent nucleation
and subsequent growth of crystals on the stainless steel surface.
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Figure 5-21: Surface coverage of BaSO4 deposited on stainless steel
surface when the system was uninhibited for 5 minutes and

inhibited for 30 minutes for 4 hours
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Figure 5-22: SEM image of BaSO4 formed on the metal surface leaving
the system uninhibited every 5 minutes for 4 hours

5.8 Summary

The results from this chapter have demonstrated that various factors that can
contribute to the failure of scale inhibitor in preventing surface scaling in oilfield
applications. Some of the key points are mentioned below:

e The effect of PPCA on the growth of crystal appears to be strongly
dependent on the brine chemistry of the solution. The higher the
saturation ratio, the longer it takes to stop the surface growth of
crystals on the metallic surface.

e The inhibition efficiency of PPCA was reduced as the pre-scaled
surface increases. It shows that the effect of pre-scaled surface should
be given more consideration when inhibitors are been tested.

e The results show that it is not always the case that an increase in flow
rate will reduce the performance of scale inhibitor. Also, it gives insight
on an efficient scale inhibition strategies to be developed where the
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flow rate can be adjusted in time i.e. initially a high flow rate of inhibitor
is used to instantly block the active sites on any pre-scaled surface

and is later reduced to an optimal level that prevents precipitation.

e The system was able to simulate the injection of scale inhibitors
through a control valve. Hence, the system can be used to improve the
scale treatment strategies by optimising the injection time interval of

scale inhibitors injection.

The study in this chapter reveals some factors that could affect the surface
inhibition using PPCA. This study was conducted in a single phase, but in the
oil and gas industry operation surface scaling could also occur in the
multiphase environment. The next chapter shows results of surface scaling in

the multiphase environment.
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Chapter 6 Surface scaling in multiphase conditions

6.1 Introduction

Scale formation is recognized as one of the major problems affecting
production in the oil and gas industry and is an extensively studied
phenomenon. The use of organic scale inhibitor is the most popular strategy
used in mitigating the formation of mineral scale in the oil and gas industry
[126]. However, in order to select the best scale inhibitor for a specific oil field
condition, extensive laboratory tests are needed which include scale inhibitor
compatibility, scale inhibitor performance, temperature and pressure tests just
to mention a few [26, 126]. Regardless of these efforts to select the best
chemicals, the efficiency of scale inhibitor in the oil field and laboratory is quite
different. In order to overcome these inconsistencies, a laboratory test matrix
is needed to be designed to replicate more accurately the real conditions in
an oil field environment. Mineral scaling work has typically been conducted in
an aqueous environment to represent a worst case scenario. However, in this

study the effect of oil phase is evaluated.

In this chapter, mineral bulk precipitation and surface fouling of barium
sulphate were evaluated in a single phase and multiphase environment.
Firstly, static bulk jar tests were carried out to evaluate the effect of the scale
inhibitor on bulk precipitation. Secondly, in order to examine the effect of
multiphase environment on barium sulphate surface fouling, two different
surfaces (stainless steel 316L and fluoropolymer coating) were used and the
concentration of the oil phase was varied from 5% to 50%. Lastly, the effect
of two commercial scale inhibitors (DETPMP and PPCA) on surface scaling
in multiphase environments were studied. The outline of this chapter is shown

in Figure 6-1.
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Figure 6-1: Outline of chapter 6

6.2 Experimental details

6.2.1 Surface characterization

Stainless steel 316L was used as the reference material since it is commonly
used in the oilfield industry (i.e. valve components and surface piping). Some
of the AISI 316L samples were coated with a hydrophobic coating
(fluoropolymer). This coating was selected based on its industrial relevance
to examine the effect of low surface energy on surface scaling. The roughness
and surface energy of AISI 316L and fluoropolymer which was analysed by
light interferometry and contact goniometry are presented in Table 6-1. The
contact angle measurements for the stainless steel 316L and fluoropolymer
are presented in Table 6-2.
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Table 6-1: Surface energy and roughness of AlSI 316L and fluoropolymer

Surface roughness
Sa(pm)

Surface Surface energy

(mJ.m2)

Stainless steel 316L 41.3 0.216
Fluoropolymer 14.2 0.943

Table 6-2: Water and isopar M contact angle values measured on AlSI
316L and fluoropolymer

Water contact angle Isopar M contact
(0) angle (0)

Stainless steel 316L
Fluoropolymer

6.2.2 Multiphase conditions

As explained in chapter 3 Isopar M, an isoparaffinic hydrocarbon with a carbon
number ranging from C11 to C16 was used during the experiment. The
multiphase conditions were achieved using an overhead dissolver stirrer,
which was set at 500 rpm throughout the test to keep the emulsion. The
multiphase scaling test was carried out using four different oil-to-water ratios
(50:50, 20:80, 5:95 and 0:100).

6.2.3 Brine composition

Scaling tests were carried out at 80°C and at atmospheric pressure. The
formation water (FW) and North Sea seawater (NSSW) composition which are
presented in Table 6-3 were based on brine compositions found in the North
Sea. Barium sulphate was precipitated spontaneously by mixing 900ml of FW
and 100 ml of SW. The initial value of saturation ratio was calculated from the
Multiscale prediction software was approximatively 114. The compositions of
the brine are shown in Table 6-3.
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Table 6-3: Composition of brine

NSSW (ppm) FW (ppm)

10890 31275
428 2000
1366 739
460 654

- 269

- 771
2960 -

6.3 Bulk precipitation

6.3.1 Static barium sulphate performance test

The static barium sulphate inhibition efficiency tests were conducted to
evaluate the above-MIC and below-MIC concentration of the scale inhibitor
(DETPMP and PPCA) under the test conditions. The benchmarks for below-
MIC and above-MIC are:

Below-MIC = 40-50% efficiency after 2 and 22 hours and;
Above-MIC = 95-100% efficiency after 2 and 22 hours.

Different inhibitor active concentrations of both inhibitors were tested (1, 2, 3,
4 and 5ppm). The results show that inhibitor efficiency increase as the
concentration of inhibitors was increased as expected. However, further
increase of scale inhibitor concentration above 4 ppm for both scale inhibitors
has a negligible effect on the inhibition efficiency. Based on the benchmarked
listed above, it is shown in Figure 6-2 and Figure 6-3 that above-MIC is 4 ppm
for PPCA and DETPMP, whereas below-MIC concentration is 1 ppm for both

scale inhibitors.
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Figure 6-2: Static barium sulphate efficiency test for DETPMP of brine
at 80°C

m2Hr m22Hr

100 ~
0 l . I . IlI
1 2 3 4 5

[SI], active ppm

B (o2} 00
o o o
I I

Inhibition effeiciency (%)

N
o

Figure 6-3: Static barium sulphate efficiency test for PPCA of brine at
80°C
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6.4 Surface scaling at various water: oil ratios

In this experiments, stainless steel and fluoropolymer coatings were exposed
a barium sulphate scaling environment (single and multiphase). In both cases,
the concentration of oil phase was 5 vol.%, 20 vol.% and 50 vol.%. Figure 6-4
and Figure 6-7 shows the amount of barium sulphate deposited on the
stainless steel with and without oil phase. The results show that the presence
of paraffin oil leads to a decrease in barium sulphate deposition on the
stainless steel from 37 ppm in the single phase down to 21 ppm at 5:95 o/w
ratio. Although the presence of a low quantity of paraffin oil (5%) significantly
reduces the surface scaling by 43%, further addition of oil only has a minor
effect on the surface deposition. The barium content reduced by 51 % and 56
% when the o/w ratio were 20:80 and 50:50 respectively. This effect of oll
phase on surface deposition was clearly observed in the SEM image shown
in Figure 6-5 and Figure 6-6. The amount barium sulphate in multiphase

condition was less when compared to single phase condition.
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Figure 6-4: Surface barium content at various o/w system on AISI 316L
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Steel. 0% oil

Figure 6-5: SEM micrographs of alloy AISL 316L subjected to barium
sulphate scaling environment single phase

Figure 6-6: SEM micrographs of AISL 316L subjected to barium
sulphate scaling environment multiphase (20% oil)
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In a single phase scaling environment, the amount of barium sulphate
deposited on the fluoropolymer coating was similar to that of stainless steel
as presented in Figure 6-7. Having such similar mass gain the benefit of using
antifouling coating such as the fluoropolymer was unclear. Nevertheless,
when the fluoropolymer was used in a multiphase environment the amount of
barium content was drastically reduced when compared with that of stainless
steel. At o/w of 5:95 the barium content was reduced to 2 ppm which
represents a significant reduction of nearly 95%. At a higher volume of oll, the
barium content dropped to 1 ppm at o/w of 20:80 and 50:50. Figure 6-8 and
Figure 6-9 shows the SEM micrographs of the fluoropolymer coating sample
in single and multiphase conditions. It could be seen that the no barium

sulphate scale was deposited on the surface in the multiphase environment.
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Figure 6-7: Surface barium content at various o/w on fluoropolymer

coating
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Figure 6-9: SEM micrographs of Fluoropolymer coating subjected to
barium sulphate scaling environment multiphase (20% oil content)
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6.5 Surface scaling in multiphase environment in presence
of scale inhibitors

As shown in previous results the presence of an oil phase leads to a decrease
in barium sulphate fouling on the stainless surface. The addition of scale
inhibitor above MIC concentration also significantly reduces the amount of
scale content measured on the surface. As shown in Figure 6-10, at 4 ppm of
PPCA the amount of barium content decreases to 1 ppm and 0.6 ppm in single
and multiphase environment respectively. A similar trend was observed when
4 ppm of DETPMP was used, the amount of barium content reduces to 2 ppm
and 1 ppm in single and multiphase condition respectively.
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Figure 6-10: Barium content measured on surface single and
multiphase condition with the influence of scale inhibitor
(DETPMP and PPCA) below MIC.

On the other hand, when the concentration of the inhibitor was below MIC
concentration (1 ppm), the results exhibited an opposite trend as shown in
Figure 6-11. In the single phase, the amount of barium content increased to
59 ppm and 117 ppm for DETPMP and PPCA respectively. In addition, when
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the same concentration was used in the multiphase condition it further
promoted the deposition of barium sulphate on the stainless steel surface,
which was more prominent for PPCA scale inhibitor. The barium content
increased the surface scale build-up to 117 ppm and 162 ppm in single and

multiphase conditions respectively.
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Figure 6-11: Barium content measured on surface single and
multiphase condition with the influence of scale inhibitor
(DETPMP and PPCA) above MIC.

6.6 Summary

This chapter has shown the effect of oil phase on surface deposition of barium

sulphate surface. The summary of findings from these results are as follows:

e Low surface energy coating (such as fluoropolymer) does not show
great antifouling properties in single phase scaling tests and amount of
barium sulphate deposited were similar to that of stainless steel.
However, the efficiency of the fluoropolymer was greatly improved in
multiphase condition.
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e Applying scale inhibitor below-MIC enhanced surface fouling in single,
which was further increased in the multiphase environment; this

increase was clearly shown by PPCA scale inhibitor.

e At a concentration above MIC, surface fouling reduces both in

multiphase and single phase environment.

The results from this chapter have revealed that the presence of oil droplet
can affect the surface scaling of barium sulphate. The next chapter of this
thesis gives detailed analysis and discussion of the results presented in the

three result chapters (chapter 4, chapter 5 and chapter 6).
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Chapter 7 Discussion

7.1 Introduction

The formation of barium sulphate is a persistent problem affecting the oil and
gas industry. Due to its high insolubility/resistance to chemical and mechanical
treatment, it is difficult to remove when formed. Barium sulphate formation can
be predicted using thermodynamic models; nevertheless, it is vital to
understand the kinetics of barium sulphate in order to accurately predict the
rate at which these scales are being formed. Several research works have
been conducted on the kinetics of barium sulphate both in bulk precipitation
and on surface deposition; however, these studies were often conducted in a
closed system. The limitation of this is the changing saturation ratio as a
function of time. In this work, the experimental set-up was designed to study

both processes using a once-through flowing system.

In this chapter, the results presented in chapter 4, chapter 5 and chapter 6 are
examined and discussed. A complete explanation of the findings from the
results is presented and an appraisal of how these findings relate to current
literature is given. The chapter is organised into five (5) different sections. The
first section compares the kinetics of bulk precipitation and deposition on
metallic surfaces. Then the nucleation mechanism of barium sulphate
formation on a metallic surface is discussed in the second section. The third
section deals with the effect of three scale inhibitors (PPCA, DETPMP, and
VS-Co) on the growth of barium sulphate are discussed. The fourth section
deals with factors (such as flow rate, pre-scaled surface and interval injection
of scale inhibitor) that affect surface scale inhibition. The last part relates to
one area of research which has not received any attention in the literature thus

far; surface scaling in multiphase environments is discussed.
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7.2 Bulk precipitation and surface deposition

The results presented in chapter 4 showed that despite the absence of bulk
precipitation, surface fouling occurs which is also apparent from the images
shown in Figure 4.3. This implies that induction time for surface fouling is
shorter than bulk precipitation for the range of saturation ratios considered.
Comparable study has been reported by Sanni et al. [127], where the surface
induction time of calcium carbonate surface fouling was less than the induction
time of bulk precipitation for SR< 60 as shown in Figure 7-1. These results are
in agreement with the classical nucleation theory which predicts a lower
energy barrier for heterogeneous nucleation (surface fouling) than

homogeneous nucleation (bulk precipitation) [31, 50, 51, 121].
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Figure 7-1: Surface and bulk induction time [127]

These results suggest that surface deposition could occur as a result of
heterogeneous nucleation and subsequent growth; and not solely by particles
migrating from the bulk solution to the surface as previously assumed. In
addition, the results demonstrate that heterogeneous nucleation (surface
scaling) encourage crystal growth when compared to homogeneous
nucleation. Research by Chen et al. [29] also confirm these findings. In their
study, they found that crystals formed on metallic surfaces were larger than

crystals formed in the bulk solution.
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The findings from this section demonstrate that barium sulphate scale can
form on oilfield equipment when there is no scale formation in the bulk
solution. Hence, it is recommended that surface scaling on surfaces should

be taken into consideration when designing scale management system.

7.3 Mechanism of barium sulphate deposition on metallic
surface

As mentioned in chapter 2, nucleation represents the first step in the
crystallization process. Therefore, it is crucial to understand the nucleation
mechanism, in order to effectively control the formation of scale on the metallic
surface. In this study as stated in chapter 3, a model developed by Beaunier
et al. [121], which was modified by Euvrard et al. [122] was used to study the
crystallization process. The model assumes that diffusion controls the
crystallization process and that the number of active nucleation sites for a unit
area of the substrate is fixed; all nucleation events are independent of each
other. Hence, the probability of nucleation at certain times depends on the

number of free sites.

According to the literature [128-131], there are two types of nucleation
mechanism, namely: instantaneous and progressive. Figure 7-2 gives a
schematic diagram illustrating the types of nucleation mechanism. The model
proposed that for instantaneous nucleation, Sext (%) coverage has a linear
relationship with time. On the other hand, progressive nucleation Sext (%) has
a parabolic relationship with time. The experimental data presented in chapter
4 (Figure 4-9 and Figure 4-10) were fitted to evaluate the type of nucleation at
each condition. Figure 7-3 to Figure 7-5 shows the plot of Sext (%) versus time
for SR = 15, SR = 20, and SR = 80 at 50°C. The results show that Sex: (t) was
linear with time for SR=80, while it follows a parabolic trend at lower SR=15
and SR =20. Thus, according to the model developed by Beaunier et al. [121],
nucleation can be considered as instantaneous when SR = 80, while at SR 15

and 20 nuclei were formed on the metallic surface progressively.

Table 7-1 gives a summary of the mechanism of nucleation for each of the
experimental conditions used. From the Table 7-1, it is observed that the
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mechanism of nucleation tends to slowly change from progressive to
instantaneous nucleation when the saturation ratio was increased. This
indicates that the nucleation rate increases with increase in the concentration
of scaling ions [132]. Similar findings were reported by Beaunier et al. [121]
when they investigated the influence of calcium ion concentration on formation
of calcium carbonate. Scaling solution with a high concentration of calcium
ions (200 mg.I'Y) exhibits instantaneous nucleation mechanism. At lower
concentration of calcium ions (40 mg.lt), the mechanism was purely

progressive nucleation.

---ﬂ
(a)
(b)

Figure 7-2. (a) Progressive nucleation corresponds to the continuous

formation of new nuclei coupled with the growth of nuclei, and (b)
Instantaneous nucleation corresponds to a constant number of

nuclei, while the growth of nuclei continues.

The model has shown that the type of barium sulphate surface nucleation can
be obtained from experimental results. Also, as discussed in section 2.10,
scale inhibitors exhibit several mechanisms, however, one of the mechanism
is predominant for a specific inhibitor. Hence, combining information from this
model and that of the mechanism of scale inhibitor will be very relevant in
enhancing the scale treatment strategies and implementation.
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Figure 7-3. Extended surface area as a function of time for experiment

brine with SR =80 at 50°C
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Figure 7-4: Extended surface area as a function of time for experiment

brine with SR = 20 at 50°C
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Figure 7-5: Extended surface area as a function of time for experiment
brine with SR =15 at 50°C

Table 7-1: Summary of nucleation mechanism suggested for each
experimental condition

Nucleation Mechanism

25°C

50°C

Progressive Progressive
Progressive Progressive
Progressive Instantaneous
“ Instantaneous Instantaneous

7.4 Kinetics of barium sulphate on a metallic surface

In order to determine the crystal growth rate of barium sulphate, the slopes of
the linear part of the average size of crystals curve were used. As
demonstrated in a study conducted by Hasson et al. [133]. Table 7-2 presents

the equations fitted on the linear growth of the average size of barium sulphate
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crystals and the slopes which represent the rate of crystallization of barium
sulphate deposited on the metallic surface.

Table 7-2: Growth rate barium sulphate deposition at different

conditions
SR Temperature Linear Equation Rate (um?/min)
15 25°C - -
- 50°C y=0.01x +11.32 0.01
20 25°C - .
- 50°C y=0.12x + 18.11 0.12
30 25°C y =0.001x + 11.15 0.001
- 50°C y=0.27x + 34.9 0.27
25°C y = 0.16x + 40.32 0.16
“ 50°C y = 0.50x + 31.62 0.50

From Table 7-2, at 50°C, the increase in saturation ratio promoted the crystal
growth rate of barium sulphate on the metallic surface, which is in agreement
with findings made by other authors [132, 134-136]. However, there was slow
growth of crystals at low saturation ratio (SR =15). This was attributed to the
formation of new nuclei on the metallic surface rather than the growth of pre-
existing nuclei as explained in section 4.4.1. At low saturation ratio, the
diffusion of scaling ion will be restricted and it would affect the nucleation and
growth process [137]. However, the nucleation process is less affected, since
nuclei are smaller than the crystals and cause less depletion of the
components in the bulk solution. Hence, the low scaling tendency was less
energetic to promote the growth of crystals as compared to the high scaling
tendency. These findings are in agreement with an investigation conducted by
Beaunier et al. [121]. The authors found out that when the surface was pre-
treated, nuclei appeared at the first instants however they grew very slowly.
According to the authors, the fast deposition rate was used to generate new
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nuclei on the scaling surface rather than growing the nuclei already formed on

the surface.

When the temperature was reduced to 25°C, no growth rate was observed at
saturation ratio (15 and 20). This is to be expected since reducing the
temperature would reduce the diffusion of scaling ions to the crystal-water
interface [138]. In addition, the average size of crystal deposited on the
metallic steel surface at the different saturation was nearly the same for three
SR 15 and 20. However, when the saturation ratio was increased to 80, the
growth rate of crystals was increased as shown in Table 7-2. In summary, at
low saturation ratio crystals growth is at minimum and nucleation dominate.
However, as the saturation ratio increase, crystal growth becomes the

dominating effect.
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Figure 7-6: (a) Surface growth verse saturation ratio and (b) Bulk

precipitation growth rate versus saturation ratio at 50°C

Figure 7-6(a) and Figure 7-6(b) shows the plot of surface growth rate and bulk
precipitate growth rate (predicted from multiscale software) as a function of
saturation ratio at 50°C. It is interesting to see that different relationships
between growth rate and saturation ratio were observed in both cases.
Surface growth rate gives a logarithmic relationship with saturation ratio, while
bulk precipitation growth rate has a linear relationship with saturation ratio.

This indicates that bulk precipitation growth rate cannot be used to predict the
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rate of surface scaling. Hence, studying both surface scaling and bulk

precipitation is needed to fully understand oilfield scaling processes.

7.4.1 Effect of scale inhibitor on the kinetics and morphology of
barium sulphate scale formation

As discussed previously scaling processes comprise both nucleation (birth of
new crystals) and subsequent growth of the crystals. In this part of the
discussion, the effect of three scale inhibitors (DETPMP, VS_Co and PPCA)
on the subsequent growth of barium sulphate crystals were examined. The
mechanism by which each of scale inhibitor hinders the growth of barium
sulphate were discussed.

In order to evaluate the growth rate of crystals, the slope of the average size
of crystal from 60" and 240" minutes was taken as illustrated in Figure 7-7.
Table 7-3 gives a summary of the growth rate when the three inhibitors were
used.
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Figure 7-7: Schematic diagram illustrating the growth rate of barium
sulphate
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Table 7-3: Growth rate evaluated from the change in the average size of
crystal (um.mint) from 60 minutes to the end of the experiment

Condition Rate (um2min-t)

PPCA
DETPMP

7.4.1.1 Effect of DETPMP on barium sulphate formation

The results from Table 7-3 shows that the growth rate of barium sulphate at 1
ppm of DETPMP is higher than that of the uninhibited test. This indicates that
at this concentration, surface growth of barium sulphate was enhanced. The
enhancement of surface scaling has been previously reported by Graham et
al. [101] and Baynton et al. [139] for barium sulphate scale formation study in
the presence of phosphate scale inhibitor. From the study by Baynton et al.
[139], the authors suggested that the promotion of surface growth was
attributed to the weak interaction between the organic anion and barium ions.
On the other hand, Graham et al. [101] suggested that at low concentration
(below MIC) of scale inhibitor, the low surface coverage of the scale inhibitor
on the metallic surface resulted in the enhanced growth. The results presented
are in agreement with the theory proposed by Graham et al. [101].

As seen in Figure 4-20 the crystal morphology observed when lppm of
DETPMP scale inhibitor was used was different from the uninhibited case.
The crystals formed were not rhombic as in the case of the blank test; instead,
the shape of the crystal was hexagonal. This change may be due to the
inhibition of the growth of (001) face by the scale inhibitor (DETPMP) but lead
to the formation of (011) face. Further growth of the (011) face along the
horizontal axis led to the elongation of the (001) face, resulting in the
hexagonal shape of the crystal formed as shown in Figure 7-8.
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Figure 7-9: Crystal formed on metallic surface when (a) 1 ppm, and (b)
4 ppm of DETPMP was injected

In addition, the formation of (011) face may account for the enhancement of
surface coverage when 1 ppm of DETPMP was applied, since the surface
area of the crystals increases with the fast growth of (011) face. At high
concentration of DETPMP (4ppm), the morphology of the crystal was rhombic.
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Hence, at this concentration, it can be assumed that the inhibitors were
completely absorbed on the entire growth site ((001) & (210) face); thus the
subsequent growth of crystals was stopped. This indicates that the (011) face
appear and fades as the concentration of the inhibitor increases as shown in
Figure 7-9. This result is consistence with the study reported by Black et al.
[140], where they found that change in concentration of additives

(diphosphonate) affect the formation of (011) face of barite.

7.4.1.2 Effect of PPCA on barium sulphate formation

The results presented in Figure 4-13 showed that when 1 ppm of PPCA was
injected, the growth rate was enhanced but attained a plateau until the end of
the experiment. As explained in previous section, the enhanced growth rate
of crystals was due to the low film coverage of the scale inhibitor after injection.
However, PPCA are known to have good adsorption properties on
minerals/metals [126] and with the constant supply of PPCA into the flow cell;
growth stopped once all active sites were blocked. This indicates that the
presence of PPCA hinders surface growth by adsorbing on the distinct step
emerging from screw dislocation on the barium sulphate surface [126, 141].

These results demonstrate that PPCA can impede the subsequent growth of
crystals even at a low concentration, despite being polymeric scale inhibitors
which are primarily known to work through a nucleation inhibition mechanism
[26, 98]. This finding is supported by the study reported by Sorbie and Laing
[67], where they investigated the mechanism of three different scale inhibitors
(DETPMP, PVS, and PPCA). In their study, DETPMP was observed to
perform through the crystal growth mechanism, while PVS function through
nucleation inhibition mechanism. In the case of PPCA, it showed a
performance that is in-between that of DETPMP and PVS. This implies that
PPCA exhibits both mechanisms (nucleation inhibition and crystal growth

retardation).

Figure 4-15 shows the precipitate formed on the surface of the stainless steel
at the end of the experiment. In the case of the uninhibited test the precipitate

formed on the steel had a rhombic morphology as expected; having two
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dominant faces as shown in Figure 7-10. When PPCA was applied for both
concentrations (1 and 4 ppm) same rhombic morphology was observed. This
illustrates that the PPCA inhibited the growth of two dominant faces of barium
sulphate as illustrated in Figure 7-11. The XRD analysis also confirmed that
PPCA inhibitor suppresses the growth of the dominant faces of barium

sulphate.

210

Figure 7-10: Morphology of BaSOa in the absence of scale inhibitor
showing the dominant faces ((210) and (001)).

210

Figure 7-11: Morphology of BaSO4deposited on stainless steel sample
in the presence of PPCA scale inhibitor. PPCA binds to (210) and
(001) faces to stop the growth.

7.4.1.3 Effect of VS_Co on barium sulphate formation

From Table 7-3 when 1 ppm of VS-Co was applied, the growth rate was similar

to the uninhibited case. This suggests that at this concentration VS-Co was

unable to prevent the subsequent growth of crystals. This result is in

agreement with literature [67, 139, 142], that postulates polymeric scale
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inhibitor (such as VS-Co) functions primarily by nucleation inhibitor
mechanism. In a study by Baynton et al. [139], it was shown that at a low
concentration of sulphated scale inhibitor (benzene-1,3,5-trisulfpnic acid
(BTS)), it was effective to impede nucleation process but was less efficient to
stop further growth of crystals. Furthermore, when the concentration of the

BTS was increased crystals growth stopped.

The results presented in this work are in agreement with the study by Baynton
et al. [139] since similar trend occurred when the concentration of VS-Co was
increased. The further growth of crystals stopped instantly when the 4 ppm of
VS-Co was injected. The SEM image presented in Figure 4-17 revealed the
morphology of the barium sulphate crystals at 1 ppm of VS_Co was similar to
the uninhibited case and that the spiral growth of the crystals continued until
the end of the experiment. Also, XRD pattern indicates that at 1 ppm the
presence of VS_Co does not have any effect of the dominant faces of barium

sulphate.

From the results discussed in this section, the three scale inhibitors performed
differently at a lower concentration. The results also demonstrated that scale
inhibitor could enhance crystallization process rather than impeding crystal
growth. This shows that, if the accurate concentration of scale inhibitor is not
applied during production, it might promote the build-up of mineral scale
deposit on the surface of oilfield equipment. This recommends that, in
evaluating the performance of scale inhibitor to control or prevent the
deposition of scale during production, test procedures should take into
account the surface which scale is likely to occur. In the next section, some

factors that could affect the surface inhibition using PPCA will be discussed.

7.5 Factors that affect surface scale inhibition

7.5.1 Effect of saturation ratio on BaSO4surface inhibition

The results presented in chapter 5 showed that bulk precipitation inhibition

efficiency for the three brines was above 95 % (above MIC). With the high
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inhibition efficiency in the bulk, it is expected that the surface fouling will

significantly reduce the surface growth of crystal on the metallic surface.

From Figure 5.4, at SR= 30 the surface growth of crystals stopped almost
immediately after injecting the inhibitor. PPCA is known to have good
adsorption properties on minerals [143-145] and the instantaneous inhibition
of surface scaling observed was attributed to the inhibitor molecules being
adsorbed and blocking all the active sites of the crystal lattice [21, 126].
However, when 1 ppm of PPCA was injected at SR = 60 and SR = 80, surface
growth continued for 15 and 60 minutes before reaching a plateau as shown

in Figure 5-4 and Figure 5-5.

The affinity of PPCA molecules for barium sulphate crystals is unlikely to have
changed and this suggests that after the scale inhibitor is injected, both
processes of adsorption of inhibitor molecules on the active growth sites and
incorporation of the scaling ions on the crystal lattice occur simultaneously.
The occurrence of these 2 competitive processes, therefore, delay the time
necessary for the PPCA molecules to be adsorbed and fully block the active

growth sites; but ultimately once all the sites have been blocked, growth stops.

As discussed in section 7.2, the surface scaling barium sulphate on the
metallic surface occurs due to heterogeneous nucleation and growth. The
scaling kinetics is influenced by two determining steps: diffusion of scaling
species to the crystal-water interface, and surface reaction whereby the
scaling ions are incorporated into the barium sulphate crystals lattice [106,
133]. With the presence of scale inhibitor, the rate of the latter process would
be hindered due to the adsorption of the scale inhibitor molecule on the active
growth sites (such as kinks site). On the contrary, increasing the saturation
ratio will increase the diffusion of scaling species to the crystal-water interface.
Hence, the inhibitory action of the scale inhibitor will be reduced as the
saturation ratio is increased. This explains the poor performance of the scale

inhibitor when the saturation ratio was increased.

The findings from this sections suggest that saturation ratio apparently have
a greater effect on surface inhibition than on bulk precipitation inhibition. In

addition, previous studies have shown that scale inhibitor performs differently
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in preventing bulk precipitation and surface deposition [31, 146]. In agreement
with these findings, the results strengthen the need to differentiate the MIC for
bulk precipitation and for surface fouling. The next section addresses the
effect of the pre-scaled surface on surface inhibition efficiency.

7.5.2 Effect of pre-scaled surface on BaSO4 surface inhibition

The results presented in Figure 5-10 revealed that the surface inhibition
efficiency reduces when the pre-scaled surface was increased. As reported in
several literatures, scale inhibitor hinders the crystal growth by adsorbing on
the crystallizing surface [141, 142, 147]. In contrast, adsorption process is a
surface phenomenon and, as such, the extent of adsorption is proportional to
the surface area of the adsorbent (barium sulphate crystals). This suggests
that increasing the pre-scaled surface (without increasing the concentration of
the inhibitor) will reduce the surface coverage of inhibitor molecules on the
active site of the crystals. Thus, delaying the time required for the inhibitor
molecule to completely hinder crystals growth; nevertheless, growth stopped
once all the active sites were entirely blocked. Figure 7-12 shows a schematic
diagram explaining the effect of the pre-scaled surface on the surface

inhibition.

This suggests that the adsorption of PPCA seems to be affected when the
pre-scaled surface was increased. A research by Martinod et al. [148] showed
that the performance of scale inhibitor was linked to the rate of adsorption of
scale inhibitor at the crystal surface. In this study, the effect of two scale
inhibitors (polyaspartate (PASP) and polymaleic (PMA)) on the formation of
calcium carbonate on the metallic surface was investigated. It was found that
PMA (with higher adsorption rate) instantly blocked the growth of calcium
carbonate crystals. However, PMA did not totally stop the growth of crystal
due to its low adsorption rate on crystals surface. In another study by Amjad
et al. [149], they investigated the effect of iron oxide (Fe203) impurities on
calcium carbonate inhibition. It was shown from the study that small amount

of Fe203 particles reduces the scale inhibitors performance. Also, it was
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revealed that the negative impact of the particles could only be overcome by

increasing the inhibitor concentration.
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Figure 7-12: Schematic of step growth inhibition by blocking the active
site using same concentration at (a) low pre-scaled surface and (b)
High pre-scaled surface

In agreement with the findings from Amjad et al. [149], this study clearly
showed that once a thin layer of scale or any other impurities are formed on
the surfaces it reduces the scale inhibitor efficiency, due to the large surface
area of adsorption provided by the impurities. The next section discusses the

effect of flow rate on surface inhibition.

7.5.3 Effect of flow rate on BaSOg4 surface inhibition

The results presented in Figure 5-7 showed the effect of different flow rate on
surface inhibition using PPCA. It was observed that when the flow rate was
increased from 20 ml/mins to 60 ml/min, the surface coverage and average

size of reduced by 42 % to 41 %, respectively. It is interesting to realise this
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could occur since increasing the flow rate, means more scaling species and

the inhibitor molecules will be present on the surface of the BaSOa4 crystals.

As mentioned in section 7.5.1, the kinetics of scale formation involves two
determining steps: the first is the diffusion of scaling species to the crystal-
water interface, the other is the surface reaction in which the scaling ions are
incorporated into the scale crystals lattice [106]. The presence of scale
inhibitor cannot influence the diffusion of the scaling ions but exert their action
by impeding the latter process (surface reaction of scaling ions) [150, 151].
This indicates that when the flow rate is increased the adsorption of scale
inhibitor on the crystals has a more dominant effect than the incorporation of
the scaling species at the surface of the growing crystals. Hence, the increase
in the mass transfer of the scale inhibitor molecules on the crystals, as well
as, the strong effect of the scale inhibitor on the growing crystals account for

the high surface inhibition at high flow rate.

This result agrees with previous findings reported by Yang et al. [152] when
they investigated the effect of flow velocity on inhibition of calcium carbonate.
From their research, it was found that the inhibition effect increases with
increasing fluid velocity. Also, a positive effect of flow rate was reported by
Graham et al. [12], where research was conducted on the effectiveness of
PPCA scale inhibitor on preventing the barium sulphate adherence and
growth at the metal surface under both laminar and turbulent conditions. It
was shown that the level of surface adherence is more severe under the
laminar condition when compared to test conducted under turbulent

conditions.

7.5.4 Intermittent injection of scale inhibitors

In previous sections, scale inhibitors were injected continuously. However,
due to some number of challenges encountered during downhole chemical
injection, the continuous flow of scale inhibitor maybe disrupt; resulting in
periodic injection of scale inhibitor into the wellbore. In this section, the effect
of injecting scale inhibitor intermittently is discussed. Figure 5-13 and Figure

5-16 presents the surface growth of crystals on the metallic surface when the
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scale inhibitor was injected at periodically at different time interval. From the
results, it was observed that the longer the system was left free of scale

inhibitor, the more it would reduce the performance of the scale inhibitor.

Also, it is interesting to note that when the system was scale inhibitor-free for
an interval of 5 minutes (as shown in Figure 5-21) nucleation or subsequent
growth of crystals was not observed. This proposes that the presence of scale
inhibitor layer on the surface of the crystals/metallic surface prevented
nucleation and crystal growth. This result is similar to the findings reported by
Ruiz-Agudo et al. [109] and Eroini et al. [78] where they studied the effect of

scale inhibitor on preventing scale formation on surfaces.

From the research by Eroini et al. [78], it was observed that stainless steel
surface pretreated with PPCA had less amount of scale deposit when
compared with an untreated stainless steel surface. It was postulated that
when the stainless steel surface was treated with PPCA it appears to be
uncharged, which means no direct interaction of the surface with the scaling
ions resulting to the low scale formation on the surface. However, untreated
stainless steel exhibits partial charges (both positive and negative), which
would lead to direct interaction with the scaling ion; hence promotes surface

scaling as illustrated in the schematic diagram presented in Figure 7-13.

The SEM image presented in Figure 7-14 clearly revealed that the crystals
formed on the metallic surface during continuous injection were different from
crystal formed when the inhibitor was injected periodically. For continuous
injection as previously explained in section 7.4.1.2, the presence of scale
inhibitor hinders surface growth by adsorbing on the distinct step emerging
from screw dislocation on the barium sulphate surface as shown in Figure
7-14a [153]. However, the crystals formed during periodic injection presented
in Figure 7-14b, indicates that the growth of subsequent crystals originated
from the already existing crystals (epitaxial growth). These crystals appear to
be growing at favoured nucleation site available on the earlier deposited scale

layers.

Figure 7-15 gives a schematic diagram illustrating the growth steps involved

in the formation of crystals during periodic injection. The continuous nucleation
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and subsequent growth of the crystals during periodic injection explains the
low performance of the scale inhibitor. This result simulates real oilfield scale
formation in oilfield pipeline since it demonstrates what really occurs on the
surfaces when inhibitor are not injected continuously. Also, it shows how
existing crystals layer can function as an active centre for surface nucleation

(i.e. secondary nucleation) and subsequent growth of crystal.
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Figure 7-13: Comparison between (a) Untreated stainless steel surface
and (b) treated stainless steel (with PPCA) in a solution of calcium

carbonate brine solution

The findings from this section clearly elucidate that the intermittent injection of
scale inhibitor reduces the performance of the inhibitor due to the continuous
nature of scaling process. Hence, for a reliable surface inhibition, appropriate
measures should be set in place to ensure scale inhibitors are injected
continuously in any location where crystallization starts to occur. In previous
discussions, surface inhibition tests were conducted in an aqueous
environment. In the next section, surface scaling tests conducted both in an

aqueous and oil environment will be discussed.
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Figure 7-14: Barium sulphate crystal formed on the metallic surface
when the scale inhibitor was injected (a) Continuously, and (b)

periodically
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Blank solution
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Figure 7-15: Crystal growth of barium sulphate when scale inhibitor is

injected periodically

7.6 Scaling in multiphase conditions

7.6.1 Effect of surfaces in multiphase condition

In scaling, various studies have been reported on using surface engineering
(chemical and modified coating) in controlling mineral scaling in a single phase
environment [6, 16, 20]. However, no study has been reported on how these
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coatings performs in a multiphase environment. The aim of this section is to

discuss the influence of surfaces in multiphase scaling environment.

From results presented in chapter 6, both surfaces (fluoropolymer and
Stainless steel) showed a similar amount of barium sulphate deposition in the
single phase environment. With fluoropolymer having a lower surface energy,
it is expected that the amount of scale deposited should greatly reduce [154];
but the result exhibited an opposite trend. Comparable findings have been
reported in several literatures [16, 61, 155], illustrating no correlation between
surface energy and scale deposition. A recent study by Charpentier et al.
[155], examined the ability to use different modified coating in reducing the
mineral surface fouling in subsea safety control valve component. From their
study, they reached a conclusion that there was no strong relationship
between surface energy and surface fouling. In agreement with the findings
reported by Charpentier et al. [155], it shows that other parameters (such as
surface roughness) would have resulted in the high surface scaling of

fluoropolymer, despite having a low surface energy.

Figure 7-16 shows the surfaces of stainless steel and fluoropolymer using light
interferometry. From the Figure 7-16, it could be seen that fluoropolymer
surface is covered with a micro-scale texture, which is designed to reduce
wetting on the surface; thus preventing surface scaling as shown in Figure
7-17a. In contrast, the texture could have a detrimental effect by creating
numerous nucleation spot; promoting heterogeneous nucleation and growth
of crystals on the surface as illustrated in the schematic diagram presented in
Figure 7-17c. The high surface roughness of the fluoropolymer increased the
nucleation spot; thus increasing the surface induction time and growth of
crystals. This reveals that the poor performance of fluoropolymer on
preventing scaling in the single phase environment could be attributed to the

surface roughness.
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Figure 7-16: Light interferometry 3D scheme of surface of (a)

fluoropolymer and (b) Stainless steel

BaSO,
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Figure 7-17: (a) Formation of contact angle of a drop on a rough
surface (b) Rough surface promoting nucleation and growth of
BaSOa crystal

In a multiphase environment, the results show that the surface fouling reduces
with increase in oil concentration in both surfaces. However, the fluoropolymer
performed better when compared to the stainless steel. The surface did not
reveal any barite crystals on the surface as shown in Figure 6-11. Several
explanations can be found to describe more precisely the reduction of mass

gain observed in the multiphase environment.

The first reason is the film-forming capability of the emulsion on the
substrates. In a single phase environment, only a solid-water interface can
exist; however, by introducing oil into the system, the organic phase will
displace some of the water molecules from that interface thus reducing
surface scaling. The probability of having oil droplets in contact with a solid
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surface correlate with a different factors such as the nature of the emulsions
or the oil content which explain why surface scaling tends to decrease as the
oil content increases [156, 157]. However, the likelihood of a film of paraffin
oil wetting the surface does not depend solely on the oil content otherwise
both alloys (stainless steel and the fluoropolymer coating) would exhibit similar
amounts of barium sulphate. It is suggested that the probability of forming a
stable oil film protecting the surface from mineral fouling is associated with the
Displacement Energy (DE) — a thermodynamic measure of the ability of a
surface to favour oil wetting by displacing water molecules from the interface.
DE is defined as:

DE = Ywa X Cos HWS — Yoa X Cos 905 7-1 [157]

Where ywa and yoa denote the water/air and oil/air surface tension respectively
while Bws and Bos denote the contact angle of water and oil on the surface of
interest. Equation 7-1 [157] shows that the DE is simply the difference between
the work of adhesion of oil and water, respectively, on the solid surface. An
o/w emulsion with an optimal tendency for oil to wet the surface should have
a negative DE and the more negative the value of DE is, the more readily such
displacement takes place. Using the experimental data presented in Table
6.3, DE was evaluated at 40 and -28 for AISI 316L and the fluoropolymer
coating respectively. Such displacement energy values show that clean metal
surfaces such as AISI 316L samples used in the current study are polar and
thus have an affinity for water. Therefore the latter will have a low contact
angle and will be prone to surface scaling as presented in Figure 7-18. The
fluoropolymer, however, is highly hydrophobic and favours the displacement
of water and the formation of a stable oil layer that prevents scale forming at

the surface of the sample.
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Figure 7-19: Stable oil film formed on the substrate preventing contact

of the water phase

Lastly, the adhesion of pre-precipitated crystals from the bulk solution to the
surface. In a single phase environment, when the scale is formed in the bulk
it could be adhered to the surface due to intermolecular force. Nevertheless,
in a multiphase environment, they are two competing processes taking place
in the bulk solution. Firstly, the adhesion of crystal from the bulk solution to
the surface. The second process is when the crystals are been absorbed
strongly on the oil-water interface [158]. Figure 7-20 presents a graphical
illustration of barium sulphate absorbed on the o/w emulsion. With the
occurrence of this latter process, it implies that the amount of crystal that will
be readily available for adhesion process will greatly reduce. Hence, this
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process may have also accounted for the reduction of surface scaling in the

multiphase environment.

oil

Figure 7-20: Schematic diagram illustrating the absorption of BaSO4
crystals on the o/w emulsion

7.6.2 Effect of scale inhibitors on multiphase condition

The performance of scale inhibitors on preventing surface growth has been
reported in many literatures. However, these studies were based on
evaluating the efficiency of surface inhibition in a single phase environment.
In real oilfield operation, scaling often happens in a multiphase environment.
This section is aimed at understanding surface scale inhibition both in single

phase and the multiphase environment.

The result presented in Figure 6-10 showed that at a concentration of above
the MIC for both scale inhibitor (PPCA and DETPMP), surface fouling was
significantly reduced in the single phase and multiphase conditions. In this
case, the metallic surface was fully covered by the scale inhibitor; thus
preventing the surface from scaling [159, 160]. However, at a concentration
below the MIC for both scale Inhibitors (PPCA and DETPMP), surface fouling
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in the single phase and multiphase condition was enhanced. However, the
behaviour in single phase has already been shown in a study reported by
Graham et.al. [34, 101]. In their study, the enhancement of surface growth
was explained to occur due to the absence of inhibitor film at the metal surface
as well as the lower nucleation energy barrier of the surface compared to the

bulk solution.

In multiphase conditions, it is believed that there are 2 processes taking place
and opposing each other. The first one is the presence of an organic phase
wetting the surface which contributes to reducing surface scaling as previously
explained. The second effect, however, is the partitioning of the scale inhibitor
between the aqueous phase and the organic phase. The second process can
be detrimental for surface scaling if the initial concentration of scale is already
low. The partitioning coefficient (P) is defined as the ratio of concentrations of
a compound in a mixture of two immiscible phases at equilibrium. P is often
measured in a water/octanol system and is a direct measure of the difference
in solubility of a chemical in two phases. It is often used in its logarithm form

as shown in Equation 7-2:

[solute]octanol 7-2
Log l)oct/water = g

[solute]water

DETPMP has a very low partition coefficient (log P = -3.4) [161] which
indicates the inhibitor will mostly remain in the aqueous phase and therefore
remain effective. Such low affinity with the organic phase explains why the
scaling tests at 1 ppm of DETPMP in single and multiphase exhibit very similar
surface barium content. PPCA, however, has an affinity for organic solvents
and values of log P around 0 [162] have been reported depending on the
molecular weight of the polymer and the pH of the aqueous phase. Such
compatibility with oil is likely to explain the increase of barium content
deposited on the surface in multiphase condition when PPCA is present at a

concentration below MIC.

The results obtained in this section revealed that the presence of oil droplet
could influence the deposition of barium sulphate on surfaces. Anti-scaling

surface with low surface energy was shown not to performed impressively in
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the aqueous phase, but the performance was greatly increased in the
presence of oil phase. On the contrary, the presence of multiphase was
revealed to have a negative impact on the performance of scale inhibitor.
These findings suggest that, in choosing a scale inhibitor and anti-scaling
surfaces in preventing or reducing barium sulphate formation, a good
knowledge of how these surfaces/inhibitors perform in both single phase and
multiphase environment is vital. Hence, the test should be conducted to
evaluating the performance of the surfaces both in an aqueous environment

and multiphase environment.
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Chapter 8 Conclusions

This study has concentrated on understanding the bulk precipitation and

surface scaling of barium sulphate in the absence and presence of scale

inhibitors. This chapter gives a summary of the main outcomes obtained from

this work. The chapter is divided into three sections based on the study

objectives.

8.1

Kinetics of barium sulphate bulk precipitation and

surface deposition with and without the presence of scale

inhibitor

The results confirmed that the deposition of scale on surfaces can
occur solely by heterogeneous nucleation and subsequent growth;
rather than the adhesion of scale from the bulk solution. Therefore, it
implies that surface fouling as result of heterogeneous nucleation and
growth on surfaces should be taken into consideration when designing

a scale treatment strategy.

The study shows the strong effect of saturation ratios on nucleation and
growth mechanisms of barium sulphate on stainless steel surfaces. A
distinct two-step mechanism with instantaneous nucleation followed by
growth of crystals was observed at high saturation ratios, whilst at
lower saturation ratios, progressive nucleation was observed with the
formation of new nuclei and growth of existing crystals occurring

simultaneously throughout the experiments.

The temperature was seen to plays an important role in the rate of
nucleation and the nucleation mechanism of surface crystallization of

barium sulphate.

At high concentration of scale inhibitors (DETPMP, PPCA and VS-Co),
the further growth of crystals on the metallic surface was stopped

164



instantly. However, a different trend was observed for the each scale

inhibitors at low concentration.

The results showed that PPCA completely stopped the subsequent
growth of crystals at a low concentration (1 ppm), by adsorbing on the
dominant faces of the crystals.

At lower concentration of DETPMP, crystal growth of barium sulphate
on the metallic surface was enhanced. Furthermore, it resulted to
change in morphology of the crystals formed on the metallic surface
(i.e. crystal had a hexagonal shape due to the appearance of (011)
crystal face). The (011) crystal face disappears when the concentration
of DETPMP was increased. This results clearly indicated that at high
concentration, the molecule of the DETPMP was likely absorbed on the

dominant faces of barium sulphate.

Low concentration of VS-Co was not effective to stop the crystal growth

of barium sulphate on the metallic surface.

8.2 Factors influencing surface inhibition of barium sulphate

The study revealed that the performance of scale inhibitor on hindering
bulk precipitation is different from surface inhibition. Also, it shows that
the efficiency of scale inhibitor on preventing surface growth reduces

as the saturation ratio is increased.

This work highlight the limitations of current procedures used to
evaluate the minimum inhibitor concentration (MIC) required to stop

bulk precipitation but disregard surface fouling aspects.

The results showed that increase in flow rate increases the surface

efficiency of scale inhibitor (PPCA). Furthermore, these findings give

insight on an efficient scale inhibition strategies to be developed where

the dose rate can be adjusted in time i.e. initially a high flow rate of
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inhibitor is used to instantly block the active sites on any pre-scaled
surface and is later reduced to an optimal level that prevents

precipitation.

The study showed that the presence of pre-existing barium sulphate
crystal reduces the scale inhibition efficient. This was attributed to the
large surface area provided by the pre-existing crystals for adsorption

of scale inhibitors.

This study revealed the negative outcome of under-injecting scale
inhibitor during continuous injection of scale inhibitor. Also, it
demonstrates how pre-existing crystals layer can act as a nucleation
site for subsequent crystal growth.

8.3 Surface scaling in multiphase environment

The results presented shows that surface fouling of barium sulphate on
metallic steel surfaces was reduced as the concentration of oil phase

was increased.

Low surface energy coatings such as the fluoropolymer used in this
study do not show great antifouling properties in aqueous phase
scaling tests and the barium sulphate mass gain was similar to the one

observed on stainless steel.

In multiphase conditions, the use of fluoropolymer hugely reduced the
deposition of barium sulphate on the metallic surface. The performance
of the fluoropolymer coating tested was attributed to its propensity to
favour an oil wetting state, which prevented the surface of
fluoropolymer not to be in contact with the aqueous phase where

scaling occurs.
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The work shows that in the presence of scale inhibitors, the ability of
the inhibitor to migrate into the organic phase is of paramount
importance especially when concentration falls below MIC levels. The
dosage of scale inhibitors below the optimum (MIC) concentration can

result in a dramatic increase of surface scaling.
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Chapter 9 Future work

This work conducted in this study have demonstrated to meet the set
objectives of this study. Nevertheless, there are some other factors and
conditions which are encountered in the oilfield operations that were not
considered in this study. Therefore in this chapter, the following
recommendations are suggested in order to further understand the bulk
precipitation and surface deposition of barium sulphate in the oil and gas

facilities.

9.1 Improving the in-situ flow rig design

The in-situ flow rig has revealed to be suitable for studying both bulk
precipitation and surface scaling of barium sulphate in a flowing system. In
this work, the set-up was designed to operate under laminar flow regime,
atmospheric pressure and at moderate temperatures. However, in oil and gas
operations, they are sometimes faced with more severe physical conditions
(e.g. turbulent flow regime, high temperature and pressure). Hence, further
development and modification of the in-situ flow rig is suggested to be able to

simulate more severe oilfield conditions.

9.2 The influence of other chemicals on surface scale
formation and inhibitor

Extensive information of different scale inhibitors on the subsequent growth
on barium sulphate has been obtained from this study. However, these
experiments were carried out using just scale inhibitors. In real oilfield
operations, they are other flow assurance problems been faced and it requires
the continuous injection of various chemicals to prevent their occurrences
(such as corrosion inhibitors, gas hydrate inhibitors and wax inhibitors).
Hence, further studies should be conducted to investigate the interactions

between scale inhibitor and other inhibitors, as well as, evaluating the effect
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(synergistic or antagonistic) on scale formation inhibitors both in the bulk

solution and on surfaces.

9.3 Effect of impurities on the barium sulphate surface
inhibition

The study has shown that the presence of pre-existing crystal layer affects the
surface inhibition efficiency of PPCA scale inhibitors. However, they are
various insoluble material (metal oxides, metal carbonate and clay) found in
production water used during seawater injected. Future work should
investigate how these insoluble materials affect the inhibition of barium
sulphate scale.

9.4 Scaling in multiphase environment

The result has shown that the presence of the oil phase affects the surface
scaling barium sulphate. Nevertheless, it will be interesting to evaluate the
influence of other experimental parameters (such as the effect of scale on the
stability of emulsions, the effect of emulsion size on the kinetic of scale
precipitation and wetting properties) in a multiphase scaling environment. This

will further expand the understanding of scale formation in oil and gas industry.

169



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

U. S. E. I. Administration, "EIA, International Energy Outlook,"
Washington, DC2001.

K. D. Demadis, E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, and
C. Mantzaridis, " Industrial water systems: problems, challenges and
solutions for the process industries,"” Desalination, vol. 213, pp. 38-46,
2007.

L. C. Uren, Petroleum Production Engineering; Oil field Exploitation:
M.-H.B. Company, 1953.

A. I. Levorsen and F. A. Berry, Geology of petroleum vol. 8: WH
Freeman San Francisco, 1967.

W. A. England, "Secondary migration and accumulation of
hydrocarbons, In the petroleum system from source to trap,” Amer.
Assoc. Petrol, vol. 60, pp. 211-217, 1994.

T. Geddert, I. Bialuch, W. Augustin, and S. Scholl, "Extending the
Induction Period of Crystallization Fouling Through Surface Coating,"
Heat Transfer Engineering, vol. 30, pp. 868-875, 2009/10/01 2009.

B. Olliver and M. Magot, Petroleum Microbiology. Washington DC:
ASM press, 1995.

R. A. Betty Simkins, Energy Finance: Analysis and Valuation, Risk
Management and Future of Energy. New Jersey: John Wiley & Sons,
Inc., 2013.

A. Badr, "Inhibition of barium sulphate at high-barium formation water,"
Petroleum Science and Engineering, pp. 90-97, 2012.

S. Foroutan and J. Moghadasi, "A neural network approach to predict
formation damage due to calcium sulphate precipitation,” in SPE
European Formation Damage Conference & Exhibition, 2013.

S. J. Dyer and G. M. Graham, "The effect of temperature and pressure
on oilfield scale formation,” Journal of Petroleum Science and
Engineering, vol. 35, pp. 95-107, 7// 2002.

170



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. C. Todd and M. Yuan, "Barium and Strontium Sulfate Solid Solution
Formation in Relation to North Sea Scaling Problems,” SPE Production
Engineering, vol. 5, pp. 279-285, 08/01/1990 1990.

J. Moghadasi, H. Miller-Steinhagen, M. Jamialahmadi, and A. Sharif,
"Model study on the kinetics of oil field formation damage due to salt
precipitation from injection,” Journal of Petroleum Science and
Engineering, vol. 43, pp. 201-217, 8// 2004.

W. W. Frenier and M. Ziauddin, Formation, removal, and inhibition of
inorganic scale in the oilfield environment: Society of Petroleum
Engineers Richardson, TX, 2008.

W. C. Cheong, P. H. Gaskell, and A. Neville, "Substrate effect on
surface adhesion/crystallisation of calcium carbonate,” Journal of
Crystal Growth, vol. 363, pp. 7-21, 1/15/ 2013.

M. M. Vazirian, T. V. J. Charpentier, M. de Oliveira Penna, and A.
Neville, "Surface inorganic scale formation in oil and gas industry: As
adhesion and deposition processes,” Journal of Petroleum Science
and Engineering, vol. 137, pp. 22-32, 1// 2016.

H. Nam, C. Bai, J. Shim, and Y. I. Cho, "A study on the reduction of
CaCO3 fouling in hot-water storage tank by short pulse plasma
application (rev 1 yc)," Applied Thermal Engineering, vol. 102, pp. 108-
114, 6/5/ 2016.

C. J. Hinrichsen, "Preventing scale deposition in oil production facilities:
An industry review," in CORROSION 98, 1998.

G. M. Graham, E. J. Mackay, S. J. Dyer, and H. Bourne, "The
Challenges for Scale Control in Deepwater Production Systems:
Chemical Inhibition and Placement,” in CORROSION 2002, 2002.

T. V. J. Charpentier, A. Neville, S. Baudin, M. J. Smith, M. Euvrard, A.
Bell, et al.,, "Liquid infused porous surfaces for mineral fouling
mitigation,” Journal of Colloid and Interface Science, vol. 444, pp. 81-
86, 4/15/ 2015.

G. M. Graham, L. S. Boak, and K. S. Sorbie, "The Influence of
Formation Calcium and Magnesium on the Effectiveness of Generically

171



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Different Barium Sulphate Oilfield Scale Inhibitors,” SPE Production &
Operations, vol. 18, pp. 28-44, 02/01/2003 2003.

K. S. Sorbie, R. M. S. Wat, and A. C. Todd, "Interpretation and
Theoretical Modeling of Scale-Inhibitor/Tracer Corefloods," Society of
Petroleum Engineers, 1992/8/1/ 1992.

K. Sorbie, M. Yuan, and M. Jordan, "Application of a scale inhibitor
squeeze model to improve field squeeze treatment design,” in
European Petroleum Conference, 1994.

S. Shaw and K. Sorbie, "Structure, Stoichiometry, and Modelling of
Calcium Phosphonate Scale Inhibitor Complexes for Application in
Precipitation Squeeze Processes," presented at the 2013 SPE
International Symposium on Oilfield Chemistry, The Woodlands, TX,
USA, 2013.

S. S. Shaw, "Investigation into the mechanism of formation and
prevention of Barium sulphate oilfied scale,” PhD, Petroleum
Engineering, University of Heriot Watt, 2012.

L. S. Boak, G. M. Graham, and K. S. Sorbie, "The Influence of Divalent
Cations on the Performance of BaSO Scale Inhibitor Species,"
presented at the SPE International Symposium on Oilfield Chemistry,
Houston, Texas, 1999.

M. B. Tomson, A. T. Kan, and G. Fu, "Inhibition Of Barite Scale In The
Presence Of Hydrate Inhibitors,” Society of Petroleum Engineers,
2005/9/1/ 2005.

Z. Amjad, "Inhibition of barium sulfate precipitation: Effects of additives,
solution pH, and supersaturation,” Water Treatment, vol. 9, pp. 47-56,
/111994,

T. Chen, A. Neville, and M. Yuan, "Calcium carbonate scale
formation—assessing the initial stages of precipitation and deposition,"
Journal of Petroleum Science and Engineering, vol. 46, pp. 185-194,
3/15/ 2005.

E. Mavredaki, "Barium Sulphate Formation Kinetics and Inhibition at
Surfaces," Doctor of Philosophy, School of Mechanical Engineering,
The University of Leeds, Leeds, 20009.

172



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

F.-A. Setta and A. Neville, "Efficiency assessment of inhibitors on
CaCOa3 precipitation kinetics in the bulk and deposition on a stainless
steel surface (316 L)," Desalination, vol. 281, pp. 340-347, 10/17/ 2011.

G. M. Graham, L. S. Boak, and C. M. Hobden, "Examination of the
Effect of Generically Different Scale Inhibitor Species (PPCA and
DETPMP) on the Adherence and Growth of Barium Sulphate Scale on
Metal Surfaces," presented at the International Symposium on Oilfield
Scale, Aberdeen, United Kingdom, 2001.

O. Bukuaghangin, A. Neville, and T. V. Charpentier, "Scale Formation
in Multiphase Conditions," presented at the Oil Field Chemistry
Symposium, Gielo, 2015.

A. Graham, E. Vieille, A. Neville, L. Boak, and K. Sorbie, "Inhibition of
BaSO4 at a Hastelloy metal surface and in solution: The
Consequences of falling below the Minimum Inhibitor Concentration
(MIC)," in SPE International Symposium on Oilfield Scale, 2004.

A. Morizot and A. Neville, "A study of inhibitor film formation using an
electrochemical technique,” in CORROSION 2000, 2000.

J. Moghadasi, M. Jamialahmadi, H. Mller-Steinhagen, and A. Sharif,
"Formation Damage Due to Scale Formation in Porous Media
Resulting From Water Injection,"” presented at the SPE International
Symposium and Exhibition on Formation Damage Control, Lafayette,
Louisiana, 2004.

J. Moghadasi, M. Jamialahmadi, H. Miller-Steinhagen, A. Sharif, M. R.
Izadpanah, E. Motaei, et al., "Formation Damage in Iranian Oil Fields,"
presented at the International Symposium and Exhibition on Formation
Damage Control, Lafayette, Louisiana, 2002.

T. Chen, "New insights into the mechanisms of calcium carbonate
mineral scale formation and inhibition," School of Engineering and
Physical Sciences, Heriot-Watt University, Edinburgh, UK, Edinburgh,
2005.

J. Moghadasi, M. Jamialahmadi, H. Muller-Steinhagen, A. Sharif, A.
Ghalambor, M. R. Izadpanah, et al., "Scale Formation in Iranian QOil
Reservoir and Production Equipment During Water Injection,"”

173



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

presented at the International Symposium on Oilfield Scale, Aberdeen,
United Kingdom, 2003.

E. J. Mackay, "Scale Inhibitor Application in Injection Wells to Protect
Against Damage to Production Wells: When Does It Work?," presented
at the SPE European Formation Damage Conference, Sheveningen,
The Netherlands, 2005.

M. M. Jordan and E. J. Mackay, "Intergated Field Development For
Effective Scale Control Throughout the Water Cycle in Deep Water
Subsea Fields," presented at the SPE Europec/EAGE Annual
Conference, Madrid, Spain, 2005.

M. S. H. Bader, "Sulfate removal technologies for oil fields seawater
injection operations,” Journal of Petroleum Science and Engineering,
vol. 55, pp. 93-110, 1// 2007.

S. Otakar and G. John, Precipitation: Basic Priciple and Inustrial
Application. Boston: Butterworth Heinemann, 1992.

A. Antony, J. H. Low, S. Gray, A. E. Childress, P. Le-Clech, and G.
Leslie, "Scale formation and control in high pressure membrane water
treatment systems: A review," Journal of Membrane Science, vol. 383,
pp. 1-16, 11/1/ 2011.

W.-Y. Shih, A. Rahardianto, R.-W. Lee, and Y. Cohen, "Morphometric
characterization of calcium sulfate dihydrate (gypsum) scale on reverse
osmosis membranes,” Journal of Membrane Science, vol. 252, pp.
253-263, 4/15/ 2005.

J. R. Luft and G. T. DeTitta, "A method to produce microseed stock for
use in the crystallization of biological macromolecules,” Acta
Crystallogr D Biol Crystallogr, vol. 55, pp. 988-93, May 1999.

O. S6hnel and J. W. Mullin, "Interpretation of crystallization induction
periods,” Journal of Colloid and Interface Science, vol. 123, pp. 43-50,
5// 1988.

M. Crabtree, D. Eslinger, P. Fletcher, A. Johson, and G. King, "Fighting
Scale- Removal and prevention," Oilfield review, pp. 30-45, 1999.

174



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

C. H. L. Goodman, Crystal growth : theory and techniques. London ;
New York Plenum Press, 1974.

J. W. Mullin, Crystallization: Elsevier Butterworth-Heinemann, 2001.

A. S. Myerson, Handbook of Industrial Crystallization: Butterworth-
Heinemann, 2001.

A. Chianese, F. Di Berardino, and A. G. Jones, "On the effect of
secondary nucleation on the crystal size distribution from a seeded
batch crystallizer,” Chemical Engineering Science, vol. 48, pp. 551-
560, 2// 1993.

P. J. Daudey, G. M. van Rosmalen, and E. J. de Jong, "Secondary
nucleation kinetcs of ammonium sulfate in a CMSMPR crystallizer,"
Journal of Crystal Growth, vol. 99, pp. 1076-1081, 1// 1990.

A. E. D. M. Van der Heijden, J. P. Van der Eerden, and G. M. Van
Rosmalen, "The secondary nucleation rate: a physical model,"
Chemical Engineering Science, vol. 49, pp. 3103-3113, 9// 1994.

A. W. Vere, Crystal Growth: Principles and Progress. New York:
Plenum, 1987.

D. Packham, "Theories of Fundamental Adhesion," in Handbook of
Adhesion Technology, L. M. da Silva, A. Ochsner, and R. Adams, Eds.,
ed: Springer Berlin Heidelberg, 2011, pp. 9-38.

S. Ebnesajjad, "1 - Introduction and Adhesion Theories," in Handbook
of Adhesives and Surface Preparation, S. Ebnesajjad, Ed., ed Oxford:
William Andrew Publishing, 2011, pp. 3-13.

V. Eroini, "Kinetic study of calcium carbonate formation and inhibition
by using an in-situ flow cell," Doctor of Philosophy, School of
Mechanical Engineering, The University of Leeds, 2011.

E. J. W. Verwey, J. T. G. Overbeek, and J. T. G. Overbeek, Theory of
the Stability of Lyophobic Colloids: Dover Publications, 1999.

R. Oliveira, "Understanding adhesion: A means for preventing fouling,"
Experimental Thermal and Fluid Science, vol. 14, pp. 316-322, 5//
1997.

175



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

M. Forster, W. Augustin, and M. Bohnet, "Influence of the adhesion
force crystal/heat exchanger surface on fouling mitigation,” Chemical
Engineering and Processing: Process Intensification, vol. 38, pp. 449-
461, 9// 1999.

B. Yong and B. Qiang, Subsea Engineering Handbook. Waltham:
Elsevier Inc, 2012.

A. B. BinMerdhah, "Inhibition of barium sulfate scale at high-barium
formation water," Journal of Petroleum Science and Engineering, vol.
90-91, pp. 124-130, 7// 2012.

V. Tantayakom, T. Sreethawong, H. S. Fogler, F. F. de Moraes, and S.
Chavadej, "Scale inhibition study by turbidity measurement,” Journal of
Colloid and Interface Science, vol. 284, pp. 57-65, 4/1/ 2005.

M. o. Environment, "Requirements for determining barite sites," M. o.
Environment, Ed., ed. British Columbia: Protocol 14, 2009.

K. Peyvandi, A. Haghtalab, and M. R. Omidkhah, "Using an
electrochemical technique to study the effective variables on
morphology and deposition of CaCO3 and BaSO4 at the metal
surface,” Journal of Crystal Growth, vol. 354, pp. 109-118, 9/1/ 2012.

K. S. Sorbie and N. Laing, "How Scale Inhibitors Work: Mechanisms of
Selected Barium Sulphate Scale inhibitors Across a Wide Temperature
Range," presented at the SPE International Symposium on Oilfield
Scale, Aberdeen, United Kingdom, 2004.

A. J. B. Hennessy and G. M. Graham, "The effect of additives on the
co-crystallisation of calcium with barium sulphate,” Journal of Crystal
Growth, vol. 237-239, Part 3, pp. 2153-2159, 4// 2002.

F. Jones, A. Oliviera, G. M. Parkinson, A. L. Rohl, A. Stanley, and T.
Upson, "The effect of calcium ions on the precipitation of barium
sulphate 1: calcium ions in the absence of organic additives,” Journal
of Crystal Growth, vol. 262, pp. 572-580, 2/15/ 2004.

G. G. A. Hennessy, J. Hastings, D.P. Siddons, Z. Zhong, "New
pressure flow cell to monitor BaSO4 precipitation using synchrotron in
situ angle-dispersive X-ray diffraction,” Journal of Synchrotron
Radiation, pp. 323-324, 2002.

176



[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

M. F. Brigatti, E. Galli, and L. Medici, "Ba-rich celestite: new data and
crystal structure refinement,” Mineralogical Society, pp. 447-451,
1997.

E. Mavredaki, A. Neville, and K. Sorbie, "Assessment of barium
sulphate formation and inhibition at surfaces with synchrotron X-ray
diffraction (SXRD)," Applied Surface Science, vol. 257, pp. 4264-4271,
2/15/ 2011.

M. I. El-Hattab, "Scale Deposition in Surface and Subsurface
Production Equipment in the Gulf of Suez,” Journal of Petroleum
Technology, vol. 37, pp. 1640-1652, 09/01/1985 1985.

O. J. G. Vetter, "How Barium Sulfate Is Formed: An Interpretation,”
Journal of Petroleum Technology, vol. 27, pp. 1515-1524, 12/01/1975
1975.

M. M. Jordan, K. Sjuraether, I. R. Collins, N. D. Feasey, and D.
Emmons, "Life Cycle Management of Scale Control within Subsea
Fields and its Impact on Flow Assurance, Gulf of Mexico and the North
Sea Basin," presented at the SPE Annual Technical Conference and
Exhibition, New Orleans, Louisiana, 2001.

V. Khoi Vu, C. Hurtevent, and K. A. Davis, "Eliminating the Need for
Scale Inhibition Treatments for Elf Exploration Angola's Girassol Field,"
presented at the International Symposium on Oilfield Scale, Aberdeen,
United Kingdom, 2000.

M. Forster and M. Bohnet, "Influence of the interfacial free energy
crystal/heat transfer surface on the induction period during fouling,"
International Journal of Thermal Sciences, vol. 38, pp. 944-954, 12//
1999.

V. Eroini, N. Kapur, A. Neville, and M. Euvrard, "Preventing scale
formation using modified surfaces,” in CORROSION 2011, 2011.

H. Mller-Steinhagen and Q. Zhao, "Investigation of low fouling surface
alloys made by ion implantation technology,” Chemical Engineering
Science, vol. 52, pp. 3321-3332, 10// 1997.

R. Jaouhari, A. Benbachir, A. Guenbour, C. Gabrielli, J. Garcia-Jareno,
and G. Maurin, "Influence of water composition and substrate on

177



[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

electrochemical scaling," Journal of The Electrochemical Society, vol.
147, pp. 2151-2161, 2000.

T. Charpentier, A. Neville, S. Baraka-Lokmane, C. Hurtevent, J.
Ordonez-Varela, and F. M. Nielsen, "Evaluation of anti-fouling surfaces
for prevention of mineral scaling in sub-surface safety valves," in SPE
International Oilfield Scale Conference and Exhibition, 2014.

S. A. Parsons and J. MacAdam, "Scaling On Heat Transfer Surfaces:
Chemical Versus Non-chemical Control," in CORROSION 2004, 2004.

M. M. Jordan, K. Sjursaether, M. C. Edgerton, and R. Bruce, "Inhibition
of Lead and Zinc Sulphide Scale Deposits Formed during Production
from High Temperature Oil and Condensate Reservoirs,” presented at
the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane,
Australia, 2000.

0. J. Vetter, "Oilfield Scale---Can We Handle It?," Journal of Petroleum
Technology, vol. 28, pp. 1402-1408, 12/01/1976 1976.

K. S. Sorbie, P. Jiang, M. D. Yuan, P. Chen, M. M. Jordan, and A. C.
Todd, "The Effect of pH, Calcium, and Temperature on the Adsorption
of Phosphonate Inhibitor Onto Consolidated and Crushed Sandstone,”
presented at the SPE Annual Technical Conference and Exhibition,
Houston, Texas, 1993.

L. S. Boak, "Factors that impact scale inhibitor mechanisms," Heriot-
Watt University, 2013.

W. J. Benton, I. R. Collins, I. M. Grimsey, G. M. Parkinson, and S. A.
Rodger, "Nucleation, growth and inhibition of barium sulfate-controlled
modification with organic and inorganic additives,” Faraday
Discussions, vol. 95, pp. 281-297, 1993.

S. Taj, S. Papavinasam, and R. W. Revie, "Development of green
inhibitors for oil and gas applications,” in CORROSION 2006, 2006.

M. Jordan, K. Sjursaether, M. Edgerton, and R. Bruce, "Inhibition of
Lead and Zinc Sulphide Scale Deposits Formed during Production from
High Temperature Oil and Condensate Reservoirs,” in SPE Asia
Pacific Oil and Gas Conference and Exhibition, 2000.

178



[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Z. Amjad and P. G. Koutsoukos, "Evaluation of maleic acid based
polymers as scale inhibitors and dispersants for industrial water
applications,” Desalination, vol. 335, pp. 55-63, 2/17/ 2014.

G. Graham, K. Sorbie, and M. Jordan, "How scale inhibitors work and
how this affects test methodology,” in IBC, 3rd International
Conference on Solving Oilfield Scaling, Aberdeen, UK, 1997, pp. 22-
23.

M. C. Van der Leeden and G. M. Van Rosmalen, "Development of
Inhibitors for Barium Sulphate Depositiom,” 3rd International
Symposium on Chemicals in the Oil Industr, pp. 65-85, , 1988.

M. C. Van der Leeden and G. M. Van Rosmalen, "Inhibition of Barium
Sulfate Deposition by Polycarboxylates of Various Molecular
Structures,” SPE Production Engineering, vol. 5, pp. 70-76, 02/01/1990
1990.

M. C. Van der Leeden, Reediji, J. and Van Rosmalen, G.M., "The
Influence of Various Phosphonates on the Growth Rate of Barium
Sulphate Crystals in Suspension,” Estudios Geol., pp. 279-287, 1982.

M. Andrei and F. Gagliardi, "Redissolution studies in bulk and in
coreflood for PPCA scales inhibitor," Journal of Petroleum Science and
Engineering, vol. 43, pp. 35-55, 6// 2004.

L. A. Bromley, D. Cottier, R. J. Davey, B. Dobbs, S. Smith, and B. R.
Heywood, "Interactions at the organic/inorganic interface: molecular
design of crystallization inhibitors for barite,” Langmuir, vol. 9, pp. 3594-
3599, 1993/12/01 1993.

S. S. Shaw, K. S. Sorbie, and L. S. Boak, "The Effects of Barium
Sulphate Saturation Ratio, Calcium and Magnesium on the Inhibition
Efficiency: | Phosphonate Scale Inhibitors,” presented at the SPE
International Conference on Oilfield Scale, Aberdeen, UK, 2010.

S. S. Shaw, K. Sorbie, and L. S. Boak, "The Effects of Barium Sulfate
Saturation Ratio, Calcium, and Magnesium on the Inhibition Efficiency:
Part Il Polymeric Scale Inhibitors,” SPE Production & Operations, vol.
27, pp. pp. 390-403, 11/01/2012 2012.

179



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

M. Yuan, "Barium Sulfate Scale Inhibition in the Deepwater Cold
Temperature Environment,” presented at the International Symposium
on Oilfield Scale, Aberdeen, United Kingdom, 2001.

N. Laing, G. M. Graham, and S. J. Dyer, "Barium Sulphate Inhibition in
Subsea Systems - The Impact of Cold Seabed Temperatures on the
Performance of Generically Different Scale Inhibitor Species,"
presented at the International Symposium on Oilfield Chemistry,
Houston, Texas, 2003.

A. L. Graham, L. S. Boak, K. S. Sorbie, and A. Neville, "How Minimum
Inhibitor Concentration (MIC) and Sub-MIC Concentrations Affect Bulk
Precipitation and Surface Scaling Rates,” SPE Production &
Operations, vol. 21, pp. pp. 19-25, 02/01/2006 2006.

A. L. Graham, L. S. Boak, A. Neville, and K. S. Sorbie, "How Minimum
Inhibitor Concentration (MIC) and Sub-MIC Concentrations Affect Bulk
Precipitation and Surface Scaling Rates,” presented at the SPE
International Symposium on Oilfield Chemistry, The Woodlands,
Texas, 2005.

B. Tolaieb, R. Bingham, and A. Neville, "Barium Sulfate Kinetics on
Steel Surfaces at Different Supersaturation Ratios,” in CORROSION
2013, 2013.

F. Jones, P. Jones, M. I. Ogden, W. R. Richmond, A. L. Rohl, and M.
Saunders, "The interaction of EDTA with barium sulfate,” Journal of
Colloid and Interface Science, vol. 316, pp. 553-561, 12/15/ 2007.

A. Duchene, A. Neville, and M. Euvrard, "An In-Situ Flow Cell To
Highlight Different Mechanisms Of CaCO3 Inhibition By Green And
Non Green Polymers," in OTC Brasil, 2011.

D. Hasson, D. Bramson, B. Limoni-Relis, and R. Semiat, "Influence of
the flow system on the inhibitory action of CaCO3 scale prevention
additives," Desalination, vol. 108, pp. 67-79, 2// 1997.

C. M. Pina, C. V. Putnis, U. Becker, S. Biswas, E. C. Carroll, and D.
Bosbach, "An atomic force microscopy and molecular simulations
study of the inhibition of barite growth by phosphonates,” Surface
Science, vol. 553, pp. 61-74, 3/20/ 2004.

180



[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

H. H. Teng, P. M. Dove, and J. J. De Yoreo, "Kinetics of calcite growth:
surface processes and relationships to macroscopic rate laws,"
Geochimica et Cosmochimica Acta, vol. 64, pp. 2255-2266, 7// 2000.

C. Ruiz-Agudo, C. V. Putnis, and A. Putnis, "The effect of a copolymer
inhibitor on baryte precipitation,” Mineralogical Magazine, vol. 78, pp.
1423-1430, 2014.

N. Abdel-Aal, K. Satoh, and K. Sawada, "Study of the adhesion
mechanism of CaCOs using a combined bulk chemistry/QCM
technique,” Journal of Crystal Growth, vol. 245, pp. 87-100, 11// 2002.

C. Garcia, G. Courbin, C. Noilc, F. Ropital, and C. Fiaud, "Development
of the electrochemical quartz crystal microbalance to control carbonate
scale deposit,” NACE International, Houston, TX (United States)1999.

T. Chen, A. Neville, K. Sorbie, and Z. Zhong, "In-situ monitoring the
inhibiting effect of polyphosphinocarboxylic acid on CaCO3 scale
formation by synchrotron X-ray diffraction,” Chemical Engineering
Science, vol. 64, pp. 912-918, 3// 2009.

A. Quddus and I. M. Allam, "BaS0O4 scale deposition on stainless
steel,” Desalination, vol. 127, pp. 219-224, 2/20/ 2000.

M. Euvrard, C. Filiatre, and E. Crausaz, "A cell to study in situ
electrocrystallization of calcium carbonate,” Journal of Crystal Growth,
vol. 216, pp. 466-474, 6/15/ 2000.

A. Quddus and L. M. Al-Hadhrami, "Hydrodynamically deposited
CaCO3 and CaS04 scales," Desalination, vol. 246, pp. 526-533, 9/30/
2009.

S. Labille, A. Neville, G. Graham, and L. Boak, "An Assessment of
Adhesion of Scale and Electrochemical Pre-treatment for the
Prevention of Scale Deposition on Metal Surfaces,” in International
Symposium on Oilfield Scale, 2002.

A. C. Martinod, "An Integrated Study of CaCO3 Formation and
Inhibition," Doctor of Philosophy, School of Mechanical Engineering,
The University of Leeds, Leeds, 2008.

181



[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

J. R. Davis and A. |. H. Committee, Metals Handbook Desk Edition 2nd
Edition: Taylor & Francis, 1998.

N. International, "Laboratory Screening Test to Determine the Ability of
Scale Inhibitors to Prevent the Precipitation of Barium Sulfate or
Strontium Sulfate, or Both, from Solution (for Oil and Gas Production
Systems)," ed: NACE International.

O. Sanni, T. Charpentier, N. Kapur, and A. Neville, "Study of surface
deposition and bulk scaling kinetics in oilfield conditions using an in-
situ flow rig," in NACE-International Corrosion Conference Series,
2015.

L. Beaunier, C. Gabirielli, G. Poindessous, G. Maurin, and R. Rosset,
"Investigation of electrochemical calcareous scaling: Nuclei counting
and morphology,” Journal of Electroanalytical Chemistry, vol. 501, pp.
41-53, 3/23/ 2001.

M. Euvrard, F. Membrey, C. Filiatre, C. Pignolet, and A. Foissy, "Kinetic
study of the electrocrystallization of calcium carbonate on metallic
substrates,” Journal of Crystal Growth, vol. 291, pp. 428-435, 6/1/
2006.

J. H. Olsen, "Statoil Experiences and Consequences related to
Continuous Chemical Injection,” in SPE Annual Technical Conference
and Exhibition, 2011.

N. Goodwin, O. G. Svela, J. H. Olsen, B. M. Hustad, T. Tjomsland, and
G. M. Graham, "Qualification Procedure For Continuous Injection Of
Chemicals In The Well-Method Development,” in SPE International
Conference on Oilfield Scale, 2012.

C. Stewart-Liddon, N. J. Goodwin, G. M. Graham, T. Tjomsland, B. M.
Hustad, O. G. Svela, et al., "Qualification of Downhole Valves Used in
Continuous Injection Systems,” in SPE International Oilfield Scale
Conference and Exhibition, 2014.

G. M. Graham, K. S. Sorbie, and M. M. Jordan, "How scale inhibitors
works and How this affects test methodology," presented at the IBC
LTD Conference, Aberdeen, 1997.

182



[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

O. Sanni, "Calcium carbonate surface/bulk scaling mechanisms and
kinetics in a once-through in-situ flow visualization rig,” Ph.D.,
Mechanical Engineering University of Leeds, 2016.

B. J. Hwang, R. Santhanam, and Y. L. Lin, "Nucleation and Growth
Mechanism of Electropolymerization of Polypyrrole on Gold/Highly
Oriented Pyrolytic Graphite Electrode,” Journal of The Electrochemical
Society, vol. 147, pp. 2252-2257, June 1, 2000 2000.

B.-J. Hwang, R. Santhanam, C.-R. Wu, and Y.-W. Tsai, "Nucleation
and Growth Mechanism of Electropolymerization of Aniline on Highly
Oriented Pyrolytic Graphite at a Low Potential,” Electroanalysis, vol.
13, pp. 37-44, 2001.

J. Simitzis, D. Triantou, and S. Soulis, "Synthesis and characterization
of electrically conducting copolymers based on biphenyl and
thiophene," Journal of Applied Polymer Science, vol. 118, pp. 1494-
1506, 2010.

D. Triantou, S. Soulis, D. Perivoliotis, and C. Charitidis, "Influence of
electrochemical copolymerization conditions of 3-methylthiophene and
biphenyl on the morphology and nanomechanical properties of the
films," Journal of Applied Polymer Science, vol. 132, 2015.

S. F. E. Boerlage, M. D. Kennedy, |. Bremere, G. J. Witkamp, J. P. van
der Hoek, and J. C. Schippers, "Stable barium sulphate
supersaturation in reverse osmosis,"” Journal of Membrane Science,
vol. 179, pp. 53-68, 11/15/ 2000.

D. Hasson, M. Avriel, W. Resnick, T. Rozenman, and S. Windreich,
"Mechanism of Calcium Carbonate Scale Deposition on Heat-Transfer
Surfaces," Industrial & Engineering Chemistry Fundamentals, vol. 7,
pp. 59-65, 1968/02/01 1968.

J. F. Wu, C. Y. Tai, W. K. Yang, and L. P. Leu, "Temperature effects
on the crystallization kinetics of size-dependent systems in a
continuous mixed-suspension mixed-product removal crystallizer,"
Industrial & Engineering Chemistry Research, vol. 30, pp. 2226-2233,
1991/09/01 1991.

183



[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

O. Bukuaghangin, O. Sanni, N. Kapur, M. Huggan, A. Neville, and T.
Charpentier, "Kinetics study of barium sulphate surface scaling and
inhibition with a once-through flow system,” Journal of Petroleum
Science and Engineering, vol. 147, pp. 699-706, 11// 2016.

S. Rosa and H. E. Lundager Madsen, "Kinetics of mass crystallization
of calcium carbonate at 25, 30 and 37 °C," Journal of Crystal Growth,
vol. 318, pp. 99-102, 3/1/ 2011.

X. Bogdanovi¢ and W. Hinrichs, "Influence of temperature during
crystallization setup on precipitate formation and crystal shape of a
metalloendopeptidase,” Acta Crystallographica Section F: Structural
Biology and Crystallization Communications, vol. 67, pp. 421-423,
2011.

R. A. Judge, R. S. Jacobs, T. Frazier, E. H. Snell, and M. L. Pusey,
"The effect of temperature and solution pH on the nucleation of
tetragonal lysozyme crystals,” Biophysical Journal, vol. 77, pp. 1585-
1593, 1999.

A. Baynton, B. D. Chandler, F. Jones, G. Nealon, M. I. Ogden, T.
Radomirovic, et al., "Phosphonate additives do not always inhibit
crystallization,” CrystEngComm, vol. 13, pp. 1090-1095, 2011.

S. N. Black, L. A. Bromley, D. Cottier, R. J. Davey, B. Dobbs, and J. E.
Rout, "Interactions at the organic/inorganic interface: binding motifs for
phosphonates at the surface of barite crystals,” Journal of the Chemical
Society, Faraday Transactions, vol. 87, pp. 3409-3414, 1991.

M. C. Van der Leeden and G. M. Van Rosmalen, "Adsorption Behaviour
of Polyelectrolytes in Relation to the Crystal Growth Kinetics of Barium
Sulfate,” in Mineral Scale Formation and Inhibition, Z. Amjad, Ed., ed
Boston, MA: Springer US, 1995, pp. 99-110.

C. E. Inches, K. El Doueiri, and K. S. Sorbie, "Green inhibitors:
Mechanisms in the control of barium sulfate scale," in CORROSION
2006, 2006.

W. H. Leung and G. H. Nancollas, "Nitrilotri (methylenephosphonic
acid) adsorption on barium sulfate crystals and its influence on crystal

184



[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

growth," Journal of Crystal Growth, vol. 44, pp. 163-167, 1978/09/01
1978.

L. Dupont, A. Foissy, R. Mercier, and B. Mottet, "Effect of Calcium lons
on the Adsorption of Polyacrylic Acid onto Alumina,” Journal of Colloid
and Interface Science, vol. 161, pp. 455-464, 12// 1993.

S.-T. Liu and D. W. Griffiths, "Adsorption Of Aminomethylphosphonic
Acids On The Calcium Sulfate Dihydrate Crystal Surface,” in SPE
Oilfield and Geothermal Chemistry Symposium, 1979.

T. Chen, A. Neville and M. Yuan, " Assessing the effect of Mg?* on
CaCOs scale formation-bulk precipitation and surface deposition.,"
Journal of Crystal Growth, vol. 275, pp. 1341-1347, 2005.

T. Chen, P. Chen, H. Montgomerie, T. Hagen, R. Benvie, Q. Guo, et
al., "Do We Need Higher Dose Scale Inhibitors to Inhibit Scale under
Turbulent Conditions? Insight into Mechanisms and New Test
Methodology,” in SPE International Oilfield Scale Conference and
Exhibition, 2014.

A. Martinod, A. Neville, and M. Euvrard, "Experimental investigation of
scaling control by a non-phosphorous polymer: polyaspartic acid,"
Desalination and Water Treatment, vol. 7, pp. 86-92, 2009/07/01 2009.

Z. Amjad, "Influence of Iron Oxide (rust) on the Performance of
Phosphonates as Calcium Carbonate Inhibitors,” in CORROSION
2016, 2016.

S. Kirboga and M. Oner, "The inhibitory effects of carboxymethyl inulin
on the seeded growth of calcium carbonate,” Colloids and Surfaces B:
Biointerfaces, vol. 91, pp. 18-25, 3/1/ 2012.

J. Chung, I. Granja, M. G. Taylor, G. Mpourmpakis, J. R. Asplin, and J.
D. Rimer, "Molecular modifiers reveal a mechanism of pathological
crystal growth inhibition,” Nature, vol. 536, pp. 446-450, 08/25/print
2016.

Q. Yang, Y. Liu, A. Gu, J. Ding, and Z. Shen, "Investigation of Calcium
Carbonate Scaling Inhibition and Scale Morphology by AFM," Journal
of Colloid and Interface Science, vol. 240, pp. 608-621, 2001/08/15
2001.

185



[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

S. Farmanesh, S. Ramamoorthy, J. Chung, J. R. Asplin, P. Karande,
and J. D. Rimer, "Specificity of Growth Inhibitors and their Cooperative
Effects in Calcium Oxalate Monohydrate Crystallization,” Journal of the
American Chemical Society, vol. 136, pp. 367-376, 2014/01/08 2014.

S. Bargir, S. Dunn, B. Jefferson, J. Macadam, and S. Parsons, "The
use of contact angle measurements to estimate the adhesion
propensity of calcium carbonate to solid substrates in water,” Applied
Surface Science, vol. 255, pp. 4873-4879, 2/15/ 2009.

J. T. V. Charpentier, S. Baraka-Lokmane, A. Neville, C. Hurtevent, J.
R. Ordonez-Varela, F. Moeller Nielsen, et al., "Comparison of
characteristic of anti-scaling coating for subsurface safety valve for use
in oil and gas industry,” in International Petroleum Technology
Conference, 2014.

H. Liang, D. Guo, L. Ma, and J. Luo, "Investigation of film formation
mechanism of oil-in-water (O/W) emulsions at high speeds,"” Tribology
International, vol. 109, pp. 428-434, 5// 2017.

M. Ratoi-Salagean, H. A. Spikes, and H. L. Rieffe, "Optimizing Film
Formation by Oil-in-Water Emulsions," Tribology Transactions, vol. 40,
pp. 569-578, 1997/01/01 1997.

X. Wang, W. Zhou, J. Cao, W. Liu, and S. Zhu, "Preparation of core—
shell CaCO3 capsules via Pickering emulsion templates,” Journal of
Colloid and Interface Science, vol. 372, pp. 24-31, 4/15/ 2012.

A. Martinod, M. Euvrard, A. Foissy, and A. Neville, "European
Desalination Society and Center for Research and Technology Hellas
(CERTH), Sani Resort 22 —25 April 2007, Halkidiki, GreeceProgressing
the understanding of chemical inhibition of mineral scale by green
inhibitors,"” Desalination, vol. 220, pp. 345-352, 2008/03/01 2008.

A. Martinod, A. Neville, M. Euvrad, and K. Sorbie, "Electrodeposition of
a calcareous layer: Effects of green inhibitors,"” Chemical Engineering
Science, vol. 64, pp. 2413-2421, 5/15/ 2009.

EPIWIN, "Software for estimating physical/chemical properties ", ed.
United State: Environmental Protection Agency, 2000.

CCC, "Material Safety Data Sheet," Canada2015.
186



187



