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Abstract

In this thesis we introduce a class of semiperfect rings which generalise the class of
finite-dimensional gentle algebras. We consider complexes of modules over these rings
which have finitely generated projective homogeneous components. We then classify them
up to homotopy equivalence. The method we use to solve this classification problem is
called the functorial filtrations method. The said method was previously only used to

classify modules.
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Chapter 1

Background and Preliminaries.

Introduction.

In this thesis we present and solve a classification problem. The objects we classify
are complexes of projectives up to homotopy, and so our results apply to derived
categories. For certain finite-dimensional algebras, indecomposables in their bounded
derived categories have been classified. For example if ) is a finite quiver then the
indecomposable objects in D°(k@-mod) are essentially given by the indecomposables in
kQ . So, by Gabriel’s theorem kQ is derived-finite provided @ is
a disjoint union of connected subquivers of Dynkin type A, D or E. For another example
we can consider a gentle algebra I', as introduced by Assem and Skowronski [4, p.272,
Proposition] (1.2.10)). By a theorem of Bekkert and Merklen, the indecomposables
in D(I'-mod) are shifts of string and band complexes. The problem we solve was inspired

by and generalises this theorem.

The class of complete gentle algebras we work over contains the Assem-Skowronski gentle
algebras discussed above. This containment is strict. For example, this class contains

infinite-dimensional algebras such as k[[z, y]]/(zy), and algebras where the ground ring is
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not a field, such as the ip—algebra

Y11 Y12 = o~
{ € Ma(Zyp) | v11 — Y22, 112 € pr}

Y21 722

The method used to solve this problem is sometimes called the functorial filtration method.
Functorial filtrations have been written in MacLane’s language of linear relations [49],
and were used in the past to classify modules (with certain finiteness conditions) up to
isomorphism. Gel’fand and Ponomarev [32] seem to be the first to solve classification
problems in this way. Their work was interpreted in the language of functors by Gabriel
[30]. Since then the method was adapted to new settings by Ringel [55], Donovan and
Freislich [23], Butler and Ringel [15], Crawley-Boevey [18] 19, 21] and Ricke [54].

The first chapter of this thesis comprises a literature review and an introduction to
the algebras and representations we work with in the second chapter. The first chapter
is organised as follows: generalisations of special biserial algebras are studied in section
in section we restrict our focus to generalisations of gentle algebras; the string
and band representations (which consitute complete lists of pairwise non-isomorphic
indecomposables) are looked at in section in section we look at the functorial
filtration method; and known classification results about derived categories are looked at

in section

The second chapter contains the main research presented in this thesis, where we adapt
the functorial filtration method to homotopy categories. The second chapter is structured
as follows: in section2.3]we introduce linear relations which we work with for the remainder
of the chapter; these relations are used to define functors in section in sections
and we verify certain compatability conditions between these functors and string and
band complexes; these verifications are used to complete the proofs of the main results in
section 2.6} and in section we apply our results and state some conjectures. The third

chapter is an appendix.
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Conventions: Unless stated otherwise, all categories are assumed to be additive and
locally small, and all functors are covariant and additive. All rings are associative,

although they need not be unital. By a module we mean a unital left module (see

definition |3.1.30)).

General Notation: In most definitions THIS FONT is used to highlight the terminology
or notation being defined. This is to help the reader find the definitions they want
with greater ease. We also use this font to emphasise the words being defined. THIS

FONT is also used in giving names to certain results in this thesis.

The short-hand resp. will be used to mean respectively. The short hand iff will be
used to mean if and only if. We write N for the set of non-negative integers. For

any set X we write # X for the cardinality of X.
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1.1 Some Biserial Rings.

Throughout the thesis we consider algebras defined using quivers and relations. The
quivers involved may have infinitely many vertices. For example in section [I.5] we look at
the string algebras considered by Butler and Ringel [15]. In chapter 2 we study algebras
where the ground ring is not necessarily a field (see example . To avoid repetition,
in this section we start by describing a class of rings (see definition which contains

all those we want to study.

1.1.1 Path Algebras and Relations.

Assumption: Throughout the thesis we assume R is a unital, commutative, noetherian

and local ground ring with maximal ideal m.

During the literature review (sections|1.3|and [1.5)) and in many examples we often restrict

to the case where R is a field (which is sometimes algebraically closed).

Example 1.1.1. (COMPLETIONS) For any field %k the ring k[[t]] of formal power series
> >0 a;t' (where a; € k) is commutative, noetherian and local, whose maximal ideal is
the ideal (t) generated by t (see [0, p.11, Exercise 5 (i)]). Note that k is isomorphic to the
quotient field k[[t]]/(t), and the exact sequence of abelian groups 0 — (t) — k[[t]] = k — 0
splits.

For an example where this sequence does not split, consider the ring of p-adic integers
Zg where p € Z is prime. Elements here are formal sums Y .2, a;p' where each o is
an element of {0,...,p — 1}. This defines a local noetherian ring with maximal ideal
pr ={>,aip' € ip | ap = 0}. The exact sequence 0 — pr — Zp — Z/pZ — 0 does

not split, as there are no non-zero additive homomorphisms Z/pZ — ZT,.

Example 1.1.2. (LOCALISATIONS) The ring of fractions Z,) = {{ | b € Z>o and p { b}
for a fixed but arbitrary prime number p defines a commutative local noetherian ring

with with maximal ideal pZ,). For another example we can take R to be the localisation

k[t = {% | g(0) # 0} where k is any field.
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Definition 1.1.3. (QUIVERS) In what follows Q = (Qo,Q1,h,t) will denote a quiver.
The functions h and t map the set of arrows @1 to the set of vertices )y taking an arrow

a to its head h(a) and tail t(a) respectively.

(PATHS) A non-trivial path of length n > 0 is a sequence p = aj . ..a, with h(a;+1) =
t(a;) for 0 <i<n (contraryﬂ to [5]). A trivial path has the form e, (where v is a vertex)
and should be considered a path of length 0. A path will mean a trivial or non-trivial path,
and we extend the domain of h and ¢ to the set of all paths by stipulating h(p) = h(ay)
and t(p) = t(a,) for any non-trivial path p (as above), and h(e,) = v = t(e,) for any

vertex v.

(CYCLES) A cycle is a non-trivial path whose head and tail coincide, a loop is a cycle

which is also an arrow, and a quiver is called acyclic if it has no cycles.

(PATH ALGEBRAS) RQ will be the path algebra of Q (over R), the R-algebra defined
by an R-basis consisting of the paths, and where the product ab of two paths a and b is
given by the concatenation of arrows in case t(a) = h(b), and ab = 0 otherwise. Note that

RQ@ is an associative R-algebra which is unital when @ is finite (see [5, 1.4 Lemmal]).

Example 1.1.4. In general our quivers contain cycles. They can also be infinite and
disconnected. In all of our examples there are countably many vertices, and each vertex

is labelled by a natural number. For example

10 11 12

|

aC()L>1L>

it

Definition 1.1.5. (RELATIONS) A set p of relations is a subset of |J, , enRQe,, where
u and v each run through the vertices of Q). Let (p) denote the two-sided ideal of RQ

generated by the elements in p.

Tn [5] the function h (resp. t) is written using the symbol ¢ (resp. s) and called the target (resp.
source). Furthermore, in [5] the unique length 2 path in the quiver @ = 1 <2 ~5 3 is written Sa,

where as in this thesis it is written af.
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(R-ALGEBRAS SURJECTIVELY GIVEN BY (@Q,p,6)) An R-algebra A is said to be
surjectively given by (Q, p, 0) if there is a quiver @), a set of relations p C Uu,v ey, RQey, and
a surjective R-algebra homomorphism 6 : RQ — A where: (p) C ker(0); e, ¢ (p) for any
vertex v; and 6(p) # 0 for any path p ¢ (p). In this case for any such p we abuse notation
by using the same symbol to denote the coset p + (p) and the image of this coset in A.
Note that 6 factors through the canonical projection RQ — RQ/(p), however in general
we have (p) # ker(6).

Example 1.1.6. Let Q) be the quiver given by two loops « and 8 at a single vertex v
and let p = {a?,%}. Let R = ip ,m = pzp (as in example ) and let A be the
zp—subalgebra of 2 x 2 matrices (v;;) € Mg(ip) with 11 — v929,712 € pzp. There is a

Zo—algebra homomorphism @ : Z,Q — A defined by extending the assignments

multiplicatively. Hence (p) C ker(€), and for any integer n > 1 we have

0 0 0 0
sy =| | s =]
p p

n 0 pn+1

oy = (" ). otsays) =
0 0 0

This shows any path ¢ ¢ (p) has a non-zero image in A. For any A € A we have A =

(> i rij,kpk)i,j for elements 75 € {0,...,p—1} where 1119 = 7220 and r120 = 0. Hence

A=0(r+ 0 Zaep(t) rpt0) where 1 = 1y and for each ¢ > 0 we let 1o = 7214,

TBat = T11,t+1, TaBt = 722,441 and 734 = r124+1. Thus 0 is surjective, and so A is given by

(Q, p,0). Note that the kernel of 6 is the ideal in ZJQ generated by o2, 82 and a8+ fa—p.

This example illustrates a scenario where the ground ring R is not a field, and where

(p) # ker(#). This will be a running example throughout the thesis.
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Definition 1.1.7. (NOTATION: P(t,v —), P(t)) For each ¢ > 0 and each vertex v let
P(t,v —) (resp. P(t,— v)) be the set of paths o of length ¢ with o ¢ (p) and tail (resp.
head) v, and let P(t) denote the set |J, P(t,v —) UP(t,— v) of all paths outside (p) of
length ¢.

(NOTATION: P(v —), P, A(v —)) For each vertex v let P(v —) (resp. P(— v)) denote
the set ;oo P(t,v =) (resp. ;oo P(t, = v)) of all non-trivial paths outside (p) with tail
(resp. head) v; and P denote the union (J,,P(t). We also set A(v —) = P(1,v —) and
A(—=v)=P(1,—v).

Example 1.1.8. Recall the quiver () from example Let

pP= {0667 o, Ny, o, M)‘a 907 TO, Vw&CVwé.Ca /8)‘77’7 - Oé}

The non-trivial paths with tail 0 which lie outside (p) are precisely
P(0 =) = {a"! ya™, nya™, Apya™ | n € N}

Definition 1.1.9. [35] §2] (see also [5, p.50]) (GENERALISED TRIANGULAR MATRIX
RINGS) For a fixed integer n > 1 we shall define a ring T,,(R;, Mij, ¢};) by fixing the

following data. For each integer i with n >4 > 1 let:

(a) let R; be a unital ring, and let M;; = R; considered as an R;-R; bimodule, and let
I;; be the identity map on R;; and for each integer j with n >4 > j > 1,

(b) M;; be an R;-R; bimodule, let I;; be the identity map on M;;, and let (pﬁj and cpgj
be the canonical R;-R; bimodule isomorphisms M;; Q®R; R; — M;j and R; ®g, M;j — M;;

respectively; and for each integer ¢t withn >i >t > j > 1 let

(c) gofj : My ®r, Myj — M;; be an R;-R; -bimodule homomorphism, where the diagram
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Iab®<pgd
Moy @r, Mpe @r, Mg Moy @R, Mpg

@gc(g)lac Sog'd

Pad
Mac ®Rc Mcd

commutes for any integers a,b,c,d withn >a >b>c>d > 1.

We can now define the generalised (lower) triangular matriz ring Tn(Ri,Mij,cpgj) by
the set of n x n matrices (m;;) where m;; = 0 for i < j and m;; € M;; otherwise. Addition
is defined component-wise and the product of (m;;) and (m};) is given by (3 i_, cpﬁj(mit ®
Example 1.1.10. Let p € Z be prime. Let R = Z/p3Z and m = pZ/p>*Z. Let Q be the

quiver

5

and let p = {)e,e3,&d,6a,a — yB}. Our aim is to define a generalised lower triangular

matrix ring A given by (Q, p, ), where 6 is yet to be defined.

Let R; = Ry = R3 = Rs = R/m which is isomorphic to Z/pZ, the field with p elements.
Let Ry = R = Z/p*Z. For 5 > i > j > 1 define the R;-R;-bimodules M;; by setting
M;y = 0 for ¢ = 4,5 and M;; = 7 /pZ otherwise. Hence for 5 > i >t > j > 1 there
are three possibly non-zero R;-Rj-bimodule homomorphisms gogj s My ®p, My; — M;j,

namely 3, ¢3; and pi;.

Let 03, = @3, be the Z/pZ-7/pZ bimodule homomorphism Z/pZ ®z/pz L/pZ — L[ pZ
given by it ® m +— fm, and let @i, be the Z/pZ-Z/pZ bimodule homomorphism
L[pZ @z,psz, L/pZ — Z/pZ given by the same formula. In this example, to check the
appropriate diagrams commute, one need only consider the case (a,b,c,d) = (5,4,3,2)

(which is straightforward).
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We label elements in the generalised triangular matrix ring A = T5(R;, M;j, @fj) by

i1 0 0 0 0
To1 T2 0 0 O
[rij] = | 731 732 T3 0 0
0

0 T4 Tag Tas

0 752 T53 Tsa Ts5

where for any r + p*Z € Z/p*Z we let 7 = r + pZ € Z/pZ. We can now define a Z/p3Z-
algebra homomorphism 6 : (Z/p3Z)Q — A by sending Z?:1 Ti€i + Y yep To0 tO

5 0 0 0 0
T3 s 0 0 0
mETa T T3 0 0
0 Tsy Ts T4+ pre+ p’ro2 0
0 Txoy TAs (B} 5

It is straightforward, but tedious, to check: 8 is surjective; 8 is a homomorphism of rings;

(p) C ker(d); and that o € P implies #(c) # 0. Hence A is a Z/p3Z-algebra given by
(@, p,0).
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1.1.2 Quasi-Bounded Special Biserial Algebras.

Assumption: In section we assume A is an R-algebra surjectively given by (@, p, 0).

In definitions [1.1.11] and [1.1.21] we introduce conditions on A to ensure the (unital)

projective indecomposable A-modules are biserial (see definition [1.1.26| and proposition
1.1.28]).

Definition 1.1.11. [61} §1, (SP)] (SpECcIAL CONDITIONS) We say (Q, p) satisfies special

conditions if:
SPI) given any vertex v we have #A(v —) < 2 and #A(— v) < 2; and

SPII) given any arrow y there is at most one arrow x with xy € P(2), and at most one

arrow z with yz € P(2).
Example 1.1.12. The pair (Q, p) from example satisfies special conditions.

Definition 1.1.13. (FIrRST AND LAST ARROWS, NOTATION: f(p), 1(p)) Any non-trivial
path p in @ has a first arrow f(p) and a last arrow 1(p) satisfying 1(p)p’ = p = p"f(p) for
some (possibly trivial) paths p’ and p”. That is, p may be depicted by

p” f(p)

(PARALLEL, INITIAL AND TERMINAL SUBPATHS) Two distinct paths in @ are called
parallel if they have the same head and the same tail. We say a path p is a subpath of
a path p/, and write p < p/, if p’ = ypd for some (possibly trivial) paths v and §. If §
is trivial we call p an initial subpath, and if « is trivial we call p a terminal subpath. If

p < p and p # p’ then we say p is a proper subpath of p'.

(MAXIMAL PATHS) A path p € P is called maximal if it is not a proper subpath of some

path p' € P.
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The following was adapted from [61, p.175, Corollary].
Lemma 1.1.14. Let (Q, p) satisfy special conditions.

For all p,p’ € P such that p is not longer than p’,

(ia) if f(p) = £(p') then p is an initial subpath of p/,

(ib) if 1(p) = 1(p/) then p is a terminal subpath of P/,

(ii) We have (p) = (p') in RQ where elements in p’ have the form ) rqq where q Tuns
through parallel paths in Q.

Proof. (i) Tt suffices to find some path 7 such that p’ = yp, by symmetry. Note p = qa
and p’ = ¢'a for a = f(p) and some paths ¢ and ¢'. If ¢ is trivial then ¢ = ;4 in which
case p = a and it suffices to take v = ¢/. Otherwise ¢ has length n > 0, and so ¢ is
also non-trivial. If f(¢) # f(¢) we have f(¢)a,f(¢')a ¢ (p) which contradicts SPII). Hence
f(q) = f(¢'). If q has length n > 0 then iterating this argument on the remaining n — 1

arrows in g gives the claim.

(ii) Recall definition Note that the set consisting of the elements e, (for each
vertex v) defines a complete set of orthogonal idempotents for A. By example for
each z € p there is a finite set of vertices v(1),...,v(n) for which z = ez = ze where
e = Y i"1 €y(;)- Note that the number n > 0 and the vertices v(i) all depend on z. Since
z € p we have e,(;)ze,(j) € (p) for each i and j, and we write e,(;)ze,(j) = >, 7¢q Where ¢
runs through the parallel paths with head v() and tail v(j), and r, € R is non-zero for all
but finitely many q. Let p’ be the set of all such €y(i)?€y(j) Where z runs through p. By

definition p" C (p) and p C (p) since z = 37, ; €,(;)2€y(j), and hence (p) = (p'). O

Definition 1.1.15. (POINT-WISE LOCAL ALGEBRAS) We say A is left (resp. right)
pointwise local if for each vertex v of @ the left module Ae, (resp. right module e,A) is

local with maximal submodule },c 5,y Aa (resp. 30 ca(yy) ).

We say A is pointwise local if it is left pointwise local and right pointwise local. In this

case rad(A) is the ideal of A generated by the arrows by lemma [3.1.34] (ii).
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Example 1.1.16. Let k be a field and A = k[z,y]/(xy). Note that A is surjectively given
by (@, p,0) where @ is the quiver with two loops X and Y at one vertex, p = {XY, Y X}

and 6 is given by X — x and Y — y.

In case k is algebraically closed the maximal ideals of A have the form (X — \,Y —
) + (XY)/(XY) for \,u € k. This shows rad(A) = 0 and so A is not pointwise local.

Consequently algebras arising in this way shall be omitted from focus.

Part (b) in the corollary below motivated definition|1.1.15] Part (¢) motivated definition
1.1.19 and SPIII) from definition [1.1.21] The corollary itself was motivated by [5]
11.2.10].

Corollary 1.1.17. Suppose:
(a) (@, p) satisfies special conditions;
(b) A is left (resp. right) pointwise local; and
(¢) Np>1(rad(A))"a =0 (resp. (51 a(rad(A))" = 0) for any arrow a.
Then for any p € P:
(i) any non-zero submodule of Ap (resp. pA) has the form Agp (resp. pgA) with q € P;
(ila) Ap is local with rad(Ap) = rad(A)p;
(iib) if rad(Ap) # 0 then rad(Ap) = Aap for an arrow a with ap € P; and

(iii) of p' € P, Ap = Ap’ and f(p) = £(p') (resp. pA =p'A and 1(p) =1(p')) then p =1p'.

Proof. (i) The proofs for the respective statements about pA will follow by symmetry.

Suppose N is a non-zero submodule of Ap. Consider the set T' consisting of all paths ¢
such that gp € P and N C Agp. Clearly e, € T where v is the head of p. Suppose T is
infinite, and so by lemma (ia) there is a sequence of consecutive arrows aj,as ...
(that is, where h(a;) = t(a;+1)) such that a,...a;p € P and N C Aa,...a1p for each

n>1.
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However as A is left pointwise local this means N C (1,5, rad(A)"f(p) = 0, and hence
T must be finite as N # 0. So we let ¢’ be the longest path in 7. For a contradiction
assume that N # Ag¢'p. Consider the submodule M of Aeyyy consisting of all 1 € Aep g

with ug'p € N. Since N # Aq'p we have M # Aepyy, and since A is left pointwise local

q')
this gives M C ZaeA(h(q,)ﬁ) Aa. Since N # 0 we can choose n € N C A¢'p with n # 0.
Writing n = A\¢'p gives A € M by definition. As A # 0 there must exist an arrow ¢’ with
tail h(¢') and a’q'p ¢ (p), and note that o’ is unique as (Q, p) saitsfies special conditions.
But now we have n = Nd'¢'p for some X' € A which shows N C Ad'¢’p and so a'¢’ € T

contradicts the maximality of ¢’

(ii) Consider the A-module homomorphism « : Aep) — Ap given by A — Ap. As
A is surjectively given by (@, p,0) we have a(ey)) # 0 and so @ # 0. Let m : Ap —
Ap/rad(A)p be the canonical projection. By [65 49.7 (b)] we have Ap # rad(Ap) and so
as rad(A)p C rad(Ap) we have p ¢ rad(A)p which means wa # 0.

By lemma [3.1.34| (ic) we have a(rad(Aep(,))) € rad(A)p C ker(r) and so rad(Aeyp,)) €
ker(ma). Since A is pointwise local this gives rad(Aey,(p)) = ker(ra) and so Ap/rad(A)p ~
Aeppy/rad(Aep ) which is simple and so rad(A)p is a maximal submodule, and thus

rad(A)p = rad(Ap).

(iii) We will just show that (Ap = Ap’ # 0 and f(p) = {(p)) implies p = p’. The other
statement will hold by symmetry. By lemma [1.1.14] (ia) we have p’ = vp with for some

path . For a contradiction we assume ~ is non-trivial.

Consider the map v : Aej,) — Ap sending A to Ap. Since Ap = Ayp we have ep,(,) —py €
ker(v) for some p € Aey ). Since Ap # 0 we have ker(v) # Aey,) and so as A is pointwise
local we have that ker(v) C >, can(p)—)Aa. Since py € 3 can(p)—) Aa this gives

€n(p) € ZaeA(h(p)—n Aa which contradicts that A is pointwise local. O

The quiver (Q may be infinite (see example|1.1.4)), and so A need not be unital. However
A will always have a complete set of (orthogonal) idempotents (see definition [3.1.30]) given
by the vertices of @ (which follows from the surjectivity of ).
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The equivalence of (iia) and (iib) in the followinﬁ will be used in section
Lemma 1.1.18. Suppose that

(a) (Q, p) satisfies special conditions,

and suppose that for each vertex v,

(b) Ame, C > )Aa (resp. e;mA C ZQGA(AU) al), and

a€A(v—
(c) P(t,v =) =0 (resp. P(t,—v)=10) fort> 0.
Then the following statements hold.
(i) A is left (resp. right) pointwise local.
(i1) If a is an arrow then Aa (resp. al) is finitely generated over R.
(iii) For distinct p,p’ € P we have (1) iff (2), where
(1) Ap = Ap’ (resp. pA = p'A) which is simple.
(2) p and p' are parallel and Rp = Rp' in A.
(iv) If ((1) or (2)) then Ap = soc(Aeyp)) = Ap' (resp. pA = soc(eppA) = p'A).
Proof. The respective claims hold by symmetry. We begin by showing any proper

submodule of Ae, is contained in . A(v—) Aa. We also set up some notation for later in

the proof.

By assumption (c) for all @ € A(v —) there is some integer | such that there are no
paths p of length n > [ with f(p) = a. Hence by lemma [1.1.14] (ia) there are arrows
1,5 0n(g) such that: n(a) <15 a1...a,4) € P; ayq) = a; and if p € P and {(p) = a

then p € {pa; | 1 <i < n(a)} where pai = a;...ay@q)-

So any p € Ae, has the form py = re, + Za,i TiaPa,i Where 7,74; € R. Now fix a €
A(v =), 4,7 > 1and ¢ € P(j). If i + j < n(a) then gp,; = Pa,i+j Or qpa,; = 0, and if
i+ j > n(a) then gp,; = 0. Hence for any 7 and j we have qpq; € Rpqit;-

2Compare with corollary [1.1.17] (iii).
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We now assume r ¢ m and show this gives Ay = Ae,. Without loss of generality we can
assume a,a’ € A(v —) and a # d’. For simplicity write n(a) = n and n(a’) = m. Since R
lies in the centre of A,and there are no paths p of length greater than 1 with f(p) = a, we

have py npt = rpa,n and so Rpg, € Ap as 7 is a unit.

By symmetry we can assume n > m. If n—1 > m then pg 11t = TDan—1+7a,1Pa,n—1Pa,1
and so by the above we have similarly that Rp,,—1 € Ap. Proceeding this way gives
Rpai € Ap when m < ¢ < n, and hence n,, € Ap where we let 7g = ngd Ti,aPa,i for

each d with 1 <d < m.

We now proceed as above, but we deal with the paths p, 4 and py 4 simultaneously.

Again pymMm = rPa,m and so Rpg m C Anpy,. Writing

Do/ mMm = TPa/;m + Tan—mPa’ mPan—m + -+ Ta,1Pa’ mPa,1

shows that p, ., € An, as each one of the following products of (pairs of) paths
Da’ ;mPan—ms - - - » Pa’ ;mPa,1 lies in Rp, ; for some ¢ with m+1 <4 < n. Thus pem, Pa/m € A,

and proceeding this way we can show pg i, per; € Ap for each ¢ with 1 <7 < m.

We have already shown that p,; € Ay when m <7 <n, and so re, € Ay which means
Ap = Ae,. Since we assumed r ¢ m, we have shown that for any proper submodule M of

Aey, if o € M then pp C Ame, + 3, c o (,—y) Aa which by (b) means Ap C 37 c o) A

(i) To recap, if M is a proper submodule of Ae, then M < ZaeA(v_ﬂ Aa. If
ZGGA&H) Aa = Ae, then we have e, € ZQGA@H) Aa. This means we can write e, as
p above where r = 0, which gives p,, = panes = 0 as above, which contradicts that

Pa;n € P(v —) and that A is surjectively given by (Q, p, ).

We have now shown there are no proper submodules containing . Afv—) Aa, which is

a proper submodule. Hence ) Alv—) Aa is the unique maximal submodule of Ae,,.

(ii) Note that Aa is generated as an R-module by the paths p with f(p) = a, of which
there are finitely many, by (c).

(iii) (1) = (2) By assumption there is some A € Aeyp(,y such that p = \p'.
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Since A is left pointwise local (by (i)), we can write A = reyy) + 2 for some 2 €
rad(A)ep(). This gives zp’ € rad(A)Ap’ = rad(Ap’) by corollary (ii), and as Ap/
is simple this means zp’ = 0 and so p = rp’. If r € m then reppy) € Ameyy) which is

contained in rad(A)ey(, by assumption (b) (and again as A is left pointwise local).

As above this means rp’ = 0 which contradicts that p € P. Hence r ¢ m which means
r is a unit and p = rp’ gives Rp = Rp’. Since p and p’ are distinct this shows they are

parallel.

(iii) (1) <= (2) If b is an arrow with bl(p) € p then bp’ € bRp = Rbp = 0. Without
loss of generality this means rad(A)ey(,) C ker(y) where v is the A-module epimorphism
Aeppy — Ap given by A — Ap. Note that 1(ep() # 0 and A is pointwise local (by part
(1)), so we must have rad(A)ey,) = ker(¢y)). Thus Ap is simple because A is pointwise

local, and similarly Ap’ is simple.

(iv) Since Ap and Ap’ are assumed to be simple we have Ap’, Ap C soc(Ae,). It suffices
to show Ap and (by symmetry Ap’) is an essential submodule of Ae, so that Ap D soc(Ae,)
by lemma (ib). Hence we assume M is a non-zero submodule of Aey,), and we
show M N Ap # 0. If M = Aey, then clearly M N A = Ap # 0 since p € P and there is

nothing to prove.

Otherwise M < ZaeA(h(p)_)) Aa as A is pointwise local, and we choose € M which is
non-zero. It suffices to find A € A such that 0 # Ay € Ap. Let p= )", 1o where piq € Aa
and py € Ad for a,a’ € A(v —) with a # @' (which exist as p and p’ are distinct and
parallel). In this notation p,, = p and py ., = p’, and so f(p) = a and f(p’) = o’ up to

reordering.

Since pu # 0 we can assume i, # 0 and, without loss of generality, u, # 0. So there exist
m/,n' > 0 maximal for which i € Apg,y and pigr € Apys . Hence pg = > 1% 74 iPa,i and
Pa/ = Yot Tar iDal i- 1 Tq € m then Ame, C 2 acA(v—s) Na implies 1o P € Apa i
Hence by the maximality of n’ and m’' we have ry ./, 7/ ¢ m. By symmetry we can
assume n —n' >m—m'. Let ¢ =ay, ...ay 1. If n =n' then m = m’ and so p, € Ap and

tar € Ap" € ARp C Ap, in which case it suffices to let A be the local unit of u.
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Otherwise n > n/, and so q is non-trivial. Note that

n
qlta = Zi:n’ Ta,iq9Pa,i = Tan’4Pa,n’ = Tan'P

as ¢pa,; has length greater than n if ¢ > n’, and similarly gu, = 0 as gpy; has length
n —n'+ j which is greater than m if j > m/, recalling we assumed (using symmetry) that

n—n'+m >m.

Hence setting A = ¢ gives A\ = qq # 0 as 14,7 ¢ m. O

The assumptions (b) and (c¢) from lemmall.1.18 motivated the following definition.

Definition 1.1.19. (RAD-NILPOTENCY) For an ideal I in R we say A is pointwise rad-

nilpotent modulo I if for each vertex v there is some n(v) > 1 for which
(rad(A))"We, C Ale, C rad(A)e,.

(ADMISSIBLE IDEALS, NOTATION J) [5], I1.2.1] Let J be the ideal of RQ generated by the
arrows. We say the ideal (p) in RQ is an admissible ideal provided there is some integer

m > 2 for which J™ C (p) C J>.

Example 1.1.20. Recall the algebra klz,y|/(xy) from example [1.1.16 Recall
rad(k[z,y]/(zy)) = 0 and so by definition k[z,y|/(zy) is pointwise rad-nilpotent modulo 1
iff I = 0. Note that p = {XY,Y X} and since X" ¢ (p) for all m > 1 the ideal (p) cannot

be admissible.

Definition 1.1.21. (QUASI-BOUNDED SPECIAL BISERIAL ALGEBRAS) A is called a quasi-

bounded special biserial algebra over R if (Q, p) satisfies special conditions, and:
SPIII) A is pointwise local and pointwise rad-nilpotent modulo m;
and for any arrow a
SPIV) the R-modules Aa and aA are finitely generated; and

SPV) the A-modules Aa N Aa’ and aA Na’A are simple or trivial for any arrow o’ # a.
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Example 1.1.22. Recall the 2p-subalgebra A ={(v) € Mg(ip) | v11 — 722,712 € pzp}
surjectively given by (Q, p,6) from example The calculations labeled () give

7., 0 0 pZ
Aa= PP T as= 0 P
Zy 0O 0 pZ,
0 0 7., pZ
arh=| _ |, pa= [P PP
pLy Pl 0 0

So, SPIV) and SPV) both hold. We now check SPIII). If A + I = A for a left ideal I
then we have 1 = X 4 v for some v = (v;;) € I and some A = ();;) € Ac. This means
A2 = Ao = 0 and so y12 = 0, A1 + 711 = 722 = 1 and 91 + Xo; = 0. Consequently
det(y) = 1 — A\1; which is a unit as \j; € pzp and so I = A. Hence A« is a superfluous
left ideal of A. Similarly AS is superfluous and so rad(Ae,) 2O Aa @ AS.

Conversely there is an R-module isomorphism Z/pZ — A/Aa @ AS sending the coset
of n to the coset of nly (where Iy is the unit in Mg(zp)) and so Ao @ AS is a maximal
left submodule of A which proves rad(Ae,) = Aa @ AB. This shows A is left pointwise
local. By symmetry we have rad(e,A) = aA @ SA and hence A is right pointwise local.
Moreover any path of length greater than 2 which lies outside (p) ends in a5 or fa, and
since a8 + Ba = p in A this means (rad(A))® € Ap C rad(A). Hence A is pointwise

rad-nilpotent modulo pzp and so A is a quasi-bounded special biserial algebra over ip.

Example 1.1.23. Let F, = Z/pZ for some prime p. Recall the Z/ p3Z-algebra A from

example [1.1.10

F, 0 0 0 0
F, F, 0 0 0
A =T5(Ri, Myj,¢;;) = |F, F, F, 0 0
0 F, F, Z/p’Z 0
o F, F, F, F,



Chapter 1. Background and Preliminaries. 19

Writing left submodules of A as columns gives

Aey=(F, F, F, 0 0)
PR ' submodules of
Aa=(0 0 F, 0 0)

column 1

N———

AB=(0 F, F, 0 0)
(0 F, F, F, F,)’
(00 F F, F,) }
Aes=(0 0 F, F, F,)
As=(000F, F,) }

submodules of

A62
Ay column 2
submodules of

column 3

N—— S~ —

Aes=(0 0 0 2/p°Z F, )

Ae=(0 0 0 pz/p*z 0) }
AM=(0000TF,)

submodules of

column 4

/N NN,
~_

. submodule of
Aes=(0 00 0 F,)

column 5

This shows A is left pointwise local, since for each vertex v € {1,2,3,4,5} the quotients
Aey/ D oc A(v—) Aa have p elements, and so they must be simple. Similarly one can show

A is (right and hence) pointwise local.

It is also clear that for each arrow a the Z/p?Z-modules Aa and aA are finitely generated.
The intersections Ao N A = Aa and aA NyA = aA have p elements, so they must also
be simple. Since Aa N Aa’ = 0 and aA N a’A = 0 for all other pairs of distinct arrows a

and a/, A is a quasi-bounded special biserial algebra over Z/p>Z.

We now explain how the special algebras studied by Pogorzaty and Skowronski [53] are

examples of quasi-bounded special biserial algebras.

Example 1.1.24. (POGORZALY-SKOWRONSKI SPECIAL ALGEBRAS) Let A’ = kQ/(p) be
a special algebra in the terminology used by Pogorzalty and Skowronski [53, pp.492 - 493].
This means: k is an algebraically closed field; A’ is surjectively given by (Q, p,6) where 6
is the quotient map k@Q — A’; (R1) and (R2) from [53], p.492] hold; and (p) is admissible.
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Conditions (R1) and (R2) are the same as SP1) and SPII) from definition Since
(p) is admissible we then have that A’ is pointwise local by lemma and so J/(p) =
rad(A) which together gives (p) C (rad(A’))? C rad(A’) and (rad(A))™ = (J/(p))™ = 0

for some m.

Hence A’ is pointwise rad-nilpotent modulo 0 and SPIII) holds. By lemma (i) it
is clear that SPIV) holds. To see that A’ is a quasi-bounded special biserial algebra over
k, one observes that the statement and proof of [61, Lemma 1] is precisely the verification
of SPV). Note that the definition introduced by Skowronski and Waschbiisch [61) §1 (SP)]

requires @) to be finite, a restriction we are omitting.

We now give some immediate consequences of definition [1.1.21

Corollary 1.1.25. If A is a quasi-bounded special biserial algebra over R then for any

vertex v,
(ia) Aev/ D peawoy Na =k = esN Y ca(y)al as R-modules, and
(ib) Aey, and e, A are finitely generated as R-modules.
Consequently
(ii) of Q is finite then the ring A is unital, noetherian and semilocal, and

(ili) M,>o(rad(A))"M = 0 for any A-module M which is finitely generated as an R-

module.

Proof. (ia) Consider the map 7, : R — Aey/ Y- c o (p—) Aa sending r to re,+3 -, o, Aa
For any A+ 3 ca(vy) M@ € Aey/ 3 e a(y—y) Aa there is some p € RQ with 6(p) = A since
0 is onto. Let A denote the ideal of RQ/(p) generated by the arrows. Since A = e,
we have that p = pe, and so writing pe, = re, + ae, for some r € R and a € A gives

réy — ey € ZaeA(UH) Aa. Hence 7, is surjective.

Suppose for a contradiction that me, = Ae,. Then there is some x € m for which
(1—2)e, =0in A. As 1 — z is a unit in R this contradicts that any path p ¢ (p) has a

non-zero image in A. Thus me, € 3~ c 2 (,_,) Aa and so m C ker(7y).
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Since 6 is onto ker(r,) is a left R-submodule of R, and as ker(r,) # R this gives
m = ker(7y). This gives an isomorphism between Aey/ ) c(,—) Aa and R/m = k. By

symmetry we also have an R-module isomorphism k ~ e,A/}" Alv—) Aa.

(ib) By SPIV) the R-modules }_,ca(,)Aa and 3

over R. By corollary [1.1.25 (i) the quotients Aey/ Y cp () Aa and ey A/ 3 cp () 0
are isomorphic to k, and hence by applying the horseshoe lemma (see lemma (3.2.8)) Ae,

aEA () al are finitely generated

and e, A are also finitely generated over R.

(ii) In general we have A = @, Ae, which is a finite direct sum if @ is finite, and each
summand is finitely generated by (ib). Hence A is finitely generated over R and has a
1 defined by )", e,. Since A is finitely generated over R, A is semilocal by [48, (20.6)

Proposition)].

Since R is a noetherian ring, A is noetherian as an R-module as it is finitely generated
over R. Any ascending chain of left (or right) ideals in the ring A defines an ascending

chain of submodules in the R-module A. This means A is a noetherian ring.

(iii) Note that [,,-(rad(A))"M C (), m"M by SPIII). The claim now follows from

Krull’s intersection theorem (see for example [48, Ex.4.23]). O

We now motivate the terminology introduced in definition [1.1.21

Definition 1.1.26. [28| p.62] (UNISERIAL AND BISERIAL MODULES) Let I' be a (possibly
non-unital) ring. We say a I'-module M is uniserial ift N C N’ or N’ C N for any
submodules N and N’ of M. Thus if M’ is a maximal (resp. simple) submodule of a
uniserial module M then M is local (resp. colocal) and M’ = rad(M) (resp. M' =
soc(M)).

If M is indecomposable we say M is biserial if there are uniserial submodules L and L’

of M such that
(a) L+ L' = M or M is local with L + L' = rad(M), and

(b) LNL' =0 or M is colocal with soc(M)=LNL'.
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In [28] p.65] Fuller calls a unital artinian ring I" biserial provided every indecomposable
projective left or right I'-module is biserial. To motivate the study of algebras with this

property we note the following theorem due to Crawley-Boevey.

Theorem 1.1.27. [20, Theorem A] Let k be an algebraically closed field and let T
be a finite-dimensional k-algebra with a multiplicative unit. If T' is biserial then I is

representation-tame (see definition [1.5.4)).

The following result generalises [61, Lemma 1]. The reader is advised to recall
section [3.1.5| in which some language and theory is developed about rings with enough

idempotents.
Proposition 1.1.28. Let A be a quasi-bounded special biserial algebra over R. Then:

(i) any unital projective indecomposable left (resp. right) module is isomorphic to Ae,

(resp. e,\) for some vertex v; and

(ii) for each wvertex v the left (resp. right) module Ae, (resp. e,A\) is unital,

indecomposable, projective and biserial.

Proof. The respective claims will follow by symmetry.

(i) By SPIII) A has a complete set of orthogonal local idempotents E defined by the
elements e, (where v runs through the vertices). By lemma|3.1.37|this means is any unital

indecomposable projective A-module P is isomorphic to Ae, for some vertex v.

(ii) By SPII) we have rad(Aey) = }_,ca(y—) Aa and by SPI) the set A(v —) has at

v—
most two elements. Without loss of generality we can assume there are two distinct arrows

a and o’ with tail v. Hence rad(Ae,) = Aa + Ad'.

By corollary [1.1.25| (iii) and SPIV), part (c) of corollary |1.1.17| holds. Parts (a) and (b)
of corollary [1.1.17 hold by assumption, and so by corollary [1.1.17| (i) the modules Aa and

Ada’ are uniserial. SPV) says the intersections Aa N Aa’ are simple or trivial. O

There exists an algebra which is not special (see example [1.1.24)) but whose projective

indecomposable modules are biserial.
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Example 1.1.29. Recall the special algebras introduced in example

Suppose R is a field k and p = {Sa — dya, €8} where @ is the quiver

a9 B 45
N A
3

Pogorzaty and Skowronski note in [53, Example 2, p.503] that kQ/(p) is not special

1 )

biserial. In a remark above [61, Lemma 2] Skowronski and Waschbuch have shown kQ/(p)

is biserial.
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1.2 Gentle Algebras.

1.2.1 Quasi-Bounded String Algebras.

Assumption: In section [1.2.1] we assume A is a quasi-bounded special biserial algebra

over R surjectively given by (Q, p, ).

Definition 1.2.1. (QUASI-BOUNDED STRING ALGEBRAS) We call A a quasi-bounded

string algebra over R if AaNAa’ = aANa’A =0 for any distinct arrows a and a’.

(BUTLER-RINGEL STRING ALGEBRAS) [15, p.157] By a (Butler-Ringel) string algebra
we mean an algebra of the form kQ/(p) where: k is a field; @ is a (possibly infinite) quiver;
the elements of p are paths of length at least 2; and conditions (1), (1*), (2), (2*), (3) and
(3%) from [I5, p.157] hold.

Conditions (1) and (1*) are the same as SPI) from definition Similarly conditions
(2) and (2*) are the same as SPII). Condition (3) (resp. (3*)) says that for each vertex v

we have P(t,v —) = 0 (resp. P(¢t,— v) =) for some ¢ > 0.

Example 1.2.2. Recall the quasi-bounded special biserial algebra A over Z/p3Z from
example[[.1.23] As presented, A is not a string algebra since AaNAS = Aa and aANyA =

al have p > 0 elements.

We now explain how the two notions from definition relate to one-another.

Lemma 1.2.3. If k is a field then A is a quasi-bounded string algebra over k iff it is a
Butler-Ringel string algebra.

Proof. Let A be a Butler-Ringel string algebra. As conditions (3) and (3*) hold A is
pointwise rad-nilpotent modulo 0. As in example [[.1.24] lemma [I.1.1§] applies, and so
SPIII) and SPIV) both hold. Now suppose a and @' are distinct arrows with the same
tail. Since p consists of paths, the set of p such that f(p) = a defines a k-basis for Aa, and
so AaN Ad’ = 0. Hence SPV) holds and so A is a quasi-bounded string algebra over k.

Conversely, suppose A is a quasi-bounded string algebra over k.
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Hence m = 0, and so A is surjectively given by (Q,p,0) where 6 : kQ — A is some
k-algebra surjection where (p) C ker(f) and 6(p) # 0 for any path p ¢ (p). As above,
since SPI) and SPII) hold, conditions (1), (1*), (2) and (2*) from [I5 p.157] hold. A is
pointwise local and pointwise rad-nilpotent modulo 0, and so conditions (3) and (3*) also

hold. Choose a subset ¢ of Uuw evkQe, such that ker(0) = (p), and so A ~ kQ/(0).

We now claim (g) = (p) where g consists only of paths. By lemma |1.1.14] (ii) we have
(o) = (¢') as ideals in kQ where any element in p' has the form 3 7, where ¢ runs
through parallel paths in @Q, say from u to v. Let Zq rqq € p', and 80 —7¢ €, = Zq#u rqq

as elements in A.

If e, # 0 then Aey € 37 ca(y)(Aa) which contradicts corollary [1.1.25) (ia). Hence
re, = 0. By lemma [1.1.14] (i) there are at most two non-trivial paths p and p’ with head

u and tail v such that p,p’ € (0) = (). Without loss of generality assume p and p’ exist.

This means rp, + 1y =) gtpp Tad =0 as elements in A. Without loss of generality we
can assume p is not longer than p'. Let r = r, and 7’ = ry. By definition p = r L'y in A
and hence kp = kp’, and by lemma |1.1.18|this means Ap = Ap’. Since A is a quasi-bounded
string algebra and Af(p) N Af(p’) # 0, we must have f(p) = f(p’).

By SPIV) and corollary [1.1.25| (iii), part (c) of corollary [1.1.17| holds. Parts (a) and

(b) of corollary [1.1.17| hold by assumption. Hence by corollary [1.1.17| (iii), we must have
p = p’ which contradicts that p and p’ are distinct (recall parallel paths are distinct by

definition). Hence (9) = (9) where p consists only of paths.

An issue still is that 9 may contain arrows. Define a new quiver @ as follows. Define a
vertex v in @ for each vertex v in (). Define an arrow a with head v and tail u for each
arrow a ¢ (p) with head v and tail u. Let g be the set of non-trivial paths p in @ such
that a is not a subpath of p. Define w : k@ — k@ by extending the assingments ez — e,
and @ — a linearly over k. The composition with the canonical surjection kQ — kQ/(p)

defines a k-algebra surjection 7 : kQ — kQ/(o) such that (g) C ker().

Futhermore any ) r,p € ker(m) (where p runs through the paths in Q) satisfies
Zp spp = 0 where s, = r), for any path p ¢ (p), and s, = 0 otherwise.



Chapter 1. Background and Preliminaries. 26

Since paths define a linearly independent subset of k() this means s, = 0 for any p,
and so Zp rpp = Zq rqq where ¢ runs through the paths in @ with ¢ € (0). This gives
kQ/(p) ~ kQ'/(p') as k-algebras, so we can assume p consists of paths of length at least
2. Thus A is a Butler-Ringel string algebra, as required. O

Example 1.2.4. The algebra k[z,y]/(zy) from example [1.1.16] is an example of a string
algebra in the sense of Crawley-Boevey [21]. However k[z,y]/(zy) is not an example of a
quasi-bounded string algebra over k, because it is not a Butler-Ringel string algebra, since

™ ¢ (xy) for all m > 0 (and so condition (3) fails to hold).
By definition every quasi-bounded string algebra over R is a quasi-bounded special
biserial algebra over R. Next we prove the following analogue of |25, 11.1.3].

Lemma 1.2.5. Let e, A and Ae, be artinian R-modules for each v. Let X be the set of

vertices x such that Rp, = Rpl, (in A) for some distinct parallel p,,pl, € P(x —). Then:
(i) if x € X then Ap, = soc(Ae;) and p A = soc(ep(p,)A), which are simple;
(ii) I = @ cx soc(Aey) defines a two sided ideal of A;
(iii) A/I is a quasi-bounded string algebra over R; and

(iv) if M is an indecomposable A-module, then IM =0 or M ~ Ae, for some z € X.

To achieve this goal we need some preliminary results.

Lemma 1.2.6. Let v and w be vertices such that Ae, and ey, A are artinian as R-modules.

Consider the map mult : e, A X Ae, — e, Ae, defined by mult(\, ) = Au. Then:
(i) as R modules Ae, and e,A are of finite length;
(i) the rings eyAe, and ey,Aey, are local;
(iii) rad(eyAey,) = eyrad(A)e, and rad(eyAey) = eprad(A)ey,;
(iv) soc(Aey) <e Aey and soc(ey) <o ewA;

(v) the map mult is e, Aey-e,Ae, bilinear (see [2, p.280]);
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(vi) Home,pe,-Mod (T, ewey) >~ soc(eyA)e, in Mod-e,Aey if ¢ ne, T is simple;
(vii) Hompod-e, e, (T7, ewey) = eysoc(Aey) in eyAe,-Mod if TévAev 1s simple; and

(viii) if (Ap = soc(Aey), pA = soc(ewA), and these modules are simple) for some p € P,

then mult is non-degenerate.

Proof. For parts (i), (ii) and (iii) we only show the left R module Ae, has finite length,
and that this means the ring e,Ae, is local with rad(e,Ae,) = e,rad(A)e,. The other

proofs are similar.

(i) By assumption the left R-module }_ A, Aa is noetherian since it is finitely

v—)
generated over R by SPIV), and R is a noetherian ring. By corollary [1.1.25| (i) the left R-
module Ae,/ ), A(v—) Aa is isomorphic to k, and hence noetherian. Together this shows
Ae, is noetherian as a left R-module. By assumption Ae, is artinian as a left R-module,

and so it has finite length as a left R-module.

(ii) By part (i) Ae, is artinian and noetherian as a left A module. By [65, 32.4, (1)] this

means Ae, is a finite length left A-module.

Since A is pointwise local, by lemma the A-module Ae,, is indecomposable. It
is straightforward to check the map Endp(Ae,) — e,Ae, given by f — f(e,) is a ring
isomorphism. By [65], 32.4, (3iii)] this means the (unital) ring e, Ae, is local, since the left
A module Ae, has finite length.

(iii) Suppose [ is any proper left ideal of e,Ae,. Note that I = e, Al and the A-module
AT is contained in Ae,. If AT = Ae, then we can write e, as a finite sum of elements of the
form e, Aeyx for A € A and x € I and where u runs through (finitely many of) the vertices.
Multiplication on the left by e, shows that e, € I which is a contradiction. Hence Al is

strictly contained in rad(Ae,).

Since A is pointwise local rad(Ae,) = rad(A)e,, and so I = e,Al C e,rad(A)e,.
This shows e,rad(A)e, is a maximal ideal of e,Ae,. Together with part (ii), this shows

rad(ey,Aey) = eyrad(A)e,.
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(iv) Since Ae, is artinian as a left R-module it is artinian as a left A-module.
Consequently soc(Ae,) can be written as the intersection of finitely many essential
submodules. By lemma (ib) this shows soc(Ae,) is an essential A-submodule of
Ae,. Similarly e, A is artinian as a right A-module and again we can show soc(e,,A) is an

essential A-submodule of e, A.
(v) This follows from the properties of ring multiplication.

(vi) If S is any simple left e, Ae,,-module and s € S is any non-zero element then the
ewAey-module homomorphism e, Ae,, — S given by A — As is onto. By parts (ii) and
(iii) the kernel of this map is e, rad(A)e, because S is simple. Hence S is isomorphic to

the quotient e, Aey, /eyrad(A)e,. Consider the following assignment 6 of hom-sets

Home  Ae,,-Mod (€w ey, soc(eyA)e,) — Home ae, -Mod (EwAew/ewrad(A)ey, e,yAey)

sending f : epAey, — soc(epM)e, to a map g/ : eyAey/eprad(A)e, — eynhe, given by
g7 (ewew + eprad(A)ey) = flewAey). If epdey, € eyrad(A)e, then by lemma (ic)
we have f(eyAey) € rad(soc(ewA)ey)) = 0, so 0 is well defined. Since the right-action of
eyAe, on soc(e,A)e, is the restriction of e,Ae, acting on e, Ae,, we must have that 6 is

a homomorphism of right e,Ae,-modules.

Clearly g/ = 0 implies (f(ey) = 0 and so) f = 0, and so @ is a monomorphism. Finally,
any non-zero homomorphism g : e,Aey/e,rad(A)e, — eyAe, of ey Aey,-modules must
be injective since e, Aey/erad(A)e,, is simple, and so im(g) C soc(e,A)e,. Hence we
have g = g/ where f is given by f(ewhew) = g/ (ewew + eprad(A)e,). Thus 6 is an

isomorphism.
The proof of (vii) is similar and omitted.

(viii) See [2, p.327]. Suppose the submodule X = {\ € Ae, | A\u =0 Vu € e, A} of Ae,
is non-zero. Since Ap = soc(Ae,) which is essential by (iv), we must have X N Ap # 0, and
since Ap is simple this means Ap C X and so we have 0 # p = e,,pe, = 0. Altogether this
shows X = 0, and similarly we can show the submodule Y = {u € e, A | Au =0 VA € Aey}

of e, A is zero since pA = soc(e,A) is simple. O
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Lemma 1.2.7. Let v and w be vertices. If
(a) Aey and e, A are artinian R-modules, and
(b) Ap = soc(Aey) and pA = soc(e,A) are simple for some p € P,

then Ae, is injective.

For the proof of this lemma we use the following.

Theorem 1.2.8. [2, 30.1. Theorem. (2), (4)] LetT" and I be unital rings. Let p M be a left
T’ module, N be a right T' module, vUr: be a T'-I"-bimodule, and 8 : tM x Npv — pUp

be a I-IV bilinear map. Suppose:
(a) either tM or Ny has finite length;
(b) the map [ is non-degenerate;
(¢) Hompr.nod (T, U) is simple in Mod-T" whenever pT is simple; and
(d) Hommpoa.r (T7,U) is simple in T-Mod whenever T}, is simple.
Then:
(i) the map o : M — Hompgoa./ (IV,U) given by a(m) : n — B(m,n) is a bijection;
(ii) the map v : N — Homp.nvoa(M, U) given by y(n) : m — B(m,n) is a bijection; and
(iii) pU is tM ingective, and U is Nps injective.

Conclusions (1) and (3) from [2, 30.1. Theorem.] are missing from the above, because

these will not be needed.

Proof of lemma[1.2.7. We follow the proof of the implication < in [2, 31.3]. Note that

ewley and e, Ae, are unital rings with multiplicative identities e,, and e, respectively.

By lemma (v) and (viii) the map mult : e,,AxAe, — e, Ae, defined by mult(\, ) =
A is a non-degenerate bilinear form. By lemma m (vi) Home,Ae,-Mod (T ewAey) ~
soc(eyA)e,. By assumption soc(e,A)e, is a simple right e, Ae,-module, and so together we

have that Hom,, pe,,-Mod (T, ewAey) is simple in Mod-e, Ae,, if T is simple in e,,Ae,,-Mod.
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Similarly Hommjod-e,Ae, (T, €wAey) is simple in e,Ae,-Mod if T7 is simple in
Mod-¢e,Ae, by lemma [1.2.6] (vii). Note that e,Ae, is a submodule of a finite length
R-module by lemma m (i). Hence e, Ae, has finite length as a left e, Aey-module.

We have now verified parts (a), (b), (c) and (d) from theorem hold, where I' =
ewleyw, I = e,Aey, M = e, A, N = Ae,, U = ey, Ae,, and 3 = mult.

By theorem m (i) the map « : Ae, — Home, pe,-Mod (€wA, ewAey,) given by a(p) :
A= mult(A, p) = A\ (for each p € Ae,) is a bijection. Note Home, re,-Mod (€wA, €wAey)
is a left A-module, where (for each f € Hom,, pe, -Mod(€wA, ewAey), K € A and X € e, A)
one has (kf)(A) = f(Ak). In particular,

(k(a (1)) (V) = (@) (k) = mult(h, 1) = (M)
— M) = mult(\, 51) = (k) )(N).

This means « is (A-linear, and hence) an isomorphism Ae, ~ Hom,, pe,,-Mod (€wA, €y Aey)
of left A-modules. Since e, A contains e,,Ae,, as a direct summand e, Ae,, is subgenerated
by e, A (see [65] §15]). So, by [65, 15.3 (a) iff (b)] and [65], 45.8 (1)], the e,y Aey-A bimodule

ew\ gives a pair of adjoint functorsﬂ
ewl @A —: A-Mod — e Ae,-Mod and Home pe,,-Mod (€A, —) : epwAey,-Mod — A-Mod

Note this is well-known as the tensor-hom adjunction. The existence of this adjunction

implies there is a natural isomorphism

HomewAew—Mod((ewA QA _)7 ewAev) ~ HomA—MOd(_7 HomewAew—Mod (6wA, ewAev))

of functors (A-Mod)°® — Ab (where Ab is the category of abelian groups). Note that
ew\ is a projective object in Mod-A by the appropriate analogue of lemma and
50 epA ®pA — : A-Mod — e, Ae,,-Mod is exact (see [65] §18]).

3We use — to denote the argument for the various functors we consider.
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ew\ contains e, Ae, as a direct summand, and so e,A is a generator for e,Ae,-Mod
(see [2, §8, Exercise 4]). By theorem [1.2.§ (iii), ewAe, is e, A injective as a left e, Aey-

module. Hence the left e,,Ae,-module e, Ae, is injective (see [2, 16.14. Corollary. (1)]).

From the above we have that Hom,, pe,,-Mod ((€wA ®p —), e Aey) is exact. Since Ae, ~
Home, pe,,-Mod (€wA, ewAey) as left A-modules, Homa mod(—, Aey) is exact, and so Ae, is

injective. ]

Proof of lemma[1.2.5 By SPIV) and corollary[1.1.25|(iii) part (c) of corollary[1.1.17/holds.
Parts (a) and (b) of corollary [1.1.17| hold by assumption, and so (for the remainder of the

proof) we can apply corollary[1.1.17} Let v be a vertex. We start by showing P(t,v —) = ()
and P(t,— v) = 0 for all ¢ > 0. For a contradiction we assume otherwise, say that

(P(t,v —) =0 for all ¢ > 0) is false.

At most two arrows have tail v, and so this assumption means there is an arrow a with
tail v and a strictly increasing sequence of integers t; < to < t3 < ... such that for each
integer i > 0 there is a path p; € P(¢;,v —) with f(p;) = a. By lemma[1.1.14] (ia) p; is an

initial subpath of p;y; for each i, and so there is a strict chain of R-modules
Aey, D Apy D Aps D Aps D ...

which contradicts the assumption that Ae, is an artinian R-module. This means part (c)
of lemma|1.1.18 holds. Parts (a) and (b) of lemma 1.1.18 hold by assumption, and so (for
the remainder of the proof) we can apply lemma [1.1.18|

(i) If z € X then Rp, = Rp!, for some distinct parallel p,,p, € P(z —). By lemma
1.1.18| (iv) this means Ap, = soc(Ae;) = Ap), and p,A = soc(ep(p,)A) = p,A. By lemma
1.1.18| (iii) these modules are simple.

(ii) Let x € X. By lemma (i) Aeg is the injective hull of soc(Aez). By lemma
(ilic) we can write soc(Ae,) as the direct sum S; @ - - - @ S,, where each S; is simple.
By lemma (ila) and (iiib) Ae, ~ FEy & --- & E,, where each F; is the injective hull
of S;.
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Now Ae,, is indecomposable by lemma [3.1.37] and so n = 1 and thus soc(Ae;) is simple,

and hence there is a unique simple A-submodule of Ae,.

Since [ is a left ideal it suffices to show zu € I for any z € I and p € A. Defining the
A-module endomorphism g : A — A by A — A\p it suffices to show the image of g restricted

to I lies in I.

For a contradiction suppose there is some vertex ¢ € X such that im(gs;) € I where
st : soc(Aey) — I is the canonical inclusion. If im(gs;) C @, cx Aey then as soc(Aey) is

simple for each ¥, so too is im(gs;), and so by lemma [3.1.34] (iib) im(gs;) is contained in
soc(D,cx Aey) = 1.

This is a contradiction, and so there is some vertex v ¢ X for which m,gs; # 0 where
Ty : A — Ae, is the canonical projection. This means m,gty # 0 where 1 : Ae; —
A is the canonical inclusion. If ker(m,gt;) # 0 then as soc(Ae;) is essential we have
ker(myger) Nsoc(Aey) # 0, and since soc(Ae;) is simple this means soc(Ae;) C ker(myget)

which contradicts that m,gs; # 0.

Hence ker(m,gt:) = 0 and so as Ae; is injective and m,g¢; is an inclusion we have that
Ae; is a summand of Ae,. By lemma this means Ae; ~ Ae, and so Ae; = Aege, =0
since v ¢ X > ¢. Hence assuming (there is some vertex ¢t € X such that im(gs;) € I) gives

the contradiction Ae; = 0.

(iii) We claim firstly that A/I is surjectively given by (Q, px,76) where
px =pU{pz | x € X} and m: A — A/I is the canonical projection.

Clearly any element of px is sent to 0 under 76 and so (px) C ker(wf). Now suppose p is

a path with p ¢ (px). For a contradiction suppose 7(6(p)) = 0 and so 6(p) € I.

Note there is a finite subset V' of X where (p) € @,y soc(Ae,), and so 0(p) = >, c A
where A\, € soc(Ae,,) for each u € V. Since A is surjectively given by (Q, p,0) and p ¢ (p)
we must have 0(p) # 0, and so 0(p)f(e,) # 0 for some w € V' (otherwise A\, = 0 for each
u € V which would mean 6(p) = 0).
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Since 6 is an algebra homomorphism this shows 6(pe,,) # 0, and so w = ¢(p), and so
O(p) = 0(p)f(ew). Altogether this gives 0(p) = A\, € soc(Aey,) = Apy,. We now have that
Ap C Apy, = Ap),. Without loss of generality we have f(p,,) = f(p). By corollary (i)
Ap C Ap,, implies Ap = Agp,, for some path ¢, and so p = ¢py,, by corollary (iii),
which contradicts that p ¢ (px).

This contradiction tells us that A/I is surjectively given by (Q, px, ). Since px 2 p
and (Q, p) satisfies special conditions the pair (@, px) satisfies special conditions. Hence
SPI) holds and SPII) holds. Furthermore any path p € px must be non-trivial, since

otherwise e, € p for some vertex v which contradicts that A is surjectively given by

(Q,p,0).

Since I C Z:L‘EX,aEA(x—)) Aa C rad(A) and A is pointwise rad-nilpotent modulo m, for

each vertex v there is an integer n(v) > 1 such that
(rad(A/1))"®e, = (((rad(A)™®) + I)/T)e, = (rad(A))"®e, + /T
which lies in (Ame, + I)/I = (A/I)me,, and
(A/Ime, = (Ame, + 1)/ C (rad(A)e, + I)/1 = (rad(A)/I)e, = rad(A/I)e,

and so A/I is pointwise rad-nilpotent modulo m. For any vertex v and any ideal J in A

we have (J/I)e, ~ Je,/Ie, as A-modules. As above we have

rad(A/I)e, = (rad(A)/I)e, = rad(A)ey/Ie, = (ZaEA(v%) Aa)/Ie, = ZaeA(v%) (A/T)a,
(A/T)e,/rad(A/I)e, ~ (Aey/Iey)/(rad(A)ey/Iey) ~ Ae,/rad(A)e,

and so A/I is left pointwise local. By symmetry A is also right pointwise local and hence
SPIII) holds. If a is an arrow then (A/I)a ~ Aa/Ia as A-modules and hence as R-modules,
which means (A/I)a is finitely generated as an R-module because (Aa is finitely generated
as an R-module and the quotient map Aa — Aa/Ia is an R-module epimorphism). So,

SPIV) holds.
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To prove A/I is a quasi-bounded string algebra over R surjectively given by (Q, px, 76),
by symmetry it suffices to prove (A/I)a N (A/I)a’ = 0 whenever a and o' are distinct

arrows.

It suffices to assume a and @’ have the same tail, say v. Choosing A\+1 € (A/I)anN(A/I)d’
with A € Ae, it suffices to prove A € Ie,. By corollary we have Aa N Aad’ = Ap and
Aa N Ad' = Ap' for some p,p’ € P where f(p) = a and f(p’) = o’. ;Since A is a quasi-
bounded special biserial algebra, Ap = Ap’ is simple, and so by lemma (iii) the
paths p,p’ € P are parallel and Rp = Rp’. Since t(p) = t(p') = v this means v € X, and
so after reordering we have p = p, and p’ = p/. Hence if A\ € AaNAd’ then A € Ap, C Te,

and so we can assume A ¢ Aa N Ad'.

By definition there are some u € Aey(q) and TS Aep(qy such that A — pa € I and
A—p'a €1, and so pa — p'a’ € I. Since v € X this means means A — pa, A — p'a’ € Ap,
and so pa — p'a’ € Ap,. As above we can apply corollary (i) to show Aua = Aqga
for some path ¢, and since A ¢ AaN Aa’ we can assume pa # 0, and so by corollary
(iii) we can assume q is of maximal length such that Aua = Aga. Let pa = nga for some
n € Aepg). Writing 7 = rep(,) + 2z where 7 € R and z € rad(A)ey,(,) gives pa = rqa + zqa,
and so by the maximality of ¢ we have r ¢ m since Amey,,) C rad(A)ej(q). Similarly there

/o0

is some path ¢', some 7' € R\m and some 2’ € rad(A)ep(q) such that p'a’ = r'q'a’ +2'¢'a.

Without loss of generality f(p) = a which means Ap, C Aga and so p,qa = p, for some
path p, (by another application of corollary |1.1.17). By symmetry we can also assume
parq'a’ = pl, for some paths ¢/, p),. For a contradiction we now assume p, and p, are both

nontrivial. Without loss of generality we can assume p, is not shorter than p,.

Suppose 1(pa) = l(par), in which case 1(p,) = l(paga) = l(pwd'a’) = l(py). Since
Ap, = Ap,, by corollary [1.1.17) (iii) we have p, = p, which contradicts that these

paths are parallel. So we must have 1(p,) # 1(py). We now claim this means p,q’'a’ = 0.

Note that ga and ¢'a’ are non-trivial paths. If f(p,) # f(py) then p,q’ = 0 by SPI) and

the claim holds. Otherwise f(p,) = f(pa/), and so p, is an initial subpath of p, by lemma
1.1.14] (ia), and so p, is longer than p, since 1(pg) # 1(par)-
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So, pag'a’ € rad(A)pyq'a’ = rad(Ap)). The claim now follows, since Ap, is simple by
part (i) and so rad(Ap),) = 0. Altogether this gives p,(na — p'a’) = rpaga = rp, which is
non-zero as r is a unit. Since pa—p'a’ € Ap, and p, is non-trivial we have the contradiction

rad(Ap,) # 0. Hence p, must be trivial, and so ga = p,, which means pua € I as required.

(iv) It suffices to assume p,m # 0 for some m € M and some z € X, and then
prove M ~ Ae,. Consider the A-module homomorphism ¢ : Ae, — M sending Ae, to
Am. If ker(¢) # 0 then ker(yp) N soc(Aez) # 0 as soc(Aeg) is essential and therefore
soc(Aey) C ker(p) as soc(Aey) is simple. However this is impossible as p, ¢ ker(y) as
pem # 0. Hence ker(p) = 0. Since Ae, is injective by lemma this means Ae, is a

summand of M, and so M ~ Ae, as M is indecomposable and Ae, # 0. O

Example 1.2.9. Recall the quasi-bounded special biserial algebra A over Z/p3Z from
example [1.1.23] Note Aa N AS = Aa # 0, and Aa N Aa’ = 0 for all other pairs of distinct
arrows a,a’. In the notation of the proof of lemma we have X = {1} and

I:soc(Ael):Aa:Avﬁz(O 0 F, 0 O)t

as a submodule of column 1, which gives (as rings)

F, 0 0 0 0
F, F, 0 0 0
A)fT~10 F, F, 0 0
0 F, F, Z/p®Z 0
0O F, F, F, F,

which is the quasi-bounded string algebra over Z/p3Z surjectively given by (Q, px,70)
where px = pU{a}.
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1.2.2 Complete Gentle Algebras.

Recall definitions [L1.11] and [[.2.11

Assumption: In section we assume A is a quasi-bounded string algebra over R
surjectively given by (Q, p,0).

Definition 1.2.10. (QUASI-BOUNDED GENTLE ALGEBRAS) By the assumption above
the pair (Q, p) satisfies special conditions SPI) and SPII).

We say the pair (Q, p) satisfies gentle conditions if in addition:
GI) any path p ¢ P has a subpath ¢ ¢ P of length 2; and

GII) given any arrow y there is at most one arrow = with zy ¢ P and at most one arrow

z with yz ¢ P.
We call A a quasi-bounded gentle algebra over R if (Q, p) satisfies gentle conditions.

(ASSEM-SKOWRONSKI GENTLE ALGEBRAS) [4, p.272, Proposition] By an Assem-
Skowroriski gentle algebra we mean a Butler-Ringel string algebra kQ/(p) where @ is
finite and (Q, p) satisfies gentle conditiong’]

By lemma A is a quasi-bounded string algebra over k iff it is a Butler-Ringel string
algebra, which gives the following.

Corollary 1.2.11. Let k be a field and suppose QQ is a finite quiver. Then A is a quasi-

bounded gentle algebra over k iff A is an Assem-Skowroniski gentle algebra.

Example 1.2.12. [3, p.4] Let k be field and A = kQ/(p) where p = {ba, cb, ac, sr, ts, rt}

and @ is the quiver

“Note GI) and GII) here correspond to (R3) and (R4) in [4]
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Hence A is a quasi-bounded gentle algebra over k given by (Q, p, 6) by corollary [1.2.11

Example 1.2.13. The calculations from example show the ip—subalgebra A =

{(7ij) € M (Z,) | 11 — V22,712 € pip} is also a quasi-bounded gentle algebra.
Corollary 1.2.14. Ifv is a vertex and t > 0 is an integer, then:

(1) rad(Byepr_1.0) AP) = Byepirsy Ap = (rad(A))'e; and

(i) 1ad(Byep(_1. o) PA) = Byep ey PA = eolrad (M)

Also, for any q € P:

(iii) if A € Aey and Aq = 0 where v = h(q) then Aey € Dyea vy Aas

(iv) if A € ey A and gA = 0 where v =1t(q) then e, A € D ep () @A and

(v) rad(A)gN1(g)A C grad(A) and grad(A) N Af(g) C rad(A)g.

Example 1.2.15. Recall the Zp—subalgebra A ={(yj) € MQ(Z,,) | y11 — Y22, 712 € pzp}

given by (Q, p,0) from examples [1.1.6|and [1.1.22] The calculations labeled () gave

Z, 0 0 pZ 7, vZ
rad(A) = AawAg= 77 el T = (PP P

~

Zy 0 0 pip Ly, pr

Which is the case ¢t = 1 in the above. More generally corollary and the equations
in (Q) tell us that

0 0 pt 0 o
A @A (if ¢ is even)
0 pt 0 0 7 5
D Ly Py
rad(A)! = =1, 5 o
p p
0 0 0 pt—i-l . . p
A DA (if ¢ is odd)
L pt 0 0 0 J

Proof of corollary[1.2.1f We only prove (i), (iii) and the statement rad(A)g N 1(g)A C
grad(A) for (v). The remaining claims will follow by symmetry, as they did in the proof

of lemma (ii).
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(i) By lemma [3.1.34] (iib) and corollary (i) we have rad(@®,cp_1,) AP) =

Ap. We now show Ap = (rad(A))%e, by induction on s > 0.
peP(t,v—) pEP(s,0—)
The case s = 0 is immediate because A is pointwise local. Now suppose we have
p pp
Ap = (rad(A))%e, for each vertex v. This shows (rad(A))*Tle, is equal to
@pGP(s,’U—)) p
rad(A)(@peP(s,vH) Ap)

Let M = rad(D,cp s,,—) Ap) Which is @ ,cp(s11,,—) Ap by the above in case t = s + 1.
Hence it suffices to show rad(M)/rad(A)M = 0. We now follow the proof of [48], (24.4)].
Clearly M = M/rad(A)M is a A = A/rad(A)-module, and so (as in the proof of lemma
there is a set T" and an epimorphism of A-modules ¢ : @(v,t)erxTKev — M.

Again as A is pointwise local each Ae, is simple and so by lemma |3.1.34] (iiic) there is a
subset S C Qo x T with ker(e) = ®(v,t)65 Ae, and so M ~ @(v’t)gs Ae, by lemma |3.1.34
(iiia). This shows M is simple and so rad(M) = 0. Hence rad(M) = rad(M)/rad(A)M =0

as required.

(iii) Suppose A\g = 0, and assume e, ¢ EBGGA@H) Aa for a contradiction. So
by corollary (i) there must be an element r € R\ m with re, — Xe, €
@aeA(h(q)_)) Aa. There must be an arrow a such that aq € P as otherwise rq = rq— A\q €
(Bacan(g)—) Aa)g = 0 which contradicts that A was surjectively given by (Q, p,0), since
r is a unit. This means rq — Aq = rq € Aaq which gives ¢ € Aaq. This implies Ay = Aa~,

which contradicts lemma (ii).

(v) Suppose A\q € 1(q)A for some A € rad(A). Write ¢ = 1(¢q)¢’ for some path ¢, and
write A = Zp rpp for some finite support subset {r, | p € P} C R. Since A\q € ey A we
can assume 7, = 0 whenever h(p) # h(g). Since A is a quasi-bounded string algebra over

R the sum -, ca (L (q)) @A s direct, so we can assume rp, = 0 whenever 1(p) # 1(q).

If p is a path from P with 1(p) = 1(q) and pg € P then there is a path p’ € P with
pq = 1(q)p’. As p and ¢ are non-trivial paths, p’ is non-trivial. If ¢’ is non-trivial then
1(p') = 1(¢’) by SPII) since 1(¢)q’,1(¢)p’ € P in which case p’ = ¢'¢” for some path ¢” by
lemma (ib). If ¢’ is trivial then 1(¢) = ¢. In any case we have pq = qp” for some

path p”.



Chapter 1. Background and Preliminaries. 39

If ¢’ is non-trivial then p” = ¢” which is trivial: otherwise p’ = ¢’ and so pg =1(q)¢' = q
(which contradicts that p € P). If ¢ is trivial then p” = p’ which is non-trivial. In any
case, if p is a path from P with 1(p) = 1(¢) and pq € P then pg = ¢p” for some non-
trivial path p”. Since \g = Zp rppq where the sum runs through p € P with pg € P and
1(p) = 1(q), we have altogether A\q € gp”"A C grad(A). O]

Definition 1.2.16. (NOTATION: Pa~!, a~!P) For a quiver @, a set of relations p and an
arrow a we let Pa™! (resp. a~'P) denote the set of paths p € P such that pa € P (resp.
ap € P).

Example 1.2.17. Consider the quasi-bounded gentle algebra over Zp from example
1.2.13l Here Pa~! (resp. a~'P) is the set of alternating sequences in a and § which
end (resp. start) with 3. For example, Pa~'Nna~'P > BaB ¢ P3~tU B 'P.

Corollary 1.2.18. Let A be a quasi-bounded gentle algebra over R, and fix ¢ € P. Suppose
A € A is a finite sum ZpEP(l(q))71 rpp (Tesp. Zpe(f(q))*lP rpp) with rp, € R. If X # 0 then
Ag #0 (resp. gA#0).

Proof. By symmetry it is enough to find a contradiction assuming Ay = 0 and 0 # \ =
> peP((q)-1 TpP- So there is an arrow a € Pl(g) and we let T be the set of p € P(l(q))~ !
with A € Ap. If T' is infinite then A € 1,5, (rad(A))" Aa which means A = 0 by corollary
1.1.25[ (iii). Hence T is finite, and by lemma (ia) any path ¢’ € Pl(g) must satisfy
f(¢') = a. Altogether this means there is a path p’ € T' of maximal length [ > 0.

Since \ € Ap/ and ZtZl ZpEP(l(q))_lﬂP(t) Tpp € Ap/ we have Zt<l ZpEP(l(q))_lﬁP(t) TpD €
Ap'. After rewriting >, _, ZpEP(l(q))*lﬁP(t) rpp we can assume 7, = 0 for all paths p € T

of length at most [ — 1. Since A is a quasi-bounded gentle algebra and al(q) € P we
have p'q € P and so Ap'q # 0 (otherwise p'q is a path outside (p) whose image is 0 in A,
contradicting definition [1.1.5]).

Since A\qg = 0 we have ryp'q = — Zp,;épep(l(q))fl rppq which lies in rad(Ap'q) = rad(A)p'q
by corollary (ii). If rpy ¢ m then rp is a unit in which case ryp'q € rad(Ap'q). By
corollary [1.2.14] there is some a € A(h(p') —) with ap’ € P and so rad(A)p'q = Aap/q.
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Since Aryp'q = Ap'q, altogether we have Ap'q = Aap’q which contradicts lemma
(ii). Hence r, € Am C rad(A) since A is pointwise rad-nilpotent modulo m, which again
means 7yp € Ap” where p' is an initial subpath of p”. But now A € Ap” which contradicts

the maximality of [. O

We now consider a particular family of rings which will be the focus of chapter 2. Recall

definitions [T.1.5] [1.1.21] and [1.2.10]

Definition 1.2.19. (COMPLETE GENTLE ALGEBRAS) Let A be a quasi-bounded gentle
algebra over R surjectively given by (Q, p,0). We say A is a complete gentle algebra over
R if Q is finite and the ground ring R is m-adically complete.

Example 1.2.20. Since 227 is the completion of Z in its p-adic topology, the zp—algebra
A surjectively given by (Q, p, 6) from example [1.2.15/is a complete gentle algebra, since in

this case @ is (given by two loops at one vertex, and hence) finite.

The next corollary follows immediately from corollary [1.1.25 (ii) and [48] (23.3)].

Corollary 1.2.21. Any complete gentle algebra is a semiperfect ring.

This corollary motivated the title of the thesis. It is not used until section [2.4]
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1.2.3 Path-Complete Gentle Algebras.

We now discuss a way of constructing many examples of complete gentle algebras. This

work was motivated by the thesis of Ricke [54].

Assumption: In section we assume: k is a field, @ is a quiver, p is a set of paths in
Q of length at least 2, and (Q, p) satisfies special conditions (recall definition [1.1.11]).

Note that under the assumptions above the ring kQ/(p) is a string algebra in the

terminology used by Crawley-Boevey [21].

Definition 1.2.22. (COMPLETED PATH ALGEBRA The completed path algebra kQ of Q
consists of possibly infinite sums ) A,p where p runs through the set of all paths and
the elements A, are scalars from k. If () has infinitely many paths it is possible to have
Ap # 0 for infinitely many p. For elements a = Y- \pp and o’ = Y A)p of kQ we let
a+a =3 (Ap+A,)pand aa’ =37 (32, /) ApAy,)q where the last sum runs over all paths
q and all pairs of paths (p,p’) such that pp’ = q. Hence kQ is an associative k-algebra.
Note that kQ has a 1 given by >, e,, even if @ has infinitely many vertices.

(NOTATION: p<y, D<n, P>ns P>n) For r > 0 and p a path of length r we let p<, = pso =
Dy P<0 = €4(p) and p>, = €p(p). In case r > 0 for any s with 0 < s <7 let p<s = p1...ps

and pss = Ps+1-..pr where p = p;1...p, for arrows p;. Thus for any s with 0 < s < r we

have p = p<sp>s.

(NoTATION: I) If I is an ideal of kQ we let I denote the ideal of kQ generated by the

elements of I.

Proposition 1.2.23. If J is the ideal of kQ generated by the arrows then rad(kQ) = J.

Proof. For each vertex v let J, be the subset of k@ consisting of all > A\,p for which
Ae, = 0. Note J, is a left ideal of k@, and since kQ/.J, is one dimensional, each .J, is a
maximal left ideal and therefore rad(kQ) C (1, J» = J so it suffices to choose y € J and
show y € rad(kQ). By [48, p.51, Lemma 4.3] it is enough to prove 1 — zyz is a unit for
any r,z € m
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If 2yz is nilpotent, say (zyz)? = 0 for some minimal d > 1, then (setting (zy2)° = 1)
ch'l;ol (zyz)" is the inverse of 1 — xyz. Suppose instead zyz is not nilpotent. The idea of
the proof from here is to show the symbol - ,(zyz)" defines an element of kQ.

For all n > 1 we have zyz € J so we may write (zy2)" = > A0 for some X, € k
where p runs through all non-trivial paths. Since (xyz)™ € J" there is a minimal integer
m(n) such that Ay, # 0 for some path p of length m(n), and we have m(1) < m(2) < ...
By construction we have A\, = 0 for each path ¢ of length at most m(n) — 1, and so after
writing (zyz)"t! = (2yz)(zyz)" we have Apni1 = D.7_g Apoy 1 hps,n for each n > 1,7 >0

and each path p of length 7.

For each d > 1 and each path p of length d there is a unique integer /,, > 1 such that

m(lp) <d <m(l,+ 1) — 1. In this case we have \,, = 0 whenever n > [,,, and hence

l,—1 l
Zle )‘p,n+1 = er:l Z::O )‘pgi,l)‘p»,n
l Iy
= Zgzo )‘pgi,l(Zle >‘p>i,n) = Z?:o )‘pgi,l(z:ii )‘p>i7n)

Let o, = B, = 0 if p is a trivial path, and let oy, = Ap 1 and 3, = El” Ap,n Otherwise. Let

n=1
a =3 02 qq and b= 37> Byq" where ¢ (vesp. ¢") runs through the paths

of length s (resp. t). Altogether we have

r lp i !
ab = Zrzl Zp(Zi:O )\Pgial(Znil )‘p>i,n))p = Zrzl Zp an:Q Apn =b—a

and so (1 —a)(1+0b) = 1. Similarly one can show ba = b— a and hence (1+0b)(1 —a) = 1.

As zyz = a this shows 1 4 b is the inverse of 1 — zyz in kQ. O

Definition 1.2.24. Let p be a set of relations in (). Recall (from definition |1.1.7)) that
for ¢ > 0 we use P(t) to denote the set |J, P(t,v =) UP(t,— v) of all paths outside (p)
of length ¢.

(NotATION: P(> 5), P(> 5), P(< s)and P(< s)) For s > 0let P(> s), P(> 5), P(< s)
and P(< s) be the unions ;> P(t), Ujs s P(1), U< P(t) and U, P(?) respectively.

(NoTtaTION: A) Let A be the ideal of kQ/(p) generated by the arrows in Q.
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(PATH-COMPLETE ALGEBRAS) By a path-complete algebra we mean an algebra of the

form kQ/(p) where (p) is the ideal in kQ generated by the elements of p.

(NOTATION: I) For an ideal I of kQ/(p) let I denote the ideal in kQ/(p) generated by
the elements of I. Note that this is consistent with the notation from defintion [[.2.22] in

case p = ().

Proposition 1.2.25. [54, Theorem 3.2.7, Corollary 3.2.8] Let Q be finite. Then every
path-complete algebra of the form A = m/m s isomorphic to the completion k,‘m)A
of kQ/(p) with respect to the A-adic topology. Furthermore, rad(A) = A and hence A is

complete with respect to its rad(A)-adic topology.

Proof. Let A = kQ and ' = km)A. For any h > 0 an arbitrary element of (kQ/(p))/A"
may be written as [3_,cp (<) ipP] + AM for scalars i, € k. There is also an inverse system

of kQ/(p)-module epimorphisms

= (kQ/(p)) /A" = (kQ/(p))JAM T = - = (kQ/(p)/A* = (kQ/(p)) /A"

where the map 0, - (Q/()/A" — (kQ/(p)) /A" is defined by sending [Sep(<p o] +
Al to [>pep(<h—1) HpP] + A"=1. By the discussion in [, p.103] it is sufficient to show there
is a k-algebra isomorphism A — I'" where I" is the inverse limit Lim. ((kQ/(p))/A") with
respect to the above system {6;},~0. Consider the assignment © : kQ — I" sending

2= App o ([Xopep(<ny Avp) + AM)},. This is clearly a well-defined surjective k-linear map.
For Zp ApD, Zq Agd € kQ we have

([ZpGP(<h) /\pp] + Ah)h([qup(<n /\Iﬂ] + Al)l = ([El+h<t,p€P(<h),qu(<l) )\p)\flp(ﬂ + At)t

and so O3, \pp)O(3_, App) = O3, App -y Ayp') which means © is a k-algebra

epimorphism. It is clear that (p) C ker(O) so it remains to prove (p) D ker(O).

Let m = 3, App € ker(©). By assumption (3 ,cp(cp) App + AM);, = (0);, so for each

integer [ > 0 we have [ ) ApD) € A" which is only possible if A, = 0 whenever p € P.

peP (<!
By definition this means », App € (p) and so (p) = ker(©).
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Hence A and T' are isomorphic k-algebras. Since (p) C J we have (p) C J which is

rad(kQ) by proposition [1.2.23/ and so A = J/(p) = rad(kQ/(p)) by [48, (4.6) Proposition,
p.51]. Thus A is rad(A)-adically complete. O

We now define an equivalent topology on A. By a cycle we mean a non-trivial path
with the same head and tail. By lemma|1.1.14] (i), if P and P’ are cycles outside (p) that
begin (or end) with the same arrow, then one must be a power of the other. The following

definition follows the terminology of [21 §3].

Definition 1.2.26. (PRIMITIVE CYCLES, NOTATION: P(v (0)) We call a cycle primitive
if it lies outside (p) and is not the power of another cycle. Let P(v ) denote the set of
primitive cycles at a vertex v. Hence when J, P(v ©) is finite we may consider the sum
z =Y, % where z, = ZpEP(UO) p is the sum of all primitive cycles at a vertex v. Write

(z) for the corresponding ideal generated by z in kQ/(p).

Lemma 1.2.27. If Q is finite there exists some t > 0 for which A C (2) as ideals in
kQ/(p)-

Proof. Consider the ideal I in kQ/(p) generated by | J, P(v ©), and the set S of all paths
p which lie outside I. By [21} p.9, Lemma 4.1] the algebra kQ/(p) is a finitely generated
k[z] module as we assume there are finitely many vertices. This shows S must be finite,
and as (J, P(v ©) is also finite we can consider the length [ > 0 of (any of) the longest
path(s) in SUJ, P(v ©). Now let t =1+ 1.

By the construction of ¢ for any path 5 € P(> t) we have a factorisation § = apy
for some primitive cycle p at vertex v and some paths « and -, one of which must be
non-trivial, and where h(y) = v = t(«). We now claim that 8 — azy € (p). Proving this

claim is sufficient to show A" C (z). We prove this claim below.

Without loss of generality « is non-trivial. So either z, = p in which case ap = az,,
or there is another primitive cycle p’ in which case z, = p+ p' and so ap = az, — ap’
since (Q, p) satisfies special conditions. Similarly we have that az, = az and ap’ € (p) as

ap ¢ (p). In either case this shows 5 — azy € (p), giving the claim above. O
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Corollary 1.2.28. Let Q be finite and suppose (Q, p) satisfies special conditions. Then

kQ/(p) is isomorphic to the completion ka/(\p)(z) of kQ/(p) with respect to the (z)-adic

topology, and kQ/(p) is a finitely generated k[[z]]-module.

Proof. Assuming a sequence of elements x = (z, + A"),en is Cauchy in the A-adic
topology, given any s > 0 there is some N > 0 such that for any integers n,m > N,
Tpn — Tm € A°. Hence also there is some My = N € N such that for any integers
n,m > Mg, T, — T, € A¥ C (2)%. Similarly if z is Cauchy with respect to the (2)-adic
topology then given any s > 0 there is some Ls; € N such that for any integers n,m > Lg,
Tp — Ty € (2)° € A%, Setting y = (2, + (2)")nen this proves z = 0 in km)A iff y=0

in kQ/(p),) and so the assignment kQ/(p) , = kQ/(p) ., sending z to y is a well defined

k-algebra isomorphism.

Since kQ/(p) is a finitely generated k[z]-module by [21] p.9, Lemma 4.1] there is a free
k|z]-module F = @', k[z] and an epimorphism of k[z]-modules f : F — A. Consider the
completions ﬁ(z) of F' in the (z)-adic topology. By [0, p.108, Proposition 10.12] there is
an epimorphism f : ﬁ(z) — K(z) of IZ[;](Z) ~ k[[z]]-modules and by [6, p.108, Proposition

10.13] F,) = k[z](,) ®g[z) F' which is k[[z]] ®pp,) ' = D7 k[[2]]. This shows kQ/(p),) is

a finitely generated k[[z]]-module as required. O

Corollary 1.2.29. IfQ is finite and (Q, p) satisfies gentle conditions then A is a complete

gentle algebra over k[[t]] surjectively given by (Q, p,0) for some 6.

Proof. By definition SPI) and SPII) hold. Let R = k[[t]], m = (t) and A = kQ/(p).
Let 6 be the map k[[t]|Q — A sending >, Ay(t)p to >°, Ap(2)p. By the above this map
is surjective, and so A is surjectively given by (Q,p,6). By lemma the ring A is

pointwise rad-nilpotent modulo (¢).

By proposition [1.2.25 we have rad(A) = A and so for any vertex v we have rad(A)e, =
> acAw—) Na and eyrad(A) = 30 2L, aA. Hence SPIII) holds. Furthermore as A is
finitely generated as a k[[t]]-module, so too are the k[[t]]-modules Aa and aA for any arrow

a, since k[[t]] is noetherian. Hence SPIV) holds.
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Since there are no commutativity relations in p these sums must be direct and so (SPV)
holds, and) A is a quasi-bounded string algebra over k[[t]]. Furthermore GI) and GII) hold
by assumption, and @ is finite, so A is a complete gentle algebra over k[[t]] since k[[t]] is

(t)-adically complete. O

Example 1.2.30. Let Q) be the quiver with two loops X and Y at one vertex, and let p =

[XY,YX}. Clearly FQ/(p) ~ k([z,y]]/(y) and so by corollary [2.29] A = Kz, ]}/(zy)
is a complete gentle algebra over k[[t]] given by (@, p,0) where §(X) = z, §(Y) = y and

0(t) =z +y.
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1.3 String and Band Representations.

We now introduce and study so-called string and band representations. Such objects are
defined by quivers of type A and 1&, and constitute a complete list of indecomposable
modules (with finiteness conditions) over some of the algebras we have introduced so far.
In section we introduce what is sometimes called the functorial filtration method as a
way to verify the completeness of the above list. We will then sketch the application of

this method to Butler-Ringel string algebras.

1.3.1 Modules Given By Words.

Assumption: In section [I.3.I] we assume A is a quasi-bounded string algebra over R

surjectively given by (Q, p,6) (see definitions [I.1.5 and [1.1.21)).

We now define some combinatorial data from ) and p. Recall definition

Definition 1.3.1. (QuivErR HomoOMORPHISMS) For quivers U = (Up, Uy, hy,, t,,) and V =
(Vo, V1, hy, ty) a quiver homomorphism r : U — V is given by functions rg : Uy — Vj and

r1 : U3y — Vi such that rgh, = hyr; and rot, = t,r1.

[63] p.481, Basic concepts| (WALKS AND TOURS) A walk in @ is a quiver homomorphism

w : L = ) where the underlying graph of L is a connected subgraph of

fo fq fo
oA e V_q Vo Vi Vo

If it exists, we shall assume that the left-most edge of L is £f1. A tour in @ is a quiver

homomorphism t : Z — ) where the underlying graph of Z is A,, for some m > 0, where

A, ug

for m > 1 and Ay is the graph with one edge go (which is a loop) at one vertex ug.
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For example, Ay is the underlying graph of the Kronecker quiver.

(LINEAR WALKS AND TOURS, FINITE AND CLOSED WALKS) We call awalk w : L — @
(resp. tour t : Z — Q) linemﬂ if #A(— v;) <1 and #A(v; —) < 1 for each i (resp.
#A(— uj) =1 and #A(u; —) =1 for each j). We say a walk w: L — Q is finite if L is

finite, in which case (if Ly = {vo,...,Vv,—1} for r > 1) we say w is closed if w(vp) = w(v,_1).

Example 1.3.2. Recall example [1.2.20] where we considered the quiver () consisting of

two loops « and 8 at single vertex v. Let L be the quiver

aj b2 as ba as be ar bg ag
Vo Vi V2 V3 V4 Vs V6 V7 \& Vg

We can define a finite closed non-linear walk w by the assignments a, — «, b,, — 5 and
v; — v for each appropriate n, m and i. Define a tour t : Z — @ again given by a, — «,

by, — B and v; — v; where Z is the quiver

al b2 as by a5
up up u9g us uy us

— e

For an example of a linear tour t’ : Z’ — @ consider the same assignments where Z’ is

al
Nk

Similarly for an example of a right-infinite walk, consider

uo uj

ay bo as b4 as be ay
Vo V1 V2 V3 Vy4 V5 Ve

Definition 1.3.3. [63, p.481] (SUBWALKS) If r is a walk or a tour, then a subwalk of r is

the restriction of r to any connected proper subquiver of its domain.

(Runs THROUGH) Let r: W — @ be a walk or tour. If V is a collection of vertices in
Q@ we say r runs through (the elements of) V' if for each v € V there is a vertex v in W

such that r(v) = v.

®Wald and Waschbiisch refer to finite linear walks (resp. linear tours) as paths (resp. circuits).
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For any non-trivial path p in the quiver @, say p = ay ..., (for n > 0 and arrows «;),

there is an associated linear walk p : P — ) where P is the quiver

al an
Vg<— - <—Vp

defined by setting p(v;) = v; for 0 < i < n and p(a;) = a; when i > 0.

(Occurs IN) We say p occurs in v if P is a subquiver of W and the linear walk p is the

subwalk of r defined by the restriction to P.

Example 1.3.4. The arrows a and b occur in each walk and tour from example [1.3.2]

Note that the path afa occurs in the walk w and the tour t but not the tour t’.

Definition 1.3.5. [2I, p.2, Words] (LETTERS, HEADS, TAILS) By a letter we mean an
arrow = or the formal inverse y~! of an arrow y. The head and tail of a letter [ are,
respectively: (h(l) = h(x) and t(l) = t(x)) if | = x for some arrow z; or (h(l) = t(y) and

t(I) = h(y)) if | = y~! for some arrow y.
({0} # I-woRDS) Let I be one of the sets {0,...,n} (for some n € N), N, =N or Z. For
I # {0}, an I-word will mean a sequence of letters

(

Wy ... Wy (if I =A0,...,n})
w =

L W_1Wo (lfI: —N)

...w_lwo\wlwg... (ifI:Z)

(a bar | shows the position of wg and wy when I = Z) satisfying;:
(a) if w; and w;41 are consecutive letters, then the tail of ¢(w;) = h(wjit1),
(b) if w; and w;41 are consecutive letters, then wi_l # Wwii1,

(c) if p is any non-trivial path in @ such that p = aj...ay, or its formal inverse

pl=a,l. .. afl occurs as a sequence of consecutive letters in w, then p € P.
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(TriviAL WORDS) In case I = {0} there are trivial words 1, . for each vertex v of @
and each ¢ = £1. By a word we mean an I-word for some I, and such a word is a finite

word of length n if I ={0,...,n}.

(NOTATION: v;(w)) For any I-word w and any i € I there is an associated vertex v;(w)
given by: the head of w;;; in case i 4+ 1 € [; the tail of w; in case i — 1 € I; and otherwise

vo(1y,c) = v. Note that if i — 1,7+ 1 € I then these vertices coincide (by condition (a)).

Example 1.3.6. For the quasi-bounded string algebra over Zp from example
a 1B apapta B et is a word defined by the walk w : L — @ from example

.02

We now give a brief comparison with some different terminology.

Definition 1.3.7. [63, (2.1) Definition] (V-SEQUENCES) A walk w : L — @ is called a

V-sequence if:
(a) if p is a path in @ and p occurs in w, then p € P; and
(b) w(a) # w(a’) for all arrows a and a’ in L such that h(a) = h(a’) or t(a) = t(a’).

Corollary 1.3.8. There is a one-to-one correspondence between words and V-sequences.

Proof. Let w: L — @ be a V-sequence. As in definition the underlying graph of L
is a connected subgraph of . As. Hence we can (and shall) assume the set L; of arrows
of L is a subset of {f; | i € Z}. So we can consider a set Iy, of integers i such that f; € L.

Now we can define an Iy,-word w([w] by w[w]; = s(£;) whenever i,i + 1 € I.

Conversely each I-word w defines a quiver L,, as follows. The vertices of L,, are given
by {vi | i € I'}. Whenever i,i+1 € I there is an arrow f; with head (resp. tail) v; and tail
(resp. head) v;;1 provided w;y1 =  (resp. w;r1 = z~!) for some arrow x. There is now
an associated V-sequence wlw] : L,, — @ defined by setting w[w](v;) = v;(w) whenever

i € I and w[w](f;) = w; whenever ¢,7+1 € I.

This is a one-to-one correspondence because w|w[u]|] = u for any word u, and w[w[u]] = u

for any V-sequence u. O
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Lemma 1.3.9. Let L be the set of letters. There is a function s : L — {1,—1} = {£1}
such that:

(i) for each vertex v and each € € {+1} we have #{q € L | s(q) = €¢,h(q) = v} < 2; and
(ii) for distinct q,q' € L with s(q) = s(¢') and h(q) = h(q") we have {q,q¢'} = {a™ %, 8}

with af € (p) (that is, aff ¢ P).

Proof. Fix an arbitrary vertex v. Let L, be the set of letters with head v. By SPI),
the arrows in @ which are incident at v (that is, have head or tail v) define a connected

subquiver Q, of @U, where @U is the quiver

t(B) t(dy)
N A
h(cw) h(vw)

Furthermore, if we let L, = {agt, Bu, v !, 0y}, after relabelling we have that: £, is the set
of x € CAU such that z is an arrow in Q; if (o, and f, are arrows in @) then o, 3, € (p);

and if (7, and d, are arrows in Q) then v,d, € (p).

Consider the function 5 : |, L, — {#1} defined by setting s(a;') = §(8,) = 1 and
5(y, ) = 8(6,) = —1 for each v. Note 5 is well defined because L, N Ly =0 for distinct

vertices v and v'.
Let s be the restriction of 5 to the subset |J, £, of |, L.

(i) For € = 1 we have {q € £ | s(q) = 1,h(q) = v} C {a;!,8,. For e = —1 we have
{e€L]slg)=-1h(g) =v}<{n"d}

(ii) Let s(q) = s(¢') = € and h(q) = h(¢’) = v. If ¢ = 1 then as ¢ = ¢’ we have
{qg€ L|s(q) =1,h(q) = v} = a,, By and, from our relabelling, a3, € (p). As above,

the proof in case e = —1 is ommited.
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Definition 1.3.10. [I8, §2] (SIGN, NOTATION: s(w)) If w is an I-word where {0} # I C N

we define the sign of w to be s(wy). We define the sign of a trivial word to be s(1,41) = £1.

(CoMPOSING WORDS) Suppose w and w’ are non-trivial words where I, C —N and
Iy €N Ifu=h(w™?) and e = —s(w™?) let wlye = w. If v = h(w') and § = s(v’)
we let 1, 5w’ = w’. Write ww' for the concatenation of the letters in w with the letters

/

inw. Incase D = ... w_jwy is a —N-word and F = wjws... is an N-word, write

ww’:...w0|w1...

(NOTATION: Wy, W<, Wsj, w>;) If w is an [-word and ¢ € I is arbitrary we let
w<i = ...w; given ¢ — 1 € I, and otherwise w; = w<; = lp(y) sw)- Similarly we let
Ws; = Wiy1 ... given i + 1 € I and otherwise ws; = 1j(y),s(w)- Hence (for appropriate i)

there are unique words w«; and wx; satisfying w<; = w<;w; and wyws; = w>;.

Example 1.3.11. Recall the word a~!f lapapla!7la™! from example m
Setting s(a) = 1 gives s(a™1) =1, s(8) = —1 and s(37!) = —1: which gives the table

i | w; | s(w) (wgi)*l W

ol - : ly_1 a8 aBaf a1 1o !
1 -1 1 « B lapap ta ot
2| gt -1 Ba aBaflatptat
3 1 a~18a Baf a1 p 1a!

4| p -1 B~ a1 B af ta"tp a7t

5| « 1 a 17 ta 1 pa B a1 ot
6|8t | -1 Ba~18"1a 1 Ba a1 1g1

7 at 1 afa 1 la B fla"t

8| g1t -1 BaBa" B a1 Ba a~t

9lal| 1 | apapalfla!pa Lot

Definition 1.3.12. (SHIFTING WORDS, NOTATION: wlt]) For ¢t € Z and a Z-word w =
...wp | wy... the shift w[t] of w by t will be the word ... w; | w1 ... We extend this
definition to all I-words w where I # Z by setting w = wlt] for all ¢t € Z.
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Corollary 1.3.13. (EQUIVALENCE OF WORDS, NOTATION: ~) There is an equivalence

relation ~ on the set words, given by w ~ w' iff w' = w[t] or w' = w~[t] for some t.

Proof. Since w = w[0] the relation is reflexive. For symmetry, one has w = w[—t] if
w = wlt] and w = (w')"}~t] if v’ = w~[t]. For transitivity (letting w' = w): if
w' = wrt] and w” = w'[t'] then w” = wr[t + ¢']; and if w’ = wF'[t] and w” = (w') 7 [t']

then w” = wFl[t +1/]. O

Definition 1.3.14. (CycLic AND PRIMITIVE WORDS) For t > 0 we say a {0, ..., t}-word
is cyclic if w" = w...w (w composed with itself n-times) is a word for any n > 0. In this

case we say w is primitive if w # (w’)™ for all cyclic words w’ and all n > 0.

(PERIODIC WORDS) We say a Z-word w is periodic if w = w [p] for some p > 0 and the

period of w describes the minimal such p. In this case we write w = *(w')*®°, w>¢ = (w')>

and w<p = *(w') where w' = wy ... wp.

Example 1.3.15. Consider again the quasi-bounded string algebra over 2p from example
The {0, ...,6}-word a~!3 taBaB~! and the {0, 1,2}-word a3 are both cyclic. To

say it another way,
af o aBa | e B aBasTE L

and ...afBaf | afaf... define periodic Z-words of periods 6 and 2 respectively.

Definition 1.3.16. [63 (2.2) Definition] (PRIMITIVE V-SEQUENCES) A tour t : Z — @

is called a primitive V-sequence if
(a) if p is a path in @ and p occurs in t, then p € P;
(b) t(a) # t(2’) for all arrows a and a’ in W such that h(a) = h(a’) or t(a) = t(a’); and
(c) there is no automorphism o # id of Z such that to = t.

The definition in [63] requires that a V-sequence must not be a linear tour, however

we omit this restriction (for example, consider corollary [1.3.17| together with the periodic
Z-word of period 2 from example [1.3.15)).
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Corollary 1.3.17. There is a one-to-one correspondence between periodic Z-words and

primitive V-sequences.

Proof. There is a one-to-one correspondence (for each p > 0) between perodic Z-words w
of period p and the primitive cyclic {0, ..., p}-words w’ given by w <> w' iff w = *°(w')*°.
Hence it is enough to define a one-to-one correspondence between primitive cyclic words

and primitive V-sequences.

If w' = w; ... wp is a primitive cyclic word, define a quiver @), by giving any orientation

toAgifp=1,forp>1 orientating the edges g; in

Ap : up s Up—2
g& %2
Up—1
by
Up <— Up—1 (if wp = x)
up — Up—1 (if wy, = 271)

(where z is an arrow.)
uj «— ujp1 (ifwipp =z and i +1 < p)

U; — Uj41 (lf Wil = zlandi+1< p)

where 7 runs through all integers with 7,i+1 € I. We can now define a tour t[w'] : Q. — Q
by (t[w'](u;) = vi(w') and t[w'](g;)) = z if i + 1 < p and w41 is z or its inverse), and
(t[w'](up—1) = vp—1(w') and t[w'](g;) = x if i = p — 1 and w, is x or its inverse). Since w’
is cyclic t[w'] is closed, and since w’ is primitive there is no automorphism o # id of Q.

such that t[w']o = t[w'].

Given any primitive V-sequence t : Z — @ we let Iy = {0,...,p — 1} where (p = 1 if
the underlying graph of Z is Ag) and p > 1 otherwise. We can now define an I;-word w|t]
by wt]; = ti(g;) whenever ¢,7 + 1 € I;. Since t is a tour satisfying conditions (a) and (b)
from definition w(t] is a cyclic word. Since t is a tour satisfying condition (c) from
definition w(t] is primitive. O
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From now on we shall choose to use the language of words, instead of the language of
V-sequences, knowing these languages may be translated into one-another. We now define

string and band modules for quasi-bounded string algebras over R. Recall definition[1.3.5

Definition 1.3.18. [2I, Modules given by words, p.3] Given an [-word w let M (w) be

the R-module generated by elements b; (as ¢ runs through I) subject to the relations

bi (if v, (7)) =)
evbi =
0 (otherwise)

for any vertex v in ) and

bi—1 (ifi—1€l and w; = x)
xb; = bit1 (lf i+1€l and wiy; = 33_1)

0 (otherwise)

for any arrow z in Q. Since A is surjectively given by (Q,p,6) the assignments above
define an action of A on M(w) =} ;.; Rb;. From now on M (w) will be considered as a

A-module, unless specified otherwise.

Example 1.3.19. Consider the complete gentle algebra A over Zp from example
Recall the word w = a 'S laBaf a1 ta~! from example m Here M(w) =

Z?:o zpbi where the action of A is described as follows.

In the following schema the action of @ and 3 are given by the solid arrows, and the
action of p is described by the dashed arrows (recall p = aff + fa in A) as follows. If
two dashed arrows leave b; (when i = 5 here) pb; is given by the sum of their targets (so

pbs = b3 + by).
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In this example we have p*M(w) = 0. As the next example shows, m need not act

nilpotently on M (w).

Example 1.3.20. Let A be the complete gentle algebra from example In example
1.3.19| we described the A-module M(a~!3 'aBaB a3 1a~!) using a finite schema.

The module M (aBa(B1a=1)>) is depicted in a similar way by the right-infinite schema

by — _ _

%// \\\ ,

AN

/ B \

bg / b4\\\
y/ 7 \;\\\\p
I 'p o N\
- A \

blé// b5\\\
/ N~
% . \\ .
7
// ﬁ Y \
boé/ b6‘\\
VP
RN

Similarly —N-words define left-infinite schemas, and Z define left-right-infinite schemas.
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Definition 1.3.21. (STRING MODULES) Any module of the form M (w) will be called a

string module.

Example 1.3.22. Let A be the complete gentle algebra from example [1.3.20 For the

periodic Z-word

w=...aBaB a1 aBa | o B taBap o pE L

the schema

b76\ bO\
/\ \\ \ \\
e | N e} | N
IR NP P N
I \ I \P
/ b_5\ \ b_l bl\ \
/ L by ~d \
,P (N 8 P N !
s o \ s « \ |
- \ \p /I ! \p
27 ¥ \ L o I
b_y4 \ b_o / by //
/
\\a / p lOé /
s\ | . B\ | %
v/, 7 w, .~
b_3 b3

defining M (w) has translational symmetry.

Definition 1.3.23. (AcTION OF T ON M(w) FOR PERIODIC w) Suppose now w is a
periodic word of period p, and consider the module M (w). Consider the R-linear map
T : M(w) = M(w) defined on generators by b; — b;—,,. Since w is a Z-word and periodic,
T is an automorphism (describing translational symmetry in the walk s[w] given by w)

and hence M (w) has the structure of a right R[T, T~ !]-module.

(NOTATION: M (w,V)) For any left R[T,T~!]-module V we let M (w, V) be the tensor

product M (w) @pgjp,r-1) V (considered as a left A-module).

Example 1.3.24. Let A be the complete gentle algebra from example [1.3.22] Note that
p—1¢ pzp and so it is a unit, say with inverse ¢q. Let V be the free Zn—module 212, = ZPGsz
and consider the Zp—linear automorphism T : Zg — 212, given by (v1,72) — (71 + (p —
1)y2,72). Let w be the word (8~ ta=18~taBa)® from example [1.3.22
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Adding dotted arrows for the right-action of 7" on M (w) in the schema from example

[L.3.22] gives

For any v € V' we have aby ® v = b5 ® Tv, and so M (w, V) may be interpreted by the

schema

~ 1 p—1
bo@ZIQ)

10
0 1 0 1
/ \

b1®212) b5®212,

\ Y

0 ~ ~ 1 0
by ® Zj, by ® Z2

01 K / 0 1
10 ~ 1 0
by ® 72

01 01

—_

Definition 1.3.25. (BAND MODULES) A module of the form M (w, V) will be called a
band module provided the left R[T,T~!]-module V is indecomposable.
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1.3.2 Complexes Given By Homotopy Words.

Recall definitions [1.1.5] [1.1.21], [1.2.10| and [1.2.19]

Assumption: In section [1.3.2] we assume A is a complete gentle algebra over R
surjectively given by (Q,p,0), and that I is one of the sets {0,...,m} (for some
m >0), N, -N={-n|n e N}, or Z.

Definition 1.3.26. (HoMOTOPY LETTERS) A homotopy letter q is one of y, v71, dq, or
d;! for v € P and an arrow a. Those of the form v or d, will be called direct, and those

-1

of the form ! or d ! will be called inverse. The inverse ¢—! of a homotopy letter ¢ is

defined by setting (7) ! =71, (v )™l =7, (do) "t =d; ! and (d;1) 7! = d,.

(HomoTory WORDS) For I # {0} a homotopy I-word is a sequence of homotopy letters

;

Ity (if I ={0,...,m})
o Ity ey (if I = N)
S ATyroalgtrg (if I = —N)
Cralgtre [Ty e o ((E T =172)
(which will be written as C' = ...1;'r;... to save space) such that:

(a) any homotopy letter occuring in C' of the form I;- 1 (vesp. r;) is inverse (resp. direct);

(b) any list of 2 consecutive homotopy letters, which occurs in C' and has the form ;- Ly,

is one of ’y_ldl(,y) or dl_(vl)'y for some v € P; and

(c) any list of 4 consecutive homotopy letters, which occurs in C' and has the form

li_lril;rllmﬂ, is one of

vy, )d_(l))\ (where h(y) = h(A\) and 1(v) # 1(X)

)
A (where f(y)I(\) €

LHRLTY (0))
dl(w)'yA_ di(n) (where t(y) = t(\) and () # f(\))
or v i A iy (where f(A)1(y) € (p))
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For I = {0} there are trivial homotopy words 1, and 1, _; for each vertex v.

(INVERTING HOMOTOPY WORDS) The inverse C~! of C'is defined by (1,5)"' =1L, 5

if I = {0}, and otherwise inverting the homotopy letters and reversing their order.

So: the inverse of a homotopy N-word is a homotopy —N word; the inverse of a homotopy
—N-word is a homotopy N-word; and if [ is (finite or Z) then the inverse of a homotopy

I-word is a homotopy I-word. Note the homotopy Z-words are indexed so that

-1 -1 -1, 7—1 -1 —1; -1 —1; -1
(---lfl"ﬂfll() ’I"o‘ll ’I“1l2 7’2...) =...T9y l27‘1 ll |7“0 l[)’l“illfl.‘.

Our aim in this section ([1.3.2)) is to give an analogue to section by replacing modules
with complexes of projectives. The definition above (|1.3.26)) appears to be new.

Example 1.3.27. Recall (example [1.2.12)) the Assem-Skowroriski gentle algebra A =
kQ/(p) where p = {ba, cb, ac, sr, ts, rt} and Q is the quiver

\/
/\

Then C = s~ 'dst~1did ¢ is a homotopy {0, 1,2, 3}-word.

Example 1.3.28. Recall the complete gentle algebra A = k[[z,y]]/(zy) from example
1.2.30L Write 2™ and y~™ for (z™)~! and y~™ for (y™)~! for each n,m > 0. Then

C= ac_nggy_ldy:Jc_zdmd;l!y?’cl;1:1:y_1dygv_zdmy_ldyac_Qdr e
is a homotopy N-word.

The pairs 'y*ldl(w) and dl_(;))\ (for v € P) are in bijective correspondence with the
alphabet used by Bekkert and Merklen [7] to define generalised words.
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Definition 1.3.29. Let C = ...l !r;... be a homotopy I-word.

(2

(GENERALISED WORDS) Define a sequence [C] = ...[C];... by setting [C]; = [y7}]
when I 'r; = dl_(i)'y and [C); = [y] when I; 'r; = v~ tdy(y. We call [C] the generalised word

associated to C.

(HEADS AND TAILS) The head and tail of any path v € P are already defined and we
extend this notion to all homotopy letters by setting h(dX') = h(a) and h(q™') = t(q).

(VERTICES, NOTATION: vc(i)) For each ¢ € I there is an associated vertex v (i) defined
by vo(i) = t(li1) for i < 0 and ve (i) = t(r;) for i > 0 provided C' = ...1-'r;... is non-

(2

trivial, and vy, (0) = v otherwise.

(NoratioN: H((y tdy)) 1), pe) Let H(y tdy,)) = —1 and H(dl_(wl)’y) = 1 for any
v € P. Define a function uc : I — Z by

Si_ H('ry) (i >0)
pe(i) = 0 (if i = 0)
— Y H( ') (if i < 0)

(CONTROLLED HOMOGENY) We say C has controlled homogeny if the preimage ,ug,l (t) is

finite for each t € Z.

Example 1.3.30. Recall the complete gentle algebra and the homotopy {0, 1,2, 3}-word
C = s_ldst_ldtdc_lc from example [1.3.27, Here we have the table

PeN| I | [Cli | veli) | peli)
0 - - 4 0
1 | s7lds | [¢] 3 -1
2 |t | [ 0 -2
3 d-le | [o71 2 -1

For infinite homotopy words we can construct the beginning of such a table.
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Example 1.3.31. Recall the complete gentle algebra k[[z,y]]/(zy) and the N-word C
from example [1.3.28] Here we have

ieN| Iy | [C | ve(d) | pe(i)
0 - - v 0
1 r72d, | [2?] v -1
2 y~ld, [y] v -2
3 r72d, | [2?] v -3
4 1dy T e | 2
5 dyle | [z]7t v -1
6 y~'dy [y] v —2
7 v 2d, | [2?] v -3
8 |y tdy | Bl | v | 4

Definition 1.3.32. (SHIFTING HOMOTOPY WORDS, NOTATION: C[t]) If t € Z and C' =
...lalro | ll_lrl ... is a homotopy Z-word, we define the shift C[t] of C' by t to be the

homotopy Z-word ...l;lrt | l;rllrtﬂ .
If C is a homotopy I-word and I # Z let C' = C[t] for all ¢t € Z.

Lemma 1.3.33. Let C' be a homotopy [-word and i € I. Then:
(i) ve-1(i) = vo(m — i) and pe-1(i) = po(m — i) — pc(m) when I ={0,...,m};
(ii) ve-1(i) = vo(—i) and po-1(i) = po(—1i) when I is infinite; and

(iii) vo (i +t) = vop (i) and po(i+t) = pcy (i) + po(t) for any integer t when I = Z.

Proof. If C is trivial then there is nothing to prove so we assume otherwise.

rm and hence C~' = r 1, ... 7', This

(i) Suppose C'is finite, so C' = I; 'y ... 17}
means vo-1(0) = t(r,,) = ve(m) and for ¢ > 0 we have t(ly41-i) = t(rm—;) and so

vo-1(i) = vo(m —1).
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Similarly pc(0) = 0 = pe-1(0) and for i > 0 we have !, H(l;i,'_l_t’rm_t'_l_t) =
Sty H(l ) = 005" H (I re) which gives Y05y H(rp by li—) = S05" H(l 're) —
S H(l; 'ry) because H(I7lrs) = —H(r;1ls) for any s with 1 < s < m. This shows
pe-1(i) = po(m — i) — po(m).

(ii) Suppose now C' is infinite. Without loss of generality C' is a Z-word. Writing
C = ...lo_lro | ll_lrl coogives Cl = 107l | 17 L. where i,y =r_gand r; =1
for each i € Z. As above one can show vo(—i) = vo-1(i) and peg-1(i) = pc(—i) by

considering the cases ¢ < 0 and ¢ > 0.

(iii) There is nothing to prove when ¢ = 0. Suppose firstly ¢ > 0. Clearly the formula
holds for 7 = 0. Writing C' = ...lalro | 11_17"1 ... gives C[t] = ...lt_lrt ] lt__’_llrt_i_l ... and

since vo(t) = t(r) = t(le+1) = vop (0) it is clear ve (i +t) = veyy (i) for each i € Z.

In case —t < i < —1 writing pcy(i) = — Zgziﬂ H(l;_&trert) as the sum of
=Y H(ISrs) = —pe(t) and po(i+t) = S5 H(I5 rs) shows po(i+t) = po(t) +
ey (i). The case where i < —t is similar, writing pcp (i) = as the sum of uc(i +t) and

—pc(t). Tn case i +t > 0 one has puc(i +t) — pc(t) = S0 H(I; ) = e (3)-

Now suppose instead ¢ < 0. Then —t > 0 and by the above v (i) = vop (i +t —
t) = ve—q(i +1t) = vol(i +t) and (as pey(—t) = —pc(t)) for each i € Z we have
pep (1) + po(t) = pe(i+t) as pepy (i +t —t) = pop—n (@ +t) + pep (1) O

Definition 1.3.34. (NotaTiON: P(C)) Let C' be a homotopy I-word. Let P(C) =
D,.cz P"(C) where for n € Z we let P"(C) = @i€#51(n) Aey(iy- For each i € I let b,
denote the coset of e, ;) in the summand Ae, ;) of PHC (i)(C). We define the complex

P(C) by extending the assignment dp(cy(b;) = b; + b linearly over A for each i € I,

where
o abiy (ifi+1el 7 = da)
- 0 (otherwise)
. Bby (fi—1€l, 17 r =B dyg)

0 (otherwise)
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Example 1.3.35. Recall (example [1.2.12)) the finite-dimensional gentle algebra A =
kQ/(p) where p = {ba, cb, ac, sr, ts, rt} and @ is the quiver

\/
/\

For C' = s ldst~tdid 'c we have by = bf =bf =b; =bs =0, b] = sby, by = tb; and

by = cb;. The generalised word [C] = [s][t][c™!] associated to C helps us draw the schema
below
Aeg P2(C)
AN o
Aes Aes PY0)
/ ldmlw
Aey P O(C)

which depicts P(C), where P*(C) =0 for n # —2,—1,0.

Remark 1.3.36. For each of the following possibilities of I;” 1ril;+11m+1 (from part (c) of
definition [1.3.26)), consider the corresponding schema (with the same label).

(1) 771d1('y)d1_(§)/\

(2) 4y )’Y)\ Ly
(3) digyy1dinA

(4) v i A Ty
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(1)

This may be useful later when considering the constructive and refined functors as defined
in section Each ® corresponds to an element of I, and symbolizes the head of an

indecomposable projective A-module.
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Example 1.3.37. The corresponding schema for example [1.3.35]is

by
aby by
dy de
b1 QS
N\ a

ds thy cbs

by atb, rcbs

\

SQO

Remark 1.3.38. The above definition of complexes P(C') is equivalent to the following
construction. For each n € Z and i € pg'(n) let

e—1 _ g1
xao (if I ri = dl(a)a)

(dpery)itti =
P 0 (otherwise)

«B (f 17 = B ldy)

(% )ie1i =
P 0 (otherwise)

where x A denotes the left A-module map Aej(y) — Aeyy) sending p to pA (for A € P).
Set (d’]"g(c))M =0 for j € ug'(n+ 1) where j # i + 1 so that ( 7113(0))391' defines an element
from Homy (Aey,, (5), Aey(j)) for each i € ual(n) and j € ug'(n + 1). We then have

d?D(C)(Zieugl(n) m;) = Zjeﬂgl(nﬂ)(Zigual(n)(d?v(c))jﬁ(mi))

Now fix [ € ual(n+2), je u(}l(n—i— 1), and i € ual(n).
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n—+1

Using the rules that define homotopy words, given (d P(C))m = 4« A and (d}é,(c)) i = x7

we must have either

j=i+l=1—land [} il brive = digyvd o)A, or

j=1—1=1+1and l;ll?"i_lli_lm = Afldl()\)’yfldl(v)

In either case we have f()l(\) € p which shows (d}?{é))l’j (drzla(c))j,i = xyA = 0. By the

above dip ) defines a A-module map whose image is contained in rad(P"*1(C)) and P(C)

defines a complex of projectives.

Example 1.3.39. Recall the complete gentle algebra k[[z,y]]/(xy) and the homotopy
N-word C' from example Here the generalised word associated to C is [C] =
[22) W)z [y3]) L]yl [2?][y][z?] . .. and so P(C) may be depicted by

A P=4(C)

—4
% dp(c)

A A P3(C)

3 3
}/:132 X\i }A ae)

A A A P=2(0)

—2
% X % dpc)

A A P~Y(C)

-1
)/gc2 r(c)

A PY(C)

As above we can interpret P(C) using a different diagram, such as

0 v 0 y 0 0
) Y 0 a2 0 =z y (1'20)

A APA—APABA Ad A A
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Remark 1.3.40. Not all complexes of the form P(C') have finitely generated homogeneous

components. This is because not all homotopy words have controlled homogeny.

Example 1.3.41. For A = k[[z,y]]/(zy) as above, the homotopy word
c=.. .:L‘_ldxdzjlyx_ldm | dy_lyx_ldmd;ly- = Oo(d;y:v_ldx)(dzjlyzc_ldx)oo
defines the complex depicted by

PY(C

NANANAN

PHC)

whose homogeneous component of degree 1 is isomorphic to @, A. The homotopy word
C' is an example of what we call a periodic homotopy Z-word with period 2.
Let us recall and adapt some terminology from [21].

Definition 1.3.42. Let C be a homotopy word. (NOTATION: I¢) Write I¢ for the subset

of Z where C' is a homotopy Io-word.
(PERIODICITY) We say a homotopy word C' is periodic if C = C'[p] and puc(p) = 0 for

some p > 0. In this case the period of C' describes the minimal such p.

Recall definition [3.2.1] Before we introduce band complexes it is necessary to note
some isomorphisms (induced by certain symmetries between homotopy words) between
the complexes introduced above (and certain degree shifts of such complexes). We now

make use of the book keeping from lemma

Corollary 1.3.43. Let C be a homotopy I-word. Then:
(i) if I = {0,...,m} there is an isomorphism of complezes P(C~') — P(C)[uc(m)];
(ii) if I is infinite there is an isomorphism of complezes P(C~1) — P(C); and

(ii) if I =Z and t € Z there is an isomorphism of complexes P(C[t]) — P(C)[uc(t)].
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Proof. Let D = C~!. Fix n € Z. For each i € u},'(n) let b; p denote the coset of €up (i) IN

the summand Ae,,,;y of P"(D). For each j € pgt (n + pc(m)) let b ¢ denote the coset

of e, (;) in the summand Ae, . of prtuo(m) (),

We now extend the assignment 0"(b;p) = Vi linearly over A. By lemma
(i) we have vp(i) = ve(m — i) for each ¢ € Io-1, and hence 0™ defines A-
module homomorphism. Part (iii) of lemma shows that i € pp'(n) iff m —i €
p5t (n + pe(m)); and so ™ is an isomorphism P*(D) — P™(C)[uc(m)).

Writing C' = Iy ... 01, and O = 17410 ! gives lyiy1 = 7} and

Tm—i+1 = U} for 1 < ¢ < m. By definition dp(c)(bin,i’c) = Q’;_LC +b’;1_i70 and
dppy(bi,p) = Q:fc,l + b;c,l where we have the following. If (i + 1 € Ip and l’;rllrgﬂ =
dl_(;)a) then b’;fi’c = ab;n_(i_l),c and QZD = abj+1,p, and otherwise b,;’r—hi,C = L)ZD =0.
Similarly if (i —1 € Ip and IJ7'rj = B7'dyg)) then b/;—i,c = ﬂb;n—(iﬂ),c and

b;D = f3bi—1,p, and otherwise Q’%_LC = b;,D =0.

Together this shows 9”+1(Q;FD) = Q’;_LC and 9”‘*‘1@;[)) = Q’f_ic and so
G”H(d?)(c,l)(bw)) = d;J(rg)C(m)(Q”(bi,D)) which means 6 defines an morphism of

complexes. This gives (i). The proofs for parts (ii) and (iii) are similar to the above.
For (ii) we apply lemma [1.3.33| (ii), and for (iii) we apply lemma [1.3.33] (iii). O
Example 1.3.44. Recall example [1.3.35l Here C' = s !'dgt 'did 'c and so C~! =
¢ d.d; td; s, Since pc(3) = =14 —14 1 = —1 there is an isomorphism 6 : P(C~1) —
P(C)[—1] which may be depicted by

p1 Cil) Aeo-_____ﬁgfi____ _ s Aeg PiQ(C)
ld;écu / x / x ldP?C)

PO(C_l) Aey _ _ Aes _ 0 > Aeg > Aes P_l(C)
ldp(cl) x 6 / ldpim

Pl(C_l) A64\0_1?A64 PO(C)

The next definition highlights the importance of part (iii) of corollary |1.3.43
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Definition 1.3.45. (NoTATION: P(C,V)) Let V be an R[T, T~ !]-module. By corollary
P™(C) is a left A@g R[T, T~']-module where T acts by b; — b;_,,. By translational
symmetry the map dp ) : P"(C) — P"Y(C) is A ®@g R[T,T~']-linear. We define the
complex P(C,V) by letting P"(C,V) = P*"(C) @pr,r-11 V and dpcvy = dpc) ® Ly for

each n € Z.

Example 1.3.46. Recall example where A = k[[z,y]]/(zy). The automorphisms
6° of P°(C) and 6! of P1(C) may be depicted as

AVAVAVA U

Let V be the (k[[t]])[T,T~!] module k[[t]] where T acts as multiplication by a unit
u € K[[t]] \ (). For any f(t) € k[[t] we have yb, ® f(t) = yb, @ ™' f(t) in PY(C,V)
and so d%(c) (by) ® f(t) = (z +yu1)b_; ®1(t). This together with the isomorphism
A @y k[[t]] = A shows P(C, V) may be interpreted by the schema

e e

Lemma 1.3.47. Let n € Z and C be a periodic homotopy Z-word of period p. Let V be
an R[T, T~]-module which is free as an R-module with R-basis {vy | A € Q}. Write (n,p)
for the set ug'(n) N [0,p — 1]. Then the map

w2 PO V) = @ieug (m) Avo@) @V = Bictny) Aevco) OrV:

(Zieugl(n) M) @V 3 icin ) (D sez Mitps TS @ T~ %)

is a A-module isomorphism. Hence P(C, V') is a projective A-module generated by {b; @vy |
0<i<p—-1,AeQ}.
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Proof. Let I' = A®g R[T,T~']. Fix n € Z. For each | € {0,...,p — 1} the A-submodule
Ny =3 ez My (14ps) of P*(C) is a T-submodule since it is closed under the right action
of T'. Any element of N;® gy r-1)V has the form D >\ >0 tg14ps 0D, @ vy for scalars
Lol+psx € R for each s € Z, A € Q and o € P(> 0) with tail vc(l + ps) = ve(l). Since

byt ps T = by for each s, we have ) o 14ps AT ps @ VX = D, flo14ps ATb @ T ™50y

Consider the A-module homomorphism x; : Ni Qg p-11 V — Ae, ) ®r V for each
le ,u}l(n) sending b, ,, @ vy to by ® T *v). By the above X, is clearly bijective. Since
C' is periodic of period p we have ug'(n) = {{ +ps | Il € (n,p), s € Z} which gives a
I'-module isomorphism P"(C) — @¢(y, ) Ni defined by sending Zie”al (n) T (for m; €
Ab;) 60 32 (np) Dosez Mutps- This defines a A-module isomorphism 7, from P"(C, V) to

@lem,m N ®pgpp -1V defined by sending (Zieual(n) m;) v to Zle(n,p)(ZSEZ Mitps) Q.

Letting x, = (@leugl(n) Xi)Tn gives the first part of the lemma. Setting M =
®i€<n,p> Aey iy gives M @V =~ @y cq M as A-modules as V' is a free R-module, giving

the second part of the lemma. O

Definition 1.3.48. (STRING COMPLEXES) If C is a homotopy word we call P(C) a string

complex provided C' is not a periodic homotopy Z-word.

(BAND COMPLEXES) If V is an R[T,T~!]-module we call P(C,V) a band complex
provided: C is a periodic homotopy Z-word; V is an indecomposable R[T, T_l]-module;

and V is free as an R-module. In this case we often choose an R-basis {vy | A € Q} for V.
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1.4 Functorial Filtrations.

This section will include a literature review for the functorial filtration method, which (as
it has been presented in the current literature) is written in the the language of relations.
In chapter 2 we adapt the method to a new setting, which requires the notion of an R-
linear relation. For convenience we study this notion before explaining how the functorial

filtration method works and where it has been applied.

1.4.1 Linear Relations.

Assumption: In section we assume A is an R-algebra surjectively given by (@, p, 6).

We follow the work of Maclane, however we use notation from work of Gel'fand and

Ponomarev [32], Ringel [55] and Crawley-Boevey [21].

Definition 1.4.1. [49] §2] (see also [32 §1, Definition|) Let M, N and L be R-modules.
(RELATIONS) An R-linear relation from M to N is an R-submodule V' of M @& N. If the

context is clear, V' will be called a relation. A relation on M is a relation from M to M.

(CONVERSE AND COMPOSITION) The converseﬂ V=t = {(n,m) | (myn) € V} of a
relation V' from M to N defines a relation from N to M. If W is a relation from L to M
the composition VW is the relation from L to N consisting of all pairs (I,n) € L@ N such
that (m,n) € V and (I,m) € W for some m € M.

(IMAGE, KERNEL, DOMAIN OF DEFINITION, INDETERMINACY) For any m € M the
image of V. at mis Vm = {n € N | (m,n) € V} and for a subset S C M we let V.S =
Umes Vm. The kernel ker(V) = V10 and the domain of definition dom(V) = V1M
define R-submodules of M. The image im(V) = VM and the indeterminacy ind(V') = V0
define R-submodules of N. Note that ind(V) = ker(V~!) and im(V) = dom(V~1).

As suggested in [32, p.28] we consider the case where V' is the graph of an R-linear map.

SIn [32] this is called the inverse relation, and denoted V*. We avoid this notation as it conflicts with
notation we use following Crawley-Boevey [21] (see definition [1.4.29)).
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Example 1.4.2. (RELATIONS GIVEN By GRAPHS) If f : M — N is any R-linear map
then graph(f) = {(m, f(m)) | m € M} defines a relation from M to N. Since f is
well-defined and R-linear we have dom(graph(f)) = M and ind(graph(f)) = 0. Note that

ker(f) = {m € M | f(m) =0} = {m € M | (m,0) € graph(f)} = (graph(f))~*0

and

im(f) = {f(m) | m e M} =U,ep{n € N | (m,n) € graph(f)} = graph(f)M
If g: L — M is an R-linear map we similarly have graph(f)graph(g) = graph(fg).

We now introduce some language to explain the word functorial in functorial filtrations.

Definition 1.4.3. (NOTATION: R-Rel) The category of (R-linear) relations R-Rel is
defined as follows. The objects are pairs (V, M) where V is an R-linear relation on an
R-module M. A morphism (f) : (V,M) — (W, N) is given by an R-linear map f : M — N
such that (f(m), f(m')) € W for any (m,m’) € V.

(NoTATION: R(—), ( ,—), ((=)7!, ),im, ind) There are some canonical functors defined

as follows.

r(—): A-Mod — R-Mod, \M +— rM, [f: AM — AN]+— [gM > m+— f(m) € gN]
(,—):RRel = R-Mod, (V,M)— M, (f)—f
()7L, ): R-Rel = R-Rel, (V,M) s (V=1 M), {f) s (f)
im: R-Rel — R-Mod, (V, M)+ VM, (f)+ [VM 3>m s f(m) € VN]
ind : R-Rel - R-Mod, (V,M)~ V0, (f)— [VO>m— f(m) e V0

(SUBFUNCTORS OF g(—), INTERVALS) A subfunctor S of gr(—) is given by an R-
submodule S(AM) C grM for each A-module AM, such that f(m) € S(AN) for any
f € Homp nmod(AM,AN) and m € S(yM). For subfunctors S and S of r(—) we write
S < 9 if we have S(M) C S/(M) for each A-module M. In this case [S,5'] is called an

interval, and we say intervals [S,S'] and [T, T’| avoid each other if ' < T or T' < S.
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Example 1.4.4. The functor 0 : A-Mod — R-Mod taking every module and

homomorphism to 0 is a subfunctor of r(—) satisfying 0 < r(—).

Definition 1.4.5. (FUNCTORIAL RELATIONS ON A-Mod) An assignment G : A-Mod —

R-Rel of objects and arrows will be called a functorial relation (on A-Mod) if:
(a) (G(AM) = (V,gM) is an object in R-Rel) for each object yM in A-Mod; and
(b) (G(f) = (f) is an arrow in R-Rel) for each arrow f: \M — AN in A-Mod.
Note that if G is a functorial relation then G is a functor such that ( ,—)G = g(—).

(POINT-WISE COMPOSITION) Given any functorial relations G and G’ we define their
pointwise composition as the assignment G-G’ : A-Mod — R-Rel defined on objects by
(G-G")(AM) = (VW, gM) (where G(AM) = (V,gM) and G'(\M) = (W, rM)) and on
arrows f by (G-G')(f) = (/).

Corollary 1.4.6. If G : A-Mod — R-Rel is a functorial relation then:
(i) [ind G,im G] is an interval of subfunctors of gr(—);
(i) setting G=! = ((—)~t, )G defines another functorial relation (on A-Mod); and

(iii) if G is another functorial relation then G-G' is a functorial relation.

It is straightforward to check that the composition of relations is associative: and hence
so too is the pointwise composition of functorial relations.
Definition 1.4.7. (NOTATION: imGs (M), indGoo(M)) Suppose G; : A-Mod — R-Rel

is a functorial relation for each 7 € N. For each A-module M let

imGoo (M) = {m € M | I(m,) € MY : m = mg and (m;,m;_1) € V; Vi > 0}, and
indGoo (M) = {m € M | 3(my,) € MM : m = mg and (m;,m;_1) € V; Vi > 0}
where G;(AM) = (Vi, gM) for each i, MY = [[y M and M® = Py M.

Corollary 1.4.8. If G; : A-Mod — R-Rel is a functorial relation for each i € N then

indG and imGs define an interval [indG oo, imGoo] of subfunctors of r(—).



Chapter 1. Background and Preliminaries. 75

We now use our assumption that A is an R-algebra surjectively given by (Q, p,6). Let

M be a A-module.

Definition 1.4.9. (NoTATION: rel*(M), A~'0, AM) For any vertices u and v and any
A € eyAe, there is an R-linear relation from e, M to e, M (and hence an R-linear relation
on M) denoted and defined by rel*(M) = {(m, Am) | m € e, M}. We shorthand notation
by setting ker(rel*(M)) = A~10 and im(rel*(M)) = AM.

Corollary 1.4.10. (NOTATION: R) For any vertices w and v and any A € ey,Ae, the

assignment AM — (rel (M), gM) defines a functorial relation R .

Proof. Note RMaM) = (rel(M),gM) gives a well-defined assignment of objects
A-Mod — R-Rel. This means (a) from definition holds. If f : M — N is
a homomorphism of A-modules and (m, Am) € rel*(M) then (f(m), f(Am)) € rel*(N)
because f(Am) = Af(m), and so R*(f) = (f) defines an arrow in R-Rel. This means (b)
from definition [L4.5 holds. O
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1.4.2 Words and Relations.

Assumption: In section A will denote a quasi-bounded string algebra over R

surjectively given by (@, p,0), and M will be any (unital, left) A-module.

We now apply corollary [1.4.10| to the case where A is the coset of an arrow. Recall the
notation from definition [L4.91

Remark 1.4.11. (RELATIONS GIVEN By ARROWS) Recall that if = is an arrow with head
v and tail u, then by corollaries and [1.4.10| the assignment M — (rel*(M), RM)
(resp. AM + ((rel*(M))~!, gM)) defines a functorial relation, where rel”(M) is the set

of (m,zm) as m runs through e, M.

(NoTATION: 210, M) The notation introduced in definition m gives tM = {zm |
meeM}y, x710={mce,M|xm =0}, 27'M = e,M and 20 = 0.

Example 1.4.12. Let @ be the quiver with two loops a and b at a single vertex v, and let
p = {a™,b™, ab,ba} for some m,n > 1. If k is a field then A = kQ/(p) is a Butler-Ringel
string algebra, and so it is a quasi-bounded string algebra over k£ by lemma Note
that A ~ k[a,b]/(ab,a™, b™).

Since ab = 0 = ba in A we have aM C b~10 and bM C a~10 (this is [32, p.29, Proposition
2.1]). Later (in example|1.4.23)) we see more inclusions of this sort. In the meantime some

more notation and theory will be introduced.

Definition 1.4.13. (NOTATION: rel®*(M)) If w = 1,4 let rel®(M) = rel"=(M) be the

R-linear relation {(m,m) | m € e, M} on e, M.

(RELATIONS GIVEN By FINITE WORDS, NOTATION: rel”(M)) Let w = wy ... w, be a

non-trivial finite word. If x is an arrow let

rel* (M) (if w; = x)

reli (M) =
(rel” (M)~ (if w; = 27 1)

and let rel”(M) = rel{’(M)...rell’ (M), the n-fold composition of these relations.
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Example 1.4.14. Consider the Butler-Ringel string algebra A ~ k[a, b]/(ab,a™,b™) from
example [1.4.12] Let m > 2 and w be the {0,1,2,3}-word a~'bb. By definition, for any

z,z' € M we have z € rel,,(M)z" iff

(7', 2) € rel” (M) = rel{ (M) rely (M) rely (M)
={(,y) : (v, u) € rel§’ (M), (u,v) € rely (M) and (v,y) € relf’(M) for some u,v}
={(/,y) : (/,u), (u,v) € rel’(M) and (v,y) € (rel*(M))~" for some u, v}
={(v,y) : u="by, bu=v and v = ay for some u,v}

iff there are elements u,v € M for which u = b2’, bu = v and v = az.

Definition 1.4.15. (NoTATION: wm/, wS) Let w be a finite word. If m’ € e,y M let

wm' = {m € epu)M : (m';m) € rel”(M)}. For any S C ey M let wS = J,,eqwm’.

Example 1.4.16. Let A be the complete gentle algebra from example [1.3.24] which is
surjectively given by (Q, p,0), where @ consists of two loops « and 3 at one vertex, and

p={a? B%}. Let w = laBaB a3~ Here we have

dmg,...,m7y € M : m = myg, Bmy =m1,

rel”(M) = ¢ (m/,m) mi = amsa, mo = fms, M3 = amy,

/
pmy = ms, ams = mg, Bme = mz, my =m

It is helpful to depict the relations above by

For any S C M we have m € wS iff there is a sequence of m;’s as above with m’ € S.
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Recall that if  is an arrow with head v and tail u, by corollary there is a functorial
relation R” : A-Mod — R-Rel where R*(yM) = (rel®(M), rM).

Definition 1.4.17. Let w be an I-word. If {0} # I is finite the calculations from examples

[1.4.14] and |1.4.16| generalise to

mg = m, my, = m’; and for each i > 0,
w , dmg, ..., my
rel”(M) =< (m/,m) : (mi—1 = zm; if w; = x) and
where m; € e, ()M
(xmi_l =m,; if w; = {L‘*l).
(NoTaTION: RY¥) Suppose I # {0}. Let (R¥ = R® if w; = z) and (RY = (R*)"! if
w; = 1) for each i > 0 in I and each arrow z. Recall (corollary (ii)) that the

pointwise composition of functorial relations is a functorial relation.

(NotaTION: R™ FOR NON-TRIVIAL FINITE w) If I = {0,...,n} and n > 0 we let

RY = RY-...-R}Y, the functorial relation given by the n-fold pointwise composition.

(NoTaTION: RUF!) If w = 1,41 (where v = h(w)) we let RY(M) = R**(M) =
(rel”E (M), RM), recalling rel”® (M) is the set of pairs (m,m) with m € e, M.

Corollary 1.4.18. If w is a finite word then RY : A-Mod — R-Rel is a functorial
relation such that R* (M) = (relV (M), gM) for any A-module M.

Definition 1.4.19. (NOTATION: W, 5) For each vertex v and 6 € {£1} let W, 5 be the
set of all J-words w with I C N, h(w) = v and s(w) = 6. Let w be an I-word from W, 5

we define R-submodules w™ (M) C w™ (M) C e, M as follows.

(NoTATION: w*(M)) First suppose I is finite. Then we let w* (M) = wa 10 if there is
an arrow x such that wr~! is a word, and w* (M) = wM otherwise. We let w= (M) = wyM

if there is an arrow y such that wy is a word, and otherwise we let w™ (M) = wO0.

Now suppose I = N. Let w™ (M) be the set of m € enw)M such that there is a
sequence m,, (n > 0) with mg = m and m,_1 € w,m, for all n. One defines w™ (M) to

be the subset of m € w* (M) where the sequence above is eventually zero. Equivalently

w™ (M) = U,,50 w<nD.
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We now see how the functorial relations R* and the R-submodules w™ (M) are related.
Remark 1.4.20. Let w be an I-word where I C N, and let M be a A-module.

Recall the functors im and ind from definition taking R-Rel to R-Mod. Note that
im(U,N) = UN and ind(U, N) = U0 whenever U is an R-linear relation on N.

By corollary for any functorial relation G the compositions im G and ind G (taking
A-Mod to R-Rel to R-Mod) are subfunctors of the forgetful functor g(—). In definition
we defined functors imG4, and indG., for a collection of functorial relations {G; |
i € N}. By corollary imGy and indG are also subfunctors of r(—).

If I is finite then

mg = m and for each ¢ > 0,
dImg,...,my
wM=<{meM © (mi—1 = am; if w; = x) and
where m; € ey, ()M
(xm;_1 = my if w; = z71).

={m € ep@)M | mo,...,mpy : m =mg and (m;, m;—1) € rel;’(M) whenever n >i > 1}

since m = am/ iff m € am/ iff (m’,m) € rel*(M) for any arrow z and any m,m’ € M.

The above shows wM = im(R*(M)), and similarly we have w0 = (ind R¥)(M). If
instead / = N then {R}" | i € N} is a collection of functorial relations (defined in definition

1.4.17)), and (as above, we can show) wt (M) = (imRY)(M) and w— (M) = (indRY)(M).
Definition 1.4.21. (NOTATION: wi) Let w € W, +1 be an I-word.

If ] is finite let: wt = ind R¥* " if wz~! is a word for some arrow z and w' = im R
otherwise); and (w~ = ImR™Y if wy is a word for some arrow y and w~ = ind RY

otherwise). If I = N let w™ = imRY and w™ = indRY..

Remark 1.4.22. If w is a finite word then im(R™¥*  (M)) = im(R¥(M)) (resp.
ind(R¥*(M)) = ind(R*(M))) if wz=! (resp. wz) is a word for some arrow z.

Example 1.4.23. Let A be the complete gentle algebra from example Recall we

had s(a) =1, s(a™!) =1, s(8) = —1 and s(8~!) = —1 from example Hence if

:I:l(

w = w; ... is non-trivial, then (w lies in W, 1 (resp. W, —1) iff w1 = o™ (resp. wy = B)).
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By definition we have w™ (M) = waM and wt (M) = wa10 (resp. w™ (M) =
wBM and wr (M) = wB710) if w is finite and s(w™!) = —1 (resp. s(w™!) = 1). Since
a? =32 =0in A we have aM C a~'0 and M C B7'0. In the notation from definition
: for any finite word w there is an interval [w™, w™] of subfunctors of the forgetful
functor Zp(_) : A-Mod — zp—Mod.

If w € W, 41 is non-trivial and finite such that w; is an inverse (resp. direct) letter
for each ¢ # 0, then (by remark [1.4.22)) we have Zp(—) = imRY (resp. 0 = indR") as
functors A-Mod — Z,-Mod. One may find it useful to arrange the intervals [w™, w]

(as w runs through the I = {0, ... ,n}-words in W, ; for (say) n < 2) as follows.

7,(—) ImRY ™ ———imRe iR la !
(a 1)t = indRe™ 871!
(@71p71)" = imRe e
(o)t =indR™ P ——— indRa“lﬁ‘la
(@)™ = imR P :imRO‘T@O‘*1
(a~1B)T = indRe o
(a718)” = imR"Fe

|
(1,1)" = indR>™ indR> '8 indRe ' A

MR imR*F o
\
(@B~ = indR e

(11)’1)7 = imRY ———
1
(af™1)™ = imR '
|
(@)t = indR*¥ ™" ——=indR* '@
(a)” = ImR* ——— jmROF
\
(aB)* = indR*P"

(aB)~ = imRPe

|
0 ——— indR* ————indR*? indRAe
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Let Cyp = [0,1] and iteratively define the sets C,, by setting C,, = C;/ U C,, for each

integer n > 0 where
2
c;:{g |z € C,_1} and C:{:{§+§ |z € Cp1}

Using this notation the Cantor set is C =[), ., C,. Recall C together with the distance

n>0
metric on R is a metric space. Any element z € C defines a sequence x = (x;)i>0 €
{—1,+1} by setting x; = £1 if z € Ci_l, and if z lies in the boundary of C then
X; = Xj41 = ... for large enough 1.

Consider a subfunctor of Zp(_) of the form S = w® where w € W, 1 is a {0,...,n}-
word. We can associate a sequence x = (x;);>0 € {—1, +1}" as follows. If n > 0 we define
{xi |0 <i<n}by

aXoxL L BFn=1 (if m is even)

a0 ... aFn—l (if n is odd)

and for any n > 0 we let (x, = +1 and x; = F1 for all i > n) if S = w*. We have now
defined an element of the boundary of C for any functor of the form w® where w is finite.

For another example of this relationship see [30, §9, Proposition].

Definition 1.4.24. (ORDERING WORDS) [55], p.24, proof] (see also |21}, §6]) For distinct

words w, w’ from W, 5 we say w < w’ if one of the following hold:

71u//7

(a) there are letters [ and I’ and words u, v/, u” for which w = ulu/, w" = u(l")
(b) there is some arrow z for which w’ = wa~1u for some word w,
(¢) there is some arrow y for which w = w'yu’ for some word u'.

Remark 1.4.25. To see that < defines a total order on W, s one may follow the proof of

the analogous statement for homotopy words, which is given in lemma

Example 1.4.26. Let A be the complete gentle algebra from example [1.4.23] Here we

have

a”lpla > a7 > a7 B la > a  Ba > aT B> a7 Ba > a7l
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Note how an interval (say [(aB871)~, (af~!)*]) from example [1.4.23| corresponds to an
inequality of words (say a8 'a < aBf~'a~!) above. Let us try to make this more precise

using the terminology introduced in definition

Lemma 1.4.27. [32] Chapter II, Lemma 1.1, Proposition 1.7] (INTERVAL AVOIDANCE)
Let § € {£1} and v be a vertex. For distinct u,w € W, s the intervals [u™,u™| and

[w™,w™] avoid each other.

In Gabriel’s exposition this result is [30, p. Proposition]. The result in Ringel’s paper
[55, p.23 Lemmal, [55, p.24, Proposition] is slightly different. In Crawley-Boevey’s paper
it is [21, Lemma 6.2]. A proof of the analogue of this statement for homotopy words is
proposition 2.1.30] Hence, we omit a proof. For convenience we now introduce what shall

be referred to as refined functors.
Definition 1.4.28. Let S and S’ be subfunctors of the forgetful functor g(—).

(NoTAaTION: SNS'; S+ S') The meet SNS" and join S+ S of S and S’ are subfunctors
of r(—) defined by setting (SNS")(M) =S(M)NS' (M) and (S+S") (M) =S(M) +S' (M)
for each A-module M.

(NotaTIiON: S/S') If S < S’ then the quotient S'/S is a functor A-Mod — R-Mod
defined by (S'/S)(M) =S (M)/S(M) for each A-module M, and (S'/S)(f)(m + S(M)) =
f(m)+S(N) for any f € Homp nod(AM, AN) and m € S'(yM). This map is well defined

since f(m) € S(AN) whenever m € S(AM).

(REFINED FUNCTORS FOR MODULES) [15, p.162] (see also [21, §7] and [55, pp.24-25])
Let w and w’ be (finite or N)-words. The refined functor Fy, ., given by the pair (w,w’)
is defined as the quotient Fy, ,v = FJw,/Fq;w, : A-Mod — R-Mod where

+ - _ - _
Foy=wrnuw™and F =@ Nw ™)+ w” Nuw'")
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1.4.3 Reduction Lemma.

We now need some more theory about relations in general.
Assumption: In section|1.4.3| we assume M is an R-module.

Definition 1.4.29. [21] Definitions 4.1 and 4.3] Let V be a relation on M. For any integer
n > 0 let V™ be the n-fold composition of V with itself (so V! =V and V2 =VV).

(NoraTion: V™, V' V" V’ V#) The R-submodules V¥ = V"’ N (V-1)" and V° =
VA (V=Y £V 0 (V™Y of M are defined by setting

U’:Un>OU"0, U'={me M |3Img,mi,ma,--- € M : mg=m, my € Um;;1 Vi}

for any relation U on M.
Lemma 1.4.30. [2I, Lemma 4.4] For any relation V' on M we have

() VECVVE (i) VP =VEINVVY, (i) VECVIVE and  (iv) VP = VEQV LYY,

Proof. (i) and (iii) For z € V* there are some elements z; € M where i runs through the
integers and zg = z for which z;_; € Vz; for each i. Let z; = yp and more generally
zi41 = y; for each i. By construction there are elements y; € M for which y;—1 € Vy; for

each i, and zy € Vyg. (iii) now follows as a corollary since (V~1)f = V¥,

(ii) and (iv) If 2 € V> = (V'n(V=1))+ (VN (V~1)") then there exists 2+ € V/N(V 1)
and 2~ € V' n (V™Y for which z = 2+ + 2~. This means there exist 2,z € M for

RS

each integer 7 where zii_ 1 € Vzii, z(jf = z* and there exist some n_,n, € Z for which

zz-i = 0 whenever +i > +ny. Letting yfc = zil shows yfc_l € Vy;IE for each 7 and yfﬁ =0

whenever £i > £(ny — 1), s0yf € V' N (V"1 and y; € V' N (V-H".

So 2t = z7 is an element of Vyg C V(V”N (V1)) and similarly 2~ € V((V=H"n V).
Since V' N (V=) and V" N (V1) define R-modules we have that z € VV?. This shows
V? CVV'NVE Now suppose z € VV? NV and z € Vz with z € V? as above. We then
have © — zfl —z_,€Von V¥ and zfl, Z_, € VP soxz € VP as required. Again this gives
(iv) as (V=1)> = V", O
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As above, the proof in [21] generalises to a proof of the following lemma with no further

complications. For this reason, the proof is omitted.

Lemma 1.4.31. [2I, Lemma 4.5] (AUTOMORPHISM LEMMA) If V' is a linear relation on
M then there is an R-module automorphism 6 on V/V? defined by (m +V®) =m/ +V°
iff m' € VEQ (V° 4+ Vm).

Definition 1.4.32. Let V be a relation on M.

(REDUCTIONS) A reduction of V is a pair (U, f) such that U is an R[T,T~!]-module
which is free over R, and f : U — M is an R-module map for which V¥ = im(f) + V" and
f(Tu) € Vf(u) for each u € U.

(MEETS IN m) We say a reduction (U, f) of V meets in m if the pre-image f~1(V?) is

contained in mU.

(R-RANK) If F' is a free R-module with an R-basis consisting of d > 0 elements we will

say F' has free R-rank d.

(SpLiT RELATIONS) [21, p.9] If R is a field we say V is split if there is an R-linear
subspace W of M such that V=W @ V® and #Vm N W =1 for each m € W.

Corollary 1.4.33. If R is a field and (U, f) is a reduction of a relation V- on M which

meets in m = 0, then V is split.

Proof. By definition U is an R[T,T!]-module and f : U — M is an R-linear map for
which V# = im(f) + V* and f(Tu) € V f(u) for each u € U. Let W = im(f). For any
m € W we have m = f(u) for some u € U. Since U is an R[T, T~!] we have Tu € U which
means f(Tu) € VmNW, and so #VmNW > 1. It remains to show VmNW C {f(Tu)}.

Let m’ € Vm N W be arbitrary. By definition m’ = f(u') € W for some v’ € U, and so
(m, f(')), (m, f(Tw)) € V. This means f(u' —Tu) € VO C VV? = (V-1)"1(V1)*, and
since f(u' — Tu) € im(f) C VI = (V1% we have f(u' — Tu) € (V)N (V)Y (V1)
and so f(u' —Tu) € (V-1 =V? by lemma This means v’ = T'u since (U, f) is a
reduction of V which meets in m = 0 (and v/ — Tu € f~1(V?)). This gives m’ = f(Tu) as

required. O
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The lemma (|1.4.34) below is a generalisation of [2I, Lemma 4.6] (by corollary [1.4.33)).

Lemma 1.4.34. (REDUCTION LEMMA) Let M be an R-module and V' a relation on M

such that V! /V? is a finite-dimensional R/m = k-vector space. Then there is a reduction

(U, f) of V which meets in m where U has free R-rank dim(V/V?).

In our setting V” need not have an complement as an R-submodule of V.

Example 1.4.35. Let p be an odd prime and let R be the quotient ring Z/p3Z, so
m = pZ/p37Z. Let M be the quotient F'/K of the free module F' = Rzy @ Rz; by the
submodule K = Rpz;. Let ¢ : M — M be the r-module homomorphism defined by

g(rzo + sz1) = rz; where z; = z; + K for each i € {0,1}.

Let V = (graph(g)) 'graph(g) considered as an R-linear relation on M. By definition,
for elements m = rzy + sz1 and m' = 1'Zp + §'z1 in M, (m,m’) € V iff g(m) = g(m’) iff
(r—r")zy = 0 iff r — ' € m. This means V = V~! and (m € Vm for any m € M, and
so) V" = M, and so V¥ = M. For any n > 0 we have rZg + sz; € V"0 iff » € m, and so
V> = Rpzo + R71.

The automorphism 6 of V¥#/V” from lemma is defined by 0(rZy + sz1 + V?) =
%o+ 5’71 + V? iff r — ' € m. Let U be the submodule of M generated by Zo, and let f
be the inclusion of U into M. Make U a right R[T,T~!]-module by setting (Zo)T = Zo.
Note that U = Rzyp = Rzp + K/K ~ Rzy/Rzy N K ~ Rz which is free over R of rank 1.

Altogether this means (U, f) is a reduction of V which meets in m. Note that V/V? ~
F, = k and so dimy(V*#/V®) = 1, which verifies lemma [1.4.34] in this example. Note also

that the exact sequence 0 — V? — VI — Vﬁ/Vb — 0 does not split.

We now check the proof |21, Lemma 4.6] works in our more general setting.

Proof of lemma[1.4.34 Let @ denote the induced R-module automorphism of V#/V? from
lemma [1.4.31] Let A = (@;;) be the matrix of § (with entries from k) with respect to a
k-basis 71, ...,vq of Vﬁ/Vb. For each i choose v; € V¥ such that 7; = v; + V? and for each

J choose a;; € R such that a;; = a;; + m.
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As A € GL4(k), det(A) # 0 and so if we let A be the matrix (a;;) € My(R) we have
det(A) ¢ m. This means det(A) is a unit as R is local, and hence A € GL4(R). Now fix

je{l,...,d}.

We have §(v;) = Z?:l aijv; + V> as mV* C V°, and so by definition there is some
w; € Vv; for which Z?Zl a;jv; — wj € VP, Let zj = wj — Z?Zl a;jv;. Write z; = z;' + 25
for elements zJF c (V1 nVv"” and z; € (V=1 N V', Hence there are some integers n_

and n4, and a collection {z | n € Z} C M for which: z €Vt | for each n € Z;

7,m+1

Z;, = 0 for each n > n_; and zjn = 0 for each n < ny. Now for each n € Z define the

matrices L™ by

. 0 (if n > 0) . —A"t (if n > 0)

(A~H)="  (otherwise) 0 (otheriwse)

Write L7 = (mf;n)w for elements m " € R. Note that (if mJr Mot #£0thenny <n <

0) and (if ml_]nzz_n # 0 then n_ > n < 1). This means the sum ZnEZ Zi:l m:;’"z* +

n
Y nez Zf 1 Mm%, is finite. Since V' is an R-linear relation and ( m,zlin 1) €V we

tn_+ +n s
have (mg;" 27, mg " 25, 4

) € V, and hence

ZnEZ Zz 1 m+ nZJr -1 + m jn—l € V(ZnEZ Zz 1 m+ " + + m Z;n) (*)
Letting u; = vi + ez (C oy 10" 250,)) + Snen(Sier miy " 2,) gives
d d _
D i @ijui = Y g i j(vi + ZneZ(Zk 1 mkz "z n) + ZnEZ(Zk LM 2 n))
=30 aivi + > onez Y (X, aiymy™ )zt w2 onez Y (Xl WMy )2 -
For n < 0 we have

d : d
(Cimy aigmy )2, = (T my"aig) 2, = (LT Ay, = (A7) A5,

(L") )20, = =m "t ifn <o,
= (A7) "y, = ke TR e (%)
ki if n = 0.
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For n > 0 we have

d —ny _— d - - _ - _ -
(> izt aijmkin)zk,n = (2i=1 mkinaij)zk,n = (L ’nA)k,jZk,n = (-4" lA)k»jZk,n

_ _ _ —n+1_—
= (_An)kvjzk,n = ((L 7nJrl)k»J')zk,n = mk,jn zk,n (***)

Combining (x) and (x % x) together with the definition of L™ gives

d d d d -
D i1 @il = Y i q @iV + 3 ner D kg (Do aijm; ) n T D nez Zk 1(21 1 aimy" )z,

ol +1 -
=YL 1alJUZ+Z]0+ZnEZ n<02k Ly +ZnEZ n>OZk lmkn Zkn

Note that
+1_— d —nt+l_— - -
> neZ:n>0 Zk 17 ]n “kmn = D oneZ:n>0 2ok=1 mk,jn Zkn — %0 %50
d —ntl_— -
=Zjo T > onez:n>0(2ok=1 My, ]ﬂ “kn T %, 0)
y +1 —
jO +Zn€Z n>0(2k 1mk ; zkn + Zz lmky ]0)
=2zj0t ZnEZ:n>O(Zk:1 my; Zk,nfl)
as L0 = —1;, and so altogether

d d d +, d —-n_—
D QijWi = D il QigUi + 25+ D ez D k1 My, ‘n’zljn 1 2 nen 2ok M Pt
_l’_
€ ij +V(Zn€ZZz 17 " + +Zn€ZZz lmJ zn) by ( )
+, P -
- V(Uj + ZTLEZ Zi:l ,]n iwn + ZHEZ Z'L 1 m ,] Zz n)

So >0 jayui € Vuj. Let U = @LIR and define the action on U by T'(r;); =
(Z?:l a;jr;j)i, multiplication by the matrix A = (a;;). Define f by f((r;)) = Ele T

Since Vﬁ/Vb has k-basis 77, ...,Tg for any m € V¥ there are elements sq,...,5, € R
such that writing 5; = s; + m for each i gives m + V'’ = Z?:1 5i(v; + V?) which equals
Z?:1 siu; + V7.

There is an element z = Z?Zl siu; = f((s;)) € im(f) and an element ¢ € V? with
m —t = ¢ and thus m = t + ¢. This shows V¥ C im(f) + V? and as u; € V¥ for each i this

inclusion is an equality.
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Since f maps into V¥ and mV* C V° we have mU C {u € U : f(u) € V"}. Conversely
if f(u) € V? where f(u) = S0 rous then 0 = N 7w = S 7w; and as o1,. .., 7Tq
was an R/m = k-basis for V#/V? which means r; + m = 0 in k (and hence 7; € m)
for each i. Hence mU 2 {u € U : f(u) € V’}. Now fix u = (r;) € U. By definition
we have Tu = (Z;lzl a;jrj); and so f(Tu) = 2?21 7 S0 | agjuy which is an element of

2?21 r;iVuj CV f(u), as required. 0
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1.4.4 The Structure Theorem.

So far we have developed the language of linear relations, and explained how such relations
may be defined using words. We are now ready to explain what the functorial filtration
method is, how it works and how it has been used in the past. Since section is

essentially a literature review, we now restrict our focus.

Assumption: In section [.4.4] we let R be a field k£, and A be a quasi-bounded string
algebra over k (equivalently, A is a Butler-Ringel string algebra, by lemma [1.2.3)).

We now highlight the significance of example in the context of the functorial

filtration method. In [32] Gel’fand and Ponomarev pose and solve the following.

Problem 1.4.36. [32, p.26] Given a field k, P; and P» two finite dimensional k-vector
spaces, and d_ : P| — P, dy : P, — P; and § : P, — P three k-linear maps such that
d_0 =0, ddy =0, and the endomorphisms d,d_ and § of P; and P» are nilpotent:
Classify the canonical form of the matrices of d_, dy and § with respect given bases of
P; and P,. Hence the problem is to classify the finite dimensional representations of the
quiver

2#1@0

subject to relations s_o = 0, os; = 0, (s45-)" = 0 and ¢™ = 0 for some n,m > 0.

Writing P = P; & P» we may introduce the k-vector space endomorphisms

and the above conditions on di and § correspond to ab = ba = 0 and o™ = b = 0.
Correspondingly it suffices to classify the indecomposable objects in A-mod where A is

the k-algebra from example

Our aim in section is to explain the following theorem (which is due to Butler
and Ringel) using example [1.4.12] Consider the functor res, : k[T,7']-Mod —
k[T, T~']-Mod which swaps the action of T and T~! (see definition for details).
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Note that a string module M (w) (resp. a band module M (w, V")) is finite-dimensional

iff w is finite (resp. V is finite-dimensional).

Theorem 1.4.37. [15, p.161, Theorem] The following statements hold.
(i) Any object in A-mod is a direct sum of string and band modules.
(ii) Any indecomposable object in A-mod is isomorphic to a string or band module.
(iii) Every finite-dimensional string or band module is indecomposable.

(iva) There cannot exist an isomorphism between a finite-dimensional string module

M(w) and a finite-dimensional band module M (w,V').

(ivb) Finite dimensional string modules M (w) and M (w') are isomorphic iff w' = w*!.

(ive) Finite dimensional band modules M (w, V') and M(w', V') are isomorphic iff

(w' =w[t] and V ~ V') or (w' = w ™ t] and V ~res,(V'))

For the proof of this theorem, Butler and Ringel use [15, p.163, Proposition]. This
result was based on the following lemma due to Gabriel. Our presentation follows Ringel’s

interpretation [55, §3, Lemma].

Lemma 1.4.38. [30 §4, Structure theorem| Let N be an abelian category and let J be
an index set. For each j € J let: €; be an abelian category; and let T; : €; — N and

G : N — €; be additive functors.
Suppose that:
(a) G;T;j ~id for each j € J and GiTj =0 for each j,l € J with | # j;
(b) for every object M in N we have Gj(M) =0 for all but finitely many j;

(c) if a: €D; Tj(G;(V;)) — M is an arrow in M (for some V; and M) such that G;(«)

18 an isomorphism for each j, then « is an isomorphism; and

(d) for every object M in N and every j € J there is an arrow rjn = Tj(Gj(M)) — M

such that G;(kj ) is an isomorphism.
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Then the following statements hold.

i) Any object in N is isomorphic to @.T;(G;(M)) (see [15, p.163, Proposition (iv)]).
77 J

(ii) Any indecomposables in N has the form T;(C) with C' indecomposable in €;.

(iii) If C is indecomposable in €; then T;(C) is indecomposable in N.

(iv) T;(C) and Ty(D) are isomorphic iff j =1 and C ~ D in C;.

We have omitted the proof of lemma [1.4.38] This is because later in the thesis (see
definition and lemma [2.6.5) we have adapted this result for our own purposes, and

in our proof (of lemma [2.6.5)) we closely follow Ringel’s proof of [55], §3, Lemma].

In the remainder of section [1.4.4] we sketch a proof of theorem We start by
defining: a category 91; an index set J; categories €; for each j € J; and functors G; :
N — ¢ and T : €; — N for each j € J. We then explain why parts (a), (b), (c) and (d)
from lemma hold in this notation. We start by defining 91, J and €;.

Definition 1.4.39. (NOTATION: N) Let 91 = A-mod, the full subcategory of A-Mod
consisting of finitely generated modules. By lemma (id) any finitely generated
A-modules is finite-dimensional over k (note Ae, is finite-dimensional for any vertex v
because A is a Butler-Ringel string algebra). Hence 91 is the abelian subcategory of

A-Mod consisting of all finite-dimensional modules.

(NOTATION: J) Recall corollary There is an equivalence relation ~ on the subset
A of pairs (w,w’) € ||, Wu1 X Wy, —1 such that w™lw’ is a word, given by (w,w’) ~ (u,u’)
iff u=lu' = w=tw'[t] or vt/ = (w')"lwlt] for some integer t. Define J C A by choosing
a representative (w,w’), one for each equivalence class (w,w’) € A/ ~ such that w™w’ is

finite or a periodic Z-word.

(NoTATION: €;) Fix j € J, say j = (w,w’). If w™lw' is finite let €; = k-mod (the
full subcategory of k-Mod consisting of finite-dimensional vector spaces). If w=tw’ is a
periodic Z-word let €; = k[T, T~'-Modj mod, the full subcategory of k[T,T~']-Mod

consisting of modules which are finite-dimensional over k.
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Remark 1.4.40. (F, . : A-Mod — k[T, T7']-Mod FOR w™lw’ PERIODIC) Let w and
w’ be words such that w™'w’ is a periodic Z-word. This means w = 4> where u is a

primitive cyclic {0,...,p}-word for some p > 0.

Consider the relation rel“(M) on ey, M given by the word u, and hence recall the

notation (rel“(M))” and (rel*(M))’ from definition As in [21], §7] we have

wt (M) =imRY (M) = ((rel"(M))")", w™ (M) = indRY, (M) = ((rel"(M))~)',
w' (M) = imRY (M) = (rel*(M))" and w'~(M) = indRY (M) = (rel“(M))’.

Recall the refined functor Fy,,s : A-Mod — k-Mod from definition [1.4.281 The
above, together with lemma [1.4.31 shows that Fy, /(M) is a k[T,T~']-module. So in
this case we can (and from now on, we shall) consider F,, ., as a functor taking A-Mod

to k[T, T~1]-Mod.

In lemma [2.2.11| and corollary [2.2.12] we prove statements analogous to those in remark
1.4.40}, for the case of homotopy words (instead of words).

Definition 1.4.41. (CONSTRUCTIVE FUNCTORS FOR MODULES) Let w and w’ be words

such that w—1w’ is an I-word for some subset I C Z.

If w™'w' is not a periodic Z-word define the functor Sww : k-Mod — A-Mod on
objects by Sy (V) = M(w™'w') @, V. For a k-linear map f : V — V'’ and bases
{ox | X € Q} for V and {v}, | N € Q} for V', write f(vy) = > ax vy for scalars
ay. € k for each \,\ € Q. Define S, ,s on morphisms by extending the assignment

Swaw (f)(bi @vy) =\ ax b @ vy, (for each i € I and XA € Q) linearly over A.

If w™lw' is a periodic Z-word V and V' have the structure of left k[T, 7~!]-modules, and
the k-linear map f : V — V' above is also k[T, T~ ']-linear. Hence T defines automorphisms
py 1 V. = V oand gy @ V' — V' satisfying foy = ¢y f. Define the functor S, . :
k[T, T~1-Mod — A-Mod on objects by Sy (V) = M(u,V).

The formula Sy (f)(bi @ va) = D yeq axvabi ® vy gives Sy (f)(biep @ vy) =
TSy axabs ® vy) and consequently Sy (F)(Thi © 1) = T(Suur (F)(b © v3)).
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Hence if w™lw’ is a periodic Z-word then S, . (f) defines a A-module homomorphism

M(w) @prr-—1V — M(w) Qpp -1 V'

Remark 1.4.42. Let j € J, and so j = (w,w’) where w and w’ are words such that

1

wtw' is a {0,...,n}-word (for some n > 0) or a periodic Z-word.

If V is an object in €; with (finite) basis {vy | A € Q} then the A-module Sy, ./ (V) is
generated by the elements b; ® vy where A runs through 2 and ¢ runs through the integers
with (0 < i < n if w™lw' is finite) and (0 < i < p — 1 if w™lw' is periodic of period p).

Hence if (w,w') € J then S, (V) is an object in A-mod if V' is an object in €;.

Since F\ (M) C e,M where v is the head of w and w’, when M is finite-dimensional
50 is Fyy (M). Hence if (w,w') € J then F,, (M) is an object in €; if M is an object

in A-mod.

In corollary [2.2.12] we state and prove a result analogous to remark for the case
of homotopy words. We can now defined the functors G; and T;.
Definition 1.4.43. (NOTATION: G;, Tj) Fix j € J, say j = (w,w’).

If w ' is finite let G be the restriction of F, s : A-Mod — k-Mod to 91, which (by
the above) defines a functor 91 — €;. Let T} be the restriction of Sy, . : k-Mod — A-Mod

to €;, which again defines a functor €; — .

If w™'w' is a periodic Z-word let Gj be the restriction of F,, : A-Mod —
k[T, T~']-Mod to M, and let T} be the restriction of Sy, . : k[T, T~!]-Mod — A-Mod to
¢;. Again G and Tj define functors 91 — €; and €; — 1 respectively.

Lemma 1.4.44. [21, Lemma 7.1] If w € W, 1 and w' € W, ;1 then
(i) if w™tw' is not a word then Fy, . ~ 0,
(ii) if w™tw' is a word which is not a periodic Z-word then Fuw =~ Fuy )
(iii) if w™lw’ is @ word which is a periodic Z-word then Fyw >~ res, Fy oy, and

(iv) if (u,u’) € Wya x Wy 1 with u™ '/ = w™lw'[t] for some t then Fy u =~ Fy .
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There is a corresponding result for the functors S, .. Note however that the functors

Lw a word.

Swu have only been defined for (w,w’) € A, the set of such pairs where w~
Lemma 1.4.45. [21], p.3] If (w,w’) € A, then
(i) if wlw' is not a periodic Z-word then Sy uw ~ Sy w,

(ii) if w™w' is a periodic Z-word then Sy =~ Suw wres,, and

(iil) if (u,u') € A with u™lu/ = w™tw'[t] for some t then Sy ~ Sy -

Remark 1.4.46. In definitions [1.4.39| and [1.4.43| we have defined the index set J, the

categories 91 and €; and the functors G; and 7. In this notation: parts (i), (ii), (iii) and
(iv) of lemma|1.4.38|are precisely parts (i), (ii), (iii) and ((iva), (ivb) and (ivc)) of theorem
T.4.37

In the remainder of section we sketch the proof of theorem [1.4.37] To do this we
explain why parts (a), (b), (c¢) and (d) from lemma|l.4.38 hold. Before we begin we justify
why our verification (of parts (a), (b), (c¢) and (d) from lemma [1.4.38]) does not depend

on the choice of J.

Choose another index set J' C A of representatives (w, w’), one for each equivalence class
(w,w') € A/ ~ such that w™lw’ is finite or a periodic Z-word. For each j' = (u,u’) € J'
if u=lu' is finite (resp. periodic) let ¢’ be k-mod (resp. k[T, T~ 1-Modg.moa) (as in
definition |1.4.39)), let G;, be the restriction of F,, ./ to the category M, and let T]’-/ be the
restriction of S,/ to the category C;, (as in definition [1.4.43)).

By lemmas [1.4.44] and [1.4.45| for any j' € J' with j ~ j’ for some j € J we have
(Gj ~ G and Tj ~ Tj,) or (G ~ res, G, and T ~ Tjres,). Since (res,) ! = res,, if the
choice of J and {€;,G;,T}; | j € J} verify parts (a), (b), (c) and (d) from lemma
then so do the choice of J' and {&),,G",, T}, | j' € J'}.

Definition 1.4.47. Let v be a vertex, § € {1}, u € W, s and w be an I-word. Recall the
notation from definition|1.3.10; for i € I we have w<; = ... w; (resp. ws; = wiy1 ...) given

i—1€ I (resp. i+ 1€ I), and otherwise w<i = Lj(w),s(w) (T€SP- Wi = Lp(w-1) 5(w-1))-

The following notation for the truncated subwords w(i,d) of w came from [21], §8].
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Recall the ordering on words from definition and the corresponding avoidance of
intervals (of subfunctors of the forgetful functor) from lemma |1.4.27

(NOTATION: w(i,d)) For any i € I the words ws; and (w<;)~! have head v;(w) and

opposite signs. Let w(i,d) be the one with sign 4.

(NOTATION: (I,u,=)) If w is not a periodic Z-word let (I,u,+) (resp. (I,u,—)) be the
set of ¢ € I such that v;(w) = v and w(i,d) < u (resp. w(i,d) < u). If w is a periodic Z-
word of period p > 0 let (I,u,+) (resp. (I, u,—)) be the set of integers i with 0 <i <p—1

such that v;(w) = v and w(i,0) < u (resp. w(i,d) < u).

We now collect together some results from [21]. Recall definition |1.4.32

Lemma 1.4.48. Let w be an [-word and let w = w(i,1) and ' = w(i,—1) for some
i € I. Let V be a k-vector space with k-basis {vy | A\ € Q}, and suppose that V is a

k[T, T~Y]-module if w is periodic.

(i) [2I, Lemmas 8.1 and 8.4] If v is a vertez, 6 € {1} and w’ € W, 5 then {b;®vy | i €
(I,u, £), A € Q} is a k-basis of w' = (S (V)).

(ii) [21, Lemmas 8.2 and 8.5] FIU,(SUM,(V)) = F;u,(SuM(V)) D Pyeq k(b ®vy), and
FT (Suw (V) =F, (Suw(V)) for all (v,v") € Wy1 X Wy 1 with (u,u') = (v,0').

v,v’ v,
(iii) [21, Lemmas 8.3 and 8.6] Let M be a A-module. If (w is not periodic) or (u = w',
v = (w' 1> and relwl(qu/(M)) is split for a primitive cyclic word w'): then there is a

homomorphism Ky Sy (Fuw (M)) = M such that Fy, v (Kyw a) s an isomoprhism.

In chapter 2 we adapt the statement and proofs of lemma [1.4.48 (ii) (see part (ii) in
lemmas [2.3.20| and [2.3.21)).

Lemma 1.4.49. [21, Lemma 10.5], see also [55, §6] Let M be a finite-dimensional A-
module, and let v be a vertex. Suppose U is a subspace of e,M where m & U for some

m € e,M. Then there is a pair (u,u’) of words such that: v~ is a word;

U+m)n(u (M)+d+T(M)Nnut(M)) #0; and
U+m)N(u (M) +u~(M)nut(M)) = 0.
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Lemma 1.4.50. Let 0 : N — M be a A-module homomorphism such that F, ., (0) is an

isomorphism for each j = (w,w') € J.
(i) 21, Lemma 9.4] If N is a direct sum of string and band modules then 0 is injective.

(ii) [21, Lemma 10.6 (i)] If M is finite-dimensional then 6 is surjective.

The proof of lemma |1.4.48| (ii) uses lemma [1.4.48| (i), and the proof of lemma [1.4.50
(ii) uses lemma [1.4.49, Using these results, we now verify parts (a), (b), (c) and (d) from

lemma [[.4.38]

Verification of lemma (a). Let j € J,say j = (u,u) withu € W, and v/ € W, _1
for some vertex v. Consider the k-linear maps Oy : Fy, v (Syw/(V)) — V defined by

QV(ZieI, rea Tin(bi @ vx) + F;u,(S%u/(V))) = DA TtAUA

where 7;, € k, {vy | A € Q} is a k-basis for V and ¢t € I satisfies v = w(t,1) and
u' = w(t,—1) where w = v~ 'u/. Note that when u = w(s,1) and v/ = w(s,—1) for
some s € I, if (w isn’t periodic, or w is periodic of period p > |s — t|) then s = ¢t. By
the first part of lemma (ii) the map 6y is an isomorphism of vector spaces. It is
straightforward to show 6y is k[T, T~!]-linear if w is periodic. We omit the proof that
0 : G;S; — id defines a natural isomorphism. For details see the proof of [55, p.26, second

Lemma] (which was adapted to lemma [2.3.19| (i) in chapter 2). O

Verification of lemma (b). Suppose M is a finite-dimensional A-module, say with
basis my, ..., my. For each integer ¢ with 1 <t there is a vertex v(t) for which e,m: # 0,
and so by lemma for each such t there is a pair (u¢, uj) € Wa(),1 X Wa(r),—1 of words
such that: u; 'u} is a word; my € (uy (M) + v, (M) N (M)), and my ¢ (u; (M) +
up = (M) Nuf (M)). Order pairs (u,u’) of words from W, 1 x W, 1 lexicographically, by
setting (u,u) < (w,w’) if u < w or (u = w and v < w’). Let (u,u’) be a pair from
J with (u,u’) # (ug,uy) for all t. Using lemma one can show F, (M) = 0, and
50 Fy (M) # 0 implies (w,w’) = (us, uy) for some ¢ (that is, Fy, /(M) = 0 for all but

finitely many j = (w,w’) € J). O
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Verification of lemma|1.4.58 (c¢). Suppose # : N — M is a homomorphism of finite-
dimensional A-modules where N is a direct sum of string and band modules. If F, s (6)
is an isomorphism for each pair (w,w’) € J, then 6 is injective and surjective by lemma

11.4.50) O

Verification of lemma (d). Let M be a finite dimensional module and let j € J, say
j = (u, ) for words v and u/. If u = w'®> and v’ = (w’~1)> are words for some primitive
cyclic word w’ then F,, /(M) = (relwl(Fu,u/(M)))ti/(relw,(Fu,u/(M)))b is finite dimensional,
and so by lemma and corollary the relation relw/(Fu,u/(M )) on Fy /(M) is
split. By lemmal[1.4.48](iii) this shows there is a homomorphism fy 2 : Tj(Gj(M)) — M

such that Gj(Ky,w ) is an isomoprhism. O

At this point we conjecture that the results and set-up described above may be used to

adapt Butler and Ringel’s theorem.

Conjecture 1.4.51. The functorial filtration method, as presented above, may be used to

classify the finitely generated modules over any quasi-bounded string algebra over R (that

is, theorem may be generalised from the case where R is the field k).

In the proofs of the main results of this thesis (theorem theorem and theorem
2.0.5)) we show that the said method may be used to classify objects in the derived catgeory

of any complete gentle algebra.
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1.5 Some Derived Categories.

1.5.1 Representation Type.

In section [1.5.1] we recall what one means by the representation type of a finite-dimensional
algebra (over an algebraically closed field). While doing so we recall some results that aid
and motivate the notion of derived representation type (which we look at in section [1.5.2)).

We start with a remark.

Remark 1.5.1. Let I' be a finite-dimensional algebra over a field k. Iteratively
decomposing the idempotent 1 of I' yields a complete set of primitive orthogonal
idempotents {e1,...,e,}. We can choose a subset {ey),..., ey} of {e1,...,en} so that,
where e, = ), ey(i), the subalgebra I := ¢Tep of T is basic, that isﬂ for all m with
1 < m < n there is a unique i with 1 <4 <t and I'e,;, > Teyy (see [3), 1.6, 6.3 Definition]).
By [5l 1.6, 6.10 Corollary] the categories I'-mod and I'*-mod are equivalent, so to study
the objects in I'-mod we can assume I' is basic. Furthemore we can assume I' is not the

direct product of two subalgebrasﬂ that is, we can assume I is connected [5, 1.4, p.18].

Assumption: In section we let k be an algebraically closed field and I" be a (unital)
k-algebra. Unless stated otherwise we assume I' is finite-dimensional, connected
and basic. We also assume {ej,...,e,} is a complete set of primitive orthogonal

idempotents for I'.

Definition 1.5.2. [, I1.3, 3.1 Definition] The ordinary quiver Qr = (Qr,0, Qr 1, hr,tr) of
T is defined by setting Qro = {1,...,n} and drawing dim (e;(rad(T") /rad®(T))e;) distinct
arrows with tail ¢ and head j. Recall definition By [5 II.3, 3.7 Theorem] there is
an admissible ideal It of kQr for which " ~ kQr/Ir.

We consider momentarilly the case where It = 0 in the above. That is, we recall well-
known results about the representation type of quivers. This should serve as motivation

for the notion of representation type, and hence derived representation type.

"By [B, 1.6, 6.2 Proposition (a)] this is the same as requiring A®/rad(A®) has the form k x --- x k .
8Equivalently, A has no non-trivial central idempotents.
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Definition 1.5.3. The Dynkin diagrams are:

1
A, (n>1) ° .
1 —2 -1
Dy (n>4) ° "o "o
\ )
.
6
Eg °
\
1 2 3 4 5
. . ° ° °
7
E, °
\
1 2 3 4 5 [
. o ° ° ° °
8
Eg °
\
1 2 3 4 5 6 7
° ° ° ° ° ° °

(DYNKIN TYPE QUIVERS) A quiver @ is said to be of Dynkin type X, where X €
{A,D,E} if there is some integer n > 1 for which X,, is a Dynkin diagram with n vertices
and @ is the quiver defined by choosing an orientation of the unorientated edges of X,.
Sometimes the subscript n (resp. m) is omitted if the number of vertices in the quiver has

little importance.

The next definition together with the remaining theorems in section highlight the

importance of quivers of Dynkin or Euclidean type.

Definition 1.5.4. The representation type of I' is defined as follows. Let
k(x,y)-Modg.moda denote the full subcategory of k(z,y)-Mod consisting of finite-

dimensional modules.

(REPRESENTATION-FINITE, REPRESENTATION-INFINITE) [5], §1.4, 4.11 Definition] We
say ' is representation-finite if there are finitely many isomorphism classes of finite-

dimensional indecomposable I'-modules. Otherwise we say I' is representation-infinite.
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(REPRESENTATION-TAME) [I7, 6.5, Definition] We say I' is representation-tame if for
each d > 0 there are a finite number of I'-k[z]-bimodules M; which are free as right
k[x]-modules, such that every indecomposable I'-module of dimension d is isomorphic to

M; @y N for some i and some simple k[z]-module N.

(REPRESENTATION-WILD) [I7, 6.4, Definition] We say T' is representation-wild if
there is a finitely generated I'-k (z,y)-bimodule M, which is free as a right k(z,y)-
module, and such that the functor M ®j, .y — : k (z,y) -Modj.mod — ['-mod preserves

indecomposable objects and reflects isomorphisms.

If @ is a finite acyclic quiver then the zero ideal of the path algebra k(@ is admissible by
[5, §11.2, 2.2 (b)], and kQ is a finite-dimensional, basic and conneted associative k-algebra
by [B, §I1.2, 2.12]. If @ is a finite quiver then we say @ is representation-finite (resp.

infinite, tame, wild) if kQ is representation-finite (resp. infinite, tame, wild).
Theorem 1.5.5. [29 p.3] A quiver Q is representation-finite iff it is a disjoint union of
finitely many Dynkin quivers of type A, D and E.

To motivate definition it helps to recall Drozd’s so-called tame-wild dichotomy.
Theorem 1.5.6. [24] (see also [I7, Corollary C]) The following statements hold.

(i) Either I' is representation-tame or I' is representation-wild.

(ii) T is representation-tame iff ' is not representation-wild.

We now motivate the study of special algebras by Pogorzaly and Skowronski [53]. Recall
that if kQ/(p) is a special algebra then: k is an algebraically closed field; kQ/(p) is
surjectively given by (Q, p, ) where 6 is the quotient map kQ — kQ/(p); SP1) and SPII)
hold; and (p) is admissible.

Lemma 1.5.7. [6I, Lemma 2] If Te, and e,I' are biserial for each vertex v and T is

representation-finite then I' ~ kQ/(p) is a special algebra (where Q is finite).

In fact, any special algebra kQ/(p) is representation-tame. For this see [63, (2.4)
Corollary], the proof of which uses theorem and the following.
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Proposition 1.5.8. [63, (2.3) Proposition] Let I' be a special algebra (not necessarily
finite-dimensional). If M is an indecomposable in I'-mod then one (and only one) of the

following statements hold.
(i) There is a finite word w such that M ~ M (w).

(ii) There is a periodic Z-word w and a finite-dimensional k[T, T~']-module V such that

M ~ M(w,V).

(iii) There is a vertex v such that M =~ Te, is a non-uniserial projective-injective I'-

module.

Remark 1.5.9. It should be noted that Wald and Waschbiich proved proposition |1.5.8
only in case I is finite-dimensional. Their proof involves reducing the task to symmetri(ﬂ
special algebras using [63, (1.4) Theorem|. Symmetric special algebras are the same as
Brauer graph algebras (for example, see [59, Theorem 1.1]). They then use the classification
of finite-dimensional indecomposable modules over Brauer graph algebras, which is due to
Donovan and Freislich [23] Theorem 1] (who use the functorial filtration method). Instead

we prove proposition [1.5.8| using theorem and lemma [1.2.5

Proof of proposition[1.5.8 By lemma letting X be the set of vertices x such that
kp, = kpl, (in T') for some distinct parallel p,,p,, € P(x —), we have that: setting
I =@, xsoc(Te;) defines a two sided ideal of ', I'/T is a quasi-bounded string algebra

over k; and IM =0 or M ~TI'e, for some = € X.

By lemmam since I'/I is a quasi-bounded string algebra over k it is a string algebra
in the sense of Butler and Ringel (what we call a Butler-Ringel string algebra). Hence if
M is a finite-dimensional indecomposable I'-module with /M = 0, then M ~ M (w) where
w is finite, or M ~ M (w, V') where V is finite-dimensional by theorem O

9The ring T is called symmetric provided I” ~ Homy,(I", k) as I'-I bimodules.
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1.5.2 Derived Representation Type.

We shall freely use (without reference) definitions and certain results from homological
algebra which are given in appendix (see sections and . For an abelian category A
(which will be I'“-Mod or I''mod) recall C(A) is the category of cochain complexes, KC(.A)

is the homotopy category and D(.A) is the derived catgeory.

For full additive subcategories X and ) of A recall CSS,’G(X ) ICSSf(X ) and Dgf(X ) denote
the full subcategories of C(A), K(A) and D(A) (resp.) consisting of complexes M in
C%(X) whose homology complex H(M) lies in C¢())), where: d,¢ € {4, —}; CT(X) is
the full subcategory of C(X) consisting of complexes X such that X = 0 for 4+i < 0;
C(X) = C(X); and CP(X) is the full subcategory of C(X) consisting of objects X which lie
in both CT(X) and C~(X). Let 0 be the subcategory of A consisting of the zero complex.

We simplify notation in certain cases by setting

—~

COL(X) = o), KO{(X) = KP<(X), DI (X) =Do(x),
)y =cyx), K =Kgw), DY) =Djx),
ch(x) =Cyx),  KL(X)=Ky(X), DY(X)=Dy(X),

Co“(X) = Ca5e(X), Kgt(X) = Kaye(X), Dg(X) = Dafe(X).

—

Recall P (resp. Z) denotes the full subcategory of A consisting of projective (resp.
injective) objects. This means the objects of P (resp. Z) are the objects X in A such
that the functor Homyu(P,—) : A — Ab (resp. Homy(—,I) : A’ — Ab) is exact. By
applying [64, p.378, Corollary 10.2.5] in the context above, since P and Z are additive,
KC%<(P) and K%¢(T) are triangulated subcategories of K(.A). Recall the following (triangle)
equivalences from corollary (given by horizontal arrows)

Kp(A) = D(A)
Ut Ut

K=(P) = D~ (A)
U} ut

K=4(P) - Db(A)
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where IC,(A) is the full subcategory of K(.A) consisting of K-projective complexes (see
defintion [3.3.17)). In what follows we use this notation without reference.

Definition 1.5.10. Let [t] denote the automorphism of D°(I'-mod) defined by t-copies
of the shift [1] (so that M[t]' = M*** for any object M in D’(I'-mod)).

(DERIVED-FINITE ALGEBRAS) We say I' is derived-finite if there are finitely many
indecomposable objects M, ..., M, in D’(I-mod) such that, if M is an indecomposable
object in D°(I-mod), then M ~ M;[t] for some i and t.

Example 1.5.11. Let @ be a finite quiver. Consider complexes of the form

M[t]= - 0 0 M 0 0

where M in kQ-mod is indecomposable, and concentrated in homogeneous degree t.
A well-known result of Happel [34, p.49, Lemma] tells us that any indecomposable
in D’(kQ-mod) has this form. Clearly they are pair-wise non-isomorphic objects in
Db (kQ-mod). By (Gabriel’s) theorem this means kQ is derived-finite provided Q is
a disjoint union of finitely many Dynkin quivers of type A, D and E.

Definition 1.5.12. (COHOMOLOGICAL DIMENSION VECTORS) For each object M in

Db(T-mod) the cohomological dimension vector is denoted Dim(M) and defined as the

Z-sequence (dimg(H'(M)));ez where H(M) = ker(dj,) / im(d%,") for each i € Z.

(DERIVED-DISCRETE ALGEBRAS) We say I' is derived-discrete if for each (tj)jcz €
[1; N there are finitely many isoclasses [M] of indecomposable objects M in D°(I'-mod)
such that Dim(M) = (¢;).

Example 1.5.13. Every finite-dimensional algebra which is derived-finite is derived-
discrete. Hence by example [1.5.11]if ) is a disjoint union of finitely many Dynkin quivers
of type A, D and E, then kQ is derived-discrete.

Example 1.5.14. [12] p.20] Let n > r > 1 and m > 0 be integers.
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Let Q(r,n,m) be the quiver

1 n—r—1
(—m) =2 Z-nEso n—r
Anp—r
Qp—1
n—1<—:« <. =—n—r+1
Let I(r,n,m) be the ideal in kQ(r,n, m) generated by apan—1, 0n—10n—2, ..., Gp—pi10n—r.

By [62], p.171, Theorem: (ii) iff (iv)] kQ(r,n,m)/I(r,n,m) is derived-discrete.

Definition 1.5.15. We say T' is of derived A-D-E Dynkin type if D’(I-mod) ~
Db(kQ-mod) where @ is a disjoint union of finitely many Dynkin quivers of type A,
D and E.

The next theorem describes all the other derived-discrete finite-dimensional algebras,

up to derived-equivalence.

Theorem 1.5.16. [12| Theorem A: (i) iff (ii)] If T is not of derived A-D-E Dynkin type,
then T is derived-discrete iff D’(I'-mod) ~ D*(kQ(r,n,m)/I(r,n,m)-mod) for some n >

r>1and m > 0.

Definition 1.5.17. For each integer j with 1 < j < suppose C} is a bounded complex
of I-k[T]-bimodules (that is, C; is an object in D*(I' ®j, k[T]-mod)) where C7 is finitely

generated and free as a right k[T]-module for each j and n € Z.

[9, Definition 1.1] (RATIONAL PARAMETERISING FAMILIES) We say C1,...,C; is a
rational parameterising family for (t;)jez € [I; N if every indecomposable object M in
DP(I'-mod) with Dim(M) = (¢;) is isomorphic (in D*(I'-mod)) to a complex of the form
Cj @) S where S is a simple left k[T ]—modulﬂ

(DERIVED-TAME ALGEBRAS) [7, p.289, Definition 1] I" is called derived-tame if, for

each (t;) € [[; N there exists a rational parameterising family for (¢;).

100y Q) S is defined by setting (Cs Qg S)" = CF' QxS and d7CLi®k[T]S = d¢, ®id for each n € Z.
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Example 1.5.18. Suppose I' is derived-discrete. Let (¢;) € [[, N. There are finitely many
indecomposable objects in Db(I‘—mod), say M, ..., M, such that any indecomposable M
in D°(I-mod) such that Dim(M) = (t;) satisfies M ~ M; for some i. Setting C; =
M; ®j, k[T defines a bounded complex of I'-k[T']-bimodules. Furthermore as each M) is
a finitely generated I'-module (which is a finite-dimensional algebra) we have that CI* ~
E[T)&---®k[T] (with dimg(M]") summands). For any M as above we have M ~ M;, and
as k =~ k[T] ®jr) S where S is the simple (one-dimensional) k[T]-module k[T]/(T), this
gives M; ~ C; @y S.

Consequently T' is derived-tame. We have therefore already seen many examples of

derived-tame algebras (see example [1.5.14] and theorem [1.5.16)). By example |1.5.13| we

also know that derived-finite algebras are also derived-tame.

Definition 1.5.19. [8, Definition 1.2] (DERIVED-WILD ALGEBRAS) We say I is derived-
wild if there is a bounded complex of projective I' ® k (z,y)-modules M, such that for

any finite-dimensional & (z,y)-module X:

(a) if X' is another finite-dimensional k (x, y)-module, then M ®p v X >~ M @p 5,y X'
in D*(I'-mod) iff X ~ X’ in k (z,y)-mod; and

(b) the object M ®y, .y X is indecomposable in Db(T-mod) iff X is indecomposable in
k (x,y)-mod.
We may now state an analogue to theorem [1.5.6

Theorem 1.5.20. [8, Theorem 1.3] (DERIVED TAME-WILD DicHOTOMY) The following

statements hold.
(i) Either I' is derived-tame or I' is derived-wild.

(ii) T is derived-tame iff I is not derived-wild.
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1.5.3 Gentle Algebras.

Assumption: In section let k£ be a field, @ be a finite connected quiver, and p a set
of zero relations and commutativity relations such that (p) is an admissible ideal in

kEQ. We also let I' = kQ/(p).

Definition 1.5.21. (DuavriTY) Let D(I') = Homg(I', k), considered as a I'-I"-bimodule
whose action on the left is given by (Ap) : u — p(uA) and whose action on the right is
given by (pA)u — @(Au) for each p €T

[37, 2.2, p.351] (REPETITIVE ALGEBRA) We define the repetitive algebra T as follows.
As a vector space we let T' = @ ez Mzl © B.cy; D(A)[2], and we define mutliplication by

the formula

(a27 (bz) X (b27 ¢z) = (ab27 (a@b)z + (¢b)z)

With a view towards highlighting known classifications of derived categories, we now

motivate the introduction of the repetitive algebra.

Theorem 1.5.22. [34] §4] There is a (triangulated) full and faithful functor H
Db(T'-mod) — f—mod, which is dense if T' has finite global dimension.

Definition 1.5.23. (THE EXPANSION Q oF Q) [53, p.497] Let M denote the set of
maximal paths in P. The quiver @ = (@\0, 6/2\1,%,2?) is defined as follows. Let @B = {v; |
v € Qo,i € Z} and Q1 = {ai,pli] | @ € Q1,p € M,i € Z}. The functions h and t are
defined by setting fi(a;) = h(a)s, T(a:) = H(a)s, h(pli]) = H(p)i and Wpli]) = h(p)isr. Any
q € P can be written as 1(q) ... f(¢) and we let ¢; denote the path 1(q); ...f(¢); in Q . The

arrows pli] are called the connecting arrows.

(FuLL PATHS AND THE EXPANSION p OF p) [58] §2] A full path in @ is a path of the
form p}plilp;,, where p € M such that p = p'p” for some paths p,p” (one of which may
be trivial). We shall write F for the set of full paths in Q. Let p = p U pU 5 where 5, j

and p are defined as follows.

"See also work by Ringel [56] §4].
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(a) p consists of all paths p; where p € p.

(b) p consists of all paths o in CAQ such that a connecting arrow p[i] is a subpath of o,

and o is not a subpath of a full path.

(¢) p consists of all pip[ilp; , — q;q[i]q;,, for distinct p,q € M such that p = p'p” and
q = q'q" with t(p') = t(¢).
Remark 1.5.24. Conditions (a) and (b) above are precicely (R1) and (R2) from [58,
§2]. Condition (c) above is not the same as (R3) from [58, §2], however they are

equivalent provided p consists of paths and (Q, p) satisfies special and gentle conditions

(an assumption omitted by Schroer: see [58] §5, Examples)).

Example 1.5.25. Let p = {3, Ba} where @ is the quiver
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and the set of full paths is

F = {ali], alilais, eiviBievBli), viBievBlilei,
BievBlileir1viv1, evBlileir1vit1Biv1, 0:0[i], 8[i]dsy1 | i € Z}

The expansion of the pair (@, p) is the pair (@, p) for Q as above and p = pU U j where
p={6iBi, Bicvi | i € Z},

p = {aialilaiia, eiviBieyBlileit, viBievBlileir1vita,
BievBlileir1vVir1Biv1, 0:0[i]di1 | i € Z}

and
p = {aali] — eyBlileir1Vie1Biv1, 0[i]0ir1 — BievBlileir1vit1,
0;0[i] — eviBicyBli] | i € Z}

Theorem 1.5.26. The following statements hold.
(i) [68, p.428, Theorem] There is a k-algebra isomorphism T ~ kQ/(p).

(i) |58 p.429, Proposition] (see also [4, 1.3 Proposition] and [53, Lemma 8|) The pair

(Q, p) satisfies (special, and) gentle conditions iff (@,ﬁ) satisfies special conditions.

Remark 1.5.27. Let I" be an Assem-Skowronski gentle algebra. Recall our aim was to
describe the indecomposable objects in D®(I-mod). Suppose I has finite global dimension.
By theorem [1.5.22] it is enough to describe the objects in [-mod.

By theorem (i) there is an isomorphism I ~ l{:@/ (p) and so it is enough to
classify the (non-projective) objects in kQ/(p)-mod. By theorem (i) kQ/(p) is
a Pogorzaly-Skowronski special algebra. Hence by proposition the indecomposable
modules over T' are the non-uniserial projective-injective indecomposables, together with

the indecomposable modules over the associated Butler-Ringel string algebra.

By theorem the indecomposable modules over a Butler-Ringel string algebra
are classified into string modules and band modules. Correspondences between string and
band modules over I and objects in P?(I'-mod) (via the functor H : P*(I'-mod) — -mod
from theorem have been studied by Bobinski [I1].
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Instead of following this approach, we state an explicit classification of the objects in

Db(T-mod), due to Bekkert and Merklen.

Definition 1.5.28. (FuLL CYCLES OF ZERO-RELATIONS) A full cycle of zero-relations
aq . ..an will refer to a cycle in @) which is not the product of shorter cycles in @), and for

which anaq € (p) and ;41 € (p) for each ¢ € {1,...,n} such that i + 1 < n.

Theorem 1.5.29. [7, Theorem 3] Let S be the set of homotopy I-words A which are not

periodic homotopy Z-words, and such that:

(a) if I D =N then [Ac] = ®([aa] L. .. [an]™Y) for some t > 0 and some full cycle of

zero-relations aq . .. oy, and

(b) if I O N then [Asi] = ([Bm] .- [B1])° for some t > 0 and some full cycle of zero-

relations 51 ... Bm.
Let B be the set of periodic homotopy Z-words E. The following statements hold.

(i) For any A € S and any integer t the complex P(A)[t] is an indecomposable object in
K=*(A-proj) (which is equivalent to D*(A-mod)).

(ii) For any E € B, any integer t and any finite-dimensional k[T, T~1]-module V the
complex P(E,V)[t] is an indecomposable object in K~ *(A-proj).

(iii) If M is an indecomposable object in K—*(A-proj) then (M ~ P(A)[t] for some A
and t as in (1)) or (M ~ P(E,V)[t] for some E, V andt as in (ii)).

Remark 1.5.30. For each isomorphism class of the indecomposable objects in
K—*(A-proj) fix a representative, and then write Ind(K—(A-proj)) for the full

subcategory of X ?(A-proj) given by these chosen representatives.

The claims in the theorem [7, Theorem 3] by Bekkert and Merklen stricly contain
parts (i), (ii) and (iii) of theorem It is also shown that Ind(K~*(A-proj)) can be
described as a subset of the string and band complexes described in (parts (i) and (ii) of)
the above. In corollary we generalise theorem to all complete gentle algebras.
In theorem [2.0.4] we discuss these isomorphism classes, and in theorem we give a

decomposition property.
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Chapter 2

Classification of Complexes for

Complete Gentle Algebras.

Assumption: Unless specified otherwise, throughout chapter 2 we assume A is a complete

gentle algebra over R given by (Q, p,0).
In this thesis our main result is as follows.
Theorem 2.0.1. (DESCRIPTION OF OBJECTS) The following statements hold.

(i) Every object in K(A-proj) is isomorphic to a (possibly infinite) direct sum of shifts

of string and band complexes.
(ii) Each (shift of a) string or band complex is an indecomposable object in K(A-Proj).

Remark 2.0.2. Note that in part (ii) of theorem we have not restricted to string

and band complexes which have finitely generated homogeneous components. Consider

the string complex P(* (2~ 'd,d,'y)>)) from example [1.3.41| depicted by

EVAVAVAY
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By theorem m (i) P(*°(z"'dpd,'y)>)) defines an indecomposable object in
K(k[[z,y]]/(xy)-Proj). In proposition we describe exactly when (direct sums of

shifts of) string and band complexes define objects in IC(A-proj).

Definition 2.0.3. (SWAPPING T AND T~ !) Let ¢ define the R-algebra automorphism
of R[T,T~!] which exchanges T and T—!. Define a functor res, : R[T, T 1]-Mod —
R[T,T~']-Mod by setting res,(V) to have underlying R-module structure V (for any
R[T,T~!]-module V') but where the action of T on v € res,(V) is defined by T.v = T~ v.
Hence ¢ is an involution (that is res, ores, >~ 1y p-1)_mMoa)- Clearly res, restricts to an
involution of the full subcategory R[T,T~'-Modpg proj of R[T,T~']-Mod consisting of

R[T,T~!]-modules which are free over R.

In section we show P(C,V) and P(C~1,res,(V)) are isomorphic complexes. The
next theorem is an analogue of [55, p.21, Theorem]|, and informs the reader how to

construct isomorphism classes of indecomposables.

Theorem 2.0.4. (DESCRIPTION OF ISOCLASSES) Let C be a homotopy Ic-word, and let

D be a homotopy Ip-word.
(i) If C and D are not periodic homotopy Z-words then P(C) ~ P(D)[m] iff:
Ic=1Ip={0,...,t} and (D =C and m =0) or (D =C~! and m = uc(t))); or

((Ic =Ip=4Nand C =D) or (Ic = +N,Ip = ¥N and D = C~')) and m = 0; or
Ic =1Ip =17, D=C*t] and m = pc(+£t).

(ii) If C and D are periodic homotopy Z-words, and if V,W lie in R[T, Tfl]—ModR_proj
then P(C,V) ~ P(D,W)[m] iff

D=C[t], V~W and m = uc(t), or
D =C7Yt], V ~res, W and m = pc(—t).

(iii) There is no isomorphism between any shift of a string complex and any shift of a

band complex.
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It is known that the Krull-Remak-Schmidt-Azumaya property holds for the homotopy
category of a complete local noetherian ring ([I4, p.85, Proposition A.2]). The next

theorem verifies this property in our setting.

Theorem 2.0.5. (KRULL-REMAK-SCHMIDT-AZUMAYA DECOMPOSITION PROPERTY) If
an object of IC(A-proj) is written as a direct sum of string and band complezes in two

different ways, there is an isomorphism preserving bijection between the summands.
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2.1 Homotopy Words and Relations.

Assumption: (NOTATION: M*) In section [2.1] we assume

° __ -1 d;/fl 0 d?” 1
M* = M M M

is a fixed complex in the category Cuin (A-Proj). Hence M is a projective A-module
and im(dj;) C rad(M*™!) for each integer i.

(NOTATION: M, das, eyM, da,). Let M be the projective A-module €, , M*. Let
dy be the A-module endomorphism @, d%, of M sending Y-, m; to >, d4,(m;).
For any vertex v we we write dps|, for the R-module endomorphism of e,M =
DicyeeM ¢ defined by the restriction of dy;. Hence, as R-module endomorphisms of

M =@, e,M!, we have dy; = dprl|,, where the sum runs through all vertices v
Qv v v

of the quiver Q.

This section shall be the analogue of section for homotopy words (insetad of words).
In case A is an Assem-Skowronski gentle algebra, part (ii) of the following lemma is [7), p.

299, Lemma 5].
Lemma 2.1.1. For any arrows a and b,
(i) if v = h(b) = t(a) and ab € P, abm = 0 implies bm = 0 for allm € M,
(il) if v = t(a) then {m' € exM [ am' =0} =34 ca (L) aprgp UM, and
(iii) if v = h(b) = h(a) and a # b the sum aM + bM is direct.
Proof. Since M is a projective A-module there is a split embedding ¢ : M — @, A of
A-modules where = runs through some index set X.

(i) Write ¢(m) = >, A for some A\, € A. For a contradiction assume bm # 0. Hence

for some x € X we have b\, # 0. Since abm = 0 we have abA, = 0 and so b\, contradicts

corollary [1.2.18
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(ii) Suppose m’ € eyqyM with am’ = 0. Write ¢(m’) = > A, for some X, € A.
Without loss of generality it suffices to assume there are arrows b, b’ with head v satisfying
ab € P and ab’ ¢ P. Since am’ = 0 we have a\, = 0 for each z € X. By corollary
(iv) this means X, € bA @ V'A. For each z € X write X, = bm? + V'm?% for elements

m%,m% € A.

Since ab'm% = 0 and am’ = 0 we have abm? = 0 and so by part (i) bm® = 0. As this
holds for each x we have p(m') =¥ " m%. As ¢ splits there is a A-module map 7 for
which 7¢ = 137 and so m’ = b'7(3_, m%) € ¥ M. This shows {m' € eyqyM | am’ =0} C
> b'M and the other inclusion is trivial.

(i) For n € aM N bM write n = am = bm/ for some m,m’ € M. As above write
w(m) =, Ay and p(m') = > N, for A, N, € A. Applying ¢ to n gives a\, = bX, for
each z € X, and as aA NbA = 0 this means a\, = 0 for each z € X. Hence p(n) =0 and

as @ is an embedding we have n = 0 as required. O

In the next lemma we begin to give some meaning to the letters d=! for arrows .. This

lemma should also motivate why we assume im(d,) C rad(M**1) for each integer i.

Lemma 2.1.2. For each arrow « there is an R-module endomorphism da n of epa)M
such that dar|, = 5dg.nm Tunning over all arrows 8 with head v.

Furthermore for any 7 € P and any x € eyr) M,

' Tde v (z)  (if To € P for some arrow o)
(i) diry,m(T) =
0 (otherwise)

(ii) if h(8) = h(7) for some arrow 0 # 1(7) then dg p(T2) =0,
(iii) if h(¢) = h(7) for some arrow ¢ then dg rrdir) p =0, and
(iv) if 7@ € im(dy(ry,ar) then de p(x) = 0 for any arrow ¢ such that 7¢ € P.
Proof. Any complete gentle algebra is semilocal by corollary (ii). Hence rad(M) =

rad(A)M by [48, p.348, (24.4) Proposition]. By assumption im(dys) C rad(A)M and so

the image of djs upon restriction to e, M is contained in e,rad(A)M.
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Recall eyrad(A) = (Dgea(se SN by corollary [1.2.14 By definition

(Bpea(n) BAM =3 5ca(—p) BM, and this sum is direct by lemma For any arrow
~ with head v let 7, : eaﬁeA(—w) BM — yM and ¢ : YM — GBBEA(—W) BM be the natural

projections and inclusions in the category of R-modules. Define do ys : e,M — e, M to be

the map sending m to ta(ma(dal, (m))) which lies in €ge p () BM. Then we have

2 dpar(m) =2 gus(mp(darl, (m))) = (g tsmp)(darl, (m)) = dal, (m)  (x0)-

Let v = h(7) and u = (7). By definition dyy 1 (72) = ti(7)(m(7)(drr (7)) = T d],, (7).

(i), (ii) For distinct arrows o and ¢’ with head u we have (ro € P iff 7o’ ¢ P) by SPII)

and GII). The equations 7 dp, () = diry v (72) and (%) together show

7(do1 (%) + dor pr () (if A(— u) = {0,0'},70 € P and 70’ ¢ P)
T(do () (if A(— u) ={o} and 70 € P)
dyry,m (1) =
7(dy (7)) (if A(— u) = {0’} and 70’ ¢ P)
0 (if A(— u) =0)

giving dy) am(77) = T(dyo),m(2)) if o exists, and dy;) ar(72) = 0 otherwise, and so (i)

holds. For part (ii) note that mp(72) = 0 by definition.

(iil) We fix 2 € e, M, let v = ¢(1(7)) and choose 2’ € e,s M for which I(1)2’ = dy;) (7).
By (ii) we can assume ¢ = 1(7) and by (i) we can assume there is some arrow o for which
¢o € P. By (i) this gives dy rr(dg m(x)) = ¢pdorr(2'). Given any arrow o’ with head o’
where o # o' we have ¢o’ ¢ P by SPII), and so ¢(do,n1(2")) = ¢(3_ e a0y dym(2')). By
(%) we have 30 c o (ypr) dy,m(2') = darl,y (2). So far this gives dg v (dg, v (2)) = ¢dar(2’).

By (%) we have dg p(x) = duml, (x) — >y dy m(x) where the sum runs through all
arrows ¥ with head v and where ¥ # ¢. At most one such ¢ exists by SPI). Without loss
of generality we may assume o exists. Since da(dml|, () — dy,v(z)) = —dunr(dy p(x))
we have dg rr(dg,a(x)) € 9M. We already have that dg ar(dga () = dg a(diry a()) €
¢M, and so dg, rr(dy),a(2')) = 0 by lemma [2.1.1
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(iv) By definition z € Tflim(dl(T),M). Hence there is some ' € ej,(-yM for which 72 =
dir),m(2"). We know that d; ar(x) = ¢z” for some " € e,y M. By hypothesis we have that
7¢ € P. Also by (i) and (ii) above we have 7d r1(z) = dir) m(72) = di) ar(digry, e (2))
and so (7¢)z” = 0. By lemma we have ¢z’ = 0 as required. O

Remark 2.1.3. Part (i) of lemma may be interpreted as the commutativity in the

square drawn from the following schema (where 7, € P such that 7y € P).

The reader is advised to look out for such commuting squares when drawing the diagrams

from remark [[.3.36]

Recall during sections and we defined functorial relations on A-Mod.

Definition 2.1.4. If f* : M*®* — N°® is an arrow in Cpin(A-Proj) let f = @P,, 1,
the underlying A-module homomorphism. Sometimes we consider f as an R-module

homomorphism.

(NOTATION: pg(—)®) There is a functor r(—)® : Cmin(A-Proj) — R-Mod defined on
objects by sending M*® to the underlying R-module gM of M, and defined on arrows by

sending f* to the underlying R-module homomorphism f: pM — rN.
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(SUBFUNCTORS OF g(—)®, INTERVALS) A subfunctor S of r(—)® is given by an R-
submodule S(M*®) C rM for each object M*® in Cpin(A-Proj), such that f(m) € S(N°®)
for any f € Homg,  (A-proj)(M*®, N*®) and m € S(M?*). For subfunctors S and S’ of r(—)*
we write S < S’ if we have S(M*®) C S/(M?*) for each M*®. In this case [S,5] is called an

interval, and we say intervals [S,S'] and [T, T'| avoid each other if ' < T or T/ < S.

Just as words w define subfunctors w® of the forgetful functor r(—) : A-Mod —
R-Mod, we aim to show homotopy words C define subfunctors C* : Cpin(A-Proj) —
R-Mod of the forgetful functor r(—)®. Let us start to make this precise. Recall the
notation from definition and example For any arrow a and any path p € P we
have rel’ (M) = {(m, pm) | m € ey M} and graph(da,n) = {(m, dap(m)) | m € epq)M}.

Definition 2.1.5. (NOTATION: rel>*(M*®)) If v is a vertex and C' = 1, 4 let rel®(M*®) =

rel=(M*®) = relV* (M), the relation {(m,m) | m € e,M} on e, M.

(RELATIONS GIVEN By HomoTory WORDS, NOTATION: rel®(M®)) Let C' =

ll_lrl ...l tr, be a homotopy {0, ...,n}-word where n > 0. For each i with 0 < i <n let

(el (M) Lgraph(diy ar) G 17y = 7L

(graph(di(y) ar))~'rel (M) - (if 17 i = di )

rel§ (M*) =

{(m/,m) € ey M & ey M | ym = dypy(m')} (G 17 'rs =y Ldygy)

{(m',m) € ey) M & ) M | dyy(m) = ym'} (E 17 'ri = dy )

and let rel® (M) = rel§(M*) ...relC (M*), the n-fold composition of these relations.

Example 2.1.6. Consider the (finite-dimensional) Assem-Skowroniski gentle algebra A =

kQ/(p) where p = {ba, cb, ac, sr, ts, rt} and @ is the quiver

[N,7]
YaN
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Consider the homotopy {0, 1,2, 3}-word C = s~ 1dst~1did_ 'c. By definition

rel®(M*®) = rel§ (M*) rel§ (M*®) rel§ (M*)
= {(w,2) | 3z,y : (w,z) € rel§ (M*), (z,y) € rel§ (M*), (y, z) € rel{ (M*)}
(w, ) € (graph(de )~ rel®(M)
=4 (w,2) | (z,y) € (vel(M)) " graph(dy,ar)
and (y,z) € (rel®(M))Lgraph(ds ) for some z,y

={(w,2) | de,u(x) = cw, ty = dy i (2), 52 = ds m(y) for some z,y}

Definition 2.1.7. (NOTATION: v*U, d£1U) Let q be a homotopy letter (that is, let ¢ be
one of v, y1,d, or d;! for some path v € P or some arrow a. If U is a subset of eiqM

then define the subset qU of ey M by

YU = {ym € ey, )M | m € U}, ’y_lU:{mGet(,y)M | ym € U},
d U = {da7M(m) S eh(a)M ’ m U}, d;lU = {m S eh(a)M | da,M(m) S U}

(Notation: 1, 1,U) For any vertex v and any subset U of e, M let 1, ,,U =U.

Recall the category R-Rel whose objects are pairs (V, N) (where N is an R-module
and V is an R-linear relation on N). Recall the functor im (resp. ind) from R-Rel
to R-Mod sending (V,N) to VN = {m € N | (m/,m) € V for some m’ € M} (resp.

= {m € N | (0,m) € V}. By definition if C is any finite homotopy word then
CM = im(rel®(M*)) and CO = ind(rel” (M*)).

Example 2.1.8. Consider the Assem-Skowroriski gentle algebra A = kQ/(p), the
homotopy {0,1,2,3}-word C' = s~ 'dst~'dyd; 'c and the calculation of rel”(M*®) from
example For any subset U C eo M we have

depr(x) = cw, ty = di (), sz = dg
CU=1{zcen| M () y = dim(z) M (Y)

for some x € egM, y € esM, w € U}
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It is helpful to depict the relations above by

de,pr
w
4
ds, M cw
/
y4 rTcw
x
Sz

Notice the similarities between the schema above and the picture from example

Before defining the functors C* : Cpin(A-Proj) — R-Mod we collect some results

about the sets introduced in definition

Corollary 2.1.9. Ifa is an arrow then a~‘d,rad(M) C eyrad(M). Furthermore, given
an arrow b with ab € P we have (ab)~tadyM = b~1d, M.

Proof. By lemmam (ii) dgrad(M) = d,aM and so it is enough to show that a~td,aM C
eyorad(M). By lemma [2.1.2] (i) a 'dqaM = a~'adyM if there is an arrow b for which

ab € P and otherwise a'd,aM = a~'d,0.

If b exists then any m € a~'d,aM satisfies am = adp p(m’) for some m/ € enmy M
and so by lemma we have that m — dj, p7(m/) lies in the subspace a™10 = > 6'M
of e;qyrad(M) where the sum ranges over all arrows b’ with ab’ ¢ P. As im(dpnr) C
rad(M) this shows a~'d,aM C eqyrad(M). If b does not exist we have a™'deaM =
a~'d,0 = a='0 = Y. ¥ M which is a subset of et(a)rad(M). In any case we have shown
a~ld,rad(M) C ey(ayrad(M).
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Now assume b exists for the second part of the corollary. For any m € b~'a™'ady.M we
have some m’ € epp) M for which b — dy pr(m') lies in a10. As bm — dy pr(m/) = b
for some m” € M we have abm” = 0 which means bm” = 0 by lemma This gives

b~la YadyM C b~1dy M and the reverse inclusion is obvious. ]

We now gather some consequences of lemma in the language of linear relations.

The next corollary follows from lemma, [2.1.2

Corollary 2.1.10. Let «, 8, v and o be paths in P with af € P, h(vy) = h(o) and
1(v) # (o). Then we have

Bty M S (aB) dia) M, dyg)aBM C dy,

a ldyoyM C dyg B0, YM C d; 00,  dipyM C dy 5 00.

aM,
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2.1.1 One-Sided Functors.

We now look toward defining functors C* for each homotopy word C. Our definition
will adapt notions used by Ringel [55, p.23] and Crawley-Boevey [21} p.11] (see definition
1.4.19). At this point it is necessary to describe how homotopy words are composed,

adapted from [21] for our purposes.

Definition 2.1.11. (SiGN FOR HoMOTOPY LETTERS) Let A* be the set of homotopy
letters of the form o or a~! where « is an arrow. Note that any such homotopy letter
defines a letter (in the sense of definition [1.3.5). Hence (from definition we have
chosen a sign s(q) € {£1} for each homotopy letter ¢ in A*, such that if distinct letters
q and ¢’ from AT have the same head, they have the same sign only if {q,¢'} = {a~!, 3}
with af ¢ P.

We extend this notion to all letters by letting s(v) = s(1(7)), s(y~!) = s(f(y)~!), and

s(df') = —s(a) for each v € P and each arrow a.

(SN FOr HoMoOTOPY WORDS) For a (non-trivial finite or N)-word C we let h(C)
and s(C') be the head and sign of the first letter of C. For the trivial words 1, +; we let
s(1y+1) = £1 and h(1ly+1) = v.

(ComPOSING HoMOoTOPY WORDS) Suppose D and E are non-trivial homotopy words
where Ip C =N and Ig CN. If u = h(D™') and e = —s(D~ ') let D1, = D. If v = h(E)
and 0 = s(E) we let L, ;&2 = E. The composition DE is the sequence of homotopy letters
given by concatenating the letters in D with the letters in E. In case D = ... ljr,llalm

and is a —N-word and F = l1_17’112_17‘2 ... is an N-word, write DE = ...10_17’0 \ ll_lfr’l .

Example 2.1.12. Recall A = k[[z,y]]/(zy) from example [1.3.28 Let s(z) = 1. Hence
s(z7!) = —1, s(y~!) = 1 and s(y) = —1 because zy, yr ¢ P. So we have s(df!) = —1 and
s(d?jtl) = 1. Hence for the homotopy N-word

C =a 2dey My 2dod, yPdy oy Ny ey dyr T,

we have the table
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ieN | s(l;) | s(ri) || ieN| s(l;) | s(ri)
1 1 -1 5 -1 1
2 -1 1 6 1 1
3 1 -1 7 -1 -1
4 1 -1 8 1 1

We now characterise when the two words may be composed.

Proposition 2.1.13. If D and E are non-trivial homotopy words where Ip C —N and
Iz C N then (DE is a homotopy word iff h(D~1) = h(E) and s(D~ ') = —s(E)).

Proof. There is nothing to prove if D is a trivial homotopy word or E is a trivial homotopy
word. So we can assume otherwise, and write D = ...lalro and F = 11_17"1 ... Suppose
firstly that DFE is a homotopy word. We know that there are some paths A,v € P where
lo troly 71 is one of ¥ iy di Ay di v A dio AT iy or v i A iy

Suppose I 'roly 1 = v iy di A\ Here A(D™Y) = h(dy ) = h(v), h(E) = h(d;y)) =
h(A), s(D71) = 3<d1_($)) = —s(1(vy)) and —s(F) = —s(dl_(i)) = s(I(\)). Hence (h(D7!) =
h(E) and s(D™') = —s(E)) iff (h(y) = h()\) and 1(y) # 1(\)) which are precisely the

conditions for DE to be a word.

Similarly, we have that: if Iy roly 'r1 = d ) yA " diy) then ((R(D™') = h(E) and
s(D7) = —s(E)) iff (¢(y) = ¢(A) and f(y) # £(N)); if Ig'roly 'r1 = diyvd; 3 A then
(M(D7') = W(E) and s(D7') = —s(B)) iff (t(y) = h(A) and s(y™') = —s(d;;))) iff
f(y)I(A) ¢ P); and if I; ' roly 'y = v~y Ay then ((R(D71) = h(E) and s(D7!) =

—s(E)) iff {(A)l(7) ¢ P). u

Lemma 2.1.14. Let C be a homotopy I-word where I = —N or I is finite.

(i) If C*y*ldl(v) and Cﬂfldl(ﬁ) are homotopy words and 3 isn’t longer than ~ then [ is
an nitial subpath of .

(ii) If C’dlf(}/) and C’d( ya are homotopy words and « isn’t longer than v then « is a
terminal subpath of .
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Proof. We only prove (i) as (ii) is similar. By proposition [2.1.13|7~! and 7! both have
head h(C~1 and sign —s(C~!). This means t(3) = t(v) and s(f(3)) = s(f(y)) and so
f(8) = f(v) by definition. Hence £ is an initial subpath of v by lemma|1.1.14] O

Corollary 2.1.15. Let C be a finite homotopy word and suppose Ca™'d, and Cdb_lb are

homotopy words for arrows a and b. Then
(i) C'yfldl(y) is a homotopy word iff f(v) = a,
(ii) Cdl_(Tl)T is a homotopy word iff (1) = b,
(iil) of C’y*ldlm and C”y’*ldlw) are homotopy words and ~' is longer than v then

0’7_1d1(7)M c 07/_1d1(7/)M, and

(iv) if Cdf(Tl)T and Cdf(Tl,)T’ are homotopy words and 7' is longer than T then
-1 -1
C’dl(T,)T’M C Odl(r)TM‘

Proof. Follows by corollary 2.1.10] and corollary 2.1.14] O

Example 2.1.16. For the complete gentle algebra k[[x,y]]/(xy) we have
M =d'aM Dd'a*M Dd'a>M D --- D a7 3d,M D ™ %d, M Dz~ 'd, M
and

M =d;'yM 2 d'y*M D d; "y’ M 2 -~ Dy 3d,M Dy 2d,M Dy 'd,M

We can now define certain R-submodules of M which will be the building blocks of our

refined functors.
Definition 2.1.17. (NOTATION: C.;, C<i, Csi, C>4, W 5)

IfC= ...l;ln ... is a homotopy word and ¢ € I¢ is arbitrary, we let C; = l;lri and

C<i = ...li_ln given ¢ — 1 € I¢, and otherwise C; = C<; = lh(c)’s(c). Similarly we let

Cs; = lijrllr,;ﬂ ... given i + 1 € Io and otherwise Cs; = lh(cfl)ﬁ(cfl).
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Hence there are unique homotopy words C.; and C; satisfying C<; = C.;C; and
CiCs; = C>;. For each vertex v and sign 6 € {£1} let W, 5 be the set of all homotopy
I-words with I C N head v and sign J.

(NoTaTION: C*(M)) Suppose C' € W, 5 is finite.

If there is an arrow a for which Cd;'a is a homotopy word let CT(M) =
N Cd; 'arad(M), where the intersection is taken over all & € P with 1(a) = a. Otherwise

let C*+(M) = CM.

If there is an arrow b for which Cb~'d, is a homotopy word let C~ (M) = |JCBdy 5 M,
where the union is taken over all € P for which f(5) = b. Otherwise let C~(M) =
C(X>dy_M + > ayM) where at runs through all arrows with head h(C~1) and sign
+s(C71).

Suppose instead C' € W, 5 is a homotopy N-word. In this case let C*(M) be the set
of all m € e, M with a sequence of elements (m;) € [[;cy €vo(s)M satisfying mo = m and
m; € li_+117’i+1mz‘+1 for each i > 0, and let C~ (M) be the subset of CT (M) where each

sequence (m;) is eventually zero. Equivalently C~ (M) = |J,,cyy C<n0.

Example 2.1.18. Recall example [1.3.28] For the homotopy N-word
C =a 2dey tdya 2 dod, yPdy  wy Ny ey dyr Ty

we have the table

) C<i C>i

1 1, 1 y_ldyx_ded;1y3d;1xy_1dyx_2dxy_1dyx_2dz .
2 x2d, x*dedzjlySd;1xy*1dyx*2dxy*1dyx*2dx ..

3 a:_2dxy_1dy d;1y3d;1xy_1dyx_dey_ldyx_Qdm .

4 m_zdmy_ldyx_Qdm d;lxy_ldym_zdxy_ldyx_zdx ..

) x*deyfldyx*erdyfly:)’ yildyacfzdryfldymfzdx .

6 x_dey_ldyx_ded;1y3d;1x x_dey_ldya:_de ...
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Lemma 2.1.19. Let C be a finite homotopy word such that the set S C P of all v for

which C’df&)’y is a word is non-empty. Then

(i) of S is infinite then CT (M) = ﬂC’df&)’yM where v runs through S, and

(i) if S is finite then CT(M) = Cdf&)o.

Proof. (i) Let m € ﬂC’df&)yM. For any 8 € P for which 1(8) = 1(v) (we have Cdf(é)ﬁ
is a homotopy word and so) there are some m% € epc-1)M and some mg, € ey 3 M for
which m € Cmj; and dy(g) ar(mj5) = Bmjz. We now fix an arbitrary p € P with 1(x) = 1(7)

and show that m € C’di; prad(M). This will show Cdf&ﬂM N Cdf(i)*yrad(M) and

)
the other inclusion is obvious. By assumption there is some arrow « with pua € P. Since
() = 1(p1) there are some m),, € ejc—1yM and some my,,, € ey M for whichm € Cm,,
and dy(,) a1 (m),0) = Bami, by the above. As dy(,) v = diy)mr and amj, € ey grad(M)

we have that m € Cdlzi)uaM - C’dl_(i)urad(M).

(ii) By assumption S has n > 1 elements, and by corollary (iv) we can write S =
{71...7 |1 <i<n} for arrows 7; where v; = 1(). By corollary we have a chain
Cd tyirad(M) 2 --- 2 Cd'yi ... yrad(M) and so CT(M) = Cd; !y ... yprad(M).
Since 71 ...7, is a maximal length path with first arrow ~; there can be no arrow 7,11
satisfying 1 ...7vn+1 € P. Since A is a complete gentle algebra this gives vy,rad(M) = 0
by corollary and so Cd;llfyl ..yrad(M) C Cd;ll() as required. O

Corollary 2.1.20. IfC e W, ; then
(i) if g : M® — N* is a morphism in Cuin(A-Proj) then im(g|o+pre)) € C*(N*), and

(ii) if M*® is an object in Cpin(A-Proj) then C~(M®) C C(M?*).

Proof. (i) Tt is enough to show that if (m,m’) lies in U then (g(m),g(m’)) lies in V
where (U = rel (M) and V = rel*(N) for some path A € P) or (U = graph(d, ) and
V' = graph(d,,n) for some arrow a). Since g is a chain map between A-modules g is
linear over A, and so we have g(m’) = g(Am) = Ag(m) if (m,m’) € rel®(M). If instead
(m,m’) € graph(dq,n) then for v = h(a) we have gdy|, = dn|, g by lemma and so
> peasy 9(dgn(m)) —dg n(g(m)) = 0, which is a direct sum by lemmam
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(ii) Assume firstly that C is finite. Clearly there is nothing to prove given C*(M?®) =
CM. So we may assume CT(M*®) = Cdl_(wl)'yrad(M ) where the intersection is taken over

all v € P for which Cdl_(i)’y is a word, where such a ~y exists.

Suppose C~(M) = |JCOB dypM in the above. Then for m € C~ (M) there exists
some [ € P for which Cﬁfldl(ﬁ) is a word and m € C’B*ldl(ﬁ)M. Hence by corollary
2.1.10| (iv) we have m € Cdlf(vl)O C ﬂC’dlf(i)'yrad(M). So instead suppose C~(M?®) =
C(>_im(da_ ) + > oy M) where the first (resp. second) sum is taken over all arrows
a_ (resp. ay) with head h(C~1) and sign —s(C~1) (resp. s(C71)). So C> ayM C
Cdf&)'yo C C*(M?®) by corollary (ii) and C' ) im(dyq_),m) < C’df&)vO C CT(M)
by corollary (iii), as required.

Now we can assume C' is an N-word. Clearly if m € (J,,cyy C<n0 then m € C<,0 and so
there is a sequence (z; | i € N,0 < i < n) € [[ ey )M for which (v;-1,7;) € (I s, M)
for 7 > 0. Hence there is a sequence (v; | i € N) € []e,, ;)M defined by letting x; = 0
for j > n and again we have (z;_1,2;) € (I; 'r;, M) for i > 0, and so m € C*(M?*). This
shows C~(M*®) C Ct(M?*). O

We have shown that any homotopy word C' from W, 5 defines a pair of subfunctors
C~ < C7 of the forgetful functor Cpin(A-Proj) — R-Mod (which takes a complex M*®
to the underlying R-module M).

Lemma 2.1.21. Let I"'r,C € W, 5, Z be an index set, {X, | z € Z} a set of objects in
Cuin(A-Proj) and X = @, 5 X.. Then,

(i) vX = @P,cz7X: for each v € P and do x = P, cz da,x. for each arrow o,

(ii) fora =3 ,cza. and 2’ =%, .z, in X, one has x € I"'ra iff x. € 1" ral, for

each z,
(ili) if C is finite then C(X) = @,z C(X.),
(iv) for any C we have C*(X) = @,z CT(X2), and

(v) for any C we have C~(X) = P,z C~(X>).
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Proof. For any z € Z let p, denote the natural projection X — X, and ¢, the natural
embedding X, — X. Note that we are now considering relations on the R-module
X = @,z X.. For any object M in Cpin(A-Proj) and any arrow a with head v recall

o : D, cM — aM and v : aM — P cM denote the natural projections and

c:—v

inclusions in the category of R-modules. Recall d, as is the map sending m € e, M to

ta,M (Ta,m (dut, (M))).

(i) Since X, is a complex of A-modules the equality of R-modules 7X = @, vX,
is obvious. By construction, for any z = > x, € @, e, X, we have dX|evX Oz, =
> dX|eUX (z,) and La7X7ra7X(dXZ|esz (z)) = La,szmxz(dXZ\esz (x,)) for each z, and

50 do.x(z) =), do x. ().

(ii) If € I;;'r,a’ then for each z we have that =, = p,(>, z,) liesin [, 1, (p. (32, 7)) =

I, tr,2!. by corollary [2.1.20L Conversely if 2, € [, r,a’, for each z then we have z € [~ 1ra’

since z, = o/, = 0 for all but finitely many z, and since (I~!7) defines a linear relation.

(iii) There is nothing to prove when C' is trivial so we may assume otherwise. Let
C = 1_17’1 i ..lt_lrt. For x € C(X) there are elements z,, € X; for each z € Z and each
integer n with 0 < n < ¢ such that; each sum ), x., has finite support, x = >, x.,
and > 2, -1 € U, 1 Y ., when n > 1. So by (ii) 2, n-1 € I, 'rnx,, for each z when
n > 1, which shows z € @, C(X.). Now suppose 2’ € @, C(X;). Here 2/ = 3, x.9
with finite support where for each z we have z,9 € Cx,; for some z.; € ejc-1)X.. We
can write &' = x,(1),0 + -+ + T;(q),0 for some 2(1),...,2(¢q) € Z. By definition there are
elements z ;) , € X,(;) for each j and n with 1 <j < gand 0 <n <t where z,(;) ,—1 €
1

I rn®(j)n for n > 0. Again by (i) this shows D21 @)1 € I r, > =1 Ta(j)m and

hence x = 37%_, ()0 which lies in C 327, x5y, € C(X).

(iv) Suppose C' is finite homotopy word. If there is no arrow a for which Cd;'a is a
homotopy word then C* (M) = CM and the result follows by (i). Hence we may assume
a exists. If only finitely many such v € P with 1(y) = a exist then CT(M) = Cd ' a0
(where « is the longest of all such «) by lemma (ii), and by (i) the result holds.
Assuming infinitely many such v exist, so C* (M) = (N Cd,; *yM by lemma (i).
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Since arbitrary intersections and arbitrary direct sums commute we have
N, . Cd;'vX, = @, N, Cd;'vX,, and also N, Cd;'vP, X, = N, D. Cd;'vX, by
part (i). Altogether this shows CT(X) = @, C*(X,) which concludes the case where C

is finite. Now suppose C' is a homotopy N-word, say C' = ll_lrl .. .lt_lrt ... in which case

CH(X)= {1:0 €enD, Xo | Ian[n>1) €]]eymX o € l;i17"n+1$n+1 Vn > 0}

For # € CT(X) there is some collection {z,, € X, | z € Z,n € N} where each sum
>, T p has finite support, x = > x.0, and (>, x.n-1) € L irn(>x.,) when n > 1. By
(ii) again we have z € @, CT(X.).

Now suppose 2’ € @, C(X,), say ' = >, .o where for each z € Z we have z,o €

CT (M) for some sequence (z,, |n>1) €[]e X such that z, € l;}rlronZerl for

ve(n)
alln > 1. As above we can write ' = (1) g+ -+ ()0 for some 2(1),...,2(q) € Z and
defining the sequence (3°1_; #.(j),n | 7 > 1) in [[eyom)X gives 2’ € C(P,cz X-) after

applying (ii).

(v) Again start by assuming C' is finite. Suppose there exists some arrow b for which
Cb~1d, is a homotopy word. In this case we have C~(X) = @D, C’B‘ldl(ﬁ)Xz by part
(iii), where the union is taken over all 8 with f(3) = b. Now for x € C~(X) the above
shows that there is some o € P for which Cofldl(a) is a word and z € @, C’ofldl(a)Xz.
Hence x is an element from @, JCB ' dj5X. = @, C~(X.).

Now suppose ' € @, C~(X,), again say 2’ = 25:1 T,(j),0 Where for each j there is
some o € P for which C’ozj_ldl(aj) is a homotopy word and z(j)o € C’aj_ldl(aj)Xz(j).
Without loss of generality we may assume ¢ is the longest of the paths aq,..., 04 € P.

By corollary [2.1.10| (i) this gives m_(; o € Ca;ldl(aq)Xz(j) for each j and so 2’ €
P, Caq_ldl(aq)Xz = C’aq_ldl(aq)X by part (iii), which gives m € UC’B_ldl(B) P, X. as

required.

We may now assume there is no o € P for which Ca‘ldl(a) is a homotopy word. Here
by parts (i) and (ii) we have }°, im(da_x) = @,>_, im(da_x.)) and 3, o X =
@z(Za_,_ a+XZ)) and so C™ (X> - @z C(Za_ im(daf,Xz) + Za+ a"t‘XZ)'
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Now assume C is infinite. In this case, by part (iii) we have C<,0x = U,>¢ D, C<n0x.
which is contained in @, |,, C<n0x, = @, C~(X.). Now suppose z € @, C~(X.) say
x = Z?:l T,(j),0 Where for each j there is some n; > 0 for which z,;y9 € C<p,;0x,.
Without loss of generality we may assume n, is the largest of {ny,...,n.} and so z;) ¢ €
C<n,0x, for each j. Now @, C<,0x, = C<,0x by part (iii), which together gives x €
U, D. C<,0x, = C~(X) as required. O
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2.1.2 Ordering Homotopy Words.

Fix some vertex v and some ¢ € {+1}. We now introduce an ordering on the set W, 5. To
do so an ordering is introduced on the set of pairs (I,7) of letters for which a homotopy

word C' may be extended to a homotopy word Cl1™'r.

Lemma 2.1.22. Suppose I, I, r, and ' are homotopy letters for which I~*r and I'"1r'
are distinct homotopy words in W, 5. Then there exists a,a’ € P such that a # o' and

one of the following hold

- -1 - -1
(i) I7r =d; Lo and "1 = d; ],

o) (o )0/ where 1(a) = 1(a’),

(ii) I7lr = df(olé)a and I'17' = o/ dy (o) where o’a € P,

(i) I7'r = o iy and I'71r" = o/ 7Ldy oy where f(a) = (o), or

(iv) I7'r = a7 tdyoy and "1 = dl_(olé,)o/ where aa € P.

Proof. If 171 = df(é)a and 'Y/ = df(olé,)o/ for some a,a’ € P then by corollary
(ii) we have () = 1(’). Since these words are distinct we have a # /. In this case we
are in situation (i). If instead I™'r = a™tdj(4) and "1 = o/~ 1d)(y) for some o,/ € P
then by corollary (i) we have f(a) = f(o/). In this case we are in situation (iv)
because o # o as above. If neither (i) nor (iv) hold then either (I"'r = a~'d)(,) and
Ity = dl_(;,)o/) or (I7tr = dl_(oll)a and I'"'r" = o/~ 1dy(,)) for some a, o € P. In general,
when ﬁfldlw) and dl_(é,)ﬁ/ are words with the same head and sign (for 8,5’ € P some)
we have 38’ € P as h(f7!) = h(df(é,)) and s(B71) = s(d;(;,)) and so t(3) = h(f') and
s(f(B)~1) = —s(1(B")) respectively. O
Definition 2.1.23. (ORDERING PAIRS OF HoMOTOPY LETTERS) If [~1r and "'/ are

distinct homotopy words in W, 5 we write (I,r) < (I',7') if
D1~ = df(iﬂ and I'"1' = df&)w/ for some v, v € P such that yv € P, or
1) I7'r = p~dy,y and 71" = df(s)n for some p,n € P such that f(u)l(n) € P, or

(IT) I='r = A~ Ydyyy and I'~1r" = X1k 71y, for some k, A € P such that k) € P,
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Lemma 2.1.24. For a fized vertex v and 6 € {£1}, the relation < from definition

gives a total order on the set of pairs (I,7) for which [='r € Wys-

Proof. Since (Q, p) satisfies gentle conditions un € P implies f(u)l(n) € P for any p,n €
P. Together with lemma [2.1.22] this shows distinct pairs [~ and I'"% from Wwv,§ are
comparable. It is enough to prove transitivity on non-equal pairs. We suppose (I,7) <

(I',r") < (I"”,7") and proceed to show (I,r) < (I”,r") with case analysis.

Suppose | = I = dy,y and (r,7’) = (yv,7) for some v,v € P such that yv € P. The
only possibility is that I’ = 1" = djyy and (+',7") = (An, A) for some \,n € P such that
An € P and 1(y) =1(A). So vy = An and (r,7") = (Ao, \) which shows (I,r) < (I",r").

Suppose instead (I,1') = (p,dy)) for some p,n € P such that f(u)l(n) € P. The only

possibility is that I’ = I” = dy,y and (+',7") = (yv,7) (for some v,v € P such that

7)
yv € P) we have that 1(y) = 1(n) and so (I,1") = (i, dy(,)) where f(u)l(y) € P. Hence

(l,r)y < (1", r").

Finally, suppose (1,I') = (A, k\) for some x,\ € P such that kA € P. There are two
cases here. Suppose (I',1") = (v,ny) for some 7,y € P such that ny € P. Here v = kA
and as 77 € P we have that nx € P and (I,1”) = (\,nx\) which means (I,r) < (I”,r").

Alternatively (I',1") = (i, dy(y)) for some i, m € P such that f(u)l(n) € P. Here p = s\ and

)
so f(u) = f(), and hence f(\)1(n) € P. This shows (I,r) < (I",7") since (1,1") = (A, dy())
where f(A)1(n) € P. If (I,r) < (I,r) then | = dy(, and (r,r) = (yv,7) for some v,v € P,

which means v is trivial which is impossible. O

Example 2.1.25. Let A be the complete gentle k[[t]]-algebra A = k[[z,y]]/(zy) from
example [1.2.30 Then there is a chain of the form

(dy,x) > (dg, 2%) > (dg, ) > --- > (23, d,) > (2%, dy) > (x,d,)

Our construction ensures we can extend this lexicographically to a total order on W, 5

as follows.
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Definition 2.1.26. (ORDERING HOMOTOPY WORDS) For distinct homotopy words C, C’

from W, 5 we say C' < C" if one of the following hold:

(I) there are homotopy letters I, I', r and ' and homotopy words B, D, D’ for which
C =BlI"'rD, ¢’ = BI'"Y'D’ and (I,7) < (I',7"),

(IT) there is some 8 € P for which ¢’ = Cdl_( é) BE for some homotopy word F,

(ITT) there is some « € P for which C' = C'a‘ldl(a)E’ for some homotopy word E’.

Lemma 2.1.27. The relation < from definition giwes a total order on the set W, s.

Proof. Fix distinct words C' and C’ from W, ;. Firstly, suppose ' = CC” for some
homotopy word C”. Since C' and C’ are distinct homotopy words there is some 3 € P
for which ¢’ = Cdf(é) BE for some homotopy word FE, or there is some o € P for which
' = Cofldl(a)E’ for some homotopy word E’. In the former, C' < C’, and in the latter,
C'" < C. We can now assume C' is not the prefix of C’, and C’ is not the prefix of C. So,
neither homotopy word is trivial, and we let B denote their longest common prefix. This
means there exist letters I, I/, r and +/ and words B, D, D’ for which {~'r # I""17/ and
C = Blr—'D, C' = BI'"'*'D’. We must then have C' < €' or €' < C by lemma [2.1.22]
By lemma this shows any two distinct words are comparable. Again it is sufficient

to show transitivity. Now suppose for some words C', C’ that C' < C’ so:

(I) there are homotopy letters [y, 1, 1 and 7} and homotopy words By, Dy, D} for which
C = Bily'r1Dy, O = By ' D} and (11, 7m1) < (I4,7));
II) there is some (8 € P for which ¢’ = Cd;;} 81 F; for some homotopy word E7; or
1(81)
(ITI) there is some «; € P for which C' = C’afldl(al)Ei for some homotopy word FEf.

For another homotopy word C” suppose also C’ < C” so that:

(D) there are letters la, I}, ro and 75, and words Ba, Do, D} for which C’ = B2l2_1r2D2,

C" = Bgl/{lr’QDé and (l2,72) < (I5,74);
(IT) there is some S € P for which C” = C’ dl_( éQ) B2 E5 for some homotopy word Ey; or

(IIT’) there is some ag € P for which C' = C”a;ldl(m)Eé for some homotopy word Ef.
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There are 9 possible cases, each consisting of one of I, II, or III; and one of I’, IT’, III".

We go through cases to show C' < C” and hence prove transitivity.

(I1’) From these assumptions Bil} 'r{D] = Baly'roDs. If By = By, then I} = Iy
and 7] = 7o in which case we have C' < C” since (I1,71) < (I},7]) < (I5,7%) and so
(I1,71) < (15, 75) from lemma [2.1.22] Otherwise Byl} 7 is a homotopy subword of By, or
Boly r is a homotopy subword of By. In the former C” = Bll’flr’lEg for some homotopy
word Es and (Iy,r1) < (I},7]), s0 C < C". In the latter C' = BQZQ_1T2E4 for some homotopy

word FE4 and (lg,r2) < (I4,74), so C < C".

(LID) C" = Byl 'ri Didy

and (IILIT") are similar and omitted.

P22 and (I1,m) < (I},7]) so C < C". The cases (IILD)

(LIII") Here C" oy ' dy(oy) By = Byl 'ri D, If C" = By then I} = ay and 1} = dy(,,) and
as (I1,7m1) < (I§,7}) we must have Iy = X and Ij = kA for some k € P with kKA = ag € P.
Hence r1 = dj(y) since C' is a homotopy word and so C' = Byly'riDy = C" X 1dy(»yD1 which
means C' < C”. Otherwise C"" # By and so either C”a'dy(,) is a homotopy subword of
By or Byly'r; is a homotopy subword of C”. In the former we have C' = C’”ozz_ldl(QQ)E5
for some homotopy word Ej in which case C < C”. Otherwise C" = Byl ~1r{ Eg for some

homotopy word Eg and so as C' = BllflrlDl with (l1,71) < (I},7}) we have C' < C".

9 —1
(ILI’) Here C’dl(ﬁ1

a contradiction as (dy(g,), 1) < (I3, 73) is impossible for any homotopy letters Iy and r5.

\Bi1Ey = Bsly 'roDy. If C = By then Iy = dy(g,) and ry = 1 which is

If C' = Baly 'r9 E7 for some homotopy word Ey then as (la,72) < (I, 1) we have C' < C".

Otherwise By = Cdl_(él)ﬁlES which means C” = C’dl—(/‘él)ﬁlEgl;lng so again C < O,

(ILIT) C" = Cdy . B1E1dy 5, B2 Eh and so C < C". The case (IILIIT) is similar.

)

(ILIT") C = C" gives the contradiction dyg,) = az. If C' is longer than C” then
C = C’”a;ldl(w)B for some word B and if C” is longer than C then C” = Cdf(él)ﬁlB/
for some homotopy word B’. In either case C < C”. To complete the proof we need
to show C' < C is impossible. Otherwise the only possibility is that there are homotopy
letters [, I/, » and ' and words B, D, D’ for which C = Bl~'rD, and C = BI'""'v'D’ and

(I,r) < (I';r"). But as I =1’ and r = ¢/, this is impossible. O



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 135

An order on the set W, s of words (with head v and sign ¢) was given in definition
1.4.24] Recall that any word w € W, s defined subfunctors w? of the forgetful functor
r(—) : AAMod — R-Mod. Furthermore, if w,w’ € W, 5 and w < w’ then w™ < w'~ by

lemma [1.4.27| (see [55, p.23, Lemmal). In proposition [2.1.30| we adapt lemma for

homotopy words.

Lemma 2.1.28. Suppose I"'rD,I'"'r'D" € W, 5 for homotopy words D and D' and
homotopy letters I, I, r and v'. If (I,7) < (I',7') then (I"'rD)*(M) C (I'"1r'D")~(M).

Proof. The cases (I), (II) and (III) in what follows correspond to those in definition
2.1.23, In case (I) we have s(l(v)) = —s(r'~1), (I"'rD)* (M) C dl_(i)’yl(U)M and
dfwl)’y(D’)_(M) = (I'"%'D’)~(M). This means v has sign s(D’) which gives 1(v)M C
(D)~ (M) by lemma

In case (II), lemma shows that p~tdy,,).M C df(l)O and so (I"'rD)*(M) =
p Dt (M) is contained in (d( )nD’) (M) = (I'"Y%'D")=(M). In case (III), we
have s(D') = s(1(x)) which means 1(k)M C (D')~(M) as above (by lemma [2.1.29).
Furthermore by lemma [2.1.2 n we have rkdy\yM C dj kM as kA € P and so dj\\M C
K 1d1(,{)/£M. Since A~ ldl(A)DJF(M) is contained in (k

lemmas 2.1.2] and 2.1.29 O

A) " dyy kM the result follows from

Lemma 2.1.29. (REALISATION LEMMA) If o € P and C' € Wy(o) 5(a) then l(a)M C
C—(M®).

We will use lemma [2.1.29| to prove proposition [2.1.30, Lemma [2.1.29| is also used to
prove lemma Lemma will be key in proving results about the refined functors
for homotopy words (introduced and studied in section [2.2.1]).

Proof of lemma[2.1.29. By definition s(C') = s(a) and h(C) = h(«). Suppose firstly that
C' is trivial so that C' = 1j(4) ). If there is some § € P for which C’ﬂfldl(g) is a
homotopy word then h(5~!) = h(C~!) = h(1p(a),s(a)) and so t(8) = h(a). Furthermore
S(671) = —(C1) = —5(Lpga) —sey) and 50 5(£(8)™) = s(1(a)) which gives {(B)](a) ¢ P.
Consequently 1(a)M C 710 which is contained in C~(M).
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Otherwise there is no 5 € P for which C3~'d4) is a homotopy word and as s(I(a)) =
$(Lp(a),s(a) = 5(C~1) we have 1(a)M C >, 7M where  runs through all arrows with
head h(C~!) and sign s(C~1). By definition this means 1(y)M C C~(M?*).

Now assume C' is non-trivial. If C' = 5_1dl(5)D for some homotopy word D and some
B € P then t(3) = h(C) = h(a) and s(f(3)~!) = s(a) = s(I(a)). So as before f(3)l(a) ¢
P and again 1(a)M C 710 C C~(M®). The last possibility is that C = dl_(i)
some homotopy word E and some v € P. Here h(y) = h(a) and s(l(a)) = s(df(wl)) =
—s(1(7))- So 1(«r) # 1(y) and so 1(a) M C dl_(i)O by lemmam (i) which means 1(a)M C

dl_(i)ny*(M) = C~(M?*) as required. O

The next proposition is a key result required to use the functorial filtration method, as

we saw in lemma

Proposition 2.1.30. (HOMOTOPY INTERVAL AVOIDANCE) For any C,C" € W, 5 with

C < C" we have CT(M*®) C C'~(M?*).

Proof. We consider the three cases (I), (II), and (III) from definition [2.1.23|in order.

Suppose firstly there are homotopy letters I, I, r and r’ such that C = BI~'rD and
C' = BI'"Y%'D" and (I,r) < (I',r"). Then, by lemma[2.1.28) C*(M*) = B(I"'rD)*(M?*) is
contained in B(I'"''D")~(M®) = (C")~(M*). Now suppose there is some 3 € P for which
C' = C’dl_(g) BE for a homotopy word E. If 8 is maximal for which Cdl_(é) B is a homotopy
word then by lemma CH(M*®) = C’df(é)O which is contained in Cdié)ﬁ(E)_(M') .

Otherwise there is some (unique) arrow a for which fa € P and so s(a) = —s(871) =
s(E) and h(a) = h(B7') = h(E) as Cdl_(é)ﬁE is a homotopy word, which means
CH(M*) C Cdl_(é)ﬁrad(M) which is contained in Cdl_(é)ﬁ(E)*(M') by lemma
Whether 8 is maximal or not we have CT(M®) C (Cdf(é)ﬁE)_(M') = (C")~(M?*).
Finally suppose there is some o € P for which C = C’ a‘ldl(a)E’ for some word E’.
Here C'ar tdy o) (E") T (M®) C C'or tdyoy M and so CT(M®) C (C")~ (M?®) O

Example 2.1.31. Let A be the complete gentle k[[t]]-algebra A = k[[z,y]]/(zy) from
example 2.1.25] Recall the inclusions given by corollaries [2.1.10] and [2.1.15]
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We can arrange these inclusions of sets in a similar way to the arrangement of functors

in example

M ———d'yM Ay M ——— d 2 d e M
//
d;ly?’M d;ldeajlx:}M
\
\
\

(d 'y (M) =N, dy y2d 2™ M

Un>0 d;1

20 "d, M

R,

\
\
\
y_QdyM \\ d;lyQSU_lw_ldxM
\
\
yld,M | d1yPe=d, M
\
\
\
M + dyM =—axM + d, M d;ly?’M — d;lyQ(yM +d. M)

This diagram depicts the construction of the interval [(d, L2y, (dy, 142)*] of subfunctors

of the forgetful functor Cmin(k[[z,y]]/(zy)-Proj) — k[[t]]-Mod.
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2.2 Functors.

Recall the functors S, v and F, v (for words w, w’) from definitions|1.4.28] |1.4.39] [1.4.43|

and In section we introduce some analogous functors using homotopy words.

Remark 2.2.1. In section the underlying module structure of an object M® of
Cmin(A-Proj) would be denoted M. For the remainder of the thesis we abuse notation by

writing M for both the complex and the module.

2.2.1 Refined Functors for Complexes.

Assumption: In section M and N will be objects in Cpin(A-Proj).

Recall that at the end of section we gave a way of defining R-submodules C~ (M) C

Ct (M) of e, M for any given homotopy word C' with head v.

Definition 2.2.2. (NOTATION: Fg p (M), FE;D’n(M)) For each n € Z and each pair
(B, D) of homotopy words with head v such that B~'D is a word, define R-submodules
Fppn(M) CFgp, (M) Ce,M™ and G, , (M) C G (M) C e, M™ by
Fy p (M) =M" 0 (B*(M)nD*(M)),
Fg po(M)=M"0(BT(M)ND™(M)+ B~ (M)ND*(M)),
Gppn(M)=M"N (B~ (M)+ D*(M)N BT (M)).

Define the quotients Fg p (M) and Gp,p,(M) by

FB,D,’n(M) = F;,D,n(M)/Fg,D,n(M)7 GB,DJI(M) = GE,D,n(M)/GB,D,n(M)

In corollaries [2.2.8| and [2.2.12| we show F p, and G p, are naturally isomorphic.

Corollary 2.2.3. If C is a homotopy {0, ... ,t}-word for somet >0, and X = @,, X¢
andY = P,y Y’ are R-submodules of eycyM and ey M respectively, then Y" NCX =
YN CX"re®) for each n € Z.
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Proof. Let Hy = H(I;'ry) for each s € {1,...,t}. If C is trivial both sets are just YN X"

and so there is nothing to prove. So we may assume t > 0 and C' = lflrl ces l;lrt.

If the claim holds for when ¢t = 1 then for ¢ > 1 we have

YPACX =Y iy (L (X)) = YAl e (MR A (L (X)) L)
=Yl e (M A (I (M 0 (1 X))
=Y iy e (M A (M et e oy (7 b bR ) )

=Y AU (Mo A (L (Mo A (7 Xbee (@) )

So it suffices to prove YNl 1rX = YN~ X" tHc() where C = 1"1r. Let g : U — V be
a graded R-module map of degree m € Z and (g) be the linear relation {(u,g(u)) | v € U}
from U to V. For all i € Z we have ViN(g) U™ = VN(g)U™, U=™N(g)" Vi =U""™nN
(9)"V and VN (g)U"™ C Vin(g)U. For v € ViN(g)U there is some >U € Djez U’
for which 3,7 g(u;) = v.

Since g(u;) € V™ we have v = g(un_p), which shows V" N (9)U™™ D V"N (g)U.
Thus when C = v~ !d, we have Y" Ny 1 (Y" Nd,X) = Y" Ny H{(Y"Nd, X" ') and so
YNy~ td, X =Y" Ny 1d, X" !, and when C = d; 'y we have Y" Nd; ' (Y"1 NyX) =
Y Nd;H (Y™ Ny Xt and so Y Nd v X = Y nd v XL O
Lemma 2.2.4. Let B and D be homotopy words with head v such that B~'D is a

homotopy word.
(i) B (M) N D+ (M) N egrad(M) C (BT (M) 0 D~ (M)) + (B~ (M) 1 DT (M)),

(ii) (B~ (M) + DT (M)n BT (M))Neyrad(M) C (B~ (M) + D~ (M) N Bt (M)), and
(iii) B*(M) N DE(M) + eyrad(M) = (BT (M) + e,rad(M)) N (DE(M) + e,rad(M)).
Proof. For each § € {£1}, if it exists let x5 denote the arrow with head v and sign §. If

such an arrow doesn’t exist let z5 = 0.

(i) Since A is semilocal we have rad(M) = rad(A)M. So for any m € e,rad(M) there
are some mi,m_1 € M for which m = z_ym_; + zym;. By lemma [2.1.29] we have that

xymy € B~ (M) and x_ym_; € D~ (M).



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 140

So, if additionally m € B*(M)N D' (M) we have zymy € DT (M)N B~ (M) as xym; =
m—x_1m_1 and D™ (M) C D*(M). By symmetry we have x_ym_1 € BT (M)N D~ (M).

(i) If m € (B~ (M)+ D" (M)NB*(M))Neyrad(M) we can write m = xymy +x_1m_q
for some my,m_1; € M as above. By definition we also have m = m’ + m” where m’ €
B~ (M) and m"” € DY (M) N B*(M). Again xym; € B~ (M), z_1m_1 € D~ (M) and

r_1m_1 =m’ +m"” — xymy which lies in BT (M).

(iii) Clearly B*(M) N D*(M) + e,rad(M) is contained in the intersection of B+ (M) +
eyrad(M) and DE(M) + e,rad(M). As above, we can write any element m from this
intersection as; mp + x_1m_1 + x1mq for mp € BT (M) and my; € M, and as mp +
z_ym' | +z1m} for mp € D¥(M) and m/,; € M. As above we have z1my,z1m} € B~ (M)
and z_ym_y1,z_ym’; € D~ (M) C D*(M). Writing mp + x1mq — xz1mj as the sum of
z_1m' | —x_ym_1 and mp shows m = (mp + x1m1 — x1m}) + (x1m} + x_1m_1) is an

element of BT (M) N D*(M) + e,rad(M). O

Definition 2.2.5. (NOTATION: C¥) Let C*(M) = C*(M)+ e,rad(M) for any homotopy
I-word C where I C N.

Corollary 2.2.6. Let B and D be homotopy words with head v such that B~'D is a

homotopy word. Then

Fp p o (M) + e,rad(M™) = e, M™ N B+( )N DT (M),
Fg pn(M) + eorad(M™) = e, M™ 0 ((B¥ (M) N D~ (M)) + (B (M) (M))),
and GED,R(M) + eprad(M™) = e, M™ N (B~ (M) + D*(M) N B

Proof. By lemma (iii) we have
BY(M)NDE(M) + e,rad(M) = (BT (M) + eyrad(M)) N (DE(M) 4 e,rad(M))  (*5.p.+)

Considering the inherited grading on the R-submodules C*(M), C*(M), and e,rad(M)
of M = @, M we have e, M" N C*(M) = e, M" N C* (M) + e,rad(M™). This together

with (xg.p+), (*B,p,—) and (xp p,—) yields the first two equalities.
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Similarly we have

G5.pn(M) + eyrad(M™) = e,M™ N (B~ (M) + DE(M) N B*(M)) + e,rad(M™)
=e,M" N (B~ (M) + D*(M) N B (M) + e,rad(M))
=e,M" N (B~(M) + eyrad(M) + DE(M) N B (M) + e,rad(M))
=e,M" N (B~(M) + e,rad(M)) + e, M™ N (DF(M) N BT (M) + e,rad(M)),

as required. ]

Recall k is the residue field R/m.

Lemma 2.2.7. Let n € Z and v be a vertex. For each object M of Cupin(A-Proj) let
F~ (M) C FH(M) be R-submodules of e, M such that F* (M) Neyrad(M) C F~ (M) and
im( f|zz ) € FE(N) for any morphism f: M — N in Cyin(A-Proj). For M and f as
above and each m € e, M™ N F (M) let

Fu(M) =e,M"NFH(M)/e,M™ N F~ (M),
FE(M) = FE(M) + e,rad (M),

Fu(M) = e,M" N FH(M)/e,M™ N F~ (M),

m+e,M"NF~(M)) = f"(m)+e,N*"NF(N)

m—+e,M" N F~(M)) = f*(m) +e,N*NF~(N)

Fn([FD(
FallFD(
Then Fp, Fp Kmin (A-Proj) — k-Mod are additive functors such that F,, ~ Fo.

Proof. Since e,mM C e,rad(A)M = e,rad(M) by corollary (ii), we have that
mM" N FH(M) C F (M) and so F,(M) is a k-vector space. If f is null-homotopic
then f* = d’;,*ls" + s”“d’]}/[ for some graded A module homomorphism s : M — N of
degree 1, and hence im(f") C im(d% 's") + im(s"*'d},) C rad(N") since M and N are

homotopically minimal complexes of projectives. This gives
fr(m) € im(f"|z+(ap) Neprad(N™) C ey N™ N FT(N)Neyrad(N) C e, N*NF~(N)

This shows F,, is a functor Kpin(A-Proj) — k-Mod.



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 142

Similarly F, is also an additive functor Kin(A-Proj) — k-Mod so it suffices to define
a natural isomorphism F,, — F,. For each complex M with radical images define the

linear map
ay i eeM"NFH(M)/e,M™NF~ (M) = e,M™ N FH(M)/e,M™ N F~ (M)

by sending m + e, M" N F~ (M) to m + e,M" N F~(M). As F~ (M) C F~(M) we have
that oy is well defined. Since F* (M) = F*(M) + e,rad(M) and e,rad(M) € F~ (M)
by definition, aps is surjective. If aps(m + F~(M)) = 0 then m lies in the intersection of
F~ (M) + eyrad(M) and F*(M). By Dedekind’s modular law this means m € F~ (M) as
eyrad(M)NFT (M) C F~ (M) which proves ajy is one-to-one and hence an isomorphism.
For any morphism f : M — N of complexes the image of m + e, M™ N F~ (M) under
anFu(f) is ay(f*(m)+F~(N)) = Fuo(f)(m+F~(M)) which is the image of m+e, M™N

F~ (M) under F,,(f)oap. Hence the collection apy defines a natural isomorphism . [

We now use lemma to apply lemma in case F = Fp pn.

Corollary 2.2.8. Fg pp, F’B7D7n, GB,pn, and GB,D’H all define naturally isomorphic

additive functors Kmin(A-Proj) — k-Mod.

Proof. Fix an arbitrary complex M in Cpin(A-Proj). The inclusion e,rad(M) N
Fj p(M) C Fg (M) holds by lemma (i) and the inclusion e,rad(M) NG (M) C
G5 p(M) holds by lemma [2.2.4] (ii).

Clearly e,rad(M) N FJ;D(M) = eyrad(M), eyrad(M) N GE’D(M) = eyrad(M), and
FE’D(M) D eyrad(M) C G’;;’D(M). These inclusions, together with lemma [2.2.7] and
corollary show that F'g p n, F B,D,ns GB,D,n, and G B,D,n all define additive functors
Kmin(A-Proj) — k-Mod, and that there exist natural isomorphisms Fp p, — Fppn

and GB,D,n — GB,D,n‘
The linear map By : Fg p, (M)/Fg (M) = G§ p ,(M)/Gg (M) sending m +

Fg p (M) to m+ Gy p (M) is well defined since F;D(M) - GE}D(M). Furthermore
Gh p(M) = Fg (M) + B~ (M) and B~(M) C G ,(M) so Sy is onto.
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Since G p(M) = Fg p(M) + B~ (M), Bu(m + Fg (M)) = 0 gives
m € (Fg p,(M)+e, M"NB™ (M))NFg , (M) = Fg , . (M)+e, M"NB™ (M)NFg 1, (M)

som € Fg p (M) as B™ (M) OF§7D(M) C Fg p(M) which proves ) is an isomorphism.
Finally for any morphism f : M — N of complexes Sy sends the coset f™(m) +Fpg Dm(N )
to f"(m) + Gz p (V) which is the image of m + G p (M) under the map Gp,pn(f).
This shows By EFp.pn(f) = Gp.pn(f)Bm which means § defines a natural isomorphism

Fg.pn — Gp.pn as required. 0

Corollary 2.2.9. If M is a complex of finitely generated projectives then Fp p (M) and

GB,pn(M) are finite-dimensional vector spaces over k = R/m.

Proof. Since e,mM C eyrad(A)M = e,rad(M) by corollary [1.1.25 (ii),
Fp o (M)/e,rad(M™) N Fp (M) and e, M™/e,rad(M™) are k-vector spaces and there
is a surjective k-linear map Fy , (M)/e,rad(M™) N Ft ;, (M) — Fp pn(M).

As Fg’Dm(M) C e,M"™ and e,rad(M"™) N Fg}D’n(M) C eyrad(M™) there is a vector
space embedding of FED,”(M)/evrad(M") N F]';D’n(M) into e, M"/e,rad(M™).

By assumption there is a surjective A-module homomorphism 6 : FF — M"™ where
F= @le A for some ¢t > 0. Let ¢ and 1 be the R-module maps defined by the restrictions
of 0 to the domains e, F' and e,rad(F) respectively. Then im(yp) = e,M" and im(¢)) =

eyrad(A)M™ as 6 is surjective.

This shows that there is a surjective k-linear map e, F'/e,rad(F) — e, M™/e,rad(M™).
By corollary [1.1.25| (i) e, F/e,rad(F) ~ @'_, e,A/e,rad(A) ~ k! in k-mod.

Altogether we have
dimy (e, M™ /e,rad(M™)) > dimg(Fy p, (M) /e,rad(M™) 0 Fg (M)
and so ¢t > dimy(Fp,pn(M)) as required. O

The next definition (2.2.10) and lemma (2.2.11)) were motivated by remark |1.4.40
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Definition 2.2.10. (NOTATION: *E>) Let C = B~!'D be a periodic Z-word of period
p, say D = E* and B = (E~1)*® for some {0,...,p}-word E. In this case we shall write
C =>XFE>.

(NotaTION: E(n)) Recall definition |1.4.29] If E is a homotopy {0,...,p}-word with
pe(p) = 0 we can consider the linear relation F(n) = {(m,m’) € e, M"®e,M"™ | m € Em’}

on e, M".

Lemma 2.2.11. Let n € Z and B~'D be a periodic homotopy Z-word. Then E(n)f =
FE’D,H(M) and E(n)® = Fg po(M) where D = E* and B = (E~Y)°.  Furthermore,
there is a k-vector space automorphism %™ of E(n)t/E(n)’ defined by setting ™ (m +
E(n)’) =m' + E(n)’ iff m' € E(n)t N (E(n)’” + E(n)m).

Proof. Assuming C = B~ D has period p, E must be a homotopy {0,...,p}-word E. Let
v = h(E). Clearly Je,M™ N E'0 C e, M"™ N|J D<,0 where the unions run over all [ € N,
and so E(n) C e,M™ N D~ (M). For m € e,M™ N D~ (M) we have that m € D<,0 for
some r € N. Choosing a multiple sp > r gives e, M" N D<,,0 = e, M"™ N E°0 and so by
corollary m € Ujen oM™ N E'0ym = E(n)’. Hence E(n) = e, M™ N D~ (M) and we
have (E~1)(n)" = e,M™ N B~ (M) by symmetry.

If m € e,M" N D' (M) then by definition there is a sequence (m;) where mg =m € M"
and my; € ltjrllrtmt“ Ney, (t)M for each ¢ > 0. By we can assume my; € M"TE0(®) for
each t € N. As up(sp) = 0 for each integer s, we have a sequence mg, my,, map, - - - € e, M"

satisfying mi, € Em 1), for each i € N and hence m € E(n)” by definition.

Conversely if m’ € E(n)” then there is a sequence (m}) where m{ = m’ and m} € Emj_,
for each t > 0. Hence if E =17V 7y ... I 'y then for each ¢ € N there are elements my;;j €
()M for each j € {0,...,p — 1} satisfying mo = mg, my = mj and mpe -1 € l;lrj
whenever 57 > 0. By corollary we can assume My € evD(j)M”+“D(j) and so
m' = my = mo € E(n) since pup(j) = up(pt + j) for each j € {0,...,p — 1} and each
t € N. This shows E(n)"” = e,M" N D (M) and we have (E~1)(n)" = e,M™ N B (M) by
symmetry. Together we have E(n)f = FE,D,n(M) and E(n)’ = Fg pn(M).
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By applying lemma [1.4.31] to the relation V = E(n) on e,M™ this definition of §Z()
gives an R-module automorphism of E(n)f/E(n)’. Since E(n)!/E(n)’ = Fgp(M) is a
vector space by corollary [2.2.26| this means 02" is a k-vector space automorphism. [

Recall k[T, T~1]-Mod}j._moq is the full subcategory of k[T, T~!]-Mod consisting of finite-

dimensional modules.

Corollary 2.2.12. Let C = B~'D be a periodic homotopy Z-word. Then Fpn(M) is a
k[T, T~]-module. Consequently FB.pn, FRD,W GB,pn, and C?Bpm all define naturally
isomorphic (additive) functors Kumin(A-Proj) — k[T,T7']-Mod. Furthermore these

functors take objects in Kmin(A-proj) to objects in k[T, T~']-Modj-mod-

Proof. Recalling the proof of lemma for each complex M let Ej; denote the linear
relation F(n) on e, M™ and let 8%, be the automorphism 67 of E?M /E%. Lemma
gives an action of T on F,p (M) by T(m + Fg p, ,(M)) = oF (m + Fg p,,(M)) making
Fp.pn(M) into a k[T, T~!]-module.

For an arbitrary map g : M — N of complexes, m € ng and m’ € E%w N (B, + Eym)
we have g(m) € Eg\, and g(m’) € E?V N (E% + Enxg(m)) by corollary corollary.3.4. This

shows

0% (Fp.0.n(9)(m + B,)) = 05 (g(m) + %)
= g(m') + By = Fp.pu(9)(m' + By) = (Fp.0.(9) (05, (m + E4,))

and therefore the action of T commutes with Fp p,(g) which shows Fp p, defines an

additive functor Kuyin(A-Proj) — k[T, T']-Mod.

Let (—) be the forgetful functor k[T, T~!]-Mod — k-Mod. In what follows we show
that if F : Knin(A-Proj) — k-Mod is an additive functor and there is a natural
isomorphism w : (=)Fp p, — F then there is an action of T' giving F (M) the structure
of a k[T, T~!]-module and making wy; linear over k[T,T!]. By corollary this will
show Fg pn, F’B, Dm> GB,Dn, and G B,D,n all define naturally isomorphic additive functors

Kumin(A-Proj) — k[T, T~']-Mod.
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Define the action of T on F(M) by extending the assignment T'(m) = wy (T (w;, (7))
k-linearly for each | € Z and m € F(M). By construction this action gives F(M) the

structure of a k[T, T~ !]-module and wyy is k[T, T~ !]-linear.

Hence w defines a natural isomorphism of functors Kpin(A-Proj) — k[T, T~!]-Mod.
By corollary Fp pn sends complexes M of finitely generated projectives (with
radical images) to finite dimensional k-vector spaces Fp p,(M). Thus the functors
FB.pn, FB,D,n, GB,pn, and éB,D,n all take objects in Kpin(A-proj) to objects in

k[T, Tﬁl]—MOdk_mod. ]

Definition 2.2.13. (REFINED FUNCTORS FOR COMPLEXES) By a refined functor we will
mean Fpp, or Ggp,y for some n, B and D as above. As we saw in definitions [1.4.39
and [1.4.41] the codomain category of a refined functor is k[T, T~']-Modj.nmodq or k-Mod

depending on whether or not B~1D is periodic.
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2.2.2 Natural Isomorphisms.

We now book-keep to give an equivalence relation on a set of triples (B, D,n) so that

the refined functors F p, and Fp/ pr, are naturally isomorphic whenever (B, D,n) and

(B',D’,n') are equivalent. Later (lemmas [2.3.20[ and [2.3.21)) we shall see the converse.

Definition 2.2.14. (AXIS, NOTATION: ap p) If C = B71D is a homotopy word we define

the azis ap.p of (B, D) as the unique integer satisfying C<qp, , = B~" and Csqp, , = D.
Lemma 2.2.15. Suppose B and D are words such that C = B~'D is a word. Then,

(i) if C is a Z-word then ap,p =0,

(ii) if C is a N-word or a —N-word then ap g = —ap,p, and

(iii) if C is a {0, ..., t}-word for t € N then app =t —ap p.

Proof. (i) Here B~! must be a homotopy —N-word and D must be a homotopy N-word.

Writing B~! = . ..lalro and D = lflrl ... gives C' = ...lglro ] lflrl ... by definition.

(ii) If C is a N-word then B is finite. We can assume ap p # 0 as otherwise B must
be trivial in which case D™! = ¢~ = (C‘l)go and so app = 0. Let a = app. So
B = ll_lrl . ..l;lra and so C~1 = Dilraflla . ..7“1_1[1 which shows ap p = —a as C' is a
—N-word. If C'is a —N-word then C~! is an N-word and ap,p = —(—ap,p) = —ap B by

the above case.

(iii) We can assume app # 0 as otherwise B must be trivial in which case D! =
Cl=(C1Y<andsoapp =t Leta= ap,p. So B = 11_17"1...1(;17"@ and so C~1 =

Dy, .. .rflll which shows ap g =t — a as required.

Definition 2.2.16. (EQUIVALENT HOMOTOPY WORDS, NOTATION: X)) Consider the set
¥ consisting of all triples (B, D, n) where B~!D is a homotopy word (equivalently (B, D) €
W, s x W, _s by proposition and n is an integer. Fix (B, D,n) and (B, D’,n’)
from ¥ and let C = B~'D and C' = B'~'D’. Recall that if C is not a homotopy Z-word
any shift of C'is C. We say the homotopy words C' and C’ are equivalent when C” is either
a shift C[m] of C or C" is a shift C~1[m] of C~! for some m € Z.
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The following result is an analogue of [2I, Lemma 2.1].

Lemma 2.2.17. Fiz (B,D,n) and (B',D',n’) from ¥ such that C = B~'D and C' =

B'~'D' are equivalent. Then exactly one of the following statements hold
(i) C" = C which is not a homotopy Z-word,
(ii) €' = C~! which is not a homotopy Z-word, or

(iii) ¢’ = C*[m] which is a homotopy Z-word.

Proof. Since C' and C' are equivalent we have ¢’ = C[m] or ¢’ = C~1[m] for some m € Z.
If C' is not a homotopy Z-word then we are in case (i) or (ii), and if it is we are in case

(iii). So it suffices to prove that (i), (ii) and (iii) are all mutually exclusive.

Since v # dy(y) and fy_ldl(,y)dl_(i)’y is not a homotopy word for any v € P we have
C; #C; L and C; L4 C;,1 for all 4. The lemma now follows observing that homotopy N-
words and homotopy —N-words cannot coincide, and by following the proof of [21, Lemma

2.1], word-for-word. O

The equivalence relation ~ on triples (B,D,n) € X is given in definition [2.2.18 In
corollaries [2.2.24] and [2.2.26] we adapt lemmas [1.4.44] and [T.4.45| from the setting of words
to the setting of homotopy words. For arbitrary (B, D,n), (B’,D’,n’) € ¥ with (B, D,n) ~

(B',D’,n') the value of n’ —n should be controlled. To see this consider the case B = B/,
D = D' and C = B7!D is a homotopy {0, ...,t}-word. Since (B, D,n) ~ (B',D',n') we
should have P(C)[n] ~ P(C)[—n'], which is impossible if n —n' > t. To control n’ — n in
this scenario we introduce some more notation.

Definition 2.2.18. (NOTATION: r(B,D; B’, D)) For (B, D,n),(B’,D’,n’) € ¥ we define
an integer r(B, D; B', D’) by

pc(ap pr) — pe(ap,p) (if ¢ = C is not a homotopy Z-word)
r(B,D;B',D') = pclap p) — pelag,p)  (if €' = C~!is not a homotopy Z-word)

e (£m) (if ¢’ = C*'[m] is a homotopy Z-word)
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Note that this integer is well defined using lemma

(EQUIVALENCE RELATION ~ ON X) We introduce a relation ~ on ¥ by setting
(B,D,n) ~ (B',D',n') when B™'D and B’~'D’ are equivalent and n' — n =
r(B,D;B', D).

Lemma 2.2.19. Let (B,D,n), (B',D',n'), (B",D",n") € ¥ and C = B™'D, C' =
B'7'D' and C" = B"~'D". Then

(i) if C and C" are equivalent then r(B,D;B',D") = —r(B',D'; B, D), and

(i) if C, C’, and C" are all equivalent then

r(B,D;B",D")=r(B,D;B',D")+r(B',D'; B", D")

Consequently the above relation ~ on X defines an equivalence relation.

Proof. In what follows we make use of lemmas [1.3.33| and [2.2.15| without reference.

(i) If C" = C is not a homotopy Z-word then uc(ap p) — pe(as,p) = —(ner(ap,p) —
per(ap pr)). If C' = C~! is a homotopy {0,...,t}-word then ap'.pr =t — ap p
and app = t —ap,p and therefore puc(app) = pe(ap,B) — per(t) and pc(apr.p) =
per(ap,pr) — pe(t).

This shows uc(ap.p) — pc(ap p) = pe(aps) — per(ap pr) and so as C = O’ 1
we have r(B,D;B',D') = —r(B',D';B,D). If ¢’ = C~! is a homotopy +N-word
then ap/ pr = —ap/,p and app = —ap,p and therefore puc(ap,p) = pc(ap,p) and

pc(apr pr) = per(ap pr) which as above is sufficient.
If ' = C*'[m] is a homotopy Z-word for some m € Z then C = (C'[-m])*! =

C'"*1[#m] and we have perir jgm) (M) = —per(£m) by writing both sides as jore1 (£m +

Fm) — per+1(Fm), as required.

(ii) We consider different cases for r(B, D; B’,D’), and in each case consider different
cases for r(B’,D’; B”, D"). Note that one of C, C’, or C” is a homotopy Z-word iff they

all are. Suppose C’/ = C is not a homotopy Z-word.
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If C" = C' (resp. C” = C'7!) then the result is clear after writing uc/(apr pr) —
pc(as,p) (resp. pcr(apr pr) — pelap,p)) as the sum of pcr(apr,pr) — pe(ap,pr) (resp.
MC”(aD”,B”) — ,lj,c(CLB/7D/)) and ,uC/(aB/7D/) — HC(CLB,D)- Suppose instead C, = Cil[m] is

a homotopy Z-word so that r(B, D; B, D) = pc(£m).

If C” = C"*'[m/] then C" = C[m’+m] and as pes1py, (£m') = pe(m/£m)—pc(£m) the
result follows. Otherwise C” = C'F![m/] and so C" = C~'m/ Fm] and as pgip,) (Fm') =

pe(—(m' Fm)) — uc(£m) again the result follows.

For reflexivity, C' is equivalent to itself and n —n = 0 = r(B, D; B, D) since uc(0) =
0 by definition. For symmetry suppose C' and C’ are equivalent homotopy words and

r(B,D;B',D') =n' —n.

Then C” and C' are equivalent homotopy words and r(B’, D’; B, D) = n—n' by (i). For
transitivity suppose C' and C” are equivalent homotopy words and r(B, D; B', D) = n’ —n;
and suppose also C" and C” are equivalent homotopy words and r(B’, D'; B”, D") = n"—n/.

Then by (ii) (B, D; B”",D") =n' —n+n" —n’ =n” — n as required. O

Definition 2.2.20. (EQUIVALENCE CLASSES) Recall that ¥ =W, ; xW, | x Z. We let
3(s) be the set of all (B, D,n) € X where B~!D is not a periodic homotopy Z-word, and
¥(b) the set of (B, D,n) € ¥ where B~'D is a periodic homotopy Z-word.

(NOTATION: X, ¥(s), X(b)) Note that for (B, D,n) ~ (B’,D’,n’), (B, D,n) lies in X(s)
(resp. X(b)) iff (B, D’,n’) does too. So ~ restricts to an equivalence relation ~; (resp.

~p on X(s) (resp. X(b)). Let ¥ = X/ ~, B(s) = X(s)/ ~s and X(b) = X(b)/ ~p.

(CHOSEN REPRESENTATIVES) Let Z(s) denote a chosen collection of representatives
(B,D,n) € ¥(s), one for each class (B, D,n) € ¥X(s). Similarly define the subset Z(b) C
Y(b) by choosing one representative (B, D,n) € X(b) for each class (B, D,n) € ¥(b). Let
Z=1I(s)UZ(D).

We now look at the symmetry in the definition of Fg p . The statement and the proof
of the following lemma were both found by adaptating [21, Lemma 7.1] from the setting

of words to the setting of homotopy words.
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Lemma 2.2.21. Let B and D be homotopy words such that C = B~'D is a homotopy

word. Then for anyn € Z
(i) if C is a non-periodic Z-word then Fg p, ~ Fp pn and

(ii) of C is a periodic Z-word then Fp p, ~ res,Fp p.

Proof. (i) Here Fgpn, = Fppn as Fip (M) = Ffp (M) and Fgp (M) =
Fp pn(M).

(ii) Suppose C = *®E* for some word E = lflrl...lljlrp. Then D7'B = C~!
(E~1)*°, For each complex M of projectives with radical images we define a map 7 :

Fg.pn(M) = res,Fp pn(M) by sending m + E(n)” to m + (E~1)(n)’.

Since E(n)” = (E~1)(n)* and E(n)! = (E~1)(n)! as sets this is a well defined vector
space isomorphism. By lemma [2.2.11| the action of 7" on F p (M) is the automorphism
0]];34(”), and the action of T on e, M"N(E~1) /e, M*N(E~1)” is the automorphism 95\571)(").

Hence the action of T" on res,Fp g (M) is (05\571)(71))71

For any m + E(n)” we have 82 (m + E(n)*) = m/ + E(n)’ iff m’ € E(n)f N (E(n)’ 4+ Em)
which holds iff m € (E~1)(n)* N ((E~ 1)(n) + E~!'m/). This shows 91(5—1)(70 - (911\5’/[(”))—1

and hence (9](571)(@) Ym 4+ (E=Y)(n)) = (m + (E)(n)’) which proves 7 (T(m +
En)*) = T(rar(m + (E~')(n)?)) and therefore 7p; is an isomorphism of k[T, T~']-
modules.

Furthermore if f : M — N is some map of complexes then for each m +

E(n)’ € Fgpn(M) we have res,(Fp pn(f))(m + E(n)°) = f*(m) + E(n)’ and so
ves,(Fp n(f))(Tar(m + E(n)*)) = 7 (F.pn(f)(m + E(n)®)) which shows 7 defines the

appropriate natural isomorphism. ]

The next lemma is essentially [55, p.25, Lemma] with minor adjustments.

Lemma 2.2.22. Let C' and E be homotopy words such that (d( )'yC') LE is a homotopy
word for some v € P. Then for any n € Z the functors Gcﬂﬂdlw)Em and Gdf(}/)wCEn—l

are naturally tsomorphic.
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Proof. Let u =t(vy),v=h(v), B= df(i)yc and D = 7_1d1(7)E. We start by defining some
isomorphisms between the vector spaces Gp g n—1(M) and Go,pn(M). In case B7'E is
a periodic Z-word we will show these isomorphisms are k[T, T~ !]-linear. In both cases
we show they define a natural isomorphism between G¢ 14, B and G 41 A C.Bn—1 For

each complex M of projectives with radical images define the vector spaces L™ (M) C

LY (M) C e,M™ by
LE(M) = e,M™ N (yC™ (M) + dyop) E=(M) N yC T (M)).

For L(M) = L*(M)/L™ (M) consider the R-linear maps vas : Go,p.n(M) — L(M) sending
m+Gg p (M) to ym~+L~ (M) and nu : G ppn—1(M) — L(M) sending m+Gpg g, (M)
to dﬁ;){ y(m) + L7 (M). Tt is straightforward to show they are well-defined. We now
show these maps are isomorphisms of R-modules. In doing so we will show mL™ (M) C
ker(n,; ) = 0 and hence that L(M) is a vector space over k = R/m. For any m+ L~ (M) €
L(M) we have m = ym’' + dﬁ;){M(m”) where dﬁ;){M(m”) = ym" for m' € C~ (M),
m" € ET(M) and m"” € C*(M). This shows

ym! +ym" + L= (M) =m+ L™ (M)=m —~ym' + L™ (M) = dﬁ;){M(m”) + L™ (M)

and so m+L~ (M) may be written as vy (m'+m"'+Gg p (M) or nu(m"+Gg g, (M),
so ny and vy are both surjective. If vg € L™ (M) for some ¢ € GJCF’,D,n(M) then (g —
q') € dyE~ (M) N CH(M) for some ¢ € C~ (M) and so writing ¢ as the sum of ¢’ and
q—q € D™(M)NC*T(M) shows q € G (M) and so vy is injective.

Similarly if dﬁW)M(T) € L~ (M) for some r € GE,E,n—l(M)) then dﬁ,y)M(r —r") e
yC~ (M) for some r"" € E= (M) N BT (M).

So, writing r as the sum of v and r —r” € D= (M) N C*(M) shows r € G p,, (M)
which proves 7, is injective. Suppose f : M — N is an arbitrary morphism of complexes.
Fix an element 2+ G, , (M) from G p (M) and suppose 1y, vas sends 2 +Gg p o, (M)

to 2’ + Gp g,y (M).
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This means yx — dln(;)l (&) € L7 (M) and so by corollary [2.1.20| we have

V(@) — i (@) = () — A @) = e — A (@) € LT(N)

This means GBE,n_l(f)n;/[ll/M and n]:,ll/NGc,Dm(f) both send = + G, pp (M) to
2 +Gyp £n_1(V) and so the collection mivm 2 Gopn(M) = Gp g pn-1(M) defines
a natural isomorphism G¢ p,, — GB,En—1 assuming B ~1F is a not a periodic Z-word (as

in this case the co-domain of G¢ p n and G g n—1 is a full subcategory of k-Mod).

So we assume B~'E is a periodic Z-word of period p. Writing B~'E = ® P> where P =

ll_lrl ces l;lrp gives I, =7, rp = dy(), and C— ID = A where A = Ly rpll r1. lzj_llrp,l

ifp>1and A= P if p=1. Hence P = P<p'y_1d1(,y) and A = 7_ dl(w)P@ In corollary
2.2.12| we defined automorphisms 01@("_1) of Fppn-1(M) = n 1/ _, and 0, Aln) ot
Fopn(M) = Al /AP giving Pyji_l/Pfl_1 and AEZ/A'; the structure of k[T, T~ !]-modules.

By the proofs of corollaries [2.2.8] and [2.2.12} there is an action of T" on (Gp,gn—1(M)

given by ﬂn,lTﬁ,;ll) and on (GC,V‘ldl(y)E,n(M) given by B,T8;') for natural
isomorphisms 8,—1 : Fppn-1(M) = GpEn-1(M) and B, : Fopp(M) = Go,pn(M).

We now show 0/ vay is k[T, T~!]-linear.

Fix an element mo + F p, (M) of AL /AP for some mg € Ah. This means there is
some T € P _, for which mg € ~ 1d1(7)r0 Recall 6, Aln) (mo + Ab) =m + Ab for some
m' € Ab N (A" 4+ A,mg). So there is some m” € A° for which m’ —m” € A,m. Let
m_1 =m' —m/”. Since m_; € Aﬁ there is some r_; € Pti _y with r_1; € P<,mgo and where
dﬁv)l (ro1) = ym-1. As m” lies in F,f, (M) C Gg p,,(M) we have the map Nap VM
sends m_1 + G67D7n(M) tor_q1 + GB,Em_l(M).

Furthermore as r_1 € P.,mg and mqg € 'y_ldl(v)ro the element r_; must lie in both
be_l and P<p’y*1d1(7)r0 = P,_17¢ so by construction 6, P(n 1)(7" + Pb ) =11+ Pg_l.
Also as mg € 7~ dy(r0 We have Nz v (mo +Gopn(M))=r0+Gg g, 1(M). Applying
Gﬁ(n 1) 1, to this equation gives 8, (r_1 + Gg pno1(M)) on the right hand side which
is sufficient as r_1 + Gg g, (M) = na (var(m' + Gopn(M))) and By(m' + AP =
m' +Gg p,, (M) and thus 95[(”_1)5 L v Ba = By iyt v B GA(n O
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Corollary 2.2.23. For any n € Z, any homotopy words C, D = lflrl AT, and E
such that C"'DE is a homotopy word: the functors Gepen and Gp-10,Entup(s) are

naturally isomorphic.

Proof. Suppose the corollary holds when s = 1. Iterating this assumption gives

Grl_lllc’,..lls_lrsE,n—&—,uD(1) == Grs_lls..‘Tl_lllC,E,n—l-,uD(s)

and so Go,pen ~ Gp-10,Entup(s)- S0 it is enough to choose any letters [ and r such

that C~'~'rE is a homotopy word and show the functors Gei-1rpn and G0 Byt

are isomorphic where ¢ = H(l) 4+ H(r). By lemma [2.2.22|is enough to show G, d Ein ™
Rl 1 v )

-1

G.y—ld1<’y)C7E7n+1 for any v € P with C’_ldl(w)'yE a word.

We have Gc’dl_(iﬂE’” ~ Fc’dl_(iﬂE’” and F,y—ld1<’y)c7E7n+1 ~ G,Y—ld1<’y)c,E7n+1 by corollaries

2.2.8land [2.2.12| and by lemma [2.2.21] we have

Foydfl)’yE7n ~ reSLFdf(

1
1(y W)VE’C’n’

res, Fp 14, o1 = Fy-ta cpnt

if C"'DE is periodic, and otherwise

F ~F
C,dl(,y)'yE,n dl(,y)'yE,C,n’

FE,’y_ldl(,y>C,7’L+1 = F’y_ldl(,y>c,E,n+l

By corollaries|2.2.8| and|2.2.12| and by lemmal2.2.22|we have G y=ldy(0) O Gy VECon—1"
) ? l(,y> b k)

This gives F B ~

FE’,Y—ldl(’y)le_;’_l, as required. O
Corollary 2.2.24. Suppose elements (B, D,n) and (B',D',n’) from T are equivalent.
(i) If C is not a Z-word then G pn ~ Gp',p/ p -
(ii) If C is a Z-word and C' = C[m] for some m € Z then Gp.pn =~ Gp/.p/ -

(iii) If C is a Z-word and C' = C~1[m] for some m € Z then Gp pn ~ res, Gp .pw if

C' is periodic and G p, ~ Gpr,prw otherwise.
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Proof. (i) Suppose firstly C = C’. Without loss of generality we may assume D = ED’
and so E~'B = B’ for some finite word E = llrl_l...lt_lrt. This gives pc(ap p) =

po(ap.p) + pe(t) and so n+ pp(t) =n'.

By corollary we have that Gp p, = GB,llrl_l‘..lt_lrtD’,n is naturally isomorphic to
Grfllt...rflllB,D/,n+yE(t) = Gp/.p . Otherwise we have C' = C~!. The case when C is
a —N-word will follow from the case where C' is an N-word and by the symmetry of the
claim and the relation ~ on Z. Hence we can assume C = C'~! is a (finite or N)-word and

hence B and D’ are finite words.

By definition B*!' is a {0,...,app}-word, D'F! is a {0,...,ap g }-word,
upr-1(ap,p) = pelap,p) and pp-1(ap,p) = pc(ap,p). Letting b = pp-1(ap,p) and d =
ppr—1(apr pr) by corollary we have G pn ~ le’&B—lD’n,b and leﬁé,D/_lB/’n,b ~
Gp g ntd-b As Gy p-1ppy = Gi p-1ppp and n+d —b = n’ this shows
GB,pn >~ Gpr p . By corollary Gp g ~ Fpr g o and Gpr pryp =~ Fpr pr gy, and
Fpi pr s >~ Fpr pr 4y follows by lemma Altogether this shows Gp,pn ~ Gp' pr -

(ii) The case where m < 0 will follow from the case for m > 0 and the symmetry of the
claim and the relation ~ on Z. Assuming m > 0 we have B = (C’So)_l, D = (C<m)>0Csm,
B' = ((C<m)>0)"HC<p)™! and D’ = Cs,,. So by corollary we have that Gp p, ~
Gp/.prnr as pior—m)(m) = po(m) by lemma (iii).

(iii) Let B” = D, D" = B, C" = C~' and n" = n. By corollarywe have G p.n ~
Fpn g and Fpo pi i == Ggn pr . By lemma 2.2.21] Fpr g i = ves, Fgn pr g if C'is
periodic and Fpr pr pn o~ Fpr pr pn otherwise. Since C”[m] = C" and n’ —n" = pen(m)
by lemma1.3.33] by part (ii) above in the case for Z-words we have G pr pr ~ Gpr pr
and hence res, Ggr pr p» >~ res, Gp/ pr nr. Altogether this shows Gp pn >~ res, Gpr pry if

C'is periodic and Gp,pn ~ Gpr pr 4 otherwise. ]
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2.2.3 Constructive Functors.

Recall Kaplansky [42], p.372, (1)] showed that every projective R-module is free since R is
local. Hence R-Proj is the category of free R-modules, and R-proj is the full subcategory

of finitely generated free modules.

Definition 2.2.25. (CONSTRUCTIVE FUNCTORS FOR COMPLEXES, NOTATION: SB p )
For (B,D,n) € Z(s) we define a functor Sg p n : R-Proj — Cmin(A-Proj) as follows. On
objects, Sp.p, sends a free R-module V' to the complex Sp p (V) whose homogeneous

component is P(C)[uc(ap,p) —n] ®r V and whose differential is d;( ) ®© v

C)luc(ap,p)
in degree i € Z. Hence Sp p (V) may be considered the direct sum of copies of P(C')

(shifted by puc(ap,p) —n) indexed by a (possibly infinite) R-basis of V.

For an R-linear map f : V' — V’ and bases {v) | A € Q} for V and {v}, | X € '} for V',
write 1(vx) = > ax vy for scalars ay y € R for each A\, \' € Q. Let b, o denote the coset
of e, () in the summand Ae, ;) of P(C)[uc(ap,p)—n], and let b, \ o = b; c @ vy for each
i € Ic and A € Q. Similarly for each X € Q' let bj \, o = b; ¢ ® v, for each i € I¢. Define
Sp,p,n on morphisms by extending the assignment Sp pn(f)(b;rc) = 2o a>\/7,\b;7)\,7c
linearly over A. Note that if B~'D has controlled homogeny then S B,D,n defines a functor

into Cpin(A-proj) upon restriction to R-proj. The converse also holds.

For (B,D,n) € Z(b) we have ap p = 0. Furthermore the free R-modules V and V'
have the additional structure of left R[T,T~!]-modules and the R-linear map f:V — V'
above is additionally R[T,T~!]-linear. Hence T defines automorphisms ¢y : V — V
and ¢y 1 V' — V' satisfying foy = oy f. Suppose C is periodic of period p. Recall
R[T, T7Y-Modp proj is the full subcategory of R[T,T~']-Mod consisting of R[T,T~1]-
modules which are free as R-modules. Define the functor Sg p ,, : R[T, T‘l]—Mod R-Proj —

Cuin(A-Proj) on objects by Sp p (V) = P(C,V)[-n].

The formula Sppn(f)(bire) = YPyvew avabive gives Sppn(f)(ipirc)
T(Xy ax abi v o) and consequently Sp pn(f)(Thyc) = T(Sp,pn(f)(;ac)). Hence
Sp pn(f) defines a A ®g R[T, T~!]-module morphism P*(C)[—n] — P*(C)[—n/] for each
i € Z which defines a morphism of complexes P(C,V)[—n] — P(C,V")[-n/].
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The proof of the following result will be written with the notation introduced above.

Corollary 2.2.26. Suppose elements (B,D,n) and (B',D',n') from I are equivalent.

Then there is a bijection w : Ior — Io defining a morphism of complexes 6

P(C)luer(apr,pr) = n'] = P(C)|pc(ap,p) = nl.

Furthermore if C is a periodic Z-word of period p we have (0(b; c/T) = b cT when
C" = C[m]) and (b o T') = bi),cT when C' = C~Ym]). Consequently the following

statements hold.
(i) If C is not a periodic homotopy Z-word then Sp pn ~ Sp/.p/ .
(ii) If Ic = Z, C s periodic and C'" = C[m] (for some m € Z) then Sp,pn ~ Sp/,p’ 2 -

(iii) If Ic = Z, C is periodic and C' = C~[m] then SB.D;n ™ SB/. Dy TES,.

Unlike the proof of corollary [2.2.24] it will be useful here to treat the cases
(B,D,n),(B',D',n'") € Z(s) and (B, D,n),(B’,D',n’") € Z(b) separately.

Proof. If ' = C then I = Ic and we let w be the identity map. Instead suppose
C' = C~1. If C is finite then Ic = {0,...,t} for some ¢ € N in which case Io-1 = I,
ve-1(i) = vo(t — i) and pe-1(7) = pc(t — i) — pe(t) for each i € Ig—1 by lemma
Here ap/ pr = t — apr,pr by lemma and so pcr(ap.p) = po-1(m — ap pr) =

HC(“D’,B’) — po(m).

This shows Spr prw(R) = P(C™Y[uc(ap,p) — n — pc(t)]. By corollary [1.3.43] there is
an isomorphism of complexes 6 as above where the bijection w is defined by w(i) =t — 1.
If C is infinite it is enough to let w be defined by w(i) = —i using a similar argument to

the above replacing ¢ with 0.

Suppose now C’ = C[m] is a homotopy Z-word. As pcr(apr,pr) —n' = —n— pici_mym)(m)
and pcr—m)(m) = pc(m), by corollary there is an isomorphism of complexes 6
from Sp/ prp/(R) = P(Clm])[—n — pc(m)] to P(C)[—n] = Sp,pn(R) as above where
the bijection w is defined by w(i) = m +i. If C is periodic of period p then Q@C[m]T =
b =, ¢ and so 0(b; o/ T) = by, T

Zi—p,C[m] Zi—p+m, 1),
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Instead suppose C’ = C~![m] is a homotopy Z-word. Again by corollary [1.3.43| it is
enough to let w(i) = —(i + m), and similarly if C' is periodic of period p the equations

bi T = by o 1im) = b (ipm)—p,c Show O(b; T ™1) = byyiy 0T

(i) Here (B, D,n) € Z(s). Given a free R-module V with R-basis {vy | A € Q} letting
oy, = 0" ®@r 1y defines a A-module map of, from P"(C')[pcr(ap,pr) — '] @r V to
Pr(O)pc(ap,p) — n] @r V' which sends b; ) o = b v @ va 10 by ac = by, @ Va

Furthermore this is a morphism of complexes since Qf( yo ®ux = (0" ® lv)(bfc, ® vy) for

any ¢ € Icr. So for each (A € Q, g € Z, and i € ,ua,l(g + per(ap . pr) —n')) we have

(0 @ 1y) (S D1 (F)(bixcr) = (0@ Ly) (3 y ax by o) = (0@ 1v) (3 y ax b o @ v),)

= 2v av\0( o) ® Ly (vy) = 3oy anv b,y 0 ® vy = 2on av \Uy) v .o = B0 () (Buiya0)

which altogether shows (o7 o S pr o (f))(b;rcr) = Sp.pw (f)(ov(birer)) and so o

defines a natural isomorphism.

(ii) Here (B,D,n) € Z(b). For a R[T,T~!]-module V with free R-basis {vy | A €
Q} since 0(b; vT) = by(),cT the map 0" is R[T, T~ ']-balanced. Hence as dp(cy) =
dpcy ® 1y writing of, = 0" @gp -1y ly defines a A-module map from P"(C',V) =
PH(C)[=n'] @R -1V to P (C)[=n]®@prr-yV = P"(C,V) sending b; ; o = b; on ®vs to
buy(i),s,0 = bu(i),c®vs. Asinpart (i), oyioSp prw (f) = Spr prw (f)ooy for any R[T, T-1-

module map f: V — V’. So again o defines a natural isomorphism Sp' pr . — SB. D n-

(iii) Similarly since 0(b; T~ ") = b,),cT letting oy, = 0" @pprr-1) lres, v defines a A-
module map from P"(C’,res, V') to P"(C,res, V) giving a natural isomorphism Spr pr pn =
Spr prm where B” = D, D" = B, C” = C~! and n” = n’ — pucv(m). In this notation
we have ficr[_m)(m) = pon(m) by lemma (iii) and so n” = n. Hence (B, D,n) ~
(B",D",n") and as C"[m] = C’ by part (ii) we have Spr pr pr =~ Spr gy = SBDn-

Altogether we have Sp p, ~ Sp/ p/ - O
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2.3 Evaluation on Complexes.

In this section we will apply our refined functors to the complexes M which are of the
form P(C) or P(C,V). Recalling corollary to evaluate a refined functor on a string
or band complex it will be enough to provide a description of A%(M) + rad(M) for any
(finite or N)-homotopy word A.

Assumption: In section we let C' be any homotopy word.

We will adapt [21, Lemma 8.1] for our purposes, which will require some technical results
that we have collected together. We start by giving a convenient way of writing elements

in the modules P(C) and P(C,V).

2.3.1 Coefficients.

Definition 2.3.1. (TRANSVERSALS) Choosing a lift s € R for each § € R/m defines a
(fixed, yet arbitrary) transversal S of m, that is, a subset of R for which S N (r + m)
contains precisely one element for each r € R. To simplify proofs we assume 0 € S and so

{0} = S Nm. This does not change any result in what follows. Let k be the field R/m.

Example 2.3.2. Recall the p-adic integers 210 from example Here {0,...,p— 1} is

a transversal of pr. For the power series ring k[[t]] the field & defines a transversal of (t).

Definition 2.3.3. (NOTATION: P[i], n;, 74,;) Recall that for each i € I the symbol b;

denotes the coset of e, (; in the summand Ae,, ;) of Pre(@(C), and hence P(C) is

vo (i

generated as a A-module by the elements b,. For each i € I let P[i] = P(va(i) —),
(see definition [1.1.7]) the set of all non-trivial paths o ¢ (p) with tail v (7).

If S is a fixed transversal of m in R we can write any r € R as r = n+ z for some n € S
and some z € m gives zb; € P, Alve(i)—) Aa (recall A is pointwise rad-nilpotent modulo
m). Hence any m € P(C) can be written as m = 3, (nib; + > ,cpy;) To,i0b;) where (for
each 7): n; € S and r4; € R; r5; = 0 for all but finitely many o; and n; = r;j, = 0 for all

but finitely many j.
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(NOTATION: ¢4, [m], m], Pla,il, [m s My m]pgs Mo 1) Fix some arbitrary
t € I and let ¢; denote the A-module epimorphism P(C) = P, Ae,. ;) — Aey, () sending
m = > ;mib; to my. For m = 3 .(nib; + X ,cpp) Te,iob;) as above let [m] = 7, mib;
and |m| = >,  7ro0b;. This gives ¢i(y[m]) = my and (v [m]) = >, 15470, For
any arrow x write P[z,d] for the subset of P[i] consisting of all o with 1(c) = x, and let
[m

ot = My, +|m,, and m] = m], .+ m|,, where

M1 (ift+1€ I and ll;llrtﬂ =a ld,)

m-‘ x,t =
0 (otherwise)
: m_1B (ift—1¢€Tlandl; 'r, =d;'B)
m,, =
! 0 (otherwise)

()

ZUGP[IE,H—H T’U’H_la'ﬁ (lf t + 1 (S I and l;_:lrt+1 = :‘Q_ldl(n))

mJ z,t =
0 (otherwise)
] oepeeyroimiot (ft=1€land Il = dg0)
xr,t
0 (otherwise)

Example 2.3.4. Recall the complete gentle algebra A = kQ/(p) from example [1.2.12

where p = {ba, cb, ac, sr, ts, rt} and @ is the quiver

[N,7]
YaN

In this case the ground ring R is just the field k, and so k is a transversal. Recall
the homotopy word C' with [C] = [s][t][c™!] from example [1.3.35, The associated string

complex P(C) was depicted by
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dt
by
N
ds thy
by atby
sby

Write an arbitrary element m € P(C') as

noby + 75,080y +
Mmby + re1tby + rar1ath+

772b2 + Ta,2a92 + Tr,2rbz+

773@3 + TC,BCbg + rrc,3TCb3

Hence ml] g = ms; m],o = 0for x # s; and [m,, = m|, o = [m,, = 0 for any z.
Similarly: m],; = mt ; ml,q = 0 for x # t; m|,; = regat; m],; = 0 for @ # g
[mal = Lle = 0 for any x; [mm2 = me,2 = mh:z = mJLQ =0 m]xﬁ = mJ%S =0;

[m 3 =m2c; [m,3=0forx+#c |m,3=r2rc;and [m, 5 =0for z #c.

For a vertex v recall the sum ) _ Alv—) Aa is direct because A is a quasi-bounded (gentle,

and hence string) algebra over R. For any arrow y with tail v let 6, : @ Alv—) Aa — Ay

be the canonical A-module epimorphism.
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Since P(C) = @; Aeyy ) the sum Y yP(C) over all arrows y is direct. Let ¢ :
zP(C) — @ yP(C) and 7, : PyP(C) — zP(C) respectively denote the natural R-
module inclusions and projections. For m’ € P(C) write m' = 3, b+ 32, >y epji) 7,000

as above.

Lemma 2.3.5. For any arrow z, t € I and any elements m =3, (nib; + 3, cp(;) To,i0b;)

and m’ =3, mibi + 32, 2 gepp) Ti,00b; in P(C): the following statements hold.
) Yl picy([m])) = [y + 1 amd (e piy(Lm])) = gy + )
(i) If v € P[x,t] and m € v~ tdym’ then Oty (Ve (dy pcy (M) — My € yrad(A).
(i) If iy ress = 7 i) then Oy (mly(,) ) — M1y € yrad(A) and Gy ([m ) = 0.
(iv) If I ry = dl_(i)'y then Oy (M) ) — m—17 € yrad(A) and Oy (m] ;) = 0.

Example 2.3.6. We check the formulas in the statement of lemma (i) (above) are
consistent with the calculations performed in example[2.3:4] Note that for m as before we

have

[m] = noby + mby + n2by + n3bs,

|m] = rsosby + re,1tby + Tar,1atby + 1o 2aby + 1y 2Tby + ¢ 3¢bg + Ty 37Chg

Hence for each arrow x and each 7 € I we have

Yi(de, p(c)(m])) = i(ta(ma(smby + tneby + cnbs)))
(5771:[m5,0+m1870 (ifi:Oandx:s)\
tnp=[mg,+ml,, (ifi=1andz=t)

cnp=[mg3+ml,3 (fi=3and z=s)

0 (otherwise)
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and similarly

Vi(dy,pcy(Lm])) = ¥i(dy poy (75,08bg + T1,1tby + Tat,1atby 4 74 .2aby + 17270y + 7c 3¢b3))
= i (1z (75 (re,2atb; + 1r27Ch3)))
regat =|m, ;+m|.; (ifi=1and z=a)
rrorc=|m s+ m|. 5 (ifi=3andz=r)

0 (otherwise)

Proof of lemma[2.3.5. (i) Note that d, picy(>_mib;) = > nite(me(b; + b)), and if bF

defines a non-zero element in Ab, then ¢ = t 1. By straightforward case analysis this

shows ¢ (dy p(c)([m])) = [m,, + m], ;.

By lemma m (i) we have d; p(c) (3, 70,i00) = 32; (5,2.0) Toi0dz p(c) (b;) for each
i where the triples (o, z,7) run through all ¢ € P[z,i] and all arrows z with f(o)z ¢

(p). For any such triple (o, z,i) we have odp(cy(b;) = od, p(c)(b;) and so it follows that
Yi(de,pioy(Im])) = My, + ml,

(ii) Since > 7ot410 € rad(A) we have Og.)(m) — m1y € Arad(A) and so
applying Og,)1¢ to either side of ym = dy pic)(m') gives Ogybi(dy pcy(m’)) — ey =

(o) =f(y) Tot VO as required.

(iii) If ;) yree1 = 77 'dy then [m,, = 0 unless Iy 'ry = dj ;¢ in which case f(y) #
f(¢) since dig)(7*1d$ is a word. Furthermore m}lm’tﬂ = 41y and mJl('y),tJrl =
> oeP(i(y),t41) Tot+107 € rad(A)yNI(y)A which is contained in Af(y)Nyrad(A) by corollary
(v). The proof of (iv) is similar, or may be deduced by applying (iii) to the homotopy
word D = C~ L. O]

Definition 2.3.7. (NOTATION: C(i,d), C(i,6)s and d;(C, §)) Recall definition [2.1.11] For
each i the words C~; and (C<;)~! have head v (i) and opposite sign by proposition
For § € {£1} let C(i,d) denote the one with sign ¢. If C(i,d) = Cs; then let d;(C,0) =1,
and otherwise C(i,d) = (C<;)~! in which case we let d;(C,d) = —1.
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Note that for any s € I¢(;s) such that s +1 € I¢(; 5 we have

(Csi)s  (ifd=1)

C(i,0)s =
((C<i)™)s (ifd=-1)
Uhrinlyrive - )s  (fd=1) | | Llris (ifd=1)
(ri i i )s (iFd = —1) ritolicen (fd=-1)

Corollary 2.3.8. Let d = d;(C,d). For any m € P(C),
(i) if n —1,n € Iggs) and m € C(i,0),m’ then Niyam—1) = Mgy, and

(ii) if Iy = 10,...,h} and C(i,6)L, . = C(i,6) for a vertex u and e € {1} then
m € 1, (P(C)) implies ni1an = 0.

Consequently m € C(i,0)” (P(C)) implies n; = 0.

Proof. (i) Let C(i,0), = 7 'dyy) and = = 1(7) so v € Pz,i + d(n — 1)]. By lemma
2.3.5 (i) and (ii) (with ¢ = 4 + d(n — 1)) we have O (Yitam-1)(de,pcy(m’))) =
O ([ 4 i an—1)) + 05 ('] 4 i agn—1)) a0d Ox) (Viran—1) (de Py (M) = Nidn—1)7 €
~yrad(A) respectively. If d = 1 then l;rlnrwrn = 77 dy(y) and by lemma m (i) and (iii)
(where t = i +n — 1) we have Of)(Vitn-1(ds,pcy(m’))) — niy .,y € yrad(A). If instead
d = —1 then li__ln+1ri_n+1 = dl_(71)7 and by lemma [2.3.5( (i) and (iv) (where t =i —n +1)

we have Oy (Vi—n+1(dz, p(cy(m'))) — nj_, v € yrad(A).

In either case (1}, 4, — Nitdn—1))y € yrad(A), and if nj, ;. — Nipam—1) lies outside
m then it is a unit, in which case yA = ~rad(A) which contradicts lemma (ii).
Hence 7] tdn — Mi+d(n—1) € m and as S is a transversal in R with respect to m this means
n§+dn = Nitd(n—1)- For the case where C(i,), = 'y*ldl(v) the proof is similar and omitted.
Here, when we apply lemma (ii) we exchange m and m/. When we apply lemma
2.3.5| (i), (iii) and (iv) we set t =i+ dn, t =i —n and t = i + n respectively.

(ii) It suffices to prove 7;1qn € m since S Nm = 0. If there is no f € P for which
1, .67 'dyg) is a word then 1, (P(C)) C rad(P(C)) and s0 ¢iyan(m) € rad(Aeyg(iran))-
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Since Mitdn = Vitpdn(m — [m]) this gives 1,44, € m as Aey, (j4an) is local. Suppose instead
there is some 8 € P for which lwﬂ*ldl(,g) is a word. By definition m € fyfldlw)m' for

some m’ € P(C) and some y € P such that C(i,0)y™'dy,) is a word.

By lemma () Yitrdn(de,pcy(m) = [m' g i an + M4 i gn- Since i+ d(h+1) &1,
d =1 implies m] ;. = 0 and d = —1 implies [m',, , =0. Ifd=1and [m';,, #0
then i + h—1 € I and li__lhﬂri,hﬂ = Tfldy which means d;lT’y*ldl(v) is a word and
hence 0y ([m’, ;) = 0. Similarly 0y,)(m'] ;) =0 when d = —1, and altogether this

gives Ogy) (Vitan(dg,pcy(m’))) = 0 50 niyany € yrad(A) by lemma (ii). As above we
can conclude 7,445, € m by lemma (i) which completes the proof of (ii).

We now show m € C(i,6)” (P(C)) implies 7; = 0. Choose h > 0 such that (C(i,0)
is infinite and m € C(i,6)<x0) or (Igisy = {0,...,h} and C(4,0)1,, = C(i,6) for a
vertex u and € € {£1}). So we have elements m; = >, 7i;b; + >2; > epyi] To.i,job; from
P(C) where mg = m and m; € C(i,0)j41mj+1 whenever j < h. By assumption when
C(i,9) is infinite, or by (ii) when C(4,6) is finite, we have 7;1q4nn = 0. Applying (i)
to each natural number j < h — 1 gives 9i14j; = Miyd(j+1),j+1 and together this shows
M =10 = Ni+d1 = """ = Nigyd(h—1),h—1 = 0. O
Corollary 2.3.9. Let d = d;(C,6). For any m € P(C):

(1) if n —1,n € Iggs) then biyap—1) € C(i50)nb;yqpn; and

(ii) if Ie@sy = 10,...,h} and C(i,6)L, . = C(i,6) for a vertex u and e € {1} then
biran € 1y (P(C)).

Consequently b; € C(i,0)*(P(C)).

Proof. (i) If C(i,8)n = 7y~ 'dj() for some v € P then (d = 1 and l;rlnan =y dyy) or
(d= -1 and Tz’_+11—nli+1—n = v Ydy(y))- In either case di(y) p(cy (bitan) = Ybitd(n—1) and so

bitam-1) € 771dl(7)bi+dn = C(i,0)nb; s gn- The case for C(i,0), = dl_(iﬂ is similar.

(ii) It is enough to assume C (i, §)d, 'z is a word for some arrow x as otherwise e, P(C) =
Lt (P(C)). By definition i +d(h +1) ¢ I, d = 1 implies dp(c)(b;an) = by, ), and d = —1

implies dp(cy(b;—p) = b;r—h‘
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Furthermore if l;jdhri—‘rdh = ﬁ_ldl(g) then 1(8) # z and so dp(c)(;+an) = 0 which shows
biyan € dy'2z0 C 1 (P(C)). We now show b; € C(i,6) " (P(C)).

Suppose I¢ (s = {0,...,h} and C(i,46)1, . = C(3,9) for a vertex u and € € {£1}. By
iterating (i) h-times we have b; € C(4,0)1b;, 4, bj1q € C(i,06)2biy2q all the way through to
bitah—1)C (05 0)nbipan- Soby (ii) b; € C(i, 6)b; q, Which is contained in C'(i,0)17 (P(C)) =
C(i,8)*(P(C)). Now suppose C(i,8) is a homotopy N-word. If C(i,8) = p; ' qip; 'qa - ..
then C(i,0), = p,'qy for each n > 0. Again there is a sequence b; € C(i,8)1b;, 4,
birq € C(i,0)2b;, 94, and so on: which means b; € C(4,8)"(P(C)) by definition. O

Definition 2.3.10. (NOTATION: ¢;) Let V be a R[T,T~']-module which is a free R-
module with chosen basis {v) | A € Q}. Suppose also C' is a periodic homotopy Z-word of
period p, say C = ®E* for a homotopy word E = ll_lfrl ces l;lrp. By lemma there
is a A-module isomorphism « : P(C, V) — @f;ol Aey,)@RV . Fixingt € {0,...,p—1} let
w12 P(C,V) = Aey, 1) @r V' be the composition of wik where wy : f:_& Aeyy iy @RV —

Aey (1) ®@r V is the natural projection.
Lemma 2.3.11. For any m € P(C) andv € V:
(i) if = is an arrow then d, p(c,v)(m ® v) = dy p(cy(m) ® v; and

1) 17 1§ an nieger wi SUSpPp— en
i) if t i int th0<t<p—1th

wt(dp(c)(m» X v (z'fO <t<p-— 1)
ei(dpcyy(m®@v)) = ¢ Yo(dpcy(m)) @ v+ ¢p(dpcy(m)) @ T~ o (ift =0)
Y-1(dpc)(m)) @ Tv+ Yp-1(dpcy(m)) @ v (ift=p—1)

Proof. Let i, : xP(C,V) — @yP(C,V) and 7, : @yP(C,V) — xzP(C, V) respectively
denote the natural R-module inclusions and projections. Hence d, pc,v) (m ®v) =
v (73 (dpcy(m) ® v)). If it exists, let 2" be the arrow distinct from x but with the same
head. If no such arrow exists let 2/ = 0. This gives dp(c)(m) = m* + m~ for some
m* € xP(C) and m~ € 2/ P(C). This means m*™ ®@v € P(C,V) and m~ ®v € 2’ P(C,V)

and so d, p(c,vy(m @ v) = dy pc)(m) @ v since
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t (T2 (dp(c)(m) @ v)) = G (m,(m* +m7)®v)) =mT ®@v
=/ (7 (mT))@v+ L (r(m7))@v="L(r(mT+m7))@v
Writing dp(c)(m) = ZjeZ §;bj where §; € A gives §; = 0 whenever j < —1 or j > p. Note
that for t € {0,...,p— 1} wehave t + ps < -l iff s< —1lor (s=—-1and t <p—1), and
t+ps>piff s>1or (s=1andt>0). Recall x sends a pure tensor >, h; ® v (where
hj € Aey(j)) to Zf;ol > sez PitpsT® ® T~ 5v. Altogether the above gives

et(dpc,yy(m ®@v)) = @i(dpc)(m) @ v) = @i(3; b; @ v)
= w3 Yeez Etapshinps TP @T0) =& p @ T+ & @0+ &yp @ T 1w
@ (if0<t<p-—1)
=4 Hev+&ET (if t = 0)
fa@Tv+&a@u  (ft=p—1)

which completes the proof. ]

Definition 2.3.12. (NOTATION: b, 5, 7ix, 7o,ix) Recall that for each A € Q and each
integer i with 0 <i <p—1welet b; \ = b;®vy. As in definition any q € P(C,V) can
be written uniquely as ¢ = }_; ; ¢;\b;  where (for each A and 7) gix = nix+>_oepji) T0,i0 0

nix € S and {7, \ | o0 € P[i]} is a finite support subset of R. This means ¢:(q) = >, g¢.x-

(NoTaTION: [ql, [q], (9,4 [dusr @loss @uss m?) As above we now define [q] =

doiaMiabixand g =37, ZJEP[Z'] To,i,A00; \, and for any arrow x let [q, , = [q,,+[q,,
and ¢|,, = ql,; + q],, where

( da+iaa®@uy (if0<t<p—1and lt_+117“t+1 =a~ld,)
Alor =9 Yamoaa® Toy (ift=p—1andl;'r,=a 'd,)

0 (otherwise)
YoaN—1.08 @ vy (if0<t<p-—1and lt_lrt:d;lﬁ)
(0,0 =9 Symp-128®@T vy (if t = 0 and Iy 'ro = d3 ' B)
0 (otherwise)
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and

oA 2 oePlait] Totti a0k @uy (if0<t<p—1and l;rllrtﬂ = k7))

.= 22 20eP(n0] To.0A0K @ Toy (ift=p—1and l;lrp = R_ldl(n))
0 (otherwise)

DA 2oePlat—1) To.t—10C @ U ifo<t<p-1landl;'r = dIZCl)C)

920 =9 EaEoeppp 1 Top120COT oy (if t=0and [ lro = dy)C)
0 (otherwise)

(NoTATION: ) In what follows we use () to refer to these definitions.
(NoTATION: m?) For ¢ and ) as abover define the element m* = Z?:_ol qizb; of P(C).

(NOTATION: ¢,) For any vertex v recall the sum 3,4, Aa is direct and so
(Bacaws)Aa) ®r V' = Dieaws)Aa ®r V. For any arrow y with tail v let ¢, :
(Bocaw—s)Aa) ®r V = Aa@r V' be the natural A-module projection.

Lemma 2.3.13. For any arrow x, any integer t with 0 < t < p — 1, and any elements
qQ = Zm i+ ZaeP[i] Toin0 and ¢ = Zi,)\ 77§,A + ZUGP[i] r;r,i,)\a from P(C,V): the

following statements hold.
(1) i(da,pevy(Ta])) = T4y + dlay and r(de pe,v)(14]) = a0 + alay-

(i) If v € P[x,t] and q € v 1d.q then
Dty (Pt (e, pcy) (@) = Do My @ va € yrad(A) @ V
(iii) If lt__&erl =~71d, then b1 ([0,4) =0, and if also t <p —1 then
D7) (@] 24) = 2o Me+10Y @ va € yrad(A) ®p V
(iv) If I 'ry = d 'y then ¢y (dl ) = 0 and if also 0 <t then

G11)([04,0) = 2o m—127 ® vx € yrad(A) ®p V
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(v) If lg'ro = d 'y then dg)([a,0) — Yo o147 @ T~ 1oy € Arad(A) @p V.

(Vi) If I 'y = vy then gy (dl, 1) — 2oamoay @ Twy € yrad(A) @p V.

Proof. Since C' is periodic we have [, Ly = Ly r,. Using this together with the formulae
in () and (%), we have; ), (m)‘mj@T—lv;\ = [q%o, o LmAx7p®T_1vA = qu,()v (qz,t =
> [m’\m@m and ), Lm’\m@m = Lqm for0<t<p-—1,>, m)‘Jm(Xw)\ = qu’t and
o mﬂx’t@v;\ =ql, for0<t<p-1,3, m)\Jm,O®TU)‘ =ql,,and >, m/\hp@Tv)\ —
q| 2.p* Writing g; » = 0 for all integers ¢ with ¢ < 0 or ¢ > p gives mt = ZieZ gi\b;. Hence

m*| ep =088 Gpy1x =0 and [m* 20 =088 gpy1) = 0. Similarly m*| o= |m* 20 =0

(i) and (ii) By lemma [2.3.11] the above, and lemma (i) we have

wol(dy pievy([a])) = Dox vo(dy,pcy([m])) @ va + ¥p(dy pey ([m?]) ® T oy
=2l (m/\x,o + m)\-|x70) ® vy + ([m? zp T m?| $,p) ® T oy

= E)\ [m)\m,p ® T_lu)\ + Z)\ m)\"| z,0 Q oy = [q%o + q—|9070

Similarly we can prove u(dy pcy)([a])) = [duy + alag for 0 < t < p— 1 and
ei(de,pcvy(la))) = la,¢ + ¢l for 0 <t < p—1. This gives (i). The proof of (ii) is
similar to the proof of corollary W (i), using that ¢ (0e(3 05 1 Doepli] Toin 100 2)) €
~yrad(A) ®g V.

iii), (iv), (v) and (vi) For (iii) we have ¢, = 0 unless I, 'r; = d_ 1 ¢ in which case
@t t 1(¢)

213 + X pep(ai—1) Tot-120) @ vy (if £ #0)

[qact =
> a(mp—1a + dep(z,t_n Top—1,10)C @ T 1wy (if t = 0)

which for any ¢ lies in A ®r V. As l;lrtl;rllrtﬂ = dl_(cl)gfy*Idm is a word in this case
f(¢) # f(v) which gives ¢¢y([g,,) = 0. Since t < p —1 we have q],, = >\ (m+127 +
2 oep(at+1) Tot,207) @ vy and so using corollary[1.2.14] (iii) as we did in the proof of lemma
W (iii) completes the proof of (iii). The proof of (iv) is similar, and omitted. If Ir, =
d 'y then Iy 'ro = di My and 50 65(1)([0,4,0) = XA (-1 A+ X geplpot1) Top—120)7 ©T 10y

which gives (v), and the proof of (vi) is similar. O
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Lemma 2.3.14. Let i € {0,....,p — 1}, p € Q and d = d;(C,05). If ¢ € C(i,0)nqd
for an integer n with 1 < n < p and any elements q = ZMUH + ZUGP [i] To,i\O and

q =2\t >_oePi] Tyix0 from P(C,V): the following statements hold.
) Ifi+n<p,d=1)or(i—n+1>0,d=—1) then N qmn-1), = nngdn’#.
() If (+n>p,d=1)or (i—n+1<0,d=—1), then n; qn—p—1)u = n£+d(n_p)7u.
(iii) If i —n+1=0 and d = —1 then {no | A € Q} = {0} iff {n,_, , | A € @} = {0}.

(iv) Ifi+n=p and d=1 then {ng , | A € Q} = {0} iff {np—1x | A € @} = {0}.

Proof. Note that in general we have i +n >0, i1 +n—p <p—1,p—1 > i—n, and
i—n+p > 0. There is some v such that C(i,8), =y dy(,) or C(i,8), = dl_(vl)’y and in

either case we let x = 1(7).

(i) Let C(i,8), = v 'dy so v € Plz,i +d(n —1)]. By lemma (i) and (ii)
(Where t =1+ (n )) we have ¢y y)(%+d(n 1)(dx P(C,V) ( ))) = ¢f ([q/q}ﬂ;-}-d(n—l)) +

b1(1)(¢'] 1 ira(n—1)) A () (Piran—1)(de pCv) (1)) = 27 Mitrd(n—1) A YR VA € yrad(A) @R
V' respectively.

If i +n <pandd=1 then lHnan = v71d, and by lemma (i) and (iii) (where
t =1i+n— 1) we have 05 (Yisn—1(dz,p(cv) (@) = 25 Miyn Y @ va € yrad(A) @ V. If
0<i—n+1andd=—1then ;7 ni1 = d;'y and by lemma [2.3.13) (i) and (iv)
(where t = i—n+1) we have 05, (Yi—n+1(dz,p(c,v) (@) = 20—, \Y® VA € yrad(A) @R V.

In either case (of d) the above shows >, (1}, g x —Mi+d(n—1),2) Y@V lies in yrad(A) @RV,
and since V is a free R-module we have yrad(A) @z V =~ ~rad(A)?) and so Mivdny —
Ni+d(n—1),27 € yrad(A) for each A € €.

As in the proof of corollary (i) this shows 7! v = Titd(n—1),x as otherwise we
contradict lemma (ii). The proof in case C(i,§), = d; v is similar and omitted.
Here, when we apply lemma (ii) we exchange ¢ and ¢’. When we apply lemma
(i) and (ii) we set ¢ = i + dn, and when we apply lemma [2.3.13] (iii) and (iv) we set

t =1 —n and t = ¢ + n respectively.
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(ii) Note here that p—1>i+n—p—12>0and C(i,6),—p = C(4,6), when d = 1, since
C is periodic of period p. Similarly 0 <i—n+p+1<p—1and C(i,0)p4p = ”yfldl(v)
when d = —1. The proof from here is similar to the proof of (i), and we proceed as above
in the following way. In case C(i,4), = v_ldl(,y) we let t =i+ d(n —p—1) when we apply
lemma (i) and (ii), and we let t =i+n—p—1and t =i —n+p+ 1 when applying
lemma (iii) (for d = —1) and (iv) (for d = 1) respectively. In case C(i,6), = dlf(i)y
we let t =i+ d(n — p) when we apply lemma (i) and (ii). When we apply lemma
(ii) we exchange ¢ and ¢’. We let t =i —n + p and t = i + n — p when applying
lemma [2.3.13] (iii) (for d = —1) and (iv) (for d = 1) respectively.

(iii) and (iv) For (iii) and (iv) note that C'(i,4), = (I,

17“p)d since C is periodic of period
p. Suppose C(4,0), = d;'v and so l;lrp = v~ 1d, which gives D) (@) 2 p1) = 2oA 0T ®
Tvy € yrad(A) ®g V' by lemma (vi) and ¢g)([g,, ;) = 0 by lemma (iii)
(where t = p—1). Here v € P[z,p— 1] so by lemma [2.3.13| (i) and (ii) (where ¢ and ¢ are
exchanged in (ii)) we have ¢t (¢p-1(de.p(cv)(2))) = G57)([04,p-1) + D2(1)(d) ;. p—1) and
G1(y) (Pp—1(de,pc,v)(@)) = 2oa1,_1 37 ® va € yrad(A) ®p V respectively. Altogether we
have 37\ noay®@ Ty — Yoy 1,1 37 ®@vayrad(A) @ V and as above the result follows from
lemma (ii) and the fact that 7" is an automorphism of V. As for the proof of parts
(i) and (ii), the proof for (iii) in case C(i,0),, = v~ 'd, is similar, and so is the proof of

part (iv). Hence they are omitted. O
Lemma 2.3.15. Ifi is an integer with 0 <i <p—1 and d = d;(C,¢) then
(i) by € C(i,0)"(P(C,V)), and

(ii) ¢ € C(i,6)~(P(C,V)) implies n; x = 0 for each X € €.

Proof. (i) If C(i,8)n = v 'dy,) we have bitdm—1) € v~ dyy) byt gn by corollary in
b.

the case of Z-words, and so Vb; qm-1) = di(y),P(C)(biyan) Which shows vb; | 4,—1)x =

diy),P(C,V) (itdn,)- This gives b, 4 g, 1y®Vx = di(y),P(C) (Bitdn) @Vr a0d 80 Yb; 4 g1y \ =

Ay, pc,v)Bitdn,n) by lemma [2.3.110 This gives b\ gm-1)x € V' di(y)bitanr- Similarly if

C(i,0)n = dl_(71)7 then b; 4 4(,—1) € dl_(iﬂbi L an by corollary and as above this shows
~1

bitam—1)\ € d1(,y)'sz'+dn,/\- Hence b, g(n—1)x € C(i,6)nbi gn, for any natural number n.
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As C(i,0) is an N-word, by the above there is a sequence b; , € C(,0)1b; 145> bitar €
C(i,0)2b; 4 94, and so on, which shows b; y € C(i,6)"(P(C)) by definition.

(ii) Since ¢ € C(i,0)"(P(C,V)) there is some r € N for which ¢ € C(3,0)<,0.
So we have elements ¢; = Zg;é Yoamsn; + Zaep(i) Tos ;0 05 € P(C,V) where
g = qo and ¢; € C(i,0)qj+1 whenever j < r — 1. Since C is periodic of period
p the homotopy words D; = C(i,0)p—it1...C(i,6),C(3,6)1...C(i,0)p—; and D_q1 =
C(i,0)i42...C(1,0)pC(i,0)1...C(i,0)i+1 are cyclic. By definition ¢ € E4D}0 where
Ei=C(i,0)1...C(t,0)p—; and E_1 = C(i,0)1...C(3,0)i41.

Suppose d = 1. Fix a natural number h < j. As C is periodic of period p we have
Gphip—i-1 € C(4,0)p—iGphip—i and so {nMorphip—i | A € QF = {0} iff {np—1xphipit1 |
A € Q} = {0} by lemma (iv). For each integer n with 0 < n < p — i we have
In—1+ph € C(1,0)nGnipn again as C is periodic, and so by lemma (i) this gives
Nigtn—1 An—1+ph = Ni+nAn+ph for each A € €. Assuming h > 0, for each integer n with
p>mn>p—iwehave ¢, 14p5n-1) € C(i,0)ndnipn—1) and so by lemma (ii) this
8IVeS i tn—p—1 An+p(h—1)—1 = Mitn—pAin+p(h—1) for each A € . Note gpr4p—; = 0 which
gives Y\ MsAprip—ibs x € rad(Ae,, () ®r V) and 50 s\ prip—i € m for each s and each
A. Hence we have 0 = 1 x pr4p—i = Mo pr—i for each A € Q by applying the above to
h = r. Assuming r > 0, letting h = r — 1 again gives 7o xpr—i = M\ p(r—1) = Mo\ p(r—1)—i

for each A € Q. Iterating this argument yields 0 = 7;x, = M Ap—it1 = Norp—i and

NoAp—i = Mp—1Ap—i—1 = -+ = Nix0 = Nix for each A € Q. Hence {n; | A € Q} = {0} as
required. The case for d = —1 is similar, uses lemma [2.3.14] (iii), and is omitted. t

The results above will be used repeatedly in what follows.
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2.3.2 Refining Complexes.

Recall that for elements in P(C') we use the notation m = >, (nib;+3_,cpy; T'o,i0b;) where
i €85, re; € R, ni = 153 = 0 for all but finitely many ¢ € I, and r,; = 0 for all but

finitely many o. This statement and proof of the following is essentially [21, Lemma 8.1].

Corollary 2.3.16. For A€W, 5 and a homotopy I-word C' let (I, A, +) (resp. (I, A,—))
be the set of i € I such that ve(i) = v and C(i,8) < A (resp. C(i,0) < A). Then

AE(P(C)) + erad(P(C)) = Sic 1.4 1) Rb; + erad(P(C))

Proof. We will use corollary (ii) without reference. By corollary we have
b; € C(i,0)"(P(C)) for each i € I. So if Y, n;b; lies in the span of all b; with i € (1, A, +)
then >, m;b; € AT(P(C)). If we also have n; = 0 for C(i,0) = A then ), n;b; € A~ (P(C))
by proposition This gives the containment A*(P(C)) 2 2ie(r,a,+) Rb;. Given
m € AT (P(C)) we can write m = >, m;b; +m’ where n; € S, m’ € e,rad(P(C)). Fori € I
such that ve (i) # v we have n; = 0 since Y, n;b; € e, P(C). If m € AT(P(C)) then given
any ¢ € [ with C(i,6) > A we have m € C(i,6)” (P(C)) which gives n; = 0 by corollary
Similarly m € A~ (P(C)) implies n; = 0 given ¢ € I with C(i,0) > A. This shows
A(P(C)) C 2ic(1,A+) 1t + eyrad(P(C)) as required. O

Recall that for elements in P(C, V) (where V is an R[T, T~ ']-module which is free over
R, say with R-basis ) we use the notation ¢ = >, \(ix + 2 gep(i) Toi0)b; » Where
nix €85, reix € R, nix =1y, = 0 for all but finitely many (i,A\) € {0,...,p — 1} x Q,

and for each pair (i, A) we have 7, ; » = 0 for all but finitely many o.

Corollary 2.3.17. For A € W, 5 and any periodic Z-word C of period p let (p, A, +)
(resp. (p, A, —)) be the set of integers i such that 0 <i<p—1, vo(i) =v and C(i,0) < A
(resp. C(i,0) < A). Then

AF(P(C,V)) + eurad(P(C, V) = 32y jer(atp) Rbia + eorad(P(C, V)
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Proof. We again use corollary (ii) without reference, as in the proof of corollary
We have b; , € C(i,0)"(P(C,V)) for each X by lemma (). So if 37 miab; x
lies in the span of all b; with i € (p, A, +) then >, m;\b; , € AT (P(C,V)). If we also have
nix = 0 for C(i,0) = A then ), m;b; € A~ (P(C,V)) by proposition This gives the
containment A*(P(C,V)) D Donie(pAt) B x-

Given m € AE(P(C,V)) we can write m = Y, ;miab; \ +m/ where 5y € S, m' €
eyrad(P(C,V)). For i such that v (i) # v we have n; y = 0 since ) _y; miab; ) € e, P(C, V).
If m € AT(P(C,V)) then given any i with C(i,d) > A we have m € C(i,8)” (P(C)) which
gives 7; » = 0 by lemma (ii). Similarly m € A=(P(C,V)) implies n; » = 0 given
i with C(i,8) > A. This shows AT(P(C,V)) C 2onic(pAat) Bbix + eorad(P(C,V)) as

required. O

Definition 2.3.18. Recall from section there is a quotient functor : C(A-Proj) —
K(A-Proj) sending any complex to itself and any morphism f : M — N of complexes to

the homotopy equivalence class [f].

(NoTtATION: =) We let = denote the restriction of ¢ to the full subcategory Cpmin(A-Proj)

of C(A-Proj), considered as a functor into Cpin(A-Proj).

For the next result we require an ordering on the functors Gg p,. To do so we recall
the total order given on homotopy words by definition For each vertex v order the
pairs of homotopy words in W, ; x W,, _; by setting (B, D) < (B’, D) whenever B < B’
or B=DB"and D < D’. See [565] p.26, second Lemma] for the case of words.

Lemma 2.3.19. Suppose V is a free R-module, n € Z, B and D are homotopy words
such that C = B™'D is a homotopy word. Then the following statements hold.

(i) The map @y : k @V — Fp pn(P) given by (r + m) @ v — Tbap , ®V+ Fg,D,n(P)

is a k-linear embedding where P = Z(Sp,pn(V)).
(ii) If C isn’t periodic then ® gives a natural transformation k@ — — FB,D,n =Z5B,Dn-

(iii) If C is periodic then ® induces a natural transformation k[T, T~ QRir,r-1] — —

FppnZESB.Dpn-



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 175

Proof. (i) Let i = ap,p. As V is a free R-module with R-basis say {vy | A € Q} we have
a k-basis of k @p V given by {(1 + m) ® vy | A € Q}. Hence elements of k @ V have
the form ) ,(sy +m) ® vy and such an element is 0 iff sy € m for each A, which implies
sxb; ® vy €rad(P(C)) @V C F];D’n(P). Hence @y is well defined and it is clear that ®y

is k-linear.

Since V is free given Y, sxb; ® v\ € Fjg p,,,(P) we must have s\b; € F ,,, (P) for each

A. By corollaries [2.3.16 and [2.3.17] there must be elements r; y € R where j runs through

the union of (i,1,+) N (i,—1,—) and (4,1,—) N (4, —1,+) and where sxb; — > . 7j\b; €
rad(P(C)). Since i ¢ (i,—1,—) U (4,1,—) if sy ¢ m then s) is a unit in which case

Aeyo iy C rad(AeUC(i)) which is a contradiction. Thus ®y is an embedding.

(ii) In this case k®pg — and F p, ESp p, define functors R-Proj — k-Mod. Given f
is a morphism of free R-modules, say from V with R-basis {vy | A € Q} to V'’ with R-basis
{vh, | N € '}, recall (from section [2.2.3) that Sp pn(f)(b;®vx) = 3\ axab; ® v}, where
for each A one has 1(vy) = Y, ax vy for some ay y € R. Note k @z V and k @r V'

respectively have k-bases {1 ® vy | A € Q} and {1®@ v}, | N € @'}

By the above and by definition; ®y (1 ® vy) = b; ® vy for any A, ®y/(1 ® vy)
by ® vy for any X, (k @r f)(1 ® va) = 1@ l(vy) and Fppw([S,0a(f)])(v) =
Se.pn(f)(v) +F_,’D,’n,(5'37D7n(V)) for any v € V. Altogether we have Y\, ax \b; ® v}, +
Fpi i (SB,0a(V)) = @y (1@ 32y, axzox) and so (Fpr pr o (Sp,pa(f)) o @v)(1@wy) =

(Pyr ok ®pr f)((1 ®vy) which shows ® is a natural transformation.

(iii) Any element of k @ R[T, T~ '] is of the form (1 + m) ® z(T) since any sum x of

non-zero pure tensors satisfies

z= 2L AAm) @ f(T) =2 1 4+m) @A\ fo(T) = (L+m) @ (X0, A @ (1)) -

The algebra map g : k x R[T,T'] — k[T,T~'] defined by g(A + m,> 5 T?) =
Siez(Ae + m)T" is balanced over R, hence g induces a map of abelian groups h :
k®gr R[T, T~'] — k[T, T~'] where h(A4+m) @ > cp e T?) = 3y cr(Apte + m)T". Clearly

h is a surjective homomorphism of right R[T, T~!]-modules.
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Ifh((14m) @,y e T") = 0 then py € m for each t which means (1+m)®Y", ., T =
doier(pe +m) ® T' = 0 and so h is an isomorphism. Altogether we have the natural

isomorphisms

KT, T~ @pirr-1) — ~ (k@ RIT, T™Y)) @grr-1) —
~ (k®@r =)o (R[T, T @pirr-—1]—) ~k®p —

as functors R[T,T !]-Modpgpro; — k[I,T7']-Mod. In the proof of part (ii) we
showed that Fg/ p o ([SBpn(f)])®v = ®vi(k ®g f) whenever f : V. — V' is a
morphism of free R-modules. Again, in section we saw that when f : V — V' is
also a morphism of R[T, T ]-modules, Fp/ p/ . ([SB.pn(f)]) is a k[T, T~ !]-linear map.
By the above k[T,T7!] Qprr-1 — ~ k ®r — and FppnESEp, define functors
R[T, T7Y-Modp.proj — k[T, T~']-Mod, and so it suffices to show @y is k[T, T~!]-linear.
If V has an R-basis {vy | A € Q}, writing Ty = > auavy for a,n € R with finite
support over 4 gives T((r + m)®wvy) = 3_, aua(r+m) ® v, which is sent to 3 aunb; ® vy
under ®y. Since we are tensoring over R one has 3 a,nb; ® v, =b; ® Y- aua vy, and so

Oy (T(r+m)®@uvy) =TPy((r + m)®wvy) as required. O

We can now evaluate our refined functors on string complexes.

Lemma 2.3.20. Let n,n’ € Z and for some homotopy words B and D let C = B~'D be
an homotopy I-word which is not a periodic homotopy Z-word. If B and D' are homotopy
words such that C' = B'~'D’ is a homotopy word, then

(i) for any i € I we have ac(; 1) c(i,—1) =@ and

Fg(i’l),c(i,fl)m(P(C) [MC(i) - n]) = Fc_(i,l)yc(i,fl)’n(P(C) [uc(i) - n]) + Rbi?

(i) if C" = C and n —n' = pc(ap,p) — pelap,pr) there is a natural isomorphism

k®r— =~ Fp prnwESBDn, and

(iii) if (B, D, n) is not equivalent to (B', D', n') then Fp' pr n (P(C)[uc(ap,p) —n]) = 0.
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Proof. (i) ac(i1),c(,—1) = @ is clear by definition. Let P = P(C)[uc(i) — nl], v = vo(i)
and I(C(i,0),+) = (i,0,£). By corollary b, € F’g(i 1.0 71)n(P) which shows

F (P).

(i.1).C(i—1) ,(P) contains F(;(i 1),C6,—1) (P) + Rb;. Now let m € F

Fg(i,l),C'(i,—l),n

By assumption and by corollary we may write m =) ;Mjb; +mg for n; € S and
some mg € eyrad(P) where n; = 0 whenever C(j,1) > C(i,1), or C(j,—1) > C(i,—1).
Since m € P" = P*c()(C) we also have n; = 0 for any j € I with uc(j) # pc(i).

So >_;m;b; lies in 3, Rb, where t runs through (¢,1,+) N (i, —1,+). If we let (¢,6,=)
be the set of j € I with C(j,6) = C(i,6) then (i,1,+) N (i, —1,+) is the union of the sets
(i,1,+) N (i,—1,-), (i,1,-) N (i,—1,4) and (¢,1,=) N (i, —1,=). So by corollary [2.3.16|
> n;b; lies in FC_(i,l),C(i,fl),n(P) + >, Rb; where ¢ runs through all j € (i,1,=)N(i, —1,=)
with pc(j) = pe(i).

Suppose there is an integer ¢ which satisfies 0 <t <p—1, C(¢t,1) = C(i,1), C(t,—1) =
C(i,—1) and pc(t) = pc(i). If Cs; = (C<t)™! and (C<;)™t = Cs¢ then C[t] = C7LJi]
which means C' is a shift of its inverse, contradicting lemma, Hence C<; = Cs; and

C<; = C<¢ which shows C' = C[t —i].

Applying lemma (iii) twice yields puc(t — i) = 0. This shows that ¢ # ¢ and C
is a periodic homotopy Z-word with period t — ¢, which contradicts that p was minimal,
since t — i < p. Altogether we have shown that }_;7;b; lies in F&(i,l),C(i,—l),n(P) + Rb;,
as required.

(ii) By part (i) we have i = ag p and so B = C(i,—1) and D = C(i, 1), and also any
element of Sp p (V) may be written as the coset of a sum of pure tensors > ;| rib; ®
v + FE’D’”(E(SB,D,n(V))) for some vy,...,v, € V. Hence the k-linear embedding @y
from lemma (i) is surjective, and so the natural transformation ® defines in lemma

2.3.19| (ii) is a natural isomorphism.

By assumption (B, D,n) ~ (B’,D’,n/). This means Fg pr v ~ Fp pn by corollary
and corollary [2.2.24f (i). By the above this gives Fp/ prn 2SBpn FppnZ=SBpn =~

k ®r —. Note this natural isomorphism is defined between functors R-Proj — k-Mod.

(iii) It is enough to show Fpr pr . (P(C)uc(ap,p) —n]) = 0.
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Exchanging B’ and D’ if necessary we can assume s(B’) = 1 and s(D’) = —1. Let
P = P(C)[uc(ap,p) — n] and suppose Fp/ pr v (P) # 0. It suffices to show this implies
(B, D,n) is equivalent to (B’, D',n’). By corollary the subspaces G§/7D/7n, (P) are
spanned by sets of elements of the form b; together with rad(P). Hence as FB@ ' n and
G B’,p’ o are naturally isomorphic there must be some ¢ € I for which b, lies in G’E,’ D,’n,(P)
but outside ég’,D’,n’(P) as otherwise G/ pr v (P) = 0. By part (i) we know that b; lies

in C_}g (P) but outside G (P). Note va(i) = h(D') by the above.

(4,1),C(z,—1),n (4,1),C(i,—1),n

If B # C(i,1) then B’ < C(i,1) or B > C(i,1) by lemma [2.1.27, By proposition
it B/ < C(i,1) then Gi; ) c_1yn(P) 2 Ghi pr(P) and if B' > C(i,1) then
Gy cli-1yn
of b;, so we must have that B’ = C(i,1). Since (B, D’) # (C(i,1),C(i,—1)) we must have

(P) € Gz pr,s(P). Neither of these inclusions are possible by the existence

D # C(i,—1) and so similarly to the above we have G’E(i,l)’c(iﬁl),n(P) D) C?E,’D,W,(P) if
D’ < C(i,—1) and the reverse inclusion otherwise. Altogether we have a contradiction
assuming (B’,D’) # (C(i,1),C(i,—1)) hence B''D' = C and i = ap/ pby part (i).
Furthermore considering b; lies in both P#¢(@)(C) and P™ we must have that uc(i) =

n' 4+ pc(ap,p) —n and so (B, D, n) is equivalent to (B’, D',n’) as required.
To evaluate refined functors on complexes of the form P(C,V) we will use a similar
argument.

Lemma 2.3.21. Let n,n’ € Z and for some cyclic word E = lflrl...lljlrp let B =
(E71)*® and D = E™® such that C = B~'D is a periodic Z-word of period p. Fiz some
words B' and D' such that C' = B'~'D’ is a word. Then,

(i) for anyi € {0,...,p — 1} we have ac(),c@,—1) =1 and

Fg(i71)7c(i7_1),n(P(Cv V) [Nc(i) - n]) = F(,_*(i,l),c(i,_l)m(P(Cv V)[:“C(i) - n]) + Z)\ Rbi,)\a

(ii) if C" = C[m] and n—n' = pc(m) for some m € Z then there is a natural isomorphism

KT, T ®@pirr—1) — = FpowESB,0n, and

(iii) if (B, D,n) is not equivalent to (B', D',n’) then Fp' p v (P(C,V)[—n]) = 0.
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Proof. (i) Let P = P(C,V)[uc(i) —n], and I(C(i,6),+,p) = (i,0,£) and v = vc(i). The
equality ac(;1),c(,—1) = % is clear by definition. By corollary Fg(i,l),C(i,—l),n<P)
contains F&Ll),c(i,_l)’n(P) + >\ Rb; . Now suppose m € Fg(m)’c(i’_l)’n(P). By
assumption we may write m = 37\ >0 njab;  + mo for scalars n;, € S and some
mo € eyrad(P). By corollary 2.3.17]if j € I satisfies (uc(j) # pe(i), or C(4,1) > C(i, 1),
or C(j,—1) > C(i,—1)) then n;, = 0 for each A € 2. Note also that for any j with
0<j<p-1landanyde {£1}, C(j,9) <C(,9) and C(j,—6) < C(i, —6) together imply
by €C(4,0)T(P(C,V))NC(j,—0)~ (P(C,V)) by corollary and proposition
If we let (4,9, =) be the set of 7 with C(j,d) = C(i,6) then (i,1,+)N (¢, —1,+) is the union

of the sets (i,1,+) N (i, —1,—), (i, 1,—) N (¢,—1,4) and (4,1,=) N (3, —1,=).

Altogether this shows m € 3, ; Rb; 5 + Fa(i,l),C(i,—l),n(P(C) [ (i) — n]) where j runs
through the elements of (i,1,=) N (i,—1,=) for which puc(j) = pe(i). It is enough to
suppose ¢t with 0 <t < p — 1 satisfies C(¢,1) = C(i, 1), C(t,—1) = C(i,—1), and pc(t) =
pc(i); and show ¢t = i. If Cs; = (C<) ™! and (C<;)~! = Cs¢ then C[t] = C~[i] which
means C' is a shift of its inverse, contradicting [21, Lemma 2.1]. Hence Cs; = Cs; and
C<; = C<; which shows C = C[t —i]. By lemma (iii) (applied twice) we have
pc(t —1) = 0. So if t # i then we contradict that C' is periodic of period p > t — i this is

impossible.

(ii) As in the proof of part (ii) of lemma by part (i) the k-linear embedding @y
from lemma (i) is surjective. So the natural transformation ® defined in lemma
(iii) is a natural isomorphism. Again the result follows by the above, corollary
and corollary (i). Note this natural isomorphism is defined between functors
R[T,T'-Modg proj — k[T, T~1']-Mod.

(iii) Let P = P(C,V)[—n]. Exchanging B’ and D’ if necessary we can assume s(B’) = 1
and s(D') = —1. Assuming Fp/ p/(P) # 0 it suffices to show this implies (B, D,n) is
equivalent to (B’,D’,n'). By corollary the R-modules C_?ﬁ,’ pr.(P) are generated
by elements of the form bi,)\ together with e,rad(P). Hence as FB/’D/W and C_}B/’D/,n/ are
naturally isomorphic there must be some integer ¢ with 0 < ¢ < p—1 and A € Q for which

b; » lies in G, 1 ./ (P) but not Gy, 1, ., (P) as otherwise Gpr,pr i (P) = 0.
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By part (i) we know that b, lies in C_?JCC(Z. 1.0 _1)n(P[,uc(i)]) but not
C_}E(i’l)c(iﬁl)’n(P[uc(z’)]). Hence we must have that n = n’. Note vc(i) = h(D') by
the above. We suppose that (B', D) # (C(i,1),C(i,—1)) toward finding a contradiction,

and proceed with case analysis.

If B" # C(i,1) then B’ < C(i,1) or B > C(i,1) by lemma|2.1.27| By proposition 2.1.30
if B" < C(i,1) then GE(LI)’C(L?U,n(P[,uC(i)]) contains Gg,7D,’n,(P) and if B’ > C(i,1)
then Gé(i,l),C(i,fl),n(P[Mc(i)]) is contained in C?E,’D,’n, (P). Since either of these inclusions

is impossible by the existence of b; , we must have that B" = C(i, 1).

Since (B',D') # (C(i,1),C(i,—1)) we must have D # C(i,—1) and so similarly to the
above we have that C_T‘E,(M)’C(Z.’_l),n(P[uc(i)]) contains G§,7D,7n,(P) if D' < C(i,—1) and
the reverse inclusion otherwise. Altogether we have a contradiction and so (B',D’) =
(C(i,1),C(i,—1)) and hence B'~'D’ = CJi]. This gives e,P"(C,V)[uc(i) — n] =
ey P (C,V)[—n] so we must have that pc(i) = n + pc(i) —n = n' — n which shows
(B, D,n) is equivalent to (B, D’,n’). In the case s(B’) = —1 and s(D’) = 1 we similarly
find B'~'D’ = C~![i] and puc(—i) =n' —n. O
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2.4 Compactness and Covering.

Assumption: In section we fix an object M*® in Kpin(A-proj) with underlying A-

module M, and so M? is finitely generated and im(d’,) C rad(M**) for all 4.

Crawley-Boevey [21] considered modules over string algebras such as k[z,y]/(xzy). The
modules this author classifies must satisfy various finiteness conditions. He proves modules
under the said conditions must satisfy so-called covering properties of the refined functors

Fy 4 where w and w'" are words (not homotopy words).

For an example of this property see lemma [1.4.49] These properties were then used to
classify such modules via the functorial filtration method (see the proof of [2I, Theorem
1.3] and [21}, Lemma 10.6]). The results in section [2.4] were found by adapting results from
[21] §10], and appear to be new. The main result of this section is the following adaptation

of lemma [1.4.49

Lemma 2.4.1. (COVERING PROPERTIES) Fiz a vertexv, an integerr and some § € {£1}.

Suppose U is an R-submodule of e, M" for which e,rad(M"™) C U.

(i) (ONE-SIDED FUNCTORS) If H is a linear variety in e, M" and m € H\U, then there

is a homotopy word C € W, s such that H N (U +m) meets C* (M) but not C~(M).

(ii) (REFINED FUNCTORS) If m € e,M" \ U then there are words B € W, 5 and D €
W, _s such that U +m meets GE,D’T(M) but not Gy p, .(M).

2.4.1 Linear Compactness.

Assumption: In what follows the topology we refer to will be the m-adic topology. Recall

a base of open sets for an R-module N with this topology is
{m+m"U | U is an R-submodule of N, m € N and n € N}

where m°U = U. Any R-module homomorphism is continuous in the m-adic

topology.
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We now recall and use the notion of linear compactness following Zelinsky [66].

Definition 2.4.2. (NOTATION: C.) Let L be a subset of an R-module N. We write
L C. N iff L is closed.

[66, p.80] (LINEAR VARIETIES AND COMPACTNESS) We say L is a linear variety if
L =U+m C. N for some R-submodule U of N. We say N is linearly compact if any
collection of linear varieties in N with the finite intersection property must have a non-void

intersection.

Example 2.4.3. For any integer n > 0 the R-module R/m™ has a composition series
0Cm" R/m"C-.- CmR/m" C R/m"

Note each quotient is simple as m is the maximal ideal of R. Hence R/m™ is an artinian
R-module (for example see [2, 11.1, Proposition|. In particular R/m™ has the minimum
condition on closed submodules, and so it is linearly compact by [66), p.81, Proposition 5].
Since A is a complete gentle algebra R is m-adically complete, and so R (as a module over
itself) is isomorphic to the inverse limit of a system of linearly compact R-modules. By

[66, p.81, Proposition 4] this means R is a linearly compact R-module.

The use of example in the proof of lemma below should motivate the
assumption (throughout chapter 2) that R is m-adically complete.
Lemma 2.4.4. Leti € Z, v be a vertex, then

(i) the module e, M" is linearly compact for any vertez v,

(i) if U Ce epM* with e,m™ M C U for some n > 0 then U +m C. e,M*, and

(iii) {m} =0+ m C. e, M? for any m € e, M".
Proof. (i) By exampleR is linearly compact as an R-module. By [66, p.6, Proposition

1] this means any finitely generated free R-module is linearly compact, so by [66, p. 81,

Proposition 2| any finitely generated R-module is linearly compact.
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As M? is a finitely generated A-module e,M* is a finitely generated R-module by
corollary [1.1.25| (ib), because @ is finite and R is noetherian.

(ii) For (ii) and (iii) it is enough (say by [51], p.98, Corollary 17.7]) to choose a limit point
[ of U +m and show [ € U 4+ m. By definition, any open neighborhood of [ meets U + m
somewhere other than [. That is, for any ¢t > 0 there is some u; € U such that u; +m # [
and u; +m € [ +mfM. In particular, there is some u,; € U and some z,,1 € mr
with wp41+m =+ xpq1. Since e, (up+1+m —1) = upy1+m—1 we have that z,,11 lies in
eoM Nm" 1M C e,m"M which is contained in U, and so | = (un41 — Tnp1) +m e U +m

as required.

(iii) By definition, any open neighborhood of [ contains m. That is, for any ¢ > 0 we

have m € | 4+ e,m*!M and so m — | € e,m*M. This shows m —1[ € mtzo e,m!M? = 0 by

corollary [1.1.25] (iii). O

Corollary 2.4.5. Leti € Z , v € P and « be an arrow. If U C et(w)Mi, V C eh(a)Mi
and W C eh(V)Mi are closed submodules then: vU C eh(V)Mi, doV C eh(a)M”l, d;'vn
eh(a)M"*1 - eh(OC)Mi*1 and v 1W N et(y)Mi C et(V)Mi all define closed submodules.

Proof. The restrictions dfy_]b s ey Ml — e, M' and dfl’M s ep Mt — e, ML of do, M
define R-module maps. We may also consider the R-module map vx : ey,) M t s en(yy M ‘
sending m to ym. By lemma et(v)Mi, eh(a)Mi and eh(v)Mi are linearly compact. It
suffices to prove that, if z : X — Y is a homomorphism of linearly compact R-modules
and X’ C X and W C Y are closed submodules, then f~1(Y’) C X and z(X') C Y are

closed.

Since z is an R-module map the image and pre-image are submodules of ¥ and X
respectively, and furthermore z is continuous in the m-adic topology. This shows z~1(Y”)
is closed. As X is linearly compact and X’ is a closed submodule, X’ must be linearly
compact by [66] p.81, Proposition 3]. By [66] p.81, Proposition 2] linearly compact modules
X' are sent to linearly compact modules z(X'). Since we are using the m-adic topology the
base of open neighborhoods of zero in Y are submodules, so linearly compact submodules

such as z(X') of Y are closed by [66], p.82, Proposition 7]. O
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Corollary 2.4.6. Let C be a homotopy {0, ..., t}-word and N be a submodule of M such
that MtHe® N N C Mithe® s closed. Then encyM' N CN C epyM" is closed.

Proof. Let v = h(C). We have e,M*NCN = e, M’ N C(M* () 0 N) by corollary
By iteration it is enough to assume t = 1, and so C = (df(vl)y)il. By corollary if

C= dl_(vl)fy then vV is closed. Applying corollary again shows dl_(i)’yN Ne,M? is also

closed. The case C' = ’yfldl(v) is similar. O
Lemma 2.4.7. (REALISATION) Lett > 0, i € Z and C be a homotopy I-word with I C N.
Then

(i) form € eh(,y)Mi and v € P, if (’y_ldlm)ilm N et(,y)Miil is non-empty then it is a

linear variety,

(ii) for any m € M**tret=1)n Mner n>t(C>t—1)<n M we have

MO e mn () (Cor)<nM # 0
nel,n>t+1

and (iil) if I =N and S C e,M" then SN CH(M®) = (V595 N C<nM.

Proof. (i) We will show that if P = 7_1d1(7)m N eg(y) M™1 is non-empty then it is a linear
variety. The other case will follow similarly. P is closed by lemma [2.4.4, Since P # ()
choose z € P. We now show P = P’ + x where P’ = e;,, M'*' N y710. By definition

P'+x C P. Conversely for any 2/ € P we have that 2’ — 2z € e;) M N y710 as
v = dy),m(m) = vz

(ii) For each n > t we have m € (Cs;_1)<,M and so there is some u, € M*trc®) n
rt_lltm for which u,, € (Cs¢)<p,M. By corollary (ii) Mithe) n rt_lltm is a closed
coset of evc(t)M”“C(t). By part (i) above each of the subsets MTHc() 0 (Csy)<, M are
closed submodules. Consider the collection A consisting of all M#*+rc(®)n (Cst)<nM where
n > t, together with the set M*t#c®) N ¢~1lm which is a linear variety by part (i). Let
Vi = MHre® e m N (Csy) < M for each n > 0. As the collection {(Cst)<n M | n >t}

forms a chain the intersection of finitely many elements from A is contained in some V.
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As V,» contains u,, this shows the collection A satisfies the finite intersection property.
Hence the intersection M Hc®) 0 1m0 M) 5o(Csi)<nM of all the sets in A is non-

empty, since ey )M i+rc(®) ig linearly compact by lemma .

(iii) We can assume S is non-empty. Clearly Ct(M*®) C (), C<nM by definition
and so it is enough to pick s € S such that s € C<, M for all n > 0 and show s €
CH(M®). Let C = lflrllglrg ... and suppose for an arbitrary but fixed « > 0 there
is some element s;_; € M/tHc(=1) n' N . (Cs; 1)<, M. Using part (ii) there is an
element s; € MItc(=1) n Mnsi_1(Csi1)<nM for which s;_1 € li_ln-si. Setting sp = s
defines an element of M*t#¢(0) 0 " _(C5)<, M and by the above this iteratively defines
a sequence Sg, S1, S92, -+ € M for which s = sy and s; € l7:__,’_117'i+187:+1 for each ¢ € N. Hence

s = sp must lie in CT(M?*). O
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2.4.2 Covering Properties.

Let us now use the above. The next result was adapted from [2I, Lemma 10.3].

Lemma 2.4.8. (WEAK COVERING PROPERTY) Fiz a vertex v, an integer r and some
0 € {£1}. For any non-empty subset S of e, M" which does not meet rad(M) there is a

homotopy word C € W, 5 such that either:
(i) C is finite and S meets CT(M®) but not C~(M?®), or

(ii) C is an N-word and S meets C<, M but not C<,rad(M) for each n > 0.

Proof. We assume (a) is false. So for any finite homotopy word B € W, 5 either S N
Bt(M®) =0 or SN B~ (M®*) # (. We refer to this assumption as (xg) for any finite

homotopy word B.

Assuming (xp) for every possible B it suffices to construct an N-word C' iteratively from
C<o = 1,5 and show that S meets C<, M but not C<,rad(M) for each n > 0. Clearly
this holds when n = 0 as S meets 1, ;M = S but not L, srad(M) = e,rad(M).

Assuming S meets C<,, M but not C<prad(M) for some arbitrary fixed m > 0 it
suffices to choose letters l,,,+1 and 7,41 such that S meets C’Sml;ilrmHM but not

C’gml;n}Hrerad(M ). We proceed via case analysis.

Consider the case where S meets (C<y,)” (M*®). Suppose there does not exist any
arrow y for which C<,,y~'d, is a homotopy word. Without loss of generality we can
assume there are two arrows a and a_ with head ¢(C<,,), in which case (C<,,) " (M?®) =

Cam(im(da_ v) + oy M).

This means (C<y,)” (M®) € C<prad(M) which does not meet S, contradicting our
assumption that (a) is false. So there exists some arrow y for which C<,,y~'d, is a word.
As S meets (C<,)” (M?®) by definition there is some v € P of minimal length for which S
meets Cgmv_ldl(v)M. Letting l;py1 = v and rpq1 = dy(y) it is sufficient (for case (i)) to

show S does not meet C<,,,y~tdrad(M).
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If 7 is an arrow then vy~ 'drad(M) = ey, rad(M) by corollary and so S does not
meet C<,,y~'d,rad(M) by (the inductive) assumption. So we can assume v = 1(y)« for

some o € P.

By corollary (ii) we have a~td,M N a_ll(’y)_ll(’y)dl(a)M and by lemma
we have 1(y)dyoyM = dyl(y)M = dy,yrad(M). The minimality of the length of v
shows that S does not meet Cgmofldl(a)M and altogether this shows S does not meet

Cgm’y_ldl(v)rad(M).

Consider instead the case where S does not meet (C<,,)” (M*®). This means S does not
(C<m)t(M?®) by (xc.,,)- Hence there is some arrow z for which C<mdy tx is a homotopy
word as otherwise (C<p,)™(M®) = C<,,, M which meets S by (the inductive) assumption.
By the definition of d; »s any element of ey )M gets sent to zM, and so d;lzM = en(zyM
and so S meets C<;, M = C<p,d;'xM. Consider the set L of all A € P for which C<,,dy A

is a word.

If L is infinite then by lemma we have (), C<mdy ' AM = (C<;,)T(M*®) which
does not meet S. By corollary Camdy 'AM C CgmdngM when A is longer than
) so there is some maximal length p € L for which S meets C<,,d, 'uM. As L is infinite
np € L for some arrow n in which case C<pndy turad(M) = C<pdyunM which does
not meet S by construction. In this case it is sufficient to let ly41 = dy(,) and 7, = p.

Otherwise L is finite with longest path ' in which case let l;, 11 = dj(,ry and rp, = ' since

Ceamdy ti'rad(M) = C<y,d; 10 which equals (C<,, )T (M®) by lemma [2.1.19 O

Proof of lemma[2.4.1. (i) Let S = HN(U +m). If it exists, any element mg € SNrad(M)
satisfies my = u + m for some u € U. Since mg € eyrad(M") C U this gives the

contradiction m = mg —u € U.

So SNrad(M) = () and therefore by lemma there is a homotopy word C' such that
either C' is finite and SN CT(M*®) # 0 = SN C~(M?*), or C is a homotopy N-word and
for all n > 0 we have SN C<, M # () = SN C<prad(M). If C is finite there is nothing to

prove, so suppose otherwise. The collection A = {S N C<,M | n > 0} consists of linear

varieties by corollary
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The intersection of a finite collection S N CcpyM,...,S N Capg)M € A of these
linear varieties is S N C<p;yM # (), where n(i) is maximal among n(1),...,n(d). Thus
A has the finite intersection property. By lemma [2.4.4] e, M" is linearly compact, and so
Nns0 SNC<nM # ). This shows SNC™ (M) # () by lemma Since SNC<prad(M) =0
for all n > 0 we have SNC~(M*) CUS N Cxprad(M) = 0.

(ii) By (i) with H = e, M" there is a word B € W, 5 such that U +m meets B* (M) but
not B~ (M). So there is some m’ € B*(M) for which m’ = u + m for some u € U. Note
that m’ ¢ U + e, M" N B~ (M) as otherwise m’ = u' + m” for some m” € e, M" N B~ (M)
and v/ € U in which case m” = u — v’ + m contradicting the fact (U +m) N B~ (M) is
empty. We may apply part (i) to the R-submodule U’ = U + e, M" N B~ (M), the subset
H' = e,M"NB* (M) of e,M" and m' € H'\ U’. Doing so gives some word D € W, _; for
which H' N (U’ + m/) meets D*(M) but not D~ (M). This gives some v’ € U and some
y € B~ (M)Ne,M" for which z = «'+y+m/ € BF(M)ND*(M). So —y+z = (u/4u)+m
which defines an element of GE,DJ,(M) N (U + m).

Suppose for a contradiction there exists some &' € G5 (M) N (U 4+ m). Then there
is some v’ € U, a~ € B~ (M) Ne,M" and at € BY(M)N D~ (M) Ne,M" for which

Z=u"+m=a +a

U+ B~ (M)Ne,M" +m' and hence the intersection of H' N (U’ +m’) and D~ (M) which

. Writing at as v/ — u — a~ + m’ defines an element from

is impossible. Hence Gy 1, .(M) N (U + m) is empty but GEDJ(M) N (U + m) is non-

empty. [
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2.5 Mapping Properties.

If R is a field k the ring A is an Assem-Skowroriski gentle algebra by corollary [1.2.11] In
this setting we have discussed in section [[.4.4] how functorial filtrations have been used to

classify modules in terms of words. Of key importance were two mapping properties:

namely lemmas [1.4.48) and |1.4.50, By lemma [1.4.48 (iii): there is a homomorphism

K/ M Suu (Fuw(M)) — M of A-modules such that F, ,/(ky ) is an isomoprhism
(for appropriate words v and u' and A-modules M). By lemma a A-module
homomorphism 6 : N — M must be an isomorphism provided F, ,(#) is an isomorphism
for each pair (w, w’) of words (for appropriate 6). In sectionwe give analogous mapping

properties for homotopy words.

2.5.1 Local Mapping Properties.

In this section we state and prove an analogue of lemma [1.4.48] (iii). For this we require

the following book keeping.

Assumption: In section we let C' be some homotopy I-word where C = B~!'D for

homotopy words B and D. We write C' = ..., !

1

to short hand the notation given by definition [1.3.26] If B is non-trivial write

r;... provided it is non-trivial,

B = lg}erJ ... and similarly D = ZB}ITDJ .
Lemma 2.5.1. Let j€l. Ift =ap,p — j then:
(i) ve(j) = vp(t) if t > 0 and ve(j) = vp(—t) otherwise; and
(i) pe(j) — pe(i) = pp(t) if t > 0 and pc(j) — poli) = pp(—t) otherwise.

Proof. (i) Let i = ap p. By definition we have B = (C<;)~! and D = Cs,; which gives (B =
ritli... or B = Ly0),s(0)) and (D = li;llri_i_l ... or D = 1y 4c))- In the notational
convention stated before the lemma, lg; = 1,441 and rpy = l;_441 for t,t+1 € Ip. Hence

for i —j > 0 we have t(lp;—j+1) = t(ri—(i—j+1)4+1) and thus vp(i — j) = vo(j). If B is

trivial then I is bounded below by 0 and ¢ = 0.
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This shows —j > 0 and j > 0 so j = 0 and vg(—j) = ve(j). Similarly Ip; = l;+ and
rBt = Titt for t,t +1 € Ip, and hence for j —i > 0 we have t(Ip j—it1) = t(litj—it1)
and so vp(j — i) = ve(j). If D is trivial then I is bounded above by j and i = j. So

vp(j — i) =vp(0) = ve(i) = ve(d).

(ii) Suppose I is finite or N, and so B is an {0, ...,i}-word. If i > j then by definition
e (j) = pp-1(j) which equals pp(i — j) — pp(i) by lemma [1.3.33] (iii). So when j = i
we have —uc(i) = pp(i) and so pc(j) — pe(i) = pp(j —i). If instead j > 4 then
pc(j) = pp-1(i)+pp(j—1) by definition and so uc(j) —pce(i) = pp-1(i) +pp(j =) —pc (i)
which equals up(j —1).

Suppose I = —N. Then by lemma (i) and (iii) we have Io—1 = {—i |i € I =
—N} = N and pc-1(—j) = puc(j) for j € —N. Since C~! is a homotopy N-word, by the
above we have pc(j) — pe(i) = po-1(=j) — po-1(—t) which is pp(—i — —j) = pp(j — 1)
when j > i and pup(i — j) otherwise. When I = Z we have i = 0 and pug-1(j) = pp(—j)

by lemma [1.3.33| (iii). This gives uc(j) — pc(i) = pe(j) which is pp(j — 0) when j > 0
and pg-1(j) = up(—7) when —j > 0, as required. O

The proof of the next lemma follows the same idea as [21, Lemma 8.3].

Lemma 2.5.2. Let (B,D,n) € Z(s) and C = B7'D. Let M be an object in
Kmin(A-Proj). Then for some basis B = {uy | A € Q} of Fp pn(M) there is a morphism
of complexes Op pnv : @y P(C)luc(ap,p) —n] — M such that Fg pn(0B,pn,n) is an

isomorphism.

Proof. Let i = ap p. For j € I note b, , lies in degree uc(j) — pc(i) +n, and furthermore
dgy, P(O)[uc(i)—n] (i) = QI)\ +0b;, where; Q;f)\ =O0unless (j+1 €T and lj_ilrj_i_l = dl_(oll)oz)
in which case Q;f)\ =abjy, and by =0 unless (j —1 € I and l;lrj = 37 1dy(5)) in which

case b,y = fb; 1

For each A € Q we can choose a lift uy € Fi ,, (M) \ Fg p, (M) of iy. Since uy €
ey M™ N BT (M) by corollary there is qu € eUB(S)M”+“B(3) for each s € Ig where

B _ B —1 B 4
Up, ) = U\ and Ug ) € lB75TB,suS7)\ given s — 1 € Ip.
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Similarly there exists uP, € e M"™tp®) for each t € Ip where uY, = wuy and
y A vp(t) 0,\ A
U ) € lD,tTD,t“t,A given t —1 € Ip. Set u; ) = u;” iy whenever j < i and u; ) = (RN

whenever j > 1.

By lemma m (i) and (ii) we have u; € evc(j)M”ﬂ‘C(j)*“C(i) for any j, so letting
037D7n7M(Qj7>\) = u; ) defines a degree 0 graded A-module map 0p p n.a : Py P(C)puc(i)—
n] — M. Recalling the proof of lemma m (i), IB,s = Ti—s+1 and rpg = lj_s41 for
s,s+ 1 € Ip and hence ¢ > j implies u;_1 ) € lj_lrjuj’,\. Similarly considering D where
i < j we again have u;_j y € l;lrjujv,\.

1 +1 _ +1
» where uiy = > u1 dgt1 pr(ujn) and o™ runs

_ 1
Furthermore dar(ujy) = ujy + uj

through the set of arrows with head vc(j) and sign £1 (which has at most one element).

Writing s((C<;)™!) = ¢ gives s(Cs;) = —q by proposition [2.1.13

By case analysis we now show uj_g = QB,D,n,M(bj_,)\)- Suppose Qj_’/\ = 0. If 077 does not
exist then u]_f\z = 0 and there is nothing to prove. So we can assume ¢~ ¢ = « exists. Note
s(dyt) = ¢ = —s(C) and h(d,') = h(C). If j — 1 ¢ I then j = minl = 0 which means
B = 1j(¢),—s(c) and so BT (M) = d;10 as required. Otherwise j—1 € I and lj_lrj = dl_(Tl)T
for some T € P since b; , = 0. Here s(f(r)1) = s((C<j) ") = qand so 7 dyy M C d;'a0

by corollary [2.1.10 (iv) which again gives u; € d, 0.

Suppose instead b;)\ #0,and so j —1 € I and l;lrj = B_ldl(ﬁ) for some § € P. In
this case b, = Bb;_;  and s(1(8)) = —s(dl_(é,)) = —s((C<j)~!) = —¢ which means 1(3) =
o9 and uj_; ) € lj_lrjuj)\ = Bildl(ﬁ)ujy)\. So here we have dyg) ar(ujr) = Buj_1x =
BQB,D,n,M(bj_L)\) and so u;j = QB,D,n,M(Q;,\)- Similarly one can consider the different
possibilities for lj_ilrjﬂ and prove u;ri\l = HB,D,n,M(Q;FA). For this the cases j + 1 ¢ I and

J + 1 eI are separated, similar to the above.

Together this gives 9B7D7”7M(b;:)\) + 037D,n7M(bj_’)\) = u;TA + Uy and so GB,D%M(QIA +
Q;A)) = dp(uj ). This shows 0p p . ar is @ morphism of complexes. By lemma [2.3.20| (i)
the set of elements b; \ = b; y + Fg 1 ,,(P(C)[pc(i) — n]) where A runs through B define
a basis of the k-vector space Fg p (D, P(C)[uc(i) — n]). Since 0p p (b ) = uix we

have that FB,D,n(eB,D,n,M)(bi,)\) = Uj ) = Uy SO FB,D,n(eB,D,n,M) is an isomorphism. O
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Remark 2.5.3. (AUTOMORPHISMS AND REDUCTIONS) Recall that, by lemmall.4.31} any
linear relation V on an R-module M defines an R[T, T~ ']-module V#/V” where the action
of T is given by setting T'(m + V°) =m/ + V? iff m’ € VEN (V* + Vm).

Recall from definition [1.4.32] that a reduction of V is a pair (U,g) where U is an
R[T,T~!]-module which is free over R and g : U — M is an R-module map for which
Vi =1im(g) + V? and g(Tu) € Vg(u) for each u € U. Recall that a reduction (U, g) meets

in m if the pre-image ¢~ (V?) is contained in mU.

If R is a field recall that V is split if there is an R-linear subspace W of M such that
VE=W @&V’ and #VmNW = 1 for each m € W. Recall that, by corollary [1.4.33 if

(U, f) is a reduction of a relation V' on M which meets in m = 0, then V is split.

[e.e]

Suppose now C = B~1D is a periodic homotopy Z-word (say D = E> and B = (E~!)
for some homotopy {0, ...,p}-word F) and let n € Z be arbitrary. Recall the linear relation
E(n) = {(m,m') € e,M"™ @& e,M™ | m € Em'} on e, M"™ and by lemma we have
E(n)ii = F];D’n(M) and E(n)b = Fg,D,n(M)'

Lemma 2.5.4. Let (B,D,n) € Z(b) and so C = B7'D is a periodic Z-word of period
p > 0. Let M be an object of Kmin(A-Proj) such that Fp pn(M) has finite dimension d
over k= R/m.

Then there is an object U of R[T, T_l]—ModR_pmj with rank d over R and a morphism

OB.Dn : P(C,U)[—n] = M of complexes such that Fp pn(0B,Dn M) s an isomorphism.

Proof. Let Fppn,(M) = V. By definition B = (E71)® and D = E* where E =
Ity lp_lrp is a cyclic homotopy {0,...,p}-word. Note that FE,Dn(M) = E(n)* and
Fg p,, (M) = E(n)” which means E(n)!/E(n)" = V.

By the second part of corollary [2.2.12|this is a finite-dimensional k[T, T~!]-module, and
so by lemma [1.4.34] there is a reduction (U, g) of E(n) which meets in m and where U is

finitely generated as an R-module. Choose an R-basis u1,...,uq of U.

Since (U, g) is a reduction we have im(g) C E(n)* and so g(u;) € Fy . (M) for each i
by lemma
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Similarly ¢g(T'u;) € Eg(u;) so there are elements vg;,...,vp; € M for 1 <i < d where
vj;i € evE(j)M”+“E(j) for each j (by corollary , Upi = g(ui), vo; = g(Tu;), and

Vj_1; € l;lrjvjyi given j > 0.

By lemmal|l.3.47 to define a A-module map 0p p . : P(C,V)[—n] — M it is enough to
extend 0p p n,m(b; ® ;) = vj; linearly over A, where v; = g(u;) + Fg (M) for 1 <i < d
and 0 < j < p — 1. Note there is some a;; € R for 1 <[ < d satisfying Tu; = ), a1,w

since uq, ..., uq is an R-basis of U.

Applying g gives vo; = Y ;ai;vp;. Recalling lemma [1.4.31] since g(Tw;) € E(n)f N
Eg(ui) € E(n)* N (E(n)’ + Eg(u;)) we have T(g(u;) + Fp , ,(M)) = 9(Twi) + F 1, , (M)

and so T0; = Y, a; ;7).

Since b; ® @; € PrCOF(C V)[-n] and u;; € M"#U) the map Oppnn is

homogeneous of degree 0. We now check that g p , ar is a morphism of complexes.

We proceed following similar steps to the proof of lemma but there are minor
complications to consider. For arbitrary j and w = vg(j) we have dy(v;;) = v;ril + v;il
by lemma where we let v;fil = > 41 dyx1 pr(vj;) where o*! runs through the set of

arrows with head w and sign +1 (which has at most one element).

As in the proof of lemma let s((E<;)~') = g and so s(E>;) = —q. In what follows
we prove v;f = HB,D,H,M(Q; ® U;) by case analysis, separating the cases j = 0 and j # 0.

Similarly one can show v;-riq = 0B,Dn, M(Q;r ® v;) after separating cases j # p — 1 and

j=p—1.

If lj_lrj = dl_(Tl)T for some 7 € P then bj_ =0 so bj_ ®v; = 0. Again v;; € rj_lljvj_lji as
s(f(t)™') = g and so v;; € T_ldl(T)M which means v;; € d;'0 for j # 0 and any arrow «
with head u and sign —q by corollary [2.1.10| (iv). This shows v;iq =0= 93’D7n7M(bj-_ ®

v;). For j = 0 we have b, = 0 and l]jlrp = dl_(Tl)T so b, =0 = fu_,q This gives

X
D o1 do—a v (30 aiVp1) = Dm0 22y @idy—a ar(vpy) and so vg{ = 0= 0p,pnn(by © i)

Otherwise lj_lrj = Bildl(ﬁ) for some S € P. In this case where j # 0 one has bj_ R v; =
Bb;_;,; and again s(1(8)) = —¢ which means 1(8) = 0~% and vj_1; € B Ldygyvji-
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As in the proof of lemma this gives vj_f = Bvj-1i = O pam(Bb;_1;) =

GB,D%M(QJ-_ ® v;). For j = 0 we have lljlrp = 571d1(5) and therefore

by @v; =pb_y,; =Bb_1 ®v; =pb, T @v; =pb, 1 ®TY;
=Bb,_1 @3 it = aii(Bb,_y @) =37 a1 Bby, 1= aby,

So, by the above we have

08,0 (bg ® V1) = 0p,Dnm (3 a1, ;) = 32 a1ifB,Dnm (b)) = D2 v, |

=200 Dga Ao—a p(Vp) = D p—a dg—a i (D) @ itip1) = D 5—a dg—a pr (Vo) = U(;,;]

. . . R TN —1 +q
Similarly one can consider the different possibilities for lj 117j+1 and prove v =

0371),,7,,1\/1@;r ® 7;). For this the cases j # p— 1 and j = p — 1 are separated, similar
to the above. Together we have that 937D7n7M(Qj QU+ b, ®7) = v;l + vy, and thus
08.0.n,M(dpc,v)=n) (bs1)) = dar(0B,0,m,01(bs)) Whenever 0 < s < p—1. Write b,,; for the
coset b,; + Fg p,,(P(C,V)[-n]).

By lemma (ii) the elements Ep,l’ e ’Bp,d give a k-basis of Fg p n(P(C,V)[—n|) =
k®gr V. Since FB,D’H(GRD%M)(EN) = Tp1, to prove Fp pn(0B,pn,n) is an isomorphism
we need only show ¥p1,...,0,4 is a k-linearly independent subset of V' = Fp p,(M).
If we have Y, Nvp; = 0 in V for some \; € k then writing \; = 7 +m for 1, € R
gives 1>, mw) € Fgp (M) = E(n)° by definition. Since (U, f) meets in m we have

Yoyriu € mU = @le mu; and so r; € m for each [, as required. d
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2.5.2 Global Mapping Properties.

In this section we state and prove an analogue for part (ii) of [15, p.163, Proposition].

Lemma 2.5.5. Let 0 : P — M be a morphism in Kuyin(A-Proj), and suppose M is
finitely generated for each i. Suppose Fp pn(0) is surjective for each n € Z and each pair

of words (B, D) for which B~'D is a word. Then 6" is surjective for each i.

Proof. For a contradiction suppose that §° is not surjective for some i € Z. Since rad(M?)
is a superfluous submodule of M? if im(#?) + rad(M?) = M' then im(#?) = M*? which by
assumption is impossible. So we have e,im(#?) + e,rad(M?) # e,M® for some vertex v.
Hence e,im(0) + e,rad(M?) is contained in a maximal R-submodule U of e,M®. Since
e;rad(M?) C U and U # e,M*, by the covering property for refined functors (lemma
2.4.1| (ii)) for some element m € e,M"\ U there are homotopy words B € W, ; and
D eW, s for which (B~'D is a homotopy word and) U + m meets GEDJ(M) but not
Gp.pi(M). So there is some u € U, a € B~(M) and b € B*(M) N D (M) such that
uw+m = a+b. Since u,m € e,M* we may assume a,b € e,M'. Note that Gp p;(f) is
onto and sends z + G p ;(P) to 0% (z) + Gp pi(M). So there is some x € GE,D,z‘(P) for
which ¢%(z) — b € Gp.pi(M) and therefore b = 0i(x) + ¢ + d for some ¢ € B~ (M) and
d € BY(M)N D~ (M). Since 6'(z) € e,im(6") C U we have by construction an element
u—0(z)+m=(a+c)+dof (U+m)N Gp pi(M) which is impossible. O

Assumption: In what follows in this section we fix some notation. Let & and B be index
sets, {t(c),s(8) | ¢ € S, € B} be a collection of integers, {V? | 3 € B} be a set
of objects from R[T,T~']-Modg proj and {A(c),E(3) | 0 € S,3 € B} be a set of
homotopy words, where each A% is non-periodic and each E? is periodic of period

pg. Consider a direct sum of complexes of the form
N = (@yes PAO)I-t(0)]) & (Bses PEB). VA)=s(8)]) ()

The following is the analogue of |21, Lemma 9.4].
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Lemma 2.5.6. Let 0 : N — M be a morphism in Kyin(A-Proj) such that FB,D’H(G) 18

injective for each (B, D,n) € T. Then 6" is injective for each i € Z.

Proof. Assume there is some h € Z for which 6" is not injective. By corollary
A is semilocal and so rad(N") = rad(A)N" and rad(M") = rad(A)M" by [48, (24.7)
Theorem, p.349]. Since A/rad(A) is semisimple, N"/rad(N") is an injective A/rad(A)-
module. Hence the induced map 0" : N”/rad(N") — M"/rad(M") is not injective,
as otherwise it must be a section which would mean " was injective by [40, Lemma

2.2, p.218]. Thus #" is not injective, and so there is a vertex v and a non-zero element

n € e, N\ e,rad(N") for which 6"(n) € e,rad(M").

Since N is a direct sum, there is a finite subset I' = {A(1),..., A(m), E(1),...,E(q)}
of {A(0),E(B) | ¢ € S,3 € B} for which n lies in the direct sum of @, P"~)(A(c))
and @%_, P'*O)(E(p), VF).

Hence we now assume & = {1,...,m} and B = {1,...,q}. For each o and 3 let;
(o) = Lago), Jo = P(A(0))[~t(0)], (B)" ={0,....ps — 1}, Ly = P(E(B),V")[~s(B)] and
let (/) be an R-basis for the free R-module V5. Hence there is some = € e,rad(N") and

(transversal) scalars 7,4,73,.x € S for which

n=3, ZzE(U) Nq,ibi + Zqﬁ:1 Zje(ﬁ)’ Z)\GQ(B) ﬁﬂ,j,/\bf,x t+z

and for each o there is some i[o] € (0} for which va(,)(i [0]) = v and pa()(i [0]) = h—t(0),
and for each § there is some j[8] € (8)" for which vgg)(j[8]) = v and pg@E) (i [8]) =
h — s(B). For each 6 € {£1} let A(o)(i[o],0) = A(0,6) and E(B)(j[8],0) = E(B,9).
Since n ¢ eyrad(N") for all o and 3 we can assume 7, ;,] # 0 and 75 5,1 7 0 for some

A € Q(B). By lemma [2.3.20| (i) and lemma [2.3.21] (i) we respectively have

FX(UJ%A(U:*l)’h(JU) - FX(J,I),A(U,*I),}J,(JO') + Rbl[o’] and

Fg(ﬂ,l),E(ﬂ,—l),h(Lﬁ) = FE(ﬁ,l),E(ﬁ,—l),h(Lﬁ) + 22 Rbjig) a-

N

The first equation shows 1, (5167, lies in FX(UJ)’ A(Uﬁl),h(Jg) G’Z Jo).

(cr,l),A(o',fl),h(
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We also have 1, (5167, ¢ £ A(a 1), A(0,-1), 1 (Jo) by lemma|2.3.20| (ii). It is straightforward

to show that FA(al) (0,71),h(Jf1) contains the intersection of FJ Ao 1), A0 )7h(JC,)

and G;l(a,l),A(a,—l)ﬁ(JU)’ which means 7,507, € @X({’Ailyh(t}g) and 15.i(51b7,) ¢

GZ‘{ Ailh(Jg). A similar argument using lemma [2.3.21] (ii) shows 73 5 2bjig0 €

65(5,1),13(5,71),11@5) and ng_j(5),2;(5),A ¢ 65(5,1),13(5,71)@(%)-

Note that for each § € {+1} we have A(0,d), E(8,0) € W, sfor1 <o <mand 1< 3 <
q. After reordering we can assume that A(c,1) < A(¢’,1) foro < ¢’ and E(8,1) < E(5',1)
for B < B’. Let B be the largest homotopy word of A(m,1) and E(q,1). If B = A(m,1)
let D be the largest homotopy word A(¢’,—1) among A(1,—1),..., A(m,—1) for which
A(o’,1) = A(m,1). Otherwise B = E(q,1) and let D be the largest homotopy word
E(f',—1) among E(1,-1),...,E(q,—1) for which E(5',1) = E(q,1).

Note that B and D have the same head and opposite signs, which means B~'D is a
homotopy word by proposition [2.1.13] By construction, proposition and corollary
we have GZ(U,l),A(U,*l),h(J ) C GE,Dh( ) for any o and Gg(ﬁ,l),E(ﬁ,—l),h(Lﬁ) C
GE,D,h(N) for any 8. So n € GJé’D’h(N). If n € GTB,D,h(N) and (B,D) =
(A(o’,1), A(0’,—1)) then

o’ o B
Zie(a’) No,ib] =mn — E;n:m;ea/ Zie(a) Mq,i07 + 2%21 Zje(,ﬁ)’ Z)\eﬂ(ﬁ) N0\ + @

which by the above lies in GX(J,l),A(U,—l),h(J‘T) N 62(0,71)714(0,7_1)7}1(]\7) and thus gives
the contradiction Zi€<o,> ngzﬂbg" € @;(071)114(0’_1)’,1(1]0,), Similarly if (B,D) =
(E(5',1),E(p',—1)) we come to the contradiction DBy 2ored) 775,73-7)@?’; €
G;J(B .5 (6,—1),h(L5/)' So we must have that n € GE,D,h(N)\GE,D,h(N) . Since @]§7D7h(9)
sends the coset of n to the coset of "(n) € e,rad(M") C é;th(M) we conclude that

Gp.p.n(0) is not injective, as required. d



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 198

2.5.3 Direct Sums of String and Band Complexes.

Here we look at some fruit of the labour involved in defining a functorial filtration.

Assumption: As in (%) from section we let N be a direct sum of complexes of the
form P(A(0))[~t(0)] and P(E(B),V?)[—s(8)]. This means ¢ and $ run through
index sets S and B respectively, each A(o) is a non-periodic homotopy word, and

each E(f) is a periodic homotopy word.

Definition 2.5.7. (NOTATION: W, W(s), W(b)) Let W denote the set of all equivalence
classes of homotopy words. For each equivalence class C of YV we choose one representative
C and one pair of words (B, D) for which B~1D = C. Let W be the set of these chosen
pairs (B, D). Let W(s) (resp. W(b)) be the subset of W consisting of all pairs (B, D)
for which B! D is not a periodic homotopy Z-word (resp. B~!D is a periodic homotopy
Z-word).

For convenience we recall some notation from definition We let ¥ = W, ; x
W, 1 x Z; X(s) be the set of (B,D,n) € ¥ with B~'D not periodic; and X(b) be the
set of (B,D,n) € ¥ with B7!D periodic. Recall that for (B, D,n),(B’,D',n’) € X,
given C = B7'D and C' = B'~'D’ we write (B, D,n) ~ (B',D’,n’) provided n' — n =
r(B, D; B', D") where

pclap pr) —pelapp) (if C' = C is not a homotopy Z-word)
r(B,D;B',D') = pclap p) — pelap,p) (if C'=C~1 is not a homotopy Z-word)

pe(£m) (if " = C*1[m] is a homotopy Z-word)

Recall that: ~ restricts to an equivalence relation ~4 (resp. ~j) on X(s) (resp. X(b));

Y =3/ ~; X(s) = X(s)/ ~s; and X(b) = X(b)/ ~p. Recall Z(s) (resp. Z(b)) is a fixed

a chosen collection of representatives (B, D,n) in 3(s) (resp. (b)), one for each class

(B,D,n) from 3(s) (resp. X(b)).

(NOTATION: A(0,0)) For each 6 € {£1} let A(o,0) be the truncated word A(o)(0,d):

the unique word in {(A(c)<o)™!, A(0)o<} with sign 6.
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(NoTaTiON: S(B, D,n), B (B, D,n)) For (B, D,n) € Z(s) let S(B, D,n) be the set of
o € S such that (B, D,n) ~ ((A(o,1), A(o, —1),t(0)). By definition this means S(B, D,n)
is the set of all o such that ¢(o) —n = r(B, D; A(o,1), A(c,—1)). For (B,D,n) € Z(b)
let B¥(B,D,n) be the set of 3 € B such that s(8) —n = pg-1p(£m) and E(3) =

(B~'D)*![m] for some m € Z.

(NOTATION: Sp p ,(V), Vf) Let B and D be homotopy words where C = B~1D is a
homotopy word. If (B,D) € W(s) let V be an object of R-Proj. Otherwise (B, D) €
W(b), and let V be an object of R[T,T 1-Modg.proj. Then Sp p,(V) is a complex
of projective A-modules. For n € Z let S’g: Dm(V) denote the module in degree n’ of
Sp.pa(V). For B € B(B,D,n)* let V| = k @ppp-y VP For 8 € B(B,D,n)" let
VP=ke R[T,T-1] T€S, VP, and recall res, V? is defined by swapping the actions of T and
T on VA,

Lemma 2.5.8. Let B, B', D and D' be homotopy words such that C = B~'D and

C' = B'~'D’ are homotopy words. Let n and n' be integers.

(i) If n # n' then S(B,D,n)NS(B,D,n') =0 = B(B,D,n)* NB(B,D,n')*.

(i) Uez S(B, D, t) is the set of 0 € S where A(o) and C are equivalent.

(iil) U,ez B(B, D, t)TUB(B, D, t)~ is the set of 8 € B where E(3) and C are equivalent.

(iv) If B™'D » B'"~'D’ then S(B, D,n)NS(B',D',n) = § = B(B, D,n)*NB(B',D’,n)*.
Proof. (i) If ¢ € S(B,D,n)NS(B,D,n’) then (B,D,n) ~ (B, D,n’) by transitivity and
son' —n = 0. Similarly, B(B, D,n)* N B(B, D,n’)* # () implies n = n'.

(ii) and (iii) Clearly if o € S(B, D,n) then A(c) must be equivalent to C. Conversely
if A(o) is equivalent to C then (B,D,n) ~ (A(c,1),A(c,—1),t(c)) where n = t(o) —
r(B,D; A(o,1), A(o,—1)). A similar argument justifies the respective statements about
Unez B(B,D,n)" and |J,,c;, B(B,D,n)".

(iv) If ¢ € S(B,D,n) N S(B',D',n) (or p € B(B,D,n) N B(B',D',n)) then
(B,D,n) ~ (B',D',n) by transitivity which means B~'D is equivalent to B/~'D’ and
r(B,D,B’,D") = 0. This is only true provided (B, D) = (B’, D"). O]
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The following statement and argument for the proof is essentially [21, Theorem 9.1].
Theorem 2.5.9. Ifn' € Z and (B',D’) € W then
(i) of (B',D") € W(s) there are dimy(Fpr prn(N)) elements in o € S(B', D', n'), and

(ii) if (B, D) € W(b) then Fp pw(N) = (Bpg, Vf*) ® (Ds_ V_ﬂ_) where Py runs
through B(B', D', n')*.

If (B,D) € W and C = B™1D then

(iii) if (B, D) € W(s) there are ), 1, dimy(Fp p o (N)) elements & € S where A(G) =
C or A(G) =C71, and

(iv) if (B,D) € W(b) then @,z Fopw(N) ~ (B, VI @ (@5 V) where Bs
runs through all B € B where E(B) is a shift of C*1.

Proof. By lemma [2.1.21] (iv) and (v), for any (B, D,n) € Z the refined functor Fg p,

preserves small coproducts.

(i), (ii) By lemma (iv) and (v) the refined functor Fpr s, preserves
small coproducts.  This together with lemma (ili) shows Fpr prp(N) o~
D, cs Fn.prw (P(A(0))[—t(0)]) as B'7'D’ is not periodic. If o € S(B’,D’,n’) then
(A(0,1), A(o,—1),t(0)) ~ (B',D',n’) and so by corollaries [2.2.§] and [2.2.24] we have
Fpgr pr o (P(A(0))[—t(0)]) ~ Fpr pr . (Spr.pr s (R)) which is isomorphic to R ®j, k ~ k by
lemma [2.3.20] (ii). Otherwise o ¢ S(B, D, n) and so as above Fp p n(P(A(0))[—t(0)]) = 0
by lemma (iii). Altogether Fppn(N) =~ @,es(p,pn) k Which has dimension
#S(B,D,n).

For (ii), as above by lemmas and (iii) we have Fp/ prn(N) =~
D, i Fp.pm (P(E(B), V) [=s(B)]). If B € B(B,D,n)* then by corollaries and
and lemma (ii) we have Fps pr i (P(E(B),V?)[~5s(B)]) ~ Vf as above. If
B ¢ B(B,D,n)* UB(B,D,n)" then Fp/ pr v (P(E(B),V?)[~s(8)]) = 0 by lemma [2.3.21]
(iii). As above this shows Fp/ pr ./ (N) > (D, Vf*) ©(Ds_ Vo
B(B',D',n')*.

) where Sy runs through
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(iii), (iv) By lemma (1) Yoz #S8(B,D,n) = # U,z S(B,D,n) and so
>nez dim(Fppn(N)) = #{5 € S | B7'D ~ A(5)} by part (i) and lemma (ii).
The proof for part (iv) is similar, but one uses part (ii) and lemma [2.5.8] (i) and (iii). O



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 202

2.6 Completing the Proof.

In section [2.6| we complete the proofs of the main results in this thesis: theorem [2.0.1
theorem [2.0.4] and theorem After this section we see some applications of these

theorems.

Definition 2.6.1. (FuLL, FAITHFUL, DENSE, REPRESENTATION EQUIVALENCE) If F :
A — B is an additive functor, we say: F' reflects isomorphisms if, for each arrow a from
A, if F(«) is an isomorphism then « is an isomorphism; F is full if, for any objects X,
Y in A and any arrow ¢ : F(X) — F(Y) in B, there is an arrow §: X — Y in A for
which F (8) = ¢; F is dense if given any object Z in B, there is an object X in A for
which F(X) ~ Z; and F is a representation equivalence if it is full, dense, and reflects

isomorphisms.

Proposition 2.6.2. Let A be a full subcategory of R-Proj and A be the full subcategory
of k-Mod consisting of all vector spaces isomorphic to k ®r M for some R-module M in

A. Then k ®r — : R-Proj — k-Mod restricts to a representation equivalence k @p —| :
A— A

Proof. By construction k ®pg —| is dense. For the duration of the proof we let 0 and 1
(resp. 0 and 1) denote the additive and multiplicative identity elements in R (resp. k).
Choose a transversal S such that SN1 = {1} and SN0 = {0}. Let {m;}icr and {n,;};es
be R-bases for objects M and N from C respectively, and for each i and j let {m;}; and
{m;}; be the k-bases of M and N defined by m; = 1® m; and 7; = 1 ® n;.

Now let g : k ®gp N — k ®@pr M be an arbitrary k-linear map. For each j let g(n;) =
>-; tjim; where ¢;; € k and t;; = 0 for all but finitely many . Since S N0 = {0} this
means tj; = 0 for all but finitely many ¢, where ¢;; € R is chosen such that {t;;} = SNt;;

for each ¢ and j.

Let 8 : N — M be the R-module homomorphism given by 3(n;) = ), t;ym; for each j.
Since M and N are objects in A, which is a full subcategory of R-Proj, 8 is an arrow in

A. By definition k ®p —|(8) = g and so k ®p —| is full.
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It remains to show k ®p —| reflects isomorphisms. Recall (from definition that,
for a ring I' with a complete set of idempotents {e;};, a I-module is quasi-free if it is
a direct sum of modules of the form Re;. Hence an R-module is finitely generated and
quasi-free iff it is free and of finite rank. If M is any free R-module then M ~ k ®p M
where M = M /rad(M).

Hence, by lemma [3.1.39] it suffices to: let f: R™ — R™ be a homomorphism of finitely
generated free R-modules; assume the map f : k™ — k™ is an isomorphism; and show f
must have been an isomorphism. Let A = (a;;) be the n x m matrix with entries from R

that defines f.

Write A = (a;;) for the n x m matrix with entries from k where @;; = a;; + m for each
i and j. Since f is an isomorphism we have n = m, and the determinant det(A) is a
non-zero element of the field k. This means det(A) is an element of the ring R which lies
outside the maximal ideal m. This means det(A) is a unit in R, and so A has an inverse

in the matrix ring over R, and therefore f is an isomorphism. O

Definition 2.6.3. (PRESERVING SMALL CoPRODUCTS) If A and B have small (that is,
set indexed) coproducts, we say a functor F' : A — B preserves small coproducts if, for
each collection {X;}jcs of objects in A, there are isomorphisms ox : F(€D,c7 X;) —
@D,cs F(X;), such that oy F(Dc 7 fi) = (D,cs F(f;))ox for each collection of arrows
{fi: Xj = Yj}jeg in A.

We now fix some notation until the end of the proof of lemma [2.6.5] The reader is
referred to the appendix for various definitions and notation. The next definition appears
to be new, although it was motivated directly from parts (a), (b), (c¢) and (d) of lemma

1.4.55

Definition 2.6.4. Let 9 be an abelian category with small coproducts, and let 91 be an
abelian subcategory. Suppose M and 91 have all of their radicals (see . Recall
Pon (resp. Pay) is the full subcategory of M (resp. M) consisting of the projective objects.
Recall Conin(Po)s Kmin(Pon); Comin(Py) and Kmin (Px) are the full subcategories of
C(Pon), K(Po), C(Pm) and K(Py) consisting of homotopically minimal complexes.
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Recall Z : Cpin(Pon) — Kumin(Pom) is the restriction of the canonical quotient functor
C(OM) — K(M) (see [64, p.370, Proposition 10.1.2]). Let .# be an index set. For each i € .
let 2; and X; be additive categories with arbitrary coproducts, and let .S; : 2; — Cpin(Pon)
and Fj : Knin(Po) — X; be functors. So far this gives

Si

Q‘i Cmin (Pm) i> ICmin (739)2) i :{z

(DETECTING FUNCTORS) We say that the collection of functors {(S;,F;) | i € ¥}

detects the objects in Kuyin(Pxn) if, for each i € &
(FFI) the functor F;ZS; is a representation equivalence;
(FFII) F}2S; ~ 0 for each j € . with j # i;
(FFIII) F; preserves small coproducts;

(FFIV) for every object M in Kuyin(Pxn) there is an object A; yr in 2; and a map

Yim 2 2(Si(Aim)) = M in Kpin(Por) such that Fj(v;,a) is an isomorphism;
and given a morphism 6 : N — M in Cuin(Pom);
(FFV) if M lies in Cpin(Pm) and F;(Z(6)) is epic for all ¢ € 7 then 6" is epic for all n;

(FFVI) and if N = @, , Si(A;) for A; in 2; and F;(Z(0)) is monic for each i € T then

0™ is monic for each n.
Lemma 2.6.5. If {(S;, F;) | i € #} detects the objects in Kuyin(Px) then:
(i) any object M of KC(Py) is isomorphic to @, , Z(Si(Ainr));

(ii) the indecomposable objects in IC(Pm) are of the form Z(S;(A)) where i € & and A

s an tndecomposable object in A;;

(iii) of A is an indecomposable object in A; (for some i € &) then ZE(S;(A4)) is an

indecomposable object in Kmin(Pom); and

(iv) for i,j € & and non-zero objects A and A’ from 2; and A; we have Z(S;(A)) ~
E(S;(AN) iffi=j and A~ A'.
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Proof. Note that by corollary it suffices to prove that any object M of Kuyin(Pm)
is isomorphic to @, , E(Si(A;nr)). To avoid repetition we now fix some notation for the
duration of the proof. Any direct sum M @& N of objects M and N in an additive category
C comes equipped with monomorphisms tpy : M — M & N and ¢y : Y — M & N, and
epimorphisms 73 : M @& N — M and wny : M & N — N, which satisfy tyympr + envmy =

idygn, marey = idyy, ey = idy, and maey = e = 0.

(i) For each [ € # let y; : N; = @,;c, Ni be the canonical monomorphism of the
coproduct, where N; = =Z(S5;(A4;a)) for each i (which exist by (FFIV)). Consider the
collection of arrows {f; : X; — Yi}; in Knin(Pom) given by: X; = N; and X; = 0 for
i #1;Y; = N; for all 4; and f; = id and f; = 0 for ¢ # . By (FFII) and (FFIII) (in
the notation of definition there are isomorphisms ox : Fj(N;) — Fj(N;) and oy :
Fy(®,c» Ni) = Fi(N;) such that oy Fi(;) = F;(id)ox and hence Fj(;) is an isomorphism.
Let m : @;c » Ni — N; be the canonical monomorphism of the product. Since m4; = id

we have that Fj(m) is the inverse to Fj(¢;), and hence an isomorphism.

Applying (FFIV) and the universal property of the coproduct defines a unique map
0 : 2(Bic.r Si(Aim)) — M satisfying u; = ;s for each i € .#. Since Z is dense there
is an object L in Cpin(Pyn) and an isomorphism ¢ : Z(L) — M in Kpin(Pn) . Since E is
full we have a morphism ¢ : @,c7 Si(Aim) = L in Cin(Par) for which Z(p) = ¢~ 16. By
the above we have F;() = Fj(v; ar)Fi(m;) which is an isomorphism for each ¢ € Z, and
so F;(Z(y)) is an isomorphism for each i € .#. By (FFV) and (FFVI) this means ¢" is
an isomorphism for each n € Z and so # is an isomorphism. Clearly = preserves small

coproducts and so this means M ~ @, , Z(S;(A; m)) as required.

(ii) Again by corollary it suffices to prove the corresponding statement about
Kumin(Pm). We let M be an indecomposable object of i (Pa). By part (i) we have that
M ~ @,c , E(Si(Ainr)) and so E(S;(Ainr)) = 0 apart from when i = ¢ for some t € .7.
Hence M ~ Z(Si(A¢,n)). It suffices to prove that A; ps is an indecomposable. Suppose
there are objects X and Y of 2; for which A; py = X @Y. This shows M ~ Z(S¢(X)) @
E(S¢(Y)) and so Z(S;(X)) = 0 without loss of generality. This means F;(Z(S5;(0))) is an
isomorphism where 0 : X — 0 in ;. Since F}=S; reflects isomorphisms by (FFI), X = 0.
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(iii) If F;(2(Si(A)) = 0 then A = 0 since F;=S; is dense and reflects isomorphisms by
(FFI). Hence Z(S;(A)) # 0, and we suppose Z(5;(A)) = X’ @Y’ for objects X' and Y’ of
Krin(Pon). Since = is the quotient functor there must be objects X and Y in Cpin(Pop) such
that S;(4A) = X @Y, E(X) = X' and E(Y) =Y. Hence F;(2(S;(4))) ~ F;(X'") @ F;(Y')
and as representation equivalences preserve indecomposables we have F;(X') = 0 without

loss of generality.

For j € .# with j # i we have F;(X') @ F;(Y') = F;(2(Si(A))) = 0 by (FFII). This
means that for any j € . we have that F;(Z(tx)) = 0 and so

This means F;j(=(my)) is an isomorphism with inverse F;(Z(ty)). Since 7y is an arrow
in Crin(Pop) of the form S; — Y this means 7y is a monomorphism for each n € Z by
(FFVI). Since 7y is split epic for each n € Z this means 7{ is an isomorphism for each

n € Z, and so wy is an isomorphism. Hence we have that X' = 0.

(iv) It is clear that if ¢ = j and A ~ A’ then S;(A) ~ S;(A’) since functors preserve
isomorphisms. Suppose now S;(A) ~ S;(A’) for some i,j € # and objects A of 2;
and A’ of ;. If i # j then Fj(E(S;(4"))) ~ Fj(E(Si(A))) = 0 and so A’ = 0 which
is a contradiction. Hence ¢ = j and F;(E(S;(A))) ~ F;(E(Sj(4"))) and so A ~ A’ as

required. ]

Let us now verify the hypotheses of lemma in our setting. Recall that if (B, D,n) €

7 then the constructive functors Sp p, have the form

R-Proj Cmin(A-Proj) (if (B,D,n) € Z(s))
R[T, Tﬁl]—MOdR_Proj Cmin(A—PI‘Oj> (1f (B, D, TL) € I(b))




Chapter 2. Classification of Complexes for Complete Gentle Algebras. 207

and the refined functors Fg p , have the form

Kmin (A-Proj) k-Mod (if (B,D,n) € Z(s))
Kmin (A-Proj) k[T, T-']-Mod  (if (B, D,n) € Z(b))

The following proposition is analogous to [15 p.163, Proposition].

Proposition 2.6.6. Let M = A-Mod, t = A-mod and ¥ =7 = Z(s) UZ(b); and for
i=(B,D,n) €T let

(R-Proj, k-Mod) (if B™'D is not periodic)

(i, X;) =
(R[T, T7Y-Modg proj, k[T, T7']-Mod)  (if B™'D is periodic)

Then the collection {(SB,p.n, FB,Dn) | (B, D,n) € I} detects the objects in Kuin(A-proj).

Proof. (FFI) Suppose (B, D,n) lies in Z(s) (resp. Z(b)). Then by lemma (ii) (resp.
lemma (ii)) the functor Fg p »=SB, b, is naturally isomorphic to k® p— : R-Proj —
k-Mod (resp. k @prr-—1y — : R[T, T-'-Modpg.proj — k[T, T~ ']-Mod). By proposition
this functor is a representation equivalence.

(FFII) For distinct (B, D,n),(B’,D',n') € Z we have (B,D,n) ~ (B, D’,n’) since T
was defined by taking representatives of equivalence classes. If (B, D,n) lies in Z(s) then
for any free R-module V we have F/ pr v (P(C)[uc(ap,p) —n]®rV) = 0 by lemma
(iii) where C' = B'D. This shows Fpg/ prwZ=SE pn = 0 since Fpr prp and Fpr pr pr are
naturally isomorphic by corollary If (B,D,n) lies in Z(b) then similarly, using
lemma (iii), this shows Fp/ pr =SB p s = 0.

(FFIII) Fix a collection {X;};cy of objects in Kuin(A-Proj). By lemma (iv)
and (v), for any homotopy I-word C with I C N we have C’i(@j X;) = @, CE(X;).
Hence any z € Fg p,  (B;c 7 X;) lies in BY(P; X;) = @, BT (X;) and DT (P, X;) =
@; D*(X;). Letting x = >, ; where z; € X shows z; € B¥(X;)ND*(X;). So we have
FE,D,n(@jEJ X;) = @jej FEDW(X]-), and similarly we can show FJ;D,n(@jej X;) =
@jej F§,D,n(Xj)-
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Hence the map ox : FB,D,n(@jej X;) — @jej Fp pn(X;) defined by sending any
T+ Fpp o (@jerXi) € Fpon(@jer X)) to ;25 + Fpp,(X;) is well-defined and
bijective. Clearly this map is R-linear (and hence k-linear). Now let {f; : X; = Y; | j €

J} be a collection of arrows in Kpin(A-Proj). By definition we have

oy (F,on(DB; fi)(@+ Fg p . (Djer X5))) = ov(X; fi(x;) + Fig p ,(X))
=>,(fi(xj) + Fg p (X)) = (Djes Foon(fi))ox(@+ Fg p . (Djcr X))

(FFIV) Let M be an object in Kpin(A-proj). By corollary Fp pn(M) is a finite-
dimensional k-vector space. If (B,D,n) lies in Z(s), by lemma there is a free
R-module V = RA4mFB.p.n(M)) and a morphism O8.pn : SBpn(V) — M for which
Fp pn(0B,px) is an isomorphism. Similarly if (B, D, n) lies in Z(b) then by lemma
there is an object V of R[T, T‘l}—ModR_pmj and a morphism 0 p,, : Sppn(V) = M

for which Fg pn(0B,pn) is an isomorphism.

(FFV), (FFVI) Let 0 : N — M be an arrow in the category Kpin(A-Proj). If M is a
complex in Knin(A-proj) and Fp p ,,(0) is epic for all (B, D,n) € Z then ™ is epic for each
n € N by lemma|2.5.50 If instead N is a direct sum of string and band complexes F p ,(6)

is monic for all (B, D,n) € Z then 6" is monic for each n € N by lemma O

Proof of theorems[2.0.1] and [2.0.4 Parts (i), (ii) and (iii) of theorem are precisely

parts (i), (ii) and (iii) of lemma after applying proposition [2.6.6f Theorem [2.0.4]
similarly follows by lemma (iv), definitions [2.2.16| and [2.2.18| O]

Proof of theorem[2.0.5 Let S, &', B and B’ be index sets.

For each o € S and ¢’ € &' let t(0) and u(o’) be integers and let A(c) and B(o) be
homotopy words which are not periodic homotopy Z-words. For each 8 € B and 3’ € B
let s(8) and r(8’) be integers, let E(S) and D(8) be periodic homotopy Z-words and let
V8 and U” be indecomposable objects in R[T, T—Y-Mod g proj-
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Now suppose N ~ N’ in the category Kmin(A-proj) where

N = (@,e5 PAO@)[(0)]) & (Dpes PE). VA [-5(5)

and
N' = (@, es P(BO)-ul0")]) & (@gew PD(F), UM)[=1(8))])

For any (B, D,n) € Z we have Fg p n(N) =~ Fp pn(N') which are finite-dimensional as
k-vector spaces by corollary Recall that for any word C' € SUS’ we let C(o,d) be
the unique word in {(C(c)<0)™t, C(0)o<} with sign § € {&1}. For (B, D,n) € Z(s) recall
S(B,D,n) (resp. S'(B,D,n)) is the set of 0 € S (resp. o’ € §’) such that (B, D,n) is
equivalent to ((A(c,1), A(o,—1),t(0)) (resp. ((B(o’,1), B(c’,—1),u(c"))).

For (B, D,n) € Z(b) recall B¥(B, D,n) (resp. B'*(B, D,n)) is the set of 3 € B (resp.
B' € B') such that s(8) —n = pug-1p(Em) (resp. r(8') —n = ug-1p(xm) and D(F') =
(B~'D)*![m]) for some m € Z. For B € B(B,D,n)* (resp. B € B'(B,D,n)") recall
Vf = k ®prr1 V8 (resp. I_]fz/ = k ®prr-1 UP). For B € B(B,D,n)~ (resp. ' €
B'(B,D,n)”) recall V’ = k ® Rr,T-1] T€S, VP (resp. 0% =k ® RT,T-1] TES, UP") and recall

this is defined by swapping the actions of 7" and T~

For any (B,D,n) € T we let C = B~!'D and define a function ¢B,p,n as follows.
If (B,D,n) € Z(s) then as Fppn(N) =~ Fppn(N') we have that dim(Fp p,(N)) =
dim(Fp pn(N')) and so #S(B,D,n) = #8'(B, D,n) by theorem [2.5.9| (i). Hence there
exists a bijection S(B, D,n) — §'(B, D,n), and we let © pn, be this bijection. Note that
it ¢ p(0) = o' then P(A(0))[—t(0)] = P(C)[=n] and P(B(o))[~u(o")] = P(C)[-n]
and so P(A(0))[—t(0)] ~ P(B(c'))[—u(c")]. Suppose instead (B,D,n) € Z(b). Then as
Fpn(N) ~ Fgpn(N'), by theorem [2.5.9] (ii) we have that

(@), VI & (@5 V) = (@, U1 & (@ U)

where 1 (resp. %) runs through B(B,D,n)* (resp. B'(B,D,n)*). Note this is a

k[T, T~']-module isomorphism of indecomposable finite-dimensional modules.
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Hence by Krull-Remak-Schmidt property for k[T, T~ !]-Modj.mod there is a bijection
% pn i B(B,D,n)” UB(B,D,n)" — B (B,D,n)” UB'(B,D,n)*

which is isomorphism preserving between the summands of Fp p,(N) and Fp p,(N').
For 8 € B(B,D,n)t (resp. B8 € B (B,D,n)") let Vf = VP (resp. U_El = U?). For
B e B(B,D,n)" (resp. B/ € B/(B,D,n)") let V* = res, V (resp. U? = res, Us.

Note that if ¢ 1, (85) = B5 (for some § € {+}) then P(E(8),V")[—s(3)]
P(C, V) [=n], P(D(8),U")[—r(8)] =~ P(C,UY)[=n] and V¥ ~ U, Since V! ~ U7 we
have Vf -~ Uf/ by proposition and so P(E(B), V?)[-s(B)] ~ P(D("), U )[-r(B)].
Suppose instead ¢, (61) = BLy.  Then P(E(B),VF)[=s(8)] ~ P(C,VP)[-n],
P(D(B),U?)[=r(8)] ~ P(C~1,U¥)[—n] and Vy ~ U_. Since VI ~ U® we have by
Vf ~ P = res, UP' proposition This gives res, VP ~ UP" and so

1

P(E(B),V7)[=5(8)] = P(C,V?)[=n] = P(C",xes, V)[-n] = P(D(8), U”)[-r(8")]

Similarly P(E(8), V?)[=s(8)] = P(D(8"),U”)[=r(8")] if ¥ p,(B-1) = B

Define the function ¢ : SUB — &' U B’ by setting p(a) = o' if (« € S(B,D,n) and
o = ¢ pa(a) or (a € B(B,D,n)* UB(B,D,n)” and o/ = @%’Dm(a)). By lemma
and by construction, ¢ is a bijection which preserves isomorphism classes of the

indecomposable complexes arising in the decompositions N and N’. O
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2.7 Further Remarks.

2.7.1 Application: Derived Categories.

We now apply the classification above in section Recall definition [3.3.15

Assumption: In section |2.7.1] we consider a direct sum of string and band complexes of

the form

N = (@,e5 PAO)[(0)]) & (@ges PE). V) [-5(5)

as in (2) from section [2.5.2]
Proposition 2.7.1. In the notation above, the following statements hold.
N has finitely generated homogeneous components iff:
(ia) A(o) has controlled homogeny for each o;
(ib) V# is finitely generated as an R-module for each B;
and for alln € Z,
(ic) there are finitely many o € S such that PP (A(0)) # 0, and
(id) there are finitely many € B such that P*B)(E(B), V) # 0.
N is bounded above (resp. below) iff there exists n € Z such that:
(iia) pa)(j) +t(o) <n (resp. paw)(j) +t(o) > n) for each o € S and j € I4(4); and

(iib) pge)(J) +ss < n (resp. pppe)(j) +s(8) > n) for each B € B and j € Z.

Proof. Suppose N lies in Kpyin (A-proj).

Suppose for a contradiction there is some o € S such that A(o) does not have controlled
homogeny. If A(c) is an I-word then there is some I € Z and a sequence (i(n) | n > 0) € I
such that p14(,)(i(n)) = [ for each n. Hence there is a chain of embeddings €P,,> Ab;,) —
PO (A(@))[~t(o)] -+ N.



Chapter 2. Classification of Complexes for Complete Gentle Algebras. 212

Recall A is a noetherian ring by corollary [1.1.25( (ii). Since N'~** is a finitely generated
A-module, €P,, Ab;,y is also finitely generated. Suppose B, Ab;,) = Zizl Agy, for
some gi1,...,94 € D, Abj(,). For each m we have g, = Z;(;(L)) Am,nbi(ny for some
r(1),...,r(d) € N and some Ay, € A. This gives the contradiction b;,) ¢ €D,, Ab;()
where 7 = max{r(1),...,7(d)} + 1. Hence (ia) holds.

Similarly if some V? has an R-basis Q which is infinite, then there is a chain of A-module
monomorphisms @, .o Aby — P~*O(E(B),V)[-s(8)] — N~*() which contradicts that
N~ is finitely generated. Finding this contradiction uses lemma Hence each
V# must have a finite R-basis. Hence (ib) holds.

For any n € Z, if P(A(0))[—t(o)]™ # 0 for infinitely many o € S then we can find a
contradiction as we did for (ia). Similarly there must be finitely many S € B such that

P(E(B))[—s(B)]™ # 0: and so (ic) and (id) hold.

Now suppose (ia), (ib), (ic) and (id) hold and n is an arbitrary intger. Note that

N = (B0 PHA@)[1(0)]) & (Bgemn PHE(B), V?)-5(5)))

where we let S (resp. B") be the set of 0 € S (resp. 8 € B) where PP (A(0)) # 0
(resp. P*=*B)(E(B),VP) # 0). By (ia) (resp. (ib)) S™ (resp. B") is a finite set, and for
each 0 € S (resp. B € B) the A-module is finitely generated by (ic) (resp. (id) and lemma
[1.3.47). It is straightforward to show that N is bounded above (resp. below) iff conditions
(iia) and (iib) hold. O

Thus we have described when a complex N (of the above form) lies in £~ (A-proj). Recall
that D~ (A-mod) ~ K~ (A-proj) by corollary [3.3.28

Corollary 2.7.2. (DESCRIPTION OF D~ (A-mod)) Any indecomposable object in

K~ (A-proj) is isomorphic to a complex of the form
(i) P(A)[—t] where A has controlled homogeny and im(pa(i)) is bounded above; or

(ii) P(E,V)[—s] where V is indecomposable and lies in R[T,T~']-Mod g proj-
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Remark 2.7.3. (FuLL CYCLES OF ZERO-RELATIONS) Recall definition [1.5.28; that a
full cycle of zero-relations o ...ay is a cycle in @ which is not the product of shorter
cycles in @, and for which a1 € (p) and a1 € (p) for each i € {1,...,n} such that

1+ 1< n.
Definition 2.7.4. (INVERSE/DIRECT AcycCLIC) A homotopy N-word C' is said to be

inverse acyclic (vesp. direct acyclic) if C has the form (a;'dy, -..o; 'day )™ (resp.

(datam ... dylar)™) for some some full cycle o ... o, of zero-relations.

Lemma 2.7.5. Suppose N lies in K~ (A-proj). Then N has bounded cohomology iff there

is some t > 0 such that:

(i) for each B € B and j € Iy we have upp)(j) +s(8) > —t;

(ii) for each o € S with Iy 2 N the word A(o)>¢ is inverse acyclic; and

(ili) for each o € S with Iy 2 =N the word (A(o)<_)~" is inverse acyclic.

We can now describe the indecomposable objects in the bounded derived category. As
above, recall that D?(A-mod) ~ K%~ (A-proj) by corollary[3.3.28, The following corollary

generalises a classification due to Bekkert and Merklen (see theorem|1.5.29) to all complete

gentle algebras.

Corollary 2.7.6. (DESCRIPTION OF DY(A-mod)) Any indecomposable object in

K=(A-proj) is isomorphic to a complex of the form

(i) P(A)[—t] where I4 DN (resp. 14 D —N) implies A~y (resp. (A<_;)~1) is inverse

acyclic for some t > 0; or

(ii) P(E,V)[—t] where V is an indecomposable object in R[T,T~*]-Mod g proj-
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2.7.2 Kernels in String Complexes.
Our aim in section is to give a proof of lemma [2.7.5] To begin with we calculate the
Kernel of the differential maps for string complexes.

Definition 2.7.7. (KERNEL PART, NOTATION: £(i)) Let C' be a homotopy I-word. For

each i € I we define the path x(i) by

(a) k(i) = ey if (1 —1¢ I or L 'ri=d;'r)and (i+1¢ 1 or li_+117“i+1 =y1d,),

(b) k(i) =f(r) if (i—1 €T and I 'r; = d;'r) and (i + 1 € T and I} ri1 = d; '),

(c) k(i) =f(y)if i—1 €T and I 'r; = 771d.) and (i + 1 € I and I} riy1 =y dy),

(d) k(i) =Bif (i—1¢ I and By ¢ P)and (i +1 € I and I} }rip1 = dy'y),

(e) k(i) =aif (i—1€Tand [;'r; = 77'd,) and (i + 1 ¢ I and az ¢ P), and

(f) k(i) =0 (ifi—1€ T and I; 'r; = 77'd;) and (i + 1 € I and [;,}}riy1 = d;'v).

Note that for any i € I exactly one of the ((a), (b), (c¢), (d), (e) and (f)) is true.

(FuLL, LEFT/RIGHT ARMS, LEFT/RIGHT PERIPHERAL ARMS) We say that the ith
kernel part is: full in case (a); a left (resp. right) arm in case (b) (resp. (c)); a left (resp.
right) peripheral arm in case (d) (resp. (e)); and 0 in case (f).

Our main result in section is the following.
Corollary 2.7.8. Let C be a homotopy I-word. For any n € Z we have ker(d}é,(c)) =
Dicuzt (m) Ar(D)b;-

Before we see a proof we recycle some examples.

Example 2.7.9. Recall the gentle algebra kQ/(p) and the homotopy word C' with [C] =

[s][t][c!] from example
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The associated string complex P(C') was depicted by

R

ab, rby

ds tbl Cbg

by atby rchs

sby

By definition: %(0) = ey, x(1) = f(t) = t, x(2) = 0 and %(3) = e2. This means that 0"
and 3'¥ kernel parts are full, the 1% is a right arm, and the 2°¢ is 0. By corollary we
have ker(d ) = Ab, ker(d;}C)) = Atb; ® Ab; and ker(d}?c)) =0.

Example 2.7.10. Recall the complete gentle algebra k[[z,y]]/(zy) and the N-word
C= x_2dmy_1dyx_2dxd;1y3d;1xy_1dya:_2dmy_1dy1‘_2dx ces

from example [1.3.28] For integers ¢ with 0 < ¢ < 8 we have k(0) = k(5) = ey, k(1) =
k(4) = k(7)) =y, k(2) = k(6) = K(8) = x, and K(3) = 0.
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Hence

ker(dp ) = Ayby ker(d;(lc)) = Axbg
ker(d;‘?c)) = 0@ Ayb; ker(d;?c)) = Azby, © Ayb, © Axbg
ker(dlzzc)) = Ayb; @ Abs ker(d ) = Abg

Remark 2.7.11. The proof of corollary [2.7.8 will involve some technical results which
use calculations from section Let C' be a homotopy I-word, ¢ € I and let  be an
arrow. For convenience we recall some notation introduced in definitions [[.2.16] and 2.3.3
The set Px~! (resp. 27 !P) consists of paths p € P with pz € P (resp. xp € P). There
is a canonical R-linear surjection 7, : EByeA(Hh(w)) yA — xA given by Wx(zy YAy) = TAy.
The set P[i] consists of all non-trivial paths ¢ € P with tail vc(i). The subset P[z, 1] of

P[i] consists of all o with 1(c) = z. Fix n € Z. Any element of P"(C') can be written as

m = Zie”al(n) (nib; + ZUGPM r40b;) with scalars n;, ry; from R.

Since A is point-wise rad-nilpotent modulo m we have mAe, C rad(Ae,) for each vertex v.
So we can assume each 7; lies in a subset S of R chosen such that #S5 N (r+m) = 1 for all

r € R. Let t € I. The elements m],;, [m,,, m|, , and [m,, in P(C) were defined by

M1 (ift+1€ I and lt__:lrtﬂ =a ld,)

m] zt
0 (otherwise)
) maB ((ft—1eland 'y =d,; ')
e = 0 (otherwise)
)., = > oePlutt1) Tot+106  (ift+1€ 1 and e = Ky ()
7 0 (otherwise)
m., > oeplpi—1) Tot—10C (ift =1 €L and I 'ry = dj 10
’ 0 (otherwise)

Assumption: We use the notation from remark without reference for the

statements and proofs of lemmas [2.7.12] and [2.7.14] and for the proof of corollary

278
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Recall corollary [1.1.17| (iii): for any p,p’ € P, if Ap = Ap/ and f(p) = {(p') (resp.
pA =p'A and 1(p) = 1(p’)) then p = p'.

Lemma 2.7.12. Let C be a homotopy I-word and t € pg'(n).

G) Ift—1€ I and I ry = y~ld,, then (=0 = Zaenyl Tot0 iff eh(a)m] il = 0

for any arrow a).

(ii) Ift+1€ 1 and lt‘jlrtﬂ =d ' then (ny =0=3 cp. 17040 iff [en@m 0

a,t+1 =
for any arrow a).

Proof. (i) Note that for any arrow a # y we have eh(a)m] _, = 0 by definition.

a,t
Suppose n; = Y epy-1Tot0 = 0, and so for each arrow a with h(a) = h(y) we have
eh(a)m] i1 € Ry = 0. If h(a) # h(y) then a # y which was the case considered above,

and so for any arrow a we have eh(a)mw = 0. Since h(y) = vo(t) and 1(y) = y, for any

a,t—1

1

o € P[t] with o ¢ Py~! we have r,;0v = 0. So, writing P[t] as the union of Py~! and

P[t] \ Py ! gives >oepft) Tot0y = 0. Since Ta(en(a)(Xgepy-1 T0,t0)Y) = D pepla Tot0Y

we have eh(a)mJ = ( for any arrow a. Consequently eh(a)m] ai1 = eh(a)mw a1 +

a,t—1

eh(a)mJ a1l = 0 for any arrow a.

Conversely suppose eh(a)m] = 0 for any arrow a. Again when a # y we

a,t—1

always have eh(a)nﬂ = 0 and so 0 = eh(a)mJatil = ZJEP[a,t] rot07y Which gives

at—1
ZUEP[a,t]ﬂPy71 rgt0y = 0. Since eh(y)m] gl = 0 we have ny = _ZUEP[y,t] Tet0Y €
rad(Ae,,()y) and so n; € m by corollary (iii). Since 7 lies in a transversal S with
SNm = 0 we have n; = 0 and hence zaep[%t] ret07y = 0 and so ZUEP[y,t]ﬂPy—l rer07y = 0.
Since Py~! = P[tJnPy~! is the union of P[y, )NPy~! and Ua;éy Pla, NPy~ !, altogether

we have

(EaePy‘l 7"07t0')"}/ = Za;ﬁy z:O'GP[a,t]ﬁPy—1 Tot0? + ZoeP[y,t]ﬂPy—l Topt0?y — 0

which shows ZUEPy*1 re40 = 0 by corollary [1.2.18] The proof of (ii) is similar, and
omitted. O
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Remark 2.7.13. Let us now recall some more notation as we did in remark 2.7.11] For
t € I the map vy : @jel Aeyo(j) — Aeyy () 1s given by ¢t(2j Aj€ua(j)) = Aeyq (). For
an arrow x the map 0y : @,ca2)—) A = Az is given by 0:(3°, A.2) = Az, For m
as above we let [m] = >, mb; and [m| = Zi,o rei0b;. This gave i (y[m]) = my
and Yy (y[m]) = >, re4yo by lemma [2.3.5( (i). Provided l;rllrtﬂ = v 1dy,) this also
gave: Og)(mlyyy ;) — m+17 € yrad(A) and bfy([m,,) = 0 by lemma (iii); and
(Nt =0=> " cp,-1To0 iff [eh(a)mmHl = 0 for any arrow a) by lemma

Lemma 2.7.14. Let C' be a homotopy [-word and n € Z. Then m € ker(d’]g(c)) iff
m = Zi@;(n) (i + > sepji T0,i0b;) where

() m=0=> ep,~1 7010 for anyt € pgt(n) witht —1 € I and I 'ry =~71d,, and

(i) ;e =0=3,cp,-1 Tot0 for any t € ug'(n) witht +1 € I and l;rllrtﬂ =d; 7.

Proof. Note that dp (m)=>_, d’]g(c)(evm) which is 0 precisley when d’]g(c)(evm) = 0 for
all vertices v. By lemmaone has dpc)(evm) = 0iff d; p(c)(en(zym) = 0 for all arrows
x with head v. Since m € P"(C) we have d, pc)(epzym) = 0 iff ¥s(dy poy(en@m)) =
0 for all s € pug'(n + 1). Hence by lemma [2.3.5 (i) we have that m € ker(dp o) iff

[eh(a)ma,s + eh(a)m] as = 0 for all arrows a and s € ual(n +1).

Suppose ¥s(dq, p(c) (h(aym)) # 0 for some arrow a and some s € ual(n + 1), and so
[eh(a)ma’s % 0 or eh(a)m] as #0. If [eh(a)mw #0then s —1 € I and IJ'r, = d; 7.
By lemma we also have 7,1 # 0 or ) cp, 175510 # 0. Writing t = s — 1
gives 1o (t) = n and _’_ll’rt_i_l = d; 7, and therefore condition (ii) doesn’t hold. Otherwise
[eh(a)ma’s = 0 and so eh(a)m] as # 0 which means s +1 € I and I 'r, = 'y_ldy, and again
writing ¢ = s + 1 shows condition (i) doesn’t hold. This shows that if conditions (i) and
(ii) both hold, then m € ker(dﬁ(o)).

Now suppose m € ker(d?g(c)), and so [eh(a)ma .t eh(a)m] ws =0 for all arrows a and

s € it (n +1). To show condition (i) holds we start by assuming ¢ € ug'(n), t —1 € T

and I 1y = y~td,. This gives eh(a)m] il = Gf(,y)(eh(a)m] and by lemma [2.3.5| (iii)

a,t—l)

we have Hf(v)([eh(a)mai_l) =0.
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By definition we have uc(t — 1) = n + 1 and so for all arrows a we get

en@)m] 4y 1 = Ot (en@m] 4, 1) = Oy ([enm , ,_y + en@m] ,,_1) =0

By lemma [2.7.12) this shows 1, = 3 cp, -1 70,10 = 0. We can similarly show condition (ii)
holds, by using lemmas (iv) and [2.7.12 O

Proof of corollary[2.7.8. Let i € ,ual (n). If the i*" kernel part is full then dp(c)(b;) = 0 by
definition. If the i*" kernel part is a left arm then dp(cy(f(7)b;) = f()b; € Af(7)zb;_, = 0.
Similarly if it is a right arm then dp(c)(f(7)b;) = 0. If it is a left peripheral arm then
dpc)(Bb;) = Bb = Bybi,1 = 0 . Again similarly if it is a right peripheral arm then
dp(cy(ab;) = 0. Altogether this shows ker(d?j(c)) 2 @ie“a%n) Ak()b;.

Now let m € ker(dg(c)), and write m as -, m;b; where we have m; = 0 +3_, cp( 70,0
(for m; and r,; as before) for each i. By lemma [2.7.14} for any t € ug'(n) we have
7 =0= Zaeowl rgt0 when t —1 € I and lt_lrt = w d,, and n=0= Zaepmfl Toto

when t + 1 € I and lt__,'_llrt_i_l = d,'x. It suffices to show m; € Ak(i) for all i.

If the i*" kernel part is 0 then (i—1 € I and I; 'r; = 77'd,) and (i+1 € T and li_+117°i+1 =

dy_lfy). By assumption this gives 7; = 0 = > cp, 17500 and n; = 0 = ) 1 Tot0

oePy
respectively (using lemma [2.7.14] as above). Since A(— vc(i)) = {y, 2} for any path
o € P[i] we have either f(o)y ¢ (p) 2 f(0)z or f(0)z ¢ (p) 2 f(0)y (as (Q, p) satisfies gentle

conditions) which shows m; = 0.

If (i+1€land l7:_+117”i+1 = d;ly) then 7, = 0 = depy_l T'et0 as above. Assuming

Ai # 0 means \; = ) 1 70 for some x € A(— vo(i)) with xy € (p). If the i

ocePx—
kernel part is a left arm then f(7)y € (p) and as (@, p) satisfies gentle conditions we have
x = f(7), which shows )\; € Ax(i). If the i*' kernel part is a left peripheral arm then
(i—1¢ I and By € (p)) which again means =  and so m; € Ak(i). The proof is similar

in case the i*® kernel part is a right arm or a right peripheral arm, which altogether proves

ker(dg(c)) - @ie“al(n) Ak(i)b;, as required. O

We can now see the desired proof of lemma
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Proof of lemma[2.7.5, We are assuming the direct sum N of string and band complexes
in K_

min

(A-proj) has bounded cohomology. We only prove (i) and (ii). The proof of (iii)

is similar to the proof of (ii).

(i) Suppose M is a right bounded complex of projective modules. Then M is K-
projective by example [3.3.18] Suppose also the cohomology of M is 0 in every degree.
Then the zero map from M to the zero complex is a quasi-isomorphism, and hence a

homotopy equivalence by lemma [3.3.19

This shows any indecomposable object in K. (A-proj) must have non-zero cohomology

min
in some degree. Any band complex is bounded and (indecomposable, and hence) non-
zero by theorem [2.0.1] Hence any band complex has non-zero cohomology in some
degree. Since N is a right bounded complex with bounded cohomology, the complex

Dses P(E(B),V?)[~s(B)] (consisting of the band complexes arising in N) must be a

bounded complex of projectives.

(ii) Fix 0 € S. Here we assume I,y 2 N. Suppose firstly that there is a sequence
(in | n € N) € I such that the it kernel part is full for each n. If {14(,)(in) | n € N} is
bounded then A(c) doesn’t have controlled homogeny, and so N is not finitely generated
for some 7, contradicting the assumption that N lies in KT (A-proj). Hence {pa(x)(in) |
n € N} is unbounded. Without loss of generality suppose N lies in K1 (A-proj), and so
{#1a(0)(in) | n € N} does not have an upper bound.

This means there is a subsequence (i, | 7 € N) of (i, | n € N) such that p () (in()) <

A-proj) we have im dN C rad(N) and hence
( l/;f(o')(ln(t)) t(a)) f r

114(o) (in(r41y) for all 7. Since N lies in CF

min

(d/;\'/vA(o') (’Ln(t))+t(a) )

bin(t) ¢ im

each t, which contradicts that N has bounded cohomology.

. By corollary [2.7.8 we have bin(t) € ker

Hence we have shown that there are no sequences (i, | n € N) € IN such that the it}
kernel part is full for each n. Choose | € I such that the i*" kernel part is not full for
all 4 > [. This means A(o)s; = df(vll)wldf(%)vg ... for a sequence of paths ; € P where
f(v;)1(vj+1) ¢ P for each j > 1. Now choose ¢ € Z such that HP(P(A(0))[—t(c)] = 0 for

all p > q. Choose t > [ such that p4(,)(i) > q + t(o) for each i > t.
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If there is some j >t — [ where 7; has length greater than 1, then dp(4(s))—t(0)] (blﬂ-) =

Yjbi4j+1 and so f(v;)byy 41 ¢ im(dy). By corollary we have ()b, ;41 € ker(dy),
which contradicts that HP(P(A(o))[—t(o)] = 0 for all p > q.

Hence +; is an arrow for each j >t —I. Now let aj = 7,1 for each integer h > 0.
Since @ is finite there is some h > 0 such that op, = ap4, for some n > 0, which means
ap = apiq for each h > 0 since (Q, p) satisfies gentle conditions. Altogether we have

A(0)st = ((ay Y dg,, - .. day ) ™1™, as Tequired. O
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2.7.3 Singularity Categories.

Assumption: In section we let " be a unital (left and right) noetherian ring.

We now explain how some of the calculations above seem consistent with a theorem (2.7.21))
of Kalck.

Definition 2.7.15. [13, Definition 1.2.2] (SINGULARITY CATEGORIES) By a perfect
complez we mean an object P of D’(I'-mod) such that P is a projective module for
each ¢ € Z. The singularity category (OIEL the stable derived category) of T' is denoted
Dging(I'), and defined as follows.

The objects in Dgng(I') are the same as the objects in the derived category
D¥(I'-mod). For objects X and Y of Dging(I') we consider the set Hom_ e (X,Y) of

all (s, f) € Hompo(prmoa)(X,Y) such that (s, f) = (s”, ) o (s, f’) for some (s”, ") €

Hompn (rmea) (P Y) and (8, ) € Hompn rmea) (X, ) where P is a perfect complex. We

then define homomorphisms in Dging(I") by setting

HomDsing(F) (X7 Y) = Home(F-mod) (X7 Yv)/Horn*perfH (X7 Y)

(ORBIT CATEGORIES) [44, §1] Let t € Z and consider the automorphism [t]
on D’(I-mod). The orbit category of D°(I'-mod) with respect to [t] is denoted
Db(T-mod)/[t], and defined as follows. The objects in D°(T-mod)/[t] are the same as the
objects in D?(I'-mod), bounded complexes of finitely generated I'-modules. For objects

X and Y of D?(I'-mod)/[t] we let

Homps (r-mod) /1) (X+Y) = Biez Homps (rmoa) (X, Y[¢i])

where the composition of f = >, fi € Homps(rmoa)/(X,Y) and g = 37,9 €
Hompb (rmod) /(Y Z) is defined as gf = 3> h; where for each i we let h; =
> ezltl(gi-0) fi-

'In the terminology of Buchweitz.
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Example 2.7.16. Let I" be the field k, considered as a (one-dimensional) k-algebra. By
example [1.5.11| indecomposable objects in D’(k-mod) are complexes of the form

kG)= - 0 0 k 0 0

where k (considered as a one-dimensional k vector space) lies in degree j € Z. This shows
that every object in Db(k—mod) is perfect, and so Dging (k) is trivial. For j,j’ € Z suppose
j =17 +tn for somen € Z. Let f =>_ f; where f; = 0 unless i = j, in which case we let
fj = idy(j) (in Db(k-mod)) This defines a homomorphism

f € Homps (1 _moa) (k(5), k(7)) = Homps (1 _mea) (K (1), k() [-nt])
C @B;ez Hompe (-moa) (k(5), k(5" [t]) = Hompo 1-moa)/ 1 (k(5), k(5))

Similarly there is a homomorphism g € Hompb(;.moay /1 (F(5'), k(5)) where g; = 0 unless
i = j', in which case we let g;; = idg(jny- By definition gf = »; h; and we have h; = 0 unless
i = j +j' in which case hj;; = [tj]g; f; which is the identity on k(j) in D°(k-mod)/[t].
Similarly we can show fg is the identity on k(j') in D°(k-mod)/[t] and hence k(5) ~ k(j").
Similary one can show that, if ¢ { j — j' then Hompb(ymoa)/ 1 (k(7), k(")) = 0. Clearly the
objects k(j) are all indecomposable, and so we have that {k(0),...,k(t — 1)} constitutes

a complete list of pairwise non-isomorphic indecomposable objects in D?(k-mod)/[t].

Definition 2.7.17. (AcycrLic COMPLEXES) The acyclic category of T' is denoted
Kacyc(I'), and defined to be the full subcategory of the homotopy category K(I'-mod)

consisting of complexes P where P? is a projective module and H*(P) = 0 for all i € Z.

Proposition 2.7.18. If M is an indecomposable object in Kacyc(I') then M ~ P(C') where
C' has the form *°(a;,

Ady, ..oy oy ) for some full cycle oy ... ay, of zero-relations.

Proof. By theorems[2.0.1]and [2.0.5] M is isomorphic to a shift of a string or band complex.
As we saw in the proof of lemma any (shift of any) band complex has non-zero
cohomology in some degree, and so M ~ P(C) for some homotopy word C. By corollary

2.7.8| we have im(d’]{cl,)) = @i@?(n) Ak(i)b; for any n € Z.




Chapter 2. Classification of Complexes for Complete Gentle Algebras. 224

As in the proof of lemma by case analysis one can show that there is no i € I such
that the i*" kernel part is full. Similarly one can then show that (Cy< is direct acyclic and
(C<o)™! is inverse acyclic) or (Co< is inverse acyclic and (C<g) ™! is direct acyclic). [

We are ready to state part of a theorem due to Buchweitz.

Theorem 2.7.19. [13| Theorem 4.1.1] If the I'-modules rI" and I'r have finite injective

dimension then there is an equivalence of categories Kacyc(I') = Dging(I').

To apply this theorem we require the following theorem due to Geifl and Reiten.

Theorem 2.7.20. [31], 3.4 Theorem] If " is an Assem-Skowroriski gentle algebra over k

then rI" and I'v have finite injective dimension.

Hence to study Dging(I") we study Kacye(I'). Let us see why this theorem has relevance

in the context of gentle algebras.

Theorem 2.7.21. [41] p.3, Theorem 2.5 (b)] Let I" be an Assem-Skowroriski gentle algebra

over k. Then there is a (triangle) equivalence of categories

Dsing(T) = [1eec(a) P’ (k-mod)/[L(c)]

where

(i) C(A) is the set of equivalence classes of repetition-free cyclic paths in A with full

relations, and

(ii) L(c) denotes the length of any path providing a representative for the class c.
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Final Thoughts and Conjectures.

In chapter 1 we introduced quasi-bounded special biserial algebras, and restricted our
focus to quasi-bounded string algebras, quasi-bounded gentle algebras and complete gentle
algebras. These notions were based on their counterparts from the study of finite-

dimensional algebras, which leads the author to the following question.

Problem 2.7.22. What known results about Pogorzaly-Skowronski special biserial
algebras (resp. Butler-Ringel string algebras, resp. Assem-Skowronski gentle algebras)

generalise to all quasi-bounded special biserial (resp. string, resp. gentle) algebras?

The main results of this thesis seem to suggest that the answer to this question is non-
empty. At the end of chapter 2 (2.7) we considered consequences of our main results,
in the context of derived categories. We conjecture that there is more to explore using

descriptions such as corollary

Conjecture 2.7.23. There is a way to calculate the cohomology of any string or band
complex in terms of string modules and band modules. Furthermore, this calculation can

be used to classify finitely generated modules.

There is already positive evidence toward this conjecture.

Theorem 2.7.24. [16, Theorem 2.8] Let A be an Assem-Skowroriski gentle algebra over
an algebraically closed field. Then the cohomology complex of a string or band complex is

a direct sum of string and band modules.

Chapter 2 finished with a discussion about singularity categories. Theorems [2.7.19

2.7.20] and [2.7.21] should together motivate the following conjecture.

Conjecture 2.7.25. There is a class of complete gentle algebras A, strictly containing

the Assem-Skowronski gentle algebras, such that
(i) AA and Ap have finite injective dimension, and

(ii) there is an equivalence of categories Kacye(A) = [eee(n) Db(k-mod)/[L(c)].
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Chapter 3

Appendix.

3.1 Abelian Categories.

We recall some notions from homological algebra. We follow: books by Aluffi [I] and
Freyd [26] and papers by Bergman [10] and Krause [45] for ideas about abelian categories;
and the books by Gelfand and Manin [33], Neeman [52], Weibel [64] and Zimmerman [67]

for ideas about triangulated categories.

Assumption: In section by a category C we mean an additive and locally small

category.

Remark 3.1.1. Let A be a pre-abelian category, that is an additive catgeory (see [I,
p.561, Definition 1.1]) where every arrow 6 : X — Y has a kernel k(0) : ker(f) — X and
a cokernel c¢(0) : Y — coker(#) (see [I, p.561, Definition 1.2]). We write im(f) — Y for
the kernel of its cokernel, which we call the image. Dually we write X — coim(6) for the

cokernel of the kernel of 6, which we call the coimage (see [Il, p.572, Definition 1.15]).

Since 6k(#) = 0 the universal property of the coimage gives a unique morphism ¢ :
coim(f) — Y such that pc(k(f)) = 6. Since c(0)pc(k(f)) = 0 and c(k(#)) is epic (consider
the dual of [Il, p.562, Lemma 1.4]) we have c¢(6)¢ = 0 and so the universal property of the
image gives a morphism 6 : coim(#) — im(#) for which 6 = k(c(6))fc(k(0)).
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Altogether this gives a commutative diagram of the form

Y ) coker(6)

c(k(9)) k(c(9))

coim(f) ——— im(0)

Now suppose ) : Y — Z is another arrow such that 16 = 0. Since k(c(8)) = foc(k(6))of~*
we have 1k(c(f)) = 0 and so the universal property of the kernel of ¢ gives a unique arrow
h(0,v) : im(0) — ker(t)) for which k(c(0)) = k(¢)h(0,), and hence h(d,)) is monic. This
construction and notation will be used repeatedly in what follows. We say the sequence
X oy Y7 is evact at Y if h(0,) is epic, or equivalently, if c(f)k(y)) = 0. A
longer sequence is said to be exact if it is exact at every object which is not at the start

or the end of the sequence.

Assumption: In section We assume A is an abelian category (see [I, p.564, Definition
1.6]) and use the notation of remark This means that

(a) if 0 is monic (equivalently [I, p.574, Exercise 1.9] if k(f) is 0 — X) then c(k(0))

is an isomorphism; and

(b) if € is epic (equivalently if ¢(f) is Y — 0) then k(c()) is an isomorphism (see
[64, Definition 1.2.2]).

Under this assumption (that A is an abelian category) # must be an isomorphism

(see [1, p.570, Theorem 1.13]). In practice A will be I'-Mod for some ring T".

3.1.1 Sums and Intersections.

We now introduce some terminology following from Freyd [26].

Definition 3.1.2. [26, pp.19, 20 and 42]. For monics m : M — X and n : N — X we
write m < n (and sometimes M C N) and say m is contained in n, or n contains m,
provided there is an arrow a : M — N for which m = na. In this case @ must be monic

and uniquely determined.
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Given a set I and a monic «; : T; — X for each i € I we say a monic 8 : T — X is a
supremum (resp. infimum) of the a;’s provided «; < 8 (resp. 5 < «;) for each i, and for

any monic vy : 7" — X with a; < (resp. v < ;) for each i, we have 8 < v (resp. v < j).

If m < n and n < m then the map a from above is an isomorphism, in which case we
write m ~ n and say m and n are equivalent. By a subobject of X we mean the equivalence
class m of a monic arrow m : M — X. We say X is simple if there are exactly two distinct
subobjects of X, namely the equivalence classes id and 0 of the identity id : X — X and
0 — X. A subobject m of X (represented by m : M — X) is called maximal provided

the cokernel coker(m) is simple.

Lemma 3.1.3. (see [64, p.426, Exercise A.4.4]) Let I be a set and m; : A; — A be a

monic arrow for each i € I. Then
i) if A is cocomplete a supremum % : ) A; — A of the m;’s exists and is unique, and
J
(ii) iof A is complete an infimum N : (| A; — A of the m;’s exists and is unique.

Definition 3.1.4. Recall the notation used in the statement of lemma We say
A is the sum over the A;’s, and write A =~ ) A;, provided ¥ is epic. We say A is the

intersection over the A;’s, and write A ~ () A;, provided N is epic.
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3.1.2 Splitting and Projectivity.

Definition 3.1.5. (SUPERFLUOUS SUBOBJECTS) Let A be an abelian category. A
subobject s of X (given by s : T — X) is said to be superfluous if, for every subobject t
of X (given by t: T — X),if S+ T ~ X then t = id.

Lemma 3.1.6. If f : X — Y is epic, then f is essential if and only ker(f) defines a

supurfluous subobject k(f) of X.

Remark 3.1.7. Recall an arrow r : V. — W (resp. s : W — V) is called a retraction
(resp. section) if rs = id for some arrow s : W — V (resp. r: V — W). In this case
consider the direct sums ker(r) ®W and W @ coker(s) together with their canonical arrows

giving the diagrams

Lk Pw

ker(r) ker(r) & W : w
Tk Tw
jw Tc
w W @ coker(s) coker(s)
quw 29

Since rs = id we have r(id — sr) = 0 and so the universal property of the kernel gives
an arrow t : V' — ker(r) such that id — sr = k(r)t. This gives k(r)tk(r) = k(r) and so
tk(r) = id as k() is monic. Similarly k(r)ts = 0 and thus ts = 0.This gives an isomorphism
a:V — ker(r) @ W given by a = iy,7 + 1t with inverse 8 = sp,, + k(r)m,. Dually, as
(id — sr)s = 0 there is an arrow w : coker(s) — V such that id — sr = uc(s), c(s)u = id
(as c(s) is epic) and ru = 0. Again there is an isomorphism v : V. — W @ coker(s) given

by 7 = Juwr + tec(s) with inverse 6 = sqy, + ume.

We aim to generalise well-known results about projective covers, such that those given

in the book by Lam [48, Section 24], to the setting of an abelian category.

Definition 3.1.8. (EsSENTIAL EpicS, PROJECTIVE COVERS) An epic arrow f: X — Y
in A is said to be essential if, for any arrow r : R — X, if fr is epic then r is epic. A
projective cover of X consists of a pair (P, ¢) where P is a projective object and ¢ : P — X

is an epic arrow which is essential.
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For example if R is a projective object then (R,id) is a projective cover of R.

(ENouGH COVERS, ALL ITS RADICALS) We say A has enough projective covers if there
is a projective cover (P, ¢) of any object X in .A. We say that an object X of A has a
radical if the collection of all maximal subobjects X; forms a set (indexed by i € I )E| and

the product [, ; coker(X; — X)) exists in A.

(NotaTION: If X has a radical in A then the radical of X is denoted Nx : rad(X) — X
and defined as the infimum (| X; — X of the monics X; — X. We say A has all of its

radicals if every object in A has a radical.

Example 3.1.9. Let A be a noetherian ring, and so A-mod is an abelian subcategory of

A-Mod which has all of its radicals.

Consequently (see for example [48, 24.16 Theorem]) if A is semiperfect (see example
3.1.36)) every finitely generated A-module has a projective cover, and so A-mod has enough

projective covers.

Lemma 3.1.10. [2, 17.17 Lemma]ﬂ Let o : L — X be an epic arrow where L is projective,
and let (P, ¢) be a projective cover of X. Then there is a retraction 6 : L — P such that

0 = p.

Example 3.1.11. Recall (say from [48] p. 336, Definition 23.1]) that A is perfect if it is
semilocal and rad(A) is T-nilpotent (that is, for any sequence aj,as,--- € rad(A) there is

somen > 1withay...ap,=0=a,...a1).

Consequently (see for example [48, 24.18 Theorem]) every A-module has a projective

cover, and so A-Mod has all of its projective covers.
Proposition 3.1.12. If A has all of its radicals and f : X — Y is an arrow then there

is @ monic arrow fraq : rad(X) — rad(Y') for which Ny fraqg = fNx.

The next result is a key step in proving corollary [3.2.25] which is a vital reduction used

in chapter 2.

!Note that this condition holds provided A has a generator (see |26, p. 69, Proposition 3.35]).
2The statement in [2] is for the case A = A-Mod for a ring A.
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Due to its importance we give a proof which is dual to the discussion before [45, Lemma

B.1].

Lemma 3.1.13. Let A be an abelian category which has enough projective covers and all
of its radicals. If d : L' — L is an arrow between projectives there exist isomorphisms
a:L—>ROW and o/ : L' = R® W' such that ad = (id®v)a and v : W — W is an

arrow with im(v) C rad(W).

Proof. Let X = coker(d) and ¢ = c(d). Let (W, ¢) be a projective cover of X, and so by
lemma [3.1.10] there is a retraction 6 : L — W such that ¢8 = ¢. Let A be the section for
which ) = id.

By remark there is an arrow t : L — ker(6) such that tk(f) = id and t\ = 0, and an
isomorphism « : L — ker(0) @ W given by o = 4,0 + 1t (with inverse S = Apy, + k(0)my)

where we label the canonical maps of the direct sum ker(0) & W as

ker(0) - ker(6) & W ——— 1%

Tk iw

Since c(d)k(0) = ¢6k(0) = 0 by the universal property of the kernel k(c(d)) : im(d) — L
there is a unique arrow 7 : ker(6) — im(d) for which k(f) = k(c(d))n. Note that
tk(c(d))n = id and so the composition 7 = tk(c(d)) is a retraction. In particular
td = 7dc(k(d)) is an epimorphism. Considering the arrow 7 and the epic de(k(d)) by
the projectivity of ker(f) there is an arrow ¢ : ker() — L’ with n = dc(k(d))e. Since

tk(c(d))n = id we have tde = id and so ¢ is a section.

By remark there is an arrow u : coker(e) — L’ with c¢(¢)u = id and tdu = 0, and an
isomorphism ' = eqy + um, (with inverse o = jotd + t.c(€)) where we label the canonical

maps of the direct sum ker(0)® as

ker(6) g ker(0) & coker(e) = coker(e)

o te

So far we have the following diagram in A.



Chapter 3. Appendix. 233

ker(6) & coker(e) ker(0) & W

Let R = ker(f) and W’ = coker(e), and let Z: R&W’' — R®W be the arrow defined by
the composition Z = adf’. From the above we have de = k(c(d))n = k() and so Ode = 0.
We also have tdu = 0 and tde = id, which shows = = i,,0dun. + txqg. Let v = 8du. Since
¢v = 0 the monic h(v, ¢) gives im(v) C ker(¢). Since (P, ¢) is a projective cover by lemma
k(¢) defines a superfluous subobject of W. This means that k(¢) < m for every

maximal subobject m : M — W and so im(v) C rad(W) as required. O

For the purposes of discussing theorem [1.5.22] we need to introduce the stable module

category. To this end we follow Happel [34] and Zimmerman [67].

Definition 3.1.14. (EXTENSION CLOSURE) Let B be a full and additive subcategory of
an abelian category A. We say B is extension-closed if, for any exact sequence 0 — X —

Y - Z —0in A, if X and Z are objects in B, then so too is Y.

[34, p.10] (PrROPER MoONICs AND Epics) Let & denote the class of exact sequences
s=0—->X =Y - Z — 0 where X, Y and Z are objects in B. If f: X — Y is a
monomorphism (resp. g : Y — Z is an epimorphism) such that s =0 —> X - Y — Z — 0
lies in B then we say s begins with f (resp. ends with g). Suppose B is extension-closed in
A. A monomorphism f: X — Y (resp. epimorphism g : Y — Z) is called proper if there

is some s € S such that s begins with f (resp. ends with g).
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(S-PROJECTIVES INJECTIVES) Suppose B is extension-closed in 4. An object X in
B is called S-projective if, for all proper epimorphisms 7 : M — N and any morphism
n : X — N, there is an arrow m : X — M such that 7m = n. X is called S-injective
if the dual property holds: for all proper monomorphisms ¢ : M — N and any morphism
m : M — X there is an arrow n : N — X such that m = nt.. We say B has enough
S-projectives if, given any object M in B there is a proper epimorphism P — M where P
is S-projective in B. We say B has enough S-injectives if, given any object M in B there

is a proper monomorphism M — I where [ is S-injective in B.

(FrROBENIUS CATEGORIES) Suppose B is extension-closed in A. For B and S as above
we call B Frobenius if B has enough S-projectives, B has enough S-injectives and the
S-projectives coincide with the S-injectives (that is, each S-projective is S-injective, and

each S-injective is S-projective).

(STABLE CATEGORIES) The stable category B of B is defined as follows. The objects
in B are the same as the objects in B. For objects X and Y in B (and hence B) consider
the set -P-Hompg(X,Y) of f € Hompg(X,Y) such that f = gh where the domain of
g (codomain of h) is S-projective. It is straightforward to show that -P-Hompg(X,Y") is
closed under addition, and so we let Homp(X,Y") be the quotient, denoted Homg(X,Y') =
Homp(X,Y)/-P-Homp(X,Y). To see that composition is well defined see the first part of
[67, Remark 5.1.2].
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3.1.3 Diagram Chasing and Homology.

In [I0] Bergman presented an idea which captures the notion of diagram chasing in an
abelian category. For application later we shall require some well-known results, such as
[64, Snake Lemma 1.3.2] and [64, Horseshoe Lemma 2.2.8], the proofs of which use this

idea. These results follow from [I0 1.7, Salamander Lemma], which we now outline.

Definition 3.1.15. For an object A of A a diagram of squares through A is a commutative
diagram of the form
X-*-p
Y B
QoA oy

U p
N-—2sYy
where pd = 0 and 98 = 0. Let ¢ = pu and 6 = 6.

Remark 3.1.16. Fix a diagram of squares through an object A in A using the notation
of definition [3.1.15, By the universal property of the kernel there are arrows b : im(6) —
im(B), d : im(f#) — im(d), m : ker(u) — ker(y)) and n : ker(n) — ker(y) for which

k(c(0))d =k(c(0)) = ( (8))b, k() = k()m and k(n) = k(¢)n. Recall (from [3.1.1)) there
are monics h(d, ) : im(d) — ker(u) and h(B,n) : im(B8) — ker(n) for which k(u)h(d, u) =

k(c(8)) and k(n)h(5,n) = k(c(B)). Let 2 = h(6, ) and y = h(B,n).

Let i5 : im(0) — im(f5) +im(J) and ig : im(B) — im(5) +im(d) be the canonical monics
of the sum im(f) 4+ im(d) for which k(c(8)) = Xgsig and k(c(d)) = 3 sis (where Xg 5 :
m(f3) +im(6) — A is the supremum of k(c(3)) and k(c(d))). Let j, : ker(p) Nker(n) —
ker(p) and jy : ker(u) N ker(n) — ker(n) be the canonical monics of the intersection
ker(u) Nker(n) for which k(u)j, = Ny = k(n)jy, (where Ny, : ker(p) Nker(n) — A is the
infimum of k(u) and k(n)).

Since Ny, is an infimum there must be a unique monic ¢’ : im(#) — ker(u) N ker(n)
for which j,0" = xd and j,0" = yb. Similarly there must be a unique monic ¢’ : im(J) +
im(f3) — ker(¢) for which ¢'is = ma and 9'ig = ny.
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Definition 3.1.17. (see [10, Definition 1.1])
Consider a diagram of squares through A in the notation from definition [3.1.15] above.

(VERTICAL/HORIZONTAL HOMOLOGY, NOTATION: AA, A<) The vertical homology and
horizontal homology at A are defined as the quotients AA := coker(y) = ker(n)/im(/3) and
A~ := coker(x) = ker(p)/im(J) respectively.

(RECEPTOR/DONOR, NOTATION: YA, Ax, A<) The receptor and donor at A are
defined as the quotients © A := coker(0") = ker(p) Nker(n)/im(f) and A5 := coker(y)') =
ker(¢)/(im(d) 4+ im(3)) respectively.

Lemma 3.1.18. (NoraTIiON: A[O, <], A[<,0], A[O, A], A[A,O])

[10, Lemma 1.2] Given a diagram of squares through A in the notation from definition

and remark there are arrows A[O, <], A[=<,0], A[O, A] and A[A, O] defining

the following commutative diagram in A

HA

N

A< AA

A[«u\‘\ /[m]

Ap

Proof. Since c(y)jn = c(y)yb = 0 there is a unique arrow ¥y’ : coker(#’) — coker(y)
for which y'c(0’) = c(y)j,. Similarly there is a unique arrow 2’ : coker(§’) — coker(z)
for which 2'c(¢') = c(x)ju. Since c(¢')mz = c(¢')Y'ig = 0 there is a unique arrow
z” : coker(x) — coker(¢)’) for which c¢(¢)m = a”c(x). Similarly there is a unique arrow

y" : coker(y) — coker (1)) for which ¢(¢')n = y"c(y).

This gives k(¢)mj, = Nuy = k(¥)nj, and k() is a monic so mj, = nj,. Hence

",/

2"2'c(0') = 2"c(x)ju = c(¢")myj, and similarly y"y'c(6") = c(¢')nj, and so as c(¢’) is epic

we have z"'2' = ¢/"y/.

We let A[O, <] =2/, A[<,0] = 2", A[O,A] =y and A[A,0] =" O
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Definition 3.1.19. For an arrow x4 : A — M in A a horizontal digram of squares through

w1 is a commutative diagram of the form

3

X-—%-p-—~°--B

v lﬁ lc

QA toym-2ow
ol
N2y “.L

where 46 =0, 78 =0, op =0, pp =0, yaa = 0 and vA = 0. Recall § = fa and ¥ = An.
We also let x = (€ and ¢ = vp.

Proposition 3.1.20. Given a horizontal diagram of squares through p in the notation

above, there exist arrows i(3,¢), k(n, p) and H*(u) such that the diagram

h(8,n) c(h(B,m))

ker(n) coker(h(3,7))
i(ﬁ,C)l k(TI,P)l J{H*(u)
ker(p) coker((C, p))

h(¢,p) c(h(¢p))

is commutative. Furthermore, H*(u) is the unique such arrow making the right hand

square commudte.

Note that a horizontal diagram of squares of this form defines two separate diagrams of

squares around A and M.

Lemma 3.1.21. [I0, Lemma 1.4] Given a horizontal diagram of squares through p in the

notation above, there is an arrow (u, A) : Ag — B M such that:
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(i) the following diagram commutes

HA UM
A[iy W{m,@ %?,4
* M[O,A]
A< Ap W Mx M~
Alx,O]
Al<,0] {,4) Mx,0] M[<,0]
An Mg

(1) (1, A) A[<, 0] = 0 and (A<, O])k({g, 4)) = 0;

(i) M3, <] (u, A) = 0 and o((p, A))k(M[D, <]) = 0;

(iv) M[x, OIM[D, A] (1, 4) = 0 and c(M[D, A] (1, A))k(M[4,O]) = 0; and

(v) (1, A) A[A, OJA[D, A] = 0 and c(A[D, ADk((, A) A[x,O]) = 0.

We can now yield a dual statement by taking advantage of some symmetry. For an

arrow 17 : A — N in A a vertical digram of squares through n is a commutative diagram

of the form

2. p

S

v B

Yy B Vs

B

QO

v n P
A

2 N2y

<

V—sK

-~

Q

where ¥p = 0, kp = 0, Ao = 0, ud = 0, nB = 0 and vy = 0. Note that this is just a
reflection of the diagram above in the diagonal axis. There are dual statements of lemma

and proposition We now show how one uses these results.

Corollary 3.1.22. Given a horizontal diagram of squares through 1 : A — M, together
with vertical diagrams of squares through 8 : P — A and p: M — 'Y, yielding a diagram
of the form
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there is an exact sequence of the form

PD A~ AD D]\4 M~ DY

given by (certain compositions of ) the solid arrows in the schema

There is a dual result to corollary [3.1.22] Corollary [3.1.22] together with this dual result,
are the first and second parts of [I0, 1.7 Salamander Lemmal] respectively. [10, Corollary

2.1] and [10, Corollary 2.2] are special cases of these results.
Using these special cases, Bergman gives proofs of the following three results.

Lemma 3.1.23. [67, Schanuel’s Lemma 1.8.12] If P and P’ are projective objects in A
and a: P — M and o/ : P' — M are epic arrows in A then ker(a) @ P’ ~ P & ker(d).
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Lemma 3.1.24. [64, Snake Lemma 1.3.2] Suppose we have a commutative diagram in A

with exact rows, and of the form

Then there is an arrow § : ker(y) — coker(«) such that the canonical sequence

ker(a) — ker(5) —— ker(y) —— coker(a) —— coker(/3) — coker(~y)

18 exact.

Theorem 3.1.25. [64, Theorem 1.3.1] If

is an exact sequence in C(A) then there is a collection of arrows wy, : Hy(Z) — Hp+1(2)

(n € Z) such that

Wn—1

o H, 1(2)

is an infinite exact sequence in A.

For a proof of this result see [64], pp.13,14]. Note that the arrows w, are usually described

as the induced arrows for the long exact sequence on homology.



Chapter 3. Appendix. 241

3.1.4 Adjunctions, Limits and Colimits.

We recall some notions about limits and colimits, and then extend them using notions

introduced by Spaltenstein [60] for later use.

Remark 3.1.26. Fix a category B, a small category I and write B! for the category of
functors from I to B (see [64, Functor Categories 1.6.4]). We say B has all limits (resp.

colimits) of shape I if the limit (resp. colimit) of every diagram of shape I exists in 5.

In this case there is a functor lim : B/ — B (resp. colim : B — B) taking any diagram
to its limit (resp. colimit). By [64, Application 2.6.7, Exercise 2.6.4 and Variation 2.6.9]
there is a diagonal functor A : B — B! for which, when lim (resp. colim) exists, there
is an adjoint pair (A,lim) (resp. (colim, A)). In this case, by [64, Theorem 2.6.1] if B is
abelian then lim is left exact when it exists, and colim is right exact when it exists. We
say B has all its limits (resp. colimits) if for every small category I it has all limits (resp.

colimits) of shape I.

Definition 3.1.27. [64, Definition 2.6.13] Let I be a small category with ob(I) # 0. We
say I is filtered (resp. cofiltered) if for every pair of objects X and Y

(a) for any objects ¢ and j there is an object k and arrows i — k and j — k (resp. k — @

and k — j), and

(b) for any arrows u and v of the form ¢ — j there is an arrow w : j — k (resp. t : h — 1)

with wu = wv (resp. ut = vt).

A filtered colimit (resp. cofiltered limit) is the colimit (resp. limit) of a diagram of shape

I where I is some filtered (resp. cofiltered) category.

Example 3.1.28. If ] is a partially ordered set we can consider the category (which is
also denoted I) whose objects are elements of I, and where there is a unique arrow i — j
whenever ¢ < j. Because of this uniqueness, condition (b) holds from definition
Hence I is filtered (resp. cofiltered) iff every pair of elements in I has an upper (a lower)

bound in 1.
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Definition 3.1.29. We call a partially ordered set I directed if it is filtered when
considered as a category. In this case, a direct (resp. inverse) I-system in a category B is a
diagram in B of shape I (resp. I Op)lﬂ If it exists, the direct limit (resp. inverse limit) of a
direct system F': I — B (resp. inverse system G : I°P — B) is the colimit colim(F') (resp.
limit lim(G)) of this diagram. In this case we change notation to Iﬂ(F) := colim(F")
(resp. Lim(F) := lim(F)). We say B has all its direct (vesp. inverse) limits if for every
directed partially ordered set I it has all colimits (resp. limits) of shape I.

We say that a covariant functor G : ) — Z preserves small direct (resp. inverse) limits
if for every direct system F' : I — ) (resp. inverse system F : [P — ) ) whose direct
limit Lim(F') (resp. inverse limit Lim(F)) exists in Y, the direct limit Lim(GF) (resp.
inverse limit @(GF ) exists in Z, and there is an isomorphism G(Lim(F)) — Lim(GF)

(resp. G( L ) — L (GF))

We say that a contravariant functor G : Y — Z transforms small direct (resp. inverse)
limits into small inverse (resp. direct) limits if for every direct system F' : I — ) (resp.
inverse system F': I? — ) ) whose direct limit Lim(F') (resp. inverse limit Lim(F
exists in ), the inverse limit L (GF) (resp. direct limit j(GF )) exists in Z, and there
is an isomorphism G(ﬂ ) — @ (GF) (resp. G(@( ) — Iﬂ(GF))

3that is, a functor of the form I — B (resp. I°? — B)
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3.1.5 Rings with Enough Idempotents.

Definition 3.1.30. [27, p.95] (UniTAL, LocAL AND COLOCAL MODULES) Let I' be a
ring, possibly without a unit. We say a I'-module M is unital if 'M = M. We say M is

local (resp. colocal) if it has a unique maximal (resp. simple) submodule M’.

(LocAL AND SIMPLE IDEMPOTENTS) An idempotent e € I' is called left (resp. right)
local if the left (resp. right) I-module T'e (resp. el') is local with unique maximal
submodule is rad(I")e (resp. erad(I')). We say e is left (resp. right) simple if it is left
(resp. right) local and rad(I')e = 0 (resp. erad(I') = 0). An idempotent which is left and

right local is called local. An idempotent which is left and right simple is called simple.

(CoMPLETE SETS OF IDEMPOTENTS) We say I' has enough idempotents if there is a
set E = {e; | i € I} of idempotents for which I' = @, T'e; = @, e;,I'. In this case we
call E a complete set of (orthogonal) idempotents. Furthermore, if each idempotent in
FE has a given property we give the same name to E. For example we call F left local if
each idempotent in E is left local. We write [-MOD for the category of all modules and
I'-Mod for the full subcategory of I'-MOD consisting of unital modules.

(LocAL UnNiTs) Note that if I" has a complete set of idempotents E (as above) then any

a € T' can be written as a finite sum a = ) a; where oy € e;l'e; for each 4,5 € 1.

ijel
Let I(«) be the finite subset of I consisting of all [ € I such that «; # 0 for some i or

ag; # 0 for some j. By definition we have a;; = eqyj = ayjeq for any 4,j € I where

eq = Zlel(a) e;. More generally for elements ai,...,aq € I' for each ¢ with 1 <t < d we
have a; = ea; = ase where we let I(ay,...,aq) = ", I(a;) and e = 2oiel(ar,...ay) €1- We
call e the local unit for the elements ay, ..., aq.

Example 3.1.31. Let Q be any quiver. Note that RQ = @, RQe, = @, e, RQ where v
runs through all the vertices. Hence R(Q) is a ring with enough idempotents, and so any

element z € RQ defines a local unit.

Definition 3.1.32. (RADICAL, SOCLE) By the radical rad(M) (resp. socle soc(M) ) of a

module M we mean the intersection (resp. sum) of its maximal (resp. simple) submodules.
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(ESSENTIAL AND SUPERFLUOUS SUBMODULES, NOTATION: <, <j, <o) We write N <
M to mean N is a submodule of M. In this case N will be called superfluous (resp.
essential) if, for any other proper (resp. non-zero) L < M we have N + L # M (resp.
N N L #0), in which case we write N <g M (resp. N <. M).

To proceed we require some results about modules over a (possibly non-unital) ring I"
with enough idempotents. The first of these (below) should shed light on how to adapt

proofs for unital rings to (more generally) rings with enough idempotents.

Lemma 3.1.33. [2, 5.19] Let I' be a ring with a complete set of idempotents {e; | i € I}
and let M be a I'-module. For any L < M we have L <, M iff for any non-zero m € M

there is some v € I' for which ym € L and ym # 0.

Proof. Suppose L <, M and fix m € M with m # 0. Since m € M = I'M there must
by some v € T" and some m’ € M for which ym’ = m. Let e be a local unit for v, and
so ey = «. This means m = eym’ = em and so I'm # 0 which gives I'm N L # 0 since
L <. M. Conversely if there is some P < M with P # 0 and LN P = 0 then there is some

p € P with p # 0 and we must have yp = 0 for any v € I' such that yp € L. O

In the citations above, and for each part of lemma [3.1.34] below, we refer to the book
by Anderson and Fuller [2]. In this book any ring is assumed to be unital. These results
have been collected together for one reason: the proof from [2] easilly adapts to a proof
for the case where I" has enough idempotents with few or no adjustments. Lemma [3.1.33]

is an example of this adaptation.

Lemma 3.1.34. Let T be a ring with a complete set of orthogonal idempotents {e; | i € I}.
Then the following statements hold.

If M is any I'-module then
(ia) [2 9.7 and 9.13] rad(M) = > ey N and soc(M) = Ny s N,

(ib) [2, 5.17.] if N1,..., Ny < M are superfluous (resp. essential) then so is > | N;
(resp. iy Ni),
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(ic) [2, 9.8 and 9.14] if f : M — N is a I'-module homomorphism then f(rad(M)) C
rad(N) and f(soc(M)) C soc(N),

(id) M is finitely generated iff there is an epimorphism @, ;T'e; — M for some J =
LIy I(r) where each I(r) C I is finite.

If {M, | a € A} is a set of unital I'-modules, then

(iia) [2, 16.11] we have that (@ M, is projective iff each M, is projective) and that
(11, M, is injective iff each M, is injective),

(iib) [2, 9.19] rad(6p M,) = Prad(M,) and soc(P M,) = @ soc(M,),
and if Ny < M, for each a € A, then
(iiia) [2, 6. Exercises, 2 (1)] @ My/No ~ @ M,/ P N,

(iiib) [2 5.20] if A is finite then @ N, <s @ M, (resp. B N; <e P M;) iff N; <s M;
(resp. N; <e M;) Vi€,
(ilic) [2, 9.2] if M, = M and N, is simple for each a, then any N <), No gives some

B C A such that the sum N + 3,5 Ny is direct and equals ), N,.

We now adapt the proof of [48] (24.7) Theorem] (see also [2, 17.4. Proposition]) to
rings with enough idempotents. Unlike the results above, we give a proof. This is because

non-trivial steps are required.

Lemma 3.1.35. [2, 17.2, 17.10 and 17.14] Let I' be a ring with a complete set of
idempotents E = {e; | i € I}.

(i) Every unital T'-module is the epimorphic image of a free module.
(ii) If P is a unital T'-module then (P is projective iff it is a summand of a free module).
(iii) If P is a unital projective T-module then rad(P) = rad(T)P G P.

Proof. (i) Let X denote the underlying set of some unital I'-module M. Setting 7(u) =

S pex Hat for any p= 3" vy € I¥) =@ T (where p, = 0 for all but finitely many

x) gives a well-defined I-module homomorphism 7 : ) — M.
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The map 7 is onto in this case, because any m = I'M satisfies m = ym’ for some v € T
and m/ € M: and so 7(p) = m where p = Y pi is defined by setting pi,,y = v and
poe =0 for x #m'.

(ii) Since I' = @, T'e;, T is unital and projective considered as a module over itself by
[65, 49.2 (3)]. Now suppose P is a unital projective I'-module. By (i) P = im(7) where
7 : IX) 5 P is some epimorphism. Since P is projective 7 is a retraction and so P

summand of a free I'-module F, say F = P’ & K where P’ ~ P.

Since I" has enough idempotents any element = € rad(I") defines a local unit e (such that
z = ze) and so rad(T") C rad(I")T. We always have the reverse inclusion, and so if F' = I'Y)
for some set Y then rad(F') = rad(I')F, and so rad(P’') @ rad(K) = rad(I') P’ @ rad(T)K -
This shows rad(P’) = rad(I')P" and so rad(P) = rad(T')P. Showing rad(I')P & P will
be more involved. For a contradiction assume P has no maximal submodule and so

P =rad(P).

Since P is a summand of F' there is a section 0 : P — F, aset X and asubset T'C I x X
such that F' = @, I'e; where we write e; for e; whenever ¢ = (i,z). Let 7 : F¥ — P
be the retraction for o (and so mo = id). For each t we have 7(e;) € P = rad(P) and
so o(m(e;)) € rad(F') by proposition Since rad(F) = @,cprad(I')e; for each ¢
we have a finite subset V; of T" and elements ry € rad(I')es for each s € V; such that
o(m(et)) = Y ,ey, T'st- Since P is non-trivial choose 0 # p € P and write o(p) = >, cpy Yu

for 7, € I'e,, and some finite subset U of T'. Writing o(p) = o(w(o(p))) shows

EueU Yu = U(W(ZueU '7u6u>)) = ZuEU VUU(W(eU)) = ZueU Yu ZsGVu Tsu-

Since U is finite and (hence) the union (J,c; Vi is finite we can find a common finite
subset L of elements [, m € T such that: v; = ~, if [ = u for some u € U, and otherwise
v = 0; and 1, = rge if m € U and | = s for some s € V,,, and 7y, = 0 otherwise.
Since p # 0 we can identify L with {1,...,n} for some n > 0 which (together with
the above) gives > "1 = > o1V 2om—1 Tim- Let e be the local unit for the elements

Yy YnsT1ls-- -5 Tnn € I' and consider the unital ring el'e with unit e.
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We now have a system of linear equations in el'e given by > " | vi(€dym — rim) = 0
(where 0y, = 1 iff I = m, and otherwise d;,, = 0) for each I. We have defined a matrix
A = (ay,) where aj, = €0y —rim. The matrix A defines a unit in the matrix ring M, (ele)
by [48, (4.5) Corollary. (A)], and by the above we have A(71,...,v,)" = 0. Altogether we
have v; = 0 for each [ and so p = 0 which is a contradiction. As required we have shown

P =rad(P) is impossible. O

Example 3.1.36. Recall (for example [48, p.336, Definition 23.1]) that a unital ring € is
semiperfect if it is semilocal (that is, /rad(€) is a semisimple ring) and if idempotents
in /rad(Q) lift to idempotents in Q (that is, for any element e € 2 with €2 — e € rad(f2)
there is some idempotent f € Q such that e — f € rad(€2)). This is equivalent to either

one of the following statements

(i) Every finitely generated Q-module has a projective cover (see definition [48] (24.9)
Definition] and [48) (24.16) Theorem)]).

(ii) 2 has a complete set of orthogonal local idempotents {ey,...,e,} (see [48] (23.6)
Theorem]).

Under any of these assumptions every finitely generated projective (2-module is a direct

sum of modules of the form Qe; (see [48, (24.14) Corollary]).

In paragraph 3, line 21 of [27, p.95] Fuller noted that the equivalence of (i) and (ii) from
example has been generalised to rings with a complete set of local idempotents.
This generalisation is due to Harada: (i) and (ii) in example generalise respectively
to 1’) and 2) in [36, Theorem 2].

Lemma 3.1.37. Let ' be a ring with a complete set of local idempotents E = {e; | i € I}.
Then Te; is indecomposable and projective for each i, and any indecomposable projective

I'-module is isomorphic to one of these.

In the proof below we freely use results about module categories from the books by

Anderson and Fuller [2] and Wisbauer [65].
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Proof. Since I' = @, T'e; each I'e; is a summand of a free module, and projective by lemma
3.1.35l Suppose I'e; = M & N for some submodules M and N of I'e;. Since e; is local the

quotient I'e; /rad(T'e;) is simple.

Since M @ N/rad(M & N) ~ (M/rad(M)) & (N/rad(N)) by lemma (iib) and
(iiia) without loss of generality we must have N/rad(N) = 0. Since N is a summand of
the free module I', N is projective by [65, 49.2 (3)], and since N = rad(N) we must have
N =0 by lemma[3.1.35

Let I' =T'/rad(T"). As a I-module we have I ~ @, T'e; by lemma (iib) and (iiia)
and lemma Hence E = {e;+rad(T) | i € I} is a complete set of simple idempotents
in I. Let P be an indecomposable projective I'-module and so P = P/rad(P) is a I'-
module. We can always find a free I-module F together with a I-module epimorphism

0:F — P. As F is free there is a set T for which F' = @(Lt)elefei.

By lemma (iiic) the exact sequence 0 — ker(f) — F — P — 0 yields a subset
S C I x T and an isomorphism P ~ @(i’t)e s e;. Since P is indecomposable it is non-
trivial and so by lemmawe have that P # 0 as P is projective. Hence there is some
element (i,t) € S for which Te; # 0.

Recall that by [65, 49.7], if A is any left ideal of I" then (A C rad(T") iff Ae C, T'e for
every idempotent e € T'. In particular, we have that rad(T")e; is a superfluous submodule
of T'e;, and as e; is local this means the canonical epimorphism I'e; — Te; is a projective

cover of I'-modules.

We also have an epimorphism of I'-modules P — T'e; which, by lemma |3.1.10, defines
an isomorphism P ~ T'e; ® P’ for some submodule P’ of P. Since P is indecomposable

and Te; # 0 we must have P ~ Te; as required. O

Definition 3.1.38. Let I" be a ring with a complete set E of local idempotents e;.

(NoTATION: f) If f: N — N’ is any homomorphism of I-modules then f(n) € rad(N’)
for any n € rad(N) by [65, 21.6 (1i)], and hence there is an induced homomorphism
f: N — N where N = N/rad(N), N’ = N'/rad(N’) and f(n+rad(N)) = f(n)+rad(N’)
for each n +rad(N) € N.
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(REFLECTS MODULO THE RADICAL) We say a full subcategory C of I'-MOD reflects
monomorphisms (resp. epimorphisms, resp. isomorphisms) modulo the radical if for any
homomorphism f : N — N’ in C, if f is a monomorphism (resp. epimorphism, resp.

isomorphism) then f is a monomorphism (resp. epimorphism, resp. isomorphism).

(QuAsI-FREE MODULES) [65, §49] We say a module is quasi-free if it is a direct sum
of modules of the form I'e;. We write ['-Quas (resp. I'-quas) for the full subcategory of

I'-Mod (resp. I'-mod) consisting of quasi-free modules.

Lemma 3.1.39. (see [40, Lemma 2.2, p.218]) Let I' be a ring with a complete set of local
idempotents E = {e; | i € I}. If I'-quas reflects monomorphisms (resp. epimorphisms,

resp. isomorphisms) modulo the radical then so does I'-Proj.

For the proof of lemma [3.1.39| we need the following.

Lemma 3.1.40. LetI" be a ring with a complete set of local idempotents E = {e; | i € I}.
Then any quasi-free I'-module is the union (and hence direct limit in T'-Mod ) of its finitely

generated quasi-free summands.

Proof. Let F' = @,cx I'e; where X is some subset of a disjoint union of copies of I. Let
Z be the set of finitely generated direct summands Z of F. If m € F' then there is some
i(1),...,i(n) € I and some 7i,...,7, € I' for which m = 27;21 Yjei(j)- This shows m
lies in @’;:1 Le;(jy and hence F is the union of its finitely generated quasi-free summands.
Write ¢ x for the inclusion of any X € & into F'. Write ¢x y for the inclusion of any X € Z

into some other Y € Z. It is clear that tx = tytxy.

Now assume there is an object G and arrows ax : X — G for each X € Z such
that ax = ayixy. To show (F,ux) is direct limit it suffices to show there is a unique
homomorphism « : F' — G such that atxy = ax. Let m € F. Consider the set Z(m) of
M € Z for which m € M. We have already seen that m lies in some M € Z, and so Z(m)

is empty. Let F(m) = ﬂMEZ(m) M.

Define the map « : F' — G by setting a(m) = ap(y)(m) for each m € F. Note that

ap(m)(m) = ax(tpgm),x(m)) and so a(tx(m)) = ax(m) which means arx = ax.
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To show « is unique, suppose 38 : F' — G satisfies Stx = ax for each X € Z. Then for

each m € F' we have 3(m) = B(tp(m)(m)) = apum)(m) = a(m). O

Proof of lemma[3.1.39 Let f : M — N be an arrow in I-Proj such that f : M — N
is a epimorphism. We will prove f : M — N is a epimorphism assuming I'-proj reflects
epimorphisms modulo the radical.

The proof that (f is a monomorphism implies f is a monomorphism) in case I'-proj
reflects monomorphisms modulo the radical is similar, and omitted. It shall follow from
these two cases that (f is an isomorphism implies f is an isomorphism) in case I'-quas

reflects isomorphisms modulo the radical.

Recall M = M/rad(M), N = N/rad(N) and f(m 4+ rad(M)) = f(m) +rad(N). By
lemma B.1.35 M and N are direct summands of free modules. Let C' be a I'-module such
that M @ C is free. Note that f @ idg - M @ C — N @ C is a monomorphism (resp.
epimorphism), and it suffices to show the map f @ idc : M & C — M @ C is injective

(resp. surjective).

Hence we can assume M is free. Similarly we can assume N is free. Thus f: M — N
is a homomorphism of (quasi-)free [-modules such that f : M — N is a monomorphism
(resp. epimorphism). Note that M and N are direct sums of modules of the form Te;.
Hence M and N are semisimple modules. This means f : M — N is a section (resp.
retraction). Let g : N — M be the left (resp. right) inverse of f, and so gf (resp. fg) is

the identity map on M (resp. N).

Suppose we are in the case where f : M — N is a retraction, and let g be a right inverse

of f. Since N is quasi-free write N = @ I'ey for some subset Y of a disjoint union

yey
of copies of I. Similarly write M = @, x I'e; for some subset X of a disjoint union of
copies of I. We want to prove f : M — N is an epimorphism. Let n € N and S be a
finite subset of Y such that n lies in the submodule L = @ye gl'ey of N. For each y € Y
we have g(ey) = > ,cx Hay€s for elements fi,, € T. Consider the finite set V of z € X
such that fiz, # 0 for some y € S. Since M is semisimple there is a finite subset 7" of V

such that the image of g upon restriction to L is @,cq Teq. Let P =@, o Les.
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Let g| : L — P be the restriction of g to L. Let P = @, le;. Since g| is onto
for any x € T there is an element I, € L such that g(l,) = e, + rad(P). Let [, =
> yes Yuyey for some elements 7, , € T. This means f(e, + rad(P)) = > yes Yayey, and
s0 f(ex) = D yes Yoyey € Dyesrad(l)ey for some lifts v,y of ¥z,y. Hence f(es) € L for

eachx € T.

This means the restriction f| of f to P defines a homomorphism P — L. Since f is a left
inverse of g, the restriction ﬂ : P — L is a left inverse of g|. This shows f|: P — L is an
epimorphism of finitely generated quasi-free modules, since I'-quas reflects epimorphisms.

Hence there is some m € P C M such that f(m) = f|(m) = n, and so f is surjective. [
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3.2 Homotopy Categories.

Assumption: In section let A be a complete and cocomplete abelian category.

3.2.1 Complexes.

Definition 3.2.1. (COCHAIN COMPLEXES) A (cochain) complex X in A is a collection
of arrows d% : X' — X! (i € Z) in A such that d?ldf'x = 0 for all i (see [67, p. 300,
Definitions 3.5.1 and 3.5.2]). Note that Weibel [64] uses the convention of chain complexes.
The maps d& will be called the differentials of X.

(NotaTION: C(A)) Let C(A) be the category whose objects are complexes in A, and
where f € Hom¢(4)(X,Y) is given by collection of arrows fi: Xt = Y! (i €Z)in A such
that fi“dg( = dﬁ/f’ for all 1.

(CATEGORIES OF COMPLEXESR, NOTATION:) For a full subcategory X of A let C(X)
be the full subcategory of C(.A) consisting of complexes X where X* is an object in X for
all i. We use C*(X) be the full subcategory of C(X') consisting of complexes X such that
Xt =0 for +i < 0. Let C?(x) = C(X) and let C’(X) be the full subcategory of C(X)
consisting of objects X which lie in both C*(X) and C~(X).

(TRANSLATION FUNCTOR, NOTATION: [1]) There is an automoprhism [1] of C(.A)

defined as follows. For any complex X the image X[1] of X under [1] is given by setting

X[ = X1 and 'y

[1] is given by setting f[1]™ = f"~!. Let [~1] be the inverse of [1], and [0] be the identity

= d}_l. For any f € Hom¢(4)(X,Y) the image f[1] of f under

functor on C(A). For each t > 0 let [t] = [1] o --- o [1] (the composition of [1] with itself ¢
times) and [—t] = [-1] o --- o [-1] (the composition of [1] with itself ¢ times).

Remark 3.2.2. Let f : X — Y be an arrow in C(A). Since f"1d%k(f") = 0 there is
an arrow di, o ker(f™) — ker(f™*1) for which d%k(f") = k(f”*l)dﬁer(f). Hence there
is a complex ker(f) and a morphism of complexes k(f) : ker(f) — X. Similarly we may

define coker(f) and an arrow c(f) : Y — coker(f).
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Another iteration of this construction gives objects coim(f) and im(f) and arrows
c(k(f)) : X — coim(f), k(c(f)) : im(f) — Y and f : coim(f) — im(f) where
f = k(c(f))fe(k(f)) and f is an isomorphism of complexes. This together with the
proof of [64, Theorem 1.2.3] shows C(A) is abelian.

Sometimes it will be easier to define a complex in terms of the infinite diagram the

complex defines in A.

Definition 3.2.3. [64, Truncations 1.2.7 and 1.2.8] Let X be a complex and n be an
integer. The truncations of X to the left (resp. right) are denoted 7<, X and o<, X (resp.

T>n and o=,). They are defined as follows:

n—2

d
TenX @ o= X2 2 Xl ker(d’%) 0 0
c(k(dy™)) Th(d}‘l,d})
n—1

coim (%) 2 im (1)

n—+1

d
TonX ! o 0 0 coim(d%) xntl X xnt2 L
\ Tk(e(d&))
d%
im(d}.)
dn72 dnfl
ocpX: o= Xr2 E o xnml % xn 0 0
dn+1
O>np & 0 0 0 X"+1L>X"+2—>---
degree : n—2 n—1 n n+1 n—+ 2

The truncations of the form 7<,, and 7, are called good truncations. The truncations

of the form o<, and o, are called brutal truncations.

Remark 3.2.4. For any object X in C(A) and any n € Z there is an arrow h(d}_l, dy) :
im(d% 1) — ker(d’) for which k(d%)h(d% ', d%) = k(c(d¥ 1))
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Since di f"k(d%) = f*Hd%k(d%) = 0 there is an arrow 0" : ker(d%) — ker(dy) for
which k(d)0" = f"k(d%). Dually there is an arrow ¢! : im(d% ) — im(d}% ) for
which k(c(d2 1))y = fk(e(di ).

Altogether we have O0"h(d% ',d%) = h(d¥ ', dp)y"!  which  shows
c(h(dyt,dp)orh(dyt,d%) = 0. If we let H*(X) = coker(h(dy *,d%)) and
H™(Y) = coker(h(d} !, d})) this means there is an arrow H"(f) : H"(X) — H™(Y) for
which H"(f)c(h(d% t,d%)) = h(d ™, dy)om.

Definition 3.2.5. By remark there is an additive functor H" : C(A) — A called
the n'" cohomology functor (see [, p.596, Lemma 3.4] or [67, p.301, Remark 3.5.7] in case
A = A-Mod). Note that X is exact at X iff H/(X) = 0, and if this holds for all i we say
X is exact. We call an arrow f: X — Y in C(A) a quasi-isomorphism provided H™(f) is

an isomorphism (in A) for all n € Z.

Any complex X gives a complex H(X) of cohomology groups where we let d?{( x) = 0
for all 7. For another full subcategory Y of A, and for d,¢ € {0}, —, +, b}, let Cg}E(X) be the
full subcatgeory of C°(X) such that H(X) is an object in C¢()). We call the complex X
acyclic if H(X) is the zero complex.

Definition 3.2.6. A projective resoloution of an object X in A is a complex P where
P" =0 for n > 1, P! = X, and for n < 0 the object P" is projective and P is exact at
P

Lemma 3.2.7. [33] p.141, 3. Theorem] If f : X — Yis an arrow in A and Px and Py

are projective resoloutions of X and Y then there is a morphism g : Px — Py such that
d(])gygO = dePX.
Lemma 3.2.8. [64, Horseshoe Lemma 2.2.8] Let 0 - X — Y — Z — 0 be an ezact

sequence in A. Let Px and Py be projective resoloutions of X and Z respectively.

Then Py = Px & Py is a projective resoloution of Y, and there is an exact sequence of
complexes 0 - Px — Py — Pz — 0 given by 0 - X — Y — Z — 0 in degree 0 and the

canonical arrows of the direct sum Pyr = Py @ P} in degree n < 0.
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3.2.2 Double Complexes.

Definition 3.2.9. [64, Example 1.2.4] Consider a collection of objects X (9) (for 4,5 € Z)

together with two collections of arrows; dg?];) : X03) 5 X(0+L3) which we call column

differentials, and dg?’];,) o X0 — X3+ which we call row differentials. These
arrows satisfy the relations of a double complez: dgg;m)dg?j) 0, dg?frl)d%’i) =0 and

,C

dg?];rl)dg?? + d()?;l’j )dg?? = 0. The double complex X may be depicted by

g—13-1) (i—1,9)
o xi-1y-1) X X (i—1,9) X X1+ .
gG=13-1) g1 gi—La+D)

e 4D P ) e

[ X(l,j—l) Xr X(zvj) X X(7’7]+1) _— ...
2= (9 gl +D

Xoe (i+1.5-1) Xoe (i41.5) Xoe

oo X (L) T X (i+1,4) Xr XO+L+1)

Let C?(A) denote the category whose objects are double complexes, and where a
homomorphism f : X — Y of double complexes consists of a collection of arrows
£ 2 X @) 5 y @) in A for which dyy) f09) = fEI+Dd0) and diy)) f60) = fa+10g0o),
The composition of homomorphisms f : X — Y and g : Y — Z is defined by setting
(gf) @) = glid) pid),

Considering the first (resp. second) of these relations, the i** row (resp. j** column)
defines a complex X (i,7) (resp. X(j,¢)) given by (X (i,r))* = X&) and A%y = dgl(:f
(resp. (X (j,¢))™ = X(™9) and A% o) = dg??c’j)) for each integer n (resp. m). Making use
of [64, Sign Trick 1.2.5], the collection of arrows of the form c¢(X,:)" := (—1)"dg§’z) (resp.
r(X, 7)™ = (—l)md%}’lj)) defines a morphism of complexes ¢(X,17) : X (i,7) = X(i+ 1,r)
(resp. r(X,j) : X(j,¢) = X(j + 1,¢)), given by looking at the column (resp. row)

differentials whose domain lies in row i (resp. column j).
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Proposition 3.2.10. There is a functor R (resp. C) defining an equivalence of categories
C(C(A)) — C?(A) such that R(X)(i,7) = X* (resp. C(X)(j,c) = X7) for any object X in
C(C(A)).

Proof. We shall prove the existence of the functor R. The proof of the existence of the
functor C will be similar. For an object X in C(C(A)) let R(X)®7) be the j** homogeneous
component of the complex X* in C(A). Let d(Pikj;))(),r = (—1)jd§(i and let dg’(j))()’c = (di ),
the j** homogeneous component of the arrow dfx : Xt — X1 in C(A). By construction

R(X)(i,7) = X? and it is clear that R defines an equivalence of categories. O

Since C(A) is abelian, proposition |3.2.10| shows C?(A) is also abelian.

Fix j € Z. Consider the objects im(r(X,j — 1)) and ker(r(X, 7)) in C(A) which define
subobjects of the complex X (j, ¢) given by column j. From our discussion on cohomology
: i ) ) (i+1.5) i :

above, for each i the arrows di () : ker(dX’jT,) — ker(dy, 7)) and &on(r(x,j-1))

im(dl? ) — im(a 1Y) satisty
i i,7—1 2,7 i+1,7—1 41, 7
dker(r(X,j))h(dg(fr )’ dg(,Jr)) = h(dg(,r ’ )’ dg(,r J)) im(r(X,j—1))

Since this is true for each ¢ the collection of arrows h(dg?”rj_l),dg?”rj)) (for n € Z) defines
an arrow im(r(X,j — 1)) — ker(r(X,j)) in C(A). Taking the cokernel gives an object

HI(X(—,7)) in C(A) where H/ (X (—,r))* = H/(X(i,r)) and dlﬁj(X(_ ) = Hj(dgzjc)) for

each 1 € Z.

Definition 3.2.11. [64, Definition 5.7.1] Let M be a complex in C(A). A (Cartan-
FEilenberg) projective resoloution of M is a double complex P such that for each j

(a) P(09) = MJ and P@9) =0 for i > 1,

(b) P9 is projective for each i < 0,

(d) if M7 = 0 then P(j,c) = 0,

(e) im(r(P, 7)) defines a projective resoloution of im(dj,), and

(f) H7(P(—,r)) defines a projective resoloution of H’(M).
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Hence P has the form

4201 4(=2:9)
oo p(=24-1) P P(=2.4) b p=24+1) ..
d}‘f’j_” dg(_f’j) d;—f,j+l)
“ g 1i=1) P Sl
ce o p(=14-1) P p(=14) b pLi+l) .
—1,5—1 —1,j —1,j+1
S 4G S
: it . & s
- o M1 M M M Mt L.
0 0 0

and we write P_ for the deleted projective resoloution, the double complex given by

(~2.4-1) 429
oo p(=24-1) P P(=2.4) b p24+1) ..
(i-1,j-1) (—2.) (~2,4+1)
T gD Txe 21 T
_14-1) %Pr 1,4 Pr —1,j+1
.o p(=Lj-1) p(-1.3) pLi+l) o L.
0 0 0
0 0 0

Note that definition [3.2.11| differs slightly to the one given by [64] Definition 5.7.1]. To

correct this one takes the deleted resoloution.

Lemma 3.2.12. [64, Exercise 5.7.1] Let M be a complex in C(A).
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If P is a projective resoloution of M then for each j:
(i) the complex P(j,c) is a projective resoloution of M’; and

(ii) the complex ker(r(P, 7)) is a projective resoloution of ker(dg\/[).

Using lemma we have the following result.

Lemma 3.2.13. [64, Lemma 5.7.2] Let A have enough projectives. Then every complex

has a projective resoloution.

Definition 3.2.14. Suppose A is a cocomplete category. Let X be a double complex.
For each n € Z let tot®(X)" = Dt jon X (9 and for each i,j € Z with i + j = n let
Lg?j) : X9 5 tot®(X)" and ﬂg?’j) : tot®(X)"® — X(9) be the canonical arrows.

There is an arrow diy oy : tot®(X)"™ — tot®(X)"*! (given by the universal property)
such that df’ t@(X)Lg(]) (ZH ])dg(c) + (”H)d( ) (for each i,j € Z with i +j = n).
Using the uniqueness of the universal property together with the relations of a double

n—+1 dn

complex one can show dtot( x) G

(x) = 0 and so tot®(X) defines a complex of objects in

A, provided A is cocomplete.

Let f : X — Y is a homomorphism of double complexes and let n € Z. The
collection of arrows Lgfi’j)f(i7j) : X039 — tot®(Y)™ (where (i,4) runs through all pairs
of integers with i + j = n) defines a unique arrow tot®(f)™ : tot®(X)" — tot®(Y)"
for which totéB(f)”L(i’j) = L(i’j)f(i’j) for each (i,7) (using the universal property). By

construction tot®(f)"+1d" ( D = gn tot@(f)”b(i’j) and hence there is a functor

tot® (X ) tot® (V)

tot® : C2(A) — C(A) taking a double complex to its total complex.

If M is a chain complex then M = tot®(R(Aps)) where Ay is the object of C(C(A))
given by concentrating the complex M in degree 0, and R is the functor from proposition
If : M — N is an arrow in C(A) then similarly we have 6 = tot®(R(Ay)) where
we let (Ag) = 0 and (Ag)"™ = 0 for n # 0. This shows that tot?® is full and dense.

Lemma 3.2.15. [64, Exercise 5.7.1] Let M be a complex and P be a projective resoloution
of M. Then there is a quasi-isomorphism 0 : tot®(P_) — M.
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3.2.3 Homotopy Category.

Definition 3.2.16. We say f and g from Hom¢(4)(X,Y) are homotopy equivalent, and
write f ~ g, provided there is a collection of arrows s’ : X* — Y*~! (i € Z) such that
fi—g' = d’;lsi—l—si“df'x for all . The arrow f is said to be null homotopic if f is homotopy
equivalent to the zero cochain map 0 € Home(y (X,Y). A homotopy equivalence is an
arrow f € Hom(4)(X,Y) such that there is some g € Hom¢(4)(Y, X) such that fg ~ 1y
and gf ~ 1x . A complex X is said to be null homotopic if there is a homotopy equivalence

between X and the zero complex 0, or equivalently, if id : X — X is null homotopic.

The relation ~ defines an equivalence relation by [I, p.614, Exercise 4.4] which is
compatible with addition, and hence there is an additive subgroup of Hom¢(4)(X,Y)
given by the null homotopic cochain maps. Let Hom (4 (X,Y) denote the quotient
group. Hence equivalence classes [f] € Hom(4)(X,Y) in have the form [f] = {g €
Hom (4 (X,Y) | f ~ g}. By [I, p.614, Exercise 4.6] the assignment ([g], [f]) — [gf] is
well defined.

Definition 3.2.17. There is a category K(A), which we call the homotopy category, whose
objects are complexes in A and where Hom x(4)(X,Y’) are defined above. By the quotient
C(A) — K(A) we refer to the functor given by X — X and f — [f].

For n € Z there is a shift functor (—)[n] : C(A) — C(A) given by X[n]® = X"
and fn]" = f" (see [64, Translations 1.2.9]). For f € Home(4)(X,Y) (and for all
i) let cone(f)’ = X! @ Y7 and consider the canonical maps 74! : cone(f)’ — X'+,
S X cone(f)Y, T ¢ cone(f)! — Y7 and i : Y — cone(f)’ that equip the
direct sums in A. If we let df:one(f) = (dm) — friaX ) = did X | for each i then

cone(f) is a complex by [I, p.615, Exercise 4.1], which we call the mapping cone of f.

This complex can be depicted by drawing the differentials in matrix notation:

—d¥t 0 ~d% 0 —d¥t 0
_fn—l d$_2 _fn d?/_l _fn+1 d?/
_ N@YN—1—>Xn+1@Yn
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Example 3.2.18. If X is a complex write o, : X” — X" @ X" and 8, : X"t X" —
X™ be the canonical monic and epic arrows that equip the direct sums in 4. Then, setting
s" = —ay By, gives a homotopy equivalence between id : X — X and 0. Hence the mapping
cone cone(id) is null homotopic (see [64, Exercise 1.5.1] and [64, Example 10.1.5]). This

example gives a special case of the following.
Lemma 3.2.19. If f: X =Y is an arrow in C(A) then
[67, Lemma 3.5.32] (i) f is a quasi-isomorphim iff cone(f) is an acyclic complex, and

(ii) of id : cone(f) — cone(f) is null homotopic then fis a homotopy equivalence.
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3.2.4 Homotopic Minimality.

Definition 3.2.20. Let P denote the full subcategory of A consisting of projective
objects. For an object P in P and any n € Z consider the complex D"P whose
homogeneous component is P in degrees n and n+ 1 and zero elsewhere, and where d%n( P)
is the identity on P. DP is homotopy equivalent to zero so it is zero in the homotopy

category (for example see [67, p.336, Lemma 3.5.44]).

Lemma 3.2.21. For any complex M in C(P) and any n € Z there exist objects P|M,n|
in P and M|n| in C(P) together with an isomorphism of complezes f|M,n|: M — M|n|®
D"P|M,n| such that

(i) M|n|" = M" and fIM,n|" =id for r € Z withr #n,n+ 1,
(ii) d’"M|n| =dy forr € Z withr #n—1,n,n+1,

(iii) im(d?

Minp) € rad(M|n|"*1), and

(iv) if im(dfF") C rad(M™+1) then im(dﬁi‘) C rad(M |n|?F1H1),

Proof. We apply lemma to the arrow d = d7, (where L = M™ and L' = M™*1).
Let P|M,n| = R, M|n|® = W, Mn|""t = W', fIM,n|" = «, f|M,n|""! = o/ and
v = djy,- This gives isomorphisms fIM,n|™ : M™ — M|n|™ @ P|M,n| and f|M,n| :
M™ — M|n|"" & P|M, n| such that o/d},a~! = dyyp, ®id. Write adly; ! as the column
(v,9)t and dﬁjla’*l as the row (\, i) for arrows v : M™"™1 — M|n|*, § : M"~! — P|M, n],
A Mn|"t — M™and p: P|M,n| — M™*2. So far we have a commutative diagram

of the form

n—1 d;L”_l n dar n+1 dxj ' n+2
M M M+ M+
fM,nI"l fIM,n”“l
X t dar " ®id A,
M1 O Min| @ PIM, 0| —" "0 Min|mH @ PIM, n| 2 M2

The commutativity of this diagram gives d; v = 0 and 6 = 0 since o d’j/ldﬁfl = 0.

Similarly Ad}; =0 and p=0.
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Let M) = M" and fIn|" = 1df0rr€ZW1thr7$nn+1 and dy, = dy for r € Z
M| = (A, 0) and d%l‘ = (7, 0) defines a complex M |n|
and f|n| is the required isomorphism. (i), (ii) and (iii) follow by lemma (3.1.13| and by

construction. If im(d}7"') C rad(M™**1) then by propsition [3.1.12] we have

with r #n —1,n,n + 1. Letting d"

m(d}iy,,) = im((id, 0) o (f[M, n[**df; (f|M,n[*)~") o (id,0)") C rad(M|n[* ")
as required. ]

We switch to the more convenient notation.

For a fixed integer m < —1 and an object M in C(P) applying lemma [3.2.21] —m-times
yields complexes in C(P) Mg = M, M_y) = M| — 1] up to My, = (M|m + 1[)|m|
(defined iteratively). For each t € Z with m < t < —1 let; P, = P|Mpqy),t|, Ny =
My ©D'P@- ®D 1Py, fig = fIMpqq),tl 9t = flg @idpy (for t < —1 (where idp is the
identity on D'P, @ --- @D 'P_; )and g1 = Ji=1]- So far we have a diagram describing

—m consecutive isomorphisms in C(P), given by the (rows of) downward arrows in the

schema,
= Mg — Mg —— M} M/ M, My —-
| l
M) —— M ——— M & P —— M) & Py >~ M|y~
i |
o My > MZy > My & Py = MZy © Py @ Poy ——> MLy ——> MLy
H ! | H |

We shall now define an isomorphism f_ given by composing all the rows. Observe that
any column in the diagram above consists of at most two isomorphisms which are not
the identity arrow. Let p,, : M — N,, be the composition ¢, ...g_1. Now let » € Z be
arbitrary. For r < 0 let M" = M[’;_l], dy, = dTM[T_l] and fI =pl_;.
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Let N® = M? and d, = (d%, 00) and for r < —1let N* = M" & P,_; & P, and

0 id ) )
dy =dy @ N =M"oP_ 0P — M oP.®P, =N""
0 O

Forr > 1let M" = N" = M", dy, =dy = d}, and f7 = id. Note that dy' has co-
domain M° @ P_;. By definition (and some simple matrix multiplication) d;vtldy\,i =0.
The next two corollaries are some useful consequences of the lemma above for the updated

notation.
Corollary 3.2.22. In the above notation;

(i) M_ and N_ define objects in C(P) such that M_ & €D,,<_ D™ P = N_,

(ii) f- defines an isomorphism of complezes from M to N_, and

(i) im(d7, ) C rad(M™*) for each integer m < —1.

A dual result also holds, which will require similar constructions. We omit these details,
since they are similar.

Corollary 3.2.23. For any object M in C(P) there are objects My and Ny in C(P) such
that

(i) Ny = My & D, D" Py for some objects P, in P,
(ii) there is an isomorphism of complezes fi : M — Ny,
(iii) im(d},, ) € rad(Mth) for each v >0, and

(iv) for any m < —1, if im(d3y) C rad(M™*!) then im(dyy, ) € rad(M_TJrl).

The following terminology comes from [45, Appendix B].

Definition 3.2.24. An object M in C(P) is called homotopically minimal provided
im(d?,) C rad(M™"1) for alln € Z. Let Cimin(P) and Kmin(P) denote the full subcategories
of C(P) and KC(P) and consisting of homotopically minimal complexes (as in definition

3.2.24).
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We now see an important result which was adapted from [45, Proposition B.2].
Corollary 3.2.25. If A has projective covers and all of its radicals then Kuyin(P) is a

dense subcategory of IC(P).

Proof. For any collection of objects P(n) in P (for n € Z) the complex P =
@D,.cz(D"P(n)) has P(m — 1) @ P(m) in degree m and hence is an object in K(P)

isomorphic to zero. Let (M_)y = N. By corollaries [3.2.22 and [3.2.23| there is an

isomorphism between M and N in K(A) and N is a homotopically minimal complex. []



Chapter 3. Appendix. 265

3.3 Derived Categories.

3.3.1 Localisation.

In order to introduce the derived category we need to define what it means to localise a

category. We let T be any additive category.

Definition 3.3.1. [33, p.145] Let S be a collection of arrows in 7. We define an oriented
graph I'(7, S) as follows. For each object in 7 we define a vertex in I'(7, S) using the same
symbol. The set of edges with tail V' and head W will consist of the arrows a : V. — W in
T, together with an edge labeled x4 for each arrow s: W — V in S. A path in I'(T,S) is
given by a symbol of the form p = pjo---op, where n > 1 and p; is an edge in I'(T,S) for

each integer ¢ with 1 <+4¢ < n for which the tail of p; is the head of p;;; whenever ¢ < n.

Let comp(V,W) be the set of all pairs of paths of the form (ba,b o a) where a €
Hom7(V, X) and b € Homy (X, W) for some object X in 7. For any vertex V of I'(T,S)
we let triv(V') be the set of pairs of paths of the form (z,r,id) or of the form (id, tx;) where
r:V — R (resp. t : T — V) is some arrow in S. We define the relation R(V, W) on the set
of all paths in I'(A,S) from V to W by comp(V, W) if V % W and comp(V, W) U triv(V)
if V.=W. Write ~ (V,W) for the smallest equivalence relation containing the relation

R(V,W) and we write p ~ p’ for paths p and p’ from V' to W such that (p,p’) € R(V,W).

The localisation of 7 at S will be denoted 7[S™!] and defined as follows. The objects
in T[S7!] will be the same as the vertices in I'(T,S), that is, the same as the objects
in 7. For objects V and W in T[S™'] the collection Homs-1(V, W) will consist of all

equivalence classes of paths in I'(7,S) from V to W.

Lemma 3.3.2. (Universal property of localisation) Let S be a collection of arrows in a

category T .
(i) There is a functor Q : T — T[S™] such that Q(s) is an isomorphism for all s € S.

(ii) If F: T — T’ is a functor such that F(s) is an isomorphism for any arrow s € S

then there is a unique functor G : T[S™Y] — T for which F = GQ.
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We now see some conditions on 7 and S which, when held, yield a neater description

of the category T[S™1].

Definition 3.3.3. [33] p.147, Definition] For 7 and S as above we say:
(a) S is closed under identities if for any object X in A the arrow id : X — X lies in S;
(b) S is closed under composition if the composition st lies in S for all s,t € S;

C satisfies the right Ore condition if, for any arrows f : — and s : —
(c) S fies the right O d if, f " f: A B and B’ B

where s lies in S, there are arrows g : A’ — B’ and t : A’ — A where t lies in S and ft = sg;

(d) S satisfies the left Ore condition if, for any arrows a : X — Y and ¢t : X — X’ where

t lies in S, there are arrows b: X’ — Y’ and s : Y — Y’ where s lies in S and sa = bt;

(e) S has the left cancellation property if, for any arrows f : A — B and f' : A — B,
if there is an arrow s from S such that fs = gs then there is an arrow tfrom S such that
tf =tg; and

(f) S has the right cancellation property if, for any arrows f: A — B and f': A — B,
if there is an arrow tfrom S such that ¢f = tg then there is an arrow s from S such that
fs=gs.

[47, 3.1 Calculus of fractions] We say S admits a calculus of left fractions if conditions

(a), (b), (d) and (f) all hold. We say S admits a calculus of right fractions if conditions
(a), (b), (c) and (e) all hold. We say S is a multiplicative systemﬁ

Example 3.3.4. In the homotopy catery of an abelian category, the collection of quasi

isomorphisms forms a multiplicative system. For a proof see [64, Proposition 10.4.1].

Definition 3.3.5. Let S be a multiplicative system in 7. For objects V', W and X from
T a (left) roof from V to W through X is a pair (s, f) where f : X — W is an arrow in

T and s : X — V is an arrow in S, drawn

|4 S X f w

“What we call multiplicative systems, Gelfand and Manin [33] call localisation classes.
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Since S is closed under identities (definition [3.3.3] (a)) (id,id) defines a roof from X to X
through X. Let (s, f) be a roof from V' to W through X and let (s', f) be a roof from V
to W through X'. We say (s, f) is covered by (s, f'), and write (s, f) < (', f'), provided
there is an arrow ¢ : X’ — X from S for which st = ¢’ and ft = f’. In this case there is a

commutative diagram (which motivates the terminology)

We write (s, f) ~ (¢, f') provided there are arrows t : X” — X and t' : X” — X' from
X to X’ through (some object) X” such that s't’ = st is an arrow in § and f'g = ft.
Equivalently there is a roof (s”, f”) from V to W through some object X” which covers
both (s, f) and (s, f/). In this case we can summarise the situation using either of the

commutative diagrams

X" X
X X’ Ve——-X'—sW
S, f S/ f/
V w X’
and stipulating that (any one of) the (equal) compositions X” — V must define an arrow
in S. If (r, h) is a roof from U to V through Y and (s, f) is a roof from V to W through X

then, as S satisfies the right Ore condition (definition (c)), there are arrows t : Z — Y

and ¢’ : Z — X such that ¢t is from S and st’ = ht. In this case define the composition of

(r,h) and (s, f) to be (r,h) o (s, f) := (rt, fg).

For a proof of the next lemma see [33] p.149].
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Lemma 3.3.6. The relation ~ on roofs defines an equivalence relation that respects the
composition of roofs.

~

Definition 3.3.7. We denote the category of roofs in T with respect to S by T(S), and
define it as follows. The objects of ’7'(5) will be the same as the objects in 7. We define

the collection of arrows Homz S)(V, W) to consist of equivalence classes (s, f) of roofs

(s, f) from V to W through some X.

Note that there is a functor Q : 7 — '7'(8 ) given by by taking an object X in 7T to the
corresponding object in 7\'(8 ), and taking an arrow f : X — Y in T to the roof equivalence
class (id, f). From the universal property of locaising categories (see lemma [3.3.2)) we have

the following.

Lemma 3.3.8. [33], I11.2.8 Lemma| If S is a multiplicative system of arrows in a category

T then the categories T[S™Y] and T(S) are isomorphic.

Proposition 3.3.9. [33, I11.2.10 Proposition] Let S be a multiplicative system of arrows
in a category T, and let R be a full subcategory of T. Write Sg for the class of all arrows

mn S between objects in R.

Suppose that S is a multiplicative system of arrows in R, and that for every object Z
in R and every morphism f 'Y — Z in S there is a morphism g : X — Y such that
fg € Sg. Then the inclusion functor 7%(873) — ’?(8) is full and faithful.
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3.3.2 Locally Small Compatible Systems.

Although all categories (such as 7) are assumed to be locally small, the category T[S™!]
need not be. This issue is not something easy to sweep under the rug. When localising the
homotopy catgeory K(A) at the multiplicative system of quasi isomorphisms we obtain
the derived category D(A). It is well-known (and shall be seen) that D(A) is triangulated,
so it must be additive and hence locally small. We would like to outline how to verify this.
We now see some conditions which, when held by 7 and S, force the category T[S™!] to

be locally small.

By using Von Neumann-Bernays-Godel (NBG) set theory we have a way of verifying

when certain classes are sets. We follow Jech [39, p.5].

Definition 3.3.10. Recall that (for any n € N with n > 1) a formula ¢ is built from
a countably infinite set of variables Var using the atomic symbols € and = by means of
connectives A and — and the quatifier 3. We use brackets (, ), to make sentences easier
to read. We also shorthand formulas. For example, a V f means —(—«a A =), and Vza
means —Jz—« (where a and 3 are formulas and x is a variable). A variable x which occurs
in a formula ¢ is said to freely occur if ¢ is not built using a formula of the form Jxa
(and therefore, the building of ¢ cannot involve a formula of the form Vaa). The notation
o(u1, ..., uy,) describes a formula ¢ where the free variables occurring in ¢ are among the

variables uq, ..., u,, which are assumed to be pairwise distinct, but not all u; need occur.

If o(z,u1,...,uy) is a formula and py,...,p, are sets then the class C definable from
@ and the parameters pi,...,py is the collection of sets a for which the statement found
by replacing z,u1, ..., u, with a,p1,...,p, (resp.) is true. We use the notation C' = {a |
o(a,p1,...,pn)}. We write b € C to mean b is a set found in the collection C. Two classes
C={a|vla,p1,...,pn)} and D = {b| (b, q1,...,qn)} are said to be equal provided for

any set ¢ we have p(¢,p1,...,pn) <> ¥(c,q1,...,qm). In this case we write C = D.

Example 3.3.11. Let F' : C — D be an isomorphism of categories where C is a locally
small catgeory. Let G : D — C be the inverse to F. For objects X and Y in D we consider
the subclass Fyy of Hom¢(G(X),G(Y)) x Homp(X,Y') given by the pairs (f, F/(f)).
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Fxy is a class mapping, and using the schema of replacement axiom we have that
{F(f) | f € Hom¢(G(X),G(Y))} is a set because Home(G(X),G(Y)) is a set by

assumption. Thus Homp(X,Y) is a set and so D is also locally small.

Definition 3.3.12. [64, 10.3.6] A multiplicative system S of arrows in a category T is
called locally small if for every object X there is a set Sx of arrows s € S of the form

X' — X, where for any arrow f: W — X in S there is an arrow g : V' — W such that
fg € Sx.

Example 3.3.13. In the homotopy category of an abelian category, the multiplicative
system of quasi isomorphisms (see example [3.3.4)) is locally small. A proof of this is given

in the proof of [64, Proposition 10.4.4]. In this proof one uses the idea from example

B.3.11

The respective statement in the following is [47, Lemma 3.3.1].

Corollary 3.3.14. [64, Corollary 10.3.11] Let S be a locally small multiplicative system
in an additive (more generally, locally small) category T. Then T[S~ is additive (resp.
locally small).

Definition 3.3.15. For an abelian category A the derived category of A is denoted D(.A)

and defined by the localisation of IC(A) at the class S; of quasi isomorphisms in IC(.A).

By examples [3.3.4 and [3.3.13| S, is a locally small multiplicative system in K(.A), and so
D(A) ~ K(A)(S,) is a locally small category.
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3.3.3 K-Projective Complexes.

The final result of this section (corollary [3.3.28) may be summarised by [64, Exercise
10.4.5]. We shall explain some details for the proof, following work of Keller [43] and
Spaltenstein [60].

Definition 3.3.16. [60, p.125, 0.4] For objects X and Y of C(A) the associated
hom-compler is an object hom(X,Y) of C(Ab) defined by hom(X,Y)" =
[Ticz Homa (X, Y*™) for each n € Z, and for (f;); € hom(X,Y)" setting
0oy () = (@57 Fi = (<) i)

For each n consider the assignment H"(hom(X,Y’)) — Homy(4)(X,Y[n]) defined by
(fi) + im(dﬁgnll(xy)) — [f] (for each (f;) € ker(dﬁom(x’y))) where we let f! = f;. If

(fi) € im(dﬁgnll(x’y)) then f: X — Y[n] is null-homotopic, where the homotopy s is given

by letting s/ : X7 — YJT7~1 be the arrow —fj when n is even, and f; when n is odd.

Hence this gives a well-defined function. By a similar argument this function is injective,
and it is clearly surjective and additive. Hence we have an isomorphism H"(hom(X,Y")) —

Homy(4)(X, Y[n]) of abelian groups (this is precisely [60, 0.4 (3)]).

Definition 3.3.17. [60), p.127, Definition] We say a complex M of C(A) is K-projective
if, for any acyclic complex A, the complex hom(M, A) in C(Ab) is acyclic. We let C,,(A)
and C,(A) denote the full subcategories of C(A) and K(A) respectively given by the

K-projective complexes.

Together with the above, this means that a complex M is K-projective iff
Homy(4)(M, A) = 0 for any acyclic complex A. This is the definition Keller uses (see
[43, 1.1 Unbounded resoloutions]). By [43l Theorem 1.1 (a)] K-projective complexes are

cellular complezes in the sense of Weibel (see [64, Exercise 10.4.5]).

Example 3.3.18. [60] 3.2 Examples (a)] Recall A is assumed to have enough projectives.
Let M be an object in C~(P) where (we recall that) P is the full subcategory of A

consisting of projective objects.
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Without loss of generality to this example we assume M™ =0 forn > 0. Let f: M — A
be an arrow in IC(A) where A is acyclic. By dualising the proof given in [33] p.180] one can
construct a homotopy equivalence f ~ 0 using induction and the definition of a projective
object. Hence every object in C™(P) is K-projective (see the dual argument to [33] p.180,
Proof of 111.5.22B, C] for details).

The next lemma generalises [67, Lemma 3.5.44] in light of example |3.3.18

Lemma 3.3.19. Any quasi-isomorphism between K-projective complexes is a homotopy

equivalence.

Proposition 3.3.20. [60, 1.4 Proposition] For an object M of C(A) the following are

equivalent:
(i) M is K-projective;

(ii) for any complex N the homomorphism of abelian groups

Homyc(4)(M, N) = Homp(a)(M, N), [f] — (id, f)

(induced by the localisation functor) is an isomorphism;

(iii) for any quasi-isomorphism s : L — N and any arrow f : M — N there is an arrow

g: M — L (in C(A)) such that [sg] = [f]; and

(iv) for any quasi-isomorphism s : P — M there is an arrow t : M — P such that

[st] = [id].

To see an alternative explanation of example [3.3.18] apply the equivalence of (i) and
(ii) in proposition [3.3.20|to [64, Corollary 10.4.7]. Recall definitions[3.1.27| and [3.1.29| and

example |3.1.28

Definition 3.3.21. [60, 0.5, p.126] We say an exact sequence
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in C(A) is semisplit if f™ is a section (or equivalently, g" is a retraction) for each n € Z.
If B is another abelian category, a (covariant or contravariant) functor F' : C(A) — C(B)
is said to preserve semisplit sequences if the image of any semisplit sequence is a semisplit

sequence.

Definition 3.3.22. [60, Definitions 2.1 (a) and 2.6 (a)] Let X be a class of objects in
C(A) and let F: I — C(A) (resp. F : I°?P — C(A)) be a direct (resp. inverse) system. We

say F'is an X-special direct system (resp. an X-special inverse system) system if

(a) I is well-ordered,

(b) if i@ € I does not have a predecessor then F(i) = Iﬂh@F(h) (resp. F(i) =
Lim,<; F'(5)),

and if ¢ € I has a predecessor ¢ — 1, then

(¢’) F(i —1—1) (resp. F(i —i—1)) is monic (resp. epic),

(c”) the object of C(A) given by coker(F (i —1 — i)) (resp. ker(F (i — i —1))) lies in
X, and

(¢”’) the exact sequence 0 — F(i — 1) — F(i) — coker(F(i —1 — i)) — 0 (resp.
0—ker(F(i —»i—1)) = F(i) » F(i — 1) — 0) is semsplit.

Definition 3.3.23. [60, Definitions 2.1 (b) and 2.6 (b)] Let X be a class of objects in
C(A). We say that X is closed under special inverse (resp. direct) limits if, for any X-
special direct system F', the direct limit Iﬂ(F ) (resp. inverse limit I<£n(F )) of F'is an
object in X.

Example 3.3.24. [60, 2.3 Lemma, p.130] The collection of all acyclic complexes in C(Ab)

is closed under special inverse limits.

Proposition 3.3.25. [60, 2.7 Proposition] Let B be an abelian category and let X be a
class of objects in C(B) which is closed under special inverse limits. Suppose A has all its
direct limits. Let F : C(A) — C(B) be a contravariant functor which preserves semisplit

sequences and transforms direct limits into inverse limits.
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Then the class of objects M in C(A) such that F(M) is an object in X is closed under

special direct limits.

The next result follows by applying the above in case B = Ab, & is the class of acyclic
complexes and F' is the contravariant functor hom(—, A) (and taking the union of the

resulting classes over all acyclic complexes A).

Corollary 3.3.26. [60, 2.8 Corollary] If A has all direct limits then the class Cp(A) in

C(A) is closed under special direct limits.

Recall definitions [3.2.3| and [3.2.141 Keller [43, p.14, Appendix: Proof of Theorem 1.1]

gives a proof of the following.

Lemma 3.3.27. [60, 3.5 Corollary| Suppose A has all direct limits and enough projectives.
Then every complex M in C(A) has a projective resoloution P such that tot®(P_) is K-

projective.

Corollary 3.3.28. The localisation functor K(A) — D(A) restricts to give a commutative

diagram of functors

Ko(4) . D(A)
UT U

K= (P) : D~ (4)
J iy

KNP) ——= DY(A)

where each horizontal arrow is a triangle equivalence.

Proof. We shall only prove that there is a triangle equivalence IC,(AA) — D(A). The other
equivalences are well-known (see [64, Theorem 10.4.8] and [67, Proposition 3.5.43]). Let
T = K(A). Let S denote the class S, of all quasi-isomorphisms in KC(.A) (which is a locally
small multiplicative system). Let R = K,(A) and Sg be the class of quasi-isomorphisms
in R. By lemma |3.3.19|every arrow in Sg is an isomorphism in R and so by the universal
property of the localisation (lemma the functor Q : R — R[Sﬁl] is an isomorphism

of categories.
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The restriction of the homology functor H? : T — A to the subcategory R of T defines
a homological functor R — A by theorem By the equivalence of (i) and (iv) in
proposition [3.3.20] we can now apply proposition [3.3.9] which shows that the inclusion
functor ¢ : R[Sg!'] — T[S~ is full and faithful. This means the functor :Q: R — T[S™}
is also full and faithful. By lemmas [3.2.15] and [3.3.27] «Q is also dense, and hence an

equivalence of categories. O
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