
 

Global modelling of ice-nucleating 

particles and impacts on mixed-phase 

clouds 

 

by: 

 Jesús Vergara Temprado 

 

 

 
Submitted in accordance with the requirements for the degree 

of Doctor of Philosophy 

 

University of Leeds 

 

School of Earth and Environment 

 

December 2017



 

I  

Declaration of Authorship 

The candidate confirms that the work submitted is his own, except where work 

which has formed part of jointly-authored publications has been included. The 

contribution of the candidate and the other authors to this work has been explicitly 

indicated below. The candidate confirms that appropriate credit has been given 

within the thesis where reference has been made to work of others.  

The first chapter will consist on the following paper, which is already published in 

the journal Atmospheric Chemistry and Physics: 

Jesús Vergara-Temprado, Benjamin J. Murray, Theodore W. Wilson, Daniel 

O’Sullivan, Jo Browse, Kirsty J. Pringle, Karin Ardon-Dryer, Allan K. Bertram, 

Susannah M. Burrows, Darius Ceburnis, Paul J. DeMott, Ryan H. Mason, Colin D. 

O’Dowd, Matteo Rinaldi, and Ken S. Carslaw Contribution of feldspar and marine 

organic aerosols to global ice nucleating particle concentrations. Atmos. Chem. 

Phys. 17, 3637–3658 (2017). 

In this paper, the candidate prepared and ran the simulations in which the results are 

based, analysed them and evaluated the modelled ice-nucleating particle 

distributions. The candidate also wrote and lead the process of submitting the paper 

with help and support from KSC and BJM. TWW, DOS, JB and KJP helped on him 

interpretation and technical details of the analysis. The other authors contributed 

with data and comments to the paper.  

The second chapter will consist on an already submitted paper to ‘Journal of 

Geophysical Research: Atmospheres’: 

Jesús Vergara-Temprado, Mark A. Holden, Thomas R. Orton, Daniel O’Sullivan, 

Nsikanabasi S. Umo, Jo Browse, Carly Reddington, María Teresa Baeza-Romero, 

Jenny M. Jones, Amanda Lea-Langton, Alan Williams, Ken S. Carslaw and 

Benjamin J. Murray.  Is Black Carbon an unimportant ice-nucleating particle in 

mixed-phase clouds? Submitted to Journal of Geophysical Research: Atmospheres 



 

II  

In the modelling section the candidate ran the model used in this study, analysed the 

results and evaluated it against several BC campaigns. On the experimental section 

the candidate calculated the INP values obtained from the freezing experiments and 

parameterized the upper limit. The candidate also lead together with MAH and BJM 

the writing of the paper. MAH, TRO, DOS, NSU, MTBR, JMJ, ALL and AW 

prepared the experimental setup and did the experiments for the experimental 

section. JB, CR and KSC supported the candidate with the modelling section and 

writing of the paper. This paper already has received positive comments from the 

three reviewers. The editor of the journal has recommended to address the 

comments before accepting the paper.  

The third chapter will consist on the manuscript: 

Jesús Vergara-Temprado, Annette Miltenberger, Kalli Furtado, Daniel Grosvenor, 

Ben J. Shipway, Adrian A. Hill, Jonathan M. Wilkinson, Paul R. Field, Benjamin J. 

Murray and Ken S. Carslaw. Strong control of Southern Ocean cloud reflectivity by 

ice-nucleating particles. 

This manuscript has been submitted to Proceedings of the National Academy of 

Science (PNAS). The candidate prepared, ran, analysed the simulations and 

evaluated them against satellite. AM and KF helped the candidate with the 

configuration of the runs. DG helped the candidate with the satellite data. AAH, 

BJS, JMW, PRF developed large parts of the microphysical scheme used. BJM and 

KSC helped the candidate with the interpretation and writing of the paper.  

This copy has been supplied on the understanding that it is copyright material and 

that no quotation from the thesis may be published without proper 

acknowledgement.   

The right of Jesús Vergara Temprado to be identified as Author of this work has 

been asserted by him in accordance with the Copyright, Designs and Patents Act 

1988. 

 

© 2018 The University of Leeds and Jesús Vergara Temprado 

  



 

III  

Acknowledgments  

First of all, I want to sincerely thank my two supervisors, Ken Carslaw and Benjamin 

Murray who have supported me through this PhD, showing me the way to do research, 

asking me questions to improve my ability to think critically about my own research and 

helping me to grow as a scientist. I am especially thankful to both of them for the time spent 

in meetings with me whenever I had something to discuss, their willingness to support me in 

any moment I needed and the trust they have placed on me to produce scientific results from 

the very first moments of my PhD. 

I want to acknowledge the researchers from the University of Leeds with whom I have been 

working and collaborating from the ice-nucleation group, the aerosol modellers group and 

the cloud modelling group. Special thanks are due to Annette Miltenberger who has always 

been willing to help me whenever I had any problem with a model or needed to discuss 

anything related to cloud physics and to Daniel O’Sullivan for his interest and effort on 

discussing various topics related to ice nucleation that helped me to increase my knowledge 

in this field from the very beginning. I am grateful to Theodore Wilson, Daniel Grosvenor, 

Kirsty Pringle, Thomas Whale, Leighton Regayre, Daniel McCoy, Mark Holden, Hamish 

Gordon, Robin Stevens, Alberto Sanchez-Marroquin, Douglas Hamilton, Susannah Burrows 

among several other scientists with whom I have had interesting and constructive 

discussions along these years. I want to thank the BACCHUS project for providing the 

funding needed for this project and to the MetOffice of the UK for allowing me to use their 

resources to produce several of the results shown in this thesis. Thanks to Paul Field for 

supervising and supporting this collaboration with the MetOffice. 

I am especially grateful to all the friends I have had in Leeds all these years who have 

accompanied me in this journey, certainly making the time spent in this city very 

memorable and pleasant.   

Finally, I want to thank my mother Concepción, my father José María and my brother José 

Alberto who have been supporting me during my childhood and my youth, a support 

without which this thesis would not have been possible. 

 “Finalmente, quiero dar las gracias a mi madre Concepción, a mi padre José María, y a 

mi hermano José Alberto, quienes me han estado apoyando durante mi niñez y mi juventud, 

un apoyo sin el que esta tesis no habría sido posible.” 

 



 

IV  

Abstract 

The process of cloud glaciation strongly alters the properties of mixed-phase clouds. 

Between 0oC to about -37oC, cloud liquid droplets can either exist in the liquid 

phase in metastable state known as supercooling, or they can be composed of solid 

ice crystals. For a liquid droplet to freeze at these temperatures, the action of an 

external agent, known as ice-nucleating particle (INP) is needed. The atmospheric 

distribution of ice-nucleating particles was simulated in past studies as a function of 

the aerosol concentration, however, new experimental information about the ice-

nucleating ability of different aerosol species and several new atmospheric 

measurements of INP are now available to be used in models. 

In this thesis, I use this new information to develop a global atmospheric model of 

the distribution of ice-nucleating particles to assess the relative importance of 

mineral dust, marine organic aerosols and black carbon for contributing to 

atmospheric concentrations of INPs. The model is evaluated against several datasets 

of INP concentrations measured in the atmosphere to test its realism and locate 

regions of the world where additional currently missing sources of INP could be 

important. The results show that feldspar aerosols dominate the atmospheric INP 

concentration for most parts of the globe, whereas marine organic aerosols are more 

relevant in the remote Southern Ocean. Black carbon particles, in contrast, seem not 

to play a substantial role when new estimates of its ice-nucleating ability are used. 

With the information obtained by this model, I explore whether the representation of 

ice-nucleating particles in climate models plays a role in the Southern Ocean 

radiative bias. This bias is related to modelled clouds reflecting too-little solar 

radiation, causing large errors in sea-surface temperatures and atmospheric 

circulations. I combine cloud-resolving simulations over regions of 1000 km with 

the new estimates of the INP concentration in remote regions to show that the 

simulated clouds reflect much more solar radiation than predicted by a global 

climate model, agreeing much better with satellite observations in both magnitude 

and frequency.  

Overall, these results will improve our understanding of the role, distribution and 

importance of ice-nucleating particles in the atmosphere and provide the scientific 

community new points of view to understand model biases. 
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Chapter 1 Introduction 

1.  Clouds 

Clouds have large climatic impacts in the Earth system. Made of suspended droplets 

of water in a solid or liquid state, they are one of the principal components of the 

water cycle producing precipitation and redistributing water and energy across the 

planet. They also play a principal role in the radiative balance of the Earth by 

reflecting and absorbing both solar (shortwave) and infrared (longwave) radiation. 

Individual clouds can cool or warm the surface of the planet depending on their 

height. Low clouds, have temperatures at their top similar to the surface of the 

planet, which means they emit similar amounts of longwave radiation back to space 

while reflecting large proportions of the incoming solar radiation. This causes 

overall a net cooling effect at the surface and top of the atmosphere. High clouds on 

the other hand, absorb much more terrestrial longwave radiation than they emit, 

causing a net warming of the surface. Globally, it is estimated that clouds reflect 

about 46 W/m2 of shortwave radiation and emit to Earth about 28 W/m2 longwave 

radiation [Ramanathan et al., 1989; Zelinka et al., 2017].This causes in total a 

cooling effect of around 18 W/m2. This natural cloud forcing is about six times 

larger than the present-day radiative forcing caused by changes in anthropogenic 

emissions of greenhouse gases estimated in the latest IPCC report (~2.8W/m2 

[Myhre et al., 2013a]). Given the magnitude of the natural cloud radiative forcing, 

any human or natural-induced change in the properties of the clouds can potentially 

have large effects on climate.  Moreover, as the atmosphere warms in the coming 

century clouds will respond, changing their properties and feeding back on climate. 

Most climate models predict that these cloud feedbacks will have an overall 

warming effect on climate [Zelinka et al., 2017], however, the magnitude of these 

cloud feedbacks is currently one of the largest uncertainties for future climate 

projections.  
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Figure 1 Example distribution of clouds in the atmosphere. The image is based 
largely on cloud cover observations from the moderate-resolution imaging 
spectroradiometer (MODIS) on the 11th of July 2005. Credits to NASA Earth. 

1.1.  Aerosol impacts on liquid clouds   

 

Aerosols particles are small pieces of matter (liquid, solid or mixture) suspended in 

the atmosphere. Their sizes can vary from a few nanometres to a few micrometres.  

Larger particles than a few tens of microns have fall speeds large enough so they do 

not persist in the atmosphere long enough to be transported large distances or 

influence atmospheric properties strongly. Typically, aerosol particles are 

distributed across different size ranges forming lognormal modes. Depending of 

their size, each mode its assigned a different name. The ‘nucleation mode’ is 

composed of the smaller particles up to about 10 nm. Larger particles (from about 

10 nm to 100 nm) form what is called the ‘Aitken mode’. The next mode (between 

100nm to 1µm) is called the ‘accumulation mode’ and for sizes larger than 1µm, the 

particles are included in what is known as the ‘coarse mode’. Aerosol particles are 

essential for cloud formation as supersaturated water condenses onto aerosols to 

form cloud droplets creating a cloud. In the last century, large anthropogenic 

increases in the emissions of aerosol particles have affected climate in several ways 

[Boucher et al., 2013]. First by absorbing and reflecting sunlight back into space, in 

what is called the aerosol direct effect [Myhre et al., 2013b], and then by affecting 
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cloud radiative properties [Twomey, 1974]. These aerosol-cloud interactions are 

commonly referred as aerosol indirect effects.    

For the same amount of condensed liquid, a larger concentration of aerosols in the 

atmosphere will produce more and smaller cloud droplets, which will make the 

clouds reflect more sunlight in what is called the first indirect effect of aerosol in 

clouds [Twomey, 1974; Boucher et al., 2013; Carslaw et al., 2013] .An additional 

effect is that the collision-coalescence of droplets becomes less efficient with 

increased droplet concentration, which makes them less likely to become rain 

droplets, hence increasing the lifetime of the clouds [Albrecht, 1989; Lohmann, 

2006].  

Aerosols can also influence the formation and development of clouds in what is 

called the semi-direct effect in which the reflection and absorption of radiation by 

aerosol particles can produce changes in the atmospheric thermal profile [Ackerman, 

2000].  The magnitude of all these aerosol cloud interactions has remained one of 

the largest uncertainties in anthropogenic radiative forcing for several IPCC reports, 

despite large efforts in the atmospheric science community to reduce it [Boucher et 

al., 2013].  

Although it is clear that humans have affected the concentration of aerosol particles 

able to modify the atmosphere’s radiative properties and to act as cloud 

condensation nuclei in clouds, it is still unknown how human-induced changes may 

modify the concentration of aerosols with the ability to nucleate ice. A major issue 

that the scientific community face at this point is the lack of basic understanding of 

the sources (natural or anthropogenic) of ice-nucleating particles (INPs). Changes in 

the concentrations of these particles, could change the process of cloud glaciation, 

which dramatically impacts cloud radiative properties and triggers the cold rain 

process in which the formation of ice and subsequent grow at the expense of liquid 

water produces precipitating ice crystals reducing the lifetime of clouds [Wegener, 

1923]. INPs could also affect the formation pathway of cirrus clouds, modifying the 

concentration and size of ice crystals which influences its lifetime and radiative 

properties [Hoose et al,. 2012]. Possible anthropogenic effects on the INP 

distribution could be related to increases in the emissions of dust by human 

activities, deactivation of ice-nucleating particles due to sulphur coatings on aerosols 

or emission of black carbon aerosols with the capability to nucleate ice. However, so 
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far, just a few studies have looked into the magnitude of a possible anthropogenic 

climate modification due to ice-nucleating particles, and their conclusions are 

largely dependent on fundamental unresolved questions related to the representation 

and efficiency of different aerosol species to nucleate ice [Lohmann, 2002; 

Storelvmo et al., 2008; Girard and Sokhandan Asl, 2014].  

Most climate models currently do not account for the differences in the atmospheric 

concentration of ice-nucleating particles, mainly because of some of the 

uncertainties previously mentioned. Attempting to improve the understanding of 

how ice-nucleating particles are distributed and what effect they have on clouds is 

currently a major challenge in the atmospheric science community. Improving our 

understanding on how to better represent the INP concentration globally making use 

of the most recent laboratory information of the INP ability of different aerosol 

species and the most up to date dataset of atmospheric INP observations is going to 

be the main subject of this topic. Then I will attempt to estimate the importance that 

improving the representation of ice-nucleating particles have for representing cloud 

microphysics in models.  

 

1.2.  Cloud droplet formation  

Clouds can be formed when atmospheric relative humidity exceeds 100%. 

Generally, it occurs when a moist air parcel experiences an adiabatic updraft into 

higher levels of the atmosphere, which causes its temperature to fall, thereby 

lowering the saturation vapour pressure needed for water to condense. Moist air can 

also reach saturation by some other processes such as cooling by the emission of 

longwave radiation back to space, which is one of the main processes causing fog 

formation [Gultepe et al., 2007].  

When supersaturation is reached, water starts to condense onto aerosol particles 

following Köhler theory [Köhler, 1936]. To derive and explain Köhler theory we 

need to account for two properties of aerosol particles that affect the saturation 

vapour pressure of water: the solute effect and the effect of the aerosol particle 

curved surface.  

Aerosol particles are typically a mixture of water and one or more components 

acting as solutes. The addition of a solute to water results in a decrease in the 
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saturation vapour pressure of water. This phenomenon is approximated by the 

Raoult’s law: 

𝑝" = 𝑥	 ∙ 𝑝∗			(1) 

where 𝑝∗ is the saturation water pressure of pure water over a flat surface, 𝑝" the 

saturation vapour pressure due to the presence of solutes and 𝑥		the mole fraction of 

the solute. For a solution droplet, the ratio 𝑝"/𝑝∗ can be expressed as function of the 

radius of the droplet (𝑟) in the form: 

𝑝"

𝑝∗ = 1 −
𝐵
𝑟/ 			(2) 

 

 

With 𝐵 referring to a factor that does not depend on the radius. The second 

important effect is the change of the saturation vapour pressure over a curved 

surface, also known as the Kelvin effect. Over curved interfaces, molecules have 

less adjacent molecules than in flat surfaces, making it easier for them to escape to 

the gas phase, which increase the saturation vapour pressure of water. This effect is 

expressed by the Kelvin equation: 

𝑝1 = 𝑝∗	𝑒𝑥𝑝 3
2σM
𝜌	𝑅𝑇𝑟

9		(3) 

where 𝑝1  is the saturation water pressure due to the Kelvin effect σ is the surface 

tension of water, 𝑀 the molar mass, 𝜌 the density of water, R the universal gas 

constant and 𝑇 the temperature. The ratio 𝑝1/𝑝∗ can then be expressed in a 

simplified form as: 

𝑝1

𝑝∗ = exp 3
𝐴
𝑟9 	≈ 1 +

𝐴
𝑟 		(4) 

where 𝐴 is a factor that does not depend on the radius. Combining these two effects 

we arrive to the Köhler equation that explains the activation of aerosols into cloud 

droplets in water supersaturated environments. In a simplified form, the saturation 

water pressure after accounting for these two effects (𝑝) can be written as: 

𝑝 = 𝑝∗ 31 −
𝐵
𝑟/931 +

𝐴
𝑟9 	≈ 31 +

𝐴
𝑟 −

𝐵
𝑟/9	(5) 
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The form of the Köhler equation as function of the radius can be seen in Figure 2. 

 

Figure 2 Example representation of how the Raoult and Kelvin effects modify the 
saturation water pressure. Both effects combined make the shape of the Köhler 
function. 

 

 

Below a relative humidity of 100%, an aerosol particle will absorb moisture and 

grow as the relative humidity increases or shrink if the RH decreases. When the 

critical supersaturation is reached, the aerosol particle will reach a critical radious at 

which it activates into a water droplet that can grow indefinitely at the expense of 

the ambient moisture. This critical radius (𝑟D) and the supersaturation at which 

droplet activation will happen (𝑆D)can be obtained by differentiating the Köhler 

equation to obtain its maximum value:  

𝜕𝑝
𝜕𝑟 = 0;		(6)					𝑟D = J3𝐵

𝐴 		(7)	 

Substituting 𝑟D into the Köhler equation leads to the saturation needed to activate an 

aerosol particle into a water droplet: 
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𝑆D = 1 +J
4𝐴/

27𝐵			(8) 

 

Hence, for a certain aerosol population (assumed homogeneous in composition for 

simplicity), if the supersaturation in a cloud goes above the critical supersaturation, 

all the droplets with a radius larger than the critical radius will be activated into 

water droplets as long as there is enough available vapour. The condensation of 

water releases latent heat into the air mass, affecting its subsequent evolution. When 

the nucleated water droplets collide among each other the coalescence process takes 

place and several droplets can join forming larger rain droplets with faster fall 

speeds. These rain droplets precipitate in what is known as the warm rain process.  

 

2.  Formation of the ice phase 

2.1.  Ice nucleation 

The evolution and properties of clouds become substantially more complex when 

they ice phase starts to compete with the water phase. When liquid water cools down 

below 0oC, the ice phase becomes the thermodynamically stable phase of water. 

However, without the triggering of ice formation, water can instead persist in the 

liquid phase in a thermodynamically metastable state commonly referred as 

supercooling. The conversion from supercooled water to the ice phase begins with 

the formation of an aggregate of water molecules forming a similar structure to that 

of solid ice. This structure is known as an ice embryo and can occur by random 

fluctuations of molecules. When the embryo reaches a certain critical size, its 

growth at the expense of the liquid water becomes an energetically favourable 

process, forming an ice crystal.  The triggering of the ice phase for pure water, 

commonly referred as homogeneous freezing, is a probabilistic phenomenon that 

depends strongly on the temperature [Murray and Jensen, 2010; Riechers et al., 

2013; Koop and Murray, 2016].  

 

On atmospheric time-scales, the probability of ice formation occurring 

homogeneously in a liquid water droplet is negligibly small until temperatures are 
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lower than about -35oC. Between these temperatures and 0oC an external agent is 

needed to trigger the formation of the ice phase. This process is commonly called 

heterogeneous ice nucleation and the temperature range over which it can occur is 

referred to as the mixed-phase range.  

 

Aerosol particles with the ability to nucleate ice will be called hereafter ice-

nucleating particles (INPs) [Vali et al., 2015a] and their composition, distribution 

and atmospheric implications are the main subject of this thesis. 

 

There are different pathways through which INPs can form ice-crystals. If one of 

these aerosol particles triggers ice-nucleation from inside a supercooled water 

droplet it is said that it is acting through the condensation or immersion mode 

depending on whether the water was condensed onto the surface of the particle 

(condensation), or the particle was introduced in water (immersion). Some particles 

can also trigger the formation of ice by colliding with the surface of a water droplet, 

which is referred as the contact mode. A different pathway in which ice is formed 

without the presence of condensed supercooled liquid water can happen when water 

vapour deposits onto the surface of an aerosol particle and directly forms the ice-

phase. This mode of nucleation is referred as the deposition mode.  Figure 3 depicts 

the different nucleation pathways [Kanji et al., 2017]. 
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Figure 3 Schematic representation of the pathways in which ice-nucleation can 
occur. There are 4 main pathways, immersion freezing, condensation freezing, 
collisional contact freezing (also referred as contact nucleation) . Picture 
reproduced from [Kanji et al., 2017]. 

 

 

It is observed that in mixed-phase clouds the liquid phase appears prior freezing 

[Field et al., 2004; Ansmann et al., 2008; Murray et al., 2012; Westbrook and 

Illingworth, 2013]. This suggest that the nucleation of ice directly from the gas 

phase is not relevant for these clouds. Hence, the immersion/condensation pathway 

is thought to be the most important in the mixed-phase range of temperatures, and it 

will be the main subject of this thesis.  

Several modelling studies also found that deposition nucleation contributes little to 

the number of nucleation events in mixed-phase clouds [Cui et al., 2006; Philips et 

al., 2007; Hoose et al., 2010a]. Contact nucleation is thought to not be significant in 

mixed-phase clouds [Cui et al., 2006; Philips et al., 2007], but some studies suggest 

that it might be important in some situations, particularly where droplets are 

evaporating [Durant and Shaw, 2005; Ansmann et al., 2008; Ladino Moreno et al., 

2013].  
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2.2.  The ice phase evolution 

Liquid water in a supercooled state is commonly found in the atmosphere despite its 

intrinsic meta-stability. For example, satellite observations of cloud-top phase using 

LIDARs estimate that around 52% of all clouds in the globe are composed of 

supercooled water at -20oC [Choi et al., 2010]. This fraction varies significantly 

between regions and it is correlated negatively with the dust concentrations observed 

by satellite (Figure 4).   

 

Figure 4 Supercooled liquid cloud fraction at -20oC obtained from the National 
Aeronautics and Space Administration’s (NASA) spaceborne instrument, cloud-
aerosol lidar with orthogonal polarization (CALIOP). Image reproduced from  Choi 
et al. [2010]. 

 

The phase of clouds has large atmospheric implications in terms its radiative 

properties and evolution [Sassen and Khvorostyanov, 2007]. Liquid clouds are 

typically composed of small droplets of about 10µm, whereas heterogeneously 

nucleated ice clouds, due to the smaller concentrations of INP in comparison with 

cloud condensation nuclei (CCN), tend to create much fewer ice crystals. Once the 

ice-crystals are formed, due to the lower saturation vapour pressure that ice has in 

comparison to liquid water, water vapour deposits preferentially on the surface of 

ice particles, enabling them to grow at the expense of ambient water vapour and 

condensed liquid water. This process in known as the Wegener-Bergeron-Findeisen 
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process [Wegener, 1923]. The preferential deposition of vapour on ice produces 

several changes to the cloud properties. First, because the condensed water is now 

accumulated in larger hydrometeors, its surface area is much smaller than when it is 

distributed across a larger population of smaller cloud droplets, making it less 

effective to reflect sunlight. Then, as the fall speed of these newly formed 

hydrometeors increases as they grow by deposition, they start to precipitate, 

colliding with water droplets that freeze in contact with the ice (riming process) 

depleting the cloud water content in what is called the cold-rain process. All these 

effects combined can change critically the properties of a mixed-phase clouds or 

make the cloud dissipate completely. A larger concentration of ice-nucleating 

particles will produce more ice-formation events, making these processes more 

efficient and hence decreasing the amount of sunlight that a cloud can reflect. More 

nucleation events can also lead to an ice cloud with more and smaller ice crystals, 

which will reflect more sunlight than a cloud with fewer and larger crystals. 

However, this effect is smaller than the caused by the phase transition [Storelvmo et 

al., 2011], as typical cloud droplet concentrations are of the order of 100-1000 cm-3 

[H. Pruppacher, 1997], whereas ice crystal number concentrations are typically 

about 4 to 5 orders of magnitude lower (around 1L-1 [Gultepe et al., 2001]). 
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Figure 5. Example representation of the effect of INPs in upper tropospheric and 
supercooled clouds. For both high (ice) clouds and supercooled liquid clouds, 
heterogeneous ice nucleation produces few and large ice crystals that precipitate 
quicker, decreasing the lifetime of the clouds. Picture obtained from Murray [2017]. 

 

2.3.  Ice nucleation in the atmosphere 

Despite the importance of ice nucleation for mixed-phase clouds, the representation 

of cloud glaciation is currently very uncertain. Most global climate models tend to 

represent cloud glaciation with schemes that treat all mixed-phase clouds in the 

same manner, independently of the INP concentration [McCoy et al., 2015a]. These 

schemes do not capture the important special variations in cloud glaciation 

temperatures [McCoy et al., 2016] observed by satellite and ground lidars [Choi et 

al., 2010; Murray et al., 2012].  

 The concentration of ice-nucleating particles has been parameterized by using  

some parameterizations [Fletcher, 1962; Cooper, 1986; Meyers et al., 1992] that use 
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temperature as the only variable to predict INP. These parameterizations were 

developed by fitting a temperature dependent function to several INP datasets. 

Meyers et al., [1992] also considered the supersaturation with respect to ice to 

develop a parameterization for condensation/deposition ice nucleation from CFDC 

observations in continental air masses. A more recent parameterization with an 

increase degree of complexity is the one developed in DeMott et al., [2010] in which 

several more datasets obtained from CFDC observations were used to fit the 

measured INP concentrations as function of temperature and the concentration of 

aerosol particles larger than 0.5 micrometers. Recent parameterizations typically 

predict INP using temperature and the composition and surface of the aerosol 

population from both laboratory and field observations [Niemand et al., 2012; 

Atkinson et al., 2013; DeMott et al., 2015]. There are differences as large as several 

orders of magnitude when using these different parameterizations to predict INP at a 

given temperature, which makes ice nucleation a very uncertain process in climate 

models.  

Some studies have previously attempted to represent the global distribution of ice-

nucleating particles in the atmosphere based on the aerosol composition. For 

example, Lohmann and Diehl [2006] used CNT to simulate the distribution of dust 

and black carbon aerosols acting as ice-nucleating particles based on laboratory 

measurements. Hoose et al. [2010] included bacteria, pollen and fungal spores as 

ice-nucleating particles, finding that they contribute little to the total freezing events 

in the atmosphere in agreement with later studies [Sesartic et al., 2013; Spracklen 

and Heald, 2014] . Wang et al. [2014] extended the model presented in Hoose et al. 

[2010], by including a distribution of contact angles to classical nucleation theory. 

[Phillips et al., 2008] developed a framework to represent ice-nucleation based on 

observation of the INP composition from different field campaigns.  

The question of how important the representation of ice nucleation is for cloud 

radiative properties in global models has also been addressed in some studies. For 

example, DeMott et al., [2010] developed a parameterization of INP with new 

observations of atmospheric concentrations and used it to update the representation 

of INP in their model producing a change of 2.3W/m2 in shortwave cloud forcing 

globally. Yun and Penner [2012] also obtained a change in top-of-the-atmosphere 

shortwave and longwave fluxes of about 3 to 8 W/m2 depending on which 
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parameterizations were used for the different ice-nucleation modes. Similar studies 

of the effect of representing ice nucleation by various parameterizations obtained 

similar sensitivities [Hoose et al., 2010a; Tan et al., 2016; Sagoo and Storelvmo, 

2017]. 

Despite the importance of ice nucleation for climate models, the observations of ice-

nucleating particle concentrations, which are essential to evaluate models, are 

relatively scarce, with very little global coverage [Vergara-Temprado et al., 2017] 

and more efforts are needed to constrain the model representation of INP and its 

effect on clouds. 

3.  Secondary ice processes 

A different pathway through which the number of ice crystals in mixed-phase clouds 

can increase is through the so-called secondary ice processes, in which new ice 

crystals are generated from previously formed ice [Field et al., 2016]. Some 

hypothesis that such types of processes could happen in mixed-phase clouds 

appeared in the 70s with experimental evidence of a secondary ice mechanism, the 

Hallet-Mossop process (H-M) [Hallet and Mossop, 1974]. Hallet and Mossop found 

that when using a rotating rod covered in rime to clash against supercooled water 

droplets in a chamber, the number of ice crystals in the chamber increased 

substantially as function of the amount of water mass rimmed. This process only 

worked at a narrow range of relatively high temperatures (-3oC to -8oC) in which ice 

crystals tend to grow in the form of needles. They explained their result by 

suggesting that small fragments of ice break as the riming process happens, ejecting 

small ice splinters.  Once these small splinters are emitted, they find themselves in 

an ice supersaturated environment and therefore grow quickly to larger sizes 

potentially feeding back into the ice production process. The concentration of 

primary nucleated particles that is necessary to trigger and maintain this process is 

still very uncertain, but some estimates suggest that it can be as low as 10-5 to 10-3 

particles per litre [Beard, 1992; Crawford et al., 2012].  

 

The experimental study presented by Hallett and Mossop [1974] was motivated by 

previous field observations of marine mixed-phase clouds in which the ice crystal 

concentrations at warm temperatures (<-10oC) exceeded by about 4 orders of 
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magnitude the concentration of ice-nucleating particles in marine clouds [Mossop, 

1970] . These early observations have subsequently been shown to be affected by 

instrumental ice-crystal shattering problems in which collisions between cloud ice-

crystals and the measuring probe caused the crystals to break into many small pieces 

that were detected later by the instrument. This artifact could have caused the ice 

crystal number concentrations measured in the old studies to be overestimated by up 

to two orders of magnitude [Korolev et al., 2013]. However, after correcting this 

instrumental artifact using new techniques [Korolev and Field, 2015], some more 

recent field studies show that the discrepancies between ice crystal number and ice-

nucleating particles concentration still persist in clouds with warm tops [Grosvenor 

et al., 2012], particularly those affected by strong updrafts [Lawson and Gettelman, 

2014; Ladino et al., 2017]. 

Some models use empirical representations of the H-M process as a secondary ice 

production mechanism. They typically relate the number of ice splinters ejected as a 

function of the rimed mass with a triangular function that peaks at -5oC and 

decreases linearly up to -3oC and down to -8oC.  The efficiency of this process 

depends strongly on the amount of supercooled water in the cloud and the efficiency 

of primary ice production processes because the riming particles that initiate the H-

M process are nucleated as primary particles. In general, modelling studies do not 

agree on the importance of the H-M process for cloud evolution. While some studies 

suggest that this process could be important to represent the properties of the clouds 

[Connolly et al., 2006; Crawford et al., 2012] but does not affect precipitation rates, 

others found that it might affect precipitation by changing the vertical distribution of 

latent heat [Clark et al., 2005].  In other studies, the H-M did not seem to affect 

substantially the evolution of the cloud system [Dearden et al., 2016].  

The large discrepancies between studies probably arise from the different evolution 

and properties of the various cloud systems studied and the uncertainties in the 

representation of this process and its interaction with other uncertain microphysical 

processes.  

 

Some other secondary ice productions processes have been proposed such as the 

fragmentation of ice crystals by collisions amongst them [Vardiman, 1978; 
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Takahashi et al., 1995] or the shattering of droplets in the process of freezing 

[Leisner et al., 2014], but their possible atmospheric relevance is also still uncertain. 

 

4.  INP effects on cirrus clouds and geoengineering  

The term ice-nucleating particles is not only used for aerosols with the ability to 

trigger ice-nucleation from supercooled liquid water, but also for particles that can 

grow ice crystals on their surface when exposed to an ice supersaturated 

environment without the need for liquid water to condense first. This pathway for 

crystal formation is called deposition mode nucleation. In principle, several 

observational and modelling studies have found that this pathway seems not to be 

important for mixed-phase clouds, however its importance for cirrus cloud 

formation can be critical. Cirrus clouds form when water vapour condenses or 

deposits onto aerosol particles. If the saturation vapour pressure is higher than the 

supersaturation needed to condense liquid, liquid water condenses and freezes 

immediately homogeneously due to the low ambient temperature. If the saturation is 

below liquid supersaturation but above ice supersaturation, ice crystals can form 

heterogeneously on the surface of ice-nucleating particles. In general, the 

concentration of ice-nucleating particles in the atmosphere is always orders of 

magnitude lower than the concentration of aerosol particles. Hence, the way in 

which a cirrus cloud forms can substantially affect the properties of the clouds. If a 

cloud is formed through homogeneous freezing it will have many and smaller 

crystals than if it has been nucleated heterogeneously. In a similar way to the effect 

of having low or high concentrations of CCN particles in a liquid cloud, having 

smaller crystals increases the lifetime of the cloud and makes it more efficient at 

reflecting sunlight.  

 

Cirrus clouds overall have a warming effect in the atmosphere. They are typically 

much optically thinner than low-level liquid clouds, which makes them almost 

transparent to shortwave radiation. However, they are good absorbers and reflectors 

of longwave radiation, making them opaque to the LW radiation emitted by the 

Earth’s surface.  As their temperature is low, they emit back to space much less 

longwave radiation than the surface behind them, causing an effect similar to 
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greenhouse gases in the atmosphere. This is the reason why an artificial 

modification of their properties has been proposed with the objective to make then 

thinner as a geoengineering technique to tackle future increases in greenhouse gases. 

This proposed method is called ‘cirrus clouds thinning’ (CCT) and was firstly 

proposed by Mitchell and Finnegan [2009]. The main idea of CCT is to emit large 

concentrations of efficient ice-nucleating particles acting in the deposition mode to 

change the way homogeneously nucleated cirrus clouds are formed. 

Heterogeneously nucleated clouds will be composed on fewer and larger crystals, 

therefore having shorter lifetimes and smaller optical thicknesses. These techniques 

have the advantage that they produce a similar effect on the radiative balance as a 

CO2 decrease, so the combined effect of this technique and an increase in 

greenhouse gases in the water cycle is smaller than when using techniques focused 

on reflection of incoming sunlight [Kristjánsson et al., 2015]. Some studies suggest 

that this method could work to offset greenhouse gas warming [Storelvmo et al., 

2013] while some others found no significant effect due to complex microphysical 

responses of their model [Gasparini and Lohmann, 2016]. Fundamental 

uncertainties in ice microphysics and its representation in models are likely 

responsible for these contradictory results [Gasparini and Lohmann, 2016]. 

Currently some observational studies suggest that most cirrus clouds nucleate 

heterogeneously in the present-day atmosphere [Cziczo et al., 2013], which might 

limit the possible usefulness of this technique. However, homogeneously nucleated 

cirrus clouds are thought to be formed in high latitude winters and regions 

dominated by strong orographic updrafts [Krämer et al., 2016], so it could still be a 

useful way to reduce warming in regions strongly affected by warming such as the 

Arctic [Lohmann and Gasparini, 2017]. 

 

5.  Measuring ice nucleation in the laboratory and the atmosphere. 

There has been a lot of interest in the area of experimental ice nucleation[Hoose and 

Möhler, 2012; Murray et al., 2012; Kanji et al., 2017]. One of the main goals of this 

research is to tackle some of the fundamental gaps in our understanding that 

modellers face when trying to represent and quantify ice nucleation in the 

atmosphere and draw firm conclusions on any hypothetical modification (naturally 

or anthropogenically driven) of the atmospheric INP distribution. Some of these 
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fundamental questions include issues such as what aerosols causes nucleation 

predominantly in the atmosphere or what approach represents better the process of 

ice-nucleation. 

 

There are two main techniques to study the ability of different aerosols to nucleate 

ice from supercooled water and measure its concentration in the atmosphere. They 

can be grouped depending on whether the aerosols are introduced into the 

instrument as dry dispersions (dry-dispersion techniques) or are first suspended in 

water droplets (suspension techniques) [Hiranuma et al., 2014]. Dry dispersion 

techniques expose aerosols to water saturation to form water droplets and then 

measure how many ice crystals form at a certain temperature. They typically expose 

the formed ice crystals to ice supersaturation to make then grow and detect 

separately from liquid droplets. Some examples of instruments using this technique 

are continuous flow diffusion chambers (CFDC) [Noone et al., 1988] or cloud 

chambers [Möhler et al., 2006]. In wet suspension techniques, a large population of 

aerosol particles are immersed in water droplets. The droplets are then cooled down 

on a cold stage and the fraction of droplets frozen at each temperature is recorded. 

An example of an instrument using this method can be found in Whale et al. [2014]. 

In dry-dispersion techniques, every droplet formed contains a single aerosol particle 

whereas in suspension techniques, every droplet may contain a whole population of 

aerosol particles. This difference makes both methods sensitive to different ranges 

of INP efficiencies. 

 

Dry-dispersion techniques typically are able to detect very high INP efficiencies 

than can be reached at low temperatures, whereas in suspension techniques, because 

many aerosol particles are included in every droplet, their limit of detection is lower, 

making them able to measure much lower INP efficiencies at much warmer 

temperatures. However, impurities in water used in suspension techniques often 

make the droplets freeze at around -25oC (depending on the droplet size used), 

making detection of INP activity at colder temperatures harder to access in these 

methods.   
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Both methods have been used to study the ice-nucleation efficiency of aerosol 

samples collected from the atmosphere and samples generated in laboratories. When 

the aerosols have been collected from the atmosphere, the concentration of ice-

nucleating particles can be inferred from the number of nucleation events and the 

volume of the air sampled. Laboratory-generated samples, on the other hand, serve 

to study fundamental properties of an aerosol population such as the concentration 

of sites from where ice-nucleation can occur to then derive parameterizations of its 

ice-nucleation ability that can be used in models or for comparison in experimental 

and field studies.  

5.1.  Laboratory-derived parameterizations of ice-nucleation 

Several parameterizations of the ice-nucleating ability of different aerosol species 

have been developed in recent years (Figure 6). Mineral dust particles, which are a 

well-known species for ice-nucleation, have been extensively studied. Several 

studies have quantified the ice-nucleating ability of different types of mineral dust 

such as illite [Broadley et al., 2012], kaolinite [Murray et al., 2011], Arizona test 

dust [Connolly et al., 2009], different natural dust samples [Niemand et al., 2012; 

Ullrich et al., 2017], K-feldspar [Atkinson et al., 2013; Harrison et al., 2016] and 

several other mineral components of dust [Atkinson et al., 2013]. 

Some modelling studies have determined the atmospheric relevance of dust and, in 

general, there is agreement that dust is an important component causing 

heterogeneous ice-nucleation in mixed-phase clouds [Hoose et al., 2010a; Niemand 

et al., 2012; Atkinson et al., 2013; Vergara-Temprado et al., 2017]. 

 

Biological aerosols have also received a lot of attention as they typically induce 

freezing at relatively warm temperatures, where secondary ice processes can start. 

Some of the existing data for bioaerosols include bacteria [Mortazavi et al., 2008], 

pollen [von Blohn et al., 2005], pollen fragments [O’Sullivan et al., 2015], fungal 

spores [Iannone et al., 2011] and soil dust with biological components [O’Sullivan 

et al., 2016]. The importance of biological material for ice nucleation in the 

atmosphere is not clear. Some modelling studies have estimated that the contribution 

of bacteria, pollen and fungal material to atmospheric concentrations of ice-

nucleating particles is small compared to that of dust [Hoose et al., 2010b; 
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Spracklen and Heald, 2014]. Some studies show a decrease in the activity of 

atmospherically collected aerosol samples in farm environments after being exposed 

to heat [Garcia et al., 2012], which suggest that a biological component might be an 

important component for triggering ice nucleation in those aerosol samples, 

however, it is unclear how much soil dust is emitted into the atmosphere.  

 

Soot aerosols have also been the focus of several studies. Its relative importance in 

the atmosphere is not clear, as different experimental studies report INP efficiencies 

for BC particles that differ in orders of magnitude [DeMott, 1990; Diehl and Mitra, 

1998; Schill et al., 2016; Ullrich et al., 2017]. Understanding the importance of this 

material for nucleating ice is critical to assess the possible role of human induced 

changes on cloud glaciation and the consequent climatic impacts. An extensive 

assessment of its relative importance will be presented on third chapter of this thesis.  

 

Other aerosols that have been observed to nucleate ice in laboratory studies are 

ashes [Umo et al., 2014], volcanic ashes [Mangan et al., 2017] , lead-containing 

aerosols [Cziczo et al., 2009], cellulose [Hiranuma et al., 2015] and marine organic 

aerosols [Wilson et al., 2015]. The second chapter of this thesis aims to understand 

the global importance of marine organic aerosols because of their potential role in 

controlling remote marine cloud systems, which cover much of the Earth. For an 

extensive discussion of different studies looking at ice nucleation by marine organic 

entities, see the introduction of the second chapter.  
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Figure 6. Experimental measured values of the density of active site from which ice 

nucleation can happen at different temperatures for several components. Plot 

reproduced from Murray et al.[2012] See the original paper for the references. 

 

5.2.  Atmospheric observations of INP concentrations 

Measuring concentrations of ice-nucleating particles in different parts of the 

atmosphere and different times is a major challenge for the experimental ice-

nucleation community. Currently, the observations of atmospheric INP 

concentrations are scarce with very little global and temporal coverage. Some field 

studies from the past century measured the atmospheric INP concentration in 

different locations [Bigg, 1953, 1973; Fletcher, 1962; Rosinski et al., 1987, 1988] 

giving the first estimates of INP concentrations. After that, the need to develop 

empirical parameterizations of INP stimulated new investigations of the atmospheric 

concentrations of ice-nucleating particles, which focused mainly on the continental 

US region [Phillips et al., 2008; DeMott et al., 2010]. Currently, several groups are 

investing effort to extend the global coverage of INP observations, measuring INP 

concentrations in places such as the Alps [Conen et al., 2015], Cape Verde [Welti et 

al., 2017], remote marine environments [DeMott et al., 2016], the Poles [Ardon-

Dryer et al., 2011] and China [Yin et al., 2012] to mention just a few [See table 1 on 

Appendix C]. 
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The overall picture from all these studies is that terrestrial environments tend to have 

INP concentrations that are orders of magnitude greater than remote marine 

environments [DeMott et al., 2016], which has a strong influence on the way cloud 

glaciation happens in each environment. This continental/marine contrast in INP 

concentrations is currently not represented by most climate models [McCoy et al., 

2015a] and appears to have a large influence on the model performance [McCoy et 

al., 2016]. By joining together some of the datasets currently available (Figure 7), it 

can be observed that the measured INP concentration spans about 8 orders of 

magnitude and can be as variable as 5 orders of magnitude for a given temperature 

(Figure 7). This variability is much greater than the observed for CCN 

concentrations. These values are probably underestimates of the real variability, as 

due to current instrumental limitations the observations are limited to short time 

periods in very few places.  

 

 

Figure 7 Global dataset of INP concentrations used in the second chapter of the 
thesis for model evaluation [Vergara-Temprado et al., 2017]. This dataset includes 
observations from filter measurements and CFDCs. The data points are classified 
between concentrations measured in terrestrial environments (circles) and marine 
environments (triangles). 
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5.3.  Compositional analysis of ice-nucleating particles in the 

atmosphere.  

To simulate ice-nucleating particles in global models, we need to know the chemical 

composition of the INP at cloud-level. Field studies have tried to address this 

question by two different approaches. Some studies take freshly nucleated ice 

crystals from mixed-phase clouds and separate them from ice crystal aggregates, 

liquid water droplets and interstitial aerosols. Then, by comparing the aerosol 

composition of the ice residuals to the background aerosol composition, it can be 

observed which aerosol components are enhanced in the ice crystals, assuming that 

these aerosols have been responsible for ice formation [Cozic et al., 2008; Pratt et 

al., 2009; Kamphus et al., 2010; Kupiszewski et al., 2016; Schmidt et al., 2017]. 

Other studies follow a similar approach by taking an aerosol sample, testing its ice 

nucleating ability in a Continuous Flow Diffusion Chamber (CFDC) or a cloud 

chamber and then examining the composition of the aerosols inside the formed ice 

crystals [Baustian et al., 2012; Mccluskey et al., 2014].  

Both methods have their advantages and inconveniences. The first method is in 

principle more representative of what nucleates ice in the cloud. However, 

scavenging of aerosol particles or activated cloud droplets by ice crystals (riming) 

can lead to the presence of aerosol particles inside the crystal that had no influence 

on the nucleation process. Also, the method cannot distinguish between ice crystals 

nucleated heterogeneously, homogeneously or formed through secondary ice 

processes, which could also lead to possible misclassifications. These problems are 

solved by using the second method (activating aerosols with an instrument), in 

which there is a much better control of the evolution of the aerosol population and 

the nucleation of ice crystals. However, this method does not observe crystals 

directly nucleated at ambient conditions (but under the conditions inside the 

instrument) and some instrumental artifacts such as size cut-offs or loss of particles 

through the inlet are still present.  

Overall, most field studies show a consistent enhancement of dust particles over 

background air in the ice crystal residues, suggesting that dust is a principal 
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component for ice nucleation. This conclusion is backed up by several experimental 

studies of dust particles being efficient INPs in laboratory experiments [Connolly et 

al., 2009; Niemand et al., 2012; Atkinson et al., 2013], correlations between the 

amount of dust detected by satellite and the fraction of ice in mixed-phase clouds 

[Choi et al., 2010] and modelling studies [Hoose et al., 2010a; Niemand et al., 2012; 

Atkinson et al., 2013; Vergara-Temprado et al., 2017]. Aerosols with an organic 

signature have been also observed sometimes to be enhanced in ice crystal residues 

[Pratt et al., 2009]. However, these results should be interpreted with caution 

because new approaches have shown that single-particle mass spectrometry methods 

(SPMS) produce a large fraction of false positives when identifying organic material 

as it can be confused with phosphorous-rich types of mineral dust [Zawadowicz et 

al., 2017] 

The role of BC is controversial, with a few studies showing an enhancement in ice-

crystal residues [Cozic et al., 2008; Twohy et al., 2010] but several others not 

[Kamphus et al., 2010; Baustian et al., 2012; Kupiszewski et al., 2016; Schmidt et 

al., 2017]. The third chapter of this thesis will be an extended assessment dedicated 

to the potential role of BC particles acting as INP in the condensation/immersion 

mode.  

 

6.  Representations of ice-nucleation 

There are two commonly used ways to represent and quantify the process of ice 

nucleation.  

In the past, many studies have tried to explain ice-nucleation under the framework 

of classical nucleation theory (CNT) [DeMott, 1990; Murray et al., 2011; Broadley 

et al., 2012], in which the time dependence of ice nucleation is taken as an important 

factor determining the number of crystallization events. More recently, a description 

of ice nucleation has been used based on a deterministic approach, in which the time 

dependence is neglected and ice nucleation depends just on temperature and the 

particle composition [Vali, 1994, 2008; Connolly et al., 2009; Atkinson et al., 2013]. 

These two descriptions will be explained in detail in this section together with a 

discussion of the weaknesses and strengths of these two approaches.  
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6.1.  Singular description 

The singular description is based on the idea that ice nucleation occurs from specific 

active sites located randomly on the surface of the particle that trigger ice nucleation 

instantaneously when they reach a certain activation temperature [Vali et al., 

2015b]. The site density is assumed to be uniform across the particle surface, hence 

the probability of having a certain number of them on the surface of a particle can be 

calculated from a Poisson distribution. 

𝐹(𝑘, 𝜆) =
𝑒Q𝜆1

𝑘! 				(9) 

where 𝜆 refers to the expected number of active sites, and 𝐹 to the probability of 

finding 𝑘 active sites. Under this framework, a particle will nucleate ice if, for a 

certain temperature, it has at least one active site. Hence, the probability of a particle 

to nucleate ice (𝑝) can be calculated as the probability of having 1 or more active 

sites: 

𝑝 =T𝐹(𝑘, 𝜆)
U

V

= 1 − 	𝐹(0, 𝜆) = 1 − 𝑒WQ				(10) 

For a sample of particles with the same composition and size, the fraction of 

particles with the ability to nucleate ice (commonly referred as the fraction frozen) is 

equal to the previously calculated probability. Using this framework, laboratory 

studies can quantify the density of active sites in their particles at different 

temperatures (𝑛Y) depending on the fraction of droplets observed to freeze. For 

example, for a population of droplets containing identical populations of aerosol 

particles with a total aerosol surface area per droplet 𝐴Z, the expected number of 

active sites per droplet will be: 

𝜆 = 𝑛Y ∙ 𝐴Z		(11) 

 

The density of active sites in this population of aerosols can be calculated from the 

experimentally observed fraction frozen (𝑓𝑓) as:  

𝑛Y(𝑇) = −
ln^1 − 𝑓𝑓(𝑇)_

𝐴Z
	(12) 
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With the 𝑛Y values obtained from the experiments, one can then calculate what the 

concentration of INPs will be for those types of aerosols in the atmosphere just by 

knowing their concentration and size distribution.  In the case of a lognormal 

distribution of aerosols, such as the ones used in many aerosol models, the INP 

concentration at a temperature 𝑇 of a mode with mean radius 𝑟  and standard 

deviation 𝜎 can be calculated as: 

[𝐼𝑁𝑃](𝑇) = [𝑁]g ^1 − 𝑒Whi"jkl(m)_
U

n

1
𝑟 ln(𝜎)√2𝜋

𝑒
W(qr(")Wqr	("s))

j

t qr(u)j 𝑑𝑟			(13) 

where [𝑁] is the number concentration of particles in the mode. As the integral has 

no analytical solution, numerical methods should be used to solve it. However, for 

the case when then probability of having more than an active site per particle is 

small, the concentration of ice-nucleating particles per mode can be approximated to 

just the number of active sites in the whole aerosol population (see appendix B for 

the derivation): 

[𝐼𝑁𝑃](𝑇) ≈ [𝑆] ∙ 𝑛Y(𝑇)				(14) 

where [𝑆] is the surface area density of the aerosol population in the atmosphere. 

 

6.2.  Classical nucleation theory 

 

Classical nucleation theory (CNT) attempts to represent the process of ice nucleation 

as a stochastic process in which the rate of nucleation events is defined by 

temperature and the ability of the surface of the aerosol particle to nucleate ice, 

which is quantified in terms of a contact angle [H. Pruppacher, 1997; Seinfeld and 

Pandis, 2006; Lamb and Verlinde, 2011].  CNT was initially developed to explain 

homogeneous freezing events of pure water droplets. In a supercooled water droplet, 

clusters of molecules form randomly across the droplet and dissipate quickly. When 

one of these clusters reaches a critical size, it becomes stable and can grow to an ice 

crystal. The Gibbs free energy of forming a cluster (∆𝐺Dy) is the sum of the Gibbs 

free energy needed to create the surface (∆𝐺Y)	 (positive as it is an unfavourable 

process) and the energy to create the bulk (∆𝐺z) (negative as it is favourable) 

[Seinfeld and Pandis, 2006]: 
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∆𝐺Dy = ∆𝐺Y − ∆𝐺z			(15) 

The interfacial Gibbs free energy can be expressed as: 

∆𝐺Y = 4𝜋𝑟t𝛾.		(16) 

where 𝑟 is the radio of the cluster and 𝛾 the interfacial energy between ice and 

water. The equivalent for the bulk of the cluster is: 

∆𝐺z =
4𝜋𝑟/

3𝑣 𝑘~𝑇 ln 𝑆			(17) 

where 𝑣 is the volume of a water molecule,  𝑘~ is the Boltzmann constant, 𝑇 is the 

temperature and 𝑆 is the saturation ratio with respect to ice. The critical radius 𝑟D"�� 

at which the cluster will grow favourable can be calculated as the maximum of the 

total Gibbs free energy of the cluster (Z∆���	
Z"

= 0): 

 

𝑟D"�� =
2𝛾𝑣

𝑘~𝑇 ln 𝑆
				(18) 

And the Gibbs free energy to form a cluster: 

𝛥𝐺 =
16𝜋𝛾/𝑣t

3(𝑘~𝑇 ln 𝑆)
			(19) 

 

The rate of homogeneous nucleation events (𝐽�) can be calculated with the 

Arrhenius equation: 

𝐽� = 𝐴 exp 3
−∆𝐺	
𝑘~	𝑇

9		(20) 

 

where A is a pre-exponential factor that can be obtain by fitting experimental data or 

derived theoretically from the kinetic equations of clusters of molecules 

agglomerating.  

 

Classical nucleation theory can be adapted for heterogeneous nucleation by the 

addition of a term that lowers the Gibbs free energy need for nucleation to occur, 
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referred as the contact angle. The equation for the rate of freezing events is 

represented as: 

𝐽 = 𝐴 exp 3
−∆𝐺	 ∙ 𝑓
𝑘~	𝑇

9		(21) 

 

where 𝑓 is a factor accounting for the contact angle (𝜃) of ice on particle surface in 

the form: 

𝑓 =
1
4	
(2 + cos 𝜃)(1 − cos𝜃)t			(22) 

It is not clear what the physical meaning of the contact angle is, so it is obtained for 

different aerosol samples as a fitting factor to experimental ice-nucleation results.  

 

A more extended approach is sometimes used to account for the variability observed 

in ice-nucleation efficiencies among particles with the same composition. With this 

approach, a distribution of contact angles is used to account for the ice-nucleating 

ability of a particular material instead of just a single value [Marcolli et al., 2007; 

Eidhammer et al., 2009; Broadley et al., 2012; Niedermeier et al., 2015; Savre and 

Ekman, 2015b]. 

This approach has the advantage that the heterogeneity observed in natural samples, 

in which some particles nucleate ice much more efficiently than others, is much 

better represented. 

 

6.3.  Discussion of the two approaches 

Fundamentally, ice nucleation is a stochastic process strongly dependent on 

temperature and less strongly on time and the surface area of aerosol material in 

contact with the water.  

The stochastic and singular approaches presented here represent this process in quite 

different ways. In CNT, when a single contact angle is used, it is assumed that for a 

given aerosol sample, if two equal concentrations of this sample are immersed in 

two different water droplets and maintained at the same temperature, both droplets 

will have the same probability of freezing in time and you will just need to wait long 



 

29  

enough for both of them to freeze. In case they thaw and cool down again to the 

same temperature, the time at which they will freeze will be independent of how 

long it took for them to freeze previously. This happens because ice nucleation is 

seen as a stochastic process that will depend probabilistically on time and the 

surface area in contact with the water. 

 

The singular description takes a different approach, and predicts a very different 

behaviour. Under the singular description, if two water droplets containing the same 

concentration of aerosols are cooled down to a certain temperature, the probability 

of them to freeze will be the same, but this probability will depend on whether there 

is an active site on the surface of the aerosol sample or not. For example, under this 

approach, it could be possible that just one of the droplets freezes once cooled down 

to a certain temperature, while the other does not, and that behaviour will prevail 

independently on how much time the droplets are maintained at that temperature. In 

case the droplets are thawed and cooled down to the same temperature again, the 

singular description will predict that the droplet that froze previously will freeze 

again once the ‘critical’ temperature is reached. This happens because the triggering 

of the previous freezing event depends on the specific active site in the immersed 

aerosols, and this site will get active again once their activation temperature is 

reached. The droplet that did not freeze previously will be expected to prevail again 

in a supercooled state as the material inside does not contain any of these specific 

active sites.  

 

Which one of these descriptions represents better the reality has been the subject of 

debate.  In past studies, an approach based on classical nucleation theory has been 

preferred to the singular description as way of representing atmospheric ice 

nucleation in models [Hoose et al., 2010b; Spracklen and Heald, 2014; Savre and 

Ekman, 2015a, 2015b] . However, several laboratory observations support the idea 

that ice nucleation is a process that is not being triggered randomly across the 

surface of a particle but that comes from certain specific sites on the surface of a 

particle that become active at a certain temperature. For example, Vali [2008] 

showed that repeated cycles of freezing and melting of water droplets with soil dust 
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inside them, made them nucleate at very similar temperatures (less than a degree 

difference). Marcolli et al. [2007] showed that a CNT description with a single 

contact angle cannot account for the freezing behaviour of mineral dust particles. 

Kiselev et al. [2017] observed directly the formation of ice crystals on feldspar 

surfaces with an electron scanning microscope showing that the crystals appeared on 

surface defects, which also supports the singular description of ice nucleation. Some 

other studies also show a behaviour of several aerosol samples following a singular 

description approach [Dorsey, 1938; Vali, 1994]. However, for some materials, it 

has been shown that a CNT description can account for the freezing behaviour 

observed in the laboratory. Some examples are silver iodide [Vonnegut and Baldwin, 

1984] or kaolinite [Murray et al., 2011]. So, the question of which description is 

better will largely depend on the sample.  

Currently, most of the relevant materials for ice nucleation show a much stronger 

particle to particle variability than dependence on time [Connolly et al., 2009; 

Niemand et al., 2012; Atkinson et al., 2013; Herbert et al., 2014; Wilson et al., 

2015], supporting a representation based on the singular description. However, time 

will also play a role in ice nucleation, and neglecting it is not desirable. That is why 

some people have tried to expand the singular description with schemes that take 

time into account such as the Framework for Reconciling Observable Stochastic 

Time-dependence (FROST) presented in Herbert et al. [2014], that takes into 

account the cooling rate when quantifying the ice-nucleation ability of the samples. 

 

7.  Ice-nucleating aerosols 

7.1.  Dust aerosols 

As discussed previously, dust is a well-known ice-nucleating particle thought to 

have a first-order importance in the atmosphere for nucleating ice heterogeneously. 

Hence, it is important to understand its properties, emissions, and evolution in the 

atmosphere to estimate its atmospheric importance for ice-nucleation.  

 

Dust is predominantly emitted from the large deserts of the world and then 

distributed by atmospheric transport through the atmosphere [Kok et al., 2017]. 
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Emissions of dust particles from high-latitude regions can also play an important 

role in modifying local dust concentrations but do not play an important role on a 

global scale [Bullard et al., 2016] . Dust is mainly emitted from dry soils in what is 

called the saltation process.  In the soil, small dust fragments become attached to 

larger aggregates by strong inter-particle cohesive forces [Kok et al., 2012]. When 

wind speeds reach a certain value, the drag force becomes strong enough to lift into 

the atmosphere large dust particles of hundreds of micrometres. These particles fall 

quickly to the surface, crashing with aggregates and ejecting smaller particles 

(<50µm) that can be suspended into the atmosphere and transported in the form of 

aerosol particles.  

Once dust particles are emitted into the atmosphere, they have important effects on 

climate. First, they are able to reflect and absorb solar radiation, cooling the surface 

and warming the atmosphere which modifies the thermodynamic vertical structure, 

affecting cloud formation and atmospheric circulation [Kok et al., 2017]. They can 

act as cloud condensation nuclei, affecting cloud droplet number concentrations over 

desert regions although its global effect is small compared with other aerosol 

components [Manktelow et al., 2010; Karydis et al., 2011]. They can also influence 

cloud properties globally by acting as ice-nucleating particle as discussed 

previously.  

 

Dust can be removed from the atmosphere by several mechanisms. Large dust 

particles, due to their size, have large fall speeds and can be deposited to the ground 

by the action of gravity. This process is referred as dry deposition and it is the most 

important removal process for super micron dust particles [Mann et al., 2010]. 

Another way dust particles can by removed from the atmosphere is from the so-

called wet scavenging processes, in which dust particles are remove by precipitation 

after being activated to water droplets, or by impaction with falling hydro-meteors. 

Wet removal processes are more important for submicron particles for which, given 

their size, their fall speeds are small (less than a millimetre per second) which makes 

gravitational deposition negligible. 

Once deposited, dust particles still play a relevant role in the Earth system by 

providing nutrients for different ecosystems. For example, the deposition of 
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bioavailable iron from dust particles into the ocean is hypothesised to affect ocean 

productivity [Martin et al., 1991], which affects the biogeochemical cycles of 

carbon and nitrogen [Mahowald, 2011] . Dust deposited in soil also can serve as a 

source of phosphorous, which affects ecosystem productivity [Okin et al., 2004]. 

When deposited on ice surfaces, it changes the surface-albedo promoting a faster 

melting of the ice [Flanner et al., 2008; Painter et al., 2010]. 

 

The composition of dust particles emitted from different parts of the world varies 

depending on the soil mineralogical composition. This modifies dust radiative 

properties and the amount of minerals that can fertilize oceans and soils once 

deposited. Some studies have attempt to represent the difference in dust composition 

from different parts of the world [Perlwitz et al., 2015; Scanza et al., 2015] in 

atmospheric models.  An approach to doing that is to consider that the composition 

of emitted dust particles is similar to the mineralogical composition of wet-sieved 

dust extracted from the soil [Claquin et al., 1999]. More recent approaches take into 

account the differences between the wet-sieved soils mineralogical composition and 

the emitted dust fraction [Perlwitz et al., 2015]. 

 

7.2.  Sea-spray and marine organic aerosols.  

Another aerosol component known to nucleate ice and thought to be relevant in the 

atmosphere is the organic part of marine emitted sea-spray aerosols [Wilson et al., 

2015], in which I will focus later in this thesis.  

 

Sea-spray aerosols are emitted from the so-called bubble-bursting process 

[Blanchard and Woodcock, 1957] . When waves break in the ocean forming 

whitecaps, air bubbles are entrained into the sea. As the bubbles rise and reach the 

surface they produce the emission of small jet and film drops of sea-water into the 

atmosphere.  Once these drops are emitted they start to evaporate water content, 

increasing the salinity until an equilibrium is reached, forming what is called a sea-

spray particle. During the bubble-bursting process, as bubbles rise, they scavenge 

organic material in the water that is then emitted together with the drops. Wind 

speed is the main driver of this process [Gong, 2003], with stronger winds 
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enhancing the production of whitecaps, and hence, the emissions of sea-spray 

aerosols. Different parameterizations of sea-spray have been developed to be used in 

models [Gong, 2003; Mårtensson et al., 2003; Ovadnevaite et al., 2014] in which 

the parameterized sea-spray size distributions is dependent on windspeed and 

sometimes, on some other parameters such as wave height or temperature. However, 

none of these parameterizations aim to predict organic/inorganic fractions on the 

emitted sea-spray.  

 

Super-micron sea-spray particles are typically composed of inorganic material, with 

very small fractions of organics [Facchini et al., 2008]. However, in the submicron 

ranges, organic material can account for up to 80% of the sea-spray composition 

[O’Dowd et al., 2008; Rinaldi et al., 2013]. Representing the organic fraction of sea-

spray and its seasonality has been suggested to be important for climate by 

interacting with clouds as cloud condensation nuclei and ice-nucleating particles 

[Wilson et al., 2015]. Satellite observations suggest that the biogenic sources of 

marine aerosols could increase the reflected SW radiation of Southern Ocean clouds 

by up to 10 W/m2 by increasing the cloud droplet number concentration [McCoy et 

al., 2015b]. Modelling studies have also shown how the inclusion of marine organic 

emissions affect the indirect radiative effect on clouds [O’Dowd et al., 2004; 

Partanen et al., 2014]. 

 

The marine organic component of sea-spray is found partly to be composed of 

soluble and insoluble material. The soluble part (water-soluble organic material, 

WSOM) is typically measured next to the surface having a downward flux, together 

with sulphate aerosols [O’Dowd et al., 2008]. In contrast, the insoluble part (water 

insoluble organic mass WIOM) is observed to have an upwards flux from the ocean. 

These observations suggest that the insoluble part is being emitted primarily from 

the ocean in addition to sea-spray while the soluble part is likely to be formed in the 

atmosphere through secondary processes. Studies using artificially generated 

aerosols in a wave tank with sea water during periods of phytoplankton blooms 

found a similar behaviour [Facchini et al., 2008].  
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The mixing state of marine organic aerosols with sea-salt depends strongly on their 

size [Prather et al., 2013]. At submicron sizes it has been found that the organic 

component is mainly mixed with sea-salt down to about 0.1µm where externally 

mixed organic components can start to dominate. This difference arises from the two 

ways in which marine aerosols are emitted. Film drops tend to produce smaller 

externally mixed aerosols while jet drops produce larger and internally mixed 

particles [Wang et al., 2017].  

 

The relation between the organic mass fraction in sea-spray and the organic content 

of the ocean is still not clear. In their study of atmospheric marine organic matter at 

Mace Head (Ireland), O’Dowd et al. [2004, 2015] found a strong correlation 

between the chlorophyll-a content on the ocean surface upwind from the 

measurement station and the organic mass fraction in submicron sea-spray particles. 

This finding has also been corroborated by some other studies at Mace Head 

[Rinaldi et al., 2013] and some other parts of the world [Sciare et al., 2009]. 

However, in some other studies this correlation between the organic mass fraction 

and chlorophyll-a could not be found [Quinn et al., 2014]. It has been hypothesised 

that the discordant conclusions obtained in these studies arise from the differences in 

organic composition in different regions [Burrows et al., 2014]. 

 

The organic mass fraction found in submicron sea-spray has been parameterized in 

several studies. Some studies made use of atmospheric measurements of WIOM to 

relate it with the chlorophyll-a content on the surface of the ocean from where sea-

spray particles where emitted [O’Dowd et al., 2008; Gantt et al., 2011; Rinaldi et 

al., 2013]. Chlorophyll-a is typically used in these studies as a marker of biological 

activity in the ocean based on the correlations previously discussed. These studies 

typically present a negative dependence between OMF and wind speed at the 

surface of the ocean to account for the mixing of the sea-surface microlayer in bulk 

sea water when winds are strong. Other authors have suggested that the reservoir of 

organic carbon in sea-water could be a better proxy for parameterizing the OMF, 

and suggested to use a constant organic enrichment factor to calculate the fraction of 

organic mass in nascent sea-spray [Quinn et al., 2014].  Burrows et al. [2014] 
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presented a framework to model the absorption of organic matter by the surface of 

the bubbles based on the properties of different organic species found in sea-water. 

With that approach, the emissions of organic matter in the bubble bursting process 

depend not just on the organic content of the ocean, but also on how surface-active 

the different organic components are in each region of the ocean.  

 

 

 

8.  Research questions 

8.1.  Marine organic and K-feldspar as ice-nucleating particles 

Historically a major limitation of studies looking at the global distribution of ice-

nucleating particles [Lohmann, 2002; Phillips et al., 2008, 2013; Hoose et al., 

2010b; Yun and Penner, 2012; Sesartic et al., 2013; Yun et al., 2013; Spracklen and 

Heald, 2014] has been the evaluation of their simulated concentrations with ambient 

measurements of the INP concentration. The comparison between CNT studies and 

atmospheric INP concentrations is not straight forward, as a certain time has to be 

used to integrate the number of freezing events to an INP concentration. However, 

using the singular description, the comparison becomes straight forward, as time do 

not influence the simulated concentrations. 

Recently laboratory advances on measuring the ice nucleating activity of K-feldspar, 

the ice active component of desert dust [Atkinson et al., 2013], and marine organic 

aerosols [Wilson et al., 2015] have given new knowledge to the community that 

currently has not being incorporated in models. 

Here, I will use the new information about the ice-nucleating ability of these two 

species to investigate its relative importance in the atmosphere and evaluate the 

model with the most recent atmospheric observations of ice-nucleating particles. 

This work aims to estimate what fraction of the atmospheric observations can be 

explained with these two species and determine where within model and 

measurement uncertainties we can identify locations where other species or 

unrepresented processes might be affecting the INP concentration. 
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8.2.  Black carbon as ice-nucleating particle 

Several modelling studies have simulated the concentration of BC particles acting as 

ice-nucleating particles in the immersion mode [Phillips et al., 2008, 2013, Hoose et 

al., 2010a, 2010b; Fan et al., 2012; Yun and Penner, 2012; Wang et al., 2014; Savre 

and Ekman, 2015b] based on old laboratory studies of its ice-nucleating ability 

[DeMott, 1990; Diehl and Mitra, 1998]. Simulating these concentrations correctly is 

important to quantify any possible role that anthropogenic emissions of BC particles 

could have in affecting cloud glaciation [Lohmann, 2002]. However, new studies of 

BC particles acting as INPs in the immersion mode could not reproduce the results 

from previous studies which arises the question of is BC an actual relevant ice-

nucleating particle in the atmosphere. Here, we will use new and old laboratory 

observations to assess the possible role that BC particles can have in the atmosphere 

and study the realism of these representations against field observations. This will 

help us better understand if humans have influenced substantially the atmospheric 

distribution of INPs through BC emissions and subsequently affected cloud, which 

is being mentioned in IPCC reports [Boucher et al., 2013] as an important unknown 

that affects our ability to quantify human induced radiative forcing.   

 

 

8.3.  Impacts of improving the representation of INP on climate models 

There are orders of magnitude differences in the atmospheric concentration of ice-

nucleating particles from terrestrial environments to remote marine places. Most 

climate models do not account for these differences, which could lead to biases in 

the representation of cloud microphysics.  For example, climate models tend to have 

a recursive cloud radiative bias in the remote marine region of the Southern Ocean, 

where our new modelling estimates suggest that the concentrations of INP will be 

substantially lower than in northern hemisphere terrestrial environments. The 

current model bias consists in modelled clouds that reflect too little solar radiation, 

and the main cloud type responsible for this bias has been identified as low-level 

clouds in the cold sector of the cyclones that are typically within the mixed-phase 

range of temperatures. A number of ice nucleation events much larger than in reality 

could be depleting the liquid of these clouds too efficiently making them reflect 
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much less solar radiation. So, our hypothesis is, can the right representation of the 

low concentrations of ice-nucleating particles present in the Southern Ocean 

improve the modelled radiative properties of these clouds and explain a large 

fraction of the bias.  This is the hypothesis I address on the fourth chapter. 
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Abstract 

Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase 

clouds, thereby influencing many of their properties. The atmospheric INP 

concentration changes by orders of magnitude from terrestrial to marine 

environments, which typically contain much lower concentrations. Many modelling 

studies use parameterizations for heterogeneous ice nucleation and cloud ice 

processes that do not account for this difference because they were developed based 

on INP measurements made predominantly in terrestrial environments without 

considering the aerosol composition. Errors in the assumed INP concentration will 

influence the simulated amount of ice in mixed-phase clouds, leading to errors in 

top-of-atmosphere radiative flux and ultimately the climate sensitivity of the model. 

Here we develop a global model of INP concentrations relevant for mixed-phase 

clouds based on laboratory and field measurements of ice nucleation by K-feldspar 

(an ice-active component of desert dust) and marine organic aerosols (from sea 

spray). The simulated global distribution of INP concentrations based on these two 

species agrees much better with currently available ambient 

measurements than when INP concentrations are assumed to depend only on 

temperature or particle size. Underestimation of INP concentrations in some 

terrestrial locations may be due to the neglect of INPs from other terrestrial sources. 

Our model indicates that, on a monthly average basis, desert dusts dominate the 

contribution to the INP population over much of the world, but marine organics 

become increasingly important over remote oceans and they dominate over the 

Southern Ocean. However, day-to-day variability is important. Because desert dust 

aerosol tends to be sporadic, marine organic aerosols dominate the INP population 

on many days per month over much of the mid- and high-latitude North- ern 

Hemisphere. This study advances our understanding of which aerosol species need 

to be included in order to adequately describe the global and regional distribution of 

INPs in models, which will guide ice nucleation researchers on where to focus 

future laboratory and field work. 
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1.  Introduction 

In the absence of aerosol particles which can act as ice- nucleating particles (INPs), 

liquid water droplets can supercool to temperatures below −37 ◦C [Riechers et al., 

2013; Herbert et al., 2015]. It is well-known that ice formation frequently occurs at 

much higher temperatures in many clouds, indicating that INPs are prevalent in the 

atmosphere [Choi et al., 2010; Rosenfeld et al., 2011]. In supercooled and mixed-

phase clouds (containing ice and water) INPs cause clouds to glaciate, which leads 

to changes in many cloud properties such as cloud lifetime, their radiative effect on 

the atmosphere, and the formation of precipitation through the Wegener–Bergeron–

Findeisen process [Murphy and Koop, 2005; Korolev, 2007] and possibly cloud ice 

multiplication processes [Hallet and Mossop, 1974]. In the mixed-phase cloud 

regime, the dominant freezing mechanism is thought to be through INPs that are 

immersed within cloud droplets, known as immersion freezing [Westbrook and 

Illingworth, 2011; Field et al., 2012; Murray et al., 2012]. Hence, this is the 

pathway we focus on in this study. Heterogeneous freezing in climate models and 

operational numerical weather prediction models is usually based on 

parameterizations that depend on the temperature [Young, 1974; Meyers et al., 1992] 

or the size distribution of aerosol particles as well as the temperature [DeMott et al., 

2010]. These parameterizations treat aerosol particles all around the globe and 

across seasons as having the same ice-nucleating properties irrespective of the 

aerosol chemical composition. This is an unrealistic assumption that may affect the 

realism of mixed-phase clouds in models. Over the Southern Ocean clouds tend to 

persist in a supercooled state more commonly than models predict [Bodas-Salcedo 

et al., 2014], which might be related to the very low INP concentrations that exist in 

this region but are not simulated in models [Bigg, 1973; DeMott et al., 2016]. It has 

been shown that fewer INPs in the Southern Ocean lead to less ice and more 

supercooled water in model clouds, with a significant impact on the radiative 

properties of the clouds [Tan et al., 2016]. The variability between different models 

in the representation of cloud glaciation can lead to differences of tens of degrees in 

the temperature at which clouds glaciate [McCoy et al., 2015]. A better 

representation of mixed-phase clouds in climate models is important for climate 

prediction. For example, Tan et al., [2016] concluded that the response of global 

mean surface temperature to a doubling of CO2 is more than one degree greater 
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when mixed-phase clouds are better represented. This cloud-phase feedback is 

particularly sensitive to the amount of supercooled liquid in Southern Ocean mixed-

phase clouds while most current models are biased relative to measurements 

[McCoy et al., 2015]. In the future, regional and global climate models will include 

improved representations of cloud processes [Bauer et al., 2015], including ice 

processes, so an improved representation of heterogeneous ice nucleation will be 

required to make the models more physically realistic and correct some of the main 

biases. In particular, studies have shown that clouds are sensitive to INP 

concentrations, which could affect the radiative balance of the atmosphere [Zeng et 

al., 2009; DeMott et al., 2010; Hoose et al., 2010a; Wang et al., 2014; Tan et al., 

2016]. The reliability of such studies will depend on being able to relate the changes 

in cloud proper- ties to emitted aerosol species so that we can attribute future 

changes in weather and climate to particular aerosol sources. Global aerosol models 

have, for many years, been based on transported aerosol species from different 

sources, which enables aerosol radiative forcing to be related to anthropogenic and 

natural emissions and their effects on cloud droplet formation [Ghan and Schwartz, 

2007; Carslaw et al., 2013; Rap et al., 2013; Kodros et al., 2015]. Our ability to 

achieve the same level of realism for ice formation has been much more difficult to 

achieve, partly because it has been challenging to identify species-specific ice-

nucleating properties [Hoose and Möhler, 2012; Murray et al., 2012] and model 

them on a global scale.  

Previous studies have simulated heterogeneous ice nucleation on a global scale 

accounting for different aerosol species [Lohmann and Diehl, 2006; Hoose et al., 

2010a; Sesartic et al., 2012; Spracklen and Heald, 2014]. These studies used 

classical nucleation theory to calculate nucleation rates using contact angles derived 

from laboratory data for each INP species. This approach has the advantage that the 

time dependence of ice nucleation is represented (although temperature is the main 

driver of nucleation), but when a single contact angle is used to describe ice 

nucleation by a single aerosol species, particle-to-particle variability is not 

represented [Herbert et al., 2014] as long-time integration will eventually allow all 

particles to nucleate ice.  

Classical nucleation theory can be extended with a distribution of contact angles to 

account for differences in the ice- nucleating ability between different particles 
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within the same material [Marcolli et al., 2007; Eidhammer et al., 2009; 

Niedermeier et al., 2011; Broadley et al., 2012; Herbert et al., 2014] and has been 

applied in models [Wang et al., 2014]. In addition, it has been shown that 

representation of the time evolution of the distribution of contact angles is necessary 

to improve the representation of ice formation in a cloud- resolving model under 

some conditions using classical nucleation theory [Savre and Ekman, 2015]. 

The alternative to describing ice nucleation by classical nucleation theory is to use a 

singular approximation [Vali and Snider, 2015] in which the time dependence of 

nucleation is assumed to be of secondary importance compared to the particle-to-

particle variability (just a fraction of particles nucleates ice). This approach has been 

used to define the population of INPs in previous model studies [Niemand et al., 

2012; Atkinson et al., 2013; Wilson et al., 2015]. 

The ice-nucleating efficiency using the singular description is defined by a 

temperature-dependent density (i.e. per unit surface area) of active sites, (ns(T )) 

which represents a spectrum of active sites with variable characteristic ice 

nucleation temperatures. The temperature-dependent number of active sites per 

surface area can also be normalized to an- other parameter characteristic of the 

aerosol population (such as mass or volume; Murray et al., 2012). From this density 

of active sites, one can calculate what fraction of the particles will nucleate ice at a 

certain temperature (See Appendix B). In the case of having different aerosol 

species, a different density of active sites for every species has to be defined in order 

to account for their different abilities in nucleating ice. The singular description of 

ice nucleation is consistent with many laboratory studies showing that particle-to- 

particle variability is the main factor driving the measured spectrum of INP 

concentrations with temperature [Vali, 2008; Herbert et al., 2014; Vali and Snider, 

2015] for most of the known atmospherically relevant ice-nucleating species. 

However, it should be borne in mind that time dependence could play a role in long-

lived stable mixed-phase clouds where ice crystals are produced over a long period 

of time [Morrison et al., 2011; Murray et al., 2011; Westbrook and Illingworth, 

2013; Herbert et al., 2014]. Nevertheless, the singular approach for ice nucleation 

can be used to approximate INP concentrations, which can be calculated with 

knowledge of the number, size distribution and density of ac- tive sites of the 

relevant INP species. Mineral dust is considered to be the dominant ice- nucleating 
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species in many parts of the world [Hoose et al., 2010a; Ardon-Dryer and Levin, 

2014; DeMott et al., 2015; Boose et al., 2016]. Satellite measurements have shown a 

negative correlation between the amount of supercooled water and dust 

concentration [Choi et al., 2010], suggesting that dust is important for cloud 

glaciation. The ice-nucleating ability of dust has been quantified in several studies 

[Koehler et al., 2010; Broadley et al., 2012; Niemand et al., 2012; Augustin-Bauditz 

et al., 2014]. Atkinson et al. [2013] found that K-feldspars are far more effective at 

nucleating ice than any of the other minerals in desert dust, which is supported by 

several later studies [O’Sullivan et al., 2014; Wex et al., 2014; Whale et al., 2014; 

Emersic et al., 2015; Niedermeier et al., 2015; Zolles et al., 2015; Harrison et al., 

2016]. Therefore, the representation of K-feldspar in atmospheric models is 

important for obtaining a realistic representation of ice nucleation by mineral dust. 

We have previously represented ice nucleation on a global scale by K-feldspar 

aerosols [Atkinson et al., 2013; Wilson et al., 2015]. In this study, we will take a 

similar approach to estimate the contribution of K-feldspar aerosol to global INP 

concentrations. Some marine aerosol particles act as ice-nucleating particles. Early 

evidence for a relationship between phytoplankton and marine INPs was found by 

Schnell and Vali, [1975, 1976], who observed active INPs at temperatures as high 

as−4 ◦C in resuspended biological material, largely from phytoplankton filtered 

from bulk sea water. A relationship between the amount of biological material and 

the INP concentration was also measured in seawater and fog water by Schnell, 

[1977]. More recent studies have measured ice nucleation by Thalassiosira 

Pseudonana (a ubiquitous species of phytoplankton) diatom cells [Knopf et al., 

2010; Alpert et al., 2011] and exudates [Wilson et al., 2015]. However, these studies 

measured ice nucleation at significantly lower temperatures than those measured by 

Schnell and Vali, [1975, 1976], suggesting that more active INPs could be 

associated with phytoplankton material in the ocean. This would be supported by a 

previous measurement of ice-nucleating bacteria associated with phytoplankton 

cultures [Fall and Schnell, 1985]. Further evidence for the biological origin of 

marine INPs is the heat sensitivity of some types of organic INPs; i.e. the 

temperature at which they nucleate ice is reduced after heating to 100 ◦C [Schnell 

and Vali, 1975, 1976; Wilson et al., 2015] . The likelihood of a marine source of 

INPs was high- lighted in studies that measured INP concentrations in environments 

remote from other sources of INPs [Bigg, 1973; Schnell, 1982; Rosinski et al., 1986, 
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1987, 1988; Bigg, 1996]. The first global simulation of marine INP concentrations 

[Burrows et al., 2013] suggested that marine organics were likely to be the dominant 

source of INPs over remote marine regions such as the Southern Ocean. Other 

studies provide further strong evidence that there is a marine source of atmospheric 

INPs with a biological origin. For example, INP production associated with 

phytoplankton blooms has been measured in laboratory experiments that use 

artificially generated sea-spray aerosol from wave and bubble tanks [Wang et al., 

2015; DeMott et al., 2016]. DeMott et al. [2016] measured the INP concentrations 

in laboratory-generated sea spray as being consistent with measurements made by 

Bigg [1973] as well as with measurements of ambient INP concentrations in marine-

influenced air. Wilson et al. [2015] found that the sea-surface microlayer is enriched 

with INPs compared to subsurface seawater at the same locations. The sea-surface 

microlayer is enriched with surface active organic material similar to that found in 

sea spray [Aller et al., 2005; Russell et al., 2010; Gantt et al., 2011; Orellana et al., 

2011; Cunliffe et al., 2013; Quinn et al., 2014; Cochran et al., 2016]. A correlation 

between total organic carbon content and the temperature at which microlayer 

droplets froze was measured [Wilson et al., 2015]. All the above evidence suggests 

the existence of a marine organic source of ice-nucleating particles that we will 

attempt to represent in this paper. 

Here we conduct a modelling study of global immersion-mode INP concentrations 

based on recently developed laboratory-based parameterizations of the ice-

nucleating ability of two species: marine organic matter and potassium feldspar (K-

feldspar). The objectives of our study are to (i) determine the ability of laboratory-

measured INP efficiencies to explain the global distribution of INP concentrations as 

a function of activation temperature, (ii) quantify the relative importance of these 

two sources of INPs in different locations, (iii) determine what fraction of global 

INP concentrations can be explained by these two sources and (iv) deter- mine 

whether, within model and measurement uncertainties, we can use the model results 

to draw conclusions about additional important sources of INPs. 
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2.   Methods  

2.1.   Global modelling 

We use the GLOMAP-mode global aerosol model described in Mann et al. [2010]. 

The model has a horizontal latitude–longitude grid spacing of 2.8◦×2.8◦ and 31 

pressure levels from the surface to 10 hPa. The species represented in the baseline 

version are sulphate, sea salt, black carbon, particulate organic matter and dust. In 

this study, we focus on the representation of two species of relevance to INPs: the 

K- feldspar component of dust and the organic component of primary marine sea-

spray aerosols. Aerosol chemical component mass concentrations and the particle 

number con- centration are represented by seven internally mixed lognormal modes 

(four soluble and three insoluble). Aerosol microphysical processes in the model 

include nucleation of new particles by gas-to-particle conversion, growth by 

coagulation and condensation of low-volatility gases, dry de- position at the surface 

and below-cloud (impaction) and in- cloud (nucleation) wet scavenging. Nucleation 

scavenging is suppressed for ice clouds, which are assumed to glaciate at −15oC. A 

discussion of the nucleation scavenging assumptions in our model is included in 

Browse et al., [2012]. Scavenging of aerosols by marine drizzle clouds is also 

included in the model to improve the predicted concentration in polar regions, as 

shown in Browse et al., [2012]. The model uses wind, temperature and humidity 

fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). 

We ran the model from the year 2000 to 2001 in order to reach a steady state aerosol 

distribution before running the model and then used data from 2001 to 2002. 

 

2.2.   Representation of feldspar 

Feldspar is emitted in the model as a fraction of the mass of dust (derived from 

AEROCOM emissions; Dentener and Kinne, [2006]). The model has been shown to 

reproduce dust mass concentrations within an order of magnitude [Mann et al., 

2010; Huneeus et al., 2011]. The fraction of feldspar emitted is assumed to be equal 

to the fraction by mass of this mineral found in the soils in the arid emission regions. 

This assumption has been shown to be a close approximation of the fraction of the 

mineral emitted in the form of aerosols [Lafon et al., 2004; Nickovic et al., 2012]. 

How- ever, new studies suggest that there is a difference between the fraction of the 
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minerals found in the soil after wet sieving and the aerosolized fraction [Perlwitz et 

al., 2015]. This difference is considered to be small (around a factor of 2) 

compared to other errors in our representation of the ice- nucleating ability of K-

feldspar such as differences in the density of active sites of different types of K-

feldspar (around a factor of 6; Harrison et al. [2016]). Feldspar is emitted into the 

insoluble accumulation and coarse modes with fractions corresponding to the clay 

and silt size range [Lafon et al., 2004; Nickovic et al., 2012], similar to the method 

followed in Atkinson et al. [2013]. However, once in the atmosphere, dust particles 

(including feldspar) are aged by condensation of sulfates and secondary organic 

aerosol material and moved into the soluble modes, which are subject to wet 

scavenging. This process was not represented in Atkinson et al. [2013], and was 

likely one of the causes of the overestimation of dust concentrations in re- mote 

locations as discussed in Atkinson et al. [2013]. With this wet scavenging process 

being active, the concentration of feldspar in remote places such as the Southern 

Ocean is several orders of magnitude smaller than the concentrations simulated by 

Atkinson et al. [2013]. However, the concentrations closer to source regions are very 

similar to Atkinson et al. [2013]. Feldspar tends to reside in the larger particles 

because it is found mainly in the silt fraction (r >1 µm; Claquin et al., [1999]). It is 

therefore removed more rapidly from the atmosphere compared with other minerals 

that occur preferentially in the clay fraction because removal by dry deposition 

increases with particle size. Relatively rapid scavenging of large feldspar-containing 

particles means that it is trans- ported shorter distances compared with smaller dust 

particles. 

 

2.3.   Representation of marine organic aerosols 

Submicron marine organic aerosols are usually parameterized by relating the 

organic mass fraction observed in sea spray to some variables such as seawater 

chlorophyll content or wind speed [Gantt et al., 2011; Rinaldi et al., 2013; O’Dowd 

et al., 2015]. With those parameterizations, the flux of marine organic mass can be 

calculated in a model with the flux of submicron sea salt following Eq. A5 (see 

Appendix A). The performance of any parameterization in reproducing observations 

of marine organic mass concentrations will therefore depend on the emission fluxes 
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of submicron sea spray, which is a highly uncertain model-dependent process. Mann 

et al. [2014] showed that models can have differences of more than a factor of 6 in 

the simulated concentration of particles with a diameter larger than 100nm in the 

Southern Ocean. Other uncertainties affecting the modelled concentrations of 

marine organic aerosols can arise from removal processes or some other aspect of 

the model such as the parameterization of convection and cloud microphysical 

processes, or model grid and temporal resolution, as well as uncertainties related to 

the organic mass fraction parameterization. Therefore, the performance of any 

parameterization in an aerosol model will be affected by the uncertainties related to 

these processes. It is therefore necessary to evaluate and adjust the modelled marine 

organic concentrations to match observations. To represent primary marine organic 

aerosols in GLOMAP mode, we developed a parameterization of the organic mass 

fraction of submicron sea-spray particles and adjusted it to fit the observations of 

water insoluble organic matter (WIOM) at Amsterdam Island (37.48◦S, 77.34◦E) and 

Mace Head (53.33◦N, 9.9◦W). We use observations from only these two stations due 

to the limited availability of long-term measurements of marine WIOM. It is thought 

that most primary marine organic emissions are formed of water-insoluble 

components [Facchini et al., 2008]. The marine organic component is assumed to be 

internally mixed with sea salt. The sea-salt emissions in our model are dependent on 

the surface wind speed (10m above the surface) and follow the parameterization of 

Gong, [2003], which is an extension of Monahan et al. [1986]. The development of 

our new organic mass fraction parameterization, explained in detail in Appendix A, 

assumes that the organic mass fraction of the sea-spray particles depends on wind 

speed and the chlorophyll content of seawater. The organic emission 

parameterization includes a positive dependence of WIOM mass fraction on 

chlorophyll [Gantt et al., 2011; Rinaldi et al., 2013; O’Dowd et al., 2015], but a 

negative dependence on wind speed. Thus, the WIOM is essentially diluted in the 

sea-spray particles when the total sea-spray emission flux is high, which may be 

caused by a limited supply of organic material in the surface ocean but effectively 

limitless salt [Gantt et al., 2011]. This parameterization is similar to previous 

chlorophyll-based parameterizations such as Rinaldi et al. [2013] and Gantt et al., 

[2011] but adjusted in order to fit the observations in Amsterdam Island and Mace 

Head when applied in our model. Our model agrees with the observed WIOM 

concentrations within a factor of 2 (Fig. 1) which is a small factor compared with 
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other uncertainties related to the calculation of INP concentrations such as the 

uncertainty related to the parameterization of the number of INP per gram of organic 

carbon in sea water (around an order of magnitude; Wilson et al. [2015]). The mixed 

organic-salt sea-spray particles are emitted into the accumulation mode and treated 

as water-soluble particles with respect to their cloud condensation nuclei activity, 

and hence they are removed by nucleation scavenging when they enter a 

precipitating cloud. This treatment of primary marine organic mass as being 

internally mixed with sea salt and able to activate to cloud droplets is consistent with 

other previous studies [Vignati et al., 2010; Fuentes et al., 2011; Orellana et al., 

2011; Ovadnevaite et al., 2011; Burrows et al., 2013; Partanen et al., 2014]. 

Simulated surface concentrations of marine organic aerosol mass are shown in Fig. 

2. 

2.4.   Calculation of INP concentrations 

To quantify INP concentrations from the modelled aerosol distributions we use the 

singular description. This method assumes that the time dependence of ice 

nucleation plays a secondary role and that specific particles have a characteristic 

temperature at which they nucleate ice. The spectrum of ice-nucleating properties is 

often represented as a surface area density of active sites dependent on temperature, 

which is appropriate for solid particles like dust [Atkinson et al., 2013]. For marine 

organic material the active site density is defined per unit mass of organic material 

in the particle [Wilson et al., 2015]. The method for calculating ice-nucleating 

particle concentrations from the simulated aerosol size distributions is explained in 

Appendix B. 

To represent the ice-nucleating ability of K-feldspar we assume that 35%of the total 

feldspar is K-feldspar, as assumed in Atkinson et al. [2013], then we apply the 

parameterization for ns shown in Atkinson et al. [2013]. Our method assumes that 

different varieties of K-feldspar nucleate ice with the same efficiency. Different 

studies have shown that the values of ns for most types of K-feldspar tend to agree 

with the values shown in Atkinson et al. [2013] within a factor of 2 to 4 [O’Sullivan 

et al., 2014; Whale et al., 2014; Emersic et al., 2015; Niedermeier et al., 2015; 

Zolles et al., 2015; Harrison et al., 2016]. However, it should be borne in mind that 

a minority of feldspar samples are either much more active or much less active than 

indicated by Atkinson et al. [2013]. Nevertheless, the Atkinson parameterization is a 
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good approximation of the majority of K-feldspars that have been studied in the 

laboratory. Assuming that feldspar particles are externally mixed in terms of their 

mineralogy, we can use the laboratory parameterizations to calculate the INP 

concentration for each soluble mode, following Eq. B9, as a function of activation 

temperature (see Appendix B for the derivation). For marine organic aerosols, we 

use the parameterization shown in Wilson et al. [2015], and apply it to our 

distributions of simulated marine organic aerosol mass. We are assuming that the 

organic material found in the sea-surface microlayer is representative of the organic 

material in sea-spray aerosols and that this material has the same ice-nucleating 

ability as sea-surface microlayer material. For marine organic particles, the density 

of active sites per particle is always small (λ<0.1 see Appendix B) for the whole 

temperature range covered by the parameterization (−6 to −27 ◦C) and all realistic 

sizes of particle (submicron particles). This means that we can calculate the INP 

concentration in a simplified way following Eq. 1 (see Appendix B for the 

derivation). 

[𝐼𝑁𝑃](𝑇) ≈ 𝜆(𝑇) ⋅ [𝑁]						(1) 

It should be noted that extrapolating this parameterization to lower temperatures, or 

for bigger particles, may lead to unrealistically high concentrations of INPs because 

Eq. 1 is no longer valid. There are two distinct ways of presenting simulated INP 

concentrations – either according to the concentration that an INP counter would 

measure or the concentration of potential INPs under ambient conditions. An INP is 

defined as a particle which has the potential to nucleate ice if exposed to a specific 

set of conditions (much like a CCN is defined at a specific supersaturation). For the 

immersion/condensation mode, the INP concentration we quote are for water 

saturation and for a defined activation temperature. The two ways of quoting INP 

concentrations (Fig. 3) are at a specific activation temperature T ([INP]T ), which is 

appropriate for comparison with an INP instrument set to measure at that 

temperature, or [INP]ambient for which the activation temperature is set to the local 

ambient temperature. 

In Fig. 4 (top) we show the INP concentration for an activation temperature of 

−20◦C ([INP]−20) at the 600 hPa pressure level, which is what would be measured by 

an INP 
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instrument set to this temperature. Throughout much of the globe, especially through 

the tropics, the temperature at this pressure level will never reach −20◦C, so the INPs 

at this altitude that can be active at −20◦C or warmer would not fulfil their potential 

to nucleate ice. However, if the air at a particular altitude was drawn into a 

convective system, the INPs it contains would activate higher in the cloud. Hence, 

when considering a deep convective cloud or a frontal cloud in which air is moved 

vertically through all the temperature range of mixed- phase clouds, it is the 

spectrum of [INP]T (a spectrum over activation temperature) which is the pertinent 

quantity (see Fig. 3 for an illustration). In addition, when comparing measurements 

of INP concentration to our modelled [INP], we compare these quantities at specific 

activation temperatures. Hence, Fig. 4 (top) provides the [INP] to compare it to a 

measurement of [INP] for which the activation temperature in a measurement was 

−20◦C. In Fig. 4 (bottom) we plot the [INP] for which the activation temperature is 

set to the local atmospheric temperature. [INP]ambient is useful for identifying regions 

in the atmosphere where we might expect cloud glaciation in stratus- type mixed-

phase clouds. Non-deep convective clouds with minimal vertical extent, such as 

altostratus, altocumulus or high-latitude stratus, form in air parcels which have not 

been vertically transported large distances, in contrast to deep convection or frontal 

systems. Based on Fig. 4 (bottom), we would expect K- feldspar to contribute much 

more to midlatitude, mid-level (600 hPa), mixed-phase clouds in the Northern 

Hemisphere than in the Southern Hemisphere. Both [INP]T and [INP]ambient are 

useful ways of looking at the global INP distribution, but in order to understand the 

impact of these INP species on clouds, we would need a model in which the INP 

fields are coupled to cloud microphysics and dynamics. This is beyond the remit of 

this study, where our goal is to understand the global distribution of INPs and 

evaluate the model against measurements. To calculate [INP]ambient, we use the daily 

mean temperatures obtained from ECMWF and the daily mean concentrations (mass 

and number concentrations) predicted by the model. The daily values are then 

averaged to calculate monthly and annual mean values of INPs. The concentrations 

of [INP]ambient at temperatures lower than the temperature limit of the 

parameterizations (−25◦C for K-feldspar and −27◦C for marine organics) are set at 

the value defined by the concentration at the limiting temperature of each 

parameterization. This is consistent with studies that caution against extrapolating 

singular parameterizations outside the range in which measurements were made. For 
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example, Niedermeier et al. [2015] showed that the density of active sites on the 

surface of K-feldspar particles plateaus below about −25 ◦C and a simple 

extrapolation of the parameterization of Atkinson et al. [2013] would lead to 

substantial errors. 

 

3.  Results  

3.1.  Simulated global INP distributions 

Simulated INP concentrations at the surface are shown in Fig. 5 for an activation 

temperature of −15◦C. Feldspar dominates the INP concentration in environments 

influenced by terrestrial dust emission sources such as the Sahara and the Asian dust 

belt. However, concentrations fall rapidly with distance from dust sources because 

the large-sized feldspar- containing dust particles are rapidly removed from the 

atmosphere (Fig. 5a). The concentrations of INPs from K-feldspar and marine 

organics are summarized in Fig. 5. Comparison with panels a and b reveals that 

INPs from deserts far out- number INPs from sea spray throughout much of the low 

latitudes and midlatitudes, which are strongly influenced by desert dust, while 

marine organics are becoming more important over the world’s remote oceans, such 

as the Southern Ocean. 

Figure 6 shows the [INP]ambient concentration of marine organics and K-feldspar for 

the different seasons. Feldspar dominates [INP]ambient on a monthly mean basis 

across the Northern Hemisphere, while marine organic aerosols tend to be important 

in southern high latitudes, such as those corresponding to the Southern Ocean and 

Antarctica. The seasonal mean results in Fig. 6 have to be interpreted with caution 

since high dust concentrations are often associated with episodic dust plumes. 

Hence, the seasonal mean may not reflect the relative contributions of desert dust 

and sea-spray INPs on a day-to-day basis. In addition, day-to-day fluctuations in 

temperature can drive large changes in [INP]ambient which are not necessarily 

representative of the typical concentrations of active ice-nucleating particles, but 

will greatly affect the monthly mean value of [INP]ambient, as the INP concentration 

increases exponentially with temperature. To account for such variability, Fig. 7 

shows the percentage of days per season when the concentration of [INP]ambient from 

marine organics is greater than the concentration from K-feldspar. Overall, over the 
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Northern Hemisphere, marine organic INP concentrations are greater than K-

feldspar INP concentrations between 10 and 30% of the days when the temperature 

is within the mixed-phase range (0 to −37◦C) and the total concentration of 

[INP]ambient is larger than 10−4L−1. This large influence of marine organic INP is 

hidden when looking at the monthly mean values shown in Fig. 6 as the feldspar 

monthly mean concentrations are dominated by short periods during which a dust 

plume occurs. It is striking that the contribution of marine organics is more 

important than K-feldspar on a significant fraction of days in the Northern 

Hemisphere because in these zonal mean plots we are averaging across the Eurasian 

and North American continents where the influence of marine organics is minor. In 

fact, Fig. 7 suggests that marine organics are more important than K-feldspar in the 

Norther Hemisphere, for example, on 10–40% of days at 600 hPa. 

 

In the Southern Hemisphere, the dominance of marine organic aerosols is more 

prevalent. On a monthly mean basis and on the large majority of days, marine 

organic aerosols are the dominant INPs from March through to November (Fig. 6b–

d). On the other hand, K-feldspar cannot always be ruled out as an important source 

of INPs in the southern high latitudes in the period from March to November, since 

there are still several days per month (10 to 60%) when the concentration of 

transported K-feldspar INPs dominates over marine organics (Fig. 6). Conversely, 

during December to February at southern high latitudes, K-feldspar mineral dust is 

more important on more days than marine organic aerosols (Fig. 7a). This is related 

to higher dust concentrations during the austral summer. 

 

3.2.  Comparison with observations and other parameterizations 

Some climate models determine heterogeneous freezing using parameterizations that 

depend only on the temperature, [McCoy et al., 2015] such as the scheme of Meyers 

et al. [1992]. This type of parameterization does not account for spatial or temporal 

variations in the aerosol loading and does not differentiate between different aerosol 

species; both of these factors actually determine INP concentrations. Other 

parameterizations such as DeMott et al. [2010] use empirical evidence from 

extensive atmospheric measurements to define INP concentrations in terms of the 
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aerosol particle concentration above a defined size. Such parameterizations 

implicitly account for the fact that many INP-active species are present in larger 

particles, such as in dust [Niemand et al., 2012] and biological particles[Tobo et al., 

2013]. In addition, larger particles are more likely to carry nanoscale or smaller ice 

active materials [O’Sullivan et al., 2015].  

Nevertheless, size-based parameterizations of INP concentration do not account for 

the source of the particles or differences between marine and terrestrial aerosols, so 

they may not capture variations and long-term trends driven by changes in aerosol 

emissions since different aerosol types have different ice-nucleating abilities. In Fig. 

8 we compare several singular INP parameterizations with observations (See Figure 

9a and Appendix C). Panel a compares the observed values of [INP]T to those 

predicted by the scheme of Meyers et al. [1992], which relates [INP]T to temperature 

and is independent of aerosol properties. This is clearly a poor representation of 

many INP measurements in the atmosphere (Table 1). Figure 8b shows the [INP]T 

predicted by the parameterization of DeMott et al. [2010], in which [INP]T is 

predicted on the basis of the concentration of particles larger than 0.5µm diameter, 

naer,0.5, and temperature. This parameterization tends to overpredict [INP]T, although 

multiplicative scaling of the simulated values would greatly improve its 

performance as it has a better correlation coefficient (Table 1). We also note that in 

our analysis we use the annual mean naer,0.5 from our model (without the 

contribution of sea-salt aerosols), whereas DeMott et al. [2010] used naer,0.5 from 

measurements coincident with their INP measurements and obtained a better 

representation of the [INP]T data (some of which is included in Fig. 8). Sulfate 

aerosols contribute significantly to the simulated naer,0.5 in remote places impacting 

DeMott et al. [2010] over oceans.  

Figure 8c shows how our model compares with observed [INP]T using the desert 

dust parameterization from Niemand et al. [2012] (with no additional marine 

organic INPs). In this case some observations are overestimated by a factor 100–

1000, especially those in marine regions (triangles). A similar trend is observed 

when this parameterization is extrapolated at higher temperatures. This 

overprediction is partly caused by the implicit assumption that all components of 

dust particle nucleate ice with the same efficiency. Feldspars exist mainly in the 

large dust particles (silt fraction) so they are not transported as efficiently to remote 
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locations as the clay minerals; consequently, transported desert dust is less important 

as INP in remote locations. Finally, we compare our two-species representation of 

INPs with the same [INP]T data set Fig. 8d. The observations used in this 

comparison are within the range of temperatures of the parameterizations (−5 to 

−27◦C). In this case our representation of INPs (Fig. 8d) is able to reproduce 56.7% 

of the observations within an order of magnitude and 74% within 1.5 orders of 

magnitude (Table 1). When the parameterizations are extrapolated outside their 

temperature range, they still perform similarly (Table 1). Looking at the 

performance of the different ways of representing INPs within the smallest 

temperature range shared by the all the parameterizations (−12 to −25◦C), our 

representation of INPs is able to reproduce 61.6% of the data points within an order 

of magnitude and 78.7%within 1.5 orders of magnitude. These values are greater 

than that obtained when using the other three parameterizations used for this study 

(Table 1). The contributions of K-feldspar and marine organics to the simulated INP 

concentrations of each data point are illustrated in Fig. 9b. Marine organics explain 

more than 90% of the INP concentrations in marine-influenced environments and 

some terrestrial environments with low concentrations of INPs (corresponding to 

high temperature observations). K-Feldspar, however, explains most of the 

observations in terrestrial regions. The large biases observed when using species 

independent parameterizations over marine regions are largely corrected, as most 

marine influenced INP concentrations are simulated within an order of magnitude 

(72%of marine points), although some biases are still apparent. Figure 10 shows the 

location and temperature of the observations with a bias greater than 1.5 orders of 

magnitude. Figure 10a suggests that the main positive bias occurs at low 

temperatures (<−20◦C) in locations far from K-feldspar emission sources, where it is 

transported. It is possible that processes such as atmospheric ageing by acids play a 

role in modifying the efficiency of K-feldspar aerosols in nucleating ice [Augustin-

Bauditz et al., 2014] or that we overestimate the amount of feldspar particles that are 

transported. One possible explanation for this is that we do not model the 

preferential removal of INPs during cloud glaciation and precipitation; hence K-

feldspar aerosol transported over long distances may contain fewer INPs than our 

model simulations [Haga et al., 2013, 2014; Stopelli et al., 2015]. Figure 10b shows 

that the model underestimates high-temperature INP concentrations (∼−5 to −15◦C) 
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over terrestrial locations, which might indicate that we are missing some terrestrial 

source that affects the INP concentration. Some of the possible candidates for these 

particles could be bacteria [Maki and Willoughby, 1978; Möhler et al., 2008; 

Hartmann et al., 2013], fungal material [Pouleur et al., 1992; Morris et al., 2013; 

Fröhlich-Nowoisky et al., 2015; O’Sullivan et al., 2015, 2016], agricultural dust 

[Garcia et al., 2012; O’Sullivan et al., 2014; Tobo et al., 2014] or biological 

nanoscale fragments attached to mineral dust particles [Fröhlich-Nowoisky et al., 

2015; O’Sullivan et al., 2015, 2016; Pummer et al., 2015]. However, size-resolved 

INP measurements in several terrestrial locations suggest that a large proportion 

(40–90%) of INPs are commonly associated with larger particles (diameter>2.5 µm; 

Mason et al. [2016]). Such large particles are likely to have short atmospheric 

lifetimes, so they are less likely to be transported to cloud altitudes than smaller 

particles and are more likely to be transported shorter distances. In summary, the 

overall agreement between the two-species model and observations is good, but 

there are significant discrepancies. These discrepancies indicate that processes such 

as ageing and preferential INPs in-cloud removal could be important and also that 

we could be missing high-temperature terrestrial sources of INPs in the model. 

 

4.  Conclusions 

This study is a step towards the inclusion of ice-nucleating particles in weather and 

climate models in a way that accounts for the aerosol chemical composition using 

laboratory-derived parameterizations under the singular description. We find that 

marine organic aerosols dominate the concentration of INPs in remote locations like 

the Southern Ocean on many days, whereas feldspar particles are the dominant 

species for ice nucleation in places influenced by the terrestrial emission sources. 

However, even over Northern Hemisphere regions influenced by dust, marine 

organic INP concentrations exceed K-feldspar INP concentrations on 10– 30% of 

the days when the temperature is within the mixed- phase range and the total 

concentration of INPs is larger than 10−4 L−1. Similarly, K-feldspar cannot be ruled 

out as an important source of INPs in the southern high latitudes because there are 

several days per month when the concentration of transported K-feldspar INP 

dominates over the prevailing marine organics. K-feldspar in our model can 

reproduce 70% of the observations of INPs in terrestrial locations at low 
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temperatures (T <−15◦C) within 1.5 orders of magnitude. Because K- feldspar is 

mainly a coarse aerosol type, it is scavenged more rapidly than the clay fraction of 

desert dusts, and therefore has substantially smaller influence on remote marine 

environments in contrast with Atkinson et al. [2013] where dust was not subject to 

wet removal. For remote locations, we find that marine organic aerosols acting as 

INPs are able to reproduce a majority (80%) of the observations within an order of 

magnitude. Our model of INPs based on emitted and transported aerosol species 

provides a reasonable explanation of measured global INP concentrations, but there 

are some important biases. The two-species model overestimates the concentrations 

of INPs in marine locations that are influenced by the transport of K-feldspar-

containing dust particles by around 1.5 orders of magnitude, although it is difficult 

to draw firm conclusions from the small number of observations. Nevertheless, the 

bias points to the possible importance of missing processes, such as the effect of 

atmospheric processing of feldspar particles, a preferential scavenging of INPs as 

proposed in Stopelli et al. [2015], or a possible overestimation of the transport of 

this aerosol type. The model also underestimates measured INP concentrations at 

high temperatures in some terrestrial locations. This bias is most likely to be 

explained by neglecting the contribution of some terrestrial biogenic aerosol species 

such as soil dust, fungal spores and bacteria. The model bias is large at the surface, 

but some studies show that some of these species are not important for ice 

nucleation once in the atmosphere [Hoose et al., 2010b; Spracklen and Heald, 2014] 

because of their low simulated concentrations above the surface for heterogeneous 

ice nucleation. These species, however, could be important for triggering secondary 

production ice processes, such as the Hallett–Mossop process, due to its high 

nucleation temperatures. In addition, other unknown sources of ice-nucleating 

particles, such as biological fragments attached to mineral dust particles [O’Sullivan 

et al., 2015, 2016], could help explain underestimated INP concentrations in the 

model. In summary, our results suggest that the inclusion of both marine organic and 

feldspar emissions are required to accurately simulate global INP concentrations. 

However, there are still large uncertainties to be resolved, such as the importance of 

acid coating affecting the INP ability of K-feldspar [Sullivan et al., 2010; Wex et al., 

2014] or the relative importance of soot for ice nucleation in the atmosphere, which 

could lead to a possible anthropogenic effect on clouds. Finally, we suggest that 

further experimental studies on the ice-nucleating ability of different aerosol species, 
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followed by modelling studies of their importance in the atmosphere, will be crucial 

for determining the possible importance of other species for ice nucleation under 

atmospheric conditions. In addition, more INP measurements in the ambient 

atmosphere for different environments and seasons are necessary to better evaluate 

and constrain models. Among those, exploratory studies about the composition and 

type of ice-nucleating particles in terrestrial environments at high temperatures will 

be crucial to determine which species need to be included in models. 
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Figure 1. Evaluation of modelled water-insoluble organic matter (WIOM) mass 

concentration with monthly mean observations at Mace Head (53.33oN, 9.9oW) and 

Amsterdam Island (37.48oS, 77.34oE). The dashed lines correspond to a difference 

of a factor of 2 between modelled and observed values. The error bars correspond to 

the simulated daily variability within a month (maximum and minimum values). 

Variability in the observed values is not shown because the measurements were 

made with filter samples which were collected over 1 week, and therefore they do 

not represent the day-to-day variability. 

 

Figure 2. Annual mean modelled mass concentration of submicron marine organic 

aerosol at surface level. 
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Figure 3. Illustration of the two ways in which we display INP concentrations. It is 

important to bear in mind that INPs are defined as particles with the potential to 

nucleate ice and their concentration is quoted for a specific set of conditions. 

[INP]ambient, where ambient denotes the local atmospheric temperature, is a useful 

way of looking at the INP concentration relevant to non-deep convective mixed-

phase clouds. [INP]T, on the other hand, has utility in representing the spectrum of 

INP concentrations over temperature that will influence clouds with a large vertical 

extent such as deep-convective systems. Moreover [INP]T is the relevant quantity 

when comparing modelled and observed INP concentrations, since measurements 

are made by exposing particles to controlled temperatures within the 

instrumentation. 
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Figure 4. Annual mean K-feldspar INP distribution using GLOMAP mode at a 

pressure level of 600 hpa. Top panel shows the concentration of ice-nucleating 

particles active at a temperature of −20oC ([INP]T) whereas the bottom panel shows 

the INP concentration at local ambient temperature ([INP]ambient). 

convection. 
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Figure 5. Annual mean distributions of ice-nucleating particles concentrations, for 

an activation temperature of −15oC based on feldspar (a) and marine organics (b). 

Panel (c) shows the total INP concentration obtained by summing the INP 

concentrations from K-feldspar and marine organics. We show [INP]T for a T of 

−15oC because this is a temperature used by many instruments. The number of INP 

that activate to ice crystals ([INP]ambient) at the surface will be zero over much of the 

globe, because these particles will only become important at high altitudes. Surface 

concentrations are shown because this is where most observations of atmospheric 

INP concentrations are made. 
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Figure 6. Zonal mean profiles of [INP]ambient for every month of the year. The black 

contour lines correspond to the INP concentration of K-feldspar aerosols (m−3), 

while the colour map shows the INP concentration of marine organic aerosol. The 

values correspond to seasonal mean values calculated using daily concentrations and 

temperatures and averaged across latitudes. 
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Figure 7. Percentage of days when [INP]ambient from marine organic aerosols is 

greater than from K-feldspar. The number of days have been calculated only for 

times and locations where the total [INP]ambient concentration is larger than 0.1m−3. 

The black contour lines represent seasonal mean isotherms in degrees centigrade. 
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Figure 8. Comparison of the performance of a variety of INP parameterizations 

tested against field measurements shown in Figure 9 and appendix C. (a–d) 

Modelled INP concentration values when using (a) Meyers parameterization 

[Meyers et al., 1992], (b) DeMott’s parameterization [DeMott et al., 2010] 

combined with a global aerosol simulation using GLOMAP-mode, (c) Niemand dust 

parameterization [Niemand et al., 2012] and (d) our two- species representation 

based on feldspar [Atkinson et al., 2013] and marine organic aerosols [Wilson et al., 

2015]. Triangles represent marine influenced regions and points terrestrial 

environments. The light shaded points in (d) and (e) are for data points outside the 

temperature range of the parameterizations. The dashed lines represent one order of 

magnitude of difference between modelled and observed and the dashed- dotted 

lines 1.5 orders of magnitude. The simulated values correspond to an annual mean 

concentration and the error bars correspond to the simulated seasonality of INPs 

calculated with monthly mean values. For each individual observation, we 

calculated the INP concentration at the temperature corresponding to the 

temperature that aerosol particles were exposed to in the INP instruments. The 

locations of the data point are shown in Fig. 9. 
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Figure 9. (a) Location of the data used for comparison in Fig. 8. (b) Same as Fig. 8d 

but showing the relative contribution (in orders of magnitude) of each aerosol 

species to the simulated concentration. (c) Same as (b) but distinguishes between the 

different campaigns shown in (a) (with the same colours and symbols). References 

to the data sets used are shown in Appendix C. 



 

81  

 

Figure 10. Overestimation and underestimation of places according to our two-

species-based parameterization of INP [Atkinson et al., 2013; Wilson et al., 2015]. 

(a) Shows the places where we overestimate the values of INPs by more than 1.5 

orders of magnitude. (b) Similar to (a) but for places where the concentration is 

underestimated by more than 1.5 orders of magnitude. The location of the points has 

been moved randomly in the plot for purpose of visualization so it can be seen when 

the bias affects a single data point or a whole data set. 
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Table 1. Statistical performance of the different parameterizations. Pt1 and Pt1.5 are 

the percentages of data points reproduced within an order of magnitude and 1.5 

orders of magnitude in the temperature range of every parameterization. The number 

of data points used for calculating these values is shown under the data points 

column. The values with ∗ show the same calculation but include data points outside 

the temperature range of the parameterizations. These values give an idea of the 

performance that you would expect if you extrapolate the parameterizations in a 

climate model. The values with ∗∗ are for data points within the smallest 

temperature range shared by the four parameterizations (−12 to −25 ◦C). The 

correlation coefficient has been calculated with the logarithm of the values as INP 

concentrations vary logarithmically with temperature. 
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Abstract 

It has been hypothesized that Black Carbon (BC) influences mixed-phase clouds by 

acting as an ice-nucleating particle (INP). However, the literature data for ice 

nucleation by BC immersed in supercooled water is extremely varied, with some 

studies reporting that BC is very effective at nucleating ice, whereas others report no 

ice-nucleating ability. Here we present new experimental results for immersion 

mode ice nucleation by BC from two contrasting sources. We observe no significant 

heterogeneous nucleation by either sample. Using a global aerosol model, we 

quantify the maximum relative importance of BC for ice-nucleation when compared 

with feldspar and marine organic aerosol acting as INP. Based on the upper limit 

from our laboratory data, we show that BC contributes at least several orders of 

magnitude less INP than feldspar and marine organic aerosol. Representations of its 

atmospheric ice-nucleating ability based on older laboratory data produce unrealistic 

results when compared against ambient observations of INP. Since BC is a complex 

material, it cannot be unambiguously ruled out as an important INP species in all 

locations at all times. Therefore, we use our model to estimate a range of values for 

the density of active sites that BC particles must have to be relevant for ice 

nucleation in the atmosphere. The estimated values will guide future work on BC, 

defining the required sensitivity of future experimental studies.  

 

1.  Introduction 

Black carbon particles (BC), emitted from both anthropogenic and natural 

combustion processes, are ubiquitous in the present-day atmosphere with an 

estimated total emission rate of 7.5 Tg yr-1 [Bond et al., 2013]. It is estimated that 

the anthropogenic emissions of BC have increased from ~1 Tg yr-1 in 1850 to ~5 Tg 

yr-1 in 2000 [Lee et al., 2013], which is thought to have led to a significant impact 

on climate [Bond et al., 2013]. BC has a strong warming effect through the 

absorption of solar and infrared radiation, and it has been suggested that reduction in 

black carbon emissions might go some way to mitigating global warming [Bond et 

al., 2013]. However, to accurately assess the efficacy of reducing BC emissions it is 

important to quantify the impacts of BC aerosol on clouds.  It is estimated that BC 

particles contribute substantially to global cloud condensation nuclei (CCN) 



 

96  

concentrations and they are an important CCN in industrial regions [Spracklen et al., 

2011]. BC therefore influences the albedo and lifetime of clouds through nucleating 

cloud droplets. If these immersed particles could also nucleate ice effectively then 

the lifetime and albedo of supercooled clouds would be affected. This ‘glaciation 

indirect effect’, which would most likely enhance precipitation and reduce cloud 

lifetime, could potentially offset the aerosol effects on liquid clouds [Lohmann, 

2002, 2017]. However, the ice-nucleating ability of BC under conditions pertinent to 

supercooled clouds remains very uncertain. 

 

While it has been shown in laboratory studies that BC nucleates ice under conditions 

relevant for cirrus clouds [Möhler, 2005; Koehler et al., 2009; Kanji et al., 2011; 

Hoose and Möhler, 2012; Ullrich et al., 2017], there are divergent results from 

laboratory and field studies of the ability of BC to nucleate ice under water-saturated 

conditions, which are relevant for mixed-phase clouds [DeMott, 1990; Diehl and 

Mitra, 1998; Hoose and Möhler, 2012; Schill et al., 2016; Ullrich et al., 2017]. For 

example, a strong correlation between BC and the ice crystal concentration in a 

mixed-phase orographic mountain wave cloud suggested BC might nucleate ice 

[Twohy et al., 2010]. However, in the same field campaign BC was not enhanced 

significantly in the ice crystal residues over the background air [Pratt et al., 2009]. 

In one study of mixed-phase clouds at a high-altitude observatory in the Alps, soot 

particles only made up 5% of the background aerosol, but 27% of ice crystal 

residues [Cozic et al., 2008]. In contrast, several studies found that BC accounted for 

only a minor fraction of ice crystal residues, but mineral dust was clearly enhanced 

[Kamphus et al., 2010; Baustian et al., 2012; Kupiszewski et al., 2016; Schmidt et 

al., 2017].  More recently, analysis of INP chemical composition in air influenced 

by biomass burning events using electron microscopy showed that between 0% to 

64% of INPs were BC particles and suggested that biomass burning particles could 

be an important regional source of INP, especially during periods when other INPs 

such as desert dust are absent [Mccluskey et al., 2014]. Measurements of the ice-

nucleating efficiencies of BC particles from diesel engines [Schill et al., 2016], 

found that fresh and photochemically aged BC particles did not nucleate ice 

effectively above their limit of detection. Overall, the field results do not clarify 

whether BC particles are consistently playing a role as INPs in the atmosphere, and 
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they suggest that BC (or compounds generated and transported along with BC) 

might be playing a sporadic role in nucleating ice under certain atmospheric 

conditions. 

 

The available data from laboratory studies also leave open the question of whether 

or not BC is an efficient INP. Some studies show evidence that BC can nucleate ice 

in supercooled droplets  [DeMott, 1990; Diehl and Mitra, 1998; Gorbunov et al., 

2001; Popovicheva et al., 2008; Wright et al., 2013; Brooks et al., 2014]. Based on 

the available literature data [DeMott, 1990; Diehl and Mitra, 1998], a 

parameterization of the density of ice-nucleating active sites (ns) was derived and in 

combination with BC concentrations in the atmosphere it was suggested that BC is a 

very important INP type [Murray et al., 2012].  However, more recent studies could 

not reproduce similar values of ns for BC, and the upper limits estimated from the 

limits of detection of the instruments were orders of magnitude lower [Schill et al., 

2016; Ullrich et al., 2017]. The large variation in BC ice nucleation activity reported 

in these studies means that the contribution of BC to a possible anthropogenic 

glaciation effect has remained poorly quantified, since modelling results will depend 

strongly on the represented ability of BC for nucleating ice under mixed-phase 

conditions [Hoose et al., 2010a, 2010b; Savre and Ekman, 2015].  

 

2.  Laboratory study of ice nucleation by soot samples 

Given the large variation in ice-nucleating activities reported for the relatively few 

experimental studies of the ice-nucleating ability of BC, we have made new 

laboratory measurements.  We have taken great care in these experiments to 

characterize the background INP which inevitably contaminate experiments such as 

these, but which can lead to a false ice nucleation signal. We have also taken care to 

generate BC samples in a reproducible and well-characterized way. 

For these experiments, we have generated BC particles from the incomplete 

combustion of liquid fuels. By definition [Petzold et al., 2013], these laboratory 

generated BC samples should be referred to as soot. Much of the BC in the 

atmosphere originates from incomplete combustion, but on transport through the 

atmosphere it is expected to evolve through the adsorption of other chemical 
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species, reactions with gas phase constituents, and aggregation with other aerosol 

particles, hence this atmospheric material is then generally termed as BC. In these 

experiments, we consider fresh soot particles generated in our laboratory as a proxy 

for atmospheric BC.  

 

The fuels used to generate the soots for this study were a proxy for hydrocarbon 

combustion (n-decane, C10H22), and a proxy for biomass burning (eugenol, 

C10H12O2). Eugenol is used as a proxy for the combustion of lignin, which 

constitutes 20 % of pine wood [Fitzpatrick et al., 2008]. Lignin has previously been 

shown to contribute to soot production in biomass burning, alongside cellulose 

[Fitzpatrick et al., 2008; Wilson et al., 2013]. Consequently, soot from eugenol is 

similar in composition to that from pine combustion [Baeza-Romero et al., 2010]. 

We used the same methods to produce soot from n-decane and eugenol, a wick 

diffusion burner in filtered air, as described in previous studies where the soot was 

characterized by mass spectrometry  [Baeza-Romero et al., 2010; Wilson et al., 

2013] (the methodology is described in detail in supplementary S1). For our 

experiments, soot was collected on glass slides at the top of a glass chimney and 

both fuels led to soot spherules with the classic fractal soot morphology (see TEM 

images, Figure 1). Whilst they are morphologically similar, the soot from these fuels 

differ in several ways. For example, soot from eugenol contains larger oxygenated 

polyaromatic hydrocarbons (PAHs), has a greater oxygen content and has a lower 

elemental carbon:total carbon ratio than soot from n-decane [Fitzpatrick et al., 2008; 

Baeza-Romero et al., 2010]. Hence, we produced two contrasting examples of soot, 

both of which are thought to be relevant for the atmosphere.  

 

Water suspensions of soot were prepared at 10-3 wt%. This is a lower mass ratio 

compared to similar microlitre experiments performed on mineral dusts, and was 

selected to avoid significant aggregation of the soot, since this would lead to poor 

dispersion in suspension, and introduce additional uncertainties into the ice 

nucleation measurements. Laser diffraction was used to evaluate the particle size 

distributions and aggregation, the results of which are shown in the supplementary 

information. At 10-1 wt%, about 50 % of the soot surface area is associated with 
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particles >1 µm in diameter, compared with 0 - 20 % of the surface area at the 

concentrations used in this study. For even more hydrophobic soots, such as 

acetylene burner soot, it was not possible to produce suspensions. Microlitre 

droplets of these suspensions were cooled down to test their ice-nucleating 

efficiency following the method presented in Whale et al., [2014]. Here, the active 

site density is used [Connolly et al., 2009], which is a singular time-independent 

description of ice nucleation, and is calculated as: 

 

k(m)
�

= 1 − exp(−𝑛Y(𝑇)𝐴)				(1)      

 

where n(T) is the number of droplets frozen at temperature T, N is the total number 

of droplets in the experiment and A is the surface area of BC particles per droplet. 

The size distribution of BC particles in the suspensions was measured using laser 

diffraction, which also demonstrated that the BC particles were not significantly 

aggregated. For one batch of soot, the Brunauer–Emmett–Teller (BET) specific 

surface area was also measured. For eugenol, the specific surface area was 49.43 ± 

0.89 m2/g, whilst for n-decane soot it was 65.47 ± 0.81 m2/g. The surface areas 

measured using laser diffraction and BET were similar, and therefore gave similar 

values of ns(T).   

 

The resulting fraction of droplets frozen as a function of temperature are shown in 

Figure 2a for experiments with and without soot in the droplets. In all the 

experiments conducted, we did not measure any significant increase in ice 

nucleation activity above the handling blanks when soot particles were present. In 

these experiments, the handling blanks did not freeze at the homogeneous limit, but 

instead froze heterogeneously. This is caused by the contact between the water and 

the hydrophobic glass slides, or by trace contaminants.  The handling blanks were 

MilliQ water samples run alongside the soot suspensions, reproducing every 

process, including sonication and stirring, that the soot suspensions were exposed to. 

These handling blanks froze over a broader range than standard MilliQ blanks, and 

included freezing at warmer temperatures caused by the introduction of impurities. 
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Given that there is no significant difference in freezing temperatures between the 

soot samples and handling blanks, it is not possible to ascribe the freezing 

temperatures measured to the influence of soot alone; instead, the freezing could 

either be entirely unrelated to the soot or a convolution of the soot and other 

contaminants acting as INPs.  These results are similar to the observations of Schill 

et al. [2016] and Ullrich et al. [2017], where no significant ice nucleation ability of 

BC was observed. However, whilst no significant activity of these soots has been 

measured, they do define a limiting freezing efficiency which we can use to draw 

conclusions about the potential of BC to contribute to the population of atmospheric 

INP.  

 

From our fraction frozen results, we can estimate the upper limit of the density of 

active ice-nucleating sites for our soot samples (see Figure 2b). This is done using 

equation (1) and a simple parameterization of this upper limit is given in the figure 

caption. The upper limit defined here (NEW-UPL) gives smaller values of the upper 

limits of ns than previously reported by Ullrich et al., [2017], but similar to that 

defined by Schill et al., [2016].  All three of the recent upper limit parameterizations 

(this study, Ullrich et al., [2017] and  Schill et al., [2016]) are at least three orders of 

magnitude smaller than the old parameterization defined by Murray et al. [2012] on 

the basis of literature data from DeMott [1990] and Diehl and Mitra [1998]. DeMott 

[1990] used an expansion chamber to study the ice-nucleating ability of soots 

generated by a acetylene burner whereas Diehl and Mitra [1998] froze droplets 

containing soot particles from kerosene-burner exhaust by injecting them into a 

wind tunnel at various temperatures. 

 

 

Given the discrepancy in the observed values of ns from different studies (Figure 

2b), one cannot readily conclude what the typical ice-nucleating activity of BC 

particles is in the atmosphere. These observed differences in BC ns could be due to 

structural differences in various types of BC from different fuels or be related to 

processes affecting the BC ice-nucleating ability such as other materials being 

adsorbed to the soot during production, such as organic carbon species / PAHs or 
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during atmospheric ageing. Therefore, soot particles might have different ice-

nucleating abilities depending on their properties and sources, so assuming a single 

distribution of ns values at all times and locations might misrepresent its ability as an 

INP in the atmosphere. However, an exploratory study of its atmospheric potential 

as INP can be done by comparing its potential contribution to global INP 

concentrations with that of other well-characterized INP species.   

3.  Modelling the contribution of BC to the global atmospheric burden on 

INP 

To estimate the possible contribution of BC particles to the global distribution of 

INP, we use the global aerosol model GLOMAP-mode, as used in Vergara-

Temprado et al., [2017] (hereafter VT17). We estimate the concentrations in the 

atmosphere of two well-known ice-nucleating aerosol species, K-feldspar [Atkinson 

et al., 2013] and marine organic aerosols [Wilson et al., 2015] and compare these to 

the predicted contribution of BC INP. We can consider that for any aerosol species 

to be relevant in the atmosphere as an INP, it will have to produce similar or greater 

concentrations to the simulated INP concentrations of K-feldspar and marine 

organics (Figure 3). Below these concentrations, it is unlikely to be an important 

INP globally, however, higher concentrations would only indicate that this is more 

important than the two species modelled (in some locations other INP types may 

also be important).  In our model, BC is emitted from wildfires that vary seasonally 

[Van der Werf et al., 2003], fossil fuel, and biofuel emissions as described in Mann 

et al., [2010]. The annual-mean fluxes are defined by Bond, [2004]. BC is emitted 

internally-mixed with organic carbon into the insoluble Aitken mode and then it is 

moved to the soluble modes by atmospheric ageing. The transport, mixing and 

scavenging of BC particles is driven by the meteorology of the year 2001 as used in 

VT17. A more detailed description of the model and its evaluation against 

atmospheric BC measurements is given in the supplementary information (see S2).  

 

With the BC concentrations simulated, we can calculate the BC INP concentration 

for a given ns(T) following the method shown in VT17. As the reported values of ns 

range by several orders of magnitude, we define two limiting parameterizations, one 

using the upper limit presented in this study (NEW-UPL) and another using the 
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maximum observed values reported in literature data corresponding to the 

parameterization shown in Murray et al. [2012] (OLD) (Figure 2), which was based 

on data from DeMott [1990] and Diehl and Mitra [1998].  

 

The INP distribution at the Earth’s surface is shown at an activation temperature of -

25 oC (i.e. [INP]-25; where square brackets indicate concentration); that is, the 

number of particles that would nucleate ice if exposed to this temperature in a 

mixed-phase cloud (Figure 3). These surface-level plots are useful for assessing the 

distribution and make-up of the INP population around the globe, but they do not 

tell us where INPs can nucleate ice and influence clouds. To show this, we 

calculated the INP concentration throughout the atmosphere using local ambient 

temperatures and particle concentrations. The annual mean [INP]ambient plotted in 

Figure 4 was calculated by averaging the daily [INP]ambient values as the daily 

variations in temperature can substantially affect the simulated mean concentrations. 

At temperatures below the minimum temperature limit of each parameterization, we 

use the value of ns for the lowest experimental temperature reported to avoid 

extrapolating the parameterizations.  

 

In both the [INP]-25 (Figure 3) and [INP]ambient plots (Figure 4), when the NEW-UPL 

ns values are used the concentrations of INP from BC are several orders of 

magnitude smaller than simulated assuming K-feldspar and marine organic aerosols, 

which suggests that BC is unlikely to play an influential role as an ice-nucleating 

particle on global and regional scales if the soot we generated is representative of 

atmospheric BC. However, when the OLD parameterization for ns is used, BC 

completely dominates the global INP distribution both for [INP]ambient and [INP]-25.  

 

Given this large difference, we estimate the ns values required for BC to be an 

important INP type given present-day BC emissions by calculating the percentage of 

surface gridboxes that would be dominated by BC particles if they were to have a 

particular ns value (Figure 5). This is done by calculating BC [INP] from the 

simulated surface area distribution of BC for a range of ns values (from 10-5 to 109 

cm-2). We then calculate at each temperature the fraction of surface grid-boxes in 
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our model where the BC [INP] exceeds INP concentrations simulated by VT17, 

weighting each grid-box by the geographic surface area that it represents. This 

approach helps us to place the other literature data for ice nucleation by BC in 

context and will similarly help place any future measurements of the ice nucleation 

ability of BC in context. The OLD parameterization falls in the range of values 

where BC would dominate the surface INP concentrations by orders of magnitude 

and the NEW-UPL produces values that are orders of magnitude lower than the 

minimum required to influence surface concentrations. Previously reported upper 

limits are also lower than the required ns values necessary to influence surface 

concentrations.  

  

We then test the realism of the OLD and NEW-UPL parameterizations against 

ambient INP observations by evaluating the simulated INP concentrations against 

two contrasting atmospheric INP datasets, one based on remote marine locations in 

the Southern Ocean [Bigg, 1973] and another in a relatively higher BC loaded 

environment from several places in China [Yin et al., 2012] (Figure 6a and 6b). 

When the NEW-UPL is used, BC alone cannot explain the observed INP 

concentrations and under-represents the atmospheric concentrations by more than an 

order of magnitude, suggesting that other species are responsible for producing these 

INP concentrations. On the other hand, when the OLD parameterization is used, the 

measured concentrations in both environments are overestimated by more than two 

orders of magnitude, suggesting that, if we consider all atmospheric BC particles to 

act with this efficiency in the atmosphere, we will likely overestimate their influence 

as INPs.  This conclusion is in agreement with many field observations, which 

suggest that mineral dust is the dominant aerosol found in ice crystals residues 

[Pratt et al., 2009; Kamphus et al., 2010; Baustian et al., 2012; Schmidt et al., 2017] 

although others did show that BC aerosols might contribute to the observed INP 

concentration [Cozic et al., 2008; Mccluskey et al., 2014]. K-feldspar and marine 

organic aerosols can explain these atmospheric concentrations within an order of 

magnitude, as shown previously in Vergara-Temprado et al. [2017].  Hence, we 

conclude that the OLD parameterization is probably unrealistic and that it is not 

possible that all atmospheric BC has such a high ice-nucleating efficiency. This 

conclusion has important implications for modelling studies that have previously 
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treated BC as INP in the immersion mode [Philips et al., 2007; Hoose et al., 2010a, 

2010b; Fan et al., 2012; Yun and Penner, 2012; Wang et al., 2014; Savre and 

Ekman, 2015]. However, we cannot completely dismiss the potential influence that 

BC produced from different fuels, or exposed to different conditions, might have on 

INPs regionally, or during exceptional events such as large biomass burning events. 

4.  Conclusions 

 

Our modelling estimates suggest that if all BC particles in the atmosphere behave as 

reported in this study, and by several other recent studies [Schill et al., 2016; Ullrich 

et al., 2017], BC is unlikely to play a substantial atmospheric role as ice-nucleating 

particles through the immersion mode. We also conclude that a representation of BC 

INPs from Murray et al. [2012], which was based on the studies of DeMott, [1990] 

and Diehl and Mitra, [1998], results in an overestimation of surface-level 

concentrations of INPs in remote and polluted environments by more than two 

orders of magnitude compared to observations. 

 

The question of whether the ice-nucleating ability of these studied BC particles is 

representative of the ice-nucleating ability of atmospheric BC particles globally at 

all times remains open, since the discrepancies between various studies cannot be 

currently explained. Furthermore, we cannot rule out that atmospheric BC particles 

could be affected by processes enhancing their ice-nucleating ability to levels that 

could make them relevant regionally or sporadically. Hence, we suggest that more 

studies to clarify the sources of discrepancies in the laboratory datasets are 

necessary to either quantify the effect of BC as INPs in the atmosphere or rule out 

its relevance completely. Specifically, experiments with contemporary techniques 

where special attention is paid to characterizing and controlling impurities need to 

be done with the specific BC types used in previous studies where soot was found to 

be an effective ice-nucleating material. Nevertheless, we recommend that the old 

parameterisations, such the reported in Murray et al. [2012], should not be used to 

describe the ice-nucleating ability of all soot in the atmosphere. Overall, the 

available evidence suggests that BC is at most, of second-order importance when 
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compared to other ice-nucleating aerosol types such as mineral dust or marine 

organics. 
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Figure 1 Transmission Electron Microscopy (TEM) images of eugenol and n-

decane soot that were generated in the laboratory for this study. Eugenol soot 

images are shown on the top plates [(A) and (B)] while the plates below [(C) and 

(D)] are n-decane soot images. The magnification of each image is labelled at the 

bottom left hand corner of the image. 
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Figure 2 (a) Fraction frozen curves of our experiments for the two different BC 

generated from eugenol and n-decane with the baseline of our experiments defined 

by the representative handling blanks (blue). (b) Upper limit of density of active 

sites that the studied BC particles can have. Other parameterizations from the 

literature are shown for comparison. The upper limit is parameterized with the 

following equation: 𝒏𝒔	(𝒄𝒎W𝟐) = 𝒆𝒙𝒑(−𝟔. 𝟔𝟎𝟖 − 𝟎. 𝟒𝟏𝟗 ⋅ 𝑻( 𝑪𝒐 )) valid in the 

temperature range -30oC to -12oC. 
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Figure 3 Ice-nucleating particles concentrations from BC particles and the 

simulated concentrations in VT17 (using feldspar and marine organic aerosols). The 

contour lines show [INP]-25 from VT17 and the colour maps show the same values 

simulated when using BC INP calculated with (a) NEW-UPL and (b) OLD.  

  



 

109  

 

 

 

 

Figure 4 Zonal mean profiles of the ratio between the number of BC ice-nucleating 

particles at local ambient temperature ([INP]ambient) and the concentrations as 

simulated in VT17 for marine organics and K-feldspar. (a) Using NEW-UPL for 

calculating BC [INP]ambient and (b) using OLD.  

 

Figure 5 Percentage of the globe surface area that would be dominated by BC 

particles at each temperature as a function of BC ns, when compared with the sum of 

INP produced from marine organics and K-feldspar (from VT17).  
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Figure 6 (a) Comparison between the simulated values of BC INPs when using 

NEW-UPL and OLD parameterization, and observed INP concentrations from 

different places in China [Yin et al., 2012] (b) Same as (a) but for the Southern 

Ocean [Bigg, 1973]. The comparison with the sum of marine organics and K-

feldspar (from VT17) is also shown for comparison in both panels.  
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Abstract  

Large biases in climate model simulations of cloud radiative properties over the 

Southern Ocean cause large errors in modelled sea-surface temperatures [Wang et 

al., 2014] and atmospheric circulation [Hwang and Frierson, 2013]. Here we 

combine cloud-resolving model simulations with new estimates of the concentration 

of ice-nucleating particles in this region to show that our simulated Southern Ocean 

clouds reflect far more radiation than predicted by global models, in agreement with 

satellite observations. Specifically, we show that the clouds which are most sensitive 

to the concentration of ice-nucleating particles are low-level mixed-phase clouds in 

the cold sectors of extra-tropical cyclones, which have previously been identified as 

a main contributor to the Southern Ocean radiation bias [Bodas-Salcedo et al., 

2014]. The very low ice-nucleating particle concentrations that prevail over the 

Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation and 

enhance cloud reflectivity. The results help explain why a strong radiation bias 

occurs mainly in this remote region away from major sources of ice-nucleating 

particles. The results present a substantial challenge to climate models to be able to 

simulate realistic ice-nucleating particle concentrations and their effects under 

specific meteorological conditions. 
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1.  Main text 

 

Comparisons between climate models and satellite observations over the Southern 

Ocean (SO) show that models generally simulate “10s” Wm-2 too little reflection of 

shortwave (SW) radiation [Trenberth and Fasullo, 2010; Bodas-Salcedo et al., 

2014]. Excess SW absorption at the surface causes an error of about 2 oK of 

warming in the SO annual mean sea surface temperature [Wang et al., 2014].  This 

error has significant consequences for the ability of models to simulate sea ice, the 

jet stream and storm track location [Ceppi et al., 2012], and it has been linked to the 

double-ITCZ problem [Hwang and Frierson, 2013]. Most of the simulated radiative 

biases are associated with low and mid-level clouds containing supercooled droplets 

and ice (mixed-phase clouds) [Williams et al., 2013; Bodas-Salcedo et al., 2014] 

which dominate cloud radiative effects over the SO [Haynes et al., 2011; Bodas-

Salcedo et al., 2016a]. 

 

Several potential causes of radiative bias over the SO have been explored in global 

models, such as the representation of aerosols (which  act as cloud condensation 

nuclei and affect droplet concentrations [McCoy et al., 2015b]); issues with the 

model boundary layer physics[Bodas-Salcedo et al., 2012]; or treatment of the 

effects of small-scale turbulence in mixed-phase conditions that can enhance the 

generation of liquid water [Korolev and Field, 2008; Furtado et al., 2015], 

increasing slightly the amount of reflected radiation. It is known that mixed-phase 

clouds are a source of large uncertainty in climate model simulations, with important 

consequences for cloud feedbacks and climate sensitivity [McCoy et al., 2015a; Tan 

et al., 2016]. Examination of mixed-phase cloud properties in high-resolution 

models show that the reflected SW radiation could be increased by 15% [Furtado 

and Field, 2017] through changes in the sub-grid distributions of relative humidity 

used for the depositional growth of ice particles and through changes in the riming 

efficiency of ice crystals. These studies managed to increase the simulated amounts 

of cloud liquid water, making the clouds more reflective, but the bias problem has 

not been solved [Tan and Storelvmo, 2016].   
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The introduction of ice in clouds leads to the depletion of supercooled liquid water 

via several microphysical pathways. Mixtures of  supercooled liquid water and ice 

are thermodynamically unstable due to the lower saturation vapour pressure of ice, 

which leads to quick ice grow at the expense of the liquid water in what is known as 

the Wegener-Bergeron-Findeisen process. The larger ice crystals then precipitate 

while collecting smaller water droplets (riming process) which additionally depletes 

the liquid in the cloud. These changes in the composition of the cloud strongly 

affects its radiative properties. The top-of-atmosphere SW flux is therefore affected 

on a global scale by the concentration of ice-nucleating particles (INPs) [DeMott et 

al., 2010; Yun and Penner, 2012; Tan et al., 2016; Sagoo and Storelvmo, 2017]. 

However, it has not been established whether INPs over the SO are quantitatively 

consistent with the behaviour and radiative properties of the specific clouds that are 

known to be associated with the model-observation bias [Bodas-Salcedo et al., 

2014]. 

 

Here we use new information about INP concentrations and properties combined 

with a high-resolution numerical weather prediction model with a state-of-the-art 

double-moment bulk microphysics scheme to explore ice formation and the impact 

on the radiative properties of cyclonic systems over the SO. The model is 

convection-permitting and should be able represent the small-scale partitioning 

between ice and liquid water, which  typically occurs over a few kilometres in mid-

latitude mixed-phase clouds [Field et al., 2004] and has to be parametrized in low-

resolution global models. We therefore reduce the effect of the sub-grid assumptions 

regarding the ice-water partitioning [Furtado and Field, 2017], which is a major 

cause of uncertainty in global models [Forbes and Ahlgrimm, 2014; Tan and 

Storelvmo, 2016].  

 

Figure 1a shows concentrations of INP over the South Atlantic simulated by a global 

aerosol model [Vergara-Temprado et al., 2017] (VT17). We define the range of 

possible INP concentrations affecting SO cyclones as the daily variability of the 

simulated concentrations in a South Atlantic transect (40-70S, 20W) (Figure 1a). 
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The simulated INP range of 2-3 orders of magnitude agrees well with measurements 

over marine regions (Figure 1a). Simulated concentrations over the remote SO are 

several orders of magnitude lower than over continental regions close to dust 

sources (Figure 1b), which is corroborated by measurements of very low ice 

concentrations in the SO region [Grosvenor et al., 2012; Chubb et al., 2013]. The 

SO INP concentrations are also a factor 5-10 lower than over the North Pacific and 

North Atlantic, which are the other main regions of the planet affected by post-

frontal mixed-phase clouds (Figure 1b). We also test several earlier 

parameterizations of INP. DeMott et al., [2010] (DM10) uses the simulated 

concentration of aerosols larger than 0.5 µm from all aerosol species apart from sea-

salt and DeMott et al., [2015] (DM15) is based on the concentration of dust 

particles. We also use a commonly used parameterization of INP based on 

temperature only [Meyers et al., 1992] (M92). Both DM10 and M92 

parameterizations have been shown to overestimate measured ambient INP 

concentrations over remote marine regions, whereas DM15 and the range of values 

given by the aerosol model (VT17) agree much better with the measurements in 

similar remote marine environments [Vergara-Temprado et al., 2017].  

 

We simulate three cyclonic cloud systems, each containing extensive regions of 

stratocumulus and cumulus mixed-phase clouds. The cyclones occurred over the 

South Atlantic during the austral summer when the largest radiative biases occur 

[Bodas-Salcedo et al., 2016a].  Two of the cloud systems (cases 1 and 2) have 

moderately cold cloud tops of around -15 oC and case 3 was chosen to have a much 

smaller supercooling, with an average cloud top temperature of around -7oC. The 

simulations were made using the UK Met Office global Unified Model with a 

horizontal grid spacing of ~25 km with an embedded ~1000 km domain with a grid-

spacing of 0.02o, or about 2.2km (Figure 2e-h), see Methods. An extra set of 

simulations was performed with a coarser grid-spacing of 7 km for a larger area to 

test the effects of the ice nucleation scheme on other parts of the cyclone (Figure 2a-

c).  Within the high-resolution domain cloud microphysics processes are simulated 

using the Cloud-AeroSol Interactive Microphysics (CASIM) scheme [Grosvenor et 

al., 2017; Miltenberger et al., 2017] which represents the mass and number 

concentration of hydrometeors (see Methods). The global model, in common with 
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most climate models [McCoy et al., 2015a], does not have a representation of INP, 

but instead calculates cloud glaciation as a function of temperature and has single-

moment microphysics [Wilson and Ballard, 1999; Walters et al., 2017]. 

 

Figures 2 and 3 show that the liquid water path (column-integrated water per unit 

area) and the reflected SW radiation of the cloud systems are strongly affected by 

the INP parameterization (Extended Data Figures 1-4 show additional results for 

cloud-top temperature, cloud droplet concentrations and cloud-top phase). However, 

changing the representation of INP has very little effect on parts of the cyclone that 

are already simulated well by the global model, such as the frontal cloud (Figure 2a-

d). In cases C1 and C2 with cold cloud-top temperatures  the domain-mean SW flux 

is simulated within -7 to +12% of the observations from the NASA Clouds and the 

Earth’s Radiant Energy System (CERES) [Kratz et al., 2014] satellite instrument  

(see Methods) when either the VT17 or DM15 parameterisation is used. The range 

of INP concentrations in VT17 results in a range of simulated SW fluxes that spans 

the observations (slightly higher (lower) when INP concentrations are assumed to be 

at the low (high) end of the VT17 range). The same is true for the simulated liquid 

water path, which is higher than observed with low INP and is about right or slightly 

low with the highest model-derived INP concentrations. In contrast, M92, which 

predicts unrealistically high INP concentrations over the SO, simulates SW fluxes 

that are 28-36% too low and liquid water paths that are a factor 7 too low.  

 

The frequency distribution of reflected SW fluxes improves greatly with the more 

realistic representations of INP (Figure 3c-e and Extended Data Figure 1). The 

correlation of the satellite-derived SW distribution with the simulated distribution 

based on the INP model is 0.8 - 0.92, but is only 0.03 for the global model and 0.03 

for the high-resolution model with the M92 parameterization. For cloud systems C1 

and C2, the M92 INP parameterisation rarely predicts regions of SW fluxes higher 

than 400 W m-2, while the model with realistic INP concentrations predicts the peak 

frequency to occur above this value, in good agreement with the measurements.  
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The cloud system with warmer cloud tops (case 3) is also poorly simulated by the 

global model (Figure 3). The low INP parameterisations simulate the frequency 

distribution of the reflected SW radiation much better than the high INP 

parameterisations (Figure 3e).  However, the absolute liquid water path (Figure 3b) 

is over-predicted by the low INP parameterisations, which might imply that we are 

missing a secondary ice production processes [Field et al., 2016] (although 

switching on and off the Hallet-Mossop process did not affect the simulated cloud 

significantly). 

 

To determine the relationship between INP concentration and cloud properties in the 

high-resolution runs, we calculated the domain-median concentrations of in-cloud 

INPs that were active at local temperatures for each simulation (Figure 4) (see 

Methods). There is a clear inverse relationship between the mean reflected SW 

radiative flux and the INP concentration; as also seen in previous studies using 

global model simulations [Yun and Penner, 2012; Tan and Storelvmo, 2016; Sagoo 

and Storelvmo, 2017]. We find this relationship to be linear with the logarithm of 

the INP concentration up to about 0.1 to 1 L-1, above which the reflected SW 

radiation drops sharply as the ice processes become efficient enough to deplete most 

of the liquid water. The slope is about 15 W m-2 per decade change in INP for the 

cold cloud cases but about 6 W m-2 per decade increase in INP for the warmer cloud.  

 

While adjustments to model microphysical processes lead to changes in cloud 

reflectance [Storelvmo et al., 2011; Tan and Storelvmo, 2016; Frey and Kay, 2017; 

Furtado and Field, 2017], such changes are likely to have broadly uniform effects in 

different global regions. Therefore model tuning will not account for important 

regional and temporal variations [McCoy et al., 2016] caused by large variations in 

INP concentrations (Figure 1b). Combining the previously computed sensitivities 

for the cloud systems simulated with the expected variability in INP concentrations 

in the SO (~ 4 orders of magnitude, Figure 1b) we estimate that INP could modulate 

the radiative properties of similar cloud systems by 24 to 60 Wm-2. Globally, the 

variability in INP concentrations is about 7 orders of magnitude. For similar clouds 

(and dependent on the incoming SW flux) INP variations could modulate the 
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radiative properties by between 42 and 105 Wm-2, although increases above 0.1L-1 

could potentially deplete most liquid water affecting strongly its radiative properties. 

We therefore argue that to accurately represent ice processes in models, cloud 

glaciation needs to be linked to realistic INP concentrations.  

 

Our results suggest that the low INP concentrations over the remote SO are a major 

factor in causing mixed-phase clouds to persist in a supercooled state for longer than 

similar clouds in high INP environments and that this is likely to be an important 

factor explaining model biases in reflected SW radiation. Effectively, our findings 

suggest that ice formation processes in global models are causing the SO clouds to 

behave as if they had higher INP concentrations than in reality. The important role 

of INP is a complicating factor for climate models, most of which do not currently 

simulate the microphysical processes required to link INPs to changes in cloud 

properties in a realistic way. Adjustments to the freezing temperature as a proxy for 

the proper representation of INP concentrations appears not to have the same effect 

on cloud properties [Bodas-Salcedo et al., 2016b; Furtado and Field, 2017] and can 

lead to unphysical relations between cloud cover and cloud glaciation temperature 

[McCoy et al., 2016]. Hence, a representation of cloud microphysical processes that 

considers the spatial and temporal differences in INP concentrations is crucial to 

correctly represent mixed-phase clouds in the present climate and the way that they 

affect past climates [Sagoo and Storelvmo, 2017]. Changes in the atmospheric INP 

concentrations due to natural or human-induced effects on aerosol emissions could 

also affect climate by modifying the properties of these clouds. 
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Figure 1. Ice-nucleating particle concentrations. a) Various parameterizations used 

in our simulations (see legend). The dataset used in Vergara-Temprado et al. (2017) 

is shown for comparison. The points are divided between marine and terrestrial 

locations.  b) Frequency distribution of daily averaged INP concentrations at an 

activation temperature of -20oC for mid-to-high latitudes for ocean regions in the 

Norther and Southern hemispheres between 850 and 600 hpa. INP concentrations 

over land (whole globe from 75oN to 75oS at the same altitudes) are also shown for 

comparison. The vertical lines show the median values of the distributions. Note that 

the INP model is subject to low biases over continental regions [Vergara-Temprado 

et al., 2017], so the actual values over land are probably higher.  
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Figure 2. Top-of-atmosphere outgoing shortwave radiation for the observed and 

simulated cloud. Results show the first cloud system C1 with different 

representations of INP. Cloud top temperatures are shown in Extended data figure 8. 

The first row shows the 0.07o grid-spacing simulations of the whole cyclone 

collocated with the satellite observations (a). The image is divided by two black 

dashed lines in 3 areas, each corresponding to a different satellite retrieval. A box in 

drawn in the satellite image to show the position of the 2.2km resolution domains 

(panels e-h). The first column corresponds to the satellite data (CERES). The second 

column corresponds shows the output of the global model and the successive 

columns are for the high-resolution runs using the M92 INP scheme and the mean 

INP values simulated from VT17. A figure with all the cases studied is given in the 

supplementary information (Figure S7). 
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Figure 3 Top-of-atmosphere outgoing shortwave radiation and cloud liquid water 

path for all studied cloud systems. (a,b) Show the domain mean value of reflected 

SW radiation (a) and LWP (b). The bottom three panels (d,e,f) show the distribution 

of low and mid-cloud reflected SW radiation fluxes for the three clouds studied 

(C1,C2,C3) for the simulations with the global model and the high-resolution 

simulations with M92 and the VT17 range of INP values. More detailed versions of 

these plots are given in Extended Data Figure 1). Model grid-boxes with a cloud top 

temperature less than -35oC and columns with a LWP less than 0.001 mm were 

removed from the calculations to exclude the effect of high clouds and cloud-free 

areas.  
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Figure 4. Relationship between cloud properties and ice-nucleating particle 

concentrations. a) Median modelled in-cloud activated INP versus LWP, (b) INP 

versus reflected SW flux. The solid-line error bars on the INP axis correspond to the 

66% confidence interval of the distribution of in-cloud activated INPs and the 

dashed line error bars correspond to the 95% interval. The colours of the points 

correspond to the different INP parameterizations and they follow the legend shown 

in Figure 3. A linear fit to the data points corresponding to each cloud is also shown 

with its corresponding coefficient of determination (R2). The linear regime ends for 

concentrations higher than about 1 to 5 L-1 so, runs with higher values were not 

included in the linear fit.  

  



 

127  

References: 

Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock (2012), The surface 
downwelling solar radiation surplus over the Southern Ocean in the met office 
model: The role of midlatitude cyclone clouds, J. Clim., 25(21), 7467–7486, 
doi:10.1175/JCLI-D-11-00702.1. 

Bodas-Salcedo, A., K. D. Williams, M. A. Ringer, I. Beau, J. N. S. Cole, J.-L. 
Dufresne, T. Koshiro, B. Stevens, Z. Wang, and T. Yokohata (2014), Origins of 
the Solar Radiation Biases over the Southern Ocean in CFMIP2 Models*, J. 
Clim., 27(1), 41–56, doi:10.1175/JCLI-D-13-00169.1. 

Bodas-Salcedo, A., T. Andrews, A. V. Karmalkar, and M. A. Ringer (2016a), Cloud 
liquid water path and radiative feedbacks over the Southern Ocean, Geophys. 
Res. Lett., 43(20), 10,938-10,946, doi:10.1002/2016GL070770. 

Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. 
Manners, P. Hyder, and S. Kato (2016b), Large contribution of supercooled 
liquid clouds to the solar radiation budget of the Southern Ocean, J. Clim., 
29(11), 4213–4228, doi:10.1175/JCLI-D-15-0564.1. 

Ceppi, P., Y. T. Hwang, D. M. W. Frierson, and D. L. Hartmann (2012), Southern 
Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud 
forcing, Geophys. Res. Lett., 39(19), 1–5, doi:10.1029/2012GL053115. 

Chubb, T. H., J. B. Jensen, S. T. Siems, and M. J. Manton (2013), In situ 
observations of supercooled liquid clouds over the Southern Ocean during the 
HIAPER Pole-to-Pole Observation campaigns, Geophys. Res. Lett., 40(19), 
5280–5285, doi:10.1002/grl.50986. 

DeMott, P. J.,  a J. Prenni, X. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy, 
M. S. Richardson, T. Eidhammer, and D. C. Rogers (2010), Predicting global 
atmospheric ice nuclei distributions and their impacts on climate., Proc. Natl. 
Acad. Sci. U. S. A., 107(25), 11217–11222, doi:10.1073/pnas.0910818107. 

DeMott, P. J. et al. (2015), Integrating laboratory and field data to quantify the 
immersion freezing ice nucleation activity of mineral dust particles, Atmos. 
Chem. Phys., 15(1), 393–409, doi:10.5194/acp-15-393-2015. 

Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. 
Kaye, E. Hirst, and R. Greenaway (2004), Simultaneous radar and aircraft 
observations of mixed-phase cloud at the 100 m scale, Q. J. R. Meteorol. Soc., 
130(600), 1877–1904, doi:10.1256/qj.03.102. 

Field, P. R. et al. (2016), Chapter 7. Secondary Ice Production - current state of the 
science and recommendations for the future, Meteorol. Monogr., 
AMSMONOGRAPHS-D-16-0014.1, doi:10.1175/AMSMONOGRAPHS-D-



 

128  

16-0014.1. 

Forbes, R. M., and M. Ahlgrimm (2014), On the Representation of High-Latitude 
Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model, Mon. 
Weather Rev., 142(9), 3425–3445, doi:10.1175/MWR-D-13-00325.1. 

Frey, W. R., and J. E. Kay (2017), The influence of extratropical cloud phase and 
amount feedbacks on climate sensitivity, Clim. Dyn., 0(0), 0, 
doi:10.1007/s00382-017-3796-5. 

Furtado, K., and P. Field (2017), The role of ice-microphysics parametrizations in 
determining the prevalence of supercooled liquid water in high-resolution 
simulations of a Southern Ocean midlatitude cyclone, J. Atmos. Sci., JAS-D-
16-0165.1, doi:10.1175/JAS-D-16-0165.1. 

Furtado, K., P. R. Field, I. A. Boutle, C. J. Morcrette, and J. M. Wilkinson (2015), A 
Physically-based, Subgrid Parametrization for the Production and Maintenance 
of Mixed-phase Clouds in a General Circulation Model, J. Atmos. Sci., 
150930161939004, doi:10.1175/JAS-D-15-0021.1. 

Grosvenor, D. P., T. W. Choularton, T. Lachlan-Cope, M. W. Gallagher, J. Crosier, 
K. N. Bower, R. S. Ladkin, and J. R. Dorsey (2012), In-situ aircraft 
observations of ice concentrations within clouds over the Antarctic Peninsula 
and Larsen Ice Shelf, Atmos. Chem. Phys., 12(23), 11275–11294, 
doi:10.5194/acp-12-11275-2012. 

Grosvenor, D. P., P. R. Field, A. A. Hill, and B. J. Shipway (2017), The relative 
importance of macrophysical and cloud albedo changes for aerosol-induced 
radiative effects in closed-cell stratocumulus: Insight from the modelling of a 
case study, Atmos. Chem. Phys., 17(8), 5155–5183, doi:10.5194/acp-17-5155-
2017. 

Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. B. Brown (2011), 
Major characteristics of Southern Ocean cloud regimes and their effects on the 
energy budget, J. Clim., 24(19), 5061–5080, doi:10.1175/2011JCLI4052.1. 

Hwang, Y.-T., and D. M. W. Frierson (2013), Link between the double-Intertropical 
Convergence Zone problem and cloud biases over the Southern Ocean., Proc. 
Natl. Acad. Sci. U. S. A., 110(13), 4935–40, doi:10.1073/pnas.1213302110. 

Korolev, A., and P. R. Field (2008), The Effect of Dynamics on Mixed-Phase 
Clouds: Theoretical Considerations, J. Atmos. Sci., 65(1), 66–86, 
doi:10.1175/2007JAS2355.1. 

Kratz, D. P., P. W. Stackhouse, S. K. Gupta, A. C. Wilber, P. Sawaengphokhai, and 
G. R. McGarragh (2014), The fast longwave and shortwave flux (FLASHFlux) 
data product: Single-scanner footprint fluxes, J. Appl. Meteorol. Climatol., 
53(4), 1059–1079, doi:10.1175/JAMC-D-13-061.1. 



 

129  

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor 
(2015a), Mixed-phase cloud physics and Southern Ocean cloud feedback in 
climate models, J. Geophys. Res. Atmos., 120, 9539–9554, 
doi:10.1002/2015JD023603.Received. 

McCoy, D. T., S. M. Burrows, R. Wood, D. P. Grosvenor, S. M. Elliott, P.-L. Ma, P. 
J. Rasch, and D. L. Hartmann (2015b), Natural aerosols explain seasonal and 
spatial patterns of Southern Ocean cloud albedo, Sci. Adv., 1(6), e1500157–
e1500157, doi:10.1126/sciadv.1500157. 

McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo (2016), On 
the relationships among cloud cover, mixed-phase partitioning, and planetary 
albedo in GCMs, J. Adv. Model. Earth Syst., 8(2), 650–668, 
doi:10.1002/2015MS000589. 

Meyers, M. P., P. J. DeMott, and W. R. Cotton (1992), New Primary Ice-Nucleation 
Parameterizations in an Explicit Cloud Model, J. Appl. Meteorol., 31(7), 708–
721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2. 

Miltenberger, A. K., P. R. Field, A. A. Hill, P. Rosenberg, B. J. Shipway, J. M. 
Wilkinson, R. Scovell, and A. M. Blyth (2017), Aerosol-cloud interactions in 
mixed-phase convective clouds. Part 1: Aerosol perturbations, Atmos. Chem. 
Phys. Discuss., (September), 1–45, doi:10.5194/acp-2017-788. 

Sagoo, N., and T. Storelvmo (2017), Testing the sensitivity of past climates to the 
indirect effects of dust, Geophys. Res. Lett., 44(11), 5807–5817, 
doi:10.1002/2017GL072584. 

Storelvmo, T., C. Hoose, and P. Eriksson (2011), Global modeling of mixed-phase 
clouds: The albedo and lifetime effects of aerosols, J. Geophys. Res., 116(D5), 
D05207, doi:10.1029/2010JD014724. 

Tan, I., and T. Storelvmo (2016), Sensitivity Study on the Influence of Cloud 
Microphysical Parameters on Mixed-Phase Cloud Thermodynamic Phase 
Partitioning in CAM5, J. Atmos. Sci., 73(2), 709–728, doi:10.1175/JAS-D-15-
0152.1. 

Tan, I., T. Storelvmo, and M. D. Zelinka (2016), Observational constraints on 
mixed-phase clouds imply higher climate sensitivity, Science (80-. )., 
352(6282), 224–227, doi:10.1126/science.aad5300. 

Trenberth, K. E., and J. T. Fasullo (2010), Simulation of Present-Day and Twenty-
First-Century Energy Budgets of the Southern Oceans, J. Clim., 23(2), 440–
454, doi:10.1175/2009JCLI3152.1. 

Vergara-Temprado, J. et al. (2017), Contribution of feldspar and marine organic 
aerosols to global ice nucleating particle concentrations, Atmos. Chem. Phys., 
17(5), 3637–3658, doi:10.5194/acp-17-3637-2017. 



 

130  

Walters, D. et al. (2017), The Met Office Unified Model Global Atmosphere 6.0/6.1 
and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10(4), 
1487–1520, doi:10.5194/gmd-10-1487-2017. 

Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso (2014), A global 
perspective on CMIP5 climate model biases, Nat. Clim. Chang., 4(3), 201–205, 
doi:10.1038/nclimate2118. 

Williams, K. D., A. Bodas-Salcedo, M. Déqué, S. Fermepin, B. Medeiros, M. 
Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson (2013), 
The Transpose-AMIP II Experiment and Its Application to the Understanding 
of Southern Ocean Cloud Biases in Climate Models, J. Clim., 26(10), 3258–
3274, doi:10.1175/JCLI-D-12-00429.1. 

Wilson, D. R., and S. P. Ballard (1999), A microphysically based precipitation 
scheme for the UK meteorological office unified model, Q. J. R. Meteorol. 
Soc., 125(557), 1607–1636, doi:10.1002/qj.49712555707. 

Yun, Y., and J. E. Penner (2012), Global model comparison of heterogeneous ice 
nucleation parameterizations in mixed phase clouds, J. Geophys. Res. Atmos., 
117(7), 1–23, doi:10.1029/2011JD016506. 

  



 

131  

Chapter 5 Conclusions 

Our understanding of the process of ice nucleation and its representation in climate 

models has several fundamental and large uncertainties. I have contributed to 

advancing knowledge of ice nucleation through the three manuscripts presented in 

this thesis. Each manuscript has worked towards improving our understanding of a 

scientific questions presented in the introduction.  

The first question related to the relative contribution of marine organic aerosols and 

K-feldspar to global ice-nucleating particle (INP) concentrations and has been 

tackled by improving the model representation of ice-nucleating particles based on 

new laboratory measurements. The second question related to the importance of 

black carbon particles to nucleate ice, which has been addressed through global 

model simulations with new estimates of the BC ice-nucleating ability. And finally, 

in relation to the third question on the role of ice-nucleating particles on radiative 

properties of Southern Ocean cyclones, I studied how the low concentrations of ice-

nucleating particles in remote marine environments affect cloud reflectivity and 

whether they can help to understand model radiative biases.  

The conclusions of this thesis are as follows: 

 

1. The relative contribution of feldspar and marine organic aerosols to 

global INP concentrations has been quantified and evaluated.   

a. The global modelling results suggest that mineral dust particles, 

whose ice-nucleating ability is considered to be dominated by 

potassium feldspar [Atkinson et al., 2013], are a dominant source of 

atmospheric ice nucleation in the mixed-phase temperature range. 

The model results are consistent with several field studies looking at 

the composition of ice-nucleating particles in the atmosphere 

[Kamphus et al., 2010; Baustian et al., 2012; Kupiszewski et al., 

2016; Schmidt et al., 2017] and previous modelling studies [Hoose et 

al., 2010; Niemand et al., 2012; Atkinson et al., 2013; Spracklen and 

Heald, 2014].Desert dust is a very efficient ice nucleator; however, 

the sporadic nature of dust plumes makes its atmospheric relevance 

as an ice-nucleating particle also very variable. On seasonal mean 
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timescales feldspar dominates the INP concentration in the Northern 

Hemisphere and several areas of the Southern Hemisphere. However, 

on a daily basis the contribution of marine organic aerosols [Wilson 

et al., 2015] to INP concentrations exceeds that of feldspar up to 30% 

of the days in the Northern Hemisphere and almost always over the 

remote marine Southern Hemisphere.  

b. The model representation of INP based of marine organics and 

feldspar produces better agreement with atmospheric observations of 

INP than some of the previously used parametrizations [Meyers et 

al., 1992; DeMott et al., 2010; Niemand et al., 2012]. Overall, the 

model can reproduce about 60% of the points from our dataset of 459 

datapoints within an order of magnitude and up to 78% within 1.5 

orders of magnitude. The agreement is much better for marine 

regions, with 80% of the measured values simulated within an order 

of magnitude. This result shows how linking ice nucleation to the 

aerosol concentrations can improve the predictive capability of 

models.  

 

c. There are two main biases found in the simulations with respect to 

measured INP concentrations. First, our model tends to produce 

concentrations in terrestrial regions at high temperatures that are a 

few orders of magnitude lower than measured. This might be 

indicative of a missing source of INP not represented in the model 

acting at temperatures higher than -15 oC. The second bias is an 

overestimation by the model at low temperatures in the North 

American region. Some possible explanations of why this bias 

appears include the effect of sulphur coatings deactivating the ice-

nucleating ability of feldspar [Augustin-Bauditz et al., 2014], the 

parameterization for the density of active sites in feldspar particles 

being too efficient at low temperatures [Niedermeier et al., 2015; 

Peckhaus et al., 2016] or uncertainties related to the removal and 

transport processes of dust particles. 
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Recommendations for future studies: 

 

a. Identifying the possible source of terrestrial high-temperature INP. Possible 

candidates include soil dust particles whose ice-nucleating ability could be 

enhanced by organic fragments attached to their surface [O’Sullivan et al., 

2016] or anthropogenic emitted aerosols such as lead particles[Cziczo et al., 

2009]. The effect that different chemical solutes can have on the ice-

nucleating ability of feldspar particles should also be considered. If any 

enhancement in the ability to nucleate ice due to anthropogenic emissions on 

nitrates could occur in the atmosphere efficiently enough to modify 

substantially the number of nucleation events, it would lead to an 

anthropogenic change in cloud properties that currently has not been 

considered or studied. 

b. Improving and constraining the microphysical processes of aerosol models is 

crucial to be able to determine more accurately the importance of the 

different aerosol species for ice nucleation. More specifically, the 

microphysical processes affecting the surface area concentration of dust 

particles in remote places is a very model-dependant quantity which is 

currently very poorly constrained. Uncertainties related to the transport, 

emissions and removal of dust particles can strongly affect the simulated size 

distribution in remote marine regions, affecting substantially the simulated 

INP concentration. Efforts towards constraining these processes and 

evaluating the dust size distributions in remote areas will help to reduce the 

uncertainties associated with simulations of INP concentrations by dust 

aerosols. 

2. The role of BC particle to nucleate ice under mixed-phase conditions 

based on various laboratory estimates of its density of active sites has 

been assessed. 

a. Several previous modelling studies concluded that BC particles are 

efficient INPs in the immersion mode based on experiments from 

DeMott [1990] and Diehl and Mitra [1998]. The efficiency at which 

BC particles were nucleating ice in these experiments has not been 

reproduced in recent studies. Our new experimental estimates suggest 
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that BC is not efficient enough to nucleate ice above the limit of 

detection of modern instruments. The upper limits of the density of 

active sites for the soot particles generated in the laboratory are much 

lower than its previously reported ns values.  

b. The BC concentrations produced by the GLOMAP model were 

compared with several campaigns from the GASSP dataset 

[Reddington et al., 2017] finding a reasonable agreement with most 

campaigns. This makes our model suitable for assessing the potential 

importance of BC particles as INP in the atmosphere.  

c. The simulated INP concentrations obtained when using previous 

estimates of the ice-nucleating ability of BC particles are several 

orders of magnitude higher than field observations. Furthermore, if 

all the BC particles in the atmosphere would have such efficiency, 

they would dominate the global INP concentrations by several orders 

of magnitude when compared with feldspar and marine organic 

aerosols. This possibility is not consistent with a number of field 

studies where dust particles have been observed to be the principal 

component for ice nucleation under mixed-phase conditions 

[Kamphus et al., 2010; Baustian et al., 2012; Kupiszewski et al., 

2016; Schmidt et al., 2017] . Hence, I conclude that assuming all BC 

particles nucleate ice with previously reported efficiencies at all times 

is unrealistic.  

d. Using new estimates of the upper limit of the density of active sites 

that BC particles can have based on laboratory studies, I estimate that 

BC does not play a major role as an INP in the atmosphere under 

mixed-phase conditions.  

e. We estimated how efficient BC particles need to be in order to 

produce higher INP concentrations than marine organic and feldspar 

aerosols. These estimates will provide future experimental studies a 

quantitative estimate of the possible importance that BC could have 

in the atmosphere if a process were discovered to make BC particles 

to nucleate ice. Currently, the most recently reported upper limits 

values of ns for BC particles are in the range where BC would not 

substantially contribute to atmospheric INP concentrations. Given the 
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complex nature of BC aerosols, we cannot neglect that some 

atmospheric processes might make BC particles to nucleate ice with 

higher efficiencies in certain occasions, which could potentially 

explain the discrepancies between the old and new laboratory 

estimates. 

 

Recommendations for future studies: 

f. Understanding the reasons for the discrepancy between the earlier 

laboratory measurements [DeMott, 1990; Diehl and Mitra, 1998] and 

the new estimates of BC ns  [Schill et al., 2016; Ullrich et al., 2017] 

is crucial to determine what caused BC particles to nucleate ice so 

efficiently in previous studies. If any experiment could show that any 

atmospherically relevant process can make BC particles to nucleate 

ice under mixed-phase cloud conditions, our estimates could provide 

a quick check of its possible atmospheric relevance. However, a more 

detailed modelling study will be needed afterwards to properly 

quantify its potential atmospheric importance.  

g. Measurements of the INP efficiency of other aerosols particles 

emitted by human activities such as lead or agricultural dust will help 

quantify and resolve the question of whether if there is any 

anthropogenic influence on the atmospheric INP concentration.  

 

3. The importance of simulating correctly the low concentrations of INP 

found in the Southern Ocean has been studied. By modelling 

extratropical cyclones, I found that using INP representations based on 

the aerosol composition of the region, the radiative properties of the 

cyclones are in much better agreement with satellite observations.  

a. Different representations of INP were tested in a high-resolution 

cloud-resolving model with a double moment representation of 

several hydrometeors. When using INP representations that account 

for the concentrations of ice-nucleating particles found in terrestrial 

environments [Meyers et al., 1992; DeMott et al., 2010], cloud 
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reflectance is closer to the values that the global model produces. 

Lower INP concentrations obtained from the global aerosol model 

(Chapter 1) significantly improve the magnitude and frequency 

distribution of cloud radiances.  

b. The main change in cloud reflected SW radiation happens on the 

low-level stratocumulus and cumulus clouds that appear in the cold 

sector of the cyclones. These clouds have been identified in previous 

studies as the main contributors to the Southern Ocean radiative bias 

[Bodas-Salcedo et al., 2016]. The frontal cloud of the cyclone, which 

is not as biased in models as the low-level cloud decks, is not 

affected by the changes in the INP concentration.  

c. A large fraction of the Southern Ocean model shortwave radiative 

bias could be caused by the fact that cloud microphysical processes in 

global climate models are essentially tuned to match the properties of 

clouds in environments with much larger concentrations of INP than 

remote marine environments. By not accounting for the regional INP 

differences, ice formation is essentially too efficient in climate 

models compared with the reality in these remote regions. This 

efficient ice formation depletes large fractions of the condensed 

liquid water and hence reduces the reflection of solar radiation.  

d. The liquid water content of the clouds in the cold sector of cyclones 

decreases linearly with the logarithm of the INP concentration. A 

similar relation is found in terms of the radiative properties of these 

clouds. This relation holds up to INP concentrations of about 1 L-1. 

At this point the liquid content is so strongly depleted that the cloud 

reflectivity decreases sharply with further increases in INP. 

e. Temporal variations in INP over the Southern Ocean could modulate 

the reflected solar radiation of similar cloud systems by between 24 

and 60 W/m2. Globally, as the variations on the INP concentration 

are much larger, the modulation of radiative properties could be 

much higher.  

f. Adjusting the glaciation temperature of clouds in  a global model to 

increase the liquid content of the clouds will likely create broadly 

uniform changes in different regions and might lead to unphysical 
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relation between different cloud parameters [McCoy et al., 2016]. 

Then, to account for the important variations created by temporally 

and spatially variable concentrations of INP, cloud glaciation should 

be linked to realistic aerosol concentrations. 

 

Recommendations for future studies: 

 

a. The limitations of this study come largely from the computational cost of 

running high-resolution simulations with a complex cloud microphysical 

scheme. These computational limitations make simulating SO clouds on a 

convective-resolving scale too expensive unless the domain is reduced to just 

a small part of a cyclone and the simulation limited to a few days. A possible 

way to overcome this problem would be to study how much the resolution 

could be decreased without significantly affecting the model results. A 

decrease of resolution will allow for much longer simulations, which are 

necessary to get a more representative view of the long-term effect of 

improving the representation of INP. However, other uncertainties such as 

the sub-grid partition between ice and liquid in mixed-phase clouds could 

potentially increase.  

 

b. The Southern Ocean is a region were INP are critical to represent the right 

cloud properties, however, different cloud systems in other regions might not 

be affected so strongly by the representation of INP. Hence, the impact of 

ice-nucleating particles on different cloud systems across the globe with 

different dynamical conditions should be studied in future.  

 

 

c. Observational, experimental and modelling studies to improve our 

fundamental understanding of secondary ice multiplication processes are 

crucial to improve the way they are simulated and determine its potential 

importance for cloud glaciation. 
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d. I have shown that different concentrations of INP can have a critical effect in 

the radiative properties of clouds when linked to a high-resolution cloud 

resolving model with double moment representation of ice particles. 

However, many global models partition cloud liquid and ice in a such a way 

that it is effectively dependant just on temperature all across the globe 

[McCoy et al., 2015, 2016]. Hence, we suggest that future work improving 

the microphysics of global models to make them able to link cloud glaciation 

to the aerosol composition is a necessary step towards our understanding of 

the role of INP in the climate system. 

 

e. The species used in this study (marine organics and K-feldspar) are aerosols 

emitted by natural processes. However, the emissions of these components in 

past epochs were substantially different to present day emissions. Studies 

looking at the past and future atmospheric loading of these aerosols will help 

estimating whether they can play a role in modulating climate through 

affecting the number of ice-nucleation events in mixed-phase clouds 

[Carslaw et al., 2017; Sagoo and Storelvmo, 2017].  
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Appendices and supporting information 

Appendix A: Marine organic emissions  

In order to represent the distribution of submicron marine organics aerosols, first we 

simulate the distribution of sea- salt aerosols (SS) with GLOMAP mode for the year 

2001. Then we look at the correlation between the monthly mean emission flux of 

sea-salt particles in the accumulation mode (100nm<r <1 µm) and the monthly mean 

surface concentration of submicron sea salt in the grid boxes corresponding to Mace 

Head and Amsterdam Island. We then take the grid boxes that score a correlation R 

>0.9 and assume that, as a first order approach, the emissions of these grid boxes 

will drive the concentrations of submicron sea spray in their corresponding stations 

(Fig. A1). Once these grid boxes are identified for every station, we calculate the 

organic mass fraction (OMF) in surface air (lowest model layer) at both stations 

with modelled concentrations of sea spray and measured concentrations of water 

insoluble organic matter (WIOM) following Eq. A1. 

 

𝑂𝑀𝐹 =
[𝑊𝐼𝑂𝑀]

[𝑆𝑆` YY] + [𝑊𝐼𝑂𝑀]
							 (𝐴1) 

The WIOM in Mace Head data is obtained from Rinaldi et al. [2013] by averaging 

measurements corresponding to a few days (from 5 to 14 days) in every month. For 

Amsterdam island, WIOM is derived from Sciare et al. [2009] using a factor of 1.9 

to convert from water insoluble organic carbon to WIOM [Burrows et al., 2013]. 

The chlorophyll a maps correspond to monthly mean values obtained from 

GLOBCOLOUR [Maritorena and Siegel, 2005], which made use of data from three 

different satellites to merge their chlorophyll a maps and produce a final product 

with an enhanced global coverage. 

 

In order to develop a parameterization of the organic mass 

fraction to be used in both hemispheres, we use the monthly mean values of the 

chlorophyll a content in the grid boxes that were previously related to each station, 

together with the monthly mean reanalysis (ECMWF) wind speed at 10m over the 

surface (U10M) of these grid boxes and relate these two variables to the organic 
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mass fraction previously calculated (Fig. A2a). We then fit the OMF to a two-

dimensional equation with the wind speed and chlorophyll a content as variables 

(Fig. A2b). This gives us a parameterization of the OMF emitted with submicron sea 

spray that can fit our model. In order to avoid unrealistic OMF values due to 

extrapolation, we limit the maximum value of our OMF to 0.85. The mass flux of 

marine organic material can then be from 

the sea-salt flux following Eq. A5: 

𝐹𝑙𝑢𝑥�£� y = 𝐹𝑙𝑢𝑥¤¤ + 𝐹𝑙𝑢𝑥¥¦§¨									(𝐴2) 

𝐹𝑙𝑢𝑥¥¦§¨ = 𝑂𝑀𝐹 ⋅ 𝐹𝑙𝑢𝑥�£� y															(𝐴3) 

𝐹𝑙𝑢𝑥�£� y =
𝐹𝑙𝑢𝑥¥¦§¨
𝑂𝑀𝐹 																												(𝐴4) 

𝐹𝑙𝑢𝑥¥¦§¨ =
𝐹𝑙𝑢𝑥¤¤ ⋅ 𝑂𝑀𝐹
1 − 𝑂𝑀𝐹 																				(𝐴5) 
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Figure A1. Linear correlation values between the monthly emission of submicron 

sea spray and their monthly concentrations in (a) Mace Head, (b) Amsterdam Island. 

The dots represent the grid boxes related to every station because they have a value 

R >0.9. 

  



 

145  

 

 

Figure A2. (a) OMF compared as a function of chlorophyll a content and surface 

wind speed for the monthly mean values in both stations. The size of the points 

represents the mean chlorophyll a content of the grid boxes related previously to 

every station (Fig. A1), the colour of the points is related to the wind speed of those 

grid boxes. Panel (b) shows the performance of the parameterization for reproducing 

the OMF calculated with the simulated concentration of submicron sea salt and the 

observed values of WIOM. The parameterization for the OMF is 𝑂𝑀𝐹 =

𝐴 × [𝐶𝐻𝐿(𝑚𝑔	𝑚W/)] + 𝐵 × [𝑈10𝑀(𝑚	𝑠WV)]D + 𝐷 with 𝐴 = 0.241, 𝐵 =

−7.503, 𝐶 = 0.075,𝐷 = 9.274. 
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Appendix B: Calculation of INP concentrations 

Assuming that the active sites from which ice nucleation can occur under the 

singular description are randomly distributed in the aerosol population, the 

probability of one particle having a certain number of active sites (k) can be 

represented by the Poisson distribution of Eq. B1. 

𝑓(𝑘, 𝜆) =
𝑒WQ𝜆1

𝑘! 					(𝐵1) 

Here, f is the probability of having k active sites in a particle and λ represents the 

expected value of active sites per particle at a certain temperature (T). We can 

calculate the probability of a particle immersed in a water droplet to freeze it (P) as 

the sum of the probabilities of having 1 or more active sites in Eq. B2: 

𝑃 = T𝑓(𝑘, 𝜆)
U

1²V

			(𝐵2) 

As the sum from k =0 to k =∞ of Eq. B1 has to be equal to 1, we can also represent 

this sum as Eq. B3: 

𝑃 =T𝑓(𝑘, 𝜆)
U

1²n

− 𝑓(0, 𝜆) = 1 − 𝑒WQ		(𝐵3) 

If we have a distribution of particles of the same size and same density of active 

sites, this probability P will be the same for all of them, and so the fraction of 

supercooled water droplets that will freeze known as fraction frozen (ff), will 

therefore be: 

𝑓𝑓 = 1 − 𝑒WQ				(𝐵4) 

We can then calculate the INP concentration as: 

[𝐼𝑁𝑃] = 𝑓𝑓 ⋅ [𝑁]					(𝐵5) 

where [N] represents the concentration of a certain type 

of aerosol. For the case in which we have a density of active sites distributed across 

the surface area of a particle depending on temperature ns (T), we can calculate λ for 

a particle of radius r as: 

𝜆(𝑟, 𝑇) = 4𝜋𝑟t ⋅ 𝑛Y(𝑇)				(𝐵6) 
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Hence: 

𝑓𝑓(𝑟, 𝑇) = 1 − 𝑒Wkl(m)⋅hi"j					(𝐵7) 

In GLOMAP mode, the size distribution of aerosols is represented in log-normal 

modes, and their probability density function (PDF) is given by: 

𝑃𝐷𝐹(𝑟) =
1

𝑟 ln(𝜎)√2𝜋
𝑒
W(qr(")Wqr	("s))

j

t qr(u)j 						(𝐵8) 

where rm is the mean radius of the mode and σ the standard deviation of the mode. 

The INP concentration is therefore the integral across all 

the possible values of r for every mode, and it will change for every temperature: 

[𝐼𝑁𝑃]`£Z³(𝑇) = [𝑁]g ^1 − 𝑒Whi"jkl(m)_
U

n

1
𝑟 ln(𝜎)√2𝜋

𝑒
W(qr(")Wqr	("s))

j

t qr(u)j 𝑑𝑟						(𝐵9) 

In our case, we consider that just the soluble modes can 

activate into water droplets, so the total INP concentration is the sum of the 

concentrations for every soluble mode. In the special case of having a value of λ 

small (λ<0.1), 

we can approximate the value of the fraction frozen (ff) using a first-order Taylor 

series centred in 0: 

𝑓𝑓 = 𝑓𝑓Q²n +
1
1
𝜕𝑓𝑓
𝜕𝜆 ´Q²n

⋅ 𝜆 + ⋯							(𝐵10) 

𝑓𝑓Q²n = 1 − 𝑒n = 0							(𝐵11) 

𝜕𝑓𝑓
𝜕𝜆 ´Q²n

= ¶−𝑒WQ ⋅ (−1)·Q²n ⋅ 𝜆 = 1 ⋅ 𝜆				(𝐵12) 

𝑓𝑓 ≈ 𝜆					(𝐵13)	 

In other words, if the number of active sites is small compared with the number of 

particles, we can approximate the number of particles having one or more actives 

sites, to the number of active sites. And the INP concentration can be calculated as 

follows: 

[𝐼𝑁𝑃](𝑇) ≈ 𝜆(𝑇) ⋅ [𝑁]			(𝐵14) 
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Appendix C: INP data set 

 

The data set used in this study is a compilation of published and unpublished data 

provided by different groups contributing to the BACCHUS data set of INPs 

(http://www. bacchus-env.eu/in/index.php). Table C1 shows a summary of the data 

sets. We note that a study from Bigg [1996] reported INP concentrations in the high 

Arctic. We could not include it in our database as the exact locations could not be 

obtained. However, we note that the range of concentrations reported by Bigg 

[1996] (from 13 to 2.9m−3 at −15oC) are close to our simulated values using feldspar 

and marine organics (from 7.4 to 0.1m−3) during the months of the campaign 

(August to October). The data sets obtained through the BACCHUS project 

database are labelled “BACCHUS” in Table C1. The data sets corresponding to 

long-term measurements in a single location were resized to account for a single 

data point at every temperature. This is done in order to avoid statistical 

overweighting of a single location or campaign. 
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Table C1. Table of the data sets used for this study (Chapter 2) 

  

Campaign Location Marine or 

Terrestrial 

Technique Data 

points 

Reference 

Bigg73 Australia Terrestrial Filter 24 [Bigg, 1973] 

CLEX East Canada Terrestrial CFDC 60 [DeMott et al., 2010] 

Yin China Terrestrial Filter 21 [Yin et al., 2012] 

ICE-L Ambient Central USA Terrestrial CFDC 31 [DeMott et al., 2010] 

Conen_JFJ Jungfraujoch Terrestrial Filter 6 BACCHUS [Conen et 

al., 2015] 

DeMott2016 Marine 

locations 

Marine Filter 44 [DeMott et al.,2016] 

Mason2016 

terrestrial 

Terrestrial 

locations 

Terrestrial Filter 15 [Mason et al., 2016] 

KAD_South_Pole South Pole Terrestrial Filter 8 BACCHUS  [Ardon-

Dryer et al., 2011] 

ICE-L CVI Central USA Terrestrial CFDC 27 [DeMott et al., 2010] 

Rosisnky Gulf of Mexico Marine Filter 5 [Rosinski et al., 1988] 

Bigg1973 Southern Ocean Marine Filter 102 [Bigg, 1973] 

Conen_chaumont Chaumont Terrestrial Filter 7 BACCHUS  [Conen et 

al., 2015] 

AMAZE-08 Amazon 

rainforest 

Terrestrial CFDC 63 [DeMott et al., 2010] 

INSPECT-I Central USA Terrestrial CFDC 13 [DeMott et al., 2010] 

Mason2016 

Marine 

Marine 

Locations 

Marine Filter 6 [Mason et al., 2016] 

KAD_Israel Jerusalem Terrestrial Filter 16 BACCHUS [Ardon-

Dryer and Levin, 2014] 

INSPECT-II Central USA Terrestrial CFDC 11 [DeMott et al., 2010] 
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Supplementary information for Chapter 3 “Is black carbon an 

unimportant ice-nucleating particle in mixed-phase clouds?” 

Soot generation and freezing experiments:  

Eugenol and n-decane soots were generated using a diffusion burner method. The eugenol 

(99 %, Alfa Aesar, UK) and n-decane (99 %, Alfa Aesar) were placed into a metal 

container. A braided cotton wick, in contact with the fuel, was used to hold the flame. The 

length of exposed wick above the container was 5 mm. The burner was placed into a glass 

chimney and a 10 Lmin-1 flow of compressed air, passed through a HEPA filter, provided a 

source of oxygen. Once the wick was lit, the resulting soot was collected at the top of the 

funnel on glass microscope slides, which were removed and replaced with fresh slides every 

30 seconds until the experiment was terminated.  

 

A drop freezing assay method was used to study the ice nucleation abilities of the soot 

produced using the Nucleation by Immersed Particles Instrument (µL-NIPI). The method 

has been described previously [Whale et al., 2014]. The soot particles were suspended in 

MilliQ ultra-pure water (18.2 MΩ.cm resistivity). To effectively disperse the soot, the 

suspensions were sonicated for 1-5 minutes, before being stirred with a teflon lined stirrer 

bar to maintain the suspension. Arrays of 1µL droplets from each soot suspension were 

pipetted onto hydrophobic glass slides (siliconised glass slides, Hampton Research) that 

were placed on an EF600 Stirling engine cryo-cooler (Grant Asymptote). The stage was 

cooled at a constant ramp rate of 1 °Cmin-1, and freezing events and their corresponding 

temperatures were recorded using optical methods. 

 

The soot suspension particle size distribution was measured using laser diffraction (Malvern 

Mastersizer 2000E). This technique is sensitive to particles with a grain size between 0.1 

and 1000 µm. The suspensions were sonicated for 5 minutes before measurements. Figure 

S1 shows the results of laser diffraction analysis for suspensions of n-decane and eugenol 

soots of different concentrations. No significant difference in particle size distribution was 

observed for soot concentrations of 10-2 and 10-3 wt. %, with ≥80 % of the surface area 

measured associated with grain sizes below 1 µm.  For soot concentrations of 10-1 wt. %, 

over 50 % of the surface area was associated with grain sizes larger than 1µm. Nucleation 
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significantly above the instrument baseline was not observed for any experiments. When 

parameterized, the results at higher concentrations will yield lower values of ns (T). 

Therefore, it is desirable to parameterize our upper limit using the highest possible 

concentration, since the maximum values of ns (T) that the soot may have can be better 

constrained. Since the highest concentration measurements (10-1 wt. %) are affected 

significantly by particle aggregation, the NEW-UPL parameterization was calculated using 

the data at 10-3 wt. %, which is an order of magnitude lower than the concentration at which 

aggregation becomes less significant. This means we are confident that no aggregation was 

happening in any of the samples, yet the concentration used allows enough resolution for 

the GLOMAP analysis, as demonstrated in Figure 4a.           

 

GLOMAP modelling and evaluation:  

We use the global tropospheric model of aerosol processes (GLOMAP) [Mann et al., 2010]  

to simulate global BC INP distribution. The model traces aerosol mass and number in 7 

lognormal modes. All particles within a mode are assumed internally mixed. The model was 

run at 2.8° x 2.8° resolution with 31 vertical levels. The simulation was done for the year 

2001 using meteorological fields diagnosed from the European Center of Medium Weather 

Forecast (ECMWF). Anthropogenic BC emissions come from the inventory of  Bond, 

[2004] and biomass burning emisions from [Van der Werf et al., 2003]. Black Carbon 

particles are emitted into the Aitken insoluble mode, and assumed internally mixed with co-

emitted organic carbon. BC particles are aged into the soluble modes via the condensation 

of SO2 and organics whereafter they are subject to nucleation scavenging via activation in 

clouds.  

 

The spatial distribution of BC mass concentration and an evaluation of the simulated BC 

concentrations with several aircraft campaigns using Single Particle Soot Photometer (SP2) 

from the GASSP database (Reddington et al., [2017]) are shown in figure S2. For references 

for the individual datasets see Table S1. 

 

The evaluation was done by interpolating every campaign datapoint on latitude, longitude, 

and height with the modelled monthly mean values. The modelled values were filtered to 

sizes within 90nm to 500nm to make the values comparable with the SP2 observational 

range. The model produces values within a factor of three from the observations for half of 

the analysed campaings and withing an order of magnitude from for 14 out of 16 campaigns 
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(87.5%) (Fig 2).  A larger variability is observed in the observed values than in the modelled 

values which is expected as we are comparing modelled values with a much lower temporal 

and spatial variability than the observations [Schutgens et al., 2016, 2017]. 

BC [𝐼𝑁𝑃]m were calculated offline using mode particle number	and BC surface area 

following the method shown in Vergara-Temprado et al., [2017]. The method integrates 

numerically the lognormal size distribution assumed in GLOMAP-mode with the fraction of 

frozen aerosol particles at each size. The final number is obtained by adding the values from 

every BC containing mode. We find that the Aitken mode contributes to more than 70% of 

the total BC INP concentration. Using internal or external mixing assumptions among the 

aerosol components for calculating BC INP does not change significantly the 

concentrations. 

The modelling of feldspar INP builds on the modelling reported by Vergara-Temprado et 

al., [2017] which is based on a two-species base representation of INP using k-feldspar and 

marine organic aerosols. The INP parameterization for K-feldspar is based on the study of 

Atkinson et al., [2013] and the marine organic parameterization on Wilson et al., [2015] 

 

 

 

 

Figure S1. Plots of particle size distributions obtained for eugenol and n-decane soot 

suspension, at (a) 10-3 wt. % and (b) 10-1 wt. %  
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Figure S2. (Top) Annual mean surface concentration of BC mass. (Bottom) 

Evaluation of BC mass concentrations with several aircraft campaigns (Table S1). 

The campaign locations are plotted in the map following the legend in the top figure. 

The variability error bars represent the 95% interval of observed and modelled 

concentrations. The variability in the model data is lower as the comparison was 

done with monthly mean values for the year 2001, so it cannot capture all the 

temporal variability of the aircraft observations. 
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Project/Campaign Reference 

ACCACIA  [Liu et al., 2015] 

A-FORCE  [Oshima et al., 2012] 

ARCPAC-2008  [Spackman et al., 2010] 

ARCTAS  [Matsui et al., 2011] 

BORTAS  [Taylor et al., 2014] 

CALNEX  [Metcalf et al., 2012] 

CAST  [Harris et al., 2017] 

COPE  [Leon et al., 2016] 

DC3  [Barth et al., 2015] 

DISCOVER-AQ  [Ryerson et al., 2013] 

EUCAARI-LONGREX  [McMeeking et al., 2010, 

2011] 

HIPPO  [Schwarz et al., 2010] 

MAMM  [O’Shea et al., 2014] 

MIRAGE  [Subramanian et al., 2010] 

SEAC4RS [Perring et al., 2017] 

TEXAQS- 2006   [Schwarz et al., 2008] 

Table S1. Information on the Single Particle Soot Photometer (SP2) datasets 

obtained from the GASSP database (Reddington et al., [2017]]) and used for model 

evaluation (Section S2). 
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Supporting information for Chapter 4: “Strong control of Southern 

Ocean cloud reflectivity by ice-nucleating particles” 

 

Model description 

 

The Unified Model (UM) (version 10.3)[Walters et al., 2017] is used in its global 

setup (GA6, N512 resolution) to provide the initial and boundary conditions for the 

high resolution regional simulations. We use two different high-resolution nests: the 

coarser domain (Fig 2 a-d) is composed of 600x600 grid-boxes with a grid-spacing 

of 0.07o (rotated grid) and the higher resolution nest (Fig. 2e-h, Fig. 3 and Fig. 4) is 

composed of 500x500 grid-boxes with a spacing of 0.02o. Both domains have a 

vertical resolution of 70 height levels quadratically spaced up to 40 km (116 meters 

grid-box height at 1km). We perform the simulations for a total of 18 h, so we can 

perform a satellite evaluation with the A-train satellites in all our simulations. To 

avoid influences from boundary effects, we eliminate the closest 100 grid boxes to 

the boundaries in all the 0.02o resolution simulations before analysing them.   

 

Cloud microphysical processes are simulated by using CASIM (Cloud AeroSol 

Interaction Microphysics)[Shipway and Hill, 2012; Grosvenor et al., 2016; 

Miltenberger et al., 2017]. It represents cloud droplets, rain, ice crystals, snow and 

graupel and uses a double moment scheme that predicts both number and mass of 

each of the hydrometeor types. The hydrometeor size distributions are represented 

by gamma function with a fixed width.  

 

An aerosol vertical profile obtained from a GLOMAP simulation [Mann et al., 

2010] is used in the model for the initial and boundary conditions. The profile is 

calculated from the mean values of the summer season in a South Atlantic transect 

(40-70oS, 20oW). It is composed of three soluble modes (Aitken, accumulation and 

coarse modes) and two insoluble modes (accumulation and coarse) that each follow 

a lognormal distribution. The two insoluble modes are used to represent the dust 

concentrations simulated by GLOMAP that are necessary to calculate INP when 
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using the DM15 parameterization. Aerosol particles are subject to horizontal and 

vertical advection, however they are not modified by the actions of cloud-feedbacks, 

so their distribution is similar to the initial profile across the entire domain. We use 

the Abdul-Razzak and Ghan, [2000] activation scheme to calculate the number of 

activated cloud droplets, which depend on the aerosol distribution and the cloud 

updraft. The model produces reasonable values of cloud droplet number 

concentrations when compared against satellite observations (see below).  

 

Autoconversion of cloud droplets to rain and droplet accretion follows 

Khairoutdinov and Kogan, [2000] and self-collection of rain is parameterized based 

on Beheng, [1994]. The mass-fall speed relation for graupel follows Locatelli and 

Hobbs, [1974] and the graupel density is set at 250 kg m-3 [Miltenberger et al., 

2017]. The mass-fall speed and mass-diameter relations used for all the 

hydrometeors are described in Miltenberger et al., [2017] The primary production of 

ice is defined by the parameterizations described in the main text (Figure 1). The 

Hallet-Mossop secondary ice production process is represented by producing 350 

ice splinters per 1 mg of rimed mass on snow or graupel at a temperature of -5°C 

and a linearly decreasing rate to zero at -2.5 and -7.5°C.  Freezing of rain drops 

follows Bigg, [1953]. Switching on and off the Hallet-Mossop process and rain 

droplet freezing did not play a substantial role in the properties of our studied 

clouds. Other processes affecting the transfer rates between hydrometers include 

vapour deposition, evaporation, sublimation, collision-coalescence and 

sedimentation. 

 

In figure 4 we calculated the distribution of INP concentrations at cloud temperature 

to estimate the concentration of INPs affecting the clouds. We do this by filtering 

out the gridboxes with a total water mass mixing ratio less than 10-6 (residual water 

amount)[Furtado and Field, 2017]. We then calculate the distribution of INPs using 

the different parameterizations in the various simulations combined with the 

temperature of the gridboxes (in-cloud INP). These values represent the INP 

concentration affecting the different cloudy grid-boxes. From the distribution of INP 
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values calculated, we then obtain the median and the 66 and 95% intervals of the 

distribution shown in figure 4. 

 

Satellite data and model evaluation 

 

The model has been evaluated with several satellite products from the A-Train  

constellation. The simulated values (output every hour) were interpolated to the time 

when the A-Train passes through the model domains. 

 

The radiative properties (outgoing shortwave and longwave radiation) were obtained 

from the NASA Clouds and the Earth’s Radiant Energy System (CERES) [Kratz et 

al., 2014] satellite instrument. Data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS Collection 6, Level 2 data) [Platnick, S., Ackerman, S., 

King, 2015] mounted on the Aqua satellite was used to compare against cloud top 

temperatures and cloud-top phase. Observed cloud liquid water path (LWP) was 

obtained from the Advanced Microwave Scanning Radiometer 2 (AMSR2) [Wentz, 

F.J., T. Meissner, C. Gentemann, K.A. Hilburn, 2014]. For simulated case C2, due to 

the small scale of the cumulus clouds composing the cloud system, a comparison 

with MODIS cloud liquid water path was used instead of AMSR2 as it provides a 

higher resolution product being able to resolve the scale of the clouds formed. We 

note that the observed subdomain mean LWP using the microwave retrieval 

(AMRS2) for this cloud is 28% lower than the MODIS estimate (0.068 mm for 

AMSR2 and 0.094 mm with MODIS). 

 

The distribution of cloud-top temperatures (CTT) for the three studied clouds are 

shown in Extended data figure 1 (top row). Overall the model creates clouds with 

similar CTT, although for C2 it seems to miss some warm clouds above 265K. 

Changing the INP parameterization does not change CTT substantially, although the 

M92 parameterization (high-INP) tends to produce higher temperature cloud tops as 

the higher nucleation events deplete the top (colder) part of the cloud. 
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The distribution of LWP has a similar behaviour as the distributions of reflected 

SW. The models with low INP representations produce distributions much closer to 

the satellite observations than the global model or the high INP representation 

(M92), which produce too few grid boxes with more than 0.1 mm LWP. 

 

The simulated longwave outgoing flux is very close to the satellite observations 

(Extended data figure 2) for all the cases studied, including the global model. 

Modifying the INP parameterization makes a very small change on the LW radiative 

properties compared with the change observed in SW (Figure 2).  

 

Cloud-top phase from the model was calculated as follows. First, we filter all the 

grid boxes with water (ice or liquid) mass mixing ratios less than 10-6 to exclude 

grid boxes with residually small amounts of water. Second, we obtain the cloud top 

height for water and ice clouds. If the top of the ice cloud is in a grid-box above the 

top of the liquid cloud we consider that column as having an ice top and conversely, 

we consider columns with a higher liquid cloud top as being liquid-topped. We 

consider as mixed-phase/uncertain cloud top phase the columns where the liquid and 

ice cloud top is in the same grid-box. The derived cloud top phase is then compared 

against the MODIS optical and infrared cloud-top products (Extended data figure 3).  

The global model and the M92 simulations produce too-little liquid phase cloud 

when compared with the satellite products. The comparison improves greatly when 

the other INP parameterizations are used, producing liquid cloud fractions that are 

much closer (or in between) the two retrieved estimates.  

 

Satellite CDNC are derived from MODIS Level-2 Collection 6 swath data using 1 

km (at nadir) resolution pixel-level values of cloud liquid effective radius, cloud 

optical depth and cloud top temperature data using the method described in 

Grosvenor and Wood, [2014], although with some differences related to the use of 

Collection 6 rather than Collection 5 data. Namely, in Collection 6 pixel level 

retrieval confidence QA flags are no longer used and also here we only examine 

pixel level data so the restrictions applied when aggregating to lower resolution are 

not necessary. Pixels were filtered to include only liquid water pixels that were 
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diagnosed as “confident cloudy” and as not being affected by any thin cirrus on top, 

nor shadowing by the MODIS algorithm. Only pixels that had an optical depth 

larger than 5 are included since biases are likely in thinner clouds [Zhang and 

Platnick, 2011; Sourdeval et al., 2016]. Furthermore, pixels were required to have a 

cloud top height (derived from the 5 km MODIS product) between 0.5 and 3.2km; 

the lower limit is imposed to remove pixels that are either low level fog, or where 

the height retrieval is erroneous, and the upper limit restricts the analysis to low 

altitude clouds that are most likely to meet the assumptions made for the derivation 

of CDNC. The maximum solar zenith angle for the swath used in this analysis was 

59o so biases due to high solar zenith angles are unlikely since these have been 

shown to begin for angles larger than 65-70o [Grosvenor and Wood, 2014].  

 

Domain-mean CDNC values in cloudy columns with low-level liquid containing 

clouds for the different simulations and the satellite derived values are shown in 

Extended data figure 4. The mean simulated values are close to the satellite values 

for the first and second clouds (C1, C2). The simulations of C3 produce values that 

are relatively lower than the satellite values. To test the importance of this bias, we 

repeated one of the simulations (C3_M92) with a higher aerosol concentration (with 

around 100 cm-3 in the accumulation mode as opposed to around 35 cm-3 used 

previously).  In this simulation, CDNC is slightly above the satellite derived 

observations, however, the radiative properties of the cloud do not change 

substantially (Extended data figure 5). 
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Extended data figure 1 Frequency distributions. (Top row) Distribution of 

frequencies of cloud-top temperatures for the three studied cloud systems derived 

from MODIS-retrieved cloud-top temperature and the model simulations with the 

different INP parameterizations. (Middle row) Same but for LWP retrieved with 

AMSR2 (MODIS for C2). (Bottom row) Same but for SW retrieved with CERES. 

The R coefficients refer to the correlation between the satellite PDF and the 

modelled values. 
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Extended data figure 2 Barplot of sub-domain averaged outgoing longwave 

radiation. Similar to Figure 2a but for LW instead of SW.  

 

 

Extended data figure 3 Cloud-top phase comparison. Runs for the clouds studied 

with the different INP representations. The satellite columns correspond to the 

MODIS infrared (IR) and optical (OP) cloud top phase product. 
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Extended data figure 4 Satellite-derived cloud droplet number concentrations 

(CDNC) and domain mean simulated CDNC. The errorbars represent 2 standard 

deviation of the distribution of satellite calculated CDNC. 

 

 

 

 

Extended data figure 5 CDNC sensitivity test. Domain-mean cloud droplet number 

concentration (left) and reflected short wave radiation (right) for the simulations 

using M92 with a high aerosol loading and the standard aerosol profile from 

GLOMAP used in all the other simulations. The satellite observations are shown for 

comparison. 
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Extended data Figure S6 Sub-domain reflected SW radiation for all the 0.02o 

resolution simulations. Each line corresponds to the each of the different cloud 

studied (C1, C2 and C3). The first column corresponds to the satellite observations 

and the following columns correspond to the global model and the 0.02o resolution 

simulations with the different INP parameterizations tested (following the naming 

previously defined in the main text)  

 

 

Extended data Figure S7 Sub-domain LWP for all the 0.02o resolution simulations. 

Same as Figure S6 but for LWP 
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Extended data Figure S8 Cloud top temperatures for one the 7km resolution 

simulations of the whole cyclone composite. The black contourlines correspond to 

the surface pressure in hpa. The cold and warm fronts are depicted with blue and red 

lines. 

 

 

 

Extended data Table 1 Time and location of the simulated clouds systems.  

  

Cloud Centre of domain Date Time A-train 
passes 

C1 58oS, 30oW 1st March 2015 16:30 UTC 
C2 59oS, 25oW 10th January 2015 16:40 UTC 
C3 52oS, 8oE 9th December 2014 13:25 UTC 
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