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Abstract 

This thesis investigates how distributed reinforcement learning-based resource 

assignment algorithms can be used to improve the performance of a cognitive 

radio system. Decision making in most wireless systems today, including most 

cognitive radio systems in development, depends purely on instantaneous 

measurement. The purpose of this work is to exploit the historical information the 

cognitive radio device has learned through the interactions with the unknown 

environment. Two system architectures have been investigated in this thesis. A 

point-to-point architecture is examined first in an open spectrum scenario. Then, 

for the first time distributed reinforcement learning-based algorithms are 

developed and examined in a novel two-hop architecture for Beyond Next 

Generation Mobile Network.  

The traditional reinforcement learning model is modified in order to be applied to 

a fully distributed cognitive radio scenario. The inherent exploration versus 

exploitation trade-off seen in reinforcement learning is examined in the context of 

cognitive radio. A two-stage algorithm is proposed to effectively control the 

exploration phase of the learning process. This is because cognitive radio users 

will cause a higher level of disturbance in the exploration phase. Efficient 

exploration algorithms like pre-partitioning and weight-driven exploration are 

proposed to enable more efficient learning process. The learning efficiency in a 

cognitive radio scenario is defined and the learning efficiency of the proposed 

schemes is investigated. Results show that the performance of the cognitive radio 

system can be significantly enhanced by utilizing distributed reinforcement 

learning since the cognitive devices are able to identify the appropriate resources 

more efficiently. 

The reinforcement learning-based ‘green’ cognitive radio approach is discussed. 

Techniques presented show how it is possible to largely eliminate the need for 

spectrum sensing, along with the associated energy consumption, by using 

reinforcement learning to develop a preferred channel set in each device. 
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Chapter 1. Introduction 

Contents 

 

1.1 Overview ........................................................................................ 15 

1.2 Purpose .......................................................................................... 17 

1.3 Communication Architectures ....................................................... 17 

1.4 Thesis Outline ................................................................................ 20 

 

1.1 Overview 

Efficient utilization of the physical radio spectrum is a fundamental issue of 

wireless communications.  The conventional licensed frequency allocations are 

overly inflexible, resulting in both spatially and temporally inefficient usage of 

radio spectrum.  According to Federal Communications Commission (FCC), 15% 

to 85% of the allocated spectrum is utilized with large temporal and geographical 

variations [1-2]. Meanwhile, the demands for wireless communication have 

increased significantly in both the number of users and the required quality of 

wireless transmission [3]. The conflict between the inefficient usage of spectrum 

and the rapid growth of wireless services calls for a more flexible and intelligent 

solution to manage such an important natural resource. Cognitive Radio (CR), a 

new paradigm of wireless communication, has been considered as a potential way 

to accomplish such an important task [2, 4-7]. By combining the abilities of 

spectrum awareness, intelligence and radio flexibility, a cognitive radio will be 

able to adapt itself to the changes in the local environment [8].  It is foreseen that 

a large amount of underutilized spectrum will be efficiently used by applying 

cognitive radio techniques.  

Early stage channel assignment schemes are largely based on Fixed Channel 

Assignment (FCA) [9-11]. FCA requires frequency plans to take place in order to 

limit the interference. The service area is divided into a number of cells and a 

subset of channels are assigned to each cell. Depending on the requirements of the 

quality of service of the network, frequency reuse patterns are developed such that 

the same subset of channels are reused at a safe distance [10]. FCA schemes are 
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more efficient in terms of handling uniform traffic. However, FCA schemes are 

not traffic adaptive. When it comes to fluctuating traffic, even though there are 

channels available in the neighbouring cells, calls are blocked due to insufficient 

channels in the current cells [9]. 

Dynamic Channel Assignment (DCA) was developed as a better solution to serve 

fluctuating traffic. In a DCA scheme, instead of having a fixed frequency plan, all 

channels are placed into a channel pool and potentially available to all the local 

users [12-13]. The channels are then assigned on a call-by-call basis. Research 

shows that DCA schemes achieve better performance when handling uneven 

traffic which varies both spatially and temporally [9]. DCA schemes can be 

divided into two categories: Centralized Dynamic Channel Assignment (CDCA) 

and Distributed Dynamic Channel Assignment (DDCA).  

In the CDCA schemes, a centralized controller assigns channels from the channel 

pool to the calls. Extensive information needs to be exchanged between the base 

station and the central controller, resulting in a large number of control overhead 

[14-17]. DDCA schemes utilize localized information to select the suitable 

channel without any communication with other base station (user) [18-19]. 

DDCA schemes normally rely on interference or Carrier-to-Interference Ratio 

measurements. DDCA schemes remove the control overhead required by the 

CDCA schemes, but the behaviour of DDCA schemes is likely to be more selfish 

than other approaches so that new activations may introduce excessive 

interference to the existing transition links [20]. Cognitive radio, a DDCA based 

technique, is likely to avoid causing such problem by utilizing more advanced 

spectrum sensing techniques and new functions like learning. One of the main 

differences between cognitive radio and conventional DDCA techniques is that 

unlike previous DDCA techniques which were designed for all users in a 

dedicated band, cognitive radio is proposed to use the spectrum licensed to other 

systems (the primary network) [4]. 
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1.2 Purpose 

The purpose of this thesis is to explore how the historical information of the 

wireless system can be utilized through reinforcement learning to improve the 

system performance. Previous DDCA schemes depended only on instantaneous 

measurement with the past experience being wasted. By exploiting learning 

techniques, such information can be used to facilitate the transmissions between 

entities. 

Although learning has normally been considered as an essential part of cognitive 

radio, no clear understanding on when, where and how learning could be applied 

to a cognitive radio system has been reached, especially in a fully distributed 

scenario [4-6, 21]. This work concentrates on how to apply reinforcement 

learning-based techniques to the channel assignment of cognitive radios and 

tackles the problems found in the process of applying reinforcement learning to 

cognitive radio.  

1.3 Communication Architectures 

This thesis examines distributed cognitive radio spectrum sharing techniques for 

two architectures: a point-to-point architecture and a dual-hop beyond next 

generation mobile network architecture [22]. An open spectrum scenario is 

considered where all users are given equal priority to use the spectrum – a 

cognitive only band where the users are purely cognitive radios [23-26].  It is 

worth investigating the system performance in a cognitive-only band since it is 

likely in the future that devices in such (‘unlicensed’) bands will become 

increasingly cognitive, enabling them to deal with interference and 

reconfiguration, allowing new more efficient techniques and solutions to be 

developed.   

 Point-to-point  

A basic transmitter-receiver pair communication system is used as illustrated 

in figure 1.1 because we try to focus on the complex and autonomous 

behaviour of cognitive radio users who constantly change their action policy 
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according to the experience gained through learning.  We believe the 

technique is widely applicable to other system models.  A certain number of 

transmitter-receiver pairs are randomly distributed in a service area and the 

locations of pairs are fixed.  The transmission range and SINR exclusion area 

[27] are all shown in this figure.  Omnidirectional antennas are applied at all 

transmitters and receivers.  The pairs are fully distributed, meaning that no 

information is directly exchanged with other pairs. 

Tx 1

Rx 4

Rx 1

Rx 2

 Rx 3

Tx 3

Tx 2

Tx 4

Transmitter

Receiver

Transmission link

Interference

Transmission range of Tx 1

SINR exclusion area of Rx 1

 

Figure 1.1 Point-to-Point Architecture 

 Dual-hop beyond next generation mobile network architecture 

In order to provide sufficient capacity density to the dense city centre area, a 

dual-hop architecture has been proposed by the FP7 Beyond Next Generation 

Mobile Broadband Project [22]. This novel dual-hop architecture is used later 

in this thesis. Reinforcement learning-based cognitive radio approaches are 

developed for the beyond next generation mobile network. The dual-hop 

architecture is shown in figure 1.2 [22]. 
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The first tier of the system is the self-backhaul network, where the Hub Base 

Station (HBS) is mounted over roof-tops. Access Base Stations (ABS) are 

connected with HBS via a Hub Subscriber Station (HSS) antenna. HBS serves 

the data streams wirelessly from or to a large number of low-cost ABSs. The 

second tier of the system is the access network, where the ABSs are placed 

under roof-top along the streets and these ABSs provide access to the Mobile 

Subscribes (MS). 

 

Figure 1.2 Beyond Next Generation Mobile Network Architecture (directly 

reproduced from [22]) 

The point-to-point architecture is applied in chapter 4, chapter 5, chapter 6, and 

chapter 7 in order to gain a deep understanding on the behaviour of learning-

based users. The much more complex dual-hop architecture is then used in 

chapter 8 to investigate further the impact of reinforcement learning on beyond 

next generation mobile systems. The research work obtained by applying these 

two types of architectures will demonstrate the applicability of the learning-based 

techniques developed in this work. 
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1.4 Thesis Outline 

The rest of this thesis is outlined as follows: 

Chapter 2 provides the background information of this work. A literature review 

that summarises papers on channel assignment techniques is given first and then 

comprehensive information of a cognitive radio system is given. After that the 

information related to reinforcement learning is provided. The intelligent channel 

assignment techniques are reviewed finally to introduce the state-of-art 

approaches relevant to this work. 

The system modelling methodology, simulation techniques, the key 

measurements for evaluating the system performance and the verification strategy 

are introduced in chapter 3. Simulation is used extensively in this work since the 

behaviour of the learning-based users is too complex to be fully analysed 

mathematically.  

Chapter 4 introduces the generic reinforcement learning model and the value 

function we developed for cognitive radio. The learning model and the value 

function are the basis of this work. The performance of the learning based 

approaches is discussed and the influence of the weighting factors is also 

discussed in this chapter. 

The trade-off between exploration and exploitation seen in reinforcement learning 

is investigated in the context of cognitive radio in chapter 5. Discussions on how 

this trade-off could practically influence the learning-based cognitive radios are 

given. A two-stage algorithm is developed to control the exploration phase, and 

how this two-stage algorithm is able to improve the system performance is also 

examined. 

The two-stage algorithm introduced in chapter 5 is then used as the basis to 

develop efficient exploration techniques in chapter 6. The exploration phase can 

only be limited rather than completely eliminated from the learning process. Thus, 

it is desirable that more efficient exploration techniques to be applied in line with 

the exploration control algorithm developed in chapter 5. Two efficient 
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exploration techniques are introduced: Pre-partitioning and Weight-driven 

exploration.  The pre-partitioning scheme randomly reserves a certain amount of 

spectrum resources for each user.  The available action space which the cognitive 

radio needs to explore is then significantly reduced, which in turn shortens the 

exploration stage significantly.  In the weight-driven exploration scheme, the 

exploitation phase is gradually moved into exploration by applying a weight-

driven probability distribution to influence action selection during exploration. 

The performance of these two approaches is compared with a commonly used 

uniform random approach in this chapter. 

Chapter 7 explores the ‘green’ aspect of the proposed learning based schemes, 

concentrating on the power consumption reduction achieved by learning. This is 

done to reduce the requirement for spectrum sharing through reinforcement 

learning. The energy consumption of the schemes introduced in chapters 4 - 6 are 

compared and discussed. 

Chapter 8 explores the possibility of applying reinforcement-based cognitive 

radio techniques to the novel dual-hop beyond next generation mobile network 

architecture. The system model and the propagation environment are very 

complex since the system is designed for dense city centre areas where a large 

number of building blocks can be found, and several types of directional antenna 

are used along with advanced MIMO techniques. 

A very detailed simulator is developed in this chapter to model the wireless 

system and its surrounding environment. Distributed reinforcement learning-

based channel assignment techniques are developed for the first time for such 

system. A single learning engine is designed to process the information for both 

hops of the wireless link simultaneously. Performance of the developed schemes 

is discussed in also chapter 8.  

In chapter 9 the ideas of taking the research work in this thesis forward are 

discussed. The main conclusions and the novel contributions of this work are 

summarized finally in chapter 10. 
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2.1 Introduction 

The purpose of this chapter is to provide the essential concepts and the 

background information related to this thesis. The concepts of Cognitive Radio 

and Reinforcement Learning are introduced first in section 2.2 and 2.3 

respectively. A brief review on Distributed Dynamic Channel Assignment 

Techniques is provided in section 2.4. After that, a comprehensive literature 

review on the state-of-art ‘intelligent’ channel assignment techniques is given in 

section 2.5. The cognitive radio related projects around the world are also 

reviewed in section 2.6. Finally, conclusions are given in section 2.7. The 

information provided in this chapter is essential in terms of understanding the 

techniques introduced later in this thesis.  

2.2 Cognitive Radio 

The assignment of spectrum to transmissions and to users is a fundamental issue 

of wireless communications.  Numerous channel assignment methods have been 

proposed for sharing the limited physical resource.  The traditional licensed 

spectrum allocation strategies employed by radio regulatory bodies is very 

restrictive and extremely inflexible, resulting in highly underutilized spectrum 

usage.  Figure 2.1 is an example of the spectrum usage in a few places in the UK 
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([28]). The temporal and geographical variations of the spectrum usage can be 

clearly seen. 

 

Figure 2.1 Spectrum Occupancy Measurements in a Rural Area (top), near 

Heathrow Airport (middle) and in Central London (bottom) (directly reproduced 

from [28]) 

The colours in figure 2.1 represent the level of channel usage, from blue (unused 

frequency) to red (heavily used frequency). It can be seen that even in central 

London, the amount of the heavily used frequency bands is still relatively small.  

The frequency bands in figure 2.1 are largely unoccupied regardless time and 

location.  

A fully dynamic spectrum access technique called Cognitive Radio which was 

first introduced in [4, 7], has been considered as a potential way to improve the 

inefficient spectrum utilization.  The inefficient usage of the existing spectrum 

can be improved through opportunistic access to the licensed bands without 

interfering with the existing users.  The definition of cognitive radio suggested by 

ITU-R [29] is: ‘a radio system employing a technology, which makes it possible to 

obtain knowledge of its operational environment, policies and internal state, to 

dynamically adjust its parameters and protocols according to the knowledge 
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obtained and to learn from the results obtained’. The fundamental objective of 

cognitive radio is to enable an efficient utilization of the wireless spectrum 

through a highly reliable approach. 

An important concept is the definition of spectrum hole. It is defined as: ‘a 

spectrum hole is a band of frequencies assigned to a primary user (licensed user), 

but, at a particular time and specific geographic location, the band is not being 

utilized by that user’ [2].  The efficient use of the spectrum will be promoted by 

exploiting the spectrum holes. If the spectrum hole is requested by primary user, 

the cognitive user will move to another spectrum hole or stay in the same band, 

changing its transmit parameters to avoid interference.  This process is illustrated 

in figure 2.1 (reproduced from [2]). 

Power

Frequency

Spectrum in Use

Dynamic

Spectrum

Access

Time
Spectrum 

Hole

 

Figure 2.2 Example of the Utilization of Spectrum holes (directly reproduced 

from [2]) 

Based on the definition of cognitive radio, two main elements can be outlined: the 

cognition part and the reconfigurability. By combining these two functions 

together, cognitive radios are able to access the spectrum in a fully dynamic way. 
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Cognition 

Cognitive capability is the most distinguishing feature of cognitive radio when 

compared with DDCA, although many schemes like IEEE 802.22 lack any form 

of intelligence, so could be alternatively considered as performing DDCA [30].  

The cognition aspect helps capture the variations of the radio environment over a 

period of time or space [5].  Spectrum awareness provides the opportunity to 

fundamentally change the way we manage the radio spectrum.  Through this 

capability, the spectrum holes will be identified and therefore the available 

spectrum and the appropriate transmitting parameters can be selected. The 

cognitive cycle which is also the task required for cognitive operation is shown in 

figure 2.3 (reproduced from [2]).  We can see three main elements in this figure: 

spectrum sensing, spectrum analysis and spectrum decision. These functions are 

the basis of the on-line interaction between cognitive radio and the unpredictable 

environment.  The details of the functions are as follows [2, 6]: 

 Spectrum sensing: Cognitive radio scans the available spectrum, 

estimating the interference level of it. 

 

 Spectrum analysis: Based on the information provided by spectrum 

sensing, cognitive radio will estimate the channel state and the channel 

capacity. 

 

 Spectrum decision: The decision-making part is the main research area in 

this thesis.  According to the previous information provided by spectrum 

sensing and spectrum analysis, cognitive radio needs to determine not 

only which available channel to use but also the transmission parameters, 

e.g. the transmission mode, the data rate and transmission power etc [5]. 

 

After the above 3 steps, cognitive radio will have enough information to adjust its 

operating parameters to perform the communication.  The cognition part is the 

intelligence intensive part of cognitive radio where different intelligent techniques 

are applied, including reasoning and learning. The decisions made by individual 
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users will change the environment and other users will adapt themselves to these 

changes by going through the 3 steps repeatedly. 

 

Figure 2.3 Basic Cognitive Cycle (directly reproduced from [2]) 

Reconfiguration 

Another important feature of cognitive radio is the capability of adaption [4, 8].  

Cognitive radio will adapt its internal states to the variations of the wireless 

environment by adjusting certain operating parameters.  There are a few basic 

operating parameters that can be reconfigured by cognitive radio: 

 Carrier frequency: The capability of adjusting the carrier frequency is a 

fundamental function of cognitive radio.  If the current spectrum hole in 

use is no longer suitable, the cognitive radio needs to move to the most 

appropriate frequency band according to the spectrum decision made by it. 

 

 Transmission power: Dynamic transmission power control can also be 

performed in cognitive radio scenario.  The appropriate transmission 
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power level will be applied to decrease the interference and allow more 

users sharing the same spectrum. 

 

 Modulation: The modulation scheme is also reconfigurable.  By realizing 

the characteristics of the targeting spectrum and the environment, 

cognitive radio is able to select the most suitable modulation to perform 

the communication. 

Cognitive radio will operate in a very complex heterogeneous scenario.  The 

online adaptation of the operating parameters provides the basis for cognitive 

radio to dynamically interact with the environment.  By dynamically exploiting 

the spectrum holes, cognitive radio is able to use spectrum efficiently.   

2.3 Reinforcement Learning 

2.3.1 Machine Learning 

Machine learning is a field that is concerned with the design and development of 

algorithms and techniques that allow agents automatically improve with 

experience [31-32].  It is a multidisciplinary field that draws on results from 

artificial intelligence, probability theory and statistics, computational complexity 

theory, control theory, information theory, etc.  It is largely applied to the area of 

natural language processing, syntactic pattern recognition, search engines, 

medical diagnosis, bioinformatics, brain-machine interfaces and cheminformatics, 

speech and handwriting recognition, object recognition in computer vision, game 

playing and robot locomotion. 

A general definition of a learning problem can be given as [31]: ‘A agent is said 

to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with 

experience E.  A well defined learning problem will have 3 essential elements: a 

class of tasks, the measure of the improving performance and the source of 

experience. 
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We consider x1,x2,x3…xt…, is the sequence of input received by the learning agent, 

where xt is the input at time t, then three main kinds of machine learning can be 

distinguished [31-32]: 

 Supervised learning: Besides input, a sequence of desired outputs y1, 

y2, …yt… is also given to the agent.  The objective of learning is to derive 

a function that maps inputs to desired outputs.  In other words, the agent 

needs to predict the correct output given a new input.  

 

 Unsupervised learning [33]: Agents receive the inputs x1,x2,x3…xt…, but 

without any supervised target outputs or any rewards.  It is closely related 

to the problem of density estimation in statistics.  Unsupervised learning is 

designed to find patterns in the data without any kind of feedback. 

 

 Reinforcement learning [34]: Agents interact with an unpredictable 

environment by selecting different actions and receiving rewards 

accordingly.  The goal is to maximize the long-term rewards which it will 

receive in the future. 

2.3.2 Reinforcement Learning 

Reinforcement learning, a sub-area of machine learning, uses a mathematical way 

to evaluate the success level of actions [34-35].  Its emphasis on individual 

learning from the direct interactions with the environment makes it perfectly 

suited to distributed cognitive radio scenarios. Reinforcement learning has been 

considered as the most suitable learning approach for cognitive radio systems in 

this work. There are mainly two reasons: 

1. Reinforcement learning is an individual learning approach where the 

learning agent learns only on local observations. This is perfectly suited to 

cognitive radios who also work on a fully distributed fashion. 

2. Reinforcement learning learns on a trial-and-error basis that no 

environment model is required. This is also perfectly suited to cognitive 
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radio systems which constantly interact with an ‘unknown’ radio 

environment on a trial-and-error basis. 

The original reinforcement learning model [35] where agents are interacting with 

the environment as illustrated in figure 2.4 consists of: 

1. a set of possible states, represented by S; 

2. a set of actions, A; 

3. a set of numerical rewards R; 

 

Figure 2.4 Standard Reinforcement Learning Model (directly reproduced from 

[34]) 

The learner is called the agent.  The outside world which it interacts with is called 

the environment.  At each time step t, the agent perceives the state of its 

surrounding environment, stS.  Based on st, the agent chooses an action, atA(st), 

where A(st) is the set of available actions at time t.  At the next time step t+1, the 

environment makes a transition to a new state st+1 and the agent receives a reward 

rt.  The objective is to develop an optimal policy : S A that can maximize the 

reward at state S.  Given a state s and a policy , the selection of a specific action 

is denoted as a = (s). 

In the standard reinforcement learning algorithm, the value of the current state s 

under a policy  which is denoted by V

(s) is the basis to choose the action A(s).  

An optimal policy is supposed to maximize V

(s) at each trial.  V


(s) is formally 

defined as [34-35]: 
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Where E is the expectation operator,  is a discount factor (0 <  < 1). r(s, (s)) is 

the immediate reward if the agent chooses action a = (s) given a state s.  

Equation (2-1) can also be written as: 

  )'())(,'())(,()(
'

sVsssPssRsV
s

     (2-2) 

Where R(s, (s))=E{r(s, (s))} is the mean value of r(s, (s)).  s’ stands for the 

goal states which s will transit to by taking the action (s).  Given that there may 

be multiple successor states s’, the probability P(s’|s,(s)) defines the probability 

of making a transition from state s to different successor states. 

The optimal value function V


(s) under the optimal policy 

 can be defined as: 
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Based on the optimal value function V


(s), the optimal policy 

 is specified as: 
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R(s, (s)) is effectively the cumulative reward in the state of s.  The other part of 

the equation is the expected feedback of its successor states s’. 

2.4 Traditional Distributed Dynamic Channel Assignment 

Techniques 

This work primarily investigates the application of distributed reinforcement 

learning to cognitive radio spectrum sharing. It can be considered as an extension 

of previous Distributed Dynamic Channel Assignment (DDCA) schemes since 

cognitive radio itself is a DDCA based technique. Thus, previous DDCA schemes 

are briefly reviewed in this section. It is worth mentioning that most of these 

DDCA schemes do apply a listen-before-talk style strategy which is quite similar 

to the spectrum awareness function of cognitive radio. Interference and SINR 

measurements are measured at entities that the channels are assigned based on 

these measurements.  
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Early stage research on DDCA can be traced back to the 1980s. In 1989, 

Åkerberg proposed to apply an interference threshold to determine whether a 

channel is available [36]. A Least Interference Channel (LIC) assignment scheme 

is investigated in this paper, and the Grade of Service (GoS) performance has 

been compared with Non-LIC schemes under different interference threshold 

settings. The results in this paper show that a tighter interference threshold always 

guarantees a better GoS performance when using different propagation models. 

This is because call dropping has been considered much more important than call 

blocking here. In fact, the GoS in this paper has been defined as the blocking 

probability plus 10 times of the dropping probability. Thus, a tighter interference 

threshold achieves a better call dropping-dominated GoS in all cases. However, if 

a different way of defining GoS is applied, for example a call blocking-dominated 

GoS, the conclusion could be very different. The results in [37] prove this 

argument by investigating a similar algorithm with a different performance 

measurement. The performance of the proposed algorithm has been compared 

with the MAXAVAIL DCA scheme [12]. It shows that LIC with no interference 

threshold performs the best. 

In [38], the authors proposed a Local Autonomous Dynamic Channel Allocation 

(LADCA) with power control. Call blocking and call dropping are considered 

equally important when assessing the performance. The results in this paper show 

that distributed channel assignment and distributed power control can be 

combined, providing improved system performance. It can also be seen that 

nearly all unsuccessful calls are dropped calls that the capacity is limited largely 

by call dropping rather than call blocking. 

Two CIR-based DDCA schemes are examined in [39], First Available (FA) and 

Best Quality (BQ). Instead of measuring interference level on the channels, these 

two schemes directly use CIR measurements as the basis to assign channels. The 

FA scheme chooses the first channel in a pre-defined list that satisfies the CIR 

requirement. The BQ scheme takes the channel with the highest CIR. The paper 

shows that the FA scheme is able to achieve a near-optimum performance by 

allowing call reassignment when the CIR of existing calls fall below a CIR 

threshold. Law extended the work in [40] by comparing the performance of the 
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FA scheme with a LIC scheme in the context of Digital European Cordless 

Telecommunications (DECT) environment. The outage probability for a desired 

Quality of Service (QoS) is defined in this paper as a measurement of system 

performance. The results show that the LIC scheme performs better when 

applying different interference thresholds. 

The widely cited paper by Chuang [41] on the subject of DDCA proposed 

individually scheduled frequency-updating events at fixed facilities (base station/ 

radio ports). A port receiver turns off its transmitter and scans all available 

channels after receiving a call request. Then the least interference channel is 

assigned to the call. This perhaps is one of the early models of spectrum sensing. 

As a result, a self-organizing frequency assignment is achieved that optimal 

frequency reuse patterns could be reached after the system converges to a stable 

point despite unknown factors like random port location and shadowing. The 

performance of the approach has been compared with a random assignment 

scheme and a pre-planned assignment scheme. It shows that the least interference 

algorithm performs significantly better than the random assignment. More 

importantly the proposed scheme achieves a performance similar to the optimal 

pre-planned assignment approach. 

In 1993, Chuang published another paper that investigates DDCA in the context 

of TDMA portable radio system [42]. A DDCA scheme has been proposed which 

aims to achieve a balanced uplink and downlink CIR by considering the best 

available action for both sides of the transmission link. A sophisticated process 

has been defined in order to identify such channels. The results show that the 

proposed scheme outperforms the approaches which only concern either the base 

station or the portable device. 

The upper and lower bounds of the capacity of DDCA schemes are been 

investigated using analytical models [15]. In [43], interference based DDCA 

schemes have been studied. The upper bound and lower bound of the probability 

of unsuccessful calls are derived. It shows that the performance of the DDCA 

schemes could be better than FCA schemes. In [44], Whitehead provided the 

estimations of the capacity gain of DDCA algorithms. Geometric analysis of 
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interference adaptation has been taking into account when analysing the trucking-

efficiency. The results show that DDCA with integral interference-balancing 

power control can almost eliminate the variance of CIR, providing a capacity gain 

of 3. The advantages of DDCA schemes are clear that it provides similar 

performance comparing to FCA, however it removes the requirements of 

frequency planning. A pictorial model has been introduced in [20] to explain how 

call dropping happens when the devices are in a vulnerable region. Different 

factors that could affect DDCA schemes are also discussed in this paper. The 

proposed scheme is able to reduce call dropping significantly by pairing calls and 

measuring interference levels at both sides of the transmission link. 

A large number of DDCA schemes have been developed in the last few decades. 

Most of these schemes are interference or CIR based. The schemes we have 

reviewed in this section are some of the most classic work in the area which 

should provide a clear idea on how DDCA works. A more comprehensive review 

on the more relevant intelligence-based channel assignment schemes are provided 

later. 

2.5 Intelligent Channel Assignment Techniques 

2.5.1 Reinforcement Learning-based Schemes 

Reinforcement learning-based channel assignment can be generally categorized 

into centralised algorithms where channels are assigned at a centralized server, 

and distributed algorithms where spectrum decisions are made by individual users. 

Research work in the field largely focused on centralised scenarios prior to the 

introduction of cognitive radio. Distributed learning-based algorithms draw more 

attention after cognitive radio has been introduced since cognitive radio works in 

a distributed fashion [21, 45-46].  However, it is more difficult to define the 

learning model in this scenario since entities are fully distributed and decisions 

are made only according to the local measurements. It is unlikely for a cognitive 

radio to obtain the information at the network level. Thus, the state of the system 

is more difficult to be defined and the state transition is not directly derivable. 

More details are given in the following sections [47]. 
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2.5.1.1 Reinforcement Learning-based Schemes prior to Cognitive Radio 

Q-learning [31], a reinforcement learning approach, has been frequently studied 

in centralized scenarios where the system information is available at the network 

level. Centralized learning-based channel assignment has been well studied for 

cellular networks in the last decade.  The states s and s’ are easier to be defined in 

this case because system level information is widely available in the centralized 

system.  

Applications 

The centralized Q-learning based dynamic channel assignment proposed by 

Junhong Nie and Simon Haykin [48] is the most widely cited work in this area. 

Q-learning has been applied to a cellular system that the channels are assigned on 

a call by call basis by utilizing the information gained through learning. Instead of 

fixed frequency planning, the learning based system is able to obtain an optimal 

channel assignment policy through the interaction with the wireless environment. 

The system states are defined based on the channel availability information in 

different cells of the system. An action (assign a channel) will be chosen at 

different system states based on the Q-values of actions. The Q-values will be 

updated when the reward/cost is available. Extensive simulation results are 

provided in the paper that the Q-learning based approach has been compared with 

a Fixed Channel Assignment (FCA) scheme and one of the best performance 

Dynamic Channel Assignment (DCA) schemes MAXAVAIL [12] in a 49 cell 

mobile communication system scenario. It shown that the Q-learning based DCA 

algorithm performs better than the FCA in different traffic conditions, including 

spatially uniform and non-uniform traffic and time varying traffic. The Q-learning 

based DCA also achieves a similar performance with MAXAVAIL, however the 

computational complexity has been greatly reduced by using Q-learning. 

In [49], Senouci and Pujoile extended the work of Nie and Haykin that they 

consider not only the channel assignment but also the call admission control for 

mobile netwok. Two classes of traffic are assumed in their work. The main 

contribution of this paper is that the traffic condition (number of calls each cell) 
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has been considered when defining system state along with the channel 

availability information. Call rejection has also been considered when updating 

the Q-values of channels that previous research only concerns channel assignment 

problem. The results show that the Q-learning based approach is able to achieve 

an optimal policy in a real-time system. Compared with other DCA schemes, the 

Q-learning based scheme performs better when dealing with significant variations 

of the environment. The self-adaptive feature of learning-based algorithms is seen 

as one of the most important advantages of such algorithm.  

2.5.1.2 Reinforcement Learning-Based Cognitive Radio Schemes 

There are typically three main steps in the learning-based cognitive radio schemes 

as illustrated in figure 2.5: Frequency Awareness, Frequency Resource 

Management, and Action [50].  An intelligent frequency decision making process 

is enabled through learning and reasoning.  The reinforcement learning-based 

learning engine enhances the ability of cognitive radio device to select the 

appropriate spectral resources by exploiting the historical information kept in the 

knowledge base.  
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Figure 2.5 Cognitive Radio based Radio Resource Management 

The learning engine processes external observations, e.g. interference and 

spectrum holes at first, and then combines such information with the historical 

information of successful or unsuccessful channel usage.  This updated 
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knowledge base will be used by the reasoning engine to make a decision on which 

resource to use in order to maximise the probability of success.  After that, the 

operating cognitive radio user will adjust its transmission parameters according to 

the decision made by the frequency resource management function, and the 

transmission is carried out eventually.   

Applications 

The authors of [51] considers a Q-learning based approach which gives rewards 

to the cognitive radio users after each data transmission. The Primary User’s (PU) 

channel usage is assumed to be uniformly distributed on available channels. The 

state in the learning model has been defined by the number of neighbouring nodes. 

Data packet transmission is successful when an acknowledgment has been 

received, otherwise the transmission is unsuccessful.  For each successful data 

packet transmission, a positive constant value of RW is awarded, otherwise a 

negative value CT is assigned. In practice, the value of the RW and CT are based 

on the amount of revenue and cost that a network operator earns or incurs for each 

successful or unsuccessful data packet transmission. It shows that the Q-learning 

based approach is able to increase the throughput typically by 2.84 times. 

However, it is worth mentioning that only one single user reinforcement learning 

based secondary user (SU) is assumed in this paper, meaning that other entities 

are using non-learning based channel assignment scheme. The system model and 

the learning model have been significantly simplified in this case. Later in [52-53], 

Yau and other authors extended the study to a multi-agent reinforcement learning 

scenario where more learning-based entities are operating. A Carrier Sense 

Multiple Access (CSMA) based system is assumed that the Q-values are updated 

after every packet transmission. The learning model in this paper requires the 

location information of entities at the system level in order to define the states of 

the system. It is shown that by enabling multi-agent Q-learning, the performance 

can be further enhanced. However, it is not clear how many system overheads and 

computational tasks will occur for updating and exchanging the required user 

location information. 
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A theoretical study has been carried out by Husheng Li in [54]. The author has 

made many assumptions in the paper in order to carry out the theoretical analysis. 

Multi-agent Q-learning has been assumed in a simple 2 SU x 2 Channel case. No 

PU is assumed. It is assumed that all of these two channels are available all the 

time, meaning that the only task for the two SUs is to avoid interfering with each 

other. In addition, spectrum sensing is ignored in the paper that the SU will not 

sense the channel before transmission. Although the results in the paper show that 

the algorithm converges to an equilibrium and the SUs learn to avoid collision 

quickly, the overly simplified system model makes the theoretical analysis similar 

to the cases which are well studied in Computer Science research. The wireless 

communication aspect of the research has almost been ignored. 

Multi-agent reinforcement learning for cognitive radio has been studied in a more 

realistic scenario in [55]. A Q-learning based joint channel and power allocation 

scheme has been proposed. The state of the system has been defined by using the 

transmit power level and the channel utilization information of all users. Again 

this requires system level information that a large amount of system overhead 

information could be generated. There is no discussion in the paper on the costs of 

introducing such Q-learning based approach. It shows that the Q-learning based 

approach performs better than a random assignment approach. 

A secondary cognitive radio system model based on IEEE 802.22 standard is 

considered in [56], where Q-learning based techniques is applied to learn how to 

control the transmit power in order to reduce the aggregated interference at PUs 

receivers. The learning model requires local information as well as network 

information to define the states of the system. It shows that the Q-learning 

approach is able to learn an optimal action policy to maintain the aggregated 

interference in the primary user network under a desired value. 
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2.5.2 Game Theory-based Cognitive Channel Assignment 

Game Theory has originally been proposed by the mathematician John von 

Neumann to study human behaviour [57]. It is an interdisciplinary research area 

where mathematics and social and behavioural sciences are brought together. 

Game theory has been considered as an analytical tool which is widely used in 

different areas including finance, computer science and engineering, etc [58]. 

Applications 

Game Theory is one of the tools that more and more researchers in this field try to 

apply to radio resource management. More flexible, efficient, and fair spectrum 

usage are been achieved by game theoretical dynamic channel assignment 

techniques where the behaviours of network users can be analyzed by Game 

Theory [59-60]. 

Significant work has been done by James Neel in applying Game Theory to the 

radio resource management of cognitive radio systems [61-64]. The convergence 

of the proposed approaches towards the Nash Equilibrium (NE) of the games has 

been studied extensively in their work.  

In [65-66], Mangold formulated the game by using the information of Quality of 

Service (QoS) and data rate. The coexistence of Wireless LAN (IEEE 802.11) 

access points has been investigated in the context of game theory. The 

improvement gained by applying Game Theory can be clearly seen in his work. 

Nie and Comaniciou have also proposed a game theoretic framework for 

distributed adaptive channel allocation of cognitive radio [67].  Two objective 

functions are proposed for the spectrum sharing games, capturing the behaviour 

of both selfish users and cooperative users.  It shows that the non-cooperative 

games have the advantage of a low overhead requirement for information 

exchange. The cooperative spectrum sharing etiquette improves the overall 

system performance with a higher level of requirement for information exchange. 
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2.5.3 Genetic Algorithms 

A Genetic Algorithm is an optimization technique that uses a number of bio-

inspired evolutionary concepts, like inheritance, selection, mutation and crossover.  

The aim is to find a solution to an optimization problem [68].  A random solution 

is usually generated at the beginning of optimization.  Then at each generation, 

the fitness of the solution is evaluated by a predefined fitness function, and the 

solution will be modified accordingly.  The algorithm is terminated when a 

satisfactory fitness level is achieved or a maximum number of generations are 

reached. 

Applications 

A Genetic Algorithm can also be applied to distributed optimization problems.  A 

genetic algorithm based frequency allocation approach for distributed cognitive 

radio networks is proposed by Si Chen and Alexander M. Wyglinski in [69]. A 

fitness function is developed to intelligently allocate frequency bands for 

subcarriers in a Non-Contiguous Orthogonal Frequency Division Multiplexing 

(NC-OFDM) system. Four system parameters are selected to be optimized by the 

proposed approach, normalized transmission power, modulation index, center 

frequency and bandwidth.  Simulation shows that the proposed Genetic Algorithm 

is able to simultaneously minimize the bit error rate and the out-of-band 

interference, while maximizing the overall throughput. 

2.6 Cognitive Radio-related Projects and Research 

Cognitive radio has been an emerging research area recently. There has been a 

rapid growth on the cognitive radio related activities worldwide in the last few 

years. A large number of cognitive radio-related research projects have been 

funded globally [70]. Europe, North America and East Asia are the most active 

areas in terms of cognitive radio research. Many aspects of cognitive radio 

communications have been investigated. Energy efficiency, spectrum efficiency, 

QoS and the self-organising features of cognitive radio systems are the most 

popular topics in the field. However, the main limitation of the current state-of-art 

research is the hardware implementation. Most of the research outcomes are 
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demonstrated theoretically and only a few of the projects have successfully 

demonstrated their achievements through real hardware implementations.  

2.6.1 European Projects 

1. Beyond Next Generation Mobile Broadband 

The Beyond Next Generation Mobile Broadband (BuNGee) Project [71] 

started in January 2010 and will finish in June 2012. It aims to increase the 

mobile network capacity density to well beyond what the current next-

generation techniques promise, employing a novel two-hop wireless 

system with new square or cross shaped cells. A multi-beam directional 

antenna, network MIMO, and cognitive radio based radio resource 

management techniques have all been investigated in order to deliver the 

demanded 1 Gbps/km
2
 capacity density. The project involves 9 partners 

including University of York. It is funded by the European Union as part 

of the European Union’s Framework 7. The work in this thesis has directly 

contributed to the BuNGee project. 

 

2. End-to-End Reconfigurability (E
2
R,E

2
RII), and End-to-End 

Efficiency (E
3
) 

The E
2
R and E

2
RII Project [72] aimed to develop prototype of 

reconfigurable devices, offering extensive options to regulators, operators, 

and users in the context of heterogeneous system. 

 

The E
3
 Project [73] has investigated the integration of cognitive wireless 

systems with Beyond 3G systems, ensuring interoperability, flexibility and 

scalability between existing legacy and future wireless systems. 

 

These projects started in January 2004 and finished in December 2009. 

E
2
R was funded under the 6

th
 Framework Programme (FP6). E

2
RII and E

3
 

were funded under the 7
th

 Framework Programme (FP7). The coordinators 

were Motorala and Alcatel-Lucent. 
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3. Quality of Service and Mobility Driven Cognitive Radio Systems 

(QoSMOS) 

The ongoing 3-year FP7 QoSMOS project [74] started in January 2010. 

The project aims to enable ‘the utilization of licensed and unlicensed 

bands for mobile broadband systems by integrating a cognitive radio 

framework’. Opportunistic use of under-utilized spectrum bands is 

investigated with managed Quality of Service (QoS) and seamless 

mobility. 

 

4. Cognitive Radio Systems for Efficient Sharing of TV White Spaces in 

European Context (COGEU) 

Different from many technology-oriented research projects in the area, the 

FP7 COGEU project [75] carries out research in policy, business and 

technical domains. The main objective is to enable an efficient utilization 

of unused TV white space for mobile networks by introducing secondary 

spectrum trading and new spectrum commons regime. This project will 

also define new methodologies for TV White Space equipment 

certification and compliance addressing coexistence with the DVB-T/H 

European standard. The technical aspect of this project aims to develop 

cognitive radio based techniques to support mobile applications in TV 

White Space. 

 

5. Cognitive Radio and Cooperation Strategies for Power Saving in 

Multi-Standard Wireless Device (C2POWER) 

The power consumption of mobile devices is ever-increasing. Under the 

coordination of Instituto de Telecomunivacoes, the 3-year FP7 C2POWER 

project [76] aims to develop energy saving technologies for mobile 

systems by investigating the combination of cognitive radio and 

cooperative strategies. The desired energy saving will be achieved without 

compromising any of the existing performance requirements, i.e. data rate 

and QoS requirements. This project primarily concerns with two topics 

‘Cooperative power saving strategies between neighbouring nodes using 

low power short range communications’ and ‘Cognitive handover 



CHAPTER 2 LITERATURE REVIEW 42 

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

mechanisms to select the Radio Access Technology which has the lowest 

energy demand in heterogeneous environments’. 

6. Spectrum and Energy Efficiency through Multi-band Cognitive Radio 

(SACRA) 

The FP7 SACRA project’s main objective is to develop a multi-band 

cognitive radio technology, achieving significant spectrum and energy 

efficiency improvement [77]. There are few aspects the project will 

investigate: 

 Spectrum efficiency achieved by multi-band cognitive radio 

 The minimization of electronic component number in wireless 

systems 

 The energy optimization achieved by optimizing architecture and 

algorithms implementation 

 The minimization of environmental interference by better 

assignment of frequency band 

The project aims to, by the end of 2012, develop a proof-of –concept able 

to ‘communicate jointly and cognitively in two separate frequency bands’. 

The targeted two separate frequency bands are 790-862 MHz and 2.6 GHz. 

7.  Quantitative Assessment of Secondary Spectrum Access (QUAZAR) 

Cognitive radio aims to significantly improve the spectrum efficiency by 

exploiting the under-utilized spectrum even if the cognitive radio devices 

are not authorised to do so. However, very limited research has been 

carried out to demonstrate that the large improvements to spectrum 

efficiency could be achieved. The FP7 QUAZAR project [78] aims to fill 

the gap by investigating the practical benefits of secondary access to 

primary spectrum. The impact of secondary users on primary users will be 

evaluated. The project will provide a roadmap and guidelines on new 

business models and initiate proposals to go beyond the current regulatory 

framework by the end of 2012. 
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8. Opportunistic Networks and Cognitive Management Systems for 

Efficient Application Provision in the Future Internet (OneFIT) 

The FP7 OneFIT project [79] aims to develop and validate opportunistic 

networks that are managed by advanced cognitive radio systems, enabling 

improved service for future internet. Opportunistic networks, cognitive 

management systems are two key aspects that the OneFIT project will 

primarily look into. The project started in 01/2010, and it finishes in 

12/2011. There are 12 partners in total. The University of Piraeus 

Research Center is the project coordinator. 

 

9. Sensor Network for Dynamic and Cognitive Radio Access 

(SENDORA) 

The main achievement of the FP7 SENDORA project [80] (from 01/2008 

to 12/2010) is novel sensor network based techniques that support the 

coexistence of both licensed and unlicensed wireless users in a local area. 

The project investigated a wide range of topics including the identification 

and analysis of the business models of the wireless sensor network aided 

cognitive radio techniques, wireless sensor network aided dynamic 

resource allocation for cognitive radio and the design of a flexible and 

reconfigurable architecture. The achievement of the project is expected to 

contribute to future research in the related area and future network 

standards. 

10. Physical Layer for Dynamic Spectrum Access and Cognitive Radio 

(PHYDYAS) 

The main objective of the FP7 PHYDYAS project [81] (01/2008 – 

12/2010) was to develop advanced physical layer techniques that suitable 

for dynamic spectrum management and cognitive radio. A filter bank-

based multicarrier technique has been investigated by PHYDYAS in the 

context of cognitive radio. The outcomes of the project show that the 

performance and the flexibility of systems are enhanced by exploring the 

spectral efficiency of filter banks and the independence of sub-channels. 
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11. Flexible and Spectrum-Aware Radio Access through Measurements 

and Modelling in Cognitive Radio Systems (FARAMIR) 

The on-going FP7 FARAMIR project [82] aims to develop advanced 

environmental and spectral awareness techniques for future wireless 

system. A knowledge base of radio environment will be built that 

cognitive radio is able to store and access information from it. Advanced 

spectrum sensing techniques and algorithms are also proposed. Extensive 

spectrum utilization measurements will be collected in Europe to gain a 

better knowledge on the spectrum usage at the same time. 

 

12. Advanced Coexistence Technologies for Radio Optimisation and 

Unlicensed Spectrum (ACROPOLIS) 

The FP7 ACROPOLIS project [83] (10/2010 – 09/2010) aimed to tackle 

the medium and long term, interdisciplinary and fundamental research 

problems found in cooperative and cognitive communications. The fast 

development of wireless communication requires the integration of 

interdisciplinary knowledge. Experts in cooperation and coexistence, 

comprising research area such as cognitive radio, cognitive networking 

and flexible networking, are brought together to strength European 

knowledge and leadership in the relevant area. 

2.6.2 North American Projects 

1. Defence Advanced Research Projects Agency (DARPA) Next 

Generation (XG) Project 

The DARPA XG project [70] aimed to ‘develop both the enabling 

technologies and system concepts to dynamically redistribute allocated 

spectrum along with novel waveforms in order to provide dramatic 

improvements in assured military communications in support of a full 

range of worldwide deployments’. A set of advanced Dynamic Spectrum 

Access techniques have been developed by the project that the 

achievements could be the basis for the further development of cognitive 

radio. There were 3 phases in the project: the first phase was technical 

investments, from 2002 to 2003; then the system and protocol design 
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phases lasted from 2003 to 2005; the third phase system development and 

demo started in 2005 and finished in 2008. 

2. Defence Advanced Research Projects Agency (DARPA) Wireless 

Network After Next (WNaN) Project 

The key objective of the DARPA WNaN [70] is to develop an advanced 

high density wireless ad-hoc network of cognitive radios. Low-cost 

wireless nodes are assumed to be the basic elements of the network. 

However such low-cost nodes have certain physical layer limitations. By 

introducing technologies and system concepts which are able reduce the 

demands on physical and link layers through better node configurations 

and topology management, the wireless network is able to deliver the 

demanded capacity, enabling reliable communications at low system cost. 

The project also aims to develop a prototype handheld wireless node 

which could be deployed to form a high-density wireless network by the 

end of this project.  

 

3. National Science Foundation (NFS) Security Provisioning for 

Cognitive Radio Networks 

The National Science Foundation has been one of the biggest funding 

bodies in the US. A number of cognitive radio related projects have been 

funded by NFS. Security Provisioning for Cognitive Radio Networks 

project [70] is one of these projects. This project aims to develop a 

comprehensive security system that serves as a secure backbone for 

cognitive radio networks that coexist with primary network in different 

system architectures and coexistence scenarios. The techniques developed 

are designed to be embedded into the whole network, enabling secured 

and reliable spectrum access for the cognitive radio networks. 

 

4. National Science Foundation (NFS) Cognitive Antennas for Wireless 

Ad Hoc Networks 

The NFS Cognitive Antennas for Wireless Ad Hoc Network project [70] 

investigates a network consisting of cognitive radios with reconfigurable 

antennas. Reconfigurable antennas provide a new dimension of 

opportunities to reduce interference and increase link robustness. The 
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project aims to show how the extra beam-domain opportunities enabled by 

reconfigurable antennas are able to support more aggressive frequency 

reuse and in turn increase the system capacity. Multi-sensor data fusion, 

distributed control techniques are all proposed. 

 

5. National Science Foundation (NFS) Human Behaviour Inspired 

Cognitive Radio Network Design 

With the ability of environment awareness, learning, reasoning and self-

adaptation, it is possible that cognitive radios to take irrational actions like 

human. This is a risk for future cognitive radio based networks. The NFS 

Human Behaviour Inspired Cognitive Radio Network Design project [70] 

investigates the possible behaviour of cognitive radios that is similar to 

human behaviour and social interactions. 

6. National Science Foundation (NFS) Cognitive Femtocells: Breaking 

the Spatial Reuse Limits of Cellular Systems 

This NFS project aims to apply cognitive femtocells to indoor 

environment like residential buildings and offices, providing significantly 

improved service and coverage [70]. The cognitive femtocells are 

designed to share limited radio resource (the cellular frequency band) on 

an opportunistic fashion. No frequency planning is assumed for the 

femtocells. The cognitive femtocells need to explore the spectrum 

opportunities in the available bands. 

 

7. National Science Foundation (NFS) Beyond Listen-Before-Talk: 

Advanced Cognitive Radio Access Control in Distributed Multi-User 

Networks 

This project aims to achieve improved spectral efficiency by applying 

advanced cognitive radio access and power control algorithms [70]. This 

is achieved by exploiting different levels of primary user’s Data Link 

Control (DLC) signalling and feedback information, rather than purely 

rely on spectrum sensing. 
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2.6.3 Asian Research 

Extensive research in the relevant area is being performed in Far East, especially 

in China and Japanese. In China, cognitive radio and cognitive radio networks 

related research are very active and largely funded under the Chinese 863 and 973 

programs, and the National Natural Science Foundation of China. The topics 

cover most aspects of cognitive communications, including spectrum sensing, 

resource management, security, etc. A large number of highly cited publications 

are been produced by these projects. Japanese research in this field is leading by 

the National Institute of Information and Communications Technology (NICT). 

Japanese research projects run by NICT aims to research and develop the 

technologies for new generation user-centric wireless networking which will be 

highly reliable and robust in various environments. The research topics in Japan 

include spectrum sensing, radio resource acquisition/management, software 

defined radio and Universal RF, wideband mixers/antennas for multimode / multi-

band communications. Extensive research activities in Japan also contribute to the 

standardization of next generation wireless communication systems. 

2.7 Conclusions 

This chapter provides the background information related to this work. The 

information of cognitive radio system is given first where the definition of 

cognitive radio is given. The main features and the cognition cycle of cognitive 

radio systems have also been discussed. Reinforcement learning is introduced in 

section 2.3 where the details of the learning model are available.  

The traditional non-learning based DDCA schemes are briefly reviewed in section 

2.4. It is worth to summarize the research work carried out in this area since 

cognitive radio itself is a DDCA based technique. Similarities between cognitive 

radio and DDCA schemes have also been discussed in this section that the listen-

before-talk style strategy has been proposed long before the introduction of 

cognitive radio. 

The more relevant ‘intelligent’ channel assignment techniques are reviewed in 

section 2.5. Centralized learning-based schemes and distributed learning-based 
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schemes are discussed with details. Most of the learning-based algorithms require 

system level information in order to define the states of the system in the learning 

model. However, such information is not readily accessible in a fully distributed 

cognitive radio system. Game Theory and Genetic Algorithm based schemes are 

also discussed in this section. Thus, the state-of-art techniques relevant to this 

work are properly introduced. 

Furthermore, the cognitive radio related research projects have been reviewed in 

section 2.6. The European research projects, American research projects and the 

research carried out in Far East have all been discussed.  
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Chapter 3. System Modelling and Performance 

Evaluation Methodology 
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3.1 Introduction 

This chapter presents the research methodologies, system modelling techniques 

and the key measurements used in this thesis. System modelling by using 

professional simulation software is one of the most widely used approaches to 

conduct research nowadays, especially in Engineering. This is because firstly 

computing power has grown significantly in the last 10 years. With the rapid 

development of professional computing and programming software, the 

computing power is sufficient and convenient to modelling real-life 

communication systems in a very detailed fashion. Secondly, the cost for 

conducting the system modelling work is low and the reconfigurability of such 

models is significant. Thus simulation has been considered as a time-cost 

effective approach to verify different techniques. 

Considerable efforts have been made on developing the simulator in this work. 

The multi-agent reinforcement learning scenario investigated in this work is 

extremely difficult to be evaluated mathematically. Thus, extensive system 

modelling tasks have been carried out and the results are used to evaluate the 

system capacity in this thesis. Significant effort has also been spent on 

investigating and discussing such results in order to explain the user behaviour 

under different situation. 
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The system modelling techniques are introduced in the next section. Then the key 

measurements we used to evaluate the system capacity are described in section 

3.3. The information of modelling verification and the conclusion are given in 

section 3.4 and section 3.5 respectively. 

3.2 System Modelling Techniques 

A number of programming tools are available to conduct system modelling tasks, 

from the most basic C language to well designed OPNET and Matlab. All of those 

tools could be the platforms of carrying out the system modelling tasks and they 

all have their own advantages and disadvantages. 

Matlab, one of the most popular professional numerical computing environment 

and programming language, is used as the main system modelling tool in this 

thesis. It has similarities to C, but offers a much more user friendly environment. 

A great deal of work has been done in facilitating Matlab with matrix computing 

that the matrix computing tasks could be performed very easily. A large number 

of functions and toolboxes, which are very helpful in terms of developing the 

code for system modelling, are also available in Matlab that the flexibility and the 

extensibility of the program done in Matlab are incredible. Thus, it normally 

requires less time when developing or modifying simulators using Matlab than 

using C language. The disadvantage of Matlab is that the code runs much slower 

compared to C. Again with the rapid growth of the computing power, execution 

time of codes is a far less important factor in terms of developing a simulator. 

Instead easier development and modification of the code are more important. 

Thus Matlab is considered to be the most appropriate system modelling tool to in 

this work. 

Monte Carlo simulation has been used in this work since the desired results are 

infeasible to be computed with a deterministic algorithm. Monte Carlo simulation, 

a statistical simulation method, relies on repeated random sampling to generate 

statistical results [84]. A relatively large number of trials are needed in this case to 

reduce the effect of the random fluctuation.  The results become more statistically 

accurate if more trials are taken into account. Event-based strategies are used 
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extensively in the simulation where only discrete events are captured. In other 

words, measurements are taken when new events happened in the system. The 

simulation execution time of such event-based strategy is significantly less than a 

time-continuous simulation approach. The general process of such event-based 

simulation is illustrated in figure 3.1. The simulator will firstly generate the 

location of the entities, the propagation environment, and the arrival and departure 

time of users (the time of events) based on a set of predetermined parameters. 

Then the simulator goes through every event and the measurements are taken in 

each event. After a large number of events have been sampled, the statistics of the 

large number of samples are obtained to illustrate the behaviour of the systems. 

Start

Number of Event Reaches 

Required Number In The 

Simulation

New Event (New arrival)

Check Finished Transmission, 

Release Occupied Channels

Transmission Starts,  Obtain 

SINR On The Link

Update SINR On Other 

Interfering Link 

End

Obtain Simulation Results

Yes

No

Initialization

 Tx Positioning

 Rx Positioning

 Path Loss Matrix

 Shadowing Matrix

 Traffic

 Events

Channel Assignment

 

Figure 3.1 Typical Event-based Simulation Process 
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Performance measurements are normally plotted against traffic load in this thesis 

because it is the best way to show the behaviour of the system under different 

traffic conditions. For example, blocking probability versus offered traffic and 

throughput versus offered traffic. Plots of different schemes at a same offered 

traffic load are also provided to show more details of such schemes.  

3.3 Performance Measures 

A few performance parameters are selected to evaluate the system capacity in this 

work. Signal-to-Interference-plus-Noise-Ratio (SINR) is used to evaluate link 

quality, i.e. to determine whether the current user will lose its current service, or 

to determine the data rate depending on the adaptive modulation applied to the 

system. Blocking probability and dropping probability are normally used to 

evaluate link based wireless system, e.g. speech-oriented wireless service. These 

two parameters are used extensively in this thesis to describe system capacity. 

Throughput, commonly used to determine the capacity of data-oriented wireless 

services, is used in this thesis to evaluate the capacity of beyond next generation 

mobile networks. The Cumulative Distribution Function (CDF) is used to process 

the initial data and to deliver the statistical behaviour of the results. 

3.3.1 Signal-to-Interference-plus-Noise-Ratio (SINR) 

Signal-to-Interference-and-Noise Ratio (SINR) [85], also known as Carrier-to-

Interference-and-Noise Ratio (CINR), is one of the fundamental parameters to 

measure the link quality of users in wireless communication.  It is defined by the 

quotient of the average received signal power (S or C) and the average received 

co-channel interference power (I) plus the noise power from other sources (N).  

Two types of architectures are investigated in this work and the SINR has been 

derived separately: 

 Point-to-Point 

If we consider a network with M transmitter-receiver pairs and Q channels, 

the SINR measured at the n
th

 receiver on channel q can be obtained as: 
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where pn is the transmit power of the n
th

 transmitter, gn,q is the gain of the 

wireless link on channel q,    is the noise power. 

 Dual-Hop Beyond Next Generation Mobile Network 

If we consider a wireless network with M HBSs, each HBS has L beams, 

serving N ABSs. Each ABS provides service to K MSs. There are Q Channels 

available in total, each channel is divided into R Subchannels. If we assume 

























LH
M

H
M

LHH

H

pp

pp

P

,1,

,
1

1,
1

...

...

...

...

...

is the HBS transmission power matrix, and
lH

mp ,
 

denotes the transmission power of the beam l of HBS m. 

























MA
N

MA

A
N

A

A

pp

pp

P

,,
1

1,1,
1

...

...

...

...

...

is the ABS transmission power matrix, then 
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denotes the transmission power of ABS n, which is associated with HBS m. 

A frequency separation of backhaul and access is assumed so that the 

backhaul network and the access network do not interfere with each other. 

Then for the backhaul network, SINR measured at ABS n (signal from HBS m 

in channel q and subchannel r) can be derived as: 
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is the interference from other HBSs to ABS  . 
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is the interference comes from other beams of HBS  , using 

the same channel q and subchannel r.     is the noise power. 

Similarly for the access network, the SINR received at MS k  (signal from 

ABS n (associated with HBS m) in channel q and subchannel r) is: 
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where knA
rqg ,,

, is the link gain between ABS n and MS k. 
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is the interference from all the ABSs in other cells 

that are using the same frequency. jiA
rq

N

nii

K

j

mA
i gp ,,

,,1 1

,  
 is the interference 

from other ABSs in the same cell, and    is the noise power. 

3.3.2 Blocking Probability and Dropping Probability 

Blocking probability and dropping probability [3] are the measurements we use to 

evaluate the grade of service in this thesis. The blocking probability at time t can 

be defined as: 
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where PB(t) is the blocking probability at time t. Nb(t) is the total number of 

blocked activations of the system by time t and Na(t) is the total number of 

activations of the system by time t. Similarly, the dropping probability is defined 

as follows: 
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where PD(t) is the dropping probability by time t. Nd(t) is the total number of 

dropped transmissions by time t and Nsa(t) is the total number of accepted 

activations by time t.  
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Note that for the dual-hop links when calculating PD(t) for the end-to-end link, the 

Nsa(t) only takes into account the successful transmission over the end-to-end link. 

3.3.3 Throughput and Throughput Density 

System throughput is the major measurement we used in this thesis to describe the 

system performance of the beyond next generation mobile network. Throughput 

density is also defined to show the performance since beyond the next generation 

mobile network is designed primarily to deliver a high throughput density. 

Adaptive modulation is assumed that all entities are transmitting at the highest 

data rate that the wireless links can support (best effort basis) based on the SINR 

levels of these links. Therefore, the system throughput can be defined as: 

 TDDc
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ThrMIMO-TSB(t) is the data rate of a MIMO link obtained at time t, and it is updated 

constantly in the simulation. The Truncated Shannon Bound is proposed in [86] 

and we use it to determine the data rate of links. If we assume an adaptive 

modulation and coding (AMC) codeset, then the data rate of a link can be 

obtained by: 
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Where S(SINR) is the Shannon Bound. a is the anttenuation factor. SINRMIN is the 

minimum SINR threshold of the codeset, and SINRMAX is the SINR when max 

throughput is reached. ThrMAX is the maximum throughput of the codeset. For the 

work carried out in chapter 8, the parameters are defined as: a = 0.65, SINRmin = 

1.8 dB, SINRmax = 21 dB and Thrmax = 4.5 bps/Hz. 

Tk is the transmission time of the k
th

 transmission of an entity, and ni is the total 

number of transmissions that have been finished by the i
th

 entity in the simulation.  
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Nu is the total number of users in the system. ni is determined by the offered 

traffic level and the probability of a transmission been successful: 

 )(tPOTn i
si   (3-7) 

  
     is the transmission successful probability of entity i at time t, and it can be 

defined as: 
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     and   

     are the blocking probability and the dropping probability of 

entity i at time t respectively. 

OT in function 3-7 is the system offered traffic. The offered traffic level of a user 

OTu can be defined as: 
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where Tser is the mean transmission service time of a user and Tint is the mean 

transmission interarrival time of a user. OTu effectively shows the percentage of 

transmission time in the simulation, e.g. OTu = 0.5 means that this user is 

transmitting data in 50% of the simulation time. OTu = 1 means that this user is 

constantly transmitting in the simulation. 

OT then can be defined as:  

 uu NOTOT   (3-10) 

OT effectively shows the average number of active users at any time in the 

simulation, e.g. if OTu = 1, Nu = 100, then OT = 100, it means that 100 users are 

constantly transmitting data in the system. If OTu = 0.5, Nu = 100, then OT = 50, it 

means that averagely 50 users are transmitting at any moment in the simulation. 
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BWc is the subchannel bandwidth. PTDD is the percentage of time slots have been 

allocated to the downlink or uplink. 

Throughput density can then be defined by: 

 ssD AThrThr   (3-11) 

where As is the service area. 

3.3.4 Cumulative Distribution Function (CDF) 

As we mentioned before, in order to obtain statistically accurate results we need 

to apply Monte Carlo simulation. However, a very large amount of unprocessed 

data can be expected by conducting Monte Carlo simulation.  Appropriate 

mathematical analysis in this case is required to show the statistical behaviour of 

the results. 

The cumulative distribution function is the main statistical method applied in this 

report. The CDF of x is defined as [84]: 

 dttfxFCDF

x




 )()(  (3-12) 

Where f(x) is the probability density function of x.  The results of our simulation 

like blocking probability and dropping probability are mainly measured at regular 

points in the service area.  The CDF of these results will clearly show the 

probability of a valued random variable with a given distribution. 

3.4 Verification 

Queueing Theory [87] is commonly used to analyse the behaviour of call-oriented 

communication system. Well defined analytic models, like the Erlang B formula, 

have been developed using Queueing Theory to describe different types of 

queueing systems. Normally performance measurements like blocking probability 

could be analysed based on Queueing Theory. 
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However there is no analytic model available for multi-agent reinforcement 

learning scenario. The autonomous behaviour of the completely distributed users 

is extremely difficult to be fully described mathematically. Moreover, spectrum 

sensing also changes the user behaviour significantly since it constantly tries to 

guide the transmissions moving from heavily interfered channels to less interfered 

channels. Thus, like the way by which most research is carried out in such multi-

agent learning scenario in Computer Science [31-32], this thesis mainly uses 

Monte Carlo simulation to evaluate the performance of different schemes. 

Nevertheless, detailed analysis is given in each chapter to discuss the behaviour of 

users in specified cases. Basic mathematical analyses for the influence of 

weighting factors and different settings of the preferred channel set are available 

in chapters 4 and 5. A more comprehensive analytical model is developed in 

chapter 6 where the total number of the trials cognitive radios are required to 

discover before an optimal channel is found in a multi-agent scenario is derived 

mathematically based on the value function and Probability Theory. The 

theoretical and experimental learning costs of different schemes are compared 

also in chapter 6 which verifies both the analytical model and the simulator. 

3.5 Conclusions 

This chapter describes the ways in which the system modelling tasks are 

conducted in this thesis. The simulation tool and system modelling techniques are 

discussed first. Matlab is used as the main simulation tool in this work and Monte 

Carlo approach is applied to generate statistically meaningful results. The key 

measurements are then defined in order to evaluate the system capacity. Finally a 

brief discussion on the verification of the simulation approach is given. 
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4.1 Introduction  

The fundamental objective of cognitive radio is to enable an efficient utilization 

of the wireless spectrum through a highly reliable approach.  Although a cognitive 

radio may be able to analyze the physical environment before it sets up a 

communication link, the best system performance is unlikely to be achieved by 

either a random spectrum sensing strategy or a fixed spectrum sensing policy [88]. 

The system performance is expected to be improved by utilizing the historical 

information of the wireless environment gained through learning-based 

techniques. 

This chapter introduces the reinforcement learning-based distributed spectrum 

sharing scheme which enables efficient usage of spectrum by exploiting users’ 

past experience. In our spectrum sharing scheme, a reward value is assigned to a 

used resource based on the reward function. Cognitive radio users select spectrum 

resources to use based on the weight values assigned to the spectral resources - 

resources with higher weights are considered higher priority. Furthermore we 

investigate and compare the system performance of different sets of reward values 

which effectively are the weighting factors in the reward function. In fact, we will 
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show how different weighting factor values have significant impact on the system 

performance, and that inappropriate weighting factor setting may cause some 

specific problems.  

The cognitive radio based reinforcement learning model will be presented in 

section 4.2 first.  The purpose of our work is not only to develop a number of 

algorithms for cognitive radio for certain scenarios, but more importantly to 

propose a generic learning model which is widely applicable to cognitive 

communications. 

A few essential concepts like the value function and weighting factors will then 

be discussed in section 4.3 – 4.4.  In section 4.5, a reinforcement learning-based 

algorithm is described.  The schemes presented in this chapter were developed in 

the early stage of this work.  The analysis of the results in section 4.6 focuses on 

the channel partitioning by reinforcement learning-based algorithms, the impact 

of weighting factors and the improvement of system performance in terms of 

blocking probability and dropping probability. 

4.2 Cognitive Radio based Reinforcement Learning Model  

The reinforcement learning model developed for the cognitive radio scenario is 

illustrated in Figure 4.1.  The cognitive radio is the learning agent.  The wireless 

spectrum is effectively the environment.  The way we implement reinforcement 

learning in the CR scenario is slightly different from the original model presented 

previously in Chapter 2.  This is caused by a few built-in features of cognitive 

radio.  In the original reinforcement learning system, the value of the current state 

s under a policy  which is denoted by V

(s) is the basis to choose the action A(s).  

An optimal policy is supposed to maximize V

(s) at each trial.  V


(s) is formally 

defined as [34]: 

 }))(,({)(
0

ssssrEsV t

t
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where E is the expectation operator,  is a discount factor (0 <  < 1).  r(s, (s)) is 

the immediate reward if the agent chooses action a = (s) given a state s.  

Equation (4-1) can also be written as: 

 )'())(,'())(,()(
'

sVsssPssRsV
s

    (4-2) 

where R(s, (s))=E{r(s, (s))} is the mean value of r(s, (s)).  s’ stands for the 

goal states which s will transit to by taking the action (s).  Given that there may 

be multiple successor states s’, P(s’|s,(s)) defines the probability of making a 

transition from state s to different successor states. 

 

Figure 4.1 The Reinforcement Learning Model in Cognitive Radio Scenario [89] 

The optimal value function V


(s) under the optimal policy 

 can be defined as: 

  )'())(,'())(,(max)(
'

sVsssPssRsV
sAa





     (4-3) 

Based on the optimal value function V


(s), the optimal policy 

 is specified as: 
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R(s, (s)) is effectively the cumulative reward in the state of s.  The other part of 

the equation is the expected feedback of its successor states s’. 

It can be clearly seen from equation (4-1) to equation (4-4) that in order to obtain 

the optimal policy 

, the information of s’ is vital.  Information like the number 

of potential successor states and the estimated value of each of the states s’ are 

essential.  Earlier work which tried to apply reinforcement learning into 

communications is largely focused on cell-based and centralized scenarios, where 

they are able to obtain the information of s and s’ because such information is 

fully available within the communication system.  For instance, in [67], Nie and 

Haykin define state st at time t as: 

 tt iAis ))(,(  (4-5) 

where i  {1,2,,N} is the cell index, i indicates there is an event (call arrival or 

departure) occurring in cell i.  A(i) {1,2,,M} stands for the available channels 

in cell i at time t.  By utilizing the information i and A(i), the system can obtain 

the information to calculate V

(s) and to discover its optimal policy 


 eventually. 

Our strategy is to develop a policy  that maps memory (weight values) to action 

: W A instead of the original approach which maps the state of environment to 

action : S A [90].  On one hand, the agents are fully distributed in our scenario 

so that decisions are made only according to the local measurements.  It is 

unlikely for a CR to obtain the information at the network level.  On the other 

hand, it is worth considering whether it is necessary to obtain such information in 

a cognitive radio scenario even if it is possible.  Cognitive radio is able to sense 

the target spectrum before activation and it is not supposed to transmit data until 

unoccupied spectrum has been found.  With the ability of spectrum sensing, the 

information of available resources or occupied resources is not necessary if the 

objective is to find appropriate spectrum for the user.  The only matter is how to 

discover the appropriate spectrum efficiently.  Choosing the most successful 
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spectrum by reinforcement learning combined with spectrum sensing is the 

suggested method in this work.  A few amendments have been made to the 

learning model.  The reinforcement learning model which we used consists of 

[34]: 

1. A set of memories, W.  W is a set of weights of the performed actions 

which are stored in the knowledge base; 

2. A set of actions, A; 

3. A set of numerical rewards R; 

A CR will access the communication resource according to the memory of 

reinforcement learning.  The success level of a particular action, which is whether 

the target spectrum is suitable for the considered communication request, is 

assessed by the learning engine.  Based on the assessment, a reward is assigned in 

order to reinforce the weight of the performed action in the knowledge base.  

Since the actions are all strongly connected to the target resources, the weight is 

practically a number which is attached to a used resource and this number reflects 

the successful level of the resource.  Our goal is to develop an optimal policy 

mapping weight to action : W A that can maximize the value of the current 

memory V

(w).  Given a set of available weights of used resources and a policy , 

the selection of a specific action is denoted as a = (w).  Then V

(w) is defined as: 

 '))(,'()(
'

wwwwPwV
w

    (4-6) 

Where w is the weight of used resources of an agent at time t, w’ is the expected 

values of weights after agent takes an action (w).  P(w’|w,(w)) is the probability 

of selecting an action after taking the action (w).  Accordingly, the optimal value 

function under the optimal policy 

 can be defined as: 
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The optimal policy in our work therefore can be specified as: 
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At each communication request the agent chooses a resource which can maximize 

V

(w) according to its current memory.  Based on the result, the learning engine 

updates the knowledge base by a reward r.  The inner loop within cognitive radio 

in figure 4.1 will proceed constantly to update the knowledge base.  Global 

information is not necessary in this case.  From this point of view, the complexity 

of the communication system is reduced.   

4.3 Value Function 

Reinforcement learning is a computational approach to learn how to map 

situations to actions, and it is well suited to problems which include a long-term 

versus short-term reward trade-off.  A key element of reinforcement learning is 

the value function [91]. A CR user updates its knowledge based on the feedback 

of the value function. In other words, the CR user adjusts its operation according 

to the function. From this point of view, the value function in reinforcement 

learning is also the objective function of cognitive radio in our scenario. The 

following linear function is used as the objective function to update the spectrum 

sharing strategy in this work [59, 88]: 

 211 fWfW tt    (4-9) 

where Wt-1 is the weight of a channel at time t-1, and Wt is the weight at time t 

according to previous weight Wt-1 and the updated feedback from system. f1 and f2 

are the weighting factors at time t that will take on different values depending on 

the localized judgment of current system states and the environment. In order to 

update the weights in the knowledge base, either a reward value or a punishment 

value is assigned to f based on the evaluation of the success level of CR users’ 

action. 
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4.4 Weighting Factors 

Weighting factors have great influence on the system performance, they reflect 

the degree of responses of a learning agent towards the changes of environment, 

i.e. a high reward or punishment value means that the learning node will adjust its 

actions swiftly according to the changes of the wireless environment, and a mild 

reward or punishment means that the learning node is adapting itself gradually 

based on the interactions with the environment [88]. 

The values of weighting factors are shown in table 4.1. Based on the degree of 

success, either a reward or a punishment is assigned to the weight of the used 

spectrum. 

Table 4.1 Weighting Factor Values 

SCHEMES 

1f  
2f  

Reward Punishment Reward Punishment 

Mild Punishment 1 1 1 -1 

Harsh Punishment 1 0 1 0 

Discounted Punishment 1 0.5 1 0 

 

The reward value of 1 is used in all of the three schemes in Table 4.1. The main 

difference between these schemes is the values assigned to punishment factors. In 

the first scheme, the absolute values of the reward value and the punishment value 

are equal. In other words the weight is increased or decreased by the same step 

size. This scheme is also named the ‘mild punishment scheme’. In the second 

scheme, if the attempt for communication fails, the weight is directly reduced to 

zero. Therefore we call it the ‘harsh punishment scheme’. Practically, the second 

scheme is a low complexity learning scheme where the CR users only remember 

the last successful spectrum and keep using it at new activation until the request 

for that resource is declined. Then the user picks up a channel randomly and 

keeps using it as long as the quality of communication in that channel is above the 



CHAPTER 4 REINFORCEMENT LEARNING BASED SPECTRUM SHARING 66 

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

requirement. Weights are reduced by a certain percentage in the third scheme, and 

a percentage of 50% is used to reduce the weight of an unsuccessful channel. We 

can refer to the scheme as the ‘discounted scheme’. 

4.5 Reinforcement Learning based-Distributed Spectrum Sharing 

Algorithms 

The basic Reinforcement Learning-based distributed CR spectrum sharing 

algorithm is illustrated in Fig. 4.2 [88]. We consider the CR users are a set of 

transmitting-receiving pairs of nodes, denoted as U, uniformly distributed in a 

square area and all the pairs Ui U are spatially fixed. There are 3 main steps in 

the process: 

Step 1: Spectrum selection. At the beginning of each activation, Ui chooses a 

channel according to the weights of the available resources. It starts with the 

channel with the highest weight, or picks up a channel randomly if all resources 

have same priority. The selected channel is denoted as Ck where Ck C and C is 

the available channel set. 

Step 2: Spectrum sensing. Ui senses the interference level on Ck. If the 

interference level I of Ck is below the interference threshold Ithr, Ui is activated. 

Otherwise if I>Ithr , the weight of Ck for Ui is decreased by a punishment 

weighting factor and Ui returns back to step 1. 

Step 3: SINR measuring. After step 2, the existing users within the same channel 

can measure the Signal-to-Interference-plus-Noise Ratio (SINR) at their receivers. 

The purpose of measuring SINR is to maintain the communication quality of the 

channels. We set up a SINR threshold SINRthr. If the SINR of the activated pair Ui 

is greater than the threshold (SINRi>SINRthr), Ui successfully uses the spectrum 

and the weight of the channel will be increased by a reward. If SINRi<SINRthr, Ui 

is blocked by the channel and the weight is updated with a punishment.  
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Figure 4.2 Reinforcement Learning-based Spectrum Sharing Algorithm 

The CR users follow the above steps in every transmission process. One condition 

applies to the system that N(Ui)<Nmax, N(Ui) denotes the number of sensed 

channels of Ui  in each activation and Nmax is the maximum number of channels 

which a CR user is allowed to scan in a single activation. If N(Ui)>Nmax, and Ui is 

still searching for an unoccupied resource, it is blocked and waits for the next 

activation. It is unrealistic to allow users to keep sensing and searching for a 
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better resource without a time limit, because sensing is a power-intensive and 

time-consuming process.  

4.6 Simulation Scenarios 

Fig 4.3 is an example layout of the CR nodes.  We use a basic transmitter-receiver 

pair communication system model because we try to focus on the behavior of CR 

users and consequently achieve a deep understanding of such complex behavior. 

We believe the technique is widely applicable for other system models. The 

Okumura-Hata propagation model [85] is used along with log-normal shadowing 

with a standard deviation of 8 dB. CR pairs are uniformly distributed on a square 

service area. An event-based scenario is employed in our work, and at each event 

a random subset of pairs are activated, system parameters used in this work is 

shown in table 4.2. 

 

Figure 4.3 Sample of Spatial Layout of Cognitive Radio Pairs for Simulation 
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Table 4.2 Simulation Parameters 

Parameter Value 

Service Area 1000km
2
 

Number of pairs 1000 

Maximum number of activated users 400 

Link Length 200m – 1500m 

Transmitter Antenna gain 0 dBi 

Interference threshold -40 dBm 

SINR threshold 10 dB 

Noise floor -137dBm 

 

4.7 Results and Analysis 

4.7.1 Channel Partitioning by Reinforcement Learning 

A quick and efficient channel partitioning is the most desirable result in our work 

since it will promote more efficient and reliable communications. The available 

spectrum will be partitioned autonomously by individual reinforcement learning 

and therefore CR users are able to avoid improper spectrum. Figure 4.4 (1)-(4) 

represent how the channel partitioning emerges during the simulation. A small 

number of 10 is used in this simulation to define the number of available channels 

and the number of users, because in this way the channel partitioning can be 

illustrated directly. We randomly choose 4 users out of 10 and number them 1-4 

at the beginning of the simulation. By recording the channel usage of those 4 pairs, 

the channel usage of those pairs during the simulation can be obtained. 
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Figure 4.4 Channel Usage at (1) Event 50, (2) Event 100, (3) Event 500, (4) Event 

1000 
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At the beginning of the simulation (Figure 4.4 (1)), CR users use almost all 

resources equally. After a certain simulation time, at event 100 (Figure 4.4 (2)) a 

few channels already show their priority to certain users, like user 3 prefers 

channel 8 and user 2 prefers channel 3. However, the channel usage of user 1 is 

still fairly equal at this stage. The channel usages at event 500 and event 1000 are 

shown in Figure 4.4 (3), Figure 4.4 (4) respectively. It can be seen that a spectrum 

sharing equilibrium is established and therefore the channel usage converged to 

few preferred channels. The CR users are able to avoid collisions by utilizing 

their experience from learning consequently. 

The behaviour of user 1 in this case clearly illustrates how the learning-based 

autonomous channel partitioning works. At the beginning, user 1 preferred to use 

channel 8 where 30% of the activations of user 1 succeeded in this channel. 

Between event 50 and event 100, communication failures happen on channel 8. 

User 1 remembered that and tried to avoid this channel thereafter. The channel 

usage then converged to channel 6 and 10 where user 1 had a better opportunity to 

successfully transmit data. 

4.7.2 System Performance 

Fig 4.5 – Fig 4.6 illustrate the performance of schemes which we discussed above. 

Blocking probability is measured at regular points in the service area and a 

Cumulative Distribution Function (CDF) of system blocking probability at these 

points is derived. In order to analyse the level of system interruption, a CDF of 

dropping probability is calculated at the same time. All CR users’ parameters are 

exactly the same for each scheme evaluation, with different system performance 

being caused only by different weighting factor values. 
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Figure 4.5 Cumulative Distribution Function of System Blocking Probability at 

Discrete Points over the Service Area 

Fig 4.5 shows the CDF of system blocking probability of the three learning 

schemes along with a lower bound performance of random spectrum sharing 

without reinforcement learning. Comparing with the red dotted line which is the 

CDF of the no learning scheme, the blocking probability of our reinforcement 

learning spectrum sharing schemes are much lower than the scheme without 

learning. About 90% of users blocking probability in the discounted scheme are 

below 0.02, but in the no learning scheme only 50% users are able to meet this 

requirement. By using a reinforcement learning way to share spectrum, the 

blocking probability can be significantly reduced. It can be seen that the 

discounted scheme has the best performance in Fig 4.5. The overall blocking 

probability of the discounted scheme is about 40% of that of the no learning 

scheme. The blocking probability of the mild punishment scheme is slightly 

higher than the discounted scheme. This is because of the setting of punishment 

value. We believe that the value of weighting factor reflects the degree of the 

reaction of a user to a specific action. The higher the value is, the higher the 

degree is. In the discounted scheme, the weight of an unsuccessful channel is 
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reduced by a certain percentage at each time. According to equation (4-10) if the 

request for a channel has been refused n times, the weight of that channel is: 

 n1  t
n

t WfW  (4-10) 

If a user in the mild punishment scheme is in the same situation, the weight of the 

unsuccessful channel will be: 

 nWW ntt    (4-11) 

Take n = 3, 100ntW  for example, we assume that 100 is the highest weight of 

all available spectrum for a CR user. After the best channel has failed to 

communicate three times, the weight of that channel tW in the discounted scheme 

is 12.5, the channel probably no longer at the top of the priority list for the CR 

user. But in the mild punishment scheme the weight tW  is 97, it is still high 

enough to maintain its position as a good channel for the user. Since the reaction 

of the discounted scheme towards a communication failure is stronger and quicker 

than that of the mild punishment scheme, the performance of the discounted 

scheme is better.  

Nevertheless the punishment factor is not the higher the better. The black dashed 

line is the CDF of the harsh punishment scheme. In this scheme the weight of the 

unsuccessful spectrum is directly decreased to zero but the system blocking 

probability is still higher than the discounted scheme. This is because the ‘over-

reactive’ behaviour of the harsh punishment scheme. If a spectrum sharing 

scheme sets a punishment factor overly severe, the results of learning could be 

significantly changed by a rare occurrence. In the results of simulation, the best 

performance is achieved by the discounted scheme.  
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Figure 4.6 Cumulative Distribution Function of System Dropping Probability at 

Discrete Points over the Service Area 

It can be seen that in every reinforcement learning scheme there are about 5% of 

users whose blocking probability is above 0.03. The performance of blocking 

probability of these users is difficult to improve no matter how the system defines 

the weighting factors, because these users are located at a high user density area 

and the opportunity for these users to successful set up a communication link is 

limited. 

Fig 4.6 illustrates the CDF of dropping probability which demonstrates the level 

of system interruption. It shows that about 93% users are never dropped by 

system throughout the simulation. Since our schemes only take advantage of the 

information of system blocking to update the weights of spectrum, the 

performance of reinforcement learning-based scheme is no longer better than the 

no learning scheme. On the contrary, the dropping probability of the no learning 

scheme is lower than learning schemes. This is because a few CR users regard the 

channels with high dropping probability as their preferred resources and keep 
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using these channels as long as their blocking probability is low. Using the 

information of system dropping along with blocking to adjust weights may be a 

potential method to achieve a better system performance. Further work needs to 

be done to examine this argument.  

Fig 4.7 and Fig 4.8 show the spatial plots of the no learning and discounted 

schemes respectively. Since the users in our scenario are spatially fixed, the 

blocking probability is strongly connected to the user density in a certain area. 

From Fig 4.7 and Fig 4.8 we can clearly see the improvement of system 

performance by applying the reinforcement learning. Not only the ‘high blocking’ 

area of no learning scheme is significantly reduced by the discounted scheme, but 

also the blocking probability of some ‘red hotspot’ regions are also decreased. 

 

Figure 4.7 Contour Plot of Blocking Probability of No Learning Scheme 
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Figure 4.8 Contour Plot of Blocking Probability of Discounted Punishment 

Scheme 

4.8 Conclusions 

In this Chapter, we introduced a reinforcement learning model for cognitive radio 

and a few basic reinforcement learning-based spectrum sharing schemes.  By 

utilizing the ability of learning, cognitive agents can remember their preferred 

communication resources and enable an efficient approach to spectrum sensing 

and sharing accordingly. 

Simulation results show that reinforcement learning-based spectrum sharing 

algorithms achieve a better system performance compared to non-learning 

algorithms. The weighting factors have a significant impact on the performance of 

the communication system.  How to set the reward value is one of the key issues 

in the reinforcement learning scheme. Three different strategies on defining 

reward values have been investigated: the discounted scheme, the mild 

punishment scheme and the harsh punishment scheme. The results show that the 

discounted scheme achieves the best performance. Weighting factor values reflect 

the degree of the reaction of a user towards an action. The higher the 

reward/punishment value is, the stronger the reaction is. In our case, neither a 
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mild reaction nor a harsh reaction achieves the best results. The system achieves 

better performance only if the reward value is assigned appropriately.  From the 

measurements of system blocking and dropping probability, the performance 

improvements of applying our reinforcement learning scheme can be clearly seen. 

About 90% of users have a blocking probability below 0.02 in the discounted 

scheme, compared with a situation of 50% with the no learning scheme.  The 

overall blocking probability of the discounted scheme is 60% lower than that of 

the no learning scheme.  In addition, we have compared the system performance 

of different sets of reward values. About 90% users perform better in the 

discounted scheme than in the harsh punishment scheme.  In this case, the scheme 

with a discounted punishment factor achieves the best performance. 
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5.1 Introduction 

No matter when an agent learns to interact with an environment, two different 

tasks need to be carried out. The agent must firstly explore the action space, and 

then the actions discovered need to be exploited to gain enough experience. 

Neither of the two tasks can be performed exclusively in the learning process [92].  

These two opposing tasks need to be combined in the learning process. The trade-

off between exploration and exploitation needs to be more carefully controlled for 

an agent in order to efficiently learn from the interactions with a dynamic 

environment.  

The trade-off between exploration and exploitation is seen as one of the 

fundamental challenges of reinforcement learning [34]. However, very few of the 

existing reinforcement learning algorithms for cognitive radio tackle this 

challenge.  A learning CR needs to explore the wireless environment to find 

available resources. Meanwhile, the CR also has to exploit the resources 

discovered in exploration to obtain enough experience to distinguish between 

good and bad options.  The trade-off between exploration and exploitation needs 

to be balanced in order to improve the performance of the CR system [89]. 

Thus, a two stage reinforcement learning-based algorithm is described in this 

chapter for a fully distributed scenario to balance the trade-off between 

exploration and exploitation [89]. A ‘warm up’ stage is proposed where 
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distributed CR users search for optimum resources and learn from the experience 

of searching. Once users have obtained a set of preferred resources, they will only 

sense the spectrum with higher priority prior to establishing communications.  

The warm up stage is effectively the period of exploration for a CR user to 

discover new resources in our case. Therefore, the exploration phase becomes 

controllable by applying different warm up strategies. We will show how the 

balance between exploration and exploitation is not only theoretically important 

but also crucial to a CR system in practice.   

More details of the exploration-exploitation trade-off are provided in section 5.2. 

Then the exploration control techniques are introduced in section 5.3, and the two 

stage algorithm is presented in section 5.4. After that, the simulation scenario and 

the results are discussed in section 5.5, 5.6 respectively. Finally, the conclusions 

are given in section 5.7. 

5.2 Exploration Control Techniques for Cognitive Radio 

5.2.1 Warm-Up Stage and Preferred Resource Set 

The trade-off between exploration and exploitation is one of the fundamental 

challenges of reinforcement learning. Exploring users are more likely to cause 

more disturbance, as their transmissions are more likely to interfere with hidden 

terminals.  Thus, the exploration of the learning-based cognitive radios needs to 

be carefully controlled. 

Our idea to solve this problem is to define a ‘warm up’ stage and a preferred 

resource set. ‘Warm up’ is a stage where distributed CR users search for available 

actions and learn from the experience of searching. In the warm up stage, agents 

explore the available spectrum pool by accessing all physical resources with equal 

probability. The weights of the used resources will be modified after every action. 

In other words, in the warm up stage an agent updates the knowledge base 

constantly but uses a random action policy in figure 4.1. 

We define a specific threshold such that if the weight of a used resource is above 

the threshold, the action of taking this resource is considered as a preferred action 
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and the resource is selected into the preferred resource set. By playing the game 

repeatedly, an agent will obtain a full set of preferred resources. This period is 

practically the process of exploring for agents. Once a CR user finds a set of ideal 

resources, the exploration stage will be suspended and the user starts to exploit 

the set of preferred resources. By constantly taking the preferred actions 

according to the optimal action policy 

, users obtain continuing feedback to 

verify whether the selected resources are the appropriate targets for themselves. 

Meanwhile, users who have already obtained their preferred resource set will 

move back to the warm up stage again when the weight of any preferred resource 

has decreased under the preferred channel weight threshold. 

By adjusting the size of the preferred resource set and the value of the preferred 

resource weight threshold, the stage of exploration becomes controllable which 

means it is possible to balance the exploration versus exploitation trade-off in our 

scenario. Our simulation results will show clearly that the appropriate settings of 

warm-up and the preferred resource set can be crucial. 

5.2.2 Two-Stage Reinforcement Learning-based Spectrum Sharing 

Algorithm 

The two stage reinforcement learning based spectrum sharing algorithm with 

exploration control is illustrated in Fig.5.1. The cognitive radio users will firstly 

enter the warm-up stage to randomly explore the spectrum space.  After a certain 

number of optimal resources have been discovered, the user will then exploit 

these optimal resources only.  The different spectrum sharing strategies applied in 

the warm up and exploitation stages are highlighted in the flowchart to help 

readers to gain a thorough understanding. Note that no modification has been 

made to the reinforcement learning model and the value function. The learning 

part of the algorithm remains the way as it was introduced in section 4.2 and 4.3.  
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Figure 5.1 Algorithm Flowchart  

CR user is denoted as Ui, UiU and U is the CR user set. The steps of our 

algorithm are given as follows. 

Step 1: State evaluation. In this step, Ui evaluates its own local system state 

(warm-up stage or exploitation stage). In this case, it is whether Ui has found its 

preferred resource set. A preferred resource weight threshold (Wthr) has been 

defined and Ui compares the weight of the used channel with Wthr at every 

communication request. If the weight is above Wthr , Ui considers the resource as a 

preferred channel and this channel is selected to the preferred resource set. If the 
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preferred channel set of Ui has been filled with suitable channels, Ui will be 

considered in the exploration. Otherwise it remains in warm-up stage. 

Step 2: Spectrum Selection. Depending on the result of the evaluation in step 1, 

there are different rules in this step: 

If Ui is still in the warm-up stage, it chooses a channel randomly from the 

spectrum pool. Ui senses the interference level on that channel. If the interference 

level I of the channel is below the interference threshold Ithr, Ui is activated. 

Otherwise the weight of the spectrum is decreased and Ui starts with a new 

channel again. If Ui is in the main stage. Ui senses the spectrum in their preferred 

resource set according to the action policy . 

Step 3: SINR measuring. After step 2, the existing users within the same channel 

can measure the SINR at their receivers. The purpose of measuring SINR is to 

maintain the communication quality of the channels. We set up a SINR threshold 

SINRthr. If the SINR of the activated pair Ui is greater than the threshold 

(SINRi>SINRthr), Ui successfully uses the spectrum and the weight of the channel 

will be increased by a reward. If SINRi<SINRthr, Ui is blocked by the channel and 

the weight is updated with a punishment. In addition, according to the 

measurement of SINR of the existing users, the existing users whose SINR is 

decreased below the SINR threshold are dropped and the channel weight for these 

users are also decreased accordingly. 

5.3 Simulation Scenarios 

In this chapter, we keep using the basic transmitted-receiver pair communication 

system model introduced in section 4.6 because we try to focus on the 

autonomous behavior of the learning based CR users and consequently achieve a 

deep understanding of such behavior. Again we believe this technique is widely 

applicable to other system models. In fact, the techniques developed in this work 

have been successfully applied to multicasting wireless communication systems 

and CSMA based multiple access schemes.  The fundamental issues of applying 

RL based techniques to CR discovered in this work have also emerged in the 



CHAPTER 5 EXPLORATION CONTROL FOR REINFORCEMENT LEARNING BASED     84 

COGNITIVE RADIO  

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

research work on similar topics in this field, e.g. exploration versus exploitation 

trade-off. 

We are also interested here in an open spectrum scenario where the entire 

spectrum is fully shared, where radio regulations are sufficiently light-touch to 

give all services equal opportunity to use the spectrum.  Such a scenario is seen 

today to a limited extent in the unlicensed bands. 

The IEEE 802.22 standard is considered as a suitable basis to select parameters 

since it is the first wireless standard based on CR techniques [30].  Therefore, we 

link our modeling scenarios with IEEE 802.22 to the highest extent.  The most 

commonly utilized Okumura-Hata propagation model is used along with log-

normal shadowing with a standard deviation of 8 dB.  The values of the 

parameters are shown in table 5.1.  Most of the values are commonly used in this 

type of system. The carrier frequency is defined as 700 MHz to utilize the TV 

white space.  The transmitter antenna height of 30 m is used to comply with both 

the requirements of proposed WRAN system (transmitter up to 30 m) and the 

Okumura-Hata model (which requires transmitters to be in the range 30-200 m) 

[93].   

Moreover, one of the important topics of applying reinforcement learning to 

cognitive radio is to investigate how the users are able to avoid hidden terminals 

purely through reinforcement learning.  Hidden terminals are the main cause of 

dropped calls and it is difficult to tackle the hidden terminal problems only by 

sensing in a fully distributed system.  Therefore, a relatively high interference 

detection threshold of -30 dBm is applied in the simulation, meaning that we 

implement the communication system in an environment where there is 

intentionally higher dropping probability.   
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Table 5.1 Simulation Parameters 

Parameter Value 

Service area 1000km
2
 

Number of users 1000 

Link length 1km-2km 

Number of channels 100 

Carrier Frequency 700MHz 

Transmitter antenna height 30m 

Transmit power 30dBm 

Transmitter antenna gain 0dBi 

Receiver antenna gain 0dBi 

Bandwidth 1MHz 

Noise floor -114dBm 

Interference threshold -30dBm 

SINR threshold 10dB 

 

Weighting factor values are shown in table 5.2. Based on the degree of success, 

either a reward or a punishment is assigned to the weight of the used spectrum. It 

can be seen in table 5.2 that the absolute values of the reward value and the 

punishment value are equal.  The weight is increased or decreased by the same 

step size. Moreover, the size of preferred channel set is set to 5, which is 5% of 

the available resources and the preferred channel weight threshold is set to 5.   

Table 5.2 Weighting Factor Values 

f1 f2 

Reward Punishment Reward Punishment 

1 1 1 -1 
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5.4 Results and Analysis 

Figure 5.2 illustrates the Cumulative Distribution Function (CDF) of system 

blocking probability of the reinforcement learning scheme along with a lower 

bound performance of random spectrum sharing without reinforcement learning. 

The blocking probability has been measured individually at each transmitter pair 

in the service area and a CDF of system blocking probability of these pairs is 

derived.  The individual blocking probability values at each user is thus able to 

show the spatial performance of users. Such information is important since the 

user density in a particular area could significantly influence the way that a local 

user behaves.  On the contrary, the blocking probability at the system level does 

not deliver such information.   

The X axis in figure 5.2 is the value of the blocking probability obtained from the 

model.  The Y axis is the probability that P{x<PB} where PB is a given value of 

blocking probability. The overall blocking probability, the blocking probability in 

the warm up stage, and the blocking probability of the exploitation stage are 

plotted separately. It can be seen that the blocking probability in the warm up 

stage is approximately equal to that of the no learning scheme. This is because in 

the warm up stage, users pick channels in a random way which is the same as the 

no learning scheme. As soon as agents obtain their preferred resource set by 

learning and move to the exploitation stage, the performance is significantly 

improved. The black dashed line, which represents the blocking probability of the 

exploitation stage, achieves the best performance, when compared with the other 

lines in figure 5.2, and the overall performance of the reinforcement learning 

scheme is enhanced consequently.  
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Figure 5.2 Cumulative Distribution Function of System Blocking Probability of 

Transmitter and Receiver Pairs 

Since we use the information of local dropping and blocking to update the 

memory of the CR user, the system performance of dropping probability is also 

improved.  The performance of the two stage algorithm in terms of dropping 

probability is almost identical to that of blocking. Figure 5.3 shows the CDF of 

dropping probability which illustrates the level of system interruption. The 

relative performance is similar to figure 5.2. The dropping probability in the 

warm-up stage and the dropping probability of the no learning scheme are on the 

same level and the overall dropping is greatly improved by reinforcement learning 

in the exploitation stage. 

 

Figure 5.3 Cumulative Distribution Function of System Dropping Probability of 

Transmitter and Receiver Pairs 

The problem of the trade-off between exploration and exploitation can be clearly 

seen in the results.  The learning users cause a higher level of disturbance to the 

environment when they are exploring the spectrum space.  In order to reduce 
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transmission failures, users are required to utilize the results of exploration as 

early as possible, subject to finding suitably good channels. The channel usage of 

the k
th

 user in channel l at time t is defined by the following equation: 
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where t

k

t

lk Uu ,
 (1≤l≤ Nc, Nc is the total number of available channels), t

kU  is the 

channel usage measurements vector of user k (k {1,2,…,Nu}. Nu is the total 

number of user) at time t.  t

lkN ,
 is the total number of activations of user k in 

channel l  by time t.  The measurement t

lku ,
 does not take into account the 

activation duration in this case. 

t

kU  is sorted from the highest to the lowest, showing the channel utilization of 

user k in a descending manner. The sorted vector is represented by Ustd. Ustd of Nu 

users at different time t are then shown in Figure 5.4.  Only the channel usage in 

the top ten utilized channels are shown since it is sufficient to illustrate the users’ 

behaviour.  The figure effectively shows the distribution of channel usage of users 

from the most frequently used channel to the least used channel, which in turn 

shows how the activations of users are converging to their preferred channels.  It 

is quite obvious that at the beginning of the simulation, the channel usage is 

almost equal which means users are trying different channels in the warm up 

stage. After CR users have found their preferred resources, gradually the usage 

converges to a few highly successful channels. About 33% of activations 

succeeded in the first tested channels after 2000 events. This figure becomes 

about 50% after 3000 events, which means half the communication requests of 

the whole system are successfully accepted in the best available channels for the 

users. 
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Figure 5.4 Average Values of Ustd through Thousands of Events 

Figure 5.4 also shows the convergence behavior of our learning scheme. Like 

other learning algorithms for dynamic channel assignment, our scheme needs a 

sufficiently high number of trials to converge to its optimal state. From the start of 

the simulation to about event 1500, CR users found their preferred resources in 

warm up gradually, with our learning scheme converging to its ideal spectrum 

sharing strategy. The learning scheme will arrive at its spectrum sharing 

equilibrium after the majority of CR users have obtained their ideal channel set. 

The available spectrum has been autonomously partitioned by individual 

reinforcement learning consequently, and the users are able to avoid unsuitable 

channels by using their prior experience. How to obtain a quick and efficient 

convergence is crucial in this case. If we suppose all the activations will succeed 

in the first tested channel and purely consider the number of actions for a user to 

get a set of preferred resources, the number of actions which can be denoted by 

Nat will be in a closed interval: ],[ maxmin atatat NNN   where Natmin is the minimum 

number of actions which a user is required to implement in order to obtain a full 
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set of preferred spectrum and Natmax is the maximum number accordingly. Natmin 

can be defined as: 

 
thrpat WSN min  (5-2) 

Sp is the size of the preferred channel set and Wthr stands for the preferred channel 

weight threshold. Natmax is defined as: 

 
pthrcat SWSN  )1(max  (5-3) 

where Sc is the size of the available channel set. If a quick and efficient spectrum 

sharing equilibrium is desired, Natmin and Natmax need to be reduced appropriately. 

The methods which are investigated in this chapter are to adjust the settings of Sp 

and Wthr. For instance, if we use Sp = 5, Wthr = 5 and Sc = 100, therefore Natmin = 

25 and Natmax =405 can be calculated by equations (5-2) and (5-3). A user will 

need at least 25 activations to obtain a set of preferred spectrum and a maximum 

of 405 activations from this point of view. If a smaller value 1 is used to define 

Wthr, Natmin will be 5 and Natmax will be 5 as well. The upper bound of the interval 

has been decreased by 94%. The users in this case will need only 5 activations to 

end the stage of exploration. 

The warm up stage can be controlled by adjusting the size of the preferred 

channel set and the value of the preferred channel weight threshold. Figure 5.5 

and figure 5.6 show the blocking probability and the dropping probability versus 

preferred channel weight threshold respectively. The size of the preferred channel 

set is fixed at 5 in the simulation. It can be seen that the blocking probability and 

dropping probability of the warm up stage remain at a high level due to the 

random action policy. The best overall performance is achieved by the lowest 

value of the threshold, indicating the invasive nature of the channel assignment 

selection and the unsuccessful utilization of channels particularly during 

exploration.  The overall blocking probability is about equal to the blocking 

probability of the exploitation stage if the threshold is 1. The reason is quite 

obvious: the available spectrum pool has been partitioned immediately if a low 

threshold has been applied. Figure 5.7 illustrates the percentage of activations in 
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the warm up stage and the exploitation stage versus preferred channel weight 

threshold. It can be seen that about 99% of activations are activated in the 

exploitation stage when the threshold is 1. A quick channel partitioning enables 

efficient spectrum sharing in this case.  Again, the behaviour of dropping 

probability of users is exactly the same as blocking and it can be explained the 

same way as above. 

 

Figure 5.5 Average Blocking Probability with Different Preferred Channel 

Weight Threshold 

The overall performance keeps rising if we increase the preferred channel weight 

threshold. This is because fewer and fewer users are able to obtain a set of 

preferred resources. It can be seen in Figure 5.7 that after the threshold of 12, the 

activations in the exploitation stage are very close to 0 which means users can 

hardly move into the exploitation stage. Therefore the overall performance in 

figure 5.5 and 5.6 are gradually equivalent to the performance of the warm up 

stage. 
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Figure 5.6 Average Dropping Probability with Different Preferred Channel 

Weight Threshold 

 

 

Figure 5.7 Percentage of Activation with Different Preferred Channel Weight 

Thresholds 
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small number of users who are in very good locations where they receive much 

less disruption will be able to be activated in exploitation in this case, and the 

blocking probability of these well-located users is lower.  It can be seen from 

figure 5.5 that when the threshold is above 12, the users are seldom activated in 

the exploitation stage due to an overly high weight threshold.  Thus, the events 

that happened in exploitation are not statistically sufficient to show the users’ 

behavior correctly for these higher weight thresholds in this scenario. The 

behavior of the dropping probability in the exploitation stage in figure 5.6 can 

also be explained the same way above. 

Figure 5.8 shows the blocking probability when applying different sizes of the 

preferred channel set. The preferred channel weight threshold is fixed at 5 in the 

simulation. The blocking probability in the warm up stage remains at about 0.013 

regardless the value of the size. The blocking probability of the exploitation stage, 

and the overall performance, is much greater than it is in warm up if the size is 

below 5. This is a result of the preferred channel set being relatively small, 

meaning that the alternatives for users are not sufficient.  Therefore the ability of 

spectrum sensing is too constrained. Even though users are able to obtain a set of 

preferred resources fairly quickly by applying a small set size, the probability for 

them to stay in the exploitation stage is still very low. After the size of 5, the 

performance is relatively stable. With the capability of spectrum sensing and a 

sufficient set of ideal resources, the blocking probability can be significantly 

reduced. 
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Figure 5.8 Average Blocking Probability With Different Size of Preferred 

Channel Set 

The behavior of the dropping probability is shown in figure 5.9. The dropping 

probability of the exploitation stage is higher at the beginning because users in 

exploitation stage are experiencing a high level of interruption caused by users 

who are searching for ideal spectrum. Since the channels in the preferred channel 

set are insufficient, users are moved back to warm up frequently in this case. It 

can be seen that after a bigger size has been applied, the dropping probability in 

the exploitation stage will maintain at a low level which means users are able to 

avoid bad spectrum by using the prior experience. However, the overall dropping 

probability keeps rising and will be asymptotically equivalent to the dropping 

probability of the warm up stage because of the reduction of activations in the 

exploitation stage which are caused by the increase in the size of the preferred 

resource set.  

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Size of preferred channel set

A
v
e
ra

g
e
 b

lo
c
k
in

g
 p

ro
b
a
b
ili

ty

 

 

Overall

Exploitation

Warm up



CHAPTER 5 EXPLORATION CONTROL FOR REINFORCEMENT LEARNING BASED     95 

COGNITIVE RADIO  

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

 

Figure 5.9 Average Dropping Probability with Different Size of Preferred 

Channel Set 

5.5 Conclusions  

A two stage spectrum sharing scheme for cognitive radio is introduced in this 

chapter.  The described algorithm is able to practically control the exploration 
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obtained by using a small preferred channel weight threshold.  Moreover, either 

an overly small size of preferred resource set or an overly big size will cause more 

system interruptions rather than sharing spectrum peacefully, and an optimal 

spectrum sharing policy will not be discovered consequently.  If a size of 1 is 

applied, the blocking probability is about 16 times higher than that of size 5.  The 

dropping probability of the exploitation stage is also higher when an overly small 

size is applied.  Both blocking probability and dropping probability decrease to a 

low level when a bigger size of preferred resource set is applied.  By mapping 

memory to the action space and keeping a set of preferred channels, the channel 

usage of a user will converge to a few highly successful channels. About 17% of 

transmissions have been carried out in the best 5 channels after 1000 event. After 

event 3000, this figure is 70%, resulting in improved system performance. 
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Chapter 6. Efficient Exploration for Cognitive 
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6.1 Introduction 

Reinforcement learning is a learning approach which emphasizes individual 

learning from direct interactions with a dynamic environment.  This distinct 

feature of reinforcement learning makes it perfectly suited to a distributed 

cognitive radio scenario.  Very few of the existing reinforcement learning 

algorithms for cognitive radio address the issue of learning efficiency of the 

communication system. An agent will firstly explore the action space allowing the 

actions to be discovered which then need to be exploited to gain enough 

experience [92].  Practically, exploration is the process where the cognitive radio 

examines unused channels in the available spectrum pool.  Cognitive radios will 

only use the channels discovered by exploration in the exploitation phase. The 

tradeoff between exploration and exploitation needs to be more carefully 

controlled for an agent in order to efficiently learn from the interactions with a 

dynamic environment.  Previous research work in chapter 5 showed how the 

exploration versus exploitation tradeoff has a significant influence on system 

performance and how it is possible to practically control the exploration phase.  

Cognitive radio users will receive a higher level of interference when the users are 

exploring their available spectrum space since it is often necessary for a user to 

transmit on a channel in order to completely verify that its transmission can be 

received at a receiver.  This exploration and potential interference does give rise 

to significantly better system performance in the exploitation phase since the 

behavior of users is more stable in this stage. 
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A basic two stage reinforcement learning-based spectrum sharing scheme is 

proposed in chapter 5.  Cognitive radio users search for preferred resources and 

learn from the experience of searching in the exploration stage.  Once users have 

obtained a set of preferred resources, the exploration stage is finished. Cognitive 

radio users will then move to the exploitation stage and only use the spectrum 

assigned a higher usage priority.  This two stage algorithm is able to practically 

separate the exploration phase and the exploitation phase in the learning process, 

meaning that the exploration versus exploitation tradeoff is controllable. However, 

the fundamental exploration strategy we applied is still the most inefficient one – 

the uniform random exploration. Thus the efficiency of the exploration phase has 

the potential to be improved by applying more efficient exploration strategies.  

This chapter introduces efficient exploration techniques for reinforcement 

learning-based cognitive radio. Two novel approaches are presented, pre-

partitioning and weight-driven exploration, to enable efficient exploration in the 

context of cognitive radio. More importantly, the learning efficiency of a 

learning-based cognitive radio is defined and investigated.  In the pre-partitioning 

scheme, users will randomly reserve a certain amount of spectrum resources 

before their transmissions start.  The available action space which a cognitive 

radio needs to explore is then significantly reduced, which in turn shortens the 

exploration stage significantly.  In the weight-driven exploration scheme, a 

certain level exploitation has been carried out in the exploration stage by applying 

a weight-driven probability distribution to influence action selection during 

exploration. Thus, exploration will be more efficient and the overall performance 

of the cognitive radio system can be improved.   

In section 6.2 the general efficient exploration problem is described in the context 

of reinforcement learning.  The efficient exploration techniques developed in this 

work, pre-partitioning and weight-driven exploration, are then introduced in 

section 6.3 as means of tackling this problem.  The spectrum sharing algorithm is 

also introduced and the learning efficiency of the proposed approaches is 

investigated.  In section 6.4 we examine the performance of the efficient 

exploration algorithms in more detail.  The conclusions are drawn in section 6.5. 
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6.2 Efficient Exploration Techniques for Cognitive Radio 

The problem faced by all reinforcement learning-based cognitive radio systems is 

clearly illustrated in figure 6.1 and figure 6.2.  These two figures show the system 

blocking probability and the system dropping probability achieved with our 

uniform random exploration algorithm.  The system performance is worse in the 

exploration phase because the exploring users will cause more interference to the 

environment.  A lower number of system interruptions are achieved in the 

exploitation stage since the channel usage of users converges to their preferred 

resources and the collisions are avoided.  Therefore, an efficient exploration is 

highly desirable in order to reduce the exploration stage. 

 

Figure 6.1 System Blocking Probability of Uniform Random Exploration at 

Different Offered Traffic Levels 
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Figure 6.2 System Dropping Probability of Uniform Random Exploration at 

Different Offered Traffic Levels 

It is crucial that CRs identify their preferred resources efficiently from the 

interactions with a dynamic radio environment. Thus, two efficient exploration 

techniques are proposed in order to accelerate exploration phase. In the pre-
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number of channels and then select appropriate spectrum to transmit.  Based on 

the level of success, the weight of the used resource is modified and then stored in 

the knowledge base, and this information will be utilized as guidance in selection 

of resource for future transmission. 

The opportunity for a channel to be exploited by a cognitive radio is increased by 

pre-partitioning since the action space is reduced. Thus, cognitive radios are able 

to discover a number of preferred channels and move to the exploitation stage 

quicker, which in turn improves the system performance. The analytical results of 

this approach are given in section 6.2.4 along with the analysis of other 

approaches proposed in this chapter. 

6.2.2 Weight-Driven Exploration 

Most of the existing reinforcement learning-based algorithms for cognitive radio 

including our previous algorithms apply uniform random exploration strategy 

with uniform probability.  Like a ‘uniform random walk’, conventional cognitive 

radio explores the available spectrum pool by accessing all resources with equal 

probability, regardless of the information gained by exploration.  Research shows 

that the uniform random exploration is the most inefficient approach to achieve a 

goal [92]. 

As a result, a weight-driven probability distribution is proposed for the 

exploration process in this work to influence the action strategy by utilizing 

current weight information in exploration. Weights are values attached to a used 

resource and the values reflect the successful level of usage of this resource 

historically. Therefore, weights of used resources correspond to the historical 

information learned by cognitive radio users. Weight-driven exploration is a 

variation of Boltzmann exploration [92]. Boltzmann exploration uses a parameter 

called temperature (T) to control the probability of executing exploration. The 

difference is that in weight-driven exploration the temperature T is constantly 

changing. The weight-driven probability is defined as: 
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where P(c) is the probability of a channel being selected. wc is the weight value of 

the channel at current state.  C is the whole available resource space, c’ is the 

channel in the available resource space. wc’ is the weight of c’ at the current state. 

All the weights of resources will start with an equal value. Therefore, weight-

driven exploration will start with a uniform random exploration at the first trial. 

After that, the exploration strategy is constantly modified by the weight-driven 

probability distribution. The higher the weight of the resource, the more likely the 

resource will be selected. On the one hand, the weight-driven probability 

distribution ensures exploration by bringing randomness into resource selection.  

On the other hand, the weight-driven probability distribution also utilizes the 

information gained in exploration to guide the exploration process itself.  By 

applying exploitative information, exploration will be much more efficient. 

6.2.3 Efficient Exploration based Cognitive Radio Spectrum Sharing 

Algorithm 

Fig.6.3 shows the algorithm for fully distributed cognitive radio spectrum sharing, 

operating on individual transmitter-receiver pairs.  The basic two-stage 

reinforcement learning based algorithm for cognitive radio proposed previously is 

used as a basis here.  A preferred resource set is used to separate and control the 

exploration phase.  A used resource is considered as a preferred resource when 

the weight of the resource is above a specific weight threshold, and it will be 

placed into a preferred resource set. 

A user will firstly evaluate its own state at the beginning of a new activation.  If 

the preferred resource set is fully occupied by good resources, the user will stay in 

exploration. Otherwise it will move to the exploitation stage.  The spectrum 

assignment part in Fig.6.3 is highlighted in the flowchart to clearly show the 

different action strategies proposed in this thesis.  Pre-partitioning and the weight-

driven exploration are the approaches that can be applied to the spectrum 

assignment part in the exploration stage.  In the exploration stage, a cognitive 
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radio searches for available resources and learns from the experience of searching.  

After the preferred resource set is fully occupied by good resources, exploration 

will be suspended and the user will exploit resources in the preferred resource set 

only.  A user will start to explore again if any of its preferred resources are no 

longer suitable for transmission (if the weight of a channel is decreased below the 

weight threshold).   
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Figure 6.3 Flowchart of Efficient Exploration Algorithm as Simulated for 

Individual Transmitter-Receiver Pairs 
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According to the channel assignment strategy applied under current state, the user 

will make a decision on channel selection.  After that, spectrum sensing will be 

performed on the selected channel.  If it is an unoccupied channel, the 

transmission will start, subject to SINR measuring.  The user will try to find 

another channel if the selected channel failed to meet the threshold in spectrum 

sensing.  The weight of the channel will be updated according to the results of the 

user’s activation in this channel. 

6.2.4 Learning Efficiency 

The dynamic nature of cognitive radio calls for an efficient learning process, 

maximizing the useful information gained by learning while minimizing the costs 

of learning.  To provide a measure of how efficient the learning process is, we can 

define the learning efficiency as: 

 
CostLearningTotal

CostLearningUseful
EfficiencyLearning   (6-2) 

Where the total learning cost is the time consumed by a learning agent to finish a 

task, and the useful learning cost is the time consumed to exploit the optimal 

strategy only.  In the cognitive radio spectrum sharing case, the total learning cost 

is the number of trials the cognitive radio uses to find the optimal channel, and the 

useful learning cost is the number of trials the user uses to exploit this optimal 

channel.  Thus, the learning efficiency for cognitive radio spectrum sharing can 

be defined as: 

 
TrialsofNumberTotal

TrialsUseful
EfficiencyLearning   (6-3) 

The number of useful trials can be obtained by the equation as follows: 

 
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where VT is the targeted weight value, and a channel is considered as an optimal 

resource when the weight of a channel wc is equal to VT.  n is the number of trials 
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and NE is the useful trials used to exploit the optimal resource. rn is the reward 

received at each trial. 

Equation (4-9) is used to update the weight values in this thesis and the 

accumulated weight value after n trials is: 

 
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W0 is the initial weight of a channel. f1 and f2 are weighting factors introduced in 

section 2.5.  Therefore equation (6-5) can be rewritten as:  
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If E[P(c)] is the expected value of the probability for a channel to be selected in 

each trial and the total number of trials that a cognitive radio uses to find the 

optimal resource is NT , NE can be obtained as: 

   cPENN TE   (6-7) 

Equation (6-6) then can be written as: 

 
  

  






cPEN

n

ncPEN
T

T

T ffWfV
1

1
1201  (6-8) 

The total number of trials a cognitive radio requires to find an optimal channel 

(when the weight of the channel Wc equals to VT) can then be obtained from 

equation (6-8). The targeted weight value is effectively the preferred channel 

weight threshold in our algorithm.  The influence of VT and how to define VT in a 

cognitive radio system have been investigated in our previous work [89]. 

It is possible to perform a basic analysis of learning cost of each scheme. To 

simplify the environment faced by the learning-enabled cognitive radio, we 

assume optimistically that all selected actions will succeed and the weight of the 

successful action will increase by 1 in each trial. Thus, f1 and f2  always equal to 1.  

We also assume that W0 equals 0.  Therefore, equation (6-8) can be written as: 
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NT then can be obtained as: 

 
)]([ cPE

V
N T

T   (6-10) 

It is also very important to notice that by giving a fixed VT, the higher the E[P(c)], 

and the lower the NT .  In other words, in order to find an optimal channel quickly, 

the expected value of the probability for a channel to be selected in each trial 

needs to be increased.  The purpose of the proposed efficient exploration in this 

paper is to increase E[P(c)]. 

In the uniform random scheme, the user accesses available channels with equal 

probability, and the probability for a channel to be selected in each activation can 

be calculated by: 
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where Nc is the total number of available channels.  The probability for a channel 

to be selected in the pre-partitioning scheme can also be obtained: 
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where Nr is the number of channels in the reserved channel set.  The decrease of 

the learning cost by pre-partitioning can be illustrated if we compare the learning 

cost of the uniform random exploration scheme and pre-partitioning scheme by 

the following equation:  
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Thus, a small reserved channel set reduces the learning cost theoretically. 

However, an overly small value of Nr may not enable good channels to be 

discovered from a radio system perspective, so the system performance may not 

improve by as much as we expect theoretically.  This tradeoff affecting system 



CHAPTER 6 EFFICIENT EXPLORATION FOR COGNITIVE RADIO 107 

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

performance of reducing the level of Nr and obtaining good channels from the 

radio system perspective is discussed in more detail later. 

Figure 6.4 compares the learning cost of two proposed schemes with the uniform 

random exploration scheme for a single cognitive radio user.  The learning cost is 

effectively the number of trials taken in training. Obtaining an analytical 

expression for E[Pw(c)] in the weight-driven exploration scheme is complex and 

beyond the scope of this thesis, since the probability of selecting a channel 

changes in every trial.  Moreover, the probability distribution also changes 

according to equation (6-1).  Therefore, figure 6.4 only includes results obtained 

by simulation.  The theoretical results are calculated by the equations above.  

W0=0, Nc=100 and Nr=30, with the same values used in the simulation. The 

number of trials the agent used to find the best available channel can also be 

obtained at different targeted weight values.  The reduction in the learning cost as 

a result of pre-partitioning and weight-driven exploration can be clearly seen from 

this figure.  Thus, the proposed exploration techniques are significantly more 

efficient than the uniform random exploration. 

 

Figure 6.4 Exploration Costs (Number of Trials Required per Task) for A 

Learning Agent 
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6.3 Results and Analysis 

We keep using IEEE 802.22 as the basis to select parameters in this chapter.  The 

important parameters used in this simulation are shown in table 6.1. The 

propagation model applied is Okumura-Hata propagation model with 8dB log-

normal shadowing [85].  No further power control policy is applied.  The value 

function 4-9 is also used in this chapter and the values of weighting factors are 

shown in table 6.2. 

Table 6.1 Simulation Parameters 

Parameter Value 

Service area 100km
2
 

Number of users 100 

Link length 0.2km-1.5km 

Number of channels 20 

Carrier Frequency 700MHz 

Transmitter antenna height 30m 

Transmit power 30dBm 

Transmitter antenna gain 0dBi 

Receiver antenna gain 0dBi 

Bandwidth 1MHz 

Noise floor -114dBm 

Interference threshold -20dBm 

SINR threshold 10dB 

Size of preferred channel set 3 

Preferred channel weight threshold 3 

Size of reserved resource set 20 

 

Table 6.2 Weighting Factor Values 

f1 f2 

Reward Punishment Reward Punishment 

1 1 1 -1 
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We also keep using the open spectrum scenario and the transmitter-receiver pair 

system model where all users are given equal priority to use the spectrum – a 

cognitive only band where the users are purely cognitive radios.  It is worth 

investigating the system performance in a cognitive only band since it is likely in 

the future that devices in such (‘unlicensed’) bands will become increasingly 

cognitive, enabling them to deal with interference and reconfigure, allowing new 

more efficient techniques and solutions to be developed.  Our approach is 

different from pure opportunistic scheduling since we understand a cognitive 

radio to have distinct features of spectrum cognition, intelligence and 

reconfigurability.  It is these three features that have the potential to significantly 

enhance the capability of future communication systems. 

Figure 6.5 shows the significant improvement achieved by applying pre-

partitioning and weight-driven exploration in terms of overall blocking 

probability, compared with a no learning scheme and the uniform random 

exploration scheme. 

 

Figure 6.5 System Blocking Probability at Different Offered Traffic Levels 
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It can be seen that the performance of the basic uniform random exploration 

algorithm has been improved by random spectrum pre-partitioning.  This is 

because random pre-partitioning will significantly reduce the size of the available 

spectrum pool of each user. Therefore, the requirements for the learning part of 

the agent to explore the action space are reduced.  In other words, the initial 

exploration stage of a cognitive radio user is accelerated by pre-partitioning.  The 

blocking probability of the weight-driven exploration scheme is also significantly 

lower than the uniform random exploration scheme.  This is because weight-

driven exploration is much more efficient and the users will find their optimal 

resources faster than the uniformly exploring users.  Users cause less interference 

to others since they are spending less time exploring. 

The weight-driven exploration scheme also performs better than the pre-

partitioning scheme in general.  It is shown that the blocking probability of the 

weight-driven exploration scheme is higher than the pre-partitioning scheme 

when the offered traffic is lower than 4 Erlangs. In this case, more direct spectrum 

partitioning is more efficient. The interfering pairs are quickly constrained in their 

reserved spectrum set and are no longer a source of interference. However, the 

blocking probability of the weight-driven exploration scheme is lower when the 

offered traffic is above 4 Erlangs.  The users in the pre-partitioning scheme suffer 

from a higher level of blocking probability since they only have access to a 

random subset of the entire spectrum pool (20% of the spectrum pool in this 

simulation), meaning that they have fewer alternatives if the level of transmission 

requests is high and the reserved channels are not suitable for communication.  

The blocking probability of the pre-partitioning scheme will increase quickly if 

we increase the offered traffic.  The drawback of pre-partitioning is clear that 

some users may be constrained to a set of channels which have a high level of 

interference. Consequently these users may find it difficult to find unoccupied 

spectrum to use for communication.  It is clear that a small preferred channel set 

is more suitable for a low offered traffic scenario.  Pre-partitioning will lose its 

advantage when the offered traffic is high.  Therefore, the advantage of the 

weight-driven exploration scheme on system blocking is clear. 
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Transmission dropping is mainly caused by hidden terminals. Therefore, the 

improvement on system dropping probability is purely achieved by reinforcement 

learning.  Fig.6.6 compares the dropping probabilities of the 3 reinforcement 

learning based schemes in the same way as Fig.6.5.   

 

Figure 6.6 System Dropping Probability at Different Offered Traffic Levels 
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mean interarrival time is shorter which means the information learned by users 

will be used more efficiently to avoid dropping. 

Unlike the weight-driven exploration scheme, the reduction in system dropping 

probability by pre-partitioning is significant.  The dropping probability of the pre-

partitioning scheme is the lowest of the 3 schemes.  This is because the spectrum 

pool is quickly partitioned and the users are constrained in their channel sets.  The 

probability that transmissions which are dropped by hidden terminal effect is 

reduced.  The trade-off between blocking probability and dropping probability of 

the communication system is clear in this case.  The improvement in terms of 

dropping probability by pre-partitioning is obtained at the expense of a higher 

level of transmission blocking. 

Fig.6.7 shows that the probability of a user being activated in the exploitation 

stage is increased by applying the proposed approaches. The improvement of the 

efficient exploration scheme can be clearly seen. The number of activations in the 

exploitation phase of the weight-driven exploration scheme is about 40% higher 

on average than the uniform random exploration scheme.  The figure is about 25% 

for the pre-partitioning scheme. Moreover, this figure drops more slowly in the 

weight-driven exploration scheme if we increase the traffic load which means that 

the users not only converge to exploitation faster by weight-driven exploration, 

but the probability of remaining in the exploitation stage is also higher.  The 

percentage of activations in exploitation will only decrease by about 2.5% in the 

weight-driven exploration scheme if we increase the offered traffic from 1 Erlang 

to 10 Erlangs. However, this figure is 19% in the uniform exploration scheme.  

The line corresponding to pre-partitioning scheme in Fig.6.7 drops even faster 

than the uniform random scheme when the offered traffic is above 6 Erlangs.  

Here the users struggle to find a suitable channel since the available resources are 

very limited in the pre-partitioning scheme.  

Fig.6.8 shows the blocking probability of the weight-driven approach in more 

detail.  It can be seen that by applying weight-driven exploration, not only is the 

blocking probability of the exploration stage significantly lower compared to the 

previous scheme, but the blocking probability in the exploitation stage is also 
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improved.  The available spectrum is quickly partitioned through reinforcement 

learning in this case and the system is more stable.  

 

Figure 6.7 Percentage of Activation in Exploitation at Different Offered Traffic 

Levels 
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because more and more users will stay in the exploration stage.  Additional 

blocking will take place in exploration accordingly. 

 

Figure 6.8 System Blocking Probability in Different Stages at Different Offered 

Traffic Levels 
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Figure 6.9 System Dropping Probability in Different Stages at Different Offered 

Traffic Levels 
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Therefore, users in a local area have a better opportunity to avoid each other, and 

the probability that transmissions are interfered by hidden terminals is reduced 

Weight-driven exploration utilizes the information gained in exploration to guide 

the exploration process itself, and weight-driven exploration also ensures 

exploration by merging randomness into action selection.  Simulation results 

show how the number of activations in the exploitation stage is 40% higher on 

average by applying weight-driven exploration. The system is more stable and the 

overall performance is significantly better than the uniform random exploration 

scheme. 
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Chapter 7. Learning-based Green Cognitive Radio 
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7.1 Introduction 

According to Moore’s Law [96], the processing power of CPUs and the mass 

storage capacity of devices double approximately every two years. The rapid 

growth of computing power significantly promotes the capacity of wireless 

communication devices. This in turn attracts massive data flow between the 

wireless devices.  Thus, bandwidth efficiency has been the primary research topic 

in the field of wireless communications over the past few decades, resulting in 

many highly complex techniques and devices that are capable of delivering 

significantly high bandwidth efficiency. Figure 7.1 (directly reproduced from [97]) 

shows the significant development of data rates in wireless systems in recent 20 

years. For example, the data rates of mobile networks has increased from merely a 

few kbps to hundreds of Mbps in about 15 years. 

Nevertheless, the increase of power consumption associated with achieving high 

bandwidth efficiency is also significant. It is estimated that a 16-20% increase 

each year can be expected on the power consumption of mobile networks [98]. In 

other words, the power consumption of mobile network doubles every 5 years. 

The global energy usage of mobile networks is about 123.98 Billion kWh per year, 

and is already contributing to about 1% of the total world energy consumption 

[99]. Thus, how to reduce the energy consumption of wireless communications 

system and enable ‘green’ communication has recently become an increasingly 

important topic.  
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Figure 7.1 Wireless System Development Roadmap (directly reproduced from 

[97]) 

Cognitive radio systems are becoming increasingly complex, largely due to the 

increasing flexibility required by different services. This complexity in turn leads 

to power intensive devices.  The purpose of this chapter is to introduce distributed 

reinforcement learning-based strategies that are able to reduce the energy 

consumption and the complexity of a cognitive radio system. 

7.2 Learning-based Green Cognitive Radio 

Spectrum awareness is a vital element of cognitive radio. Cognitive radio needs to 

either periodically or continuously sense the spectrum to obtain the information of 

the environment. The process of spectrum sensing, as a means of monitoring 

radio activity in a given bandwidth, is a power-intensive and time-consuming 

process. Take the ‘Cognitive, Radio-Aware, Low-Cost (CORAL) Research 

Platform’ for example [100], the cognitive radio platform that developed by 

Communications Research Centre Canada takes about 20 seconds to scan a 83 

MHz wide frequency band.  The time consumption is significant.  The energy 

consumption of spectrum sensing is also likely to be high.  Since there are no 

figures available to directly show the power consumption of spectrum sensing for 

cognitive radio, we take an example from the field of wireless sensor networks.  

The energy consumption of a sensor node in transmitting and receiving mode is 
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24.75 mW and 13.5 mW respectively, and there is no power consumption 

difference between listening and receiving [101].  The energy consumption of 

listening and receiving is about 50% of transmitting. Thus it is foreseen that 

spectrum sensing will be one of the main sources of energy consumption within a 

CR device.   

Two main approaches of spectrum sensing have been proposed for cognitive radio: 

energy detection and feature detection [2].  The disadvantage of the energy 

detection technique is that the energy detector is unable to differentiate between 

modulated signals, interference and noise.  However, energy detection has the 

advantage of lower energy and time consumption compared with feature detection.  

Feature detection needs significantly longer observation time to recognize 

different types of signals and it is computationally complex, which calls for a 

more sophisticated device both in software and hardware.  

It has been shown how distributed reinforcement learning is perfectly suited to 

cognitive radio spectrum sharing scenarios in the previous chapters.  

Reinforcement learning-based techniques have the potential to efficiently exploit 

the available spectrum resource.  Instead of sensing the entire available spectrum 

arbitrarily, this approach is able to share the spectrum based on an optimum 

spectrum sharing strategy, discovered by agents from their interaction with the 

wireless communication environment. Therefore energy efficiency of the wireless 

communication device can be improved. Moreover, spectrum decisions can be 

made only by the results of learning instead of spectrum sensing after an adequate 

channel partitioning has been established.  In other words, spectrum sensing can 

be replaced by intelligence if the available spectrum can be partitioned 

autonomously by individual learning. A cognitive radio is able to avoid unsuitable 

spectrum thereafter. The energy efficiency for spectrum sensing can be 

maximized accordingly [102].  

The purpose of this chapter is to explore the green aspects of the reinforcement 

learning-based algorithms introduced in previous chapters. This is achieved by 

limiting the requirement by using the experience gained by the learning users. 

Once users are mature enough to choose a suitable channel purely by learning, 
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they are allowed to set up wireless links without sensing the target resource 

beforehand.  

There are two ways in which energy efficiency can be improved.  The first one is 

to use distributed reinforcement learning to limit or even replace sensing 

techniques whenever it is possible, achieving good performance in most of the 

communication tasks. The other way is to enable a very efficient utilization of 

very basic spectrum sensing techniques by distributed reinforcement learning. By 

combining appropriate learning techniques with a few essential elements of 

cognitive radio, low complexity ‘intelligent’ strategies will be able to significantly 

reduce the energy consumption of cognitive radio [102]. 

Thus, two spectrum reduction schemes are compared with a full sensing scheme 

where Cognitive Radio users scan the target spectrum at the beginning of every 

activation: (1) a restricted sensing scheme that users only sense the spectrum in 

their ideal resource set; and (2) a minimum sensing scheme where users directly 

use their preferred resources to communicate without sensing. The time and 

power consumption of these schemes is also shown to illustrate the benefits of our 

scheme. The further spectrum sensing reduction achieved by efficient exploration 

techniques we introduced in chapter 6 is also investigated in this chapter in 

section 7.2.2. 

7.2.1 Learning-based Spectrum Sensing Reduction Algorithms 

The spectrum sensing reduction algorithms is illustrated in figure 7.2 

The two-stage algorithm introduced in chapter 5 is the basis of our spectrum 

sensing reduction schemes. Ui will evaluate its own local system state first. In this 

case, it is whether Ui has found its preferred resource set.  
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Figure 7.2 Algorithm Flowchart 

If Ui is still in the exploration stage, it chooses a channel randomly from the 

available spectrum set, and then Ui senses the interference level on that channel. 

If Ui is in the exploitation stage then:  
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 Restricted sensing scheme: Ui senses the spectrum in their ideal 

resource set randomly. 

 Minimum sensing scheme: Ui directly accesses the spectrum in the 

preferred channel set without sensing. 

Instead of sensing the entire available spectrum arbitrarily, the scheme is designed 

to share the spectrum based on a spectrum sharing strategy discovered by the 

agents from their interaction with the wireless communication environment. Thus, 

by reducing the requirement of spectrum sensing or even bypass spectrum sensing 

in the exploitation stage, the overall energy consumption is expected to be 

decreased. 

The improvement in the energy efficiency of spectrum sensing can be assessed in 

an indirect way by examining the number of sensed channels.  This has been 

assessed through simulation. 1000 cognitive radio transmitter-receiver pairs are 

assumed to be uniformly distributed throughout a square service area of 1000 km
2
.  

100 channels are available for communication.  The Okumura-Hata propagation 

model is used along with log-normal shadowing with a standard deviation of 8 dB.  

The wireless link length is uniformly distributed between 1 km and 2k m. A 

carrier frequency of 300 MHz is used and the transmitter antenna height is set to 

30 m. The transmit power is fixed at 30 dBm and no further power control policy 

is applied. The gains of the transmit and receive antennas are both fixed at 0 dBi. 

An event-based scenario is considered. At each event a random subset of pairs are 

activated, up to a maximum of 400. Only energy detection sensing is applied to 

cognitive radio. A fixed interference threshold of -40 dBm is used. The SINR 

threshold is set to 10 dB. The improvement on energy efficiency associated with 

spectrum sensing by reinforcement learning is shown in figure 7.3. 

The advantages of the intelligence-based strategies can be clearly seen from 

figure 7.3. The number of sensed channels effectively represents the time and 

energy consumption of spectrum sensing.  The crossed line maintains its position 

around 1.15 because cognitive radios sense every target channel on a random 

basis.  The triangle line converges to 1 since the probability to successfully set up 
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a transmission link in the first tested channel is increased by reinforcement 

learning. The restricted sensing scheme where cognitive radio can avoid use of an 

improper resource by learning also outperforms in terms of bandwidth efficiency.  

The total energy consumption of the minimum sensing scheme after event 2000 is 

only about 1.72% of the full sensing scheme, assuming that energy consumption 

increases with the number of channels sensed.  The line with the star symbol 

which represents the energy consumption of the minimum sensing falls towards 

zero which means spectrum sensing can be stopped if the available spectrum is 

fully partitioned by learning. 

 

Figure 7.3 Average Number of Sensed Channels 

Fig. 7.3 also shows the convergence behaviour of our learning schemes. Like 

other learning algorithms for dynamic channel assignment [56], our scheme needs 

a sufficiently high number of stages to converge to its optimal state. From the 

start of the simulation to event 2000, our learning scheme has converged to its 

ideal spectrum sharing strategy. CR users found their preferred resource set 

gradually. After event 2000, the learning scheme finally arrived at its spectrum 

sharing equilibrium which practically means CR users’ preferred resource sets are 

fully occupied by good channels. The user is able to avoid improper channels by 
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using its prior experience. Though the node is designed to move back to the pre-

play stage if only one of its preferred channels is no longer good to communicate, 

the state of the learning scheme is extremely stable. Obviously, the CR users in 

our scheme have the potential to share spectrum in a ‘polite’ way even if they do 

not sense beforehand. 

In order to illustrate the system performance in more detail, we record the number 

of sensed channels in each activation and plot the CDF of it in figure 7.4. It can be 

seen that about 77% of the transmission activations in the minimum sensing 

scheme succeed without sensing the target spectrum. The restricted sensing 

scheme performs slightly better than the full sensing scheme. About 90% of the 

communication requests in the restricted sensing scheme succeed before the user 

tests the third channel, but in the full sensing scheme only 85% users are able to 

meet this requirement. Figure 7.4 also shows that about 99% requests are 

accomplished before sensing four channels. 

 

Figure 7.4 Cumulative Distribution Function of the Number of Sensed Channels 

in Each Communication Activation 

Fig 7.5 illustrates the CDF of system blocking probability of the three schemes 

which we discussed before. About 70% users’ blocking probability in the 
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minimum sensing scheme are below 0.04. But in the full sensing scheme and the 

restricted sensing scheme, it is about 87% and 95% respectively. Comparing with 

the red dotted line which is the CDF of the full sensing scheme, the blocking 

probability of the minimum sensing scheme is higher. It is reasonable that a 

scheme which always chooses a free channel to operate performs better than a 

scheme occasionally picks a channel without sensing. It is not expected that the 

minimum sensing scheme can show its advantages from this point of view. On the 

contrary, the restricted sensing scheme achieves a better performance compared to 

the full sensing scheme. This is because the user in the restricted sensing scheme 

is able to sense the channels which have higher probability to success according 

to prior experience. This is particularly important because communication can 

still be dropped. 

 

Figure 7.5 Cumulative Distribution Function of System Blocking Probability at 

Discrete points over the Service Area 

It can be seen that in every scheme there are about 2% of users whose blocking 

probability is above 0.2. The blocking probability of these users is difficult to 

improve no matter which scheme is applied. This is because these users are 

located either at an extremely high user density area or at a place suffering 
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significant shadowing. The opportunity for these users to successfully set up a 

communication link is limited. 

Figure 7.6 shows the CDF of dropping probability which illustrates the level of 

system interruption. Since the information of system dropping is also used to 

update the spectrum sharing strategy, the performance of the restricted sensing 

scheme is better than the scheme without learning. But just like the performance 

of blocking probability, the dropping probability of the minimum sensing is also 

higher than the full sensing scheme. A scheme which stops sensing to some extent 

cannot perform better than the full sensing scheme in the aspect of 

communication quality. However, it can be seen that the overall performance of 

the minimum scheme is acceptable given that the gap between the minimum 

sensing scheme and others is not large. The genuine benefit of the limited sensing 

schemes is discussed in the following paragraphs. 

 

Figure 7.6 Cumulative Distribution Function of System Dropping Probability at 

Discrete points over the Service area 

By utilizing reinforcement learning, the need for spectrum sensing is significantly 

reduced. The overall time and energy consumption of spectrum sensing in the 

minimum sensing scheme is about 23% of the full sensing scheme. After the 
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minimum sensing scheme converged to its spectrum sharing equilibrium, this 

figure is only 1.72%. The restricted sensing scheme improves the system 

performance in two aspects: the sensing consumption is 5% lower than the full 

sensing scheme. Furthermore, the blocking and dropping probability is also the 

lowest of the three schemes. Since time and power efficiency are critical issues in 

real time communication, the advantages of our learning scheme is definite. 

It is possible to improve the energy efficiency even further if more complex 

sensing approaches are applied [103]. Take IEEE 802.22 for example [30], which 

employs two stages of sensing: fast sensing and fine sensing.  Fast sensing 

estimates interference power in different channels over a very short time period 

and returns limited information for fine sensing. Fine sensing will then sense the 

target channels for a significantly longer period of time.  Here energy 

consumption can be further reduced by applying artificial intelligence techniques 

described previously. 

7.2.2 Spectrum Sensing Reduction by Efficient Exploration 

The efficiency of spectrum sensing can be improved further by applying efficient 

exploration techniques described in chapter 6.  Again the energy consumption of 

spectrum sensing can be assessed indirectly by examining the number of sensed 

channels per activation, and this is shown in Fig 7.7.  

The pre-partitioning scheme and weight-driven exploration scheme are compared 

with a no learning scheme and a uniform random exploration-based learning 

scheme.  It can be seen that the efficient exploration-based schemes will consume 

less power than the other two schemes since the efficient exploration techniques 

will significantly improve the learning efficiency of the users, meaning that the 

uses are able to discover their preferred resource more efficiently. 

Thus, the energy consumption of the basic uniform random exploration approach 

is further improved by the proposed efficient exploration techniques.  The biggest 

reduction in exploration is achieved by weight-driven exploration.  Compared to 

the pre-partitioning scheme, users in the weight-driven scheme will not exclude 
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any channels in exploration.  Therefore, the performance of the weight-driven 

exploration scheme will not be affected by the absence of initial choice. 

  

Figure 7.7 Average Number of Sensed Channels per Activation 

7.3 Conclusions 

This chapter has addressed the issue of Green cognitive radio. We have shown 

how by exploiting reinforcement based learning, it is possible to virtually 

partition a set of channels to reduce the need to sense the radio spectrum as 

frequently, resulting in fewer channels to be scanned overall, enabling energy 

savings.  

It is shown that by acquiring a subset of preferred resources, the restricted sensing 

scheme and the minimum sensing scheme are able to significantly reduce the 

need for spectrum sensing. The overall energy consumption of spectrum sensing 

in the minimum sensing scheme is about 23% of the full sensing scheme. After 

the minimum sensing scheme converged to its spectrum sharing equilibrium, this 

figure is only 1.72%. The restricted sensing scheme improves the system 

performance in two aspects: the sensing consumption is 5% lower than the full 
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sensing scheme. Moreover, the blocking and dropping probability is also the 

lowest of the three schemes. The advantages of our learning scheme is obvious 

since time and power efficiency are critical issues in real time communication 

Efficient learning-based algorithms are able to reduce the requirement of 

spectrum sensing further. In the pre-partitioning scheme, the spectrum pool is 

fully partitioned before transmissions start. Weight-driven exploration utilizes the 

information gained in exploration to guide the exploration process itself, and 

weight-driven exploration also ensures exploration by merging randomness into 

action selection. Thus more activations are accepted in the exploitation phase that 

the requirements for spectrum sensing are reduced. Simulation results show that 

the weight-driven exploration scheme achieves the highest spectrum sensing 

reduction in all the proposed schemes. 



CHAPTER 8 REINFORCEMENT LEARNING BASED COGNITIVE CHANNEL                  130 

ASSIGNMENT FOR DUAL-HOP BEYOND NEXT GENERATION MOBILE NETWORK  

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

Chapter 8. Reinforcement Learning-based 

Cognitive Channel Assignment for Dual-

Hop Beyond Next Generation Mobile 

Networks 

Contents 

 

8.1 Introduction .................................................................................. 130 

8.2 Beyond Next Generation Mobile Network: System Model ........ 131 

8.3 Reinforcement Learning-based Channel Assignment for Beyond 

Next Generation Mobile Network ............................................... 133 

8.4 System Modelling Scenario ......................................................... 137 

8.5 Results .......................................................................................... 148 

8.6 Conclusions .................................................................................. 155 

 

8.1 Introduction 

One of the requirements for the next generation wireless communication system is 

to provide high throughput per user. However, it is also crucial that future systems 

are able to provide the required average data rate to all  active users 

simultaneously within a geographical area. This is particularly true in the highly 

populated urban city centre areas where the demand for wireless broadband 

service is the highest. The current 4G technologies LTE and WiMAX are 

designed to provide a throughput density of about 100 Mbps/km
2
 in traditional 

cellular deployments [104].  The capacity density of current next generation 

techniques may be adequate in less populated areas, but in an area where the user 

density is much higher, the capacity of the system becomes inadequate. The 

highest population density city Mumbai has a population density of 29,650 

people/km
2
. The typical population density in the commercial areas of a European 

city is about 8,000 people/km
2
 [104].  If we assume only 10% of the 8000 people 

are subscribed to the wireless broadband service and only 20% of those 

subscribers require simultaneous wireless broadband service access, and if we 

also assume the data rate of each subscriber is 5 Mbps, then the required overall 

capacity density will be: 
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 MbpsMbps 8005%20%10000,8   (8-1) 

It can been seen that the required capacity density in a near future is an order of 

magnitude higher than the current next generation systems. 

Thus the primary goal of the Dual-Hop Beyond Next Generation Mobile Network 

is to improve the overall capacity density of the mobile network to 1 Gbit/s/km
2
 

anywhere in the service area [22]. In order to meet this ambitious goal, a number 

of novel advanced techniques have been introduced, including the application of a 

two-tier system architecture (shown later in figure 8.1), multi-beam directional 

antenna, multi-beam assisted MIMO and collaborative MIMO, and cognitive 

radio techniques.  

The complex dual-hop architecture not only leads to a greater level of interference, 

but also requires a higher level of complexity in radio resource management.   

Spectrum decisions therefore better to be made in a distributed fashion in order to 

achieve the aggressive target of 1 Gbps/km
2 

throughput density. The cognitive 

radio based technique is a feasible approach for the resource management of the 

access and self-backhaul. Comparing with conventional dynamic radio resource 

management (RRM) approaches, cognitive radio based techniques have the 

potential to improve spectrum efficiency, reduce overall complexity, and improve 

link reliability. The work in this chapter is developed from the techniques we 

have introduced in previous chapters. The advantages of our reinforcement 

learning-based schemes are clear that not only they outperform non-learning 

schemes, but also the self-organizing features enabled by learning are particularly 

desirable for the Beyond Next Generation Mobile System’s complex resource 

management tasks. 

8.2 Beyond Next Generation Mobile Network: System Model 

A novel dual-hop architecture shown in figure 8.1 has been proposed for the 

beyond next generation mobile network [22]. In order to provide a cost-efficient 

high capacity density anywhere in the cell, the system is composed of an access 
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network and a self-backhaul network. The key elements of the novel architecture 

shown in the figure are: 

 

Self-backhaul network

HSS MS

Access network

ABSHBS

Co-located

 

Figure 8.1 Beyond Next Generation Mobile Network System Architecture 

 Hub Base Station (HBS): an entity that connected to the operater’s 

backhaul network. Multi-beam directional antenna is deployed over 

roof-top at HBSs, providing high capacity self-backhaul link to the 

access network entities.  

 Access Base Station (ABS): a low-cost entity that provides the access 

to the mobile subscribes. A large number of ABSs will be mounted 

below roof-top on electricity poles, traffic lights, traffic signs, etc. 

ABS has wired connections to the Hub Subscriber Station. ABSs also 

have two single-beam directional antennas pointed to two opposing 

directions, providing the desired capacity to the mobiles. 

 Hub Subscriber Station (HSS): an entity that connected to ABS by a 

wired link and to the HBS by a single-beam directional antenna.  

 Mobile Subscribers (MS): connected to different ABSs depending on 

their location. 

A large number of ABSs are deployed along the streets, providing sufficient 

coverage to MSs. The aggregated traffic at ABSs are then transmitted to the 

associated HBSs. By applying directional antenna and advanced radio resource 

management techniques, the ambitious goal of 1 Gbps/km
2
 is possible to be 

delivered. 
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8.3 Reinforcement Learning-based Channel Assignment for 

Beyond Next Generation Mobile Network 

Reinforcement learning-based cognitive radio channel assignment techniques 

have the potential to be applied to beyond next generation mobile network 

systems, including base stations and mobile users. Cognitive techniques, such as 

spectrum sensing and machine learning, are able to enable a very aggressive 

frequency reuse while reducing the radio resource management complexity. 

Entities in the system will have the access to all the available frequency bands, 

and the channel decision will be made individually by the entities in a distributed 

fashion. Available frequency bands are periodically monitored, through channel 

utilization data base or spectrum sensing. Learning techniques will then utilize the 

information gained in sensing. In this case a single learning engine processes the 

information for both hops of the wireless link simultaneously as shown in figure 

8.2. The goal is to enable an efficient autonomous spectrum sharing between 

entities through a reliable dynamic channel assignment algorithm.  

Learning Engine

Knowledge Base

Access Network Self-backhaul Network

 

Figure 8.2 Learning Engine for Beyond Next Generation Mobile Network 

Channel decisions are made individually at each entity. By using reinforcement-

based learning, entities will assess the success level of a particular action. Entities 

in the access networks and the self-backhaul networks will select channels based 

on the weights assigned to the spectral resources - resources with higher weights 

are considered higher priority. The following linear function we used in previous 

chapters has also been applied to the dual-hop system: 
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 21' fWfW   (8-2) 

where W is the weight of a channel at time t-1, and W’ is the weight at time t 

according to previous weight W and the updated feedback from system. f1 and f2 

are the weighting factors at time t that will take on different values depending on 

the localized judgment of current system states and the environment. 

The algorithm is shown in figure 8.3.  We consider Ei is entity i in the dual-hop 

system. Ei   E and E is the entity set that contains all reinforcement learning 

based BS and MS. By randomly choosing channels, the operating entity Ei will 

explore the spectrum space first. We define a specific threshold such that if the 

weight of a used resource is above the threshold, the action of taking this resource 

is considered as a preferred action and the resource is regarded as a preferred 

resource.  

It is assumed that the spectrum sensing is carried out at the receiver end of the 

wireless link. Beyond next generation mobile network is designed primarily for 

the dense city centre area where the propagation environment is very complex. 

The utilization of directional antenna in such area makes it possible that the 

received signal power and the interference power vary significantly in a few 

meters range. Thus, spectrum sensing at the transmitter is not accurate enough to 

identify the interference level on the targeted channel. Spectrum sensing at the 

receiver end therefore is more desirable in this case.  

It is realized that the protocol needs to be properly defined to support this CR 

function. A certain amount of control information needs to be exchanged between 

the transmitter and the receiver. The control information overhead incurred in the 

CR dynamic channel assignment process is not expected to be high. A downlink 

transmission request to the receiver and an uplink response back to the transmitter 

with the subchannel discovered in sensing are the information that needs to be 

exchanged. In order to support this feature, the information required to be 

exchanged between entities is defined in figure 8.4 and figure 8.5: 
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Figure 8.3 Learning-based Channel Assignment Algorithm 
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Figure 8.4 Information Flow between Entities in Access Network 

It is assumed that the channel availability information is kept in HBSs for the self-

backhaul network and in ABSs for the access network. Figure 8.4 (a) shows the 

information flow between entities in the access network for a downlink 

transmission request. The available channel list with the request to send will be 

sent to the mobile subscriber first by the associated ABS and then the MS carries 

out spectrum sensing on the available channels. After that, the MS will send the 

clear to send message with the selected channel index back to the ABS and the 

ABS can then proceed to transmit data on the selected channel. 

  

Tx (ABS)

Request to send with

available channel list

Spectrum 

Sensing

Clear to send with     

selected channel index

Start Transmission

(a) Downlink, Backhaul network

  

Spectrum 
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Figure 8.5 Information Flow Between Entities in Self-Backhaul Network 

In the case of uplink transmissions, as shown in figure 8.4 (b), the MS only send 

the request to send to the ABS prior to the transmission and the ABS will sense 
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all available channels. Then the ABS will send the selected channel index with 

the clear to send message back to the MS. 

The information exchanged between entities in the self-backhaul network is 

illustrated in figure 8.5. The information exchanged and the process itself are 

similar to the cases of the access network in figure 8.4. For downlink transmission 

requests, HBS need to send the available channel information to the receiving 

ABS first. However in the case of uplink transmission, such information is not 

required since spectrum sensing is carried out at HBSs. 

It can be seen from figure 8.4 and figure 8.5 that the information exchanged 

between entities is mainly channel index and this approach only requires a single 

information exchange prior to the transmission. Thus, the overhead information 

generated in the wireless system is limited to the minimum level. 

8.4 System Modelling Scenario 

8.4.1 Deployment Scenario and System Parameters 

A Manhattan-grid environment is used in this simulation, and the square topology 

is applied as in figure 8.6 [22, 105]. There are 11 streets both East-West (E-W) 

and North-South (N-S), and that forms a 10×10 block area. The HBS antennas are 

placed above rooftop in the centre of their cell and 2 HBS form a 4 cell square 

deployment environment in this case. The HBS beams are indexed clockwise 

from 1 to 11. HSS and ABS are indexed as shown in figure 8.9. It is assumed that 

HSS6 (ABS6) of the HBS1 cell is co-located with HSS17 (ABS17) of the HBS 2 

cell. ABS 6 and ABS 17 in this scenario is serving the E-W street and the N-S 

street respectively. 
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Figure 8.6 Modelling Scenario 

MSs are randomly distributed within the area surrounded by the dashed line since 

only two sectors (12 beams) of each HBS directional antenna (facing towards to 

centre area) have been considered.  MS is associated with ABS based on a set of 

rules based on their location: 

 MS on N-S street: connect to the nearest ABS on the same vertical 

street 

 MS on E-W street: connect to the nearest ABS on the same horizontal 

street 

 MS in a building block: connect to the nearest ABS 

 MS on a street cross: connect to the nearest ABS either vertically or 

horizontally 

Any MSs outside the highlighted service area will not be served by any of the 

ABSs in figure 8.6, and therefore are not considered. The following table 8.1 

shows the system parameters. 
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Table 8.1 System Parameters [105] 

Parameter Value 

Deployment area dimension 900m*900m 

Number of streets in one dimension 11 

Street width 15 m 

Building block size 75m*75m 

Number of building blocks per cell 25 

Service area size 0.405 km
2 

(636.4m*636.4m) 

Number of HBS 2 

Number of ABS 22 

HBS antenna pattern 19 dBi -21 dBi 

HSS antenna pattern 13 dBi 

ABS antenna pattern 17 dBi 

HBS antenna height 25m 

HSS, ABS antenna height 5m 

MS antenna height 1.5m 

MS antenna Omnidirectional antenna 

HBS transmission power 37dBm 

HSS transmission power 27dBm 

ABS transmission power 37dBm 

MS transmission power 23dBm 

Carrier frequency 3.5 GHz 

Number of Channels 8 

Throughput threshold 0.86 bps/Hz 

Lognomal shadowing 6dB 

Noise floor -114 dbm/MHz 

HBS - HSS propagation model Ray-tracing based channel model 

ABS - MS propagation model WINNER II B1, WINNER II B4 

MIMO TSB + MIMO(MMSE) 

Traffic Poisson traffic model 

Duplexing 
TDD (50%-50% split for Downlink and 

Uplink) 
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Note that 8 10 MHz channels in total are assumed, 4 channels for the backhaul 

network and 4 channels for the access network. These channels can be assumed if 

there are 40 MHz licensed frequency bands and 40 MHz unlicensed frequency 

bands are used, or we can assume that the interference between the backhaul 

network and the access network can be limited under a certain level that the 40 

MHz licensed band can be shared by them. TDD duplexing is used and a 50%-50% 

split is assumed for Downlink and Uplink. 

30 OFDMA format subchannels are assumed within a 10 MHz channel. No 

advanced scheduling techniques are applied at the interim stage. Only one 

subchannel will be randomly allocated to a user at one time subject to availability. 

If an entity’s transmission has failed to be carried out due to interference, the 

transmission will be terminated at the first selected channel: no retransmission is 

allowed. 

The antenna data are obtained by CASMA [105]. The 24-beam HBS directional 

antenna has gains between 19 dBi and 21 dBi for different beams with a 

beamwidth of approximately 15×10 degree in azimuth and elevation. A 13 dBi 

directional antenna is applied at the HSS and pointed towards the largest power 

ray direction as it suggested in [22]. The HSS antenna has a beamwidth of 

approximately 40×40 degree in azimuth and elevation. Two 17 dBi antennas with 

approximately 25×25 degree beamwidth are assumed at each ABS, pointing in the 

two opposite directions either vertically or horizontally along the street and in 

parallel to the ground. The azimuth angle and the elevation angle are calculated 

between MS and ABS beams, and a 3D antenna pattern is used for obtaining the 

appropriate ABS antenna gain when the azimuth angle and the elevation angle are 

available. The 3D antenna pattern is illustrated as figure 8.7. 

Note that a throughput threshold has been used to check the quality of the 

wireless link instead of a SINR threshold as used in previous chapters. This is 

because by applying MIMO, the achievable data rate at a certain SINR level is no 

longer a deterministic value. Instead, it is a variable that follows a distribution, 

meaning that even at a SINR as low as -5 dB, it may still be possible to transmit 

data. Thus, a fixed SINR threshold which is traditionally used in such a scenario is 
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no longer accurate enough. A throughput threshold of 0.86 bps/Hz is used in this 

case instead of the SINR threshold. The throughput value of 0.86 bps/Hz is 

calculated by using the Truncated Shannon Bound [86] when SINR value is 

assumed at the lowest level of 1.8 dB. 

 

Figure 8.7 3D ABS Antenna Pattern (directly reproduced from [105]) 

8.4.2 MIMO 

Advanced MIMO techniques have the potential to significantly improve the link 

capacity. The achievable data rates of both the backhaul network and the access 

network of the dual-hop network can be significantly enhanced by using multiple 

antennas and suitable signal processing techniques at the hub base stations 

(HBSs), access base stations (ABSs) and mobile stations (MSs). HBSs and ABSs 

are dual polarized antennas which can act as an antenna array and MSs are 

assumed to be equipped with at least two antennas each. Therefore we assume 

that the backhaul and access links (HBS-ABS and ABS-MS) are 2x2 MIMO 

channels. 
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In SISO channels the achievable throughput is a deterministic value based on the 

path loss, shadowing and small-scale fading; and this can be evaluated easily. 

However in MIMO channels, throughput is no longer a deterministic value. 

Instead the achievable rate follows a distribution.  

A method has been developed jointly that maps each value of average link SINR 

to a statistical distribution of achievable rates [105]. From -5 to 40 dB and for 1 

dB step size, we generate 3000 samples offline which fully capture the statistical 

features of the 2x2 MIMO link. MMSE linear detection is assumed. Then at the 

system level: 

1. For each wireless link we calculate the SINR taking into account the 

path loss and shadowing of the useful and the interfering links. 

2. For the obtained SINR we choose the closest value of SINR for which 

we have an available MIMO throughput distribution (a vector of 

throughput values). 

3. For the chosen SINR value we select at random a throughput value 

from the corresponding vector. 

Thus, 2x2 MIMO can be taking into account when evaluating system 

performance by using the module we have developed.  

8.4.3 Propagation Models 

8.4.3.1 Self-backhaul network 

A number of channel models have been used to calculate path loss between the 

entities in the dual-hop network. A ray-tracing based channel model developed at 

Université catholique de Louvain [105] is used to estimate the path loss between 

the HBS and HSS. The path loss values of the backhaul network obtained by the 

ray-tracing tool is shown in table 8.2 [105]. 
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Table 8.2 Backhaul Network Ray-Tracing Results 

  Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 Beam 6 

HSS 1 -116.00  -133.60  -138.60  -140.40  -142.30  -139.60  

HSS 2 -106.70  -110.30  -129.40  -130.50  -128.60  -130.60  

HSS 3 -109.00  -101.10  -120.70  -115.60  -120.80  -120.80  

HSS 4 -120.80  -117.40  -106.60  -101.50  -106.60  -109.50  

HSS 5 -141.80  -147.10  -114.60  -126.30  -112.20  -112.80  

HSS 6 -140.00  -138.00  -141.00  -135.90  -126.10  -106.60  

HSS 7 -129.60  -145.60  -137.60  -137.10  -127.60  -119.30  

HSS 8 -123.50  -132.10  -120.80  -123.50  -111.80  -101.00  

HSS 9 -144.60  -126.60  -147.10  -133.20  -138.30  -128.80  

HSS 10 -151.00  -131.80  -135.90  -148.40  -147.30  -137.00  

HSS 11 -158.70  -148.90  -145.20  -143.80  -145.10  -134.10  

  Beam 7 Beam 8 Beam 9 Beam 10 Beam 11 

HSS 1 -151.30  -138.50  -146.80  -147.40  -149.70  

HSS 2 -139.30  -150.60  -151.30  -150.20  -148.50  

HSS 3 -133.10  -134.00  -138.20  -139.80  -131.50  

HSS 4 -114.50  -123.00  -132.80  -133.30  -126.30  

HSS 5 -135.70  -114.60  -140.60  -130.00  -138.30  

HSS 6 -121.60  -130.20  -129.80  -130.00  -132.30  

HSS 7 -113.40  -123.20  -131.90  -130.80  -130.00  

HSS 8 -99.20  -99.50  -112.50  -121.60  -119.30  

HSS 9 -120.40  -115.50  -101.30  -102.00  -107.30  

HSS 10 -147.30  -137.20  -126.20  -112.10  -112.90  

HSS 11 -148.30  -143.80  -139.40  -127.30  -111.10  

 

8.4.3.2 Access Network 

WINNER II [106] provides a comprehensive set of channel models that are 

capable of covering the propagation environment of the access network. In this 

work, WINNER II B1 and WINNER II B4 have been used to model the wireless 

environment of Manhattan-grid city centre area because they are the most 

advanced models available for the modelling of such environment. WINNER II 

B1 is used to calculate the pass loss between ABS and MS that is located outside 

of a building block. The path loss between ABS and MS inside of a building 

block is estimated by using WINNER II B4.  
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8.4.3.2.1 WINNER II B1 – Urban Micro-Cell 

The propagation environment investigated by WINNER II in an urban micro-cell 

scenario is quite similar to the access networks’ propagation environment [106]. 

A Manhattan-grid layout is considered and all BS and MS antennas are assumed 

well below the rooftops of the surrounding buildings. All ABS and MS are 

assumed to be outdoor as illustrated in figure 8.8. Both Line-of-Sight (LOS) and 

Non-Line-of-Sight (NLOS) cases have been considered, allowing for temporary 

blockage of the LOS, for example by large vehicles. The LOS and NLOS path 

loss are calculated as follows: 

ABS

MS

d1

d
2

Building 

Block

d
1

 

Figure 8.8 WINNER II B1 Path Loss Calculation 

LOS 

If the MS and ABS are on a same street, then the path loss can be calculated by: 

 )0.5(log7.2)'(log3.17)'(log3.1745.9)(log0.40 101010110 cMSBS fhhdPL   (8-3) 

Where 

 1'  BSBS hh  (8-4) 

and 
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 1'  MSMS hh  (8-5) 

d1 is the distance between ABS and the LOS MS, hBS is the ABS antenna height 

and hMS is the MS antenna height. 

NLOS 

If the MS and ABS are not on the same street, then the path loss can be calculated 

by: 

 )),(),,(min( 1221 ddPLddPLPL   (8-6) 

where 

 )0.5(log3)(log105.1220)(),( 1010 cljjkLOSlk fdnndPLddPL   (8-7) 

and 

 ),84.1,0024.08.2max( kj dn   (8-8) 

PLLOS is the path loss of B1 LOS and }2,1{, lk , d1 and d2 are distance between 

the entities along the street as it is shown in figure 2-3. 

8.4.3.2.2 WINNER II B4 – Outdoor to Indoor 

The layout that is considered in WINNER II B4 [106] is also urban micro-cell. 

The only difference is WINNER II B4 only considers the path loss between on 

street BSs and in building MSs. Therefore, in this simulation the path loss 

between ABS and in building MS is obtained by using WINNER II B4 

propagation model. The scenario is shown in figure 8.9. 

The path loss in this case can be calculated by: 
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Where PLB1 is the B1 path loss, dout is the distance from the ABS to the 

penetration point on the wall, and din is the distance from that point to the mobile 

terminal. θ is the angle between the wall and the wireless link. 
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Figure 8.9 WINNER II B4 Path Loss Calculation 

8.4.4 Traffic Model 

The basic Poisson traffic model is used in the simulation to generate the traffic for 

both downlink and uplink [87]. The interarrival and service time of transmissions 

follow the negative exponential distribution. Note that this link level traffic model 

only generates user arrival time and user departure time based on the interarrival 

and service time, not the number of packets that need to be transmitted over a 

wireless link. Therefore, after a wireless link has been established, it is assumed 

that an entity will transmit data on a best effort basis.  
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8.4.5 Radio Resource Management 

Two radio resource management strategies have been modelled, the fixed 

frequency planning proposed by Alvarion [22] and a cognitive radio based 

dynamic sub-channel assignment approach. 

8.4.5.1 Frequency Planning 

The details of the frequency plan are shown in figure 8.10. At the HBS side, 4 

different channels are used for each group of 4 neighbouring beams in the order 

channel 1 to channel 4. ABSs located at the top and bottom of the cell are 

designed to serve N-S streets, and ABSs on the left and right serve the E-W 

streets. The two ABS beams pointing in opposite directions should use two 

different channels. ABSs that serve N-S streets use two different channels from 

those that serve E-W streets. 

 

Figure 8.10 Frequency Planning (directly reproduced from [22]) 

Four 10 MHz channels for the backhaul network and four 10 MHz channels for 

the access network are utilized in the simulation. TDD duplexing is used and a 

50%-50% split is assumed for the downlink and uplink. 
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8.4.5.2 Cognitive Radio 

Two cognitive radio RRM approaches have been modelled in this work [107]. 

The first one is the most basic spectrum sensing only approach within the scope 

of the frequency plan. The only difference between this approach and the fixed 

frequency planning is that spectrum sensing has been assumed at the receiver side 

of a wireless link prior to the actual transmission. An interference threshold is 

used to examine the randomly selected subchannel. Available subchannels will be 

sensed one after another until the first available subchannel has been discovered. 

The second approach is the reinforcement learning-based CR approach. The 

algorithm we introduced in section 8.3 is implemented. By exploring the 

historical information gained through the interaction with the environment, the 

entities are able to identify their preferred resources more efficiently.  

8.5 Results 

This section presents the results obtained from the simulation. Three different 

RRM approaches we described in section 8.4.5 are implemented: 1.Pure 

frequency planning. 2. Frequency planning + spectrum sensing. 3. Spectrum 

sensing + learning. Results are given in forms of performance measures presented 

in the previous section. The results of the end-to-end links are shown in each 

figure to give the details of the system. Note that in the figures to show the system 

throughput and the throughput density, a green line has been added to show the 

maximum throughput that can be obtained theoretically at different offered traffic 

levels. It has been calculated by using equation 3-6 by assuming that ThrMIMO-TSB 

= 9 bps/Hz (the highest achievable data rate through MIMO) and PTDD = 0.5. 

We have simulated a scenario where MSs are uniformly distributed over the 

entire service area. Note that MSs are assumed to be at street level only and no 

windows are assumed in the buildings (clearly a pessimistic case). The building 

layouts in most cities will in practice also mean that most users are closer to the 

streets than assumed here. All the indoor MSs are covered by the ABSs on streets, 

and no other approaches are assumed to provide indoor coverage, e.g. femto-cells. 

The propagation environment is very harsh for the indoor MS in this case. The 
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majority of the MSs are placed indoors when a uniform MS density distribution is 

used over the service area. Thus, the results provided in this section will show the 

worst case system performance of Beyond Next Generation Mobile Network. 

8.5.1 Frequency Planning 

Figure 8.11 and figure 8.12 show the system throughput measurements of the 

downlink and the uplink respectively. It can be seen that at relatively low traffic 

levels when OTs is below 20, the system is able to transmit data at its maximum 

capacity. However when the offered traffic is increased further, the throughput of 

the access network degrades at both downlink and uplink due to interference, and 

the access network becomes the bottleneck of the system in terms of the end-to-

end throughput.  

 

Figure 8.11 System Throughput and Throughput Density-Downlink - 40 Users 

We can also see that the backhaul network is able to transmit data almost at the 

maximum level throughout the simulation. The degradation of the backhaul 

throughput at downlink and uplink is very limited. This means that by using 
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frequency planning at the HBS, the interference between beams has been greatly 

reduced. The highest end-to-end link throughput is about 53 Mbps for the 

downlink and about 52 Mbps for the uplink when OTs is 40. That gives a 

throughput density of about 132 Mbps/km
2
 downlink and 127 Mbps/km

2
 uplink. 

The total throughput density is then about 0.26 Gbps/km
2
. The theoretical 

maximum throughput is about 0.293 Gbps/km
2
 in this case. Therefore, the 

degradation of the link throughput is not significant and the system can still obtain 

a throughput close to the maximum level. The throughput density is well below 

the targeted 1 Gbps/km
2
 due to the insufficient coverage of in building MSs.  

 

Figure 8.12 System Throughput and Throughput Density- Uplink - 40 Users 

Figure 8.13 and figure 8.14 show the grade of service of the system, and these 

two figures explain why the simulation has been stopped at OTs=40. Normally the 

blocking probability threshold is 5%  and the dropping probability threshold is 0.5% 

for a wireless system [36]. The grade of service is considered to be poor if 

blocking probability and dropping probability are above these thresholds. Users 

are either struggling to find an appropriate channel to use or getting a large 

number of interruptions from others. Especially in a high dropping probability 
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scenario where users are able to transmit data at a fairly high data rate, the 

transmission is very likely to be interfered by others. The blocking probability is 

about 2% both downlink and uplink when OTs=40, and the dropping probability 

is also on the same level. These figures are too high, meaning that the service 

quality is actually very poor. 

 

Figure 8.13 Blocking Probability and Dropping Probability - Downlink - 40 

Users 

The backhaul network is receiving significantly less interruption compared with 

the access network, i.e. entities in the backhaul network receive significantly less 

interference than the entities in the access network. Please note that the blocking 

probability and the dropping probability of the backhaul network are not zero in 

the figures. They are two orders of magnitude smaller than the access network, so 

the lines of the backhaul network are very close to the X axis. The blocking and 

dropping of the system are mainly caused by the access network in this case. 

Thus, if we consider a scenario where the interference of the wireless system 

depend purely on the frequency plan and no further means of indoor coverage is 
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assumed, the coverage provided by the base stations is hardly sufficient. More 

advanced RRM techniques are desirable that the frequency resource can be shared 

more efficiently. Cognitive radio based techniques have the potential to solve this 

problem.  

 

Figure 8.14 Blocking Probability and Dropping Probability - Uplink - 40 Users 

8.5.2 Cognitive Radio Approaches 

A very basic spectrum sensing approach has been modelled within the scope of 

the frequency plan given in this section to initially indicate the achievable 

throughput density of the cognitive approaches. Only the downlink has been 

simulated but the uplink performance is expected to be broadly the same as the 

downlink because a 50%-50% TDD is assumed and the downlink and the uplink 

will not interfere with each other. The performance of cognitive radio approaches 

are expected to be better than the pure frequency planning approach, hence a total 

number of 220 users has been used. 
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The reinforcement learning-based cognitive radio algorithm we introduced in 

section 8.3 is also implemented without any frequency plan. All frequency 

channels are equally available to all entities. Thus the complexity of radio 

resource management is significantly reduced. System performance of the 

learning-based approach has been compared with the pure frequency planning 

approach and the frequency planning + spectrum sensing approach. 

Figure 8.15 illustrates the system blocking probability and dropping probability of 

three different schemes. By applying an interference threshold of -120 dBm to 

check the targeted channel prior to the transmission at the receivers and 

reinforcement learning-based channel assignment techniques, the dropping 

probability and the blocking probability of the cognitive approaches are 

significantly reduced.  

 

Figure 8.15 System Blocking Probability and Dropping probability - Downlink - 

220 Users 

The dropping probability of the two cognitive radio approaches remain at a very 

low level below 0.5% all through the simulation. The blocking probability of the 

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

OT
s

B
lo

c
k
in

g
 P

ro
b

a
b

il
it
y

 

 
FP

FP-Sensing

Sensing-Learning

20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

OT
s

D
ro

p
p

in
g

 P
ro

b
a

b
il
it
y

 

 
FP

FP-Sensing

Sensing-Learning



CHAPTER 8 REINFORCEMENT LEARNING BASED COGNITIVE CHANNEL                  154 

ASSIGNMENT FOR DUAL-HOP BEYOND NEXT GENERATION MOBILE NETWORK  

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

frequency planning + spectrum sensing approach is below 5% when OTs is lower 

than 160. However, it increases significantly when OTs is above 120. By applying 

spectrum sensing, cognitive devices are able to avoid interfered channels that the 

dropping probability is greatly reduced. However, the blocking probability of the 

system is increased due to spectrum sensing, especially when the traffic load is 

high.  

It can be seen that distributed reinforcement learning techniques are able to 

significantly reduce the blocking probability further while maintaining a very low 

dropping probability. The available spectrum pool is partitioned by distributed 

reinforcement learning in this case that the entities are able to discover their 

preferred resources more efficiently. The spectrum sensing + reinforcement 

learning approach is able to support a traffic level as high as OTs = 200.  In other 

words, the distributed reinforcement learning-based approaches are able to deliver 

a higher capacity under the same grade of service requirements. 

Figure 8.16 shows the results of the downlink system throughput and the 

downlink throughput density. By applying a 5% blocking probability threshold 

and a 0.5% dropping threshold, the highest throughput the pure frequency 

planning approach can support is around 53 Mbps. The frequency planning + 

spectrum sensing approach is able to increase this figure to about 223 Mbps. The 

throughput density of the downlink is about 550 Mbps/km
2 

in this case. The 

spectrum sensing + reinforcement learning approach performs the best that a 

throughput of 275 Mbps can be achieved. Comparing to the frequency planning + 

spectrum sensing approach, a 24% throughput increase is achieved by applying 

distributed reinforcement learning. This gives a downlink throughput density of 

approximately 680 Mbps/km
2
. Again, a similar uplink performance can be 

expected so that an overall throughput density beyond 1.2 Gbps/km
2
 is likely to 

be achieved. 
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Figure 8.16 System Throughput and Throughput Density- Downlink - 220 Users 

8.6 Conclusions 

Based on the techniques developed in previous chapters in this thesis, distributed 

reinforcement learning-based channel assignment techniques are developed and 

examined in the novel two-hop architecture for future Beyond Next Generation 

Mobile Network Systems. Performance of the learning-based approaches are 

compared with no learning approaches. 

Three RRM approaches are modelled in this section: 1. frequency planning, 2. 

frequency planning with cognitive radio spectrum sensing, 3. Spectrum sensing 

with distributed reinforcement learning. In the pure frequency planning approach, 

the throughput density is about 132 Mbps/km
2
 downlink and 127 Mbps/km

2
 

uplink. The total throughput density is about 0.26 Gbps/km
2
. However, the grade 

of service is relatively poor, with blocking probability about 2% both downlink 

and uplink when OTs=40, and the dropping probability is also on the same level. 

This is because a random subchannel assignment strategy is assumed without any 

further interference protection to the existing transmissions.  
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The frequency planning + spectrum sensing approach has also been modelled that 

the most basic spectrum sensing function is assumed at the receiver. The 

throughput density has been increased to 223 Mbps and the downlink throughput 

density is about 0.55 Gbps/km
2
.  

The blocking probability and dropping probability are much lower by introducing 

distributed learning-based techniques to further protect users from interference 

along with spectrum sensing.  It is shown that the spectrum sensing + 

reinforcement learning approach performs the best that a downlink throughput of 

275 Mbps can be delivered under the same grade of service requirements. This 

gives a downlink throughput density of about 0.68 Gbps/km
2 

and a overall 

throughput density beyond 1.2 Gbps/km
2
 can be expected. The distributed 

reinforcement learning enables a spectrum partitioning in the service area that the 

entities are able to discover their preferred resources more efficiently. 



CHAPTER 9 FURTHER WORK 157 

 

 
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 

Chapter 9. Further Work 

Contents 

 

9.1 Dynamic Learning Techniques for Cognitive Radio System ...... 157 

9.2 Low Complexity Cognitive Radio System .................................. 158 

9.3 Learning-based Channel and Power Joint Allocation ................. 158 

9.4 Multi-Learning Cognitive Radio ................................................. 159 

9.5 ‘Docitive’ Approach for Learning-based Cognitive Radio ......... 160 

 

9.1 Dynamic Learning Techniques for Cognitive Radio System 

By combining the abilities of spectrum awareness, intelligence and radio 

flexibility, a cognitive radio is able to adapt itself to the changes in the local 

environment. However, unlike most cases studied in Computer Science, the 

surrounding environment of the learning-based wireless system is constantly 

changing, e.g. user location, user density, traffic load, etc. Thus, a fixed learning 

strategy is not likely to deliver the best performance. Dynamic learning 

algorithms that are able to adapt themselves to the changes of the environment are 

desirable. 

The learning-based algorithms we developed in this work have the potential to be 

improved further if the learning algorithms are optimized based on the ‘live’ 

information observed by the system. In other words, the learning algorithms are 

optimized from time to time according to the changes of the environment.  

A few aspects of the learning algorithm have the potential to be optimized. Firstly, 

the learning parameters can be optimized according to the changes of 

environment. In chapter 4 we studied the influence of weighting factors in a 

general way. By linking the learning parameters with the environment, the system 

performance has the potential to be improved further. It is also possible to better 

balance the exploration-exploitation trade-off by dynamically adjusting the setting 

of the preferred resource set according to the environment which in turn achieves 

an improved performance.  
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9.2 Low Complexity Cognitive Radio System 

With the rapid development of wireless communication techniques, the 

communication system is increasingly complex. A Cognitive radio approach is 

designed to incorporate software defined radio, environment awareness, self 

awareness and dynamic decision making which are all extremely challenging 

research issues. It is foreseen that the ‘full’ Mitola cognitive radio [7] is still 

decades from implementation due to such complexity.  

The development of low complexity cognitive radio which will deliver much of 

the functionality of the full cognitive radio can be expected.  By combining 

appropriate intelligence with a few essential elements of cognitive radio, the 

system might be able to perform well in most of the communication tasks. The 

research work introduced in chapter 7 showed that a near optimal system 

performance can be expected by applying low complexity learning strategies. 

Thus, the information provided in chapter 7 is useful for future research on this 

topic. 

A top level examination of the existing cognitive radio approach is required, to 

understand the complexity of different components of cognitive radio and 

whether such complexity is appropriate.  Based on the previous research 

outcomes we have obtained, low complexity intelligent strategies could be 

developed to enable a rapid and wide implementation of cognitive radio. 

9.3 Learning-based Channel and Power Joint Allocation  

This thesis primarily studies the learning-based spectrum sharing algorithms. The 

learning-based devices explore time-space-frequency 3-dimensional opportunities 

by utilizing learning. It is assumed that the transmission power level is fixed. 

Better performance could be expected if the learning-based adaptive power 

control could also be carried out along with the learning-based channel 

assignment. The learning algorithm we developed in this work has the potential to 

be used jointly for both channel assignment and transmit power control. 
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It is also possible to develop a two-phase learning approach for joint allocation of 

channel and transmit power. Different phases of the learning algorithm are 

concerned with the allocation of channels and transmit power separately. The 

information learned in different phases could be shared or completely isolated 

depending on the system performance. 

9.4 Multi-Learning Cognitive Radio 

Reinforcement learning has been the only intelligent approach we have 

considered so far due to its natural fitness with the distributed cognitive radio 

scenario. However they are many other learning approaches, like supervised 

learning and unsupervised learning, could be used along with reinforcement 

learning to deliver a better performance.  

Different ‘intelligent’ techniques could be applied to different aspects of cognitive 

radio system in line with reinforcement learning to achieve a better performance. 

Take Game Theory for example, Game Theory studies how an individual can 

make choices depending on the choices of others. It is a strong candidate to be 

used as the decision making techniques for cognitive radio. In other words, game 

theory is used to obtain the best choices of resources (channel, transmission 

power, etc) for every transmission task based on the information learned by the 

device and the instantaneous measurements of the system. Then the reinforcement 

learning algorithm learns from the decisions and updates the knowledge base 

accordingly. The Game Theory part ensures the user select the best action when it 

needs to perform a task and the reinforcement learning part makes sure that the 

selection of actions are learnt by the user. In this scenario, game theory concerns 

the short term performance where reinforcement learning is responsible for the 

long term performance.  

Although this thesis concerns only the distributed reinforcement learning 

approach, the research work in this thesis could be the starting point to further 

develop multi-learning algorithms for cognitive radio. Multi-leaning users have 

the potential to interact with others more smoothly. Different learning techniques 

deal with different tasks that the benefits of applying learning are maximized.  
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9.5 ‘Docitive’ Approach for Learning-based Cognitive Radio 

The learning-based cognitive radio systems we introduced in this work take a 

relatively long time to converge to the optimal or sub-optimal point [88, 102]. A 

number of techniques, like exploration control and efficient exploration, have 

been developed to improve the learning efficiency [89, 95]. However, the slow 

convergence is still one of the most difficult challenges seen in such multi-agent 

learning system. This is especially true in a cognitive radio scenario where the 

devices work in a fully distributed fashion and the environment they are 

interacting with is constantly changing. 

Thus, it is desirable to allow learning information to be exchanged between 

neighbouring devices, improving the convergence speed of the users. It is also 

important to ensure that the information exchanged between devices is kept at a 

minimum level. ‘Docition’ is a word which effectively means teaching [108]. It is 

a process where users are teaching others the experience they gained through 

learning. Therefore they are able to learn much more efficiently. By exchanging 

limited information between learning devices, the convergence performance is 

likely to be significantly improved and a better overall performance can be 

expected. 
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10.1 Summary and Conclusions 

This thesis has investigated the fundamental issues in applying reinforcement 

learning to cognitive radio spectrum sharing. Firstly, a generic reinforcement 

learning model has been proposed to cognitive radio along with a linear value 

function. Then, a two-stage algorithm has been introduced to properly balance the 

exploration versus exploitation trade-off seen in reinforcement learning-based 

systems. Two efficient exploration techniques: pre-partitioning and weight-driven 

exploration, have been proposed to improve the system performance further. This 

work has attracted lots of interests and contributed to a number of research works 

on the relevant topics collaboratively with Zhejiang University, CTTC, and the 

University of Sydney [109-110]. This work has also contributed to other research 

works within the Communications Research Group on the topics including 

CSMA based cognitive radio systems [111-112] and multicasting cognitive radio 

systems [113]. This work has also directly contributed to the FP7 BuNGee project. 

A brief summary and conclusions for the thesis are given below: 

The first chapter provides a brief introduction to the thesis and the purpose of this 

work. Chapter 2 presents a comprehensive literature review on the research 

related to this work. This focuses mainly on intelligent radio resource 

management schemes, which take advantage of the artificial intelligence 

algorithms developed mainly in the area of Computer Science. 

Chapter 3 describes the research methodologies, simulation techniques and the 

key measurements used to evaluate the performance. The Monte Carlo simulation 

approach has been used extensively in this work. Matlab is used as a tool to carry 

out the simulation tasks. Blocking probability and dropping probability are the 
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main performance measurements we used in this thesis in the early stage. 

Throughput and throughput density are used later along with blocking probability 

and dropping probability to evaluate the system performance of the dual-hop 

beyond next generation mobile network. 

In Chapter 4 we firstly introduced the reinforcement learning model for cognitive 

radio system.  The learning model proposed in section 4.2 is the basis of this work 

since the goal of our work is not only to develop intelligent spectrum sharing 

algorithms for cognitive radio but more importantly to build a generic 

reinforcement learning model eventually. After the introduction of the learning 

model, the value function and the weighting factors were defined.  

It is shown that reinforcement learning-based approaches perform better than the 

non-learning cognitive radio algorithms. By utilizing the ability of learning, 

cognitive devices exploit their preferred resources with a higher priority. This 

enables an autonomous partition of the available spectrum. By autonomously 

partitioning the local available channel pool, the channel usage of different users 

converges to different channels. Thus, interference can be reduced. The value 

function and the weighting factors are the basis to assess the success level of the 

performed actions.  The results also show that the settings of weighting factor 

values have significant influence on the system performance. Weighting factor 

values need to be properly defined based on the characteristics of the wireless 

system in order to achieve better performance. 

One of the fundamental challenges seen in reinforcement, the trade-off between 

exploration and exploitation, has been examined in the context of cognitive radio 

in chapter 5. A learning cognitive radio needs to explore the wireless environment 

to find available resources. Meanwhile, the cognitive radio also has to exploit the 

resources discovered in exploration to obtain enough experience to distinguish 

between good and bad options.  The trade-off between exploration and 

exploitation needs to be balanced in order to improve the performance of the 

cognitive radio system. 
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A two stage reinforcement learning-based algorithm has been proposed in this 

chapter to control the trade-off between exploration and exploitation. A ‘warm up’ 

stage is proposed where distributed cognitive radio users search for optimum 

resources and learn from the experience of searching. Once users have obtained a 

set of preferred resources, they exploit the preferred resources with higher priority 

and stop searching for new channels.  It is shown in this chapter how the balance 

between exploration and exploitation is not only theoretically important but also 

crucial to a cognitive radio system in practice. 

It can be seen from the simulation results that a quick and efficient channel 

partitioning can be obtained by using a small preferred channel weight threshold. 

Moreover, either an overly small size of preferred resource set or an overly big 

size will cause more system interruptions rather than sharing spectrum peacefully, 

and an optimal spectrum sharing policy will not be discovered consequently.  

The purpose of Chapter 6 is to introduce efficient exploration techniques which 

are able to reduce the exploration phase of the learning users even further. 

Cognitive radio users will receive a higher level of interference when the majority 

of the users are exploring their available spectrum space. The two-stage algorithm 

proposed in the previous chapter is used as a basis.  

Two novel approaches are presented, pre-partitioning and weight-driven 

exploration, to enable efficient exploration in the context of cognitive radio. The 

learning efficiency of a learning-based cognitive radio has been defined and 

investigated.  The pre-partitioning scheme randomly reserves a certain amount of 

spectrum resources for each user.  The available action space which the cognitive 

radio needs to explore is then significantly reduced, which in turn shortens the 

exploration stage significantly.  In the weight-driven exploration scheme, the 

exploitation phase is gradually moved into exploration by applying a weight-

driven probability distribution to influence action selection during exploration. 

The exploration is more efficient and the overall performance of the cognitive 

radio system has been improved. Results show that efficient exploration 

techniques improve the system performance significantly compared with the 
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commonly used uniform random exploration approach and the weight-driven 

exploration scheme achieves the best performance. 

Chapter 7 explores the ‘green’ aspect of the proposed learning-based schemes, 

concentrating on the power consumption reduction achieved by learning. This is 

done by reducing the requirement for spectrum sharing through reinforcement 

learning. Cognitive radio needs to either periodically or continuously sense the 

spectrum to obtain the information of the environment. It is foreseen that 

spectrum sensing will be one of the main sources of energy consumption within a 

cognitive radio device. By utilizing reinforcement learning, cognitive users are 

able to identify the appropriate channel quicker since they start with their 

preferred channels. Thus, the time and power consumed by spectrum sensing are 

reduced. 

It is shown that by acquiring a subset of preferred resources, the restricted sensing 

scheme and the minimum sensing scheme are able to significantly reduce the 

need for spectrum sensing. The efficient exploration based algorithms are able to 

reduce the requirement of spectrum sensing further. Weight-driven exploration 

scheme achieves the highest spectrum sensing reduction in all the proposed 

schemes. 

In chapter 8, the learning-based techniques are implemented in a novel two-hop 

architecture for beyond next generation mobile network. The system model and 

the propagation environment are very complex since firstly the system is designed 

for the dense city center area where the a large number of building blocks could 

be found, and secondly several types of directional antenna are used along with 

advanced MIMO techniques. Thus, a very detailed simulator is developed to 

model the beyond next generation mobile network and its surrounding 

environment. 

Distributed reinforcement learning-based channel assignment techniques are 

developed for the dual-hop system. A single learning engine processes the 

information for both hops of the wireless link simultaneously in this case. Three 

radio resource management approaches are modelled in this section: 1. frequency 
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planning, 2. frequency planning with cognitive radio spectrum sensing, 3. 

Spectrum sensing with distributed reinforcement learning. Results show that the 

basic spectrum sensing + frequency planning approach outperforms the pure 

frequency planning approach.  The learning-based cognitive radio approach not 

only achieves the best performance but also removes the need for frequency 

planning completely. Thus, the proposed approach provides the targeted capacity 

to the users while significantly reducing the resource management complexity.  

10.2 Summary of Novel Contributions 

This thesis concentrates on different aspects of the application of learning-based 

techniques to cognitive radio system. Very limited work had been carried out on 

this topic by Bublin [59] before the starting point of this work. The novel 

contributions of this thesis are highlighted in this section. Most of the work has 

been published in a number of journal and conference papers. Some of the work 

has contributed to the EU FP7 BuNGee project. A publication list is also provided 

in this thesis. 

10.2.1 Distributed Reinforcement Learning-based Channel Assignment for 

Open spectrum Cognitive Radio 

 The concept of applying distributed reinforcement learning techniques to 

cognitive radio system is perhaps the most significant novel contribution 

of this work. Although learning had been considered an essential part of 

cognitive radio before we started this work, it was not clear where and 

how we could apply machine learning techniques to the cognitive radio 

system. Research work which directly shows the benefits of applying 

machine learning techniques to cognitive radio system was very limited 

back to the time when we started this work. 

 

 The similarity between the behaviour of reinforcement learning nodes and 

cognitive radios has been identified in the early stage of this work: they all 

work in a distributed fashion and they are all interacting with an ‘unknown’ 

environment. Thus, reinforcement learning has been considered a perfect 

tool for cognitive radio.  
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 In chapter 4, a novel generic reinforcement learning model has been 

proposed to cognitive radios. The original reinforcement learning model 

has been modified in order to fit with the cognitive radio scenario. A 

linear function has been proposed as the value function in this chapter to 

update the knowledge base. 

 

 Another contribution is that we examine the performance of learning-

based cognitive radios in an open spectrum scenario where the entire 

spectrum is fully shared, where radio regulations are sufficiently light-

touch to give all services equal opportunity to use the spectrum.  Such a 

scenario is seen today to a limited extent in the unlicensed bands.  

These contributions have been published by IET Communications [89]. The 

learning model and the value function proposed in this work have also been used 

by a number of other papers on different topics [111-114].   

10.2.2 Impact of Weighting Factors 

The impact of weighting factors has been investigated in chapter 4. Weighting 

factors have great influence on the system performance, it reflects the degree of 

responses of a learning agent towards the changes of environment, i.e. a high 

reward or punishment value means that the learning node will adjust its actions 

swiftly according to the changes of the wireless environment, and a mild reward 

or punishment means that the learning node is adapting itself gradually based on 

the interactions with the environment. It is crucial that weighting factor values are 

defined properly. Three different strategies have been discuss in chapter 4 and the 

contributions has been published in [88] in 3
rd

 International Conference on 

Communications and Networking in China (ChinaCom). 

10.2.3 Exploration-Exploitation Trade-off Control for Learning-based 

Cognitive Radio 

The exploration-exploitation trade-off seen in reinforcement learning has been 

tackled in the context of cognitive radio for the first time in chapter 5. A novel 

two-stage algorithm has been proposed in this chapter. A ‘warm up’ stage is 
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suggested where distributed cognitive radio users search for optimal resources 

and learn from the experience of searching. Once users have obtained a set of 

preferred resources, they will only sense the spectrum with higher priority prior to 

establishing communications. The performance of the exploration and the 

exploitation phases are investigated. Results show that the system performance in 

the exploration phase is worse since exploring users cause a higher level of 

disturbance to the environment. Results in chapter 5 also show that the novel two-

stage spectrum sharing algorithm is able to practically control the exploration 

phase by adjusting the setting of preferred resource set. These contributions have 

been published in [89] by IET Communications. 

10.2.4 Efficient Exploration Techniques for Cognitive Radio 

Chapter 6 develops novel efficient exploration techniques for reinforcement 

learning-based cognitive radio. Previous published works apply the most basic 

uniform random exploration techniques, which is not likely to be the best 

exploration strategy. Two novel techniques have been proposed: Pre-partitioning 

and Weight-driven exploration: by randomly reserving a subset of available 

spectrum, the spectrum pool is fully partitioned before transmissions start; 

weight-driven exploration utilizes the information gained in exploration to guide 

the exploration process itself, and weight-driven exploration also ensures 

exploration by merging randomness into action selection. Results in this chapter 

show that the proposed techniques are able to significantly reduce the exploration 

phase, which in turn delivers a better system performance. 

The contributions in this chapter have been partly published in [95] by IET 

Communications, and partly in [94] in IET International Communication 

Conference on Wireless Mobile and Computing (This paper has also received the 

Best Paper Award).  

10.2.5 Reduction of Spectrum Sensing Power Consumption  

One of the most important novel contributions of the proposed algorithms is the 

reduction of the requirement for spectrum sensing. The ‘Green’ aspect of this 

work is discussed in chapter 7. Cognitive radio needs to either periodically or 
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continuously sense the spectrum to obtain the information of the environment. It 

is expected that spectrum sensing will be one of the biggest power-consuming 

sources in a cognitive device. The algorithms we developed in this work make 

spectrum sensing more efficient, meaning that cognitive radio can sense fewer 

channel by exploiting the experience gained through learning. It is even possible 

to directly assign channel based on learning without sensing when the local 

spectrum is autonomously partitioned. Results in chapter 7 show that by acquiring 

a subset of preferred resources, the restricted sensing scheme and the minimum 

sensing scheme are able to significantly reduce the need for spectrum sensing. 

The efficient exploration based algorithms reduces the requirement for sensing 

even further.  

The ideas and the novel contributions in this chapter have been published in [102] 

in IET Seminar on Cognitive Radio and Software Defined Radios: Technologies 

and Techniques and in [103] in 4th International Conference on Cognitive Radio 

Oriented Wireless Networks and Communications (CROWNCOM). 

10.2.6 Reinforcement Learning-based Channel Assignment for Dual-Hop 

Beyond Next Generation Mobile Network 

In chapter 8, for the first time reinforcement learning-based radio resource 

management techniques have been developed for the dual-hop beyond next 

generation mobile networks in a highly populated city centre area. Chapter 8 

provides the information on how the reinforcement learning-based techniques 

could be used along with other advanced techniques like multi-beam directional 

antenna and MIMO. A novel cognitive radio approach has been proposed where a 

single learning engine processes the information for both hops of the wireless link 

simultaneously.  It shows that learning-based channel assignment schemes not 

only achieves the highest throughput density but also significantly reduces the 

complexity of the radio resource management. 

The work in this chapter has directly contributed to the EU FP7 Beyond Next 

Generation Mobile Broadband Project and has been published in the project 

deliverable [105, 107]. The work in this chapter has also contributed to ETSI 

BRAN Work Item of TR 101 534 (DTR/BRAN-0040008). 
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10.2.7 System Level Modelling of MIMO Techniques 

In order to sufficiently model the beyond next generation mobile network systems 

and evaluate the system performance, a novel approach of modelling MIMO 

techniques at the system level has been developed collaboratively within the FP7 

Beyond Next Generation Mobile Network Project. 

In SISO channels the achievable throughput is a deterministic value based on the 

path loss, shadowing and small-scale fading; and this can be evaluated easily. 

However in MIMO channels, throughput is no longer a deterministic value. 

Instead the achievable rate follows a distribution.  

A method has been developed jointly that maps each value of average link SINR 

to a statistical distribution of achievable rates. For a useful range of average SINR 

values, we obtained offline the empirical distributions of the achievable data rates. 

In the system level simulation the simulator randomly take a value from the 

empirical throughput distribution based on the SINR value of the transmission 

link. 

The related work in chapter 8 has directly contributed to the EU FP7 Beyond Next 

Generation Mobile Broadband Project and has been published in the project 

deliverable [105]. 

10.2.8 Dual-Hop Wireless System Simulator 

A novel two-layer modularized simulator has been developed in this work to 

accurately capture the features of the dual-hop Beyond Next Generation Mobile 

system architecture. The first layer models the self-backhaul link between HBS 

and HSS. The second layer models the access link between ABS and MS. The 

modelling of the dual-hop system is a very complex task that needs to address a 

range of issues across the Physical, MAC and Network layers. A novel 

modularized structure is used to maximize the flexibility of the simulator and its 

compatibility with future developments. A number of modules are developed to 

model different aspects of the system, including a location module, traffic module, 

propagation module, MIMO module and RRM module. Thus, the advanced 
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features of the system, from the PHY layer to the network layer, have all been 

captured by the simulator. 

The related work in chapter 8 has directly contributed to the EU FP7 Beyond Next 

Generation Mobile Broadband Project and has been published in the project 

deliverable [105]. 
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