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Abstract
Lagrangian multiforms are an important recent development in the study of integrable

variational problems. In this thesis, we develop two simple examples of the discrete

Lagrangian one-form and two-form structures. These linear models still display all the

features of the discrete Lagrangian multiform; in particular, the property of Lagrangian

closure. That is, the sum of Lagrangians around a closed loop or surface, on solutions, is

zero. We study the behaviour of these Lagrangian multiform structures under path integral

quantisation and uncover a quantum analogue to the Lagrangian closure property. For the

one-form, the quantum mechanical propagator in multiple times is found to be independent

of the time-path, depending only on the endpoints. Similarly, for the two-form we de�ne a

propagator over a surface in discrete space-time and show that this is independent of the

surface geometry, depending only on the boundary.

It is not yet clear how to extend these quantised Lagrangian multiforms to non-linear

or continuous time models, but by examining two such examples, the generalised McMillan

maps and the Degasperis-Ruijsenaars model, we are able to make some steps towards that

goal. For the generalised McMillan maps we �nd a novel formulation of the r-matrix for the

dual Lax pair as a normally ordered fraction in elementary shift matrices, which o�ers a new

perspective on the structure. The dual Lax pair may ultimately lead to commuting �ows

and a one-form structure. We establish the relation between the Degasperis-Ruijsenaars

model and the integrable Ruijsenaars-Schneider model, leading to a Lax pair and two

particle Lagrangian, as well as �nding the quantum mechanical propagator. The link

between these results is still needed.

A quantum theory of Lagrangian multiforms o�ers a new paradigm for path integral

quantisation of integrable systems; this thesis o�ers some �rst steps towards this theory.
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1
Introduction

Discrete systems occupy an important position in the theory of integrability. Many

standard integrability properties have turned out to have discrete counterparts that in some

sense are more fundamental than their continuous relatives, so that in recent years there has

been a large growth in the study of such systems [15, 22, 51, 68, 75, 80]. These systems have

surprisingly wide application in areas as diverse as discrete di�erential geometry, cluster

algebras, Painlevé equations, random matrix theory and others [16]. Discrete integrable

systems also give rise to interesting new mathematical theories through their underlying

structures; as we allow these systems to speak for themselves, we uncover new principles

that are suitable for describing their structures and integrability properties.

There are two parallel but equivalent approaches to classical mechanics: that is the

Hamiltonian and Lagrangian formalisms. Traditionally, the Hamiltonian perspective has

been dominant in the study of integrable systems: Liouville integrability requires the

existence of a su�cient number of commuting invariants, leading to direct linearisations of

integrable models. These invariants are interpreted as Hamiltonians generating multiple

commuting time-�ows [5, 22, 116, 117]. A recent development, however, has been the
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Lagrangian multiform structure discovered behind many integrable models [17�19, 51, 62�

65, 110, 112, 111, 123�126]. This is a variational framework able to capture the aspect

of multiple equations holding simultaneously on the same set of variables, which appears

to exist on a fundamental level for discrete models; the known continuous examples have

been derived by continuum limit. In the case of evolutionary equations, these continuous

Lagrangian one-forms are related to the multiple commuting Hamiltonians by Legendre

transform. Although Hamiltonian and Lagrangian formulations are equivalent, as Dirac

writes, �there are reasons for believing that the Lagrangian one is the more fundamental�

[27].

A particularly interesting feature of these Lagrangian multiform structures is their

accompanying variational principle. In the usual least action principle we extremise the

action under variation of the dependent variables, producing the equations of motion. In

the multiform case, however, the full set of simultaneous equations of motion arises from

the variation of both independent and dependent variables: that is, the action must be

stationary under a variation of the underlying geometry of the independent variables.

This has been observed in the case of evolutionary equations, where variation is over

the time-path through multiple time variables [125, 126], and for lattice �eld equations,

where an underlying two dimensional, space-time surface is varied in a third (or higher)

dimensions [63]. The outcome of this variational principle is that the resulting Euler-

Lagrange equations become the de�ning equations for the Lagrangians themselves; only

those Lagrangians with the so-called closure property yield actions which are stationary in

the extended variational principle.

The preference for Hamiltonian descriptions of integrable systems is also re�ected

in a preference for canonical quantisation of such systems in the literature. Yet the

alternative Feynman's path integral, or sum over histories, quantisation has been known

for almost seventy years [36, 37]. Moreover, the sum over histories approach is known to be

advantageous in many areas of physics, not least because (in contrast to the Hamiltonian

approach) it can be written in a manifestly covariant, relativistic way [107, 114]. Up

until recently, however, an integrable understanding of Lagrangian structures was missing

from the literature. Without a good understanding of the necessary classical Lagrangian

structures, the corresponding quantum question was unapproachable. The development

of the Lagrangian multiform structure therefore o�ers a tantalising possibility: can a

path integral quantisation for integrable systems, capturing the multiple �ows that are
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a hallmark of integrability, now be developed? In this thesis we make some tentative �rst

steps towards answering this question.

Discrete systems are particularly important in this context. From an integrability

perspective, discrete systems represent a more fundamental set of models than their

continuum limits. From a quantum perspective, the path integral for continuous systems

can be problematic due to the di�culty of establishing the measure in an in�nitesimal time

slicing. For discrete systems, such di�culties are avoided by the �niteness of the time-steps:

there is no in�nitesimal time-slicing limit for a discrete system. Additionally, calculating

the path integral in practice typically requires a discretisation of the Lagrangian, but

the correct discretisation is not necessarily obvious since many di�erent discrete models

might lead to the same continuum limit. However, integrable discretisations are generally

somewhat unique, potentially resolving this ambiguity. The interpolating continuous �ows

that belong to integrable discrete systems then suggest the possibility of establishing a

path integral without any need for the time slicing limit at all.

In this introduction we review some helpful groundwork. In section 1.1 we consider

integrable lattice models and their fundamental property of multi-dimensional consistency,

which is the basis for the Lagrangian 2-form structure in the discrete case. In section 1.2 we

look at discrete mappings and their integrable structures, essentially captured in multiple

commuting Hamiltonians. We consider the discrete Ruijsenaars-Schneider model as an

example of an integrable discrete mapping that exhibits commuting discrete �ows, which

give rise to a Lagrangian 1-form structure. We review some important ideas of quantum

mechanics in section 1.3, and clarify what we understand by a quantum discrete system (of

which many variations appear in the literature). In section 1.4 we consider possible links

between this work and ideas in the �eld of quantum gravity. Integrable systems give us an

insight into fundamental mathematical structures, and progress in the �eld of integrable

systems may in turn guide the mathematics necessary in other areas of physics. Section

1.5 contains a brief overview of the thesis.

1.1 Classical lattice models

A key starting point in the study of integrable discrete-time systems is to consider partial

di�erence equations on a space-time lattice - systems where time and space directions are
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m

n

w

ŵ

w̃

̂̃w
Q = 0

p

q

Figure 1.1: The quad equation Q = 0 embedded within a square lattice.

both discrete and essentially on an equal footing. We consider �eld variables w at each

lattice site on a two-dimensional square lattice, labelled by discrete independent variables

n,m. We use �shift� notation, denoting movement in the n direction by a tilde and in the

m direction by a hat. Under-accents represent backwards shifts, so that if we de�ne the

notation w := wn,m, then

w̃ := wn+1,m , w˜ := wn−1,m , ŵ := wn,m+1 ,
ˆ
w := wn,m−1 . (1.1)

Equations determine the dynamics of the �eld variables across the lattice. In particular,

we study quad equations - equations that link the four variables at the corners of each

elementary plaquette on the lattice, and are then repeated across the entire lattice, shown

in �gure 1.1. Such an equation has the form

Q(w, w̃, ŵ, ̂̃w; p, q) = 0 , (1.2)

where p and q represent lattice parameters in the n and m directions.

The integrability of such quad equations is characterised by their multi-dimensional

consistency [15, 83, 71]. The quad equation (1.2) and two-dimensional lattice are embedded

within a three (or higher) dimensional square lattice, labelled by three discrete variables

n,m, l. The third shift is labelled by a bar , with lattice parameter r, so that for �eld

variable w := wn,m,l we have

w := wn,m,l+1 , w := wn,m,l−1 . (1.3)
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The quad equation (1.2) produces companion equations,

Q(w, ŵ, w, ŵ; q, r) = 0 , Q(w,w, w̃, w̃; r, p) = 0 , (1.4)

that hold across elementary plaquettes in the (m− l) and (l−n) lattice planes respectively.

An alternative notation labels the lattice directions (1, 2, 3), introducing shifts

w1 := wn+1,m,l , w2 := wn,m+1,l , w3 := wn,m,l+1 , (1.5)

with lattice parameters pi, i = 1, 2, 3. Then the quad equations (1.2) and (1.4) can be

summarised by the general form

Q(w,wi, wj , wij ; pi, pj) = 0 . (1.6)

Notice that implicitly this requires symmetry of the quad equation under the interchange

of the lattice directions.

The question then remains: for a given quad equation Q = 0, can this embedding

in a higher dimensional lattice be done consistently? Beginning with initial conditions

w, w̃, ŵ, w, it is clear from �gure 1.2 that the opposite corner of the elementary cube, ̂̃w,
can be calculated via three di�erent routes. Multi-dimensional consistency is captured

in the property of closure around the cube: the multi-dimensional embedding (1.6) is

consistent if the three possible values for ̂̃w coincide. This is the key integrability criterion

for such lattice models [82, 83].

w

ŵ

w̃

w

̂̃w

w̃

ŵ

̂̃w

Figure 1.2: Closure around the cube: arrows show the three routes to calculate ̂̃w.
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Closure around the cube is the basis of the well-known classi�cation of integrable quad

equations in the ABS list [1, 2]. Demanding that the quad equation Q = 0 (1.6) satisfy

conditions of a�ne linearity, symmetry under D4 on the square, and three-dimensional

consistency, the authors classi�ed all possible such equations in three lists, up to Möbius

transformations on the variables and point transformations of the lattice parameters. These

are labelled (Q1) - (Q4), (H1) - (H3) and (A1) - (A2). The a�ne-linearity property in

particular is justi�ed by restricting attention to those equations which can be uniquely

solved for any argument: that is, those with a unique solution across the lattice for

appropriate initial conditions.

An alternative approach to deriving integrable lattice equations is found in [80], based

on a direct linearisation method. Such lattice equations are more general than the quad

equations above, in that they involve not only the �eld variables around a square, but also

�eld variables at the next-nearest and possibly further lattice sites. These equations form

an integrable hierarchy: the lattice Gelfand-Dikii hierarchy, integrable due to the existence

of an underlying Lax structure. The simplest member of the hierarchy is the so-called

lattice Korteweg-de Vries (KdV) equation [75, 88, 120],

(p− q + ŵ − w̃)(p+ q − ̂̃w + w) = p2 − q2 . (1.7)

This is an important example: in addition to sitting in the lattice Gelfand-Dikii hierarchy,

the lattice KdV equation is also a quad equation (it links variables around an elementary

square plaquette) and in fact is equivalent to (H1) of the ABS list under a simple

transformation.

1.1.1 Key example: the Lattice KdV Equation

We consider the lattice KdV equation (1.7) as an illustrative example for the integrability

of multi-dimensionally consistent lattice equations. Embedding the equation within a

three-dimensional lattice, we write the multi-dimensional form (1.6)

(pi − pj + wj − wi)(pi + pj + w − wij) = p2
i − p2

j . (1.8)

Beginning with initial values on four corners of a cube, w, w̃, ŵ, w, as in �gure 1.2, it is

then possible to calculate the opposite corner ̂̃w in three di�erent ways. For instance,

̂̃w = p+ q + w − p2 − q2

p− q + ŵ − w̃
. (1.9)
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This is most easily expressed in terms of transformed variables w (indicated by Roman

script) where a copy of the lattice parameter is absorbed in the shift [51],

w := w , w̃ := w̃ − p , ŵ := ŵ − q , w := w − r , ̂̃w := ̂̃w − p− q , . . . , (1.10)

(and similar). Using the quad equation (1.8) to write ̂̃w (1.9) in terms of the initial values,

with the shifted variables w, we �nd

̂̃w = −(p2 − q2)w̃ŵ + (q2 − r2)ŵw + (r2 − p2)ww̃

(p2 − q2)w + (q2 − r2)w̃ + (r2 − p2)ŵ
. (1.11)

This opposite corner ̂̃w only depends on w̃, ŵ and w, in a symmetric form. This is su�cient

for closure around the cube, since the symmetry makes manifest that the alternative

calculations will yield the same result. As commented in [1], in fact all known examples

with the closure around the cube property have this �tetrahedron� form, linking ̂̃w with

the three other points in the elementary cube w̃, ŵ and w. The closure around the cube

proves the multi-dimensional consistency of the lattice equation (1.8).

This multi-dimensional consistency is the key integrability condition for lattice

equations. For the lattice KdV equation, we explore this below to see that a Bäcklund

transform and Lax representation, standard features of integrable systems, arise naturally

from the multi-dimensional consistency. It is also possible to derive soliton solutions and

continuum limits, but we omit these here.

Bäcklund transform and Lax pair

We can exploit the multi-dimensional consistency to derive a Bäcklund transform for the

initial lattice KdV equation (1.7). The shift in the third lattice direction, w, is interpreted

as the introduction of a transformed variable v, with the lattice parameter representing a

Bäcklund parameter k,

v := w , k := r . (1.12)

The lattice KdV equation in the (1− 3) and (2− 3) directions (1.8) is given by

(p− k + v − w̃)(p+ k − ṽ + w) = p2 − k2 , (1.13a)

(q − k + v − ŵ)(q + k − v̂ + w) = q2 − k2 , (1.13b)

which give equations for v in terms of w. The multi-dimensional consistency (1.11)

guarantees that the new variable v will also obey the lattice KdV equation (1.7),

(p− q + v̂ − ṽ)(p+ q − ̂̃v + v) = p2 − q2 . (1.14)
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This represents an auto-Bäcklund transform for the system; the transform takes us from

one solution of the equation w (1.7) to another solution of the same equation, v.

The Bäcklund transform (1.13) then leads to a Lax pair for the lattice KdV equation.

Writing the fractional form

v − k =: ψ/φ , (1.15)

then the �tilde� equation (1.13a) can be rewritten as

ψ̃ = (p+ w)φ̃− (p2 − k2)φφ̃

(p− w̃)φ+ ψ
. (1.16)

We make a choice for φ̃ so that this reduces to the linearised equations

(p− k)φ̃ = (p− w̃)φ+ ψ , (1.17a)

(p− k)ψ̃ =
[
(p+ w)(p− w̃)− p2 + k2

]
φ+ (p+ w)ψ . (1.17b)

Introducing the vector Φ := (φ, ψ)T , (1.17) can be written in matrix form,

(p− k)Φ̃ =

 p− w̃ 1

(p+ w)(p− w̃)− p2 + k2 p+ w

Φ . (1.18)

An entirely similar construction can be performed for the hat shift (1.13b), which

together with the matrix form of the tilde equation (1.18) produces the Lax pair

(p− k)Φ̃ = L Φ , (q − k)Φ̂ = M Φ , (1.19)

with matrices

L = WPkW̃
−1 :=

 1 0

w 1

 p 1

k2 p

 1 0

−w̃ 1

 , (1.20a)

M = WQkŴ
−1 :=

 1 0

w 1

 q 1

k2 q

 1 0

−ŵ 1

 . (1.20b)

A key feature of this matrix Lax pair is the appearance of the �eld variable w in lower

triangular matrices. Consistency of the spectral problem (1.19) gives rise to a zero-

curvature condition,

L̂ M = M̃L . (1.21)

Requiring this condition to hold produces the initial lattice KdV equation (1.7) as a

compatibility condition. The existence of a Lax pair is a standard feature of integrable

systems, which here is a direct consequence of the multi-dimensional consistency of the

parent equation.
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Variational Principle

The lattice KdV equation (1.7) can be derived from a variational or least action principle,

by de�ning a discrete action across the two-dimensional lattice,

S =
∑
n,m∈Z

L(wn,m, wn+1,m, wn,m+1; p, q) , (1.22)

where L(wn,m, wn+1,m, wn,m+1; p, q) is a Lagrangian density de�ned on individual

plaquettes of the lattice. Note that for quad equations like lattice KdV, it is su�cient

to consider 3-point Lagrangian densities with no dependence on wn+1,m+1 [1, 62]. In

general, there is su�cient freedom within the action to de�ne the Lagrangian densities to

depend only on three points of the elementary plaquette. As in the continuous least action

principle, we demand the action be stationary under variation of the �eld, δS/δw = 0,

which applied to the action (1.22) leads to the discrete Euler-Lagrange �eld equations,

∂

∂w

(
L(w, w̃, ŵ) + L˜(w˜ , w, ŵ˜) +

ˆ
L(

ˆ
w, ˜̂w,w)

)
= 0 . (1.23)

The three-leg form of a quad equation is given by

f(w, w̃; p)− f(w, ŵ; q) + g(w, ̂̃w; p, q) = 0 , (1.24a)

for some functions of the �eld variables and lattice parameters f and g [1, 51]. By writing

the lattice KdV equation (1.7) in this form,

(w̃ − p)− (ŵ − q) +
p2 − q2

p+ q + w − ̂̃w = 0 , (1.24b)

so that f(w, w̃; p) = w̃− p and g(w, ̂̃w; p, q) = (p2 − q2)/(p+ q +w− ̂̃w), it can be seen to

arise from the three point Lagrangian [24]

L(w, w̃, ŵ; p, q) = −w(p− q − w̃ + ŵ) + (p2 − q2) log(p− q − w̃ + ŵ) . (1.25)

The discrete Euler-Lagrange equation (1.23) yields the equation of motion,

p+ q + w˜ − ŵ − p2 − q2

p− q − w + ŵ˜ = p+ q +
ˆ
w − w̃ − p2 − q2

p− q − ˜̂w + w
. (1.26)

This is not the quad equation (1.7), but a weaker version of it. Comparing with the three-

leg form (1.24b), it is clear that two copies of the equation are produced. This is a general

feature of quadrilateral equations under a variational principle [62, 69].
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In chapter 2, we will use a simple example to discuss the Lagrangian 2-form structure:

a Lagrangian structure and accompanying variational principle due to Lobb and Nijho�

[62�65]. The Lagrangian 2-form structure is built on a closure property for the Lagrangians

L(w) (1.25) around the elementary cube of �gure 1.2, �rst shown to hold for lattice

equations of the ABS list, and the lattice KdV equation in particular. This extended

Lagrangian structure results in not only the strong form of the quad equation arising

directly from the variational principle, but also the full set of multidimensionally consistent

equations (1.6): as such it is an integrable Lagrangian structure, capturing the multiple

consistent equations of these lattice models.

1.2 Classical discrete mappings

Whilst the lattice equations of section 1.1 treat both space and time as discrete variables

on an equal footing, in a discrete mapping it is time only that is the discrete variable.

Lattice equations therefore resemble �eld theories or PDEs, whereas discrete mappings

resemble evolution equations or ODEs. Position often plays the role of dependent, rather

than independent, variable. Discrete mappings therefore emerge somewhat di�erently to

lattice equations; in this section we discuss some of the basic theory and introduce the

notion of an integrable mapping [22, 116, 117].

1.2.1 Integrable Symplectic Mappings

A symplectic map is de�ned in [22] on a di�erentiable manifold M of dimension 2N . The

manifold is equipped with a symplectic structure ω(u),

ω(u) =
∑
r,s

Jrs(u)dur ∧ dus , r, s = 1, . . . , 2N , (1.27)

with Jacobi conditions on the matrix Jrs. Equivalently this is expressed by the Poisson

bracket,

{F ,G }u :=
2N∑
r,s=1

∂F

∂ur
(J−1)rs

∂G

∂us
. (1.28)

A well known result [5] is that locally the symplectic structure can be described in terms

of canonical co-ordinates: position and momentum variables xi, Xi, i = 1, . . . , N , in terms
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of which the canonical structure can be written more simply,

ω(x,X) =
N∑
j=1

dxj ∧ dXj , (1.29a)

{F ,G }x,X =
N∑
j=1

(
∂F

∂xj

∂G

∂Xj
− ∂F

∂Xj

∂G

∂xj

)
. (1.29b)

In practice, this canonical form will be the most useful for our purposes. We adopt the

notation using lower and upper case pairs of letters to denote conjugate position and

momentum variables, so x, y indicate positions, and X, Y their respective conjugate

momenta.

A symplectic mapping is then a function from M to itself,

Φ : M → M ,

(xj , Xj) 7→ (x̂j , X̂j) ,
(1.30a)

de�ning transformed co-ordinates

x̂j := fj(x,X) , X̂j := gj(x,X) , (1.30b)

such that the symplectic structure (i.e. the Poisson bracket) (1.29b) is preserved:

{f ◦ Φ, g ◦ Φ}x,X = {f, g}
x̂,X̂

, (1.30c)

for any pair of functions f, g. A consequence is that

{x̂i, x̂j} = {X̂i, X̂j} = 0 , {x̂i, X̂j} = δij , (1.30d)

for the new co-ordinates. Such a map is also called a canonical transform.

A symplectic map de�nes a discrete-time system by iteration. Introducing a discrete

time variable m ∈ Z, we interpret the map as the evolution of a system under a single,

discrete time step. The mapping equations (1.30b) are rewritten as

xj(m+ 1) := fj
(
x(m), X(m)

)
, Xj(m+ 1) := gj

(
x(m), X(m)

)
, (1.31)

such that the Poisson bracket structure (1.29) is preserved under every step of the evolution.

We use the �hat� notation to indicate a time-step evolution: if x := x(m), then x̂ :=

x(m+ 1).

An important result is that symplecticity of a map is equivalent to the existence of a

generating function [43]. Di�erent forms of generating function can be written depending
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on the speci�c form of the mapping equations (1.30b). For example, so long as the Jacobian

|∂gi/∂Xj | 6= 0, we can write a generating function depending on the initial position and

�nal momentum variables, F (xi, X̂i), such that the equations of the mapping are given by

x̂j =
∂F

∂X̂j

(xi, X̂i) , Xj =
∂F

∂xj
(xi, X̂i) . (1.32)

Under appropriate conditions, these relations can be inverted to write the mapping in its

canonical form (1.30b). The equations (1.32) and related forms are sometimes referred

to as discrete Hamilton's equations, although this terminology must be used cautiously.

The generating function F (xi, X̂i) is emphatically not a Hamiltonian as, unlike in the

continuous case, discrete generating functions are in general not preserved under the

mapping, F̂ (x̂i,
̂̂
Xi) 6= F (xi, X̂i).

We are most interested in the Lagrangian form of the generating function, L(xi, x̂i).

For such a form, the mapping equations naturally arise from a principle of least action.

De�ning the action S as a functional of the path in discrete time xi(m),

S[xi(m)] =
∑
m∈Z

L
(
xi(m), xi(m+ 1)

)
, (1.33)

the mapping arises at the stationary point of the action S:

δS

δxi(m)
= 0 . (1.34)

This least action principle yields the discrete Euler-Lagrange equations,

∂

∂xi(m)

[
L
(
xi(m− 1), xi(m)

)
+ L

(
xi(m), xi(m+ 1)

)]
= 0 , i = 1, . . . , N , (1.35)

or equivalently

∂̂L

∂xi
+
∂L

∂x̂i
= 0 , i = 1, . . . , N . (1.36)

In this view, the discrete Lagrangian L(x, x̂) is the de�ning object for the symplectic

map, with the canonical momenta and Poisson structure arising as a consequence of the

generating function, via the equations

Xi = − ∂L
∂xi

, X̂i =
∂L

∂x̂i
, (1.37)

so that we once more have the symplectic structure (1.29). Note that so long as the action

(1.33) is unchanged, then the Euler-Lagrange equations (1.36) will also remain the same,

but that the conjugate momenta (1.37) are a�ected by changes in the Lagrangian, even

when the action stays the same.
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In principle, the two generating functions L(xi, x̂i), F (xi, X̂i) are related by a discrete

Legendre transform [22, 43]. Notice the di�erentials from (1.32), (1.37),

dF =
∑
i

(Xidxi + x̂idX̂i) , (1.38a)

dL =
∑
i

(−Xidxi + X̂idx̂i) , (1.38b)

so that we can write the Legendre transform

F (xj , X̂j) =
∑
i

X̂ix̂i − L(xj , x̂j) . (1.39)

However, in practice, performing the transform depends on inverting the equations (1.37)

to eliminate x̂i (respectively X̂i)

x̂i = x̂i(xj , X̂j) . (1.40)

This is not always possible, and so this Legendre transform is not a universal construction

for any Lagrangian.

The symplectic structure allows a discrete analogue of Arnol'd-Liouville integrability.

A 2N -dimensional discrete mapping is said to be completely integrable if there exist N

functionally independent invariants in involution [22], Ij(xi, Xi), i = 1, . . . , N ,

Îj(x̂i, X̂i) = Ij(xi, Xi) , where {Ij , Ik} = 0 , j, k = 1, . . . , N . (1.41)

This integrability results from a canonical transform of the map into �action-angle�

variables, new variables where the invariants Ij become the canonical momenta Yj(m),

with some positions yj(m), j = 1, . . . , N , so that

Yj(m+ 1) = Yj(m) = Ij , (1.42a)

yj(m+ 1) = Gj(y(m), Y (m)) . (1.42b)

That is, the new momenta are constant in time. We must have preservation of the Poisson

bracket,

{yi(m+ 1), Yi(m+ 1)} = {yi(m+ 1), Yi(m)} = δij , (1.43)

which implies

yi(m+ 1) = yi(m) + νi(Y ) , (1.44)

where the frequencies νi are some functions of the momenta Yj , and therefore constant.

In other words, such a transformation linearises the mapping so that it can easily be
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integrated. This is explored in more detail in [22]; integrability as su�ciently many

invariants in involution is the basis of many known discrete integrable models in the

literature [77, 78, 81, 88, 90], and is an important feature of the example discussed below.

1.2.2 Lagrangian One-form Structures

Continuous integrable models are characterised by a complete set of invariants in

involution; these describe Hamiltonians that generate commuting time-�ows. Recently,

the Lagrangian one-form structure has been developed: this structure captures the

multiple commuting �ows of an integrable systems in an extended variational principle.

In the discrete case, for some integrable models there have been found commuting maps

analogously to the multi-dimensional consistency of the lattice models discussed in section

1.1, these commuting maps give rise to a discrete Lagrangian one-form structure.

A �rst example of the Lagrangian one-form was uncovered for the discrete Calogero-

Moser (CM) model in [124, 125], and subsequently extended to the relativistic

generalisation [126] and Toda-type systems [18], with the continuous theories arising in

well chosen limits. Some additional exploration of the general theory has been done in

[19, 110].

We consider the discrete Ruijsenaars-Schneider (relativistic Calogero-Moser) model of

[126] as an illustrative example. The Ruijsenaars-Schneider (RS) model is an integrable,

continuous-time, multi-particle model in one spatial dimension, initially found in [98] as

a relativistic generalisation of the CM system [23, 85]. An integrable discrete-time model

(discrete mapping) which produces the continuous-time model in a well chosen limit was

discovered in [81], with a Lagrangian-type generating function of the form (1.33).

Following the treatment by Lagrangian one-form of the CM model [125], the commuting

discrete �ows of the RS model and corresponding Lagrangian one-form were uncovered in

[126], also enabling the authors to expand the theoretical underpinnings of the discrete one-

form structure. In the continuum limit, the authors discovered the Lagrangian one-form

for the continuous-time model, expanding the Lagrangian description for the RS model

given in [20].

We adopt similar notation to section 1.1. We consider vector functions of two discrete

time-variables n,m, such that xi := xi(n,m), using tilde and hat to indicate shifts in the



Classical discrete mappings 15

n and m directions, x̃i = xi(n + 1,m), x̂i = xi(n,m + 1). Note that here n,m denote

two distinct time variables, with two corresponding evolutions, rather than the discrete

space-time of section 1.1.

The time-discrete RS model is derived from a Lax pair (inspired by the known Lax

representation for the continuous-time model [21, 96]) and has discrete equations of motion

p

p˜
N∏
k=1
k 6=i

σ(xi − xk + λ)

σ(xi − xk − λ)
=

N∏
k=1

σ(xi − x̃k)σ(xi − x˜k + λ)

σ(xi − x˜k)σ(xi − x̃k − λ)
, for i = 1, . . . , N . (1.45)

The variables xi, i = 1, . . . , N are interpreted as the positions for N identical particles,

evolving under discrete time n (xi is a function of n). λ is a relativistic parameter, such

that it is possible to regain the discrete CM model in a non-relativistic limit as λ → 0.

σ(x) is the Weierstrass sigma function (with implicit primitive periods ω1 and ω2), and

p = p(n) is introduced as a free parameter that may depend on n: it relates to a free choice

regarding the centre of mass motion, and we take it to be a constant (so p/p˜ = 1). The

Lax pair naturally implies an isospectrality which yields the invariants for the model and

hence integrability.

Notice that the equations of motion (1.45) give the particle positions x̃i at time n+ 1

implicitly, in terms of positions at earlier times xi, x˜i. In fact the map is multi-valued,

but in a precise way. As a result of the integrability, it is possible to construct exact

solutions as the eigenvalues of an N × N matrix; the multi-valuedness manifests itself as

indistinguishability of the N identical particles (the positions can be exactly calculated,

but in the discrete case there is no way of ascribing particular eigenvalues to particular

particles). It is interesting that this typically quantum phenomenon occurs here in the

classical, discrete case.

Inspired by the commuting �ows of the related discrete-time CM case [78, 125], in

[126] the authors posed a commuting, discrete �ow for the time-discrete RS model. By

introducing an alternative Darboux matrix into the Lax pair, they found a second set of

discrete equations of motion in a second time variable m, so that xi = xi(n,m), with shifts

in m labelled by a hat,

q

ˆ
q

N∏
k=1
k 6=i

σ(xi − xk + λ)

σ(xi − xk − λ)
=

N∏
k=1

σ(xi − x̂k)σ(xi −
ˆ
xk + λ)

σ(xi −
ˆ
xk)σ(xi − x̂k − λ)

, i = 1, . . . , N . (1.46)

q = q(m) is also a centre of mass parameter, similar to p, which is also chosen to be

constant.
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The compatibility of these two discrete time �ows (1.45) and (1.46) is guaranteed on

the level of the Lax matrices, and requires a further two constraint equations,

p

q
=

N∏
j=1

σ(xi − x̃j)σ(xi − x̂j − λ)

σ(xi − x̂j)σ(xi − x̃j − λ)
, (1.47a)

p

q
=

N∏
j=1

σ(xi − x˜j)σ(xi −
ˆ
xj − λ)

σ(xi −
ˆ
xj)σ(xi − x˜j − λ)

. (1.47b)

So there are now four equations of motion describing the evolution in two discrete times of

the particle positions xi(n,m): (1.45), (1.46), (1.47). Remarkably, these four equations are

consistent, with a joint solution xi(n,m) expressible once again in terms of the eigenvalues

of an N ×N matrix.

The evolution in discrete time (1.45) (respectively also (1.46)) is a symplectic mapping

(section 1.2.1) and can be expressed through a variational principle on a generating function

of Lagrangian form (1.33) [81]. We choose the speci�c form of the Lagrangian given in

[126],

L(n)(x, x̃) =

N∑
i,j=1

(
f(xi − x̃j)− f(xi − x̃j − λ)

)
− 1

2

N∑
i,j=1

i 6=j

(
f(xi − xj + λ)

+ f(x̃i − x̃j + λ)
)

+ log |p|
N∑
i=1

(x̃i − xi) , (1.48a)

where

f(x) =

∫ x

log |σ(ξ)| dξ (1.48b)

is an elliptic dilogarithm, and the �nal term of (1.48a) represents the centre of mass motion.

The Lagrangian L(n) yields the equation of motion (1.45) for the tilde evolution under

discrete Euler-Lagrange equations, as in (1.36). A similar Lagrangian, L(m)(x, x̂), yields

the equation of the hat evolution (1.46).

The critical observation is the closure relation of the Lagrangians (1.48) [126]. That is,

when we apply the equations of motion (1.45), (1.46) and the constraint equations (1.47),

the equality holds,

L(m)

(
x, x̂

)
+ L̂(n)

(
x̂, ̂̃x)− L̃(m)

(
x̃, ̂̃x)− L(n)

(
x, x̃

)
= 0 . (1.49)

Note that for a generic choice of xi(n,m), the sum of Lagrangians is non-zero, so that the

closure relation holds only on solutions. For the discrete RS system, this result must be
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shown by direct calculation, which was done explicitly for the rational case in [126], and

requires the speci�c choice of Lagrangians given in (1.48). The closure relation (1.49) can

be understood as a closure around the elementary square in the lattice of time variables,

shown in �gure 1.3.

n

m

x x̃

̂̃xx̂

−L(n)(x, x̃)

−L̃(m)(x̃, ̂̃x)L(m)(x, x̂)

L̂(n)(x̂, ̂̃x)

Figure 1.3: Oriented Lagrangians around a square in the time directions n,m.

This closure relation (1.49) is the key requirement for the discrete one-form structure.

The essential observation is that all four equations of motion (1.45), (1.46), (1.47) (i.e.

including the constraint equations) arise from Euler-Lagrange equations on the Lagrangians

(1.48). In order to make a general statement we suppress the vector index i and mark shifts

in the lattice by α, α = 1, 2, so that x1 = x̃, x2 = x̂, and label the Lagrangians Ln and

Lm by Lα, α = 1, 2, similarly. Then there are four elementary con�gurations of the action

that yield the four possible Euler-Lagrange equations, shown in �gure 1.4. In each case

a pair of Lagrangians, with variation over the middle variable, yields an Euler-Lagrange

equation of the form

∂

∂xα

(
Lα(x, xα) + Lβ(xα, xαβ)

)
= 0 . (1.50)

As derived in [126], it is then straightforward to show that the elementary curves of

�gure 1.4 produce the equations of motion for the system. Clearly �gures (i) and (ii)

correlate with the known single time variable case, and yield the respective equations of

motion (1.45) and (1.46). It can then also be shown that curves (iii) and (iv) yield the

constraint equations (1.47a) and (1.47b) respectively, so that the complete set of equations

of motion are described by this Lagrangian one-form. More detail of the Lagrangian one-

form structure, and its accompanying variational principle, will be discussed via the simple

example derived in chapter 2.
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i) n

m

x x̃ ˜̃x
Ln L̃n

ii) n

m

x

x̂

̂̂x
Lm

L̂m

iii) n

m

x x̃

x̂

Ln

−Lm

iv) n

m

x̃

̂̃xx̂

−L̃m

L̂n

Figure 1.4: Elementary discrete curves for variables m and n.

The Lagrangian one-form structure therefore captures the multi-dimensional

consistency of the system, encoding all the equations of motion and constraint equations

within a single, extended, Lagrangian structure. The discrete RS system is essentially an

iterated Bäcklund transform (as are many other integrable discrete time systems) [122]

such that the Lagrangian one-form captures the commutativity of the Bäcklund transform

under di�erent choices of parameter. In the RS and CM cases, the discrete one-form

structures have also been shown to lead, in well chosen continuum limits, to continuous

one-form structures that capture the commuting �ows of integrable Hamiltonian systems.

Note that the elliptic potential σ(x) of the RS equations (1.45) can be simpli�ed through

limits on the primitive periods of the Weierstrass sigma function. There are three cases of

interest,

Hyperbolic: σ(x) → sinh(x) , (1.51a)

Trigonometric: σ(x) → sin(x) , (1.51b)

Rational: σ(x) → x . (1.51c)

This limit can be performed directly on the sigma function σ(x) in the results of this section

to yield the appropriate equations of motion (1.45), (1.46), constraint equations (1.47),

and Lagrangians (1.48) via the function f(x) (1.48b). In particular, all the calculations for

closure discussed in this section can be performed explicitly in the rational case [126].
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1.3 Quantum Mechanics

There are two primary competing paradigms in quantum mechanics: canonical

quantisation, a Hamiltonian approach, and path integral quantisation, whose fundamental

object is the Lagrangian. In this section we review some essential notions of canonical

and path integral quantisation, in particular developing how familiar quantum mechanical

treatments extend naturally to discrete-time systems through the Heisenberg picture. We

do not seek to provide a full introduction to quantum mechanics,1 but only to clarify

our particular perspective on quantum mappings, since many di�erent views of �discrete

quantum mechanics� exist in the literature.

In the context of integrable systems, Hamiltonian approaches to quantisation have

received a lot of attention, whilst the path integral has been relatively neglected.

The machinery of quantum inverse scattering and the Bethe ansatz is a key tool for

understanding canonical quantum integrability, through the derivation of commuting

quantum invariants in analogy to classical notions of integrability [58, 103]. Such invariants

often require a quantum correction involving the Planck constant ~, relative to the

classical case [50, 49]. Despite this, making a precise notion of �quantum integrability�

is not straightforward due to the di�culties of establishing functional independence in the

operator case. So far, there is no clear notion of quantum integrability for path integral

quantisation, although an attempt was made by de Vega [25].

First, we consider systems evolving in continuous time t. In the Hamiltonian (canonical)

approach, the canonical variables of position and momentum xi, Xi become operators,

acting on a (typically) in�nite dimensional Hilbert space. Where it aids clarity, we use a

bold type to indicate operators xi,Xi. The Poisson bracket of the classical theory (1.29)

becomes an operator commutator bracket between the position and momentum operators,

[xi,Xj ] = i~δij . (1.52)

Operators act on states in the Hilbert space, which are labelled using Dirac notation, |ψ〉.

Eigenstates for the position and momentum operators |x〉, |X〉 are postulated such that

x |x〉 = x |x〉 , X |X〉 = X |X〉 . (1.53)

Such eigenstates then allow us to de�ne position (or momentum) space wave-functions,

1of which many are available [29, 100]
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ψ(x, t) := 〈x|ψ〉. In particular, the �free wave� is a position space representation of a

momentum eigenstate, 〈X|x〉 = exp(−ixX/~).

The fundamental object in the continuous time theory is the Hamiltonian H(x,X),

which generates the time-�ow via the Schrödinger equation,

i~
∂

∂t
|ψ〉 = H(x,X)|ψ〉 . (1.54)

This governs how states evolve in time in the Schrödinger picture, where time-dependence

is assumed to sit in states, with operators time-independent. In this view of quantum

mechanics, one often either considers stationary states, such that H(x,X)|ψ〉 = E|ψ〉, in

which case the goal is typically to investigate the spectrum of the Hamiltonian operator.

Or, one maintains an interest in the time dependence, in which case the usual goal involves

calculating correlations functions to analyse some scattering process.

For Hamiltonians that do not explicitly depend on t, the consequence of the Schrödinger

equation is that the time dependence of a state is easily expressed in terms of the

Hamiltonian,

|ψ(t)〉 = e−itH/~|ψ(0)〉 . (1.55)

This leads to the obvious de�nition of the time evolution operator, a unitary operator for

Hermitian Hamiltonians,

U(t) := e−itH/~ . (1.56)

We transition to the Heisenberg picture by using the time evolution operator to relocate

the time-dependence from states to operators. States become time-independent, whilst the

time evolution of operators is expressed by conjugation

O(t) = U †(t)O(0)U(t) , (1.57)

and eigenstates naturally also become time-dependent,

|x(t)〉 = U †(t)|x(0)〉 , |X(t)〉 = U †(t)|X(0)〉 . (1.58)

Wave functions (and all physical consequences of the theory) remain unchanged,

ψ(x, t) = 〈x(0)|ψ(t)〉 = 〈x(0)|U(t)|ψ(0)〉 = 〈x(t)|ψ(0)〉 . (1.59)

The Schrödinger equation (1.54) governs the time evolution of states, and so is no longer

relevant in the Heisenberg picture. Instead, the time-evolution of operators is governed by
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the operator equation of motion,

∂

∂t
O(t) =

i

~
[
H,O

]
, (1.60)

so that the Hamiltonian generates time-evolution of the operators by commutation: this

directly parallels time evolution via Poisson bracket in the classical Hamiltonian formalism.

An alternative view of quantum mechanics due to Feynman [36] moves away from the

Hamiltonian to the Lagrangian, and away from an operator view of quantum objects to

considering particle trajectories. Although the origins of this view are in Dirac's work

on the place of the Lagrangian in quantum mechanics [27, 28], Feynman's development

initially faced some resistance, returning to particle trajectories at a time when many

had rejected such a notion as unphysical. This theory of path integrals led to many new

developments in quantum mechanics and wider physics (particularly statistical mechanics)

and has been expounded since its inception in a number of texts [37, 47, 99, 102].

The primary object in this �sum over histories� formulation is the propagator, the

matrix elements of the time evolution operator,

K(xa, ta;xb, tb) := 〈xb(tb)|xa(ta)〉 = 〈xb|U(tb − ta)|xa〉 . (1.61)

This expresses the probability amplitude for a particle to travel from a position xa at time ta,

to position xb at some later time tb (note that we have tacitly assumed time independence

of the Hamiltonian). Completeness of the position eigenstates,
∫
|x〉〈x|dx = 1, gives the

propagator the important group property,

K(xa, ta;xb, tb) =

∫
dxc K(xa, ta;xc, tc) K(xc, tc;xb, tb) , (1.62)

for any intermediate time tc.

Derivations of the sum over histories formalism (as early as Dirac's original paper) use

the group property to begin with a �time-slicing� of the interval [ta, tb] into segments,

K(xa, ta;xb, tb) =

∫ N−1∏
i=1

dxi

N−1∏
j=0

〈xj+1|U(tj+1 − tj)|xj〉 . (1.63)

The derivation then depends on a small-time approximation: taking N to be large as the

time becomes �nely sliced, we allow tj+1 − tj =: ε, small, so that there is a time-slicing

limit on the propagator,

K(xa, ta;xb, tb) = lim
N→∞
ε→0

∫ N−1∏
i=1

dxi

N−1∏
j=0

〈xj+1| exp
[
− iεH/~

]
|xj〉 . (1.64)
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It is usually supposed that the Hamiltonian is written in a Newtonian, separable form,

H(x,X) = T (X) + V (x) =
1

2
X2 + V (x) , (1.65)

such that in the time slicing limit the evolution operator can be written in a separated

form,

U(tb − ta) = lim
N→∞
ε→0

[
exp

[
− iεH/~

]]N
, (1.66a)

= lim
N→∞
ε→0

[
e−iεT (X)/~e−iεV (x)/~

]N
, (1.66b)

where this equality holds only within the time-slicing limit [99].

Inserting a complete set of momentum eigenstates into each propagator segment of

(1.64), and using the analytic continuation of the Gaussian integral formula,∫ ∞
−∞

e−
1
2 iax

2+ibxdx =

√
2π

ia
eib

2/a , (1.67)

the in�nitesimal piece of the propagator becomes

lim
ε→0
〈xj+1|e−iεH/~|xj〉 = exp

[
iε

~

(
1

2

(
xj+1 − xj

ε

)2

− V (xj)

)]
, (1.68a)

= exp

(
iε

~
L(xj , xj+1)

)
. (1.68b)

L(xj , xj+1) is a discretisation of the Lagrangian that corresponds to the Legendre transform

of the Hamiltonian H (1.65). The full propagator becomes

K(xa, ta;xb, tb) = lim
N→∞
ε→0

∫ N−1∏
i=1

dxi exp

 iε
~

N−1∑
j=0

L(xj , xj+1)

 , (1.69a)

=:

∫ x(tb)=xb

x(ta)=xa

D[x(t)] exp
(
iS[x(t)]/~

)
. (1.69b)

In this last equality, the path integral notation is de�ned. Notice especially the appearance

of the action S[x(t)], a functional of the path x(t). This has the well known physical

interpretation as sum over all possible paths, or sum over histories, for the particle.

From a discrete-time perspective, there are a number of points of interest, especially

for integrable systems. Many important integrable systems do not have a Hamiltonian of

Newtonian form (1.65) (the Ruijsenaars-Schneider model of section 1.2.2 is one such case)

but the derivation of the path integral relied upon such an assumption. For non-Newtonian

models, it is not clear whether canonical and path integral quantisation are equivalent. If

not, which is �correct�?
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We noted also the appearance of a discretised Lagrangian in (1.68b). Many discrete

integrable models can be described by Lagrangians, though these are often not of

a Newtonian form, and may have non-trivial continuum limits (again, consider the

Lagrangian for the discrete Ruijsenaars-Schneider model in (1.48a)). Additionally, in the

discrete case the in�nitesimal time-slicing is no longer needed, since we are concerned with

�nite time steps. This may o�er a resolution to some of analytical di�culties that face the

path integral as a result of the time slicing limit.

In studies of quantum gravity, the discretisation necessary for the path integral can

be problematic as discretisations generally break the symmetries of the continuous model

[10]. Additionally, the discretisation of the Lagrangian is non-unique for a given continuum

model, yet choice of discretisation can change the result of the path integral calculation:

for even the simple example of a Newtonian particle evolving under a vector potential,

the �wrong choice� of discretisation leads to the wrong propagator [99]. Discrete integrable

systems potentially resolve these problems; invariants of the continuum model are typically

also preserved as commuting �ows in the discrete case, and integrable models do not in

general have such freedom in the choice of discretisation. Indeed, the discrete models

themselves are perhaps the truly fundamental system, rather than their continuum limit.

1.3.1 Quantum mappings

Quantum mappings (or discrete-time systems) have a wide range of interpretations. The

notion of a quantum mapping essentially began in [14], but has been advanced a great

deal especially in the area of integrability, via canonical quantisation of known integrable

maps [73, 74, 76, 91]. This has led naturally to the notion of a �quantum canonical

transform� [3, 4], which is a transformation preserving commutation relations. For a

discrete-time quantum system, we insist on formal unitarity of the time evolution operator,

which is a stronger condition. We consider systems where the time variable t is replaced

by the discrete variable n, which takes integer values; wave-functions become therefore

ψ(q, n) = ψn(q). We also discuss the quantisation of lattice equations, such as (1.8): in

such cases both time and position become discrete, and we are essentially examining a

discrete quantum �eld theory. Such integrable models have received some attention, e.g.

in [33, 118, 119].

Clearly, in discrete time the Schrödinger equation (1.54) becomes redundant as a
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starting point, since time derivatives are no longer meaningful. Thus in the discrete case

it is the operator equations of motion that take the centre stage. In general one takes

discrete equations of motion from the classical case and transforms them into operator

equations of motion, with commutator brackets de�ned from classical Poisson brackets, as

in (1.52). This process is not necessarily unambiguous, as there may be issues with operator

ordering. The emphasis on operator equations of motion means that the Heisenberg picture

of quantum mechanics is often the more natural for discrete systems.

Canonical quantisation of discrete integrable systems is essentially linked to their Lax

representations through the quantum inverse scattering method [58]; Lax representations

encode the invariants of the system essential for integrability, as classically. In the quantum

case, as operator ordering becomes non-trivial, quantum corrections are required to the

invariants to account for the commutation relations. An R-matrix structure guarantees

the commutation of the invariants, and the preservation of the symplectic structure under

the mapping; this will be discussed at more length in chapter 4.

For a canonical transform (section 1.2.1), the operator equations of motion may have

a form of the kind,

xn+1 = f(xn,Xn) , Xn+1 = g(xn,Xn) , (1.70)

although such a form cannot always be written explicitly. Recalling the time evolution

of operators by conjugation with the operator U (1.57), in the discrete case we seek an

elementary time evolution operator, U , evolving states or operators by

|ψ〉n+1 = U |ψ〉n , On+1 = U−1OnU . (1.71)

Time evolution occurs by iteration of the operator U ,

On = U−nO0U
n . (1.72)

We insist that U be formally unitary, so that UU † = I.

Comparing (1.70) with (1.71), the functions f , g arise from the time evolution operator,

U−1xU = f(x,X) , U−1XU = g(x,X) . (1.73)

For many quantum discrete mappings it is then possible to write the evolution operator in

a separated form,

U = exp(−iT (X)/~) exp(−iV (x)/~) . (1.74)
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Recalling the commutation relations (1.52), the conjugations follow,

eiT (X)/~xe−iT (X)/~ = x + T ′(X) , (1.75a)

eiV (x)/~Xe−iV (x)/~ = X− V ′(x) . (1.75b)

In the case of a Newtonian kinetic term T (X) = X2/2, the operator equations of motion

(1.70) become

xn+1 − xn = Xn − V ′(xn) , (1.76a)

Xn+1 −Xn = −V ′(xn) . (1.76b)

Of course, many other forms of time evolution operator U and equations of motion are

possible. The generalised McMillan maps [41, 74], for example, are known to have �cross

terms� in the unitary operator of the form

exp(−ixiXj/~) , for i 6= j , (1.77)

which act on operators by conjugation as

eixiXj/~xke
−ixiXj/~ = xk + δjkxi , (1.78a)

eixiXj/~Xke
−ixiXj/~ = Xk − δikXj . (1.78b)

As we have seen, separability of the time evolution operator is an important part of the

path integral derivation (1.66b) - these ideas have been used in [38, 40] to make some

�rst steps towards path integral quantisation of discrete systems, which remains an under

explored area, especially considering the many recent advances in the classical theory of

such systems. The separability of the evolution operator opens the possibility of performing

the path integral without the need for an in�nitesimal time limit.

Recalling the centrality of the action in the path integral (1.69b), it is natural to ask

how the Lagrangian one-form structure should inform the quantisation of these systems.

Traditionally, the variational principle of the classical action becomes a sum over histories

in quantum mechanics. For integrable systems and the one-form structure, the correct

variational principle includes a variation over underlying geometries of the independent

variables: how should this translate to quantum mechanics?
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1.4 Reparametrisation invariance and quantum gravity

We mention some recent ideas in the �eld of quantum loop gravity that, although holding

a di�erent perspective, share some striking similarities with our work. Quantum gravity

naturally poses two questions: what is the appropriate way to consider time in quantum

mechanics, when looking towards relativistic concerns? And, what is an appropriate way

to view the smallest length scales, as we approach the Planck length? These questions may

be related to the questions we are posing in the context of integrable systems: what is a

correct view of the independent variable (time) in a Lagrangian formulation? And, how

do systems whose time (and perhaps length) scales are inherently discrete behave?

In [94, 95], Rovelli considers a reparametrisation invariant form of the Harmonic

oscillator, and its discretisation. He poses a toy model where the independent variable can

be freely reparametrised, without changing the physical observables of the model: so called

Di�-invariance. The key conceptual step is the reclassi�cation of the time variable t, such

that rather than a system de�ned by the variable x(t), we instead have the two variables

x(τ), t(τ) in terms of an evolution parameter or real-time τ . Physical con�gurations of the

system are then de�ned in terms of the pair (x(τ), t(τ)), meaning that there is a very large

gauge invariance: any reparametrisation of τ leads to the same physical output. This is a

view of time also investigated in [11] in the context of Machian schemes, and similar steps

were made in a di�erent context in [10].

The action governing the system is given by

S =
m

2

∫
dτ

(
ẋ2

ṫ
− ω2ṫx2

)
, (1.79)

which is easily seen to be the same as the usual action for the harmonic oscillator. In the

two variables, the action (1.79) yields two equations of motion,

d

dτ

ẋ

ṫ
= −ω2ṫx ,

d

dτ

(
ẋ2

ṫ2
+ ω2x2

)
= 0 . (1.80)

These are simply equivalent to the usual harmonic oscillator equation of motion d2x/dt2 =

−ω2x, and the corresponding conservation of energy. So far, so unremarkable! The Di�-

invariance of the system is in the very large gauge invariance: the model is physically

invariant under arbitrary reparametrisations of τ .

Rovelli's observation is that this reparametrisation invariance yields some interesting

properties under discretisation. As in the continuum case, time is no longer considered the
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independent variable to be discretised. Rather, we discretise τ so that τn = na for some

�xed step size a, yielding discrete position and times xn = x(τn), tn = t(τn). In other

words, the time-step tn+1 − tn is no longer �xed (as is standard) but is allowed to vary.

The discretised action from (1.79) yields,

SN =
m

2

N−1∑
n=0

(
(xn+1 − xn)2

tn+1 − tn
− ω2(tn+1 − tn)x2

n

)
, (1.81)

which has the critical property that it is independent of the step variable a - this is the

discrete realisation of reparametrisation invariance. A continuum limit to the original

model (1.79) is now achieved in the limit N → ∞ with no need to tune the parameter

a→ 0; the shrinking of the step size is an automatic consequence of the N →∞ limit.

The elevation of the time tn to a dependent variable means that variation of the action

(1.81) yields two independent equations of motion,

vn+1 = vn − (tn+1 − tn)ω2xn ,
1
2v

2
n+1 + 1

2ω
2x2
n = 1

2v
2
n + 1

2ω
2x2
n−1 , (1.82)

where we have introduced the discrete velocity vn+1 := (xn+1 − xn)/(tn+1 − tn), and the

second equation has the form of an energy conservation, En+1 = En. Here is a striking

feature: energy is not conserved under generic discretisations, but in this case the time

parametrisation has been performed in such a way as to preserve an energy. In essence, the

gauge freedom of (1.80) has been sacri�ced in order to �x the energy; the time steps are

chosen in such a way that energy is held constant. But, this is a feature of discrete integrable

systems! As discussed in section 1.2.1, an integrable discrete �ow is precisely characterised

by the preservation of a su�cient number of invariants, with multiple invariants at the

continuum level leading to a Lagrangian form structure by Legendre transform.

Rovelli comments further on the resulting quantum structure through a path integral.

The correct, physical object to consider is a propagator (1.61), since objects depending on

the parameter τ are physically meaningless. So in the discretisation we have the propagator

KN (xa, ta;xb, tb) = N

∫
dµ(xn, tn) eiSN (xn,tn)/~ , (1.83)

with a normalisation N and some integration measure dµ over the variables xn, tn. Unlike

in the non-parametrised case, tn itself becomes an integration variable, under the obvious

restrictions

ti < tn < tn+1 < tf . (1.84)
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As N becomes large, the equations of motion (1.82) approximate to v2
n+1/2 ≈ v2

n/2, which

is the free particle. Since Rovelli is interested in the continuum limit as N →∞, he �xes

the integration measure by considering this free particle case. This is the regime Rovelli

calls �Ditt-invariance�, that is, an almost Di�-invariance recaptured in the large N limit

for the discrete case. The approximation justi�es the choices

N =
N !

(tf − ti)N
√
ω
, dµ(xn, tn) =

(m
~

)N/2 ∏N
n=1 dxndtn∏N

n=0

√
2π(tn+1 − tn)

, (1.85)

so that (1.83) yields the expected harmonic oscillator propagator in the N →∞ limit.

There are some interesting parallels between these ideas and the quantisation of

Lagrangian form structures. As discussed in [63] (and explored in chapter 2), a variational

principle for Lagrangian forms extends beyond variation of the dependent variables to

variation of the underlying geometry belonging to the independent variables. In his talk

[72], Nijho� proposed an extended path integral quantisation for a (continuous) Lagrangian

1-form structure in multiple times t,

K(xa, ta, sa;xb, tb, sb) =

∫ t(sb)=tb

t(sa)=ta

D[t(s)]

∫ x(tb)=xb

x(ta)=xa

D[x(t)]eiS(x)/~ . (1.86)

In other words, a path in multiple time-variables is parametrised by some variable s. The

propagator results (in line with the variation in the classical theory) from a sum over

histories, including a sum over geometries of the time path. Such a system would clearly

be expected to satisfy Di�-invariance: that is, invariance under arbitrary reparametrisation

of s. Under some appropriate discretisation, this idea is not very dissimilar to Rovelli's

discretised propagator (1.83), and indeed a �sum over geometries� has appeared elsewhere

in the study of quantum gravity [92, 93]. Clearly the journey from a discretised one-form

propagator to a continuous expression such as (1.86) may not be straightforward, but in

this thesis we take some tentative �rst steps to solving this problem.

1.5 Organisation of the Thesis

In chapter 2, we introduce the linearised integrable lattice model, and discuss its

Lagrangian 2-form structure. Linear mappings are derived using a periodic staircase initial

value problem, and we exploit the multi-dimensional consistency to derive commuting �ows,

and hence a �simplest possible� discrete Lagrangian 1-form. Commuting continuous �ows

with an interchange of continuous and discrete parameters and variables are observed. The
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next member of the family is also considered as a generalisation. These examples are used

to demonstrate the extended variational principle for Lagrangian multiform structures.

In chapter 3 we consider the quantisation of the linear models of chapter 2 as a �rst

study of the quantisation of Lagrangian form structures. For the linear discrete mapping,

it is found that the propagator for the one-form structure has a time-path independence,

which depends on the correct initial choice of Lagrangian generating function. Similarly,

for the lattice model, the Lagrangian 2-form structure can be path integral quantised, and

the propagator is surface independent in the multi-dimensional structure. In other words,

there is a quantum analogue to the classical Lagrangian closure and variational principle

for forms.

Chapter 4 considers a discrete non-linear model: the generalised McMillan maps,

derived from the lattice KdV equation. We make some investigations into possible

commuting �ows following the method of chapter 2, although these are predictably more

complex in the non-linear case and do not so far yield a Lagrangian form structure. We

consider quantum aspects in the McMillan case, writing some simple propagators for this

non-linear example which may, ultimately, feed into a full path integral quantisation.

We demonstrate that there are potentially consistent ways of viewing the Hilbert space,

despite singularities of the model, and highlight a possible quantisation of the mapping

parameter. The main result is a novel formulation of the r-matrix for the dual Lax pair of

the generalised family of maps. The r-matrix can be written as a normally ordered fraction

in elementary shift matrices, leading to new insights on the nature of the structure. We

replicate some known results with this new formulation, and propose a possible quantum

structure for the dual Lax pair.

In chapter 5 we study a simple, but non-trivial, continuous model, related to the

Ruijsenaars-Schneider model; here called the Degasperis-Ruijsenaars (DR) model. This

has a non-Newtonian Hamiltonian that nonetheless yields the harmonic oscillator as its

equation of motion. We are able to derive a Lagrangian for the model by embedding it

within a 2-particle system, following known results for the Ruijsenaars-Schneider case. We

also derive the precise link between the RS and DR models, and hence a Lax pair for the DR

system. Nonetheless, the precise nature of discrete integrable systems leaves an integrable

discretisation for the model out of reach. Consideration of the known quantum solution

for the model yields an expression for the propagator, but the path integral quantisation
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that would link the propagator to the Lagrangian description remains elusive. However, its

exact solution and integrability make this a promising model for path integral quantisation

of a non-Newtonian system.

Chapter 6 contains a brief summary of the results and some discussion of future

outlook and outstanding research questions.
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2
Multiform Structures for Linear Models

�The career of a young theoretical physicist consists of treating the harmonic

oscillator in ever-increasing levels of abstraction.�

� Sidney Coleman

The Lagrangian multiform has been introduced in a number of recent works, the two-

form for integrable lattice models [62�65] and the one-form for continuous and discrete

evolutionary equations [17�19, 72, 110, 123�126]. As illustrated particularly in [63, 126],

the Lagrangian multiform gives rise to a novel variational principle for systems with

commuting, compatible �ows. The system sits at a critical point in an extended variational

principle, varying over not only the dependent variables but also the underlying geometry

of the independent variables.

We apply these ideas to simplest models in the lattice and evolutionary cases: a

linear lattice equation, and the discrete harmonic oscillator. These systems are simpler

than previous examples of the Lagrangian multiform, indeed such systems are generally
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considered too simple to have any meaningful integrable structures. Nonetheless, in the

lattice case it emerges that multi-dimensional consistency is su�cient to produce a two-

form structure even in the linear case, and we use this simple example to illustrate the

general theory in section 2.1.

By applying a periodic initial value problem to the linear lattice equation, we derive the

equation of motion for the discrete harmonic oscillator in section 2.2. This unusual starting

point, however, endows the model with the multi-dimensional consistency of its parent, and

we show that it is therefore possible to �nd a commuting discrete �ow for the equation. In

the same way as for the discrete Ruijsenaars-Schneider model, these commuting �ows are

captured by a Lagrangian one-form structure (1.48). This is surprising for such a simple

model.

In section 2.3 we consider a higher dimensional reduction of the lattice equation by

lengthening the periodic initial condition, and �nd that the one-form structure continues

to hold. However, the general case remains out of reach for the moment, as the invariants

of the system cannot currently be captured in a Lax pair.

2.1 Linearised Lattice KdV Equation

Recall the lattice KdV equation of section 1.1.1, (1.7),

(p− q + ŵ − w̃)(p+ q − ̂̃w + w) = p2 − q2 . (2.1)

This holds across a 2 dimensional quadrilateral lattice, with a �eld variable w(n,m) at

each lattice point, and lattice parameters p and q associated to the n and m directions on

the lattice.

We are interested in the linearisation of the lattice KdV equation (2.1). Expanding

about a �xed point, for a small parameter η,

wn,m = w0 + ηun,m +O(η2), (2.2)

leads to the linearised lattice equation at �rst order in η,

(p+ q)(ũ− û) = (p− q)(u− ̂̃u) . (2.3)

This equation is supposed to hold on every elementary plaquette across a two dimensional

lattice; the elementary plaquette is shown in �gure 2.1. The linear lattice equation (2.3)
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m

nu

û

ũ

̂̃u
Q(u, ũ, û, ̂̃u)

p

q

Figure 2.1: An elementary plaquette in the lattice

can be written as a quad equation,

Q(u, ũ, û, ̂̃u; p, q) = 0 , (2.4)

comparing with (1.2). Although we have derived (2.3) here as a linearisation from the

lattice KdV equation, it is the natural linearisation for nearly all the quad equations of the

ABS list [1].

The linear lattice equation (2.3) can be derived from a variational principle on the

three-point Lagrangian

L(u, ũ, û) = u(ũ− û)− 1

2

p+ q

p− q
(ũ− û)2 , (2.5)

where, for the action, we sum across every plaquette in the lattice,

S =
∑
n,m∈Z

L(un,m, un+1,m, un,m+1; p, q) , (2.6)

as in (1.22). The Lagrangian (2.5) is also the natural linearisation of the Lagrangian (1.25)

of the lattice KdV equation, at O(η2). Lower order terms in η are either constants or total

di�erences, which are absorbed in the action. The Lagrangian (2.5) gives rise to the lattice

equation (2.3) via the Euler-Lagrange equations (1.23), which yield

(p− q)(u˜− û)− (p+ q)(u− û˜) = (p− q)(
ˆ
u− ũ)− (p+ q)(˜̂u− u) . (2.7)

In the same way as the lattice KdV equation (section 1.1.1), this is a weaker version of the

lattice equation (2.3): two copies are produced. We will see that this problem is remedied

by the Lagrangian form structure associated with the multi-dimensional consistency of the

model.
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2.1.1 Multi-dimensional Consistency

The linear lattice equation (2.3) can be embedded into a multi-dimensional lattice, with

directions labelled by subscripts i, j, k. Across an elementary plaquette in the i− j plane,

the linear lattice equation (2.3) takes the form

(pi + pj)(ui − uj) = (pi − pj)(u− uij) , (2.8)

where ui indicates u shifted once in the i direction on the lattice, and pi is the lattice

parameter associated to the i direction. Notice the symmetry of (2.8) under interchange

of the lattice directions i, j.

This embedding can be performed consistently if (2.8) exhibits closure around the cube

[83]. Considering an elementary cube within the multi-dimensional lattice, and initial

conditions u, ũ ≡ u1, û ≡ u2, u ≡ u3, there are three routes to calculate the variable ̂̃u ;

for the equation to be multidimensionally consistent, all three possibilities must yield the

same result (see �gure 1.2). Around the cube, there are three elementary quad equations

(2.8) and their shifts,

(p+ q)(ũ− û) = (p− q)(u− ̂̃u) , (2.9a)

(q + r)(û− u) = (q − r)(u− û) , (2.9b)

(r + p)(u− ũ) = (r − p)(u− ũ) , (2.9c)

(p+ q)(ũ− û) = (p− q)(u− ̂̃u) , (2.9d)

(q + r)(̂̃u− ũ) = (q − r)(ũ− ̂̃u) , (2.9e)

(r + p)(û− ̂̃u) = (r − p)(û− ̂̃u) . (2.9f)

Beginning from (2.9d) and substituting (2.9a,2.9b,2.9c) we deduce an expression for ̂̃u in

terms of the initial values,

̂̃u = −p+ q

p− q
r + p

r − p
ũ− q + r

q − r
p+ q

p− q
û− r + p

r − p
q + r

q − r
u . (2.10)

The symmetry of this expression is su�cient to guarantee the closure around the cube.

Note that this derivation required the critical partial fraction expression

p+ q

p− q
.
q + r

q − r
+
q + r

q − r
.
r + p

r − p
+
r + p

r − p
.
p+ q

p− q
+ 1 = 0 . (2.11)

This fraction relation turns out to be a key combinatorial property for many of the results

in this chapter. As in the lattice KdV case, the multi-dimensional consistency is the key
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integrability property of the linear lattice equation (2.3), leading to a Bäcklund transform,

Lax representation, and ultimately Lagrangian two-form structure.

Plane wave solution

The multi-dimensional consistency of the system allows us to derive a Bäcklund

transformation - and this in turn can be used to generate solutions. Beginning from

equations (2.9b), (2.9c), we take v := u and let λ := r. We then have the transformation

u→ v with Bäcklund parameter λ,

(p+ λ)(v − ũ) = (p− λ)(ṽ − u) ,

(q + λ)(v − û) = (q − λ)(v̂ − u) .
(2.12)

These equations imply that[
(p+ q)(v̂ − ṽ)− (p− q)(̂̃v − v)

]
+
[
(p+ q)(û− ũ)− (p− q)(̂̃u− u)

]
= 0 , (2.13)

or, in other words, if (2.3) holds for u, then it also must hold for v. The shift u → v is

therefore an auto-Bäcklund transform.

Taking a trivial seed solution of (2.3) u(n,m) = 0, we apply the Bäcklund transform

to gain the solution

v(n,m) =

(
p+ λ

p− λ

)n(q + λ

q − λ

)m
v(0, 0) . (2.14)

This is the discrete analogue of a plane wave, producing an exponential plane-wave factor

in a continuum limit. By linear superposition we therefore have the general plane wave

solution,

u(n,m) =

∫
Γ

(
p+ λ

p− λ

)n(q + λ

q − λ

)m
w(λ)dλ , (2.15)

with an appropriate weight function and integration contour.

Lax representations

In a similar way to the lattice KdV equation, the Bäcklund transform also gives rise to

a Lax pair for (2.3). To construct a linear spectral problem for an already linear system

is perhaps a curious thing to do, but it is a feature the model shares with its non-linear

relatives. Taking the Bäcklund transform (2.12) and writing the spectral variables φ := v,

k := λ, we �nd the linear inhomogeneous spectral problem

φ̃ = u+
p+ k

p− k
(φ− ũ) , φ̂ = u+

q + k

q − k
(φ− û) . (2.16)



36 CHAPTER 2. MULTIFORM STRUCTURES FOR LINEAR MODELS

The lattice equation (2.3) arises from the compatibility condition
̂̃
φ =

˜̂
φ.

Introducing the vector Φ := (φ, 1)T , we can pose (2.16) in a matrix form,

Φ̃ = LΦ , Φ̂ = MΦ , (2.17a)

with matrices

L =

 p+k
p−k u− p+k

p−k ũ

0 1

 =

 1 u

0 1

 p+k
p−k 0

0 1

 1 −ũ

0 1

 , (2.17b)

M =

 q+k
q−k u− q+k

q−k û

0 1

 =

 1 u

0 1

 q+k
q−k 0

0 1

 1 −û

0 1

 . (2.17c)

These factorisations de�ne the matrices L =: UPkŨ−1, and M =: UQkÛ
−1. The lattice

equation (2.3) now arises from the compatibility of the matrix spectral problem (2.17a),

which is the zero-curvature condition

L̂M = M̃L . (2.18)

The lattice equation (2.3) appears as the coe�cient at O(k) in the (1, 2) entry of the matrix;

all other entries are trivially satis�ed.

An alternative Lax formulation can be derived by exploiting the origin of the lattice

equation (2.3) as a linearisation of the lattice KdV equation (2.1). Beginning with the

spectral problem for the lattice KdV equation (1.19), we introduce the linearisation (2.2)

and expand,

Φ = Φ0 + ηΦ1 , L = L0 + ηL1 , M = M0 + ηM1 , (2.19)

where Φ0, L0, M0 are �xed points. Expanding the form of the matrices (1.20) in η yields

L0 = W0PkW
−1
0 =

 p− w0 1

k2 − w2
0 p+ w0

 , (2.20a)

M0 = W0QkW
−1
0 =

 q − w0 1

k2 − w2
0 q + w0

 , (2.20b)

L1 =

 −ũ 0

(p− w0)u− (p+ w0)ũ u

 , (2.20c)

M1 =

 −û 0

(q − w0)u− (q + w0)û u

 , (2.20d)
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so that L0 and M0 are clearly non-dynamical, and commuting. To lowest order in η, the

spectral problem (1.19) gives

(p− k)Φ0 = L0Φ0 , (q − k)Φ0 = M0Φ0 . (2.21)

So, Φ0 is a joint eigenvector of L0 andM0; we can take ΦT
0 = (1, w0−k)Tφ0. The interesting

part of the spectral problem is at �rst order in η, where we have

(p− k)Φ̃1 = L0Φ1 + L1Φ0 , (q − k)Φ̂1 = M0Φ1 +M1Φ0 . (2.22)

Seeking a zero-curvature condition for this spectral problem leads to a condition on the

coe�cients of Φ0,

L̂1M0 + L0M1 = M̃1L0 +M0L1 . (2.23)

(The Φ1 coe�cients are automatically satis�ed due to the commuting of L0 andM0.) This

linearised zero-curvature condition then yields the linear lattice equation (2.3), as desired.

This represents an entirely alternative Lax description to (2.18), and is a somewhat unusual

Lax pair compared to those normally associated with lattice equations.

The challenge in exploiting this Lax pair for the integrability of the model is that,

in the linearising limit from lattice KdV, the invariants appear at quadratic order in η,

whereas the equations of motion and Lax pair appear at �rst order. It is unclear whether

the invariants can be recovered from this linearised Lax pair.

2.1.2 Lagrangian Two-form Structure

The multi-dimensional consistency of quad equations is the key to their integrability,

leading to Bäcklund transforms, soliton solutions, and Lax pairs. Such multi-dimensionally

consistent quad equations can be seen as a set of compatible equations that all hold

simultaneously on the same set of variables un,m,l, as in (2.8).1 The consistency of

these equations is guaranteed by the closure around the cube (2.10). Quad equations

(and speci�cally the linear lattice equation) also arise from a Lagrangian, but the usual

variational principle produces only the basic lattice equation, and not the full multi-

dimensional family. How, then, can these multiple, consistent equations be recovered

from an extended variational principle?

1 The multi-dimensional consistency can be freely extended into an arbitrary number of dimensions:

there is no need to stop at three. Equally, three dimensions is su�cient to illustrate everything we need.
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For such lattice systems, Lobb and Nijho� recently introduced a multi-form variational

principle that captures the multiplicity of equations of motion within a single Lagrangian

2-form and variational principle [62, 63]. Generalising the Lagrangian (2.5) to the multi-

dimensional case,

Lij(u) := L(u, ui, uj ; pi, pj) = u(ui − uj)− 1
2sij(ui − uj)

2 , (2.24a)

where sij =
pi + pj
pi − pj

, (2.24b)

we consider an action over a 2-dimensional surface σ, embedded within the multi-

dimensional lattice. σ is composed of oriented, elementary plaquettes σij , shown in �gure

2.2. To each oriented plaquette σij is associated a Lagrangian Lij(u), so that the action is

the sum of Lagrangians over the surface σ,

Sσ =
∑
σij∈σ

L(u, ui, uj ; pi, pj) . (2.25)

This is a natural generalisation of the action (2.6). Note the antisymmetry of the

Lagrangians with respect to the orientation of the plaquette, Lji(u) = −Lij(u).

σij

σ σ′

Figure 2.2: The multi-dimensional surface σ, deformed by an elementary move to the

surface σ′. The elementary plaquette is σij .

The crucial observation is the closure property of the Lagrangians Lij(u) (2.24).

Considering the combination of oriented Lagrangians on the faces of a cube, on the

equations of motion, the Lagrangians sum to zero. Introducing the notation of a di�erence

operator ∆i in the direction i, so that ∆iu := ui − u, we have the sum of oriented

Lagrangians around the cube,

∆1L23(u) + ∆2L31(u) + ∆3L12(u)

:= L23(u1)− L23(u) + L31(u2)− L31(u) + L12(u3)− L12(u) , (2.26a)

= 0 , (2.26b)
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where the �nal equality (2.26b) holds only when we apply the lattice equation (2.8). The

implication of Lagrangian closure (2.26) is that a local move deforming the surface σ → σ′

will leave the action Sσ (2.25) on the equations of motion unchanged (see �gure 2.2). In

other words, the action Sσ is invariant under deformations of the surface σ. Note that

Lagrangian closure for the linear case (2.24) is a property that it inherits from its parent

models of the ABS list, which were shown to have the Lagrangian closure property in [62].

This simple observation leads to a much deeper idea: the multi-form variational

principle. The traditional variational principle holds the surface σ �xed and demands

the action be stationary under variation of the dependent variables u. This leads to

the equations of motion arising as Euler-Lagrange equations, although in the case of

quadrilateral equations we �nd a weaker version of the equation (1.26), (2.7). Lobb and

Nijho� extended this variational principle by demanding that the action be stationary not

only under variations of the dependent variable, but also under variation of the surface

itself ; that is, under variation of the independent variables. This leads to not a single Euler-

Lagrange equation, but a system of Euler-Lagrange equations, corresponding to di�erent

con�gurations of the surface.

In [63], the authors derive three elementary con�gurations of the surface, that yield all

the fundamental Euler-Lagrange equations of the model, shown in �gure 2.3. The three

con�gurations arise from considering the Euler-Lagrange equations around a cube - the

simplest possible closed surface. The usual variational principle on this surface produces

the three Euler-Lagrange equations,

∂

∂u

(
Lij(u) + Ljk(u) + Lki(u)

)
= 0 , (2.27a)

∂

∂u

(
Lij(u−i)− Ljk(u) + Lki(u−i)

)
= 0 , (2.27b)

∂

∂u

(
Lij(u−j) + Lki(u−k)

)
= 0 , (2.27c)

recalling antisymmetry of the Lagrangians under the change of orientation. These Euler-

Lagrange equations are elementary in the sense that, by varying the surface, we demand

that the equations should hold everywhere in the lattice; all possible Euler-Lagrange

equations are then constructed from these three elementary choices. In each case, the action

is constructed from a sum of neighbouring Lagrangians, indicated by the shaded triangles

in �gure 2.3 - the triangle indicates the three variables appearing in each Lagrangian,

consisting of a base �eld variable u and two evolved variables ui, uj . The white circle
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indicates the �eld variable over which we perform the usual variational principle, with

black circles indicating other �eld variables appearing in the equations.

u

uj ui

uk

(i)

u−i
u−ij u

u−ik

uk

uj

(ii)

u−k

u−j

u−ji

u−ki

u

(iii)

Figure 2.3: Three elementary con�gurations of the lattice.

Lobb and Nijho� [63] then found that, in order to be consistent, such a system must

be described by a Lagrangian of the form

L(u, ui, uj ; pi, pj) = A(u, ui; pi)−A(u, uj ; pj) + C(ui, uj ; pi, pj) , (2.28)

where Cij must be antisymmetric under interchange of i and j. Notice that the Lagrangian

for the linear lattice equation (2.24) is already in this form. We must have

A(u, ui; pi)−A(u, uj ; pj) = u(ui − uj) , (2.29)

so that

A(u, ui; pi) = uui + λu+ µ , (2.30a)

C(ui, uj ; pi, pj) = −1

2

pi + pj
pi − pj

(ui − uj)2 , (2.30b)

for arbitrary constants λ and µ. The Euler-Lagrange equations (2.27) then yield the

equation on a single plaquette [63]

∂

∂ui

(
A(u, ui; pi)−A(ui, uij ; pj) + C(ui, uj ; pi, pj)

)
= 0 , (2.31)

which produces the lattice equation

(pi + pj)(ui − uj) = (pi − pj)(u− uij − λ) , (2.32)

for all pairs of lattice directions i, j. Such an equation for any λ must, by construction, be

multidimensionally consistent; taking λ = 0 we recover precisely the linear lattice equation

in its multi-dimensional form (2.8).
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The Lagrangian 2-form therefore captures the full set of multi-dimensionally consistent

lattice equations via an extended variational principle. By varying the underlying surface

geometry σ, the full set of lattice equations can be forced to hold simultaneously at the

critical point for the action. This structure for the linear lattice equation is inherited

entirely from its non-linear parents in the ABS list, for which equations the 2-form has

been shown explicitly (including the case of the lattice KdV equation discussed in section

1.1.1). It is nonetheless interesting that the structure should continue to hold even for this

simple, linear model.

2.1.3 Uniqueness

We have shown that the linear lattice Lagrangian (2.5) has a Lagrangian 2-form structure.

In fact, it is the almost unique quadratic Lagrangian 2-form (i.e. that exhibits the closure

property). The general form for a three-point Lagrangian 2-form is given in (2.28), with

the lattice equation arising from the 2-form Euler-Lagrange equation (2.31). If we restrict

our attention to quadratic Lagrangians, we therefore have the general form

Lij(u, ui, uj ; pi, pj) =
(

1
2aiu

2 + ciuui
)
−
(

1
2aju

2 + cjuuj
)

+
(

1
2biju

2
i − 1

2bjiu
2
j + δijuiuj

)
, (2.33)

where we require δji = −δij in order to have antisymmetry. Here, subscripts on coe�cients

indicate dependence on the lattice parameters pi and pj .

This Lagrangian 2-form (2.33) yields the equation of motion

ciu− cjuij = (aj − bij)ui − δijuj . (2.34)

This is a quad equation, and as such it is required to be symmetric under the interchange

of i and j. This leads to the conditions

ci = cj = c , constant, (2.35a)

aj − bij = δij . (2.35b)

Noting that the Lagrangian (2.33) already obeys the closure relation (2.26) on the equations

of motion (2.34), we use the freedom to multiply by an overall constant to let c = 1, and

hence the general quadratic Lagrangian 2-form is given by

Lij(u, ui, uj) = u(ui − uj)− 1
2δij(ui − uj)

2 + 1
2ai(u

2 − u2
j )− 1

2aj(u
2 − u2

i ) . (2.36)
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This has the same form as the linear lattice Lagrangian (2.5), but with a more general

dynamical, anti-symmetric parameter δij , and the free parameter ai that does not e�ect

the equations of motion and is absorbed in the action.

The extended variational principle for 2-forms therefore does more than give the multi-

dimensional lattice equations. It also restricts the class of permissible Lagrangians to those

obeying a closure relation; only such Lagrangians give an action that can be stationary

with respect to variations of the surface σ. In some sense, then, the extended variational

principle also selects appropriate Lagrangians describing the model. The inverse problem

of Lagrangian mechanics is, given an equation, to �nd a Lagrangian description, of which

there may be many possible choices. The multi-form variational principle perhaps o�ers

some resolution to this problem.

2.2 One Dimensional Reduction: The Discrete Harmonic

Oscillator

2.2.1 Periodic Reduction

A common procedure in the literature is the construction of integrable symplectic mappings

as reductions of lattice equations, by the application of some boundary conditions [24, 75,

80, 88]. Considering the linearisation of the lattice KdV equation, we follow the same

reduction procedure as has been previously studied for non-linear quad equations.

The linear lattice equation (2.3) is reduced to a di�erence equation in one dimension by

a periodic initial value problem. The evolution of the data progresses through the lattice

according to a dynamical map, constructed via the lattice equation. We begin with initial

data a0, a1 and a2, and let â2 = a0, according to �gure 2.4. This unit is then repeated

periodically across an in�nite staircase in the lattice. This is the simplest meaningful

reduction we can perform on the lattice equation. The lattice variable m becomes a

discrete time, labelling iteration of the mapping.

Applying the linear lattice equation (2.3) to each plaquette, we can write equations for
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a0 a1 a2

â2 = a0â0 â1

p

qm

Figure 2.4: The simplest periodic initial value problem on the lattice equation.

the dynamical mapping (a0, a1, a2)→ (â0, â1, â2), as

â0 = a1 + s(â1 − â2) ,

â1 = a2 + s(a0 − a1) , where s :=
p− q
p+ q

, (2.37)

â2 = a0 .

This is a �nite-dimensional discrete system; we introduce the reduced variables

x := a1 − a0 , y := a2 − a1 . (2.38)

In terms of these, the equations of the map become

x̂ = y − sx+ sŷ , ŷ = −x− y + sx , (2.39)

and, by eliminating y, we write the second order di�erence equation

x̂+ 2bx+
ˆ
x = 0 , b := 1 + 2s− s2 . (2.40)

This equation can be expressed by a Lagrangian-type generating function

L(x, x̂) = −xx̂− bx2 , (2.41)

and so is symplectic, dx̂ ∧ dŷ = dx ∧ dy. The map also possesses an exact invariant,

Ib(x, x̂) = x2 + x̂2 + 2bxx̂ . (2.42)

The di�erence equation (2.40) is a discrete harmonic oscillator. It is not di�cult to see

that the general solution to (2.40) is

xm = c1 sinµm+ c2 cosµm , (2.43)

where cosµ = −b and m is the discrete variable. This has an obvious relation to the

solution for the continuous time harmonic oscillator.
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Continuous Flow

This solution (2.43) can alternatively be written as

xm = Aλm +Bλ−m , λ = −b+
√
b2 − 1 . (2.44)

By considering derivatives with respect to the parameter b, we write

∂xm
∂b

=
−m√
b2 − 1

(Aλm −Bλ−m) . (2.45)

Writing x := xm, x̂ := xm+1 and
ˆ
x := xm−1 allows us to derive the semi-discrete equations

dx

db
=

m

1− b2
(bx+ x̂) ,

dx

db
= − m

1− b2
(bx+

ˆ
x) , (2.46)

and eliminating x̂,
ˆ
x yields the second order di�erential equation in b

(1− b2)
d2x

db2
− bdx

db
+m2x = 0 . (2.47)

A remarkable exchange has taken place: the parameter and independent variable of the

discrete case, b and m, have exchanged roles to become the independent variable and

parameter of a continuous time model. Note that the di�erential equation (2.47) can be

simpli�ed by taking µ := cos−1(−b) as the �time� variable, so that

d2x

dµ2
+m2x = 0 . (2.48)

This is the equation for the harmonic oscillator, with a quantised frequency ω = m,

formerly the discrete time variable. Note also that the solution (2.43) guarantees the

compatibility of the discrete and continuous �ows.

2.2.2 Commuting Discrete Flow

Recalling that the linear lattice equation (2.3) is multi-dimensionally consistent, we can

introduce a third direction to the reduction, with parameter r, and the shifted variables

ai, as shown in �gure 2.5.

To derive the mapping, we now use the lattice equations (compare (2.8))

(q + r)(û− u) = (q − r)(u− û) , (2.49a)

(r + p)(u− ũ) = (r − p)(u− ũ) . (2.49b)
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a0 a1 a2

â2 = a0â0 â1

p

q
a0 a1 a2

â2 = a0

r

Figure 2.5: Commuting �ow: the variables ai extend from the plane in a third direction.

In terms of the ai, these equations give

a0 = a1 + t(a1 − a0) ,

a1 = a2 + t(a2 − a1) ,

a2 = a0 + t′(a0 − a2) .

where
t := p−r

p+r ,

t′ := q−r
q+r .

(2.50)

Again, we are interested in the reduction to (x, y) variables (2.38) which yields the map

(x, y)→ (x, y), given by

x = y + t(y − x) , (2.51a)

y = −y − 1− t
1− tt′

(x+ t′x) . (2.51b)

This map can be written in a matrix form, 1 −t
(1−t)t′
1−tt′ 1

  x

y

 =

 −t 1

− 1−t
1−tt′ −1

  x

y

 , (2.52)

from which it can be shown to be area preserving, dx ∧ dy = dx ∧ dy.

As before, we eliminate y to produce a second order di�erence equation in x,

x+ 2ax+ x = 0 , with 2a :=
(2t+ 1− t2)− t′(2t− 1 + t2)

1− t2t′
. (2.53)

This equation has the same form as (2.40), that of a discrete harmonic oscillator, along

with invariant

Ia(x, x) = x2 + x2 + 2axx . (2.54)

Using the reduced forms of the two mappings (equations (2.39) and (2.52)) we can

write both maps (x, y)→ (x̂, ŷ) and (x, y)→ (x, y) in matrix form,

x̂ = Sx , x = Tx , for x :=

 x

y

 , (2.55)
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with matrices

S =

 s2 − 2s 1− s

s− 1 −1

 , T =
1

∆

 t tt
′+t−2
1−tt′ 1− t

t− 1 −1+t′−2tt′

1−tt′

 , (2.56)

where ∆ := (1−t2t′)/(1−tt′). It is then clear that the two maps commute, (x̂, ŷ) = (x̂, ŷ) ,

since we have [S,T] = 0 . This last relation relies on the parameter identity

stt′ = s− t+ t′ , (2.57)

which is a reformulation of the partial fraction identity (2.11) and is easily shown using

the de�nitions for s, t and t′.

Our equations are slightly simpli�ed by introducing the parameters

P := p2 + pq , Q := q2 , R := r2 , (2.58)

in terms of which a = (P − R)/(P + R) and b = (P − Q)/(P + Q). By returning to the

reduced forms of the mappings (2.39), (2.51) and eliminating y in a di�erent manner, we

can derive �corner equations� for the evolution. These link x, x̂ and x, or x̂, x and x̂,

respectively. Thus, (
P −Q
q
− P −R

r

)
x =

P +R

r
x− P +Q

q
x̂ , (2.59a)(

P −Q
q
− P −R

r

)
x̂ =

P +R

r
x̂− P +Q

q
x . (2.59b)

We therefore have multiple, consistent equations of motion (2.40), (2.53), (2.59) all holding

simultaneously on the same variable x. Such a set of multiply consistent equations is

precisely the scenario best described by a Lagrangian one-form.

Joint Solutions

The compatibility of the two discrete evolutions and their corner equations allows a joint

solution to the equations, xm,n. We allow m to label the hat evolution, and n to label

the bar evolution, so that x = xm,n, x̂ = xm+1,n, x = xm,n+1, and so on. We have the

equations of motion (2.40), (2.53)

x̂+ 2bx+
ˆ
x = 0 , x+ 2ax+ x = 0 , (2.60)

which have solutions (2.43)

xm = β1 sin(µm) + β2 cos(µm) , with cosµ = −b , (2.61a)

xn = α1 sin(νn) + α2 cos(νn) , with cos ν = −a . (2.61b)
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Now β1, β2 in the full case can depend on n, so that

xm,n = α sin(µm) sin(νn) + β sin(µm) cos(νn)

+ γ cos(µm) sin(νn) + δ cos(µm) cos(νn) . (2.62)

Requiring xm,n to also obey the corner equations (2.59) imposes conditions on the

constants; the application of some basic trigonometric identities leads to the general

solution

xm,n = a1 sin(µm+ νn) + a2 cos(µm+ νn) . (2.63)

Note the comparison with the interpolating continuous time solution,

x(t) = c1 sinωT + c2 cosωT . (2.64)

In a standard continuous limit, it is clear that the commuting discrete �ows must degenerate

to a single continuous-time harmonic oscillator �ow. However, in section 2.2.5 we consider

an alternative continuous �ow where this may not be true, whilst in section 2.3 we examine

�ows of higher dimension where this degeneracy may be avoidable.

2.2.3 Lagrangian one-form structure

Recall the discrete Ruijsenaars-Schneider model discussed in section 1.2.2. There we had a

set of variables xi with compatible evolutions in two distinct discrete-time directions (1.45),

(1.46), supplemented by constraint equations that govern the compatibility of the �ows

(1.47). This structure of two commuting, discrete �ows can be described by a Lagrangian

one-form structure. But this is the same scenario for the commuting, discrete harmonic

oscillators: the Lagrangians generating the �ows x → x̂ and x → x (2.40), (2.53) should

form the components of a di�erence 1-form, each associated with an oriented direction on

a 2D lattice.

The action functional is de�ned as a sum of elementary Lagrangian elements over an

arbitrary discrete curve Γ in the two time variables m, n, shown in �gure 2.6,

S[x(n); Γ] =
∑

γ(n)∈Γ

Li(x(n), x(n + ei)) . (2.65)

γ(n) are the unit elements that compose the discrete curve Γ, such that γ(n) corresponds

to the single time-step evolution of the system from time n = (m,n) to time n+ei (where
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ei is the unit vector in time co-ordinate i). The usual variational principle demands

that, on the equations of motion, the action SΓ be stationary under the variation of

the dynamical variables x. In the variational principle for forms, we also demand that

SΓ be stationary under variations of the curve Γ itself. This principle will lead to the

compatibility of equations of motion and corner equations, under the condition of closure

of the Lagrangians. That is, on the equations of the motion, the action should be invariant

under local deformations to the curve, Γ→ Γ′ as shown in �gure 2.6. This requires

2L := Lb(x, x̂) + La(x̂, x̂)− Lb(x, x̂)− La(x, x) = 0 , (2.66)

where this last equality holds only on the equations of motion. (Recall that Lagrangian

closure is a closure around the elementary square, shown in �gure 1.3.)

m

n

Γ

m

n

Γ′

Figure 2.6: A curve Γ in the discrete variables, transformed to Γ′ by an elementary move.

In the model we are considering, we already have compatible �ows with consistent

corner equations, and so it is natural for us to seek a Lagrangian one-form exhibiting

closure. However, if we naively seek to satisfy the closure relation (2.66) with simple

Lagrangians of the form (2.41), we will �nd that these do not su�ce - the closure requires

a speci�c form for the Lagrangians. We can write a family of quadratic Lagrangians which

generate the correct equations of motion (2.40), (2.53),

La = α
(
− xx− (a− a0)x2 − a0x

2
)
, (2.67a)

Lb = β
(
− xx̂− (b− b0)x2 − b0x̂2

)
, (2.67b)

and apply the closure 2L = 0 to these as a condition.

Recall that closure holds only on the solutions to the equations of motion, so that we

apply the corner equations (2.59) to 2L, eliminating x and x̂ to give 2L in terms only

of x̂ and x. Comparing coe�cients of the remaining terms and demanding that α, a0 and
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β, b0 be independent of Q and R respectively, we �nd the conditions on the coe�cients

α =
P +R

r
γ , a0 =

r

P +R
f(P ) +

1

2
a , (2.68a)

β =
P +Q

q
γ , b0 =

q

P +Q
f(P ) +

1

2
b , (2.68b)

where γ is some overall constant, and f(P ) is a free function of P . f does not make any

further contribution to what follows, and so we ignore it; let f ≡ 0, so a0 = a/2 and

b0 = b/2.

This yields the Lagrangians

La(x, x) =
1

r

(
− (P +R)xx− 1

2
(P −R) (x2 + x2)

)
, (2.69a)

Lb(x, x̂) =
1

q

(
− (P +Q)xx̂− 1

2
(P −Q) (x2 + x̂2)

)
. (2.69b)

By construction, these obey the condition 2L = 0 on the equations of motion, and also

yield the equations of motion (2.40) and (2.53) by the usual variational principle. This

eliminates a great deal of the usual freedom in choosing our Lagrangian: requiring the

closure condition mandates a speci�c form for the Lagrangians. As we saw for the two-

form case, the extended variational principle for forms restricts the class of admissible

Lagrangians, so that the Lagrangian itself is in some sense a solution to the least action

principle.

The equations of motion (2.40) and (2.53) arise from a variational principle on this

action by construction, but the extended variational principle on the action SΓ also yields

the corner equations (2.59). As we allow the curve Γ to vary (leaving the action unchanged)

there are four elementary curves in the space of two discrete variables, shown in �gure 2.7.

Across each curve, we can de�ne an action, and then a variation with respect to the middle

point, which leads to an equation of motion.

The action for elementary curve 2.7(i) is

S = La(x, x) + Lb(x, x̂) , (2.70)

with Euler-Lagrange equation

∂S

∂x
= 2

[
−
(
P−R
r + P−Q

q

)
x− P+R

r x− P+Q
q x̂

]
= 0 , (2.71)

which is compatible with the corner equations (2.59).



50 CHAPTER 2. MULTIFORM STRUCTURES FOR LINEAR MODELS

i)

m

n

x

x̂x

La

Lb
ii)

m

n

x

x

x

La

La

iii)

m

n

x x̂

x̂

Lb

L̂a

iv)

m

n

x x̂ ̂̂x
Lb L̂b

Figure 2.7: Simple discrete curves for variables m and n.

The action for elementary curve 2.7(ii) is

S = La(x, x) + La(x, x) , (2.72)

with Euler-Lagrange equation

∂S

∂x
= 2
[
− 2P−Rr x− P+R

r

(
x+ x

) ]
= 0 , (2.73)

which is equation (2.53). (i.e. this is a standard Euler-Lagrange equation).

Curves 2.7(iii) and (iv) yield similarly the equation of motion (2.40) and the other part

of the corner equations (2.59). We therefore have, for the speci�c choice of Lagrangians

described, a consistent 1-form structure, yielding the equations of motion and corner

equations, and obeying a Lagrangian closure relation. The discrete harmonic oscillator,

despite its simplicity, nonetheless has an underlying structure of a Lagrangian one-form

expressing commuting �ows: this is the simplest example yet discovered of such a structure.

2.2.4 Invariants

Recall that the discrete evolutions (2.40), (2.53) possess the invariants (2.42) and (2.54)

respectively. It is straightforward to show using the equations of motion that both

invariants are preserved under both evolutions,

Îb = Ib = Ib , Ia = Îa = Ia. (2.74)
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It is not clear, however, that these invariants are necessarily equal: Ib has an apparent

dependence on Q, and Ia on R, that must be resolved.

Taking the special choice of Lagrangians for the one-form (2.69), we can de�ne canonical

momenta (as discussed for (1.37)) and rewrite the invariants in those terms. Writing Xa

as the momentum conjugate to x in La, and Xb similarly for Lb, we �nd

Xa = −∂La
∂x

=
P +R

r
x +

P −R
r

x , (2.75a)

Xb = −∂Lb
∂x

=
P +Q

q
x̂ +

P −Q
q

x . (2.75b)

Then, it follows as a direct consequence of the corner equation (2.59) that Xa = Xb =: X.

In other words, we can de�ne a common conjugate momentum for both evolutions. Writing

the invariants in terms of x and X we �nd after multiplication by a constant (which clearly

does not change the nature of the invariants) that

Ia = Ib =
1

2
X2 + 2Px2 . (2.76)

Note that this in entirely Q and R independent, and that it is nothing other than the

Hamiltonian for the continuous harmonic oscillator, with angular frequency ω = 2
√
P .

Notice that this is dependent on the choice of Lagrangians. A di�erent choice, such

as (2.41), yields di�erent conjugate momenta that are no longer equal, and where also the

equivalence of the invariants is no longer apparent. Requiring equality of the invariants

turns out to be an equivalent condition to demanding Lagrangian closure [110].

To illustrate this, suppose that we again consider the more general quadratic

Lagrangians of (2.67). These are associated to the conjugate momenta

Xa = −∂La
∂x

= α
(
x+ 2(a− a0)x

)
, (2.77a)

Xb = −∂Lb
∂x

= β
(
x̂+ 2(b− b0)x

)
. (2.77b)

Demanding equality of the momenta Xa = Xb, and comparing with the corner equation

(2.59a), yields the conditions

α =
P +R

r
γ , β =

P +Q

q
γ , (2.78a)

2β(b− b0)− 2α(a− a0) =

(
P −Q
q
− P −R

r

)
γ , (2.78b)
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for some constant multiplier γ. Supposing we again require La and Lb to be Q and R

independent, respectively, the condition (2.78b) reduces to the requirement

a0 =
1

2
a+

1

2

r

P +R
f(P ) , (2.78c)

b0 =
1

2
b+

1

2

q

P +Q
f(P ) , (2.78d)

for f a function of P only. But these are precisely the conditions on α, β, a0 and b0 that were

required for the Lagrangian closure (2.68). Requiring the canonical momenta to coincide is

an equivalent condition to the Lagrangian closure. Note that we could alternatively have

demanded equality of the invariants Ia and Ib (up to an overall constant), which yields the

same conditions on the coe�cients in the Lagrangian.

2.2.5 Commuting Continuous Flows

In the same way as the parameter b generates a continuous �ow compatible with the discrete

evolution (2.47), so we can �nd a continuous �ow in the parameter a. By manipulating

the solution to the bar evolution (2.53) (analogously to (2.46)) we derive the semi-discrete

equations

dx

da
=

n

1− a2
(ax+ x) ,

dx

da
= − n

1− a2
(ax+ x) , (2.79)

leading to a di�erential equation for x as a function of a,

(1− a2)
d2x

da2
− adx

da
+ n2x = 0 . (2.80)

The joint solution (2.63) guarantees the compatibility of the a and b �ows with the

commuting discrete evolutions. Recall that in terms of the lattice parameters a is given

by a = (P −R)/(P +R), such that the singularities of (2.80) at a = ±1 correspond to the

limits on the lattice variable R→ 0 and R→∞ - that is, the lattice either collapses or is

stretched to in�nity.

The compatibility of the continuous �ows can be further veri�ed by checking the relation

∂

∂a

∂x

∂b
=

∂

∂b

∂x

∂a
, (2.81)

using (2.46) and (2.79). Adopting the shorthand for velocities xb := ∂x/∂b, the continuous

time-�ows are generated by the usual Euler-Lagrange equations on continuous time
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Lagrangians of the form

Lb(x, xb) =
1

2m

√
1− b2 x2

b −
m

2
√

1− b2
x2 , (2.82a)

La(x, xa) =
1

2n

√
1− a2 x2

a −
n

2
√

1− a2
x2 . (2.82b)

Using the corner equations (2.59) these Lagrangians exhibit continuous multiform

compatibility, obeying the relations

∂La
∂xa

=
∂Lb
∂xb

,
∂

∂a

(
∂Lb
∂x

)
=

∂

∂b

(
∂La
∂x

)
. (2.83)

So, by considering the discrete parameters a, b now as continuous variables, we �nd a

continuous-time 1-form structure [125, 126].

As in [26], the harmonic oscillator continues to display surprising new features. On the

discrete level, we discover compatible �ows that can be expressed through the structure

of a Lagrangian form, even for this very simple case. This deeper structure then extends

beyond the discrete case also into compatible continuous �ows and we have an interplay

between these discrete and continuous one-form structures.

2.3 Longer periods

The periodic reduction de�ned in section 2.2.1 is part of a more general family of periodic

staircase initial value problems [24, 80, 88]. In general, we de�ne 2P initial conditions,

a0, a1, . . . , a2P−1 such that a0 = â2P−1, along a staircase as shown in �gure 2.8. The linear

lattice equation (2.3) de�nes a dynamical map (a0, a1, . . . , a2P−1) → (â0, â1, . . . , â2P−1).

As before, we introduce reduced variables x1, . . . , xP−1, y1, . . . , yP−1 and can eliminate the

yi to give a P − 1 dimensional system of second order di�erence equations in terms of the

xi variables.

The P = 2 case yields a one dimensional mapping that is entirely equivalent to the

case we have considered in section 2.2.1, except the lattice parameters combine in a slightly

di�erent way to give the coe�cient of the harmonic oscillator.

The P = 3 case is the next case of interest, as here we �nd a system of coupled harmonic

oscillators in x1 and x2, with two commuting invariants, and a similar commuting �ow

structure.



54 CHAPTER 2. MULTIFORM STRUCTURES FOR LINEAR MODELS

a0 a1

a2 = â1 a3

a4 = â3 a2P−1

a0 = â2P−1

â0

â2

p

q

Figure 2.8: The periodic staircase for period P .

2.3.1 P = 3 Discrete Flow

As in section 2.2.1, we can derive equations for a discrete �ow. We begin with the initial

value problem on the staircase for lattice variables a0, . . . , a5, as in �gure 2.8. Applying

the lattice equation (2.3) we have the mapping {ai} → {âi},

â2i−1 = a2i , â2i = a2i+1 + s(a2i+2 − a2i) . (2.84)

(s is given in (2.37)). We can then de�ne reduced variables, as before, but due to the

increased degrees of freedom of the system we require four reduction variables,

x1 = a2 − a0 , y1 = a3 − a1 ,

x2 = a4 − a2 , y2 = a5 − a3 ,
(2.85)

in terms of which the mapping equations (2.84) become

ŷ1 = x2 , x̂1 = y1 − s(x1 − x2) ,

ŷ2 = −(x1 + x2) , x̂2 = y2 − s(x1 + 2x2) .
(2.86)

By eliminating yi, we derive paired equations for a discrete �ow in variables x1 and x2,

x̂1 + x̂2 +
ˆ
x1 + s(2x1 + x2) = 0 , (2.87a)

x̂2 +
ˆ
x1 +

ˆ
x2 + s(x1 + 2x2) = 0 . (2.87b)
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These are an entangled pair of discrete harmonic oscillators.

Now, the equations (2.87) can be generated as discrete Euler-Lagrange equations from

a Lagrangian

L(x, x̂) = −x1(x̂1 + x̂2)− x2x̂2 − s(x2
1 + x1x2 + x2

2) , (2.88)

which is su�cient to prove this is a symplectic map. Note that the Lagrangian above

produces canonically conjugate momenta,

X1 = y1 + y2 , X2 = y2 . (2.89)

In particular, yi is not canonically conjugate to xi. We have the symplectic structure

dx̂i ∧ dX̂i = dxi ∧ dXi.

Writing the vector X = (x1, x2, y1, y2)T , we can pose the map (2.86) in a matrix form,

X̂ = AX , A =


−s s 1 0

−s −2s 0 1

0 1 0 0

−1 −1 0 0

 . (2.90)

As the map is linear, we seek quadratic invariants. These have the form I = XTJX for

some matrix J . The condition for invariance is then

Î = I ,

⇒ X̂TJX̂ = XTJX ,

⇒ ATJA = J .

(2.91)

By writing the matrices A and J in 2× 2 block matrix form,

A =

 S I

E 0

 , J =

 J1 J2

J3 J4

 , (2.92)

and using the condition (2.91) we are able to �nd two independent matrices J1, J2

satisfying the conditions, and hence two independent invariants of the mapping. After

some simpli�cation, these have the form

I1 = x1y1 − x1y2 + 2x2y1 + x2y2 , (2.93a)

I2 = x2
1 + x2

2 + y2
1 + y2

2 + x1x2 + y1y2 − s(2x1y1 + x1y2 + x2y1 + 2x2y2) .(2.93b)

It is straightforward to check using the mapping equations (2.86) that Î1 = I1 and Î2 = I2.
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Additionally, the conjugate momenta (2.89) de�ne Poisson bracket relations which are

preserved under the mapping,

{x1, y1} = −1 , {x1, y2} = 0 ,

{x2, y1} = 1 , {x2, y2} = −1 .
(2.94)

With respect to these the two invariants are in involution,

{I1, I2} = 0 . (2.95)

So this map satis�es the standard criteria for an integrable map: it has su�cient invariants

in involution. This symplectic structure is also preserved under the mapping.

Rearranging the mapping equations (2.87), we can write 1 s

s 1

 x1

x̂1

 =

 −x2 − 2sx̂2 − ̂̂x2

ˆ
x2 + sx2

 . (2.96)

This allows us to eliminate x1 from the equations of motion and derive a fourth order

ordinary di�erence equation for x2,

(̂̂x2 +
ˆ̂
x2) + 3s(x̂2 +

ˆ
x2) + (1 + 3s2)x2 = 0 . (2.97)

Seeking solutions of the form x2 = λm, we �nd that the auxiliary equation is solvable,

giving four solutions λ±1
± , where

λ± = −3

4
s± 1

2

√
1− 3

4s
2 +

[(
−3

4
s± 1

2

√
1− 3

4s
2

)2

− 1

]1/2

. (2.98)

Using (2.96) to write x1 in terms of x2, we can express solutions to both in terms of λ±.

x2(m) = Aλm+ +Bλ−m+ + Cλm− +Dλ−m− , (2.99)

x1(m) =
−1

1− s2

(
A
(
sλ−1

+ + 1 + s2 + 2sλ+ + λ2
+

)
λm+

+B
(
sλ+ + 1 + s2 + 2sλ−1

+ + λ−2
+

)
λ−m+

+C
(
sλ−1
− + 1 + s2 + 2sλ− + λ2

−
)
λm−

+D
(
sλ− + 1 + s2 + 2sλ−1

− + λ−2
−
)
λ−m−

)
. (2.100)

Thus an explicit solution to the discrete system exists.

An area for further investigation would be to consider whether these solutions exhibit

compatible continuous �ows by di�erentiation with respect to the parameter s, following

the continuous parameter �ows for the simpler model of section 2.2.5.
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Commuting Discrete Flow

As in section 2.2.2, we can also derive a commuting discrete �ow for the evolution.

Beginning with the ai, and extending in a third, �bar� direction with lattice parameter

r (similarly to �gure 2.5) application of the multi-dimensional property of the linear lattice

equation (2.8) gives

a2i+1 − a2i = t(a2i − a2i+1) ,

a2i − a2i+1 = t′(a2i+1 − a2i) ,
where

t := p−r
p+r ,

t′ := q−r
q+r .

(2.101)

In terms of the reduced variables (2.85) these produce the equations

x1 − (y1 − y2) = −t(x1 − (y1 − y2)) , (2.102a)

x2 − y2) = −t(x2 − y2) , (2.102b)

y1 + x1 = −t′(y1 + x1) , (2.102c)

y2 + x1 + x2 = −t′(y2 + x1 + x2) . (2.102d)

Finally, by eliminating yi we derive paired second order di�erence equations for the xi

variables,

(1 + tt′)(x1 + x1) + x2 + tt′x2 + (t+ t′)(2x1 + x2) = 0 ,

(1 + tt′)(x2 + x2) + tt′x1 + x1 + (t+ t′)(x1 + 2x2) = 0 .
(2.103)

Comparing these with the �hat� equations of motion (2.87), we are then naturally interested

in their compatibility. This �bar� evolution (2.103) technically represents a Bäcklund

transform of the discrete system (2.87) with parameter r.

Note that the equations for the commuting �ow (2.103) arise as Euler-Lagrange

equations from a discrete variational principle on the Lagrangian

L(x, x) = −(1 + tt′)(x1x1 + +x2x2)− x1x2 − tt′x2x1 − (t+ t′)(x2
1 + x1x2 + x2

2) . (2.104)

This guarantees that the map is symplectic.

Recalling the vector X (2.90), we can write the mapping equations (2.102) in a matrix

form 
1 0 −t t

0 1 0 −t

t′ 0 1 0

t′ t′ 0 1

X =


−t 0 1 −1

0 −t 0 1

−1 0 −t′ 0

−1 −1 0 −t′

X , (2.105a)

⇒ BX = CX . (2.105b)
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Comparing with the matrix A encoding the map {X} → {X̂} (2.90), we �nd that the

matrices commute, [B−1C,A] = 0. Since the matrices generating the maps commute, so

do the maps themselves (as in (2.55)).

Additionally, considering the matrix form for the invariants in (2.91) we can describe

the evolution of I1 (2.93a) and I2 (2.93b) under the commuting �ow by

I = X
T
JX = X(B−1C)TJB−1CX . (2.106)

But a calculation shows that for both choices of J we have (B−1C)TJB−1C = J , and

hence the invariants are also preserved under the commuting �ow, I1 = I1, I2 = I2. Since

the invariants of the �hat� evolution are also invariant under the �bar� evolution, we again

have two invariants and integrability for this second evolution.2

One-form structure

By eliminating the yi from the reduced equations (2.86) and (2.102) in a di�erent

combination, we can derive corner equations for the xi variables under the hat and bar

evolutions,

3t′x1 = (1− tt′)(2x̂1 + x̂2 − x2)− (2 + tt′)x1 , (2.107a)

3t′x2 = (1− tt′)(−x̂1 + x̂2 + x1)− (1 + 2tt′)x2 , (2.107b)

3t′x̂1 = (1− tt′)(x̂2 + x1 − x2)− (1 + 2tt′)x̂1 , (2.107c)

3t′x̂2 = (1− tt′)(−x̂1 + x1 + 2x2)− (2 + tt′)x̂2 . (2.107d)

As in the one dimensional case of section 2.2.3, the existence of compatible equations of

motion (2.87), (2.103), (2.107) on the variables xi suggests a Lagrangian 1-form structure.

Seeking a closed form of the Lagrangians (2.88) and (2.104), we take the choice

L1(x, x̂) = −x1(x̂1 + x̂2)− x2x̂2

−1
2s
(
x2

1 + x1x2 + x2
2 + x̂2

1 + x̂1x̂2 + x̂2
2

)
, (2.108a)

L2(x, x) = −1 + tt′

1− tt′
(x1x1 + x2x2)− 1

1− tt′
(x1x2 + tt′x2x1)

−1

2

t+ t′

1− tt′
(
x2

1 + x1x2 + x2
2 + x2

1 + x1x2 + x2
2

)
, (2.108b)

2Technically, we must also show involutivity of I1, I2 with respect to the canonical structure of the bar

evolution. However, this will follow from the one-form structure.
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such that for these Lagrangians the closure property holds on the equations of motion

(2.87), (2.103), (2.107),

2L := L1(x, x̂) + L2(x̂, x̂)− L1(x, x̂)− L2(x, x) = 0 . (2.109)

Note that this closure depends on the parameter identity (2.57). The Lagrangian 1-form

structure then has a multiform variational principle which produces all the equations of

motion, as described for the one-dimensional case in section 2.2.3.

Notice the symmetrical form of the potential terms in the closed form Lagrangians

(2.108) which appears to be a feature of such discrete Lagrangians (compare, for example,

(1.48a), (2.69) and [125]). Also, note that the closure determines the relative scaling

between the two Lagrangians (2.108a) and (2.108b), �xing much of the usual freedom in

choosing a Lagrangian.

The Lagrangians (2.108a), (2.108b) de�ne the momenta conjugate to x1, x2 by the

usual formula Xi = −∂L1/∂xi, so that

X1 = x̂1 + x̂2 + 1
2s(2x1 + x2) , X2 = x̂2 + 1

2s(x1 + 2x2) , (2.110)

with respect to which we have the invariant Poisson structure {xi, Xj} = δij , preserved

under the mappings. We could also write expressions for the momenta Xi using the second

Lagrangian L2; equality of these expressions is given by the corner equations (2.107). The

invariants can then be rewritten in terms of the momenta Xi (2.110),

I1 = x1X1 − 2x1X2 + 2x2X1 − x2X2 , (2.111a)

I2 = X2
1 −X1X2 +X2

2 +
(
1− 3

4s
2
)

(x2
1 + x1x2 + x2

2) . (2.111b)

The canonical structure yields involutivity of the invariants, {I1, I2} = 0. The invariance

and involutivity of these can be shown by direct calculation, also guaranteeing integrability

for both maps.

In the simple, one-dimensional periodic reduction, we faced the problem that there

were no longer meaningful commuting �ows in a continuum limit, due to the insu�cient

number of degrees of freedom: in a continuum limit the commuting �ows must ultimately

coincide. For this period 3, two dimensional example, however, we expect this limitation

will no longer be a problem. We have two commuting, independent invariants (2.111) that

are generating Hamiltonians for two commuting, continuous time-�ows. An outstanding

problem is to derive an appropriate continuous Lagrangian one-form structure for these

�ows, perhaps in a continuum limit from the discrete structure.



60 CHAPTER 2. MULTIFORM STRUCTURES FOR LINEAR MODELS

2.3.2 Lax Pair

It seems probable that the one-form structure can be generalised for a staircase of arbitrary

length 2P (�gure 2.8). However, an important aspect of the integrability of the maps is

the presence of a su�cient number of invariants: a staircase of length 2P produces a P −1

dimensional map, and hence integrability requires the existence of P − 1 independent

invariants in involution.

A Lax representation for the staircase reduction can be derived from that of the linear

lattice equation (2.17), (2.18) (compare with previous work on staircase reductions from

the lattice KdV equation [24, 88, 91]). Recall the staircase con�guration of �gure 2.8, and

de�ne the general reduction variables by

xi = a2i − a2i+2 , yi = a2i−1 − a2i+1 . (2.112)

The linear lattice equation causes the ai to evolve according to the mapping (2.84), which

leads to the equations of motion

x̂j = yj+1 + s(xj+1 − xj) , ŷj = xj . (2.113)

It is these equations that we wish to capture in a Lax pair.

a2j a2j+1

a2j+2 = â2j+1
â2j

â2j+2

L

M̃M

L̂ ̂̃
M

Figure 2.9: Two alternative routes through the lattice. The bold line and the dashed line

must be equivalent.

Consider the two alternative routes along the staircase shown in �gure 2.9, and the

linear lattice Lax pair of section 2.1.1. There are two alternative combinations of the Lax

matrices, according to the bold or dashed routes through the lattice, yielding the equality

̂̃
MM̃L =

̂̃
ML̂M . (2.114)
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This follows as a straightforward consequence from the zero-curvature condition (2.18).

Using the factorisations of the Lax matrices (2.17), and recalling the de�nitions of xi, yi

(2.112), we therefore have

QkX̂jPkŶjQÂ−1
2j A2j−1 = QÂ−1

2j+2A2j+1QkXjPkYj , (2.115)

in which we have introduced notation for the upper triangular matrices,

Xj :=

 1 xj

0 1

 , Yj :=

 1 yj

0 1

 , Aj :=

 1 aj

0 1

 . (2.116)

The equation (2.115) simpli�es signi�cantly as we identify the Lax pair for the mapping

reduction,

Lj := QkXjPkYj , Mj := QkÂ
−1
2j A2j−1 = Qk

 1 yj + sxj

0 1

 , (2.117a)

(where we have used (2.113) in the expression for Mj) in terms of which (2.115) becomes

L̂jMj = Mj+1Lj . (2.117b)

This Zakharov-Shabat condition generates the equations of motion for the mapping as a

compatibility condition.

In general for an integrable system, it is then possible to extract invariants from such

a Lax pair by the construction of a monodromy matrix,

T (k2) = LPLP−1 . . . L2L1 . (2.118)

The Zakharov-Shabat condition (2.117) guarantees the preservation of the spectral data of

T (k2) under the map. However, for the linear reduction mapping, these spectral data are

trivial: no invariants are encoded. Indeed, this Lax representation is closely related to that

of the reduction from the lattice KdV equation (which will be considered in chapter 4),

which encodes not only the invariants, but also has an r-matrix structure which is su�cient

to demonstrate their involutivity; but in the linearisation this r-matrix structure is also

lost.

Recall the alternative Lax formulation for the lattice equation as the linear limit from

the Lax pair of the lattice KdV equation (2.23). On this level, the reduction equations

and Lax representation appear at �rst order in the linearising parameter η. However, the

invariants of the reduction are quadratic: they appear at quadratic order in η as the limits
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of the non-linear invariants, and similarly at quadratic order in the Lax pair. This may

explain why the invariants are not easily encoded in the Lax structure for the linear model:

in the limit they appear at a di�erent order. Nonetheless, the invariants do exist, and it

is possible that they retain the independence and involutivity of their parents in the non-

linear case, but this remains to be shown. It is possible that the one-form structure may

be a viable alternative for exploring the integrability of this model.

2.4 Summary

By considering the linearised lattice equation that arises naturally from the ABS list,

its multi-dimensional consistency and Lagrangian structure, we have found a �simplest

example� of a Lagrangian 2-form structure. There is a choice of Lagrangian for the

lattice equation that possesses the closure property on the level of the multi-dimensional

equations, leading naturally to the multi-form variational principle for lattice equations.

The family of multi-dimensionally consistent lattice equations arise from an action that

must be stationary both under variation of the dependent variables and under variation

of the surface itself. Furthermore, we have seen that the quadratic Lagrangian 2-form for

lattice equations is almost unique; the class of admissible Lagrangians is restricted by the

closure requirement.

The multi-dimensional consistency of the linear lattice equation led to a novel

perspective on the mappings that arise from periodic reductions of the lattice. Applying

a periodic boundary condition led to a discrete harmonic oscillator which, by exploiting

the multi-dimensional consistency of the parent lattice equation, was found to have a

commuting, discrete �ow. These commuting �ows can be expressed in a Lagrangian 1-

form structure, which is equivalent to the maps possessing a shared conjugate momentum.

The Lagrangian 1-form captures the full set of equations of motion through a least action

principle, varying both dependent variables and the time curve of the evolution. Due to

their joint solutions, these commuting, discrete �ows also have compatible continuous �ows

in a regime where discrete variables and continuous parameters exchange roles.

The reduction can also be extended to higher dimensional cases by lengthening the

periodic initial value problem on the lattice. We examined the next case (in two dimensions)

as an example, deriving the Lagrangian 1-form. Although this family of reductions have a
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local Lax pair inherited from the multi-dimensional consistency of the lattice equation, an

outstanding problem is to encode the invariants of such mappings on the level of the Lax

pair and hence relate the Lax problem to the Lagrangian form structure.
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3
Quantum Multiform Structures for Linear Models

The development of the multiform variational principle is an important step forwards in the

study of integrable systems from a Lagrangian perspective, both for evolutionary systems in

the one-form case [18, 110, 125, 126] and for two-dimensional (particularly lattice) models

in the two-form case [62�65]. These multiform structures capture the aspect of multi-

dimensional consistency for integrable systems, parallel to the commuting Hamiltonian

�ows that have long been understood.

So far, the Lagrangian multiform structure has been used to describe the classical

mechanics of integrable systems, but it is natural to speculate about the quantum

analogue of these constructions. Canonical quantisation of integrable systems depends

on the classical invariants becoming commuting Hamiltonian operators, but a Lagrangian

approach to quantisation means a path integral, or sum over histories, approach [27, 28,

36, 37] - and as early as in [27] Dirac claimed that the Lagrangian formulation is the

more fundamental approach. The classical principle of least action becomes a sum over all

paths, with the action dictating the phase. For Lagrangian multiforms, the least action

principle involves a variation over the underlying geometries of the independent variables;
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we might wonder how the Lagrangian closure and variation of surfaces, which manifest the

multi-dimensional consistency of integrable models, will appear at the quantum level.

In chapter 2 we explored discrete, linear models with a Lagrangian multiform structure:

the linear lattice equation and the harmonic oscillator. But, the harmonic oscillator is the

essential toy model for quantummechanics; the path integral can be calculated explicitly for

quadratic Lagrangians using straightforward methods. For the discrete harmonic oscillator

we can also avoid the problematic in�nite time-slicing that is inherent to path integral

methods. In this chapter we make use of the toy models of chapter 2 to consider how the

multi-dimensional properties of the Lagrangian multiform manifest in a quantum setting.

For the discrete harmonic oscillator, we �nd in section 3.1 that the natural propagator for

the Lagrangian one-form is independent from the path taken in the discrete time variables.

That is, it depends only on the end-points. This is a quantum analogue to the Lagrangian

closure condition. We also �nd that this is uniquely true (in the quadratic case) for the

Lagrangian one-form structure of chapter 2. In section 3.2 we extend these ideas to the

lattice two-form case and �nd similar results. We de�ne a propagator over a surface on the

lattice that, for the linear two-form, is independent of variations of the surface, depending

only on the boundary. This can also be viewed as a quantum analogy for Lagrangian

closure and, similarly to the one-form case, this holds uniquely for the linear Lagrangian

two-form of chapter 2.

3.1 The Quantum Reduction

From the earliest works on creating a Lagrangian approach to quantum mechanics, the

harmonic oscillator has provided the key example [27, 36]. In chapter 2 we found that,

by exploiting lattice multi-dimensional consistency, we were able to construct commuting

discrete �ows for the harmonic oscillator and therefore to endow the model with a discrete

Lagrangian one-form structure. The discrete harmonic oscillator is therefore an important

toy model for exploring the quantisation of the Lagrangian one-form.

Rovelli in [94, 95] also tackles path integral quantisation of a discrete harmonic

oscillator; although he considers reparametrisation invariant discretisations, whereas we

proceed from what is essentially a Bäcklund transform. Nonetheless, there are important

similarities, such as the preservation of the energy of the continuous model even in the
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discretisation.

3.1.1 Feynman Propagators

Consider the simple discrete harmonic oscillator model of section 2.2. The commuting

�ows of this model were described by a Lagrangian-type generating function (2.69) which

has a one-form structure,

Lb(x, x̂) = −P +Q

q
xx̂− P −Q

2q
(x2 + x̂2) . (3.1)

Recall that, of the possible quadratic Lagrangians generating the discrete model, the

Lagrangian one-form is almost unique. The Lagrangian de�nes conjugate momenta

X = −∂Lb
∂x =

P +Q

q
x̂+

P −Q
q

x , (3.2a)

X̂ = ∂Lb
∂x̂ = −P +Q

q
x− P −Q

q
x̂ , (3.2b)

which are equivalent to discrete Hamilton's equations.

In canonical quantisation, position x and momentum X become operators x and X,

with equal time commutation relations [x,X] = i~. The momentum equations (3.2) become

operator equations of motion,

x̂− x = − 2P

P −Q
x− q

P −Q
X̂ , (3.3a)

X̂−X =
4Pq

P −Q
x +

2P

P −Q
X̂ . (3.3b)

In continuous time quantum mechanics the principle object of interest is the Schrödinger

equation, with the operator equations of motion playing a more secondary role. In the

discrete regime, however, the Schrödinger equation is no longer relevant, and so it is

these operator equations of motion that become the primary objects of study. We make

some assumptions on the Hilbert space, such that these operators have complete sets of

orthogonal eigenfunctions; since the system is in essence the harmonic oscillator these are

not di�cult assumptions.

To understand the discrete time evolution, we express the Hamilton's equations (3.3)

in terms of a time-evolution operator Ub. As in (1.71), we require

x→ x̂ = U−1
b xUb , X→ X̂ = U−1

b XUb . (3.4)
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This is a �canonical� approach to discrete quantisation, see for example [74]. Comparing

equations (3.3) with (3.4), and using the conjugations (1.75), it is not hard to see that an

appropriate choice of Ub is given by

Ub = e−iV (x)/2~e−iT (X)/~e−iV (x)/2~ , (3.5a)

= exp

(
−iPx2

~q

)
exp

(
−iqX2

2~(P +Q)

)
exp

(
−iPx2

~q

)
. (3.5b)

In other words, a separated form for Ub exists, but it is required to have three terms. This

contrasts with previous one-dimensional examples in the literature, where two terms are

normally considered su�cient (see (1.74)) [74]. Note that (3.5) is not a unique form for

Ub; it can alternatively be written

Ub = e−iT (X)/2~e−iV (x)/~e−iT (X)/2~ , (3.6a)

= exp

(
−iX2

4~q

)
exp

(
−2iPqx2

~(P +Q)

)
exp

(
−iX2

4~q

)
, (3.6b)

but when working in position space we will �nd (3.5) a more helpful form.

We use bra/ket notation to write |x〉 as the eigenstate for the position operator x, so

that x|x〉 = x|x〉. A subscript |x〉m indicates Heisenberg picture states with a dependence

on the discrete time variable m. The propagator for a single, discrete time-step is

Kb(x,m; x̂,m+ 1) = m+1〈x̂|x〉m = 〈x̂|Ub|x〉 , (3.7a)

where we have moved in the second equality from time-dependent, Heisenberg picture

eigenstates to time-independent, Schrödinger picture eigenstates.

Since we have an explicit form for Ub (3.5), we can calculate the propagator,

〈x̂|Ub|x〉 = 〈x̂|e−iV (x)/2~e−iT (X)/~e−iV (x)/2~|x〉 , (3.7b)

= e−iV (x̂)/2~〈x̂|e−iT (X)/~|x〉e−iV (x)/2~ . (3.7c)

Making some assumptions on the Hilbert space we insert a complete set of momentum

eigenstates,

〈x̂|Ub|x〉 =

∫
dX〈x̂|X〉〈X|x〉 exp

[
i

~
(
−T (X)− 1

2(V (x̂) + V (x))
)]

, (3.7d)

=
1

2π~

∫
dX exp

[
i

~

(
−qX2

2(P +Q)
−X(x̂− x)− P

q

(
x2 + x̂2

))]
, (3.7e)

=

(
P +Q

2πi~q

)1/2

exp

[
i

~

(
−P +Q

q
xx̂− P −Q

2q
(x2 + x̂2)

)]
, (3.7f)
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where the last equality results from a Gaussian integral. The linearity of the model justi�es

taking the integration region over the whole real line. But, it is clear to see by comparison

with the Lagrangian (3.1) that this is simply

〈x̂|Ub|x〉 =

(
P +Q

2πi~q

)1/2

exp

[
i

~
Lb(x, x̂)

]
. (3.8)

This is what might be expected for a �one-step" path integral (such as in [38, 40])

noting that this approach has also speci�ed the normalisation constant. As early as

Dirac's paper [27] it was shown that the Lagrangian appears in such a way for quantum

mechanical systems, but here for the discrete evolution we have recovered precisely the

chosen Lagrangian one-form.

This is su�cient to de�ne the discrete-time path integral. By iterating the one-step

propagator (3.8) over M steps, we can write the propagator for the discrete system,

Kb(x0, 0;xM ,M) =

(
P +Q

2πi~q

)M/2 ∫ ∞
−∞

M−1∏
m=1

dxm eiS[xm]/~ , (3.9)

with action

S[xm] =
M−1∑
m=0

Lb(xm, xm+1) . (3.10)

In this discrete case, equation (3.9) gives a precise de�nition to the path integral notation

Kb(x0, 0;xM ,M) =

∫ x(M)=xM

x(0)=x0

[Dx(m)] eiS[x(m)]/~ . (3.11)

Notice in particular that the normalisation associated to the measure is unambiguous. We

can deduce a similar expression for the bar evolution with parameter a.

Calculating the Discrete Propagator

We de�ne the discrete-time path integral propagator in equations (3.9) and (3.10). In the

quadratic regime, we can now calculate this explicitly.

Since we are working with a quadratic Lagrangian, we begin the evaluation (as in the

continuous case [37]) by expanding xm around the classical solution,

xm = xclm + ym , (3.12)

where xclm is the classical solution, and ym is the quantum deviation from the classical

trajectory, with the endpoints �xed so that y0 = yM = 0. The action is expanded in a
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Taylor expansion, which separates for quadratic Lagrangians,

S[x] = S[xcl + y] = S[xclm] + S[ym] . (3.13)

As in the continuous case, the path integral separates into a part depending on the action

of the classical path, and a path integral with no dependence on the endpoints,

Kb(x0, 0;xM ,M) = exp

[
i

~
S[xclm]

] ∫ y(M)=0

y(0)=0
D[ym] eiS[ym]/~ . (3.14)

These two parts can be evaluated separately.

First, we evaluate the classical action for the path beginning at x0, and reaching xM

after M time steps. Recalling the discrete equation of motion (2.40) and classical solution

(2.43), and applying the boundary value problem, we rewrite the classical trajectory as

xm =
1

sinµM

(
xM sinµM − x0 sinµ(m−M)

)
, (3.15)

where b = − cosµ. Substituting (3.15) into the action gives

Scl =
M−1∑
m=0

(
−P +Q

q
xmxm+1 −

P −Q
2q

(x2
m + x2

m+1)

)
, (3.16a)

=

√
P

sinµM

[
(x2

0 + x2
M ) cosµM − 2x0xM

]
, (3.16b)

where we have used the identities

cosµ = −b = −P −Q
P +Q

, sinµ =
2q
√
P

P +Q
. (3.17)

and made extensive use of trigonometric formulae to reach the second, simpli�ed, expression

(3.16). Notice two things about this result. First, there is no explicit Q dependence in

Scl; all Q dependence is contained within the parameter µ, which only appears as µM .

Second, the structure is identical to the classical action in the continuous case, in the limit

µM → ωT .

It is left for us to evaluate the discrete path integral for the quantum deviation,

K̃M (0, 0) :=

∫ y(M)=0

y(0)=0
D[ym] eiS[ym]/~ . (3.18)

In the discrete case, we can consider this via a time slicing procedure without needing to

worry about the problematic shrinking to zero. Following the propagator de�nition (3.9),

we have

K̃M (0, 0) = N M

∫
dy1 . . .

∫
dyM−1

× exp

{
i

~q

M−1∑
m=0

(
−(P +Q)ymym+1 −

1

2
(P −Q)(y2

m + y2
m+1)

)}
, (3.19a)
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where N := [i(P + Q)/2π~q]1/2 is the normalising factor appearing in (3.9), and y0 =

yM = 0. This expression is quadratic in all ym variables, and so can be evaluated as a set

of M − 1 Gaussian integrals. This is most easily achieved by writing the equation in a

matrix form (as in [99], for example). We de�ne yT = (y1, . . . , yM−1), in order to write

K̃M (0, 0) = N M

∫
dM−1y exp(−yTσy) , (3.19b)

for σ a symmetric, tri-diagonal matrix,

σ =
i(P +Q)

~q



P−Q
P+Q 1/2

1/2 P−Q
P+Q

. . .

. . .
. . . 1/2

1/2 P−Q
P+Q

 . (3.19c)

As σ is symmetric, it can be diagonalised by a unitary matrix V , so that σ = V †σDV , and

the vector becomes ξ = V y. The propagator is then

K̃M (0, 0) = N M

∫
dM−1ξ exp(−ξTσDξ) , (3.19d)

= N M
M−1∏
α=1

√
π

σα
, where σα are the entries of σD , (3.19e)

= N M .
π(M−1)/2

√
detσ

, (3.19f)

and hence it remains to calculate detσ.

σ is a tri-diagonal matrix. Let Xn be a determinant for a general tri-diagonal matrix,

Xn =

∣∣∣∣∣∣∣∣∣∣∣∣

A B

B A
. . .

. . .
. . . B

B A

∣∣∣∣∣∣∣∣∣∣∣∣
of size n× n . (3.20a)

The determinant is found by forming a recursion relation on the size of the matrix.

Performing the cofactor expansion and solving the resulting discrete system, we �nd the

determinant

Xn =
1

2n

[(
A+

A2 − 2B2

√
A2 − 4B2

)(
A+

√
A2 − 4B2

)n−1

+

(
A− A2 − 2B2

√
A2 − 4B2

)(
A−

√
A2 − 4B2

)n−1
]
. (3.20b)
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For the matrix σ (3.19c), we have A = (P − Q)/(P + Q) = cosµ and B = 1/2, so that
√
A2 − 4B2 = i sinµ. This leads to signi�cant simpli�cations of the above expression, so

that

detσ =

(
P +Q

2i~q

)M−1 sinµM

sinµ
. (3.20c)

Putting this together with the normalisation constant N (3.8), we have the propagator

for the deviation

K̃M (0, 0) =

√
P +Q

2πi~q
.

sinµ

sinµM
. (3.21)

With the classical action (3.16) we therefore �nd the propagator for the discrete harmonic

oscillator,

Kb(x0, 0;xM ,M) =

( √
P

πi~ sinµM

)1/2

× exp

[
i
√
P

~ sinµM

(
(x2

0 + x2
M ) cosµM − 2x0xM

)]
. (3.22)

Note that this has the same form as the propagator for the continuous time harmonic

oscillator. Dependence on the parameter b is evident through cosµ = −b. We note, then,

that the propagator is common to the discrete evolution and its interpolating continuous

time �ow.

3.1.2 Quantum Invariants

Using the operator equations of motion (3.3) it is easy to see that the discrete harmonic

oscillator has an operator invariant given by

Ib =
1

2
X2 + 2Px2 =

1

2

(
−~2 ∂

2

∂x2
+ 4Px2

)
, (3.23)

where we have taken the standard position space representation for the momentum X =

−i~ ∂/∂x. This invariant is, of course, simply the operator version of the classical invariant

(2.42), and is precisely the Hamiltonian for the continuous time harmonic oscillator, where

4P = ω2.

The invariant can also be considered from the perspective of path integrals and the time

evolution operator following the method of [40], where the authors investigated quantum

systems possessing invariants under a one time-step path integral evolution. We begin by

considering the evolution generated by Lagrangian Lb(x, x̂) (3.1). We know this has a �one
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time-step� propagator given in (3.8). A wave-function ψm(x) evolves in discrete time under

this transformation according to

ψm+1(x̂) = N

∫
dx exp

(
i

~
Lb(x, x̂)

)
ψm(x) , (3.24)

with N the normalising constant. To look for an invariant we desire ψm and ψm+1 to be

solutions of the same eigenvalue problem, with the same eigenvalue:

Mxψm(x) = Eψm(x) ⇒ Mx̂ψm+1(x̂) = Eψm+1(x̂) . (3.25)

Mx is a di�erential operator, and we restrict to considering the second order case,

Mx = p0(x)
∂2

∂x2
+ p1(x)

∂

∂x
+ p2(x) , (3.26)

for pi(x) some functions of x which are to be determined. The quadratic restriction is

justi�ed as we are seeking an invariant of the form (3.23). Now,

Eψm+1(x̂) = N

∫
exp

(
i

~
Lb(x, x̂)

)
Eψm(x)dx , (3.27a)

= N

∫
exp

(
i

~
Lb(x, x̂)

)
(Mxψm(x)) dx , (3.27b)

= N

∫ (
Mx exp

(
i

~
Lb(x, x̂)

))
ψm(x)dx + S , (3.27c)

where Mx is an adjoint to Mx constructed under integrations by parts, and S is the

resulting surface term,

Mx =
∂2

∂x2
◦ p0(x)− ∂

∂x
◦ p1(x) + p2(x) , (3.28a)

S =
[
p0e

iL/~ψ′m − (p0e
iL/~)′ψm + p1e

iL/~ψm

]∞
−∞

. (3.28b)

If we assume ψm and ψ′m vanish at in�nity (a reasonable physical assumption) then the

surface term S vanishes.

We can also write,

Eψm+1(x̂) = Mx̂ψm+1(x̂) , (3.29a)

= N

∫
C

(
Mx̂ exp

(
i

~
Lb(x, x̂)

))
ψm(x) dx . (3.29b)

So, comparing (3.27c) with (3.29b), we require

Mx exp

(
i

~
Lb(x, x̂)

)
= Mx̂ exp

(
i

~
Lb(x, x̂)

)
. (3.30)
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Following the analysis in [40], and using the given Lagrangian (3.1), we �nd this can only

hold under the restrictions

p0(x) = −~2C0 , p1(x) ≡ 0 , p2(x) = 4PC0x
2 + C2 , (3.31)

so that

Mx = C0

(
−~2 ∂

2

∂x2
+ 4Px2

)
+ C2 . (3.32)

This is precisely the Hamiltonian for the harmonic oscillator. In terms of the operator

invariant (3.23),

Mx = 2C0Ib + C2 , (3.33)

or in other words we have precisely the invariant Ib, which is in accord with the invariants

found in [40].

The invariant Ib (3.23) is further related to the evolution operator Ub (3.5) in principle

by a Campbell-Baker-Hausdor� expansion [87, 115]; an explicit form is given by algebraic

manipulation [56],

Ub = exp

[
1

~
√
P

arctanh

(
i
√
P

q

)
Ib

]
. (3.34)

So it can be clearly seen how the discrete quantum evolution relates to an interpolating

continuous time-�ow via these alternative expressions of the unitary time evolution

operator.

3.1.3 Path independence of the propagator

In equation (3.22) we established the propagator for an evolution in one discrete time

variable. But recall that in the classical case there are two compatible discrete �ows: the

bar and hat evolutions. These can be viewed as two discrete time evolutions. In the same

way as the hat evolution, the bar evolution is characterised by a Lagrangian La(x, x) (2.69),

La = −P +R

r
xx− P −R

2r
(x2 + x2) , (3.35)

with time evolution generated by an operator Ua as in (3.5). This leads to a one time-step

propagator similarly to (3.8),

Ka(x, x; 1) =

(
P +R

2πi~r

)1/2

exp

[
i

~
La(x, x)

]
. (3.36)

Noting that the invariant Ib (3.23) is independent of q, it is clear that the bar evolution

shares the same invariant, Ib = Ib. We remark that, as we have here a second time direction,
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we might plausibly introduce a second ~ parameter. We ignore such considerations for the

time being and allow ~ to be the same in both time directions.

In general, if we begin at a time co-ordinate (0, 0) and evolve along integer time co-

ordinates to a new time (M,N), the propagator could depend not only on the endpoints,

but also on the path Γ taken through the time variables (see �gure 2.6). We associate to

the path an action SΓ := S[x(n); Γ] (2.65),

SΓ =
∑

γ(n)∈Γ

Li(x(n), x(n + ei)) , (3.37)

where the summation takes place over unit elements γ(n) of the discrete time curve Γ,

each of which is associated to a single Lagrangian Li(x(n), x(n+ei)). We can then de�ne

a propagator for the evolution along the time-path Γ, made up of the one-step elements

(3.8), (3.36)

KΓ

(
xa, (0, 0);xb, (M,N)

)
:= NΓ

∫ ∏
(m,n)∈Γ

dxm,n exp

[
i

~
SΓ[x(n)]

]
, (3.38)

where the integration is over all internal points xm,n on the curve Γ. Here NΓ represents the

product of normalisation factors from the relevant elements of (3.8), (3.36); the selection

of the constant NΓ is explained in appendix A.

Consider the simple case of an evolution of one step in each direction. There are two

routes to achieve this, shown in �gure 3.1. Either we evolve �rst in the hat direction,

followed by an evolution in the bar direction, or vice versa.

In path (i), we evolve �rst according to the hat evolution Lb, and then according to

the bar evolution La. The propagator is

Ky(x, x̂) =

(
(P +Q)(P +R)

(2πi~)2qr

)1/2 ∫ ∞
−∞

dx̂ exp

{
i

~

(
Lb(x, x̂) + La(x̂, x̂)

)}
, (3.39a)

=

(
(P +Q)(P +R)

2πi~(P − qr)(q + r)

)1/2

exp

{
i

~

[
(P +Q)(P +R)

(P − qr)(q + r)
xx̂

+
1

2

(
P (q + r)

P − qr
− P − qr

q + r

)
(x2 + x̂2)

]}
, (3.39b)

where we have substituted the Lagrangians (3.1), (3.35) and made use of the Gaussian

integral. Notice that Ky is totally symmetric under interchange of the parameters q and r.

This symmetry makes is very straightforward to evaluate the propagator for the alternative

path, (ii).
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m

n

x x̂

x̂x

Lb(x, x̂)

La(x̂, x̂)La(x, x)

Lb(x, x̂)

Figure 3.1: The solid line shows path (i) for Ky, and the dashed line path (ii) for Kp. The

white circles represent variables that are integrated over.

In path (ii), we evolve �rst by the bar evolution La, and then the hat evolution Lb, so

we have the propagator

Kp(x, x̂) =

(
(P +Q)(P +R)

(2πi~)2qr

)1/2 ∫ ∞
−∞

dx exp

{
i

~

(
La(x, x) + Lb(x, x̂)

)}
. (3.40)

But, this expression is identical to (3.39a) with the parameters q and r exchanged and a

relabelling of the integration variable. We know thatKy is symmetric under the interchange

of q and r, and so

Kp(x, x̂) = Ky(x, x̂) . (3.41)

It is an obvious corollary of this result that, so long as we take only forward steps in time,

the propagator KM,N (xa, xb) (3.38) is independent of the path taken in the time variables.

Backwards time-steps

The discrete nature of the time evolution suggests the possibility of including backwards

time steps in the path Γ, via inverse canonical transforms. As in the classical case, we

can construct an action for such a trajectory, using an appropriate orientation for the

Lagrangians. In the quantum case we perform a path integral over this action, integrating

over all the intermediate points. As the unitary operator Ub generates a time-step in the

b direction (section 3.1.1), its inverse U−1
b generates the backwards evolution.
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Considering once more the simplest case, we imagine a trajectory around three sides

of a square, with action

Su[x(m,n)] = La(x, x) + Lb(x, x̂)− La(x̂, x̂) . (3.42)

This path is shown in �gure 3.2.

m

n

x x̂

x̂x

Lb(x, x̂)

−La(x̂, x̂)La(x, x)

Lb(x, x̂)

Figure 3.2: The path for action Su. In the propagator, we integrate over the variables at

the white circles. Note the minus sign on the backwards step, La(x̂, x̂).

Including the normalisation factors from (3.8) we therefore have the propagator for this

three-step path

Ku(x, x̂) =
(P +Q)1/2(P +R)

(2π~)3/2(iq)1/2r

∫ ∞
−∞

dx

∫ ∞
−∞

dx̂ eiSu[xn,m]/~ . (3.43)

This is easily calculated using Kp which we have already found, and another Gaussian

integral, and yields

Ku(x, x̂) =

(
P +Q

2πi~q

)1/2

exp

[
i

~

(
−P −Q

2q
(x2 + x̂2)− P +Q

q
xx̂

)]
, (3.44a)

=

(
P +Q

2πi~q

)1/2

exp

(
i

~
Lb(x, x̂)

)
= Kb(x, x̂; 1) . (3.44b)

So we regain exactly the one step propagator from (3.8). Remarkably we again achieve

Lagrangian closure, but now on the quantum level. Recall that classically Lagrangian

closure held only on the equations of motion: here we have left the equations of motion

behind, and yet this key result still holds.
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Time Loops

We can also consider the possibility of a loop in the discrete variables, illustrated in

�gure 3.3(i). We imagine some unspeci�ed incoming and outgoing actions Sin(xa, x1)

and Sout(x5, xb), a simple loop in discrete steps, and �ve integration variables x1, . . . , x5.

Note that we assign two integration variables x1 and x5 to the same vertex, as it is visited

twice by the path: the following calculation justi�es this choice.

x1

x5

x2

x3x4

Lb(x1, x2)

La(x2, x3)−La(x5, x4)

−Lb(x4, x3)

Sin(xa, x1)

Sout(x5, xb)

(i)

x1

Sin(xa, x1)

Sout(x1, xb)

(ii)

Figure 3.3: (i) shows the loop in discrete variables. (ii) is what remains after collapse of

the loop.

Consider the action for the loop,

Sloop = Lb(x1, x2) + La(x2, x3)− Lb(x4, x3)− La(x5, x4) , (3.45)

noting the orientations on the Lagrangians (3.1) that correspond to backwards time-

steps. With normalising factors from (3.8), (3.36) (including complex conjugates for the

backwards steps), the propagator is then

Kloop(xa, xb) =
P +Q

2π~q
P +R

2π~r

∫
dx1 . . .

∫
dx5 exp

{
i

~
(
Sin + Sloop + Sout

)}
. (3.46)

The x2 and x4 integrals are evaluated as in (3.39a) yielding,

Kloop(xa, xb) =
(P +Q)(P +R)

2π~(P − qr)(q + r)

∫∫∫
dx1 dx3 dx5

× exp

{
i

~

[
Sin(xa, x1) +

(P +Q)(P +R)

(P − qr)(q + r)
(x1 − x5)x3

− 1

2

(
P − qr
q + r

− P (q + r)

P − qr

)
(x2

1 − x2
5) + Sout(x5, xb)

]}
. (3.47)
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Critically, the quadratic term in x3 has disappeared, and so the integral over x3 produces

a Dirac delta function, δ(x1 − x5). Combined with the integral over x5 this forces x5 = x1

(as expected) and we �nally conclude,

Kloop(xa, xb) =

∫
dx1 exp

[
i

~

(
Sin(xa, x1) + Sout(x1, xb)

)]
. (3.48)

So, the path integral over the loop action and the normalising factors have cancelled

out. Diagrammatically, this is equivalent to the disappearance of the loop, shown in

�gure 3.3(ii). Loops in the discrete variables therefore �close� and do not e�ect the overall

propagator.

The sum of these results leads to the proposition:

Proposition 1 For the special choice of Lagrangians (3.1), (3.35) the propagator KΓ along

the time path Γ (3.38) is independent of the choice of Γ, depending only on the end points.

Proof

Equations (3.41), (3.44) and (3.48) together show that the propagator is unchanged under

elementary deformations of the curve Γ. Since we have a simple topology, a curve Γ1 can

be deformed into any other curve Γ2 (with the same endpoints) by a series of elementary

deformations. The proposition follows. 2

This proposition amounts to a quantum analogue for the classical closure condition

on the Lagrangians. In the classical case, the action is invariant under variations of the

curve Γ, on the equations of motion. In the quantum regime, the equivalent condition is

invariance of the propagator under changes in Γ. This quantum Lagrangian closure holds

despite the redundancy of the equations of motion in the quantum regime.

The multi-time propagator

In proposition 1 we established the independence of propagator KΓ (3.38) from the time

path Γ. This now allows us to calculate the general propagator for M steps in the hat

direction and N steps in the bar direction. We denote such a propagator from position xa

to xb by KM,N (xa, xb). As a consequence of the path independence, it is then clear that

we can calculate this as

KM,N (xa, xb) =

∫
dx KM,0(xa, x)K0,N (x, xb) . (3.49)
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In other words, we can make all the hat steps �rst, followed by all the bar steps.

Taking the discrete propagator in one time direction from (3.22), we can calculate the

two-time propagator (3.49) via another Gaussian integral; but in fact the result follows

immediately from the group property of the propagator, using its shared form with the

continuous time case. So,

KM,N (xa, xb) =

( √
P

πi~ sin(µM + ηN)

)1/2

× exp

[
i
√
P

~ sin(µM + ηN)

(
(x2
a + x2

b) cos(µM + ηN)− 2xaxb

)]
. (3.50)

As in the one-time case (3.22), this has a clear relation to the continuous time propagator

for the discrete harmonic oscillator. As we noted classically, in a continuum limit these

commuting discrete �ows will degenerate to a single continuous-time �ow - inevitably given

the single, shared invariant. To study commuting �ows at the continuous level will require

a model with more degrees of freedom.

3.1.4 Uniqueness

For the special choice of Lagrangians (3.1), (3.35) the propagator KΓ is independent of

the path in the time variables, Γ (proposition 1). This is a special property of the choice

of Lagrangians that does not hold in general. As in the classical case of section 2.2.3, we

consider the generalised, quadratic, oscillator Lagrangians (2.67),

La = α
(
− xx− (a− a0)x2 − a0x

2
)
, (3.51a)

Lb = β
(
− xx̂− (b− b0)x2 − b0x̂2

)
. (3.51b)

We view the time-path independence of the propagator as the quantum analogue of the

classical closure condition on the Lagrangians, and seek conditions on the Lagrangians

(3.51) such that the propagator exhibits path independence.

We de�ne propagators around two corners of a square as in equations (3.39a) and (3.40)

(see �gure 3.1),

Ky(x, x̂) = Ny

∫ ∞
−∞

dx̂ exp

{
i

~

(
Lb(x, x̂) + La(x̂, x̂)

)}
, (3.52a)

Kp(x, x̂) = Np

∫ ∞
−∞

dx exp

{
i

~

(
La(x, x) + Lb(x, x̂)

)}
. (3.52b)
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Note that we have generalised the normalisation constants, Ny and Np, and that a and b

are free oscillator parameters. The analogue of closure is equality of these expressions,

Ky(x, x̂) = Kp(x, x̂) , (3.53)

up to a possible normalisation.

Calculating the propagators via a Gaussian integral yields

Ky(x, x̂) = Ny

(
π~

i(βb0 + α(a− a0))

)1/2

× exp

{
i

~

[(
β2

4(βb0 + α(a− a0))
− β(b− b0)

)
x2

+

(
α2

4(βb0 + α(a− a0))
− αa0

)
x̂2 +

αβ

2(βb0 + α(a− a0))
xx̂

]}
, (3.54a)

Kp(x, x̂) = Np

(
π~

i(αa0 + β(b− b0))

)1/2

× exp

{
i

~

[(
α2

4(αa0 + β(b− b0))
− α(a− a0)

)
x2

+

(
β2

4(αa0 + β(b− b0))
− βb0

)
x̂2 +

αβ

2(αa0 + β(b− b0))
xx̂

]}
. (3.54b)

By comparing the coe�cients of x2, x̂2 and xx̂ in the exponent, we derive conditions for

time-path independence on the coe�cients,

β2

4(βb0 + α(a− a0))
− β(b− b0) =

α2

4(αa0 + β(b− b0))
− α(a− a0) , (3.55a)

α2

4(βb0 + α(a− a0))
− αa0 =

β2

4(αa0 + β(b− b0))
− βb0 , (3.55b)

αβ

2(βb0 + α(a− a0))
=

αβ

2(αa0 + β(b− b0))
. (3.55c)

Note that an immediate consequence of (3.55c) is that the multiplicative factors in (3.54a)

and (3.54b) are the same: we can allow Ny = Np. Analysis of the three conditions (3.55)

leads to the necessary and su�cient conditions on the coe�cients:

a0 =
1

2
a+

f

2α
, b0 =

1

2
b+

f

2β
, (3.56a)

α =
γ√
a2 − 1

, β =
γ√
b2 − 1

. (3.56b)

Here, f must be independent of the oscillator parameters a, b, and γ is an overall multiplier.
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Now, these are the same conditions (2.68) that arose in the classical case by demanding

that the Lagrangians should obey the classical closure condition. As in that case, the

constant f makes no contribution and we ignore it. The general Lagrangians (3.51) are

therefore restricted to a symmetric form, with a speci�ed overall constant given by the

oscillator parameters a, b,

La =
γ√
a2 − 1

(
− xx− 1

2a(x2 + x2)
)
, (3.57a)

Lb =
γ√
b2 − 1

(
− xx̂− 1

2b(x
2 + x̂2)

)
. (3.57b)

Note that taking a = (P−R)/(P+R), b = (P−Q)/(P+Q) leads exactly to the conditions

of (2.68) and the Lagrangians (3.1) and (3.35).

In conclusion,

Proposition 2 For given oscillator parameters a and b, the Lagrangians (3.57) are the

unique quadratic Lagrangians, up to constants γ and f (3.56), such that the multi-time

propagator KΓ is independent of the time path Γ.

In other words, demanding time-path independence of the propagator is the natural

quantum analogue of the closure relation on the Lagrangian.

We note that a general problem in the theory of path integrals is how to choose the

correct Lagrangian. For example, in the case of a Newtonian system with a vector potential,

the result of the path integral is sensitive to the choice of discretisation for the Lagrangian

[47]. Here, for the Lagrangian one-form, we now have a more de�nite choice where the

discretisation is precisely speci�ed in order to preserve the time-path independence.

3.1.5 Quantum Variational Principle: One dimension

Consider a quantum mechanical evolution from an initial time (0, 0) to a new time (M,N),

along a time-path Γ (shown in �gure 2.6). We associate an action to the path, SΓ (3.37),

and consider the propagator for the evolution KΓ(xa;xb) de�ned in (3.38). We have shown

that, in the special case of quadratic Lagrangian one-forms (3.57), the propagator KΓ is

independent of the path Γ (it depends only on the endpoints) but that this is not true in

general. For a generic Lagrangian, KΓ will depend on the time-path chosen, as shown in

section 3.1.4.
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Classically, a Lagrangian one-form de�nes a system as the critical point in a variational

principle over both the dependent and independent variables. That is, the one-form system

is a critical point with respect to variations of the time-path. This not only yields all the

compatible equations of motion for the system (as in �gure 2.7) but also selects certain

�permissible� Lagrangians which obey a closure relation (2.66). This results in a system of

extended Euler-Lagrange equations where the solution is not only the equations of motion,

but also in some sense the Lagrangian itself.

m

n

(a)

(b)

(c)

(0, 0)

(M,N)

Figure 3.4: Three possible paths in the time-variables. Path (a) is a direct path. Path (b)

extends for some distance in the m direction before returning. Path (c) includes a loop in

the time variables.

In the quantum case, consider the dependence of the propagator on the discrete time-

path Γ between �xed initial and �nal times. In general, there are an in�nite number of

possible time paths from (0, 0) to (M,N), including shortest time-paths as well as those

with long diversions, or loops, as illustrated in �gure 3.4. For a generic Lagrangian, as we

vary the time path, each Γ yields a di�erent propagator (3.38) viewed as a functional of

the path. In the special case of the Lagrangian one-form (3.57), however, the propagator

KΓ is independent of the path taken through the time variables, and so remains unchanged

across the variation of the time-path Γ. This path independence property is the natural

quantum analogue of the Lagrangian closure condition (2.66).
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We might then speculate about the quantum analogue of the one-form variational

principle. Let us view the propagator KΓ as a functional of not only the path x(n) and

the time-path Γ, but also of the Lagrangian. The Lagrangian one-form (3.57) can then be

thought of as representing a critical point (in a properly chosen function space of Lagrange

functions) for the path-dependent propagator, with regard to variations of the time-path.

That is, it is uniquely the choice of Lagrangian such that the propagator remains �xed over

variations of Γ. Suppose that the time-path Γ can be varied in such a way that the critical

point analysis selects the Lagrangian one-form from the space of possible Lagrangians.

This was the point of view put forward in [63] in the classical case. This principle could

perhaps be represented in a path integral by a �sum over all time-paths,� by posing a new

quantum object of the type �rst proposed in the continuous time-case in [72], (see (1.86))

K
(
xb, (M,N);xa, (0, 0)

)
=
∑
Γ∈P

NΓ KΓ

(
xb, (M,N);xa, (0, 0)

)
. (3.58)

Here, P the set of all possible time-paths from (0, 0) to (M,N), and NΓ some normalisation

factor to be speci�ed. Although this formula is currently meaningless (its meaning is yet

to be de�ned) we include (3.58) as an illustration of the concept. As a functional of

the Lagrangian such an object would have a singular point for those Lagrangians with

the quantum closure condition, where the path-independent propagators KΓ would all

contribute the same amount. However, controlling and regularising the singular behaviour

of such an object is presently beyond our understanding. We note, however, that there are

countably many time-paths in the set P, so that some reasonable renormalisation of the

sum over time paths may be achievable.

In the continuous case, a �sum over time-paths� might require some parametrisation of

the (multi-)time in terms of a parameter s, so that t(s). This might bear some relation to

the reparametrisation invariant path integrals of Rovelli [94, 95] discussed in section 1.4.

For a single time variable, Rovelli implemented a parametrisation, treating the time as a

dynamical variable and integrating over the possible parametrisations. These ideas may

help to extend the Lagrangian one-form into the continuous time, quantum case. However,

this would require a model with a non-trivial one-form structure in the continuum case;

one such possibility is discussed below.
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3.1.6 Quantisation of the P = 3 case

A natural extension to the ideas of section 3.1 is to apply them to the two-dimensional

evolution of the higher period staircase reduction, described in section 2.3. There are

again two commuting, discrete �ows, {x1, x2} → {x̂1, x̂2} and {x1, x2} → {x1, x2}, but

now with two position variables, and correspondingly two commuting invariants. The

discrete harmonic oscillator model of section 3.1 has the disadvantage that it does not

seem to retain the one-form structure in a continuous limit, due to degeneration of the

�ows; a higher order system could potentially avoid this pitfall and o�er a richer insight

into the continuous structures.

Beginning with the �hat� �ow generated by the Lagrangian (2.108a) (which obeys the

closure property)

L1(x, x̂) = −x1(x̂1 + x̂2)− x2x̂2 − 1
2s
(
x2

1 + x1x2 + x2
2 + x̂2

1 + x̂1x̂2 + x̂2
2

)
, (3.59)

we generate operator equations of motion

x̂1 = X1 −X2 − 1
2s(x1 − x2) , (3.60a)

x̂2 = X2 − 1
2s(x1 + 2x2) , (3.60b)

X̂1 = −sX1 + 1
2sX2 − (1− 3

4s
2)x1 , (3.60c)

X̂2 = −1
2sX1 − 1

2sX2 − (1− 3
4s

2)(x1 + x2) . (3.60d)

The system has equal time canonical commutation relations,

[xi,xj ] = [Xi,Xj ] = 0 , [xi,Xj ] = i~δij , (3.61)

and is essentially a pair of harmonic oscillators.

We wish to express this mapping by the action of a time evolution operator U1 (3.4),

but the appropriate form for such an operator is not immediately apparent. However, we

are inspired by the �cross terms� for such evolution operators in [74] (see equation (1.77))

and the three term time-evolution operator found in (3.5). We pose an ansatz for the

evolution operator,

U1 = exp
(
− i

~V (x)
)

exp
(
− i

~T (X)
)

exp
(
− i

~x1X2

)
exp

(
− i

~V (x)
)
, (3.62)

and working through a lengthy calculation leads eventually to the expressions for the
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potentials,

T (X) = 1
2(X2

1 + X2
2) , (3.63a)

V (x) = 1
2(1 + s)(x2

1 + x2
2) + 1

2sx1x2 , (3.63b)

V (x) = 1
2(2 + s)(x2

1 + x1x2) + 1
2(1 + s)x2

2 . (3.63c)

It is straightforward to verify that conjugation by U1 generates the operator equations of

motion (3.60).

In the same way as the one-dimensional case, it is then possible to calculate the one

time-step propagator by using the joint position eigenstates,

K1(x1, x2,m; x̂1, x̂2,m+ 1) = 〈x̂1, x̂2|U1|x1, x2〉 . (3.64)

Noting in particular that the commutation relations permit the evaluation with position

and momentum eigenstates of the cross term,

〈X1, X2|e−ix1X2/~|x1, x2〉 = e−ix1X2/~〈X1, X2|x1, x2〉 , (3.65)

we �nd the propagator in the same way as (3.8)

〈x̂|U1|x〉 =
1

2πi~
exp

(
i

~
L1(x, x̂)

)
. (3.66)

As expected, we recover the exact form of the Lagrangian from (3.59).

More work is needed to delve into this system further. In particular, we expect a link

between the time evolution operator U1 and the known invariants of the model (2.111). The

commuting �ow should lead to a second time-evolution operator U2, such that [U1, U2] = 0,

we would hope then to see how the interplay of the commuting invariants relates to these

commuting time �ows. Perhaps the most important avenue to pursue is the continuum

limit for this model: how do the commuting discrete �ows and one-form structure go over

into a continuous one-form model that can be examined on the quantum level?

3.2 Quantisation of the Lattice Equation

In section 2.1 we introduced the linearised lattice KdV equation (2.8). Having considered

the quantisation of its �nite dimensional reduction, we now turn to quantisation of the

lattice equation itself. Quantisation of lattice models has been previously considered from
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a canonical (quantum inverse scattering method) perspective [13, 33, 118, 119], but here

we will consider a Lagrangian, path integral perspective.

We have the linear lattice equation,

(pi + pj)(ui − uj) = (pi − pj)(u− uij) , (3.67)

where pi is the lattice parameter in the i direction, and ui indicates a shift of the �eld

variable u in the i direction. Classically, we suppose this equation holds on all plaquettes

in the multi-dimensional lattice at the same time, so that there are multiple consistent

equations holding on the same lattice variable u. The equation is generated by the oriented

Lagrangian (2.24)

Lij(u, ui, uj ; pi, pj) = u(ui − uj)−
1

2
sij(ui − uj)2 , where sij =

pi + pj
pi − pj

. (3.68)

The Lagrangian itself is a critical point of the classical variational principle over surfaces:

it obeys the closure property on the classical equations of motion, such that the surface

can be allowed to freely vary under local moves. Indeed, classically it is also fairly unique,

as seen in section 2.1.3.

How might we proceed to quantise such a system? A canonical approach is to transform

(3.67) into an operator equation of motion, but we are concerned here with a Lagrangian

approach. The clear analogy is to quantum �eld theory: we have a discretised space-time

and a Lagrangian in two dimensions over �eld variables u(n) indexed by a discrete vector

n. Field theoretic equations such as the Klein-Gordon equation can be quantised using two

plane-wave factors to form creation and annihilation operators [107, 114], but the linear

lattice equation (3.68) is an essentially �rst-order equation with only a single plane wave

solution (2.14).

We imagine some space-time boundary ∂σ enclosing a surface σ made up of elementary

plaquettes σij (such as in �gure 2.2). We can then construct an action by summing the

directed Lagrangians over the surface, as in the classical case,

Sσ =
∑
σij∈σ

Lij(u) , (3.69)

where we de�ne the shorthand Lij(u) := L(u, ui, uj ; pi, pj). We then consider the
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propagator over the surface σ

Kσ(∂σ) =

∫
[Dun,m]σ e

iSσ [un,m]/~ , (3.70a)

= Nσ

∫ ∏
n∈σ

dµ(u(n)) eiSσ [u(n)]/~ . (3.70b)

The integration is over all interior �eld variables, with some measure dµ(u(n)). The

propagator depends, in principle, on the surface σ and is a function of the �eld variables

on the boundary ∂σ, which form some boundary value problem (see a similar point made

in [95]). We will see as we go on that this object is subject to infra-red divergences, as

particular surface con�gurations produce integrations yielding volume factors. Since our

main statements involve only the combinatorics of the exponential factors, involving the

action and arising through Gaussian integrals, we tacitly assume that the propagator Kσ

can be renormalised by an appropriate choice of normalisation factor Nσ.

Kσ(∂σ) describes a propagator in the sense of a surface gluing procedure. Two

propagators Kσ1 and Kσ2 are combined to form a new propagator by multiplication

and integration over all interior variables on the shared boundary ∂σ1 ∩ ∂σ2, leaving a

new propagator Kσ1∪σ2 dependent only on �eld variables that lie on the new boundary,

∂(σ1 ∪ σ2). This surface gluing is illustrated in �gure 3.5, where white circles indicate

the interior �eld variables on the shared boundary which are integrated over. The black

circles show the two �eld variables that lie both on the shared boundary but also on the

boundary of the new surface σ1∪σ2, and hence are not integration variables. The product

∗ in (3.71a) indicates this procedure. Thus, the one-step surface gluing can be written

symbolically as,

Kσ1∪σ2 =

∫
∂σ1∩∂σ2

Kσ1 ∗Kσ2 , (3.71a)

:= N∂σ1∩∂σ2

∫ ∏
n∈∂σ1∩∂σ2

du(n)

 Kσ1(∂σ1).Kσ2(∂σ2) , (3.71b)

where the integral is over appropriately chosen coordinates of the joined boundary.

Iterating the gluing formula is tantamount to setting up a �surface-slicing� procedure for

the path integral.

3.2.1 Motivation: The pop-up cube

The classical variational principle for two-forms includes a variation of the surface σ,

so that the Lagrangian and equations of motion sit at a critical point. The action is
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σ1

σ2

Figure 3.5: The gluing of surface σ1 to σ2, forming a new surface σ1 ∪ σ2. White circles

indicate interior, integration variables in the gluing procedure, whilst the black circles

remain boundary variables.

stationary under variation of not only the dependent variables u, but also the variation of

the surface itself. As we move to the quantum regime, we naturally ask: what happens to

the propagator Kσ(∂σ) (3.70) under variation of the surface σ? In particular, we will be

interested in variation of the surface under local moves, that is changes in the surface on

the level of a single cube in the multi-dimensional lattice, such that any variation of the

surface can be achieved through a series of local moves. We consider the e�ect of a simple

variation of the surface: a local move from a �at surface to a popped-up cube, see �gure

3.6.

(a)

m n

u2

u

u12

u1
L12(u)

(b)

u2

u12

u1

u23

u3

u13
L12(u3)

L31(u2) L23(u1)

Figure 3.6: A �at surface in (a), compared to a pop-up cube shown in (b).

The following conventions are used for such local moves, as in �gure 3.6. Black circles

indicate variables on the boundary of the surface (in the move) that are not integrated over

- the contribution to the overall propagator depends on these �eld variables. White circles

indicated interior variables on the surface that are integrated over to give the contribution
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to the propagator from that surface con�guration. As in �gure 2.3, shaded triangles

indicate the three variables on which each oriented Lagrangian depends. Lagrangians

are oriented in local moves according to the classical closure relation (2.26), such that

when two sides of a local move are compared, the signs on the Lagrangians must match

the signs on the corresponding classical closure. For example, the closure relation (2.26) is

rearranged for the local move of �gure 3.6 as

L12(u) = L23(u1) + L31(u2) + L12(u3)− L23(u)− L31(u) , (3.72)

which will be used below. The closure relation can be rearranged as appropriate for the

local move under consideration.

The contribution to the action given by surface (a) is therefore a single Lagrangian,

L12(u). On surface (b) we have �ve plaquettes, with a contribution to the action given by

the sum of oriented Lagrangians

Spop[un,m] = L23(u1) + L31(u2) + L12(u3)− L23(u)− L31(u) . (3.73)

Note that the orientations lead to the negative contributions, shown in (3.72). In the

path integral perspective (3.70), to calculate the propagator we must also integrate over

the interior, �popped-up�, variables u3, u23, u31 and u123, shown by white circles in �gure

3.6(b). The boundary variables on which the contributions depend are u, u1, u2 and u12.

So altogether the contribution from the pop-up cube to the propagator is

Kpop = Npop

∫∫∫∫
du3 du31 du23 du123 exp

(
i

~
Spop[un,m]

)
. (3.74)

Npop is a normalising constant. The action Spop[un,m] does not depend on u123, so the

integral
∫

du123 produces a volume factor V .

Equation (3.74) can then be written in a matrix form,

Kpop = VNpop

∫
d3u exp

i

~

(
1

2
uTAu + Btu

)
× exp

{
i

2~
[
s31(u2

1 − u2
12) + s23(u2

2 − u2
12) + (u+ u12)(u1 − u2)

]}
, (3.75a)

where

uT = (u3, u31, u23) , (3.75b)

A =


s23 + s31 1 −1

1 −(s12 + s23) s12

−1 s12 −(s12 + s31)

 , (3.75c)

BT =
(
− s31u1 − s23u2, −u1 + s23u12, u2 + s31u12

)
. (3.75d)
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In principle, equation (3.75a) could be solved as a set of three Gaussian integrals, but the

matrix A is singular. We calculate

detA = (s23 + s31)(s12s23 + s23s31 + s31s12 + 1) , (3.76)

and recall the identity for the parameters sij (3.68)

s12s23 + s23s31 + s31s12 + 1 = 0 , (3.77)

such that detA = 0. We therefore resolve (3.75a) by carrying out only two Gaussian

integrals. The third integration variable must leave an exponent that is at most linear.

Performing the Gaussian integrations with respect to u3 and u31, we therefore have

Kpop = VNpop
2π~
s23

∫
du23 exp

i

~
(
u(u1 − u2)− 1

2s12(u1 − u2)2
)
, (3.78a)

= V 2Npop
2π~
s23

exp

(
i

~
L12(u, u1, u2)

)
, (3.78b)

where in the �rst equality we note that all terms containing u23 have vanished entirely.

This is now exactly the exponent expected from the diagram (a) in �gure 3.6! So, whilst

it is clear that there are non-trivial issues to resolve with respect to volume factors and

normalisation factors in (3.78),1 in the critical issue of the contribution to the action in the

exponent between diagrams 3.6(a) and 3.6(b), the two pictures make the same contribution.

In other words, there is some sense in which the action is unchanged by the local move

that transforms the surface σ by the pop-up cube. Inspired by this discovery, we consider

a more general situation.

3.2.2 Surface Independence of the Propagator

For classical lattice two-forms, Lobb and Nijho� [63] (also [19]) identi�ed three elementary

con�gurations of the surface in three dimensions that yield three elementary Euler-

Lagrange equations (see �gure 2.3). The Euler-Lagrange equations for any con�guration

of the lattice can be derived from these three elementary con�gurations (2.27).

In the quantum case we no longer have Euler-Lagrange equations, but alterations to the

propagator (3.70) under deformations of the surface σ. Deformations can be considered to

take place one cube at a time in a series of local moves. The three elementary con�gurations

1The asymmetrical factor of s23 in the pre-factor is an indicator that all is not as it should be, and the

multiple in�nities due to volume factors are an obvious concern.
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of the classical case yield three elementary moves that form the basis for deformations of

the surface σ. Combined with the pop-up cube of �gure 3.6 these give a full set of four

elementary moves on the surface such that any local move on σ can then be recreated by

a series of elementary moves. The three additional elementary moves are shown in �gures

3.7, 3.8 and 3.9.

u

uj ui

uk

(i)

uijk

ujk
uik

uij

uj ui

uk

(ii)

Figure 3.7: Elementary move (a). We pass between (i) and (ii); white circles indicate

variables to be integrated over in the move.

The �rst move is shown in �gure 3.7. We denote the two sides of the elementary move

with the subscripts + and −, so that �gure 3.7(i) is denoted by the subscript a+ and �gure

3.7(ii) by a−. The action for �gure 3.7(i) is given by

Sa+ = Lij(u) + Ljk(u) + Lki(u) , (3.79a)

= −1
2sij(ui − uj)

2 − 1
2sjk(uj − uk)

2 − 1
2ski(uk − ui)

2 . (3.79b)

As described in (3.70) we integrate over interior �eld variables on the surface, marked by

white circles on the �gure, so that the contribution to the propagator (3.70) is given by

the integral over u,

Ka+ =Na+

∫
du exp

[
iSa+/~

]
, (3.80a)

=VNa+ exp

{
−i
2~

(
sij(ui − uj)2 + sjk(uj − uk)2 + ski(uk − ui)2

)}
. (3.80b)

Na+ indicates a normalisation factor. We note that all the u terms in the exponent Sa+

cancel out, so the integral reduces to a volume factor, V .

In contrast, the action for �gure 3.7 (ii) is given by

Sa− = Lij(uk) + Ljk(ui) + Lki(uj) . (3.81)
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The contribution to the propagator is then

Ka− =Na−

∫∫∫∫
duijdujkdukiduijk exp

[
iSa−/~

]
, (3.82a)

=VNa−

∫
d3u exp

i

~

(
−1

2
uTAu + Btu

)
, (3.82b)

where the integral over uijk has produced a volume factor, and

uT = (uij , ujk, uki) , (3.83a)

A =


sjk + ski −ski −sjk
−ski ski + sij −sij

−sjk −sij sij + sjk)

 , (3.83b)

BT = (ui − uj , uj − uk, uk − ui) . (3.83c)

Critically, detA = 0, so again this is a singular integral. Carrying out two integrals in

turn, so that the third integration produces a volume factor, we therefore have

Ka− = V 2Na−2π~ exp

{
−i
2~

(
sij(ui − uj)2 + sjk(uj − uk)2 + ski(uk − ui)2

)}
. (3.84)

Thus, the exponents in Ka+ and Ka− (3.80), (3.84) are the same. With the correct choice

of normalisations Na+ and Na−, the two con�gurations make identical contributions to

the propagator.

u

uj ui

uk

uki

uij

(i)

u

uj

uk

uki

uij

ujk

(ii)

Figure 3.8: Elementary move (b). White circles indicate integration variables.

Considering elementary move (b), shown in �gure 3.8, the action for �gure 3.8(i) is

given by

Sb+ = Lij(u) + Lki(u)− Ljk(ui) . (3.85)
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The contribution to the propagator is

Kb+ =Nb+

∫
dui exp

[
iSb+/~

]
, (3.86a)

=Nb+

(
2π~

i(sij + ski)

)1/2

exp

{
i

~(sij + ski)

[
1
2(uj − uk)2 − 1

2sijski(uij − uki)
2

− (sijuj + skiuk)(uij − uki)
]
− i

~
Ljk(u)

}
. (3.86b)

On the other side of the elementary move, for �gure 3.8(ii) we have

Sb− = Lij(uk) + Lki(uj)− Ljk(u) , (3.87)

with contribution to the propagator

Kb− =Nb−

∫
dujk exp

[
iSb−/~

]
, (3.88a)

=Nb−

(
2π~

i(sij + ski)

)1/2

exp

{
i

~(sij + ski)

[
1
2(uj − uk)2

− 1
2sijski(uij − uki)

2 − (sijuj + skiuk)(uij − uki)
]}

× exp

[
− i

~
Ljk(u)

]
, (3.88b)

=Kb+ , (3.88c)

once we allow Nb+ = Nb−. So here the contributions to the propagator are easily seen to

be identical, without any volume factor concerns.

uj

uk

uki

uij

ujk

uijk

(i)

u

uj ui

uk

uki

uij

(ii)

Figure 3.9: Lattice elementary move (c).

Lastly, consider elementary move (c) shown in �gure 3.9. This move has a clear relation

to �gure 3.8: the element Ljk(u) has been shifted from one diagram to the other, inducing
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also a slight change in the integration variables. 3.9(i) is easily calculated from 3.8(ii):

Sc+ = Lij(uk) + Lki(uj) , (3.89)

Kc+ =Nc+

∫∫
dujkduijk exp

[
iSc+/~

]
, (3.90a)

= VNc+

(
2π~

i(sij + ski)

)1/2

exp

{
i

~(sij + ski)

[
1
2(uj − uk)2

− 1
2sijski(uij − uki)

2 − (sijuj + skiuk)(uij − uki)
]}

. (3.90b)

Similarly, the other side of the move 3.9(ii) is derived from 3.8(i) with an additional integral

over u. The action is

Sc− = Lij(u) + Ljk(u) + Lki(u)− Ljk(ui) , (3.91)

and the contribution to the propagator

Kc− =Nc−

∫∫
du dui exp

[
iSc−/~

]
, (3.92a)

= VNc−

(
2π~

i(sij + ski)

)1/2

exp

{
i

~(sij + ski)

[
1
2(uj − uk)2

− 1
2sijski(uij − uki)

2 − (sijuj + skiuk)(uij − uki)
]}

, (3.92b)

=Kc+ . (3.92c)

We have once more allowed the normalisations to be the same, Nc+ = Nc−, yielding

identical contributions to the propagator.

These results lead to the following proposition:

Proposition 3 For the Lagrangian two-form (3.68), the surface propagator Kσ(∂σ)

(3.70), correctly renormalised, is independent of the surface con�guration σ, depending

only on the boundary ∂σ.

Proof

The combination of elementary moves above (3.80), (3.84), (3.88), (3.92), combined with

the pop-up of �gure 3.6, allows us to deform any surface σ to another topologically

equivalent surface σ′ by a series of elementary moves, without changing the exponent in
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the propagator. This free deformation gives us independence from the surface. 2

The propagator (3.70) therefore depends only on the surface boundary ∂σ, and the

�eld variables speci�ed there - i.e. it is a function only of the boundary value problem.

Note that since di�erent topologies are speci�ed by changes of the boundary, we have not

considered these explicitly. This represents a quantum analogy to the Lagrangian closure

property of the classical case. As in the classical case we have invariance of the action

under deformations of the surface σ, so in the quantum case this carries over to invariance

of the propagator under such deformations.

3.2.3 Uniqueness of the Surface Independent Lagrangian

The Lagrangian two-form (3.68) produces a propagator (3.70) which is independent of

variations of the surface σ (proposition 3). In fact, it turns out that (3.68) is the unique,

quadratic Lagrangian two-form such that this holds. Consider a general, 3-point, quadratic

Lagrangian, imposing antisymmetry under interchange of i and j (required for the form

structure)

Lij(u, ui, uj) = 1
2aiju

2 + 1
2biju

2
i − 1

2bjiu
2
j + cijuui − cjiuuj + dijuiuj , (3.93)

(compare (2.33). On the coe�cients aij , bij , cij , dij subscripts i, j indicate dependence

on the lattice parameters pi, pj , with the ordering of subscripts important (e.g. aij :=

a(pi, pj) 6= a(pj , pi)). The two-form structure requires that aij and dij are anti-symmetric

under interchange of the parameters, aji = −aij , dji = −dij . Our interest is in the subset

of Lagrangians that display the surface independence property for the propagator. We

therefore look for conditions on the Lagrangian such that elementary moves will leave the

contribution to the action (i.e. the exponent in the propagator) unchanged. We assume

that external factors and even volume factors can be resolved by renormalisation, so that

we only consider that part of the propagator in the exponent.

Consider the propagator for the general, quadratic Lagrangian (3.93) under elementary

move (a), shown in �gure 3.7. The contributions to the propagator, Ka+ and Ka−, are

calculated according to (3.80a) and (3.82a).

The integrations involved in these calculations fall into three types: they may appear

in the exponent as quadratic, linear, or zero - leading to Gaussian, Dirac delta function,
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or volume factor integrals, respectively.∫
dx e−iax

2
=

√
π

ia
,

∫
dx eiax = δ(a) ,

∫
dx = V . (3.94)

However, a Dirac delta function would force linear dependence of �eld variables at di�erent

lattice points. This is an undesirable outcome and so we exclude this possibility: we will

apply conditions to prevent such integrals arising.

In con�guration (i) (�gure 3.7(i)) the contribution to the propagator is

Ka+ =Na+

∫
du exp

{
i

~

[
1
2(aij + ajk + aki)u

2

+
(

(cij − cik)ui + (cjk − cji)uj + (cki − ckj)uk
)
u

+ 1
2(bij − bik)u2

i + cyclic+ dijuiuj + cyclic
]}

. (3.95)

The integration takes place over u, so that the cases for this integral divide on the totally

antisymmetric parameter,

aijk := aij + ajk + aki . (3.96)

When aijk 6= 0, (3.95) is resolved by a Gaussian integral, such that

Ka+,G =Na+

(
2πi~
aijk

)1/2

exp

{
i

~

[
1

2

(
bij − bik −

1

aijk
(cij − cik)2

)
u2
i + cyclic

+
(
dij −

1

aijk
(cij − cik)(cjk − cji)

)
uiuj + cyclic

]}
. (3.97)

The subscript G indicates that this is the Gaussian case. The alternative case is that

aijk = 0. In this case we require the integral to reduce to a volume factor - terms linear

in u in the exponent of (3.95) must disappear - to prevent a Dirac delta function in the

propagator. This requires the conditions

aijk = 0 , cij − cik = 0 ,

⇒ aij = ai − aj , cij = ci .
(3.98)

That is, aij must separate into pi and pj dependent parts, and cij must be a function of

pi only. Applying these conditions to (3.95) yields the contribution to the propagator

Ka+,V = VNa+ exp

{
i

~

[
1

2
(bij − bik)u2

i + cyclic+ dijuiuj + cyclic

]}
, (3.99)

where the subscript V indicates that this is the volume factor case. So for con�guration

(i), the propagator contribution Ka divides into two cases: (3.97) when aijk 6= 0 and (3.99)

when aijk = 0.
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Notice that under the conditions (3.98) for the volume factor case (when aijk = 0) we

can write the Lagrangian as

Lij(u, ui, uj) =
(

1
2aiu

2 + ciuui
)
−
(

1
2aju

2 + cjuuj
)

+1
2(biju

2
i − bjiu2

j ) + dijuiuj ,

= Ai(u, ui)−Aj(u, uj) + Cij(ui, uj) , (3.100)

with Cij(ui, uj) antisymmetric under interchange of i and j. This is the general, quadratic,

lattice Lagrangian two-form (2.28), (2.33) as found in [63].

Conversely, for con�guration (ii) (�gure 3.7(ii), equation (3.82a)) we have the

propagator contribution

Ka− = VNa−

∫∫∫
d3u exp

{
i

~

(
1

2
uTAu + Btu +

1

2
(ajku

2
i + cyclic)

)}
, (3.101a)

where

uT = (uij , ujk, uki) , (3.101b)

A =


bjk − bik dki djk

dki bki − bji dij

djk dij bij − bkj

 , (3.101c)

BT = (cjkui − cikuj , perm (ijk), perm (kji)) . (3.101d)

This also separates into two distinct cases, resting on the critical point of detA. For

detA 6= 0, the propagator contribution (3.101a) can be evaluated using the matrix form of

Gaussian integration,

Ka−,G = VNa−

√
(2πi~)3

detA
exp

{
i

~
(
−1

2B
TA−1B +

(
1
2ajku

2
i + cyclic

))}
. (3.102)

This yields a very complicated expression! Alternatively, when detA = 0, there are no

longer three Gaussian integrations in (3.101a), and one of them must therefore reduce to

a volume factor. detA = 0 if

bij = −dij , (3.103a)

so that bij is also anti-symmetric. Carrying out the integrations of (3.101a) in turn, we

also �nd the condition for preventing a delta function integral,

cij − cji = 0 ∀i, j . (3.103b)
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I.e. cij must be symmetric. The detA = 0 case then yields the propagator contribution

Ka−,V = V 2 2π~
(1− Λijk)1/2

Na− exp

{
i

~

[
1
2ajku

2
i + cyclic

− 1

2

dij
1− Λijk

(cjkui − ckiuj)2 + cyclic

]}
, (3.104)

where we have introduced the totally symmetric parameter

Λijk := dijdjk + djkdki + dkidij + 1 . (3.105)

Con�guration (ii) therefore also yields two cases for Ka−: (3.102) when detA 6= 0 and

(3.104) when detA = 0.

We now compare the two con�gurations of the elementary move, and demand that the

exponents from each con�guration be the same, i.e. both Ka+ (3.95) and Ka− (3.101a)

make the same contribution to the propagator.

In the generic case (aijk 6= 0, detA 6= 0) we compare equation (3.97) with (3.102).

Comparing coe�cients of u2
i and uiuj in the exponent produces the functional equations

on the coe�cients of the Lagrangian,

bij − bik −
1

aijk
(cij − cik)2

= ajk +
1

detA

{(
d2
ij − (bki − bji)(bij − bkj)

)
c2
jk

+
(
d2
ki − (bjk − bik)(bki − bji)

)
c2
kj + 2

(
dijdki − djk(bki − bji)

)
cjkckj

}
, (3.106a)

dij −
1

aijk
(cij − cik)(cjk − cji)

=
1

detA

[(
(bki − bji)(bij − bkj)− d2

ij

)
cjkcik −

(
dijdjk − dki(bij − bkj)

)
cjkcki

+
(
djkdki − dij(bjk − bik)

)
ckickj −

(
dijdki − djk(bki − bji)

)
cikckj

]
, (3.106b)

along with cyclic permutations of these. It is not at all obvious that a solution to these

equations, under the constraints on aijk and detA, exists.

However, there is a solution to the problem that exists at the critical point of the

system, when aijk = 0 and detA = 0. Considering the propagator contributions for

these special cases (3.99) and (3.104), and comparing coe�cients for u2
i and uiuj in the
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exponents, we derive the conditions

bij − bik = ajk −
1

1− Λijk
(dij + dki)c

2
jk , (3.107a)

dij =
dij

1− Λijk
cjkcki . (3.107b)

Recall that we also have conditions preventing Dirac delta functions (3.98) and (3.103),

which together imply

cij = c , constant. (3.107c)

The conditions (3.107a) and (3.107b) reduce to

Λijk = 1− c2 , aij = 0 . (3.107d)

Finally, since the Lagrangian is de�ned only up to an overall multiple, we let c = 1 without

loss of generality, so that Λijk = 0. We therefore �nd the unique quadratic Lagrangian

satisfying the requirements,

Lij(u, ui, uj) = u(ui − uj)− 1
2dij(ui − uj)

2 , (3.108)

with the condition on dij that Λijk = 0. Comparing the de�nition of Λijk = 0 (3.105) with

the parameter identity on the sij (3.77), we see that this is precisely the condition

dij = sij . (3.109)

So the resulting Lagrangian (3.108) is uniquely the Lagrangian two-form (3.68). We already

know from section 3.2.2 that this Lagrangian also exhibits surface independence for the

other elementary moves.

We summarise this result in the proposition:

Proposition 4 We assume a valid renormalisation, and demand independence of �eld

variables (i.e. excluding delta function integrals). Then, provided that we discount the

generic case (3.106), the linear lattice Lagrangian two-form (3.68) is the unique quadratic

lattice Lagrangian yielding a surface independent propagator (3.70).

Proof

(3.108), with the restriction Λijk = 0 (3.105), is the unique Lagrangian exhibiting surface

independence for elementary move (a), and is identical to the Lagrangian (3.68). We also

have from proposition 3 that Lagrangian (3.68) has surface independence under all other
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elementary moves. 2

The principle of surface independence is therefore su�cient to determine the Lagrangian

uniquely: even more so than in the classical case (section 2.1.3).

3.2.4 Quantum Variational Principle: Two dimensions

This result suggests a quantum variational principle in analogy to the one dimensional case

of section 3.1.5. We consider the propagator over a discrete surface σ de�ned in (3.70),

Kσ(∂σ) = Nσ

∫ ∏
n∈σ

dµ(u(n)) eiSσ [u(n)]/~ . (3.110)

We have shown that, for the special choice of the Lagrangian two-form (3.68), the

propagator Kσ(∂σ) is independent of the surface σ. It depends only on the variables

sitting on the boundary, ∂σ. Additionally, this is a very unique choice of Lagrangian; for

a generic Lagrangian, Kσ(∂σ) will depend also on the geometry of the surface σ itself.

Recall that, classically, the Lagrangian two-form structure arises from a variational

principle over surfaces as in [63]. An extended set of Euler-Lagrange equations arise as

we vary not only the dependent �eld variables u(n), but also the surface σ. This restricts

the class of admissible Lagrangians to those obeying the closure property (2.26): it is only

for such Lagrangians and equations of motion that the classical action remains stationary

under variations of the surface.

As we move to the quantisation, we consider the variation over all possible surfaces σ

with a �xed boundary ∂σ, parallel to the argument in the one-form case. For a generic

Lagrangian, as we vary the surface σ the propagator Kσ(∂σ) (3.70) changes. However,

for the special �integrable� choice of Lagrangian two-form (3.68) the propagator Kσ(∂σ)

remains unchanged as we vary the surface. The integrable choice of Lagrangian therefore

represents a critical, indeed singular, point for some new quantum object in a space of

possible Lagrangian functions: a �sum over surfaces� of all possible surface dependent

propagators,

K(∂σ) =
∑
σ∈S

NσKσ(∂σ) , (3.111)

where S is the set of all surfaces with boundary ∂σ, and Nσ signi�es some normalisation

and regularisation. As in the one-form case, this formula does not yet have a meaning -
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but at this stage merely illustrates the concept. The key idea is that this sum over surfaces

somehow forces the integrable, two-form choice of Lagrangian through the dominance of

the singular point. As in the one-form case, how to control the singular behaviour, or write

a concise mathematical de�nition, of such an object is currently unknown. Nonetheless,

such an object may be the natural quantum analogue of the classical Lagrangian variational

principle for two-forms, and could perhaps form an ingredient for the quantisation of lattice

models that are integrable in the sense of multi-dimensional consistency.

The idea of a quantisation by a sum over surfaces is not a new one, see [92, 93], but these

are concerned with a sum over topologically inequivalent surfaces. By demanding a �xed

boundary, we restrict to surfaces that are topologically equivalent, and seek a Lagrangian

with the special property of allowing a resolution to the sum over surfaces. However, the

authors note in [93] that the contribution of a surface for their models depends only on its

topology: for the special case of the Lagrangian two-form we have the same result.

3.3 Summary

By quantising the linear models of chapter 2 we have begun to form a picture of

the quantum analogue to Lagrangian multiform structures. The mapping equations of

the discrete harmonic oscillator were reinterpreted as operator equations of motion for

canonical quantum mechanics, leading to a time evolution operator. Examination of the

propagator then showed that this is equivalent for these cases to the Lagrangian (path

integral) approach. The commuting discrete �ows of the classical model led to multiple

time evolutions in the quantum case. We discovered that the propagator for such multiple-

time evolutions is independent of the path taken through the time variables: that is, it

depends only on the endpoints of the path; this is a quantum analogue to the Lagrangian

closure condition. Remarkably, although the classical Lagrangian closure holds only on

the equations of motion, the quantum equivalent holds over the whole sum over histories

(i.e. despite the redundancy of the equations of motion in the quantum regime). Further,

we then found that in the case of quadratic Lagrangians, this is uniquely true for the

Lagrangian one-form structure of chapter 2.

We have begun to extend some of this work into the 2 dimensional case (paired

discrete harmonic oscillators), where the time evolution operator must be written with
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an interaction term exp(−ix1X2/~). There is more to consider in this case, in particular

how the time evolution operators of the commuting discrete �ows relate to the commuting

invariants of the model. The multiple invariants also makes this system a candidate for

investigating the behaviour of the Lagrangian one-form in a continuum limit.

To quantise the two-form case, we considered propagators over a surface within the

multi-dimensional lattice, where a path integral quantisation is enacted by integrating over

the interior �eld variables. Motivated by the discovery that �popping up� a cube onto a �at

surface does not change the propagator, we discovered that for the Lagrangian two-form of

chapter 2 the surface propagator is independent of the geometry of the surface: it depends

only on the boundary, and the �eld variables found there. This result directly corresponds

with the time-path independence of the one-form case, and is also a quantum analogy to

the Lagrangian closure property. Classically the Lagrangian two-form is closed only on the

equations of motion, but in the quantum case this closure holds within the path integral,

despite leaving the equations of motion behind. Further, we found that the Lagrangian

two-form for the linear lattice equations is precisely the unique quadratic three-point lattice

Lagrangian such that this holds, including specifying the necessary parameter.

These path- and surface-independence results lead us to propose a quantum multiform

variational principle: by integrating over all possible time paths, or all possible surfaces,

such an object could perhaps select exactly the integrable Lagrangian form structures.

Understanding, and taming, such an object is beyond the scope of this thesis.
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4
Generalised McMillan Maps: Commuting �ows

and r-matrix structure

In chapters 2 and 3, we extended the Lagrangian multiform structure in a new way to

discrete linear models, which yielded insights into the possible operation of such structures

in a quantum regime. The important and unresolved question is how to understand a

quantum Lagrangian multiform in the non-linear (integrable) case. This turns out to be

a complicated problem, which we are not able to solve in this thesis. Two distinct types

of model suggest themselves as the most feasible candidates for study: on the one hand,

models of Calogero-Moser type have a known integrable discrete structure and Lagrangian

one-form, which are the essential ingredients of interest [78, 125]. On the other hand, we

have discrete mappings arising from integrable lattice equations, the non-linear relative of

the mappings considered in chapters 2 and 3. In this chapter we consider the latter option.

Although the one-form structure (even classically) remains elusive for this model, we �nd

commuting discrete �ows by following the method of chapter 2. We investigate the dual

Lax pair as a possible route to understanding these commuting �ows, and �nd a novel
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realisation of the r-matrix structure.

The so-called generalised McMillan maps arise as reductions from the lattice KdV

equation (1.7), and are an integrable family of maps of dimension 2N [24, 79, 80, 91]. The

linear maps of chapter 2 arise essentially as their linearisation. As the multi-dimensional

consistency of the linear lattice equation resulted in commuting discrete �ows for the linear

map, we might hope that the multi-dimensional consistency of the lattice KdV equation

[1, 75, 80] will ultimately lead to commuting discrete �ows for the generalised McMillan

maps. The lattice KdV equation has a known Lagrangian two-form structure [62, 64],

which makes its reductions a very natural place to extend the work of chapter 2 and to

seek a Lagrangian one-form.

A signi�cant advantage of these maps is that, although non-linear, they have a

Newtonian form: they are generated by a Lagrangian of the type L = T − V . As a

consequence, in the quantum regime the time evolution operator U (1.71) can be written

in a separated form (1.74) (compare (3.5)), which leads naturally to the construction of a

discrete path integral, beginning from the canonical perspective. In contrast, such a form

is not known for maps of Calogero-Moser type.

As integrable maps, the generalised McMillan maps have a family of commuting

invariants. These also suggest the possibility of a compatible commuting �ow, although

unlike in the Calogero-Moser case the invariant �ows are not known to arise from a

continuum limit on the mapping. There is a well known Lax representation with a

corresponding integrable quantum structure for these maps [46, 74, 76]; the maps retain

integrability on the quantum level, which perhaps can be uncovered in the path integral

regime. Furthermore, it is not currently known how the Lax structure relates to a

variational formulation for most models, and in particular how this might be manifest

in a path integral quantisation: the generalised McMillan maps o�er a possible avenue

for this research. Consideration of the spectral curves and Sklyanin variables [104] for

these maps also leads to a semi-linearisation, even on the quantum level, in the Dubrovin

equations for the map [39, 70], through the study of a quantum determinant. Perhaps such

approaches might o�er further insight into a path integral quantisation?

In this chapter we consider some issues around the generalised McMillan map, working

towards a deeper understanding of the Lagrangian one-form and path integral structures.

In section 4.1 we brie�y overview some known classical and quantum results for these
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models that will set the scene for the rest of the chapter. In section 4.2 we consider

commuting �ows to the map, following chapter 2. For this non-linear case, we �nd that

such commuting �ows are signi�cantly more complicated, so that it is not straightforward

to express these �ows via a generating function. In section 4.3 we examine some early

steps to the path integral quantisation of the simplest member of the family, the McMillan

map. Although a quantum one-form structure is not yet clear, it is possible to make some

observations which point towards how the Hilbert space for such a model might look,

and the relevance of the choice of Lagrangian. Finally, we examine the dual (or big) Lax

pair for the generalised McMillan maps and its r-matrix structure, uncovering some new

details that may lead to better insights into the structure of the model. The big Lax pair

o�ers another way of considering the time-evolution of the map, whose connection to the

Lagrangian perspective is not currently known.

4.1 The Generalised McMillan Maps

4.1.1 Staircase reductions from the Lattice KdV Equation

In chapter 2, we described a linearisation of the lattice KdV equation, a multi-dimensionally

consistent, quadrilateral equation on a square lattice (2.3). By applying a periodic initial

value problem along a staircase in the lattice (�gure 2.8) the system of quad equations was

reduced to a linear, �nite-dimensional mapping. In other words, a discrete-time system.

Although in chapter 2 we were primarily interested in the linearised system, such reductions

were �rst studied for the parent equation, and other integrable lattice equations [24, 80].

Recall the lattice KdV equation (1.7), which holds on elementary plaquettes in the lattice

on variables wn,m,

(δ + wn,m+1 − wn+1,m)(ε− wn+1,m+1 + wn,m) = εδ . (4.1)

In terms of the lattice parameters p and q, we use the notation δ = p− q, ε = p+ q.

As in �gure 2.8, we apply a periodic initial value problem along a staircase of length

2P , introducing initial values

wj,j =: a2j , wj+1,j =: a2j+1 , for j = 1, . . . , P , ai+2P = ai , (4.2)

noting the periodic condition (compare [41], where non-periodic boundary conditions are

used for the same problem). The lattice KdV equation (4.1) then describes on each
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elementary quadrilateral the evolution of the variables aj . Evolution in the m (or hat)

direction is taken to correspond to the mapping as a discrete time evolution (note that we

could equivalently consider the evolution of n in the tilde direction; these two possibilities

were compared in [70]). We therefore have evolution equations for the aj ,

â2j = a2j+1 − δ +
εδ

ε− a2j+2 + a2j
, â2j+1 = a2j+2 . (4.3)

We introduce �reduced variables� vi such that

vi := ε+ ai − ai+2 , i = 1, . . . , 2P , (4.4)

so that the evolution of the aj (4.3) yields the equations of motion

v̂2j−1 = v2j , v̂2j = v2j−1 +
εδ

v2j
− εδ

v2j+2
. (4.5)

It is easy to see that the map has two Casimirs,

P∑
i=1

v2i =
P∑
i=1

v2i−1 = Pε , (4.6)

so that this staircase initial value problem produces a 2P − 2 dimensional map.

This is an alternative choice of reduction variables to the {xi, yj} used in (2.112), which

have a non-ultralocal Poisson bracket structure,

{vi, vj} = δi+1,j − δi,j+1 . (4.7)

In other words, only nearest neighbours of the vi have non-trivial Poisson brackets. Note

that is is possible to eliminate the odd (or even) labelled vi from the map, and hence write

the mapping equations (4.5) as a canonical map in a Lagrangian form.

Recall from section 1.1.1 that the multidimensional consistency of the lattice KdV

equation (4.1) leads to a Lax representation (1.20), (1.21). The staircase reduction (4.2)

can be applied on the level of this Lax pair, producing a local Lax pair for the mapping

(4.5). The mapping equations are produced by the Zakharov-Shabat condition,

L̂n(λ) .Mn(λ) = Mn+1(λ) . Ln(λ) , n = 1, . . . , N , (4.8)

for matrices,

Lj(λ) = V2jV2j−1 , where Vj =

 vj 1

lj 0

 , (4.9a)

Mj(λ) =

 v2j−1 − εδv−1
2j 1

λ 0

 , (4.9b)
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where l2j := λ and l2j−1 := λ − εδ, with λ the spectral parameter. The invariants of the

mapping arise through the monodromy matrix

T (λ) = LN (λ) . . . L1(λ) , (4.10)

where the Zakharov-Shabat condition (4.8) ensures that the trace of T (λ) will be invariant

under the map (4.5). �Su�ciently many� (i.e. P − 1) invariants arise by expanding trT (λ)

in powers of λ. We can equivalently consider the spectral curve,

det(ηI− T (λ)) = η2 − trT (λ)η + detT (λ) = 0 , (4.11)

which yields the invariants in the same way.

4.1.2 Classical r-matrix structures

The generalised McMillan mappings (4.5) have su�ciently many independent invariants for

integrability, guaranteed by the existence of the monodromy matrix T (λ) (4.10). However,

for the mappings to be integrable, these invariants must be in involution: this is shown by

constructing an r-matrix structure for the Lax pair [79].

We introduce tensor product spaces for the local Lax matrices of (4.9). The space of

2 × 2 matrices GL(2) is embedded in a product space, GL(2) × GL(2). Index notation

indicates which space a particular matrix sits in,

1
A ≡ A1 := A⊗ I ,

2
A ≡ A2 := I⊗A . (4.12)

Matrices labelled with multiple indices, such as r12, sit across both tensor spaces, and are

represented as 4 × 4 matrices. Occasionally we will also need to use a third (or higher)

matrix product space, but the notation generalises in the obvious way. Note that typically

a di�erent spectral parameter is associated with each element in the product space, for

example

Ln,1 := Ln(λ1)⊗ I , Ln,2 := I⊗ Ln(λ2) , (4.13)

where λ1 and λ2 are distinct spectral parameters. In the notation, this dependence is often

left implicit.

Using this notation, the Poisson bracket structure of the vi (4.7) can be encoded on

the Lax matrices (4.9) with the use of matrices r±12 and s±12, that live in the tensor product
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space [74, 79],

{Ln,1, Lm,2} = −δn,m+1Ln,1s
+
12Lm,2 + δn+1,mLm,2s

−
12Ln,1

+ δn,m
(
r+

12Ln,1Lm,2 − Ln,1Lm,2r
−
12

)
. (4.14)

The matrices r±12 and s±12 are given in [74]. The requirements on the Poisson bracket for

skew-symmetry and the Jacobi identity yield conditions on r±12 and s±12 that must hold,

most notably the classical Yang-Baxter equation,

[r±12, r
±
13] + [r±12, r

±
23] + [r±13, r

±
23] = 0 , (4.15)

which is a classical limit of the famous Yang-Baxter equation [53, 101]. The usual di�culty

in �nding such r-matrix structures is in identifying solutions to the Yang-Baxter equation.

A consequence of the r-matrix structure (4.14) is that traces of the monodromy matrix

trT (λ) (4.10) are in involution,

{trT (λ1), trT (λ2)} = 0 . (4.16)

But therefore the invariants of the system are in involution, and hence the generalised

McMillan maps are integrable in the Arnol'd-Liouville sense [22].

4.1.3 The Quantum Map

In the quantum regime, the reduced variables vi (4.4) become operators vi, with the Poisson

bracket (4.7) replaced by a commutator bracket,

[
vi,vj

]
= i~(δi+1,j − δi,j+1) . (4.17)

The mapping equations of motion (4.5) become operator equations of motion, under the

assumption that we can create the inverse operator v−1
i [46, 74, 76],

v̂2j−1 = v2j , v̂2j = v2j−1 + εδv−1
2j − εδv

−1
2j+2 . (4.18)

We will not consider the analysis of this assumption at length.

Although the equations of motion transfer to the quantum regime in an obvious way,

the integrability of the quantum map is more di�cult. The Lax pair (4.9) is also a Lax

pair for the quantum mapping, so long as care is taken with operator ordering. But, the

identi�cation of invariants is more di�cult. Due to the non-commuting operators, the trace
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of the monodromy matrix trT (λ) (4.10) is no longer preserved under the mapping: a more

subtle approach is needed.

Integrability follows from a quantum R-matrix structure which encodes the

commutation relations on the level of the Lax matrices (4.9), using the same tensor notation

as previously. We have matrices R±12, S
+
12 such that

R+
12Ln,1 · Ln,2 = Ln,2 · Ln,1R−12 , (4.19a)

Ln+1,1 · S+
12Ln,2 = Ln,2Ln+1,1 , (4.19b)

Ln,1Lm,2 = Lm,2Ln,1 , for |n−m| ≥ 2 (4.19c)

recalling the periodicity in n = 1, . . . , P . The matrices R±12, S12 are given in [74]. The

same structure also holds for the other part of the Lax pair, Mj (4.9b). These equations

describe the commutation of the operators within the Lax matrices.

Proving the existence and commutativity of the invariants in the quantum case depends

on the object

τ(λ) = tr
(
T (λ)K(λ)

)
, where K(λ) =

 1 0

0 1 + i~/λ

 . (4.20)

The R-matrix relations (4.19) guarantee that τ(λ) is preserved under the mapping, τ̂(λ) =

τ(λ), and that as operators τ(λ) commute for di�erent choices of the spectral parameter,

[
τ(λ1), τ(λ2)

]
= 0 . (4.21)

In other words, τ(λ) produces the quantum invariants of the model, and they are

commuting. The proof of these results is by no means trivial [74]! The e�ect of the

matrix K(λ) (4.20) is that these invariants have a �quantum correction� from the classical

invariants, such that they reduce to the classical invariants in the limit ~→ 0. Notice that

in the quantum case the R-matrix structure is needed not only to prove commutativity of

the invariants, but also to derive the invariants themselves [103].

4.2 Commuting Discrete Flows

In section 2.2 we discovered commuting discrete �ows for the staircase reductions of the

linearised lattice KdV equation. The multi-dimensional consistency of the parent lattice

equation allowed us to extend the staircase reduction into a third direction in the lattice,
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producing a second mapping. The map was consistent with the initial mapping as a

consequence of the closure-around-the-cube property. The generalised McMillan maps of

this chapter are staircase reductions from the lattice KdV equation (section 4.1.1) which has

the same key property of multi-dimensional consistency. Although the non-linearity means

that the commuting �ow equations will be more complex, we can search for compatible

maps in the same manner as the linear case. This is potentially a fruitful avenue of research

as, unlike in the linear case, the generalised McMillan maps possess a known meaningful

Lax representation encoding the invariants.

To simplify the calculations, we �rst consider the simplest possible reduction: the

�P = 1.5� mapping shown in �gure 2.4. We begin with initial values a0, a1, a2 and apply

the periodic boundary condition â2 = a0. The lattice equation (4.1) then yields equations

for the mapping

(p− q + â0 − a1)(p+ q + a0 − â1) = p2 − q2 , (4.22a)

(p− q + â1 − a2)(p+ q + a1 − a0) = p2 − q2 , (4.22b)

â2 = a0 . (4.22c)

As in the linear case, we introduce the reduction variables x and y,

x := a1 − a0 , y := a2 − a1 , (4.23)

in terms of which the mapping equations (4.22) become

x̂ = y +
p2 − q2

p+ q + x
− p2 − q2

p+ q + ŷ
, (4.24a)

ŷ = p− q − x− y +
p2 − q2

p+ q + x
, (4.24b)

so that it is clear {x̂, ŷ} can be calculated from {x, y}.

This map is most naturally expressed in Hamiltonian form, in terms of the variables x

and ŷ, as

y = p− q − x− ŷ +
p2 − q2

p+ q + x
, (4.25a)

x̂ = p− q − x− ŷ − p2 − q2

p+ q + ŷ
, (4.25b)

which can be derived from the Hamiltonian-type generating function

F (x, ŷ) = (p− q)(x+ ŷ)− 1
2(x+ ŷ)2 + (p2 − q2) log

(
p+ q + x

p+ q + ŷ

)
. (4.26)
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This guarantees the symplectic structure of the map, such that dx∧ dy = dx̂∧ dŷ. Notice

that this form is somewhat more complicated than the usual maps of generalised McMillan

type (4.5).

Following section 2.2.2 we extend the mapping into a third lattice direction, illustrated

in �gure 2.5. The lattice equation (4.1) is �rst embedded within the multi-dimensional

lattice,

(pi − pj + wj − wi)(pi + pj + w − wij) = p2
i − p2

j , (4.27)

where pi indicates the lattice parameter associated to the lattice direction i, and wi

indicates a shift of the lattice variable w in the i direction. This yields the set of equations

for the staircase variables ai,

(p− r + a0 − a1)(p+ r + a0 − a1) = p2 − r2 , (4.28a)

(p− r + a1 − a2)(p+ r + a1 − a2) = p2 − r2 , (4.28b)

(q − r + a2 − a0)(q + r + a2 − a0) = q2 − r2 . (4.28c)

We wish to write this map in terms of the reduced variables x and y (4.23), but now the

non-linearity of the mapping equations (4.28) makes this rather more di�cult than in the

linear case.

By eliminating a1 and a2, it is possible to write a quadratic for a0 in terms of the initial

conditions,

Aa2
0 −

[
(2r + q − p+ a1 + a2)A+ (r2 − q2)(2p− x− y) + (p2 − r2)(p+ q + x)

]
a0

− (p− r − a1)
[
(r + q + a2)A+ (r2 − q2)(2p− x− y)

]
+ (p2 − r2)

[
(p+ q + x)(r + q + a2) + r2 − q2

]
= 0 , (4.29a)

where

A := (2p− x− y)(p+ q + x)− p2 + r2 . (4.29b)

This yields the double-valued expression for a0,

a0 =
1

2A

(
(2r + q − p+ a1 + a2)A+ C ±

√
B

)
, (4.30a)

where we have added the shorthand

B :=
[
(p+ q + y)A+ (r2 − q2)(2p− x− y)

−(p2 − r2)(p+ q + x)
]2

+ 4(p2 − r2)2(r2 − q2) , (4.30b)

C := (r2 − q2)(2p− x− y) + (p2 − r2)(p+ q + x) . (4.30c)
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The mapping equations (4.28) then allow the derivation of similar expressions for a1 and

a2,

a1 = p+ r + a0 −
2(p2 − r2)A

(p+ q + y)A+ C ±
√
B
, (4.31a)

a2 = r − q + a0 −
2(r2 − q2)A

(p+ q + y)A− C ∓
√
B
, (4.31b)

noting that the multi-valuedness of these expressions is determined by the single choice in

a0.

These expressions lead �nally to expressions for the commuting map in terms of the

reduction variables, for x, y in terms of x, y,

x = a1 − a0 ,

=
(3p− q − 2x− y)A− C ∓

√
B

2A
− 2(p2 − r2)A

(p+ q + y)A+ C ±
√
B
, (4.32a)

y = a2 − a1 ,

= −(p+ q) +
2(p2 − r2)A

(p+ q + y)A+ C ±
√
B
− 2(r2 − q2)A

(p+ q + y)A− C ∓
√
B
. (4.32b)

The new variables x, y can be calculated from these expressions, but are dual-valued : there

is a choice of sign for the square root. In this form, the map appears to be double valued.

The compatibility of the map {x, y} → {x, y} with the map {x, y} → {x̂, ŷ} is

guaranteed by the multi-dimensional consistency of the parent equation (4.1), but other

pertinent questions such as whether the map is symplectic, or preserves invariants of any

kind, are harder to answer at present. We would hope to express the mapping via a

generating function, but the form of the mapping equations (4.32) doesn't seem amenable

to this; however, it is possible that a better form may exist. The lattice KdV equation

from which the mapping originates possesses a Lax pair, with a matrix associated to every

lattice direction - discussed in section 1.1.1. Indeed, the Local Lax representation for

the generalised McMillan maps (4.9) is derived from this lattice Lax. In deriving the

commuting �ows above, we have not yet exploited this Lax representation; it is possible

that this may resolve some of the present di�culties. More research is needed into these

commuting maps if multi-form structures analogous to the linear case are to be uncovered.
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4.3 Quantum McMillan Map

For the generalised McMillan maps there is a well established canonical quantum structure,

discussed in section 4.1.3, via the quantum inverse scattering method. We have found that,

classically, establishing commuting �ows for these non-linear maps is more di�cult than

in the linear case. Approaching a path integral quantisation for these non-linear maps is

also more challenging: in the linear case (chapter 3) we were able to make use of repeated

Gaussian integrals, but such a technique no longer works in this non-linear case.

In the section below, we consider the simplest member of the family of mapping

reductions: the McMillan map. Considering this simple, two dimensional map allows us

to explore questions regarding the path integral quantisation for a non-linear mapping,

examining forms for the time evolution operator and the resulting propagator, and

considering the behaviour of the operator invariant. This is essential groundwork to prepare

the way for studying Lagrangian one-form path integrals.

4.3.1 The McMillan map: P = 2

Recall that the maps we have been studying in this chapter arise from staircase reductions

of the lattice KdV equation, as in section 4.1.1. The simplest non-trivial such mapping

arises when P = 2: this yields the famous �McMillan map� [66]. This map can be expressed

in terms of the variables v1, v2 (4.4), but it will be more convenient in this section to describe

the map in terms of the alternative reduction variable qn, where

qn =
a2 − a0

ε
. (4.33)

The subscript n labels the discrete time evolution, so that q̂n = qn+1, and so forth. The

evolution of the ai (4.3) yields the equation of motion

qn+1 + qn−1 =
2αqn

1− q2
n

, where α := −δ/ε , (4.34)

which is a well known form for the McMillan map.

The McMillan map (4.34) is symplectic, since it arises from a variational principle on

a discrete Lagrangian,

L(q, q̂) = −qq̂ − α ln(1− q2) , (4.35)
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where the equation of motion results from the discrete-time Euler-Lagrange equations

(1.36) (we have suppressed the subscript n for ease of notation). It is easy to check that

the map has an invariant,

In(q) = (1− q2
n)(1− q2

n−1) + 2αqnqn−1 . (4.36)

As such, the McMillan map is an integrable mapping of standard type, corresponding to

a speci�c parameter choice of the type (i) mapping described by Suris [109].

Using the functional relation

sn(a+ b) =
sna cnbdnb+ snb cnadna

1− k2 sn2a sn2b
, (4.37)

the McMillan map (4.34) can be explicitly solved in terms of the elliptic sn function,

qn = A sn(ζn+ ξ0) , (4.38a)

where

α = cnζ dnζ , A2 = k2 sn2ζ . (4.38b)

k is the modulus of the elliptic function, and ζ represents the discrete time step. From the

perspective of a discrete time evolution, this solves the mapping for all time. Comparing

this to the classical solution for the discrete harmonic oscillator (2.43), x(t) = A sin(δt+θ),

the McMillan solution (4.38a) is in some sense an elliptic generalisation of the linear case.

4.3.2 Quantisation of the map

In section 4.4.4, we consider the canonical quantisation of the generalised McMillan maps

using an R-matrix. Following chapter 3 we would like to investigate a sum-over-histories

quantisation, to extend the quantum Lagrangian one-form ideas into a non-linear example.

Very little has been written on the path integral quantisation of integrable maps, although

some early work exists in [38, 40] which we will build on in this section.

We consider the simple case of the McMillan map given in (4.34). In the quantum case,

this as a map of quantum operators [76],

(qn+1 + qn−1)(1− q2
n) = 2αqn . (4.39)

Bold symbols here denote operators. This quantum McMillan map is an operator equation

of motion in the Heisenberg picture. However, making sense of such an operator equation
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(4.39) is problematic. The Hilbert space on which these operators act is, a priori, unknown.

In order to understand this quantum mechanical system, we need to understand the Hilbert

space.

To understand the quantum McMillan equation (4.39) requires commutation relations

between the position operators qn at di�erent times n. These commutation relations

are de�ned by the conjugate momenta, and so the interpretation depends in an essential

way on the choice of discrete Lagrangian. A di�erent Lagrangian yields di�erent conjugate

momenta, hence di�erent commutation relations. The question remains: what is the correct

choice of Lagrangian?

A natural choice of Lagrangian that expresses a relation to standard approaches in

continuous time1 is given by [74]

L(qn, qn+1) =
1

2
(qn+1 − qn)2 − q2

n − α log(1− q2
n) . (4.40)

This Lagrangian has a kinetic and potential part,

L = T (qn+1 − qn)− V (qn) , (4.41)

in a Newtonian form. It is straightforward to check that discrete Euler-Lagrange equations

yield the mapping equation (4.39). The Lagrangian (4.40) yields canonical momenta

pn+1 :=
∂L

∂qn+1
= qn+1 − qn , (4.42a)

pn := − ∂L
∂qn

= qn+1 + qn −
2αqn

1− q2
n

, (4.42b)

which endow the model with canonical commutation relations,

[qn,pn] = i~ . (4.43)

The momentum equations (4.42) then de�ne commutations between the position operators

qn at di�erent times, so that we have as a consequence of (4.43),

[qn−1,qn] = i~ . (4.44)

We can then show that the two factors of the mapping equation (4.39) commute,

(qn+1 + qn−1)(1− q2
n) = (1− q2

n)(qn+1 + qn−1) , (4.45)

1This Lagrangian is of Newtonian form, and has a kinetic term that goes to q̇2/2 in a simple continuum

limit.
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which is essential for the consistency of the equation.

Having established commutation relations for the qn, we can also �nd the quantum

correction to the classical invariant (4.36), such that In+1 = In is the quantum invariant,

In = (1− q2
n)(1− q2

n−1) + 2(α+ i~)qnqn−1 . (4.46)

The ~ correction addresses the operator ordering issues; but de�ning the invariant is

therefore dependent on establishing commutation relations (4.44), or equivalently on

choosing a generating Lagrangian. Such invariants (including in the McMillan case) were

also considered in the paper [40], from a single-step path integral perspective, which we

have included for the linear case in section 3.1.2.

4.3.3 Unitary operator and One-step Propagator

In [74], the authors used the Lagrangian (4.40) and the resulting canonical momenta (4.42)

to describe the quantum McMillan map in terms of a time-evolution operator U , such that

pn 7→ pn+1 = U−1pnU , (4.47a)

qn 7→ qn+1 = U−1qnU . (4.47b)

The Newtonian form of the Lagrangian (4.41) means that it is straightforward to write U

in the separated form,

U = e−iT (p)/~e−iV (q)/~ , (4.48a)

where

T (p) = 1
2p

2 , V (q) = q2 + α log(1− q2) , (4.48b)

are kinetic and potential terms. Writing the momentum equations (4.42) in the form

qn+1 = qn + pn − 2qn + 2αqn
1−q2n

= qn − T ′(pn) + V ′(qn) ,

pn+1 = pn − 2qn + 2αqn
1−q2n

= pn + V ′(qn) ,
(4.49)

and recalling the conjugations (1.75) it is easy to see that the time evolution operator U

(4.48) leads to the correct operator equations of motion.

With the McMillan map expressed in terms of a time-evolution operator U , we can
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consider the one time-step propagator (as in chapter 3)

n+1〈q̂|q〉n = 〈q̂|U |q〉 , (4.50a)

=

∫
dp exp

[
i

~

(
− 1

2p
2 + p(q̂ − q) + V (q)

)]
, (4.50b)

=

√
2π~
i

exp

[
i

~

(
1

2
(q̂ − q)2 − q2 − α log(1− q2)

)]
, (4.50c)

=

√
2π~
i

exp

[
i

~
L(q, q̂)

]
, (4.50d)

so that the Lagrangian (4.40) reappears. We assume that we can introduce a complete

set of momentum eigenstates; the integral over p is interpreted as a Gaussian integral.

This assumption is to some extent validated by the resurfacing of the Lagrangian at the

�nal step. Although this is not a new result [74], it is important to note the way that the

propagator depends essentially on the initial choice of Lagrangian. We highlight this below

by considering an alternative, simpler, choice of Lagrangian.

As given in (4.35) we can also choose the Lagrangian

L(qn, qn+1) = −qnqn+1 − α log(1− q2
n) , (4.51)

this represents a simplest possible choice of Lagrangian generating the McMillan equation

(4.39), and is clearly equivalent to the Lagrangian (4.40) in the action. This alternative

choice of Lagrangian de�nes di�erent conjugate momenta, or Hamilton's equations,

pn+1 = −qn , pn = qn+1 −
2αqn

1− q2
n

. (4.52)

Compare (4.42). These also yield the commutation relations (4.44).

The momentum equations (4.52) de�ne a subtly di�erent evolution to the previous

choice (4.42), and correspondingly this is described by a di�erent choice of time evolution

operator U . We rewrite the momentum equations (4.52) in the form

qn+1 = qn + pn − qn +
2αqn

1− q2
n

= qn + T ′(pn)− V ′(qn) , (4.53a)

pn+1 = pn − qn − pn = pn − V
′
(qn)− T ′(pn) . (4.53b)

Inspired by the three-part time evolution operators found in chapter 3 (3.5), we write the

time-evolution operator for this Lagrangian

U = e−iV (q)/~e−iT (p)/~e−iV (q)/~ , (4.54)
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where

V (q) = 1
2q

2 , T (p) = 1
2p

2 , V (q) = 1
2q

2 + α log(1− q2) . (4.55)

This generates the operator equations of motion by the conjugation (4.47), as before.

Once again, as in (4.50), it is possible to write the one time-step propagator,

n+1〈q̂|q〉n = 〈q̂|e−iV (q)/~e−iT (p)/~e−iV (q)/~|q〉 , (4.56a)

=
√

2πi~ exp

[
i

~
(
−qq̂ − α log(1− q2)

)]
, (4.56b)

so that we recover the speci�c form of the chosen Lagrangian, given by (4.51). Note the

sensitivity of the one-step propagator to the choice of Lagrangian; a key question remains

whether a one-form structure that might �x the Lagrangian exists for this integrable model.

4.3.4 Quantum Mechanical Propagators

Following the one time-step propagator (4.56), a path integral quantisation of the McMillan

map requires the extension of the propagator into multiple time-steps. The Hilbert space

for the operator equation of motion (4.39) is not known; perhaps the path integral approach

can ultimately o�er new insights into the system.

One approach by Field and Nijho� [38] begins by postulating Heisenberg picture

position eigenstates at time n, |q〉n, and proceeds from the operator equation of motion

(4.39). The equation of motion is sandwiched between the quantum states n+1〈q̂| and |q〉n

to yield an equation for the �one time-step� propagator,

n+1〈q̂|(qn+1 + qn−1)(1− q2
n)|q〉n = 2α n+1〈q̂|qn|q〉n . (4.57)

Evaluation of this operator equation depends once more on our choice of Lagrangian and

conjugate momenta. Taking the Lagrangian (4.51) with operator momentum equations

(4.52), we choose a standard representation of the operators qn and pn as di�erential

operators,

n〈q|qn|ψ〉 = q n〈q|ψ〉 , (4.58a)

n〈q|pn|ψ〉 = −i~ ∂
∂q

n〈q|ψ〉 . (4.58b)

This leads to the di�erential equation from (4.57)

(1− q2)

(
q̂ − i~ ∂

∂q

)
K1(q, q̂) = 2αqK1(q, q̂) , (4.59)
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where we have introduced the one time-step propagator

K1(q, q̂) := n+1〈q̂|q〉n . (4.60)

It is possible to solve the di�erential equation (4.59) for the propagator, so that

K1(q, q̂) = N (q̂) exp

[
i

~
(
−qq̂ − α log(1− q2)

)]
. (4.61)

The q̂ dependence of the integration factor is �xed by comparing di�erent evaluations of

n+1〈q̂|qn|q〉n, using the equation qn = −pn+1 (4.52),

n+1〈q̂|qn|q〉n = qK1(q, q̂) = i~
∂

∂q̂
K1(q, q̂) , (4.62)

which yields that N = constant. We therefore have the result

K1(q, q̂) = N exp

[
i

~
(
−qq̂ − α log(1− q2)

)]
, (4.63a)

= N exp

[
i

~
L(q, q̂)

]
, (4.63b)

where L(q, q̂) is the discrete Lagrangian generating the map, given by (4.51). Note the

consistency of this result with the propagator derived through the time evolution operator

U (4.56). This equation of motion approach could similarly have used conjugate momenta

de�ned from the alternative Lagrangian (4.40), leading to the alternative propagator

expression (4.50).

The two time-step propagator

The equation of motion method of section 4.3.4 can be extended to derive an equation for

the two-step propagator,

K2

(
q̂,

ˆ
q
)

:= n+1〈q̂|
ˆ
q〉n−1 . (4.64)

This method is again due to [38]: here we explore the full propagator expression in more

detail, and relate the result to the one-step propagator of (4.63).

Sandwiching the operator equation of motion (4.39) with the Heisenberg position

eigenstates n+1〈q̂| and |
ˆ
q〉n−1 we can write

n+1〈q̂|(qn+1 + qn−1)(1− q2
n)|

ˆ
q〉n−1 = 2α n+1〈q̂|qn|

ˆ
q〉n−1 . (4.65)
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Again using the operator equations of motion (4.52), the commutation relation (4.43) and

the representation (4.58), this yields the second order di�erential equation in terms of q̂,[(
q̂ +

ˆ
q
)(

1 + ~2 ∂
2

∂q̂2

)
− 2i~(α+ i~)

∂

∂q̂

]
◦K2

(
q̂,

ˆ
q
)

= 0 . (4.66)

This di�erential equation can be solved in terms of Bessel functions. Writing

z := q̂ +
ˆ
q , w(z) := K2(q̂,

ˆ
q) , (4.67)

where
ˆ
q is treated as a parameter, the di�erential equation (4.66) can be rewritten as

w′′ − 2i(α+ i~)

~z
w′ +

1

~2
w = 0 . (4.68)

This has the form of equation (10.13.4) from [30], which is solved in terms of a cylindrical

function Cν ,

w(z) = z±νCν
(z
~

)
, ν = ±

(
1

2
− iα

~

)
. (4.69)

This solution can be elaborated by seeking a series solution to the di�erential equation

(4.68) around z = 0. There are two such solutions, given by

w+(z) =

∞∑
n=0

(−1)n
1

n!(ν + 1)n

( z
2~

)2n
, (4.70a)

w−(z) = z−2ν
∞∑
n=0

(−1)n
1

n!(−ν + 1)n

( z
2~

)2n
, (4.70b)

where ν = 1/2− iα/~ . (4.70c)

The notation (a)n represents the Pochhammer symbol of a,

(a)n = a(a+ 1) . . . (a+ n− 1) . (4.71)

The Bessel function is de�ned by

Jν(z) = (z/2)ν
∞∑
k=0

(−1)k
(z2/4)k

k! Γ(ν + k + 1)
, (4.72)

[30, 121] so that the solutions for the two time-step propagator (4.64) are

K2

(
q̂,

ˆ
q
)

= a+

(̂
q
)
w+

(
q̂ +

ˆ
q
)

+ a−
(̂
q
)
w−
(
q̂ +

ˆ
q
)
, (4.73a)

where w±(z) =
(
q̂ +

ˆ
q
)−ν

J±ν

(
(q̂ +

ˆ
q)/~

)
, (4.73b)

with ν given in (4.70c), and a±(
ˆ
q) undetermined integration factors.
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It remains to resolve the
ˆ
q dependence of the integration factors a±, but this can be

approached in a similar manner to the one time-step case (4.62). Observe that from the

momentum equations (4.52) we have

qn = −pn+1 = pn−1 +
2αqn−1

1− q2
n−1

, (4.74)

so that n+1〈q̂|qn|
ˆ
q〉n−1 can be evaluated in two di�erent ways,

n+1〈q̂|(−pn+1)|
ˆ
q〉n−1 = n+1〈q̂|

[
pn−1 +

2αqn−1

1− q2
n−1

]
|
ˆ
q〉n−1 , (4.75a)

⇒ i~
∂

∂q̂
K2

(
q̂,

ˆ
q
)

=

(
i~
∂

∂
ˆ
q

+
2α

ˆ
q

1−
ˆ
q2

)
K2

(
q̂,

ˆ
q
)
. (4.75b)

Now, noting that
∂wi(z)

∂q̂
=
∂wi(z)

∂
ˆ
q

, (4.76)

and substituting (4.73) into (4.75), the condition becomes

0 = i~
(
a′+
(̂
q
)
w+(z) + a′−

(̂
q
)
w−(z)

)
+

2α
ˆ
q

1−
ˆ
q2

(
a+

(̂
q
)
w+(z) + a−

(̂
q
)
w−(z)

)
. (4.77)

This is most easily solved by resolving the a±(
ˆ
q) parts separately as coe�cients of w±(z)

respectively, yielding

a±
(̂
q
)

= a± exp

[
i

~

(
− α log(1−

ˆ
q2)
)]

, (4.78)

for constants a±. Hence the solution to the di�erential equation (4.66) is given by

K2

(
q̂,

ˆ
q
)

= exp

[
i

~

(
− α log(1−

ˆ
q2)
)] (

q̂ +
ˆ
q
)−ν

×

[
a+ Jν

(
(q̂ +

ˆ
q)/~

)
+ a− J−ν

(
(q̂ +

ˆ
q)/~

)]
. (4.79)

This approach does not specify the constants a±, but we will see that they follow from the

group property of the propagator.

A natural question is: how does the two time-step propagator (4.79) link to the

one time-step propagator (4.56), (4.63)? An expected property of quantum mechanical

propagators is the group property, which is a composition rule

K(x, y;T + T ′) =

∫
dµ(z)K(x, z;T )K(z, y;T ′) . (4.80)

In the discrete time case, the two step propagator has a natural time slicing into one step

propagators, but this requires the introduction of a complete set of position eigenstates,
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with an appropriate integration measure. Without knowing the form of the Hilbert space,

it is unclear what this should look like.

We postulate the complete set of position eigenstates∫
dµ(q) |q〉〈q| = 1 , (4.81)

where the measure dµ(q) is to be speci�ed. Using the time evolution operator U (4.54),

we time-slice the two step propagator into one step pieces,

K2(q̂,
ˆ
q) = 〈q̂|U2|

ˆ
q〉 =

∫
dµ(q) 〈q̂|U |q〉〈q|U |

ˆ
q〉 , (4.82a)

=

∫
dµ(q) K1(q̂, q)K1(q,

ˆ
q) . (4.82b)

So this is a simplest possible manifestation of the composition rule (4.80) and time-slicing.

Substituting in the expression for K1 (4.63) we �nd the integral for the two step

propagator

K2(q̂,
ˆ
q) = N 2 exp

[
i

~

(
− α log(1−

ˆ
q2)
)]

×
∫

dµ(q) exp

[
i

~

(
− q(q̂ +

ˆ
q)− α log(1− q2)

)]
. (4.83)

Now, consider the following integral representations for the Bessel function [30, 121],

Jν(z) =
(z/2)ν

Γ(ν + 1/2)
√
π

∫ 1

−1
dt eizt(1− t2)ν−1/2 , <ν > 1

2
, (4.84a)

Jν(x) =
2(x/2)−ν

Γ(1/2− ν)
√
π

∫ ∞
1

dt
sin(xt)

(t2 − 1)ν+1/2
, |<ν| < 1

2
. (4.84b)

In fact, we will need to assert the analytic continuation of these identities to the region

<ν = ±1/2. Suppose we make the identi�cation,∫
dµ(q) =

∫ ∞
−∞

dq , (4.85)

which is a standard assumption for a physical Hilbert space. It is then possible to rearrange

the integral (4.83) into two parts,

K2(q̂,
ˆ
q) = 2π~ exp

[
i

~

(
− α log(1−

ˆ
q2)
)]

×

(∫ 1

−1
dq eixq(1− q2)−iα/~ + 2i

∫ ∞
1

dq sin(xq)(q2 − 1)−iα/~

)
. (4.86)
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But these integrals are solvable with Bessel function representations (4.84), so that the

propagator is given by

K2(q̂,
ˆ
q) = a0

(
1−

ˆ
q2
)−iα/~(

q̂ +
ˆ
q
)−ν(

Jν
(
(q̂ +

ˆ
q)/~

)
+ iJ−ν

(
(q̂ +

ˆ
q)/~

))
, (4.87)

with ν = 1/2− iα/~ as before (4.70c), and the identi�cation

a0 = (2~)ν+1π3/2 Γ(ν + 1/2) . (4.88)

But this expression (4.87) is precisely compatible with that found through the di�erential

equation (4.79), where the relative values of a± are now �xed. Only an overall normalisation

constant remains. This composition rule approach yields a compatible answer with the

operator equation of motion. A key outstanding di�culty, however, are the singularities

at q = ±1. How to resolve singularities in discrete-time quantum mechanics is not in

general currently clear, but the favourable properties of integrable systems suggest it may

ultimately be possible to understand the behaviour of solutions around these singularities

in the quantum regime. Perhaps integrable systems may point the way for the broader

theory.

4.3.5 Operator Invariant

Recall the invariant for the quantum McMillan map (4.46). In terms of the conjugate

momenta (4.52), this can be written

In = (1− q2
n)(1− p2

n) + 2(α+ i~)qnpn . (4.89)

We can consider eigenstates of the operator invariant, such eigenstates will have a �xed

eigenvalue under the time evolution,

In+1|ψ〉 = In|ψ〉 = E|ψ〉 . (4.90)

These represent stationary states for the quantum mapping. In the discrete-time case,

there is not a Schrödinger equation in the same way as for continuous time systems, but

the invariant can be thought of as a Hamiltonian generating a continuous-time �ow that

is compatible with the map, with stationary Schrödinger equation given by the eigenvalue

problem (4.90).

Taking a standard position space representation by conjugation with the position

eigenstates |q〉n, the eigenvalue problem (4.90) leads to the di�erential equation in position
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space

(1− q2)ψ′′n(q)− 2
i

~
(α+ i~)qψ′n(q) +

1

~2
(1− q2)ψn(q) =

E

~2
ψn(q) , (4.91)

where ψn(q) is the wave function at discrete time n. It is observed in [40] that this is an

equation of con�uent Heun class. By substituting ψn(q) = G(q)v(q), (4.91) can be written

in the form

d

dq
(1− q2)

dv

dq
+

[
b2(1− q2)− η + µ(µ+ 1)− µ2

1− q2

]
v(q) = 0 , (4.92a)

where

µ = iα/~− 2 , (4.92b)

b2 = 1/~2 , (4.92c)

η = E/~2 , (4.92d)

G(q) = exp
[
−µ

2
log(1− q2)

]
. (4.92e)

Equation (4.92a) is the spheroidal wave equation for v(q), see equation (30.2.1) of [30].

The Sturm-Liouville form of (4.92a) is su�cient for orthogonality of eigenfunctions either

on the range [−1, 1] or over the whole real line with vanishing boundary conditions, with

weight function σ(q) = 1. Such boundary conditions would need to account in some other

manner for the singularities occurring at q = ±1. However, we can gain some further

insight from the existing literature on the spheroidal wave equation.

The spheroidal wave equation (4.92a) is in general multi-valued across the complex

plane; literature on solutions is generally focused on the case where a single-valued function

can be found [6, 12, 34, 67, 106]. For this single-valuedness, it is required that the parameter

µ is an integer (4.92b). In that case there is a set of eigenvalues,

λ := µ(µ+ 1)− η = λµν (b2) , numbered by ν = µ, µ+ 1, µ+ 2, . . . , (4.93)

where λµν (b2) < λµν+1(b2). These eigenvalues correspond to eigenfunctions Psµν (q, b2), called

spheroidal wave functions, which are bounded, complete and orthogonal on (−1, 1). They

have the form (1− q2)µ/2g(q), for g(q) an entire function. In other words, if v(q) takes this

form, then the quantum wave function ψn(q) (4.91) is an entire function.

One must then consider the physical requirements on the solution ψn(q). The results

above in the literature for the spheroidal wave function are suggestive that a physically

meaningful solution to the equation (4.92a) requires that µ (4.92b) be integer, so that we
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make the parameter choice

α = −(µ+ 2)i~ , (4.94)

for integer µ. In other words, physical restrictions on the wave function ψn(q) could lead

to a quantisation of the mapping parameter itself. Under such a quantisation, the wave

functions would then be

ψn(q) = (1− q2)−µ/2 Psµν (q) , (4.95)

for spheroidal wave functions Psµν , with eigenvalues given by λµν , and ν enumerating the

energy levels for the model. These functions are naturally bounded (hence normalisable),

orthogonal and complete over (−1, 1). Perhaps a suitable basis for a Hilbert space theory

of the model can be found in these functions.

Note that a second special case of (4.92a) corresponds to the choice µ = 1
2 . In that

case, the equation becomes the Mathieu equation, equation (28.2.1) of [30].

4.4 Dual Lax and r-matrix Structure

There are a number of outstanding challenges in the path integral quantisation of the

McMillan map. As we saw in section 4.2, it remains unclear whether we can establish a one-

form structure, due to the di�culties in describing the commuting �ow. Similarly, in section

4.3 the early inroads into the path integral itself so far only hold for the simplest case, and

only as far as the two time-step propagator. But, the McMillan maps have extensive

integrability structures that we have not yet leveraged to their full extent, particularly the

Lax pair.

In the section below, we consider the Lax pair in more depth. It is not yet clear how the

Lax pair relates to the Lagrangian structure, but rather it is a parallel approach. The local

Lax structure of the generalised McMillan maps (discussed in section 4.1) has a related

dual structure of large Lax matrices [80]. In the following section we discuss the r-matrix

structure belonging to this dual Lax pair, identifying some novel features, by expressing the

r-matrix as a normal-ordered matrix fraction. It emerges that this dual Lax pair may have

a simpler quantisation than the one already known for the local Lax case, although this is

not yet clear in the general case. In the discrete Calogero-Moser and Ruijsenaars-Schneider

models (section 1.2.2), the Lagrangian one-form structures were associated to commuting

discrete �ows - these commuting �ows arose through the introduction of additional elements
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into the large Lax pair. Further, for the CM case, the one-form action actually arises

directly from the Lax pair as a log-determinant of the ordered sequence of Darboux matrices

M generating the time evolution. By elaborating the large Lax structure for the McMillan

maps, it is possible that we will be able to pursue a Lagrangian one-form structure through

this avenue.

4.4.1 Dual Lax Matrix

The generalised McMillan map in variables vi (4.5) has a well studied �local� Lax pair

(4.9), but this is not the unique Lax description for the model. It is possible to move to

an alternative, �dual� Lax matrix formulation [24], by considering eigenvectors θ1 of the

monodromy matrix T (λ) (4.10),

T (λ) θ1 = hθ1 . (4.96)

Recalling that T (λ) = V2N . . . V1, the local matrices Vj (4.9a) de�ne a sequence of vectors

θj ,

θj+1 := Vjθj ⇒ θ2N+1 = hθ1 , (4.97a)

such that

θj =

 φj

ψj

 ⇒

 φj+1

ψj+1

 =

 vjφj + ψj

λjφj

 . (4.97b)

Eliminating ψj from these equations gives a system of equations for φj ,

φj+1 = vjφj + λj−1φj−1 , j = 2, . . . , 2N − 1 , (4.98a)

hφ1 = v2Nφ2N + λ2N−1φ2N−1 , (4.98b)

hφ2 = hv1φ1 + λ2Nφ2N . (4.98c)

Forming the new vector Φ = (φ1, . . . , φ2N )T , we can cast these equations (4.98) into the

matrix form

L(h)Φ = λΦ . (4.99)
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This is a dual spectral form to the local Lax matrix (4.9), with the dual (2N × 2N) Lax

matrix given by

L(h) =



εδ −v2 1

0 −v3 1

εδ −v4
. . .

0
. . . 1

. . . −v2N−1 1

h εδ −v2N

−hv1 h 0


. (4.100)

Note that the roles of h and λ as eigenvalue and spectral parameter are reversed from the

local Lax case (4.96).

The Lax matrix L(h) is more easily expressed in terms of the (2N × 2N) shift matrix

Σh,

Σh :=
2N−1∑
j=1

Ej,j+1 + hE2N,1 =



0 1

0 1

. . .
. . .

0 1

h 0


, (4.101)

which acts on elementary 2N × 2N matrices Ei,j by

ΣhEi,j = Ei−1,j , ΣhE1,j = hE2N,j , (4.102a)

Ei,jΣh = Ei,j+1 , Ei,2NΣh = hEi,1 . (4.102b)

Σh has the additional periodic property

Σh
2N = hI . (4.103)

In terms of Σh, the dual Lax matrix L(h) can be written as

L(h) = Σ2
h − ΣhV + Λ , (4.104a)

:= Σ2
h − Σh

 2N∑
j=1

vjEj,j

+ εδ

N∑
j=1

E2j−1,2j−1 , (4.104b)

where we have also introduced the diagonal matrices V and Λ. Hence L(h) is expressible

in terms of a combination of Σh and diagonal matrices [80].
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Since Σh allows us to express the Lax pair in terms of diagonal matrices, we introduce

the simplifying notation Dj (with a single subscript) to indicate the (2N×2N) elementary

diagonal matrix with a 1 in the (j, j) entry, and zero everywhere else, Dj := Ej,j . This

reduces some unnecessary subscripts in the calculations to follow. Σh also commutes with

these diagonal matrices according to the simple rule

DjΣh = ΣhDj+1 , (4.105)

which is easily shown from the de�nition (4.101).

Having written the Lax matrix as a quadratic in Σh (4.104), it is easy to identify

factorisations of L(h), of which there are two possibilities. Either

L(h) = N(h)M(h) , (4.106a)

with

M(h) = Σh − εδ
∑
j

v−1
2j D2j−1 , (4.106b)

N(h) = Σh −
∑
j

vj+1Dj + εδ
∑
j

v−1
2j+2D2j . (4.106c)

Or the alternative decomposition,

L(h) = M′(h)N′(h) , (4.107a)

with

M′(h) = Σh − εδ
∑
j

v−1
2j−1D2j−1 , (4.107b)

N′(h) = Σh −
∑
j

vjDj + εδ
∑
j

v−1
2j−1D2j . (4.107c)

The equations of motion for the map (4.5) then arise from a conjugation with the matrix

M(h),

L̂(h)M(h) = M(h)L(h) ⇒ L̂(h) = M(h)N(h) . (4.108)

In other words, evolving the map by one time step corresponds to interchanging the factors

of the Lax matrix L(h) [80]. Note that the Darboux matrix M(h) could also be derived

from the local Lax matrices Li(λ), Mj(λ) (4.9a), (4.9b) in the same way as the Lax matrix

L(h). Although these interchanges generate the dynamics, the possible link to a variational

formulation, or indeed to a path integral quantisation, is not currently known. For the
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discrete Calogero-Moser map, the generating Lagrangian arises as the log determinant

of the Darboux matrix, M, but such a connection has not yet been discovered for other

discrete-time mappings. Interchange of the alternative factors M′ and N′ (4.107) yields

equations of motion corresponding to the backwards time evolution.

The evolution of the Lax matrix L(h) (4.108) additionally guarantees the invariance of

the spectral curve,

det
(
λI− L(h)

)
= 0 . (4.109)

This yields invariants for the model as the minors of L(h). Note that the spectral curve

(4.109) is closely related to the spectral curve of the local Lax pair (4.11), such that the

invariants for the dual Lax matrix are the same as those yielded by the monodromy matrix

T (λ) (4.10) [24].

4.4.2 r-matrix structure

As described in (4.14), the Poisson bracket structure of the local Lax matrices Li(λ) (4.9a)

can be encoded in a classical r-matrix structure. We would expect there to be a similar

structure for the dual Lax matrix L(h) (4.100), but such a structure for the generalised

McMillan case surprisingly does not exist in the literature; although it has been found for

a selection of other models with similar Lax structures [104, 105]. However, in [60] the

authors consider a similar dual Lax structure for the Dimer-Self-Trapping model, and the

r-matrix structure in that case turns out also to be the correct one for the McMillan map.

We begin by choosing the r-matrix from [60] which lives in the matrix tensor product

space,

r12(h, h′) =
1

h− h′

h′∑
j≥i

+h
∑
j<i

Eij ⊗ Eji . (4.110)

The authors do nothing more with r12 except to comment on its non-unitarity, that is

r21 6= −r12. They mention that in some cases it is possible to gauge transform to an

alternative, unitary form of the r-matrix, although this is not done for the speci�c case.

The r-matrix (4.110) however, can alternatively be written in terms of the shift matrix

Σh (4.101), which reveals some interesting properties. We suppress the spectral parameter

to write

Σ1 := Σh ⊗ I =
1
Σh , Σ2 := I⊗ Σh′ =

2
Σh′ . (4.111)
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Recalling the periodicity property of Σh (4.103), we write the r-matrix as

r12(h, h′) =
1

h− h′

(∑
j<i

Σ2N
1

1
Eij

2
Eji +

∑
j≥i

1
Eij

2
Eji Σ2N

2

)
, (4.112a)

=
1

h− h′

(∑
j<i

Σ2N−i+j
1

1
Ejj

2
Ejj Σi−j

2

+
∑
j≥i

Σj−i
1

1
Ejj

2
Ejj Σ2N−j+i

2

)
, (4.112b)

=
1

h− h′
2N∑
k=1

Σ2N−k
1 E12Σk

2 , (4.112c)

where we have introduced the sparse diagonal matrix across the tensor product space,

E12 =
2N∑
j=1

Ejj ⊗ Ejj . (4.113)

The expression (4.112c) then gives a form for r12 in terms only of the shift matrix Σh and

E12 - a form inherently compatible with the dual Lax matrix L(h) (4.104).

We can take the summation expression for the r-matrix (4.112c) further by noting a

relation to a fractional expression of the Σh matrices. Notice that

(Σ1 − Σ2)−1 =
1

h− h′
2N∑
k=1

Σ2N−k
1 Σk−1

2 , (4.114)

which is easily checked by multiplication by (Σ1 −Σ2) and use of the periodicity property

(4.103). Comparing with the expression for the r-matrix (4.112c), we can write the normal

ordered expression

r12(h, h′) =
1

h− h′

[
2N∑
k=1

Σ2N−k
1 E12Σk−1

2

]
Σ2 , (4.115a)

= :
E12

Σ1 − Σ2
: Σ2 . (4.115b)

The notation : : indicates a normal ordering on the factors Σ1 and Σ2. In a series

expansion of : f(Σi,Σj) : the normal ordering indicates that factors of Σi should be placed

to the left, and factors of Σj to the right. Note that the ordering of factors is indicated by

the order that the Σh factors are written inside the function, so that for example

:
E12

Σ1 − Σ2
:=

1

h− h′
2N∑
k=1

Σ2N−k
1 E12Σk−1

2

6= 1

h− h′
2N∑
k=1

Σ2N−k
2 E12Σk−1

1 = − :
E12

Σ2 − Σ1
: . (4.116)
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In the �rst normal-ordered fraction, Σ1 factors are placed to the front and Σ2 factors to

the back, whereas in the second expression this ordering choice is reversed, with the two

choices not equivalent. This yields a very satisfying form for r12 as a normally ordered

fraction of Σh matrices. In practice, the expansion (4.112c) remains the more useful for

calculations.

Now, recalling the non-ultralocal Poisson bracket structure for the vi (4.7) we can

calculate the Poisson bracket for the dual Lax matrix L(h) (4.104),

{L1,L2} = Σ1

2N∑
i=1

(
1
Di+2 −

1
Di

)
2
Di Σ2 , (4.117a)

= Σ2E12Σ1 − Σ1E12Σ2 , (4.117b)

so that this is expressed in terms of Σh and E12. Returning to the expression for r12

(4.112c) it is straightforward to show that the Poisson bracket (4.117) can be expressed in

linear r-matrix form as

{L1(h),L2(h′)} = [r12,L1]− [r21,L2] . (4.118)

Such r-matrix forms have been found previously [9, 104] in particular for the Dimer-Self-

Trapping case that we have been following [60], but this is a new result for the generalised

McMillan maps. Notice that in comparison to the local Lax case (section 4.1.2) this is a

linear r-matrix structure, rather than the typically quadratic form of (4.14).

A number of properties for the r-matrix arise from its normal ordered fraction form

(4.115). Respecting the normal ordering, we can write the inversion of the fraction, such

that

Σ1

(
:

E12

Σ1 − Σ2
:

)
−
(

:
E12

Σ1 − Σ2
:

)
Σ2 = E12 . (4.119)

This is easy to verify by expanding the fraction and using the periodicity property of Σh:

there is a natural telescoping of the terms created. But, this is equivalent to a classical

pseudo-skew-symmetry for the r-matrix,

r12 + r21 = −E12 . (4.120)

Notice that in order for the r-matrix structure of the Lax matrix (4.118) to de�ne a proper

Poisson bracket, it must be skew-symmetric. But this is automatic in this case. Hence the

non skew-symmetry of the r-matrix, r12 6= −r21, is not problematic.

In many cases, the classical r-matrix is skew-symmetric, and has often emerged as

the classical limit of some unitary solution to the Yang-Baxter equation [53]. In [60], the
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authors mention another case (the Toda system) where a gauge transform puts a non

skew-symmetric r-matrix (of the kind we are considering) into a skew-symmetric form.

However, they do not suggest what an appropriate transform might be in the DST case,

and it is similarly unclear how to make such a transformation for the generalised McMillan

case. The r-matrix of (4.112c) is, however, su�ciently interesting to merit further study

despite its non skew-symmetry.

To de�ne a proper Poisson bracket, the r-matrix structure (4.118) must also have the

Jacobi property,

{L1, {L2,L3}}+ {L2, {L3,L1}}+ {L3, {L1,L2}} = 0 . (4.121)

To hold, this requires that r12 obeys a classical Yang-Baxter condition [32, 53],[
L1 , [r12, r13] + [r12, r23] + [r32, r13]

]
= 0 , (4.122)

which is clearly satis�ed if the sum of r-matrix commutators is zero. Using the summation

form of the r-matrix (4.112c) we can show that the three-term relation holds,

r12r13 = r13r32 + r23r12 , (4.123)

from which it is easy to show that the classical Yang-Baxter equation (4.122) follows, and

hence the Poisson bracket (4.118) has the Jacobi property.

This three term relation appears somewhat mysterious, but is related to the normal-

ordered fraction form of the r-matrix (4.115). The three term relation (4.123) is written

using the fractional form as

:
E12

Σ1 − Σ2
Σ2 : :

E13

Σ1 − Σ3
Σ3 :

= :
E13

Σ1 − Σ3
Σ3 : :

E32

Σ3 − Σ2
Σ2 : + :

E23

Σ2 − Σ3
Σ3 : :

E12

Σ1 − Σ2
Σ2 : . (4.124)

We note two properties. First, since Σh and Eij are numerical matrices, matrices in

di�erent tensor product spaces can commute through each other freely. Second, using

the commutation rule between the Dj and Σh (4.105), it is possible to reverse the factors

in the normal ordering,

:
Eij

Σi − Σj
Σj : =

1

hi − hj

2N∑
k=1

Σ2N−k
i EijΣ

k
j , (4.125a)

=
1

hi − hj

2N∑
k=1

Σk
jEijΣ

2N−k
j = − : Σj

Eji

Σj − Σi
: . (4.125b)
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Note that the exchange only works in this simple form because there are precisely 2N

of the Σ matrices in each term of the summation. Exploiting these two properties, the

extra factors of Σ2 and Σ3 in (4.124) can be cancelled out, leaving a relation in terms of

normal-ordered fractions only,

:
E12

Σ1 − Σ2
::

E13

Σ1 − Σ3
: = :

E23

Σ2 − Σ3
::

E12

Σ1 − Σ2
: − :

E13

Σ1 − Σ3
::

E23

Σ2 − Σ3
: . (4.126)

But this has the form of a partial fraction identity for the normally ordered matrix fractions.

Note that the ordering of the factors in the identity is non-trivial. Indeed, showing that

this identity holds directly seems to be quite tedious. Nonetheless, it hints at possible

deeper elements to these normally ordered fractions which merit further exploration.

4.4.3 Structure under the mapping

Considering the wider Lax structure of (4.106), we �nd that the r-matrix structure (4.112c),

(4.118) can also be extended to the Darboux matrix M(h) (the matrix generating the time

evolution). Since M(h) depends only on the even numbered vi, the non ultra-local Poisson

structure means it has trivial Poisson bracket,

{M1,M2} = 0 . (4.127)

Considering the r-matrix, it is also straightforward to show that the sum of the

commutators is zero,

[r12,M1]− [r21,M2] = 0 . (4.128)

But the sum of these results is that M(h) has the same r-matrix structure as L(h),

{M1,M2} = [r12,M1]− [r21,M2] = 0 , (4.129)

albeit the structure holds in a �trivial� sense.

In order to describe the full r-matrix structure for the mapping, we also need a

description of the interaction between L(h) and its factor M(h) that generates the time

evolution. It is easily possible to calculate the relevant Poisson bracket,

{L1,M2} = εδ Σ1

∑
j

v−2
2j

(
1
D2j+1 −

1
D2j−1

)
2
D2j−1 . (4.130)

The �missing piece� of the r-matrix structure is to express this Poisson bracket in terms

of the r-matrix (or possibly an �s-matrix� as in the local case (4.14)). The Poisson
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bracket {L1,M2} describes the relations for the discrete time-evolution, and is needed

for a complete description particularly in the quantum case, where establishing invariants

is more di�cult.

To be useful for the discrete time-evolution, the r-matrix structure (4.118) must be

preserved under the mapping; in other words we need

{L̂1, L̂2} = [r12, L̂1]− [r21, L̂2] . (4.131)

The evolved matrix L̂(h) is given in (4.108). To calculate the r-matrix structure we would

ideally use the bracket {L1,M2}, but this part of the r-matrix structure remains unknown.

However, using the expressions for M(h) and N(h) (4.106) we can calculate L̂(h) directly.

In terms of the vi, we �nd

L̂(h) = Σ2
h − Σh

(∑
i

vi+1Di + εδ
∑
j

(v−1
2j − v

−1
2j+2)D2j

)
+ εδ

∑
j

D2j−1 . (4.132)

From this, and using r12 (4.112c) and the Poisson bracket (4.7), it is possible (though

tedious) to show directly that (4.131) holds, and

{L̂1, L̂2} = [r12, L̂1]− [r21, L̂2] = Σ2E12Σ1 − Σ1E12Σ2 . (4.133)

This means that the r-matrix structure (4.118) is indeed preserved under the mapping.

Recalling (4.117), the last equality of (4.133) then also gives us that

{L̂1, L̂2} = {L1,L2} , (4.134)

so that the Poisson structure of the vi can be clearly seen to be preserved by the mapping

{vi} → {v̂i}.

The r-matrix structure is then useful to prove that the system possesses su�ciently

many invariants in involution, with respect to the Poisson bracket (4.7). The time evolution

of the Lax matrix is described by a zero-curvature condition (4.108), which ensures that

the trace of powers of L(h) are preserved under the mapping,

tr
(
L̂n(h)

)
= tr

(
M(h)Ln(h)M−1(h)

)
= tr

(
Ln(h)

)
. (4.135)

Varying the power n yields su�cient invariants (P − 1) for the mapping. Note the link to

the invariants derived from the local monodromy matrix T (λ) (4.10) through the relation

of the spectral curves (4.109).



Dual Lax and r-matrix Structure 137

Involutivity of these invariants is proved by considering tr12{Ln1 (h),Lm2 (h′)} (that is,

the trace across both parts of the tensor product space) [9]. On the one hand,

tr12{Ln1 (h),Lm2 (h′)} = {trLn(h), trLm(h′)} . (4.136)

On the other hand, using the r-matrix relation (4.118),

tr12{Ln1 (h),Lm2 (h′)} = tr12

n−1∑
k=0

m−1∑
l=0

Lk1L
l
2{L1,L2}Ln−1−k

1 Lm−1−k
2 , (4.137a)

= tr12

∑
k,l

Lk1L
l
2

(
[r12,L1]− [r21,L2]

)
Ln−1−k

1 Lm−1−k
2 , (4.137b)

= tr12

(∑
l

Ll2[r12,L
n
1 ]Lm−1−l

2 −
∑
k

Lk1[r21,L
m
2 ]Ln−1−k

1

)
, (4.137c)

= m tr2

(
tr1

(
[r12,L

n
1 ]
)
Lm−1

2

)
− n tr1

(
tr2

(
[r21,L

m
2 ]
)
Ln−1

1

)
, (4.137d)

= 0 . (4.137e)

Hence the invariants are in involution,

{trLn(h), trLm(h′)} = 0 , (4.138)

and therefore we have classical integrability of the map.

Much of the literature on classical r-matrices focuses on the skew-symmetric case [104],

where the linear Poisson bracket algebra (4.118) can be recast into a quadratic form,

{L1(h),L2(h′)} = [r12(h− h′),L1(h)L2(h′)] . (4.139)

Such quadratic Poisson algebras then have a known relation to quantum R-matrix

structures. The desire for skew-symmetric r-matrices is su�ciently strong that non skew-

symmetric r-matrices have tended to receive less attention, even when they are the natural

structure for a particular model [60]. We have uncovered here a novel formulation of

the non skew-symmetric r-matrix as a normally ordered partial fraction, with interesting

properties of its own that seem to be inherited from the fractional form. Moreover, this is

the natural r-matrix for the McMillan map, with no apparent transformation to a unitary

form. The outstanding problem is to relate the evolution as derived from the Lax pair

to a variational formulation from the map, and hence (perhaps) to the possibility of a

commuting �ow and Lagrangian one-form structure.
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4.4.4 The Quantum Case

The Local Lax matrices of the generalised McMillan map permit a quantisation via the

quantum inverse scattering method - a quantum R-matrix structure (4.19). This structure

allows the derivation of commuting quantum invariants, which is less straightforward than

in the classical case, requiring the construction of the object τ(λ) (4.20). The classical

Yang-Baxter structure of section 4.1.2 and (4.14) then arises naturally in the small ~ limit

of this quantum structure. The dual r-matrix structure of (4.118) is a linear and non

skew-symmetric structure, and it is less clear how this might arise from a wider quantum

structure. However, there is some literature on the quantisation of non skew-symmetric

r-matrices [42], and it is known that such linear structures can be transferred easily into

the quantum regime via a quantum r-matrix [104]. We make some further remarks about

the quantisation here.

In the quantum regime, the variables vi become operators vi with the Poisson bracket

replaced by a commutator (4.17). Denoting the dual Lax matrix (4.104) in the operator

case by L(h), the linear nature of the structure yields a commutator that is a direct

translation of the classical Poisson bracket (4.118) [104],

[L1,L2] = i~
(
[r12,L1]− [r21,L2]

)
. (4.140)

This leads us to introduce the quantum r-matrix,

r12 = i~r12 . (4.141)

The linearity also means that the classical calculation of preservation of the Poisson bracket

structure (4.134) carries over directly in the quantum regime to give

[L̂1, L̂2] = [L1,L2] = [r12,L1]− [r21,L2] . (4.142)

So, the commutator bracket structure is also preserved under the mapping.

Recall the pseudo-skew-symmetry of r12 (4.120). The r-matrix remarkably also exhibits

a quantum-type unitarity. Consider the product,

r12(h, h′) . r21(h′, h) =
1

h− h′
2N∑
k=1

Σ2N−k
1 E12Σk

2 .
1

h′ − h

2N∑
l=1

Σ2N−l
2 E21Σl

1 ,

=
−1

(h− h′)2

2N∑
k,l,i,j=1

Σ2N−k+l
1

1
Di+l

2
Di

1
Dj

2
Dj−k Σ2N−l+k

2 ,

=
−hh′

(h− h′)2
I⊗ I . (4.143)
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So, r21 is a scaled inverse for r12: the r-matrices are essentially unitary. In terms of the

quantum r-matrix, we can write the unitarity as

h− h′

h
r12(h, h′) .

h′ − h
h′

r21(h′, h) = (i~)2 . (4.144)

This is unusual: r12 is a classical r-matrix, exhibiting a quantum property. This property

allows for a rearrangement of the commutator bracket (4.140) as[
L1 + r21 , L2 + r12

]
= 0 . (4.145)

This represents the quantum commutation relations for the dual Lax matrix. Compatibility

of the bracket (4.145) under a Jacobi-type relation leads to the classical Yang-Baxter

equation (4.122) as a condition, which we already know is satis�ed by r12, due to the

three term relation (4.123). Notably, the Yang-Baxter equation does not appear as a

requirement, as in many standard solutions for quantum inverse scattering.

This quantum commutation relation (4.145) can be extended into a more general case.

Consider additional r-matrices in the product,

(L1 + r21 + r31) (L2 + r12 + r32)

= (L1 + r21) (L2 + r12) + r31 (L2 + r12) + (L1 + r21) r32 + r31r32 . (4.146a)

Now, using the commutator (4.145), and identifying those matrices which commute, almost

all terms can be commuted,

= (L2 + r12) (L1 + r21) + L2r31 + r32L1 + r31r12 + r21r32 + r31r32 . (4.146b)

Finally, the paired r-matrices can be reversed by exploiting the three-term relation (4.123),

so that these entire expressions commute,

(L1 + r21 + r31) (L2 + r12 + r32) = (L2 + r12 + r32) (L1 + r21 + r31) . (4.146c)

This proof extends inductively to the addition of an arbitrary number of r-matrix terms,

so that [
L1 + i~(r21 + . . .+ rn1) , L2 + i~(r12 + r32 + . . .+ rn2)

]
= 0 . (4.147)

It follows that n such mutually commuting terms can be created,[(
Lj + i~

n∑
i=1
i 6=j

rij

)
,
(
Lk + i~

n∑
i=1
i 6=k

rik

)]
= 0 , ∀j, k = 1, . . . , n . (4.148)
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It remains unclear, however, how such a structure could be used to derive the quantum

invariants of this dual Lax matrix.

Mysteriously, despite the lack of a quadratic R-matrix structure, r12 is a solution to

the Yang-Baxter equation. Proceeding from the expression for r12 (4.112c), we can write

r12 r13 r23 =
1

H123

2N∑
k,l,m=1

(
Σ2N−k

1 E12Σk
2

)(
Σ2N−l

1 E13Σl
3

)(
Σ2N−m

2 E23Σm
3

)
,(4.149a)

=
1

H123

2N∑
k,l,m=1

Σ4N−k−l
1 Σ2N+k−m

2 Σl+m
3

×
2N∑

i,j,s=1

1
Di−l

2
Di+k−m

1
Dj

3
Dj+l+m

2
Ds

3
Ds+m , (4.149b)

=
h′

H123

2N∑
k,l=1

Σ4N−k−l
1

(
2N∑
i=1

1
Di

2
Di+k

3
Di

)
Σk+l

3 . (4.149c)

In the �nal equality we have used the product for elementary diagonal matrices DiDj =

δijDi, and we have used the shorthand for the spectral parameters H123 = (h − h′)(h −

h′′)(h′−h′′). Then, the remarkable result is that, with careful relabelling of the parameters,

we acquire the same result for the product r23 r13 r12, so that we have the Yang-Baxter

equation for the quantum r-matrix,

r12 r13 r23 = r23 r13 r12 . (4.150)

However, so far it is unclear where, or whether, a requirement arises in the structure for

r12 to obey the Yang-Baxter equation: in other words, it is so far unclear how this result

might be useful.

As discussed in [74, 103] uncovering the invariants in the quantum case is more

complicated than classically, since we must deal with the issue of operator ordering.

Whilst classically it is straightforward to �nd invariants using the trace (4.135), in the

quantum case this is no longer su�cient: non-trivial commutation relations mean that the

cyclic property of the trace does not hold in general. In order to prove both invariance

and commutativity, some quantum corrected object may be required, as in the local Lax

case (4.20). What is missing to prove these properties, however, is an r-matrix structure

encompassing the time evolution element M(h) - exactly as in the classical case (4.130).

An alternative approach for some models has been the creation of central objects in the

operator algebra called quantum determinants [39, 103, 104], but these have generally been

applied to 2× 2 Lax matrices.
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However, we can make some progress in this example by considering the simplest case,

when 2P = 4: the McMillan map. Then the quantum dual Lax matrix (4.100) is given by

L(h) =


εδ −v2 1 0

0 0 −v3 1

h 0 εδ −v4

−hv1 h 0 0

 . (4.151)

The classical invariant for the map is given by tr(L4) (or equivalently det(λ− L(h))),

I = (v4v3 − εδ)(v2v1 − εδ) . (4.152)

In the quantum case there is a correction to the McMillan invariant, so that it is given by

I = (v4v3 − εδ)(v2v1 − εδ) + i~v3v2 . (4.153)

(See section 4.3.) In the local Lax case this is derived from τ(λ) (4.20), but can also be

veri�ed with the equations of motion (4.5) and commutator bracket (4.17) [74].

For the quantum Lax matrix L(h), we then consider the trace tr(L4(h)). We evaluate

this trace with consideration for the operator ordering in the matrix product, and recall

the algebra Casimirs (4.6), so that

tr(L4) = 2
(
(εδ)2 + h

)2
+ 2h2 + 16hε3δ + h

[
v3v4v1v2 + v1v2v3v4

+(2εδ + v4v1)(2εδ + v2v3) + (2εδ + v2v3)(2εδ + v4v1)
]
, (4.154a)

= 2
(
(εδ)2 + h

)2
+ 2h2 + 16hε3δ + 4h

[
(v4v3 − εδ)(v2v1 − εδ)

+i~v3v2 + (εδ)2 + 4ε3δ − 3i~ε2 + 1
2~

2
]
, (4.154b)

= 4hI + 2
(
(εδ)2 + h

)2
+ 2h2 + 16hε3δ

+4h
[
(εδ)2 + 4ε3δ − 3i~ε2 + 1

2~
2
]
. (4.154c)

So, in the McMillan case, tr(L4(h)) yields exactly the correct quantum invariant I (4.153).

The natural ordering of the factors in the matrix product turns out to yield the correct

operator ordering. In this simplest case, then, the traces of the powers of L are indeed

conserved in the quantum regime: this may be a crucial hint to uncovering the general

structure.
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4.5 Summary

By exploiting the multi-dimensional consistency of the lattice KdV equation, we

investigated discrete �ows that commute with the McMillan maps. We have written explicit

equations for such a commuting map for the simplest possible reduction. However, due to

the di�culties of the non-linearity, we have not been able to write this map in a generating

function form. It remains to be shown that these maps must be canonical, and that

they preserve the invariants of the initial maps, so that uncovering the desired Lagrangian

one-form structure has not so far been possible.

For the simplest member of the mapping family, the McMillan map, we have shown

that the choice of initial Lagrangian leads to the time evolution operator and one-step

propagator. Approaching the propagator via the time evolution operator, derived from

the Hamilton's equations, appears to be equivalent to deriving the propagator though

a sandwiching of the Euler-Lagrange equations between position eigenstates. The key

element is allowing the choice of Lagrangian to determine the commutation relations. There

are possible insights to be gained regarding the Hilbert space from considering the group

property of the propagators, and also from considering stationary states of the operator

invariant. However, the key outstanding question is how to resolve the two singularities

occurring at q = ±1. The resolution of singularities in quantum mechanics is an important

question in the study of integrable systems, for which this model may be a useful test case.

Considering an alternative approach, we examined the dual Lax matrix structure for

the generalised McMillan maps, and uncovered a novel expression for the r-matrix as a

normal-ordered fraction of shift matrices Σh in the matrix tensor product space. This

structure leads to interesting formulations of the pseudo-skew-symmetry and a three-term

relation that is a stronger form of the classical Yang-Baxter equation, and can also be

used to prove preservation and involutivity of the invariants. The r-matrix structure is

also preserved under the mapping, although the full structure (in particular, relating to

the Darboux matrix M(h)) is not known completely. This dual r-matrix structure leads

to a linear, quantum r-matrix structure that encodes the quantum commutation relations,

and where the matrix r12 is remarkably a solution of the Yang-Baxter equation. It appears

possible that the quantum invariants may be encoded simply in the trace of powers of the

Lax matrix L(h), but the full structure required to show this in the general case remains

unknown.
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The McMillan map remains, from the perspective of the Lagrangian one-form, unsolved.

Although one-form structures have been found to describe a range of integrable maps, it is

not yet clear how this structure might apply in cases like this one. A key missing element is

the commuting discrete �ow that is typically described by the one-form structure. However,

by deepening our understanding of the Lax structures, in particular for the dual Lax matrix,

perhaps commuting �ows can be uncovered in a similar way to the discrete time models

of Calogero-Moser type [77, 81, 125, 126].
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5
The Degasperis-Ruijsenaars Model: Propagator

and Lagrangian Formalism

The Degasperis-Ruijsenaars (DR) model was proposed in [26], where it is studied from

the perspective of Newton equivalence. The DR model has the classical equation of

motion for a harmonic oscillator, but derived from a non-Newtonian Hamiltonian which

is multiplicatively separable. This Hamiltonian is �Newton equivalent� to the standard

harmonic oscillator, since the classical Newton equations of motion are the same. The DR

Hamiltonian has a relativistic form and is closely related to the integrable Ruijsenaars-

Schneider1 (RS) model [96, 98]. Additionally to its classical properties, there is an exact

canonical quantisation of the DR model by creation and annihilation operators, in analogy

to a standard approach to the quantum harmonic oscillator. However, this quantisation

is not unitary equivalent to the standard harmonic oscillator, and di�ers by a shift in

the energy levels. In other words, although it is classically equivalent to the harmonic

oscillator, it is di�erent on the quantum level. As for the one-form structure investigated

1or relativistic Calogero-Moser
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in chapters 2 and 3, the DR model reveals hidden depths to the humble harmonic oscillator.

As discussed in section 1.2.2, the Ruijsenaars-Schneider model has a known integrable

discretisation [81] and, recently, a Lagrangian one-form structure [126]. Conversely, the

Degasperis-Ruijsenaars model is a harmonic oscillator: it may be a suitable example for

a path integral quantisation of a non-Newtonian model, allowing a comparison with the

established canonical quantisation. Through its relation to the RS model this may provide

crucial insights into the path integral quantisation of integrable models with a Lagrangian

one-form structure and to the discrete counterpart. Although the DR model is a model in

continuous time, path integral quantisation naturally raises the question of discretisation

in the time-slicing approach. For integrable models, is the correct time-slicing one that

utilises the integrable discretisation?

After introducing the Degasperis-Ruijsenaars model, we develop a novel Lagrangian

description of the model by embedding it as a centre of mass system in a two-particle

setting. We see that this again yields the harmonic oscillator equation of motion (i.e. is a

Newton equivalent description) although the separation of variables is not manifest on the

level of the Lagrangian. By making explicit the connection to the Ruijsenaars-Schneider

model, we are also able to write a Lax pair for the DR system. Finally, considering the

quantisation of the model, we exploit the known results of the canonical quantisation to

derive an expression for the propagator, and consider some aspects of the Lagrangian

structure that may lead towards a possible path integral quantisation.

5.1 The Degasperis-Ruijsenaars Model

In [26] a new system was derived from the classical Newtonian equation of motion for the

harmonic oscillator, with the Hamiltonian

Hβ =
1

β2m
cosh (βp) (1 + λ2x2)1/2 , (5.1)

with position x and momentum p. Hamilton's equations yield

ẋ =
1

βm
sinh(βp) (1 + λ2x2)1/2 , (5.2a)

ṗ = − λ2

β2m
cosh(βp)x(1 + λ2x2)1/2 , (5.2b)
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so that, when the momentum p is eliminated, the equation of motion is

ẍ = −
(
λ

βm

)2

x . (5.3)

In other words, the Hamiltonian Hβ (5.1) generates the harmonic oscillator, with angular

frequency ω = λ/βm.

This makes this a very interesting model. The harmonic oscillator (also discussed in

chapters 2 and 3) is the standard example for understanding path integral quantisation,

due to the advantages gained from its quadratic Hamiltonian [37, 47, 99]. But, here is an

alternative, non-Newtonian Hamiltonian yielding the same classical equation of motion.

As the authors go on to show to [26], this Hamiltonian can also be canonically quantised.

Can such a model, despite losing the bene�ts of the quadratic Hamiltonian, also be path

integral quantised?

The Hamiltonian (5.1) is interpreted as a relativistic harmonic oscillator, with the

parameter β playing the role of the inverse speed of light [26]. This is justi�ed by embedding

the Hamiltonian into the two particle model,

HR =
1

β2m

[
cosh (βp1) + cosh (βp2)

](
1 + λ2(x1 − x2)2

)1/2
. (5.4)

By changing to centre of mass co-ordinates,

x = x1 − x2 , X =
1

2
(x1 + x2) , (5.5a)

p =
1

2
(p1 − p2) , P = p1 + p2 , (5.5b)

the Hamiltonian HR can be written in the form

HR = 2 cosh

(
βP

2

)
Hβ(x, p) , (5.6)

with Hβ (5.1) appearing as the centre of mass Hamiltonian. The two particle Hamiltonian

HR separatesmultiplicatively into an (X,P ) and an (x, p) component. Note that separation

of variables usually occurs additively ; nonetheless we will see that this separation is e�ective

due to the total momentum P being an integral of the motion.

The relativistic aspect of the model then arises by considering the Lie algebra

of symmetries for HR (5.4) (the invariants (5.9)) which represent the Lorentz group.

Additionally, considering the non-relativistic limit on HR as β → 0, recalling that
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λ = βmω,

HR =
1

β2

(
2

m
+ β2

(
1

2mp
2
1 + 1

2mp
2
2 + 1

2mω
2x2
)

+O(β4)

)
, (5.7a)

=
2

mβ2
+HHO +O(β2) . (5.7b)

The standard Newtonian Hamiltonian for the harmonic oscillator, HHO, reappears in the

non-relativistic limit, with a constant shift to the energy −2/mβ2.

Considering the dynamics of the two particle Hamiltonian HR (5.4), Hamilton's

equations yield immediately that

Ṗ = 0 , (5.8a)

so that the total momentum P is an invariant of the motion. We also �nd equations for

the positions,

ẍ1 = −ẍ2 = − 2λ2

β2m2

(
cosh

(
βP

2

))2

x , (5.8b)

so that in terms of the centre of mass variables,

Ẍ = 0 , ẍ = −
(

2λ

βm
cosh

(
βP

2

))2

x . (5.8c)

So the total velocity Ẋ is constant, and the centre of mass variable x obeys the harmonic

oscillator equation (5.3), with angular frequency ω = 2λ cosh(βP/2)/βm, as in the one

particle model (5.1) - compare to the one-particle equation of motion (5.3). Notice that

we also have two integrals of the motion, P (5.8a) and Ẋ (5.8c), so that

I1 = P = p1 + p2 , (5.9a)

I2 = Ẋ =
1

2βm

(
sinh(βp1) + sinh(βp2)

)
(1 + λ2x2)1/2 . (5.9b)

These are independent and in involution, {I1, I2} = 0, and hence we have Liouville

integrability of the two particle model.

Other �relativistic oscillators� have been considered in the literature in a number of

places; Degasperis and Ruijsenaars highlight [7, 8] as describing a relativistic oscillator

Hamiltonian that is directly related to the DR model by a unitary similarity transform.

5.2 Lagrangian Description

In the section below we derive and investigate a Lagrangian description for the Degasperis-

Ruijsenaars model of [26]. We search for a Lagrangian that is Newton equivalent to
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the harmonic oscillator; that is, a Lagrangian that produces the harmonic oscillator as

an equation of motion, but does not have the standard Newtonian form for a harmonic

oscillator Lagrangian. This Lagrangian perspective has been previously considered in [108]

where the authors derived a relativistic form of Newton-equivalent Lagrangian, but our

perspective di�ers in that we seek a Lagrangian explicitly related to the DR model by

Legendre transform.

5.2.1 Legendre Transform

The Hamiltonian perspective on the Degasperis-Ruijsenaars oscillator is well understood

[26], but for our purposes we are interested in the companion variational approach. In

general, the Lagrangian is found via a Legendre transform from the Hamiltonian Hβ (5.1),

but attempting such a Legendre transform for the DR model produces an undesirably

complicated Lagrangian that does not seem amenable for further study. However, the two

particle Hamiltonian HR (5.4) [26] turns out to be an appropriate setting for a Legendre

transform and a variational formulation of the model. This is unsurprising: the two particle

form of the DR oscillator is closely related to the Ruijsenaars-Schneider model, which has

a known Lagrangian form [20]. This relation will be established in more detail in section

5.2.3.

Establishing the Lagrangian for the two particle Hamiltonian HR (5.4) rests on the

integrals of the motion. For Lagrangian one-form structures, Legendre transforms relate

the hierarchy of commuting integrals to the components of the one-form structure [110,

126]. Although in the two particle case we expect only a single Lagrangian, the invariants

maintain their importance. Considering the integrals of motion I1, I2 (5.9), it is easy to

see that we equivalently have commuting integrals

S1 = eP = ep1+p2 , (5.10a)

S2 = 2β2meβP/2Hβ =
(
eβp1 + eβp2

)
(1 + λ2x2)1/2 , (5.10b)

with Hβ the one particle Hamiltonian given in (5.1). Performing a Legendre transform

on the two particle Hamiltonian HR (5.4) is also di�cult. However, if we consider the

time �ow generated by the invariant S2 (5.10b), then we are able to perform a Legendre

transform. In other words, we take S2 to be the two particle Hamiltonian.
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We generate Hamilton's equations from S2,

ẋi = βeβpi(1 + λ2x2)1/2, (5.11)

and Legendre transform the invariant S2 in the usual way. This yields the Lagrangian

Lβ(x, ẋ) =
1

β

[
ẋ1 ln ẋ1 + ẋ2 ln ẋ2 −

1

2
(ẋ1 + ẋ2) ln(1 + λ2x2)− (ẋ1 + ẋ2)

]
. (5.12)

Removing the overall multiplier 1/β and a total derivative term, this is equivalent to the

Lagrangian

LDR(x, ẋ) = ẋ1 ln ẋ1 + ẋ2 ln ẋ2 −
1

2
(ẋ1 + ẋ2) ln(1 + λ2x2) . (5.13)

As for the two particle Hamiltonian (5.4), this closely resembles the known Lagrangian for

the Ruijsenaars-Schneider model [20]. Indeed such ẋ ln ẋ kinetic terms are characteristic

of these relativistic models [18, 20, 97, 126]. Note that the relativistic parameter β

has disappeared from the Lagrangian, amounting to a �xing of the gauge, but is easily

reintroduced.

5.2.2 Lagrangian dynamics

Is the Lagrangian LDR (5.13) really equivalent to the Degasperis-Ruijsenaars Hamiltonian

HR (5.4)? We saw in section 5.2.1 that they are not related by a Legendre transform.

However, it is easy to see from the dynamics of LDR that we recover the essential harmonic

oscillator motion on the level of the centre of mass motion that characterises the DR

oscillator.

The Lagrangian LDR (5.13) yields the Euler-Lagrange equations

ẍ1 = −2λ2x
ẋ1ẋ2

1 + λ2x2
, ẍ2 = 2λ2x

ẋ1ẋ2

1 + λ2x2
. (5.14)

In terms of the centre of mass variables x = x1 − x2 and X = (x1 + x2)/2 (5.5), the

equations of motion are

ẍ = −4λ2x
ẋ1ẋ2

1 + λ2x2
, Ẍ = 0 , (5.15)

so that there is a constant centre of mass motion, and Ẋ is an integral of the motion.

Now, considering the conjugate momenta arising from the Lagrangian LDR,

pi =
∂L

∂ẋi
= ln ẋi + 1− 1

2 ln(1 + λ2x2) , (5.16)
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the Euler-Lagrange equations (5.14) yield the conservation of the total momentum,

d

dt
P =

∂LDR
∂x1

+
∂LDR
∂x2

= 0 . (5.17)

Hence expressing the conjugate momenta in terms of x, ẋ (5.16) we can write the integral

of the motion

I1 =
ẋ1ẋ2

1 + λ2x2
= ep1+p2−2 . (5.18)

The equation of motion in the centre of mass variables (5.15) therefore reduces to

ẍ = −4I1λ
2x2 , (5.19)

which is the equation of motion for a one-dimensional harmonic oscillator, as in the

Hamiltonian description (5.3) and (5.8c), with angular frequency ω2 = 4I1λ
2. In other

words, the Lagrangian LDR (5.13) once more results in the harmonic oscillator equation of

motion; in the terminology of [26] it is �Newton equivalent� to the usual harmonic oscillator

Lagrangian. Additionally, the equations of motion describe the same dynamics as the two

particle DR Hamiltonian (5.8c), and so the Lagrangian LDR and Hamiltonian HR are

equivalent, up to a gauge choice of momentum variables.

In addition to the total momentum, yielding the invariant I1 (5.18), the centre of mass

velocity Ẋ is also an invariant of the motion (5.15),

I2 =
1

2
(ẋ1 + ẋ2) =

1

2e
(ep1 + ep2)(1 + λ2x2)1/2 , (5.20)

which is essentially the generating Hamiltonian S2 (5.10b).

5.2.3 Comparison to two particle Ruijsenaars-Schneider Model

Writing qi, pi for position and momentum, the two particle Ruijsenaars-Schneider model

has a Hamiltonian of the form [96]

HRS(q, p) = mc2(cosh p1 + cosh p2) (℘(ν)− ℘(q1 − q2))1/2 , (5.21a)

= 2mc2 coshP cosh p (℘(ν)− ℘(q))1/2 , (5.21b)

for centre of mass variables q, p, P (compare (5.5)), parameter ν, and where ℘(q) is the

Weierstrass ℘ function. This has invariants,

S1 = ep1+p2 , S2 = (ep1 + ep2)(℘(ν)− ℘(q))1/2 . (5.22)
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So, notice that the Hamiltonian and invariants here have the same forms as the Degasperis-

Ruijsenaars case (5.4), (5.10a) and (5.10b), with a di�erent potential term.

The invariant S2 undergoes a Legendre transform to

LRS = q̇1 ln q̇1 + q̇2 ln q̇2 −
1

2
(q̇1 + q̇2) ln (℘(ν)− ℘(q)) , (5.23)

in the same way as the DR Lagrangian LDR (5.13). Similarly, the equations of motion

reduce in the centre of mass variable q to

q̈ = 2q̇1q̇2
℘′(q)

℘(ν)− ℘(q)
= 2eP−2℘′(q) . (5.24)

This has the same form as the centre of mass equations of motion for the DR model (5.15),

with an altered potential.

In fact it is possible to make the connection between the Ruijsenaars-Schneider and

Degasperis-Ruijsenaars models explicit. The DR model arises as a speci�c linearisation

from the trigonometric case of the RS model.2 The trigonometric case arises from a

reduction on the periods of the elliptic ℘ function to produce a trigonometric potential,

℘(q)→ cosec2q (compare the limits of (1.51)), so that the Lagrangian (5.23) and equations

of motion (5.24) become

LTrig(q, q̇) = q̇1 ln q̇1 + q̇2 ln q̇2 −
1

2
(q̇1 + q̇2) ln

(
cosec2ν − cosec2q

)
, (5.25a)

q̈ = −4q̇1q̇2
cosec3q cos q

cosec2ν − cosec2q
. (5.25b)

To reduce to the equations for the DR model, we introduce the small parameter ε, and

expand with an angular shift,

q =
π

2
+ εx , ν =

π

2
+ εµ . (5.26)

Applied to the trigonometric Lagrangian and equation of motion (5.25), these yield to

highest order in ε

L(x, ẋ) = ẋ1 ln ẋ1 + ẋ2 ln ẋ2 −
1

2
(ẋ1 + ẋ2) ln(µ2 − x2) , (5.27a)

ẍ =
4ẋ1ẋ2x

µ2 − x2
. (5.27b)

But, these are exactly the equations for the Degasperis-Ruijsenaars model under the

parameter relabelling µ2 = −1/λ2: the replacement yields precisely the DR Lagrangian

LDR (5.13) and equations of motion (5.15).

2I am grateful to S. Ruijsenaars for this hint.
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We exploit this direct limit from the trigonometric Ruijsenaars-Schneider model to

derive two additional results below: an alternative Lagrangian and a Lax pair for the

Degasperis-Ruijsenaars model.

Alternative Choice of Lagrangian

In [126], the authors derived a discrete Lagrangian one-form structure for the integrable

discretisation of the Ruijsenaars-Schneider model, discussed in section 1.2.2. A continuum

limit led to an alternative Lagrangian to LRS (5.23) for the rational RS model, in the

continuous Lagrangian one-form. In the rational limit, the elliptic function reduces to

a rational function, ℘(q) → 1/q2, and the lowest member of the Lagrangian one-form

hierarchy (for the two particle model) is given by

Lrat(q, q̇) = q̇1 ln q̇1 + q̇2 ln q̇2 − q̇1

(
ln(q + ν)− ln q

)
− q̇2

(
ln(q − ν)− ln q

)
. (5.28)

Compared to the Lagrangian LRS the potential term has been factorised and rearranged.

Guided by this Lagrangian, we seek an alternative Lagrangian to LDR (5.13) for the

Degasperis-Ruijsenaars model. The key observation is the factorisation of the potential

term,

1 + λ2x2 = (1 + iλx)(1− iλx) , (5.29)

as used in the canonical quantisation of the model [26] (see section 5.3.1). A little

investigation reveals the alternative Lagrangian for the DR model,

LDR(x, ẋ) = ẋ1 ln ẋ1 + ẋ2 ln ẋ2 − ẋ1 ln(1 + iλx)− ẋ2 ln(1− iλx) . (5.30)

Note that although the Lagrangian LDR (5.30) does not Legendre transform to the same

Hamiltonian as LDR (5.13), it nonetheless has the same classical dynamics. Essentially, it

di�ers in a gauge choice of momentum variables. The simplicity of this form of Lagrangian

is particularly appealing, especially in seeking a suitable path integral quantisation.

Lax Pair

The close relation between the Degasperis-Ruijsenaars model and the two particle

Ruijsenaars-Schneider model allows us to �nd a Lax pair encoding the DR system and

capturing the integrals of the motion, by modifying the known Lax pair for RS. Recalling
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that the systems are linked via the trigonometric RS model (5.25), which has the Lax pair

[59, 96]

Ltrig(κ) =

 q̇1
sin(κ+ν)
sinκ sin ν (q̇1q̇2)1/2 sin(κ+ν+q)

sinκ sin(ν+q)

(q̇1q̇2)1/2 sin(κ+ν−q)
sinκ sin(ν−q) q̇2

sin(κ+ν)
sinκ sin ν

 , (5.31a)

Mtrig(κ) =



q̇1(cotκ+ cot ν)

+1
2 q̇2

(
cot(ν + q)

+ cot(ν − q)
) (q̇1q̇2)1/2 sin(κ+ν)

sinκ sin ν

(q̇1q̇2)1/2 sin(κ+ν)
sinκ sin ν

q̇2(cotκ+ cot ν)

+1
2 q̇1

(
cot(ν − q)

+ cot(ν + q)
)


. (5.31b)

The Lax pair encodes the equations of motion by the relation

L̇trig =
[
Mtrig, Ltrig

]
. (5.32)

We note that, in the matrices above, the spectral variable κ is separable and therefore

redundant to the dynamics.

Applying the linearising limit (5.26) to the RS Lax matrices therefore leads to a Lax

pair for the DR model,

LDR(κ) =

 ẋ1

(
1
µ + 1

κ

)
(ẋ1ẋ2)1/2

(
1
µ + 1

κ −
1

µ−x

)
(ẋ1ẋ2)1/2

(
1
µ + 1

κ −
1

µ+x

)
ẋ2

(
1
µ + 1

κ

)
 , (5.33a)

MDR(κ) =



ẋ1

(
1
µ + 1

κ

)
−1

2 ẋ2

(
1

µ+x + 1
µ−x

) (ẋ1ẋ2)1/2
(

1
µ + 1

κ

)

(ẋ1ẋ2)1/2
(

1
µ + 1

κ

) ẋ2

(
1
µ + 1

κ

)
−1

2 ẋ1

(
1

µ+x + 1
µ−x

)


, (5.33b)

where a spectral parameter κ has been used to mimic the form of the RS Lax pair. Recall

that the parameter µ is related to the oscillator parameter λ by µ2 = −1/λ2. The DR

equations of motion (5.14) arise from the commutator,

L̇DR(κ) =
[
MDR(κ), LDR(κ)

]
, (5.34)

with the invariants (5.20) encoded by the spectral curve,

det
(
LDR(κ)− ηI

)
= 0 . (5.35)
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The form of the Lax pair LDR(κ), MDR(κ) might encourage us to think we could lift

the model to a discrete time version, since it is closely related to the RS Lax pair for

which an integrable discretisation is known [81]. However, in the RS case this depends

upon the Lagrange interpolation formula, but in the DR model some critical factors in the

application of this formula are missing, so that an analogous derivation does not seem to

be possible. This is perhaps unsurprising, as the nature of the integrable discretisation is

very precise. However, it is possible that a correct application of the linearisation (5.26)

to the discrete trigonometric RS model might yield some integrable discretisation for DR.

5.3 The Quantum System

We consider the quantisation of the Degasperis-Ruijsenaars oscillator. The quantum DR

oscillator is not unitary equivalent to the harmonic oscillator, but it shares many of its

nice properties. These allow a canonical quantisation, in particular the construction of

a creation and annihilation operator algebra [26]. This leads us to question whether a

path integral quantisation is possible, despite the non-Newtonian Lagrangian. Indeed, its

relation to the integrable Ruijsenaars-Schneider model and discrete counterpart, together

with their Lagrangian one-form structures, make this an interesting and potentially fruitful

avenue for exploring the nature of path integral quantisations in such integrable cases. As

commented in [26], the move from a classical equation of motion to quantum mechanics

depends essentially on choosing either a Lagrangian or Hamiltonian function as a starting

point: in the non-Newtonian case it is not necessarily clear that these two approaches need

be equivalent.

5.3.1 Canonical Quantisation

A remarkable feature of the Degasperis-Ruijsenaars Hamiltonian Hβ (5.1) is that it can be

quantised [26]. Position and momentum become operators x, p, and a particular ordering

prescription is chosen for Hβ to ensure the Hamiltonian is self-adjoint and parity invariant

as a quantum operator,

Ĥβ =
1

β2m

[
(1 + iλx)1/2eβp(1− iλx)1/2 + (1− iλx)1/2e−βp(1 + iλx)1/2

]
. (5.36)
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Under a standard operator representation p = −i~∂x, the exponentiated momentum

operators act as analytical di�erence operators,

eβpf(x) = e−i~β∂xf(x) = f(x− i~β) . (5.37)

The Hilbert space theory for such models is by no means straightforward [26, 96]. The

authors proceed by establishing a set of complete, orthogonal eigenstates for the model,

and then treating Ĥβ as a proper Hamiltonian operator restricted to the Hilbert space

formed by the eigenstates.

Following [26] we use dimensionless variables, making the replacements
√

(mω/~)x→

x, and
√
~βλ → λ. We replace Ĥβ with the Hamiltonian in terms of the dimensionless

quantities,

Ĥλ =
1

2λ2

[
(1 + iλx)1/2e−iλ∂x(1− iλx)1/2 + (1− iλx)1/2eiλ∂x(1 + iλx)1/2

]
. (5.38)

By establishing an algebra of creation and annihilation operators similarly to the standard

treatment of the quantum harmonic oscillator, the authors �nd explicitly a complete set

of eigenstates and energy levels for the system. In particular, this is therefore an exactly

solvable quantum system in 1 dimension, with a non-Newtonian Hamiltonian.

The Hamiltonian Ĥλ (5.38) possesses a complete set of normalised, orthogonal, energy

eigenstates {ψ̂(λ)
n (x) |n = 0, 1, 2, . . .}, so that

Ĥλψ
(λ)
n = Enψ

(λ)
n , with En = λ−2 + n . (5.39)

Notice that the model has quantised energy eigenstates. We use ψ
(λ)
n to denote the

unnormalised state, whereas the addition of a hat ψ̂
(λ)
n indicates the normalised eigenstate.

The un-normalised eigenstates are given by

ψ(λ)
n (x) = ψ

(λ)
0 (x)p(λ)

n (x) , (5.40a)

with a ground state

ψ
(λ)
0 (x) =

[
Γ(λ−2 + iλ−1x)Γ(λ−2 − iλ−1x)

]1/2
, (5.40b)

and excited states given by the polynomials

p(λ)
n (x) = n!

(
λ

2

)n
P (λ−2)
n (x/λ;π/2) , (5.40c)
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where P
(α)
n (x; θ) are the Meixner-Pollaczek polynomials [30, 57], a family of orthogonal

polynomials. The normalisations follow,

(ψ(λ)
n , ψ(λ)

n ) = n!

(
λ

2

)2n Γ(n+ 2λ−2)

Γ(2λ−2)
(ψ

(λ)
0 , ψ

(λ)
0 ) , (5.41a)

(ψ
(λ)
0 , ψ

(λ)
0 ) = 21−2λ−2

πλΓ(2λ−2) . (5.41b)

The authors note additionally that some alternative ordering choices can be made in Ĥλ,

but the analytical requirements mean that these alternative choices are not necessarily

straightforward. Notice that these results apply to the reduced (centre-of-mass) model,

rather than the full two particle model. Some additional treatment is required for the

centre of mass, which may not be trivial as the separation of variables in the model is not

of the standard additive form.

In quantum mechanics, the Hamiltonian or Lagrangian play a much more fundamental

role than the classical case. Here, the Hamiltonian has been chosen as the fundamental

object, leading to a canonical quantisation. Alternatively, a Lagrangian for the model

(5.13), (5.30) can be chosen as the fundamental object. This leads to a quantisation

procedure via the path integral. For non-Newtonian Lagrangians (as we consider here)

it is far from obvious that the path integral and canonical quantisations need even be

equivalent: standard derivations of the path integral assume Hamiltonians of Newtonian

type [37, 47, 99]. The explicit canonical quantisation of this model therefore makes it an

interesting study for the development of non-Newtonian path integral quantisation.

5.3.2 The Propagator

Using known results for the Meixner-Pollaczek polynomials, it is possible to derive a

formula for the propagator for the Degasperis-Ruijsenaars model, beginning from the

Hamiltonian Ĥλ (5.38). Here we apply a Mehler formula for the Meixner-Pollaczek

polynomials to perform the sum over eigenfunctions required for the propagator, producing

an expression in terms of a hypergeometric function 2F1.

Recall that for the simple harmonic oscillator, the canonical quantisation leads to energy

eigenfunctions expressed in terms of the Hermite polynomials,

ψHOn (x) =
1√

2nn!

(mω
π~

)1/4
e−mωx

2/2~Hn

(√
mω

~
x

)
. (5.42)
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The eigenfunctions lead to the quantum mechanical propagator (1.61) through the Mehler

formula for the Hermite polynomials,

∞∑
n=0

Hn(x)Hn(y)
(

1
2 t
)n

= (1− t2)−1/2 exp

[
2xyt− (x2 + y2)t2

1− t2

]
. (5.43)

This leads to the well known propagator for the harmonic oscillator (3.22) discussed in

chapter 3.

The Meixner-Pollaczek polynomials of the DR eigenfunctions (5.40) also have a Mehler

formula [52],

∞∑
n=0

n!

(2α)n
tnP (α)

n

(
ξ;
π

2

)
P (α)
n

(
η;
π

2

)

= (1− t)−α−iη(1− t)−α−iξ(1 + t)iξ+iη 2F1

 α+ iξ, α+ iη

2α
;
−4t

(1− t)2

 . (5.44)

2F1 is the hypergeometric function,

2F1

 a, b

c
; z

 :=
Γ(c)

Γ(a)Γ(b)

∞∑
s=0

Γ(a+ s)Γ(b+ s)

Γ(c+ s)s!
zs , (5.45)

(de�ned for |z| ≥ 1 by analytic continuation) and (a)k indicates the Pochhammer symbol

for integer k,

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)
. (5.46)

This Mehler formula allows us to evaluate the sum over eigenfunctions that appears in the

propagator calculation.

The Hamiltonian Ĥλ (5.38) is time independent, and so the propagator (1.61) for the

DR model is given by

K(x, y;T ) = 〈y|e−iτĤλ |x〉Θ(τ) , (5.47a)

=

∞∑
n=0

ψ̂(λ)
n (x)ψ̂(λ)

n (y)e−iEnτΘ(τ) , (5.47b)

by inserting a complete set of energy eigenstates
∑

n |ψn〉〈ψn| = I. We use the shorthand

τ = T/~, and Θ(τ) is the Heavyside step function. Then, using the known results for the

energy eigenfunctions (5.39), (5.40a) and (5.41), we can write the propagator

K(x, y;T ) =
1

(ψ
(λ)
0 , ψ

(λ)
0 )

ψ
(λ)
0 (x)ψ

(λ)
0 (y) e−iλ

−2τΘ(τ)

×
∞∑
n=0

1

n!

(
2

λ

)2n Γ(2λ−2)

Γ(2λ−2 + n)
p(λ)
n (x)p(λ)

n (y)e−inτ . (5.47c)
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But we can apply the Meixner-Pollaczek Mehler formula (5.44) to this summation, with

t = e−iτ . Using the expressions for the energy eigenfunctions (5.40b) and (5.41) yields the

propagator,

K(x, y;T ) =
1

2πλΓ(2λ−2)
Θ(τ)

(
i sin

τ

2

)−2λ−2
(

cos τ2
i sin τ

2

) i
λ

(x+y)

×
[
Γ

(
λ−2 +

i

λ
x

)
Γ

(
λ−2 − i

λ
x

)
Γ

(
λ−2 +

i

λ
y

)
Γ

(
λ−2 − i

λ
y

)]1/2

× 2F1

 λ−2 + i
λx, λ

−2 + i
λy

2λ−2
;
(

sin
τ

2

)−2

 . (5.48)

This is a new expression for the DR propagator.

Clearly the propagator (5.48) is a complicated expression, and there are aspects of its

expected behaviour that are worthy of further study. Showing explicitly that K(x, y;T ) is

a solution to the time dependent Schrödinger equation and examining the small time limit

for the propagator are not straightforward. Quantum mechanical propagators also obey the

group structure composition rule, which in this case will manifest as an integral identity

for hypergeometric functions. The resulting identity is in some sense a generalisation

of the known orthogonality for Meixner-Pollaczek polynomials, with the weight function

(5.40b) appearing; the Meixner-Pollaczek polynomials themselves are a specialisation of

the hypergeometric function [30, 57].

However, we are chie�y interested in an alternative question: how does the propagator

derived from the canonical quantisation compare with a path integral approach? In

particular, the canonical approach dealt carefully with ordering ambiguities and the Hilbert

space problems arising from the analytic di�erence operators appearing in the Hamiltonian.

In the path integral approach we face alternative di�culties, including an ambiguous choice

of Lagrangian, but more particularly how to carry out the time-slicing procedure in a non-

Newtonian case, if indeed this is an appropriate approach.

5.3.3 Path integral quantisation

The path integral quantisation begins with the Lagrangian as its fundamental object,

posing the propagator

K(x′, t′;x′′, t′′) =

∫ x(t′′)=x′′

x(t′)=x′
D[x(t)] exp

(
iS[x(t)]

)
, (5.49)
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with the action appearing in the exponent. D[x(t)] indicates the path integral measure,

which is usually understood by a discrete time-slicing procedure beginning from the

Hamiltonian. In a non-Newtonian case such as the Degasperis-Ruijsenaars model, however,

it is not clear that the canonical and path integral quantisations are equivalent; nor can

we say de�nitively which is the more fundamental. However, investigating path integrals

of non-Newtonian models is in general not straightforward.

We consider in this section some possible hints that may lead to a path integral

quantisation for an integrable case like the DR model. Other work on path integrals

for similar models does exist. A path integral for some three body cases of Calogero-Moser

has been evaluated explicitly [35, 44, 54, 55]. In [45] a path integral for the Ruijsenaars-

Schneider model appears as an interpretation of the theory considered, but this does not

include an evaluation of the propagator for RS. In a di�erent vein, a new approach to path

integrals with a stochastic viewpoint is being developed by Hallnas and O'Connell [48, 84];

it is not currently clear how this relates to our point of view, but this approach could prove

a fruitful avenue of research in the future.

Recall the Lagrangians for the DR model, LDR (5.13) and LDR (5.30). The

exponentiated action for these Lagrangians contains kinetic terms of the form

exp( i~ ẋj ln ẋj). Now, using the freedom to add total derivative terms into the Lagrangian,

these can be rewritten,

exp
(
i
~ ẋj ln(iẋj/~)

)
. (5.50)

But to factors of this form, we can apply Stirling's formula [30],

(αx)αx ∼ 1√
2π

Γ(αx) [αx]1/2eαx as α→∞ . (5.51)

In the path integral, a time slicing approach is typically taken where the positions x are

discretised, and the approximation taken for the velocity ẋ(t) ∼ (xn+1 − xn)/ε. The time

slicing limit entails the shrinking ε→ 0. So in such a limit (or equivalently, understanding

that the velocity in the path integral is typically large) the kinetic factors (5.50) can be

rewritten using Stirling's formula (5.51),

exp
(
i
~ ẋj ln(iẋj/~)

)
∼ 1√

2π
Γ

(
iẋj
~

)
exp

[
iẋj
~

+
1

2
ln

(
iẋj
~

)]
, (5.52a)

∼ 1√
2π

Γ

(
iẋj
~

)
exp

(
1
2 ln ẋj

)
. (5.52b)

In the last line we have again used the freedom to add total derivatives and constant

terms to the Lagrangian. So this suggests a way of rewriting the kinetic terms in the path
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integral, perhaps in some time-slicing limit, to produce gamma functions. Note that such

�small ε� limits for time-sliced path integrals have been used previously in other cases [54].

A pertinent question for integrable systems is, since in many cases one can �nd

integrable discretisations of the Lagrangian, what is the correct way to discretise the

Lagrangian in the path integral? Kinetic terms of the form ẋ ln ẋ are characteristic of

�relativistic� integrable systems of this family, and indeed appear in known integrable

discretisations. The observation of the Stirling's formula approximation for such terms

(5.52) may then have wider application in the path integral quantisation of these

relativistic, integrable models.

A second observation applies to the exponentiated potential term of the Lagrangian

LDR (5.30),

exp

[
i

~
(−ẋ1 ln(1 + iλx)− ẋ2 ln(1− iλx))

]
. (5.53)

By writing ẋ1 and ẋ2 in terms of the centre of mass variables x, X we observe that this

has the form of a generating function for the Meixner-Pollaczek polynomials [57, 30],

exp

[(
− iẊ

~
+
iẋ

2~

)
ln(1− iλx) +

(
− iẊ

~
− iẋ

2~

)
ln(1 + iλx)

]

=
∞∑
n=0

P (iẊ/~)
n

(
ẋ

2~
;
π

2

)
(λx)n . (5.54)

P
(α)
n (x; θ) are the Meixner-Pollaczek polynomials that appeared in the excited energy

eigenstates for the canonical quantisation of DR (5.40): it is interesting that they should

also appear here.

Combining the observation of the Stirling formula approximation (5.52) with the (5.54)

leads to a tantalising �nal possibility. Beginning with the Lagrangian LDR (5.30), we have,

in terms of the centre of mass variables,

eiLDR/~ ∼ 1

2π
Γ

(
iẊ

~
+
iẋ

2~

)
Γ

(
iẊ

~
− iẋ

2~

)

×
(
Ẋ2 − 1

4 ẋ
2
)1/2

∞∑
n=0

P (iẊ/~)
n

(
ẋ

2~
;
π

2

)
(λx)n . (5.55)

But, recalling the eigenfunctions (5.40), these gamma functions are precisely the

appropriate weight function for the Meixner-Pollaczek polynomials appearing in the

expansion. Although this is not yet su�cient for the DR propagator, perhaps with the

necessary further insights a full path integral quantisation may be possible.
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5.4 Summary

By placing the Degasperis-Ruijsenaars model into a two particle setting, we were able

to derive a Lagrangian for the model. In the same way as the DR Hamiltonian, this

Lagrangian is Newton equivalent to the standard harmonic oscillator on the level of the

centre-of-mass variables. Two invariants arise in the equations of motion which guarantee

integrability, and produce the simple harmonic oscillator. We have also made explicit

the connection between DR and the Ruijsenaars-Schneider model, which is as a well

chosen linearisation from the trigonometric case of RS. The Hamiltonian, Lagrangian and

equations of motion all arise naturally from the RS case in this reduction. Additionally, we

derived an alternative form of Lagrangian from the one-form structure of the RS model,

and also a Lax pair as a limit from the RS case.

In the quantum regime, we have derived a propagator for the DR model using a Mehler

formula for the Meixner-Pollaczek polynomials, which give the excitations of the energy

eigenfunctions. The unresolved problem is to contrast this with a propagator derived from

a Lagrangian (path integral) approach. However, we have made some observations on the

exponentiated DR Lagrangian that may lead to an eventual solution. Further research is

needed in this area, in particular regarding possible discretisations of the DR Lagrangian

in order to carry out a time-slicing of the path integral. Given the Meixner-Pollaczek

generating function arising in the exponentiated Lagrangian, an appropriate discretisation

may also lead to the correct one time-step stationary states following the method of [40],

discussed for a simple case in section 3.1.2.
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6.1 Summary

The Lagrangian multiform structure captures the integrability of both discrete and

continuous systems in a new way, expressing the feature of commuting �ows through

a variational framework. Through studying simple, linear examples we have extended

the one-form and two-form structures to simplest possible discrete examples. These

have enabled us to consider how such structures could be quantised. Naturally for

Lagrangian structures this takes the form of a Feynman path integral, but with novel

features associated to the Lagrangian multiform structure. Extending the multiform path

integral for non-linear examples is a more challenging prospect, but we have considered

both the generalised McMillan maps as an example of a non-linear discrete system, and

the Degasperis-Ruijsenaars model as a non-Newtonian system in continuous time which

captures the harmonic oscillator in an unusual way. Although we have not yet come to a

quantised non-linear Lagrangian one-form, we have uncovered new aspects of these models.
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In chapter 2 we derived Lagrangian one- and two-form structures for simpler models

than have been previously considered. Beginning from a linearised lattice equation, we

showed that the equation can be described by a discrete Lagrangian two-form, in the

same way as the non-linear, multi-dimensionally consistent quad equations from which

it is derived. The correct choice of Lagrangian for the linear lattice equation has the

closure property, so that the action is stationary on solutions under deformations of the

underlying surface geometry. Moreover, this linear lattice two-form is fairly unique. By

imposing a periodic staircase initial value problem, we reduced the lattice equation to a

linear, discrete mapping, and exploited the multi-dimensional consistency of the parent

lattice equation to derive discrete commuting �ows. These commuting �ows can be

described by a Lagrangian one-form structure, where the action along a time-path Γ

remains invariant under deformations of the path - another manifestation of Lagrangian

closure. The Lagrangian one-form was also shown to be uniquely determined by the choice

of oscillator parameters.

The simplicity of the linear models explored in chapter 2 makes them helpful examples

of the discrete multiform structure. As models with quadratic Lagrangians, they are useful

toy models for exploring the quantisation of the Lagrangian multiform in chapter 3, since

the path integral can be explicitly calculated for quadratic Lagrangians. In the one-form

case, we constructed a propagator in multiple times, capturing the commuting �ows of

the discrete system. For the Lagrangian one-form, this propagator is independent of the

path taken in the time variables. That is, the time-path can be freely deformed without

changing the propagator, so that the propagator depends only on the endpoints. This is the

quantum analogue of the classical Lagrangian closure condition. Moreover, from all possible

choices of quadratic Lagrangian, this property holds uniquely for the one-form. For the

lattice equation, we de�ned a quantum propagator over a space-time surface, depending on

boundary values. When this propagator is evaluated with the Lagrangian two-form it has

the remarkable property of surface independence: we showed that the surface can be freely

deformed whilst leaving the propagator unchanged, so that the propagator is independent

of the surface geometry, depending only on the boundary. As in the one-form case, this

is a quantum analogue to the Lagrangian closure condition. Additionally, this surface

independence was also shown to hold uniquely (in the linear case) for the linear Lagrangian

two-form. Classically, the Lagrangian closure depended on the equations of motion, leading

to invariance of the action under deformations of the time-path or surface. In the quantum
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analogue, the propagators continue to display time-path or surface independence, despite

the redundancy of the equations of motion.

In chapter 4 we considered a non-linear model derived from the lattice KdV equation,

the parent equation of the linear lattice model. A staircase reduction on the lattice KdV

equation gives rise to the generalised McMillan maps. Exploiting the multi-dimensional

consistency of the lattice KdV equation, we derived a commuting �ow for a simple member

of the mapping family, but the non-linearity of the parent lattice equation resulted in

complicated expressions for the commuting �ow that have so far not been written in a

canonical, generating function form. It remains an outstanding problem to establish a

Lagrangian one-form for these mappings. We have made �rst steps for the McMillan map

towards performing the discrete path integral, by establishing the two-step propagator

using Bessel functions, demonstrating the consistency of the propagator group property

with a di�erential equation established via the operator equation of motion. This two-step

propagator may be su�cient to establish whether path independence for the propagator

could hold in this case, if a classical one-form structure can be uncovered.

Additionally, investigating the complementary canonical quantisation led to new

insights for the dual (or large) form of the Lax pair. For the discrete Calogero-Moser

model, the large Lax pair leads to commuting �ows and hence to the Lagrangian one-form

structure, from which the one-form for the continuous model is derived in a continuum

limit. Moreover, there is a tantalising relation between the Darboux matrix M of CM and

the Lagrangian form - the action is precisely the log determinant of the ordered product

of Darboux matrices generating the time evolution. We have some hope that the dual

Lax pair for McMillan may also lead to helpful insights in that case. We encoded the

Poisson bracket structure of this Lax matrix with a classical r-matrix, which is expressible

as a normally ordered partial fraction in terms of elementary shift matrices. This new

formulation of the r-matrix reveals some interesting results: the r-matrix has a pseudo-

skew-symmetry which is equivalent to an inverse fraction relation, and it obeys a three-term

relation that is a strong version of the classical Yang-Baxter equation and is equivalent

to a normally-ordered partial fraction expansion. The r-matrix structure can be used

to prove the involutivity of the classical invariants and the preservation of the Poisson

bracket structure under the mapping. Additionally, the linear r-matrix structure gives rise

to a quantum r-matrix structure, where the r-matrix has a unitarity and is a solution to

the Yang-Baxter equation. On the quantum level, it is not yet clear how the quantum
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invariants arise from the dual Lax structure, or how to establish their commutativity, since

the time-evolution part of the r-matrix structure remains unknown. But, the simplest

case of the McMillan map o�ers a hint that the trace of powers of the Lax matrix may

be su�cient to resolve the operator ordering ambiguity; in other words, that the natural

ordering in the matrix product may be the correct one.

In chapter 5, we studied the Degasperis-Ruijsenaars model, a non-Newtonian

Hamiltonian system that produces the harmonic oscillator equation of motion. By

embedding the DR model as a centre-of-mass motion in a two particle system, we have

shown that it is a linearisation of the integrable trigonometric Ruijsenaars-Schneider

system; this relation gives rise to a Lagrangian and Lax pair for the DR model. The

RS model has a known discrete counterpart with commuting �ows and an established

Lagrangian one-form structure, giving rise to a continuous Lagrangian one-form structure

in a well-chosen limit. The semi-linearity of the DR model and its known canonical

quantisation then makes this an interesting model for investigating the continuum

quantisation of one-form structures. By exploiting the known quantum eigenfunctions

(established through a canonical quantisation) we were able to write the propagator

explicitly for the DR model. The outstanding problem is to establish a link from the

Lagrangian structure to the known propagator: we have uncovered some starting hints

towards this calculation, but a crucial aspect remains the correct time-slicing of the

Lagrangian. Perhaps a solution may be possible through further elaboration of the links

to the discrete RS model and its corresponding one-form structure.

By investigating one-form and two-form structures for discrete, linear models, we have

uncovered a quantum analogue of the Lagrangian closure condition that holds for these

linear cases. However, extending the quantisation of Lagrangian multiform structures for

non-linear examples is a challenging problem, due to the di�culty of carrying out the

required time-slicings and integrals. Nonetheless, investigating the McMillan maps and

Degasperis-Ruijsenaars model we have made some steps towards that goal. The dual Lax

matrix structure of the McMillan maps suggests a possible avenue for the derivation of

commuting �ows and hence a one-form structure in that case; whilst the propagator and

Lagrangian description for the DR model may lead to a connection between these two

results, and hence insights into the quantised continuous Lagrangian structures.
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6.2 Outlook

The discrete, linear one-form and two-form structures investigated in chapter 2 have a

natural path integral quantisation (found in chapter 3) that reveals a quantum analogue

to the Lagrangian closure condition. That is, the one-form and two-form propagators are

time-path and space-time surface independent, respectively. This quantum Lagrangian

multiform theory is in a very early stage of investigation, and so a number of avenues

require further study; in particular there is a need for more examples of the quantum

multiform structure, both in continuous time and for non-linear models. The results of

the linear, discrete theory may guide the necessary calculations. There is also a great deal

that remains unknown about the multiform structures themselves, some areas of which we

discuss below.

The linear discrete mapping has a commuting �ow whose compatibility with the

initial �ow is guaranteed by the multi-dimensional consistency of the underlying lattice

equation (found in chapter 2). Many multi-dimensionally consistent lattice equations

are known, so we would expect compatible, commuting mappings to arise in these non-

linear cases. However, as found in chapter 4, the non-linearity makes this not necessarily

straightforward. There is an open question about how to capture these commuting �ows in

the general, non-linear case. In particular, many of these lattice models are captured by Lax

pairs, whose link to the commuting �ows and one-form structures is not yet clear. Further

research is also needed in understanding the relation between the two-form structures of

the lattice and the one-form structures of the mapping reductions.

Path integral quantisation of the discrete Lagrangian one-form and two-form of chapter

2 revealed a surface independence of the discrete quantum propagators. For other

examples in the literature, discrete one-form structures undergo well chosen continuum

limits to Lagrangian one-forms describing compatible continuous �ows [123, 125, 126]. The

commuting invariants of the discrete mappings become generating Hamiltonians for these

compatible continuous �ows. The continuous Lagrangian one-forms also have a Lagrangian

closure relation, a di�erential relation representing local independence of the action under

variation of the continuous time-path. A suitable quantum analogue of this continuous

Lagrangian closure is not yet clear. The higher dimensional linear reductions of section

2.3 may be suitable candidates for investigating these continuous structures, as they have

a known discrete one-form and also commuting invariants such that it may be possible to
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avoid degeneration of the �ows in a continuum limit. The discrete and continuous �ows

are also described by quadratic Lagrangians, so that the path integral can be carried out.

For discrete linear models, the path integral can be resolved by repeated Gaussian

integration. However, many integrable models with Lagrangian multiform structures are

non-linear, indeed in some cases even non-Newtonian: it is not known in general how

to path integral quantise these models. Creating a general theory for the quantisation

of Lagrangian multiforms clearly requires exploration of non-linear examples. There is,

however, a clear relation between one time-step propagators for integrable discrete models

and the notion of a Baxter Q-operator [60, 61, 89, 105]. In fact, it is known that there is

a semi-classical relation between integral kernels for the Baxter Q-operator Qλ(x, x̂) and

generating functions for classical Bäcklund transforms Fλ(x, x̂) [61],

Qλ(x, x̂) ∼ exp

(
− i
~
Fλ(x, x̂)

)
, as ~→ 0 . (6.1)

But discrete-time integrable systems are nothing other than iterated Bäcklund transforms,

where the Lagrangians are the generating functions. Perhaps the technology of the Baxter

Q-operator may be precisely what is required to solve the multiform path integral in

the non-linear cases. For non-linear models, resolution of singularities also becomes a

signi�cant issue, as is revealed even for the relatively simple case of McMillan. Further

study of the Degasperis-Ruijsenaars model may also yield a crucial connection to an

integrable discrete time model, which would suggest a way to approach the path integral

time-slicing for this non-Newtonian model. If the Lagrangian one-form can be quantised

for a greater number of models, it will then be possible to see to what extent the time-path

independence of the propagator holds in the general case.

Studying the generalised McMillan maps, we uncovered a novel formulation of the

r-matrix structure as a normally-ordered fraction of elementary shift matrices. The

generalised McMillan maps arose as periodic reductions of the lattice KdV equation, and

their Lax pairs as a consequence of the underlying Lax structure of the lattice equation.

Now, the lattice KdV equation itself is the �rst member of a hierarchy: the lattice

Gelfand-Dikii hierarchy [80]. A signi�cant question is whether the r-matrix structure of

the generalised McMillan maps is a universal structure; a natural setting to answer this
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question is the next equation in the hierarchy, the lattice Boussinesq equation,

p3 − q3

p− q + ̂̃w − ˜̃w − p3 − q3

p− q + ̂̂w − ̂̃w − ŵ ̂̃̂w + w̃
̂̃̃
w

+
̂̃̃̂
w
(
p− q +

̂̃̂
w − ̂̃̃w)+ w

(
p− q + ŵ − w̃

)
= (2p− q)

(
w̃ +

̂̃̂
w
)
− (p+ 2q)

(
ŵ +

̂̃̃
w
)
. (6.2)

In contrast to the four �eld variables of the lattice KdV equation (1.7), the lattice

Boussinesq equation depends on nine points in the lattice. Dual Lax matrices on the

reduction will be cubic in the shift matrix Σh, and thus the equation may o�er a deeper

insight into the nature of the r-matrix. Elements of the quantum structure have been

found in [73], and a two-form structure established in [64] - this model may be useful to

explore the mysterious relation between Lax pairs and Lagrangian multiforms. There is a

known link for the discrete time Calogero-Moser model between the Darboux matrix M

generating the time evolution of the Lax pair and the Lagrangian one-form structure, but

such links are not known for any other models [125]. Perhaps the rich structures of the

lattice Gelfand-Dikii hierarchy may o�er further insights.

In sections 3.1.5 and 3.2.4, we propose a quantum variational principle for the one-

form and two-form cases. Classically, the Lagrangian closure leads to a wider variational

principle: the action should be stationary under variation of both the dependent and

independent variables. In the path integral, the classical variation of the dependent

variables become a sum over all possible con�gurations. The suggestion is that the variation

of the independent variables for the multiform - i.e. the variation over time paths - should

become a sum over all possible time-paths in the quantum regime (respectively, a sum over

all surfaces for the two-form). As discussed in chapter 3, how to calculate such a sum is

currently unknown, but the suggested principle is that in the unique case of the one-form

all terms of the sum will converge to the same, path independent, value. With the correct

renormalisation, this unique value will yield the desired propagator and also the desired

Lagrangian multiform. Taming the unusual behaviour of such an object is a subject for

future research.
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6.3 Final Remarks

In this thesis we have made an early investigation into the quantisation of Lagrangian

multiform structures on the discrete level: many important questions remain, but perhaps

these �ndings will be a useful starting point. The Lagrangian multiform theory is a new

way of understanding integrability from a variational perspective, even suggesting new

ways of thinking about Lagrangians themselves as solutions to a variational problem. In

order to quantise the range of integrable systems where a Lagrangian multiform structure

has been discovered, we require a new approach to path integral quantisation that can

capture the integrability of these models.

In ideas discussed by Rovelli, a parametrisation is introduced for time so that both time

and space become integration variables in the path integral, creating a reparametrisation

invariant system [94, 95] (section 1.4). Rovelli is far from alone in suggesting the need

for new ways to think about space and time in quantum mechanics - Barbour [11]

considers a Machian view, where he dispenses of an independent time variable, t'Hooft

[113] suggests the long discarded view that it may be possible to view quantum mechanics

as a hidden variable problem, using cellular automata, even Einstein himself [31] suggested

that quantum mechanics must be incomplete without a proper theory of discrete functions.

Rovelli's reparametrisation invariance is not so dissimilar from the time-path independence

of the linear mapping in chapter 3; if such a time-path independence were to hold for

Lagrangian one-forms on the continuous level, a description of such systems would require

parametrisation of the time path by some �real time� s. The suggestion by Nijho� [72]

of a path integral over time-paths then looks somewhat similar to Rovelli's ideas. The

suggested sum over all time-paths of chapter 3 (3.58) is an attempt to create a concrete

realisation of this idea for a simple case: if such an object can be tamed and understood

it will o�er an entirely new way of thinking about the quantisation of integrable systems.
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Appendix

A Normalisation constants for the one-form path integral

The discrete path integral for one forms is de�ned along a time-path Γ (3.38),

KΓ

(
xa, (0, 0);xb, (M,N)

)
:= NΓ

∫ ∏
(m,n)∈Γ

dxm,n exp

[
i

~
SΓ[x(n)]

]
. (A.1)

This is made up of discrete elements for time-steps inm and n directions. A single time-step

in the m direction is given by (3.8),

Km(x, x̂; 1) =

(
P +Q

2πi~q

)1/2

exp

[
i

~
Lb(x, x̂)

]
, (A.2)

and in the n direction by (3.36),

Kn(x, x; 1) =

(
P +R

2πi~r

)1/2

exp

[
i

~
La(x, x)

]
. (A.3)

Backwards time steps are given by the complex conjugates on Km and Kn.

m

n

Γ

Figure A.1: A simple time-path Γ in the discrete variables.

The normalisation constant NΓ (A.1) is simply a product of the constants for the

individual time steps. Consider the simple curve Γ illustrated in �gure A.1. This time-

path is made up of three steps in the m direction, and 2 in the n direction, hence the
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normalisation constant results from the product

NΓ =

(√
P +Q

2πi~q

)3(√
P +R

2πi~r

)2

. (A.4)

A general time-path Γ from time co-ordinate (0, 0) to (M,N) is made up ofM +k forward

steps and k backwards steps in the m direction, and N + l forward steps and l backwards

steps in the n direction, so that the normalisation constant in the general case is given by

NΓ =

(
P +Q

2πi~q

)(M+k)/2( P +Q

−2πi~q

)k/2(P +R

2πi~r

)(N+l)/2( P +R

−2πi~r

)l/2
. (A.5)

The ordering of factors is unimportant. This normalisation is unambiguous for any given

Γ.
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