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Abstract

The demand on wireless networks with high throughput has grown heavily because

of the increasing usage of data services. One of the key technologies to meet

this requirement is the multiple-input multiple-output (MIMO) communication

system, which improves the spectrum efficiency without too much investment on the

infrastructure and new frequency spectrum.

In this theis, a new MIMO channel model is developed that is specific to real

scenarios. This kind of channel models is more suitable for network planning tools

because it takes the environment details into account. The first step of this work

is a review on the state-of-the-art MIMO channel modelling and radio propagation

modelling studies. It is then followed by a comparison of two propagation models

that use different algorithms, i.e. ray optical and partial flow. The comparison leads to

a decision that ray optical method is used for MIMO channel modelling in this thesis.

After that, a spatial channel model based on a deterministic ray optical propagation

model is proposed. The final MIMO channel model takes the polarisation and the

Doppler effect in to account so that it can be used for MIMO systems with polarised

antennas and moving objects as well. The model is used in a system level simulator

and then validated in an indoor office building using measurement data.

It is concluded from this thesis that the chosen propagation model can be used

for MIMO channel modelling, and the proposed MIMO channel model based on it is

accurate and can be used for MIMO system design.
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Chapter 1

Introduction

1.1 Background

With the rapid growth of mobile users, data rate and capacity of a wireless network

has been much more demonding. The mobile data traffic requirement has been

increased rapidly in the last few years. Voice phone calls cannot satisfy daily usage

nowadays. Apps with data usages occupy the most time of people’s daily use on

mobiles. The 1000x (1000 times) growth in traffic acknowledged by the industry is

in one decade [1]. On the industry’s side, they need to be prepared for the challenge

of meeting this requirement. There are many ways to meet the 1000x data challenge

such as more spectrum, improving the spectrum efficiency and more small cells

[2]. The most cost effective way of them is to improve the spectrum efficiency

which can be achieved by using the multiple antennas (MIMO) technology. In

the fifth generation (5G), or even in the fourth generation (4G) communications

systems, the usage of multiple-input-multiple-output (MIMO) technology has grown

a lot. Many industrial standards have already employed MIMO technology into their

specifications to improve the capacity such as 3GPP E-UTRA (LTE) [3] and IEEE

802.11n [4].
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Network planning and optimisation tools have become more and more important

because they are essential for designing quality networks with high performance.

Features provided by these tools enable the network designers to analyse the network

performance before a network is actually deployed, and thus reduce the cost of

maintenance afterwards. Channel models are needed by wireless network analyses

for predicting the wireless communication channel state and enabling high level

system simulations. New MIMO channel models are needed so that these planning

and optimisation tools can still be used for simulations and then designing the new

wireless systems.

Although many network designers design network based on their experience or

the measurement data, they may need simulation results to make better decisions

when they plan a new network or optimize an existing network. Accurate channel

models will make the simulation results more reliable obviously.

The MIMO wireless communication channel has more than one antenna at both

the transmitter and the receiver side. In dense environments, rich scattering exists

between the transmitter and receiver. It improves the capacity of a MIMO channel

by providing a new degree of freedom, i.e. space dimension in addition to the

time dimension as compared to the conventional channel models. In conventional

single-input-single-output (SISO) channels, multi-paths effect is considered as a

negative effect to the channel quality but, in MIMO systems, they are utilized as

providing another dimension to the channel.

The key elements of implementing a MIMO system are coding and signal pro-

cessing. However, the propagation model and antenna configurations have deep

impact on the performance as well. The channel capacity is primarily determined by

the propagation conditions and antenna configurations. Many researches regarding

the radio propagation models are targeting SISO channels. These models are not

able to be applied to MIMO channels directly. Basically, the propagation condition

between a pair of transmitting antenna and receiving antenna could be well modelled
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by these models. When there are multiple antennas at either a transmitter or a

receiver and they are closed enough, the mutual coupling effect is introduced and

thus affects the radiation pattern of antennas. As a result, simply combining the

impulse response of each pair of antennas is not accurate enough for MIMO channel

modelling. Antennas and impulse response need to be considered together.

1.2 Motivation

An accurate MIMO channel model is helpful for quantifying the capacity of the

system based on Shannon theory. If the capacity of a specific scenario is deter-

mined, the MIMO system could be optimized according to it and thus gains higher

performance. Furthermore, accurate MIMO channel models have great help on

investigating coding and signal processing techniques. Unlike SISO radio channels,

MIMO channels rely more on specific scenarios because the additional degree of

freedom that utilised by MIMO systems is the space.

Literature has shown [5] many different kinds of MIMO channel models. Some

of them are based on statistics [6] [7]. Measurement campaigns are carried out to

collect a large set of data so that the channel state information can be extracted

from them based on statistical methods. Models are validated by complying the

same statistical distributions with measurement data. Some other models are called

physical models [8] [9]. They use relatively real assumption of the communication

environment such as the position of the transmitter and receiver, as well as the

environment database. The whole channel state is modelled by combining the

physical radio with MIMO channel parameters. Since the environment has been

taken into account, these models are usually more accurate in these environment as

compared to the statistical models. This is why only physical models are studied in

this project.
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Not all radio propagation models are site-specific which means they are not

specific to the environment. It models how the radio propagates in a free-space

environment. In this project, these radio propagation models are categorised as

empirical models. On the contrary, radio propagation models those are site-specific

are categorised as deterministic models. Wireless network planning tools usually

have the knowledge of the environment, i.e. an indoor network planning tool would

have a three dimension (3D) geometrical structure that represents a building. In this

case, deterministic models are more preferable because they could benefit from the

existence of the building model. FDTD-like (Finite-Difference Time-Domain) [10]

[11] and ray optical based algorithms [12] [13] are most widely used in deterministic

models. These two algorithms both have they own advantages and disadvantages. An

algorithm complexity comparison between these two methods [14] suggests that ray

optical method is more suitable for single frequency analysis than FDTD methods.

The combination of these two methods is also possible [15].

1.3 Thesis Contributions

In this thesis, a new physical MIMO channel model is proposed which is defined

in the context of specific environments. It is so called as the site-specific channel

model because the real environment data is taken into account. The environment is

modelled in three dimensions (3D) so it reflects the building structures as they are in

the real world. With this model, a deterministic radio propagation model is used to

calculate the radio paths and their spatial variables. Then, the multipath components

are recovered from these radio paths based on an algorithm that uses the delay time

of each paths.

Since the MIMO channel model proposed is specific to individual environment,

thus it is worth evaluating the performance in real scenarios. The proposed model is

used in a system level simulator to evaluate the performance of the MIMO systems.
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The simulations are based in real environment where measurement have been carried

out. The simulation results are compared to the measurement data to demonstrate

the accuracy of the model.

The remaining content of this thesis is organised as follows. In chapter 2, section

2.1 is an overview of the MIMO system. It gives the background of the problem

that this thesis is trying to resolve. Section 2.2 is a categorization of the existing

MIMO channel modelling methods. What MIMO channel models have already

been developed and their differences are studied. In the last section 2.3, a review

of different radio propagation models is given. What are those models and how

they work are studied. In chapter 3, the first section 3.1 is a comparison between a

ray-optical method and a numerical method for the radio propagation. It leads to a

conclusion that the ray-optical method is used for the MIMO channel modelling in

this thesis. The work in this section is published and presented at The Loughborough

Antennas & Propagation Conference 2013. Section 3.2 is the main part that describes

the model proposed in this thesis. Part of the content in this section is published and

presented at General Assembly and Scientific Symposium of the International Union

of Radio Science 2014. In chapter 4, the proposed model is used in a system level

LTE network simulation to evaluate the network performance of a MIMO system

in an indoor scenario. The simulation results are compared with measurements and

discussed. In the last chapter 5, this thesis is concluded in the first section 5.1. The

future work is described next in the last section 5.2.

During the study of this subject and writing up of this thesis, there are few papers

published to conferences and a journal. They are listed in the appendix A.





Chapter 2

Review of Existing MIMO Channel

Modelling

In this chapter, a review of the literature regarding the MIMO channel modelling will

be described. Necessary background related to this project will also be described in

details.

2.1 MIMO System Overview

Before we dig into the background of MIMO channel modelling, an overview of the

MIMO system is worth noting.

In real radio propagation environments, the multi path effect is very common due

to the rich scatter between transmitters and receivers. If there are multiple antennas

being involved in both sides of the communication channel and the paths between

different antennas could be resolved at the receiver, the system can encode multiple

data streams into different transmitting antennas, thus improve the overall system

capacity. This multipath communication is demonstrated in Figure 2.1. There are

two antennas on both the transmitting side and receiving side. T x1 has a reflected

multipath component travelling to the Rx1 and T x2 has another one travelling to the
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Figure. 2.1 Multipath propagation environment with two antenna arrays.

Rx2. If both transmitting antennas are sending different data streams simultaneously,

the overall throughput could be improved [16] [17].

Input Bit
Stream

Encoder

DecoderOutput Bit
Stream

Pulse
Shaping

Sampling

X

Y

H

Signal Processing Channel

NS x 1

NU x 1

NU x NS

Figure. 2.2 Architecture of a generic MIMO system.

Layering is very important in the communication systems. The structure of a

generic MIMO system is illustrated in Figure 2.2. It has several layers separated by

dashed lines. The left three layers can all be categorized as the signal processing,

so the structure is mainly divided into two parts [18]: 1) signal processing (left to

the thick dashed line) and 2) the wireless channel (right to the thick dashed line).
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In case of the downlink transmission, the system starts from the top-left with input

symbols. These input symbols go through the signal processing layers first and

are separated into different data streams. The transmitted signal on all antennas is

denoted by a vector X with S elements. S is the number of transmitting antennas.

The wireless channel is modelled by a matrix that is denoted by H and it has U×S

elements. U is the number of receiving antennas. On the bottom side of the figure,

the received signal is denoted by vector Y with U elements. It is processed by the

signal processing layers again so that original input symbols can be recovered. The

whole system is represented by following mathematical equation [18]

Y = HX +η (2.1)

where η is additive noise produced by the channel. In this project, only the right part

of Figure 2.2 is focused, which is to model the channel H.

Looking at the right part of Figure 2.2, the MIMO channel could be categorized

into two types based on whether the antennas configurations are considered. One is

called Propagation Channel which models the propagation channel itself. Another

one is called Radio Channel that considers both antenna pattern and array config-

uration. Figure 2.3 shows the boundaries of the two concepts. These concepts are

also used in [19] when The Double-Directional Radio Channel was proposed. In

this project, the propagation channel is firstly studied in order to understand the

physical properties of a wireless channel. Then radio channel is also studied so that

the performance of MIMO systems could be evaluated.

Capacity

The capacity improvement of MIMO systems was originally investigated in [20]

and [21]. At that time, there were not much studies about the channel characteristics,

thus both of them assumed the channel to be additive Gaussian channel either with

or without a fading model e.g. Rayleigh fading for indoor environment. If the
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Figure. 2.3 Boundaries of radio channel and propagation channel.

magnitude of a channel follows Rayleigh distribution and the phase follows uniform

distribution. The theoretical capacity of the MIMO channel with T transmitters and

R receivers is defined as follows [22]:

C = B · log2det(IU +
ρ

S
HQHH) (2.2)

where H is the channel matrix, B is the bandwidth, det(·) indicates the determinant

of a matrix, (·)H is the conjugate transpose operation, IR is U ×U identity matrix,

ρ = Es/N0 is the signal-to-noise ratio (SNR), and Q is the covariance matrix of input

signals. It is also assumed that the channel state information (CSI) is known to the

receiver.

From Equation. 2.2, it can be seen that signal-to-noise ratio ρ is decisive for the

quality of the channel and therefore for the actual data rates. In a MIMO system,

multiple antennas receive signals so the receiving signal power is higher than single

antenna. This improves the signal-to-noise ratio directly and thus higher capacity.

However in a real MIMO deployment, the capacity gain is much smaller than the

theoretical limit, and it heavily depends on the operating environments that determine
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radio channel characteristics [23]. The capacity analyses will be more accurate with

practical channel characteristics. That is why the MIMO channel modelling has

been more attractive and we come to this position where we propose our solution to

solve this problem by using site-based deterministic approaches to model the MIMO

channel. This is crucial in network planning in order to deliver the required capacity.

2.2 MIMO Channel Modelling

In this section, a study of literature regarding MIMO channel modelling is described

in detail.

There are many ways to classify MIMO channel models [5], i.e., site-based

or generic models, time-varying versus time-invariant models, physical models or

analytical models. Generic models are categorized in contrast to those site-based

models. Most of channel models are based on statistical analyses from measurement

data, e.g., the authors used measurement data [24] to analyse a statistical multipath

propagation model and match the capacity, pairwise magnitude and phase distribution

and in [25], the authors propose a model that is very similar to our solution that is

based on ray tracing algorithm as well but, the scatterings are randomly placed to

model the environment. Both these two models can be categorized into physical

models. The difference is where they take the locations of scatters from. The former

uses a statistical distribution and the latter uses a geometrical database.

2.2.1 Correlation

In real world, the received signal is usually correlated because of the correction

in space between antennas. It is proved in [26] that interlink correlation on the

transmitter side indicated moderate to very high values even with large spatial

separation of receiver antennas. This is because the distance between the transmitter
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and receiver is usually far longer than the distance between antenna element on the

transmitter side. The authors provide a method [27] for applying the correlation to

the channel model which can be written as

Hi′,Corr. = cHi,Uncorr.+
√

1− c2Hi′,Uncorr. (2.3)

where Hi,Uncorr. and Hi′,Uncorr. independently denotes other channel models that

have not considered correlation, i.e. Kronecker model [6] and Weichselberger model

[28], c is the correlation coefficient between the two channel models. The authors

used the matrix collinearity as the correlation coefficient in the paper which can be

written as

æ(Hi,Hi′) =
|tr(HiHH

i′ )|
∥Hi∥F∥Hi′∥F

(2.4)

where Hi and Hi′ are the matrices to be compared, and ||·||F denotes the Frobenius

norm of a matrix. It shows the degree of similarity of the subspaces of the compared

matrices and ranges between zero and one, where zero means that the matrices are

orthogonal to each other and one means that the matrices are similar [29]. It can

be seen from these studies that the taking real environment into account in channel

modelling is very important.

Based on the fact that correlation has important impact on the channel capacity,

many models have been proposed to address this problem such as in [30], the authors

proposed an exponential correlation matrix model to investigate the negative effect

on the channel capacity.

The existence of correlations between received signals lead to that MIMO chan-

nel would not achieve the optimal capacity improvement as defined in Equation.

2.2. Therefore, modelling the physical radio propagation mechanism in multipath

environment is also very important to minimize the negative effect of the MIMO
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channel accuracy. Propagation models will be described in more details in Section

2.3.

2.2.2 Polarisation

Polarisation is another way to improve the capacity. It is similar as using physically

separated antenna arrays. In polarised MIMO channels, signals are transmitted over

different polarisation states. MIMO system based on polarisation diversity was

firstly introduced in [31]. Then much work that take polarisation in to account have

been done for MIMO systems. For example, a geometrical scattering model for

dual-polarized MIMO fixed wireless channel was represented in [32]. An analysis

and measurement of polarized MIMO system in 5.25G Hz has been discussed in [33].

These studies show the potential network performance improvement using polarised

MIMO channels. In addition to this, another benefit of using this mechanism is that

it is not restricted by the space of the deployment location, e.g. on radio towers. The

polarisation diversity could be obtained using antennas with the same size.

A cross-polarised channel model is defined by the third generation partnership

standards bodies (3GPP) as part of their spatial channel model (SCM) [34]. However,

this model does not take the elevation spectrum into account. It is modelled in two

dimension (2D). A recent investigation of utilising polarisation in MIMO systems is

presented in [35], which does utilise the elevation spectrum and is modelled in 3D

space.

By specifying the direction of the electrical field vector of radio waves, po-

larisation normally can be categorised into 3 types: linear polarisation, circular

polarisation and elliptical polarisation. Linear polarisation is the most popular type

of polarisation in wireless communication. The proposed MIMO channel model in

this thesis supports antennas with linear polarisation.
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2.2.3 Existing Channel Models

SCM [34], SCME [36] and WINNER [37] are defined by standard organisation,

i.e. 3GPP. They are widely used and compared with other models. The different

features and limitations of these three models are compared in details [38]. SCM

was originally designed for outdoor scenarios. The three typical environments are

suburban macro, urban macro and urban micro. It supports up to 2GHz which seems

not quite useful for current network requirements. SCME is an extended version

of SCM, it extends the frequency range of SCM to 5GHz. Both SCM and SCME

are based on the spatial geometry of the transceivers to calculate critical parameters.

In contrast, WINNER does not use spatial properties. The model parameters for

WINNER are extracted from measurement campaigns.

In the SCM model, the model parameters are calculated from the spatial geom-

etry of the transceivers thus it is important to understand the physical geometrical

locations. The model’s geometrical parameters are shown in Figure 2.4. There is one

cluster n between the transmitter and the receiver. A cluster represents the obstacle

on which a set of radio signals are reflected. Each radio signal in the set is called

a subpath. On each path n, there are M subpaths all of which are reflected on the

cluster n. Antenna arrays are used on both the BS and the MS side. There is one

path component (black) from the BS to the MS through the cluster and one subpath

m which transmits in the similar way as the main path shown in the figure. For the

sake of clarification, only one path component and one subpath is shown. Dot line

indicates the line-of-sight (LOS) path between the BS and the MS.

The final channel coefficients matrix is a U -by- S matrix of complex amplitudes.

Each element of the matrix hu,s,n(t) means the complex amplitude of path n between
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Figure. 2.4 Geometrical parameters in SCM (Reprinted from [34])

the antenna element u and s at time t and it is denoted by [34]:

hu,s,n(t) =

√
PnσSF

M

M

∑
m=1

(

√
GBS(θn,m,AoD)exp( j[kds sin(θn,m,AoD)+Φn,m])×√
GMS(θn,m,AoA)exp( jkdu sin(θn,m,AoA))×

exp( jk∥v∥cos(θn,m,AoA−θv)t)

)

(2.5)

where the parameters are explained in Table. 2.1.

Table 2.1 Parameters of the SCM channel coefficient

Symbol Description
Pn the power of the nth path
σSF the lognormal shadow fading
M the number of subpaths per-path
θn,m,AoD the AoD for the mth subpath of the nth path
θn,m,AoA the AoA for the mth subpath of the nth path
GBS(θn,m,AoD) the BS antenna gain of each array element
GMS(θn,m,AoA) the BS antenna gain of each array element
k the wave number 2π/λ where λ is the carrier wavelength
Φn,m the phase of the mth subpath of the nth path
∥v∥ the magnitude of the MS velocity vector
θv the angle of the MS velocity vector
s the index of the transmitting antenna element (s ∈ 0,1, ...,S)
u the index of the receiving antenna element (u ∈ 0,1, ...,U)
n the index of the cluster (n predefined constant in [34])
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The aim of the SCM model is to take the spatial properties of the environment

into account of the channel model which seems to be closer to the reality. However,

the clusters and paths are randomly generated at the beginning of the process.

Although this random process adds additional spacial information to the channel

model, it does not reflect the real radio propagation scenario. In reality, there might

be more complicated obstacles where a certain number of clusters are not enough to

generate all the paths. The performance of the MIMO system relies on multipath

and it may be affected a lot by this process. Thus, in this thesis, this random process

is replaced by deterministic process. The geometrical structure of the scenario is

described by 3D building models. A deterministic radio propagation model is used

to calculate the spatial parameters of the radio paths in the building including path

loss, angle of arrival, angle of departure and delay. In the next section, different radio

propagation models are discussed at first. Then, two of them are compared later in

more detail.

2.3 Radio Propagation Modelling

Radio propagation modelling plays an important role in wireless communications. It

describes how radios propagate through the air and interact with obstacles. Empirical

models and deterministic models are two major kinds of propagation models. Em-

pirical models are not specific at certain environment. It is a generic representation

of the radio propagation in a certain scenario, e.g. indoor office or urban scenario.

On the contrary, deterministic models take environment details into account. These

models need detailed description of the environment, i.e. 3D geometrical structure

of the environment and material descriptions, thus they offer higher level of accuracy

in the applied environments. the most widely used deterministic models are ray

optical methods [39] and FDTD (Finite-difference time-domain)-like models. There

are some other models sitting in between, e.g. HATA model [40]. It is not purely
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independent of the environment. There are also some parameters in the model that

represent the environment.

The simplest propagation model is the so-called Free Space path loss model. It is

the power loss of the signal level when the radio propagates in free space where there

are no obstacles between transmitters and receivers. Based on the inverse-square law,

it is easy to write the power density S (also known as power per unit area at distance)

in free space as the following equation.

S =
Pt

4πd2 (2.6)

where Pt is the transmitted power in Watt and d is the direct distance in metres

between transmitter and receiving point. Assume that the receiving antenna is an

isotropic antenna, it is known that its aperture to receive signal is λ 2

4π
where λ is the

wave length in metre. Thus the received power Pr could be write as the following

equation.

Pr = S
λ 2

4π
(2.7)

The path loss in free space PL f ree is given by the ratio of Pt over Pr which is:

PL f ree =
Pt

Pr
=

(4πd)2

λ 2 =
(4πd fc)

2

c2 (2.8)

where fc is the central frequency in Hertz and c is the speed of light in vacuum. By

taking the logarithm of the above equation, the path loss can be derived as:

L f ree = 10log10 (1000× (4πd fc)2

c2 )

= 20log10(d)+20log10( fc)−147.55
(2.9)

Note this derivation is only valid in the far field where electromagnetic energy

assumed to be spherical spreading. The free space model is simplified to just take
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Figure. 2.5 Propagation in an urban area

the distance and frequency into account and does not have any considerations of

environments, thus it is not suitable to provide accurate channel characteristics.

Another empirical propagation model was proposed by Joram Walfisch for urban

communications in ultra high frequency bands [41]. The scenario that it is modelling

is demonstrated in Figure. 2.5. The transmitter is located outside of the urban land

area and the receiving antenna, which is on top of the car, is on a street between

buildings. In this case, the significant paths that contributes to the main signal are

path labelled 1 . They reach the building in the front of the receiver, and then are

diffracted or reflected to the receiver as labelled 2 . The propagation may also

penetrate through the building especially the building in the front of the receiver.

This type of paths is labelled 3 . Another type of paths that could reach the receiver

is from the reflected paths by the ground between the buildings near the transmitter

which is labelled 4 .

In this model, the path-loss Lb between the transmitter and receiver is composed

of two components:

Lb = L0 +Lex (2.10)

where L0 is the free-space loss and Lex is defined as:

Lex = 57.1+A+ log( fc)+18log(d1)−18log(H)−18log[1−
d2

1
17H

] (2.11)
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and

A = 5log((d2/2)2 +(hb−hm)
2)−9log(d2)+20log(tan−1 2(hb−hm)

d2
) (2.12)

where fc is the central frequency, d1 is the distance between the transmitter and

nearest building to the receiver, d2 is the distance between two buildings, H is the

height of the transmitter relative to the roof of the nearest building, hb is the heigh of

building, and hm is the height of the receiver relative to the ground.

It is validated with measurements in [41] and the authors also suggested that

more realistic models for diffraction could be incorporated into this model. How-

ever, it is only applied in outdoor environment and based on an assumption of a

typical transmitting scenario thus it not suitable for providing propagation channel

characteristics either.

The COST Hata Model is another empirical channel model. It is an output of

COST 231 project [42]. This model is based on the Hata model. Both of them use

four parameters: frequency fc, distance d between the transmitter and the receiver,

the height of transmitting antenna ht , and the height of the receiving antenna hb.

The original Hata model has empirical formulations of the path loss LHata in urban

areas as described in [40]

LHata = 69.55+26.16log( fc)−13.82log(ht)−a(hm)

+(44.9−6.55log(hb)) log(d/1000)
(2.13)

where frequency fc is in MHz, h, hm and d are in metres. a(hm) is the correction

factor for vehicular receiving antenna height which differs on the size of the area and

it is defined in Table. 2.2. In suburban areas, the path loss Lsuburban is defined as

Lsuburban = Lb−2(log( f/28))2−5.4 (2.14)
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And in open areas, it is written as:

Lopen = Lb−4.78log( f )2 +18.32log( f )−40.94 (2.15)

The Hata model is restricted to: frequency range 150∼ 1500 MHz, distance 1∼ 20

km, transmitting antenna height 30∼ 200 metre, and receiving antenna height 1∼ 10

metre.

Table 2.2 a(hm) defined in different scenarios

Scenario Definition of a(hm)

Medium small city a(hm) = (1.1log( f )−0.7)hm− (1.56log( f )−0.8)

Large city ( f ≤ 200MHz) a(hm) = 8.29[log(1.54hm)]
2−1.10

Large city ( f ≥ 400MHz) a(hm) = 3.2[log(11.75hm)]
2−4.97

In [42], the Hata model is extended to the frequency band at 1500∼2000 MHz

which is then renamed to the COST 231 Hata Model:

LHata
′= 46.3+33.9log( f )−13.82log(hb)−a(hm)

+(44.9−6.55log(hb)) log(1000d)+Cm

(2.16)

where a(hm) has the same definition with the Hata model and

Cm =


0dB for medium sized city and suburban

centres with medium tree density

3dB for metropolitan centres

(2.17)

The COST Hata model also has the same restrictions as the Hata model except the

frequency range has been changed to 1500∼2000 MHz. Even so, these models are

not suitable for providing propagation channel characteristics because the multipath

components are not considered. From here, it is obvious that the propagation that
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are sufficient for MIMO channel modelling must take multipath components into

account.

2.3.1 Ray Optical Method

The Intelligent Ray Launching (IRLA) model [43] [44] is a ray launching method

based on ray optics, which models radio propagation by a discrete set of rays that

are launched from the location of the signal source. Lots of rays are launched from

the source location to every direction. Usually, a small angle is chosen for adjacent

rays, but rays always diverge after reflections no matter what an angle is chosen.

Figure 2.6a demonstrate this effect by showing the these rays in solid lines. After the

second reflection, the divergence is very obvious. It is impossible to launch indefinite

number of rays by a fixed angle interval in order to cover the entire area of interest.

There are many solutions to resolve this problem. An Impact Radius around the

receiving point is introduced in [45]. All rays that intersects with this radius will

contribute to the calculation of the total power at this location. Another method

proposed in [45] is called Tube-Launching method, which launches three rays as a

cluster for each direction. The method used in the IRLA model is by ray interpolation

[46]. At each reflection point, more rays are launched from the reflection point so

that the gaps between rays are filled. The dashed lines on Figure 2.6a demonstrate

how these additional rays are filled. Note that not all re-launched rays are drawn in

the figure. This method does require the calculation of reflection points for the new

rays, which is the bottleneck of ray optics methods, because they are introduced after

a reflection point is found [47].

The key radio propagation mechanisms that are considered by ray optical proro-

gation models are transmission, reflection, refraction and diffraction [48]. With the

IRLA model, algorithms are implemented to model these mechanisms.
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Figure. 2.6 Ray traversal issues demonstration

The transmission loss is modelled the same as the Free Space path loss model,

which is written as [49]

Lp = 20∗ log( fMHz)+20∗ log(dkm)+32.24 (2.18)

where f is the frequency in MHz and dkm is the distance from the receiver point to

the transmitter in kilometre. Note the difference constant in the third term that is

different than the Free-Space path loss model discussed earlier. This is because of

the different unit used by f and d. During the transmission, the phase shift of each

ray is also modelled as a function of distance:

∆φ(d) =
d
λ

(2.19)

When a ray intersect with an obstacle, the reflection, refraction and diffraction

phenomenons are determined. Diffractions are determined only when the incident

point is on an edge of the obstacle. Ray parameters are updated at each interaction

point following the geometric optics (GO) theory. For the diffractions, ray parameters

are updated following the principles defined by the geometrical theory of diffraction
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(GTD) and uniform theory of diffraction (UTD). The shadowing effect of the radio

propagations is very important. Diffracted rays in the IRLA model is modelled as

a Keller Cone as illustrated in Figure 2.6b. Diffracted rays created by this method

form a 3D cone to cover the area behind the edge. The previous method for dealing

with the ray divergence effect is also used here to ensure all the areas are covered.

The shadowing is an important effect because it needs to be considered in network

planning. However, it has not been modelled by the GO theory. In the IRLA model,

the GTD is employed to model this effect. Rays are diffracted on the edge of

obstacles following the GTD using a Keller Cone as illustrated in Figure 2.6b. These

diffracted rays are launched from the diffraction point on the edge and they form a

3D cone. The method described previously for eliminating divergence effect is also

used here to cover the entire area under the cone.

2.3.2 Numerical Method

Apart from the ray optics method, there is another category of deterministic radio

propagation models using numerical method, e.g. finite-difference time-domain

(FDTD) method [50] or the transmission-line matrix (TLM) method [51]. Both of

them are numeric methods to solve the Maxwell’s equations by discrete time and

space steps in the time domain. These methods are used to solve the Maxwell’s

equations. There is comparison between the TLM method and the FDTD method in

[51]. It has demonstrated that TLM has more accurate results than FDTD in some

settings.

One of the disadvantages of both the FDTD method and the TLM method is the

requirement of the high computation load. Another disadvantages of these methods

is the need of the boundary condition in order to restrict the number of iterations.

In [52], the multi-resolution frequency-domain partial flow (MR-FDPF) method is

proposed which converts the wave approximation into the frequency domain. Thus
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Figure. 2.7 Flow directions on each pixel

boundary condition is no longer requirement. It also utilises the multi-resolution

mechanism in so that higher performance is achieved compared to other methods.

The electric field is decomposed into four direction flows fd and one additional

stationary flow f0. The direction flows fd point to the four directions naming as

d ∈ {E,W,S,N}. The stationary flow represents different dielectric media whose

relative permittivity is not one. These flows are demonstrated on a 2D grid as seen in

Figure 2.7.

The scattering equation of the MR-FDPF model at each location after transfor-

mation into the frequency domain leads to the following equation [52]:

−→
F (r,v) = Σ(r,v) ·←−F (r,v)+

−→
S (r,v) (2.20)

where F(r,v) is the inward directional flows vector. Over left arrow represents

the inward flows and over right arrow represents the outward flows. Σ(r,v) =

Σ(r) · e− j2πvdt is the local scattering matrix at pixel r after transformation.
−→
S (r,v) is

the electric field generated by the signal source. v is the central frequency. Note the

stationary flow has been eliminated after transformation to the frequency domain.

The complete local scattering matrix is defined as [52]
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Σ(r) =
1

2n2
r
·



1 αr 1 1 Yr

αr 1 1 1 Yr

1 1 1 αr Yr

1 1 αr 1 Yr

1 1 1 1 βr


(2.21)

where αr = 1−2n2
r ,βr = 2n2

r − r,Yr = 4n2
r −4 and nr is the refraction index of

the media.

By concatenating all inward and outward flows into a single vector F , the problem

becomes a linear system [52]:

F = Ω0 ·F +S (2.22)

where Ω0 is the propagation matrix including the relationship of both the local

scattering and neighbourhood.

Equation 2.22 is then solved by matrix geometric series and finally, the electric

field at each location is computed directly by [52]

Ψ(r,v0) = ∑
d={E,W,S,N}

←−
fd (r) (2.23)

The MR-FDPF model has been used in predicting radio coverage in indoor

scenarios [53] and it is concluded from it that MR-FDPF is a fast and accurate way

of predicting radio coverage.

2.3.3 Propagation Modelling for MIMO Channels

The MIMO channel provides higher capacity than the SISO channel because it

utilises space. It means that the spatial characteristic of radio propagation is very

important. The performance of MIMO channel models relies on the angle of arrival
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(AoA) and angle of departure (AoD) information. These characteristics must be

provided by the propagation model.

The TLM method models the radio wave in terms of flows on four directions

at each position in the space. Different flows carry different amount of energy. At

each position, the final receiving power is composed by combining the energy from

different flows. The combining is repeated several times during the calculation. The

direction could be tracked by analysing strong energy flows at the transmitter or the

receiver position but it seems not be practical to define whether a flow is strong until

the interactions have finished.



Chapter 3

MIMO Channel Modelling with

IRLA

In this chapter, the methodology of using IRLA for MIMO channel modelling is

described. It starts with a comparison between the IRLA model and the MR-FDPF

method. Then, the detailed MIMO channel model with IRLA is discussed.

3.1 Comparison of IRLA and MR-FDPF

In this section, the performance of two radio propagation models are compared in

terms of the speed and accuracy. Both of them are deterministic models. In this

comparison, they are used to calculate the path loss in an indoor office scenario.

Then the results are compared with the measurement data. There are two reasons

for choosing the indoor office scenario. Firstly, both models have already been

validated in the indoor scenarios [54] [11]. Secondly, the MR-FDPF requires very

fine resolution and the computation resources needed for predicting an outdoor

scenario is too much. Although both models have been combined for an outdoor to

indoor coverage prediction [55], it is still confirmed that IRLA has a wider usage.
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3.1.1 Introduction

The objective of this thesis is to develop a MIMO channel model in specific indoor

scenarios utilising the deterministic propagation model. Given there are so many

types of the propagation models, a study of the performance of the existing models

is needed.

Both the IRLA model[43][44] and the MR-FDPF model[53][11] have been

proven to be capable of predicting the signal coverage in specific scenarios with good

agreement with measurement . Thus, the accuracy of both models is not a concern

of this project. Since the proposed model will be applied in network planning tools,

the performance in terms of both memory and computation resource usage has to

be taken into account. It is more acceptable by the users of the planning tools if the

results are given quicker. Personal computers used might not be powerful enough to

carry out heavy computation load effectively.

In this project, an indoor office building located in Lyon, France is chosen as the

testing scenario. Measurement was carried out in this building by the CITI laboratory

at 3.4 Ghz where potential interference from WiFi networks does not exist[47]. The

transmitter power was set to 20dBm. The material parameters for both models are

calibrated using the same set of the measurement data assuming that both models

will provide the best prediction after calibration. The performance of these two

models are then compared and discussed.

3.1.2 Scenario and Measurement

The first floor of the target building is used in this test. Figure 3.1 illustrates its floor

plan. As seen from the figure, there is a long L-shape corridor on this floor and 28

rooms around it. This is a typical indoor office scenario. The building is built up

with concrete for its out walls. Bricks are used to separate rooms. Wood and glass

are used for doors and windows respectively. The transmitter (’Tx’) is placed in a
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Figure. 3.1 Floor plan of the second floor

room on the left side as show in the figure and it is single omni-directional antenna

with 0dBi gain. Different materials are drawn with different colours and widths.

The measurement is done using a spectrum analyser [56] and the received signal

level is measurement at 70 locations. The transmitting power of the transmitter is

set to 20 dBm. The spectrum analyser has a sensitivity of -141 dBm/Hz. Because

the measured bandwidth is set to 300 KHz, the sensitivity of the spectrum analyser

described in dBm is (−141+10log(3∗105))≈−86dBm. In this case, the measured

signal level less than −86dBm would have extra noise. The locations where the

measured signal level is higher than this value are ignored. The remaining data are

used in the calibration process.

3.1.3 Calibration of Materials

In this project, all material parameters used by both models are calibrated assuming

they are providing the best predictions after calibrating material parameters. The
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IRLA model relies on the empirical loss when different radio propagation phe-

nomenons occur, i.e. transmission loss, reflection loss, refraction loss and diffraction

loss. However, in the MR-FDPF model, the single refraction index and attenuation

coefficient are used. Usually, material parameters are physical attributes of materials

and should not be changed, but the material parameters used by these models may

vary in different environment because of the humidity or the thickness of building

walls.

The calibration process is a process of finding the best candidate value of variables

so that the defined target function (also know as the fitness function) is minimised

[55]. The software packages that implement these two models have different calibra-

tion algorithms though the fitness function used by them are the same, which is the

root mean square error (RMSE) of the predicted signal level and measured signal

level. Thus the optimisation problem is the same which is denoted as:

min
mi∈R

√
E[(P(mi)−M)2] (3.1)

where mi are the material parameters, R is the set of real numbers, E[·] is the

expectation operator, P(mi) is the predicted signal level at each measured location

and M is the measured signal level vector.

The genetic algorithm (GA)[57] is used by the MR-FDPF model to find the best

candidate value of its material parameters. These parameters of each material type

are composited as a chromosome which is a concept of GA representing a solution.

Chromosomes of each material are generated in each generation of GA randomly.

These material parameters are used to evaluate the fitness function. Chromosomes

with better fitness result are chosen to reproduce the filial generation. The iterations

stop after a large number of iterations. In the IRLA model, the optimisation algorithm

used is different, which is called simulate annealing (SA) algorithm [58].
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In the calibration process, the same set of the measurement data are feed to both

propagation models so they could adjust the material parameters accordingly. Once

it is done, it is assumed that the material parameters are correct and both model

should give the best prediction results. The calibration result of the both models are

shown in Figure 3.2. For the MR-FDPF model with GA algorithm, the RMSE of the

predicted signal level and measured signal level is reduced down to 5.38 dB from

10.46 dB. For the IRLA model, it is reduced to 6.3 dB from 7.83 dB.
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Figure. 3.2 Comparison between signal level and measurement using the IRLA
model and the MR-FDPF model above.) before calibration; below.) after calibration.
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3.1.4 Simulation Results Comparison

Both propagation models are susceptible to resolutions, thus a number of predictions

for signal level are performed at different resolutions for both propagation models.

The performance of them at these resolutions are compared respectively.

Figure 3.3 shows the predicted signal level coverage from two propagation

models at 0.1 metre resolution. The result from the IRLA model is shown on the

top while the the result from the MR-FDPF model is shown on the bottom. For the

IRLA model, the maximum number of reflections and transmissions of rays are set

to 9, and the path loss limit is set to 280 dB.

The computation time and memory consumption for each run are recorded in

Table 3.1. The simulations are run on a Intel i7-3610QM laptop with 8 GB memory.

Overall, the IRLA model uses less memory but more computation time than the

MR-FDPF model. This difference is more significant in finer resolutions, e.g. 0.1

metre. It is worth noting that the IRLA model predicts the signal level in 3D while

the MR-FDPF model predicts in 2D only.

Table 3.1 Computation Resource Comparison at Different Resolutions

0.1m 0.2m 0.3m 0.5m

Memory (IRLA) 1.02GB 205MB 94MB 42MB

Memory (MR-FDPF) 1.9GB 448MB 201MB 82MB

Time (IRLA) 9min44sec 43sec 8sec 3sec

Time (MR-FDPF) 38sec 8sec 4sec 2sec

Both models are capable of predicting the signal coverage as proven by the

other work. In this project, the accuracy is also compared in this specific scenario.

The RMSE between the measurement data and predicted signal level calculated at

different resolutions are recorded in Table 3.2. Both models have shown very good

results when the resolution is under 0.3 metre. However, the RMSE calculated by

the MR-FDPF model becomes large at high resolutions. The reason is that it is
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Figure. 3.3 Signal level coverage comparison with measurement data. The circles
on both sub figures represent the measurement point. top.) Predicted by the IRLA
model. bottom.) Predicted by the MR-FDPF model.

constrained by the resolution. The suggested resolution is ≤ λ/6 [52] that is 1.5

centimetre in this case and it is far less than the finest resolution used here.

Linear regression is used to statistically analyse the predicted results from two

propagation models. The best fitting linear polynomial is found to be f (x) = 1.232x+
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Table 3.2 RMSE of the Best Signal Level Comparison at Different Resolutions

0.1m 0.2m 0.3m 0.5m

RMSE (IRLA) 5.1dB 5.4dB 5.8dB 6.9dB

RMSE (MR-FDPF) 6.5dB 6.8dB 8.6dB 11.5dB

13.71, where f (x) represents the predicted signal level from the IRLA model and x is

the predicted signal level from the MR-FDPF model. Both the predicted results and

the fitting polynomial is shown in Figure 3.4. Replacing f (x) with x, it is possible

to calculate x which leads to -59 dBm. This value indicates the point from where

the two sets of the predicted results starts deviating. Given that the slop of the

polynomial is greater than 1, when signal level is lower than -59 dBm, the MR-FDPF

model gives more optimistic predictions. The same result can be observed from

Figure 3.4.
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Figure. 3.4 Prediction results and best fitting linear regression
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3.1.5 Summary

In this section, two kinds of propagation models, ray optical-based model and partial

flow-based model, are used to predict the signal coverage in an indoor office building.

The predicted signal level are compared with measurement data and they are also

compared with each other.

The comparison on coverage prediction suggests that both models have a good

prediction on the coverage at fine resolutions. While at dense resolutions, e.g. 0.5

metre, the IRLA model gives much better result than the MR-FDPF model. This

is because the MR-FDPF model has higher requirement on the resolution. The

suggested resolution is λ/6 where λ is the wave length [52].

The comparison on computation resource usages suggests that the IRLA model is

more efficient than the MR-FDPF model. The MR-FDPF model uses more memory

when compared to the IRLA model. It is almost twice of what the IRLA model uses.

It is worth to mention that the MR-FDPF model uses much memory on caching

the local scattering matrix at each pixel and it is not changing between different

predictions in the same scenario. This can be a benefit for network planning tools

because further predictions are much quicker. Another interesting fact is that the

MR-FDPF model is not sensitive to the complexity of the environment, while for the

IRLA model, computation load increases largely when the environment becomes

more complicated.

It can be seen that both model are capable of predicting coverage in indoor

scenario. For small office buildings with complex building structure, the MR-FDPF

model is recommended. However, for the other scenarios, the MR-FDPF model

would not be able to perform as well as the IRLA model. The criteria for choosing

between these two models are not fixed. It depends on the signal frequency, the

power and the available memory of the computer.
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3.2 MIMO Channel Modelling

In this section, the MIMO channel model is proposed using the IRLA model. This

model is explained as follows.

3.2.1 Introduction

With the fast development of smart city and indoor localisation systems, more and

more cities and buildings have been modelled by 2.5D/3D geometrical models.

Currently, most MIMO channel models are proposed for general scenarios e.g.,

urban, LOS or NLOS, and they are based on statistical analyses or measurements. If

the environment models could be taken into account, the designed channel models

will be more accurate and fit to their targeting scenarios.

Given such an environment and the expected antenna configurations, how to

generate the specific MIMO channel coefficient matrix so that the network could be

optimized before it is finally deployed is the primary target of this project. According

to the mathematical description of the MIMO system model, the task is to find the

channel matrix H for a specific scenario.

For a MIMO system that has S transmitting antennas and U receiving antennas,

the time-variant channel coefficient is represented by

H(t) =


h1,1(t) · · · h1,S(t)

... . . . ...

hU,1(t) · · · hU,S(t)

 (3.2)

where hu,s(t) is the complex channel coefficient of the sth transmitter antenna and

the uth receiving antenna at time t. Each element in the matrix represents the channel

state of a communication path at a specific moment.
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In network planning tools, the range of the area where the network performance

is interested is wide and it usually covers the entire scenario. That means, this

channel matrix needs to be calculated everywhere.

The IRLA model that has been described previously uses a rasterization mecha-

nism to speed up the calculations [59]. The side effect of this mechanism is that it

ignores the difference between two antenna pairs if the transmitting antennas and

the receiving antennas of each pair are in the same rasterization cells. In indoor

scenarios, the resolution is recommended to be 20cm for IRLA [47]. This is longer

than the wavelength of a 2.4GHz WiFi network. In outdoor scenarios, where the

resolution can be 2 to 5 metres, all antennas of an MIMO antenna array will be in

the same rasterization cell. Multipath between each pair of the antennas will be the

same. The correlation between each communication path becomes too hight to get

any benefit of using multiple antennas.

Usually the spacing between antennas on the antenna array is relatively small,

e.g. few wave lengths, and thus, it is fair to assume that all antennas would have

the same multi paths. This means the power, AoA or AoD can be considered as the

same at each antenna but the phase is different. This can be computed based on the

geometrical position of antennas.

In the remaining of this section, a method is proposed to estimate the channel state

for each pair of antennas so that IRLA could be used in MIMO channel modelling.

3.2.2 Overview

The overall procedure of this method is shown as a block diagram in Figure 3.5.

In the environment modelling stage, the input data for the proposed MIMO

channel model is prepared including the 3D building model and configurations of

the transmitters. These data are passed to IRLA which will calculate the radio

propagation rays. Once this calculation is finished, the proposed method will collect
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Collect spatial parameters per ray

Rebuild multipath for each pair of antennas

Resolve multipath component with
a delay threshold

Generate time-variant channel coefficient

Calculate propagation rays with IRLA

Environment modelling

Figure. 3.5 Overall procedure of the channel estimation

the spatial channel parameters for each ray, including path loss, delay, AoA and AoD

from the IRLA output. After that, the multipath components between each pair of

the transmitting and receiving antenna is derived from the previous rays. Finally, the

channel coefficient of each sub channel is calculated.

With this MIMO channel model, the channel state between the transmitter and

each location in the building could be calculated. This allows other system level

simulators to evaluate the network performance. The proposed model requires lots

of computation resources especially for the IRLA to generate propagation rays at

each location. Thus, for the larger scenarios, e.g. outdoor scenario, dense resolution

is recommended to limit the computation time. As the IRLA model relies on the

transmission, reflection and diffraction loss of building materials [54], a calibration

process may needed in the second stage so that the these parameters are realistic. It

is also worth noting that the proposed model can only be used for linear and circular
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antenna arrays at the moment. For the other MIMO antenna configurations, further

work is needed.

3.2.3 Spatial Parameters per Ray

In this stage, spatial parameters of each ray is calculated. With IRLA, thousands of

rays are generated between two locations depending on the calculation configurations,

e.g. number of reflections.

Each ray from the IRLA model is characterised by its own spatial parameters

including path loss, delay, AoA and AoD. Some other parameters like power and

delay also belong to spatial parameters because they are determined by the route of

the ray. nth ray is a collection spatial parameters and is denoted as Rn.

Rn = {Pn,τn,θn,AoA,θn,AoD} (3.3)

where Pn is the power, τn is the delay, θn,AoA is the angle of arrival and θn,AoD is the

angle of departure of nth ray.

All these rays are independent. They are caused by the four major phenomenons

of radio propagation including reflection, refraction, transmission and diffraction.

All these physical phenomenons have been modelled by the IRLA model.

The multipath component between two locations is a group of rays which written

as

MP = {Rn},n ∈ {1,2, ...,N} (3.4)

where N is the total number of rays in a single multipath component.

3.2.4 Rebuild Multipath

If a 2-by-2 antenna array is taken as an example, there are four sub channels for

communications. Two transmitting antennas may be in the same rasterization cell.
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Same happens for the receiving antennas. In this stage, rays of a multipath component

between each pair of the transmitting antenna and receiving array, MPu,s, is rebuilt

from the single set of multipath from previous stage.

Based on different configurations of antenna arrays, rays between each antenna

pair have different phase shift. A simple phase model is used to determine the phase

shift for each ray. The phase of ray n between transmitting antenna u and receiving

antenna s is a sum of the phase shift at both sides, and it is denoted as

φu,s,n = ∆φs,n +∆φu,n (3.5)

For a linear antenna array with ∆D antenna spacing, the phase shift at both sides

are defined as [60]

∆φs,n =
2π

λ
s∆Dsin(θn,AoD−θdir,BS) (3.6)

∆φu,n =
2π

λ
u∆Dsin(θn,AoA−θdir,UE) (3.7)

where θdir,BS is the direction of the transmitting antenna array, θdir,UE is the

direction of the receiving antenna array, and the λ is the wavelength.

For a circular antenna array with ∆R as its radius, the phase shifts at both sides

are defined as [60]

∆φs,n =
2π

λ
∆Rsin(θn,AoD− sθdir,BS) (3.8)

∆φu,n =
2π

λ
∆Rsin(θn,AoA−uθdir,UE) (3.9)

After that the phase for each ray is determined for each pair of antennas, the ray

expression becomes

Ru,s,n = {Pu,s,n,τu,s,n,θu,s,n,AoA,θu,s,n,AoD,φu,s,n} (3.10)
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3.2.5 Resolve Multipath Component

In the IRLA model, lots of rays may travel through the same route to the receiver.

This happens because of the rasterization mechanism and fundamental theory of

ray-tracing algorithm. Not all of these rays are independent communication channels.

Thus, rays from the same route need to be identified and grouped as a single path.

Figure 3.6 demonstrates this phenomenon. More than one ray travel through a path

over cluster A. These rays are treated as one path in the MIMO channel.

Cluster A

RoomRoom

Room Hall

Figure. 3.6 Demonstration of rays from three paths

This is accomplished by aggregating rays based on their delay. Rays with

similar delay are assumed to travel through the same path which has the same set

of parameters but with different values. All rays are sorted by their delay τu,s,n.

Starting from the first ray up to the ray whose delay exceeds the delay threshold τth

are grouped together and they are treated as a single MIMO path which is denoted by

Ru,s,m. The delay of new path τu,s,m is determined by the earliest arriving ray. That

means path Ru,s,m has the shortest delay of all rays in its group.

Ru,s,m = {Ru,s,n | τu,s,n− τu,s,m < τth} (3.11)
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where τu,s,k is the delay of ray Ru,s,n, τu,s,m is the delay of the earliest arrived ray

in mth path group, τth is a constant threshold of the delay resolution. After the

aggregation, all rays are regrouped into a total of M MIMO paths.

The power of all rays of the same path are summed up. Due to the side effect

of the above aggregation method, power of each path may vary a lot and has large

impact on reflecting the result of the MIMO channel. To eliminate this, the power of

each path is divided by the total power of all paths. It is defined as

Pu,s,m =
∑

Nm
n=1 Pu,s,n

∑
N
n=1 Pu,s,n

(3.12)

where Nm is the total number of rays in the new mth MIMO path.

The multipath component between each pair of the transmitting and receiving

antenna MPu,s has now been rebuilt.

3.2.6 Generate Channel Coefficient

In this stage, given the physical channel parameters of each path between each

antenna pairs, the channel coefficient matrix is generated. Each element of this

channel coefficient matrix is a complex quantity.

If only the antenna gain is considered, the channel coefficient matrix for the mth

multipath component is a sum of gains from each rays, which is written as [34]

hu,s,m =

√
Pu,s,m

N

Nm

∑
m=1

G(ant) (3.13)

Gant =
√

Gs(θn,AoD)+Gu(θn,AoA)exp( jφu,s,n) (3.14)

where Gs(θn,AoD) and Gu(θn,AoA) are the pattern gain of transmitting antenna and

receiving antenna respectively.
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Mobiles devices are usually so small that antennas cannot be separated enough to

avoid mutual coupling. The antennas spacing is much less than the half wavelength.

It is very likely that polarised antennas will be used to implement multiple antennas.

In this case, the gain from antenna becomes [34]

Gant =
√

Gs(θn,AoD)+Gu(θn,AoA)Gpolar exp( jφu,s,n) (3.15)

where

Gpolar =

[
cos(ψs) sin(ψs)cos(φn,AoD)

] 1 rn

rn 1


 cos(ψu)

sin(ψu)cos(φn,AoA)


(3.16)

where ψs and ψu are the polarisation angle of the transmitter antenna s and receiver

antenna u.

When the mobile devices are moving, the communication distance between the

transmitter and the receiver becomes shorter. Each radio wave takes less time to

travel. Thus the received frequency is different than the transmitted frequency. This

phenomenon is called Doppler Effect (or Doppler Shift) [48].

Assuming the movement of the mobile device is described by the vector v, the

channel coefficient becomes [34]

hu,s,m(t) =

√
Pu,s,m

N

N

∑
m=1

(
Gant×Gdoppler(t)

)
(3.17)

where Gdoppler(t) is the gain caused by Doppler Effect at t moment and it is defined

as

Gdoppler(t) = exp( j
2π

λ
∥v∥cos((θn,AoA−θv)t)) (3.18)

The moving direction θv is relative to the line-of-sight direction as demonstrated in

Figure 2.4 and the speed ∥v∥ is in metre per second.
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3.2.7 Summary

A new MIMO channel model is proposed in this section. The new model takes the

advantage of the IRLA model that has good estimations of channel parameters. A

simple phase model is used to generate phase shift for each path between each pair

of antennas. Multipath components for every antenna pair are also rebuilt from a

single set of multipath components. The new model has many advantages comparing

to the SCM model.

Firstly, the SCM model is based on statistics. Most physical channel parameters

are randomly generated statistically following specific distributions. From the sta-

tistical point of view, it is acceptable but it does not fit to every scenarios. The real

environment has huge impact on the multipath effect especially in indoor scenarios.

For indoor-to-outdoor or outdoor-to-indoor scenarios, it does not have support and

has not provided any guidance on the statistical distributions of those channel pa-

rameters. However in the proposed model, all the physical channel parameters are

generated based on the geometrical representation of the scenario and also the real

location of the transmitting and receiving antennas. These parameters reflects the

impact of real environment.

Secondly, the proposed model has not changed the rasterization mechanism of the

IRLA model. The side effect of the rasterization is resolved by a way of rebuilding

the multipath components for each pair of antennas although they may in the same

rasterization cell. The rasterization mechanism is useful because it has much less

computation complexity than vectorised ray launching model. Rays are extremely

rich in HetNet environments. The computation complexity between rasterized and

vectorised ray launching are significantly different.

Finally, the time-variant character of the new model enables the dynamic system

level simulations. The channel behaviour of moving users could be studied with

time-variant channel model.



Chapter 4

Performance Evaluations in Indoor

Scenario

In this chapter, the proposed model is used to analyse the MIMO system performance

in an indoor scenario.

4.1 Introduction

The testing scenario is a building located at Huainan, China. It has 11 stories above

ground and one story under ground. Figure 4.1a is a photo of the building. A TD-LTE

network has been deployed in the building which is operating at 2300 MHz with

20 MHz bandwidth. It is a distributed MIMO antenna system. The transmitters are

deployed on the 1st, 3rd, 7th. The exact locations of the transmitters are illustrated on

the screenshots in the following sections. At each transmitting location, there are

two antennas. The transmitting power of each antenna is shown as a label next to

each antenna which is also visible on those screenshots.

The 3D building model is created in Ranplan iBuildNet as a geometrical repre-

sentation of the building, see Figure 4.1b. Materials of each building elements, e.g.

walls or windows, are picked from the built-in material library from iBuildNet based
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(a) Outside (b) 3D building model

Figure. 4.1 Shannan China Mobile building

Table 4.1 Network and Simulation Parameters

Parameter Value/Description
Central frequency: 2300 MHz
Total transmitting power: 36 dBm
Transmitter antenna: pair of omni-directional antennas.
Transmitter antenna separation: 0.5 metre
Transmitter antenna height: 5 metre (1st Floor) 3 metre (other)
MIMO mode: Space-Frequency Block Coding
Receiver antenna array: 2 linear antennas array
Receiver height: 1 metre
Scheduling algorithm: ProportionalFair
User profile: Large file exchange

on the real material used by the building. Based on the current LTE network deploy-

ment in the building, the same network is recreated in iBuildNet. The parameters of

the deployed network are listed in Table 4.1

There is a built-in simulator in iBuildNet. It is an implementation of the system

level simulation algorithm defined by the standard 3GPP 36.814 technical specifi-

cation [3]. However, the channel model is replaced with the proposed model from

Section 3.2.
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The simulations are done using a Monte-Carlo method. For each simulation, a

thousand of snapshots are generated where each snapshot represents a transmission

time interval (TTI) of 100 milliseconds. In each snapshot, 10 users are randomly

dropped in the scenario on each floor and each user is assumed to be using heavy

data service, which means the full bandwidth is used up.

4.2 MIMO Channel Model Validation

To validate if the proposed MIMO channel model is accurate or not, a set of measure-

ment data is used to compare the simulation results. The measurement campaign was

carried out in 2013 by Ranplan using a laptop with a USB dongle that support LTE.

The model of the USB dongle is ZTE MF820 and the software used for measurement

is ZTE CNT 13.2B2 and ZTE CNA 13.2B2. Three parameters were measured

in the campaign including the reference signal received power (RSRP), downlink

throughput and SINR. For each measurement location, these parameters are recorded

for three minutes and the average is used in the comparison.

Figure. 4.2 Downlink throughput of each user on the 1st Floor
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The first measurement location is on the 1st floor. On this floor, there are 15

transmitting locations. At each transmitting location, there are two antennas. The

exact location and transmitting power of these antennas can be seen on Figure 4.2.

In the same figure, the RSRP level of each simulated user is also shown as coloured

circles. Because there are 1000 snapshots each with 10 user, the Monte-Carlo

method has randomly dropped all users over the entire area. The measurement

location is indicated by the red star. To compare the simulation results with the

measurement data, a simulation user location is picked at the measurement location.

The simulated results of those parameters of this user is used to compare with the

averaged measurement data. This comparison is shown in Table 4.2. In this table, the

measured values of these parameters are averaged over three minutes as described

previously. The equipment was put on the measurement location stationary.

Table 4.2 Comparison Result on the 1st Floor

Parameter Simulation Measurement
RSRP (dBm): -67.11 -66.32
Downlink Throughput (Mbps): 74.785 74.056
SINR (dB): 33.17 31.87

From the comparison, it can be see that the simulator with the proposed MIMO

channel model shows a good agreement with the measurement data.

Figure. 4.3 Downlink throughput of each user on the 3rd Floor
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The next measurement location is on the 3rd floor and it is indicated by a star

on Figure 4.3. There are 12 transmitting locations on this floor. Their locations

and output power are also shown on the figure. The RSRP level of each user are

illustrated by coloured circles as well. To compare with the measurement data, a

simulated user located at the measurement location is also picked. Those three

parameters of the selected user are compared with the measurement data in Table

4.3.

Table 4.3 Comparison Result on the 3rd Floor

Parameter Simulation Measurement
RSRP (dBm) -60.30 -60.39
Downlink Throughput (Mbps) 74.51 73.58
SINR (dB) 32.83 29.86

On this floor, the measurement data was taken using the same equipment with

the same configurations. All the values are recorded over three minutes and then

averaged.

In addition to the above comparison on the average result of those measured

parameters, another statistical analyse is performed. The measurement is done at a

location on the 7th floor. 560 samples were recorded during the measurement. On

this floor, there are 12 transmitting locations. The exact location and the transmitting

power of each antenna could be seen on Figure 4.4.

In the simulation tool, a circular region with 0.5 metre radius and the centre of

it is set to where the measurement was taken. In the simulation, users are assumed

to be within this region and 560 snapshots are generated. The users are randomly

dropped in the circular region and they are shown as green dots.

The downlink throughput and the PDSCH SINR are compared between each

snapshot and measured sample. The comparisons are illustrated as line graphs in

Figure 4.5 and Figure 4.6 respectively. The absolute difference between the simulated

value and measured value are also shown on the figures. In Figure 4.5, the absolute
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Figure. 4.4 Transmitters and measurement point on the 7th Floor

difference shows that more than 97% samples have less than 3 Mbps error. There are

some significant drops on the throughput near sample 230 and 390. These special

differences could be caused by moving people during the measurement. In Figure

4.6, The absolute SINR difference is less than 2.5dB at 90% locations and 3dB at

98% locations.

These comparisons shows that the simulator with the proposed MIMO channel

model is capable to predict the network performance over time.
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4.3 Summary

In this chapter, the proposed MIMO channel model is used in a LTE network system

simulator for generating channel state information. The simulations are run in an

indoor building where there is a LTE MIMO system is deployed. For each simulation,

the RSRP, downlink throughput and user SINR are generated at randomly placed

locations.

The simulation results are compared with measurement data at two locations on

the first floor and the third floor. The comparison results show very good agreement

between the simulated and measured results. This implies that the proposed model is

capable of reflecting the real channel state information so that the simulator could

generate such good results.

Additionally, another comparison is carried out by comparing the downlink

throughput and PDSCH SINR with hundreds of measurement samples at single

location. Both comparisons show that the error is very small over all the samples.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, the use of a ray optical propagation model, i.e. the IRLA model in

MIMO channel modelling is discussed and implemented. A spatial MIMO channel

model is then presented and applied in performance evaluations of MIMO systems

in real scenario.

The work started with the study of two deterministic propagation models, the

IRLA model and the MR-FDPF model. Their performance, in terms of accuracy,

computation time and memory consumption are analysed and compared. The com-

parison results show that both propagation models are capable of predicting signal

level coverage accurately, although the MR-FDPF model needs finer resolution to

get better predictions. On the contrary, the IRLA model is less sensitive to the

resolution but it consumes more computation time than the MR-FDPF model. The

memory usage of the MR-FDPF model is roughly twice of the usage by the IRLA

model. Taking these factors into account, the IRLA model is ultimately chosen as

the propagation model to be used in MIMO channel modelling study.

Next, a spatial MIMO channel model is presented by using the IRLA model.

The channel model is similar to the SCM model but the link channel parameters are
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deterministically calculated by the propagation model. This gives better prediction

of the channel state in specific environments. The channel state between each pair of

antennas are rebuilt using a phase shift model which is defined for both linear and

circular antenna arrays. This method reduces a great amount of time to calculate

multipath between each pair of antennas. In order to extract multipath components

from the thousands of rays produced by the IRLA model, a method with a delay

threshold is used. The complete MIMO channel model with considerations of

polarisation and the Doppler effect is proposed.

Then, the proposed MIMO channel model is used for evaluate the MIMO system

performance in an indoor scenario. The result shows that the proposed model is

capable for MIMO system analyses. The model is thus validated to be used by

network planning tools for modelling MIMO systems.

Although the performance evaluation is done in the specific indoor scenario using

a single antenna configuration, the application of the proposed channel model is

not just that. For the other antenna configurations, e.g. circular antenna array, the

channel model can also be used. Furthermore, the model can also be used in other

scenarios after calibrating the material parameters using measurement data. It is not

restricted to the specific building as described in the previous chapter.

5.2 Future Work

Although the proposed channel model gives good result in the performance evalua-

tions in the indoor scenario, it is not suitable for millimetre wave (mmWave) band,

e.g. 60 GHz. This is because that radio propagation effect at millimetre wave band

is much more complicated than lower frequency bands. At mmWave band, the

wavelength becomes very short, i.e. 5 millimetre at 60 Ghz. In this case, the diffuse

effect on the reflection surface becomes significant. More objects such as ceiling

light or furnitures would cause lots of more paths.
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When mmWave frequency band is used, it is also possible to use massive MIMO

which means using large number of antennas at both ends of the communication link.

New methods need to be investigated to rebuild the paths for each pair of antennas.

The proposed model is used in a system level simulator and it is validated at very

high level. It is unknown that how it would perform when comparing with other

MIMO channel models. This could be another topic to work on in the future.
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