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Abstract

Over the past century or so Drosophila has been established as an ideal model organism to
study, among other things, neural computation and in particular sensory processing. In this
respect there are many features that make Drosophila an ideal model organism, especially
the fact that it offers a vast amount of genetic and experimental tools for manipulating
and interrogating neural circuits. Whilst comprehensive models of sensory processing in
Drosophila are not yet available, considerable progress has been made in recent years in
modelling the early stages of sensory processing. When it comes to visual processing,
accurate empirical and biophysical models of the R1-R6 photoreceptors were developed
and used to characterize nonlinear processing at photoreceptor level and to demonstrate that
R1-R6 photoreceptors encode phase congruency.

A limitation of the latest photoreceptor models is that these do not account explicitly for
the modulation of photoreceptor responses by the network of interneurones hosted in the
lamina. As a consequence, these models cannot describe in a unifying way the photoreceptor
response in the absence of the feedback from the downstream neurons and thus cannot be
used to elucidate the role of interneurones in photoreceptor adaptation.

In this thesis, electrophysiological photoreceptor recordings acquired in-vivo from wild-
type and histamine defficient mutant fruit flies are used to develop and validate new com-
prehensive models of R1-R6 photoreceptors, which not only predict the response of these
photoreceptors in wild-type and mutant fruit flies, over the entire environmental range of
light intensities but also characterize explicitly the contribution of lamina neurons to photore-
ceptor adaptation. As a consequence, the new models provide suitable building blocks for
assembling a complete model of the retina which takes into account the true connectivity
between photoreceptors and downstream interneurones.

A recent study has demonstrated that R1-R6 photoreceptors employ nonlinear processing
to selectively encode and enhance temporal phase congruency. It has been suggested that
this processing strategy achieves an optimal trade-off between the two competing goals of
minimizing distortion in decoding behaviourally relevant stimuli features and minimizing
the information rate, which ultimately enables more efficient downstream processing of

spatio-temporal visual stimuli for edge and motion detection.
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Using rigorous information theoretic tools, this thesis derives and analyzes the rate-
distortion characteristics associated with the linear and nonlinear transformations performed

by photoreceptors on a stimulus generated by a signal source with a well defined distribution.
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Chapter 1

Introduction

1.1 Background and Motivation

Understanding how the brain works, its anatomy and structure, as well as its information
processing and computational capabilities is considered to be one of the biggest engineering
challenges of this century.

The fruit fly, Drosophila Melanogaster, is one of the most popular model organisms.
Drosophila fly has been used for around 100 years (Beckingham et al., 2007) as a genetic
model. The main reasons why the fruit fly has received a lot of attention include: ease
of culture and maintenance, short life cycle, low number of chromosomes, the fact that
about 60% of genes found in humans have counterparts in Drosophila, also the complete
genome sequence of Drosophila was published in 2000. Besides the previous facts, the fact
that Drosophila was selected as a genetic model, provided a unique opportunity to relate
behavioral, physiological and developmental studies to be related to changes in genes (Paulk
et al., 2013).

The focus of this thesis is the early visual system of the fruit fly. For many years
Drosophila has been used to investigate the information processing principles underlying not
only neurons in the visual system (Borst, 2009) but also other sensory systems as well (Ai
et al., 2010; Kim et al., 2011, 2015).

As aresult of the synergistic combination of the almost complete wiring diagram of the
visual system (Borst, 2009), the protocols for genetic manipulation and data collection from
in vivo experiments (Hadjieconomou et al., 2011), great progress has been made in modelling
Drosophila’s visual system. In recent years, our understanding of the information processing
that takes place in the fly’s early visual system has increased as a result of the biophysical
and empirical modeling efforts reported by (Dau et al., 2016; Hardie, 2012a; Hardie and
Postma, 2008b; Hardie and Raghu, 2001a; Hateren and Snippe, 2006; Song et al., 2012) and
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(Borst, 2009, 2014; Friederich et al., 2016; Hateren, 1992; van Hateren, 1997) respectively.
The outcome of these studies has confirmed some theories, for example of the molecular
mechanisms in phototransduction cascade (Song et al., 2012). It has also, answered some
questions and elucidated the role of nonlinearity in photoreceptors’ response to naturalistic
stimulation. In addition, it has set the foundation to ask new questions, such as what is the
role of the lamina, the neural layer that follows the retina and which neurons are connected
bidirectionally with photoreceptors in the retina, in shaping the response of photoreceptors,
and produce complete and more accurate models of Drosophila’s early visual system.

1.2 Aims and objectives

The aim of this work is to use system identification techniques and previously reported
empirical fruit fly photoreceptor’s models to develop and analyse data-driven models of
Drosophila’s early visual system.

The main goal is to develop a new photoreceptor model that represents explicitly the
connectivity and interactions of photoreceptors with the large monopolar cells such that
the same model can be used to describe not only the photoreceptor responses in the wild-
type fruit flies but also in histamine deficient mutants, by simply removing the synaptic
interconnection between photoreceptors and the lamina.

The main advantages of such model over existing ones are: (i) the fact that it can be used
to characterise the contribution of the lamina to photoreceptor adaptation and (ii) that it can
form the building block for a complete anatomically realistic retina model.

In order to achieve this goal, data collected from wild-type and histamine deficient
(hdc’®919) flies was used. Due to the lack of histamine, the connection between photorecep-
tors and lamina in the hdc’®®10 doesn’t take place. This fact indicates that these flies are
blind. By comparing the responses of photoreceptors of wild and hdc'®°1? flies, it is possible
to obtain a functional characterisation of the network of lamina interneurones in modulating
the photoreceptor’s response.

The second goal of this thesis is to use rate-distortion analysis, a concept from information
theory, together with photoreceptor models and their recently reported (Friederich et al., 2016)
phase congruency detection properties to characterize the processing of visual information in

Drosophila photoreceptors.

1.3 Thesis outline

The thesis is organised in seven Chapters that are summarised below.
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* Chapter 2 reviews the basic anatomical and functional organisation of Drosophila early
visual system. The main signalling mechanisms involved in the phototransduction
cascade by which visual light stimuli are converted into electrical signals are presented.
The second part of the chapter provides a succinct description of the experimental

methods and data used to develop and validate the models derived in this thesis.

* Chapter 3 provides an overview of the modelling and analysis methods and tools used
throughout the thesis. A short survey on system identification approaches used in neu-
roscience is followed by a more in-depth description of the NARMAX methodology,
the main system identification framework used in this thesis. The polynomial NAR-
MAX expansion is discussed. The Chapter also introduces the higher order frequency
analysis framework that is used to characterise the linear and nonlinear transductions

at photoreceptor level.

* Chapter 4 reviews a state-of-the-art empirical photoreceptor model highlighting its
limitation in reproducing the response of blind hdc’®°19 fly’s photoreceptor. In order
to address this limitation a novel empirical model, which features mean and contrast

gain adaptation strategies is developed and validated.

* Chapter 5 introduces a new PR1-6/LMC retinal network model which has as the
main building block the model developed in Chapter 4. Specifically, a new model
architecture that exposes the lamina contribution explicitly is introduced and validated.

* Chapter 6 characterises separately, for the first time, the linear and nonlinear transduc-
tions at photoreceptor level, using an information theoretic framework. Particularly, the
Chapter presents a rate-distortion (R-D) analysis of photoreceptor transductions when
stimulated with pulses, which are signals with high phase-congruency content. The
efficiency and robustness of the linear and nonlinear transductions of photoreceptors
are assessed.

* Chapter 7 is the concluding Chapter that provides a summary of the results, discusses

their broader implications and suggests opportunities and directions of future research.

The key novel and significant contributions to Science of this thesis are the following.
Firstly, a new model of Drosophila R1-R6 photoreceptors was developed. This model can
be tuned to predict responses of wild and histamine deficient fruit fly photoreceptors. The
model represents a significant improvement on the previously reported models which were
capable of predicting responses of photoreceptors of just wild flies. The second relevant

contribution is the development of the empirical model of Drosophila R1-6/LMC retinal
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network. The objective of this model is to explicitly model the contribution of the lamina
interneurons in shaping the response at photorecptor level. The model can be used to build
a biologically realistic model of the entire retina, which captures the actual connectivity
between photoreceptors and the lamina. The thesis for the first time provides a rigorous
information-theoretic characterisation of the linear and nonlinear processing at photoreceptor
level, using rate distortion theory.



Chapter 2

Overview of Drosophila’s Early Visual
System, Experimental Methods and Data

2.1 Introduction

In neuroscience, one of the main questions that need to be answered is how the brain of
animals, including the human, carries out computations. This is a major undertaking since
the brain is a complex and highly interconnected system (Bassett and Gazzaniga, 2011).
So in oder to simplify the study of such a complex system, it is common to use *'model’
organisms which offer particular ’tools’ to better understand the brain (Bellen et al., 2010;
Heintz, 2001; Kalueff et al., 2014; Rankin et al., 1990).

One of the most modelled organisms is Drosophila, the fruit fly. Besides being easy to
breed and keep, the scientific community has developed a comprehensive molecular and
genetic "toolbox’ which has contributed to the fact that Drosophila has over hundred years
of history in helping to advance neuroscience research (Bellen et al., 2010). Furthermore,
Drosophila is a complex organism that features developmental and behavioral aspects which
have parallels in humans(Beckingham et al., 2007).

Despite being used to study different sensory systems such as olfaction or taste, in this
thesis the focus is mainly on the visual system, more particularly on the early visual system.
The type of studies, related to the visual system, that wild and mutant Drosophila flies have
been used for include: phototransduction cascade, i.e. the molecular mechanisms that occur
so light can be turned into neural representation, motion detection, colour vision and phase
congruency detection among others.

In the past, the visual system of invertebrates has been studied using both bigger flies such
as Calliphora, Musca, and Drosophila itself. The combined body of knowledge generated
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has helped to increase the understanding of the adaptive visual processing strategies in the
early visual system.

The layout of this chapter is as follows. Section 2 provides a brief overview of the
anatomy of Drosophila’s early visual system.

Section 3 covers the anatomy of photoreceptors in more detail and summarizes the
molecular mechanisms of phototransduction.

The hardware setup and data acquisition system used to obtain the experimental data
are explained in section 4. This data was used throughout the thesis for the derivation of
Drosophila photoreceptors and retinal network models.

Section 5 describes in more detail the experimental stimuli and intracellular recordings
obtained from wild-type and mutant hdc'®°!9 fruit flies, highlighting the similarities and
differences between responses to the same stimulus sequence.

The concluding remarks of the chapter and their relevance to the rest of the thesis are

provided in section 6.

2.2 The Anatomy of the Early Visual System of Drosophila

Ocelli, a three small lens organ, and two large compound eyes constitute the visual system of
an adult Drosohpila melanogaster fly. This organ is considered to be primitive (Heisenberg
and Wolf, 2013). Its complexity and role in the visual system vary considerably depending
on the insect (Mizunami, 1995; Wilson, 1978). The focus of this thesis is on the visual
processing mechanisms that take place in photoreceptors and neurons in the lamina. This
path has the compound eye as the entry point to the visual system.

A general diagram of the Drosophila’s visual system can be found in Fig. 2.1.

Drosophila’s retina is an optically compound eye which is made up of a regularly arranged
array of about 800 small elements, which share the same anatomical structure, called facets
or ommatidia. Every single ommatidium is composed of 8 photoreceptors R1-R8 which in
conjunction are capable of detecting electromagnetic waves that range from the UV to green
wavelengths (Heisenberg and Buchner, 1977). Each of this units possesses a photosensitive
rhabdomere, a stack of about 30000 very fine microvilli, which is extracellular and points
to a central canal inside the facet. It is precisely in each of these individual microvilli that
the so-called phototransduction cascade takes place (Hardie and Postma, 2008c; Minke and
Hardie, 2000) and as a result, the captured light is transformed into electrical signals that are
transmitted to other further ganglionic relays inside the Drosophila’s brain to make sense
of the visual stimuli. Out of the 8 available photoreceptors, the 6 outer/peripheral ones R1-

R6, which form a trapezoidal pattern around the inner stacked R7/R8 photoreceptors, have
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Compound

Retina

T1
Medulla

Lobula e = B \ N ;7\
Plate (T AR A¢

Fig. 2.1 Drosophila’s Visual System Overview adapted from (Borst, 2009). This figure shows
a cross-section of the interconnection of the retina with the remaining visual ganglia(Lamina,
Medulla, Lobula and Lobula Plate) that participate in higher visual processes. It shows bushy
T1, T4-TS cells, transmedulla neuron TmY, centrifugal cell C2, large monopolar cell L1 and
intrinsic medulla neuron Mi. The interommatidial angle and light energy are represented by
A¢ and yellow arrows respectively.
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Corneal facet lense
Pseudo cone lense

Pigment cells

R1-6 rhabdomere
R7 rhabdomere

Photoreceptor
cell membranes

R8 rhabdomere

Axons

Fig. 2.2 Ommatidium Anatomy. This figure shows a single ommatidium with its outer(R1-
6) and its inner photoreceptors (R7-8). The cross-section indicates the spatial disposition
of the photoreceptors in each ommatidium. Also, a more detailed figure of an individual
outer photoreceptor is depicted. The rhabdomere ultrastructure is shown in black. This
ultrastructure is composed of microvilli and acts as a light guide.

rhabdomeres that cover the full length of its hosting ommatidium. It has been reported that
the outer photoreceptors are responsible for motion vision on a broad range of wavelengths
(Borst, 2014; Rister et al., 2007; Vogt and Desplan, 2007). Whilst the remaining R7/R8
photoreceptors are known to mediate colour and polarized vision (Borst, 2014; Hardie, 2012b;
Morante and Desplan, 2008; Yamaguchi et al., 2008) The anatomy of a single ommatidium
is presented in Fig. 2.2

Once visual information has been translated from light into electrical signals by the pho-
toreceptors located in the retina, this information is transmitted to the optical lobe: lamina,
medulla, lobula and lobula plate. Each of these layers is built so it has a retinotopically
arrangement by columns that reflect the layout in the retina(Borst, 2014). More precisely, the
outer photoreceptors extend their axons to connect with the interneurons located in the so

called lamina cartridges. These interneurons include large monopollar L1-L5, amacrine and
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centrifugal cells (Meinertzhagen and Sorra, 2001). On the other hand, the inner photorecep-
tors R7/R8 terminate not in the lamina but in the medulla. A very detailed explanation of the
"wiring’ diagram for the Drosophila’s visual system can be found in (Hadjieconomou et al.,
2011).

The visual spacial resolution in Drosophila melanogaster is given by its interommatidial
angle which is about 5 degrees (Borst, 2014). Since this interommatidial angle is the same as
the angle between any pair of rhabdormeres withing the same ommatidium, it follows that
each photoreceptor belonging to the same ommatidium has a different visual field, which
is the same as one of the photoreceptors located in one of the 6 neighbouring ommatidia
(Kirschfeld, 1967). Actually, photoreceptors of neighbouring ommatidia that share the same
visual field have a common postsynaptic target in the lamina cartridges (Trujillo-Cendz,
1965), refer to Fig. 2.3. This type of arrangement is known as synaptic superposition and has
the advantage of increased sensitivity and signal-to-noise ratio without sacrificing resolution.

Previous works (Hardie, 1987, 1989; Pantazis et al., 2008) have reported that communi-
cation between retina and lamina use histamine as neurotransmitter. This communication
occurs between photoreceptors in the retina and large monopolar cells L1-L3 and amacrine
cells in the lamina. Also, there are gap junction connections between photoreceptors hosted in
the same cartridge (Meinertzhagen and Sorra, 2001). These are specialised intracellular con-
nections that communicate the cytoplasm of two cells. In addition, there exist communication
between lateral cartridges through monopolar cells L2 and L4. It has also been reported that
there exists excitatory feedback from the lamina, monopolar cell L2 and amacrine cells, to the
retina (Meinertzhagen and Sorra, 2001; Zheng et al., 2006, 2009). Lastly, the communication
between the interneurons hosted in lamina cartridges and the medulla is bidirectional, all
LMCs and tangential cell T1 transmit information to the medulla, whilst centrifugal cells C1
and C2 are responsible for capturing the feedback coming from medulla (Meinertzhagen and
Sorra, 2001). The interconnection between retina and lamina is shown in Fig. 2.3.

Colour and polarized light vision

Each photoreceptor features a light-sensitive pigment Rhodopsin. The spectral sensitivity
of the fly is thus determined by this pigment. It has been reported that six different types,
rh1-rh6, of Rhodopsin are expressed in Drosohpila’s retina (Salcedo et al., 1999). Which
particular type of Rhodopsin is expressed depends on both the type of photoreceptor and the
eye region.

Rhodopsin rh1 is expressed in the outer photoreceptors R1-R6, thus they are sensitive to

blue/green (Hardie, 1985). Opposite to that, the outer photoreceptors R7/R8 feature either of
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Adjacent
cartridg €S

Excitatory
(+)

Inhibitory
)

Lamina
cartridge

Medulla Lamina

Fig. 2.3 Drosophila’s Retina/Lamina connectome. This figure shows the Retina/Lamina
interconnection and the Lamina network. The top part of the figure displays a synaptic
signalling diagram that presents the information flow in the Lamina.Each Lamina cartridge is
composed of Large monopolar (L), Centrifugal (C), Tangential (T) and Amacrine (o) cells.
In the middle part of the figure, the neural superposition of the photoreceptors is shown. This
part shows that photoreceptors with the same target in the lamina are located in neighboring
ommatidia. The red and green arrows that connect the top with the middle part of the figure
indicate that there is a bidirectional communication between Retina and Lamina. Finally, the
bottom part of the figure shows in more detail the components of each ommatidium.
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three different combinations rh3/rhS, rh3/rh3/ rh4/rh6, which are known as pale, yellow or
DRA (dorsal rim area) ommatidia respectively (Wernet et al., 2003).

Regardless of the combination, R7 always has an UV sensitive pigment, i.e. rh3 or rh4,
whereas R8 features a blue- or green- sensitive opsin, i.e. thS or r6 respectively. Moreover, it
has been reported that there exist a 70/30 % ratio between ’yellow’ and ’pale’. The stacked
arrangement of R7/R8 is what makes it possible for colour and polarised light to be detected.

In fact DRA ommatidia, which has rh3 in both R7 and R8, are in charge of detecting
the vector of polarised light(Hardie, 2012b; Wernet et al., 2003), which is known to be used
by the fly to locate sun’s position even when obscured by cloudy conditions (Labhart and
Meyer, 1999) and other animals use the same capability for migration purposes (Homberg
et al., 2011; Reppert et al., 2010).

2.3 The Phototransduction Cascade

In order for the fly to use the visual stimuli to make sense of the surrounding environment
the perceived visual stimulation undergoes an energy conversion process that turns light into
electrical signals. This process takes place in the retina. More especially in each microvilli
belonging to the rhabdomere of each photoreceptor, and is called phototransduction cascade.
This is mainly a biochemical process by which light energy is first amplified and then, after a
series of chemical reactions where several different mechanisms and molecules are involved,
it is converted into a membrane potential.

In Drosophila this process of turning light into electrical signals interpretable by the brain
has been reported to, not only be highly sensitive, capable of reacting from a single photon hit
but also still show dynamical adaptation under full sunlight. In addition to that, it overtakes
in reaction speed, by one or two orders of magnitude, vertebrate rods when responding to
single photon hits. Furthermore, it has been argued that Drosophila’s phototransduction
cascade is one of the fastest, if not the fastest, signalling cascades in the animal kingdom
(Hardie and Postma, 2008a; Hardie, 2001).

In spite of the fact that phototransduction cascade has been studied intensely, there are
still fine details which are not known (Hardie, 2012a). In the section, a brief explanation
of the known main mechanisms that take place so the light can be turned into a membrane

potential is outlined.
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2.3.1 Activation of the Phototransduction Cascade

When a light passes through the rhabdomere the energy of the photons captured by individual
microvillies, causes rhodopsin to be isomerised and as a result, metarhodopsin (M) is
produced.

The production of metarhodopsin causes a second messenger, the G-protein, to be
activated. G-protein activation results in guanosine diphosphate (GDP) to be exchanged with
guanosine triphosphate (GTP), this exchange triggers a dissociation process of the G subunit
from the G protein which leads to the activation of phospholipase C-B(PLCf3) an enzyme
effector. This enzyme causes phosphatidylinositol 4,5-bisphosphate(PIP;), a phospholipid,
to hydrolyse into inositol 1,4,5-triphosphate (InsP3) and diacyglicerol (DAG) which are two
signalling molecules.

This hydrolisation process leads to the release of PUFA, poly unsaturated fatty acids.
At this point, the highly permeable by calcium(Ca’+) TRP (Transient Receptor Potential)
and the non-selective cation TRP-like channels; both of which are light sensitive, open. The
opening of these channels causes an influx of both sodium(Na*t) and magnesium(Mg>+).
This last process is responsible for the generation of the light-induced current (LIC) that
depolarises the photoreceptor. It has been reported that the forward pathway of the photo-
transduction, from light absorption to opening of the first TRP channel takes about 20ms
(Hardie, 2001). Also, there are two possible related mechanisms, positive feedback (Hardie,
1991) and ’all or none’(Hardie and Raghu, 2001b) excitation, regarding TRP channels that

might help in achieving such fast responses.

2.3.2 Phototransduction cascade inactivation

In order to have high sensitivity to rapidly changing visual stimulation, both activation and
deactivation mechanisms have to be fast. In Drosophila photoreceptors there are two main
mechanisms that contribute to this process.

The first one is a re-isomerisation process from metarhodopsin to rhodopsin which occurs
thanks to the absorption of red light which happens efficiently in Drosophila’s since this
contains pigments which are transparent to long wavelength light (Hardie, 2012a; Hardie and
Raghu, 2001Db).

The second has to do with the closure of TRP/TRPL channels. It has been shown that
during the termination of the light into current process, Ca’>* provides negative feedback
signals to TRP/TRPL channels to facilitate their closure (Hardie and Minke, 1994).1t also

has been suggested that metarhodopsin inactivation can be regulated by Ca?*.
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For a detailed explanation of all the phototransduction cascade in Drosophila the inter-
ested reader is referred to following reviews (Hardie and Postma, 2008a; Hardie, 2012a;
Hardie and Raghu, 2001b; Minke and Cook, 2002; Montell, 2012).

2.3.3 Photoreceptor Membrane Potential

Any microvilli belonging to a rhabdomere of any photoreceptor is a candidate to be hit by a
photon or beam of them and as a result, generates a voltage response. This process is known
as quantum bump and it is believed to follow Poisson statistics.

There is a variable latency period between photon absorption and the moment in which the
first TRP/TRPL channel opens (Hardie and Raghu, 2001b). Positive feedback amplification
and negative feedback effects ensure that the bump itself rises and decays fast.

However consecutive bumps occur only after a refractory period of about 100-200ms
(Scott et al., 1997). Depending on the light intensity contained in the visual stimulus, the
superposition of all quantum bumps generate a macroscopic light response, that is known as
light-induced current(LIC)(Hardie and Raghu, 2001b).

Ultimately the observed change in membrane potential is characterized not only by the
kinetics and sensitivity of the phototransduction cascade but also by the electrical properties
of the light-insensitive membrane. The LIC is actively filtered by the membrane, whose
filtering properties are defined by voltage-sensitive K* channels. These include the Shaker
K* and some variants of the non-inactivating K* channel (Niven et al., 2003b). In addition
to these channels, the membrane hosts K* and CI leak channels that help to maintain the

resting membrane potential.

2.4 Experimental Methods

This section describes the experimental setup used to measure in vivo neural responses to
naturalistic visual stimulation, from wild and histamine deficient hdc™®219 fruit flies.

The actual experiments from which the experimental data was collected were not done
by the author of this thesis. The experiments and data gathered as the outcome were shared
by a collaborator whose work and detailed explanation of the followed protocols in the
experiments can be found in (Friederich, 2011; Friederich et al., 2016, 2012).

2.4.1 Electrophysiology

Preparation
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During the actual experiments, the fly was placed in a copper conical holder. In order to
minimise sources of measurement artifacts and following the protocol suggested in (Juusola
and Hardie, 2001), the animal’s thorax, proboscis, and right eye were fixed using beeswax.
To obtain in vivo intracellular recordings a microelectrode was introduced in the left eye’s
dorsal cornea, which was first pierced to produce a hole with of about 6-10 ommatidia span.
In order to prevent the eye from drying out the hole was sealed with a drop of Vaseline.

In addition to the intracellular recordings, extracellular electroretinograms (ERG) were
also recorded at the eye’s dorsal surface. For both types of measurements intra- and extra-
cellular, a blunt reference electrode was placed close to the ocelli, in Drosophila’s head
capsule. Also following (Juusola and Hardie, 2001) a Peltier element was used to keep a
constant temperature of 19°C.

A horizontal laser puller (Sutter Instrument, P-2000), was used to pull the 0.6mm-
recording and Imm-reference electrodes, from the glass tubings. Before inserting them into
the tissue, the tips of the electrodes were broken blunt. The recording electrodes had an in-
tissue average resistance of 100-180MQ. Previous studies(Tamara, 2009) have reported that
this type of electrodes have widths that vary from 0.23 to 0.35 um once they have penetrated
the photoreceptor, and thus are suited to recording from Drosophila photoreceptors R1-R6
that are about 41 m in diameter.

The electrodes used to measure the ERG were broken to increase the contact, thus
conductance in the eye’s surface. Following the proposed protocol in (Juusola and Hardie,
2001), the ringer’s solution was made up 120mM NaCl, 5mM KCI, 10mM TES, 1.5mM
CaCl2, 4mM MgCl2, and 30mM sucrose, also the electrodes used for both intracellular and
extracellular recordings were filled with 3 M Cl. A micromanipulator(Mertzhauser, PM10)
and stereomicroscope(Nikon SMZ 1B) were used to position the recording electrodes.

The developed rig is capable of delivering parallel light stimulation,and electrical injec-
tions in the form of current or voltage while recording their electrophysiological responses.

A digital-to-analogue (A/D) converter board (NI, PCI 6713) controlled by a desktop
computer(Pentium 4HT, 3.2GHz, 2GB RAM) was used to deliver stimulus waveforms to
the animals. The same workstation in conjunction with a analogue-to-digital(A/D) converter
board (NI, PCI M-1O 16E4) were used to captured the externally measured signals from
the flies. A -10/+10V reference voltage range, resolution of 12 bits and a sampling rate of
> 2KHz were used in both A/D and D/A boards. A 500Hz cut-off frequency, antialising
analogue low-pass filter(KEMO Limited, VBF/23 elliptic filter) was used to prefilter the
signals before they were sampled. The interfacing boards were controlled using a custom-
developed toolbox (Biosyst, M. Juusola; MATDAQ, H.P.C. Robinson) for the MATLAB

environment(Mathworks, version R 7.14) Also, current injection commands and electrophys-
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iological responses were amplified by a single, high-impedance head-stage, switched-clamp
amplifier (NPI Electronic, SEC-10L). This setup allows good quality current and voltage
photoreceptor-intracellular monitoring and recording capabilities, during current or light
stimulation(Juusola, 1994). A switched clamp mode with a selected frequency of 30kHz was
used for all voltage recordings and injections of current. The experimental rig had a mecha-
nism to keep the fly’s body temperature constant at either 19°C or 25°C. This mechanism
was built using a Peltier-element and bimetal sensor based controller. This type of controller
prevents artifacts when recording experimental data (Juusola and Hardie, 2001).

2.4.2 Stimulus design

In this thesis, extra- and intra- cellular data was collected just from the R1-R6 outer photore-
ceptors.

For intracellular recordings, target photoreceptors were picked by monitoring the remotely
controlled micromanipulator which followed a blind-scoping strategy along the animal’s
retina and stopped when a photoreceptor was found. A voltage drop in the range of 50 to
70 mV was an indication of a successful photoreceptor penetration. From all successful
photoreceptor penetrations, the following scouting strategy was used to decide whether or
not data from that photoreceptor were collected.

First, the photoreceptor responses to a sequence of 10ms-width light pulses, with a 200ms
interval between each pulse were collected. Then the photoreceptor type was characterised
by analysing the response shape and magnitude. Finally, recordings that featured a peak
response greater than 50mV were kept. For the selected responses up to the previously
discussed point, an assessment of the light sensitivity of each photoreceptor was performed
by using its voltage response to logarithmically intensified light flashes. The normalised
V/log,((I) curves were used to characterise the photoreceptor sensitivity, this process was
done by comparing the voltage responses against a sequence of intensity pulses (Horridge
et al., 1976). Furthermore, an outlier spotting strategy was implemented by adjusting the
light source using the information provided by the V/log;,(I) curves. In the end cells with
abnormal V/log;,(I) curves were discarded.

In the case of ERG, extracellular recordings were mainly used to monitor the response in
the lamina for blind flies. As described above, the animal was fixed to the holder then a blunt
recording electrode was subtly placed so it would be in contact with the retina’s surface, in
the contact point a fly ringer was used as a moisturiser to improve the signal conductance.
The electrodes used had a resistance of less than SMSQ. In this type of experiments the centre

of the retina was stimulated with very bright pulses of 700ms, of pulse width, produced using
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a wild field LED. A 5-seconds dark period in between light pulses was used. On average 25
pulses were collected from each animal.

Stimuli design for intracellular recordings

In Drosophila’s photoreceptors, a 60mV range is enough to represent visual stimulation
that can vary from single photons to over 10°-fold(Juusola and Hardie, 2001). The photore-
ceptor’s ability to respond to this very broad range of stimuli has been suggested to come
from the different adaptation mechanisms that photoreceptors use to adjust their sensitivity
to different light conditions (Juusola and Hardie, 2001). Previous studies have one of the

following types of stimulation

* Light pulses/steps(Dubs, 1981; French et al., 1993; Laughlin, 1989a; Laughlin and
Hardie, 1978; Weckstrom, 1989). This type of stimulation is good for characterising
fast adaptation mechanisms, however, little or none can be learned as to how sensory

neurones adjust their sensitivity to continuous stimulus variations.

e Pseudoramdom Gaussian Noise (GWN) (French, 1979; French et al., 1993; Juusola
et al., 1995a). The adaptive-filtering properties of photoreceptors have been studied
further with this type of stimuli, however photoreceptor’s response to this type of

stimulation is linearised by its inherent constant statistical properties (Van Hateren,
1997).

* Natural time-series of intensities (NTSI) (Van Hateren, 1997). This type of stimuli can
have either continuously varying local statistics (Brinkworth et al., 2008; Juusola and
de Polavieja, 2003; Van Hateren, 1997; Van Hateren and Snippe, 2001) or constant
local statistics(Friederich et al., 2016). In either case, photorecetpors responses are
not linearised as with GWN (Simoncelli and Olshausen, 2001; Van Hateren, 1997).
NTSI with constant local statistics was the type of stimulation used in this thesis. In
order to understand how information about visual invariances, i.e. same visual stimulus
at different luminance levels, is processed by the early visual system, a NTSI with
constant local statistics stimulation was used since having continuously varying local

statistics makes it more challenging.

The flies were presented the same N'TSI temporal stimuli over different light intensity
levels. The same rig as in (Friederich et al., 2016) was used. It consists mainly of a source
of two-converging paths of light controlled by a PC, Fig. 2.4. Linear relationship between
the NTSI light pattern stored in the computer and the actual light pattern delivered to the
flies was assured by using a LED driver with light feedback (Cairn Research, optoLED) who
operated one LED (Seoul, Z-Power LED P4, white 240ml) on each path. Also 5 different
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Fig. 2.5 Natural time series of intensities (NTSI). The same pattern with different mean light
intensity level.

light intensity levels labelled as L.O-L4, LO the being the brightest and L4 the darkest, were
generated using Natural density filters (Kodak Wratten, ND gel filters). The two filters were
configured equally so they had produced the same response for a given reference signal.
The rig was configured so the paths were active in an alternating fashion, i.e. just one path
delivered light stimulation to the fly at the time. This configuration allowed for having
sharp(step) changes of light since the configuration of the filter in the inactive path could be
changed in real time.

The actual reference signal is shown in Fig. 2.5. In order to resemble what the animals
would encounter in their natural habitat, the flies were stimulated with a selection of NTSI

with an average power spectrum S(f) = ]lc which were taken from (Van Hateren, 1997).
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This reference signal stimulates the animal across the entire environmental range of light
intensities. The selected stimulus shown in Fig. 2.5 is the result of the concatenation of the

selected reference signal with different mean light intensity levels.

2.5 Electrophysiological in vivo recordings from photore-

ceptors of wild and histamine deficient fruit flies

In this thesis, two different types of fruit flies were used. The wild-type (Canton S) flies
which were raised in acrylic vials kept at 18°C, in a 12-12 dark-light cycle and having as food
source a mixture of dried yeast molasses sugar and cornmeal. The histamine deficient type,
i.e. blind flies (hdc'®°19) donated from Julius-Maximilians-Universitit Wiirzburg, Germany.

It is well known that lamina interneurones contribute to the observed response of
Drosophila’s outer photoreceptors for a given visual stimuli. By using different Drosophila’s
transgenic mutants, previous studies have shown that (Dau et al., 2016; Hu et al., 2015; Niko-
laev et al., 2009; Zheng et al., 2006, 2009) the modulation from lamina plays an important
role in preventing the photoreceptors’s response to saturate and in increasing the SNR.

In this thesis histamine deficient hdc’®°10 Drosophila alleles were used to explore the
contribution of the network of lamina’s interneurones in modulating the response of outer
photoreceptors and then to develop empirical models that explicitly reflect this modulation.
In hdc™ 210 mutant flies, because of their histamine deficiency, the communication between
the retina and the lamina does not occur (Hardie, 1987, 1989; Sarthy, 1991), i.e. these fruit
flies have been shown through behavioural tests, to be blind. Thus, photoreceptor’s responses
contain no modulation from lamina.

Mutation can have secondary effects. Because of that, a rescue procedure was carried out
in hdc’®°19 mutant flies to check that the electrophysiological measuremets of interest were
not affected by any unknown effect. The rescue procedure consisted in of a histamine feeding
episode, which was done two days before the actual experiment took place. This rescue
procedure of feeding histamine was based on previous works (Dau et al., 2016; Friederich
et al., 2016) which reported that hdc’®°19 can recycle histamine from media if is available.

During the experiments, collected data from both, intra- and extra- cellular experiments
suggested that the rescuing protocol was successful.

For the extracellular case, ERG responses to light pulses were collected from wild, mutant
and rescued flies. The results depicted in Fig. 2.6 (a) show that recorded data from wild and
rescued flies feature a pronounced transient at the moment of the step, however, this same

transient is absent in the case of the non-rescued mutant flies.
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Fig. 2.6 ERG and Voltage Response of wild-type, blind and rescue flies. (a) Electro-
Retinogram (ERG). (b) in-vivo intracellular voltage responses

The successful outcome of the recovery procedure observed when using extracellular
recordings was confirmed by the intracellular one, the results are shown in Fig. 2.6 (b). On
the one hand, wild and the mutant rescued flies shared similar responses to NTSI stimulation
over the entire range of different light intensity levels. On the other hand, the collected data
from flies with missing synaptic activity between retina and lamina, showed a clear difference
in the response across all light intensity levels, with more emphasis for in L0, the brightest
light intensity level. As suggested from previous works(Dau et al., 2016), this could be the
result of saturation caused by the lack of modulation coming from lamina.

Finally Fig. 2.7 (a) and Fig. 2.7 (b) show in more detail the in vivo intracellular recordings
of the wild-type and hdc'®°1? flies when stimulated using the NTSI presented in Fig. 2.5.

These three data sets were used to develop all the models presented in this thesis.

2.6 Discussion

The first part of the Chapter provided an overview of the early visual system of Drosophila,
focusing on the R1-R6 photoreceptors and their post-synaptic partners. The biophysical
mechanisms that photoreceptors use to sample light information were also reviewed.

The second part of the Chapter introduced the materials and methods to generate the
experimental data used to develop the models presented in subsequent chapters. The experi-

mental stimuli and the corresponding photoreceptor responses measured in vivo were also
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(b) hdc"™19 blind fly.
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described and illustrated in detail, highlighting the differences between responses measured
in wild-type and histamine mutant photoreceptors.

It is important to mention that just one data set from each type of fly, one for the wild
and one for the histamine deficient fly, were provided. Thus, these datasets were used for

derivation and validation of the model models in this thesis which is a limitation of this work.






Chapter 3

Nonlinear System Identification For
Neuroscience

3.1 Introduction

In control engineering, system identification is commonly used to derive mathematical
models of dynamical systems from experimental measurements.

System identification consists of the following steps (Ljung, 2009). The first step is data
collection. The main goal of this step is to design the experiment that will be conducted
in order to collect relevant input/output data. Normally previous knowledge of the system
is taken into account to design the experiment. The key factors that need to be taken into
account when designing and implementing the experimental data acquisition include the
number of system inputs and outputs, signal bandwidth, sampling-rates and signal processing
strategies for noise removal and de-trending (Billings, 2013; Lennart, 1999; Marmarelis,
2004). Deriving the model from data involves choosing a model class, defining a set of
candidate model structures, selecting the correct model structure, estimating the model
parameters and validating the model.

System identification has been successfully applied in different disciplines(Billings, 2013)
including space weather (Solares et al., 2016), medical imaging(Vidal-Rosas et al., 2014),
synthetic biology (Krishnanathan et al., 2012), economy (Aguirre and Aguirre, 2002), etc.

A particular research area in which system identification has had a big impact is sys-
tems/computational neuroscience. Previous studies (Friederich et al., 2016; Kim et al., 2011)
have confirmed the feasibility and usefulness of using this approach to model and under-
stand the underlying principles behind the computations performed by the brain of different
organisms.
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The purpose of this chapter is to introduce the main modelling tools used throughout this
thesis, particularly the NARMAX method.

The outline of this chapter is as follows. Section 2 introduces the main concepts of
system identification and surveys briefly the main methods used in Neuroscience to derive
empirical mathematical models using system identification methods. In section 3 the main
concepts and implementation details of NARMAX method are discussed. In the same section,
the spectral analysis of the polynomial expansion is explained. Lastly, in section 4 a brief
summary of the key aspects of the NARMAX method are outlined.

3.2 System Identification in Neuroscience

System identification in neuroscience presents some challenges. The first challenge is to
decide whether the system can be modelled by a linear or nonlinear mathematical model. To
this end, there are tests that can help assessing linearity in a system (Berg et al., 2012).If the
system can be modelled by a linear model, then there is a vast and mature set of techniques
that can be applied, a review of this techniques can be found in (Ljung, 2009, 2010). However,
it is known that dynamical processes encountered in neuroscience are nonlinear and thus
demand system identification approaches (Marmarelis, 2004). Although the number of
techniques for modelling nonlinear systems is not as rich as in the case of linear systems,
there exist some options. A brief summary of some of the main strategies will be presented in
this chapter. A more in-depth review of these and more strategies can be found in (Marmarelis,
2004) and (Billings, 2013). NARMAX (Billings, 2013; Chen and Billings, 1989a), which
is arguably the most comprehensive and effective nonlinear system identification approach
available, was adopted and used in this work to develop models of the fly photoreceptor using
in-vivo experimental recordings of photoreceptor responses to multi-level naturalistic stimuli.
Provided that it has been decided to model the system using nonlinear models obtained
with NARMAX method then, the second challenge that needs to be addressed is structure
selection and parameter estimation. Depending on the level of nonlinearity and data available,
the structure can be chosen to be polynomial (Chen and Billings, 1989a), rational (Chen and
Billings, 1989a; Zhu and Billings, 1994), wavelet-based (Billings and Coca, 1999), based on
radial basis functions (Chen et al., 1990) or hybrid models (Billings and Wei, 2005). Once a
structure family has been selected, a suitable approach to estimate the parameters for that
expansion is needed. In the case of the polynomial expansion, the problem can be formulated
as an optimization problem that is linear in the parameters, so very efficient techniques such
as (Chen et al., 1989, 2009) can be used to estimate the parameters. In the case where the

expansion is not linear in the parameters, such as radial basis function networks with then
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approaches based on heuristics (Gonzdlez et al., 2003; Guerra and Coelho, 2008) can be
used.

The last step in the process of system identification regardless of the selected method is
model validation. In this stage, the model performance is assessed and is either accepted or
rejected. In the latter case then a new iteration of the identification process is performed. An
in-depth review of all the options is outside the scope of this work but reviews on the topic
can be found in (Arlot et al., 2010; Billings et al., 2001; Marmarelis, 2004). Also, model
validation for the NARMAX method is explained below.

In the remaining of this section a brief account of the most popular system identification

methods used in Neuroscience is given.

3.2.1 Volterra and Wiener Series Models

Volterra/Wiener series is one of the most used system identification techniques for nonlin-
ear systems in neurophysiology. The Volterra series (Volterra, 2005) were introduced to
characterise nonlinear systems in a nonlinear fashion.

The Volterra series is defined by

n
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where u(t) and y(¢) are the input and output time variables of the system and A(-) are the
Volterra kernels.
A practical method to solve the problem of estimating the kernels of the functional series
Equation 3.1 was proposed by Norbert Wiener, who used the Gramm-Schmidt orthogonalisa-
tion technique to uncouple the Volterra kernels. The resulting series is given by the following

equation
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In this series, G, represents the functionals that, for Gaussian white noise stimulus are
orthogonal.
A very popular way of empirically obtaining the Wiener kernels, ﬁn(-) was proposed
by Lee and Schetzen (1965). In the proposed cross-correlation method time delay white
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Gaussian noise stimulus with P power spectral density is multidimensionally correlated with

the system’s output to yield

1

ljln(Tl,Tz, ceny ’L'n) = 1pn

E[y(t)u(t—t)u(t — 1), ,u(t — 7,)] (3.3)

where the expected value is denoted as E[-]. Although this method has been applied
successfully in neuroscience (Sakai, 1992) and (Marmarelis, 2004), this approach has a
number of drawbacks. The two main drawbacks are the following: the inability to estimate
the diagonal values (7; = 7;,i = j) of higher order kernels and the experimental generation
of Gaussian white noise input (Palm, 1979).

To address this problem, some studies (French, 1976; French and Butz, 1973) have
proposed a method to calculate the Volterra Kernels in the frequency domain, in doing so
the correlations were replaced by complex multiplications. This approach is faster than the
conventional correlation-based and does not require the generation of white noise stimuli.
However the method relies on accurate estimates of power and cross power spectra, of the
input and input and output respectively.

The most common approach to estimating Volterra and Wiener kernels is through linear
regression. In order to apply such techniques, the input/output dataset, i.e. u(z) and y(z),
need to be discrete sequences which are normally uniformly sampled. Thus the equation for
the Volterra series has summations instead of integrals

h0+z Z Zh TJI’TJ27 T]n)H (I_Tji) (34)
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Note that in the above equation ¢ denotes discrete time points, i.e. t = t1,13,13,.... Also,
the previous equation is linear in the kernel values. Furthermore, if the number of kernels is

finite then the Equation 3.4 can be written in matrix form as

y=Po (3.5)

where the system’s output is represented by y, the matrix P denotes the regression matrix,
which contains the delayed version of the input and its cross products and 6 represents the
vector of unknown discrete kernel values that need to be estimated. In actual experiments,
the relationship between the real, y(¢) and the measured, z(¢), system’s output is given by

z(t) = y(t) +e(t) where e(t) denotes an uncorrelated sequence, noise, that contaminates the
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real output. The kernels are obtained as the solution to the following linear optimisation

problem

6 = arg min ||z — P6||3 (3.6)
0

This approach has the advantage that all kernels are estimated in parallel, thus they don’t
need to be uncoupled which has as a consequence that the need for white noise stimulation is
no longer necessary and also the estimation of diagonal values in high order kernels is not an
issue anymore.

An orthogonal algorithm for estimating Volterra kernels 4, (ty,---,7,),n=1,--- ,R where
R is the order of nonlinearity, directly from data was proposed by Korenberg et al. (1988b).

This approach involves orthogonalizing Equation 3.4 over the actual inputs. The main
advantages are that the inputs can be arbitrary and that the algorithm does not require long
data sets. This algorithm has been reported to be fast and easy to initialise (Korenberg and
Paarmann, 1989). One drawback is that the kernels are quite noisy (Marmarelis, 1993).

In order to address the issue of the noisy kernels a study (Marmarelis, 1993) was con-
ducted, where the input is filtered by a set of orthonormal Laguerre functions given by the
filter bank (Ogura, 1985)

ba(x) =07 (1—a) Z()() (1—a)",r=0,1,2,--- ,R (3.7)

where the n'" order Laguerre filter is denoted by b, (x).The filter has an exponential decay
regulated by the a, € [0, 1] parameter and is defined discretely at x = 0,1,--- , X discrete
interval. With this definition and using a sampling time 7§, the v, filter bank outputs are
obtained by the discrete convolution

X1
x) =T; Z buu(t — x) (3.8)
x=0

Using this previous definition, the Laguerre-Volterra series model is defined as

||Mt*

n
hn Gty dase=odm) [ Tvi () (3.9)
i=1

So each Volterra kernel is given by
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n

L L
y(t) h Tl? )T Z Z 7:1 ]1 ]27 a.]n)Hb]z(Tl) (310)

i=1

where L denotes the number of applied basis functions. The Laguerre-Volterra nonlinear
model is composed of two stages. The first stage is a linear filter bank that uses the Laguerre
basis functions as filters. The outputs of this filter bank are the inputs of the second stage,
which is a static nonlinearity. Furthermore, since the model Equation 3.9 is linear in its
parameters, it is possible to cast it into a linear regression model, i.e. Equation 3.5.

Using the Laguerre-Volterra series as a model for nonlinear systems has the advantages of
being relatively easy to obtain, once it has been completely defined; and providing truncated
and smooth kernel estimates (Marmarelis, 1997). However, since the number of basis
functions L and the exponential decay parameter & specified and are not linearly related. It
is difficult to determine them. In addition, Laguerre-Volterra methods and similar techniques
can lead to misinterpretation of the order of nonlinearity of a system (Korenberg and Hunter,
1996). And lastly, it has also been pointed out (Billings, 1980) that these type of models
are unsuitable for systems with strong nonlinear behaviour since the number of coefficients

increases exponentially with the nonlinear order of the system.

3.2.2 Block Structured Models

Another common approach to modelling systems in Neuroscience is through block structured
models. Their popularity is due to their relative simplicity and perhaps even more so, for
their potential for physiological interpretations. In this approach, the model is made up one
or more blocks each of which perform a linear or a static nonlinear transformation. The
blocks(L), that yield an output y(¢) as a result of performing a dynamic linear transformation

in its input u(z) are described by the following convolution integral

/h u(t —1)d 3.11)

where A(t) is the impulse response of the linear filter. If rather than being linearly filtered
the input of a block is processed by a static nonlinearity (N) then the relationship between

the temporal input u(z) and the output y(¢) is given by
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(1) = fv(u(t)) (3.12)

where fy is a nonlinear mapping which can take the form of a polynomial function,
exponential function or some other parametric or nonparametric nonlinearity (Pearson,
1995).

(a)

(b)
' N L ® L N )
u(t) [ h(r) s(t) P ] y(t u(t) [ h(r) ]s(r)[ O ] ylt
(c) (d)

N L N L N L
t s1(t) sa(t) (t wlt st salt) (e
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Fig. 3.1 Serial Cascade Block Structured Models. (a) Wiener configuration. (b) Hammerstein
configuration, (c) ’Sandwich’ L-N-L configuration. (d) ’Sandwich’ N-L-N configuration.

According to their configuration, block structured models can be classified in serial
cascade, parallel cascade models, and neural models.

In serial cascade models the each block’s output is connected to the next block’s input,
and the input of the first block of the model is the recorded input, whilst the last block’s
output is the predicted model response. The two most used common models that follow
this configuration are the Hammerstein and Wiener models. Both share the same topology,
two blocks connected in cascade, however, the Hammerstein, Figure 3.1(a), features an
N-L configuration whilst the Wiener, Figure 3.1(b), is an inverted version, i.e. L-N. The
estimation of these two models is normally performed in an iterative process where the values
of the parameters for the L and N blocks are refined in each iteration, details of the estimation
procedures can be found in (Hunter and Korenberg, 1986) and (Giri and Bai, 2010). These
type of models have been used to characterise early visual systems of organisms (Ahrens
et al., 2008; Gollisch and Meister, 2008; Hunter and Korenberg, 1986).

An extension of the Hammerstein and Wiener models are the so-called *sandwich’ models,
where rather than having just two blocks, the system is modelled by either L-N-L, Figure
3.1(c), or N-L-N, Figure 3.1(d), structures. The estimation of the L-N-L models is normally
carried out in a two-stage process. In the first stage a linear subsystem is identified and
in the second stage a procedure to obtain a Wiener model is used, some examples of this

estimation process and application of L-N-L models can be found in (Korenberg and Hunter,
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1986). N-L-N models have also been used successfully in neuroscience (French et al., 1993;
Juusola et al., 1995b; Niven et al., 2003a). In general, these ’sandwich’ models are more
flexible than either the Hammerstein or Wiener models. However, issues such as structure
detection, access to intermediate signals and nonlinearity in the parameters, which prevents
using least squares optimisation techniques to solve the estimation problem, have to be taken
into account when using these type of models. Some authors Kibangou and Favier (2010);
Korenberg and Hunter (1996); Marmarelis (2004) have studied the relationship between
Volterra kernels and cascade systems and have, as a result, provided that the kernels are

available, some suggestions regarding the topology of the cascade model can be made.

(a) (b)
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Fig. 3.2 Parallel Cascade and Neural Block Models. (a) Parallel cascade block model. (b)
Neural mode model.

In a parallel cascade scenario, Figure 3.2(a) parallel cascade model with M parallel
Wiener cascades, rather than having all the blocks one after the other, which means each
block has a unique input, in this case, some blocks share the same input which comes from
the previous processing stage. It has been shown (Korenberg, 1991), that parallel L-N cascade
models can approximate any Volterra or Wiener series to an arbitrary accuracy. These models
are defined as

si(0) = [ m(@ute = v)deni(n) = ¥ sl (1) (3.13)

where, as a result of filtering the u(¢) input to the system, the previous equations produce
the i output signal y;(¢), and the total predicted output of the model is given by y(¢) which
is composed of the sum of all y;(¢),i = 1,--- , M partial outputs.

Because of its robustness against fitting noise, parallel cascade models have been used to
indirectly estimate Volterra kernels (Korenberg, 1991; Korenberg and Hunter, 1996). Parallel

cascade models have been shown to be more robust against fitting noise.
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Neural mode models, Figure 3.2(b), were introduced in (Marmarelis, 1993, 1997). These
models are a block model that builds upon a Laguerre-Volterra series model. In this approach,

the output y(¢) is given by the quadratic form

y(t) = v (r)Ct (3.14)

where v =[1,vy,...,vz(¢)] is the augmented vector of the filter filter bank Equation 3.8,
C is a symmetric matrix which has the values of zeroth, first and second order kernels.

The symmetric matrix C is decomposed as C = QT AQ where the i eigenvalue is
contained in A = diag{Ai,---,Ar}. Also the vector q(t) = [¢1(¢),- -+ ,qL(t)] corresponding
to the " eigenvalue is defined as

q(r) = Qv(r) (3.15)

where Q = [lj,---,1;] is the eigenvector-matrix that corresponds to A. The relative

gi(1)|? is quantified

contribution to the final filter output, of each individual filter’s output,

by each eigenvalue in A. Thus, the i principal dynamic mode (PDM;) is given by,

PDM;(x) = Ib(x) (3.16)

where b(x) = [b1(x),---,br(x)] is a vector containing the Laguerre filters described by
Equation 3.7. Finally the model predicted output y(¢) is given by y(¢) = frpm(q(?)), where
fppum represents a static nonlinearity with several inputs. According to (Marmarelis, 2004)
a parsimonious neural mode model is achieved by selecting only the PDMs that have a
significant contribution to the model output, i.e. |A;| > 5%, By selecting the PDMs in this
way the dimensionality of the model is reduced and the robustness is increased. Despite of the
advantages that PDM models offer, since they are build upon an existing Laguerre-Volterra

series model, thus all the difficulties regarding the identification of such models are inherited.

3.2.3 Gray Box Models

System identification models can be classified, in terms of the amount of prior knowledge of
the system that is incorporated into it, into white, gray and black box Nelles (2013); Sjoberg
et al. (1995). With white being the type that incorporates the most prior knowledge into
the model, this implies that the underlying biophysical principles that govern the system’s
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behaviour are known and well understood. A good example of this type of models in the field
of neuroscience is biophysical models. Black models are on the other end of the spectrum,
where very little to none is assumed about the nature of the system and the model is obtained
mainly by data-driven approaches that involve collecting input/output data from the system.

Gray box models assume partial knowledge of the theoretical structure of the model,
obtained from either the underlying known system’s governing principles, known dynamical
behaviour from previous experiments or previous models(Van Hateren and Snippe, 2001).
And require the identification of the unknown parts from data.

A more granular classification of gray models has been proposed in (Sjoberg et al., 1995).
Where the gray models are further divided into physical and semi-physical gray box models.

Using this new subclassification, a physical gray box model is obtained by fitting a defined
number of parameters obtained from experimental data in a predefined set of equations that
describe the system and have physical grounds. The selected structure is a crucial step in
these type of models which plays an important role in the performance of the model.

In contrast to the physical models, where the governing equations or structure of the
model is defined by physical principles which are thought to be part of the model, in the
semi-physical models, the prior knowledge of the system is used to suggest particular linear
or nonlinear combinations of the collected data either from experiments or simulations.
After preprocessing the collected signals using the suggestions made taking into account the
previous knowledge, the newly generated signals are used to estimate a black-box model of
the system.

Because it is possible to implement and test hypothetical models using either physical or
semi-physical gray box models, both are commonly applied as a strategy to model single
neurons or networks of them. Regarding the visual system, some relevant works include
(Brinkworth et al., 2008; Hateren, 1992; Laughlin, 1989b; Pece et al., 1990; Pumir et al.,
2008; van Hateren and Snippe, 2001)

3.3 The NARMAX Method

The NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model
(Billings and Leontaritis, 1981) is a nonlinear extension to the linear ARMAX model and is
given by (Billings, 2013)
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Y1) =Fly(t=1),y(t=2),--- ,y(t —ny),
u(t—d),u(t—d—-1), - u(t—d—n,),
e(t—1),u(t—2),---,e(t —ne)| +e(t) (3.17)

where the input, output and noise sequences are given by u(t), y(¢) and e(t) respectively,
also ny,ny and n, represent the maximum lags for input them. F[] is a nonlinear function,
known as the expansion within the NARMAX methodology and d is a time delay which in
most cases is settod = 1.

It has been shown that most of the system identification models discussed in the previous
sections, including Volterra, Wiener, Hammerstein, block-structured and several neural
network architectures, are particular cases of the model Equation 3.17. In addition to being
more general than most modelling techniques discussed so far, because NARMAX models
are recursive in the outputs, i.e. use explicitly lagged versions of the system’s output, the
obtained models are parsimonious(Billings, 2013).

Before delving into the NARMAX system identification framework, it is important to
mention that in the past some authors (Marmarelis, 2004; Victor and Canel, 1992; Zhao and
Marmarelis, 1998) have acknowledged this methodology as a good candidate for obtaining
models in neurophysiology. Despite this observation, the number of models for neurophysio-
logical systems using this methodology is not large, however, it has started to be used with
great success (Friederich et al., 2016).

As pointed out in (Billings, 2013), the term NARMAX has evolved from being just an
acronym for this type of model to an identifier of a well-defined methodology that comprises

the following steps

e Structure detection

¢ Parameter estimation

Model validation
¢ Prediction
* Analysis

Structure detection is the first fundamental step of the NARMAX methodology. In this
step, the model search space is defined by selecting a functional nonlinear expansion for F'[-]

and assigning specific values for the lags of the input, output and error sequences.Then, by
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systematically surveying the candidate M terms, a subset m << M of them are selected to be
part of the final parsimonious model that will capture the dynamical behaviour of the system.
More details on how to select the terms can be found in (Billings, 2013)

The second step in the NARMAX methodology is parameter estimation. This step in-
volves optimisation algorithms which compute unbiased parameters values for the previously
selected model structure. In most algorithms based on orthogonal forward regression (OFR)
(Billings et al., 1988), structure selection and parameter estimation are carried out in paral-
lel.More details about this step can be found in (Chen, 2006; Chen et al., 1989; Hong et al.,
2008; Orr, 1995).

Once a model has been selected, the next step within the NARMAX methodology is
validation. The objective is to check if the selected model is unbiased and to assess how well
it represents the real system. There is a full body of knowledge and algorithms that have been
developed to validate NARMAX models, some relevant works are (Aguirre and Billings,
1995; Billings and Zhu, 1994, 1995; Coca and Billings, 2002).

After the model has been validated the next step is prediction. Here the obtained system’s
model is used to predict the output of the real system for a given input. Depending on a
variety of factors such as the nature of the system and the application of the model, the
predictions can be made using one step ahead, multi-step ahead or model predicted output
techniques (Billings, 2013).

The last step of the NARMAX method is analysis. NARMAX models can be used for
prediction/forecasting, system analysis and for control applications. For example, NARMAX
models have been used to forecast DTS index (Pisoni et al., 2009). Given a polynomial
NARMAX model, it is possible to derive analytically the Generalized Frequency Response
Functions (Jones and Billings, 1989) and the Output Frequency Response Functions (Lang
et al., 2007). These analysis tools were used in (Friederich et al., 2016) to demonstrate that
phase-related features contained in temporal stimuli are selectively encoded and enhanced by

fly photoreceptors by making use of nonlinear dynamics.

3.3.1 NARMAX Model Expansions

As mentioned before the nonlinear function F' that maps one or multiple variables to the
output of a system given by Equation 3.17 can be expanded in various forms (Pearson, 1995).

A summary of some of these forms, NARMAX expansions, is given below.
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Polynomial and Rational Implementations

Perhaps the most mature, applied and well-studied expansion is the polynomial NARMAX
expansion. Maybe the fact that polynomials can approximate any given continuous function
on an infinite interval (Functions, 1981) has contributed to its popularity. This expansion is
defined as

y(t> = Fp()ly

n n n
G0+ Y Oixi (1) + ) Y Oy iy (1)xiy () +-

l|=1 i]=1i2:i1

T Y B Xy (1)xi () i, (1) +e(2) (3.18)

=l =i

where [ is the degree of the polynomial nonlinearity, 6y, are the model parameters,
n=ny,+ny+n, and

y(t—m) if 1 <m<n,
Xu(t) =S u(t—(m—ny)) if ny+1<m<ny,+n, (3.19)
u(t—(m—ny—ny)) ifny+n,+1<m<ny+n,+n,

This polynomial expansion includes two particular cases that are commonly used. The
first one is the so-called ARMAX model which is achieved by choosing / = 1. And the second
case is the NARX model which can be obtained when n, = 0. From Equation 3.19 it can be
seen that this expansion is linear in its parameters, which makes it suitable for the application
of linear optimisation techniques, that is normally carried out within the orthogonal forward
regression method, to solve the combined problem of the structure selection and parameter
estimation to obtain a model of the system.

Introduced in (Billings and Chen, 1989), the rational expansion is a generalisation of the
polynomial case. It is defined as (Billings, 2013)

_ Aly(t—1),--- vt —ny),u(t —1), - ju(t —ny),e(t—1),--- ,e(t —ne)] +e(t)

Bly(t—1),---,y(t —ny),u(t—1),--- ,u(t —n,),e(t—1),--- ;e(t —n.)] +e(t)
(3.20)

where y(t), u(t), e(t), ny, ny,, n, are the same as in the polynomial expansion, A[-] and

y(t)

B]| are polynomials similar to Equation 3.19. It is clear that by allowing B[-] = 1 then model
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Equation 3.20 reduces to 3.19. The advantage of this model over the polynomial case is that

it can model systems which feature singular or near singular behaviour.

Extended Model Set NARMAX

So far the nonlinear mapping in Equation 3.17 has been using polynomials, but this doesn’t
need to be the case. The framework allows for the function F|[-] to take any form that is
convenient for the system that is being modelled. For instance, if a priori knowledge of the
system suggest that its dynamical behaviour could be captured by a transcendental function
such as the exponential, then this function can be included in the initial model set of the
NARMAX methodology. According to (Billings, 2013) the previous description is achieved
within the NARMAX method as follows
Let

X(t) = [y(l‘— 1)7"’ 7y(t_ny)7u(t_ 1)7"' 7”(t_nu)7e(l_ 1)7"' 7e(t_ne)]T (3-21)

If it is assumed that the nonlinear mapping F[-] in Equation 3.17 can be approximated by

M predefined functions, linear or nonlinear, @1, @, --- , @y, i.€.
M
y(1) =Y 6 (x(1)) +e(r) (3.22)
i=1
where each function ¢;x(¢),i = 1,--- ,M can be specified by a combination as many

variables as n = ny, +n, +n,.
This previous definition allows for arbitrary functions such as sinusoids, exponentials or
any other to form part of the NARMAX model. More details can be found in (Billings, 2013)

Radial Basis Functions and Wavelets Implementations

A particular case of the Multilayer Perceptron Networks, reviewed in (Haykin and Network,

2004), are Radial Basis Functions (RBFs) which consist of a single hidden and the y j(t)

output of each j node is given by the output of an symmetric activation function that has as

input the distance, Euclidean most of the times, between the input x(¢) and a fixed center ¢ -
Each node’s output y;(#) is given by

yj(t) = g(llx—cjll;)) (3.23)

the g activation function is normally chosen to be a Gaussian function
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g(v,p) =exp(—v*/p) (3.24)

where p is a positive scalar that defines the width of the function.

The Gaussian activation function is not only symmetric but also vanishes away from the
center, i.e. g(v,p) — 0 when v — £oo

It has been reported RBF model that use the Gaussian activation function have great
approximation capabilities (Chen et al., 1991). The result of using RBF expansion to
implement a NARMAX (Billings, 2013) model provides a useful system identification. The

nonlinear mapping function f for this implementation is given by

fx) =Y wig(llx—cjll) (3.25)
j=1

When allowing the centres c; to be adjustable parameters, then the Equation 3.25 is
nonlinear in the parameters. In order to make the problem linear in the parameters,i.e. just
the weights w; have to be estimated, so its solution is easier and faster to obtain (Chen et al.,
1991) the centres c; are selected in advance using algorithms such as clustering.

For systems that contain severe nonlinear behaviour and fast and slow dynamics, wavelet
decomposition techniques are a good alternative. Because of its capability to be localised in
time and scale (frequency), the wavelet expansion has been used successfully in previous
works (Billings and Coca, 1999; Coca and Billings, 2001). Different wavelet-based NAR-
MAX model expansions have been developed, one example is the one in (Coca and Billings,

2001) which is based on the multiresolution analysis and is given by

¥() = Fyay[x(1)] ) 0:5(t) +e(t) (3.26)

where %i(t) = Xk [y(t — 1), - ,y(t —ny),u(t = 1), - ,u(t —ny,),e(t —1),--- ,e(t —n)]
represents either a wavelet y; ¢ (-) or scaling ¢; () function, both obey the following equation

_ { 219(2/x— k) if j = o 527

ST 2dei—k) i > o

where the dilation and translation indexes are j and & respectively. As reported in (Billings
and Coca, 1999; Coca and Billings, 2001) systems that follow the definition given in Equation
3.17 can be decomposed into its functional components. Then, the individual functional
components represent the contribution that each individual set of variables or a single variable
has towards the total response of the system. This type of models are good at reducing the

parameter space of models of systems with dynamics that have large varying dynamics.
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Despite the intricate model definition of this expansion, the linearity in the parameters is still
preserved, which means that the structure selection and parameter estimation procedures

used for other simpler model expansions can still be used in this case.

3.3.2 Structure Selection and Parameter Estimation

Regardless of the specific implementation of the NARMAX model, the key step of the NAR-
MAX system identification approach is model structure selection and parameter estimation
which are closely related. Model structure selection is the process by which a subset m << M
significant terms of all the M candidate terms are selected to be part of the model.The task
of parameter estimation involves finding the unbiased values for the parameters associated
to each of the selected terms in the model.A characteristic of the model implementations
discussed in Section 3.1 is that their model structure is linear-in-the-parameters such that the
parameter estimation problem can be formulated as a linear regression problem.

Provided the selected expansion for the model has been chosen to be linear in the
parameters, and a set of N input-output system data samples had been collected, then the
general NARMAX model 3.17 can be expressed as a functional expansion described by the
regression model by (Chen et al., 1989)

z(t) = F[x(¢) Zam, =1,--,N (3.28)

where the collected output samples of the system, over the time range t = 1-T§,--- ,N - T,
with 7} being the sampling time; are represented by the dependent variable z(¢), and 6; are
the unknown parameters that need to be estimated. Also the modelling error, e,,(t) as well
as the noise e(t) are represented by & (7) = e,,(r) + e(¢). Equation 3.28 can be expressed in

matrix form as

z=PO+& (3.29)

where
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z(1) , 01
7= 7P: |:pl : PM} 79 = )
z(N) O
(3.30)
&(1) pi(1)
E=| ¢+ |,and,pi= : Jori=1---M
EN) pi(N)

In Equation 3.29 the error sequence & (1),...,& (N) is unknown and has to be estimated in
an iterative manner as part of the parameter estimation routine. To that end, Equation 3.29 is

written as

2=P,0,+P,0,+¢& (3.31)

The P, matrix is made up of all noise-related regressors whilst the P, matrix contains all
candidate process (noise-free) terms.

In order to solve the Equation 3.31 approaches such as the one suggested in (Chen
et al., 1989) are used. The approach involves estimating the process part first. Once the
process model has been estimated, the residuals are used to estimate the noise model.
When estimating the noise model, both 8,, and 6, are iteratively re-estimated until the error
sequence & converges to an unpredictable sequence, i.e. contains no more information about
the dynamics of either the process or the noise. In the following, a very common approach,
orthogonal forward regression, for carrying out this estimation process is briefly outlined.

The most common algorithm to perform model structure selection for NARMAX models
is the orthogonal forward regression algorithm. In order to use this algorithm the first step is
to cast the problem into a linear regression problem, i.e. one that follows Equation 3.29. Once
the collected data from the system has been used to construct both the P matrix containing
the candidate regressors, according to the selected NARMAX expansion and the system’s
output(s) are contained in z, then the combined problem of structure selection and parameter
estimation can be solved. As mentioned above, the structure selection problem involves
selecting out of all M candidate terms, just p,, with m << M significant regressors that can
represent the dynamical behaviour of the system. At the same time, the parameter estimation
involved estimating the 6,, parameter values of each of the p,, selected terms. This process

is done by solving

6 = arg min ||z — P,,0,, |3 (3.32)
6
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Depending on the selected NARMAX expansion the search space where the relevant
regressor should be selected from can be very large and make the search and selection process
cumbersome (Chen et al., 1989). In order to address this issue orthogonal forward regression
procedures, which allow an informed and efficient search have been developed (Billings
et al., 1989, 1988; Korenberg et al., 1988a; Luo and Billings, 1995). The majority of these

methods decomposed the P regression matrix as an orthogonal projection described by

P=WA (3.33)

where A is M x M upper triangular matrix and W = [wy,--- ,wy] is a M X M orthog-
onal matrix. This decomposition is very similar to the QR decomposition using either
Gram-Schmidt, Modified Gram-Schmidt, Housholder (Chen et al., 1989) or Givens transfor-
mations(Luo and Billings, 1995).

After expressing the regression matrix in Equation 3.29 as an orthogonal projection given

by Equation 3.33 the new problem to solve is described by

2=Wp+& (334)

where 8 = [B1---Bu]" is an auxiliary parameter given by

B =A6 (3.35)

Both the auxiliary regressor wj,i = 1,--- , M and their corresponding f3; parameters are
uncoupled, this enables the OFR algorithm to evaluate the individual contribution of each
i"" regressor w; towards minimising the distance between the measured and one-step ahead
predicted output using Equation 3.32

A flow diagram of the OFR algorithm is shown in Figure 3.3. In that figure it can be seen
that the structure selection process is performed in k = 1,--- ,m consecutive steps. In each
step the uncoupled regressor that minimises the selected error criterion the most is selected
and its value parameter computed. This procedure continues until the selected stopping
criteria, which could be, for example, the final prediction error (FPE), Akaike(AIC) (Akaike,
1974) or Bayesian(BIC)(Schwarz et al., 1978) information criteria, has been met. A review
with more stopping options can be found in (Leeb and Potscher, 2009)

3.3.3 Model Validation

The most basic test to assess the accuracy is by simple inspection of its predicted output. It

is common practice to use one-step ahead predictions to carry out this type of inspection.
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Fig. 3.3 Orthogonal forward regression flow diagram.
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However since this way of predicting a system’s response does not take into account the
accumulation of the prediction errors, using multi-step ahead or pure model predicted output
predictions yield a more accurate way of validating the model (van den Bosch and van der
Klauw, 1994).

The assessment of the prediction/forecasting capabilities of the identified model can be
carried out either by visually comparing the predicted output against the recorded data or
by computing prediction error measures such as mean squared prediction error (MSE), root
mean squared prediction error (RMSE), which for a data set of N input-output data have the

following definitions

(z(i) —y(i))* (3.36)

M=

MSE= 1 i (z(i) —y(i))*,RMSE = \/1
N ! N

i=1 1

i

where the recorded output and the model predicted output are given by z(¢) and y(¢)
respectively. Given that the measures defined in Equation 3.36 depend on the signal’s power,

it is common practice to normalise the signal using its variance (French and Marmarelis,
1999)

. N 2
Y (2() z—y(l>) (3.37)
No

Z

NMSE =

where the measured output signal’s variance is given by GZZ.

When validating a model it is important to test its generalisation capabilities. This
refers to the property that a model has to predict not only data that was used to derive the
model but also systems output data that was not used in the model estimation process. This
generalisation property is an indicator of how well a model has captured the true underlying
dynamics of a system, as opposed of just fitting the data used in the estimation process.

In order to test the generalisation properties of a model, the input-output data set is split
into training D design and test T data sets. Then the D data set is split again into training
R and validation Q data sets. The training data set R is used for model estimation whilst
the validation part for providing an estimation of the final generalisation properties of the
selected model, this data set is used for selecting values for hyperparameters, the ones used
in regularisation techniques (Larsen and Goutte, 1999) for instance, or selecting between
different candidate models.

When the amount of available input-output data is not very large or when a more robust
validation procedure is needed, techniques which involve splitting the data might not be
suitable. One way to address this issues is to use cross-validation methods. These methods

promote the efficient use of data by interchanging the validation and estimation data sets.
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There are different ways of applying cross-validation techniques (James et al., 2013). Two
of the most used ones are leave one-out and K-fold cross-validation (Stone, 1974). In these
two approaches, the data set is divided into K subsamples. One of this K subsamples is then
kept apart from the remaining K-1 subsamples, which are used to as training data to estimate
the model.Then the one subsample which was kept apart is used during the validation stage.
In the case of the LOO, K is equal to the number of data samples. More details about
different cross validation techniques can be found in (James et al., 2013), and with particular
application to NARMAX-based models in (Browne, 2000).

In addition to the prediction and generalisation capabilities of a model, when validating
a model it is very useful to take a look at the information contained in the residuals, i.e.
the prediction error. An accurately estimated model should have a prediction error which
is unpredictable from all linear or nonlinear combinations of previous inputs and outputs
(Billings and Voon, 1986; Billings and Zhu, 1994). In order to check that model has this
property, correlation tests, auto, and cross, have been introduced. Autocorrelation tests check
the correlation using just the residuals, whilst cross correlation tests use both the input and
the residuals. Statistical validation of a NARMAX model can be assess by visually inspecting
the output of the following statistical tests (Billings and Voon, 1986)

((9ee(1)=68(1r) vt
¢,£(7)=0 VT
e e (1) =0 10 (3.38)
Py e(t)=0 V1

[ Puey,r(f) =0 vt

where the input and the residuals are represented by u and & respectively, (-)’ means that

the mean has been removed and the correlation function ¢, (7) is given by

RO -1 -]
VEL () /2y ()

where (-) denotes the mean value of the variable, N is the number of data samples in the

Oxy(7) (3.39)

input-output dataset. If after visually inspecting that the output of the previous correlation
test remains within the 95% confidence interval, approximately £1.96/+/N, then a model
can be considered statistically validated.

In addition to the previous tests, the following set of correlation tests (Billings and Zhu,
1994)
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{ 02y ey (T) = K8(T) VT (3.40)

(P(MZ)/’(Z@/(T) =0 ,VT
where k,€ (0,1) is a constant and §(-) is the regular delta function, can be used to
validate the identified model.
In recent years two new omnidirectional correlation tests have been proposed in (Zhang
et al., 2007). According that work those tests have a better performance for models of higher

dimensions.

3.3.4 Polynomial NARMAX analysis in the Frequency Domain

The models obtained for systems that evolve in time are normally expressed in the time
domain. Once the model has been validated, apart from prediction, models are also used
to obtain a physical interpretation of the system. It can be challenging to gain this type of
insight by analysing models in the time domain. The main reason for that is the fact that
a system in the time domain is very rarely uniquely represented and thus, is a harder to
tell what are the relevant system’s features by using just one out of the potentially many
temporal representations. In order to facilitate the analysis, the model can be represented in
the frequency domain, where given two models that represent the same system but have a
different specification in the time domain, share very similar features in the frequency domain.
This property has made the analysis of systems in the frequency domain a recurrent analysis
tool in several engineering branches, for instance, automatic control, civil and mechanical
(Lang et al., 2007).

In the case of the NARMAX methodology, there are tools that have been developed
to analysed the estimated models in the frequency domain, particularly when for the case
of polynomial NARMAX. It has been shown that when disregarding the noise terms of a
polynomial NARMAX, under mild assumptions the model can be expanded as a Volterra
functional polynomial (Diaz and Desrochers, 1988). This is very important since the tools
developed for Volterra series in the frequency domain can thus be applied to the polynomial
NARMAX. To elaborate briefly this argument recall that the Volterra series can be expressed
as

6 = Y (o) (3.41)
n=1

where the n'” order system output is given by
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yn(t) =Y Y ka1, T0) (3.42)
0 0

with h, (71, -+, T,) representing the Volterra kernel of order n. In order to obtain a fre-
quency domain representation of the Volterra series, the multidimensional Fourier transform
of each of the n'* kernels is obtained to yield the generalised frequency response functions
(GFREF) defined as

oo} (o)

Hn(]a)]7,]a)2; 7jwn) — Z Z hn("[]’... ,Tn)e*j(a)ml,wzrz,u,7a)n7:n) (343)

Linear effects of the system can be studied by analysing the first order frequency re-
sponse function H(j®).The rest of the frequency response functions, i.e. for n > 1, are
used to characterise all the nonlinear phenomena shown by the nonlinearity of the system.
These phenomena include harmonics, intermodulation, gain compression and expansion,
desensitisation (Billings et al., 1990; Chua and Ng, 1979; Zhang and Billings, 1993).

To obtain the GFRFs of a polynomial NARMAX efficient algorithms have been developed
(Jones, 2007; Jones and Billings, 1989; Jones and Choudhary, 2012). These algorithms
compute the first order frequency response function and then use it in a recursive fashion to
efficiently compute the higher order frequency response functions. To show the basic idea,
the polynomial NARMAX model Equation 3.19 can be expressed as

I m K ptq

p
o)=Y Y cpa(T - Torg) [ ot — ) [] u(t—1) (3.44)
m=I[ p=07,Tp14=1 i=1 i=p+1

where the lagged input terms u(¢ — 7;) and lagged output terms y(¢ — ;) of orders ¢ and p
respectively, form part of each term, such that the nonlinear dimension of each term is given
by p+¢. Each of these terms has a coefficient ¢, 4(71,- - , T+4) Which either depends on
the 6;, according to Equation 3.19 parameter or is zero because the term is not part of the
model. All the possible permutations of lags that are part of the model are then generated by
the multiple summation over 7;,1.e. 7, =1,--- ,K;i=1,---, p+¢g. Using these notation and
according to (Jones and Billings, 1989) the GFRFs of a NARX model can be obtained as
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where the contribution of the 7" order GFRF, which is generated by the nonlinearity of
p'" degree in the recursive output, is given by H,,(jo,---,0,). In the previous equation,

H () is recursively computed as

n—p+1

Hrﬂllsgm(le )t ,](!)n> = Z Hi(jwl? e 7jwi)Hn—i7]7—1 (ij-l )t ’ja)n)e_j(w]+7-..7+wn)fp

(3.46)

where H, 1 (joy, -, joy) = H(jo, - ,ja)n)e_j(wl+"'+wi)fl

As reported in (Jones and Billings, 1989) the n'" GFRF is not unique, due to the fact
that depending on the constellation of the @; arguments, different functions can produce the
same frequency response function. In order to address this issue a symmetric GFRF H,”"(-),
which value doesn’t depend on the arrangement or its argument, was introduced. The actual

value of this symmetric frequency response function is given by

. o . .
HY"(jor, -+, jon) = — Y HE™ (jan, -, jo) (3.47)

* all permutationsof{ @y -,y }

The obtained GFRFs are given as an algebraic relationship between the coefficients of the
NARMAX model and the ones in the GFRFs. An extension for systems with multiple-inputs
and multiple outputs can be found in (Swain and Billings, 2001). This technique has been
used successfully to analyse different systems (Boaghe et al., 1999, 2002; Li and Billings*,
2005; Peng et al., 2007)
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Despite being a great tool to analyse systems in the frequency domain and gain insight,
its interpretation is sometimes challenging because they are multidimensional functions
(Yue et al., 2005).In order to address this issue a new concept, output frequency response
functions, has been recently introduced (Lang et al., 2007). In contrast of GFRFs, this
are one-dimensional functions of in the frequency domain that depend on the GFRFs and
a given input for a Volterra or equivalent NARMAX model. The fact that they are one
dimensional functions makes their interpretation and visualisation much easier than using the
multidimensional GFRF functions. The output frequency response functions not only provide
insight into which particular input frequencies contribute the output frequency spectrum but
also how these frequencies affect the response of the system (Lang * and Billings, 2005;
Peng et al., 2007).

According to (Lang et al., 2007), the output spectrum of a NARMAX can be expressed as

N
Y(jo)=Y YoV, (3.48)
=1

n
with
Wz z

Hy(jor,---, jo,) [TU(jor)dowe (3.49)

Y,(jo) =
n(] ) (275)"71 O+ + 0 =0 i1

where H, and Y, represent the n'* order GFRF and NOFREF of the system. It is important
to notice that in practice the integral is replaced by a summation if the spectrum was obtained
using the discrete Fourier transform.

An example of how to the NOFRF of a SISO system can be computed from data and then
used to analysed that system can be found in (Lang * and Billings, 2005). The concept of
NOFREFs has also been generalised for MIMO systems by Peng et al. (2007).

3.4 Discussion

This chapter provided an overview of system identification approaches and their applications
to neuroscience. The state-of-the-art, NARMAX system identification methodology, which
includes efficient model structure selection, parameter estimation, and model validation
methods, was presented in more detail. The main advantages of the NARMAX method can

be summarized as follows

* NARMAX models can describe a wide range of nonlinear systems

* It can be used to derive both SISO as well as MIMO systems
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* It produces parsimonious model representations

NARMAX models can be derived even from relatively small data sets (a few hundred
data points)

* The noise is modelled explicitly ensuring unbiased parameter estimates

* The resulting models can be interpreted and analysed to provide insight into the
properties of the underlying system

The NARMAX modelling approach is used to derive the photoreceptor and retinal

network models described in later Chapters.



Chapter 4

A Unifying Empirical Model of R1-R6
Photoreceptors in Wild-type and
Histamine-deficient Drosophila Flies

4.1 Introduction

State-of-The-art empirical photoreceptor models (Friederich et al., 2016, 2012) predict very
accurately its response. A major limitation with these models is that these do not distinguish
between the processing taking place at photoreceptor level and the contribution from the
neurons in the lamina to the shaping of the photoreceptor responses. Specifically, these
models do not take into account the actual connectivity between photoreceptors and the
lamina. As consequence, these models can not be used to build a model of the whole retina,
which reflects the actual connectivity between retina and lamina neurons. Another limitation
of the existing models is that they cannot be tuned to reproduce the photoreceptor responses
to multi-level naturalistic stimuli, measured in histamine deficient flies.

This Chapter introduces a new model of R1-R6 photoreceptors in Drosophila, which can
be tuned to reproduce the photoreceptor responses of wild as well as histamine deficient flies
for arbitrary stimuli, over the entire environmental range.

To address the above limitations, a previous model of the fly photoreceptor, developed
and validated using recordings in wild-type (Friederich et al., 2016, 2009), was modified.
The modified model incorporates separate gain control mechanisms for stimulus mean and
contrast which allow adapting the model to capture the dynamics of photoreceptors in blind
histamine deficient fruit flies. To derive the model, separate mean and contrast gain functions

are estimated by solving the corresponding nonlinear inverse problem using optimisation
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techniques. The estimated gains are used to derive separate dynamic gain control models for
wild-type and mutant flies. The models are validated using experimental recordings.

The Chapter is organised as follows. Section 2 provides an overview of the previous
modelling approaches and models used to characterise photoreceptor responses.

of the approaches used to model drosophila photoreceptors of the current state-of-the art
models.

Section 3 explains the limitations of the previous state-of-the-art model of R1-R6 pho-
toreceptors (Friederich et al., 2016), in modelling the histamine deficient mutants hdc'K910,

Section 4 introduces the new gain control architecture incorporating separate mean and
contrast gain variables. Experimental recordings from both wild-type and hdc'®°1? flies are
used to estimate the gain functions that are then used to derive the final gain control models.

Section 5 presents the derivation and validation of the new models using experimental
data recorded for both wild-type and mutant flies.

Section 6 provides a summary of the model and its relevance, as well as the conclusions

for this Chapter.

4.2 An Overview of Existing Photoreceptor Models

There have been two main approaches to model fly photoreceptors. The first approach takes
into account the molecular interactions that take place during the phototransduction cascade
and the propagation of electrical signals along the membrane (Peretz et al., 1998; Pumir et al.,
2008; Song et al., 2009, 2012).

The second approach involves using system identification approaches to derive empirical,
black-box models that predict photoreceptor responses to arbitrary stimuli (Friederich et al.,
2009; Hateren and Snippe, 2006).

The biological models aim to characterise the processes and mechanisms of phototrans-
duction at a molecular level. Such models allow biologists to understand how photoreceptors
process visual information. In contrast, empirical models reveal what photoreceptors actually
compute (Carandini et al., 2005).

This characteristic makes this type of models very attractive for biologists and neurosci-
entists. Examples of these models can be found in (Hardie and Postma, 2008¢; Nikolic et al.,
2010; Niven et al., 2003c; Song et al., 2012)

The study presented in (Niven et al., 2003c) uses the responses of photoreceptors from
wild-type and Shaker ShKS133 flies. These two types of flies were stimulated with a
white-noise current signal. Using intracellular recordings of the experiments the authors

concluded that losing K+ conductances produced a marked reduction in signal-to-noise ratio
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of photoreceptors. This decrease of signal-to-noise ratio led to a 50% information capacity
loss. These results were used in conjunction with the Hodgkin-Huxley equations to produce
a photoreceptor model.

Although not presenting a photoreceptor model, the work in (Hardie and Postma, 2008c¢)
describes the mechanisms that participate in the phototransduction cascade. In this work, a
new hypothesis regarding important mechanisms in the activation stage of the phototransduc-
tion cascade is introduced.

A quantitative phototransduction cascade model is presented in (Nikolic et al., 2010).
The model consists of 4 stages: light absorption, signal amplification, regulation of the ionic
current of the cell and positive and negative feedback calcium mechanisms. The model is
stochastic and capable of simulating single photoreceptor responses, quantum bump.

Arguably the most advanced biophysical model of the fruit fly photoreceptor is the
stochastic four-stage model which was developed in (Song et al., 2012). The reported model
has quantitative models light-sensitive and light-insensitive parts of the photoreceptor. The
model is composed of two sections. The Rhabdomere section, which is divided into 3 stages:
photon absorption model, phototransduction cascade, and bump summation model. The
Soma section which uses a Huxley-Hodgkin to model the cell body. This model represents
an improvement of the previous model not only because it uses the insights provided by
previous works (Hardie and Postma, 2008c; Nikolic et al., 2010) to model the molecular
mechanisms of the phototransduction cascade, but also is a more comprehensive that has been
validated experimentally using naturalistic stimuli as opposed to white noise stimuli used in
(Nikolic et al., 2010). The use of naturalistic stimuli to develop and validate photoreceptor
models is crucial since it is known (Simoncelli and Olshausen, 2001; van Hateren, 1997) that
photoreceptors respond nonlinearly to such stimuli.

The biophysical models reveal the underlying mechanisms but are not as accurate when
trying to understand the underlying molecular mechanisms of that take place in the photore-
ceptor. However, when the aim of the study is to understand the signal processing algorithms
and computations carried out by the sensory neurons, the complexity of biophysical models,
reflected by the number of parameters and the nature of the equations plus the assumptions
made, make these models unsuitable for this purpose (Badoual et al., 2006).

To understand what photoreceptors compute, one needs to rely on simple, empirical
models that can predict accurately photoreceptor responses to arbitrary stimuli. A review of
black box models used in system identification can be found in (Billings, 2013) and (Mar-
marelis, 2004). These models do not reveal the underlying biophysical mechanisms(i.e. how
photoreceptors compute) but can be analysed mathematically to determine the computations

performed by photoreceptors.
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The crucial step in the process of deriving a model directly from experimental data using
system identification is to determine the model structure. In the first instance, the modeller
has to decide if the dynamics can be capture by a simpler linear model or requires fitting a
more complex nonlinear model. In the case of fly photoreceptors, it has been shown that,
under naturalistic estimulation, the photoreceptor response is nonlinear (Simoncelli and
Olshausen, 2001; van Hateren, 1997).

Some of the models derived in the past include the Volterra and Hammerstein models of
the photoreceptor of the blue bottle fly (Calliphora vicina) developed in (French et al., 1993).
Specifically, the first- and second-order Volterra kernels were estimated from data using a
sequence of combined step responses which were used in a light-adapted and dark-adapted
setup.

In this case, the linear filter was the previously obtained first-order Volterra kernel and
the nonlinearity was a sixth-order polynomial series, obtained using the Gram-Schmidt
procedure. The performance of this second model was better than the one using the just the
Volterra kernels. However, the authors developed a third model consisting of a NLN cascade.
The rationale behind this model was, according to the authors, that there are nonlinearities at
the end of the phototransduction cascade. This third model was able to predict the response
with a mean square error of 1.55%.

Although the last model presented in this work had great accuracy the following points
should be considered. The model organism used was not Drosophila which makes it easier
in practical terms since the fly is bigger which facilitates the experiments. However, it
has the drawback that is not possible to take advantage of the genetic "toolbox’ available
for Drosophila, which is useful in understanding the effect that other neural layers have in
modulating the photoreceptor response. Another limitation of the model is the stimuli used
to obtain the response. The sequence of steps does not provide stimulation to the one the fly
is likely to encounter in its natural environment, which is crucial in obtaining a more realistic
model.

In a more recent study (van Hateren and Snippe, 2001) the authors have used blowfly as
a model organism to obtain models of photoreceptors. The study used natural time series
of intensities as stimuli to obtain the models. The purpose of this type of stimulation was
to excite the photoreceptor in conditions similar to the ones the fly encounters in its natural
environment. As mentioned before this is a crucial step to obtain more accurate models
of photoreceptors. In great part, this is due to the nonlinearities that are elicited by the
photoreceptor when this type of stimulation is used. Different model architectures were
tested. The simpler architectures consisted of linear Wiener filters. More sophisticated

architectures added static nonlinearities, such a square root operator, to the linear filter. The
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most sophisticated architectures presented in this work included low-pass filters, feedback
loops, static and dynamic nonlinearities. The most accurate model reported in this work
was a cascade of a low-pass filter with two loops with low-pass filters followed by a static
nonlinearity. In this case the performance of the models was assessed by a coherence
function obtained using information theoretical techniques. The models presented in this
study, in particular the last one, was an improvement with respect to the previous model,
mainly because the type of stimulation used. However the nonlinearities used to capture the
photoreceptor’s response were selected somehow ad-hoc.

The empirical photoreceptor model derived by (Friederich et al., 2016) is arguably the
most accurate and thoroughly validated fly photoreceptor model. The model was developed
using in vivo single-electrode recordings of intracellular voltage responses of Drosophila
photoreceptors intensities experienced by the fly in its natural environment. This model that
captures both the transient and the steady state response of the photoreceptor very accurately,
was derived from data using the NARMAX (Billings, 2013; Chen and Billings, 1989b)
system identification methodology. In this context, it is worth noting that both the Wiener

and Hammerstein models can be regarded as particular cases of the NARMAX models.

4.3 Adaptive Model of the Fly Photoreceptor

The photoreceptor model consists of a polynomial discrete-time NARMAX model, depicted
in Fig. 4.1, with variable input gain and a dynamic gain control model that adapts the input
gain according to the mean light intensity (Friederich et al., 2016). The gain control model
contains three branches, each of which accounts for three different adaptation time-scales.
These three different time scales can be related to 1) the plateau in calcium concentration that
the rhabdomere reaches after a light step. This plateau is achieved in the order of milliseconds.
2) The pupil mechanism that reduces the Ca>* and has a time scale of seconds and 3) slow
adaptation mechanisms such as translocations of signalling proteins in the cell membrane.
This last mechanism can take from minutes to hours.

In particular each branch of the gain controls is composed of three blocks: a linear filter,
a nonlinear divisive exponential transformation, and a saturation function. The linear filter
accounts for the first order system dynamics which are common in neural systems and are
related to capacitances and conductances in cells. The nonlinear divisive gain was introduced
to relate the mean light intensity level and the observed gain control in steady state. Finally,
a saturation block was included to prevent the previous nonlinear divisive gain to reach very
large values which are biologically infeasible. A more detailed explanation of each block of
the model can be found in (Friederich et al., 2012).
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This model was validated using data from six different animals by using the techniques
presented in Chapter 3. The normalised mean squared error of the model in steady state
was of less than 1% for all the mean light level intensities. This model is not only more
accurate than the previously developed models but also it has been extensively validated
using experimental recordings from photoreceptors in different flies.

Nonlinear Filter Block
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Fig. 4.1 Block diagram of the empirical model proposed in (Friederich et al., 2009).

The NARX model is described by the following equation,

y(t) = 01y(t — 1)+ Oy(t — 3) + 634 (r — 5)ii(t — 4)
+ 64+ O5ii(t — 6) + Ogli(t —4)y(r — 6)
+ 670(t —7) + Ogii(r — 7)ii(t — 6) 4.1)
+ 6oy (1 —4) + B10y(r = 5) + O1144(t —4)y(t = 5)
+ O0120(t —4)y(t —2) + O136(t — 7)it(t — 3) + O144(t — 5)
+ 0y5i(t — 4)

i = Ku(t) where u is the input and K is the input gain given Equation 4.2. y(¢) is the
voltage response of the photoreceptor. The specific values for the 6 parameters of the model
can be found in (Friederich et al., 2013). This model was derived for a sampling frequency
of f; = 400Hz.

In Equation 4.2 K(¢,u(t)) is defined as a superposition of three input gains

K(r,u(t)) =Y Ki(t,u(r)) (4.2)

i=1
where each K; gain is the output of a cascade linear-nonlinear model having the photore-
ceptor stimulus as the input. Each K; is composed of



4.3 Adaptive Model of the Fly Photoreceptor 5§

(L) A linear dynamical system which approximates the local mean light intensity level,
i(1);, for a particular time-scale which is described by the constant { in the following

Equation
di; (t )
¢ dt

+a;(t) = u(r) (4.3)

(N) A nonlinear divisive exponential transformation which describes the relationship
between the static gain(g;), obtain as the mean of the K;(z) during the last 4 seconds,

and the light intensity stimulus. This relationship is given by the equation
gi(t,u(r)) = wi(r) % (4.4)

Then by combining the static gain response given in Equation 5.12 with time scale

processing, its corresponding linear filter, Equation 4.3 the equation for g;(¢) is
1 o
gi(t,u(t)) = K; <g07ie_t/Ci+z / e—O—f)/Cfu(r)dr) (4.5)
iJ0

(B) Lastly, a saturation function g’(¢,u(t)), that takes into account the physiological

limitations of the system is defined as

g(t)—B

8(875):ﬁ+m (4.6)

The adaptive model has been tested using experimental data collected from 6 different
wild-type fruit flies. Overall, the relative prediction error was below 4% (Friederich et al.,
2016).

As seen in Fig. 4.2 the model predicts well photoreceptor responses in wild-type flies but
fails to predict the response of photoreceptors of histamine deficient fruit flies. Particularly
for L-0 intensity level. At this bright light intensity level whilst the mean response of the
histamine deficient fly photoreceptor is similar to the wild-type, the variance of the response
is significantly compressed. Given that K(7,u(t)), Equation 4.2, controls only the mean
response of the photoreceptor model, by adjusting this parameter alone, this model can not
be tuned to reproduce the responses of photoreceptors of histamine deficient flies.

In order to address this issue a new model structure which involves two separate gain
parameters for mean and contrast and two corresponding gain control loops is introduced in

the next section.
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Fig. 4.2 Photoreceptor response to naturalistic stimuli shown in Fig. 2.5. (a) Comparison

between recorded data and model response of the wild fly. The comparison for the mutant fly
is shown in (b). Recorded data is shown in black and model responses are shown in red.



4.4 Mean and Contrast Adaptation in Drosohpila’s Photoreceptor 57

4.4 Mean and Contrast Adaptation in Drosohpila’s Pho-

toreceptor
The model described in the previous section processes data in two stages:

1. The gain adaptation stage which adapts the input gain according to the mean intensity
level. This model describes both the transient dynamics during gain adaptation as well
as the steady state gain for different mean intensity levels. In this stage, the model
adapts the input according to the mean intensity level, so the next stage can function
as required. It should be mentioned that whenever there is a change in mean intensity
level, the gain adaptation mechanism has a major contribution to the response. That
is to say, the transient response of the system to large changes in the input is mainly
captured by this part of the model.

2. The nonlinear NARX filter characterises the nonlinear transformations/encoding of the

input signal at photoreceptor level.

u(t)J:' L um(t) (1) u(t) Ko (1) Nonlinear Filter Block

> LPF; l ; > )
: | ¥ > NARX |—»

Fig. 4.3 Block diagram of the new photoreceptor model.

Specifically, the model can not predict neither the transient dynamics or steady state
response over the entire environmental range as illustrated in Fig. 4.2(b).

As described in the previous section, this model fails to predict the response of histamine
deficient fly photoreceptors. There are discrepancies in transient and steady state. The greater
discrepancy between the predictions and the recorded data is in steady state for the stimuli
that correspond to the brightest light. In addition, it has been reported (Friederich et al., 2016)
that histamine deficient and wild-type fly photoreceptors have a very similar response to light
adapted naturalistic stimulation is very similar. These facts suggest that the NARX filter of
the current model could be used for both wild-type and mutant fly photoreceptors. However,

some changes are needed for the gain adaptation stage.
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To address this issue, in this thesis a model with a structure that adapts the mean and
contrast of the input using two separate mechanisms is introduced. The proposed model
structure is shown in Fig. 4.3

In this new model’s structure the main novelty is the introduction of separate control
gains, K, (,u,,(t)) and K.(¢,u.(t)) for mean, u,,(¢) and variance, u.(t), components of the
stimulus. This strategy provides an extra degree of freedom so the mean and the contrast of
the input stimuli can be adapted separately.

The estimated mean and contrast components of the stimulus were computed by ap-
proximating the stimulus mean by smooth-filtering the stimulus. Moving average filters of
different window sizes and digital versions of simple Ist order linear filters were tested. After
testing the output of different filters the one with the best performance when solving the
optimization problem Equation 4.21 was a simple first order filter described in the Laplace
domain by the following equation

— KSS
1+71s

Un(s) U(s) 4.7)

The implementation of the filter in digital form was carried out by using the Tustin

transformation (Ogata, 1995)

§=———7=¢ (4.8)

After algebraic manipulations the equation of the filter is given by

um (k) = Afu(k) +u(k—1)] —Bu(k—1) 4.9)
where
A= K (4.10)
a
:é (4.11)
a
a=1+2fT (4.12)

b=1-2f" (4.13)
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The sampling frequency was selected f; = 400. And constants K¢; = 1,7 = 1. Using
these values the selected filter is given by

um (1) = 0.0012[u(t) + u(t — 1)) 4+ 0.9975u, (t — 1) (4.14)

And then, remove the approximated mean from the original stimulus to obtained the
variance of the signal, u.. This process is described by the following equation

uc(t) =u(t) — upy(t) (4.15)
A block diagram of the decomposition algorithm is presented in Fig. 4.4
Stimuli —_>| LPF L » Mean

;{—)a—»j Contrast

Fig. 4.4 Block Diagram illustrating the implementation of the mean, u,,(¢), and the mean-
removed stimuli, u.(t).

The result of applying the decomposition algorithm to the stimuli that were used in the
wild and mutant flies is shown in figure 4.5.

4.4.1 A New Photoreceptor Model Structure Incorporating Mean and

Contrast Gain Control

The new model structure with separate mean and contrast gain control is described by the

following definitions and equations

u(t) = up (1) + uc(t) (4.16)

It is assumed that given a function
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Fig. 4.5 Wild and mutant light stimuli decomposition into their mean and contrast components.

(a) naturalistic stimuli for the wild-type fly. Its mean and mean-removed components are
shown in (b) and (c) respectively.
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Kon(2,0(2) )t (1) + Ke (2, u(2) Jue (8)Ju(t = 7)) (4.17)

where
K (t,u(t)) € L*(A,) (4.18)
K.(t,u(r)) € L*(A,) (4.19)

where A; = [tyin, tnax] denotes a given time interval and [? is the infinite-dimensional
function space of square integrable functions.

The hypothesis of the proposed model is that given the experimental input/output data
obtained from either wild-type or mutant fly photoreceptors. There exists two functions
K, (t) and K,(t), which help adapting the mean and contrast components of the stimulus,
such that the model prediction error e(t) = y(t) — $(t) satisfies ||e(t)]|5 < P, € [tmintmax),
where p is a given error tolerance. The estimation of the gain functions from data is detailed

in the following section.

4.4.2 Estimation of the Mean and Contrast Gain Control Functions for
Wild-type and hdc’%1? Photoreceptors

The estimation of the adaptation functions for the proposed photoreceptor model, described in
Equation 4.17, is formulated as an optimisation problem on an infinite-dimensional function
space. The numerical solution to the nonlinear optimisation problem, is obtained by solving
a finite-dimensional approximation of the infinite-dimensional optimisation problem.

The infinite dimensional nonlinear optimisation problem is as follows

minimizeg ) k. (er2(a) () —2(0)]? (4.20)
A

where y(t) is the model described in Equation 4.17 and z(¢) is the recorded response of the
photoreceptor for the stimulus u(t)
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To solve Equation 4.20 the following finite-dimensional approximations of the gain
functions K, (¢) and K, (¢) are introduced.

&j, = arg min Z ‘NARX(y(t — 1), y(t —6), K (1)t (2) + Ko (e () u(t — 1), - -

Cig A
K010 (0) + Kooyt ~ 7)) —2(6) @21)
where
Kin(t) = Yty Omj g (1) (4.22)
ki
Ko(t) =) fe; 4o (1) (4.23)
ke
where

Jg 1s the resolution level that will will be used in ’dictionaries’ of scaling functions. And
O, (1) = O, (2/¢t + k™). Similarly Oc, sc (1) = Pc, sc (278t +k°) are two ’dictionaries’
of third order Battle(Battle, 1987)-Lemarie(Lemarié, 1988) scaling basis functions and the
coefficients ¢y, ,cx, € R. These scaling functions were selected as suggested in (Friederich,
2011). This scaling function is shown in Fig. 4.6. A Battle-Lemarie Scaling function of
order n is defined as follows

0" (1) =Y ol B (1 —k) (4.24)
keZ

(n)

where the Ock” coefficients were calculated as in (Leu et al., 1998). The numerical values

of the coefficients are shown in Table 4.1

n+1 n
B (1) = (nil)! ;)(—1)’< Jirl)(t—i)’; (4.25)

Also (r —i)"t indicates (r —i)" if t — 1 > 0 and O otherwise.
Using the definition of the Battle-Lemarie scaling function, a ’dictionary’ & of such

scaling functions is defined as

ﬁ]g = {Panmx(Pjgak(t)’jg > jmax;jak € Z} (426)

where Py, ¢; «(t) denotes the projection of ¢; ,(t) into the space Vj,,,
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Table 4.1 Coefficients for the generation of Battle-Lemarie scaling functions

Coefficient number Numeric Value

1 0.541736

2 0.30683

3 -0.035498
4 -0.0778079
5 0.0226846
6 0.0297468
7 -0.0121455
8 -0.0127154
9 0.00614143
10 0.00579932
11 -0.00307863
12 -0.00274529
13 0.00154624
14 0.001333086
15 -0.000780468
16 -0.00065562
17 0.000395946
18 0.000326749
19 -0.000201818
20 -0.000164264
21 0.000103307




A Unifying Empirical Model of R1-R6 Photoreceptors in Wild-type and Histamine-deficient
64 Drosophila Flies

Solving the optimisation problem Equation 4.21 is computationally expensive given the
potentially large number of unknown parameters. To address this issue, a sliding window op-
timisation approach proposed in (Friederich, 2011) was adopted. The optimisation procedure
is summarised below.

1.5 T T T T T

-1.0 i i i
—4 -2 0 2 4

Time - [s]

Fig. 4.6 Battle-Lemarie 3rd Order Scaling Function.

The estimation algorithm consist of the following main steps
* Step 1

— Select the resolution level jg, i.e. the exponent in the equation ¢m,-g.km (1) =
(ijg.km (2/¢t + k™), and obtain the distance j,; to the maximum resolution, defined

as jmax = 2794 f, where f; is the sampling frequency.

— Heuristically select the b,; optimisation interval, the overlap between the sliding
window and the signal being approximated, i.e. z(¢)

— Provide initial guesses for RY (t) and R (1)

— Initialise k = 1 the translation parameter, i.e. the distance between the lower end
of the optimisation window in the first and second iterations, which is used to

slide the window across the entire optimisation range.
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Fig. 4.7 Initial Guess for Mean and Contrast Adaptation Gains.

— Calculate the extended time interval A, using the following formula

Al‘: ooy

[l‘ ng—1 t . ny—1,.
9 ’ o
a1 22—

,t1,0y, ..., ININ—1, ...,IN,(N/,N), ...,szdnq)z—l 71} 4.27)

where N is the number of samples of the input stimuli, 74 is the number of filter

coefficients part of the impulse response of the scaling function. And N’ is given
by
; N
I —nda || —
N =2i(| | 4mp—1) +1

— Set kjuqx as the maximum number of steps that the sliding window needs to be

slided to cover A, entirely.
» Step 2

— Compute the ’dictionaries’ & A and & A of scaling functions and store them

in matrix form M A and C inA respectively

— Compute the initial coefficient vectors
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A1 (T N v Fo
ijd o (Mj(hAAIde’At) de7AAt mn and
A _ (T N ler o
Cejg = <de,AAijd’AI> de75zfc
» Step 3

— Calculate optimisation window sizes Ay, taking into account the extended time

interval At

- Fix 6’;; and obtain the optimal solution 615': by solving the nonlinear least-squares

problem using the Levenberg-Marquadrant algorithm.
» Step 4

— Update the translation parameter k. If k < k;;,4x, set k = k+ 1 and repeat step 3.

Otherwise proceed to the next step.
e Step 5
— Restart the sliding window position by setting k = 1
» Step 6

- Fix 6’;: and obtain the optimal solution é’;; by solving the nonlinear least-squares

problem using the Levenberg-Marquadrant algorithm.
» Step 7

— Update the translation parameter k. If k < k.4, set k = k+ 1 and repeat step 3.

Otherwise proceed to the next step.
* Finalisation
— Recover the estimated gains in the original time interval A, by deleting the
extensions in K, = M; 3 Cm;, and K. = M, ; ¢, and

The algorithm was applied to recover the approximations of the gain functions of K, (¢)
and K,(t) using the following parameters in Step1, which correspond to the parameters used

to obtain the adaptation gain for wild-type fly photoreceptors reported in (Friederich, 2011):

* Selected resolution level j; =7

* Optimisation interval by = 385 samples, 0.9625 seconds.
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Table 4.2 Model Prediction Error(%) by Light Intensity Level Using Estimated Mean and
Contrast Gains

Estimated Gains

Light Intensity

wild-type hdcJK910
Ly 0.72022  0.61121
Ly 0.55867  0.55338
L 0.61479  0.34932
L3 0.63848  0.37174

* Selected initial guesses KD (1) = KD (t) shown in Fig. 4.7
« Function to build the ’dictionaries’: Battle-Lemarie Scaling function of 3" order
shown in Fig. 4.6

The estimated mean and contrast gain functions for wild and mutant flies are shown in
Fig. 4.8, this Fig. reveals that there are clear differences between the mean and contrast gains
of the wild-type fly and the mutant. In the case of the mutant fly, the mean gain adapts the
stimulus slower than its wild counterpart. Also in the case of the contrast gain, the mutant fly
is clearly lower for bright intensities, when compared to the contrast gain of the wild fly.

A comparison of the recorded experimental data against the model predicted output using
the estimated mean and contrast gains is shown in Fig. 4.9. The prediction error by light

intensity level in shown in Table 4.2.

4.4.3 Mean and Contrast Gain Control Model

This section introduces a two dynamic gain control model that continuously predict the mean
and contrast gains K,,(¢) and K.(¢) given the stimulus u(z).

Each gain control model has the same structure as the gain control model presented in
Fig. 4.1. Specifically, each gain control model has three parallel forward loops consisting
of a linear filter block, a static nonlinearity and a saturation block as shown in Fig. 4.1.As
a result the controller structure features dynamics on three different timescales which has
been suggested (Friederich et al., 2016) that they could be related to adaptation mechanisms
corresponding to calcium dynamics in the photoreceptor’s thabdomere (Hardie et al., 1993),
pupil mechanism (Kirschfeld and Franceschini, 1969) and translocation of signalling proteins
(Frechter and Minke, 2006).

The mean and contrast gains K,,(¢) and K, (¢) are given by
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Fig. 4.8 Estimated (a) mean and (b) contrast gain functions for wild-type and mutant photore-
ceptors.
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Fig. 4.9 Model validation, using the estimated mean and contrast adaptation gains, of wild
and mutant photoreceptor responses to naturalistic stimuli. Fig. 4.9a shows the comparison
between the in vivo photoreceptor recorded data (black) and the model prediction (red) for
the wild fly. A similar comparison for the mutant fly is shown in Fig. 4.9b. Model predictions
have been added an offset of -20mv.
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where each K" / “(t,u(t)) is composed of a cascade of the following three blocks:
* (L) A linear filter described as

db_tl'(l)
b=,

+a;(t) = u(r) (4.30)
* (N) An inverting static nonlinearity defined by

gi(t,u(t)) = wi(r) ™% (4.31)

The equation for g;(7) is

t
at.ule) = w(etie S+ g [ uman) ¢ @)
i J0

* (B) And a saturation block

g(t)—B

o (4.33)

g(tu(t) =B+

Specifically the following parameter sets have to be estimated for the mean and contrast
gain control models Explicitly for f;, the parameter set that needs to be estimated is defined

as

elm = [Cim7 K-im7 aim’ﬁim]

(4.34)

Similarly for f. the parameter set that needs to be estimated is defined as
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Fig. 4.10 Block diagram of the photoreceptor model incorporating separate mean and contrast
gain control

elc = [Ciﬂ Kic’ aic7ﬁic]

(4.35)
withi=1,2,3
A global saturation function, (B) block
Lo Kin (t,u(2) )um (1) + Ke (2, u(1) )uc (1) — Bo
(1) = Po+ = K ) 0 Kol )P (4.36)

Also is included to ensure the range of the input applied to the NARX model remains
within the operating range of the model. This reflects the fact the signalling adaptation
mechanisms in biological organisms have saturation limits.

The block diagram of the new model of the fly photoreceptor is illustrated in Fig. 4.10.

The complete parameter set
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0= [szv GicaﬁG] (437)
i=1,2,3

Is determined by solving the following nonlinear optimisation problem

6 = arg min [|z(r) —y(1) 3 (4.38)
HcR
where z(¢) is the measured photoreceptor response, shown in Fig. 2.7(a), to the stim-
ulus sequence u(z), shown in Fig. 2.5. This optimisation problem was solved using the
Levenberg(Levenberg, 1944)-Marquardt(Marquardt, 1963) algorithm.
The initial parameter vector, é, was chosen to match the parameter reported in (Friederich,
2011) for the model of wild-type photoreceptor. The values are shown below

Clm Clc 0.2175
01(0) — Kin| _ |Kic| _ |3.3058 (4.39)
! Ui o, 0.9328 '

Bim Bie 45.2488

Eom Ere 1.5774
67(0) = Kom| _ |Kae| _ 07877 (4.40)
2 o o, 1.0256 '

Bom Bac 490.42

Cam e 14.6906

K K 0.0195
0m(0) = | " = | = (4.41)
3 O3 03¢ —1.7811

B3m [330 10000

B (0) = 13.2572 (4.42)
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Table 4.3 Parameters for the Mean and Contrast Gain Controllers of Wild-type and hdc’¥910
Flies

Mean Contrast
Block
Parameter wild hdcJK910 wild hdcJK910
Ly 4 0.0787 8.2362 0.0316 1.0401
Ny K 0.0566 0.0074 0.000072309 0.000001
a 4.6632 1.6953 6.5608 2.2093
B B 27.0750 56.7017 29.5498 7000.0
Ly 4 0.7827 0.6017 1.1662 0.5000
N, K 0.0292 0.0223 0.0302 0.0174
a 0.8479 1.2385 1.0001 1.3445
B> B 1487.0 416.1900 4897.9 496.1481
L3 4 18.3408 3.7080 0.5 1.7320
N K 0.00045623  0.0066  0.0000074097 0.00053922
3 a 1.7907 1.1661 5.3591 1.7943
B; B 10000.0 2000.0 10000.0 3100.0

Table 4.4 Estimated Parameters of the Global Saturation Function for Wild and hdcJK910
Flies’ Models.

Block Parameter Wild hdcJK910
B Bc 3.99 540

The values of the final parameter set, obtained after 50 iterations of the L-M algorithm
are listed in tables 4.3 and 4.4.

The mean and contrast gains predicted by the estimated gain controllers are shown in Fig.
4.11 and 4.12 respectively.

Although the outputs of the gain controllers do not fit perfectly, the ultimate validation is
provided by comparing the output of the complete photoreceptor model with experimental
data.

4.5 Validation of the New Photoreceptor Models of Wild
Type and Mutant Fruit Flies

The new photoreceptor models, derived for the wild- and mutant-type photoreceptors in the
previous sections, are evaluated by comparing the model responses to the stimulus in Fig.
2.5.
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Fig. 4.11 Wild-type photoreceptor (a) mean and (b) contrast gain functions predicted by the
gain control model (solid line) and estimated (dashed line) from data, corresponding to the
input shown in Fig. 2.5.
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Fig. 4.12 Wild-type photoreceptor (a) mean and (b) contrast gain functions predicted by the
gain control model (solid line) and estimated (dashed line) from data, corresponding to the
input shown in Fig. 2.5.
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Fig. 4.13 Model validation, using the mean and contrast adaptation gains implemented with
controller structure proposed in figure 4.10, of wild and mutant photoreceptor responses
to naturalistic stimuli. Fig. 4.9a shows the comparison between the in vivo photoreceptor
recorded data (black) and the model prediction (red) for the wild fly. A similar comparison
for the mutant fly is shown in Fig. 4.9b. Model prediction has been added an offset of -20mv.
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Table 4.5 Model Prediction Error(%) by Light Intensity Level

Using Estimated Gains Using Controller Gains

Light Intensity

wild hdcJK910 wild hdcJK910
Ly 0.72022 0.61121 0.96558 1.22069
Ly 0.55867 0.55338 0.76480 0.93779
Ly 0.61479 0.34932 1.21488 0.60528
L3 0.63848 0.37174 1.10665 1.47950

The response of the complete photoreceptor model, including the mean and contrast gain
control model, is shown in Fig. 4.13.

Fig. 4.13a shows the comparison between experimental data and model predicted output
for the case of the wild fly. The comparison for the mutant fly is shown in Fig. 4.13b. The
model responses are in very good agreement with the experimental data.

Table 4.5 shows a summary of the model predictions using estimated and predicted gains.
The results demonstrate that the new model of wild-type photoreceptor incorporating separate
mean and contrast gains predicts photoreceptor responses to arbitrary stimuli as well as the
original model incorporating a single gain parameter developed in (Friederich et al., 2016).

In addition, the new photoreceptor model structure allowed the estimation of a model for

the mutant photoreceptor that achieves a similar level of accuracy.

4.6 Discussion

In this chapter the limitations of the previously developed empirical photoreceptor model
(Friederich et al., 2016) in predicting the responses of histamine-deficient mutants were
addressed by introducing a new model structure incorporating separate adaptation mech-
anisms for mean and contrast part of the stimuli. A comparative analysis of the model
predicted mean and contrast gains for wild-type and histamine deficient flies, in response to a
multilevel stimulus covering the entire environmental range suggested the role of the lamina
in shaping the photoreceptor responses. The results showed that the brighter the stimuli the
more important the role that the network of interneurons plays in shaping the response of the
photoreceptors. Specifically, the comparison suggested that the LMC would help in speeding
up the adaptation mechanism for adapting the mean of the stimulus and also it would also
increase the amplitude of the contrast part of the stimulus.

The wild type model was validated using experimental data from 6 different flies. How-

ever, due to the data availability the model for the histamine deficient fly was estimated
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and validated using data only from one fly. Although this model could not be tested using
other data sets as in the case of the wild-type model, the same model development approach
was used which gives confidence that the mutant model is accurate. However, should more
experimental data be available, the proposed methodology can be used to refine the model.

A limitation of the proposed model structure is that the feedback from the lamina is not
modelled explicitly. For the wild-type model, this makes it difficult to discriminate between
the signal processing at photoreceptor level and the contribution from the neurons in the
lamina. Furthermore, the model does not capture explicitly between the photoreceptor and
the lamina neuron making it impossible to use it to build a complete retinal circuit model
of six photoreceptors and their post-synaptic neuron targets in the lamina and ultimately a

complete retina model.



Chapter 5

An Empirical Model of Drosophila
R1-6/LMC Retinal Network

5.1 Introduction

The interconnection between the lamina and retina in Drosophila has been studied in great
detail. For instance, the electron-micrographs obtained in (Rivera-Alba et al., 2011) allowed
the reconstruction of the photoreceptor-lamina network.

A schematic of the wiring’ diagram is shown in Fig. 5.1(a) shows that there are
feedforward and feedback connections between the photoreceptors in the retina and the
network of interneurons hosted in the lamina. In the forward direction the information flows
from PR1-PR6 of neighbouring ommatidia, which sample light information from the same
point in space, mainly to large monopolar cells L1-L3 and amacrine cells «. There are also
feedback connections from large monopolar cells L2, .4 and o amacrine to photoreceptors.
The inhibitory feedforward pathway from the retina to the lamina is driven solely by histamine
(Hardie, 1987, 1989; Sarthy, 1991). Whilst the excitatory feedback from lamina to the retina
is glutamatergic and cholinergic (Hu et al., 2015; Kolodziejczyk et al., 2008; Raghu and
Borst, 2011; Takemura et al., 2011).

Thanks to the genetic "toolbox’ available for Drosophila, it is possible to study the role of
the network of interneurons in shaping the response of the photoreceptors. Suitable fly alleles
have been used to study the effect of interrupting partially and enhancing communication
from lamina to retina (Hu et al., 2015; Nikolaev et al., 2009; Zheng et al., 2006, 2009)
as well as from retina to lamina (Dau et al., 2016). The outcome of those studies has
demonstrated that the feedback from lamina to retina adjust the photoreceptor output actively
by preventing saturation and increasing its SNR. Also, Dau et al. (2016) have shown that
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despite the fact that histamine deficient mutants hdc'%%10

, 1.e. blind flies, sample similar
amounts of information when compared to their wild counterparts, there exists an overload in
the interneurons which causes a tonic excitation that drives photoreceptors to high potentials
and as a final consequence the operational range of photoreceptors is reduced.

Although the aforementioned studies have provided insight as to what is the role of
interneurons in shaping the photoreceptor response, an explicit model that captures the
dynamical behaviour of this interaction is not available. Having such a model would be
very useful for at least two reasons. First, having a model that characterises explicitly the
interconnection between retina and lamina can be coupled to existing models of neighbouring
layers, retina, and medulla, would enable assembling in the long run a complete model of
the early visual system of the fruit fly. Secondly, from a systems engineering point of view,
such model would provide a basis for the role played by the interneurons in shaping the
photoreceptor response.

This chapter introduces a new model that explicitly models the contribution of the network
of interneurons, hosted in the lamina, in shaping the photoreceptor response.

The model exploits the dual, mean and contrast gain control architecture introduced in
Chapter 4, which allows capturing with a single model architecture, the dynamic responses
of mutant and wild-type photoreceptors. One limitation of the model developed in Chapter 4
is that the feedforward-feedback signalling between the photoreceptor and the lamina is not
characterized explicitly. This means that the model cannot be used as a building block of a
retina network model that involves interconnecting groups of six photoreceptors with LMC’s
and amacrine cells.

The Chapter is organised as follows. Section 1 revisits the model developed in the
previous chapter and shows that in its current form that model is not suitable for explicitly
modelling the lamina contribution towards the photoreceptor response. In section 2, by using
a data-driven approach, a novel empirical model is introduced. This model explicitly exposes
the contribution from the network of interneurons in the lamina to the photoreceptor. Section
3 the proposed model is validated using the collected electrophysiological data. Discussion

and concluding remarks regarding the developed photoreceptor-LMC given in section 4.

5.2 Comparative analysis of photoreceptor models

The model introduced in Chapter 4 Section 4.1 with parameters tuned appropriately, can

predict the response of photoreceptors to naturalistic stimuli over the entire environmental

JK910

range, in wild-type as well as hdc mutant flies. However, neither the excitatory feedback
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Fig. 5.1 Schematic of the connectome between the retina and lamina in Drosophila flies.
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from lamina to retina nor the inhibitory feedforward from retina to lamina are modelled
explicitly. This level of modelling detail is required to derive a retinal network model.

In this section, an analysis is carried out to compare the common and distinct components
of the photoreceptor models of wild-type and mutant fruit flies derived in Chapter 4 Section
4.1, as a basis for modifying the structure of the model such that it accounts explicitly for the
loss of connectivity with the lamina.

The NARX filter used to model the wild-type and hdcJK910 photoreceptor in the previous
chapter share the same structure but with different parameter values, as shown in Tables
4.3 and 4.4. As a matter of fact, NARX/NARMAX models with different parameters could
exhibit very similar dynamical behaviour.

One way to investigate dynamical equivalence of two NARX models is by comparing the
model predicted responses of the two NARX models to a naturalistic stimulus sequence.

The two models were simulated using the naturalistic sequence shown in Fig. 2.5. Model
predicted responses are shown in Fig. 5.2(a) and the difference between the predictions is
shown in Fig. 5.2(b). The computed Normalised Mean Squared Error(NMSE (e(t))), given
by Equation 3.37 and where (1) = y(¢)yitza — Y(t) mutans» between the two different simulations
is NMSE (e) = 0.00175. These results show that despite the difference in parameters, for a
given naturalistic stimulus the predictions of the two NARX model are very similar.

An alternative way to compare the two photoreceptor models is by mapping them into the
frequency domain. This comparison if the frequency domain is performed by computing the
Generalised Frequency Response Functions (GFRFs) of each model. In order to show that
the nonlinear transformations performed by the NARX filters of wild and hdcJK910 are very
similar, the first and second order Generalised Frequency Response Functions (Billings and
Peyton Jones, 1990; Billings and Tsang, 1989; Jones and Billings, 1989; Peyton Jones and
Choudhary, 2012) were computed and compared. Since both NARX filters have the same
structure so do their GFRFs. The analytical expressions that describe the first and second
order GRFRs for both NARX filters are given by Equation 5.1 and Equation 5.2 respectively.

" (@ a)) B 915e_j4w+914e_j5w—|—95e_j6w—|—97e_j7w
B T (81670 + Bre 130 0ge 1400, ge—i5®)

where ®1 = {917 927 957 977 097 0107 9147 615}'

(5.1)
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Fig. 5.2 (a) Comparison between predicted response of wild-type (black) and hdc’®10(red)
for a given naturalistic stimulus sequence, (b) difference between both model’s prediction.
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(5.2)

Table 5.1 Parameters of the NARX filters for Wild and hdc’®°19 Photoreceptors

Terms Parameter  wild-type hdc'Ko10
y(it—1) 0, 0.876843 0.866998
y(t—3) 6, 0.026093 0.0675079

u(t —4)u(t—>5) 03 -175.143562  -91.284261
1 04 -2.638715 0.024890
u(t—6) 0s 33.383327 8.174820
y(t—6)u(t—4) 6 0.047841 -0.84112
u(t—17) 6, 21.277399  -1.290357
u(t—6)u(t—17) 03 -318.269652  -77.972185
y(t—4) 0y -0.169338 -0.098469
y(t—75) 010 0.094975 0.023526
y(t—4)u(t—4) 011 -0.159067 1.746027
y(t—2)u(t—4) 012 -1.201824 -4.317250

u(t—=3)u(t—17) 013 -6.107486  222.325254

u(t—75) 014 27.388775 15.975744
u(t—4) 015 19.084409  55.934696

The computed magnitude and phase for the linear Generalised Frequency Response
Functions of the two NARX photoreceptor are shown in Fig. 5.3. The parameters used in the
models are shown in Table 5.1.

The first order Frequency Response Function is shown in Fig. 5.3. The magnitude is
shown in Fig. 5.3(a). In order to compare the difference of the first order Frequency Response
Functions the following measure was computed Ay H,"" = ||H| (0, ©) — H;(0,,, 0)|| =
0.486. Where ©,, and ®,, correspond to {0 - , 05} for the wild and mutant NARX models
respectively. This result quantifies a clear numeric difference between the two Frequency

Response Functions, however Fig. 5.3 shows that the magnitude of wild and mutant first order
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GFRF have a low-pass response. Also, their phases are shown in Fig. 5.3(b). To quantify the
numeric difference between the phase of the two first order Frequency Response Functions the
following quantity was computed ApH,”" = || ZH;(®©,,, ®) — ZH} (O, ®)|| = 0.02839. This
result indicates that there is a small difference between the two. These previous observations
suggest that, whilst not having exactly the same magnitude and phase, the two filters have
similar dynamical behaviour.

The surfaces corresponding to the second order GFRFs for wild-type and hdc'%°1°
NARX filters are shown in Fig. 5.4 and 5.5. Despite having a different magnitude surface,
AyHY™ = ||Ha (@, 01,0,) — Hy (O, @01, @) || = 0.4023, Fig. 5.4, show that wild and
mutant NARX filters have a similar shape. This similarity in shape suggests a similarity
in behaviour as well. The most important point, however, is the similarity, ApH,”" =
|£ZH (@, @1, ) — LH (O, @1, @) || = 0.3667, between the wild-type and mutant NARX
filter phase surface. It is clear that the filters are sensitive to signals with structure in their
phase. To have help assessing the similarities between the second order GRGF surfaces
of wild and mutant NARX filter, the intersection between those surfaces and the planes
W) + o = 1Hz and oy + wp, = 46Hz were computed and are shown in Fig. 5.6 in panels (a),
(b) and (c), (d) respectively.

The comparative temporal and spectral analysis carried out indicates that the mutation has
little effect on the NARX filter block and that, as noted in (Friederich et al., 2016), this block
describes processes that take place at photoreceptor level, independently of contribution from
the network of interneurons in the lamina. From a modelling point of view, this suggests that
the architecture of the contrast and mean gain controllers needs to be modified in order to
separate and characterize explicitly the adaptation processes that take place at photoreceptor

level from those driven by the lamina.

5.3 A model of R1-6/LMC network

In this section a empirical model that explicitly exposes the contribution from the network of

interneurons to the photoreceptors is introduced. The output of the model is defined as
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Fig. 5.4 Magnitude of the second-order GFRF of the (a) wild-type and (b) hdc’®910 NARX
filters.
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Fig. 5.5 Phase of the second-order GFRF of (a) the wild-type and (b) hdc’®910 NARX filters
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y1(t) = O1y1(t — 1)+ 62y1(t — 3) + O3ty (1 — 5)ity (1 — 4)
+ 04+ sty (t —6) + Ogity (1 —4)y; (£ — 6)
+ 61y (t —7) + sty (t — 7)1y (t — 6) (5.3)
+ 0oy (t —4) + G101 (t — 5) + 0114y (t — 4)y1 (1 —5)
+ 0120y (t — 4)y1(t —2) + O30, (t — 7)iy (t — 3) + O140; (t = 5)
+ 0151y (t — 4)

where y; (¢) is the predicted voltage response of photoreceptor 1. And &} is given by

a(t) — B

ay(t,u(t)) =B+ T ap (5.4)
with 7 described by the equation
At u(t)) = Ko (t,u(t) )iy ()L (t) + Ko (¢, u(t) )ue(t)Le(2) (5.5)

In the previous equation the u,,(t) represents the mean component of the input stimulus

sequence u(t), and is defined by the equation

U () = 0.0011[u(r) +u(t — 1)] +0.887Tup (t — 1) (5.6)
The contrast component of the input stimulus sequence is given by
ue(t) = u(r) — um(t) (5.7)

where the adapted version of the mean part of the visual stimuli is given by

Kn(t,u(t)) = ZK{”(t,u(t)) (5.8)

Similarly the adapted version of the mean-removed visual stimuli is given by
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K.(t,u(t)) =) K;(t,u(t)) (5.9

-

i=1

Similarly to the model in Chapter 4, each of the previous Kl.(') is composed of a cascade
of the next three blocks

* (L) A linear filter described as

Cidbzt(t> +it;(t) = u(t) (5.10)

* (N) An inverting static nonlinearity defined by

gi(t,u(t)) = k() ™% (5.11)
The equation for g;(7) is
t
gi(t,u(t)) = Ki(g().,iet/‘;"Jr%/ e =Sy (t)dT) (5.12)
iJo
¢ (B) And a saturation block
g(t)— P

g (tu(r) =B+ (5.13)

1—|—eg(t)*B

The Lamina contribution is given by the identified models Ly, (¢) and L.(z). These models
were obtained from experimental data using the NARMAX framework as described in the
following section. L,,(t) and L. (¢) are described by the equations

Lyn(t) = 05" 4+ 0" Ly (t — 1) 4+ 637 Ly (1 —2)
93{""pr(1 — 1) + Gf"’pr(l — 2) (5.14)

And
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Le(t) = 05+ 0FLo(t — 1)+ 6L, (r —2)
Orcu(r — 1)+ 60 u(t —2) (5.15)

respectively.
In equation 5.14, ypg is defined as

1 6
yPR = EZyi(t) (5.16)
i=1
A schematic of the previously introduced model is shown in Fig. 5.7

5.3.1 Empirical model of LMC

The previously introduced R1-6/LMC model is very similar to the model in Chapter 4,
however, the key difference is that the contribution from the network of interneurones has
been made explicit. The mathematical description of the proposed LMC model is given by
Equations 5.14 and 5.15 which were obtained using the NARMAX framework, the details

are given in the following paragraphs.
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Both models L,,(¢) and L.(t) were obtained by solving a SISO system identification
problem. After trying different combinations of possible inputs to estimate models for L,,()
and L(t), ypr(t) and u(t) were chosen. In particular, for L,,(¢) the selected input was ypg(?),
shown in Fig. 5.8a, which was defined in Equation 5.16. Since the target sequence L,,(f) was

not known in advance, in this case it was defined as

Ko (1) wita

L,(t) =—2"
mt) Kon(t) mutant

(5.17)

where K;;,(1)yiza and Ky, (t) murans are the adaptation gains for the mean component of the
stimulus for wild-type and mutant drosophila photoreceptors obtained in the Chapter 4 and
which are described by Equation 4.28. A graphical representation of L,,(¢) is shown in Fig.
5.8c. The definition of L,,(#) was made such that it would incorporate the difference in the
mean adaptation gain between wild-type and mutant photoreceptors.

In the case of L.(¢) the sequence used as input to solve the system identification problem is
the full visual stimuli u(¢), shown in Fig. 5.8b. And the output, similarly to the previous case,
was defined making use of the previously obtained adaptation gains of the mean-removed

component of the wild-type and mutant photoreceptor models. Thus L.(¢) is defined as

Ke(t)wita

Lc(t) i =—F"7"
) = R e

(5.18)

where Kc(t)(.) is defined by equation 4.29. A graphical representation of L, (z) is shown
in Fig. 5.8d. The definition of L.(¢) is similar to Equation 5.17. This choice was made so
that the difference in contrast adaptation gain between the wild and mutant photoreceptor
models could be used as part of the new model.

The NARMAX methodology was used to solve both system identification problems.
A polynomial expansion was chosen. After trying different parameters to run the system
identification algorithm, the most suitable models for both L,,(7) and L.(¢) were simple ARX
linear filters. The details for each model are given in Table 5.2 for L, (¢) and 5.3 for L.(t).

The model predicted output of Ly, (¢) and L.(¢) when using as input naturalistic stimulation
shown in Fig. 5.8b, are shown in Figs. 5.9a and 5.9c¢ respectively. In the case of L.(¢) the
model predicted output is very close to L.(¢) defined in equation 5.18. On the other hand,
the model predicted output generated by the obtained empirical model of L,,(¢) shows a
clear discrepancy when compared with the target L,,(¢) given by equation 5.17. Increasing

the model complexity by obtaining models of higher order and including regressors with
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Fig. 5.8 Regressors used to obtain empirical models of L,,(7) and L.(¢). Input (a) and output
(c) used as regressors for L,,(#). Similarly panels (b) and (d) contain the input and output
used as regressors for L.(t).

Table 5.2 Model of L,,(t)

Term Parameter Parameter value
constant GOL’" 0.000267
Ln(t—1) I 1.505937
Ly(t—2) 0;" -0.506209
yer(t—1) 65" 0.000301
ypr(t —2) ;" -0.000302

more delays did not improve the model performance. However, notice that what is important
for modelling the lamina contribution empirically, is the ability to compute K., (t)iq from
K(.) (t)mutant- Both can be obtained by using the definitions given in Equations 5.17 and 5.18
and the model predicted outputs obtained with the empirical models of the lamina, L,,(¢) and
L.(t) given by Equations 5.14 and 5.15 it is possible to compute the wild-type adaptation
gains Ky, (1)ig and K. (t),i1a by computing K, (1) ,yi1aLm () and K (t),i4Lc(t) respectively.
Fig. 5.9 shows the result of these computations, (b) K,,(¢) and (d) K.(¢). In the Fig. 5.9 it can
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Table 5.3 Model of L.(t)

Term Parameter Parameter value

constant @4 0.003208
L(t—1) 6 1.469836
L(t—2) 61 -0.472435
u(t—1) 05 0.003669
u(t—2) 65 -0.001828

be seen that for high intensity levels which correspond to the first 20 seconds, both adapting
gains were computed acceptably. For dimmer intensities K.(¢) has a very good match in
steady state. In the case of K,,(¢) there are discrepancies between desired and computed,
both transient and steady state, nevertheless the main tendency is similar and acceptable in
this case.

5.3.2 Numerical validation of the new photoreceptor model

The photoreceptor model was simulated and validated under two different scenarios. A
complete model of retinal network in wild-type flies, incorporating the LMC feedback, and
a model of the retinal network of histamine deficient mutants were simulated using the
naturalistic input sequence in Fig. 5.8b and the results were compared with the respective
experimental recordings.

In order to obtain the prediction of both the wild-type and mutant photoreceptors, the
following configuration was selected. All the parameters used for the mutant photoreceptor
model of chapter 4 were used in stages 1, 2 and 4 of the PR1-6/LMC model shown in Fig.
5.7. The only difference in the model configuration to obtain the wild-type or mutant is the
value of the binary parameter wm, which controls the output of the two multiplexors shown
in figure 5.7. In particular, to obtain the prediction for the mutant photoreceptor wm = 0 and
to configure the model for the wild-type predictions then wm = 1.

Fig. 5.10 shows the comparison between the mutant photoreceptor experimental data
and the model predicted output using the PR1-6/LMC model with wm = 1. The results
demonstrate that the prediction is similar to the recorded data. In particular in this case, the
prediction of the model PR1-6/LMC is identical to the one produced by the model in chapter
4 since the selected configuration performs the stimulus input adaptation without using the
LMC empirical models. The comparison between the wild-type experimental data and the
PR1-6/LMC model predicted output is also shown in panels (b) and (d) of the same figure.
Although, the prediction is not perfectly matching the response is acceptable. Particularly
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Fig. 5.9 LMC model predicted outputs. (a) comparison between the desired (black) and
model predicted output (red) of L,,(¢). (c) comparison between desired (black) and model
predicted(red) L.(¢). (b) comparison between K,,(¢) obtained from definition (black) and
computed(red), using LMC model. (d) comparison between K, () obtained from definition
(black) and computed, using LMC model(red).

when taking into account that the greatest difference was shown in the first 20 seconds which
correspond tor bright intensity light level, and the model shows a great improvement in that

scenario.

5.4 Discussion and concluding remarks

In this chapter an empirical model that explicitly models the contribution of the lamina
network of interneurons to photoreceptors was developed based on experimental intracellular
recordings in wild-type and mutant hdc’®°1°. In this model, the lamina plays the role of an
additional gain compensator that helps the photoreceptor to adapt.

The model predicts the response of hdc’K10

and wild-type photoreceptors. In order to
switch between wild- or mutant- type predictions only a single binary parameter wm, part of

the model needs to be changed from O to 1 respectively.
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Fig. 5.10 PR1-6/LMC numerical validation for hdc’®°10 photoreceptors. (a) Intracellular
experimental data and (c) model predicted output from mutant hdc’®°10 flies to naturalistic
stimulation. Similarly, (b) intracellular experimental data and (d) model predicted output for
wild-type flies to naturalistic stimulation.

This LMC model was estimated using the NARMAX methodology. The input-output
data was derived from the experimental recordings in both mutant and wild flies. The mean
and contrast adaptation gains were estimated from these data sets.

Also, the structure of the model developed in this chapter builds upon the structure used in
the model presented in the previous chapter. The PR1-6/LMC model is capable of predicting
the response of hdcJK910 and wild photoreceptors by just changing the value of the wm
configuration ’knob’ from wm = 0 to wm = 1.

While the developed model gives some insight into what the role of the network of
interneurons might be in shaping the response at photoreceptor level, when using this model
the following considerations need to be taken into account:

* PR1-6/LMC model validation. The contribution coming from the network of interneu-
rons, L, (t) and L.(t), was modelled as two filters using the NARMAX methodology.
Fig. 5.9 indicate that there is still some room for improvement in the model, this
model refinement would require collecting additional data from more flies and perhaps
lamina, which is out of the scope for this thesis.
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* The model presented in this chapter does not separate the contribution of each interneu-
ron in the lamina, but rather lump them all into a single entity. In the future the model
could be refined by modelling the contribution of each interneuron hosted in the lamina
cartridges individually.

* There is not a one-to-one relationship between the inhibitory-excitatory feedback
suggested by the connectome and shown in Fig. 5.1 and the structure of the PR1-
6/LMC model.

Despite these limitations the PR1-6/LMC model has a structure that explicitly explores
the lamina contribution towards shaping the photoreceptor response. This fact enables the
possibility of building up a model of the wiring diagram found in the actual animal which
is composed of neighbouring ommatidia. These clusters, in turn, could be used as building

blocks for a model of the full retina.



Chapter 6

The Role of Nonlinearity in Coding
Biologically Relevant Features in Visual

Stimuli

6.1 Introduction

It has been postulated that selectively detecting and enhancing biologically relevant features
of stimuli is how sensory neurons process environmental information (Barlow, 2001, 1961).
Recently Friederich et al. (2016), have demonstrated that fly photoreceptors exploit nonlin-
earity to enhance and encode local phase congruency information that could help the brain
identify edges in visual scenes. They argue that nonlinear encoding in fly photoreceptors is
optimised to maximise sensitivity to phase-aligned frequency components of visual stimuli
and minimise the sensitivity to random phase signals. As shown in (Friederich et al., 2016),
by simple thresholding of the nonlinear components of the responses of a photoreceptor to a
naturalistic stimulus it is possible to reliably identify the edges in that stimulus even in the
presence of noise.

This chapter uses information theory to characterise quantitatively the efficiency and
robustness of the nonlinear coding scheme implemented by fly photoreceptors. The efficiency
and robustness of linear and nonlinear photoreceptor coding of temporal edges is quantified
by computing the rate-distortion functions, corresponding to linear and nonlinear components
of the response, for a binary source using Hamming as the distortion measure.

The remaining of the chapter is organised as follows. In section two, the higher-order
frequency response functions derived analytically from the photoreceptor model operating

under constant mean/contrast gains are used to characterize quantitatively the nonlinear
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transformations that underpin encoding of phase aligned or coupled spectral components of
temporal stimuli.

Section three presents a rate-distortion analysis of linear and nonlinear transformations
implemented by photoreceptors given a binary source and a Hamming distortion measure.

The Conclusion section provides a summary of the results and their interpretation.

6.2 Analysis of linear and nonlinear transformations im-

plemented by fly photoreceptors

It is well known that the response of sensory neurons to naturalistic stimuli is markedly
different from the response to Gaussian white noise stimuli. Specifically, it has been shown
(Juusola et al., 1994) that fly photoreceptors respond linearly to white noise stimuli and
nonlinearly (Van Hateren and Snippe, 2001) to naturalistic stimuli.

Despite having a different parameter set, the photoreceptor models, i.e. the NARX
filters, used in this thesis share the same structure as the model in (Friederich et al., 2016).
In the following, it will be shown that the phase congruency detection properties of the
photoreceptor model are preserved in the NARX filter used in this thesis.

The NARX models derived for wild-type and mutant flies at the light intensity level
L-2, share the same model structure (have the same polynomial model terms) but different
parameters.

The new photoreceptor model derived in Chapter 4, Section 5 employs the NARX model
derived from electrophysiological recordings in mutant fruit flies.

In (Friederich et al., 2016) it is argued that the nonlinear mechanisms that are sensitive to
phase correlations operate at the photoreceptor level and are captured by the NARX model
block of the photoreceptor models for mutant and wild-type flies. To demonstrate this, the
nonlinear coding properties of the two models are compared. This comparison is made by
using the higher order frequency response functions of each model. These functions were
derived analytically using Equation 3.43. In addition to using these functions, a spectral and
temporal decomposition of the photoreceptor response to different synthetic stimuli was used.
This decomposition was done using Equation 3.43 and Equation 3.49

Most of the analysis performed in this chapter uses the response of the full response of
the photoreceptor model, as well as the linear and nonlinear, parts of the response.

In order to decompose the complete photoreceptor model response y(z), for a given
stimuli u(z), into its linear y;(¢) and nonlinear y,(¢) parts the following procedure was

followed.
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1. Define the input sequence u(t) used to drive the photoreceptor model. The photorecep-

tor response to this input will be decomposed into linear and nonlinear components.
2. Compute the Fourier Transform U (j®) of u(t).

3. Compute the linear frequency response as
Y1(jo) = Hi(jo)U(jo), where H(jo) is the first order Generalised Frequency

Response Function defined in Equation 5.1.

4. Compute the time domain linear response y; (7) by applying the inverse Fourier Trans-
form to Y; (j®).

5. Compute the frequency domain representation of the nonlinear response Y2(j®) by

computing

12(0) = L2 [,y o HaljO0) (02)U (j0)U j@2)d020,

where H,(jo;)(jm,) is the second order Generalised Frequency Response Function
defined in Equation 5.2. In order to evaluate this integral properly a spectral characteri-
sation of the input was performed and the frequencies of the input were then used to

compute the frequency range of ¥»(j®) using the algorithm presented in (Wei et al.,
2007).

6. Compute the time domain second order response y(¢) by applying the inverse Fourier
Transform to > (jw).

It is important to note here the photoreceptor response is approximated only in terms of
the first- and second-order response since the contributions from higher-order components
are negligible (Friederich, 2011). Thus higher order nonlinearities play no role in this model.
Due to this assumption in all the discussion related to model responses second order response
and nonlinear response are equivalent.

A stimulus sequence ugppc(t), a synthetically generated signal with 10Hz quadratically
phase coupling (QPC), i.e. phase(f1) + phase(f2)=phase(f3), was used to compare the role
played by nonlinearity in encoding global phase correlations. As reported in (Friederich et al.,
2016) the ugpc(t) stimuli was constructed taking the inverse Fourier transform of a Gaussian
white noise that had its spectrum modified such that it would satisfy the conditions for phase
coupling at 10Hz, whilst maintaining the same magnitude of the unaltered Gaussian white
noise.

The relevant time and frequency features of ugpc are shown in Fig. 6.1. By inspecting
panel (c) is clear that there is a phase coupling at 10Hz.
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Fig. 6.1 Quadratically Phase Coupled Stimulus. Panel (a) contains the phase modified
Gaussian noise stimulus ugpc(t), which exhibits quadratic phase coupling at 10Hz. . Panels
(b) and (c), show the phase angle histograms of Ugpc(j®).
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Fig. 6.2 Quadratic phase coupling detecting by wild- and mutant- type fly photoreceptor
hdcJK910 photoreceptors. Magnitude spectra of wild- and mutant- type flies is shown in (a)
and (b) for the linear response and (c) and (d) for the second-order response respectively.
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The predicted response of the wild and mutant NARX photoreceptors’s filters to ugpc
stimulus, were used to obtain their linear and nonlinear(second-order) responses in the
frequency domain. The linear and nonlinear responses were obtained applying Equation 3.49.
The result of this decomposition is shown in Fig. 6.2. Panels (a) and (b) show the spectrum
of the linear response of the wild and mutant NARX filters respectively. As expected, there is
no indication of the presence of a signal with QPC at 10Hz. On the other hand, the spectrum
of the second-order response, for the wild and mutant, panels (c) and (d) respectively; clearly
show a component with a large magnitude around the 10Hz frequency, which indicates the
sensitivity to the phase structure of the stimulus.

In order to compare the role played by nonlinearity in encoding local phase congruency,
the stimulus sequence consisting of a sequence of pulses superimposed in Gaussian white
noise with mean L-0, (Friederich et al., 2016) was used in the analysis. A fixed bright
stimulus was used so the gain control remains constant and adaptation plays no role.

Panel (a) of Fig. 6.3 show the stimulus to test local phase congruency. The predicted
photoreceptors responses for wild- and mutant- type flies were computed and decomposed
into their linear panels (b) and (c) and nonlinear panels (d) and (e) components, using
Equations 3.43 and 3.49. From the figures it is clear that using the nonlinear response of
either the wild- or mutant- type photoreceptors would be far easier to identify the location of
the sequence of pulses that were embedded in noise, than using their linear response.

From the results presented in this section, it can be concluded that the NARX filters used
in the models of photoreceptors in wild-type and mutant flies, described in Chapter 4, section
4.1 implement very similar linear and nonlinear transformations of the stimuli. This suggests
that the phase congruency detection properties reported in (Friederich et al., 2016) take place
entirely at photoreceptor level, i.e. the feedback from the network of interneurons plays no

role for this purpose.

6.3 Rate-Distortion Analysis of R1-R6 Photoreceptors

Previous studies have characterised information processing in fly photoreceptors using
algorithms based on information theoretical tools and concepts. In (Van Steveninck and
Laughlin, 1996) an algorithm that allows the computation of the rate of information transfer
between the photoreceptors in the retina and the large monopolar cell in the lamina of blowfly
Calliphora was introduced. The algorithm is the first one in being able to compute the transfer
rate of graded-potential synapses. This algorithm has the limitation that assumes Gaussian
stimulation with additive Gaussian noise. A more recent study (Juusola and de Polavieja,

2003) introduced a new way of measuring the information transfer rate which does not make
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Fig. 6.3 Local phase congruency detection in fly photoreceptors. (a) Stimulus consisting
of a sequence of pulses superimposed with white noise. First-order (linear) component
response of the wild- and mutant- type flies are shown in (b) and (c) respectively. Second-
order component of the response for wild- and mutant- type flies are shown in (d) and (e)
respectively. Pulses embedded in the stimulus are shown with a dashed red line.
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any assumptions about the input stimuli or noise, however, errors due to the extrapolation
to the infinite limit of finite parameters could occur. In addition to the previous two studies
Takalo et al. (2011) introduced a novel robust algorithm to estimate the information transfer
rate of continuous signals. In the presented algorithm the use of principal component analysis
is a key step for the robustness of the estimation.

In this chapter a new way of estimating the information processing capabilities of fly
photoreceptors using the recently reported phase-congruency detection properties (Friederich
et al., 2016) and rate-distortion(R-D) theory is proposed.

Define the pair of random processes (SV SN ) as the source, and estimated sequences
where N is the number of random variables of each random process. Also, the i'" realisation

of the pair of random processes is given by (S, §,~N) with S¥ ~ B(p).

() =01yt — 1)+ Oy(t —3)+ 63s(t —5)s(t — 4)
+ 04+ 055(t — 6) + Ogs(t —4)y(t — 6)
+ 6s5(t —7)+ 63s(t —7)s(t — 6) (6.1)
+ 6gy(t —4) 4 010y(t —5) + 6115(t —4)y(r —5)
+ 012s(t —4)y(t —2) + O13s(t — T)s(t —3) + Oras(t — 5)
+ 055(t —4)

The predicted output, by the NARX model described by Equation 6.1 part of the photore-
ceptor model, when stimulated with SV is defined as a random process Y.

In order to be able to compare the R-D feature profile of the NARX model against a
theoretical bound, the source and estimated sequences are binarised using the following
algorithm

Binarisation Algorithm

1. Obtain the mean of the sequence fi,(f) = %):N: o x()

2. Remove the mean from the sequence x(1) = x(¢) — L, (?)

3. Binarise the signal according to

a0 = { 0 if  pult) — B <x(r) < (o) + 62)

1 elsewhere
B:=thxa

o :=max(x(t)) — min(X(t))
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Fig. 6.4 Illustration of the Binarisation Algorithm

where th is a hyperparameter selected according to the stimuli.

4. Perform a logical *or’ operation using m bits using the following equation

m—1

xp(k) = \/ &(k+ j) (6.3)

J=0

k:{o,m,..-,m(%—u}

An example of transmitted source and binarised signal using the binarisation algorithm
is shown in Fig. 6.4.

After applying the binarisation algorithm to the source and estimated sequences (X, V)
the binarised versions are obtained (X}¥,X!), where ¥, := X}".

The distortion D is defined, according to (Cover and Thomas, 2006), as

N
Z NENA) ] (6.4)

Similarly the rate R, as function of the distortion D, is defined as
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R:R—R
R(D) = inf g()?N):E[XN—XN]gDI(XN;XN) (6.5)

For a Bernoulli source with probability p the rate-distortion function is given by (Cover
and Thomas, 2006)

Theorem 1 The rate of distortion function for a Bernoulli(p) source with Hamming distortion

is given by
H(p)—HD) if 0<Dmi 1—
0 if D> min(p,1-p)
(6.7)
where H () is the entropy. And the hamming distortion is defined as
0 ifx=%x
d(x,%) = (6.8)
1 ifx#x%

where x is a realisation of a random process XV .
In order to use R-D analysis, the photoreceptor model was stimulated with a sequence

s(t), which is a given realisation of the previously introduced random process SV, defined as

s(t) := train of pulses,with s € [0,A],A € R (6.9)

In addition to predicted output by the NARX filter, given by equation 6.1, y(¢), in this case
produced by the input stimuli s(7), by using the concepts of GFRFs and OFRFs introduced
in chapter 3 and described by Equations 3.43 and 3.49,

yi1(t) and y,(¢), which are the linear and nonlinear parts of the predicted response were
also computed. So, for a given stimuli sequence s(¢) three different output sequences, y*(¢),
i (¢) and y5(¢) are obtained. Assuming that the NARX model is stable for the described s(t)

stimuli, then

Yiy() ERVE=1,2,+- N (6.10)
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Table 6.1 Rate-Distortion of Total (y), Linear(y;), and Nonlinear(y,) Photoreceptor’s NARX
Predicted Output with SNR of 18dB.

Output type Distortion - D Estimated Rate - R Theoretical Rate - R
Full response y 0.00872 10.33703 0.21421
Linear response y; 0.00720 13.58781 0.22479
Nonlinear response y; 0.00330 8.14842 0.25444

The NARX model was simulated M = 10000 times using the random process SV, with
N = 2000. Where each realisation of the random process is given by Equation 6.9 with
Bernoulli distribution of B(p = 0.05). Before presenting the simulation results, since the
Bernoulli probability has been set, the theoretical lower bound for the R-D curve was
computed. The result is shown in Fig. 6.5.
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Fig. 6.5 Rate distortion function for a binary source with probability Bernoulli(p=0.05).

Estimates for the rate and distortion were computed using Equation 1 and Equation 6.8.
The estimated results are presented in Table 6.1.

These results indicate that the nonlinear part of the photoreceptor predicted response by
the NARX filter is more efficient, i.e. fewer bits/second are need to be transmitted in order to
have a distortion that is not just similar but also fewer than either the linear part or the full
response. In addition to being more efficient, when comparing the computed rates results to
the theoretical lower bound, i.e. the rate values obtained using Theorem 1, y;, the nonlinear
response is closer (7.89398 bits/second) to the theoretical bound than the linear (13.36301
bits/second) and the full (10.12282 bits/second) responses.
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In order to test the robustness to noise, more simulations were carried out. A new random
process that describes the noise is introduced W" ~ N(0,52). Where W¥ is i.i.d(independent
and identically distributed) and w = [wy,--- ,w;],r = 20.

The w, = 20 different values (0.05, 0.073, 0.097, 0.121, 0.144, 0.168, 0.192, 0.215, 0.239,
0.286, 0.31, 0.334, 0.357, 0.381, 0.405, 0.428, 0.452, 0.476, 0.5) were used to generate
20 different random processes which were added to the same set of stimuli used in the
previous example. The newly created set of stimuli [SV70, ... SN¥r] which resulted in input
sequences with SNR ranging from 18dB(c = 0.05) to 7.6dB(c = 0.5), were used as input
for the NARX photoreceptor model. Similarly to the previous simulation experiment, the full
response [YV¥0 ... YN the linear [¥]"",--- ¥""""] and nonlinear [¥;'", - ¥, "]
parts of the predicted response were obtained. The set of source and estimated sequences
were transformed using the binarisation algorithm as in the previous example, to yield four

different sets of random processes

input: [xV0 ... XN

predicted response: )A(;V oL ,}?;V ]

linear part of the predicted response: )?;Y U ,)A(){\lf Wr]
nonlinear part of the predicted response: )A(yAz’ WO ... ,Xg W]

The simulated and theoretical R-D pairs for the source (input) and each estimated(output)
sequences were computed. The results are shown in Fig. 6.6. The results in this figure show
that regardless of the noise level, the nonlinear part of the NARX filter is more efficient,
i.e. closer to the theoretical bound - black line in the figure - that either the linear(blue) or
full(red) NARX predicted responses. In fact, even for the greatest amount of noise used in this
experiment, Wy ~ N(0, Gv%zo)’ the nonlinear(green) part NARX photoreceptor still contains
information. In the case of the linear part of the response, starting from Wy ~ N(0, 67 6)
the predicted response contains no information. Similarly, the full response stops being
informative from Wy ~ N(0, Gv%7)

Before computing the rate-distortion properties of the NARX filter for all simulations
in the previous section the signals corresponding to the stimuli, total, linear and nonlinear
components of the predicted response were processed using the Binarisation Algorithm
to yield the source and estimated sequences XV and X" that were used to obtained the
rate-distortion results.

In the third step of the algorithm, it is necessary to choose a threshold, the selection of this

parameter is heuristic. In order to investigate the sensitivity of the rate-distortion estimates to
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Fig. 6.6 Rate-Distortion, for threshold value of th = 0.22, for the total y = y| 4 y», linear y;
and nonlinear y, photoreceptor responses. Different noise standard deviations are indicated
by the error bars.

changes in the threshold, the algorithm was run with 50 different values of this parameter.
The values were uniformly spaced between 0 and 0.5. Fig. 6.7 shows the comparison between
the surfaces obtained by changing the selected threshold. The surface corresponding to the
total response obtain is shown in blue, Fig.6.7 (a). The surfaces corresponding to the linear
and nonlinear response are shown in red, Fig. 6.7 (b), and green, Fig. 6.7 (c), respectively.

The rate-distortion-threshold surfaces show that when increasing the threshold, the
necessary rate to achieve a particular distortion decreases when using either encoding scheme.
They also show that regardless of the noise level or selected threshold, the nonlinear encoding,
y2, outperforms the combined, y = y; + y, linear and nonlinear encodings which in turn
outperforms the linear encoding, y;.

In order to make these observations clearer, two-dimensional slices of the of each surface
were computed.

The first slice is shown in Fig. 6.7 (d). This figure shows the behaviour of the surface
when the distortion is kept zero (D=0), this situation is achieved when the level of noise in the
signal is very small. In the figure it can be seen regardless of the threshold level none of the
responses total, linear or nonlinear reach the theoretical limit, the grey area. This observation
was expected and indicates the of the algorithm is obeys the theory. It also shows that for
signals with very low levels of noise selecting a low value for the threshold favours, less
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Fig. 6.7 Threshold-Rate-Distortion(TRD) Analysis. Individual TRD surfaces for (a) linear,
(b) nonlinear and (c) total photoreceptor response when varying the threshold in the range of
(0, 0.5) are shown in panels (b), (c) and (a) respectively. In all figures the theoretical lower
bound is shown in black. Also, slices of these surfaces for the cases of low noise levels and
high noise levels are shown in panels (d) and (e) respectively.
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bits per second are required for reconstruction, the linear(red line) or total(blue line) over
the nonlinear response. However selecting greater values for the threshold parameter, the
difference is less significant. Moreover, for certain values of the threshold, between 13 and
34, using the nonlinear response(green line), to reconstruct the signal is more efficient than
using either the linear or the total responses.

The second slice is shown in Fig. 6.7 (e). This figure corresponds to signals with high
noise levels. In Fig. 6.7, the grey area indicates where information contained in the signal
can be recovered using this algorithm. Taking this into account it is clear that when selecting
threshold values less than 20, none of the responses convey any useful information for signal
recovery. Moreover, it is mainly the nonlinear response the one that carries useful information
for signal recovery purposes when the threshold is selected to be greater than 20.

For either encoding scheme, there is a considerable distance between the estimated R-D
curve and the theoretical lower bound. Two main items can be highlighted from these
results.The first one is that nonlinear transductions at photoreceptor level play an important
role in encoding behavioural relevant features in an efficient and robust way. And the second
is related to the distance to the theoretical lower bound, which indicates there is a more
efficient way of encoding pulses embedded in noise than using the nonlinear coding derived

from the photoreceptor’s model.

6.4 Conclusion

In this Chapter the linear and nonlinear encoding capabilities of R1-R6 photoreceptors were
investigated by performing separate rate-distortion (R-D) analysis on the linear and nonlinear
components on the photoreceptor response for a binary Bernoulli(p) source.

It was shown that the photoreceptor models for wild-type and hdc’%210

process stimuli
in a very similar fashion and both have the phase congruency detection features reported in
(Friederich et al., 2016).

Making use of the photoreceptor’s sensitivity to phase congruent features in stimuli, an
artificial stimulus consisting of a sequence of pulses embedded in multiple white Gaussian
noise signals with different standard deviations were created and used as inputs to the NARX
filter of the photoreceptor model in order to explore its encoding capabilities.

The results showed that regardless of which photoreceptor response component was used,
either full, linear or nonlinear, there exist more efficient strategies to encode stimuli with
high phase congruency properties than using the NARX filter of the photoreceptor’s model
in combination with the introduced Binarisation Algorithm. It was also shown that using the

nonlinear component of the predicted response of the photoreceptor’s model is both, more
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robust to noise and more efficient at encoding the artificial stimulus used for the conducted

study in this Chapter, than either the linear or total predicted response.



Chapter 7
Conclusions

This thesis introduced two new empirical models of the early visual system were introduced.
The first model is capable of predicting the response of individual photoreceptors of wild-type
and histamine-deficient hdc'®°1Y fruit flies. This model forms the basis for a combined model
of six photoreceptors that receive input from the same source and connect via feedforward
and feedback loops, with the same group of Large Monopolar and Amacrine cells in the
lamina. This Model, referred as PR1-6/LMC, can predict photoreceptor responses of wild
and blind flies. It also contains an explicit model of the lamina contribution in shaping
the photoreceptors response. These models are used to characterise for the first time the
information processing capabilities of photoreceptors using rate-distortion theory.

7.1 Contributions Summary

For the first time, thanks to the availability of electrophysiological recordings obtained
from in-vivo experiments carried out in wild and hdc'®°!9 PR 1-PR6 photoreceptors and by
applying state-of-the-art nonlinear system identification technique, it was possible to estimate
a model of the interaction between neurons in the retina and lamina. This model provides
the most faithful representation of the dynamical information processing implemented by
monochromatic photoreceptors in Drosophila’s visual system.

By carrying out a detailed analysis of the input-output data collected from the intracellular
recordings from photoreceptors of wild- and mutant- type when using naturalistic stimulus
it was possible to identify the key differences in stimulus adaptation between the two
different types of flies. The identification of these differences led to the implementation of
separate mechanisms for mean and contrast gain control. Specifically, the analysis revealed
that photoreceptors implement distinct mean and contrast adaptation mechanisms and that

these mechanisms are altered in a different fashion in the absence of histamine mediated
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feedforward and feedback signalling from the lamina. In particular for bright intensities,
mean adaptation is faster in wild-type than mutant photoreceptors. Furthermore, the lamina
seems to play a key role in the contrast adaptation i.e. in the absence of feedback from lamina
the contrast adaptation is severely impaired for bright stimuli.

The new photoreceptor model captures all these characteristics by incorporating separate
models of mean and contrast gain control. In order to be able to characterise both the
wild-type and mutant responses using a single model architecture, the contribution from
the lamina was modelled as a separate interconnected block, such that when simulating
mutant response, the lamina model could be simply switched off. This modelling approach,
allowed for the first time to characterise quantitatively the role of the lamina in shaping the
photoreceptor adaptation at different level of light intensities.

The model of the interneurones that connect with a group of six photoreceptors was
derived using system identification.

The new photoreceptor model predicts well the responses wild and hdc'®°1? flies to
naturalistic stimulation. At the same time, the new model architecture enables building
a model of the local retina network involving six photoreceptors and their interneurones
partners in the lamina, which can be used as a building block for a complete model of the fly
retina.

The lamina dynamical model was obtained using system identification At the same time,
the new model architecture enables building a model of the local retina network involving
six photoreceptors and their interneurones partners in the lamina, which can be used as a

building block for a complete model of the fly retina.

This is arguably the first model that represents explicitly the contribution from lamina
interneurones to the photoreceptor adaptation in fruit flies. In terms of prediction capabilities,
the model yields results with NMSE of about 1% for wild-type and mutant fly photorecep-
tors. The results indicate that further improvements are possible if additional experimental
recordings from photoreceptors and interneurones of the same fly are available.

The mathematical models developed as part of the research project were used to char-
acterise for the first time and in a rigorous manner, using information theoretic tools, the
performance and information capacity limits of fly photoreceptors. Specifically, the analysis,
provides further quantitative characterisation of the recently discovered (Friederich et al.,
2016) phase congruency encoding properties of fly photoreceptors. The analysis involves
performing a time and frequency domain decomposition of the photoreceptor response to a
synthetic stimulus sequence, into linear and nonlinear response components that correspond

to different kernels of the associated Volterra series expansion. Specifically, the synthetic
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stimuli was designed as a superposition of random squared pulses, that follow a Bernoulli
distribution and Gaussian noise with different variances. Using rate-distortion analysis, an
encoding algorithm proposed in this thesis and the decomposed photoreceptor responses, the
transductions that take place at photoreceptor level were characterised from an information
theoretic point of view.

The results of this study demonstrate that encoding pulses using the nonlinear part of the
photoreceptor model is more efficient and robust than using either the overall response or
just the linear part. The results also show that for all the different cases with increasing levels
of noise, using nonlinear encoding was more efficient than using linear coding. In particular,

the required rate to achieve low distortion is much lower when using nonlinear encoding.

7.2 Future Work

The research presented in this thesis can form the basis for future studies that aim to elucidate
further visual processing in fruit flies.

The new photoreceptor model suggests that we should look for plausible, separate
biophysical mechanisms for mean and contrast adaptation. These mechanisms could be
explicitly modelled and used to refine the current biophysical models of photoreceptors.
The model of the elementary retinal network circuit could be used to develop a complete,
anatomically realistic model of the Drosophila early visual system, i.e. the entire retina and
lamina interconnected. Such model could form the basis of developing neurodegenerative
disease models for Parkinson disease for example (Whitworth, 2011).

The rate distortion analysis introduced in chapter 6 will be used in the near future to
investigate the differences shown by fly photoreceptors in coding information for different

types of stimuli and in different environments.
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