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Abstract 

 
The noncanonical Frizzled signalling pathway regulates planar cell polarity (PCP) in 

both vertebrates and invertebrates. In the Drosophila wing, asymmetric subcellular 

localisation of PCP proteins specifies the production of a single distally pointing 

trichome in each cell. The localisation of core PCP proteins (Fz, Dsh, Dgo, Stbm, Pk 

and Fmi) at the proximal and distal cell edge acts as a cue for establishment of a 

polarisation event mediated by the effector proteins Inturned (In), Fuzzy (Fy), Fritz 

(Frtz), and Multiple wing hairs (Mwh). 

  

Mwh, the most downstream effector protein known of the PCP pathway, localises at 

the apicoproximal membrane domain of each wing cell just before trichome 

formation. In its absence, ectopic actin bundle formation occurs over the entire apical 

surface of the cell, resulting in the formation of multiple trichomes with abnormal 

polarity.  

 

There is limited understanding of how Mwh accumulates proximally in each wing cell 

and about its interaction with the cytoskeleton. To fill the gap in our knowledge I did 

an in vivo RNAi screen in the Drosophila wing, in order to search for novel regulators 

of Mwh. My screening has found several potential genes (such as c12.1, Mo25, 

Rab23, staufen, sep2, cip4, Tsp29Fb, formin3) that alter the distribution of Mwh 

protein and may therefore regulate it directly. Additionally, other genes were found 

which appears to have a potential role in regulating cell size, timing of trichome 

formation and trichome morphology.  

 

Bioinformatic analysis has revealed the presence of a GBD/FH3 domain in Mwh, 

which is normally found in the Formin group of cytoskeletal regulatory proteins. In an 

in vitro study in mammalian fibroblast cells (3T3), the GBD domain of Mwh was found 

to induce cytoskeletal changes such as a significant reduction of stress fibres, 

suggesting a possible role for the GBD domain of Mwh in modulating the cell 

cytoskeleton. 

 

Further investigation will provide better understanding of the pathway that leads to 

the formation of a single distally pointing trichome downstream of the core PCP cues, 

and also how Mwh regulates this pathway by modifying the actin cytoskeleton. 
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Chapter 1: General introduction 

 
 
An overview of polarity: 
 
What is polarity? 
Polarity is a fundamental property of cells arising from various origins. 

Asymmetric organisation of cellular components and structures forms polarity 

within a cell. Most eukaryotic cells exhibit some kind of polarity within them.  

 

Cell polarity is essential for differentiation, proliferation and morphogenetic 

processes exhibited by single and multicellular organisms. It also regulates axis 

formation, asymmetric cell division and cell migration in different organisms 

(Hertzog and Chavrier, 2011; Knoblich, 2008; Macara and Mili, 2008). Impaired 

polarity leads to different developmental disorders in many organisms. Different 

signalling cascades, membrane trafficking events and cytoskeletal dynamics are 

observed to play important roles in establishing cell polarisation. 

 

Types of polarity: 
 
Apical-basal polarity: 
Polarisation of cells along the apical-basal axis is known as apical–basal polarity. 

This is the most frequent form of cell polarity exhibited by living organisms and is 

found in single layered epithelial cells (Van Aelst and Symons, 2002) to mediate 

the unidirectional transport of ions and nutrients (Cereijido et al., 2004). 

 

Three well-known protein complexes are known to regulate the apical basal 

polarity in different organisms: the Scribble complex (Scribble, DLG and LGL), 

the PAR complex (PAR3/PAR6/atypical protein kinase C [aPKC]) and 

PAR4/LKB1, and the Crumbs complex (Crumbs, PalS1 and PATj) (McCaffrey 

and Macara 2009). In the single layered epithelial cells, contacts between 

neighbouring cells provide spatial cues that activate these protein complexes to 

establish the initial cellular asymmetry which eventually leads to the development 
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of the apical and basolateral membrane domains (Suzuki and Ohno, 2006). 

These protein complexes are also known to regulate the activity of Cdc42 and 

Rac1 at the plasma membrane level (Nelson, 2009) to establish polarity. 

 

Apical-basal polarity helps in the transport of molecules from the gut, kidney 

and/or glandular tissues across the cell membrane (Nelson, 2009). It also 

mediates selective secretion of extracellular components from the basal lamina 

(Eatons and Simons, 1995). 

 
Planar cell polarity:  
Along with the apical-basal polarity, most epithelial cells also show a secondary 

axis of polarity, perpendicular to the apical-basal axis. This is known as planar 

cell polarity (PCP) in which polarisation mostly takes place along the proximal 

and distal axis of the cell. 

 

PCP was first reported in the cuticles of the moths Rhodinus and Galleria by 

various cuticle-grafting experiments (Wigglesworth ,1940; Piepho ,1955;  Locke 

1959). Later it was found in the eye and bristle patterns in an insect, known as 

the large milkweed bug (Oncopeltus fasciatus) (Lawrence and Shelton, 1975). It 

was also observed in the plant Arabidopsis. Here PCP helps in the positioning of 

the root hairs along the epidermal cells to coordinate towards the high 

concentration of auxin gradient at the root tip (Grebe 2004; Ikeda et al., 2009).  

 

Katherine Nubler-Jung first coined the term ‘Planar Polarity’ in the 1980s to 

define the polarisation of cells along the plane of an epithelium in various insects. 

Subsequently Drosophila became the ideal model to study PCP due to the 

presence of various adult tissues (such as wing, eye, and notum) displaying 

excellent manifestation of PCP (Gubb and Garcia Bellido, 1982). 

 

Drosophila wing and eye tissues are the most studied organ systems used to 

understand the mechanism of PCP. In the Drosophila eye, PCP is required for 
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the proper orientation of ommatidia (specifies the R3/R4 photoreceptors in 

ommatidia) and in the absence of PCP proteins, misrotation and orientation 

defects occur in the eye (Strutt and Strutt, 2005) (Fig 1.1).  

 

In the Drosophila wing, as a result of asymmetric subcellular localisation of core 

PCP proteins, a single trichome or wing hair forms from the distal vertex of each 

wing cell. In the Drosophila leg, bristles orient themselves distally, (Fig 1.1) and 

in the Drosophila notum hairs orient themselves in the anterior-posterior axis with 

the help of PCP (Strutt and Strutt, 2008). 

 

             
Figure1.1: PCP in Drosophila leg, wing and eye. (A-B) PCP in the Drosophila leg: distally pointed bristles in a wild type 

Drosophila leg (A) and disrupted bristles in a Fz mutant Drosophila leg (B). (C-D) PCP in the Drosophila  wing: Distally 

pointed wing hairs in a Wild type Drosophila wing (arrow indicating towards the distal direction) (C) and loss of distal 

polarity in trichomes of a Fz mutant wing (D). (E-F) PCP in the Drosophila eye:  Wild type Drosophila eye (histological 

section showing the ommatidia); Yellow line in E shows the equator which separates the two chiral forms of ommatidia 

and in a Fz mutant the ommatidial polarity is lost (F). Image taken from Strutt. D, 2008. 

 

In vertebrates, the PCP pathway regulates the orientation of inner ear hair 

stereocilia (Montcouquiol et al., 2003), organisation of hairs in the skin (Guo et 



 12 

al., 2004), neural tube closure (Kibar et al., 2001), eyelid closure (Montcouquiol 

et al., 2003), and convergent extension mechanism (Djiane et al., 2000; 

Heisenberg et al., 2000; Wallingford et al., 2000) which is involved in the 

gastrulation process of vertebrate embryos (Montcouquiol 2007; Wang and 

Nathans 2007) and development of various organ systems (Karner et al., 2006; 

Wang and Nathans , 2007). Additionally, PCP has been found to regulate 

directed cell migration in some vertebrates, such as movement of zebrafish 

neurons in the developing hindbrain (Jessen et al., 2002). 

 

Drosophila as a model system: 
The fruit fly Drosophila melanogaster has been used as a model system to study 

genetic and developmental processes during the last 100 years. Thomas Hunt 

Morgan and his students first made Drosophila a successful model for genetic 

analysis and since then it has been routinely used in a number of cytogenetic, 

developmental and cell biological studies.  

 

Several features of Drosophila make it an amenable and powerful model system 

for studying various biological processes. Firstly, Drosophila is very easy to 

maintain as well as cheap to rear in laboratory conditions with simple handling 

methods. Secondly, the life cycle of Drosophila is very short, completing in 

around 10 days at 25ºC, making it favourable for developmental genetics studies. 

Thirdly, it has only four pairs of chromosomes, one X/Y pair, two autosomes 

(second and third chromosome) and a very small fourth chromosome comprising 

of only a few genes; the Drosophila genome consists of around 14000 genes 

making it relatively simple (as compared to humans with 23000 genes) for 

various genetic and developmental studies. Although it has only 4 chromosomes, 

the fly genome shares a good percentage of similarity with different human 

disease related genes (around 75%), which is another hallmark of Drosophila 

system. Finally, the availability of interesting and powerful genetic tools for  

genetic analysis establishes Drosophila as one of the most successful models for 

different biological studies. 
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The developmental stages of Drosophila: 
Drosophila development consists of several stages. On average, the full life cycle 

of Drosophila takes around 10 days to complete at 25ºC. The first stage is the 

embryonic development, which takes place during the first 24 hours of 

development. At this stage cleavage, cellularisation, gastrulation, dorsal closure 

and finally formation of imaginal disc cells take place.  

 

After embryogenesis, the  embryo hatches as the first instar larva and 

subsequently to second and third instar stages after one to two days each. 

During all these instar stages, the larvae feed extensively and undergo growth 

and proliferation by the process of endoreplication. Later on all the larval tissues 

are destroyed except for the imaginal disc cells, which are predetermined to 

become adult tissues.  

 

The next step is the pupal stage, the final phase of development in which by the 

secretion of ecdysterone hormone the larva covers itself in a puparium case and 

undergoes metamorphosis at the pre pupal and pupal stages. Specification of 

wing veins, wing and leg inversions and elongations, disc fusions take place 

during this stage. Also during the pupal stage wing hair formation and eye 

pigmentation occurs. Then finally the adult fly ecloses from its pupal case. 

 
 
Planar cell polarity and proteins of PCP pathway: 
The upstream and core group of PCP proteins: 

Based on phenotypic analysis and genetic epistasis experiments, the proteins 

known to be involved in the PCP pathway, can be divided into several groups 

(Adler, 1992; Wong and Adler, 1993). The upstream factors consist of two 

atypical cadherins, Fat (Ft) and Dachsous (Ds) and the Golgi-kinase Four-jointed 

(Fj), which together act as a cue for core PCP protein accumulation in the eye 

and wing cells of Drosophila (Strutt and Strutt, 2005). However, core proteins can 
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act independently of upstream factors as well, as seen in the Drosophila 

abdomen (Casal et al., 2006).  

 

The core group of PCP proteins is essential for establishing and maintaining 

polarity in different organisms. In Drosophila, the Core PCP proteins consist of 

the seven pass transmembrane receptor protein Frizzled (Fz) (Vinson and Adler, 

1987; Vinson et al., 1989; Adler et al., 1990), the cytoplasmic protein Dishevelled 

(Dsh) (Adler, 1992) and the ankyrin rich protein Diego (Dgo) (Feiguin et al., 2001; 

Das et al., 2004) which localise at the apico-distal wing cell edges and the four 

pass transmembrane protein Strabismus (Stbm, also known as Van Gogh) (Wolff 

and Rubin, 1997; Taylor et al., 1998; Bastock et al., 2003) and the cytoplasmic 

protein Prickle (Pk) (Tree et al., 2002) are found at the proximal end of each wing 

cell. Flamingo (Fmi) a seven pass transmembrane cadherin (Usui et al., 1999) 

also belongs to the core group of PCP proteins and is found to localise at both 

the proximal and distal cell ends. As a result of this asymmetric subcellular 

localisation of core proteins a distal trichome or wing hair formation takes place in 

each Drosophila wing cell (Fig: 1.2,1.3) (Gubb and Garcia Bellido, 1982; Wong 

and Adler, 1993).  

 

Perturbation of core protein localisation results in the disruption of polarity 

resulting in the generation of the trichome from the centre of each wing cell rather 

than distally (Gubb and Garcia Bellido, 1982; Wong and Adler, 1993). Among the 

core proteins, Fz and Stbm possess nonautonomous effects i.e. some mutant 

clones can affect the polarisation of neighbouring wild type cells (Taylor et al., 

1998). None of the other core proteins were found to elicit cell nonautonomous 

effects (Axelrod 2001; Bastock et al., 2003; Das et al., 2004; Jenny et al., 2003; 

Strutt et al., 2002; Tree et al., 2002; Strutt and Strutt, 2007).  

Although Fmi does not have a cell nonautonomous effect, in the Fmi null 

background Fz and Stbm lose their nonautonomy, suggesting Fmi localisation is 

required for the cell nonautonomous effects of Fz and Stbm (Strutt and Strutt, 

2007).  
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PCP effector proteins: 

Downstream of the core group of proteins, tissue specific PCP effector proteins 

are required to help in the establishment of PCP by regulating both the number 

and the direction of wing hairs/trichomes formed in the Drosophila wing. The role 

of core PCP proteins is suggested to be in restricting the action of the 

downstream effector proteins to the correct locality (Krasnow and Adler, 1994), 

such as higher level of Fz in the distal vertex of the wing cell (Strutt D, 2001) is 

observed to help in the formation of trichome distally by locally inhibiting activities 

of downstream effector proteins in that region (Wong and Adler, 1993).  

 

The cytoplasmic protein Inturned (In) (Yun et al., 1999; Adler et al., 2004), the 

WD40 repeat containing protein Fritz (Frtz) (Collier et al., 2005), the four pass 

transmembrane protein Fuzzy (Fy) (Collier and Gubb, 1997) and the GBD-FH3 

domain containing formin-like protein Multiple wing hairs (Mwh) (Strutt and 

Warrington, 2008; Yan et al., 2008) act as PCP effectors in the Drosophila wing. 

Genetic epistasis experiments revealed that these proteins act downstream of 

PCP signalling (Adler et al., 2004) and their localisation is dependent on the core 

PCP proteins (Adler et al., 2004; Strutt and Warrington, 2008; Yan et al., 2008). 

In, Frtz and Fy act together and mutations in them result in the formation of more 

than one trichome (mostly two wing hairs /wing cell) with abnormal polarity (Adler 

et al., 2004). Although in mutation affects ommatidial rotation and sensory bristle 

polarity, other effectors do not seem to have any effects in eye or bristle polarity 

(Adler, 2002).   
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Figure 1.2: Schematic view of Planar cell polarity in the Drosophila wing. The Drosophila wing consists of numerous 

hexagonal cells and in each cell PCP proteins localises asymmetrically to establish the polarisation. The proximal 

complex (stbm, Pk) antagonises the distal complex (Fz, Dsh, Dgo) and Fmi localises at both the ends thereby stabilising 

both the proximal and the distal complex. The effector proteins localises at the proximal end with the help of the proximal 

core proteins. As a result of this subcellular asymmetric localisation a trichome forms from the distal vertex of each wing 

cell. 

 

 

There are other tissue specific effectors, such as the Nemo (Nmo), Roulette (Rlt) 

(Choi and Benzer, 1994), Scabrous (Sca) (Chou and Chien, 2002), LamininA 

(LamA) (Henchecliffe et al., 1993), RhoA (Winter et al., 2001; Yan et al., 2009) 

and Drosophila Rho associated kinase (DROK) (Winter et al., 2001), which 

regulate the PCP pathway in the Drosophila eye (the latter two are also reported 

in the wing; detailed report in later section).  
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Upstream Factors of PCP Core PCP proteins Effector PCP proteins 

Fat (Ft), 

Dachsous (Ds), 

Four-jointed (Fj) 

Frizzled (Fz), 

Dishevelled (Dsh), 

Diego (Dgo) 

Strabismus (Stbm), 

Prickle (Pk), 

Flamingo (Fmi) 

Inturned (In), 

Fuzzy (Fy), 

Fritz (Frtz) 

----------------------------------- 

Multiple wing hairs (Mwh) 

 
Table 1.1:Subdivisions of PCP proteins :PCP proteins in Drosophila can be divided into three groups; the first one is 

upstream factors of PCP, then the core group of proteins followed by PCP effectors which was based on genetic epistasis 

experiments and phenotypic analyses. 

 

 
Figure 1.3: Schematic view of asymmetric localisationof PCP proteins in the Drosophilawing cell. The proximal complex  

(stbm,Pk; shown in red) localisesat the apicoproximal region of a wing cell and the distal complex (Fz,Dsh,Dgo; shown in 

blue) localisesthe apicodistal end. Fmilocalisesat both the both the proximal and the distal end thereby stabilising the core 

complex at both ends (1). The effectorproteins (In, Fy, Frtzand Mwh) then localisesat the proximal end with the help of the

 core proteins (2). As a result of this subcellularasymmetric localisationof PCP proteins a distally pointed trichome forms fr

om the distal vertex of each wing cell. 

 
Molecular detail of the effector proteins in Drosophila: 
In is a cytoplasmic protein (Yun et al., 1999), and is found to be required in all 

regions of the Drosophila wing (Park et al., 1996).  It acts cell autonomously 

(Park et al., 1996) and functions prior to wing hair morphogenesis (Krasnow and 

Adler, 1994). During wing hair formation In interacts with the actin cytoskeleton to 

promote a single actin rich prehair (trichome) distally (Yun et al., 1999) by 

localising at the apico proximal membrane region of the wing (Adler et al., 1994). 
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In the absence of in, multiple trichomes form with disrupted polarity and the 

multiple hairs phenotype in the in mutant is stronger at 18ºC than at 29ºC 

indicating its cold sensitivity (Krasnow and Adler, 1994). This suggests that either 

in is inherently a cold sensitive gene or in dependent processes in Drosophila 

require the microtubule cytoskeleton, which is a cold sensitive structure. 

 

Genetic analysis revealed that in is epistatic to fz group of core PCP genes as 

mutations in core PCP genes affect In localisation but not vice versa (Adler et al., 

2004). It was observed that domineering nonautonomy of the Fz group of PCP 

proteins depends on the presence of In and Mwh in the responding cells 

exhibiting nonautonomy (Lee and Adler 2002). It was also found that both an 

increase and a decrease in the activity of the Fz group of PCP proteins 

surprisingly cause enhancement of the phenotype of hypomorphic in and fy 

mutants (Lee and Adler 2002). Along with the core PCP proteins, Fy and Frtz are 

also required for the proper localisation of In in the Drosophila wing  (Adler et al., 

2004). 

 

Although In acts as a downstream epistatic factor to the Fz core group of proteins 

in the Drosophila wing and abdomen, in the eye a similar relationship is not seen, 

which suggests presence of tissue specificity in the transduction of PCP 

signalling (Lee and Adler, 2002). 

 

Along with wing, eye and bristles, In protein was also found in the arista laterals 

of Drosophila, which are the terminal segments of the antennae. Mutation in in 

produce multiple and split laterals although there are no PCP defects present (He 

and Adler, 2002). 

 

Finally, it was recently found that In physically interacts with the most 

downstream effector protein Mwh and the fusion protein of In::Mwh was able to 

perform the functions of  both proteins (Qiuheng et al., 2010). 
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Frtz, another downstream effector protein of the PCP pathway is a novel but 

evolutionarily conserved coiled coil protein with WD40 domain (Collier et al., 

2005). Frtz acts together with the other known effector proteins, In and Fy in a 

cell autonomous manner (Collier et al., 2005) and mutation of frtz has the same 

phenotypic defect as that of in, producing multiple trichomes in each wing cell 

with abnormal polarity (Collier et al., 2005). Frtz has also been found to regulate 

Mwh localisation and phosphorylation (Strutt and Warrington, 2008) in the 

Drosophila wing. Although the exact mechanism by which Frtz regulates Mwh 

still remains elusive, it suggests that Frtz may play an important role in the 

regulation of Mwh activity (Strutt and Warrington, 2008). 

 

Another Drosophila downstream effector protein known as Fuzzy (Fy) is a 

cytoplasmic protein which also exhibits a similar mutant phenotype in the wing 

similar to other effector proteins i.e. presence of more than one trichome with 

disrupted polarity (Collier and Gubb, 1997). Fy, In and Frtz localisation and 

function in the wing is dependent on each other suggesting they may all interact 

together (Adler et al., 2004). Fy can also act cell autonomously and the 

localisation of Fy is also dependent on the core as well as other effector proteins 

(Adler et al., 2004; Strutt and Warrington, 2008).  

 

The most downstream effector protein Multiple wing hairs (Mwh): 
Mwh, the most downstream effector protein known in the PCP pathway, localises 

at the apico-proximal region of a wing cell prior to wing morphogenesis in a 

punctate zig- zag pattern (Strutt and Warrington, 2008; Yan et al., 2008) and in 

its absence, multiple hairs (3-5 wing hairs/ wing cell) forms with abnormal polarity 

across the cell boundary (Gubb and Garcia Bellido, 1982; Strutt and Warrington 

2008, Yan et al., 2008). The multiple trichome phenotype observed in mwh 

mutants is phenotypically stronger than phenotypes exhibited by mutations in 

other effector proteins (Gubb and Garcia Bellido, 1982), suggesting a direct 

interaction between Mwh and the cytoskeleton in modulating trichome formation 

(Strutt and Warrington 2008; Yan et al., 2008). Overexpression of mwh causes a 
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delay in trichome formation (Yan et al., 2008) and loss of function causes ectopic 

multiple hair formation (Gubb and Garcia Bellido, 1982; Strutt and Warrington, 

2008; Yan et al., 2008). These phenotypes suggest that Mwh is involved in 

repressing multiple trichome formation across the wing cell boundary by 

restricting hair formation to the distal vertex of each wing cell (Gubb and Garcia 

Bellido, 1982; Strutt and Warrington, 2008; Yan et al., 2008). 

 

Mwh localisation is dependent on the other effector proteins In, Fy and Frtz. It 

was found that in either in, fy and frtz mutant backgrounds localisation of Mwh is 

impaired (Strutt and Warrington, 2008; Yan et al., 2008), although in the case of 

the core group mutants (e.g. Stbm mutant background) Mwh was found to be 

reduced proximally but the apical punctate labeling was unaltered, suggesting 

that core proteins help in the localisation of the Mwh protein, but not on its activity 

(Strutt and Warrington, 2008). 

 

Unlike other PCP effector proteins, Mwh  localises at the base of the wing hair 

after the trichome formation (Yan et al., 2008). Thus Mwh is considered to have 

two temporally different functions: the early function is to restrict wing hair 

formation distally by localising at the apicoproximal wing region and the later 

function is to resist endogenous wing hair formation by localising at the base of 

the wing hair (Yan et al., 2008). 

 

Like other effector proteins, Mwh also functions cell autonomously (Gubb and 

Garcia Bellido, 1982; Strutt and Warrington, 2008; Yan et al., 2008) and mwh 

mRNA levels were found to be increased before wing hair formation (Ren et al., 

2005), suggesting its role in wing hair formation in Drosophila. 

 

Other PCP effectors: 
Among other effectors downstream of the PCP pathway, the Rho GTPases 

(RhoA, Cdc42 and Rac1) are most widely studied. In Drosophila, RhoA was 

found to be involved in PCP  (Strutt et al., 1997) as mutations in RhoA result in 
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multiple hairs in the wing and ommatidial rotation defects in the eye (Strutt et al., 

1997). A later report (Winter et al., 2001) suggested that RhoA mutants produce 

multiple hairs in the wings but with normal polarity. Along with PCP defects, 

RhoA also regulates cell shape changes, F actin localisation and changes in 

cellular junctions (Yan et al., 2009).  

 

Along with the Drosophila eye, RhoA was also found to regulate the localisation 

of PCP core proteins such as Stbm in the wing due to its indirect effects on cell 

shape and adherens junction regulation (Yan et al., 2009). Although RhoA is 

known to interact with Mwh in regulating PCP, it was found to have Mwh 

independent function in regulation of wing hair development in Drosophila (Yan 

et al., 2009). All these observations suggest that RhoA is involved in PCP 

downstream of the Fz pathway (Strutt et al., 2007) and it acts parallel to or 

upstream of Mwh to control wing hair formation (Yan et al., 2008).  

 

Drosophila Rho mediated kinase (DROK), which is a RhoA effector protein, is 

also known to regulate a subset of PCP responses in the eye and wing. In the 

eye, DROK is involved in the proper rotation of ommatidial clusters (Winter et al., 

2001) and in the wing it helps in formation of a single distally pointed trichome as 

loss of DROK causes multiple trichomes with abnormal polarity (Winter et al., 

2001). It is believed to regulate the actin cytoskeleton by phosphorylating 

nonmuscle myosin Ⅱ regulatory light chain (MRLC) and thereby maintains 

polarity (Winter et al., 2001). 

 

Rac1 and Cdc42 were initially found to have a role in the PCP pathway (Eaton et 

al., 1996). In the Drosophila wing a dominant negative form of Rac1 (Rac1N17) 

caused multiple hair formation and dominant negative Cdc42 caused disruption 

in actin polymerization, thereby affecting hair growth (Eaton et al., 1996). But a 

later report of loss of function mutant analysis of Rac1 and Cdc 42 argues 

against this role (Munoz Descalzo et al., 2007) suggesting either they have a 

mild role in PCP generation or the function of Rho GTPases are redundant in this 
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process (Munoz Descalzo et al., 2007). 

 

Recent literature reports the effect of a putative vesicle trafficking protein Rab23 

(Pataki et al., 2010) in the coordination of PCP in Drosophila. Drosophila Rab23 

interacts with the PCP core protein Pk and in its absence multiple trichome or 

wing hairs forms in the wing, leg and abdomen with distorted polarity (Pataki et 

al., 2010). Rab23 was found to increase the multiple hair phenotypes of PCP 

core mutants and the homozygous form of it was found to be sensitive to the 

effects of gene dosage of PCP effectors (Pataki et al., 2010). These findings 

suggest that along with other effector proteins, Rab23 also contributes in the 

maintenance of PCP in Drosophila. 

 

Other genes involved in single trichome formation in Drosophila: 
There are some other putative downstream proteins that have been found to 

regulate the wing hair formation in the Drosophila wing. Those proteins are listed 

in Table 2 with their effects on trichome formation: 

 
Gene Name Ontology (Based on Fly base) Role in wing hair formation 

slingshot (ssh) phosphatase 

Causes increased level of F 

actin which makes thick, twisted 

or splited wing hair . 

singed (sn) Actin binding protein 
Multiple hairs, defects in hair 

and bristle morphology.  

forked (f) Actin binding protein 
Multiple hairs, defects in hair 

and bristle morphology  

tricornered (trc) NDR kinase 

Multiple hairs, defects in hair 

and bristle found to interact with 

Mwh  

furry (fry) Protein binding 
Multiple hairs, defects in hair 

and bristle morphology  

 
Table 1.2: Other factors involved in the regulation of wing hair formation in the Drosophila wing. 
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Other vertebrate PCP proteins: 
There are a number of vertebrate specific PCP proteins, which have not been 

found to have a role in regulating PCP in Drosophila. Wnt5 and Wnt11 are 

members of the Wnt signalling pathway, which regulates noncanonical PCP 

signalling in vertebrates. Wnt5 regulates the inner ear hair cell orientation (Qian 

et al., 2007) and both Wnt5 and 11 were found to be involved in convergent 

extension mechanism in vertebrates (Heisenberg et al., 2000; Tada and Smith 

2000; Kilian et al., 2003). 

 

Receptor serine threonine kinase protein PTK7 is another protein that was found 

to regulate the PCP pathway in vertebrates. Mutants of PTK7 had inner ear hair 

orientation defects and neural tube defects (Lu et al., 2004). Among other 

vertebrate PCP proteins, Scribble and Discs Large are especially interesting. 

They are generally known to be involved in apical basal polarity (Dow and 

Humbert 2007; Assemat et al., 2008; Martin-Belmonte and Mostov 2008; 

Yamanaka and Ohno 2008), but in vertebrates they also regulate neural tube 

closure and hair cell orientation in the inner ear (Montcouquiol et al., 2003).  

 

The role of effector proteins in vertebrates: 

Among the effector proteins of PCP pathway, the most downstream protein Mwh 

does not have any vertebrate homologs (Strutt and Warrington 2008, Yan et al., 

2008), but other effectors such as Frtz, In and Fy were found to regulate various 

aspects of vertebrate development (Park et al., 2006; Gray et al., 2009; Heydeck 

et al., 2009; Zeng et al., 2010). 

  

In (Intu in vertebrates) and Fy (Fuz in vertebrates) are widely studied in 

vertebrates and are reported to play a wider role in different developmental 

processes. Studies in the Xenopus and mouse model over last few years have 

revealed that Intu and Fuz are essential for a range of organ development 

processes such as development of the neural tube, eye formation, skeletal 

morphogenesis, dorsoventral patterning of the spinal cord and anterior posterior 
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patterning of the limb bud in vertebrates (Park et al., 2006; Gray et al., 2009; 

Heydeck et al., 2009; Zeng et al., 2010). Absence of Intu and Fuz caused severe 

defects along with lethality at embryonic stage suggesting their importance in 

development (Park et al., 2006; Zeng et al., 2010).  

 

Along with embryonic lethality mutant embryos were also seen to have defects in 

the neural tube, abnormal dorso-ventral patterning of the central nervous system 

(CNS), malformation of the anterior posterior patterning of the limbs resulting in 

severe polydactyly, craniofacial and ocular defects, defects in brain ventricles, 

hyperplastic lungs and abnormal anterior posterior patterning of the limb bud 

(Park et al., 2006; Gray et al., 2009a, Heydeck et al., 2009b, Zeng et al., 2010). 

 

In Drosophila, In and Fy act together in a common pathway to maintain polarity 

and the phenotypes seen in vertebrates also suggest a similar scenario in higher 

organisms (Park et al., 2006).  

 

Both Intu and Fuz also caused defective ciliogenesis and reduction in total 

number of cilia in the Xenopus and mouse embryos. Also the other 

developmental defects in those mutants were similar to defects associated with 

ciliogenesis formation. Cilia are microtubule-based organelles, which are present 

at the surface of all cells of vertebrate origin and play a variety of roles in 

embryonic and postnatal development (Gerdes et al., 2009). Defects in cilia 

formation cause a number of diseases in vertebrates such as retinal dystrophy, 

polydactyly, renal malformation, neural tube closure defects, hydrocephalus and 

mental retardation (Gerdes et al., 2009). Human diseases such as Bardet-Biedl 

syndrome (BBS), Meckel-Gruber Syndrome (MKS), Kartagener’s syndrome and 

Polycystic kidney disease occur due to cilia malformation (Ross et al., 2005, 

Smith et al., 2006, Nachury et al., 2007, Sharma et al., 2008).  

 

Cilia are known to play an essential role in the transduction of the Hedgehog 

signalling, which regulates development of multiple organ system in vertebrates 
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(Jiang and Hui, 2008). When examined both in Xenopus and mouse embryos, 

the Hh target genes (such as Nkx2.2, Netrin, FoxD1 and Vax1) were found to be 

reduced in an Intu and Fuz mutant background suggesting the role of the role of 

these effector proteins in controlling Hh signalling in vertebrates (Park et al., 

2006; Gray et al., 2009a; Heydeck et al., 2009b; Zeng et al., 2010). 

 

Along with various developmental defects, fuz mutant embryos also exhibit PCP 

defects such as a curly or kinky tail (a phenotype which is normally seen when 

core PCP proteins are mutated) and severe cardiac malformation (Gray et al., 

2009). 

 

Bioinformatic analysis and physical interaction studies revealed a novel 

interaction of Fuz with a small GTPase similar to REM2 and the vesicle targeting 

Rab proteins RSG1 (Rem/Rab–Similar GTPase 1) (Gray et al., 2009). With the 

help of mGENETHREADER (Gray et al., 2009) analysis of  the protein domain 

structure of fuz was also analysed. This predicted  its interaction with CLAMP 

(CaLponin homology and microtubule-associated protein), which is a 

microtubule-bundling protein present in cilia and flagella (Gray et al., 2009). 

When tested Fuz as well as RSG1 were found to regulate the localisation of 

CLAMP at the apical tips of cilia and also in apical trafficking, defining a novel 

 role of Fuz in membrane trafficking during ciliogenesis (Gray et al., 2009). 

Furthermore Fuz was found to regulate the secretion of mucous secreting goblet 

cells suggesting a broader role of Fuz in membrane trafficking machinery (Gray 

et al., 2009).  

 

Fritz, a secreted Fz related protein with WD40 domain was found to antagonize 

the functions of Wnt in mouse and human cells in a non cellautonomous manner 

(Mayr et al., 1997). Among the Wnt family proteins, Wnt8 and Wnt11 (Mili and 

Taira, 2009), (the latter being involved in PCP signalling in vertebrates) 

(Heisenberg et al., 2000; Tada and Smith 2000; Kilian et al., 2003) were found to 

be negatively affected by Fritz. It was also reported to have a role in the primary 
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development of mouth in vertebrates by suppressing the Wnt signalling, 

suggesting its importance in vertebrate development (Dickinson and Sive, 2009).  

 

Thus accumulating evidence based on recent research has revealed that PCP 

effector proteins play a remarkable role in a number of developmental processes 

in vertebrates. It also reveals the novel function of PCP in the regulation of 

fundamental cellular systems such as membrane trafficking machinery. Although 

no such role of effector proteins in membrane trafficking has been reported in 

Drosophila, this data hints at such type of connection. The widespread 

requirement of effector proteins in cilia formation and function also depicts a role 

in regulating the cytoskeleton network in different organisms and hopefully it will 

begin to clarify the human diseases associated with cilia malformation. 

 

Mwh is a formin like protein: 
Genetic analysis of the mwh locus has revealed its cytological position as 61E-F 

(Strutt and Warrington 2008) and subsequently CG13913 has been found to be 

the candidate gene encoding mwh. Further observations like phenocopying of 

the mwh phenotype through the expression of an RNAi hairpin of the CG13913 

transcript (Dietzl et al., 2007) in Drosophila and rescuing  the mutant phenotype 

either by overexpression of CG13913 under different Gal4 promoters or by 

expression of EGFP tagged CG13913 protein in transgenic flies, confirmed that 

mwh corresponds to CG13913 (Strutt and Warrington 2008; Yan et al., 2008).  

The mwh gene is found to encode a 836 aa protein product. 

 

Bioinformatic analysis of the mwh coding sequence for known protein domains 

revealed the presence of GBD (GTPase binding domain) and FH3 (Formin 

homology 3) domains at the N terminus and a C terminal domain of unknown 

function (Strutt and Warrington 2008; Yan et al., 2008)(Fig 1.2). The GBD and 

FH3 domains are normally found in formin group of proteins, which play a major 

role in actin nucleation process (Waller and Alberts, 2003) and thereby 

modulating the cytoskeleton.  
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Figure1.3: A schematic representation of Mwh protein with its different domains compared to that of a conventional formin. 

GBD: GTPase binding domain, FH3: Formin homology 3 domain, FH1: Formin homology 1 domain and FH2: Formin 

homology 2 domain. FH1 and FH2 domains are responsible for actin nucleation, GBD domain has an autoinhibitory effect 

and binding with Rho GTPases reduces this autoinhibiton, FH3 domain helps in the subcellular localisation of the protein.  

C terminal end of Mwh is of unknown function and absence of FH1 and FH2 domains of a conventional formin makes it a 

formin like protein (Strutt and Warrington 2008; Yan et al., 2008). 

 

Formins are highly conserved eukaryotic proteins with a wide range of roles in 

actin-based processes (Waller and Alberts, 2003). These are large, single 

polypeptide, multidomain proteins encoded by Fmn genes and mutations in 

mouse Fmn homologs gave rise to murine limb deformities and renal 

malformations (Wang et al., 1997). Formins are involved in diverse processes 

like cytokinesis, hair cell stereocilia formation, cell polarization, sperm cell 

acrosome formation, as well as in normal embryonic development (limb and 

kidney morphogenesis)(Evangelista et al., 2003, Otomo et al., 2005). They are 

also found to have a role in Drosophila oocyte polarity regulation (Emmons et al., 

1995) and also in polarised cell growth in yeasts (Pruyne et al., 2002). 

 

The highly conserved feature of formins is the two juxtaposed formin homology 

domains FH1 and FH2 (Figure 1.3). Generally the FH2 domain of a formin is 

sufficient to mediate actin nucleation in vitro (Puryne et al., 2002, Sagot et al., 

2002) and actin assembly in vivo (Copeland and Treisman 2002). The FH2 

domain forms a tethered dimer and mutation that disrupt this dimer formation 

reduce its activity (Moseley et al., 2003, Takeya and Sumimoto, 2003; Xu et al., 

2004). After actin nucleation, the FH2 domain remains bound to the barbed end 

of actin filament and moves forward as the actin filament elongates by preventing 

access of capping proteins to the filament (Shimada et al., 2004). Subsequently 

the proline rich FH1 domain will interact with SH2 domains and the G actin 

binding protein profilin, thereby enhancing actin nucleation (Schwartzberg,  2007; 
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Covar  2006; Otomo  2005). No other interacting proteins have been identified for 

the FH2 domain of formin. 

 

Studies  of fission yeast Fus1 protein first identified the FH3 domain, which is 

required  in subcellular localisation of the protein (Petersen et al., 1998), and the 

GBD domain is known to have an auto inhibitory effect (Wallar et al., 2005). 

Binding of GTP bound RhoGTPases to the GBD domain causes the adjacent 

diaphanous (Dia) inhibitory domain (DID) to release the carboxyl-terminal dia 

autoregulatory (DAD) domain that flanks the FH1 and FH2 domains and makes it 

functionally active (Wallar et al., 2006; Goode and Eck 2007). 

 

Based on the phylogenetic analysis of the FH2 domain, formins are divided into 

different subtypes. Metazoans have seven different types of formin families: Dia, 

FMN, FHOD, delfilin, INP, FRL and Daam (Young and Copeland, 2008). 

 

The GBD and FH3 domains are normally found together in the Dia family of 

formins, which plays a variety of roles in cell motility and membrane invagination 

(Afshar et al., 2000, Minin et al., 2006, Williams et al., 2007). The  absence of the 

more conserved FH1 and FH2 signature domains in Mwh suggests it is a formin 

like protein if not a true formin (Strutt and Warrington 2008; Yan et al., 2008).  

 

The presence of only the GBD and FH3 domains were also found in some 

Dictyostelium RasGEFs, which lacks the FH1 and FH2 domains (Rivero et al., 

2005). 

 

Homologs of Mwh are found in other arthropods such as Pediculus humanus 

(hemipteran), Apis melifera (hymenopteran), Tribolium castaneum (coleopteran), 

Bombyx mori (lepidopteran) and Daphnia pulex (crustacean) (Yan et al., 2008). 

However no homologs were identified in nematodes or vertebrates. The absence 

of any homologs of Mwh in vertebrates and its presence in insects suggests it is 

 a part of an ancient morphogenesis-signalling network (Yan et al., 2008).  
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Formins in Drosophila: 

In Drosophila different formin proteins are present, which are involved in actin 

cytoskeleton regulation and various developmental pathways.  

Daam (Dishevelled-associated activator of morphogenesis) is a novel formin 

subtype, which was found to have a role in planar cell polarity signalling during 

Xenopus gastrulation (Habas et al., 1995) by regulating the convergent extension 

mechanism and acting as a “bridging factor “ between Dsh and RhoA (Habas et 

al., 1995). In Drosophila, Daam is maternally enriched in the embryo and was 

observed to regulate the actin cytoskeleton of different tissues including the 

tracheal system (Matusek et al., 2006) but no role has been detected in the 

establishment of PCP, which could be masked due to redundancy (Matusek et 

al., 2006).  

 

 In the trachea, branching morphogenesis of tubules produces an extensively 

interconnected tracheal network and Daam is found to regulate the branching 

mechanism by forming taenidial folds (Matusek et al., 2006). In the absence of 

Daam, the actin filament network gets disrupted resulting in abnormal taenidial 

folds (Matusek et al., 2006). 

 

 Daam was also found to have a role in the Drosophila embryonic central 

nervous system (CNS) function (Matusek et al., 2008) and the absence of Daam 

led to defects in neurite growth.  

 

Diaphanous (dia), another well-characterised formin protein in Drosophila, is 

primarily required during cytokinesis of mitotic and meiotic cell divisions 

(Castrillon and Wasserman, 1994). Mutations in dia cause sterility in both sexes 

of Drosophila (Castrillon and Wasserman, 1994). dia is also responsible for actin 

cytoskeleton organization in various tissues and membrane invagination of the 

cytoskeletal structure (Afshar et al., 2000). It  also  regulates the formation and 

function of contractile rings (Castrillon and Wasserman, 1994; Afshar et al., 

2000).  
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dia interacts with Rho GTPases (RhoA) in various contexts. In the mitochondria, 

RhoA was shown to affect mitochondrial movement by its downstream effectors 

dia in Drosophila and mdia1 in mouse cells (Minin et al., 2006). Overexpression 

of the constitutively active mutant form of dia causes reduction in mitochondrial 

motility by disrupting their actin filaments, whereas knocking down the 

endogenous dia by RNAi stimulates the mitochondrial movements (Minin et al., 

2006).  

 

Another widely known Drosophila formin is Capuccino (Capu), which is a unique 

maternal–effect locus required for the formation of anterioposterior and 

dorsoventral pattern of Drosophila egg and embryo (Manseau and Schupbach 

1989). Female mutants of Capu produce embryos lacking pole cells and polar 

granules suggesting its role in the oocyte-nurse cell complex formation.  

Capu interacts (via its FH2 domain) with another actin nucleating protein Spire 

via its kinase noncatalytic C-lobe domain (KIND) and this interaction is conserved 

across the metazoan phyla (Quinlan et al., 2007). Unlike other formins Capu 

family members lack the DAD and DID domains (Higgs 2005) and do not have N 

terminal autoinhibition over the FH2 domain (Rosales-Nieves et al., 2006), 

suggesting Capu activity might be regulated by interaction with Spire in trans 

(Quinlan et al., 2007). 

 

Capu and spire were shown to have microtubule and microfilament crosslinking 

activity in-vivo. In this context SpireD binds to Capu and inhibits F-

actin/microtubule crosslinking. Activated RhoA abolishes this inhibition 

suggesting that RhoA, Capu and spire are “elements of a conserved 

developmental cassette” and are capable of directly regulating the crosstalk 

between microtubules and microfilaments (Rosales-Nieves et al., 2006). 

 

Other formin proteins present in Drosophila are Formin 3, Fhos and CG 32138 

(Table 1.3). Formin 3 possesses the FH1 and FH2 domain for actin nucleation 
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and an FH3 domain which normally helps in the subcellular localisation of the 

protein. The absence of the GBD domain suggests it does not have an 

autoinhibitory effect as that seen with dia (Tanaka et al., 2004).  

 

Formin 3 mRNA was found to be expressed in the trachea of a Drosophila 

embryo at around stage 11 (Tanaka et al., 2004) and loss of Formin 3 affects 

tracheal fusion process by inhibiting the F actin network assembly which is 

essential for cellular rearrangement during tracheal fusion (Tanaka et al., 2004).  

 

Fhos, another Drosophila formin gene was found to be expressed in subsets of 

Drosophila muscles and at the midline of the ventral nerve cord from stage 15 

(by RNA in situ hybridization) (Tanaka et al., 2004). Other formin proteins were 

not found to be expressed during the time of embryogenesis, although a weak 

level of expression could not be ruled out (Tanaka et al., 2004). Very little 

information is known about the function of the remaining formins in Drosophila. 

 

Although most of the metazoan formins are cytoplasmic, vertebrate formins are 

mostly nuclear (De la Pompa et al., 1995, Trumpp et al., 1992) and are observed 

to express during the kidney and limb development (Zeller et al., 1989; 

Kleinebrecht et al., 1982; Mass et al., 1994). They are also involved in different 

morphogenetic signalling pathways, such as SHH signalling, which regulates the 

limb pattern formation in vertebrates (Chen et al., 1995; Haramis et al., 1995). 
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 Domains present 

(InterPro based) 

  

Name of the Formin (with 
CG number) 

FH1 FH2 FH3 GBD 
Associated 
Rho GTPases 

Cellular /Biological role 

Diaphanous (CG1768)     Rho1 

Cell motility; mitochondrial 

motility; haemocyte 

activation; membrane 

invagination 

Capuccino (CG3399)     Rho1 
Cytoplasmic streaming in 

oocytes and cell polarity 

Daam (CG14622)     RhoA Tracheal development, 

CG32138     Not known Unknown function 

Formin 3 (CG33556)     Not known 

Not fully determined, but 

may be restricted to 

tracheal cells 

Fhos (CG32030/CG5797)     Not known 

Unknown function, present 

in trachea during 

embryogenesis 

Mwh (CG13913) 

Formin like protein (ref: 

Strutt and Warrington 2008; 

Yan et al., 2008) 

    RhoA 

Planar cell polarity 

establishment in the 

Drosophila wing 

 
Table1.3: List of Formin like proteins present in Drosophila melanogaster. 

 

Formins and Rho GTPases:  
The formin group of proteins act to regulate the actin cytoskeleton as 

downstream effectors of Rho GTPases, which are small G proteins involved in a 

number of signalling mechanisms (Dumontier et al., 2000). Rho GTPases are 

found in almost all eukaryotes and play crucial roles in cell polarity, motility, 

membrane trafficking, cell adhesion and regulation of actin cytoskeleton 

(Etienne-Manneville and Hall, 2002; Sakumura et al., 2005; Brock et al., 1996).   
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These small G proteins bind to both GDP and GTP and have an intrinsic GTPase 

activity. Binding with GTP makes them functionally active and GTP bound Rho 

GTPases then interacts with a number of downstream effector genes. Rho GEFs 

regulate the binding of GTP subunits with Rho GTPases and modulate their 

interactions (Van Aelst and D'Souza-Schorey, 1997). There are a total of 22 Rho 

GTPases reported in mammals (Feltri et al., 2008), but among them RhoA, Rac1 

and cdc42 have been extensively studied. Rac1 and cdc42 induce plasma 

membrane protrusions such as filopodia and lamellipodia formation and RhoA 

affects vesicular trafficking across the membrane as well as actin stress fibre 

formation (Ridley and Hall, 1992; Ridley 1996; Hall 1998; Johnson, 1999). 

 

Generally Rho GTPases bind to two downstream effectors to regulate the actin 

cytoskeleton, (i) WASP/WAVE complex which mediates actin polymerization by 

Arp2/3 complex (Millard et al., 2004) and (ii) Diaphanous regulatory formins 

(DRFs) which mediates actin polymerization by its FH2 domain (Kovar, 2006; 

Pellegrin and Mellor, 2005). 

 

Binding of Rho GTPases to the GBD domain of formins alleviates autoinhibiton of 

the GBD domain and causes the adjacent diaphanous (Dia) inhibitory domain 

(DID) to release the carboxyl-terminal Dia autoregulatory (DAD) domain that 

flank the FH1 and FH2 domains and makes it functionally active (Wallar et al., 

2005; Goode and Eck, 2007). The active FH2 domain then dimerises and binds 

to a growing actin chain. This binding of FH2 accelerates the elongation of the 

actin chain and prevents binding of capping proteins (Shimada et al., 2004).  

 

Rho GTPases are involved in a number of cell signalling and developmental 

processes in Drosophila (Xu et al., 2008; Hariharan et al., 1995; Paladi and 

Tepass, 2004; Fanto et al., 2000). RhoA (referred to Rho1 frequently) regulates 

PCP in the Drosophila eye and wing (Strutt et al., 1997) as mentioned before. 

 

Mwh was considered as a potential interacting partner of RhoA due to the 
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presence of the GBD domain (Strutt and Warrington, 2008; Yan et al., 2008), 

which is known to interact with Rho GTPases (Wallar et al., 2005; Goode and 

Eck, 2007). It was found that the accumulation of Mwh in the wing is dependent 

on RhoA, as dominant negative and constitutively active forms of RhoA resulted 

in reduction and increase respectively in the level of Mwh in the Drosophila wing 

(Yan et al., 2009). A physical interaction between the two was further confirmed 

in a co immunoprecipitation assay in Drosophila wing cells where RhoA was 

found to bind with the full length and the GBD: FH3 domains of Mwh, but not with 

the C terminal domain (Yan et al., 2009). 

 
RhoA in mammalian cells regulates the formation of stress fibres, which are the 

contractile actin-myosin structures responsible for cell migration, contractility and 

adhesion (Langanger et al., 1986). Stress fibres are normally found in non-

muscle cells and can be categorized into three different types based on their 

subcellular localisation and interactions with focal adhesions; ventral stress fibres 

that are attached to focal adhesions at both ends, dorsal stress fibres that are 

attached to focal adhesions typically at one end and transverse arcs that are 

curved acto-myosin bundles, which do not directly attach to focal adhesions 

(Byers et al., 1984).  

 

A stress fibre is typically composed of actin filaments (which is the basic 

structural element of a stress fibre) and myosin II (which is responsible for 

producing contraction along the actin filament). Although myosin II does not 

comprise a bipolar structure, approximately 20-28 myosin molecules polymerises 

to produce the bipolarity required for contraction (Niederman and Pollard, 1975; 

Verkhovsky and Borisy, 1993). This myosin mediated contractility is important for 

the maintenance of the integrity of stress fibers, as inhibition or down regulation 

of myosin leads to loss of actin stress fibres (Chrzanowska-Wodnicka and 

Burrige, 1996; Bao et al., 2005; Hotulainen and Lappalainen, 2006; Kolega, 

2006). 
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Although actin filaments and myosins are the primary structural unit of a stress 

fibre, several other proteins are also present which are required to maintain its 

integrity. α actinin is amongst the best characterized proteins present in the actin 

stress fibre structure and it helps in crosslinkling F-actin filaments (Naumanen et 

al., 2008).  

 

Palladin is another actin cross-linking protein, which colocalises with α actinin 

and helps in the crosslinking of signalling proteins with the stress fibres. In the 

absence of palladin (either by RNAi knockdown or complete knockdown of the 

gene by loss of function allele) cells seem to lose the actin stress fibres (Parast 

and Otey, 2000; Luo et al., 2005). 

 

Numerous other proteins are also found to localise in the actin stress fibres with 

unknown functions or roles in stress fibre formation and regulation (Naumanen et 

al., 2008). 

 

The RhoA downstream effector proteins ROCK 1 and ROCK 2 have a role in 

phosphorylating the myosin regulatory light chains (MLC) and thereby increases 

myosin’s ATPase- and filament-forming activities  (Leung et al., 1996; Kimura et 

al., 1997). ROCK 1 and ROCK 2 also phosphorylates the myosin binding subunit 

of MLC phosphatase thereby inhibiting the activation of phosphatases and 

eventually causes dephosphorylation of MLC (Amano et al., 1997). ROCK 1 was 

shown to have RhoA independent role in actin phosphorylation suggesting its 

role as a key mediator in the formation of stress fibres (Leung et al., 1996).  

 

dia1 is another well-characterized downstream effector of RhoA. The FH1 

domain of dia1 binds to profilin, which is known to induce actin polymerisation by 

its interaction with actin binding protein VASP (Watanabe et al., 1997). A 

truncated versions of dia1 retaining just the FH1 and FH2 domains induced an 

accumulation of actin filaments which suggests that the N terminal end of dia 

interacts with RhoA and this interaction releases the autoinhibition of dia which 
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ultimately leads to excessive actin polymerisation (Watanabe et al., 1999). 

 

Another signalling pathway which regulates actin stress fibres formation is the 

Ca2+ /calmodulin-dependent activation of myosin light chain kinase (MLCK) 

(Totsukawa et al., 2000, Katoh et al., 2001). MLCK also phosphorylates myosin 

light chains, which eventually leads to actomyosin contraction. Among these two 

signalling pathways MLCK causes more actin contractility as compared RhoA 

signalling (Totsukawa et al., 2000). It was suggested that MLCK signalling is 

important for peripheral stress fibres formation whereas RhoA mediated 

signalling pathway regulates the central stress fibre formation of the actin 

cytoskeleton (Katoh et al., 2001).  

 

When RhoA is constitutively active  excessive actin polymerization takes place 

and removal of the endogenous RhoA shows the opposite effect, resulting in 

reduction and eventually total loss of actin stress fibres, suggesting the ability of 

RhoA to induce stress fibres assembly and increased contractility in cells (Ridley 

and Hall, 1994). 

 

Aim of the thesis: 

As Mwh is the most downstream effector protein of PCP in Drosophila and since 

it is also known to directly interact with the actin cytoskeleton, I wanted to find out 

the mechanisms through which Mwh regulates the actin cytoskeleton and the 

distal restriction/orientation of wing hair/ trichome formation. Currently there is 

limited knowledge of the potential interactors of Mwh protein. To address these 

questions, I designed and performed an in-vivo RNAi screen in the Drosophila 

wing to identify novel interactors of Mwh.  

 

The functions of different domains of Mwh were also investigated in a 

mammalian cell culture system in order to try to assign specific roles for the 

individual domains in the context of actin cytoskeleton regulation. 
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Chapter 2:  Material and Methods 

Fly Genetics: 

Fly Stocks: 

Fly strains used in various crosses were w; ptc-Gal4 ; UAS-Dcr 2 (Strutt Lab),    

w; ptc-gal4, MS1096-Gal4; UAS -Dcr2 (Strutt Lab), Daam1 /FM7; EGFP 

(Bloomington Stock Centre), y1; trc1; FRT 80 B kan 2 ry566/TM6c ry (Bloomington 

Stock Centre), yw; Ubx Flip;p{w+,arm- lac Z} FRT 73.50/TM6C (Bloomington 

Stock Centre), p{w+, hs- fz- EGFP} viable on II and p{w+, hs- fz- EGFP} viable 

on III (Strutt Lab). 

 

RNAi lines: 
All the RNAi lines used in this study were obtained either from the Vienna 

Drosophila RNAi Center (VDRC) (GD lines and KK lines) (Dietzl et al., 2007) or 

from the National Institute of Genetics Fly Stock Center (NIG). For a complete list 

of the RNAi lines used, refer to Chapter 3. 

     

GAL4/UAS system: 
The UAS/Gal4 system is a standard transgenic technique, originally adapted 

from yeast, and is widely used in flies for spatial and temporal gene expression 

studies. With the help of this system any gene placed downstream of a set of 

Upstream Activation Sequences (UAS) will express itself under the control of a 

promoter region placed upstream of the Gal4 transcription factor, for example 

ptc-GAL4, which will drive the expression of the given gene under UAS control 

specifically in the ptc expression domains (Brand and Perrimon, 1993). UAS and 

Gal4 constructs are integrated into separate fly lines and by crossing the two 

strains together the desired expression can be induced. 
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Drosophila adult wing dissection: 

Adult wings were removed at the hinge with a pair of sharp and clean forceps 

and were placed in a drop of isopropanol. After partial evaporation of the 

isopropanol, wings were mounted in 12 µl of 1:1 mix of methyl salicylate and 

canada balsam, which were applied to the coverslip. Approximately 6 wings were 

mounted on each slide. 

Counting adult wing hairs in Drosophila: 

RNAi lines were crossed with specific drivers (ptc-Gal4; UAS-Dcr2 2 and MS 

1096-Gal 4, UAS-Dcr2) and raised in a 29˚C incubator until eclosion. Adult wings 

were then dissected and mounted as mentioned above. Number of cells with 

multiple trichomes were counted in each wing under a brightfield microscope and 

based on the total number of multiple trichomes per wing, RNAi lines were 

divided into 3 groups such as, weak  (<10 multiple wing hairs /wing), medium 

(10-30 multiple wing hairs /wing), and strong (>30 multiple wing hairs /wing). 

Subsequently the RNAi lines with medium and strong multiple hairs were 

screened in the pupal wing by immunostaining. 

Drosophila pupal wings dissection:  

Newly pupated white prepupae were collected and aged at 29˚C for 27 hours, for 

the trichomes (wing hairs) to form. For RNAi lines with a delay in trichome 

formation, lines were aged upto 28 hours at 29˚C. 

 

Prepupae were removed from pupal case using a razor blade on top of a double-

sided tape and fixed in 4% paraformaldehyde in PBS for 30-40 minutes. Wings 

were dissected from the pupae in a drop of paraformaldehyde, the wing cuticles 

removed and the wings washed in 0.2% Triton X 100 in PBS. They were then 

incubated in primary antibody with 0.2% Triton X 100 in PBS and 5% BSA 

overnight at 4˚C in microtitre plates, washed in 0.1% Triton X 100 in PBS for 10 

times, incubated in secondary antibody in 0.1% Triton X 100 in PBS /0.5% BSA 

overnight, then washed again in 0.1% Triton X 100 in PBS. Wings were post-

fixed in a 1:1 mix of 0.1% Triton X 100 in PBS and 4% paraformaldehyde in PBS 
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for 5-10 minutes at RT. Finally, wings were washed in PBS and then mounted in 

10% glycerol and 2.5% Dabco anti-fade in PBS, and the edges of the coverslip 

sealed with nail varnish. 

 

For actin staining, wings were incubated in Texas-red (TR)-phalloidin (1:100 of 

6.6µM stock, Molecular Probes) for 30 minutes at room temperature followed by 

antibody treatments as mentioned above. 

Antibodies: 

The following primary antibodies were used 

 
Antibody Concentration used 

Rabbit anti-Mwh 1:1000 (Strutt and Warrington, 2008) 

Mouse anti-Armadillo 1:100 (DSHB) 

Rabbit anti-Fritz 1:1000, (Strutt and Warrington 2008) 

Mouse anti-Flamingo 1:50 (Usui et al., 1998) 

Mouse monoclonal anti-beta galactosidase 1:500, Promega 

Mouse anti-GFP 1:250, Promega 

Rat anti-Mwh 1: 100, (Strutt and Warrington, 2008). 

Rabbit anti-GFP 1:4000, Molecular Probes 

Rat anti-E cadherin 1:20, Sigma 

DAPI (4′,6-diamidino 2 phenylindole) 1:10 of 0.2mg/ml stock (≈700nM/ml). 

 

 

Secondary antibodies used were: 

 
Antibody Concentration used 

rabbit Cy 2 1:500 (Jackson) 

mouse Cy 5 1:500 (Jackson) 

rabbit RRX 1:500 (Jackson) 

preabsorbed mouse Cy2 1:500 (Jackson) 

rat Cy5 1:500 (Jackson) 

 

Phalloidin Texas Red (1:200, Molecular Probes) 
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Microscopy: 

Drosophila adult wings were examined under a Leica DMR microscope and                     

photographed using a ProgRes camera. Fluorescent staining was visualised 

using a Leica confocal microscope in the LMF facility. Images were processed 

using Image J and Adobe Photoshop V 7.0. 

Tissue Culture: 

3T3 cell culture: 

3T3 cell culture was carried out according to the standard protocol. Briefly, cells 

were cultured in DMEM (GIBCO, cat no 11971) supplemented with 10% FCS 

(GIBCO). Cells were frozen with 15% FCS, 10% DMSO in cryo-container at -

80°C – then shifted to liquid Nitogen. 

3T3 cell  transfection: 

Cells were transfected using Lipofectamine 2000 (Roche). Cells were seeded 12 

hours before transfection to attain 50% confluency in a 6-well dish with 4 x 13mm 

coverslips per well. Media was changed to Optimum (GIBCO) prior to 

transfection. Transformation mixer were prepared containing 2µg DNA + 100µl 

Optimum (A) and 6µl Lipofectamine + 100µl Optimum (B). A and B were then 

mixed and left for 20 minutes at room temperature and finally 800µl Optimum 

was added per tube and transfection mixture was added into each well. After 

incubation of 24 hrs, cells were fixed in 4 % paraformaldehyde and stained for 

proteins with various antibodies. 

Immunohistochemistry of 3T3 cells: 

Cells were fixed in 4% paraformaldehyde, blocked in 5% BSA and 0.1% Triton X 

100 in PBS. Primary antibodies were added and incubated at 4°C overnight 

followed by three times rinse in 0.1% Triton X 100 in PBS. Secondary antibodies 

diluted in PBS containing 5%BSA were added and incubated. Cells were 

subsequently mounted in Vectashield mounting medium.  
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Primary antibodies used were Rabbit anti-GFP (1:4000, Molecular Probes), rat 

anti-Mwh (1: 100, Strutt and Warrington, 2008). Rabbit anti-Cy2 (1:500, Jackson) 

and rat anti-Cy5 (1:250, Jackson) were used as secondary antibodies. 

Cell Imaging: 

Images of 3T3 cells were taken under a Leica microscope. Fluorescent staining 

were also visualised using a Leica confocal microscope in the LMF facility. 

Images were processed using Image J and Adobe Photoshop V 7.0. 

Actin phenotype rating: 

Stress fibre formation and morphology of 3T3-transfected cells was rated blindly. 

Presence or absence of stress fibres, general cell shape and size and presence 

or absence of actin ruffles were scored in transfected cells. Each experiment was 

repeated 5 times, all the ratings were averaged and Student’s t-test was 

performed each time to find out the significance of a particular phenotype. 

Molecular Biology: 

Constructs used in tissue culture assays: 

In all 3T3 cell experiments the following constructs were used: The full length 

Mwh-GFP in pEGFPC-1 (Strutt and Warrington, 2008) and the pEGFPC-1 empty 

vector (CloneTech) were used as controls. Deletion mutant constructs of Mwh 

such as EGFP-N terminal Mwh, EGFP-GBD Mwh, EGFP-FH3 Mwh and EGFP-C 

terminal Mwh were made in pEGFPC-1 by PCR amplification and subcloning. 

Mwh protein is composed of 836 amino acids, with the GBD domain comprising 

52 to 275 AA and the FH3 region extending from 290 to 492 AA, together making 

the N terminal domain of protein with 1-492 AA. The C terminal domain spans 

from 492 to 836 AA (Yan et al., 2008). The amplified DNA fragments were 

inserted at the C terminus of EGFP in the construct. 

 

Primers were designed with EcoRI and ApaI sites in them at the 5’ and 3’ ends 

respectively and covered from AA 50 to 277 for the GBD domain, 290 to 493 for 
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FH3 domain, 493 to 876 for C terminal domain and a total of 1 to 499 AA for the 

N terminal domain of Mwh.  

Primers used to make the constructs: 

 
Constructs 5’end primer 3’end primer Restriction sites  

N terminal 

Mwh-EGFP 

GGCGAATTCATGG

CTCCCAGTGTGTG

CGAGATGGCC 

GCATGGGCCCTTAGGATGC

ACCCGTCCCGAACTGCTGA

TGCC 

 

 

EcoRI (5’) and ApaI 

(3’) 

GBD Mwh- 

EGFP 

GCGAATTCGGGC

GGCTCCGAACAG

AGTTGGCCTCAG 

GCATGGGCCCTTATCCGAA

GGGCTGGGATCGCAGGCG

GAGGC 

 

 

EcoRI (5’) and ApaI 

(3’) 

FH3 Mwh- 

EGFP 

GCGAATTCAGGAA

GCGGCAGTGGTG

GTCAGAAGATAGC

C 

 

GCATGGGCCCTTAGGATGC

ACCCGCTCCGAACTGCTGA

TGCC 

 

EcoRI (5’) and ApaI 

(3’) 

C terminal 

Mwh -EGFP 

GCGAATTCGGGT

GGCATCAGCAGTT

CGGAGACGGGTG

CATCC 

GCATGGGCCCCTTAGTAGA

GGCCGGATGGAGATCCGT 

GAC 

 

 

EcoRI (5’) and ApaI 

(3’) 
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Chapter 3: Results 
 

Title: An in vivo UAS-RNAi screen in the Drosophila wing to 

identify novel factors essential for the localization of PCP effector 
protein Mwh.  

 
Introduction: 
Although planar cell polarity pathway genes are well defined in Drosophila, the 

process by which PCP regulates cytoskeletal changes in the Drosophila wing and 

helps in the formation of a distally pointed trichome from each wing cell is not very 

well understood. PCP effector proteins are known to be associated with the 

process of cytoskeleton regulation and as Mwh is the most downstream effector 

protein known of this pathway (Strutt and Warrington, 2008; Yan et al., 2008), it is 

supposed to be the key factor in this process possibly by interacting with novel 

genes associated with the cytoskeleton. 
 

Mwh localises to the apicoproximal membrane domain of each wing cell just 

before the onset of trichome formation (Strutt and Warrington, 2008; Yan et al., 

2008). In the absence of Mwh, ectopic actin bundle formation occurs over the 

entire apical surface of the wing cell, resulting in the formation of multiple 

trichomes with disrupted polarity (Strutt and Warrington, 2008; Yan et al., 2008).  

 

When examined for its binding partner, Mwh was not found to colocalise with F-

actin in the Drosophila bristles, larval muscles and salivary glands (by 

overexpressing it ectopically) suggesting there is no direct evidence of Mwh and F 

actin interaction (Yan et al., 2008). It was then speculated that Mwh binds with one 

of the actin regulatory or binding components (myosin or another unknown 

component) and thereby regulates the actin cytoskeleton (Strutt and Warrington, 

2008; Yan et al., 2008), although no such novel interaction has been reported. 

There is also a limited understanding of how Frtz regulates the phosphorylation of 



 44 

Mwh and the genes involved in this pathway. With these intriguing questions in 

mind, I did an in vivo RNAi screening in the Drosophila wing. 

 

Previous RNAi screen in the lab have identified a number of genes involved in 

polarity defects, including genes which exhibit a phenotype of more than one wing 

hair per cell (H. Strutt, V. Thomas-McArthur, C. Thomas unpublished data). Further 

investigations have been carried out on selected RNAi lines that exhibited multiple 

hair phenotype in the adult wing screen by subjecting them to a pupal wing screen. 

Also, the interplay of effector proteins and other genes involved in recruiting Mwh 

had also been investigated in the screening. 

 

RNAi screening as a method for identifying novel genes in a pathway: 
After its first successful use in C elegans by Fire and Mello (Fire et al in 1998), 

RNAi has become a widely used reverse genetic tool to study the function of 

genes in different developmental and cell biological processes. In this technique, 

short double stranded RNA is expressed in the tissue of interest and the targeted 

homologous mRNA is degraded leading to silencing of the corresponding gene. 

This target specific degradation of mRNA by the cell is believed to be a defense 

response against infection by RNA viruses (Stram and Kuzntzova, 2006). It has 

gained wide popularity as a technique, which can be used in different organisms 

to characterize functions of known genes and/or can also be used at the whole 

genome level to perform reduced or complete loss-of-function screens on a large 

scale to identify novel genes and their functions.  

 

Over the last few decades RNAi screen has gained more popularity as a genetic 

approach over classical forward genetic screening, as identifying a possible 

phenotype of a particular gene is more tedious and time consuming in forward 

genetic screens as compared to RNAi screens (Boutros and Ahringer, 2008). 

RNAi screening is easily quantifiable and both upregulators and downregulators 

can be obtained from a single screen. Since the dominant phenotype caused by 

a particular gene in forward genetic screening could be due to secondary 
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function of that gene or genetic redundancy (Boutros and Ahringer, 2008), 

currently genome wide screening by RNAi seems to be the ideal strategy.  

 

Despite the advantages of RNAi there are some drawbacks such as requirement 

of robust statistical analysis for the quantitation of screening data in in vitro 

screening, possibility of false positive results due to off target effects, occurrence 

of false negatives due to resistance of some tissues to RNAi or unsusceptibility of 

some genes to RNAi and the effects of RNAi are also not inheritable in most 

cases (Boutros and Ahringer, 2008). 

 

RNAi screens in Drosophila: 

Drosophila melanogaster is one of the best-characterized model organisms in 

which RNAi screens have been previously used both at individual gene level and 

at the level of whole genome to study variety of developmental, genetic and cell 

biological processes in vivo and in vitro (Boutros and Ahringer, 2008). The first 

genome wide RNAi screen was done in Drosophila cells (Boutros et al., 2004) 

and since then it is been routinely used in different genetic and developmental 

studies.  

 

In the case of in vivo RNAi, genes are triggered either by injecting into the 

preblastoderm embryos or by the expression of transgenes encoding long double 

stranded hairpin RNAs of gene fragments cloned as inverted repeats (IRs). in 

vivo RNAi by injection method suffers from some limitations such as the study of 

gene function is restricted to embryonic development and can sometimes be 

masked by maternally loaded proteins. On the contrary, transgenic RNAi can be 

easily used to study function of genes in somatic tissues (Mohr et al., 2010) 

Combined with Gal4 UAS expression system (Brand and Perrimon, 1993), the 

expression of the transgene can be driven in specific tissues and/or at particular 

developmental time points to get a more complete overview of a gene’s function 

under desired developmental conditions (Dietzel et al., 2007). 
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Utilizing the genome wide transgenic RNAi library of UAS driven IRs covering 

97% of the protein coding genes constructed by Dietzel et al., in 2007, Gal4 UAS 

expression system was employed in the lab (H. Strutt, V. Thomas-McArthur, C. 

Thomas unpublished data) to perform the screening in vivo in the Drosophila 

wing. These lines (GD lines) were made available by Vienna Drosophila 

Research Centre (VDRC), (http://stockcentre.vdrc.at/control/main). At the same 

time RNAi lines were also made commercially available at the National Institute 

of Genetics (NIG, http://shigen.nig.ac.jp) in Japan (although these lines covered 

fewer number of genes as compared to the VDRC stock centre). Recently VDRC 

started providing another type of RNAi collection known as KK lines (ref VDRC), 

which are designed to reduce off target effects by having the same insertion site 

for each gene. 

 

Around 10000 lines were primarily screened (H. Strutt, V. Thomas-McArthur, C. 

Thomas unpublished data) in our lab with a wing specific driver (MS1096-Gal4). 

These lines were selected mostly based on levels of expression of respective 

genes during Drosophila wing morphogenesis and differentiation (Ren et al., 

2007). Along with these, RNAi lines were also ordered based on protein domain 

(Interpro) homology and gene ontology (Flybase) (D.Strutt, unpublished data). 

 

Based on gene ontology (Flybase), genes involved in signaling mechanisms (like 

receptors, G protein coupled receptor (GPCRs), kinase/phosphatase, 

GTPase/GAP/GEF, G-proteins, cadherins, transmembrane secreted proteins), 

genes related to cytoskeleton (such as actin, tubulin/microtubule, 

dynein/myosin/kinesin), and genes/proteins involved in trafficking (such as 

ubiquitination, endocytosis, vacuolar proteins, vesicle proteins) were identified as 

positive selection criteria for the screen candidates(D.Strutt, unpublished data) . 

 

Similarly, negative selection criteria was based on the genes involved in gene 

regulation/expression mechanisms (such as transcription, translation, chromatin 

modification), genes involved in essential maintenance of the cell and 
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metabolism (such as glycolysis, cell cycle, mitochondria genes), genes involved 

in sensory processes (such as neurotransmitters, channels, taste and smell 

receptors, and defence response genes), and miscellaneous gene families (such 

as glue proteins, salivary secretions, serine endopeptidases) (D.Strutt, 

unpublished data) . 

 

Selection of drivers in the RNAi screen and the screening design: 

The wing specific driver MS1096-Gal4 was primarily used in the adult wing 

screen, as it expresses throughout the development of wings in Drosophila. The 

MS1096-Gal4 insertion is on the X chromosome, which gives a stronger 

phenotype in males, and they were thus essentially used for the adult wing 

screen. Around 150 RNAi lines were selected based on previous screen data of 

the lab (H.Strutt, V Thomas McArthur, and C. Thomas, unpublished data) to 

cross to MS1096-Gal4. These lines were also crossed to MS1096-GAl4; UAS-

Dcr2   to check the increase in the strength of the phenotype by over expressing 

Dicer, an RNAse enzyme of RNAi machinery, which is reported to enhance the 

strength of the RNAi mechanism by 15% by cleaving the double stranded RNAi 

sequence and making it more efficient in binding with the target mRNA sequence 

(Dietzel et al., 2007).            

    

For screening in the pupal wing, the ptc-GAl4; UAS-Dcr2 line was mainly used in 

as it exhibits a defined area of expression in the pupal wing (between the 

longitudinal veins 3 and 4) which facilitates the identification of mutant tissue 

easily and allows comparison with the adjacent wild type tissue.  
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Figure 3.1: Outline of the RNAi screen design. Male flies of the RNAi lines were crossed with wing specific driver MS1096- 

Gal4 and scored in the adult wing for multiple hairs phenotypes. Lines were short listed based on phenotypic strength. Those 

lines were then crossed to MS1096-GAl4; UAS-Dcr2 to check for increase in the multiple hair phenotype. These lines were 

finally crossed to ptc-GAl4; UAS-Dcr2 to determine Mwh antibody localisation in the ptc-Gal4 expressing domain. 

 

 

 
Figure 3.2:  ptc-Gal4 expression domain in the Drosophila wing. (a)Drosophila adult wing is marked with different veins (L1-

L5) and cross veins (acv and pcv). ptc-Gal4 expression is in between veins L3 and L4 and it is strongest proximally. The 

black box in (a) shows the region in which all adult wing images are taken (b) Drosophila pupal wing is marked with a white 

box to denote the strongest ptc-Gal4 expressing domain similar to adult wing region. All adult and pupal wing images were 

taken at the same region of the wing. 

 

Males of UAS RNAi lines were crossed to virgin females carrying wing specific 

driver MS1096-GAl4. The progeny was reared in 29ºC to get the maximum 

knockdown of the gene by RNAi (Brand and Perrimon, 1993) (Fig 3.1). Adult 

wings of the males of the F1 generation were then scored for multiple hairs and 

other polarity related phenotypes. Similarly UAS RNAi lines were crossed to 

MS1096-GAl4; UAS-Dcr2 to check increase in the phenotype previously found and 

ptc-GAl4; UAS-Dcr2 for the pupal wing screening under similar conditions (Fig 

3.1).  
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Results: 
Results of adult wing screen in Drosophila:  
For the adult wing screen, I hypothesised that genes which interact with Mwh to 

form a single distal trichome should also mimic (although not necessarily) the 

multiple hairs phenotype in the wing. Lines which gave multiple hairs phenotype 

after crossing to MS1096-GAl4 were identified. These lines vary in frequency of 

cells with the phenotype, number of hairs per cell, and the presence or absence 

of defects in cell size/number, which is likely to reflect a cell division defect, 

rather than a PCP defect (Adler, 1995). 

 

Source of RNAi lines 
Total number of RNAi 

lines screened in the 

adult wing 

Total number of RNAi 

lines screened in the 

pupal wing 

VDRC 125 85 

NIG 100 55 

KK (VDRC) 51 32 

 
Table 3.1:  The total number of RNAi lines (from various sources), which were screened in the adult and pupal wing of 

Drosophila melanogaster. 

All these lines with multiple hairs were then scored under a bright field 

microscope to quantitate the number of multiple hairs present in them and 

categorised into three different groups, viz. lines exhibiting 1. Weak multiple hairs 

(<10 multiple wing hairs per wing), 2. Intermediate multiple hairs (10-30 multiple 

wing hairs per wing), and 3. Strong multiple hairs (>30 multiple wing hairs per 

wing) (Table 3.2, Figure 3.2). 

                
Figure 3.3: Classification of RNAi lines based on their multiple hairs phenotype found in the adult wing screening of 

Drosophila. Based on total number of multiple hairs present lines were categorised into (A) weak (containing <10 multiple 

wing hairs /wing), (B) medium (containing 10-30 multiple wing hairs /wing), and (C) strong (containing >30 multiple wing hairs 

/wing). 
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Phenotypes found Number of each phenotype 

Weak multiple hair phenotype 52 

Medium multiple hair phenotype 21 

Strong multiple hair phenotype 25 

Hair morphology defects 18 

No wing development 9 

Nonscorable phenotype 20 

 
Table3.2: Raw data of phenotypes found in the adult wing screening of Drosophila. 

 

Additionally, some of the RNAi lines were found to give hair morphology defects 

such as thin and wavy trichomes compared to wild type trichomes as well as 

stumpy trichomes or trichomes with abnormal polarity (Table 3.2, Figure 3.4). A 

small percentage of the RNAi lines when crossed to either of the drivers gave 

non-scorable wings (curly or badly disrupted wing) or exhibited no wing 

development in my screen (Table 3.2, Figure 3.4) and were not considered for 

further analysis. The fly strain MS1096> w1118 was used as a negative control as 

each wing cell in MS1096> w1118 produces a single distally pointed trichome 

(Figure 3.3) and MS1096> CG13913IR (gene encoding mwh) was used as a 

positive control as wing cells in this line produce more than three to five 

trichomes with altered polarity (Figure 3.3).  

 �  
Figure 3.4: Controls used in the adult wing RNAi screening. A) w1118 where each wing cell produces a single trichome was 

used as a negative control and B) CG13113-IR (gene encoding Mwh) each wing cell produces more than three to five 

trichomes was used as a positive control. 
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Figure 3.5: Bar graph representing the scores of different phenotypes found in the adult wing screening when RNAi lines 
were crossed with ptcGal4, UAS dcr2 and adult wings were scored for different phenotype. X-axis of the graph represents 

different types of phenotypes found and Y-axis of the graph represents number of total RNAi lines corresponding to each 

phenotype. 

 
Line 
Name Gene Name CG number Adult wing phenotype found 

937 ed CG12676 Weak mwh phenotype 
938 ed CG12676 Medium mwh phenotype 
1021 Fur2 CG18734 Weak mwh phenotype, wings short and notching present 
1128 CG31431 CG31431 Medium mwh phenotype 
2824 Tsp29Fb CG9496 Weak mwh phenotype 
2907 aPKC CG10261 Weak mwh phenotype 
3336 SP1029 CG11956 Weak mwh phenotype 
3339 MESR3 CG15162 Weak mwh phenotype 
6168 CG15060 CG15060 Medium mwh phenotype 
7769 cno CG2534 Medium mwh phenotype 
9210 CG7394 CG7394 Weak mwh phenotype 
9241 dco CG2048 Weak mwh phenotype, hair swirl 
9265 ck CG7595 Strong mwh phenotype 
11791 pnut CG8705 Strong mwh phenotype 
12555 d CG31610 Weak mwh phenotype, some hair swirling. Wings short 
12830 CG14375 CG14375 Strong mwh phenotype 
12834 ARP-like CG7013 Medium mwh phenotype, weak hair swirls 
13145 Rab23 CG2108 Strong hair swirls, medium mwh phenotype 
13147 Rab23 CG2108 Strong hair swirls, medium mwh phenotype 
13872 CG15650 CG15650 Strong hair swirls, medium mwh phenotype 
14537 CG3588 CG3588 Weak mwh phenotype 
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Line 
Name Gene Name CG number Adult wing phenotype found 

15369 CG2016 CG2016 Medium mwh phenotype 
15494 CG12416 CG12416 Medium mwh phenotype 
15495 CG12416 CG12416 Medium mwh phenotype 
15636 CG9772 CG9772 Strong multiple hairs 
16434 CG16734 CG16734 Medium multiple wing hairs, wings uneven 

17517 CG14395 CG14395 
Medium mwh phenotype. Wings not flat enough to score 
polarity 
 

17760 stg CG1395 Strong multiple wing hairs. Wings small 
18492 Cip4 CG15015 Strong mwh phenotype 
18553 CG34401 CG34401 Weak multiple hairs, absent, small or misoriented hairs 
18554 CG34401 CG34401 Weak multiple hairs, patchy loss of wing hairs. 
18754 sub CG12298 Weak mwh phenotype 
19241 Mst36Fb CG31791 Weak mwh phenotype 
19529 l(1)G0237 CG1558 Weak mwh phenotype, also hair morphology defects. 

19658 Spn CG16757 Weak mwh phenotype, stronger swirl than normal below 
vein 4 

20518 dia CG1768 Strong mwh phenotype, cells large 

20705 CG18818 CG18818 Medium mwh phenotype, also loss of some margin 
bristles 

21177 CG30440 CG30440 Medium mwh phenotype 
21178 CG30440 CG30440 Medium mwh phenotype 
21344 CG31436 CG31436 Medium mwh phenotype, also hair morphology defect 

21908 SCAR CG4636 Weak mwh phenotype. Weak hair swirls with 
MS1096/29˚C 

22207 Hem CG5837 Medium mwh phenotype 

22671 Rme-8 CG8014 Medium mwh phenotype, wings more swirly than normal 
below vein 4, 

24107 l(1)G0222 CG8465 Strong multiple wing hairs and swirls 
24253 CG8239 CG8239 Weak mwh phenotype 
24254 CG8239 CG8239 Medium mwh phenotype 
24740 E(bx) CG32478 Medium mwh/hair morphology defect 
25707 epsin-like CG31170 Strong mwh phenotype 
25709 epsin-like CG31170 Strong mwh phenotype 
26003 gish CG6963 Strong mwh phenotype 
26019 Src42A CG6873 Weak mwh phenotype 
26367 CG4030 CG4030 Medium mwh phenotype 
26413 Sep2 CG4173 Medium mwh phenotype 
26548 Arpc3A CG4560 Strong mwh phenotype 
26549 Arpc3A CG4560 Strong mwh phenotype 
27566 Lrr47 CG6098 Strong mwh phenotype 
27503 stau CG5753 Strong mwh phenotype 
27578 fl(2)d CG6315 Weak mwh phenotype 
27984 CG7371 CG7371 Weak mwh phenotype 
28243 Cam CG8472 Strong mwh phenotype 
28347 Kul CG1964 Strong mwh phenotype 
28971 CG8878 CG8878 Strong mwh phenotype 
29239 pncr003:2L CR31696 Weak mwh phenotype 
29943 Arp14D CG9901 Strong mwh phenotype 
29944 Arp14D CG9901 Strong mwh phenotype 
30046 CG14135 CG14135 Weak mwh phenotype 
31120 CG12065 CG12065 Medium mwh phenotype 
31121 CG12065 CG12065 Medium mwh, cells larger  
31329 neb CG10718 Weak mwh phenotype 
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Line 
Name Gene Name CG number Adult wing phenotype found 

31330 neb CG10718 Weak mwh phenotype 
33486 Myo10A CG2136 Weak mwh phenotype 
33968 CG31559 CG31559 Strong Multiple/split hairs, hair morphology defect 
34788 Mo25 CG4083 Strong Multiple wing hairs, hair morphology defect? 
34789 Mo25 CG4083 Strong Multiple/split hairs, hair morphology defect 
34908 Sra-1 CG4931 Strong mwh phenotype 
35029 ari-1 CG5659 Scattered cells with weak multiple wing hairs 
35132 CG6897 CG6897 Strong mwh phenotype 
35212 CG7358 CG7358 Weak mwh phenotype 
35772 CG34401 CG17757 Patchy loss of trichomes 
35794 SIP1 CG30173 Strong mwh phenotype 
35988 trc CG8637 Strong mwh phenotype 
36424 CG6434 CG6434 Weak mwh phenotype 
37530 Myo10A CG2136 Medium Mwh, also hair morphology defect 

37534 jar CG5695 Some multiple wing hairs/hair morphology defect (hairs 
wavy). 

39166 CG32235 CG32235 Medium mwh, not flat enough to score polarity 
39591 ari-1 CG5659 Scattered cells with multiple wing hairs 
39864 CG15072 CG15072 Weak hair swirls 
39893 CG1890 CG1890 Weak mwh phenotype 
39894 CG1890 CG1890 Weak mwh phenotype 
41854 CG6945 CG6945 Medium Multiple wing hairs/hair morphology defect 
41875 dlt CG32315 Strong Multiple wing hairs, mostly posterior to L5 
41876 dlt CG32315 Strong mwh phenotype 
42677 CG3655 CG3655 Medium multiple wing hairs 

42978 CG12124 CG12124 Scattered multiple wing hairs on 1 wing, rare mwh on 
other wings 

4312 ds CG17941 Proximal hair swirls in some wings. Wings broad/short, 
some loss of cross veins 

43987 CG6327 CG6327 Weak mwh phenotype 
45013 Arc-p34 CG10954 Weak mwh phenotype 
45257 CG8260 CG8260 Mwh and swirls in some wings? Or wings not flat 
45402 sub CG12298 Medium mwh phenotype 

45550 CG5360 CG5360 Weak mwh phenotype 

45939 CalpC CG3692 Weak multiple wing hair phenotype, second hair often 
short 

47000 qm CG8593 Weak multiple wing hair phenotype, some loss of margin 
bristles 

47001 qm CG8593 Strong multiple wing hair phenotype, some loss of 
margin bristles 

47274 CG17754 CG17754 Very weak mwh phenotype 

47298 sls CG1915 Hair swirling and multiple wing hairs (poorly viable, only 
1 wing) 

48042 CG8924 CG8924 Very weak mwh phenotype 
48631 CG11555 CG11555 Strong Multiple wing hairs/hair morphology defect 
48653 CG1518 CG1518 Proximal mwh/some split hairs, also some swirling? 
50780 CG13802 CG13802 Weak mwh phenotype 
10105R-2 Sin1 CG10105 Medium mwh phenotype 
10105R-3 Sin1 CG10105 Weak mwh phenotype 
10336R-4 CG10336 CG10336 Weak mwh phenotype 
10591R-4 CG10591 CG10591 Weak multiple wing hair phenotype 
10954R-1 Arc-p34 CG10954 Weak mwh phenotype 

10667R-1 Orc1 CG10667 Multiple wing hairs, also loss or duplication of margin 
bristles 
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Line 
Name Gene Name CG number Adult wing phenotype found 

10667R-3 Orc1 CG10667 Multiple wing hairs, also loss or duplication of margin 
bristles 

11084R-1 pk CG11084 Strong swirls, especially on ventral wing surface 
11084R-2 pk CG11084 Strong swirls, especially on ventral wing surface 
11207R-1 feo CG11207 Strong mwh phenotype 
11207R-2 feo CG11207 Weak mwh phenotype 
11448R-4 CG11448 CG11448 Weak mwh phenotype 
11621R-2 Pi3K68D CG11621 Weak mwh phenotype 
11753R-1 CG11753 CG11753 Strong mwh phenotype 
11753R-3 CG11753 CG11753 Moderate mwh phenotype 
11895R-1 stan CG11895 Strong swirls 
11895R-3 stan CG11895 Strong swirls 
12091R-3 CG12091 CG12091 Strong mwh phenotype 
12135R-2 c12.1 CG12135 Strong mwh phenotype 
12135R-4 c12.1 CG12135 Strong mwh phenotype 
12298R-2 sub CG12298 Weak mwh phenotype 
12298R-3 sub CG12298 Weak mwh phenotype 
12306R-3 polo CG12306 Some multiple wing hairs, wings small (loss of anterior) 
1288R-2 CG1288 CG1288 Medium mwh phenotype 
1288R-3 CG1288 CG1288 Weak mwh phenotype 
12964R-1 CG12964 CG12964 Scattered cells with multiple wing hairs 
13436R-2 CG13436 CG13436 Weak mwh phenotype 
1395R-1 stg CG1395 Strong mwh phenotype. Wings small 
1395R-2 stg CG1395 Strong mwh phenotype. Wings small 
1463R-2 CG1463 CG1463 Weak mwh phenotype 
15015R-2 Cip4 CG15015 Strong mwh phenotype 
15015R-3 Cip4 CG15015 Strong mwh phenotype 
15064R-2 Him CG15064 Weak mwh phenotype 
1512R-3 cul-2 CG1512 Weak mwh phenotype 
16734R-2 CG16734 CG16734 Medium Mwh phenotype 
16734R-3 CG16734 CG16734 Medium mwh phenotype 
16757R-2 Spn CG16757 Strong mwh in 1/6 wings 
16894R-1 CG16894 CG16894 Weak mwh phenotype 
16894R-2 CG16894 CG16894 Weak mwh phenotype 
17282R-3 CG17282 CG17282 Proximal hairs swirl, and multiple wing hairs 

17299R-1 SNF4Agamm
a CG17299 Swirls, particularly distal to pcv 

17565R-2 CG17565 CG17565 Strong swirl distally below vein 4 
1768R-1 dia CG1768 Strong mwh phenotype. Wings small 
17985R-4 CG17985 CG17985 Weak mwh phenotype 
18468R-3  GA14945 Weak mwh phenotype 
1964R-2 Kul CG1964 Strong mwh phenotype 
1964R-3 Kul CG1964 Strong mwh phenotype, also hair morphology defect 
2048R-1 dco CG2048 Hair swirls on vein 3 
2136R-1 Myo10A CG2136 Strong Mwh phenotype, also hair morphology defect 
2160R-3 Socs44A CG2160 Weak mwh phenotype 
2534R-2 cno CG2534 Medium mwh phenotype 
2615R-1 ik2 CG2615 Weak hair swirls 
2621R-1 sgg CG2621 Medium mwh phenotype 
2837R-1 CG2837 CG2837 Small wings with multiple wing hairs 
31049R-1 Doa CG33553 Medium mwh phenotype 
31559R-3 CG31559 CG31559 Some mwh, also hair morphology defect 
31960R-1 CG31960 CG31960 Weak multiple wing hair phenotype 
32087R-1 CG32087 CG32087 Weak mwh phenotype 
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Line 
Name Gene Name CG number Adult wing phenotype found 

32087R-3 CG32087 CG32087 Strong mwh phenotype 
3492R-2 CG3492 CG3492 Weak mwh phenotype in some wings 
3533R-3 uzip CG3533 Medium mwh phenotype 
3588R-3 CG3588 CG3588 Medium mwh phenotype 
4083R-1 Mo25 CG4083 Strong mwh phenotype. 
4083R-4 Mo25 CG4083 Medium mwh phenotype 
4129R-1 l(1)G0045 CG32763 Weak multiple wing hair phenotype between v3 and v4. 
4140R-2 CG4140 CG4140 Proximal mwh in some wings, also swirls? 
4140R-3 CG4140 CG4140 Proximal mwh in some wings, also swirls? 
4173R-3 Sep2 CG4173 Medium mwh phenotype 
4636R-2 SCAR CG4636 Medium mwh phenotype 
4931R-1 Sra-1 CG4931 Weak mwh phenotype 
4931R-2 Sra-1 CG4931 Strong mwh phenotype 
5360R-1 CG5360 CG5360 Wings small and uneven. Multiple wing hairs 
5360R-3 CG5360 CG5360 Some cells with mwh, margin bristle defects 
5514R-1 CG5514 CG5514 Weak multiple wing hairs 
5543R-2 CG5543 CG5543 Multiple wing hairs. Wings too Cy to tell if hairs swirl 

5854R-2 CG5854 CG5854 Weak multiple wing hair phenotype. Wings slightly 
crumpled/blistered 

5973R-1 CG5973 CG5973 Weak mwh phenotype 
6163R-2 CG6163 CG6163 Multiple wing hairs, hairs thin/spindly, may also swirl? 
6434R-1 CG6434 CG6434 Weak multiple wing hair phenotype, hairs also short 
6963R-1 gish CG6963 Strong mwh phenotype 
6963R-3 gish CG6963 Strong mwh phenotype 
7058R-3 CG7058 CG7058 Weak mwh phenotype 

7305R-2 Rim CG33547/ 
CG7305 

Most wings blistered/crumpled. Mounted females - in 
most severe see wing margin defects and swirls below 
vein 4 

7830R-1 CG7830 CG7830 Weak mwh phenotype 
7830R-3 CG7830 CG7830 Weak mwh phenotype 
7838R-1 Bub1 CG7838 Weak mwh phenotype, also hair morphology defect 
7855R-2 timeout CG7855 Weak mwh phenotype 
8569R-2 CG8569 CG8569 Weak multiple wing hair phenotype. Wings uneven 
8637R-1 trc CG8637 Strong mwh phenotype 
8637R-2 trc CG8637 Strong mwh phenotype 
8683R-1 CG8683 CG8683 Weak multiple wing hair phenotype. 
8683R-2 CG8683 CG8683 Moderate multiple wing hair phenotype 

8929R-2 CG8929 CG8929 Weak multiple wing hair phenotype. 

9210R-2 Ac13E CG9210 Weak multiple wing hair phenotype, hairs not straight 
9699R-2 CG9699 CG9699 5 wings wild type, one wing fluid-filled with some mwh 

9774R-3 rok CG9774 Strong mwh phenotype. Wings too short/ballooned to 
score polarity 

9819R-1 CanA-14F CG9819 Swirls and medium multiple wing hairs 
Baz xMax baz CG5055 Weak hair swirls 

 

Table 3.3: Result of adult wing screening in the Drosophila. RNAi lines were crossed with MS1096-Gal4; UASDdcr2 and 

scored for multiple hairs. 

 

The RNAi lines, which were found to produce intermediate to strong, multiple 

hairs were cross-referenced in Fly Base (FB2011_02, released February 18th, 

2011) for their corresponding gene ontologies and were classified into different 
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categories (Figure 3.5). A considerable percentage of RNAi lines that gave a 

multiple hair phenotype were categorized into the cell division and cytoskeleton 

related categories (Figure 3.5). Previous study indicates that a large cell can also 

produce multiple hairs, independent of PCP function (Adler et al., 2000). These 

multiple hairs normally arise due to splitting of a single hair early in development 

or due to cytokinesis defects. A large number of RNAi lines were found to belong 

in actin binding and cytoskeleton regulation. Along with these various other 

categories of RNAi lines were also found. Some of the genes were found to belong 

in different overlapping categories, which are shown in the bargraph of proportion 

below (Figure 3.5). 

 

        
 

Figure 3.6: Bar chart of proportion representing gene ontologies found (Fly Base) for each RNAi line causing multiple hair 

phenotypes. Some of the genes overlap to more than one category. X-axis of the graph represents % of RNAi lines belonging 

to each category and Y-axis of the graph represents different categories found. 

 
Drosophila pupal wing screening:  
RNAi lines exhibiting intermediate to strong multiple hair phenotypes in the adult 

wing were short listed for pupal wing screening. I hypothesised that if a gene 

interacts with Mwh, knock down of its mRNA/protein by RNAi may be able to 

produce a change in Mwh protein level (either by increasing or by decreasing it) or 
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its localisation in the ptc-Gal4 expressing region which can be easily seen in the 

pupal wing by immunostaining. 

 

As Mwh protein localises to the apicoproximal region of the wing cell immediately 

before trichome formation (27 hrs APF at 29ºC) (Strutt and Warrington, 2008; Yan 

et al., 2008), I tried to look at Mwh localisation in the wing at 27 hrs APF. 

RNAi lines were crossed with ptc-Gal4, UAS- Dcr2 and immunostained for Mwh to 

monitor effects of the knockdown of different mRNAs and the corresponding 

proteins using different inverted repeats (IRs) on Mwh protein localisation. Along 

with Mwh, phalloidin and Armadillo were also done to observe the trichomes and 

the adherens junctions respectively. ptc> w1118 and ptc>CG13913 (gene encoding 

Mwh) were used as negative and positive controls respectively (Figure 3.6). 

 

 
Figure 3.7:  Controls used in the pupal wing RNAi screen.  A) w1118 was crossed with ptc-Gal4, UAS-Dcr2 and stained with 

Mwh antibody. Mwh protein localisation was looked at in the region of L3 and L4 (marked by white line) and no change in 

Mwh protein localisation was found as compared to wild type tissue (marked) above and below the Gal4 expressing region  

and B) CG13113 (gene encoding Mwh) was crossed with ptc- gAl4, UAS-Dcr2 and stained with Mwh antibody. Mwh protein 

localisation was looked at in the region of L3 and L4 (marked by white line), and it was found to be reduced as expected. 
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Line Name Gene 
Name 

CG 
number Pupal wing phenotype found 

937 ed CG12676 Wild type phenotype 

938 ed CG12676 In some wings large cells are present near the vein 4 with patchy loss of 
Mwh 

1021 Fur2 CG18734 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
1128 CG31431 CG31431 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
2824 Tsp29Fb CG9496 Reduction of Mwh antibody, trichomes formation delayed proximally 
2907 aPKC CG10261 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
3336 SP1029 CG11956 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
3339 MESR3 CG15162 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
6168 CG15060 CG15060 Cells are sick near the ptc region, no trichome development. 
7769 cno CG2534 Trichome morphology defect 
9210 CG7394 CG7394 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
9241 dco CG2048 Delay in trichome formation, Mwh appears normal at later time point 
9265 ck CG7595 Trichome morphology defect, trichomes are short and stumpy 
11791 pnut CG8705 Cells are slightly larger, Mwh seems to be increased 

12555 d CG31610 Inconsistent results, sometimes showing a delay in trichome formation; not 
reproducible 

12830 CG14375 CG14375 Large cells with multiple hairs 
12834 ARP-like CG7013 Slight reduction of Mwh antibody localisation. 
13145 Rab23 CG2108 Slight reduction of Mwh antibody localisation. 
13147 Rab23 CG2108 Strong reduction of Mwh antibody localisation. 

13872 CG15650 CG15650 Results are variable, sometimes ptc region looks a bit sick, and multiple 
hairs. 

14537 CG3588 CG3588 Not done as multiple hair phenotype was very weak 
15369 CG2016 CG2016 Normal distribution of Armadillo and Mwh antibody 
15494 CG12416 CG12416 Not done 
15495 CG12416 CG12416 Normal distribution of Armadillo and Mwh antibody 
15636 CG9772 CG9772 Large cells with multiple hairs 
16434 CG16734 CG16734 Cells look sick and larger at the ptc region 
17517 CG14395 CG14395 Delay in trichome formation, Mwh appears normal 
17760 stg CG1395 Large cells with multiple hairs 

18492 Cip4 CG15015 Normal distribution of Armadillo and Multiple wing hairs antibody, trichomes 
normal 

18553 CG34401 CG34401 Delay in trichome formation and Mwh reduction 
18554 CG34401 CG34401 Delay in trichome formation and Mwh reduction 
18754 sub CG12298 Not done. 
21177 CG30440 CG30440 Normal distribution of Armadillo and Mwh antibody 
21178 CG30440 CG30440 Normal distribution of Armadillo and Mwh antibody 
21344 CG31436 CG31436 Normal distribution of Armadillo and Mwh antibody 
21908 SCAR CG4636 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
22207 Hem CG5837 Very weak reduction of Mwh antibody 
22671 Rme-8 CG8014 Mwh localisation to the cell is abnormal 

24107 l(1)G022
2 CG8465 Large cells with multiple hairs 

24253 CG8239 CG8239 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
24254 CG8239 CG8239 Normal distribution of Armadillo and Mwh antibody 
24740 E(bx) CG32478 Large cells with multiple hairs 
25707 epsin-like CG31170 Weak reduction of Mwh, slightly larger cells 
25709 epsin-like CG31170 weak reduction of Mwh, slightly larger cells 
26003 gish CG6963 Normal distribution of Armadillo and Mwh antibody, trichomes multiple 
26019 Src42A CG6873 Normal distribution of Armadillo and Mwh antibody 
26367 CG4030 CG4030 Normal distribution of Armadillo and Mwh antibody 

26413 Sep2 CG4173 
Variable result, occasionally stripe of large cells, normal distribution of Mwh 
antibody. 
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Line Name Gene 
Name 

CG 
number Pupal wing phenotype found 

26548 Arpc3A CG4560 Delay in trichome formation, abnormal morphology of trichomes 
26549 Arpc3A CG4560 Delay in trichome formation, abnormal morphology of trichomes 
27566 Lrr47 CG6098 Large cells with multiple hairs 
27503 stau CG5753 Increase in Mwh antibody in the ptc expressing region, slightly large cells 
27578 fl(2)d CG6315 Not done. 
27984 CG7371 CG7371 Not done. 
28243 Cam CG8472 Not done. 
28347 Kul CG1964 Normal distribution of Armadillo and Mwh antibody 
28971 CG8878 CG8878 Large cells with multiple hairs 

29239 pncr003:
2L CR31696 Not done. 

29943 Arp14D CG9901 Normal distribution of Armadillo and Mwh antibody 
29944 Arp14D CG9901 Delay in trichome formation and Mwh reduction 
30046 CG14135 CG14135 Not done. 
31120 CG12065 CG12065 Large cells with multiple hairs 
31121 CG12065 CG12065 Not done. 
31329 neb CG10718 Not done. 
31330 neb CG10718 Not done. 
33486 Myo10A CG2136 Normal distribution of Armadillo and Mwh antibody 
33968 CG31559 CG31559 More images needed 
34788 Mo25 CG4083 More images needed 
34789 Mo25 CG4083 More images needed 
34908 Sra-1 CG4931 Slightly larger cells with multiple hairs 
35029 ari-1 CG5659 More images needed 
35132 CG6897 CG6897 Large cells with multiple hairs 
35212 CG7358 CG7358 Not done. 
35772 CG34401 CG17757 Need more images 
35794 SIP1 CG30173 Need more images 
35988 trc CG8637 Slight reduction of Mwh antibody localisation. 
36424 CG6434 CG6434 Not done. 
37530 Myo10A CG2136 Trichome morphology defect, trichomes are extremely thin and wavy 
37534 jar CG5695 Normal distribution of Armadillo and Mwh antibody 
39166 CG32235 CG32235 Need more images 
39591 ari-1 CG5659 Slight increase of Mwh in some wings 
39864 CG15072 CG15072 Slight increase of Mwh 
39893 CG1890 CG1890 Need more images 
39894 CG1890 CG1890 Not done. 
41854 CG6945 CG6945 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
41875 dlt CG32315 Increase in Mwh antibody in the ptc expressing region, slightly large cells 
41876 dlt CG32315 Large cells with multiple hairs and some increase of Mwh slightly 
42677 CG3655 CG3655 Delay in trichome formation, Mwh appears normal at later time point 
42978 CG12124 CG12124 Large cells with multiple hairs 
4312 ds CG17941 Not done. 
43987 CG6327 CG6327 Normal distribution of Armadillo and Mwh antibody 
45013 Arc-p34 CG10954 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
45257 CG8260 CG8260 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
45402 sub CG12298 Cells occasionally look sick, normal Mwh localisaion 
48631 CG11555 CG11555 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
48653 CG1518 CG1518 Large cells with multiple hairs 
50780 CG13802 CG13802 Not done. 
10105R-2 Sin1 CG10105 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
10667R-1 Orc1 CG10667 Large cells with multiple hairs 
10667R-3 Orc1 CG10667 Need more images 
11207R-1 feo CG11207 Large cells with multiple hairs 
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Line Name Gene 
Name 

CG 
number Pupal wing phenotype found 

11207R-2 feo CG11207 Large cells with multiple hairs 
11753R-1 CG11753 CG11753 Delay in trichome formation and Mwh reduction 
11753R-3 CG11753 CG11753 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
11895R-3 stan CG11895 Not done. 
12091R-3 CG12091 CG12091 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
12135R-2 c12.1 CG12135 Slight reduction of Mwh antibody localisation. 
12135R-4 c12.1 CG12135 Slight reduction of Mwh antibody localisation. 
12298R-2 sub CG12298 Need more images 
12298R-3 sub CG12298 Need more images 
12306R-3 polo CG12306 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
1288R-2 CG1288 CG1288 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
1288R-3 CG1288 CG1288 Not done. 
12964R-1 CG12964 CG12964 Normal distribution of Armadillo and Mwh antibody 
13436R-2 CG13436 CG13436 Not done. 
1395R-1 stg CG1395 Large cells with multiple hairs 
1395R-2 stg CG1395 Large cells with multiple hairs 
1463R-2 CG1463 CG1463 Not done. 
15015R-2 Cip4 CG15015 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
15015R-3 Cip4 CG15015 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
15064R-2 Him CG15064 Not done. 
1512R-3 cul-2 CG1512 Not done. 
16734R-2 CG16734 CG16734 Need more images 
16734R-3 CG16734 CG16734 Need more images 
16757R-2 Spn CG16757 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
16894R-1 CG16894 CG16894 Not done. 
16894R-2 CG16894 CG16894 Not done. 
17282R-3 CG17282 CG17282 Large cells with multiple hairs 

17299R-1 SNF4Aga
mma CG17299 Not done. 

17565R-2 CG17565 CG17565 Not done. 
1768R-1 dia CG1768 Large cells with multiple hairs 
17985R-4 CG17985 CG17985 Not done. 
18468R-3  GA14945 Not done. 
1964R-2 Kul CG1964 Slight reduction of Mwh antibody localisation. 
1964R-3 Kul CG1964 Slight reduction of Mwh antibody localisation. 
2048R-1 dco CG2048 Cells are sick and inconclusive. 
2136R-1 Myo10A CG2136 Trichome morphology defect, trichomes are extremely thin and wavy 
2160R-3 Socs44A CG2160 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
2534R-2 cno CG2534 Cells are abnormal in shape in the ptc expressing region 
2615R-1 ik2 CG2615 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
2621R-1 sgg CG2621 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
2837R-1 CG2837 CG2837 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
31049R-1 Doa CG33553 Weak reduction of Mwh antibody, occasional large cells 
31559R-3 CG31559 CG31559 Need more images 
31960R-1 CG31960 CG31960 Not done. 
3533R-3 uzip CG3533 Need more images 
3588R-3 CG3588 CG3588 Crossed now 
4083R-1 Mo25 CG4083 Reduction of Multiple wing hair antibody localisation. 
4083R-4 Mo25 CG4083 Need more images 

4129R-1 l(1)G004
5 CG32763 Not done. 

4140R-2 CG4140 CG4140 Normal distribution of Armadillo and Multiple wing hairs antibody, trichomes 
normal 

4140R-3 CG4140 CG4140 Need more images 
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Line Name Gene 
Name 

CG 
number Pupal wing phenotype found 

4173R-3 Sep2 CG4173 Not done. 
4636R-2 SCAR CG4636 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
4931R-1 Sra-1 CG4931 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
4931R-2 Sra-1 CG4931 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
5360R-1 CG5360 CG5360 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
5360R-3 CG5360 CG5360 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
5514R-1 CG5514 CG5514 Not done. 
5543R-2 CG5543 CG5543 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
5854R-2 CG5854 CG5854 Not done. 
5973R-1 CG5973 CG5973 Not done. 
6163R-2 CG6163 CG6163 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
6434R-1 CG6434 CG6434 Not done. 
6963R-1 gish CG6963 Normal distribution of Armadillo and Mwh antibody, trichomes multiple 
6963R-3 gish CG6963 Normal distribution of Armadillo and Mwh antibody, trichomes multiple 
7058R-3 CG7058 CG7058 not done. 

7305R-2 Rim CG33547
/ CG7305 Not done 

7830R-1 CG7830 CG7830 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
7830R-3 CG7830 CG7830 Not done. 
7838R-1 Bub1 CG7838 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
7855R-2 timeout CG7855 Not done. 
8569R-2 CG8569 CG8569 Not done. 
8637R-1 trc CG8637 Slight reduction of Mwh antibody localisation. 
8637R-2 trc CG8637 Slight reduction of Mwh antibody localisation. 
8683R-1 CG8683 CG8683 not done. 
8683R-2 CG8683 CG8683 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
8929R-2 CG8929 CG8929 not done. 
9210R-2 Ac13E CG9210 Large cells with multiple hairs in only two wings others are normal 
9699R-2 CG9699 CG9699 Normal distribution of Armadillo and Mwh antibody, trichomes normal 
9774R-3 rok CG9774 Large cells with multiple hairs 

9819R-1 CanA-
14F CG9819 Normal distribution of Armadillo and Mwh antibody, trichomes normal 

 

Table 3.4: Result of pupal wing screening in the Drosophila. RNAi lines were crossed with MS-1096 Gal4;UAS-Dcr2 and 

stained with Mwh, Phalloidin and armadillo to examine changes in Mwh localisation. 

 

From the pupal wing screening RNAi lines were classified and put into different 

categories based on their respective phenotypes. The lines which were able to 

change the Mwh protein localisation either by increasing or by decreasing the total 

amount of Mwh protein in the ptc-Gal4 expressing region were classified 

correspondingly as potential up regulators or down regulators of Mwh. However, 

these RNAi lines mostly gave a weak phenotype which could be due to incomplete 

knockdown of the gene by RNAi. It is also possible that the genes are not really 

having a strong effect in regulating Mwh localisation in the pupal wing. They were 

further validated with second set of independent RNAi lines from KK sources.  

 



 62 

Besides these, I found some additional phenotypes such as abnormal trichome 

morphology, large cell phenotype and delay in the timing of trichome formation in 

this screen. Also a large number of RNAi lines produced wild type phenotype in 

the screen, which could be due to those lines being nonfunctional or having no 

effect in Mwh regulation. Redundancy of the gene corresponding the RNAi lines is 

also possible. 

 

RNAi lines regulating Mwh localisation: 
A) Lines with reduced apical Mwh: 

Rab23, c12.1, kul, Tsp29Fb, Mo25, trc, CG14375, Manf, and cip4 were able to 

reduce apical Mwh localisation in the pupal wing in the ptc expressing region 

(Table 3.5 and Figure 3.8). Lines that showed a reduction in Mwh amount are 

tabulated below (Table 3.5) along with their molecular function (based on Flybase), 

involvement in biological processes (based on Flybase) and phenotypes found. 

 

Gene Name Line Name 
Molecular function 
(Based on 

Flybase) 

Involved in biological 
process (Based on 

Flybase) 

Phenotypes seen in 
each line 

c12.1 12135R2/R3(NIG) Unknown function 
Mitotic spindle 

organization  

Strongly reduces Mwh 

antibody localisation in 

the ptc expressing 

domain. Cells are 

variable in size. 

kul 1964R2/R3(NIG) metalloprotease proteolysis 

Weak decrease of Mwh 

antibody localisation in 

the ptc expressing 

domain. Strong multiple 

hairs phenotype seen. 

Tsp29Fb 2824(GD) unknown unknown 

Strongly reduces Mwh 

antibody localisation in 

the ptc expressing 

domain. Delay in 

trichome formation was 

also noted. 
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Gene Name Line Name 
Molecular function 

(Based on 
Flybase) 

Involved in biological 

process (Based on 
Flybase) 

Phenotypes seen in 

each line 

Mo25 4083R1(NIG) binding 

Embryonic 

development via 

syncitial blastoderm 

Strongly reduces Mwh 

antibody localisation in 

the ptc expressing 

domain. There was also 

a reduction of armadillo 

when crossed to ptc-

Gal4, UAS- Dcr2  

 

trc 8637R1/R2(NIG) protein binding 

bristle development; 

regulation of dendrite 

morphogenesis; 

dendrite 

morphogenesis; 

antennal 

morphogenesis; 

imaginal disc-derived 

wing morphogenesis; 

signal transduction; 

imaginal disc-derived 

wing hair organization. 

Reduces Mwh antibody 

localisation in the ptc 

expressing domain. 

Strong multiple hairs 

phenotype seen 

CG14375 12830(GD) 
G-protein-coupled 

receptor binding. 
Unknown 

Reduces Mwh antibody 

localisation in the ptc 

expressing domain 

weakly. 

Manf 12834(GD) Unknown 

neuron homeostasis; 

neuron projection 

development 

Weak decrease of Mwh 

antibody localisation in 

the ptc expressing 

domain 

Rab23 13147(GD) GTPase activity 
morphogenesis of a 

polarized epithelium 

Strongest reduction of 

Mwh antibody 

localisation in the ptc 

expressing domain. 

Strong multiple hairs 

phenotype seen 

Cip4 18492(GD) 
Rho GTPase 

binding 

wing hair organization; 

mesoderm 

Weak decrease of Mwh 

antibody localisation in 
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development the ptc expressing 

domain. Strong multiple 

hairs phenotype seen 

 
Table 3.5: Tabular representation of the genes which showed reduction in Mw localisation in the RNAi screening. Along with 

the genes, their CG number, ontology, function and phenotype found is also tabulated here.. 

 



 65 

 
Figure 3.7: RNAi lines showing a reduction of Mwh localisation in the pupal wing in the ptc expressing region. Lines were 

crossed with ptc-Gal4; UAS- Dcr2 and stained with phalloidin (first channel, red), Mwh (second channel, green) and Armadillo 

(third channel, blue) the region expressing RNAi and wild type tissues are marked in the Mwh channel. A) kul B) Tsp29Fb C) 

c12.1, D) CG14375 E) Rab23 and F) Mo25 RNAi lines. 
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B) Lines with increased apical Mwh: 
Similarly, I have found that Formin3 (form3), staufen (stau), pnut, CanA14F, Rim, 

Furin 2(Fur2), CG12964, septin 2 (sep2), microtubule star (mts), dlt and CG8860 

were able to increase the apical Mwh accumulation in the pupal wing in the ptc 

expressing region (Table 3.6, Figure 3.9-10). Lines that showed an increase in 

Mwh amount are tabulated below (Table 3.6) along with their molecular function 

(based on Flybase), involvement in biological processes (based on Flybase) and 

phenotypes found.  

 

Gene Name Line Name 

Molecular 

function (Based 

on Flybase) 

Involved in 

biological 

process (Based 
on Flybase) 

Phenotypes seen 

in each line 

Rim 7305R2(NIG) 
small GTPase 

regulator activity 

Regulation of 

exocytosis; 

synaptic vesicle 

exocytosis 

Weak increase of 

Mwh antibody 

localisation in the 

ptc expressing 

domain 

CanA14F 9819R1(NIG) 

protein 

serine/threonine 

phosphatase 

activity 

Positive regulation 

of NFAT protein 

import into nucleus 

Increases Mwh 

antibody 

localisation in the 

ptc expressing 

domain. 

Trichomes gave a 

swirly phenotype. 

CG12964 12964R1(NIG) Unknown Unknown 

Weak increase of 

Mwh antibody 

localisation in the 

ptc expressing 

domain 

Fur2 1021(GD) 

serine-type 

endopeptidase 

activity 

proteolysis 

Weak increase of 

Mwh antibody 

localisation in the 

ptc expressing 

domain. Delay in 

trichome 

formation. 
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Gene Name Line Name 

Molecular 

function (Based 
on Flybase) 

Involved in 

biological 
process (Based 

on Flybase) 

Phenotypes seen 

in each line 

pnut 11791(GD) 

actin binding; 

ubiquitin protein 

ligase binding; 

microtubule 

binding; GTPase 

activity 

cytokinesis; 

positive regulation 

of apoptosis 

Increases Mwh 

antibody 

localisation in the 

ptc expressing 

domain. Cell size 

large. 

Sep2 26413(GD) 
protein binding; 

GTPase activity 
cytokinesis 

Strongly increases 

Mwh antibody 

localisation in the 

ptc expressing 

domain. Multiple 

trichomes. 

stau 27503(GD) 
mRNA 3'-UTR 

binding 

pole plasm protein 

localization; 

regulation of pole 

plasm oskar 

mRNA localization; 

long-term memory; 

anterior/posterior 

axis specification, 

Strongly increases 

Mwh antibody 

localisation in the 

ptc expressing 

domain. Multiple 

trichomes are also 

present. 

mts 37917(GD) 

phosphatase 

regulator activity; 

protein 

serine/threonine 

phosphatase 

activity 

cell cycle; 

organelle 

organization; cell 

cycle process; 

biological 

regulation; 

anatomical 

structure 

development; 

microtubule 

cytoskeleton 

organization; 

regulation of 

developmental 

process; 

chromosome 

segregation; 

Strongly increases 

Mwh antibody 

localisation in the 

ptc expressing 

domain. Multiple 

hairs and large 

cells are also 

seen. 
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response to light 

stimulus; 

macromolecule 

modification; 

establishment or 

maintenance of 

cell polarity; 

localization; 

reproductive 

process in a 

multicellular 

organism; 

signaling pathway; 

actin based 

process 

 

CG8260 45257(GD) Unknown Unknown 

Increases Mwh 

antibody 

localisation in the 

ptc expressing 

domain 

dlt 41875/41876(GD) Unknown 

S phase of mitotic 

cell cycle; olfactory 

behavior; cellular 

process; imaginal 

disc 

morphogenesis; 

regulation of cell 

proliferation 

Increases Mwh 

antibody 

localisation in the 

ptc expressing 

domain 

Formin3 28437(GD) actin binding 

Branch fusion, 

open tracheal 

system 

Increases Mwh 

antibody 

localisation in the 

ptc expressing 

domain, although 

no multiple hairs 

were seen. 

 
Table 3.6: Tabular representation of the genes which showed increase in Mwh localisation in the RNAi screening.  Along with 

the genes, their CG number, ontology, function (Fly base) and phenotype found is also tabulated here. 

 

� 
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Figure 3.8: RNAi lines showing an increase of Mwh localisation in the pupal wing in the ptc expressing region. Lines were 

crossed with ptc-Gal4;UAS -Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third 

channel). A) Rim B) Fur2 C) CanA14F D) pnut E) CG12964 and F) septin RNAi lines. RNAi expressing tissue is marked by 

white lines in the Mwh channel. 
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Figure 3.9: RNAi lines showing an increase of Mwh localisation in the pupal wing in the ptc expressing region. Lines were 
crossed to ptc-Gal4;UAS-Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third 
channel). A) mts B) dlt C) stau D) CG8260 RNAi lines. RNAi expressing tissue is marked with white lines and wild type tissue  
below is also marked. 
 
 
Validation of hits by KK lines: 
Genes such as c12.1, cip4, kul, staufen, septin2 and formin3 gave the same 

phenotype (although the degree of strength varies) when rescreened with kk lines 

(Figure 3.11 and 3.12). Although I tried to validate all the hits found in the pupal 

wing screen, some of the genes did not have another RNAi line from other 

sources.   
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Figure 3.10: Validation of RNAi hits by another independent RNAi lines from KK sources. A) Cip4 RNAi line B) c12.1RNAi 

line and c) Kul RNAi line were crossed to with ptc-Gal4; UAS-Dcr2 Dcr2 and stained with phalloidin (first channel), Mwh 

(second channel) and Armadillo (third channel). Mwh staining reveals very weak loss of Mwh in the ptc expressing region. 

RNAi expressing tissue is marked by white lines in the Mwh channel. Scale bar is 8 um. 

 

 
 

Additional phenotypes found in the pupal wing screen: 
RNAi lines with delayed trichome formation: 

Some of the RNAi lines in the screen showed a delay in trichome formation as 

compared to controls and other wild type lines, and trichomes were found to form 

one to two hours late in them (Figure 3.13 to 17). Two different time points were 
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selected for dissecting and immunostaining of these lines, one at the normal time 

of trichome formation (27 hrs APF at 29ºC) and another later time point to find out 

the exact timing of trichome formation (28 hrs APF at 29ºC).   

 
Lines showing a delay in trichome formation sometimes associated with other 

additional phenotypes such as trichome morphology defects (Figure 3.13, 3.17) 

and reduction in Mwh localisation (Figure 3.13, 3.15, 3.17). Although the 

reductions in Mwh are most likely to be due to a developmental delay of the RNAi 

expressing tissue since at a later time point (when trichomes were formed) Mwh 

localisation was found to be normal. Lines that showed a delay in trichome 

formation are tabulated below (Table 3.7) along with their Flybase ontology and 

function.  

Gene Name 
Line Name 

 

Molecular 

function (Based 
on Flybase) 

Involved in 

biological 
process (Based 

on Flybase) 

Phenotypes seen 

in each line 

dco 9241(GD) kinase activity 

biological 

regulation; 

anatomical 

structure 

development; 

regulation of 

biological process; 

phosphorus 

metabolic 

process; 

establishment of 

planar polarity; 

signaling pathway; 

macromolecule 

modification; 

growth; response 

to cocaine; 

rhythmic process 

Causes delay in 

trichome formation 

in the ptc 

expressing domain 

CG14395 17517(GD) Unknown Unknown 

Causes delay in 

trichome formation 

in the ptc 
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expressing domain 

CG34401 
18553/18554(GD) 

 
Zinc ion binding Unknown 

Causes delay in 

trichome formation 

in the ptc 

expressing domain 

Arpc3A 26548/26549(GD) actin binding 

regulation of actin 

filament 

polymerization 

Causes delay in 

trichome formation 

in the ptc 

expressing domain 

Gene Name Line Name 

Molecular 

function (Based 
on Flybase) 

Involved in 

biological 
process (Based 

on Flybase) 

Phenotypes seen 

in each line 

Arp14D 29943/29944(GD) 

structural 

constituent of 

cytoskeleton; actin 

binding 

cytoskeleton 

organization 

Causes delay in 

trichome formation 

in the ptc 

expressing domain 

 
Table 3.7: Tabular representation of the genes which showed a delay in trichome formation in the RNAi screening.  Along 

with the genes, their CG number, ontology (Fly base), function (Fly base) and phenotype found is also tabulated here 
 

    
 

Figure 3.11: RNAi lines showing a delay in trichome formation in the pupal wing in the ptc expressing region. Lines were 

crossed with ptc-Gal4; UAS-Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third 

channel). A) dco RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 27 hrs APF, phalloidin staining (first channel) 

shows delay in trichome formation, A’) dco RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 28 hrs APF, 

phalloidin staining (first channel) shows trichomes have started forming. RNAi expressing tissue is marked by white lines in 

the phalloidin channel. Scale bar is 8 um. 
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Figure 3.12: RNAi lines showing a delay in trichome formation in the pupal wing in the ptc expressing region. Lines were 
crossed with ptc-Gal4; UAS-Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third 
channel). B) 17517 RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 27 hrs APF, phalloidin staining (first 

channel) shows delay in trichome formation, B’) 17517 RNAi crossed with w; ptc-Gal4; UAS- Dcr2 and dissected after 28 hrs 
APF, phalloidin staining (first channel) shows trichomes have started forming. RNAi expressing tissue is marked by white 

lines in the phalloidin channel. Scale bar is 8 um. 
 

 
�Figure 3.13: RNAi lines showing a delay in trichome formation in the pupal wing in the ptc expressing region. Lines were 

crossed with ptc-Gal4; UAS-Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third 
channel). C) CG34401 RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 27 hrs APF, phalloidin staining (first 

channel) shows delay in trichome formation, B) A) CG34401 RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 
28 hrs APF, phalloidin staining (first channel) shows trichomes have started forming. RNAi expressing tissue is marked by 

white lines in the phalloidin channel. Scale bar is 8 um. 
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Figure 3.14: RNAi lines showing a delay in trichome formation in the pupal wing in the ptc expressing region. Lines were 
crossed with ptcGal4; UAS Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third 

channel). D) Arpc14D RNAi crossed with w; ptcGal4; UAS Dcr2 and dissected after 27 hrs APF, phalloidin staining (first 
channel) shows delay in trichome formation, D’) Arpc14D RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 28 

hrs APF, phalloidin staining (first channel) shows trichomes have started forming. RNAi expressing tissue is marked by white 
lines in the phalloidin channel. Scale bar is 8 um. 

 

Fig

ure 3.15: RNAi lines showing a delay in trichome formation in the pupal wing in the ptc expressing region. Lines were crossed 

with ptc-Gal4; UAS-Dcr2 and stained with phalloidin (first channel), Mwh (second channel) and Armadillo (third channel). E) 

Arpc3A RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 27 hrs APF, phalloidin staining (first channel) shows 

delay in trichome formation, B) A) Arpc3A RNAi crossed with w; ptc-Gal4; UAS-Dcr2 and dissected after 28 hrs APF, 

phalloidin staining (first channel) shows trichomes have started forming. RNAi expressing tissue is marked by white lines in 

the phalloidin channel. Scale bar is 8 um. 
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RNAi lines with large cell morphology: 
A large number of RNAi lines in the screen showed a typical large cell phenotype 

with multiple hairs (Fig: 3.19-20). When immunostained with Mwh antibody, some 

of these lines also showed a reduction of Mwh which could be due to large cells 

and thus an increase in the total area at each cell as compared to the total Mwh 

protein available. However an effect on Mwh localisation could not be ruled out . 

 

To differentiate between the two-above mentioned possibilities of Mwh reduction, 

these RNAi lines were crossed with UAS CyclinE, which is a cell cycle regulator 

(CyclinE binds with cdk2 and helps in the transition from G1 to S phase; Stain et 

al., 2006). I hypothesized that if the RNAi lines causing large cells are coexpressed 

with CyclinE, the cell division defect can be rescued. mwh and string (stg) RNAi 

lines were taken as negative and positive controls in this experiment as mwh RNAi 

does not give large cells and string is a known regulator of cell cycle which 

produces cells larger than normal in the Drosophila wing (Edgar et al., 2001). 

 

Although instead of rescuing the cell size defect, these RNAi lines when crossed 

with UASCyclinE produced larger cells than before (Figure 3.18). Therefore I 

conclude that it is possible that RNAi knockdown of these genes can regulate Mwh 

localisation independently of the cell division regulation, but I was unable to 

characterize that further using my experimental conditions. Lines that showed a 

large cell phenotype are tabulated below (Table 3.8) along with their Flybase 

ontology and function.  

                                 
Figure 3.18: 17760 RNAi line when crossed to ptc-Gal4; UAS-Dcr2 caused multiple hairs and large cells (A) and when 

expressed along with UAS cyclinE (B) the large cell phenotype got stronger (trichomes are more far apart than a). 



 77 

 

Gene Name Line Name 

Molecular 

function (Based 

on Flybase) 

Involved in 

biological 

process (Based 

on Flybase) 

Phenotypes seen 

in each line 

string 1395R1/R2(NIG) 

protein tyrosine 

phosphatase 

activity 

protein amino acid 

dephosphorylation; 

regulation of 

mitotic cell cycle; 

gastrulation; 

centriole 

replication; G2/M 

transition of mitotic 

cell cycle 

Causes large cells 

with multiple hairs 

in the ptc 

expressing 

domain. Reduction 

of Mwh was also 

found. 

diaphanous 1768R1(NIG) protein binding 

cell cycle; cell 

division; 

anatomical 

structure 

development; 

localization; cell 

cycle process; 

biological 

regulation; 

reproductive 

process in a 

multicellular 

organism; 

multicellular 

organismal 

process; actin 

filament-based 

process;  

Causes large cells 

with multiple hairs 

in the ptc 

expressing 

domain. Reduction 

of Mwh was also 

found. 

CG2837 2837R1(NIG) Unknown Unknown 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

minus 5360R1(NIG) Unknown 

cyclin catabolic 

process; ovarian 

nurse cell to 

oocyte transport; 

positive regulation 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 
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of cell 

proliferation; 

endomitotic cell 

cycle; regulation 

of cell cycle; 

positive regulation 

of multicellular 

organism growth; 

positive regulation 

of mitotic cell 

cycle 

CG7830 7830R1(NIG) Unknown Unknown 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

Adenylyl cyclase 

35C 

Ac13E 

9210R2(NIG) 
adenylate cyclase 

activity 

cAMP biosynthetic 

process 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

DROK 9774R2/R3(NIG) 

GTPase binding; 

protein binding; 

protein 

serine/threonine 

kinase activity. 

biological 

regulation; 

localization; cell 

cycle; ovarian 

nurse cell to 

oocyte transport; 

multicellular 

organism 

reproduction; cell 

cycle process; 

gamete 

generation; 

organelle 

organization; post-

embryonic organ 

morphogenesis; 

establishment of 

planar polarity 

Causes large cells 

with multiple hairs 

in the ptc 

expressing 

domain. Cells look 

sick also. 

CG9772 15636(GD) Unknown 

ubiquitin-

dependent protein 

catabolic process 

Causes very large 

cells with multiple 

hairs in the ptc 

expressing 
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domain. Reduction 

of Mwh  

Lrr47 27566(GD) Unknown 
Ras protein signal 

transduction 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

CG8878 28971(GD) 

protein 

serine/threonine 

kinase activity 

protein amino acid 

phosphorylation 

Causes large cells 

with multiple hairs 

in the ptc 

expressing 

domain. Reduction 

of Mwh. 

CG14375 12830(GD) 
G-protein-coupled 

receptor binding 
Unknown 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

CG12065 31120/31121(GD) catalytic activity 
nucleoside 

metabolic process 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

ariadne (ari1) 35029(GD) 
ubiquitin-protein 

ligase activity 

negative regulation 

of transcription 

Causes large cells 

with multiple hairs 

in the ptc 

expressing 

domain. Reduction 

of Mwh was also 

found. 

CG6897 35132(GD) protein binding 

asymmetric 

protein 

localization 

involved in cell 

fate 

determination; 

activation of 

protein kinase 

activity;. 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

multi sex combs 42978(GD) DNA binding 

hemocyte 

differentiation; 

hemocyte 

proliferation 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 
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CG1518 48653(GD) 
oligosaccharyl 

transferase activity 

protein amino acid 

glycosylation 

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

Origin recognition 

complex subunit 1 

(ORC1) 

10667R1(NIG) 

 
DNA binding 

DNA amplification; 

DNA-dependent 

DNA replication 

initiation;  

Causes large cells 

with multiple hairs 

in the ptc 

expressing domain 

 
Table 3.8: Tabular representation of the genes which showed large cells in the RNAi screen. Along with the corresponding 

genes, their CG number, ontology, function and phenotype found is also tabulated here. 
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Figure 3.19: RNAi lines showing large cells in the pupal wing in the ptc expressing region. Lines were crossed with ptc-Gal4; 
UAS-Dcr2 and stained with phalloidin (first channel, red), Mwh (second channel, green) and Armadillo (third channel, blue). 
A) CG9772 B) 15636 C) 12830 RNAi lines which shows large cells. RNAi expressing tissue is marked by white lines in the 

armadillo channel. The size of each scale bar is mentioned in the image. 
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Figure 3.20: RNAi lines showing large cells in the pupal wing in the ptc expressing region. Lines were crossed with ptc-Gal4; 

UAS-Dcr2 and stained with phalloidin (first channel, red), Mwh (second channel, green) and Armadillo (third channel, blue). 

D) 31120 E) 28907 and F) DROK RNAi lines which shows large cells. RNAi expressing tissue is marked by white lines in the 

armadillo channel. The size of each scale bar is mentioned in the image. 

 

RNAi lines with abnormal trichome morphology: 

A small number of RNAi lines were found to be involved in regulating the 

morphology of trichomes. These lines were further fixed and stained for actin 

(phalloidin) to study the actin phenotype. Along with trichome morphology defects 

some of the RNAi lines also had associated additional phenotypes such as delay 

in trichome formation (Figure 3.21). Lines that showed abnormal trichome 
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morphology are tabulated below (Table 3.9) along with their Flybase ontology and 

function.  

 

Gene Name Line Name 

Molecular 
function (Based 

on Flybase) 

Involved in 
biological 

process (Based 

on Flybase) 

Phenotypes seen 
in each line 

Canoe (cno) 7769(GD) Actin binding 

embryonic 

morphogenesis; 

dorsal closure; 

regulation of JNK 

cascade; 

epidermis 

morphogenesis; 

compound eye 

development; 

ommatidial rotation 

Trichome 

morphology defect 

Crinkled (ck) 9265(GD) 
Actin dependent 

ATPase activity 

antennal 

morphogenesis; 

imaginal disc-

derived wing vein 

morphogenesis; 

bristle 

morphogenesis; 

sensory organ 

development; actin 

filament-based 

movement; 

trichome 

morphology 

defect, trichomes 

are short and 

stumpy 

Arp3A 26548/26549(GD) actin binding 

regulation of actin 

filament 

polymerization 

Trichome 

morphology 

defect,  

Myo10A 37530(GD) Protein binding 

dorsal closure; 

filopodium 

assembly; 

intracellular protein 

transport 

trichome 

morphology 

defect, trichomes 

are extremely thin 

and wavy 

 
Table 3.9: Tabular representation of the genes which showed abnormal trichome morphology in the RNAi screen. Along with 

the genes, their CG number, ontology, function and phenotype found is also tabulated here. 
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Figure 3.21: RNAi lines showing actin morphology defects in the pupal wing at the ptc expressing region. Lines were crossed 

with ptcGal4; UAS-Dcr2 and immunostained with phalloidin (first channel, red), Mwh (second channel, green) and Armadillo 

(third channel, blue). A) ck B) Myo10A C) Arp3A, D) Arp3A. RNAi lines are shown here with trichome morphology defects. 

RNAi expressing tissue is marked by white lines in the phalloidin channel.. 
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Figure 3.22: Venn diagram showing the different phenotypes found in the pupal wing RNAi screen. Some of the categories 

were overlapping with each other. The number inside the circles shows the overlapping phenotypes and the numbers outside 

of the circles showing the nonoverlapping phenotypes found in each category. 

 
Advantages of our RNAi screen: 
This in vivo RNAi screen in the Drosophila adult and pupal wings had several 

advantages such as the multiple hair phenotype in the adult wing was easy to 

score and quick to perform. In the pupal wing screening as the RNAi lines were 

crossed with ptc-Gal4 driver, it was easy to compare the mutant phenotype with 

the adjacent wild type tissue in the same wing. The crossing scheme of the pupal 

screen was quite straightforward devoid of several steps of genetic crosses. 

Further validation of the phenotype was possible by using another independent 

set of RNAi line with different hairpin structure. Finally, interpretation of the data 

was straightforward and was not dependent on robust statistical calculations or 

rigorous downstream analysis. 
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Disadvantages of our RNAi screen: 
Although RNAi screening was the most straightforward approach to identify novel 

genes, there were still some disadvantages. As with any other RNAi screen, my 

assay had picked up lines with false positive effects caused by off target genes 

and false negative results due to incomplete or weak knockdown of genes. To 

solve the issue of false positive phenotypes, independent RNAi lines with 

different hairpins (KK) were used to confirm the observed phenotypes. However 

RNAi lines with very weak multiple hair phenotypes were not taken into 

consideration for further investigation, meaning that I may have missed some 

interesting lines. Also, in my screen a large number of RNAi lines produced 

multiple hairs along with large cells. 

 

As previously mentioned large cells can produce multiple hairs independent of a 

PCP defect and this is likely to be due to a cell division defect (Adler et al., 2000). 

But I was not able to distinguish between cells producing multiple hairs due to 

cell division (cytokinesis) defects and those exhibiting multiple wing hair 

formation independent of cytokinesis defects. Also I could not explain no change 

in Mwh localisation of some lines which exhibited a strong multiple hairs 

phenotype in the adult wing.  

 

Hits found in the screen: 
In the pupal wing screen, hits were found to regulate Mwh localization by either 

causing a decrease or an increase in Mwh localization. Among the genes which 

caused a decrease in Mwh localization, Rab23, which belongs to the Rab family of 

small GTPases caused strong reduction of Mwh when crossed to ptc-Gal4, UAS- 

Dcr2 (Fig 3.8). Rab23 is involved in a number of signalling and intercellular 

transportation machinery. It plays an important role in the Hedgehog signalling 

pathway in vertebrates by its interaction with smoothened (Smo) (Wang et al., 

2006).  
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A recent study suggests it has a role in the regulation of the planar cell polarity 

pathway in Drosophila (Pataki et al., 2010). Mutation in Rab23 causes 

accumulation of excess apical actin in the pupal wing resulting in the formation of 

multiple trichomes with distorted polarity (Pataki et al., 2010), a phenotype which is 

also observed in PCP effector mutants (Strutt and Warrington, 2009). It was also 

found to interact with the PCP core protein Pk in the Drosophila wing (Pataki et al., 

2010). However, they did not look at Mwh localisation. 

 

As Rab23 is involved in membrane trafficking and in its absence Mwh is reduced, I 

think that the trafficking of Mwh is important for its proper localisation and activity. 

However no clear link between endocytosis and Rab23 was found in the 

mammalian system (Evans et al., 2003, Eggenschwiler et al., 2006, Wang et al., 

2006). 

 

Although the genetic hierarchy between mwh and Rab23 is not known yet, this 

novel function of Rab23 in regulating Mwh accumulation in the Drosophila wing 

suggests a link between PCP and Rab23. Another interesting phenomenon is the 

involvement of Rab23 and PCP effector proteins (In, Fy, Frtz) in primary 

ciliogenesis (Park et al., 2006; Gray et al., 2009; Heydeck et al., 2009; Zeng et 

al., 2010), which suggests that PCP effectors and Rab23 possibly interacts 

together in regulating actin cytoskeleton in different organisms.  

 

Mo25 in Drosophila is a member of the Mob family of proteins, which play an 

essential role in the formation of buds in yeast (Nelson et al., 2003). There are 4 

Mob genes in Drosophila, which are related to the yeast Mob family and apart from 

Mo25 (He et al., 2005) all the others can physically interact with tricornered (trc), a 

protein which belongs to the NDR family of serine threonine kinase (Mah et al., 

2001; Hou et al., 2003). Homozygous Mo25 causes thickening of wing veins, loss 

of wing margin, multiple wing hairs and bristles in Drosophila (Hu et al., 2005). In 

the RNAi screen I have found that knocking down of Mo25 by RNAi causes 

reduction of Mwh accumulation in the pupal wing and a multiple hairs phenotype 



 88 

(Fig 2.7). These data suggest that Mo25 regulates the accumulation of Mwh in 

Drosophila wing. As Mo25 is known to interact with a number of kinase families, 

it could regulate Mwh accumulation by interacting with a kinase/s in the 

Drosophila wing, although other modes of regulation also cannot be ruled out. 

 

Tricornered itself was also found to regulate Mwh accumulation in our screen. 

Along with regulating Mwh accumulation, it also had an effect in trichome 

formation as the timing of trichome formation was found to be delayed in a trc 

mutant background (Fang et al., 2010). NDR kinases are widely known for their 

role in cell polarisation events in different organisms (Hergovich et al., 2006). trc 

is involved in epidermis and sensory neuron formation and in its absence, 

multiple hairs and split bristles occur (Geng et al., 2000). Reduction of Mwh 

accumulation (Fang et al., 2010) suggests that this NDR kinase plays a role in 

Mwh activity and localisation possibly by phosphorylating it. Although the role of 

trc in Mwh phosphorylation still remains elusive, this suggests a link between the 

effectors of PCP pathway and NDR kinases in Drosophila. 

 

Among other genes that were found to regulate Mwh accumulation in the 

Drosophila pupal wing by reducing its amount, c12.1, cip4 and Tsp29Fb are 

worth mentioning. The precise molecular function of both the genes are yet 

unknown. c12.1 was reported to regulate the mitotic spindle organisation in 

Drosophila S2 cells (Goshima et al., 2007). As mitotic spindle organisation is 

essential for microtubule formation, which is known to be an essential component 

of wing hairs, it is possible that in its absence, Mwh cannot properly localise to 

the wing hair, resulting in its reduced accumulation (Fig 3.8). This phenotype was 

further confirmed by another independent RNAi line from the KK source. 

 

Cip4, which was found to reduce Mwh localisation in the Drosophila wing, helps 

in actin nucleation complex formation by interacting with WASP/WAVE complex. 

Cip4 mutants cause multiple hairs in the Drosophila wing (Fricke et al., 2009). It 

was also found to be involved in membrane invagination and vesicle trafficking 
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(Fricke et al., 2009). As it is directly involved in actin assembly and cytoskeleton 

regulation, Mwh localisation might gets affected when cip4 is not present in the 

membrane. 

 

Tsp29Fb belongs to an evolutionarily conserved tetraspanin group of proteins. 

Tetraspanins are known to form multidomain complexes with the surface proteins 

of the membrane (Tordes et al., 2000). Out of 23 tetraspanins only one of them 

Late bloomer (Lbl) is molecularly characterized in Drosophila (Kopczynski et al., 

1996). Lbl is involved in embryonic synapse formation and has been associated 

with mental disorders in flies and humans (Fradkin et al., 2002). Although nothing 

is known about the function of Tsp29Fb, being a member of tetraspanin group of 

proteins, which acts as a scaffold protein in bringing multiple proteins to one area 

of the cell membrane, it may play a role in Mwh localisation (Fig 2.7) to the cell 

membrane. 

 

CG14375, a gene with an unknown function; Kul, a metalloprotease and Arp-like, 

an actin binding protein were also found to affect Mwh accumulation weakly.  

Pnut, a gene involved in cell cytokinesis (Neufield and Rubin, 1994) produced an 

increase in Mwh accumulation along with a large cell phenotype (Fig 3.8). It is a 

member of the septin family of proteins, which regulate polarisation events in 

yeast (Neufield and Rubin, 1994). It is also known as an ubiquitin ligase protein 

which binds to microtubules and GTPases (Wong et al., 2010). Another Septin 

(Septin 2) was also found in our screen to regulate the accumulation of Mwh by 

increasing its total amount (in our pupal wing immunostaining assay) (Fig 3.9). It 

is possible that similar to the yeast model system where all the septin proteins 

function as part of a complex, in Drosophila they could also be working together 

and accumulation of Mwh may become disrupted in the absence of these 

complexes. 

 

Staufen, which plays a role in pole granule formation (Raff et al., 1990), actin 

mediated mRNA transport (Micklem et al., 2000), mRNA processing and positive 
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regulation, was found to regulate Mwh localisation. This phenotype was further 

confirmed by another independent RNAi line from the KK source. Although the 

exact role played by Staufen in regulating Mwh still remains elusive, it is possible 

that in the absence of Staufen, Mwh is either not transported properly or as 

Staufen is a member of the RNAi machinery, it somehow down regulates a 

second gene which in turn causes accumulation of Mwh. 

 

Microtubule star (mts) is a serine threonine phosphatase. It plays a role in cell 

cycle regulation (Snaith et al., 1996) and microtubule organisation in the 

cytoskeleton (Snaith et al., 1996). As it is involved in cell cycle regulation, the 

knockdown of the gene by RNAi caused large cells, but in addition multiple hairs 

and accumulation of Mwh was evident (Fig 3.10). mts could regulate Mwh 

assembly by various methods; firstly, being a phosphatase, it could reduce the 

activity of kinase/s involved in the regulation of Mwh activity thereby increasing 

its total amount. Secondly, as it is a regulator of the microtubule cytoskeleton, its 

absence could disrupt the microtubule dynamics. 

 

The only Drosophila formin, which was found to be involved in Mwh regulation in 

our screen was formin3 (Fig 3.9). Although the effect was weak, formin3 

knockdown by RNAi caused an increase in Mwh accumulation in the pupal wing 

suggesting a novel interaction between Mwh and Formin3. It is possible that 

Mwh, which is a formin like protein (due to the presence of its GBD and FH3 

domains), acts with formin3 in regulating the cytoskeleton possibly with its GBD 

domain and in the absence of the latter, Mwh cannot interact and accumulates in 

the pupal wing. 

 

Along with the above-mentioned proteins, Rim, CanA14F, CG12964, Fur2 and 

CG8260 were also found to cause increased accumulation on Mwh in the wing. 

As the effect of these genes was really weak (in the pupal wing immunostaining 

assay), they were not considered for further validation and future 

experimentation. 
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Significance of the additional phenotypes found in the screening: 
Although the additional phenotypes found in my screening are not exclusively 

related to PCP pathway and regulation of Mwh, these finding are important in the 

process of the wing and wing hair development in Drosophila as a whole. Further 

validation and characterization of the genes would be useful in understanding the 

development of Drosophila wing structure. 

 
Future experiments: 
All the hits that were found in our screen need to be validated by either 

independent sets of RNAi lines of the same gene which have a different hairpin 

structure or through various genetic mutation analyses such as loss of function 

clonal analysis or rescue of the RNAi phenotype by overexpressing the transgene 

impervious to the RNAi. The underlying concept in using an independent hairpin to 

the same gene is that it will be able to reduce the off target effect as it would target 

the mRNA corresponding to the RNAi line at a different location. 

 

Further confirmatory genetic analysis such as loss of function and overexpression 

studies may provide insight about the function of the gene corresponding the RNAi 

lines. Finally and more conclusively if the phenotype caused by a particular RNAi 

line can be rescued by expression of a transcript that can confer the activity of the 

gene without evading the RNAi treatment such as by expressing 3’ UTR of that 

particular gene (Stieloe et al., 2004; Perrimon et al., 2010), it would confirm the 

effect. 

 

Together, my results have identified a putative new set of genes in the Drosophila 

wing that are probable novel interactors of Mwh protein as knockdown of these 

genes were found to cause either an increase or a decrease in its total amount in 

the wing and Mwh may regulate the actin cytoskeleton machinery of the wing by its 

interaction with these genes. Further experimentation and research will confirm the 

putative functional roles of these genes in regulation of Mwh and also will give us a 
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clue to how PCP is established and maintained downstream of effector proteins in 

the Drosophila wing. 

 

 

My screening has found several genes (such as Rab23, Tsp29Fb, Mo25, c12.1, 

staufen, microtubule star, septin 2, pnut) that alter the distribution of Mwh protein 

and may therefore regulate it directly. Additionally, other genes were found which 

appeared to have a role in regulating cell size, timing of trichome formation and 

trichome morphology.  

 

Further study will provide better understanding of the pathway that leads to the 

formation of a single distally pointing trichome downstream of the core PCP cues, 

and also how Mwh regulates this pathway by modifying the actin cytoskeleton. 
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Chapter 4: Results 
  

Title: The GBD domain of Mwh causes stress fibre reduction 

when expressed in vitro in mammalian 3T3 cells. 
 

Introduction:  
What is the molecular Function of Mwh? 
As already mentioned Mwh consists of a GTPase binding domain (GBD) and a 

formin homology 3 (FH3) domain (Strutt and Warrington, 2008; Yan et al., 2008). 

These domains are normally found in formin group of proteins, which regulates 

the actin cytoskeleton where the GBD domain is involved in inhibiting the actin 

nucleation function of an FH2 domain and FH3 domain regulates the subcellular 

localisation of the protein (Wallar and Alberts, 2003). It was suggested that Mwh 

might act as a dominant negative protein by inhibiting other formins due to the 

presence of the GBD domain and Fz mediated Rho GTPases might inhibit this 

inhibition. Further RhoA was also found to interact with Mwh in the Drosophila 

wing (Yan et al., 2010) suggesting a potential interaction between these two in 

cytoskeleton regulation. To prove the hypothesis I wanted to dissect out the 

function of the GBD and FH3 domain and the C terminal end of unknown domain 

structure and the relation of Mwh and RhoA in the cell cytoskeleton. 

 

Aim of the study:   
As formin proteins are important regulators of actin cytoskeleton, I speculated 

that Mwh, which is a formin like protein might also have a potential role in actin 

cytoskeleton regulation. I hypothesized that the presence of a GBD domain in 

Mwh might indicate a potential interaction with Rho GTPases (as Mwh was 

reported to interact with RhoA in the Drosophila wing) in modulating the 

cytoskeletal structure. Although Mwh does not have a well defined FH1 and FH2 

domain for actin nucleation, the presence of the GBD domain can render an 

autoinhibition to its own C terminal end and the binding of Rho GTPases to the 
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GBD domain can disrupt this autoinhibiton (Figure 4.1). I also hypothesized that, 

Mwh GBD domain can also bind with DID domains of other formins present in 

Drosophila to render inactivity. 

    

      
 
Figure 4.1: Proposed Hypothesis of my tissue culture assay: Mwh with its GBD domain can autoinhibit the C terminal end 

of itself and can also inhibit the FH1 and FH2 domains of other formins by dimerisation with the GBD domain. It is 

possible that like other formins binding of a Rho GTPases to the GBD domain reduces this inhibition. 

 

Results:  
To support my hypothesis, a number of deletion mutant constructs of Mwh were 

made by PCR amplifying the DNA fragments of each corresponding domain 

(Nterminal, GBD, FH3 and Cterminal) and then subcloning it into the pEGFPC-1 

vector (Clontech) (Figure 4.2).  
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Figure 4.2: Deletion mutant constructs of Mwh used in this assay. All the constructs were tagged with EGFP at the N 

terminal end. Full length Mwh consisted of GBD, FH3 and C terminal domains. Deletion mutant constructs of Mwh were 

made carrying only the N terminal, GBD, FH3 and C terminal domain (each tagged with EGFP at the N terminus). 

 

Although Mwh does not have a vertebrate homolog, deletion mutants were 

overexpressed and analysed in mammalian Swiss 3T3 fibroblast cells, as it has a 

distinct actin cytoskeleton structure. Cells were transfected with any one of the 

four different deletion mutant constructs of Mwh, and the full length Mwh (Strutt 

and Warrington, 2008) construct along with the empty vector served as controls 

(tissue culture and transfection method are discussed in detail in chapter 4 

“Material and methods”). After transfection and immunostaining the phenotype of 

each construct was rated blindly for various parameters and scored for either the 

absence or presence of a complete phenotype or else for the presence of an 

intermediate phenotype of each of the parameters. Each and every experiment 

was repeated 5 times (see Table 4.2). 
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Actin Phenotype rating chart: 
 

Phenotypes 

looked for  

Present/normal  Absent/Abnormal Medium/Intermediate 

phenotype 

Stress Fibres Y/N Y/N Y/N 

Actin Ruffles Y/N Y/N Y/N 

Cell Shape Y/N Y/N Y/N 

Cell Size Y/N Y/N Y/N 

 
Table 4.1: Chart showing the parameters selected for rating each cell in this assay. Each cell was looked into for the 

above-mentioned parameters and scored accordingly. 

 

The GBD domain of Mwh causes stress fibres reduction in 3T3 cells: 
To define the function of different domains of Mwh, I expressed the different 

deletion mutant constructs in Swiss 3T3 fibroblasts and compared them with 

control cells expressing EGFP alone. After transfecting cells, actin phenotype 

rating of each cell was quantitated by eye (in a blind scoring). It was found that 

cells transfected with GBD or the N terminal construct was able to reduce the 

stress fibre formation as compared to cells transfected with other constructs, 

untransfected cells or cells transfected with empty vector.  

 

I tried to categorise the respective transfected cells into three different categories 

viz. 1.percentage of cells with complete absence of stress fibres, 2. Intermediate 

phenotype and 3. Normal stress fibers. It was found that cells transfected with N 

terminal or GBD deletion mutants of Mwh has 37% and 35% more cells with 

reduction of stress fibres as compared to the control empty vector (Table 4.1, 

Figure 4.3 and 4.5). Intermediate phenotype of actin stress fibres were in the 

range of 30% to 40 % in all mutant constructs along with control and was not 

significantly changed in any of them (Figure 4.5). As compared to the control 

batch, which showed 65% of cells with normal actin stress fibre organisation, 

GBD and N terminal deletion mutant batches had 28% and 23% of cells 

respectively showing normal stress fibres phenotype (Figure 4.5). Cells 

transfected with C terminal deletion construct behaved almost like wild type cells 
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in every experiment and the FH3 deletion construct transfected cells exhibited 

moderate phenotype in most cases (Figures 4.4 and 4.5). When a statistical 

analysis (one way ANOVA) was done (by taking 5 repetitions into account) the 

reduction of stress fibres was found to be highly significant in cells transfected 

with GBD and N terminal constructs as compared to the control (Figure 4.5). 

Other constructs (the FH3 and C terminal) were not able to show any significant 

reduction in stress fibre formation (as compared to the control) (Figure 4.5). C 

terminal Mwh construct caused negligible reduction in stress fibres as compared 

to others (behaving almost like the wild type control) and the FH3 Mwh construct 

had 15% more reduction in stress fibres than that of control empty vector, 

although not statistically significant (Figures 4.4 and 4.5). Conversely the N 

terminal and GBD deletion mutants were able to cause approximately 30% more 

reduction in actin stress fibre formation when compared to the control (Figures 

4.4 and 4.5). 

 

These observations suggest that the GBD domain of Mwh is involved in actin 

stress fibre formation, further study may show that it does this by possibly 

interacting with members of Rho GTPases or interacting partners of Rho 

GTPases. 

 
 Number of cells with:  
Different 
Constructs 

Normal Stress 
fibres 

Medium stress 
fibres Loss of stress fibres 

Control empty 
vector 65 30 5 

N term 23 40 37 
C term 53 33 16 
GBD 28 37 35 
FH3 37 30 13 
 

Table 4.2: Raw data of different types of stress fibres obtained in the blind fold study on 3T3 cells after transfection with 

different deletion mutants of Mwh. 
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Figure 4.3: (A-C) The three different types of stress fibre phenotype quantified in 3T3 cells. (A) Presence of normal stress 

fibres, (B) presence of medium stress fibres (intermediate phenotype), (C) absence of stress fibres. (D) Horizontal bar 

graph of the relative frequency of actin stress fibre organization in different deletion mutant constructs of Mwh (normal 

stress fibres, blue; medium stress fibres, red; absence of stress fibres, yellow) scored in 5 different experiments (n= 100 

for each constructs in each experimental set up).X axis of the graph shows percentage of cells belonging to different 

categories mentioned and Y axis of the graph shows different constructs used in this assay. 
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Figure 4.4: 3T3 cells transfected with different deletion mutants of Mwh constructs and stained for Phalloidin and GFP. 

Cells transfected with the N terminal or the GBD domain causes a reduction in stress fibres formation. Control vector and 

other deletion mutant constructs do not show any statistically significant stress fibre reduction (one Way ANOVA was 

used in this assay). 
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Figure 4.5: Analysis of data with one way ANOVA test with 5 independent samples (Control, Nterm, Cterm, GBD and 

FH3) and graphical representation of actin stress fibre reduction in each Mwh deletion mutant construct. Error bar 

represents standard error; each experiment is repeated 5 times and averaged for each construct (n= 100, in each case). 

X-axis of the graph represents phenotype shown by different deletion mutants and Y-axis of the graph shows total number 

of cells showing the phenotype. The reduction of stress fibre in N terminal and GBD deletion mutant was found to be 

statistically significant (in the case of N terminal and GBD p < 0.01 and in the case of FH3 the p value was found to be 

0.05). 
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Formation of actin ruffles in GBD Mwh construct: 
The GBD construct of Mwh when expressed in 3T3 cells significantly reduced 

stress fibres, but was found to form long actin ruffle like membranous projections 

from the cell periphery. Actin ruffles are Rac1 induced membranous projections 

composed of F actin filaments (Ridley et al., 1992). But the increase in actin 

ruffles by the GBD deletion mutant construct was found to be not statistically 

significant (Figure 4.6). As compared to the controls used, 23% more cells 

transfected with GBD deletion mutant had long actin like ruffles (Figure 4.6). 

Cells transfected with the N terminal deletion mutant construct also had higher 

number of actin ruffles in them (increased by 14% as compared to the control) 

and cells transfected with FH3 deletion mutant had a 12% increase in actin ruffle 

formation, but none of the constructs could cause a significant increase in actin 

ruffles formation as compared to the control in this assay (Figure 4.6). No 

noteworthy actin ruffle formation was detected in the C terminal deletion mutant 

construct (Figure 4.6). Therefore I conclude that although GBD Mwh construct 

were found to have more actin ruffles when examined by eye, the change was 

not statistically significant (by one way ANOVA test, raw data not shown). 

 
Figure 4.6: Graphical representation of the percentage of actin ruffles present in each construct. Error bar represents 

Standard error, each experiment was repeated 5 times and averaged for each construct (n= 100, in each case). X-axis of 

the graph represents phenotype shown by different deletion mutants and Y-axis of the graph shows total number of cells 

showing the phenotype. As compared to the control some of the deletion mutant constructs of Mwh shows an increase in 

actin ruffle formation from the cell periphery, which was found to be not significant in my assay (by one way ANOVA test). 
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Role of Mwh deletion mutant in controlling cell size/ morphology: 
Although some of the deletion mutants were able to show altered cell 

morphology frequently (such as presence of abnormally flattened cells or large 

round cells), when cell morphology and cell size of the transfected cells in the 

assay were investigated, to find out whether any of the domains of Mwh are 

involved in providing distinct cell morphology or maintaining viability of the cell, 

the overall cell morphology/size found in different deletion constructs was not 

affected significantly as compared to the control (Figures 4.7 and 4.8).This 

suggests Mwh deletion mutant proteins may not be causing any change in 

overall cell shape and size when overexpressed in 3T3 cells or may not be 

detectable in my experimental assay. 

 
Figure 4.7: Graphical representation of percentage of cells with abnormal morphology present in each constructs. Error 

bar represents Standard error, each experiment was repeated 5 times and averaged for each construct (n= 100, in each 

case). X-axis of the graph represents phenotype shown by different deletion mutants and Y-axis of the graph shows total 

number of cells showing the phenotype. As compared to the control vector none of the deletion mutants could show a 

significant change in cell morphology my assay (by one way ANOVA test). . 
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Figure 4.8: Graphical representation of percentage of cells with abnormal size (small cells) present in each constructs. 

Error bar represents Standard error, each experiment was repeated 5 times and averaged for each construct (n= 100, in 

each case). X-axis of the graph represents phenotype shown by different deletion mutants and Y-axis of the graph shows 

total number of cells showing the phenotype. As compared to the control vector none of the deletion mutants could show 

a significant change in cell morphology my assay (by one way ANOVA test). . 

  

 

Thus, taken together, these results indicate that in Swiss 3T3 Fibroblast cells 

either the GBD domain or the N terminal domain (possibly due to the presence of 

GBD) of Mwh is able to significantly reduce the formation of actin stress fibres.  

 
Discussion: 
Expression of N terminal and GBD deletion constructs of Mwh in 3T3 cells 

induced a reduction in total actin stress fibre numbers, a phenotype which is 

similar to the one exhibited by RhoA mutant cells (Ridley and Hall, 1992). No 

significant changes were found with other deletion mutant (C terminal or FH3) or 

control (empty vector) constructs. Reduction of stress fibres by the N terminal 

and the GBD domain suggest a possible interaction between GBD of Drosophila 

Mwh and RhoA in mammalian cells.  

 

Based on the results, I propose that binding of Mwh to RhoA protein via its GBD 

domain and the sequestering of the activated RhoA could prevent the later from 

Stress fibres  
 Stress fibres  
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interacting with its downstream targets (such as myosin, alpha actinin, palladin, 

or downstream effectors of Rho such as dia). Thus RhoA might play a dominant 

negative role in this interaction resulting in actin stress fibre reduction. 

 

Another plausible explanation is that RhoA protein and the GBD domain of Mwh 

are competing against each other simultaneously to bind to the stress fibres and 

to other interacting proteins associated with this process. But in the presence of 

excess amounts of GBD, RhoA might not be able to bind to its interacting 

partners resulting in the reduction of stress fibres. As previously noted in a 

conventional formin, binding of Rho GTPases to the GBD domain increases 

activity of the formin by reducing autoinhibition and releases the DAD domain 

containing FH2 for actin polymerization. In this particular scenario it is also 

possible that, although Rho GTPases are binding to GBD to reduce its function, 

the pool of available GBD domains in a cell is larger as compared to that of 

endogenous RhoA, therefore not all of the GBD is relived of its autoinhibition, 

eventually leading to reduction of actin stress fibres. Taken together my results 

indicate that the GBD domain of Mwh has a unique function in mammalian 3T3 

cells in actin stress fibre formation and thus regulating the actin cytoskeleton. 

 

Future Directions: 
Some of the useful objectives of future studies will be to look at the total level of 

RhoA in vivo in the absence and presence of Mwh and colocalisation of RhoA 

with different deletion mutants of Mwh in 3T3 cells. Physical interaction study (co-

IP) of Mwh with mammalian RhoA could also provide some clue about the 

interaction. Since Rho GTPases may participate in crosstalk and operates 

simultaneously in a number of different signalling pathways (Burridge, 1999), 

other notable Rho GTPases (Rac1, cdc42) could also be used in the interaction 

assay to gain insight of Mwh and Rho GTPases interaction in mammalian cells. 

 

As the N terminal end of a conventional formin exhibits an autoinhibitory effect, it 

would also be interesting to check whether Mwh also possesses this kind of 
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autoinhibition due to the presence of the GBD domain at the N terminal end (by 

pull down assays), which will give us insight about the function of the GBD 

domain in Mwh. 

 

Finally as Mwh does not have any vertebrate homologs, it would be important to 

examine the effect of different deletion mutants of Mwh in a Drosophila cell line. 

Although Drosophila cell lines do not have a distinct actin cytoskeleton as that of 

3T3 cells, previous data showed Mwh causes formation of projections from the 

Drosophila S2 cell boundary and loss of actin bundles at the cell periphery (Strutt 

and Warrington, 2008).  It was also seen that cells transfected with full-length 

Mwh construct causes formation of filopodia like extensions in the S2 cells (Strutt 

and Warrington, 2008). Further study with the deletion mutants in S2 cells can 

provide some useful insight about the role of different domains of Mwh in 

regulating the Drosophila actin cytoskeleton. 

 

Another potential assay could be to look for potential interactions between other 

Drosophila formins and Mwh in cells of Drosophila origin using similar type of 

deletion mutants of Mwh. Obvious candidates for this study would be dia, Daam, 

Formin 3 or any other formins present in Drosophila.  

 

In conclusion, my result provides evidence that the GBD domain of Mwh shows a 

novel function in mammalian 3T3 cells by reducing the actin stress fibre 

formation suggesting a possible interaction of RhoA and Mwh. Further studies 

may provide some insights on the mechanism and function of Mwh in regulating 

actin cytoskeleton along with Rho GTPases. 
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General Discussion: 
 
The aim of my thesis was to find out the role of PCP effector protein Mwh in the 

formation of a single distally pointed trichome in the Drosophila wing. To start 

with I first did an in vivo RNAi screen in the Drosophila wing with around 180 

genes which were previously reported by our lab to produce multiple hairs 

(H.Strutt, C. Thomas unpublished data). 

 

Those genes were further looked at by crossing the RNAi lines corresponding to 

each gene with a wing specific driver (ptc-Gal4, UAS- Dcr2) and immunostaining 

with Mwh protein in the Drosophila pupal wing just before trichome formation (32 

hrs at 25ºC). A number of hits were found in my screen to regulate Mwh 

localisation by either increasing or decreasing Mwh protein levels. I then further 

tried to validate these hits with another independent set of RNAi line from the KK 

source of VDRC, which are designed to have less off targets effects and also are 

inserted at the same position to reduce the positional effect of other nearby 

genes.  

 

Genes such as Rab23, Tsp29Fb, Mo25, c12.1, cip4, staufen, microtubule star, 

septin 2, and pnut were found to alter the distribution of Mwh protein in the screen 

and may therefore regulate it directly. Among them staufen, microtubule star, 

septin 2, pnut  were found to increase and Rab23, Tsp29Fb, Mo25, c12.1, cip4  

were found to decrease Mwh protein level when knocked down by RNAi. 

Additionally, other genes were found which appeared to have a role in regulating 

cell size, timing of trichome formation and trichome morphology.  

 

Among the hits which caused a decrease in Mwh localization, Rab23, a putative 

vesicular trafficking protein, which belongs to the Rab family of small GTPases 

caused a very strong reduction of Mwh (Fig 3.8). This was further proved by 

another independent set of RNAi line from VDRC. Rab23 was found to produce 

multiple hairs in the Drosophila wing when mutated and increased apical actin 
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level also were seen at the pupal wing of Rab23 mutant flies which is similar to 

PCP effector protein mutation (Pataki et al., 2010). PCP core protein Pk was found 

to associate with Rab23 in the apicoproximal region of the wing cell although no 

such association was seen with any of the effector proteins (In, Fy, Frtz and Mwh). 

As Rab23 mutants phenocopies PCP effector mutation and it regulates Mwh 

localisation in the pupal wing, it will be interesting to study the role of Rab23 in 

Mwh localisation and function. Further study may reveal the significance of 

vesicular trafficking and trafficking related proteins (such as Rab23) in PCP 

establishment and propagation. 

 

Staufen is one of the hits which caused a stong increase in Mwh when knocked 

down by RNAi in my screen. This phenotype was further confirmed by another 

independent RNAi line of Staufen from the KK source. One of the widely studied 

roles of Staufen is actin mediated mRNA transport (Micklem et al., 2000). 

Although the exact role played by Staufen in regulating Mwh still remains elusive, 

it is possible that in the absence of Staufen, Mwh is either not transported 

properly or as Staufen is a member of the RNAi machinery, it somehow down 

regulates a second gene which in turn causes accumulation of Mwh. 

 

In case of other hits of my screen, validation with another independent set of line 

was either not possible (due to absence of other RNAi lines) or not confirmatory 

(due to the lines being not strong enough) to conclude their effect in Mwh 

localisation. Loss of function study of to those genes can shed some useful 

information about their role in Mwh localisation. 

 

One of the drawback of the screen was around 2% of the total lines which 

caused a decrease in Mwh also produced  large cells. I was unable to identify 

whether these genes causes large cells and also regulate Mwh localisation in the 

Drosophila wing.  When I tried overexpressing UAS CyclinE to reduce the large 

cells and reexamine Mwh localisation, instead of reducing the large cell 

phenotype it caused an increase in the size of the cells. Therefore, it was not 
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possible to dissect out the role of those genes in Mwh localisation and function 

under my experimental conditions. 

 

It is also possible that genes which regulates Mwh localisation might not 

phenocopy the multiple wing hair phenotype seen in mwh and other PCP 

effectors which arises the possibility that I might have not looked at all the 

potential genes which could regulate Mwh in the screen. Another potential 

drawback of the screen is genes (if any) which act downstream of Mwh cannot 

be find as hits in my experimental condition. 

 

In spite of having some drawbacks , the in vivo RNAi screen in the Drosophila 

wing was the most efficient one to find out novel regulators of PCP effector 

protein Mwh. Other experimental approaches such as yeast two hybrid, gel shift 

assay with Drosophila kinases  or in vitro siRNA mediated high throughput 

cellular assays could also have been used as alternate approaches, but in vivo 

RNAi was the only way to find out novel in vivo regulators of Mwh in Drosophila. 

 

Mwh is a formin like protein with an undefined C terminal domain and a GBD and 

FH3 domain at its N terminus (Strutt and Warrington, 2008; Yan et al., 2008). To 

find out the roles of the GBD, FH3 and C terminal domain of Mwh, I made a 

number of deletion mutant constructs  tagged with GFP. These constructs were 

then transfected to mammalian 3T3 cells to find out whether they regulate the 

well defined actin cytoskeleton structure of the 3T3 cells. The GBD deletion 

mutant of Mwh was found to cause significant reduction of actin stress fibres. 

RhoA, a very well studied small RhoGTPase is known to regulate the stress fibre 

formation in cells (Ridley and Hall, 1992) which hints at a possible interaction 

between the GBD domain of Mwh and RhoA.  

 

Expression of the N terminal domain of Mwh which consists of the GBD and the 

FH3 domain in 3T3 cells could also induce a reduction in actin stress fibre 

formation. But FH3 domain alone cannot significantly reduce the actin stress fibre 
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formation suggesting the role of the GBD domain in regulating the actin stress 

fibre formation in 3T3 cells. No significant changes were found with other deletion 

mutant (C terminal) or control (empty vector) constructs.  

 

Further studies can provide some useful insight on how the GBD domain of Mwh 

regulates the actin cytoskeleton by inhibiting stress fibre formation. It is possible 

that binding of Mwh to RhoA via its GBD domain sequesters the activated RhoA 

which in turn prevents the later from interacting with its downstream targets (such 

as myosin, alpha actinin, palladin, or downstream effectors of Rho such as dia). 

Thus RhoA might play a dominant negative role in this interaction resulting in 

actin stress fibre reduction. 

 

Another possibility is that RhoA and the GBD domain of Mwh are competing 

against each other simultaneously to bind to the stress fibres and to other 

interacting proteins associated with this process and in the presence of excess 

amounts of GBD, RhoA might not be able to bind to its interacting partners 

resulting in the reduction of stress fibres. As previously noted in a conventional 

formin, binding of Rho GTPases to the GBD domain increases activity of the 

formin by reducing autoinhibition and releases the DAD domain containing FH2 

for actin polymerization. In this particular scenario it is also possible that, 

although Rho GTPases are binding to GBD to reduce its function, the pool of 

available GBD domains in a cell (when I overexpress GBD) is larger as 

compared to that of endogenous RhoA, therefore not all of the GBD is relived of 

its autoinhibition, eventually leading to reduction of actin stress fibres. Taken 

together my results indicate that the GBD domain of Mwh has an unique function 

in mammalian 3T3 cells in actin stress fibre formation and thus regulating the 

actin cytoskeleton. 

 

One obvious drawback of this study is that Mwh does not have a mammalian 

homolog. In the mammalian cells reduction of stress fibres by the GBD domain of 

Mwh could also be due to increase in other unknown proteins which occurs due 
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to the overexpression of the GBD domain. Another possible drawback is I have 

looked at the actin cytoskeleton phenotype of Mwh in mammalian 3T3 cells as 

they have a very well defined actin cytoskeleton structure. But studying the effect 

of these deletion mutant constructs of Mwh in Drosophila S2 cells could provide 

more useful insight about the function of different domains of Mwh in regulating 

PCP in Drosophila.  

 

In conclusion, my thesis work has contributed in finding out potential novel 

regulators of Mwh in the Drosophila wing which will help to fill the gaps in our 

knowledge in understanding how downstream effector proteins of the PCP 

pathway mediates the formation of distally pointed trichomes in the Drosophila 

wing by interacting with the actin cytoskeleton. Also the in vitro work in 

mammalian 3T3 cells provides some useful clues on the probable mechanism by 

which Mwh might regulate the actin cytoskeleton. It also hints at the possible 

function of the GBD domain of Mwh. 

 

Further study with loss of function mutant analysis in vivo and biochemical analysis 

in vitro can provide better understanding of the pathway that leads to the formation 

of a single distally pointing trichome downstream of the core PCP cues, and also 

how Mwh regulates this pathway by modifying the actin cytoskeleton. 
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