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Abstract 

Changes in the biological behaviours of cell migration and sorting are associated with 

cancer. Mechanistic and quantitative understanding of the mechanics of these biological 

processes can promote the development of anti-cancer treatments. Computational 

models can be used as platforms to generate this understanding and to test drugs in-

silico. The heterogeneity of cancer cells constitutes one of the main drawbacks in the 

development of anti-cancer drugs. Cell heterogeneity must be comprehended and 

regarded when developing anti-cancer drugs. This heterogeneity can be accounted for 

using computational modelling. In addition, now that measurement technologies allow 

the determination of the mechanical properties of normal and cancer cells, 

computational models with higher mechanical fidelity are possible.  

In this context, a quantitative and mechanistic computational model was developed in 

this work to investigate the role that the mechanical properties of cancer cells play in 

their migration and sorting. 

The individual cell properties: Young’s modulus, cell-cell adhesion and local 

microenvironment (neighbouring cells and position within the monolayer) were found 

to affect intercellular stress in the first hours following cell seeding. In addition, the 

presence of mechanically different normal and cancer cells in co-culture results in early 

sorting between them and higher variation of intercellular stress when comparing to 

normal and cancer monocultures. 

Quantitative mechanical thresholds for the sorting of migrating normal and cancer cells 

in co-culture were defined. Sorting depended primarily on differences in the traction 

force of normal and cancer cells and absolute cell-cell adhesion levels, followed by the 

differential adhesion of normal and cancer cells. The predictions supported an 

integrated mechanism for the sorting of normal and cancer cells. 

The model also predicted that different spatial distributions of cell mechanical 

properties can trigger different migration modes in cancer cell populations. This 

suggests that the plasticity of migration of cancer cell populations is related with the 

heterogeneity of cell mechanics. Since the sorting of normal and cancer cells in co-

culture depends on the spatial distribution of their mechanical properties, mechanical 
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thresholds for cell sorting should additionally depend on the cell microenvironment. The 

effect of microtubule stabilizers on sorting was tested in-silico accounting for the 

changes induced in the mechanical properties of cancer cells. Microtubule stabilizers 

were predicted to reverse both the mechanical and migration properties of cancer cells 

to properties similar to the ones of normal healthy cells. The sorting of normal and 

cancer cells, is thereby, reduced. 

This study shows that individual cell mechanical properties can explain a variety of 

population-scale measurements and behaviours. The results emphasize the importance 

of investigating the changes in cell mechanics that accompany malignant transformation 

and their role in cancer progression.  
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Chapter 1 - Introduction 

 

Summary  

This Chapter introduces the biological processes of collective cell migration and cell sorting, their 

importance in cancer and their relation with cell mechanics. The need to develop mechanistic 

understanding of the role of cell mechanics in collective migration and sorting is addressed, as 

well as the potential of computer models to satisfy that need. The thesis proposal is presented 

and the specific aims of each chapter are described. 

 

1.1 Collective cell migration and sorting in cancer metastasis 

Metastasis is the spreading of cancer from a primary tumour to secondary locations 

within the body. It is a complex process responsible for 90% of cancer deaths [1]. For 

metastasis, cancer cells detach from the primary tumour, migrate, invade other tissues, 

enter into the circulatory system and reach other sites where they create secondary 

tumours. Mechanistic understanding of metastasis is required to support the 

development of anti-metastatic treatments and reduce cancer mortality [2].  

The migration of cells is affected in cancer metastasis. Cell migration is a normal process 

that is fundamental for the development and maintenance of multicellular organisms. It 

is involved in many diverse biological processes, from immune response to angiogenesis 

[3]. Cells can migrate individually or collectively, in coordination with other cells. When 

moving as a cluster, cells form a polarized multicellular unit and respond differently to 

directional cues than when moving in isolation [4]. Experimental data suggest that 

collective cell migration is regulated by intercellular interactions and large-scale 

propagation of signals, such as mechanical loading [5]. Therefore, the behaviour of a cell 

population emerges from the collective and cannot be predicted from the behaviour of 

single isolated cells. 

Collective cell migration is particularly important in wound healing, morphogenesis and, 

in a diseased state, cancer metastasis [6]. A continuous transition seems to exist 

between individual and collective cell migration. Cells on the edge of a migrating cluster 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 1 – Introduction 

 

2 

 

present specific features that are similar to the ones found in cells that migrate 

individually. These enable them to direct the movement of the cluster [7]. This 

continuous spectrum of migration is also seen in cancer metastasis. Cancer cells are able 

to opportunistically switch migration mode, explaining why their migration is said to be 

plastic [8]. Cancer cells can detach from the carcinoma in-situ collectively and invade the 

surrounding tissues as a group [9], or individually, owing to a dynamic transformation to 

a more aggressive and migratory phenotype [10]. Therefore, cancer metastasis is related 

with the separation of cells of different type, or cell sorting.  

The phenomenon of sorting requires collective cell migration and is not only involved in 

metastasis. Cell sorting is, for instance, naturally present in morphogenesis, allowing the 

segregation of the cells that will compose the different tissues [11], [12]. The separation 

of cells of different type can also be artificially triggered. One application is the 

development of primary tumour cell lines to test anti-cancer drugs. This requires the 

sorting of cells from mixed tumour samples [13]. Both collective cell migration and cell 

sorting are associated with cancer. Consequently, the investigation of these biological 

processes can favour the development of anti-cancer treatments. 

In-vitro experiments have been developed to increase the understanding of collective 

cell migration and cell sorting. One of such experiments is the wound healing assay. After 

cell culture, the cell monolayer is scratched to create a wound and investigate the 

dynamics of the monolayer as the cells migrate to close the wound. These studies have 

shown that directionality and intercellular coordination are key aspects of collective cell 

migration [14]–[16]. Revealing the mechanism used by cells to coordinate their 

migration remains a challenge [17]. Furthermore, in-vitro experiments have confirmed 

the existence of a relationship between cell mechanics and cell migration. The forces 

actively exerted by adherent cells to migrate collectively on a substrate have been 

measured [16]. The results revealed heterogeneous and dynamic traction force fields. 

However, a clear relation between the forces measured and the collective movement 

observed is yet to be found [18].  

The spontaneous sorting of cells of different types has been observed in-vitro. Cells of 

different types from the blood brain barrier co-cultured in mixed spheroids have shown 

spontaneous self-organization [19]. The cells were able to reproduce in-vitro a 
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multicellular architecture that resembles the one of the blood brain barrier. 

Spontaneous cell sorting has also been observed between normal and cancer cells in co-

culture [20].  The in-vitro co-culture of normal and cancer cells was studied as a 

surrogate for tumour-host interactions. The observed segregation behaviour was 

related with the processes of tumour growth and metastasis in-vivo.  

One mechanism suggested to explain cell recognition and sorting is the differential 

expression of cadherins. Steinberg [21], inspired by immiscible liquids, postulated that 

tissues should sort due to differences in their surface tension. Tissue surface tension is 

associated with cell-cell adhesion, seen as the force driving sorting. The theory is 

consistent with experimental observations  [22]. However, differences in cortex tension 

[23] and motility forces [12], [24] have also been related to cell sorting. Therefore, other 

than intercellular adhesion forces, tension-producing forces seem to contribute to cell 

sorting [25]. 

 

1.2 Mechanics of normal and cancer cells 

Single-cell measurements have shown that normal and cancer cells are mechanically 

different. Cancer cells are softer than normal cells and cell stiffness is now regarded as 

a biomarker of cancer [26]–[29]. Furthermore, the traction forces exerted by migrating 

cancer cells are higher than the ones exerted by normal cells [30], [31]. Measurements 

of cell mechanics have additionally shown that cancer cells of the same population can 

also be heterogeneous in stiffness [27], [29], [32] and traction force [33]. Besides 

mechanical properties, cancer cells within the same tumour can differ in morphology, 

proliferation, motility and metastatic potential [34]. Cell heterogeneity is a hallmark of 

tumours that is not completely understood, challenging the development of drugs [35].  

In addition to dysregulated biological pathways, cancer is related with dysregulated cell 

mechanical properties, see Figure 1.1. Notwithstanding, it is not clear how the different 

mechanical properties found for cancer cells can contribute to their migration and 

invasion behaviours. The role that single cell mechanics plays in the biological processes 

of collective cell migration and sorting needs to be investigated.  
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Since the mechanical properties of cells are related with their malignancy, anti-cancer 

drugs can be developed to specifically target them. There is evidence that 

chemotherapeutic drugs designed to impair cancer cell division also affect the 

mechanical properties of cells. Microtubule stabilizers disturb the dynamics of the 

cytoskeleton, essential for cell division. The cytoskeleton greatly determines the 

mechanical properties of cells and microtubule stabilizers were found to change the cell 

stiffness and force generation properties [36], [37]. This interplay between cell 

behaviour and cell mechanics suggests that changes in cell mechanics could contribute 

to the therapeutic effect of chemotherapeutic drugs.  

 

 

Figure 1.1 Schematic representation of cancer spreading from the primary tumour as 

resultant of an interplay of biological and mechanical pathways [38]. 
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1.3 Thesis structure 

Mechanistic and quantitative understanding of the mechanics of collective cell 

migration is required to support the development of anti-cancer drugs. Computational 

models that act as a platform for the testing of hypotheses can be used to test drugs in-

silico. One of the challenges in cancer treatment is the heterogeneity of cancer cells. This 

heterogeneity must be understood and considered when developing anti-cancer drugs. 

Using computational modelling, features specific of the cells the tumour is composed of 

can be accounted for.  

Many computational models of cancer focus on tumour growth [39], [40]. Even though 

cell migration and sorting are known to be important for cancer metastasis and invasion 

[41], [42], models investigating the underlying mechanisms are missing [42]. In addition, 

the different mechanical properties measured for normal and cancer cells should now 

support the development of cancer models with higher mechanical fidelity. The models 

will shed light on the role that the mechanical properties of cancer cells play in their 

migration and sorting. This understanding will, in turn, inform the development of anti-

metastatic drugs targeting the mechanical properties of cells. 

In this context, the aim of this thesis was to develop a mechanistic and quantitative 

computational model of the mechanics of collective cell migration and sorting in cancer. 

The model predictions will provide a mechanical perspective of collective cell migration 

with potential to help in the design of a novel class of anti-cancer drugs. The thesis is 

organized in seven Chapters: 

 

 After introducing the context involving the thesis and its aims in this first 

Chapter, a review on collective cell migration and sorting models is presented in Chapter 

2. Current theories and experiments are discussed with a focus on computational 

models. 

 

 A computational model representing passive mechanical interactions between 

cells in the first hours after in-vitro seeding is presented in Chapter 3. Intercellular 

interactions are considered to govern cell spreading after seeding. The model is applied 
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to normal and cancer cells seeded in both monoculture and co-culture scenarios to 

predict population arrangement and mechanics.  

 

 The computational model presented in Chapter 3 is extended to describe cell 

migration after cell spreading in Chapter 4. The model accounts for migratory traction 

forces actively exerted by cells. Mechanical and quantitative thresholds triggering the 

sorting of normal and cancer cells in co-culture are investigated.  

 

 The computational model developed is used to investigate the migration of 

mechanically heterogeneous cell populations in Chapter 5. The model is applied to 

normal and cancer cells in both monoculture and co-culture scenarios. In addition, an 

in-silico drug test is performed to investigate the effect of the mechanical changes 

induced by microtubule stabilizers on the sorting of normal and cancer cells in co-

culture. 

 

 A general discussion of the results of the thesis is presented in Chapter 6. The 

results are discussed in an integrated perspective and compared with other works from 

the literature. The limitations of the model developed and future improvements are also 

covered.  

 

 The thesis is concluded in Chapter 7. The predictions of the work are summarised 

and the main messages to take forward are highlighted.



 

Chapter 2 - Literature review 

 

Summary  

This Chapter reviews theories and state of the art mechanical models of collective cell migration 

and sorting. Both their knowledge contributions and limitations are discussed. Models 

addressing cancer are presented, as well as the changes in tissue mechanics known to be 

associated to the disease. The Chapter concludes discussing the gaps identified and the potential 

of the present work to fill them by investigating the role of cell mechanics in collective cancer cell 

migration and sorting.  

 

2.1 Mechanics of collective cell migration: in-vitro insights  

Collective cell migration is the coherent movement of cells. The directed and cohesive 

migration of a cell cluster requires cell-cell interactions involving chemical and 

mechanical crosstalk between individual cells [43].  

The forces that a migrating epithelial cell sheet exerts on a substrate in-vitro have been 

measured, showing the relationship between cell mechanics and cell migration [16], see 

Figure 2.1. These traction forces emerge from the contraction of the cytoskeleton and 

are measured using a technique called Traction Force Microscopy (TFM). Cells are 

seeded on a polyacrylamide gel embedding fluorescent beads and coated with an 

adhesion-stimulating protein. Following adhesion to the gel, the cells generate 

migration forces that are transmitted to the substrate, leading to the displacement of 

the embedded beads. The displacement field can be measured using image registration 

techniques. Then, the traction forces exerted by the cells can be calculated using 

numerical methods. Traction force measurements on migrating monolayers revealed 

complex and heterogeneous force fields [16], [18]. In addition, higher traction force has 

been measured for individual cancer cells than for normal healthy cells [30], [31]. An 

interpretation of how the traction forces measured relate with the cells’ migration 

behaviour is missing. 
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Figure 2.1. Migrating epithelial cell sheet: a) Phase contrast image and b) Traction forces 

normal to the edge. The field of view is of 750 µmx750 µm [16]. 

 

2.2 Mechanics of collective cell migration: computational models 

Several computational models studied collective cell migration based on physical and 

mechanical principles [12], [44], [45]. Models are discussed in the following sections 

based on their spatial scale, description of intercellular interactions and cell polarity. 

Models that particularly investigate collective cell migration in cancer disease are also 

included. 

  

2.2.1 Macroscale versus individual-based models 

One of the approaches to model the complex behaviour of collective cell migration 

focuses on the macroscale [46]. These models establish a system of governing 

differential equations to describe the evolution of continuous variables in time and in 

space, such as the density of cells and concentration of chemicals. In other words, these 

models predict average population behaviour. An alternative approach is the use of 

individual-based models, in the case of collective cell migration, cell-based models. 

These do not rely on an explicit global equation, but on individual equations at the 

microscale giving rise to emergent macroscale behaviour. They can account for outliers, 

heterogeneity and stochasticity in behaviour. Therefore, individual-based models are 

powerful in modelling complex diseases, as the case of cancer. Both modelling 
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approaches can be combined, for instance to model the effect of a chemical gradient on 

collective cell migration [47]. The focus of this review is on individual-based models. 

 

2.2.2 Modelling cell-cell interactions 

Modelling the mechanics of collective cell migration using an individual-based model 

requires a description of cell-cell interactions. Cell-cell interactions can be defined by a 

pairwise potential. Different approaches have been considered such as models based on 

linear springs [48] and models based on the interatomic Lennard-Jones potential [49], 

that includes both cell-cell repulsion and adhesion, see Figure 2.2. 

 

 

Figure 2.2. Interatomic Lennard-Jones potential: V is the potential energy of the particles 

and r is the distance between them [50]. 

 

Models inspired by contact mechanics such as the Hertz [51], [52] and Johnson-Kendall-

Roberts (JKR) models [53] have also been implemented. These investigate intercellular 

contact mechanics based on cell elasticity properties measured with techniques such as 

micropipette aspiration [54], Magnetic Twisting Cytometry (MTC) [55] , Optical 

Tweezers (OT) [56] and Atomic Force Microscopy [57]. Atomic Force Microscopy (AFM), 

in particular, has emerged as a versatile and powerful technique. It is a type of scanning 
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probe microscopy. Along with high resolution imaging it provides the ability to 

investigate local mechanical properties, since it relies on the physical interaction 

between a probe and the sample being studied. In fact, AFM can be considered as an 

elastography technique. The sample, in this context the cell, is scanned or mechanically 

indented by a tip mounted on a cantilever whose deflection is determined using laser 

tracking. The cantilever’s deflection is then converted to a force-distance curve that 

reflects the interaction between the tip and cell.  

The Hertz contact model is the mechanical model most commonly used to fit Atomic 

Force Microscopy (AFM) experimental results and determine the cell apparent stiffness 

[58]. It defines the contact between two bodies, the cell and the AFM indentation probe, 

as following from their elastic deformation. The Hertz model is valid for small 

indentations, corresponding to 5 to 10% of the cell height, therefore on the order of 

hundreds of nanometres. On one hand, these small indentations avoid the influence of 

the substrate on the mechanical response observed [59]. On another, if these small 

indentations fall into the elastic regime of the cell mechanical response, the assumption 

made for cell elasticity is supported [60]. 

Roberts and Kendall experiments showed that attractive surface forces are present 

between smooth rubber spheres and glass spheres and are significant at low indentation 

forces. The attractive forces are explained based on the spheres’ surface energy and 

supported the development of a new contact model, the Johnson-Kendall-Roberts (JKR) 

model [61]. Therefore, the JKR model differs from the Hertz model in that it accounts 

for the effect of adhesion and describes the contact force as resulting from a balance 

between the elastic energy stored and the surface energy lost upon contact, see Figure 

2.3. The JKR force for two spheres, 1 and 2, is written as: 

 

 

 

where r is the radius of the circular contact area, σ is the adhesion energy, and Eeq is the 

equivalent Young’s modulus of the pair, function of the Young’s modulus, E, and 

Poisson’s ratio, ν: 
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Req is the equivalent radius: 

 

 

 

Measuring the force required to separate two cells using a micropipette, Chu et al [62] 

showed that the JKR model reasonably fits cell mechanics and can be used to model the 

contact between cells. The JKR model has been used in the development of several 

tissue models [63], [64]. Thereby, passive intercellular forces comprise a repulsive elastic 

force based on cortical tension and a cell-cell adhesion force due to adhesion complexes.  

 

 

Figure 2.3. Contact region predicted by the Hertz and JKR models: h and r refer to the 

contact penetration and radius, respectively; R, E and ν refer to the cells’ radius, Young’s 

modulus and Poisson’s ratio [61]. 

 

2.2.3 Modelling cell polarity 

Single cell migration requires the establishment of front-to-rear cell polarity and a 

polarized arrangement of the cytoskeleton. At the front of the cell there is actin 

polymerization and formation of membrane protrusions, while, at the rear there is 
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contraction of the actomyosin machinery. Directed collective cell migration requires the 

establishment of front-to-rear polarity at both the cell and population scale. Several 

mechanisms have been proposed to explain the polarity of cells such as: polarity is 

guided by the direction of cell movement [65], polarity has a random component [66] 

and polarity follows the gradient of external signals [67]. 

Vicsek et al in 1995 proposed that collective movement emerges from the local 

alignment of self-propelled individuals [68]. More specifically, the movement of an 

individual depends on the average movement of its neighbours. Due to its 

phenomenological nature, Vicsek’s model misses an explanation for this alignment. 

Nonetheless, the model has been applied to cell migration to represent the alignment 

of the actomyosin machineries of cells that migrate collectively. The model enabled the 

prediction of collective migration phenomena such as the rotation of bacterial cell 

clusters [69] and finger instabilities at the edge of monolayers [70]. Vicsek’s model has 

been extended to include mechanistic aspects, for example force interactions [12], [71]. 

Furthermore, it motivated the development of cell sorting models, section 2.3.1 of this 

review.  

 

2.2.4 Modelling cancer 

Individual cancer cell migration is for example seen in leukaemia, lymphomas [3] and in 

the epithelium after EMT [72]. Nonetheless, several cancers, for instance melanoma 

[73], exhibit collective cell invasion when explanted in-vitro. This behaviour relies on the 

cells maintaining their expression of cell-cell adhesion molecules, such as cadherins. The 

migration of clusters of cells that maintain their cadherin-based cell-cell adhesions has 

also been studied in-vitro to investigate morphogenesis and tissue regeneration. These 

systems can be seen as in-vitro models to better understand collective invasion in cancer 

[74]. The mechanisms behind collective invasion in cancer are still much less understood 

than the ones behind morphogenesis and tissue regeneration. The fact that cancer is a 

long-term, multistep and complex process makes the design of appropriate microscopic 

experiments more difficult when compared to morphogenesis and tissue regeneration 

[75]. 
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In this context, computational models have an important role in informing and inspiring 

experiments. Stichel et al [66] investigated the spatio-temporal behaviour of lung 

adenocarcinoma cells during in-vitro wound closure. An individual-based model was 

developed in order to interpret the experimental observations. Cell migration was 

considered as a result of active cell propulsion, random motility and cell-cell mechanical 

interactions. Since the model parameters considered were dimensionless and scaled a 

quantitative description was not possible. However, the results obtained confirmed that 

simple mechanical models are able to reproduce several features of the collective 

behaviour observed in experiments, such as speed dynamics and the detachment of 

individual cells. This stresses the need to comprehend the changes in tissue mechanics 

associated to cancer. Knowledge on this topic can enable the use of experimentally 

based model parameters and provide further mechanistic understanding of cancer cell 

migration. 

It is known that the mechanics of the extracellular environment changes in the vicinity 

of a tumour. There is a stiffening of the extracellular environment associated to the 

malignant transformation of cells that seems to promote cancer progression [38], [76]. 

The mechanics of individual cells, focus of this review, is also affected. A decrease in cell 

stiffness is associated to the disease. This has been explained by changes in the 

cytoskeleton structure. Xu et al 2012 [26] reported longer actin fibres for normal cells, 

better aligned and better distributed throughout the cell body. Recent data also 

associates cell stiffness with the amount of fibres, and not only with the spatial 

organization of the cytoskeleton [77]. 

The relationship between cancer cell stiffness and migration has been investigated 

experimentally. Park et al [78] cultured normal and malignant fibroblasts, measured 

their apparent stiffness with AFM and tracked their movement. A correlation was found 

between the decrease in Young’s modulus associated to the malignant transformation 

and higher motility. Many other studies suggest that lower cell stiffness enhances 

deformation and consequently the cell’s ability to migrate and invade [79]. Friedl et al 

[80] investigated the role of the mechanical properties of the nucleus in migrating cells. 

The study showed that cells with more deformable nucleus are more motile. Owing to 
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its size and stiffness, the properties of the cell nucleus greatly determine the overall cell 

properties [81]. Therefore Friedl’s work also suggests an inverse relationship between 

cell stiffness and motility. Decreased cell stiffness has also been found to be related with 

the cell’s ability to invade neighbouring tissues in cancer metastasis [82]. However, there 

is conflicting evidence supporting that highly metastatic cells can be stiffer than less 

metastatic cancer cells [83]. Moreover, studies that used genetic modification [84], [85] 

that affect cell migration found higher motility for stiffer cells. Thus, more research is 

still required to further understand the relationship between cell stiffness and motility. 

Besides depending on the cells’ ability to deform, migration depends on factors such as 

the cells ability to degrade or deform the extracellular matrix (dependent on the 

mechanical properties of the matrix itself) [86], the traction force exerted by cells to 

migrate [18] and the dynamics of focal adhesions [87]. The connection between all these 

factors is not necessarily obvious. 

Katira et al [39] also investigated the relationship between the mechanical properties of 

cancer cells and their migration. Individual cells were modelled as liquid cores 

surrounded by viscoelastic shells representing the actin cortex. Cells were able to adhere 

to each other, proliferate and migrate to minimize the total energy of the system. The 

results suggest that the increased compliance of the cortex of cancer cells can explain 

their faster proliferation and that intercellular adhesion determines whether the tumour 

is more compact or spread out. 

In addition to changes in stiffness, cancer cells also experience changes in the adhesion 

to other cells and the extracellular environment. However, these changes vary with the 

type of cancer and the stage of progression of the disease [38].  

Since E-cadherin is responsible for the stability of cell-cell contacts in epithelial tissues, 

a decreased expression of E-cadherin is commonly associated with invasion. For 

example, Techasen et al in 2014 [88] found that the downregulation of E-cadherin in 

cholangiocarcinomas resulted in increased cell migration and invasion. In addition, the 

loss of E-cadherin has been linked to increased cell proliferation in tumours [89]. Other 

works investigate the role of other cadherins. For instance, Bryan et al [90] related 

increased P-cadherin expression to the invasion of bladder tumours.  
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The recent review from Friedl et al [91] discusses how the dynamics of cell-cell adhesion 

contributes to the broad range of migration modes shown by cells in different contexts. 

EMT supports cancer metastasis by reprogramming and weakening the adhesion 

between cells. Therefore, full EMT involves the dissemination of individual cells. 

However, intermediate levels of EMT have been suggested to explain the migratory 

behaviour adopted by cells that maintain their cell-cell contacts in collective migration. 

Therefore, the plasticity of cell-cell adhesions is directly related with the plasticity of 

migration of cancer cells. 

When studying a particular type of cancer, it is important to investigate the specific 

expression of cell-cell adhesion proteins and the intrinsic dynamics of cell-cell adhesions. 

Furthermore, the development of quantitative models involves the quantification of 

intercellular adhesion forces. This further requires the identification of the mechanical 

roles of cell-cell adhesion proteins. Bazellières et al [92] suggested that, while P-cadherin 

is a good predictor of intercellular tension, E-cadherin is related to its time derivative. A 

quantitative and integrative understanding of the changes in the mechanics of cell-cell 

adhesion in cancer is still required.  

 

2.3 Mechanics of cell sorting: analogy with phase ordering in 

fluids 

The study of cell sorting has been inspired by the behaviour of immiscible liquids. 

Beysens et al [22] compared phase ordering in fluids and cell sorting in embryonic 

tissues. Both similar morphological patterns (Figure 2.4) and time evolution were found 

for the two processes. In fluids phase ordering the interfacial tension wall-liquid was 

lower than wall-gas. As a result, the liquid phase was found to wet the wall of the 

container and surround the gas phase. In cell sorting the interfacial tension culture 

medium-neural cells was lower than the interfacial tension culture medium-epithelial 

cells. For this reason, neural retinal cells wetted the tissue culture medium and 

surrounded epithelial cells.   
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This analogy is the base for the physical principles that have been considered to drive 

cell sorting, such as energy minimization [93]. Several theories interpret cell sorting 

based on tissue surface tension, differing on the way they explain surface tension as 

emergent from lower scale cell forces.  

One theory is the Differential Adhesion Hypothesis (DAH) conceived by Steinberg [21]. 

The DAH proposes that tissue surface tension arises from cell-cell adhesion. Differences 

in both the type of cadherin expressed and the expression levels can result in different 

surface tension [94]. Following from the theory, for two contacting tissues, the tissue 

with lower surface tension should envelop the one with higher surface tension. 

Another hypothesis is the Differential Interfacial Tension Hypothesis (DITH). The DITH 

developed from the work of Harris [95], Brodland [96] and Graner [97] and postulates 

that tissue surface tension is associated with the cortical tension of the individual cells. 

 

Figure 2.4. Phase ordering in fluids and cell sorting. (Upper) Gas and liquid phase 

ordering in sulfur hexafluoride under microgravity. The liquid phase wets the wall of the 

container and surrounds the gas phase. a, b, and c correspond to 120s, 275s and 3,960s 

after temperature quenching, respectively. (Lower) Sorting of chicken embryonic 

pigmented epithelial cells (dark) and chicken embryonic neural retinal cells (light). a, b, 

and c correspond to 17h, 42h, and 73h after the beginning of cell sorting, respectively 

[22].  
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In addition to intercellular adhesion and cortical tension, also differences in cell motility 

have been related to cell sorting [98]. Computational models of cell sorting exploring 

these ideas are discussed in the following sections. 

 

2.3.1 Mechanics of cell sorting: computational models 

2.3.1.1 Differential Adhesion Hypothesis 

Based on the DAH hypothesis and the Potts model from statistical mechanics, Graner 

and Glazier [99] suggested a model to describe cell sorting, later named as Cellular Potts 

Model (CPM). This model became widely accepted and inspired the development of 

several models able to predict sorting in cell aggregates [94]. One example is the recent 

model from Sego et al [93] that predicts the spontaneous sorting of human induced 

pluripotent stem cells (iPSCs) and iPSC-derived neurons. The neural cells with lower cell-

cell adhesion envelop the other cells, see Figure 2.5. This result is consistent with the 

experimental work of Beysens et al [22] (Figure 2.4). 

The DAH crosses several scales by proposing that cell sorting arises from differences in 

tissue surface tension associated with differences in cell-cell adhesion. However, the 

connection between the forces at the cadherin level, the forces at the cell-cell adhesion 

level and the emergent surface tension forces leading to sorting at the tissue level is still 

under investigation [94]. 

 

 

Figure 2.5. Simulation of the sorting between human induced pluripotent stem cells 

(iPSCs, in yellow) and iPSC-derived neurons (in brown) in equal proportion. Cell sorting is 

driven by differences in cell-cell adhesion (lower adhesion for the neural cells) [93]. 
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2.3.1.2 Differential Interfacial Tension Hypothesis 

Combining the DAH and the DITH, Krieg et al [100] explored the role of cell-cell adhesion 

and cortical tension in the sorting of germ-layer progenitors. AFM was used as a single-

cell force spectroscope to measure cell-cell adhesion by recording the force required to 

separate two cells brought into contact. Cortical tension was extracted from AFM force-

indentation curves of single cells using a mechanical model named cortical shell-liquid 

core model [23]. In addition, a computational model based on the Cellular Potts Model 

was developed to have an integrated understanding of the findings. The authors 

concluded that differences in cell-cell adhesion are not enough to explain the sorting of 

germ-layer progenitors and that differences in the actomyosin cortex tension are 

fundamental. Tissue surface tension is suggested to emerge from cell-substrate 

interactions dependent on cortical tension and cell-cell interactions dependent on both 

cortical tension and cell-cell adhesion. 

Following the same idea, an analytical model integrating both DAH and DITH hypotheses 

was proposed by Manning et al [101]. The model supports the idea that cell sorting is 

driven by tissue surface tension with an energy contribution from cell-cell adhesion and 

from cortical tension. A crossover between an adhesion dominated regime and a tension 

dominated regime explained the shape of cell aggregates observed experimentally.  

 

2.3.1.3 Role of cell motility in cell sorting 

The role of cell motility in cell sorting has also been explored. Méhes et al [102] 

investigated the in-vitro sorting of keratocytes with different motility characteristics 

(Figure 2.6). The conclusion was that, in addition to differential adhesion, the different 

motility characteristics of the cells in co-culture are important and collective migration 

can speed up their sorting. Coupling collective cell migration and cell sorting 

computationally, Belmonte el al [103] developed a sorting model based on Vicsek’s 

model [68] for collective movement. The aim was to investigate the role of coherent 

movement and differential adhesion in sorting for tissue regeneration. Following an 

analogy with fluid phase transitions, intercellular adhesion was represented by a scaling 

parameter defining the contribution of cohesive forces to cell migration. Sorting was 

quantified using a sorting index equal to the average ratio of cells of a different type 
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surrounding one cell. The sorting index decreases with time as cells segregate and the 

evolution was found to follow a power law. In addition, the more coherent the 

movement of cells the faster they segregate due to differential adhesion. 

The computational work of Kabla et al [24] suggests that differences in cell motility are 

enough to explain cell sorting, even without differential adhesion. Similarly to the work 

of Belmonte et al discussed above, Kabla’s work considered cell parameters that were 

not based on experimentally measured data. For the former, the scaling parameter for 

cell-cell adhesion and, for the latter, the differences in cell motility. As a consequence, 

only qualitative interpretations of the process of cell sorting were achieved. 

There is a paucity of cell-based models investigating sorting in cancer metastasis. 

Brodland et al [42] developed a finite element model to investigate the mechanics of 

metastasis focusing on the dissemination step. The results suggest that for individual 

cancer cells to sort from the primary tumour they need to be mechanically different 

from neighbouring cells and have an appropriate surface tension. This is in accordance 

with the startling heterogeneity exhibited by cancer cells in various morphologic and 

physiological aspects. In fact, heterogeneity of the cell type has been recognized as 

another hallmark of tumours [34]. The model could be further improved in the future 

by accounting for experimentally measured mechanical properties of normal and cancer 

cells.  
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Figure 2.6. Cell sorting in a mixed co-culture of keratocytes with different motility 

characteristics: primary goldfish keratocytes (PFK, in red) and fish keratocyte cell line 

(EPC, in green). (Left) Initial configuration. (Right) After 17 hours [102]. 

 

2.4 Conclusion 

Knowledge about the mechanisms behind collective cell migration and sorting can be 

used to better understand cancer dissemination. This knowledge is under development 

and gradually shifting from a descriptive perspective towards a more mechanistic and 

quantitative one [104]. Mechanistic mechanical models provide frameworks for the 

testing of hypotheses about the forces governing these processes [42]. The 

quantification of these forces can inspire and inform studies on the intracellular 

molecular events in their origin, thereby coupling cell mechanics and cell biology.  

The development of mechanistic computational models relies on the availability of 

experimental parameters, pointing to knowledge gaps and the need for quantitative 

measurements [105]. Now that measurements of cell mechanics are increasingly used, 

cell-based models that have a higher degree of mechanical fidelity are possible. The use 

of experimentally based cell parameters, in opposition to scaling parameters, for 

instance, supports the development of mechanistic models. The different mechanics 

measured for different types of cells should be accounted for to appreciate the role of 

cell heterogeneity in collective migration and sorting [42]. Cell-based mechanical models 
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should account for experimentally measured properties such as cell traction force, 

apparent stiffness and intercellular adhesion.  

Modelling in cancer has been mainly focused on cell proliferation and tumour growth. 

However, cell motility and cell sorting have proved to be important for cancer metastasis 

and invasion [41], [42] and their role needs to further explored. The computational 

model developed in the context of this thesis aims at filling the gaps presented. The 

model is a cell-based, mechanistic, mechanical model of collective cell migration and 

sorting. The purpose is to provide insight into the role that cell mechanics plays in these 

biological processes accounting for real mechanical properties measured for normal and 

cancer cells. 
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Chapter 3 - Modelling passive cell mechanics 

 

Summary  

In order to understand the several types of forces involved in cell migration it is common to 

distinguish between active and passive forces. Active forces are regarded as the forces exerted 

by cells in order to migrate. They involve cytoskeleton contraction and require energy. Passive 

forces, on the other hand, arise from intercellular contacts due to cell elasticity.  

This work assumes that cell spreading is governed by passive forces in the first hours after in-

vitro seeding and migratory propulsion forces are exerted by cells later. 

 The present Chapter concerns the modelling of the process of cell spreading following seeding. 

Cell movement is driven by intercellular interactions resultant from cell elasticity, intercellular 

adhesion and compressibility forces. The model was applied to normal and cancer cells with 

different mechanical properties and seeded in both monoculture and co-culture scenarios. It was 

found that volume and stress vary across a cell monolayer and depend on both the local level of 

cell packing and cell mechanical properties.  

 

3.1 Introduction  

Collective cell migration [106] and cell sorting [102] have both been observed in-vitro. 

In addition, it is already possible to measure the forces behind cell migration. However, 

the heterogeneous and dynamic fields found for these forces are not understood, nor 

their relationship with the cell movement observed [16].  

The forces involved in cell migration can be categorized as active or passive [64]. Active 

forces are regarded as forces that are exerted by cells with the specific purpose of 

migrating, requiring the contraction of the cytoskeleton’s actomyosin machinery and 

energy expenditure. On the other hand, passive forces are regarded as forces that arise 

from intercellular interactions. They are related with the cell’s elastic elements, 

intercellular adhesion receptors and compressibility. This Chapter focuses on passive 

cell forces. 
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With the development of Atomic Force Microscopy (AFM), there is a wide range of 

comparable and complementary information on cell elasticity. The apparent Young’s 

modulus of various cell types, including both normal and cancer cells has been measured 

[26], [107]. AFM results show that normal, non-cancerous, cells have a higher apparent 

Young’s modulus than cancerous cells. However, the ratio between the Young’s modulus 

of normal and cancer cells is highly dependent on the cell type. Normal breast cells have 

been reported as 1 to 2 times stiffer than their cancer counter parts [27], [28], while 

bladder normal cells as up to 32 times stiffer than bladder cancer cells [29]. The values 

found for the apparent Young’s modulus of these cells are presented in Table 3.1. 

 

Table 3.1 – Apparent Young’s modulus for breast and bladder normal and cancer cells 

(average and standard deviation). 

 

 

Less experimental data are available to inform the adhesion forces between cells. 

Different metrics and methodologies are used to measure intercellular adhesion [108]. 

One of the approaches is to consider the tissue liquid properties and derive intercellular 

adhesion from the tissue surface tension [109]. The values reported in the literature vary 

from 0.05 [110] to 56 nN/um [111], found for Xenopus gastrula endoderm and brain 

cancer aggregates, respectively. 

Cell elasticity has been modelled using numerical models such as the Johnson-Kendall-

Roberts (JKR) model [61]. The JKR contact model was used in several tissue models [63], 

[64] to express the intercellular contact force from a balance between elastic repulsion 

resulting from cortical tension and cell-cell adhesion resulting from adhesion complexes. 

The model defines an equilibrium distance for a pair of cells, see Figure 3.1. The JKR 
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force is zero when the two cells are at the equilibrium distance, 2.9 μm in the example 

shown in Figure 3.1. A negative JKR force is associated with an overlap distance lower 

than the equilibrium one and an adhesive interaction between the cells. A positive JKR 

force is related to an overlap distance higher than the equilibrium one and a repulsive 

interaction between the cells.  

However, several authors [63], [64] pointed out that, when applied to a cell population, 

the JKR model could predict an excessive level of compression for cells in the centre of 

a cell monolayer. In order to limit cell compression it has been proposed that the JKR 

should be combined with another model that accounts for the cell volume [63], [64].  

 

 

Figure 3.1. Example of JKR force-overlap curve for two cells with apparent Young’s 

modulus of 1kPa, adhesion energy of 0.1 nN/μm, cell radius of 10 μm and Poisson’s ratio 

of 0.47. The JKR model defines the contact equilibrium at an overlap of 2.9μm. 

 

Aiming to develop a mechanistic understanding of collective cell migration, a 

preliminary model representing passive cell mechanics was developed and it is 

presented in this Chapter. The JKR model was applied to intercellular contact and 

complemented with a compressibility model. The purpose was to deconstruct cell 

mechanics and understand the role of passive cell forces. The model was applied to 

mechanically different normal and cancer cells in monoculture and co-culture. Co-
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culture of normal and cancer cells is studied as a surrogate for tumour-host mechanical 

interactions. This Chapter answers the following scientific questions:  

 

 How is intercellular stress distributed in cell a monolayer?  

 How does intercellular stress change with the mechanical properties of the 

individual cells? 

 Can passive cell mechanics explain the sorting of different cells in co-culture? 

 

3.2 General methods 

3.2.1 Passive model description 

An individual-based model of collective cell migration was developed in Matlab 

(mathworks.com) [112]. Rules for cell movement derive from the laws of Newton 

assuming an overdamped approach. Since cell movement is associated with a low 

Reynolds number, acceleration can be neglected [75]. Three classes of forces are 

considered to play a role in cell migration in quasi-static equilibrium: passive 

intercellular forces; active propulsion forces and extracellular drag forces, Eq ( 3.1 ). 

 

 

 

The present Chapter focuses on passive cell movement, not considering active 

propulsion: 

 

 

 

This model investigates the process through which cells spread and relax after in-vitro 

seeding. During in-vitro seeding cells deposit from suspension in random places within 

the seeding environment. They adhere, spread and establish intercellular contacts from 

the first hours to the end of the first couple of days, depending on the cell type and 

seeding density. After this time, cell migration and division start to take place. This 
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model investigates this time frame, hypothesizing that elastic forces dependent on cell 

mechanics govern cell spreading following in-vitro seeding. 

Cells are considered as hemispheres adhered on a two-dimensional substrate. 

Neighbouring cells virtually overlap each other in the model, representing cell 

deformation due to intercellular interactions. The overlaps are translated into 

intercellular forces using a pairwise model described in section 3.2.2. A resultant 

intercellular force is obtained for each cell by computing the vectorial summation of the 

pairwise force contributions from the various contacting cells, referred as the cell’s 

neighbours: 

 

 

 

Cell movement is defined for each cell by a force balance between the intercellular 

resultant and extracellular drag, Eq ( 3.2 ). The extracellular drag due to the medium 

viscosity, μ, is described by the Stokes model [64]: 

 

 

 

where R is the cell radius and v⃗⃗ is the cell velocity. 

The positions of the cells at the next time point are determined integrating Eq ( 3.2 ) 

using the forward Euler method: 

 

 

 

where �⃗⃗� refers to the cell displacement. 
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Cells move synchronously for a specific number of iterations or until a specific criterion 

is met. At the end of each iteration, intercellular forces are computed to define cell 

movement in the next step. 

Cells are represented as contacting hemispheres whose volume is approximated as the 

difference between the isolated cell volume and the sum of the volumes of the overlap 

regions [63]: 

 

 

 

where d is the distance between the centres of celli and cellj. The volume of the overlap 

regions is determined as the sum of the two spherical caps of the intersection [113]. 

In order to investigate the distribution of stresses in the different scenarios investigated 

cell stress is computed as follows: 

 

 

 

It is regarded as the ratio between the scalar summation of the intercellular forces 

affecting a cell and the total cell’s surface area [114], the surface area of a hemisphere. 

Cell stress illustrates the main type of intercellular interactions the cell experiences.  

The positive sign is associated with repulsive pairwise forces whereas the negative one 

is associated to adhesive pairwise forces. Therefore, a microenvironment that is 

compressive in nature generates intercellular repulsions and positive cell stress. On the 

other hand, a microenvironment that is tensile in nature results in mainly adhesive 

forces, hence negative cell stress. 
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3.2.2 Intercellular pairwise model 

3.2.2.1 Johnson-Kendall-Roberts contact model 

Elastic contact interactions are described using the Johnson-Kendall-Roberts (JKR) 

model. In the JKR model [61] passive intercellular forces comprise a contact force based 

on cortical tension and intercellular adhesion. Following Schaller et al [63] in an 

approximation for small adhesion, the JKR pairwise force becomes a linear combination 

of the Hertz model and an intercellular adhesion model: 

 

 

 

where Eeq is the equivalent apparent Young’s modulus of the cell pair, which is a function 

of the cells’ apparent Young’s modulus, E, and Poisson’s ratio, ν, see Eq ( 2.2 ). Req is the 

equivalent radius, Eq ( 2.3 ), σ is the cell-cell adhesion energy and h is the contact 

penetration, or virtual overlap:  

 

 

 

where d refers to the distance between the cells’ centres. Eq ( 3.9 ) is valid as long as

1
eqeqRE

σ
and is implemented to resolve passive intercellular forces in this work. 

After determining the overlaps for each pair in contact the associated JKR force is 

determined using Eq ( 3.9 ). Each interaction between two cells is characterized by a 

force vector representing the cell response to that interaction. The vector has 

magnitude equal to the JKR contact force. The direction is dependent on the JKR force 

sign and defines whether the interaction is adhesive or repulsive. If the JKR force 

between two cells is negative, adhesive interaction, the force vector is assigned the 

direction of the vector between the centre of the cell and the contact point and points 
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towards the contact point. If the JKR force is positive, repulsive interaction, the force 

vector is assigned the same direction but points away from the contact point. 

Summing the force vectors across all the cell neighbours results in:  

 

 

 

The intercellular resultant then defines cell movement according to Eq ( 3.5 ). 

 

3.2.2.2 Compressibility model 

The JKR model does not account for the cell level of compression due to multiple 

contacts. In order to accomplish that, a compressibility model proposed by Schaller et 

al  [63] was implemented. Other authors proposed similar models (e.g. Beyer et al  

[115]). 

The model is based on a repulsive force generated by the cell cytoskeleton due to the 

cell compressibility. For a cell pair the magnitude of this force is computed as: 

 

 

 

where K is the cell bulk modulus:  

 

 

 

Cells feel a repulsion force towards a neighbouring cell proportional to the volumetric 

pressure of both cells of the pair. This pressure is associated with the cell volume 

deviation from Vtarget - the volume the cell naturally assumes when isolated from other 

cells. A(i,j) refers to the overlap area of the cell pair (i,j). Compressibility forces are, 

therefore, present for all non-isolated cells, regulating cell volume in response to 

surrounding cells. 
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The compressibility model presented was combined with the JKR model. The combined 

passive model accounts for volumetric pressures while considering cell-cell elastic 

interactions. 

Summing the passive pairwise forces for each cell across all its neighbours results in:  

 

 

 

The intercellular resultant then defines cell movement according to Eq (3.5). 

 

3.2.3 Model parameters 

Several cellular parameters need to be defined to apply the presented model to cell 

mechanics. The values considered are summarized in Table 3.2 and the explanation 

behind their choice follows. 

 

Table 3.2 – Model parameters. 

 

 

With regard to the cell bulk modulus, or resistance to compression, K, it can be 

computed using:  

 

 

 

In other words, depending on the cell initial volume, V, and on the change in pressure, 

dP, relative to the change in volume, dV. 

The cell bulk modulus was determined based on the results of Zehnder et al [116]. 

Zehnder et al investigated the evolution of the projected area of Madin-Darby Canine 
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Kidney Epithelial (MDCK) cells of a monolayer with time-lapse microscopy. In addition, 

the cell thickness was measured with confocal microscopy. Computing the volume 

autocorrelation function it was found that the cell volume oscillates around its mean 

with an amplitude of 20% and a timescale of 4 hours. The authors suggested that volume 

oscillations can be understood by considering that cells of a monolayer exchange water 

with their neighbours through gap junctions. It was estimated that a cell with a 

permeability of 0.06 μm3 kPa-1.s-1 can lose 20% of its own volume by generating a 

pressure of 1.1 kPa relative to its neighbours [116].  

According to Eq ( 3.15 ) , if a cell generates a pressure of 1.1 kPa for a change in volume 

of 20% its bulk modulus has the value of 5.5 kPa. This is the fixed value considered for 

all the cells modelled in this work. 

Different values for the apparent Young’s modulus and intercellular adhesion energy are 

investigated throughout the Chapter. 

The cell Poisson’s ratio was determined depending on the apparent Young’s modulus 

using the relation for homogenous isotropic materials: 

 

 

 

Softer cells are, hence, considered as more incompressible than stiffer cells. 

Cells are adhered on the substrate and are all considered as hemispheres with a radius 

of 10 μm [116] (isolated volume of 2094
2

10
3

4 3



π
μm3).  

The extracellular environment was assigned a viscosity of 0.1 kPa.s [117]. 

  

3.2.4 Cell seeding and time step 

Cell seeding precedes all simulations. Cells are randomly seeded in a circular region in 

five different replicates. The size of the region is determined assuming an ideal packing 

of circles in a circular environment to ensure cell proximity: 
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After seeding, the cells move driven by intercellular forces within a boundary free region 

according to Eq ( 3.5 ). In order to define their movement, intercellular overlaps are 

determined for each pair of contacting cells as follows: 

 

 

 

where d refers to the distance between the cells’ centres. The associated intercellular 

forces are obtained for each pair in contact using the model presented in section 3.2.2. 

The resultant force is computed for each cell and these initial forces are used to 

determine the time step of the simulation.  

Cells are restricted to move a maximum distance equal to half of their radius per 

iteration. The aim is to prevent them from overcoming each other while moving, since 

no sense of intercellular contact establishment is provided during migration. In order to 

accomplish that, the time step is determined according to the maximum displacement 

allowed for the cells per iteration. Cells move according to intercellular forces; 

therefore, the maximum velocity possible in the model is associated to the maximum 

force. Immediately after seeding, the maximum intercellular force is in the order of 

magnitude of 103 nN. However, forces can temporarily increase during the simulation 

as the cluster relaxes and new intercellular contacts are created. As a result, the 

maximum possible force must be tuned to allow the cluster relaxation. Through trial and 

error experiments, it was found that a value for the maximum force ten times higher 

than the one measured after seeding (≈104 nN) enables a successful relaxation for all 

the cell populations investigated in this work. The simulation time step is determined 

based on the maximum force allowed using: 
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The computed time step is in the order of 10-3 seconds. In order to minimise 

computational time relaxation is broken down into two stages with increasing time step.  

The first relaxation, referred as pre-relaxation, is performed using the time step 

computed based on the initial forces. The time step for the second relaxation is 

computed based on the level of force during active migration which is the focus of 

Chapter 4. Through trial and error experiments, it was found that a maximum possible 

force in the model of 500-700 nN would allow the various populations investigated to 

migrate after complete relaxation. This force value corresponds to a time step on the 

order of magnitude of 10-1 seconds. 

Force and volume distributions after seeding and after pre-relaxation for a 200 cell 

population are shown in Figure 3.2. After the random seeding cells were in an unrealistic 

compressed situation characterized by negative cell volumes. The maximum 

intercellular force (order of magnitude of 103 nN) was in the centre due to cell crowding. 

The population was relaxed with a time step of the order of 10-3 seconds until the 

maximum force in the cluster was less than 50 nN. Intercellular forces became higher 

close to the border due to the influence of the monolayer edge. Cells have less 

neighbours around the border and therefore intercellular interactions do not balance 

each other as in the centre, leading to higher resultant forces. As force decreased the 

cell volume increased accordingly. 

Afterwards, the second relaxation was performed with a time step on the order of 10-1 

seconds. Model convergence for this second relaxation stage is investigated in section 

3.3.2.1.   
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Figure 3.2. Pre-relaxation for a population of 200 cells with an apparent Young’s Modulus 

of 1kPa and intercellular adhesion energy of 0.1 nN/μm: force and volume distributions 

after seeding and after pre-relaxation. 

 

3.3 Simulations 

The simulations were carried out serially using Matlab R2013a in the Iceberg cluster for 

High Performance Computing from The University of Sheffield. 

 

3.3.1 JKR model 

After seeding cell relaxation followed the JKR model. As a first step the JKR model was 

implemented in isolation, without the compressibility model.  

In the literature, cancerous human breast epithelial cells are reported as 1 to 2 times 

softer than their non-cancerous counterparts [27], [28], [118]. Based on this evidence 
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two different populations were investigated in this first study, one with an apparent 

Young’s modulus of 1 kPa [119], [120] and another with a lower value of 0.6 kPa, as 

shown in Table 3.3. Intercellular adhesion energy was assigned a baseline value of 0.1 

nN/μm [64]. 

 

Table 3.3 – JKR model simulation cases. 

 

 

The JKR model defines an equilibrium overlap of 2.9 μm for two contacting cells with 

properties as in case I and 4 μm for cells with properties as in case II, see Figure 3.3. The 

JKR was numerically applied to cell populations of 200 cells. 

 

 

Figure 3.3 JKR force curves for contacting cells with apparent Young’s Modulus of 1 and 

0.6 kPa and intercellular adhesion energy of 0.1 nN/μm. 
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3.3.2 JKR and compressibility model 

3.3.2.1. Convergence study 

The JKR model was combined with the compressibility model to describe cell movement. 

Populations of 50, 100, 200 and 500 cells with an apparent Young’s modulus of 1 kPa 

and intercellular adhesion energy of 0.1 nN/μm were considered. Model convergence 

was evaluated and the effect of the population size in cell volume and stress 

distributions was investigated. 

 

3.3.2.2. Sensitivity 

Experimentally reported values for quantities that characterize cell mechanics vary 

widely. This variability can be due to the different methodologies used for measurement 

but also due to cell type intrinsic differences. With regard to apparent Young’s modulus, 

values as low as 0.02 kPa were reported for leukocytes and as high as 400 kPa for cells 

from the Organ of Corti [121]. Tissue surface tension can be considered as a measure of 

intercellular adhesion energy and has values between 0.05 nN/μm for Xenopus gastrula 

endoderm [110] and 56 nN/μm for cancer aggregates of ependymoma cells [111]. 

The existing variability drives the need for parameter studies to develop robust 

computational models. This section relies on the model developed to explore the effect 

of two parameters: cell apparent Young’s modulus, E, and intercellular adhesion energy, 

σ, on passive cell mechanics. 

The cell bulk modulus is considered fixed and equal to 5.5 kPa throughout the study, 

section 3.2.3. For values of the apparent Young’s modulus equal or higher than 49.5 kPa, 

the cell Poisson’s ratio becomes higher than one, Eq ( 3.16 ). As a consequence, the 

equivalent apparent Young’s modulus of contacting cells becomes negative Eq ( 2.2 ), 

resulting in complex solutions Eq ( 3.5 ). For apparent Young’s modulus between 16.5 

and 49.5 kPa, the Poisson’s ratio is smaller than one and therefore the model finds a real 

solution, though the Poisson ratio is still negative. Values of apparent Young’s modulus 

smaller than 16.5 kPa result in a positive Poisson ratio and are, hence, worth 

investigating in the model as it stands. The interesting ranges for the cell apparent 
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Young’s modulus and intercellular adhesion energy are therefore: 0.02-16 kPa and 0.05-

56 nN/μm, respectively. 

The combined model complements the JKR by accounting for compressibility forces that 

are associated with relative volumetric pressures between contacting cells. However, 

the model does not define a minimum cell volume. The maximum cell volume is the 

volume for an isolated cell, 2094 μm3.  Assuming that cells vary their volume within a 

range of +/- 20% [64], the minimum volume in the model should be less than the 

maximum in 40%, 1257 μm3. As seen in section 3.4.2.1, cell volume varies across a 

packed monolayer, being lower for cells in the centre that have six neighbours. A 

minimum volume of 1257 μm3 corresponds to a maximum overlap value of 4 μm, using 

Eq ( 3.6 ), Eq ( 3.7 ) and Eq ( 3.18 ): 

 

 

The JKR force is a function of E, σ and the cell overlap, Eq ( 3.9 ): 
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The compressibility force is a function of the cell overlap only, since the cell bulk 

modulus is fixed at 5.5 kPa. For two contacting cells with six neighbours it is: 

 

 

Solving for the cell overlap, Eq ( 3.14 ):  

 

 

 

the overlaps predicted by the model for a cell in the centre of a monolayer are obtained 

as a function of E and σ (Figure 3.3). Five different test cases on the border of the valid 

parameter region were considered to verify the model behaviour, see Figure 3.4 and 

Table 3.4. 
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Figure 3.4 Overlap and volume solutions for a cell in the centre a monolayer as a function 

of E and σ: a) Overlaps coloured according to their value, b) Valid overlap solutions, 

overlaps lower than 4 μm, coloured according to their value. Overlaps equal or higher 

are coloured in dark red, c) Valid volume solutions. Volumes lower than 1257 μm3 are in 

dark blue. The five simulation cases implemented are represented as pink circles on the 

volume matrix. 
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Table 3.4 – Simulation cases for the combined model sensitivity study. 

 

 

The force curves associated to these cases are presented in Figure 3.5. 

 

 

Figure 3.5 Combined model force curves for two cells in the centre a monolayer for the 

five simulation cases. 

 

The effect of the cell Young’s modulus and intercellular adhesion energy on cell volume 

and stress was investigated using 200 cell populations.  
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3.3.2.3 Mechanics of bladder and breast cell monocultures 

After understanding the general model behaviour, cell-type specific parameters can be 

considered. The passive mechanics of monolayers composed of breast and bladder 

normal and cancer cells was investigated varying the cells’ apparent Young’s modulus 

and adhesion energy according to Table 3.5. 

The apparent Young’s modulus was varied according to the average value found in the 

literature for that cell type and the associated standard deviation, Table 3.1, thereby 

accounting for the variability. Concerning intercellular adhesion energy, no consistent 

cell type specific values were found in the literature. Therefore, the parameter was 

varied from the minimum to the maximum value in the valid parameter region, section 

3.3.2.2. For cancer cells an extra intermediate adhesion value was considered for the 

average Young’s modulus for comparison with normal cells. 

The various simulation cases were implemented for 200 cell populations.  

 

Table 3.5 – Mechanical properties considered for breast and bladder normal and cancer 

monocultures. 
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3.3.2.4 Mechanics of bladder and breast cell co-cultures 

Three different types of normal and cancer cell co-culture were considered for breast 

and bladder cells. The co-cultures investigated different adhesion between normal cells 

and between cancer cells. Both the cases of maximum possible difference in adhesion 

and equal adhesion were explored. In the first case normal cells adhere more to each 

other than cancer cells, in the second case normal and cancer cells have equal adhesion 

and in the last case cancer cells adhere more to each other than normal cells. With 

regard to the adhesion between normal and cancer cells, it was considered as equal to 

the minimum between normal-normal adhesion and cancer-cancer adhesion. This is 

based on the idea that two cells of the same type should adhere to each other to a higher 

extent than two cells of different types [98]. The cases investigated are presented in 

Table 3.6. Populations of 200 cells in a 50% normal/cancer co-culture were studied. 

 

Table 3.6 – Simulation cases for breast and bladder co-cultures. 
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3.4 Results 

3.4.1 JKR model 

After seeding cells move according to intercellular JKR forces. These were summed for 

all the cells of the population and the force evolution is shown in Figure 3.6. Force peaks 

due to the establishment of new cell contacts and decreases as the cells spread. For a 

value of the sum of forces lower than 10-1 nN, force lower than 5x10-4 nN per cell, there 

no more changes in cell contact and the model is considered to have converged. 

Overlap and volume distributions at the end of the relaxation are shown in Figure 3.7. 

The results obtained across the various replicates are similar so only one of the 

replicates is shown.  

As the cells relax, overlaps converge to the overlap equilibrium defined by the JKR for 

most of the cells of the cluster, 2.9 μm for case I and 4 μm for case II. However, few cells 

in the centre are over compressed, while others are under compressed. These appear in 

regions of lower cell connectivity within the monolayer. The overlaps vary around the 

equilibrium value by 28% and 38% for case I and II respectively. Case II is the case for 

which overlaps vary the most, being between -30 and +38% of the equilibrium value, 

2.8-5.5 μm. 

The cell volume changes depend on the cell position within the cluster and the number 

of surrounding cells, Eq ( 3.6 ). Cell volume is lower for over compressed cells and 

reaches a minimum of 1025 μm3 for case II. Higher volumes are obtained for the under 

compressed ones. 
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Figure 3.6: JKR model results for two populations of 200 cells with an apparent Young’s 

Modulus of 1 and 0.6 kPa and intercellular adhesion energy of 0.1 nN/μm: intercellular 

force evolution. 

 

 

Figure 3.7: JKR model results for two populations of 200 cells with an apparent Young’s 

Modulus of 1 and 0.6 kPa and intercellular adhesion energy of 0.1 nN/μm: overlap and 

volume distributions obtained.  
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3.4.2 JKR and compressibility model 

3.4.2.1 Convergence study 

Model convergence was evaluated for populations of 50, 100, 200 and 500 cells 

following the same protocol. The results obtained for the 200 cell populations are shown 

as an example. 

Intercellular force, overlap and stress distributions after relaxation are shown in Figure 

3.8. The evolution of the sum of intercellular forces for all cells, average overlap and 

average stress for the five replicates are also presented. Normalized simulation time is 

used since the different replicates took different time to relax.  

Relaxation was stopped when the sum of intercellular forces for all the cells modelled 

reached 10-3 nN, with a force per cell on the order of 10-6 nN. Intercellular contacts are 

created as the cells spread after seeding, originating the force peaks observed in the 

force evolution curve. Below a value of 0.1 nN for the sum of the forces, blue line in 

Figure 3.8, no peaks are observed for none of the five replicates. In addition, the average 

overlap and the average stress are stabilized at this level of force. The change in the 

average overlap is in the order of 10-4 % and the maximum change in average stress is 

18%, with an order of magnitude of 10-6 nN. For this reason, the model is considered to 

have converged for a value of 0.1 nN for the sum of intercellular forces. This corresponds 

to a force value of 5x10-4 nN per cell.  

The model predicts different overlap and stress depending on the cell position within 

the monolayer. Overlap is generally higher on the border, where cells have less 

neighbours. In addition, the average overlap depends on the seeding, changing from 

replicate to replicate. As it happens for the overlap, there is a stress distribution. For a 

monolayer in intercellular equilibrium, resultant intercellular forces are low and cell 

interactions balance each other. This means that, at the cell scale, cells can be 

experiencing some degree of stress, as long as it is locally balanced by neighbouring cells. 

Although the average stress in the monolayer is low, of the order of 10-5 kPa, the 

maximum stress reaches a value that is two orders of magnitude higher. 

Modelling five seeding replicates of a 200 cell population required globally 39 Gb of 

maximum virtual memory and 39 hours of CPU time. However, model convergence at a 

force value of 0.1 nN required 16 hours, a CPU time lower in 69%. The CPU time per 
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replicate changed considerably due to the random nature of the seeding (average of 3.2 

±1.2 hours). 

In order to understand how the model results vary with the population size, volume and 

stress distributions obtained for populations of 50, 100, 200 and 500 cells are shown in 

Figure 3.9. These representative distributions are associated with one of the five 

replicates modelled.  

Focusing on the results obtained for 50 and 100 cell monolayers first, volume and stress 

are uniformly distributed in the centre of the monolayer. Cells in the centre are in 

compression (positive stress values) and have 3% less volume than the cells on the 

border (2010 versus 2070 um3). Stress is one order of magnitude higher close to the 

border of the monolayer reaching the order of the units of Pascal, 10-3 kPa. Volume 

varies the most in this region. Cells right on the edge have the highest volume and are in 

tension (negative stress values), while cells just behind have the lowest volume and are 

in compression.  

The same generally holds for the 200 and 500 cell populations, except that volume and 

stress are not so uniformly distributed in the centre of the monolayer. Cells seem to be 

organized in several clusters and there are regions within the monolayer where cells are 

less packed. They resemble the monolayer edge: with higher volume variation and stress 

values predicted. The cells modelled are seeded randomly and find each other through 

passive spreading. This results in asymmetries in cell connectivity that are more probable 

the higher the number of cells considered. The predicted stress is on the same order of 

magnitude regardless of the size of the population. 

Although cell configuration and asymmetries in packing are seeding dependent, the 

results reported hold for all the five replicates. 
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Figure 3.8 Convergence study for a 200 cell population with an apparent Young’s 

modulus of 1 kPa and intercellular adhesion energy of 0.1 nN/μm: intercellular force, 

overlap and stress distribution and evolution. For overlap and stress evolution a zoomed 

image is included. 
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Figure 3.9 Volume and stress predicted for 50, 100, 200 and 500 cell populations with an 

apparent Young’s modulus of 1 kPa and intercellular adhesion energy of 0.1 nN/μm.  
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3.4.2.2 Sensitivity 

Model convergence for the populations investigated was verified as in section 3.4.2.1. 

Volume and stress distributions obtained for the various parameter cases are presented 

in Figure 3.10.  

The stress is higher in the same regions of lower cell connectivity in the various 

populations, confirming the influence of cell topology. However, the stress magnitude 

changes depending on cell mechanics. The maximum stress in the monolayer has values 

with order of magnitude between 0.1-100 Pascal and increases with both the apparent 

Young’s modulus and intercellular adhesion. Stress is highest for case V. Lower cell 

volume is associated with higher stress and it ranges between 1301 and 2094 μm3 for 

case V, being always higher than the minimum allowed of 1257 μm3. 
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Figure 3.10 Volume and stress predicted for 200 cell monocultures with different 

mechanical properties.  
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3.4.2.3 Mechanics of bladder and breast cell monocultures 

From the results obtained in the section 3.4.2.2 the maximum stress in a monolayer is 

not only dependent on topology but also on cell mechanics. In this section the relation 

between stress and cell mechanics is explored for two specific cell types: breast and 

bladder.  

Compressibility forces depend on the cell volume and number of neighbouring cells, Eq 

( 3.6 ). Therefore, the intercellular force curve for a pair of contacting cells depends on 

the local topology. The force curves in Figure 3.5, section 3.3.2.2, correspond to two 

contacting cells at the centre of a packed monolayer (surrounded by six neighbours 

each). The curves have zero force at different overlaps, depending on the cell Young’s 

modulus and intercellular adhesion energy. 

In the model, cell stress is related with overlap deviations from the equilibrium value. 

These overlap deviations are associated with different forces depending on the cell 

mechanical properties (Figure 3.5 in section 3.3.2.2). Therefore, it is expected that force 

variation around the overlap equilibrium value is related with cell stress.  

For all the parameter cases modelled, the corresponding force curves were obtained 

and the derivative at the equilibrium point was computed. This quantity is regarded as 

a measure of the intercellular contact stiffness. Its relation with the maximum cell stress 

found in the monolayer was investigated, see Figure 3.11.  

A relation between the maximum compressive stress and intercellular contact stiffness 

was found for the 24 cell-type specific cases modelled and the five cases investigating 

the parameter region boundary, section 3.4.2.2. The maximum stress in the monolayer 

increases with the intercellular contact stiffness following a power law of order 1.4981 

with an R2 of 0.9821 (Figure 3.11). 
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Figure 3.11 Maximum stress relation with intercellular contact stiffness for cell 

monocultures. 

 

The error bars are associated with the five seeding replicates. Maximum stress changed 

a maximum of 36% between different seeding replicates.  

The variation in stress with intercellular contact stiffness can be decomposed in the 

variation with apparent Young’s modulus and intercellular adhesion energy. When 

changing the apparent Young’s modulus within the complete range considered [0.02 – 

16 kPa] for both low (0.05 nN/μm) and high adhesion (value dependent on the Young’s 

modulus value) stress varies 58 and 59%, respectively. For the same apparent Young’s 

modulus, if the adhesion is changed from low to high the variation in stress is between 

75-99%. This means that the variation in stress is better explained by the variation in the 

adhesion than the variation in the Young’s modulus.  

In order to understand how the predicted stress changes with cell type specific 

mechanical properties, results for breast and bladder normal and cancer cultures are 

presented in Figure 3.12.  
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The figure shows stress distributions obtained for monocultures of normal and cancer 

cells with average apparent Young’s modulus and the same level of adhesion. The 

distributions correspond to one of the five seeding replicates modelled. Higher levels of 

maximum compressive stress are found for normal cells than cancer, for both breast 

(2.4x102 Pa versus 1.3x102 Pa), and bladder (3.2x102 Pa versus 5.7x101 Pa). For bladder 

cells there is one order of magnitude difference in the maximum stress obtained for 

normal and cancer cell monocultures. The higher mismatch between the apparent 

Young’s modulus of normal and cancer bladder cells results in a higher mismatch in the 

stress levels of the respective monocultures, for the same level of cell-cell adhesion. 

 

Figure 3.12 Stress distributions predicted for breast and bladder monocultures. 

 

As already mentioned, there is a high stress variation associated with the uncertainty in 

intercellular adhesion, 75-99%. For this reason, stress variation with the cell type is 

analysed separately for minimum and maximum cell-cell adhesion, Tables 3.7 and 3.8.  

The maximum compressive stress for each population was obtained by averaging the 

maximum stress found for the five seeding replicates. The results for the different values 
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of Young’s modulus considered for the same cell type were then averaged obtaining the 

values in Tables 3.7 and 3.8. The order of magnitude of stress increases from the order 

of Pascal to hundreds of Pascal from minimum to maximum cell-cell adhesion. Maximum 

compressive stress is higher for normal cell than for cancer bladder cell cultures. The 

difference observed in the maximum compressive stress of normal and cancer breast 

cell cultures is not regarded as relevant, considering the associated standard deviation. 

 

Table 3.7 – Maximum compressive stress for breast and bladder monocultures with 

minimum cell-cell adhesion. 

 

 

 

Table 3.8 – Maximum compressive stress for breast and bladder monocultures with 

maximum cell-cell adhesion. 

 

 

3.4.2.4 Mechanics of bladder and breast cell co-cultures 

Contrary to monocultures, in co-cultures both cells in compression and in tension are 

found in the centre of the monolayer. Normal and cancer cells have different overlap 

equilibrium resulting in them adhering to different extents (Figure 3.13). 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 3 – Modelling passive cell mechanics 

 

56 

 

Distributions obtained for one replicate of the three types of co-culture investigated, 

see Table 3.6 in section 3.3.2.4, are presented for breast (Figure 3.14) and bladder 

(Figure 3.15). Two different distributions are shown for each case. In the first, a), the 

cells are coloured according to their type: green if normal and black if cancer. In the 

second, b), the cells are coloured according to their level of stress: red if in compression, 

blue if in tension and light green if the stress magnitude is lower than 1Pa. Although cell 

stress depends on the local cell surroundings, as observed before, it also depends on the 

type of cell. Therefore, the distribution of normal and cancer cells in the co-culture, a), 

can be compared with the distribution of cell stress, b). 

For type 1 and 3 co-cultures the intercellular adhesion energy values assigned to normal 

and cancer cells differ in two and three orders of magnitude, respectively. This results 

in visible sorting according to the cell type. Since there is low adhesion between normal 

and cancer cells (minimum between normal-normal adhesion and cancer-cancer 

adhesion), cells adhere to each other much less globally. For this reason, stress is low 

for most of the cells of the monolayer, less than 1 Pa. One exception is when a cell is 

surrounded by others of different type, as in Figure 3.14 b) and Figure 3.15 b) for type 3 

co-cultures. The much higher intercellular adhesion energy value assigned to cancer 

cells in type 3 co-cultures results in them wanting to adhere to a higher extent than 

normal cells (higher overlap equilibrium, see Figure 3.13). Cancer cells are in tension and 

compress normal cells, explaining the higher level of stress locally. Higher levels of stress 

are also observed for clusters of cells with high adhesion, as in Figure 3.14 c) and Figure 

3.15 c) for normal cells in type 1 co-cultures. 

For type 2 co-cultures there is higher normal-cancer cell adhesion and cells adhere more 

to each other globally. This results in higher level of stress and less sorting comparing to 

type 1 and 3 co-cultures. Cancer cells are in compression and normal cells in tension. 

Even if the intercellular adhesion energy is the same for normal and cancer cells for a 

type 2 co-culture, the difference in apparent Young’s modulus results in cancer and 

normal cells wanting to adhere to different extents (different overlap equilibrium values 

in Figure 3.13).  
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Figure 3.13 Force curves for two contacting cells in the centre of the various co-cultures. 

Normal-normal cell interaction in blue and cancer-cancer cell interaction in black.
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Figure 3.14 Breast co-cultures: a) normal (green) and cancer (black) cell distribution and 

b) stress.  
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Figure 3.15 Bladder co-cultures: a) normal (green) and cancer (black) and b) stress.
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The maximum compressive stress obtained for the various types of co-cultures was 

averaged across the five seeding replicates to understand how stress changes regardless 

of the seeding topology. The results are presented in Table 3.9. 

When comparing breast and bladder co-cultures there is no clear difference in maximum 

compressive stress. However, between co-culture types there is a clear difference. The 

results confirm that type 2 co-cultures have higher stress than type 1 and 3 and that cell 

stress is highly dependent on cell-cell adhesion. 

The high standard deviations reflect the stress variation with the seeding configuration. 

The variation is particularly relevant for co-cultures 1 and 3. Cells sort according to their 

type due to the adhesion mismatch between normal and cancer cells. However, sorting 

depends on the seeding configuration, happening to a greater extent in some replicates 

than in others. Consequently, different configurations are obtained and different levels 

of maximum stress. The replicates for which sorting is higher were able to relax more 

decreasing the level of cell stress. Sorting depends on the seeding and is, for example, 

not possible when cancer or normal cells are completely surrounded by cells of other 

type. Through passive spreading these cells are not able to sort and stay in a 

considerably higher state of stress than the rest of the cells in the monolayer. The results 

obtained for another seeding replicate of the bladder co-culture 3 are shown as example 

(Figure 3.16). This seeding replicate allowed a higher sorting of normal and cancer cells 

and a lower state of stress to be reached (maximum on the order of magnitude of 10-2 

Pa). 

 

Table 3.9– Maximum stress for breast and bladder co-cultures. 
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Figure 3.16 Bladder co-culture 3: a) normal and cancer cell distribution and b) stress.  

 

3.5 Discussion  

3.5.1 JKR model 

The JKR model as implemented here is an approximation for small adhesion sometimes 

referred as the modified Hertz model. The original JKR model [61] needs to be solved 

iteratively requiring more computational resources. It accounts for intercellular contact 

hysteresis, not considering intercellular contact formation as a reversible process, in 

thermodynamics’ terminology. As Schaller et al proposes [63] a possible workaround 

could be to make the intercellular adhesion energy time dependent. Furthermore, cells 

are considered as homogenous and purely elastic spheres. The polarized nature of the 

cytoskeleton, its viscoelastic behaviour and dynamics are not considered [63]. 

With relaxation not all cells of the cluster reach the equilibrium overlap defined by the 

JKR model (Figure 3.3). Over and under compressed cells are found in regions of lower 

cell connectivity.  

The seeding method consisted of randomly seeding the cells within the seeding region. 

After seeding there was an asymmetric cell distribution, some cells on the border had 

none or very few neighbours, while others in the centre had too many, more than six. 

Through relaxation the cells increase their surface area and cell density becomes more 

uniform. However, since the level of compression due to multiple neighbours is not 
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accounted for, it is possible that few cells remain over compressed after passive 

relaxation. 

A possible explanation for this result lies on the fact that the JKR model is a pairwise 

model here applied to several bodies in contact [63], [64]. The JKR defines the contact 

force based on the overlap between two bodies. When applied to several bodies the 

multiple overlap regions may overlap each other. This leads to an incorrect estimation 

of the force, assumed to be pairwise additive. The result is the presence of cells that are 

too compressed in the middle of the monolayer, not able to exert enough repulsion 

force. Near these cells there are under compressed cells for force balance. The JKR 

model assigns higher repulsion forces to cells with higher apparent Young’s modulus. 

Therefore, according to this explanation, less overlap variation is expected for 

monolayers of cells with higher apparent Young’s modulus. In fact, overlap variation 

increased from case I to II, see Figure 3.7. This confirms that overlap convergence is 

dependent on the cells’ ability to exert enough repulsion forces and reduce the effect of 

the overlapping of overlap regions. 

The cell level of compression was limited by including the compressibility model in a 

combined passive model, section 3.3.2. 

 

3.5.2 JKR and compressibility model 

3.5.2.1 Convergence study 

Cell overlap and stress are stabilized for a sum of intercellular forces of 10-1 nN, see 

Figure 3.8. No cell rearrangements are observed from this point on and the monolayer 

is considered to be at a state of intercellular equilibrium. Thereby, when including active 

cell migration, intercellular contact changes can be interpreted as resulting from active 

cell behaviour and not residual passive forces from the relaxation step. 

The JKR model defines equal overlap for all the cells of a cluster, as long as they have 

similar mechanical properties. When including the effect of cell volume with the 

compressibility model, the equilibrium value for the cell overlap is different depending 

on the number of contacting cells. Cells with less neighbours have higher overlaps than 

cells that are completely surrounded by other cells. 
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There is an edge effect for cell volume as well. It is 3% lower for cells in the centre of a 

monolayer. In reality cells may change their height to conserve their volume when 

within a monolayer. This was not accounted for in this work and volume was considered 

to change whenever the projected area of cells changed. In addition, it was considered 

that compressibility forces are present for all non-isolated cells, Eq ( 3.12 ). Therefore, 

the equilibrium for a cell is characterized by a balance between compressibility and 

elastic contact forces, Eq ( 3.14 ). It is relevant to point out that, although the JKR model 

represents both intercellular elastic repulsion and adhesion, it is the JKR adhesive nature 

that balances the repulsive compressibility forces in the combined model. As mentioned 

by Liedekerke et al [122], an alternative way of combining both models would be to let 

the compressibility model alone define the repulsive interactions and remove them 

from the JKR model. However, this is not straightforward. It is not obvious what the most 

sensible way to combine both models is: the choice of the target volume and whether 

or not compressibility forces should be present for all cells within the monolayer. 

The JKR and compressibility resultants balance each other for each cell. However, the 

stress, being a scalar summation of these forces, reflects the level of cell compression. 

Therefore, passive cell stress can exist in a monolayer in force equilibrium. The various 

cell-cell interactions can balance each other, depending on the topology and direction 

of intercellular forces. When a cell is contacting two others only, this is not so probable, 

as it implies that the three cells would have to be in line. In this case, for intercellular 

equilibrium, the cell has to be in a state of zero stress (overlaps equal to the equilibrium 

value, adhesion forces equal in magnitude to compressibility forces), explaining the zero 

stress cells found on the monolayer border (Figure 3.8). 

Compressed cells, with positive stress, are found at the centre of the monolayer 

revealing that compressibility forces are higher than adhesion forces (Figure 3.8). 

Compressibility forces have a predominant role in this region since cell volume is lower. 

Close to the border the stress is two orders of magnitude higher. Adhesive forces 

towards the cluster centre are sensed by cells in tension that assure its cohesiveness. 

Before this line of border cells in tension, there are cells experiencing compression from 
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the cluster and balancing this region. Cell stress reaches a magnitude in the order of the 

units of Pascal independently of the population size. 

Some simplifications were considered when computing cell volume, Eq ( 3.6 ), and 

stress, Eq ( 3.8 ). The fact that overlap regions can intersect each other was not 

accounted for when determining cell volume, therefore this is underestimated. The total 

surface area of the cell was considered when determining cell stress, although another 

choice could have been the area of the overlap regions. Nevertheless, these simplified 

computations are able to provide an insight into how compressed the cells are. 

For populations of higher cell number (200 and 500), cells are distributed less uniformly 

(Figure 3.9). During relaxation, the cells relax passively, moving according to intercellular 

contact interactions. Therefore, the seeding procedure in defining the initial cell 

connectivity influences the final cell distribution. Due to its random nature, regions of 

less cell connectivity are more probable for populations of higher cell number. In order 

to make the results less seeding dependent, the seeding could have been more 

controlled. Maximum and minimum limits could have been set to the initial cell overlap 

controlling cell connectivity. This would probably force more uniform cell distributions 

from the beginning. However, there is a random nature associated to cell deposition 

from suspension. Asymmetric cell distributions can be obtained in in-vitro cell seeding. 

Cells can fall on top of each other and need to find space with time. In order to achieve 

a more uniform cell distribution external force can be applied to shake the culture plate 

and spread the cells more evenly. 

Seeding affected cell stress as well. More cells were seeded in the centre of the seeding 

region than at its periphery. Since cells at the periphery start to have higher intercellular 

force resultant they adapt creating tension that balances the compressed cluster. 

Following this line of thought, the compression found in the centre of relaxed 

monolayers can be seen as reminiscent from the seeding. If the resultant intercellular 

force governs passive cell behaviour, localized stress can exist in a monolayer. Another 

modelling approach would be to consider that cells move passively according to a scalar 

summation of intercellular forces or stress. Even if the final distributions depend on the 

cell connectivity defined by the seeding procedure, the model prediction that the cell 

stress is higher on the monolayer border and in regions of low cell connectivity holds. 
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During in-vitro seeding cells deposit from suspension in random places within the 

seeding environment. Drawing a parallel with experiments, the cell density asymmetries 

predicted by the model suggest that passive relaxation may not be enough for cells to 

find each other after seeding. This explains the changes in the level of cell packing within 

the monolayer. In reality, cells can sense the ones they are not in contact with through 

mechanisms not here considered such as signalling and lamellipodia formation and close 

monolayer wounds [123]. Nonetheless, the model suggests that these regions can be 

temporary regions of high passive cell stress. It is actually possible that passive stress is 

in the origin of an active cell response that maintains monolayer uniformity and 

integrity. As Mertz et al [124] suggests, a feedback may exist between intercellular 

adhesion forces and active traction forces. 

In summary, the results suggest that some degree of passive cell stress exists to balance 

a stationary monolayer. Cells in higher level of stress are present at the border and in 

inner regions where the monolayer is less cohesive. 

 

3.5.2.2 Sensitivity 

From the results obtained in section 3.4.2.2, cell stress is not only dependent on the cell 

position within the monolayer but also on the cell mechanical properties, see Figure 

3.10.  

Different values for the parameters (apparent Young’s modulus and intercellular 

adhesion energy) were investigated. The simulations were performed fixing the cell bulk 

modulus at 5.5 kPa and changing the Poisson’s ratio adequately, Eq( 3.18 ). However, 

numerical problems associated with the Poisson’s ratio limited the possible values for 

the apparent Young’s modulus. An alternative approach could have been to fix the 

Poisson’s ratio and change both the apparent Young’s modulus and the bulk modulus. 

The cell bulk modulus was determined in this work based on water transport 

experiments through permeable gap junctions [116]. This can constitute a limitation as 

an instantaneous elastic property was related with the time-dependent flow of water 

through cell-cell junctions. In addition, this explains the discrepancy between the value 

of bulk modulus used in this work and values reported in the literature, however limited, 
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measured using acoustic microscopy [125] and radiation [126], 2-3 GPa. The model 

developed predicts different volume for cells within a monolayer. However, its 

formulation does not define a minimum value for this volume. Therefore, unrealistic cell 

volumes were avoided by restricting the possible values for the parameters. An 

alternative would be to include a minimum cell volume within the model formulation, 

for instance, by accounting for changes in cell height. Another option would be to 

include another repulsive force dependent on the absolute cell volume, rather than on 

relative volume pressures existent between cells.  

The maximum stress predicted has values with order of magnitude between 0.1-100 Pa 

and increases with both the apparent Young’s modulus and intercellular adhesion 

(Figure 3.10). When comparing the stress distributions obtained in this work with 

experimental results from the literature one must consider the intercellular and passive 

nature of the cell stress here predicted. Active cell tractions that drive cell migration 

were not included. This fact constitutes a barrier to validation as passive and active cell 

contributions are difficult to differentiate experimentally and may even be related [124]. 

Although this fact is a barrier to validation, it also shows one of the strengths of 

computational modelling in comparison with experimental work: the possibility of 

isolating the contribution from different factors and increase mechanistic 

understanding. Nonetheless, studies like the one of Trepat et al [16] on Madin-Darby 

Canine Kidney Epithelial Cells (MDCK) can be analysed as a reference. The stress within 

a migrating monolayer was theoretically computed based on experimentally measured 

traction forces. Although higher traction stress was measured for cells at the leading 

edge (20 Pa), considerable traction was measured for cells many rows behind it (5 Pa for 

cells at a distance of 200 μm). Assuming that the traction stress generated by migrating 

cells is balanced by an intercellular stress carried within the monolayer, it was possible 

to determine the intercellular stress using a force balance. This intercellular stress was 

found to be maximum for cells far away from the leading edge, reaching an order of 

magnitude of hundreds of Pa. The hypothesis suggested by the authors is that part of 

the high traction force exerted by cells at the border is transmitted to inner cells.  This 

explains the build-up of forces towards the centre of the monolayer and the higher 

stress found in this region. In contrast with these results, in this work higher intercellular 
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stress was predicted for cells on the border of the monolayer. The reason behind this 

difference lies in the fact that no migratory traction forces were included and instead of 

a directional migration, cell movement followed a radial expansion after cell seeding 

based on elastic forces. In agreement with the results obtained in this work, the same 

authors found that cells in tension and cells in compression can be in close proximity in 

the same monolayer. 

 

3.5.2.3 Mechanics of bladder and breast cell monocultures 

A power-law relation between the maximum compressive stress and intercellular 

contact stiffness was found for all the cells modelled with a good coefficient of 

determination, see Figure 3.11. It is reasonable that stress increases with the stiffness 

associated with cell-cell contact. In addition, higher stress was found for monolayers of 

bladder normal cells than for monolayers of bladder cancer cells, Table 3.7 and Table 

3.8. The high mechanical mismatch between individual bladder normal cells and bladder 

cancer cells results in different maximum compressive stress at the population level. 

The variation in stress found for cells of the same type reflects the variation in apparent 

Young’s modulus and intercellular adhesion. However, the variation in adhesion is much 

more relevant. Maximum stress levels increase from the units of Pa for minimum 

adhesion to hundreds of Pa for maximum cell-cell adhesion, Table 3.7 and Table 3.8. The 

variation in Young’s modulus is based on measurements for the same cell type reported 

in the literature. On the other hand, the variation in adhesion relied on measurements 

performed for different cell types, being much higher.  

Alternative metrics for the cell-cell adhesion could have considered. For instance, in 

AFM force spectroscopy the force at which two cells detach is measured using a 

cantilever. However, due to the current difficulty in tracking the contact area between 

two cells, this technique lacks a method for normalizing the forces measured [127]. In 

addition to the problem of limited data for the adhesion between cells of specific type; 

model inputs require data from the literature to be comparable and compatible with the 

model formulation. In this case, the JKR model requires the work associated with cell-

cell contact and not adhesion forces as reported by some authors [33]. Given that the 
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development of simulation models is dependent on the development of accurate 

measurement technologies, the development of models should be considered in parallel 

with the available measuring tools to inform the models.  

 

3.5.2.4 Mechanics of bladder and breast cell co-cultures 

Differences in cell packing and sorting were observed for co-cultures of cells with 

different mechanics (Figure 3.15 and Figure 3.16). This evidences the role of intercellular 

contact and compressibility forces within the first hours after seeding. Unpublished data 

collected by PhD student Marzieh Tehrani (Insigneo, University of Sheffield) confirms 

that differences in cell shape and clustering are observed for normal and cancer cells 

within this time frame. The following microscope image was taken 10 hours after 

seeding, before cell migration and division start: 

 

 

Figure 3.17 Microscope image taken 10 hours after the seeding of an in-vitro co-culture 

of mesenchymal stem cells, in red, and bone cancer cells, in green. 

 

Asymmetries in cell packing are visible, there is higher cell density on the top left of the 

image. In particular, there is a high cancer cell density in this region when comparing to 

the rest of the image. This suggests that cells are clustering according to their type. The 

results of this work indicate that the seeding procedure and the mechanics of the cells 

cultured can play a role in cell packing asymmetries and cell sorting.  
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Cells in tension and in compression were found in the centre of heterogeneous 

monolayers in this work. This was reported by Trepat et al. [16] for migrating 

populations. Since the populations studied by Trepat correspond to monocultures, the 

heterogeneous stress fields measured suggest that either differences in cell packing or 

cell mechanics exist within a monoculture. The authors proposed that mechanically 

different cells may be present, which is reinforced by the results obtained in this work. 

In order to take more conclusions with regards to how much of the stress is determined 

by cell mechanics or cell local topology, monolayers with more cells could be 

investigated in the future with the model developed. 

Three different types of co-culture were implemented: higher adhesion for normal cells, 

equal adhesion for normal and cancer, higher adhesion for cancer cells. In addition to 

the question of whether cell-cell adhesion is higher for normal or cancer cells, there is 

the question of whether cell-cell adhesion is different at different stages of cancer 

development [128]. It is possible that cancer cell adhesion changes during the process 

of detaching from the primary tumour, migrating and attaching to other secondary 

tissues for metastasis. The same applies to the Young’s modulus. It is possible that cell 

mechanical changes are necessary for cell function and adaptation to the environment. 

In the future, the dynamics of cell adaption could be considered in the model developed. 

A feedback could be included between the level of stress experienced by the cell and 

the consequent change in its mechanical properties.  

Active cell tractions that drive cell migration are included in Chapter 4 of this thesis. The 

aim is to investigate the relative role of passive and active cell mechanical properties in 

the migration of breast and bladder cell co-cultures. 

 

3.6 Conclusion 

In conclusion, a computational model representing the process of cell spreading within 

the first few hours of in-vitro seeding was developed. Cell spreading is considered to be 

governed by intercellular contact and compressibility forces. Thereby, cell volume and 

intercellular stress can be predicted for cells within a population.  
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The model was applied to normal and cancer cell cultures accounting for the different 

individual cell mechanics associated with malignant transformation. Intercellular stress 

in a monolayer was found to depend on both the cell mechanical properties (Young’s 

modulus and intercellular adhesion) and those of neighbouring cells. Intercellular stress 

varies more within a co-culture of mechanically different normal and cancer cells than 

within monocultures. Furthermore, the different mechanical properties of normal and 

cancer cells explain their early sorting in co-culture.  

The predictions of the model show that the mechanical properties of individual cells 

reflect at the population level. This evidences their potential to be used as targets to 

treat diseases that affect the mechanics of tissues, such as cancer. 

The results of this Chapter demonstrate the robustness of the computational model 

developed. This is the first step in developing a collective cell migration model which is 

extended to include active traction forces – Chapter 4. By investigating passive forces at 

a first step, it will be possible to understand the relative role of passive and active forces 

in the mechanics and migration of cell populations. 

 



 

Chapter 4 - Modelling active mechanics of cell migration 

 

Summary  

Cancer cells in the body sort from the normal tissue and tend to cluster enabling metastasis. 

Similar sorting behaviour has also been observed in-vitro. In addition, normal and cancer cells 

have been shown to be mechanically different. However, it is not understood how these different 

mechanical properties affect collective cell migration and sorting in cancer.  

In this Chapter a computational model was developed to investigate the mechanics of migration 

of normal and cancer cells in co-cultures. Cell movement is governed by passive forces, the 

subject of Chapter 3, in the first hours after seeding and migratory traction forces are exerted by 

cells later.  

The results of this new model indicate that the sorting between normal and cancer cells in co-

culture is more influenced by differences in the traction of normal and cancer cells and cell-cell 

adhesion levels, followed by differential adhesion of normal and cancer cells. 

 

4.1 Introduction 

As discussed in Chapter 2 of this thesis, cell sorting is related with cancer spreading in-

vivo, as cancer cells sort from the normal tissue and cluster for metastasis. Spontaneous 

sorting of normal and cancer cells in co-culture has also been observed in in-vitro 

experiments [20], [129].  

The study of cell sorting has been inspired by the same physical principles as the ones 

governing the behaviour of immiscible liquids [22], [93]. These principles are the basis 

of theories such as the Differential Adhesion Hypothesis (DAH) [21]. However, also 

differences in cell motility have been proposed to play a role in cell sorting and collective 

behaviour. There is experimental evidence of the sorting of keratocytes with different 

motilities [102] and computational work supporting this idea [24], [98]. 

The measurement of parameters characterizing cell mechanics, such as the apparent 

Young’s modulus, intercellular adhesion and traction force was presented in Chapter 3. 

At the same time, a recent review on collective cell migration shows the great variety of 
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computational models developed to understand this phenomenon [44]. However, the 

connection between the emergent collective behaviour and individual cell mechanics is 

missing. The traction forces exerted by collectively moving cells are heterogeneous and 

dynamic and a clear relation between the movement observed and the forces measured 

is yet to be found [18]. In addition, despite the importance of collective cell migration 

and sorting in metastasis [41], [42], cell-based models investigating these processes in 

cancer lack [42].  

The aim of this Chapter was to investigate the mechanics of collective cell behaviour and 

cell sorting in cancer. The model presented in Chapter 3 was expanded to include 

migratory traction forces. It was applied to co-cultures of mechanically different normal 

and cancer cells as a surrogate for tumour-host mechanical interactions. The main 

scientific questions that are addressed in this Chapter are:  

 

 What is the relation between cell sorting and intercellular forces?  

 What is the relative role of differences in motility and cell-cell adhesion in the 

sorting of normal and cancer cells in co-culture?  

 Can the Differential Adhesion Hypothesis explain the sorting of normal and 

cancer cells in co-culture? 

 Can cell mechanics inspire a mechanistic explanation for cell sorting? 

 

4.2 General methods 

4.2.1 Model description 

This work regards cell movement as governed by passive intercellular forces in the first 

few hours after cell seeding. Passive relaxation is characterized by a decrease in 

intercellular forces and cells reaching a state of equilibrium, subject of Chapter 3. In this 

Chapter, active traction forces exerted by cells to migrate are included in the model, Eq 

( 3.1 ). Intercellular forces, cell position, volume and stress are all computed as described 

in Chapter 3 – section 3.2.1.  

It is assumed that cells start migration as being polarized in a random direction. 

Therefore, at the beginning cells are assigned random angles for their active forces. 
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Following the minimal model of Vicsek [68], it is considered that, during migration, cells 

align the direction of their active machineries with neighbouring cells in order to migrate 

collectively. Neighbouring cells align their active machineries with time, while showing 

some degree of persistence in their movement: 

 

 

 

in which αcell refers to the active force angle for a particular cell and αneighbours is the 

average angle for neighbouring cells. Isolated cells, without neighbours, keep migrating 

in the same direction. This alignment rule results in a 200 cell population having a 

coordinated movement after 15-30 minutes of real time migration. 

The active traction force magnitude is tuned to in-vitro measurements of the velocity of 

individual cells. Modelling drag using the Stoke’s model [130] and following from 

Eq.(3.1), the active force can be computed for an isolated cell, for which intercellular 

forces are not present, based on its velocity vactive, radius R and the extracellular 

environment viscosity μ: 

 

 

 

It is assumed that cells preserve the magnitude of the active force when surrounded by 

other cells. 

This Chapter investigates sorting between normal and cancer cells in co-culture, 

quantified using a metric called sorting index (SI). This is computed as the number of 

cells of different type, η≠, over the total number of cells surrounding a particular cell, η≠ 

+ η= [102]. 
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4.2.2. Model parameters 

Bladder and breast normal and cancer cells were assigned the average apparent Young’s 

modulus considered in Chapter 3, Table 4.1. Intercellular adhesion energy was varied 

within the valid range found in Chapter 3 – section 3.3.2.2 according to cell volume 

restrictions. The bulk modulus for all the cells, the cell radius and the medium viscosity 

were kept constant at 5.5 kPa, 10 µm and 0.01 kPa.s respectively. As in Chapter 3, the 

Poisson’s ratio was determined depending on the apparent Young’s modulus and 

assuming that cells behave as homogenous isotropic materials (Eq. 3.16). 

In the studies in which intercellular adhesion was different for the homotypic cell 

interactions normal-normal and cancer-cancer, the magnitude of adhesion for the 

interaction normal-cancer was assumed to be equal to the minimum of the last two. This 

is based on the idea that two cells of the same type should adhere to each other to a 

higher extent than two cells of different type [98]. 

Velocity values of single migrating cells have been reported to be in the order of 

magnitude of 0.1-5 μm/min [131]. In this study, single normal cells were considered to 

migrate at a velocity of 5 μm/min. This velocity was converted to an active traction force 

as described in section 4.2.1, Eq ( 4.2 ). 

Higher traction forces have been measured for cancer cells than for normal cells, 

between 20 to 100% higher [30], [31]. The active velocity, and therefore traction force, 

for cancer cells was determined in this work considering this mismatch in traction found 

between normal and cancer cells. Assuming that active force in the model is a proxy for 

cell traction force, active force mismatches within this range were applied between 

normal and cancer cells throughout this work. 

 

Table 4.1 – Model parameters. 
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4.2.3 Cell sorting threshold 

At the start of cell migration, after seeding and passive relaxation, normal and cancer 

cells in co-culture are randomly mixed. The initial sorting index varies between replicates 

due to the randomness of cell seeding. This variability was determined simulating the 

seeding of 20 replicates of normal/cancer cell co-cultures. One of this replicates is 

presented in Figure 4.1. The sorting index after seeding had a mean of 0.498±0.024, with 

values between 0.4 and 0.6. 

This reflects the randomness of the initial configuration, as a sorting index of 0.5 is 

associated with cells having exactly the same proportion of cells of equal and different 

type surrounding them.  

 

 

Figure 4.1. Example of initial configuration for one seeding replicate of a co-culture of 

bladder normal and cancer cells with equal intercellular adhesion energy of 0.05 nN/μm. 

The initial sorting index is 0.54. 

 

During migration, cells rearrange their positions leading to changes in the sorting index. 

Since the sorting index decreases with cell sorting, sorting between normal and cancer 

cells is considered to have happened whenever the sorting index decreases to a value 

lower than 0.4 after two hours of migration. 
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4.3 Simulations 

Cell migration was modelled synchronously for two hours of real time in an unconfined 

environment. A time step of 0.135 seconds, maximum cell displacement of 2.5 % of the 

cell radius per iteration, was considered since it is small enough to ensure both solution 

stability and accuracy – Appendix. Five seeding replicates were investigated per cell 

population. Normal and cancer cell co-cultures with 200 cells were studied from both 

the bladder and breast tissues. Intercellular forces, cell stress and sorting index were all 

calculated and saved every tenth iteration to reduce computational and memory costs. 

The following sections describe the several sorting studies performed. 

 

4.3.1 Cell sorting based on different active traction 

Traction forces measured for cancer cells are 20-100% higher than those measured for 

normal cells [30], [31]. This study investigates the effect of this force mismatch on the 

migration of bladder cell co-cultures. Cell-cell adhesion was assumed to be minimum 

and the same for the cell interactions normal-normal, cancer-cancer and normal-cancer. 

The cell properties considered are presented in Tables 4.2 and 4.3. 

 

Table 4.2 – Young’s modulus and intercellular adhesion properties used for the study. 
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Table 4.3 – Active traction properties used for the study. 

 

4.3.2. Cell sorting based on absolute cell-cell adhesion 

This study investigates the effect of cell-cell adhesion on the migration of bladder cell 

co-cultures. As in section 4.3.1, equal adhesion was assumed for all the cell-cell 

interactions. However, adhesion levels were varied between 0.05 and 4.7 nN/μm, the 

valid range found for bladder normal cells in Chapter 3 - section 3.3.2.2. Active velocity 

was assumed to be 5μm/min for normal cells and 10μm/min for cancer to maximize the 

possibility of cell sorting. The cell properties considered are presented in Tables 4.4 and 

4.5. 

 

Table 4.4 – Young’s modulus and active velocity properties used for the study. 
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Table 4.5 – Intercellular adhesion properties used for the study. 

 

 

4.3.3. Cell sorting based on different cell-cell adhesion 

This section investigates how different adhesion associated with cell interactions 

normal-normal and cancer-cancer, affects the sorting of normal and cancer cells in co-

culture. Both co-cultures of cells from the bladder and from the breast were studied, 

Table 4.6. The adhesion associated to the cell interaction normal-cancer was assumed 

to be equal to the minimum between the normal-normal and the cancer-cancer 

adhesion values and kept constant at 0.05 nN/μm. Cell adhesion levels varied within the 

limits defined in Chapter 3 – section 3.3.2.2, Table 4.7. Two scenarios were tested: 

higher adhesion between normal cells, shaded in orange in Table 4.7, and higher 

adhesion between cancer cells, shaded in purple. 

The active traction force mismatch between normal and cancer cells was minimum 

(20%) in order to explore how cell sorting in a co-culture is affected by differential 

intercellular adhesion solely. 
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Table 4.6 – Young’s modulus and active velocity properties used for the study.  

 

 

Table 4.7 – Intercellular adhesion properties used for the study. Two adhesion scenarios 

were considered: higher adhesion between normal cells, shaded in orange, and higher 

adhesion between cancer cells, shaded in purple. 

 

 

4.3.4. Cell sorting based on the combined effect of different active traction 

and different cell-cell adhesion  

This section explores the combined effect of differential intercellular adhesion and 

active force mismatch on the sorting of normal and cancer cells in co-culture. Sorting 
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was investigated for low adhesion differences between normal and cancer cells, lower 

than 1 nN/μm, in association with traction mismatches of 40 and 60%, Table 4.8. 

 

Table 4.8 – Cell properties for combined effect of active traction force mismatch and 

differential cell-cell adhesion. 

 

 

4.4 Results 

4.4.1 Cell sorting based on different active traction 

The sorting index evolution for maximum active traction force mismatch is showed as 

an example (Figure 4.2). A linear relationship provides the best fitting for this evolution 

with an R2 of 0.974.  
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Figure 4.2. Sorting evolution for maximum active traction force mismatch, average of 

the five replicates in blue and region covered by the standard deviation in grey. Linear 

fitting in orange. 

 

Cell sorting is higher for higher active traction force mismatch, see Figure 4.3. The 

coefficient of variation of the sorting index was determined by computing the ratio 

between the standard deviation and the average of the final sorting index values 

obtained for the various traction mismatches. A value of 27.2% was obtained. This is a 

quantitative measure of the variation in sorting with the active traction force mismatch 

between normal and cancer cells. It was found that a minimum mismatch of 70% is 

required for a significant sorting (sorting index less than 0.4) between normal and cancer 

cells in co-culture for low and uniform cell-cell adhesion. 
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Figure 4.3. Relation between sorting index after two hours of migration and active  

traction force mismatch. Average and standard deviation of five seeding replicates. 

 

Intercellular force and cell velocity are here analysed for three different active traction 

force mismatches: 20, 40 and 100%, see Figures 4.4, 4.5 and 4.6, respectively. Cell 

sorting was significant for the latter only. 

Figures 4.4, 4.5 and 4.6 show the results obtained for one seeding replicate with initial 

cell distribution in Figure 4.1. Velocity and intercellular force distributions at the end of 

migration are presented, as well as the time evolution of the average magnitude of 

intercellular force and a visual representation of the direction of intercellular forces at 

the end of migration. 

For 20 and 40% of active traction mismatch (Figures 4.4 and 4.5), cell velocity reaches a 

value equal to the average of the active velocities of normal and cancer cells, 5.5±2.5x10-

2 μm/min for the former and 6.0±0.31 μm/min for the latter. For the velocity of the 

heterogeneous cluster to be in between the active velocity of normal and cancer cells, 

normal cells need to migrate faster than when isolated and cancer cells slower. 

Intercellular forces emerge to make this possible, accelerating normal cells and dragging 

cancer cells behind. Intercellular force peaks at the beginning of cell migration and 

decreases as the cells align their migration direction. The active force of normal cells was 

fixed at 1.6 nN, associated with a velocity of 5 μm/min - section 4.3.1, while the active 

force of cancer cells was of 1.9 nN for 20% mismatch and 2.2 nN for 40%. Intercellular 

force reaches a magnitude equal to half the difference of the active force of normal and 
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cancer cells, 0.16±7.8x10-3 nN for a mismatch of 20% and 0.28±8.3x10-3 nN for 40%. In 

terms of direction, intercellular force has the same direction as cell migration for normal 

cells, therefore accelerating them, and opposite direction to cell migration for cancer 

cells, dragging them. For a mismatch of 40% cells rearrange more their positions 

according to their type and are less packed. This explains the higher variation in the 

magnitude and direction of intercellular forces when comparing to a 20% mismatch. 

When there is cell sorting (active mismatch of 100% in Figure 4.6), three different 

regions are possible. One region in which cells migrate faster, at a velocity similar to the 

cancer cell active velocity, one in which cells migrate slower, at a velocity similar to the 

normal cell active velocity, and one last region in which cells migrate at an intermediate 

velocity. Intercellular forces decrease as cells sort and become locally high for the cells 

that do not sort. For instance, the cancer cells that stay at the rear migrating at a velocity 

similar to the one of normal cells have the highest intercellular force, ≈1.4 nN, that acts 

as a drag. Globally, cells travel at an average velocity of 7.5±2.0 μm/min with 

intercellular forces of magnitude 0.24±0.33 nN. The high standard deviations reflect the 

heterogeneity associated to intercellular force and velocity when there is a higher active 

traction force mismatch. It is the inability of cells to generate sufficient intercellular 

forces to drive a cohesive movement of the heterogeneous cluster that leads to sorting.  
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Active traction force mismatch of 20 % 

Final velocity and intercellular force distributions 

  

Intercellular force evolution 

 

Final intercellular force direction 

 
 

Figure 4.4. Final intercellular force and velocity for an active traction mismatch of 20%. 

a) Final velocity and b) intercellular force distributions: each cell is coloured according to 

velocity and force magnitudes respectively. c) Evolution of intercellular force, average 

for all the cells was computed and the associated standard deviation is shown. 

Intercellular force direction: d) normal cells in green and cancer cells in black, the arrows 

represent the resultant intercellular force for each cell and e) scatter plot in which blue 

circles correspond to normal cells and black circles to cancer cells.  
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Figure 4.5. Final intercellular force and velocity for an active traction mismatch of 40%. 

a) Final velocity and b) intercellular force distributions: each cell is coloured according to 

velocity and force magnitudes respectively. c) Evolution of intercellular force, average 

for all the cells was computed and the associated standard deviation is shown. 

Intercellular force direction: d) normal cells in green and cancer cells in black, the arrows 

represent the resultant intercellular force for each cell and e) scatter plot in which blue 

circles correspond to normal cells and black circles to cancer cells. 

Active traction force mismatch of 40 % 
Final velocity and intercellular force distributions 

  

Intercellular force evolution 

 

Final intercellular force direction 
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Figure 4.6. Final intercellular force and velocity for an active traction mismatch of 100%. 

a) Final velocity and b) intercellular force distributions: each cell is coloured according to 

velocity and force magnitudes respectively. c) Evolution of intercellular force, average 

for all the cells was computed and the associated standard deviation is shown. 

Intercellular force direction: d) normal cells in green and cancer cells in black, the arrows 

represent the resultant intercellular force for each cell and e) scatter plot in which blue 

circles correspond to normal cells and black circles to cancer cells. 

Active traction force mismatch of 100 % 
Final velocity and intercellular force distributions 

  

Intercellular force evolution 

 

Final intercellular force direction 
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4.4.2 Cell sorting based on absolute cell-cell adhesion  

This section’s aim is to explore the effect of the intercellular adhesion levels on cell 

sorting. Adhesion is considered to be the same between normal and cancer cells. 

However, different values are tested to understand the maximum adhesion leading to 

sorting of normal and cancer cells in co-culture. In section 4.4.1 it was found that sorting 

was higher for higher mismatch in the active forces of normal and cancer cells. 

Therefore, the high mismatch of 100% here considered maximizes the possibility of 

sorting. 

In order to be able to find an accurate threshold for adhesion lower adhesion values 

were investigated. The coefficient of variation of the final sorting index was determined 

to quantify the variation in sorting with the absolute magnitude of cell-cell adhesion. A 

value of 26.8% was obtained for this coefficient. 

Assuming the same adhesion between normal and cancer cells, the maximum adhesion 

possible for sorting in co-culture was found to be 0.1 nN/μm (Figure 4.7). 

 

 

Figure 4.7. Sorting index after two hours of cell migration as a function of cell-cell 

adhesion. Normal and cancer cells have the same adhesion. Average and standard 

deviation of five seeding replicates. 
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4.4.3 Cell sorting based on different cell-cell adhesion 

For bladder cell co-cultures the sorting index after two hours of migration varies 6% on 

average between seeding replicates of the same population and a maximum of 10%. For 

breast cell co-cultures it varies 7% on average and a maximum of 12%. 

For the same adhesion difference, when comparing the higher normal cell adhesion 

scenario with the higher cancer cell adhesion scenario, sorting variations are in the same 

order of magnitude as the ones found between seeding replicates of the same 

population. For bladder cells the sorting index changes 7% on average and a maximum 

of 13% between both scenarios. On the other hand, for breast cells it varies 0.8% on 

average and a maximum of 1.3%. The smaller variation for breast cells is due to the fact 

that intercellular adhesion differences have less impact in the intercellular contact of 

cells with similar apparent Young’s modulus.  

For this reason, the sorting results of both adhesion scenarios were averaged. Sorting 

variations with the magnitude of the difference of adhesion are more relevant, 

|𝜎𝑐𝑎𝑛𝑐𝑒𝑟 − 𝜎𝑛𝑜𝑟𝑚𝑎𝑙| in Figure 4.8. The sorting variation with the adhesion difference is 

shown for bladder and breast cells. The coefficient of variation of the final sorting index 

was determined to quantify the variation in sorting with the difference of adhesion of 

normal and cancer cells. For bladder cells the sorting index changes 25.3% and for breast 

cells 20.3%. The adhesion difference values investigated were more refined for low 

magnitude to be able to find the threshold for sorting more accurately. A minimum 

difference of 1 nN/μm is required between the adhesion of normal and cancer bladder 

and breast cells for sorting to happen. 

  



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 4 – Modelling active mechanics of cell migration  

 

89 

 

 

Figure 4.8. Sorting index after two hours of cell migration as a function of differential 

cell-cell adhesion. Higher normal cell adhesion and higher cancer cell adhesion scenarios 

were averaged. The standard deviation due to seeding replicates variation is shown. 

 

In Chapter 3 cell stress was found to be related to cell-cell adhesion. For monolayers of 

cells with the same adhesion, it was found that maximum cell stress increases with the 

intercellular contact stiffness – section 3.4.2.3. When there is differential adhesion, for 

co-cultures, visible sorting was predicted within few hours after cell seeding – section 

3.4.2.4. Sorting lead to lower levels of stress globally, but high stress was found locally 

for trapped cells, surrounded by cells of different type and not able to sort and for 

clusters of cells with high adhesion. 

In the present study it was found that it is possible to find these cells in high state of 

stress after two hours of cell migration, see Figures 4.9 and 4.10. High compressive stress 

is observed for low adhesion cells that are surrounded by high adhesion cells. The high 

adhesion cells around them are in high level of tension. As an example, stress results are 

presented for bladder and breast cells with higher adhesion for normal cells than for 

cancer cells. High stress is locally found for cancer cells surrounded by normal cells. In 

addition, high stress is found for clusters of cells with high adhesion, the normal cells. 

Comparing breast and bladder stress levels, the ones associated with breast cultures are 

higher due to the lower mismatch in passive cell properties (lower levels of sorting 

between normal and cancer cells). Observing the stress evolution graphs in Figures 4.9 

and 4.10 it is possible to see that normal cells are in tension, -6 Pa in average for breast 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 4 – Modelling active mechanics of cell migration 

 

90 

 

against -0.6 kPa for bladder, and cancer cells in compression, 5 Pa in average for breast 

against 0.6 Pa for bladder. 

The main conclusion is that, since cell migration is not directly driven by stress levels but 

by traction and intercellular forces, it is possible to find high stress regions locally in a 

migrating co-culture. 
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Bladder – σnormal=4.7 and σcancer=0.05nN/μm 

Cell configuration 

Initially After two hours of migration 

  

Stress 

Initially After two hours of migration 

  

Stress evolution 

 

Figure 4.9. Stress results for bladder cells. Initial and final cell configurations and stress 

distributions. Stress evolution during the two hours of cell migration is also shown: each 

line corresponds to the evolution of stress for one cell, blue if normal and black if cancer 

cell.  
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Figure 4.10. Stress results for breast cells. Initial and final cell configurations and stress 

distributions. Stress evolution during the two hours of cell migration is also shown: each 

line corresponds to the evolution of stress for one cell, blue if normal and black if cancer 

cell. 

Breast – σnormal=7 and σcancer=0.05nN/μm 

Cell configuration 

Initially After two hours of migration 

  

Stress 

Initially After two hours of migration 

  

Stress evolution 
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4.4.4 Cell sorting based on the combined effect of active traction force 

mismatch and different cell-cell adhesion 

The minimum differential intercellular adhesion required for sorting tends to decrease 

with the increase in traction force mismatch, see Figures 4.11 and 4.12. The adhesion 

thresholds for 20 and 40% mismatch in traction force are equal for bladder and breast 

cells, 1 and 0.25 nN/μm. For 60% mismatch sorting happens for bladder cells for a 

differential adhesion with magnitude of 0.025 nN/μm (Figure 4.11). For breast cells a 

minimum differential adhesion of 0.25 nN/μm is required (Figure 4.12). 

 

 

Figure 4.11. Sorting as a function of both active traction force mismatch and differential 

cell-cell adhesion for bladder cells.  

 

 

Figure 4.12. Sorting as a function of both active traction force mismatch and differential 

cell-cell adhesion for breast cells. 
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4.5 Discussion 

4.5.1 Cell sorting based on different active traction 

This work predicts the spontaneous sorting of normal and cancer cells in co-culture. This 

sorting is supported by experimental data from the literature [20], [129]. Cell sorting is 

quantified using the sorting index, which is lower for higher degrees of sorting between 

normal and cancer cells. In the beginning of cell migration computed sorting indexes 

were between 0.4 and 0.6 for cells with equal adhesion (Figure 4.1 in section 4.2.3), 

reflecting the randomness of the cell distribution. For this reason, in this work it was 

assumed that cell sorting happened significantly when the sorting index decreased to 

levels lower than 0.4 after two hours of cell migration. Even if cell sorting seems to 

develop continuously with the parameters studied (Figure 4.2), a limit was defined in 

order to be able to find quantitative thresholds for cell sorting.  

This work proposes a linear evolution of the sorting index as normal and cancer cells 

sort. Other authors proposed power-laws for cell sorting with exponents between -0.18 

and -0.22 [98], [103] and logarithmic functions [98], [99]. Although more data should be 

gathered, these results suggest that the temporal evolution of cell sorting should 

depend on the type of cells being studied.  

It was found that sorting is higher for higher active traction mismatch, see Figure 4.3. A 

higher active traction mismatch requires higher intercellular forces between normal and 

cancer cells for the coordinated movement of the heterogeneous cluster. The fact that 

emergent intercellular forces between normal and cancer cells are proportional to the 

difference in active traction forces (Figures 4.4 and 4.5) shows that the sorting predicted 

by the model is directly related with this difference in traction. Since direction alignment 

is assumed, sorting happens when cells are not able to generate sufficiently high 

intercellular forces. This is further explored in the next sections by investigating the 

effect of cell-cell adhesion on cell sorting. A minimum active traction mismatch of 70%, 

correspondent with a traction force difference of 1nN, was found to be required for 

significant sorting between normal and cancer bladder cells in co-culture. To the authors 

knowledge this is the first time that spontaneous cell sorting in a normal/cancer cell co-

culture was investigated as an emergent outcome of the mismatch found in traction 
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forces of normal and cancer cells in the experimental literature. This study shows that 

cell sorting can be driven by differences in cell motility and can happen in a co-culture 

of cells with equal intercellular adhesion. This was referred before by other authors [24], 

[98]. The present work complements the literature by defining sorting thresholds 

dependent on the range of values measured for parameters that characterize cell 

mechanics. The effect of cell adhesion on cell sorting is subject of sections 4.3.2. and 

4.3.3. 

 

4.5.2 Cell sorting based on absolute cell-cell adhesion 

The results indicate that cell sorting between normal and cancer cells can happen 

without differential adhesion. All the cells are considered to adhere to each other to the 

same extent, whether the interaction is between two normal cells, two cancer cells or a 

normal and a cancer cell. 

Under this condition it was found that sorting between normal and cancer bladder cells 

can happen as long as the intercellular adhesion energy has a value equal to or lower 

than 0.1 nN/μm, see Figure 4.7. To the author’s knowledge, it is the first time that a 

threshold for sorting of normal and cancer cells was found for the same level of cell-cell 

adhesion.  

As mentioned in section 4.5.1, cell sorting happens when intercellular cooperative forces 

are not enough to balance the traction force difference between normal and cancer 

cells. These intercellular forces emerge as a response to the traction difference but are 

dependent on the cell’s passive properties, such as intercellular adhesion energy.  

The effect of differential cell-cell adhesion will be investigated for both bladder and 

breast co-cultures inspired by the theory of Steinberg [21]. 

 

4.5.3 Cell sorting based on different cell-cell adhesion 

Variations in the level of cell sorting were not found between the adhesion scenarios 

(higher adhesion for normal cells or higher adhesion for cancer cells). The relevant 

parameter is the difference in adhesion. Sorting is higher for higher adhesion difference, 

see Figure 4.8. It was found that a minimum difference of 1 nN/μm is required between 
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the adhesion of normal and cancer bladder and breast cells for a significant level of 

sorting to happen when there is minimum mismatch in traction of 20%.  

These results are in agreement with the ones in Chapter 3 – section 3.4.2.4. It was 

reported that a higher mismatch in the passive properties, apparent Young’s modulus 

and cell-cell adhesion, of normal and cancer cells could result in visual cell sorting within 

the first few hours after cell seeding, even without the onset of active cell migration. 

The higher mismatch in the passive properties of normal and cancer bladder cells 

explains the higher level of sorting observed for this cell type (Figure 4.8). Sorting 

decreases the level of cell stress and trapped cells are associated with regions of high 

local stress, see Figures 4.9 and 4.10. The present study complements the previous 

results by showing that it is still possible to find regions in a migrating monolayer with 

high stress levels, higher than the stress of the majority of the cells in two to three orders 

of magnitude. This is possible because cell migration is not assumed to be directly 

governed by the level of stress. In reality, it is possible that cells are able to remodel and 

change properties such as their traction force in response to high stress levels [132]. 

As mentioned in Chapter 3, tissue surface tension values were used in this work as a 

measure of intercellular adhesion energy. It is assumed that these are related to the 

expression levels of molecules that intermediate cell adhesion, such as cadherins. This 

follows from the Differential Adhesion Hypothesis (DAH) proposed by Steinberg [133]. 

The theory suggests that two tissues segregate due to differences in their surface 

tension. In particular, that the tissue with lower surface tension envelops the one with 

higher surface tension [133]. The developed model in this work is not able to reproduce 

this enveloping behaviour. One possible explanation is that cell migration is not 

considered to be driven by an effective energy that depends solely on cell-cell adhesion 

[94]. It is driven by active traction and an intercellular force resultant. These depend on 

cell traction, Young’s modulus, adhesion and intercellular contacts between the cell and 

neighbouring cells. However, in agreement with Steinberg’s theory, the proposed model 

does show that cell sorting depends on differential cell-cell adhesion.  
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4.5.4 Cell sorting based on the combined effect of active traction force 

mismatch and different cell-cell adhesion 

In section 4.4.1 it was found that a minimum active traction force mismatch of 70% is 

required for sorting when cell adhesion levels are minimum and there is no differential 

adhesion. In addition, in section 4.4.3 it was found that a minimum difference of 

1nN/μm between the adhesion of normal-normal and cancer-cancer cells was required 

for sorting with minimum active traction force mismatch. Cell sorting depends on both 

the mismatch between the traction force of normal and cancer cells and differences in 

intercellular adhesion. This combined effect is explored in the present section. 

The difference of adhesion between normal and cancer cells leading to sorting depends 

on the traction mismatch. The higher the traction mismatch the lower the adhesion 

difference required for sorting tends to be, see Figures 4.11 and 4.12.  

The thresholds for sorting are the same for bladder and breast cells. An exception is 

found for an active traction mismatch of 60%, for which breast cells require a higher 

adhesion difference, 0.25 nN/μm (Figure 4.12), than bladder cells, 0.025 nN/μm (Figure 

4.11), to sort. This is due to the fact that normal and cancer breast cells have more 

similar apparent Young’s modulus, 2.3 and 1.2 kPa, than normal and cancer bladder 

cells, 10 and 0.3 kPa.  

The fact that sorting thresholds depend on both the active traction force mismatch and 

cell-cell adhesion suggests that it is their relation that is behind cell sorting. The present 

Chapter 4 complements Chapter 3 by showing that both passive and active cell 

properties influence the sorting of a migrating monolayer. Intercellular forces that 

depend on passive cell properties are developed in response to an active traction force 

mismatch. This is further explored in section 4.5.5. 

 

4.5.5 Integrated perspective on cell sorting 

The influence of several parameters on the sorting of normal and cancer cells in co-

culture was quantified computing the coefficient of variation of the metric quantifying 

cell sorting, the sorting index, (Eq. 4.3). Sorting was more influenced by differences in 

the traction of normal and cancer cells (27.2%) and absolute cell-cell adhesion levels 
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(26.8%), followed by different adhesion of normal and cancer cells (25.3% for bladder 

and 20.3% for breast cells). The fact that cell sorting is possible in all these scenarios 

suggests a common underlying mechanism.  

The mechanism proposed is that intercellular forces emerge in a culture in response to 

a mismatch in the passive and/or active properties of cells. Sorting is possible in the first 

few hours after seeding for high mismatch in the passive cell properties, Young’s 

modulus and intercellular adhesion, Chapter 3 - section 3.4.2.4. The traction forces 

exerted later by cells can also drive cell sorting. A traction mismatch leads to the 

emergence of intercellular forces that make the coordinated movement of the 

heterogeneous cluster possible. If cells are not able to generate such forces, due to their 

passive properties, then sorting occurs.  This complements the Differential Adhesion 

Hypothesis (DAH) that, using an analogy between cells and fluids, suggests that cell 

sorting can be uniquely governed by passive cell properties.  

The model predicts that cell sorting can be driven by differences in the mechanical 

properties of individual cells. This prediction is in agreement with the computational 

work of Brodland et al [42]. They suggested that cancer cells need to be mechanically 

different from their neighbours and have an appropriate surface tension for individual 

cancer cells to sort from the primary tumour in metastasis. The model developed in this 

work complements the work of Brodland et al by considering mechanical properties of 

normal and cancer cells derived from experimental measurements.   

Pawlizak et al. [127] also suggests a new theory with the potential to unify diverse 

factors that are thought to influence collective cell migration independently such as cell-

cell adhesion, cell motility and cell density [134], [135]. The theory is based on cell 

jamming. In analogy with phase transitions in physics, it postulates that a cell monolayer 

can undergo a transition from a jammed solid-like state, in which cells have restricted 

movement, to an unjammed liquid-like state, in which cells can rearrange and ultimately 

dissociate from the others. According to this idea mesoscopic events, between the tissue 

and cell scales, should be regarded as due to long-range force transmission. Supporting 

the theory, complex force fields, heterogeneous and dynamic, have been measured for 

cell populations [33].  
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Individual-based models such as the one developed in this work arise as an interesting 

tool to investigate this theory. Forces at the cell scale can lead to emergence at the 

higher population scale, enabling the investigation of collective behaviour. The model 

proposed can bridge two scales by predicting how intercellular forces and stresses are 

distributed in a cell population based on local cell parameters. In the future, it would be 

interesting to model more cells and in a confined space, as did Mones et al. [136]. In 

comparison with the model developed by Mones et al., this model would additionally 

account for cell mechanics. Thereby, the model would generate integrative 

understanding of collective cell behaviour by exploring the relative roles of cell-cell 

adhesion, cell traction and cell density.  

 

4.5.6 Discussion of model validation 

In this work single cell velocity values were taken from the literature and converted in 

active force values. It was considered that the velocity at which adherent cells migrate 

is proportional to the magnitude of the force they exert on their substrate. This 

assumption disregards the fact that cell velocity can also depend on the properties of 

the cell substrate and on the dynamics of focal adhesions, the cell’s ability to 

disassemble and reassemble the cell-substrate contacts. In addition, the Stoke’s law 

[130] supposes the following:  

 the cell drag can be approximated by the drag for a sphere with a radius of 10 

µm, 

 the extracellular environment has a viscosity of 0.1 kPa.s, 

 the extracellular fluid flow is laminar,  

 cells, or spheres, do not interfere with each other.  

Since active force is considered as a proxy to traction force, the active force magnitudes 

considered can be compared with the ones that have been experimentally measured for 

traction forces. Maximum active forces on the order of 1-3 nN were considered in this 

work, associated to active velocities of 5-10 µm/min. The assumptions above seem to 

be acceptable as traction forces on the same order of magnitude have been measured 

at the leading edge of single cells, 2-3 nN [18]. For monolayers, magnitudes of 2 nN [18] 
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and 5nN have been measured for cells in the centre [137] and higher magnitudes of 12 

nN [137] and 40 nN [18] for cells at the monolayer edge. Therefore the active forces 

considered seem to be in the same order of magnitude as the forces measured for cells 

belonging to a cell monolayer. 

The maximum magnitude predicted for intercellular forces in this work is similar to that 

of active forces, order of the units of nN. Experimentally values one order of magnitude 

higher, of 20 nN for forces at focal adhesion of fibroblasts [138] and 40 nN between 

endothelial cells [139] have been reported.  

Visually, extensive cell separation is predicted by the model in some cases that does not 

seem to correlate with in-vitro sorting experiments, for example for Figure 4.6 – active 

traction force mismatch of 100%. Several reasons can explain this disagreement.  

In in-vitro sorting experiments homogenous cell clusters are formed within an initially 

mixed and confluent monolayer of cells. Cells seem to change their migration direction 

randomly and continuously, easily finding others of the same type, since they are 

confluent, and forming homogenous clusters, see Figure 2.6 in Chapter 2 [102]. 

However, in in-vitro collective cell migration experiments cell movement is normally not 

confined as extra space is required for the monolayer migration, see Figure 2.1 in 

Chapter 2 [33].  

Following the latter approach, confluency was not replicated in this work as cell 

migration was not confined. In addition, a random component was not considered. Since 

randomness can influence the establishment of new cell-cell contacts, this fact possibly 

limits the extent to which cells can sort. Furthermore, a small number of cells (200) was 

modelled when comparing with real experiments. The higher the cell number the more 

complicated cell rearrangements become possibly making cell sorting more difficult. The 

number of cells modelled was chosen in the interest of computational time and, 

nonetheless, allowed the development of mechanistic hypotheses for collective cell 

migration and sorting. Furthermore, although it was considered that cells adapt the 

direction of their traction according to the one of neighbouring cells (Eq. 4.1), the 

traction magnitude was assumed to be constant. Therefore, the model is not able to 

fully replicate the dynamics of the observed phenomenon of Contact Inhibition of 

Locomotion (CIL). CIL refers to the changes in cell migration after cell-cell collision. In 
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particular, it refers to the cessation of movement in the direction of cell-cell contact and 

the repolarization towards the opposite direction [140]. In order to account for this 

time-dependent multifaceted behaviour, changes in both direction and magnitude of 

cell traction would have to be considered following the establishment of cell-cell 

contact. It is probable that, in reality, cells remodel, changing their traction properties 

when in contact with other cells. Therefore, not only cell traction but also Young’s 

modulus and cell-cell adhesion are parameters that can potentially have different values 

when a cell is in isolation or within a monolayer. A binary distribution of cells was 

considered which means that 50% of the cells, the cancerous, were assigned higher 

traction force than the other 50%, the normal. It has been shown that the relative 

percentage of cells of different type in co-culture affects their sorting [36]. Different 

distributions, for example exponential [16], have been proposed to explain the 

heterogeneity of the traction forces measured in the case of monocultures. Ideally, to 

investigate collective behaviour the values incorporated in the model should be 

measured for cells within a monolayer. This is dependent on the available literature for 

the cell type studied, measurement techniques and technology development. In Chapter 

5 the intra-population variability of cell mechanical properties is accounted for. 

 

4.6 Conclusion 

A computational model of collective cell migration developed based on passive 

intercellular forces (Chapter 3) was extended to include active migratory forces exerted 

by cells. The model was applied to normal and cancer cells in co-culture. Spontaneous 

sorting between normal and cancer cells was predicted based on individual cell 

mechanical parameters. Quantitative thresholds were defined for sorting which was 

primary driven by differences in the traction of normal and cancer cells and absolute 

cell-cell adhesion levels, followed by the differential adhesion of normal and cancer 

cells. The results supported an integrated mechanical mechanism for cell sorting. 

It is now widely accepted that cell and tissue mechanics affects their physiology and that 

several diseases are related with changes in mechanics. Therefore, mechanistic 

understanding on how cell and tissue mechanics can be changed by drug treatments is 
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required. A recent review suggests the word mechanopharmacology to be used to 

highlight the relevance of biomechanics in drug development [141]. Complementing in-

vitro experiments, in-silico mechanical models such as the one developed can be used 

as platforms for the testing of novel medicines, part of the Chapter 5 of this thesis.  



 

Chapter 5 - Modelling the migration of mechanically 

heterogeneous cell populations 

 

Summary  

A population of cells is, by itself, a complex heterogeneous system, even if the cells belong to the 

same type. Cell heterogeneity is, in particular, a hallmark of cancer, representing a challenge to 

the disease treatment. There is heterogeneity between cells of different tumours but also within 

the same tumour.  

The mechanistic and quantitative computational model developed in this work was used to 

investigate the role of mechanical heterogeneity in the migration of normal and cancer cell 

populations. Mechanically different normal and cancer cells were virtually cultured in mono and 

co-culture scenarios to investigate their collective migration. In addition, the effect of 

chemotherapeutic microtubule stabilizers was explored showing the potential of the model to 

act as a platform for the testing of anti-cancer drugs. Microtubule stabilizers are used to induce 

mitotic arrest but have been found to induce changes in the mechanical properties of cells. These 

changes have been incorporated in the model.  

The results suggest that heterogeneity in single cell mechanics contributes to the plasticity of 

migration of cancer cell populations. The changes in cell mechanics promoted by microtubule 

stabilizers lead to changes in the collective migration of normal and cancer cells in co-culture. 

Since cancer metastasis is associated with changes in cell migration, this work suggests that the 

mechanical changes induced by microtubule stabilizers may contribute to their therapeutic effect 

in inhibiting metastasis.  

 

5.1 Introduction 

Heterogeneity in a population of cells of the same type can be due to factors intrinsic to 

the cells or extrinsic, driven by the microenvironment [142]. Intrinsic variability can be 

related with genetic variation in the form of mutations. On the other hand, extrinsic 

variability can take the form of phenotypic variations promoted by the interaction with 

other cells or the extracellular environment. Intrinsic and extrinsic factors cooperate for 

the cells’ adaption and function. Therefore, a cell population is a complex dynamic 
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biological system in which there is a bi-directional cross-talk between heterogeneous 

cells and between them and their microenvironments. The behaviour of a cell 

population emerges from the collective and is not possible to predict from the behaviour 

of an individual cell.  

In cancer, cell heterogeneity exists in the form of both genetic and phenotypic variation 

between different tumours, but also within the same tumour [143]. Tumour 

heterogeneity poses a challenge to drug development as the mechanisms in its origin 

and their clinical impact are to be fully understood [35].  

Heterogeneity in a population of cells can be due to variation in cell mechanical 

properties, the subject of this work. Supporting this idea, heterogeneous fields have 

been measured for the traction forces exerted by populations of adherent epithelial cells 

in in-vitro culture  [18], [137]. In addition, atomic force indentation results reported by 

Guo et al [32] suggest that intercellular interactions in a cell monolayer impact the 

Young’s modulus of the individual cells. There is also evidence of heterogeneity in cell 

stiffness within tumours. Atomic force microscopy results obtained for breast [27] and 

for bladder cells [29] confirm this.  

It was shown that microtubule stabilizers used for cancer treatment affect the 

mechanical properties of cells. An example is Paclitaxel, a commercially available 

chemotherapeutic drug used to treat several types of cancer, including breast [144] and 

bladder [145]. Ren et al [36] reported a 150% increase in the Young’s modulus of 

lymphoma cells and Kraning-Rush et al [37] reported a 63% decrease in the traction 

forces exerted by breast cancer cells induced by Paclitaxel. Microtubule stabilizers 

stabilize the microtubules of the cytoskeleton against depolymerisation, thereby 

affecting the dynamics that is required for cell division and inducing mitotic arrest [146].  

They aim to target the uncontrolled division characteristic of cancer cells. However, 

besides having a role in cell division, the cell’s cytoskeleton has an important role in 

determining the mechanical properties of cells and in cell migration. Both changes in cell 

mechanical properties and cell migration have been associated with cancer [147].  

The role of mechanics in the collective migration of mechanically heterogeneous cell 

populations is not understood. Neither is the impact of the mechanical changes induced 

by chemotherapeutic microtubule stabilizers. 
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In this Chapter a mechanistic and quantitative cell-based computational model is 

applied to mechanically heterogeneous cell populations from the bladder and the breast 

tissues. The mechanics of migration of heterogeneous cell populations is investigated in 

both monoculture and co-culture scenarios. Co-culture of normal and cancer cells is 

studied as a surrogate for tumour-host mechanical interactions. The influence of the 

mechanical changes induced by microtubule stabilizers on the migration of the cell 

collective is studied to investigate their potential contribution to metastasis treatment. 

The scientific questions that this chapter addresses are: 

 

 What is the role of single cell mechanics in the migration of heterogeneous cell 

monocultures? 

 What is the role of single cell mechanics in the migration of heterogeneous 

normal and cancer cell co-cultures? 

 What is the impact of the changes in single cell mechanics induced by 

chemotherapeutic microtubule stabilizers in the mechanics of cancer migration? 

 

5.2 General methods 

5.2.1 Model description 

In this Chapter the role of single cell mechanics in the collective migration of 

heterogeneous cell populations from the bladder and the breast tissues is investigated. 

Cell migration is modelled as described in Chapter 4 – section 4.2.1.  

 

5.2.2 Model parameters 

The values considered for the apparent Young’s modulus of bladder and breast cells of 

a population followed a Gaussian distribution based on AFM measurements from the 

literature for the bladder [29] and the breast [27]. In these experiments 20 bladder cells 

and 30 breast cells from the same tissue section were indented several times. A model 

of contact mechanics was fitted to each force curve obtained in order to compute the 

Young’s modulus. A Gaussian distribution was then fitted to the histogram of all the 

values of Young’s modulus measured for all the cells. 
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Intercellular adhesion energy values were varied within the valid range found in Chapter 

3 – section 3.3.2.2 according to cell volume restrictions. It was assumed that intercellular 

adhesion varies in a cell population following a Gaussian distribution with minimum and 

maximum values of 0.05 and 4.7 nN/μm for bladder normal cells, 0.05 and 19 nN/μm 

for bladder cancer cells, 0.05 and 6 nN/μm for breast normal cells and 0.05 and 7.5 

nN/μm for breast cancer cells. 

Saez et al [137] measured the traction forces exerted by assemblies of MDCK epithelial 

cells using micro pillar substrates. Maximum forces of 12 nN were reported for cells at 

the edge of the cluster on a substrate with micro pillars with spring constant of 23 

nN/µm.  Based on this observation, in this work the active traction force of normal cells 

was considered to achieve a maximum value of 12 nN. The active traction force of cancer 

cells was considered to reach a maximum value of 24 nN, according to the 100% 

maximum traction mismatch found between single normal and cancer cells of the same 

tissue [31]. Active traction forces in cell populations followed a distribution with shape 

as in Figure 5.1, in agreement with the distributions found in several works [18], [137], 

[148]. 

 

Figure 5.1. Traction force histogram for a population of 200 normal cells. 

 

Since the traction force distribution is not normal, median and interquartile range were 

the measures considered for central tendency and statistical dispersion, respectively, 

throughout the Chapter. The interquartile range defines the region where the 50% 

central values reside. The median and interquartile range for Young’s modulus, traction 
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force and cell-cell adhesion distributions for bladder and breast normal and cancer cell 

populations are presented in Tables 5.1 and 5.2. 

 

Table 5.1 – Mechanical properties for bladder cell monocultures.  

 

Table 5.2– Mechanical properties for breast cell monocultures. 

 

Mechanical properties from the parameter distributions were randomly assigned to 

cells in both monoculture and co-culture scenarios. The effect of microtubule stabilizers 

was considered by increasing the Young’s modulus of cancer cells in 150% [36] and 

decreasing their active traction force in 63% [37]. 

 

5.3 Simulations 

Cell migration was modelled synchronously for two hours of real time in an unconfined 

environment. Five seeding replicates were investigated per cell population. 

Heterogeneous populations of 200 cells were studied from both the bladder and breast 

tissues in both monoculture and co-culture scenarios. The effect of chemotherapeutic 

Input parameters Bladder monocultures 

Normal Cancer 

Median (Interquartile Range)  Median (Interquartile Range) 

Young’s modulus 
(E, kPa) 

10 (5.0) 0.3 (0.2) 

Traction force  
(nN) 

3.0 (3.5) 6.1 (7.1) 

Cell-cell adhesion 
(nN/μm) 

2.3 (1.0) 9.5 (5.2) 

Input parameters Breast monocultures 

Normal Cancer 

Median (Interquartile Range)  Median (Interquartile Range) 

Young’s modulus 
(E, kPa) 

2.2 (0.8) 1.2 (0.6) 

Traction force  
(nN) 

3.0 (3.5) 6.1 (7.1) 

Cell-cell adhesion 
(nN/μm) 

3.0 (1.4) 3.6 (1.9) 
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microtubule stabilizers in the migration of normal and cancer cell co-cultures was 

modelled considering the induced change in cell mechanical properties reported for 

Paclitaxel. Intercellular forces, cell velocity and sorting index were all measured at the 

end of the two hours. 

 

5.3.1. Migration of monocultures accounting for intra-population 

heterogeneity 

The aim of this section was to investigate the mechanics of migration of cells in 

monoculture accounting for intra-population heterogeneity. Bladder and breast normal 

and cancer cell monocultures with properties in Tables 5.1 and 5.2 were studied. 

 

5.3.2. Migration of co-cultures accounting for intra-population 

heterogeneity 

In this section the migration of bladder and breast co-cultures composed of 50% normal 

and 50% cancer cells was investigated accounting for intra-population heterogeneity. 

The mechanical parameters of normal and cancer cells followed once more distributions 

with properties in Tables 5.1 and 5.2. The median and interquartile range of the 

mechanical parameters for all the cells of the co-culture, 100 normal and 100 cancer 

cells, are presented in Table 5.3.  

 

Table 5.3 – Mechanical properties for co-cultures. 

Input parameters Co-cultures 

Bladder Breast 

Median (Interquartile Range) Median (Interquartile Range) 

Young’s modulus  
(E, kPa) 

0.7 (9.8) 1.7 (1.2) 

Traction force  
(nN) 

4.4 (6.4) 4.4 (6.4) 

Cell-cell adhesion 
(nN/μm) 

3.6 (7.3) 3.3 (1.7) 
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5.3.3. In-silico drug test on the migration of co-cultures 

The possible effect of the commercially available microtubule stabilizer Paclitaxel on the 

collective migration of bladder normal and cancer cells in co-culture was investigated. 

The Young’s modulus and traction force of cancer cells were modified to simulate 

treatment with the drug, Table 5.4. 

 

Table 5.4 – Mechanical properties for bladder co-cultures without and with paclitaxel.  

Input parameters Effect of paclitaxel on co-culture 

Bladder – Control Bladder - Paclitaxel 

Median (Interquartile Range) Median (Interquartile Range) 

Young’s modulus 
(E, kPa) 

0.7 (9.8) 1.9 (9.3) 

Traction force 
(nN) 

4.4 (6.4) 2.8 (3.8) 

Cell-cell adhesion 
(nN/μm) 

3.6 (7.3) 3.6 (7.3) 

 

5.4 Results 

5.4.1. Migration of monocultures accounting for cell heterogeneity 

Tables 5.5 and 5.6 present the median and interquartile range of the velocity and 

intercellular force distributions for bladder and breast cell populations, respectively. The 

results correspond to the average of the several seeding replicates. The boxplots in 

Figure 5.2 complement these results by showing the inter-replicate variation.  

The median velocity for normal cell monocultures is 1.9x10-1µm/s (11 µm/min), see 

Tables 5.5 and 5.6 and Figure 5.2.  For cancer cell monocultures it is two times higher, 

regardless of the type of tissue. The same happens to the median intercellular force, it 

reaches 1.9 nN for normal cell monocultures and the double for cancer cell 

monocultures. 

Intercellular force has an interquartile range of 1.9 nN for a normal monoculture and 

two times higher in a cancer monoculture, regardless of the type of tissue. In average, 

the velocity interquartile range is on the order of magnitude of 10-3 µm/s for normal cell 

and one order of magnitude higher for cancer cell monocultures, Tables 5.5 and 5.6. 

However, when considering the inter-replicate variation (Figure 5.2), it is possible to 
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observe that the velocity interquartile range is very dependent on the seeding for cancer 

cell monocultures. Its order of magnitude is of 10-2 µm/s in average but it ranges 

between 10-3 and 10-1 µm/s. In other words, the spatial distribution of mechanical 

properties of cancer cells in monoculture, different for different seeding replicates, 

significantly changes the cell velocity distribution.  

 

Table 5.5 – Median and interquartile range of velocity and intercellular force 

distributions for bladder monocultures. The results correspond to the average of five 

seeding replicates.  

 Bladder cell monocultures 

Normal Cancer 

Median 
Interquartile 
range 

Median 
Interquartile 
range 

Velocity 
(µm/s) 

1.9x10-1 5.1x10-3 3.6x10-1 8.0x10-2 

Intercellular 
force (nN) 

1.9 1.9 3.4 3.8 

 

Table 5.6 – Median and interquartile range of velocity and intercellular force 

distributions for breast monocultures. The results correspond to the average of five 

seeding replicates. 

 Breast cell monocultures 

Normal Cancer 

Median 
Interquartile 
range 

Median 
Interquartile 
range 

Velocity 
(µm/s) 

1.9x10-1 3.8x10-3 3.7x10-1 3.6x10-2 

Intercellular 
force (nN) 

1.9 1.9 3.7 3.7 

 

Figures 5.3 and 5.4 show cell distributions after migration for equivalent seeding 

replicates of breast normal and cancer cell monocultures, respectively. Different seeding 

replicates of the same breast cancer cell population can have different collective 

migration mechanisms. Cluster formation of the type found for seeding replicate 3 and 

finger-like protrusions as found for seeding replicate 5 only happen for cancer cell 

populations. This explains the higher interquartile range found for the velocity of cancer 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 5 – Modelling the migration of mechanically heterogeneous cell populations  

 

111 

 

populations, when comparing to normal cell populations. For cancer the interquartile 

range was of 1.3x10-1 µm/s for seeding replicate 3, third cancer replicate in Figure 5.2 

b), and 3.0x10-2 µm/s for replicate 5, fifth cancer replicate in Figure 5.2 b). For normal 

cell populations, the value of 5.0x10-3 µm/s was obtained for seeding replicate 3 and 

7.0x10-3 µm/s for replicate 5. The red crosses in the boxplots of Figure 5.2 refer to 

outliers. Although there is higher velocity variability for seeding replicate 3 of the breast 

cancer monoculture, see Figure 5.2 b), there are no velocity outliers since cells did not 

sort individually. In fact, there are few outliers in velocity in general, as cells tend to 

migrate in clusters. The outliers in intercellular force correspond to cells with high active 

traction force, see Figure 5.4 c), in the extreme of the traction distribution (Figure 5.1).  
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Figure 5.2. Velocity, a) and b), and intercellular force, c) and d), box plots for bladder and 

breast monocultures. Outliers are in red. Five seeding replicates were considered per 

monoculture. 
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Figure 5.3. Final distribution of a) velocity and b) intercellular force for two seeding 

replicates of the breast normal monoculture. 
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Figure 5.4. Final distribution of a) velocity, b) intercellular force and c) active traction 

force for two seeding replicates of the breast cancer monoculture.  

 

5.4.2. Migration of co-cultures accounting for cell heterogeneity 

Averaging the results from the several replicates, the median velocity found for co-

cultures was on the order of magnitude of 3.0x10-1 µm/s (18 µm/min), Table 5.7. The 

interquartile range of the velocity distribution for both bladder and breast co-cultures is 

on the order of magnitude of 10-2 µm/s in average. However, when considering the 
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variation between replicates (Figure 5.5), it is possible to observe that the order of 

magnitude of the velocity interquartile range for breast co-cultures varies greatly. This 

was also observed for cancer cell monocultures (Figure 5.2). The velocity interquartile 

range is generally lower for breast co-cultures, order of magnitude of 10-3 µm/s, than for 

bladder co-cultures. However, seeding replicate 3 is an exception with an interquartile 

range on the order of 10-1 µm/s, third breast replicate in Figure 5.5 a). 

 

Table 5.7 – Median and interquartile range of velocity and intercellular force 

distributions for bladder and breast co-cultures. The results correspond to the average 

of five seeding replicates. 

 

The sorting of normal and cancer cells is characterized by computed Sorting Indexes 

lower than 0.4 after two hours of cell migration (Chapter 4, section 4.2.3). Normal and 

cancer bladder cells in co-culture sort, Sorting Index (SI) with median of 0.14 - Table 5.7. 

On the contrary, sorting between normal and cancer breast cells in co-culture does not 

tend to happen, median Sorting Index of 0.47 in average. Sorting happened, 

nonetheless, for one of the five seeding replicates – seeding replicate 3 (median SI=0.3) 

in Figures 5.6 and 5.7. Normal and cancer cells breast cells migrate as different clusters 

at different velocities for seeding replicate 3, see Figure 5.7 a). For seeding replicate 5 

there was no sorting between normal and cancer cells (median SI=0.5). One cluster of 

cells segregates from the main population resulting in a velocity outlier, see Figure 5.5 

a). Intercellular forces are similar for both replicates, see Figure 5.5 b) and Figure 5.7 b). 

 Co-cultures 

Bladder Breast 

Median Interquartile range Median Interquartile range 

Velocity 
(µm/s) 

2.7x10-1 3.2x10-2 3.1x10-1 4.3x10-2 

Intercellular 
force (nN) 

2.6 2.8 3.3 3.1 

Sorting 
Index (SI) 

0.14 0.43 0.47 0.35 
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The sorting of individual bladder normal and cancer cells in co-culture explains the high 

number of outliers in velocity when compared to breast cell co-cultures (Figure 5.5).  

Regarding intercellular force, it is higher for breast, median of 3.3 nN, than for bladder 

cell co-cultures, median of 2.6 nN - Table 5.7. In addition, it also varies more for the 

former, 3.1 against 2.8 nN. Intercellular forces decrease due to sorting in bladder cell co-

cultures.  

 

 

Figure 5.5. Velocity, a), intercellular force, b) and sorting index, c), box plots for bladder 

and breast co-cultures. Outliers are in red. Five seeding replicates were considered per 

co-culture. 
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Figure 5.6 Initial and final distribution of normal (green) and cancer cells (black) for two 

seeding replicates of breast co-culture. 

 

 

Figure 5.7. Final distributions of velocity and intercellular force for two seeding replicates 

of breast co-culture.  



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 5 – Modelling the migration of mechanically heterogeneous cell populations 

 

118 

 

5.4.3. In-silico drug test on the migration of co-cultures 

With the microtubule stabilizer Paclitaxel the velocity of bladder cell co-cultures 

decreases by 30%, Table 5.8. The median velocity, Table 5.8, becomes similar to the one 

found for monocultures of normal cells, 1.9x10-1 µm/s (11 µm/min) – Tables 5.5 and 5.6. 

The same happened with the interquartile range of the velocity distribution. It 

decreased to an order of magnitude of 10-3 µm/s, also found for monocultures of normal 

cells – Tables 5.5 and 5.6. In addition, the number of velocity outliers is reduced, see 

Figure 5.8.  

The median intercellular force decreases by 23% to a value of 2.0 nN, Table 5.8, once 

more approaching the value of force found for normal cell monocultures – Tables 5.5 

and 5.6. The same happens to the variation in intercellular force within the co-culture. 

The intercellular force interquartile range decreased from 2.8 to 1.9 nN.  

With Paclitaxel the Sorting Index increases by 214%, revealing a decrease in the sorting 

of bladder normal and cancer cells. This explains the decrease in the number of velocity 

outliers.  

Figures 5.9 and 5.10 show the results obtained for seeding replicate 5 of a bladder co-

culture without and with treatment with Paclitaxel. Without the treatment the cells 

migrate in clusters with a median Sorting Index of 0.2 – control replicate 5 in Figure 5.8 

c). Single cells separate from the cluster, not seen in Figure 5.10 a), migrating at a faster 

velocity of 1.2 µm/s, see Figure 5.8 a).  With Paclitaxel normal and cancer cells do not 

sort, having a median Sorting Index of 0.5 – drug replicate 5 in Figure 5.8 c). 
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Table 5.8 – Median and interquartile range of velocity and intercellular force 

distributions for bladder co-cultures without and with paclitaxel. The results correspond 

to the average of five seeding replicates.  
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Figure 5.8. Velocity, a), intercellular force, b) and sorting index, c), box plots for bladder 

co-cultures without and with drug. Outliers are in red. Five seeding replicates were 

considered per co-culture.  
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Figure 5.9. Initial distribution of normal, in green, and cancer cells, in black after seeding 

and final distribution for equivalent seeding replicates of bladder co-cultures without 

treatment with Paclitaxel (control) and with the treatment.  

 

 

Figure 5.10. Final distributions for equivalent seeding replicates of bladder co-cultures 

without treatment with Paclitaxel (control) and with the treatment. 
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5.5 Discussion 

5.5.1. Migration of monocultures accounting for intra-population 

heterogeneity  

Outlier cell behaviour is often important to understand the emergence of a disease and 

population-based measurements generally lack the specificity to capture it. Cell 

heterogeneity calls for more effective specific treatments. Computational models such 

as the one developed in this study are able to account for cell heterogeneity playing an 

important part in the development of such treatments.  

The model was applied to normal and cancer cell monocultures from both the bladder 

and breast tissues. The median values for the velocity and intercellular force are similar 

for bladder and breast cell populations (Tables 5.5 and 5.6). However, median velocity 

and intercellular force are two times higher for cancer cell than for normal cell 

populations, reflecting the mismatch between the active traction force of normal and 

cancer cells (Tables 5.1 and 5.2). This suggests that the active traction of individual cells 

has a greater influence on the velocity distribution than their passive and tissue specific 

mechanical properties: Young’s modulus and cell-cell adhesion.  

As seen in Tables 5.1 and 5.2, besides being higher for cancer than for normal cell 

populations, traction force also varies more for the former (higher interquartile range). 

As a result, intercellular force and velocity vary more within cancer cell monocultures. 

However, the cell velocity distribution varies greatly for the same population depending 

on the seeding replicate. The high heterogeneity in the active traction of cancer cell 

populations results in very different collective migration mechanisms such as migration 

in clusters and the formation of finger-like protrusions, see Figure 5.4. As presented in 

Chapter 4, cell sorting is related to differences in the traction force exerted by cells in 

physical contact. These different migratory behaviours can be seen for different seeding 

replicates of the same cell population. In other words, if the same cells are seeded in a 

different spatial arrangement, different migration mechanisms can take place. This 

suggests that the spatial distribution of mechanically different cells triggers different 

migration mechanisms. Further mechanistic and more quantitative understanding of the 

emergence of these different migration outcomes could be achieved in the future by 
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modelling a higher number of cells. This would increase the statistical power of the 

observations and better replicate in-vitro experiments. 

Cancer cells are known to be highly heterogeneous, sensitive to their microenvironment 

and capable of changing their behaviour according to the stage of progression of the 

disease. Cancer cells need to adapt to their extracellular environment to be able to 

perform in diverse processes such as metastasis, invasion or intravasation (the process 

of entering into the bloodstream by crossing the membrane of blood vessels) [38], [149]. 

The results of this work suggest that the heterogeneity in the mechanical properties of 

cancer cells can explain their different migration behaviours. There is evidence that 

different cells in different spatial positions within the cluster adopt different roles in the 

collective migration. Other works suggest that cells at the leading edge develop leading 

features to direct the migration, such as higher sensitivity to growth factors  [7]. Leader 

cells seem to have specific features, such as sensory and guiding properties, that 

differentiate them from the rest of the cells within the cluster. In fact, removing leader 

cells using micromanipulators from the front of a migrating population of Madin-Darby 

Canine Kidney (MDCK) epithelial cells disrupts their cohesive migration [150]. 

Mechanical changes have also been identified in leading cells in wound healing. Cells 

near the wound edge experience changes in their stiffness, which peaks approximately 

at 10-15 μm from the wound edge [151]. Several works report higher traction forces for 

cells on the edge of a migrating cell monolayer [18], [137]. The fact that the mechanical 

properties of cells seem to depend on their specific spatial position within the 

monolayer was not accounted for in this work. Mechanical properties following the 

parameter distributions were assigned to cells of the population regardless of their 

spatial position. 

Changes in the mechanics of cancer cells are also related with different stages of the 

disease. Changes in cancer cell mechanics have, for instance, been reported during 

Epithelial-to-Mesenchymal Transition (EMT). EMT is the process through which 

epithelial polarized cells gain migratory characteristics and decrease their levels of cell-

cell adhesion. This process is associated with both wound healing [152] and cancer 

progression [10]. EMT has been suggested as the mechanism that explains the 

transformation that cells from the carcinoma in-situ undergo when they individually 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 5 – Modelling the migration of mechanically heterogeneous cell populations 

 

124 

 

separate from the tissue and become invasive. The process has been related with 

changes in the apical tension of cells, which depends on the actomyosin contractility and 

the formation of actin stress fibres [153]. However, collective invasion also happens in 

cancer. Multicellular clusters of cancer cells can detach from the carcinoma and invade 

the surrounding tissues as a group keeping their cell-cell contacts [9]. In fact, EMT is seen 

as a continuous spectrum and the concept of partial EMT was created to understand the 

cells at the invasive front of a multicellular migrating cluster. These cells have gained 

migratory characteristics but have kept their cell-cell contacts stable. Furthermore, 

Mesenchymal-to-Epithelial Transition (MET) has been suggested as the mechanism 

through which individual moving cells form again multicellular aggregates in distant 

tissues after metastasis [9]. This shows the plasticity of cancer cell migration and 

suggests that cancer cells should go through several changes in their mechanical 

properties at different stages of the disease. The ability of cells to dynamically change 

their mechanical properties was not accounted for in this work. The mechanical 

properties of cells were considered as fixed, cell-type specific and not dependent on 

their position within the monolayer or stage of the disease. Nonetheless, the results 

support the idea that the mechanical heterogeneity of cancer cells enables diverse 

migration mechanisms. Cancer cells should be able to tune their mechanical properties 

to switch their migration mechanism according to their microenvironment. 

 

5.5.2. Migration of co-cultures accounting for intra-population 

heterogeneity 

The median velocity of cells in co-culture, order of magnitude of 3.0x10-1 µm/s (18 

µm/min) – see Table 5.7, is in between the value found for normal and cancer 

monocultures - see Tables 5.5 and 5.6. This reflects the fact that co-cultures of 50% 

normal cells and 50% cancer cells were considered.  

The sorting between normal and cancer bladder cells in co-culture explains the higher 

interquartile range obtained for velocity and the decrease in intercellular forces when 

comparing to breast co-cultures.  
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The same active traction force distribution was considered for bladder and breast cells. 

Therefore, the differences observed between them reflect the difference in the passive 

properties characteristic of the type of tissue – Table 5.3. A combination of mismatch in 

traction force and in the passive properties of normal and cancer cells lead to cell sorting 

in bladder cell co-cultures. Breast cells exerting the same traction forces do not tend to 

sort as they have more similar passive properties. This is reflected in the values of 

interquartile range for the Young’s modulus and cell-cell adhesion distributions in Table 

5.3. However, sorting between normal and cancer breast cells in co-culture happened 

for one of the five seeding replicates (seeding replicate 3). This means that sorting 

between normal and cancer cells in co-culture depends on the spatial distribution of 

active and passive cell mechanical properties. By changing the distribution of their 

mechanical properties in a cell cluster, normal and cancer cells can migrate as a cohesive 

group or sort. There are normal cells that are known to support cancer such as cancer 

associated fibroblasts. Gaggioli et al [154] found that fibroblasts can lead the invasion of 

cancer cells. Another example is the study of Carey et al from 2013 [155] in which a co-

culture system of normal mammary epithelial and adenocarcinoma cells was developed. 

Collective cell migration features were identified in the migration of the heterogeneous 

clusters of normal and cancer cells. Cancer cells acted as leaders, developed protrusions 

and supported the invasion of otherwise non-invasive healthy epithelial cells. The study 

suggests that different roles in collective migration can be adopted by cells of different 

sub-populations within a tumour. Shin et al [156] investigated tumour heterogeneity co-

culturing two different sub-populations of adenocarcinoma cells with different invasive 

properties. The authors concluded that the interaction between the two sub-

populations of cancer cells promotes invasion and that the highly invasive cells guided 

the less invasive ones. Besides collective cell migration, also sorting is observed in cancer 

and it is important for metastasis. As mentioned in section 5.5.1, cancer cells exhibit 

different migration mechanisms and can migrate with decreased levels of cell-cell 

adhesion instead of collectively. Cancer cells that emerge in the normal tissue can sort 

from it, form clusters, enter in the bloodstream and thereby spread the disease. 

Spontaneous sorting of normal and cancer cells has also been observed in-vitro [20]. In 

Chapter 4 sorting between normal and cancer cells in co-culture was found to happen 
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due to differences in the mechanical properties of normal and cancer cells and 

thresholds were identified to explain sorting. The fact that cells of the same population 

are mechanically different was accounted for in the present Chapter 5. The results 

obtained complement the previous ones by suggesting that thresholds for sorting 

between cells can be dependent on the cell’s microenvironment and, therefore, cell 

specific.  

 

5.5.3. In-silico drug test on the migration of co-cultures 

Studies suggest that the failure of drugs during their development phase is mainly due 

to their lack of efficacy and not their secondary effects [141]. Computational models 

such as the one developed in this work can serve as platforms for drug screening and 

save time and money when compared with clinical trials. In this section the impact of 

the changes in individual cell mechanics induced by microtubule stabilizers in collective 

cell migration was investigated. 

Treatment with the microtubule stabilizer Paclitaxel was simulated by modifying the 

Young’s modulus and traction force of individual cancer cells. Bladder cancer cells were 

seeded with normal bladder cells in a co-culture scenario. At the single cell level 

Paclitaxel was considered to affect more the cancer cell Young’s modulus, 150%, than 

traction force, 63%. At the population level, the simulated drug affects a normal/cancer 

cell co-culture by increasing the median of the Young’s modulus in 171% and decreasing 

the interquartile range in 5%. The median of the traction force distribution decreases by 

36% and the variation in traction force by 41%. In Chapter 4 the sorting of normal and 

cancer cells in co-culture has been found to happen due to the variation in their 

mechanical properties. Variation in traction force (measured by the interquartile range) 

in a co-culture was more affected by the drug than the variation in Young’s modulus. 

This suggests that the changes in collective migration observed for normal/cancer co-

cultures with the drug are better explained by the changes that the drug promotes in 

the traction force of cancer cells than in their Young’s modulus.  

With the drug treatment both the median and interquartile range values associated to 

cell velocity (Table 5.8) decreased to values on the same order of magnitude as those 

found for monocultures of normal cells (Tables 5.5 and 5.6). Paclitaxel was also found to 
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inhibit cancer cell migration significantly experimentally: the distance travelled by 

cancer cells decreased with increased concentration of the drug [157]. The authors 

reported changes in the cell’s morphology with the drug treatment, specifically, a 

decrease in cellular protrusions. These changes could be related with the effect on cell 

migration. 

Also the median and interquartile range values for intercellular force (Table 5.8) 

decreased to the levels found for normal monocultures with the virtual drug treatment 

(Tables 5.5 and 5.5). These results suggest that Paclitaxel-type drugs reverse the 

mechanical and migration properties of cancer cells to properties similar to those of 

normal cells. It should be pointed out that there is no consensus on the effect of 

Paclitaxel on the mechanical properties of cells. There is a study reporting no influence 

on the cells traction force after treatment [158]. Information on the changes in cell 

mechanics promoted by Paclitaxel or other anti-cancer drugs lacks and the present work 

evidences the potential of such information. Furthermore, this work assumes that it is 

possible to use a chemotherapeutic agent to target cancer cells exclusively, without 

affecting contacting normal cells. In fact, one of the main challenges in cancer treatment 

remains to this day the toxicity of anti-cancer drugs [146]. One possibility being explored 

to protect healthy cells from adverse treatment effects is the use of a combination of 

several drugs in chemotherapy [159]. 

The computational model developed provided mechanistic and quantitative 

information about the effect of microtubule stabilizers on collective cell migration. With 

simulated drug treatment the sorting between bladder normal and cancer cells 

decreased 214%, Table 5.8. This supports the idea that the sorting between normal and 

cancer cells can be prevented using such drug. Changes in cell migration are associated 

with metastasis. Assuming that a decrease in the sorting of normal and cancer cells in 

the carcinoma in-situ reduces the possibility of metastasis, this result suggests that the 

changes in mechanical properties of cells induced by microtubule stabilizers can 

contribute to their therapeutic effect in metastasis inhibition [146]. Treatment with 

microtubule stabilizers such as Paclitaxel could keep the cancer localized [160], thereby, 

increasing the probability of treatment success.  
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However, it needs to be pointed out that the sorting of normal and cancer cells can be 

beneficial and, even required, in some circumstances. As discussed in previous sections 

there is plasticity in cancer cell migration and cells tune their properties according to 

their microenvironment and stage of the disease. As mentioned in section 5.5.2 there is 

evidence that the physical contact of normal cells and cancer cells can support cancer 

invasion and both cell types can migrate collectively. In this scenario, it would be 

beneficial to trigger the sorting of normal and cancer cells to stop this cooperation 

process. In addition, separating normal from cancer cells in-vitro can be useful to 

specifically treat cancer cells, purify tissue samples, generate primary tumour cell lines 

from biopsy samples for anti-cancer drugs testing and develop cell therapy personalized 

treatments [13], [161]. Therefore, drugs need to be designed depending on the 

particular application and cancer stage being targeted. The plasticity of migration of 

cancer cells needs to be further investigated, as it directly impacts the efficacy of anti-

cancer drugs [162]. In addition, drug development should also account for features that 

are specific of the individual, the particular tumour and the cells it is composed of. 

Computational models such as the one developed in this work can account for these 

features and act as platforms for the testing of personalized drugs.  

More generally, the results of this work emphasize the role of the cell’s cytoskeleton in 

collective cell migration. Since the cytoskeleton contributes to the mechanical 

properties of cells, such as the apparent Young’s modulus and traction force, it can be 

modified to change the migration mechanism of cells. Cells can remodel their 

cytoskeleton to change the number of stress fibres, adapt contractility forces and 

traction [163]. In fact, in the future the present population model could be combined 

with a single cell finite element model to explicitly model the mechanics of the cell’s 

cytoskeleton. Thereby, the potential of Paclitaxel-type drugs to impact collective cell 

migration by changing the structure of the cells’ cytoskeleton could be directly tested. 

Furthermore, cytoskeleton remodelling with the cell’s microenvironment could be 

incorporated to increase mechanistic understanding on the plasticity of cancer cell 

migration. The present work proposes that the potential of drugs that target the 

mechanics of the cytoskeleton, such as microtubule stabilizers, to trigger changes in 

collective cell migration should be investigated. In conclusion, pharmaceutical 
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companies should explore further the changes in cell mechanics induced by anti-cancer 

drugs as they may contribute to their therapeutic effect. 

 

5.6 Conclusion 

A cell-centred computational model of collective cell migration that accounts for single 

cell mechanical heterogeneity was developed.  The model was applied to the context of 

cancer, a disease that is particularly characterized by the heterogeneity that exists 

between cells of different tumours and cells belonging to the same tumour. The 

migration of normal and cancer cell populations was investigated. The virtual co-culture 

of normal and cancer cells was considered as a model for tumour-host interactions to 

increase understanding on the mechanics of cancer migration. Furthermore, the impact 

of chemotherapeutic microtubule stabilizers was tested. 

The model predicts that the heterogeneity in single cell mechanics observed in cancer 

can be related with the diverse migration mechanisms cancer cells adopt. The results 

suggest that the cells’ ability to tune their mechanical properties according to their 

microenvironment and the stage of progression of the disease can contribute to the 

plasticity of cancer cell migration. In addition, it is suggested that changes in cell 

mechanics promoted by anti-cancer drugs can lead to different cell migration and 

therefore contribute to their therapeutic effect in inhibiting metastasis. More generally, 

this work proposes that the cytoskeleton by contributing to cell mechanics contributes 

to the collective migration of cells.  
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Chapter 6 - General discussion 

 

Summary  

This Chapter presents a general discussion of the results of the thesis. The various sets of results 

are integrated and analysed in light of state of the art knowledge. Limitations and possible future 

improvements are discussed.  

 

6.1 Modelling and simulation in drug development 

Modelling and simulation in drug development is progressing from a scientific to a 

regulatory tool. The potential of modelling and simulation has been recognized by 

leading pharmaceutical companies and regulatory agents such as the USA Food and Drug 

Administration (FDA)  [164] and the Japanese Pharmaceuticals and Medical Devices 

Agency (PMDA) [165]. A recent FDA work plan announces the investment in in-silico 

trials to support the advancement of novel therapeutics. The work plan follows the 

funding provided by the 21st Century Cures Act (H.R.34), a law enacted by the USA 

government in December 2016.  

Mathematical and computational models provide a platform for in-silico drug testing. 

They can boost the advancement of precision medicine in the future by supporting the 

choice of the appropriate drug for a particular patient, predicting the efficacy and 

toxicity of the treatment, optimizing doses, testing drug-drug interactions in combined 

treatments and investigating alternative administration routes [166]. 

Drug development needs to adopt new strategies to reduce the time and money spent 

on investigating promising drugs that fail before their regulatory approval. A nine-year 

study including 7,455 drug development programs across 1,103 companies found that 

only one in ten programs entering Phase I in 2006 reached FDA approval by 2015 [167]. 

Of the 14 diseases investigated in the study, cancer was associated with the lowest 

likelihood of drug approval from Phase I (5.1%). Among other reasons, low success rates 

are explained by poor efficacy due to a lack of clear understanding of the drugs’ 

mechanisms of action [168].  
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At an early stage of drug development computational models can be used to provide 

mechanistic knowledge about the disease, find potential drug candidates and 

understand mechanisms of action. Models can inspire novel in-vitro/animal experiments 

and clinical trials and be iteratively improved. 

Physiological endpoints of mechanical nature, such as cellular contractile force, have 

recently been proposed to evaluate the effect of drugs [169]. It is known for a long time 

that cell mechanics affects cell behaviour [170]. Nonetheless, the relationship between 

biomechanics and drugs’ mechanisms of action is still rarely investigated [141]. 

 

6.2 Discussion of model predictions 

This work aimed to generate mechanistic and quantitative understanding of the role of 

cell mechanics in collective cell migration and sorting. For this purpose, a computational 

model was developed and applied to cancer. The ultimate goal was to make predictions 

able to inform the design of anti-cancer drugs. 

Chapter 3 of this thesis describes the development of a computational model describing 

passive mechanical interactions between cells. Intercellular mechanical interactions are 

considered to drive cell spreading following the first few hours of in-vitro seeding.  The 

model was applied to normal and cancer cells from the bladder and breast. Cells from 

both tissues were seeded in monocultures composed of identical normal or cancer cells. 

In addition, normal/cancer cell co-cultures were considered as a model for tumour-host 

interactions. 

Predictions about population arrangement and mechanics were generated based on 

individual cell mechanical properties. It was found that intercellular stress in a 

monoculture depends on the cells’ Young’s modulus, cell-cell adhesion forces and local 

microenvironment (neighbouring cells and position within the monolayer). Intercellular 

stress is higher at the monolayer edge and in regions within the monolayer where the 

cells are less packed. Trepat et al [16]  mathematically estimated the intercellular stress 

within an epithelial cell monolayer from experimentally measured traction forces. This 

was achieved considering the equilibrium between cell-substrate traction and cell-cell 

forces. The authors reported higher traction for the cells on the edge. Higher 
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intercellular stress was estimated for the cells within the monolayer as a result of the 

build-up of forces. In Trepat et al cell-cell forces were interpreted as the forces that 

balance cell traction. In this work, cell-cell forces emerge uniquely from intercellular 

mechanical interactions due to elastic repulsion and adhesion. This explains the 

disagreement between both results. In fact, although not considered in this work, it is 

also possible that passive cell stress originates active cell responses that maintain the 

monolayer uniformity and integrity, for instance, cytoskeleton remodelling [132] and 

the formation of protrusions [171]. These processes could have a role in preserving the 

integrity of the edge and closing monolayer wounds where the cells are less packed. 

Intercellular stress was found to vary greatly within modelled co-cultures. For co-

cultures of mechanically different cells, in addition to depending on cell packing and 

position within the monolayer, intercellular stress additionally depends on the cell type. 

The fact that heterogeneous traction fields were experimentally measured for 

populations of normal epithelial cells [16] suggests that mechanically different cells may 

be present in a monoculture. This idea is supported by this work and inspired the study 

of cell cultures considering intra-population mechanical variability in Chapter 5. The 

differentiation between passive and active force components poses a challenge to the 

validation of the model developed. Notwithstanding, models such as this one, that 

isolate the contributions of different factors, provide mechanistic understanding of their 

relative role. 

In this work Young’s modulus and cell-cell adhesion levels also explained the visual 

sorting of normal and cancer cells in the first few hours after seeding. Early cell sorting 

(Figure 3.15 in Chapter 3) can be driven by differences in the Young’s modulus and 

intercellular adhesion of normal and cancer cells. Sorting, in turn, reduces the level of 

intercellular stress. Furthermore, cell sorting through passive cell spreading is 

dependent on the local microenvironment and seeding configuration. The model 

predicted the existence of trapped cells that do not sort and are completely surrounded 

by cells of other type. These cells are in a state of higher intercellular stress. As 

previously discussed, it is possible that high levels of passive stress give rise to responses 

that were not accounted for in this work and maintain the cells function. For example, 
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stress-driven changes in cell mechanical properties can take place, such as changes in 

cell stiffness or traction force generation [124].  

In order to understand the relative role of passive cell mechanics and active force 

generation in the migration of co-cultures, the model was extended to describe 

migration after cell spreading in Chapter 4. The model includes traction forces actively 

exerted by cells and was applied to bladder and breast normal/cancer cell co-cultures. 

Mechanical and quantitative thresholds triggering the spontaneous sorting of normal 

and cancer cells were defined.  

Following Vicsek’s model [68], it was assumed that migrating cells in contact align the 

direction of their actomyosin machineries. Therefore, cell sorting emerges in the model 

due to the inability of cells with different mechanical properties to migrate in close 

contact and not as a result of their scattered movement.  

Other works on collective cell migration focused on finding mechanistic explanations for 

the local movement alignment between contacting cells. Marth et al [172] 

computationally predicted the spontaneous emergence of collective cell migration from 

inelastic intercellular collisions. Contact inhibition of locomotion (CIL) describes the 

changes in cell migration following cell-cell contact, specifically, repolarization and 

migration away from other cells. There is evidence that CIL dysregulation in metastatic 

cancer cells is related with its invasive potential [173].  

In order to investigate the possible relationship between the seemingly conflicting 

behaviours of CIL and collective cell migration, Desai et al 2013 [174] developed an 

individual-based model. The formation of collective cell chains following cell-cell 

collisions was predicted, observation that was posteriorly verified experimentally. The 

results suggest that CIL and collective cell migration are related and their interplay can 

explain the ability of cells to dynamically switch between migration modes. 

Carmona-Fontaine et al [47] proposed that cell-cell attraction, in concert with CIL, is 

required to maintain cell clusters cohesive. Cell-cell attraction, or coattraction, is not to 

be confused with cell-cell adhesion as it emerges in response to a chemoattractant 

released by the individual cells, the complement fragment C3a. The authors suggest that 

a balance between short-range repulsion (CIL) and long-range attraction owing to the 

production and sensing of a chemoattractant (coattraction) is required for collective cell 
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migration. CIL drives repolarization in response to intercellular contact and coattraction 

keeps the cluster cohesive.  

The computational predictions from Woods et al in 2014 [175] further show that 

directed collective cell migration does not require an external signal but, instead, 

chemotaxis towards an attractant produced by the cells itself.  

On the whole, the results of these works suggest that directed collective cell migration 

can emerge uniquely from repulsive and attractive mechanical interactions between 

cells. In the future, the model presented in this thesis could be expanded to include a 

mechanistic explanation for cell movement alignment based on intercellular mechanical 

interactions.  

The model developed allowed to make predictions related with the sorting of normal 

and cancer cells in co-culture based on their mechanical properties. Cell sorting was 

found to be higher the higher the active traction mismatch between both cell types. To 

the author’s knowledge this was the first time that the spontaneous sorting of normal 

and cancer cells was related to the mismatch between traction forces derived from the 

experimental literature. The effect of cell-cell adhesion on sorting was also studied. If 

the levels of cell-cell adhesion are not sufficiently high, a mismatch in traction can lead 

to cell sorting, even without differential cell-cell adhesion (different levels of cell-cell 

adhesion for normal and cancer cells). Inspired by the DAH [21], the effect of differential 

cell-cell adhesion was also explored. It was found that the higher the traction mismatch, 

the lower the adhesion difference between normal and cancer cells required for their 

sorting. In addition to predicting that two tissues sort due to differences in their surface 

tension, the DAH predicts that the tissue with lower surface tension envelops the one 

with higher surface tension. Although, the role of differential cell-cell adhesion in cell 

sorting was confirmed with this work, the present model was not able to reproduce the 

enveloping behaviour predicted by the DAH. This could be explained by the fact that the 

model developed does not consider cell migration as solely governed by cell-cell 

adhesion [94] but also intercellular elastic interactions and active traction forces. 

Furthermore, following the set-up of in-vitro collective cell migration experiments [33], 

cell movement was not confined and confluency was not modelled. Nonetheless, even 

in sorting experiments in which cell movement is confined, the enveloping behaviour is 
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not always observed. Literature results show that the most aggressive cells enveloped 

the least aggressive ones in a 3D breast co-culture [155], [176] . However, brain tumour 

cells and stem cells have been found to organise themselves differently, in two poles, in 

a 3D tumour model [20]. Self-organization seems to be a complex behaviour dependent 

on factors such as the type of cell, the type of cadherin mediating cell-cell adhesion and 

recognition and the extracellular environment [104]. 

Globally, sorting was found to be more dependent on differences in the traction of 

normal and cancer cells and absolute cell-cell adhesion levels, followed by differential 

adhesion of normal and cancer cells. As a result, an integrated mechanism was proposed 

for the sorting of normal and cancer cells in Chapter 4. Intercellular forces emerge in a 

cell culture triggered by a mismatch in the passive and/or active mechanical properties 

of the cells. When there is a high mismatch in the passive properties of cells, Young’s 

modulus and intercellular adhesion, cell sorting is possible in the first few hours after 

seeding – Chapter 3. The traction forces exerted by cells after the onset of active cell 

migration can also drive sorting – Chapter 4. A mismatch in traction gives rise to 

intercellular forces that allow normal and cancer cells to migrate cohesively. Sorting 

happens when the passive properties of cells prevent them from generating such 

intercellular cooperative forces. 

It is possible that cells adapt their traction forces in response to the intercellular forces 

that build-up in a co-culture of cells with different motility. The inclusion of modelled 

feedback between passive and active cell mechanical properties would allow 

remodelling based on the mechanical microenvironment to be explored. Besides being 

affected by the local environment, cell mechanical properties can also be intrinsically 

different between cells that belong to the same population [27], [29]. This intrinsic 

heterogeneity can, for example, be due to genetic variation generated by mutations. 

Although also present in the normal tissue, cell heterogeneity is characteristic of cancer 

[142]. For that reason, its implications need to be understood to inform the 

development of anti-cancer drugs. 

The migration of mechanically heterogeneous cell populations was investigated in 

Chapter 5 of the present work. Normal and cancer cells from the bladder and breast 

tissues were modelled in both monoculture and normal/cancer cell co-culture scenarios. 
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In addition to the variation of cell mechanical properties depending on the tissue of 

origin and malignancy, intra-population variability based on the experimental literature 

was considered. The results suggest that different spatial distributions of mechanical 

properties can trigger different migration mechanisms in cancer cell populations. 

Different behaviours emerged in different seeding replicates such as collective 

migration, segregation in various clusters or formation of finger-like protrusions. This 

suggests that the plasticity often associated to the migration of cancer cell populations 

can be related to the heterogeneity of their mechanical properties. Cancer cells vary 

these properties, for instance through cytoskeleton remodelling, at different stages of 

the disease to switch migration mode. In fact, changes in cell mechanics were reported 

during Epithelial-to-Mesenchymal Transition (EMT) [153], the transformation that 

explains how individual cells segregate from the carcinoma in-situ and become invasive. 

It would be interesting in the future to use the model developed to further investigate 

how the different migration modes emerge. Mechanistic and quantitative 

understanding could support the development of techniques to control the migration of 

cancer cells and trigger particular migration modes in particular circumstances. For this 

purpose, a higher number of cells, and therefore a higher number of seeding replicates, 

should be modelled in order to increase the statistical power of the predictions. 

Although mechanical properties were considered to vary within a cell population, they 

were assigned randomly to cells independently of their position within the monolayer. 

This approach is in apparent contrast with experimental results that found that 

mechanical properties differ for cells on the edge or within a monolayer. For instance, 

as previously mentioned, higher traction forces have been measured for cells on the 

edge of a migrating cell monolayer [18], [137]. Nonetheless, it is probable that this 

spatial distribution emerges as a result of cells sensing their local microenvironment 

through mechanotransduction  pathways [177], directing their migration machineries 

and remodelling. An extended version of the computational model developed including 

these cell processes has the potential to explain the emergence of such heterogeneous 

and dynamic force fields. Furthermore, the formation, characterization and importance 

of specialized leader cells could also be explored. The results of this work propose that, 

even without remodelling, the intrinsic intra-population variability of mechanical 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 6 – General discussion 

 

138 

 

properties can explain the variety of migration modes that cancer cell populations 

adopt. 

The effect of intra-population heterogeneity was also investigated in normal/cancer cell 

co-cultures. The sorting of normal and cancer cells was found to depend on the spatial 

distribution of passive and active cell mechanical properties. The results obtained in 

Chapter 5 complement those of Chapter 4 by suggesting that mechanical thresholds for 

cell sorting should be dependent on the cell microenvironment, and, therefore, cell 

specific. 

The predictions of the model developed indicate that the mechanical properties of 

individual cells are reflected in the migration at the population level. Therefore, they are 

potential targets for the treatment of diseases affecting cell migration, such as cancer. 

The effect of chemotherapeutic microtubule stabilizers on the sorting of normal and 

cancer bladder cells in co-culture was tested in-silico using the model developed. 

Microtubule stabilizers impair cell division by affecting the dynamics of the cytoskeleton. 

However, there is evidence that, by targeting the cytoskeleton, microtubule stabilizers 

such as Paclitaxel modify the mechanical properties of cells: Young’s modulus [36]  and 

traction force [37]. The effect of microtubule stabilizers was modelled accounting for 

the changes in mechanical properties they induce in cancer cells. The results suggest 

that this family of drugs reverses the mechanical and migratory properties of cancer cells 

from the bladder to properties similar to those of normal cells. Since the sorting of 

normal and cancer cells in co-culture is driven by differences between cells, sorting is 

reduced by the drug treatment. A decrease in the sorting of normal and cancer cells in 

carcinoma in-situ could reduce the possibility of metastasis. Thereby, the changes in 

mechanical properties induced by microtubule stabilizers could promote metastasis 

inhibition. The relationship between cell mechanics and the therapeutic effect of these 

drugs should be further explored. 

In addition to metastasis prevention, the results of this work can be used for situations 

in which cell sorting is required. For instance, cell sorting can be triggered to purify 

tumour samples composed of a mixture of cancer cells, stem cells and normal epithelial 

cells. This purification is required to create primary tumour cell lines for the 

development of anti-cancer drugs. Cell sorting could be prevented or triggered 
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depending on the application. The quantitative and mechanistic understanding provided 

by the model developed can, therefore, be beneficial in different scenarios and inform 

the design of different drugs. 

Experimental studies confirm that Paclitaxel inhibits the proliferation of cancer cells 

[178], [179]. Combined drug treatments have also been explored. Paclitaxel combined 

with Harmine resulted in more effective inhibition of gastric cancer cells migration and 

invasion than the treatment with both drugs separately [180]. However, Paclitaxel has 

also been associated with metastasis promotion in some situations [181], [182]. Further 

research is required to better understand and maximize the anti-cancer potential of the 

drug.  

In this computational work it was assumed that the modelled chemotherapeutic agent 

was 100% efficient in affecting the mechanical properties of cancer cells. Nevertheless, 

the effect is dependent on several factors such as the drug uptake and the drug 

concentration. Different delivery mechanisms such as the use of micelles have been 

experimentally explored to improve the drug uptake [183]. Furthermore, microtubule 

stabilizers seem to have a concentration-dependent effect. Low concentrations of 

Paclitaxel have been found to be clinically relevant and less susceptible to generate 

treatment toxicity [184]. There are studies reporting EMT [185] and metastasis 

inhibition [160] using low doses of Paclitaxel. Low-Dose Metronomic (LDM) 

chemotherapy has been proposed as a less toxic alternative to conventional 

chemotherapy [186]. It consists on the frequent and continuous administration of low 

doses of chemotherapeutic drugs. The concentration-dependency of the effect of 

microtubule stabilizers was not considered in this work. In the future, a coupled model 

could provide further insight into the range of possible cell population behaviours 

triggered by microtubule stabilizers. For this purpose, the mechanical model developed 

in this work could be coupled with a pharmacological model of the drug’s mechanism of 

action. 
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6.3 Messages to take forward 

More generally, the results of this thesis provide evidence of the role of the cytoskeleton 

in the collective migration of cells. The cytoskeleton is a structural, load-bearing and 

dynamic structure. It bridges the cell and the extracellular environment and takes part 

in the formation of protrusions, cell migration, division and intracellular transport of 

organelles. The functionality of the cytoskeleton requires the generation of forces by 

the actomyosin machinery. Cytoskeleton remodelling is, hence, associated with changes 

in the mechanics of cells such as elasticity [153] and force generation properties [163]. 

In fact, the hypothesis that microtubule stabilizers impact collective cell migration by 

changing the structure of the cytoskeleton could be tested in the future. For this 

purpose, the model developed could be combined with a single cell finite element model 

that explicitly describes the structure and mechanics of the cytoskeleton. Thereby, the 

cytoskeleton structure, passive and active cell mechanical properties and migration 

behaviour could be related and understood in an integrated perspective. Furthermore, 

cytoskeleton remodelling triggered by the cell’s microenvironment could be included to 

investigate the several migration modes exhibited by cancer cells.  

This work proposes that pharmaceutical companies should perform 

mechanopharmacology  [141] studies on the changes in cell mechanical properties 

induced by drugs known to be chemotherapeutic, as they may play role in their 

therapeutic effect. Equally, the anti-cancer potential of drugs known to target the 

mechanics of cells should also be explored.  

Collective cell behaviour in cancer is much less understood than in morphogenesis. 

Being a slowly evolving and complex disease makes the design of cancer experiments 

more difficult [75]. This is an opportunity for the development of computational models 

able to generate knowledge and inspire novel experiments. Although migration and 

sorting are required for cancer metastasis and invasion [41], [42], modelling in cancer 

has been mainly focused on tumour growth [39], [40]. The computational model of the 

present work adds to the ones existent by investigating the mechanics of sorting 

between normal and cancer cells based on cell mechanical properties experimentally 

measured [42]. In fact, with the advancement of measurement technologies the 
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mechanical fidelity of computational models should increase. Computational models 

should develop hand in hand with experimental technologies. Experimental 

technologies will provide increasingly accurate measurements and models will continue 

to demonstrate the gaps in knowledge that, in turn, inspire novel experiments. The 

model developed in this work highlights that single cell mechanical properties should be 

further studied to understand complex diseases such as cancer. Given the potential of 

cell-cell adhesion forces, traction forces and cell Young’s modulus to determine cell 

migration modes and sorting, techniques to measure these mechanical properties must 

continue to evolve. In addition, this work proposes the integration of concepts related 

with collective cell migration and sorting. Experimental [102] and computational models 

[24], [103]  investigating the relation between both phenomena offer insight on the 

mechanisms behind the dynamics of cell migration.  

Although the focus of this work was on cancer metastasis, the model predictions can be 

translated to other biological scenarios involving collective cell migration and sorting, 

such as morphogenesis. The segregation of the cells that will compose the several 

tissues is required in biological development. It is possible that collective cell migration 

and sorting in cancer and in morphogenesis are based on shared core principles. 

Therefore the model developed could be tuned to better understand and treat 

congenital diseases.  
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Chapter 7 - Conclusions 

 

Summary  

This Chapter concludes the thesis by summarising the main findings and the messages to take 

forward. 

 

The aim of this thesis was to improve the understanding of the mechanics of collective 

cell migration and sorting in cancer. The role of the mechanical properties of individual 

cells in determining mechanics and migration at the cell-population level was 

investigated. A quantitative and mechanistic computational model was developed for 

this purpose.  

In Chapter 3 a model describing cell-cell passive mechanical interactions was presented. 

These interactions were related with cell spreading in the first hours following seeding. 

Normal and cancer cells were considered in both monoculture and co-culture scenarios. 

The changes in the mechanical properties of cells associated with malignancy were 

accounted for. The model predicts intercellular stress to be dependent on the cells’ 

Young’s modulus, cell-cell adhesion levels and local microenvironment (neighbouring 

cells and position within the monolayer). The presence of mechanically different normal 

and cancer cells in co-culture results in a higher variation of intercellular stress in 

comparison to monocultures. In addition, the differences in Young’s modulus and 

intercellular adhesion of normal and cancer cells explain their early sorting.  

In Chapter 4 the migratory traction forces exerted by cells after spreading were 

incorporated in the model. Quantitative mechanical thresholds were defined for the 

sorting of normal and cancer cells in co-culture. Sorting was found to depend primarily 

on differences in the traction of normal and cancer cells and absolute cell-cell adhesion 

levels, followed by the differential adhesion of normal and cancer cells. The predictions 

supported an integrated mechanism for the sorting of normal and cancer cells. The 

differences in the passive properties of cells, Young’s modulus and intercellular 

adhesion, generate intercellular forces that drive sorting in the first few hours after 

seeding – Chapter 3. The migratory traction forces exerted by cells later were also found 
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to contribute to sorting. The mismatch in traction force can generate cooperative 

intercellular forces that allow normal and cancer cells to migrate collectively. The 

generation of these intercellular forces is, in turn, dependent on the passive properties 

of cells. If cells are not able to generate intercellular forces, sorting of normal and cancer 

cells occurs. 

In Chapter 5 the intra-population variability of the mechanical properties of cells was 

included. The results suggest that the plasticity of migration of cancer cell populations 

is related with the heterogeneity of cell mechanics. Different spatial distributions of 

mechanical properties can trigger different migration modes in cancer cell populations. 

In normal/cancer cell co-cultures sorting also depends on the spatial distribution of 

passive and active mechanical properties. This result complements the ones found in 

Chapter 4 by proposing that mechanical thresholds for cell sorting depend on the cell 

microenvironment being, therefore, cell specific. The effect of microtubule stabilizers 

on sorting was tested in-silico accounting for the changes induced in the mechanical 

properties of cancer cells. Microtubule stabilizers were predicted to reverse both the 

mechanical and migration properties of cancer cells to properties similar to the ones of 

normal healthy cells. The sorting of normal and cancer cells, is thereby, reduced.  

This study shows that individual cell mechanical properties can explain a variety of 

population-scale measurements and behaviours. The results emphasize the importance 

of investigating the changes in cell mechanics that accompany malignant transformation 

and their role in cancer progression. The relation between biomechanics and the effect 

of drugs is rarely investigated. In this work the effect of the cell changes induced by 

microtubule stabilizers on the population behaviour was studied. It is proposed that 

pharmaceutical companies would benefit from exploring the cell mechanical changes 

induced by anti-cancer drugs as they may contribute to their therapeutic effect. 

Furthermore, cell heterogeneity should be regarded in the design of anti-cancer drugs 

as it allows the diversity of behaviours cancer cell populations’ exhibit.  

A computational model integrating collective cell migration and sorting was developed. 

The model is unique in investigating the migration of normal and cancer cell populations 

based on the cell mechanical changes observed in cancer. It represents a step forward 

towards a quantitative and mechanistic description of collective cell migration and 



Computational model of normal and cancer cell collective mechanics and migration 

Chapter 7 – Conclusions 

 

145 

 

sorting. Such a description has the potential to enable the development of techniques 

to control the migration of cancer cells and support treatment. The findings can, 

nonetheless, be translated to other applications. The framework can be tuned to 

investigate collective cell migration and sorting in other biological scenarios, such as in 

morphogenesis.  
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Appendix 

 

Model stability and accuracy 

 

Simulations 

The effect of the time step on the model stability and accuracy was investigated. Co-

cultures of 200 bladder cells were considered. The aim was to challenge the model and 

explore the instability of the solution. For this reason, a high adhesion mismatch 

between normal and cancer cells was considered since it is associated with high cell 

forces, see Table A.1. Equal active velocity was assigned to normal and cancer cells. 

Intercellular force and velocity were computed for all the cells every iteration to detect 

potential oscillating behaviour. 

 

Table A.1 – Cell properties for the model stability and accuracy study. 

 
Results 

The time step is associated with the maximum force possible in the model and 

consequently, the maximum displacement allowed for cells per iteration. As previously 

mentioned in Chapter 3, a maximum force of 500 nN, time step of 0.189 seconds, is 

required to model the migration of all the cell populations investigated in this work. 

However, this value of time step, associated with a maximum cell displacement per 

iteration of 8.9% of the cell radius, did not enable force relaxation (as shown in Figure 

A.1). For this reason, lower values of time step were tested until relaxation was 

observed, which happened for a time step of 0.135 seconds. In order to confirm the 

solution accuracy a time step with half of this value was also tested, see Table A.2. 

The results in Figure A.1 refer to one of the seeding replicates as an example.  

 Bladder normal cells Bladder cancer cells 

Young’s modulus (kPa) 10 0.3 

Intercellular adhesion energy 
(nN/μm) 

0.05 36 

Active velocity (μm/min)  5 
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Since all the cells have the same active velocity, 5 μm/min=0.083 μm/s, their velocity 

should approach this value as they align their migration direction. Intercellular forces 

should increase at the beginning of cell migration and then decrease as cells move 

synchronously. As observed in Figure A.1, this does not occur for time step 1. Force 

relaxation does not happen and cells reach an average velocity of 0.27±0.83 μm/s.   

However, force relaxation happens for both time step 2 and 3. The average velocity 

approaches 0.083±5.6x10-4 μm/s and 0.083±3.2x10-4 μm/s for time steps 2 and 3, 

respectively. The force and velocity peaks observed for time step 3 are explained by cell 

contact changes. 

It can be concluded that a time step of 0.135 seconds, maximum cell displacement of 

2.5 % of the cell radius per iteration, is small enough to ensure both solution stability 

and accuracy. This time step requires an iteration number on the order of magnitude of 

53x103 to model two hours of real time cell migration. Modelling five seeding replicates 

of a 200 cell population requires globally 2.4G of maximum virtual memory and 29 hours 

of CPU time. 

The results obtained for time step 1 are better understood by investigating the level of 

force for each cell, see Figure A.2.  High levels of force and velocity are obtained for 

cancer cells and result from the solution instability. Oscillations in intercellular force 

occur every iteration, more evident for the cells with higher force, the cancer cells. Cells 

follow an adhesion-repulsion cycle, adhering to each other in one iteration and repelling 

in the next one (Figure A.3). 
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Time step 1 - 0.189 seconds Time step 2 and 3 - 0.135 and 0.067 seconds 

Intercellular force evolution 

  

Cell velocity evolution 

  

Figure A.1. Intercellular force and cell velocity evolution for the three time step values 

considered. Force was computed as the sum of intercellular forces for all the cells 

modelled. Cell velocity was averaged for all the cells and the associated standard 

deviation is shown.  

 

Table A.2 – Maximum displacement per iteration for each time step studied. 

 

 

 

 

 Time step 1 Time step 2 Time step 3 

Time step (seconds) 0.189 0.135 0.067 

Maximum cell 
displacement per 
iteration (μm)  

0.89 0.25 0.085 
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Time step 1 - 0.189 seconds 

 

Time step 2 - 0.135 seconds 

 

 

Figure A.2. Level of force per cell shows that force oscillates every iteration for time step 

1. This is not observed for time step 2. Each line corresponds to the evolution of 

intercellular force for one cell. For normal cells intercellular force is in blue and for cancer 

cells intercellular force is in black.  
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Figure A.3. Cells with higher intercellular force are shown for four consecutive iterations 

using time step 1. These cells experience a repulsion/adhesion cycle. They are shown in 

different colour together with their intercellular force vector. 

 

Discussion 

The value for the time step should be chosen according to the time scale of the 

phenomenon modelled, being directly constrained by the model formulation. The time 

step used when modelling cell populations vary greatly being in the order of magnitude 

of 10-2 to 101 s [98], [187], [188].  

For the collective cell migration model developed in this work it was found that the cell 

displacement per iteration should not exceed 2.5 % of the cell radius, which is achieved 

with a time step of 0.135 seconds. This time step ensures both the solution stability and 

accuracy, see Figure A.1.  

Vermolen et al [189] proposed a model for collective migration. It is suggested by the 

authors that collective migration emerges from cells generating a mechanical signal that 

is sensed by the others through the substrate. Intercellular repulsions were included 

based on the Hertz model. An adaptive time step scheme was used in which the time 

step is limited by the cell with the highest velocity. The maximum displacement for cells 

was defined as 25% of their diameter, 20 times higher than the one established in this 

work. Although it is stated that reducing the time step in half did not alter the results, 

oscillatory behaviour of the kind mentioned in this Appendix (Figure A.2), is reported for 

cells in high proximity. 

On the other hand, Rey et al [190] developed a collective cell migration model that 

describes intercellular interactions based on the interatomic Morse potential. Model 
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stability and accuracy was found for displacements of less than 0.6 % of the cell radius 

per iteration, a value much closer to the one reported here.  

The suitable time step is specific of the model chosen. In the context of intercellular 

mechanical interactions repulsion/adhesion instabilities depend on the force-distance 

curve defining contact. It is important to ensure that the change in the intercellular force 

is sufficiently small to ensure both the solution stability and accuracy.  


