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Abstract

Changes in the biological behaviours of cell migration and sorting are associated with
cancer. Mechanistic and quantitative understanding of the mechanics of these biological
processes can promote the development of anti-cancer treatments. Computational
models can be used as platforms to generate this understanding and to test drugs in-
silico. The heterogeneity of cancer cells constitutes one of the main drawbacks in the
development of anti-cancer drugs. Cell heterogeneity must be comprehended and
regarded when developing anti-cancer drugs. This heterogeneity can be accounted for
using computational modelling. In addition, now that measurement technologies allow
the determination of the mechanical properties of normal and cancer cells,

computational models with higher mechanical fidelity are possible.

In this context, a quantitative and mechanistic computational model was developed in
this work to investigate the role that the mechanical properties of cancer cells play in

their migration and sorting.

The individual cell properties: Young’s modulus, cell-cell adhesion and local
microenvironment (neighbouring cells and position within the monolayer) were found
to affect intercellular stress in the first hours following cell seeding. In addition, the
presence of mechanically different normal and cancer cells in co-culture results in early
sorting between them and higher variation of intercellular stress when comparing to

normal and cancer monocultures.

Quantitative mechanical thresholds for the sorting of migrating normal and cancer cells
in co-culture were defined. Sorting depended primarily on differences in the traction
force of normal and cancer cells and absolute cell-cell adhesion levels, followed by the
differential adhesion of normal and cancer cells. The predictions supported an

integrated mechanism for the sorting of normal and cancer cells.

The model also predicted that different spatial distributions of cell mechanical
properties can trigger different migration modes in cancer cell populations. This
suggests that the plasticity of migration of cancer cell populations is related with the
heterogeneity of cell mechanics. Since the sorting of normal and cancer cells in co-

culture depends on the spatial distribution of their mechanical properties, mechanical
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thresholds for cell sorting should additionally depend on the cell microenvironment. The
effect of microtubule stabilizers on sorting was tested in-silico accounting for the
changes induced in the mechanical properties of cancer cells. Microtubule stabilizers
were predicted to reverse both the mechanical and migration properties of cancer cells
to properties similar to the ones of normal healthy cells. The sorting of normal and

cancer cells, is thereby, reduced.

This study shows that individual cell mechanical properties can explain a variety of
population-scale measurements and behaviours. The results emphasize the importance
of investigating the changes in cell mechanics that accompany malignant transformation

and their role in cancer progression.
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Chapter 1 - Introduction

Summary

This Chapter introduces the biological processes of collective cell migration and cell sorting, their
importance in cancer and their relation with cell mechanics. The need to develop mechanistic
understanding of the role of cell mechanics in collective migration and sorting is addressed, as
well as the potential of computer models to satisfy that need. The thesis proposal is presented

and the specific aims of each chapter are described.

1.1 Collective cell migration and sorting in cancer metastasis

Metastasis is the spreading of cancer from a primary tumour to secondary locations
within the body. It is a complex process responsible for 90% of cancer deaths [1]. For
metastasis, cancer cells detach from the primary tumour, migrate, invade other tissues,
enter into the circulatory system and reach other sites where they create secondary
tumours. Mechanistic understanding of metastasis is required to support the
development of anti-metastatic treatments and reduce cancer mortality [2].

The migration of cells is affected in cancer metastasis. Cell migration is a normal process
that is fundamental for the development and maintenance of multicellular organisms. It
is involved in many diverse biological processes, from immune response to angiogenesis
[3]. Cells can migrate individually or collectively, in coordination with other cells. When
moving as a cluster, cells form a polarized multicellular unit and respond differently to
directional cues than when moving in isolation [4]. Experimental data suggest that
collective cell migration is regulated by intercellular interactions and large-scale
propagation of signals, such as mechanical loading [5]. Therefore, the behaviour of a cell
population emerges from the collective and cannot be predicted from the behaviour of
single isolated cells.

Collective cell migration is particularly important in wound healing, morphogenesis and,
in a diseased state, cancer metastasis [6]. A continuous transition seems to exist

between individual and collective cell migration. Cells on the edge of a migrating cluster
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present specific features that are similar to the ones found in cells that migrate
individually. These enable them to direct the movement of the cluster [7]. This
continuous spectrum of migration is also seen in cancer metastasis. Cancer cells are able
to opportunistically switch migration mode, explaining why their migration is said to be
plastic [8]. Cancer cells can detach from the carcinoma in-situ collectively and invade the
surrounding tissues as a group [9], or individually, owing to a dynamic transformation to
a more aggressive and migratory phenotype [10]. Therefore, cancer metastasis is related
with the separation of cells of different type, or cell sorting.

The phenomenon of sorting requires collective cell migration and is not only involved in
metastasis. Cell sorting is, for instance, naturally present in morphogenesis, allowing the
segregation of the cells that will compose the different tissues [11], [12]. The separation
of cells of different type can also be artificially triggered. One application is the
development of primary tumour cell lines to test anti-cancer drugs. This requires the
sorting of cells from mixed tumour samples [13]. Both collective cell migration and cell
sorting are associated with cancer. Consequently, the investigation of these biological
processes can favour the development of anti-cancer treatments.

In-vitro experiments have been developed to increase the understanding of collective
cell migration and cell sorting. One of such experiments is the wound healing assay. After
cell culture, the cell monolayer is scratched to create a wound and investigate the
dynamics of the monolayer as the cells migrate to close the wound. These studies have
shown that directionality and intercellular coordination are key aspects of collective cell
migration [14]-[16]. Revealing the mechanism used by cells to coordinate their
migration remains a challenge [17]. Furthermore, in-vitro experiments have confirmed
the existence of a relationship between cell mechanics and cell migration. The forces
actively exerted by adherent cells to migrate collectively on a substrate have been
measured [16]. The results revealed heterogeneous and dynamic traction force fields.
However, a clear relation between the forces measured and the collective movement
observed is yet to be found [18].

The spontaneous sorting of cells of different types has been observed in-vitro. Cells of
different types from the blood brain barrier co-cultured in mixed spheroids have shown

spontaneous self-organization [19]. The cells were able to reproduce in-vitro a
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multicellular architecture that resembles the one of the blood brain barrier.
Spontaneous cell sorting has also been observed between normal and cancer cells in co-
culture [20]. The in-vitro co-culture of normal and cancer cells was studied as a
surrogate for tumour-host interactions. The observed segregation behaviour was
related with the processes of tumour growth and metastasis in-vivo.

One mechanism suggested to explain cell recognition and sorting is the differential
expression of cadherins. Steinberg [21], inspired by immiscible liquids, postulated that
tissues should sort due to differences in their surface tension. Tissue surface tension is
associated with cell-cell adhesion, seen as the force driving sorting. The theory is
consistent with experimental observations [22]. However, differences in cortex tension
[23] and motility forces [12], [24] have also been related to cell sorting. Therefore, other
than intercellular adhesion forces, tension-producing forces seem to contribute to cell

sorting [25].

1.2 Mechanics of normal and cancer cells

Single-cell measurements have shown that normal and cancer cells are mechanically
different. Cancer cells are softer than normal cells and cell stiffness is now regarded as
a biomarker of cancer [26]—[29]. Furthermore, the traction forces exerted by migrating
cancer cells are higher than the ones exerted by normal cells [30], [31]. Measurements
of cell mechanics have additionally shown that cancer cells of the same population can
also be heterogeneous in stiffness [27], [29], [32] and traction force [33]. Besides
mechanical properties, cancer cells within the same tumour can differ in morphology,
proliferation, motility and metastatic potential [34]. Cell heterogeneity is a hallmark of
tumours that is not completely understood, challenging the development of drugs [35].
In addition to dysregulated biological pathways, cancer is related with dysregulated cell
mechanical properties, see Figure 1.1. Notwithstanding, it is not clear how the different
mechanical properties found for cancer cells can contribute to their migration and
invasion behaviours. The role that single cell mechanics plays in the biological processes

of collective cell migration and sorting needs to be investigated.
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Since the mechanical properties of cells are related with their malignancy, anti-cancer
drugs can be developed to specifically target them. There is evidence that
chemotherapeutic drugs designed to impair cancer cell division also affect the
mechanical properties of cells. Microtubule stabilizers disturb the dynamics of the
cytoskeleton, essential for cell division. The cytoskeleton greatly determines the
mechanical properties of cells and microtubule stabilizers were found to change the cell
stiffness and force generation properties [36], [37]. This interplay between cell
behaviour and cell mechanics suggests that changes in cell mechanics could contribute

to the therapeutic effect of chemotherapeutic drugs.
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Figure 1.1 Schematic representation of cancer spreading from the primary tumour as

resultant of an interplay of biological and mechanical pathways [38].
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1.3 Thesis structure

Mechanistic and quantitative understanding of the mechanics of collective cell
migration is required to support the development of anti-cancer drugs. Computational
models that act as a platform for the testing of hypotheses can be used to test drugs in-
silico. One of the challenges in cancer treatment is the heterogeneity of cancer cells. This
heterogeneity must be understood and considered when developing anti-cancer drugs.
Using computational modelling, features specific of the cells the tumour is composed of
can be accounted for.

Many computational models of cancer focus on tumour growth [39], [40]. Even though
cell migration and sorting are known to be important for cancer metastasis and invasion
[41], [42], models investigating the underlying mechanisms are missing [42]. In addition,
the different mechanical properties measured for normal and cancer cells should now
support the development of cancer models with higher mechanical fidelity. The models
will shed light on the role that the mechanical properties of cancer cells play in their
migration and sorting. This understanding will, in turn, inform the development of anti-
metastatic drugs targeting the mechanical properties of cells.

In this context, the aim of this thesis was to develop a mechanistic and quantitative
computational model of the mechanics of collective cell migration and sorting in cancer.
The model predictions will provide a mechanical perspective of collective cell migration
with potential to help in the design of a novel class of anti-cancer drugs. The thesis is

organized in seven Chapters:

. After introducing the context involving the thesis and its aims in this first
Chapter, a review on collective cell migration and sorting models is presented in Chapter
2. Current theories and experiments are discussed with a focus on computational

models.

° A computational model representing passive mechanical interactions between
cells in the first hours after in-vitro seeding is presented in Chapter 3. Intercellular

interactions are considered to govern cell spreading after seeding. The model is applied
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to normal and cancer cells seeded in both monoculture and co-culture scenarios to

predict population arrangement and mechanics.

° The computational model presented in Chapter 3 is extended to describe cell
migration after cell spreading in Chapter 4. The model accounts for migratory traction
forces actively exerted by cells. Mechanical and quantitative thresholds triggering the

sorting of normal and cancer cells in co-culture are investigated.

° The computational model developed is used to investigate the migration of
mechanically heterogeneous cell populations in Chapter 5. The model is applied to
normal and cancer cells in both monoculture and co-culture scenarios. In addition, an
in-silico drug test is performed to investigate the effect of the mechanical changes
induced by microtubule stabilizers on the sorting of normal and cancer cells in co-

culture.

° A general discussion of the results of the thesis is presented in Chapter 6. The
results are discussed in an integrated perspective and compared with other works from
the literature. The limitations of the model developed and future improvements are also

covered.

° The thesis is concluded in Chapter 7. The predictions of the work are summarised

and the main messages to take forward are highlighted.




Chapter 2 - Literature review

Summary

This Chapter reviews theories and state of the art mechanical models of collective cell migration
and sorting. Both their knowledge contributions and limitations are discussed. Models
addressing cancer are presented, as well as the changes in tissue mechanics known to be
associated to the disease. The Chapter concludes discussing the gaps identified and the potential
of the present work to fill them by investigating the role of cell mechanics in collective cancer cell

migration and sorting.

2.1 Mechanics of collective cell migration: in-vitro insights

Collective cell migration is the coherent movement of cells. The directed and cohesive
migration of a cell cluster requires cell-cell interactions involving chemical and
mechanical crosstalk between individual cells [43].

The forces that a migrating epithelial cell sheet exerts on a substrate in-vitro have been
measured, showing the relationship between cell mechanics and cell migration [16], see
Figure 2.1. These traction forces emerge from the contraction of the cytoskeleton and
are measured using a technique called Traction Force Microscopy (TFM). Cells are
seeded on a polyacrylamide gel embedding fluorescent beads and coated with an
adhesion-stimulating protein. Following adhesion to the gel, the cells generate
migration forces that are transmitted to the substrate, leading to the displacement of
the embedded beads. The displacement field can be measured using image registration
techniques. Then, the traction forces exerted by the cells can be calculated using
numerical methods. Traction force measurements on migrating monolayers revealed
complex and heterogeneous force fields [16], [18]. In addition, higher traction force has
been measured for individual cancer cells than for normal healthy cells [30], [31]. An
interpretation of how the traction forces measured relate with the cells’ migration

behaviour is missing.
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Figure 2.1. Migrating epithelial cell sheet: a) Phase contrast image and b) Traction forces

normal to the edge. The field of view is of 750 umx750 um [16].

2.2 Mechanics of collective cell migration: computational models

Several computational models studied collective cell migration based on physical and
mechanical principles [12], [44], [45]. Models are discussed in the following sections
based on their spatial scale, description of intercellular interactions and cell polarity.
Models that particularly investigate collective cell migration in cancer disease are also

included.

2.2.1 Macroscale versus individual-based models

One of the approaches to model the complex behaviour of collective cell migration
focuses on the macroscale [46]. These models establish a system of governing
differential equations to describe the evolution of continuous variables in time and in
space, such as the density of cells and concentration of chemicals. In other words, these
models predict average population behaviour. An alternative approach is the use of
individual-based models, in the case of collective cell migration, cell-based models.
These do not rely on an explicit global equation, but on individual equations at the
microscale giving rise to emergent macroscale behaviour. They can account for outliers,
heterogeneity and stochasticity in behaviour. Therefore, individual-based models are

powerful in modelling complex diseases, as the case of cancer. Both modelling
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approaches can be combined, for instance to model the effect of a chemical gradient on

collective cell migration [47]. The focus of this review is on individual-based models.

2.2.2 Modelling cell-cell interactions

Modelling the mechanics of collective cell migration using an individual-based model
requires a description of cell-cell interactions. Cell-cell interactions can be defined by a
pairwise potential. Different approaches have been considered such as models based on
linear springs [48] and models based on the interatomic Lennard-Jones potential [49],

that includes both cell-cell repulsion and adhesion, see Figure 2.2.

|
Reéulsion

Adhesion

Equilibrium

Figure 2.2. Interatomic Lennard-Jones potential: V is the potential energy of the particles

and r is the distance between them [50].

Models inspired by contact mechanics such as the Hertz [51], [52] and Johnson-Kendall-
Roberts (JKR) models [53] have also been implemented. These investigate intercellular
contact mechanics based on cell elasticity properties measured with techniques such as
micropipette aspiration [54], Magnetic Twisting Cytometry (MTC) [55] , Optical
Tweezers (OT) [56] and Atomic Force Microscopy [57]. Atomic Force Microscopy (AFM),

in particular, has emerged as a versatile and powerful technique. It is a type of scanning
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probe microscopy. Along with high resolution imaging it provides the ability to
investigate local mechanical properties, since it relies on the physical interaction
between a probe and the sample being studied. In fact, AFM can be considered as an
elastography technique. The sample, in this context the cell, is scanned or mechanically
indented by a tip mounted on a cantilever whose deflection is determined using laser
tracking. The cantilever’s deflection is then converted to a force-distance curve that
reflects the interaction between the tip and cell.

The Hertz contact model is the mechanical model most commonly used to fit Atomic
Force Microscopy (AFM) experimental results and determine the cell apparent stiffness
[58]. It defines the contact between two bodies, the cell and the AFM indentation probe,
as following from their elastic deformation. The Hertz model is valid for small
indentations, corresponding to 5 to 10% of the cell height, therefore on the order of
hundreds of nanometres. On one hand, these small indentations avoid the influence of
the substrate on the mechanical response observed [59]. On another, if these small
indentations fall into the elastic regime of the cell mechanical response, the assumption
made for cell elasticity is supported [60].

Roberts and Kendall experiments showed that attractive surface forces are present
between smooth rubber spheres and glass spheres and are significant at low indentation
forces. The attractive forces are explained based on the spheres’ surface energy and
supported the development of a new contact model, the Johnson-Kendall-Roberts (JKR)
model [61]. Therefore, the JKR model differs from the Hertz model in that it accounts
for the effect of adhesion and describes the contact force as resulting from a balance
between the elastic energy stored and the surface energy lost upon contact, see Figure

2.3. The JKR force for two spheres, 1 and 2, is written as:

Eeqr?
F]KR (1,2) = R:q R, 677:0—Eeq'r3 (2.1)

where r is the radius of the circular contact area, o is the adhesion energy, and E¢q is the
equivalent Young’s modulus of the pair, function of the Young’s modulus, E, and

Poisson’s ratio, v:

10
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zeqil,n - %[(1_;2) + (1;‘;22)] (2.2)

Req is the equivalent radius:

Req;.z) - [(Ril) t (Riz)] (2.3)

Measuring the force required to separate two cells using a micropipette, Chu et al [62]
showed that the JKR model reasonably fits cell mechanics and can be used to model the
contact between cells. The JKR model has been used in the development of several
tissue models [63], [64]. Thereby, passive intercellular forces comprise a repulsive elastic

force based on cortical tension and a cell-cell adhesion force due to adhesion complexes.

R |
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/
/ R )

Figure 2.3. Contact region predicted by the Hertz and JKR models: h and r refer to the
contact penetration and radius, respectively; R, E and v refer to the cells’ radius, Young’s

modulus and Poisson’s ratio [61].

2.2.3 Modelling cell polarity
Single cell migration requires the establishment of front-to-rear cell polarity and a
polarized arrangement of the cytoskeleton. At the front of the cell there is actin

polymerization and formation of membrane protrusions, while, at the rear there is

11
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contraction of the actomyosin machinery. Directed collective cell migration requires the
establishment of front-to-rear polarity at both the cell and population scale. Several
mechanisms have been proposed to explain the polarity of cells such as: polarity is
guided by the direction of cell movement [65], polarity has a random component [66]
and polarity follows the gradient of external signals [67].

Vicsek et al in 1995 proposed that collective movement emerges from the local
alignment of self-propelled individuals [68]. More specifically, the movement of an
individual depends on the average movement of its neighbours. Due to its
phenomenological nature, Vicsek’s model misses an explanation for this alignment.
Nonetheless, the model has been applied to cell migration to represent the alignment
of the actomyosin machineries of cells that migrate collectively. The model enabled the
prediction of collective migration phenomena such as the rotation of bacterial cell
clusters [69] and finger instabilities at the edge of monolayers [70]. Vicsek’s model has
been extended to include mechanistic aspects, for example force interactions [12], [71].
Furthermore, it motivated the development of cell sorting models, section 2.3.1 of this

review.

2.2.4 Modelling cancer

Individual cancer cell migration is for example seen in leukaemia, lymphomas [3] and in
the epithelium after EMT [72]. Nonetheless, several cancers, for instance melanoma
[73], exhibit collective cell invasion when explanted in-vitro. This behaviour relies on the
cells maintaining their expression of cell-cell adhesion molecules, such as cadherins. The
migration of clusters of cells that maintain their cadherin-based cell-cell adhesions has
also been studied in-vitro to investigate morphogenesis and tissue regeneration. These
systems can be seen as in-vitro models to better understand collective invasion in cancer
[74]. The mechanisms behind collective invasion in cancer are still much less understood
than the ones behind morphogenesis and tissue regeneration. The fact that cancer is a
long-term, multistep and complex process makes the design of appropriate microscopic
experiments more difficult when compared to morphogenesis and tissue regeneration

[75].
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In this context, computational models have an important role in informing and inspiring
experiments. Stichel et al [66] investigated the spatio-temporal behaviour of lung
adenocarcinoma cells during in-vitro wound closure. An individual-based model was
developed in order to interpret the experimental observations. Cell migration was
considered as a result of active cell propulsion, random motility and cell-cell mechanical
interactions. Since the model parameters considered were dimensionless and scaled a
quantitative description was not possible. However, the results obtained confirmed that
simple mechanical models are able to reproduce several features of the collective
behaviour observed in experiments, such as speed dynamics and the detachment of
individual cells. This stresses the need to comprehend the changes in tissue mechanics
associated to cancer. Knowledge on this topic can enable the use of experimentally
based model parameters and provide further mechanistic understanding of cancer cell
migration.

It is known that the mechanics of the extracellular environment changes in the vicinity
of a tumour. There is a stiffening of the extracellular environment associated to the
malignant transformation of cells that seems to promote cancer progression [38], [76].
The mechanics of individual cells, focus of this review, is also affected. A decrease in cell
stiffness is associated to the disease. This has been explained by changes in the
cytoskeleton structure. Xu et al 2012 [26] reported longer actin fibres for normal cells,
better aligned and better distributed throughout the cell body. Recent data also
associates cell stiffness with the amount of fibres, and not only with the spatial
organization of the cytoskeleton [77].

The relationship between cancer cell stiffness and migration has been investigated
experimentally. Park et al [78] cultured normal and malignant fibroblasts, measured
their apparent stiffness with AFM and tracked their movement. A correlation was found
between the decrease in Young’s modulus associated to the malignant transformation
and higher motility. Many other studies suggest that lower cell stiffness enhances
deformation and consequently the cell’s ability to migrate and invade [79]. Friedl et al
[80] investigated the role of the mechanical properties of the nucleus in migrating cells.

The study showed that cells with more deformable nucleus are more motile. Owing to

13
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its size and stiffness, the properties of the cell nucleus greatly determine the overall cell
properties [81]. Therefore Friedl’s work also suggests an inverse relationship between
cell stiffness and motility. Decreased cell stiffness has also been found to be related with
the cell’s ability to invade neighbouring tissues in cancer metastasis [82]. However, there
is conflicting evidence supporting that highly metastatic cells can be stiffer than less
metastatic cancer cells [83]. Moreover, studies that used genetic modification [84], [85]
that affect cell migration found higher motility for stiffer cells. Thus, more research is
still required to further understand the relationship between cell stiffness and motility.
Besides depending on the cells’ ability to deform, migration depends on factors such as
the cells ability to degrade or deform the extracellular matrix (dependent on the
mechanical properties of the matrix itself) [86], the traction force exerted by cells to
migrate [18] and the dynamics of focal adhesions [87]. The connection between all these
factors is not necessarily obvious.

Katira et al [39] also investigated the relationship between the mechanical properties of
cancer cells and their migration. Individual cells were modelled as liquid cores
surrounded by viscoelastic shells representing the actin cortex. Cells were able to adhere
to each other, proliferate and migrate to minimize the total energy of the system. The
results suggest that the increased compliance of the cortex of cancer cells can explain
their faster proliferation and that intercellular adhesion determines whether the tumour
is more compact or spread out.

In addition to changes in stiffness, cancer cells also experience changes in the adhesion
to other cells and the extracellular environment. However, these changes vary with the
type of cancer and the stage of progression of the disease [38].

Since E-cadherin is responsible for the stability of cell-cell contacts in epithelial tissues,
a decreased expression of E-cadherin is commonly associated with invasion. For
example, Techasen et al in 2014 [88] found that the downregulation of E-cadherin in
cholangiocarcinomas resulted in increased cell migration and invasion. In addition, the
loss of E-cadherin has been linked to increased cell proliferation in tumours [89]. Other
works investigate the role of other cadherins. For instance, Bryan et al [90] related

increased P-cadherin expression to the invasion of bladder tumours.
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The recent review from Friedl| et al [91] discusses how the dynamics of cell-cell adhesion
contributes to the broad range of migration modes shown by cells in different contexts.
EMT supports cancer metastasis by reprogramming and weakening the adhesion
between cells. Therefore, full EMT involves the dissemination of individual cells.
However, intermediate levels of EMT have been suggested to explain the migratory
behaviour adopted by cells that maintain their cell-cell contacts in collective migration.
Therefore, the plasticity of cell-cell adhesions is directly related with the plasticity of
migration of cancer cells.

When studying a particular type of cancer, it is important to investigate the specific
expression of cell-cell adhesion proteins and the intrinsic dynamics of cell-cell adhesions.
Furthermore, the development of quantitative models involves the quantification of
intercellular adhesion forces. This further requires the identification of the mechanical
roles of cell-cell adhesion proteins. Bazellieres et al [92] suggested that, while P-cadherin
is a good predictor of intercellular tension, E-cadherin is related to its time derivative. A
guantitative and integrative understanding of the changes in the mechanics of cell-cell

adhesion in cancer is still required.

2.3 Mechanics of cell sorting: analogy with phase ordering in

fluids

The study of cell sorting has been inspired by the behaviour of immiscible liquids.
Beysens et al [22] compared phase ordering in fluids and cell sorting in embryonic
tissues. Both similar morphological patterns (Figure 2.4) and time evolution were found
for the two processes. In fluids phase ordering the interfacial tension wall-liquid was
lower than wall-gas. As a result, the liquid phase was found to wet the wall of the
container and surround the gas phase. In cell sorting the interfacial tension culture
medium-neural cells was lower than the interfacial tension culture medium-epithelial
cells. For this reason, neural retinal cells wetted the tissue culture medium and

surrounded epithelial cells.
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This analogy is the base for the physical principles that have been considered to drive
cell sorting, such as energy minimization [93]. Several theories interpret cell sorting
based on tissue surface tension, differing on the way they explain surface tension as
emergent from lower scale cell forces.

One theory is the Differential Adhesion Hypothesis (DAH) conceived by Steinberg [21].
The DAH proposes that tissue surface tension arises from cell-cell adhesion. Differences
in both the type of cadherin expressed and the expression levels can result in different
surface tension [94]. Following from the theory, for two contacting tissues, the tissue
with lower surface tension should envelop the one with higher surface tension.
Another hypothesis is the Differential Interfacial Tension Hypothesis (DITH). The DITH
developed from the work of Harris [95], Brodland [96] and Graner [97] and postulates

that tissue surface tension is associated with the cortical tension of the individual cells.
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Figure 2.4. Phase ordering in fluids and cell sorting. (Upper) Gas and liquid phase

ordering in sulfur hexafluoride under microgravity. The liquid phase wets the wall of the
container and surrounds the gas phase. a, b, and c correspond to 120s, 275s and 3,960s
after temperature quenching, respectively. (Lower) Sorting of chicken embryonic
pigmented epithelial cells (dark) and chicken embryonic neural retinal cells (light). a, b,
and c correspond to 17h, 42h, and 73h after the beginning of cell sorting, respectively
[22].
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In addition to intercellular adhesion and cortical tension, also differences in cell motility
have been related to cell sorting [98]. Computational models of cell sorting exploring

these ideas are discussed in the following sections.

2.3.1 Mechanics of cell sorting: computational models

2.3.1.1 Differential Adhesion Hypothesis

Based on the DAH hypothesis and the Potts model from statistical mechanics, Graner
and Glazier [99] suggested a model to describe cell sorting, later named as Cellular Potts
Model (CPM). This model became widely accepted and inspired the development of
several models able to predict sorting in cell aggregates [94]. One example is the recent
model from Sego et al [93] that predicts the spontaneous sorting of human induced
pluripotent stem cells (iPSCs) and iPSC-derived neurons. The neural cells with lower cell-
cell adhesion envelop the other cells, see Figure 2.5. This result is consistent with the
experimental work of Beysens et al [22] (Figure 2.4).

The DAH crosses several scales by proposing that cell sorting arises from differences in
tissue surface tension associated with differences in cell-cell adhesion. However, the
connection between the forces at the cadherin level, the forces at the cell-cell adhesion
level and the emergent surface tension forces leading to sorting at the tissue level is still

under investigation [94].

Simulation steps=0 Simulation steps=1k Simulation steps=20k | Simulation steps=200k

Figure 2.5. Simulation of the sorting between human induced pluripotent stem cells
(iPSCs, in yellow) and iPSC-derived neurons (in brown) in equal proportion. Cell sorting is

driven by differences in cell-cell adhesion (lower adhesion for the neural cells) [93].
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2.3.1.2 Differential Interfacial Tension Hypothesis

Combining the DAH and the DITH, Krieg et al [100] explored the role of cell-cell adhesion
and cortical tension in the sorting of germ-layer progenitors. AFM was used as a single-
cell force spectroscope to measure cell-cell adhesion by recording the force required to
separate two cells brought into contact. Cortical tension was extracted from AFM force-
indentation curves of single cells using a mechanical model named cortical shell-liquid
core model [23]. In addition, a computational model based on the Cellular Potts Model
was developed to have an integrated understanding of the findings. The authors
concluded that differences in cell-cell adhesion are not enough to explain the sorting of
germ-layer progenitors and that differences in the actomyosin cortex tension are
fundamental. Tissue surface tension is suggested to emerge from cell-substrate
interactions dependent on cortical tension and cell-cell interactions dependent on both
cortical tension and cell-cell adhesion.

Following the same idea, an analytical model integrating both DAH and DITH hypotheses
was proposed by Manning et al [101]. The model supports the idea that cell sorting is
driven by tissue surface tension with an energy contribution from cell-cell adhesion and
from cortical tension. A crossover between an adhesion dominated regime and a tension

dominated regime explained the shape of cell aggregates observed experimentally.

2.3.1.3 Role of cell motility in cell sorting

The role of cell motility in cell sorting has also been explored. Méhes et al [102]
investigated the in-vitro sorting of keratocytes with different motility characteristics
(Figure 2.6). The conclusion was that, in addition to differential adhesion, the different
motility characteristics of the cells in co-culture are important and collective migration
can speed up their sorting. Coupling collective cell migration and cell sorting
computationally, Belmonte el al [103] developed a sorting model based on Vicsek’s
model [68] for collective movement. The aim was to investigate the role of coherent
movement and differential adhesion in sorting for tissue regeneration. Following an
analogy with fluid phase transitions, intercellular adhesion was represented by a scaling
parameter defining the contribution of cohesive forces to cell migration. Sorting was

guantified using a sorting index equal to the average ratio of cells of a different type
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surrounding one cell. The sorting index decreases with time as cells segregate and the
evolution was found to follow a power law. In addition, the more coherent the
movement of cells the faster they segregate due to differential adhesion.

The computational work of Kabla et al [24] suggests that differences in cell motility are
enough to explain cell sorting, even without differential adhesion. Similarly to the work
of Belmonte et al discussed above, Kabla’s work considered cell parameters that were
not based on experimentally measured data. For the former, the scaling parameter for
cell-cell adhesion and, for the latter, the differences in cell motility. As a consequence,
only qualitative interpretations of the process of cell sorting were achieved.

There is a paucity of cell-based models investigating sorting in cancer metastasis.
Brodland et al [42] developed a finite element model to investigate the mechanics of
metastasis focusing on the dissemination step. The results suggest that for individual
cancer cells to sort from the primary tumour they need to be mechanically different
from neighbouring cells and have an appropriate surface tension. This is in accordance
with the startling heterogeneity exhibited by cancer cells in various morphologic and
physiological aspects. In fact, heterogeneity of the cell type has been recognized as
another hallmark of tumours [34]. The model could be further improved in the future
by accounting for experimentally measured mechanical properties of normal and cancer

cells.
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Figure 2.6. Cell sorting in a mixed co-culture of keratocytes with different motility
characteristics: primary goldfish keratocytes (PFK, in red) and fish keratocyte cell line

(EPC, in green). (Left) Initial configuration. (Right) After 17 hours [102].

2.4 Conclusion

Knowledge about the mechanisms behind collective cell migration and sorting can be
used to better understand cancer dissemination. This knowledge is under development
and gradually shifting from a descriptive perspective towards a more mechanistic and
guantitative one [104]. Mechanistic mechanical models provide frameworks for the
testing of hypotheses about the forces governing these processes [42]. The
guantification of these forces can inspire and inform studies on the intracellular
molecular events in their origin, thereby coupling cell mechanics and cell biology.

The development of mechanistic computational models relies on the availability of
experimental parameters, pointing to knowledge gaps and the need for quantitative
measurements [105]. Now that measurements of cell mechanics are increasingly used,
cell-based models that have a higher degree of mechanical fidelity are possible. The use
of experimentally based cell parameters, in opposition to scaling parameters, for
instance, supports the development of mechanistic models. The different mechanics
measured for different types of cells should be accounted for to appreciate the role of

cell heterogeneity in collective migration and sorting [42]. Cell-based mechanical models
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should account for experimentally measured properties such as cell traction force,
apparent stiffness and intercellular adhesion.

Modelling in cancer has been mainly focused on cell proliferation and tumour growth.
However, cell motility and cell sorting have proved to be important for cancer metastasis
and invasion [41], [42] and their role needs to further explored. The computational
model developed in the context of this thesis aims at filling the gaps presented. The
model is a cell-based, mechanistic, mechanical model of collective cell migration and
sorting. The purpose is to provide insight into the role that cell mechanics plays in these
biological processes accounting for real mechanical properties measured for normal and

cancer cells.
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Chapter 3 - Modelling passive cell mechanics

Summary

In order to understand the several types of forces involved in cell migration it is common to
distinguish between active and passive forces. Active forces are regarded as the forces exerted
by cells in order to migrate. They involve cytoskeleton contraction and require energy. Passive

forces, on the other hand, arise from intercellular contacts due to cell elasticity.

This work assumes that cell spreading is governed by passive forces in the first hours after in-

vitro seeding and migratory propulsion forces are exerted by cells later.

The present Chapter concerns the modelling of the process of cell spreading following seeding.
Cell movement is driven by intercellular interactions resultant from cell elasticity, intercellular
adhesion and compressibility forces. The model was applied to normal and cancer cells with
different mechanical properties and seeded in both monoculture and co-culture scenarios. It was
found that volume and stress vary across a cell monolayer and depend on both the local level of

cell packing and cell mechanical properties.

3.1 Introduction

Collective cell migration [106] and cell sorting [102] have both been observed in-vitro.
In addition, it is already possible to measure the forces behind cell migration. However,
the heterogeneous and dynamic fields found for these forces are not understood, nor
their relationship with the cell movement observed [16].

The forces involved in cell migration can be categorized as active or passive [64]. Active
forces are regarded as forces that are exerted by cells with the specific purpose of
migrating, requiring the contraction of the cytoskeleton’s actomyosin machinery and
energy expenditure. On the other hand, passive forces are regarded as forces that arise
from intercellular interactions. They are related with the cell’s elastic elements,
intercellular adhesion receptors and compressibility. This Chapter focuses on passive

cell forces.
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With the development of Atomic Force Microscopy (AFM), there is a wide range of
comparable and complementary information on cell elasticity. The apparent Young’s
modulus of various cell types, including both normal and cancer cells has been measured
[26], [107]. AFM results show that normal, non-cancerous, cells have a higher apparent
Young’s modulus than cancerous cells. However, the ratio between the Young’s modulus
of normal and cancer cells is highly dependent on the cell type. Normal breast cells have
been reported as 1 to 2 times stiffer than their cancer counter parts [27], [28], while
bladder normal cells as up to 32 times stiffer than bladder cancer cells [29]. The values

found for the apparent Young’s modulus of these cells are presented in Table 3.1.

Table 3.1 — Apparent Young’s modulus for breast and bladder normal and cancer cells
(average and standard deviation).
Cell type Apparent Young’s modulus
(E, kPa)
Breast normal cells  2.26 + 0.56 [27]
Breast cancer cells 1.24 + 0.46 [27]
Bladder normal cells 9.7 + 3.6 [29]

Bladder cancercells 0.3+0.2[29]

Less experimental data are available to inform the adhesion forces between cells.
Different metrics and methodologies are used to measure intercellular adhesion [108].
One of the approaches is to consider the tissue liquid properties and derive intercellular
adhesion from the tissue surface tension [109]. The values reported in the literature vary
from 0.05 [110] to 56 nN/um [111], found for Xenopus gastrula endoderm and brain
cancer aggregates, respectively.

Cell elasticity has been modelled using numerical models such as the Johnson-Kendall-
Roberts (JKR) model [61]. The JKR contact model was used in several tissue models [63],
[64] to express the intercellular contact force from a balance between elastic repulsion
resulting from cortical tension and cell-cell adhesion resulting from adhesion complexes.

The model defines an equilibrium distance for a pair of cells, see Figure 3.1. The JKR
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force is zero when the two cells are at the equilibrium distance, 2.9 um in the example
shown in Figure 3.1. A negative JKR force is associated with an overlap distance lower
than the equilibrium one and an adhesive interaction between the cells. A positive JKR
force is related to an overlap distance higher than the equilibrium one and a repulsive
interaction between the cells.

However, several authors [63], [64] pointed out that, when applied to a cell population,
the JKR model could predict an excessive level of compression for cells in the centre of
a cell monolayer. In order to limit cell compression it has been proposed that the JKR

should be combined with another model that accounts for the cell volume [63], [64].

140
120 |
100 |
80 |
60 |

JKR force (nN)

40 |
20 |
0 —

Rd_h:‘\iun
-20 | . . . J
0 5 10 15 20
Overlap distance (um)
Figure 3.1. Example of JKR force-overlap curve for two cells with apparent Young’s
modulus of 1kPa, adhesion energy of 0.1 nN/um, cell radius of 10 um and Poisson’s ratio

of 0.47. The JKR model defines the contact equilibrium at an overlap of 2.9um.

Aiming to develop a mechanistic understanding of collective cell migration, a
preliminary model representing passive cell mechanics was developed and it is
presented in this Chapter. The JKR model was applied to intercellular contact and
complemented with a compressibility model. The purpose was to deconstruct cell
mechanics and understand the role of passive cell forces. The model was applied to

mechanically different normal and cancer cells in monoculture and co-culture. Co-
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culture of normal and cancer cells is studied as a surrogate for tumour-host mechanical

interactions. This Chapter answers the following scientific questions:

° How is intercellular stress distributed in cell a monolayer?
° How does intercellular stress change with the mechanical properties of the
individual cells?

° Can passive cell mechanics explain the sorting of different cells in co-culture?

3.2 General methods

3.2.1 Passive model description

An individual-based model of collective cell migration was developed in Matlab
(mathworks.com) [112]. Rules for cell movement derive from the laws of Newton
assuming an overdamped approach. Since cell movement is associated with a low
Reynolds number, acceleration can be neglected [75]. Three classes of forces are
considered to play a role in cell migration in quasi-static equilibrium: passive

intercellular forces; active propulsion forces and extracellular drag forces, Eq ( 3.1).
ZF =0 <‘:’QF1'71Le'rr:e.',.',u.lmr + Fa(:r,ivez - Fdra.g (3'1)

The present Chapter focuses on passive cell movement, not considering active

propulsion:
EF =0 Fi’.nl_ercellular = - Frl'r(tg ( 3.2 )

This model investigates the process through which cells spread and relax after in-vitro
seeding. During in-vitro seeding cells deposit from suspension in random places within
the seeding environment. They adhere, spread and establish intercellular contacts from
the first hours to the end of the first couple of days, depending on the cell type and

seeding density. After this time, cell migration and division start to take place. This
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model investigates this time frame, hypothesizing that elastic forces dependent on cell
mechanics govern cell spreading following in-vitro seeding.

Cells are considered as hemispheres adhered on a two-dimensional substrate.
Neighbouring cells virtually overlap each other in the model, representing cell
deformation due to intercellular interactions. The overlaps are translated into
intercellular forces using a pairwise model described in section 3.2.2. A resultant
intercellular force is obtained for each cell by computing the vectorial summation of the
pairwise force contributions from the various contacting cells, referred as the cell’s

neighbours:

Fintercellular: Eneighbours Fintercellullar pairwise ( 3.3 )

Cell movement is defined for each cell by a force balance between the intercellular
resultant and extracellular drag, Eq ( 3.2 ). The extracellular drag due to the medium

viscosity, W, is described by the Stokes model [64]:
Fdrag: Fstokes = — 6mRuv (3.4)
where R is the cell radius and V is the cell velocity.

The positions of the cells at the next time point are determined integrating Eq ( 3.2 )

using the forward Euler method:

ZF = 0 S Fintercettutar = 6HRU‘7¢'>

@l_t) — ﬁinter'ceilulm' X At ( 3.5 )
6TTRu

where U refers to the cell displacement.
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Cells move synchronously for a specific number of iterations or until a specific criterion
is met. At the end of each iteration, intercellular forces are computed to define cell
movement in the next step.

Cells are represented as contacting hemispheres whose volume is approximated as the
difference between the isolated cell volume and the sum of the volumes of the overlap
regions [63]:

V= Visolated - E neighbours Voverlap -

= T - Zneighbours Voverlap ( 3.6 )
T
——(2R-d)?*(d?*+4Rd)
Voverlap (i = 12d 2 (3.7)

where d is the distance between the centres of celli and cell;. The volume of the overlap
regions is determined as the sum of the two spherical caps of the intersection [113].
In order to investigate the distribution of stresses in the different scenarios investigated

cell stress is computed as follows:

Znei hbours + ﬁintercellitlla.r' airwise
Stress = =2 - L (3.8)

2mR?

It is regarded as the ratio between the scalar summation of the intercellular forces
affecting a cell and the total cell’s surface area [114], the surface area of a hemisphere.
Cell stress illustrates the main type of intercellular interactions the cell experiences.

The positive sign is associated with repulsive pairwise forces whereas the negative one
is associated to adhesive pairwise forces. Therefore, a microenvironment that is
compressive in nature generates intercellular repulsions and positive cell stress. On the
other hand, a microenvironment that is tensile in nature results in mainly adhesive

forces, hence negative cell stress.
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3.2.2 Intercellular pairwise model

3.2.2.1 Johnson-Kendall-Roberts contact model

Elastic contact interactions are described using the Johnson-Kendall-Roberts (JKR)
model. In the JKR model [61] passive intercellular forces comprise a contact force based
on cortical tension and intercellular adhesion. Following Schaller et al [63] in an
approximation for small adhesion, the JKR pairwise force becomes a linear combination

of the Hertz model and an intercellular adhesion model:

Figr ) Fertz i, — Fypanesion (i, n=

3 3 3
= Eoqy/Reqhz — /énaquReqﬁhE (3.9)

where Eeq is the equivalent apparent Young’s modulus of the cell pair, which is a function
of the cells” apparent Young’s modulus, E, and Poisson’s ratio, v, see Eq ( 2.2 ). Req is the
equivalent radius, Eq ( 2.3 ), o is the cell-cell adhesion energy and h is the contact

penetration, or virtual overlap:

where d refers to the distance between the cells’ centres. Eq ( 3.9 ) is valid as long as

o

({1and is implemented to resolve passive intercellular forces in this work.

eqeq
After determining the overlaps for each pair in contact the associated JKR force is
determined using Eq ( 3.9 ). Each interaction between two cells is characterized by a
force vector representing the cell response to that interaction. The vector has
magnitude equal to the JKR contact force. The direction is dependent on the JKR force
sigh and defines whether the interaction is adhesive or repulsive. If the JKR force
between two cells is negative, adhesive interaction, the force vector is assigned the

direction of the vector between the centre of the cell and the contact point and points
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towards the contact point. If the JKR force is positive, repulsive interaction, the force
vector is assigned the same direction but points away from the contact point.

Summing the force vectors across all the cell neighbours results in:

-

Fintercellularz Enez’ghbours FJKR ( 3.11 )

The intercellular resultant then defines cell movement according to Eq ( 3.5).

3.2.2.2 Compressibility model

The JKR model does not account for the cell level of compression due to multiple
contacts. In order to accomplish that, a compressibility model proposed by Schaller et
al [63] was implemented. Other authors proposed similar models (e.g. Beyer et al
[115]).

The model is based on a repulsive force generated by the cell cytoskeleton due to the

cell compressibility. For a cell pair the magnitude of this force is computed as:

Vi Vi
Feompress (i, ) = Aa, i [Kz' (1 - ) + K (1 - )] (3.12)

target Vearget

where K is the cell bulk modulus:

_E
T 3(1-2v)

(3.13)

Cells feel a repulsion force towards a neighbouring cell proportional to the volumetric
pressure of both cells of the pair. This pressure is associated with the cell volume
deviation from Viarget - the volume the cell naturally assumes when isolated from other
cells. A refers to the overlap area of the cell pair (i,j). Compressibility forces are,
therefore, present for all non-isolated cells, regulating cell volume in response to

surrounding cells.
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The compressibility model presented was combined with the JKR model. The combined
passive model accounts for volumetric pressures while considering cell-cell elastic
interactions.

Summing the passive pairwise forces for each cell across all its neighbours results in:
Fintercellularz Zneighbours (F]KR-l' Fcompress) ( 3'14)

The intercellular resultant then defines cell movement according to Eq (3.5).

3.2.3 Model parameters
Several cellular parameters need to be defined to apply the presented model to cell

mechanics. The values considered are summarized in Table 3.2 and the explanation

behind their choice follows.

Table 3.2 — Model parameters.
Cell bulk modulus (kPa) 5.5
Cell radius (um) 10

Medium viscosity (kPa.s) 0.1

With regard to the cell bulk modulus, or resistance to compression, K, it can be

computed using:
K=-V— (3.15)

In other words, depending on the cell initial volume, V, and on the change in pressure,
dP, relative to the change in volume, dV.
The cell bulk modulus was determined based on the results of Zehnder et al [116].

Zehnder et al investigated the evolution of the projected area of Madin-Darby Canine
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Kidney Epithelial (MDCK) cells of a monolayer with time-lapse microscopy. In addition,
the cell thickness was measured with confocal microscopy. Computing the volume
autocorrelation function it was found that the cell volume oscillates around its mean
with an amplitude of 20% and a timescale of 4 hours. The authors suggested that volume
oscillations can be understood by considering that cells of a monolayer exchange water
with their neighbours through gap junctions. It was estimated that a cell with a
permeability of 0.06 um? kPal.s? can lose 20% of its own volume by generating a
pressure of 1.1 kPa relative to its neighbours [116].

According to Eq ( 3.15 ), if a cell generates a pressure of 1.1 kPa for a change in volume
of 20% its bulk modulus has the value of 5.5 kPa. This is the fixed value considered for
all the cells modelled in this work.

Different values for the apparent Young’s modulus and intercellular adhesion energy are
investigated throughout the Chapter.

The cell Poisson’s ratio was determined depending on the apparent Young’s modulus

using the relation for homogenous isotropic materials:

£
y="1£E£ (3.16)

Softer cells are, hence, considered as more incompressible than stiffer cells.
Cells are adhered on the substrate and are all considered as hemispheres with a radius
4

—l0°
of 10 um [116] (isolated volume of 3 - ~2094 um3).

The extracellular environment was assigned a viscosity of 0.1 kPa.s [117].

3.2.4 Cell seeding and time step
Cell seeding precedes all simulations. Cells are randomly seeded in a circular region in
five different replicates. The size of the region is determined assuming an ideal packing

of circles in a circular environment to ensure cell proximity:
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seeding environment radius= vR?x number of cells (3.17)

After seeding, the cells move driven by intercellular forces within a boundary free region
according to Eq ( 3.5 ). In order to define their movement, intercellular overlaps are

determined for each pair of contacting cells as follows:

overlapg j =2R-d (3.18)

where d refers to the distance between the cells’ centres. The associated intercellular
forces are obtained for each pair in contact using the model presented in section 3.2.2.
The resultant force is computed for each cell and these initial forces are used to
determine the time step of the simulation.

Cells are restricted to move a maximum distance equal to half of their radius per
iteration. The aim is to prevent them from overcoming each other while moving, since
no sense of intercellular contact establishment is provided during migration. In order to
accomplish that, the time step is determined according to the maximum displacement
allowed for the cells per iteration. Cells move according to intercellular forces;
therefore, the maximum velocity possible in the model is associated to the maximum
force. Immediately after seeding, the maximum intercellular force is in the order of
magnitude of 103 nN. However, forces can temporarily increase during the simulation
as the cluster relaxes and new intercellular contacts are created. As a result, the
maximum possible force must be tuned to allow the cluster relaxation. Through trial and
error experiments, it was found that a value for the maximum force ten times higher
than the one measured after seeding (*10* nN) enables a successful relaxation for all
the cell populations investigated in this work. The simulation time step is determined

based on the maximum force allowed using:

maximum displacement 0.5 XR
— maximum force ( 3.20 )

6TUR

time step =
p maximum velocity
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The computed time step is in the order of 103 seconds. In order to minimise
computational time relaxation is broken down into two stages with increasing time step.
The first relaxation, referred as pre-relaxation, is performed using the time step
computed based on the initial forces. The time step for the second relaxation is
computed based on the level of force during active migration which is the focus of
Chapter 4. Through trial and error experiments, it was found that a maximum possible
force in the model of 500-700 nN would allow the various populations investigated to
migrate after complete relaxation. This force value corresponds to a time step on the
order of magnitude of 10! seconds.

Force and volume distributions after seeding and after pre-relaxation for a 200 cell
population are shown in Figure 3.2. After the random seeding cells were in an unrealistic
compressed situation characterized by negative cell volumes. The maximum
intercellular force (order of magnitude of 103 nN) was in the centre due to cell crowding.
The population was relaxed with a time step of the order of 103 seconds until the
maximum force in the cluster was less than 50 nN. Intercellular forces became higher
close to the border due to the influence of the monolayer edge. Cells have less
neighbours around the border and therefore intercellular interactions do not balance
each other as in the centre, leading to higher resultant forces. As force decreased the
cell volume increased accordingly.

Afterwards, the second relaxation was performed with a time step on the order of 10!
seconds. Model convergence for this second relaxation stage is investigated in section

3.3.2.1.
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Pre-relaxation for a 200 cell population
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Figure 3.2. Pre-relaxation for a population of 200 cells with an apparent Young’s Modulus
of 1kPa and intercellular adhesion energy of 0.1 nN/um: force and volume distributions

after seeding and after pre-relaxation.

3.3 Simulations

The simulations were carried out serially using Matlab R2013a in the Iceberg cluster for

High Performance Computing from The University of Sheffield.

3.3.1 JKR model

After seeding cell relaxation followed the JKR model. As a first step the JKR model was
implemented in isolation, without the compressibility model.
In the literature, cancerous human breast epithelial cells are reported as 1 to 2 times

softer than their non-cancerous counterparts [27], [28], [118]. Based on this evidence
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two different populations were investigated in this first study, one with an apparent
Young’s modulus of 1 kPa [119], [120] and another with a lower value of 0.6 kPa, as

shown in Table 3.3. Intercellular adhesion energy was assigned a baseline value of 0.1

nN/um [64].

Table 3.3 — JKR model simulation cases.

Case  Apparent Young’'s modulus o

(E, kPa) (nN/um)
| 1 0.1
] 0.6 0.1

The JKR model defines an equilibrium overlap of 2.9 um for two contacting cells with
properties as in case | and 4 um for cells with properties as in case Il, see Figure 3.3. The

JKR was numerically applied to cell populations of 200 cells.

40
—E=1 kPa, 5=0.1 nN/um
—E=0.6 kPa, 6= 0.1 nN/um
30 | /u |
=
£
o 20
8 L i
L
s
>
10 1
0
_10 1 1 1

Overlap distance (um)
Figure 3.3 JKR force curves for contacting cells with apparent Young’s Modulus of 1 and

0.6 kPa and intercellular adhesion energy of 0.1 nN/um.
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3.3.2 JKR and compressibility model

3.3.2.1. Convergence study

The JKR model was combined with the compressibility model to describe cell movement.
Populations of 50, 100, 200 and 500 cells with an apparent Young’s modulus of 1 kPa
and intercellular adhesion energy of 0.1 nN/um were considered. Model convergence
was evaluated and the effect of the population size in cell volume and stress

distributions was investigated.

3.3.2.2. Sensitivity

Experimentally reported values for quantities that characterize cell mechanics vary
widely. This variability can be due to the different methodologies used for measurement
but also due to cell type intrinsic differences. With regard to apparent Young’s modulus,
values as low as 0.02 kPa were reported for leukocytes and as high as 400 kPa for cells
from the Organ of Corti [121]. Tissue surface tension can be considered as a measure of
intercellular adhesion energy and has values between 0.05 nN/um for Xenopus gastrula
endoderm [110] and 56 nN/um for cancer aggregates of ependymoma cells [111].

The existing variability drives the need for parameter studies to develop robust
computational models. This section relies on the model developed to explore the effect
of two parameters: cell apparent Young’s modulus, E, and intercellular adhesion energy,
o, on passive cell mechanics.

The cell bulk modulus is considered fixed and equal to 5.5 kPa throughout the study,
section 3.2.3. For values of the apparent Young’s modulus equal or higher than 49.5 kPa,
the cell Poisson’s ratio becomes higher than one, Eq ( 3.16 ). As a consequence, the
equivalent apparent Young’s modulus of contacting cells becomes negative Eq ( 2.2 ),
resulting in complex solutions Eq ( 3.5 ). For apparent Young’s modulus between 16.5
and 49.5 kPa, the Poisson’s ratio is smaller than one and therefore the model finds a real
solution, though the Poisson ratio is still negative. Values of apparent Young’s modulus
smaller than 16.5 kPa result in a positive Poisson ratio and are, hence, worth

investigating in the model as it stands. The interesting ranges for the cell apparent
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Young’s modulus and intercellular adhesion energy are therefore: 0.02-16 kPa and 0.05-
56 nN/um, respectively.

The combined model complements the JKR by accounting for compressibility forces that
are associated with relative volumetric pressures between contacting cells. However,
the model does not define a minimum cell volume. The maximum cell volume is the
volume for an isolated cell, 2094 um3. Assuming that cells vary their volume within a
range of +/- 20% [64], the minimum volume in the model should be less than the
maximum in 40%, 1257 um3. As seen in section 3.4.2.1, cell volume varies across a
packed monolayer, being lower for cells in the centre that have six neighbours. A
minimum volume of 1257 um?3 corresponds to a maximum overlap value of 4 um, using
Eq(3.6),Eq(3.7)andEq(3.18):

V 21257 < Vigoratea — Z e s LR =

neighbours

Z Voverlap =837«

neighbours

s
—(2R-d)?(d%+4Rd
Voveriap = 827 = 1395 & 224 2( +4Rd) <1395 &

d < 24%overlap < 4 um

The JKR force is a function of E, o and the cell overlap, Eq (3.9 ):

3 3 3
Figr(overlap) = E q/Reqoverlap2 — |6TOEq R, ,20veriap?
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The compressibility force is a function of the cell overlap only, since the cell bulk

modulus is fixed at 5.5 kPa. For two contacting cells with six neighbours it is:

Fcompress (Ove‘riap) =

overia (overlap

—200 -1 (1 =
cos = =

- 10) X /400 — (overlap - 20)?

20007 o 3moverlap® X (overilap - 20)* — 40overlap + 800
3 12overlap — 240

2000 — 11

X 33

Solving for the cell overlap, Eq ( 3.14 ):

F]KR +Eir}'mpress: 0

the overlaps predicted by the model for a cell in the centre of a monolayer are obtained
as a function of E and o (Figure 3.3). Five different test cases on the border of the valid
parameter region were considered to verify the model behaviour, see Figure 3.4 and

Table 3.4.
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Figure 3.4 Overlap and volume solutions for a cell in the centre a monolayer as a function
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Table 3.4 — Simulation cases for the combined model sensitivity study.

Case E c Overlap equilibrium  Minimum volume
(kPa) (nN/pm) (pm) predicted
(um?)
I 0.02 0.05 0.71 2071
] 0.02 56 2.66 1778
n 0.12 56 3.7 1490
v 16 0.05 0.34 2090
\") 16 4.7 3.81 1454

The force curves associated to these cases are presented in Figure 3.5.
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Figure 3.5 Combined model force curves for two cells in the centre a monolayer for the

five simulation cases.

The effect of the cell Young’s modulus and intercellular adhesion energy on cell volume

and stress was investigated using 200 cell populations.
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3.3.2.3 Mechanics of bladder and breast cell monocultures

After understanding the general model behaviour, cell-type specific parameters can be
considered. The passive mechanics of monolayers composed of breast and bladder
normal and cancer cells was investigated varying the cells’ apparent Young’s modulus
and adhesion energy according to Table 3.5.

The apparent Young’s modulus was varied according to the average value found in the
literature for that cell type and the associated standard deviation, Table 3.1, thereby
accounting for the variability. Concerning intercellular adhesion energy, no consistent
cell type specific values were found in the literature. Therefore, the parameter was
varied from the minimum to the maximum value in the valid parameter region, section
3.3.2.2. For cancer cells an extra intermediate adhesion value was considered for the
average Young’s modulus for comparison with normal cells.

The various simulation cases were implemented for 200 cell populations.

Table 3.5 — Mechanical properties considered for breast and bladder normal and cancer

monocultures.

E o E o
(kPa)  (nN/pm) (kPa)  (nN/pm)

Breast normal 1.7 0.05 Bladder normal 6.1 0.05
1.7 7.5 6.1 4.7
2.3 0.05 10 0.05
2.3 7 10 4.7
2.82 0.05 13.3 0.05
2.82 6 13.3 4.7

Breast cancer (.78 0.05 Bladder cancer 0.1 0.05
0.78 13 0.1 56
1.2 0.05 0.3 0.05
1.2 7 0.3 4.7
1.2 11 0.3 36
1.7 0.05 0.5 0.05
1.7 7.5 0.5 19
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3.3.2.4 Mechanics of bladder and breast cell co-cultures

Three different types of normal and cancer cell co-culture were considered for breast
and bladder cells. The co-cultures investigated different adhesion between normal cells
and between cancer cells. Both the cases of maximum possible difference in adhesion
and equal adhesion were explored. In the first case normal cells adhere more to each
other than cancer cells, in the second case normal and cancer cells have equal adhesion
and in the last case cancer cells adhere more to each other than normal cells. With
regard to the adhesion between normal and cancer cells, it was considered as equal to
the minimum between normal-normal adhesion and cancer-cancer adhesion. This is
based on the idea that two cells of the same type should adhere to each other to a higher
extent than two cells of different types [98]. The cases investigated are presented in

Table 3.6. Populations of 200 cells in a 50% normal/cancer co-culture were studied.

Table 3.6 — Simulation cases for breast and bladder co-cultures.

Breast Co-culture cases Breast normal Breast Cancer
E o E o
(kPa) (AN/pum)  (kPa) (AN/pm)
1-Higher adhesion for normal cells 2.3 7 1.2 0.05
2-Equal adhesion 2.3 7 1.2 7
3-Higher adhesion for cancer cells 2.3 0.05 1.2 11
Bladder | Co-culture cases Bladder normal Bladder cancer
E o E o
(kPa) (AN/pum)  (kPa) (nN/pm)
1-Higher adhesion for normal cells 10 4.7 0.3 0.05
2-Equal adhesion 10 4.7 0.3 4.7
3-Higher adhesion for cancer cells 10 0.05 0.3 36
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3.4 Results

3.4.1 JKR model

After seeding cells move according to intercellular JKR forces. These were summed for
all the cells of the population and the force evolution is shown in Figure 3.6. Force peaks
due to the establishment of new cell contacts and decreases as the cells spread. For a
value of the sum of forces lower than 101 nN, force lower than 5x10* nN per cell, there
no more changes in cell contact and the model is considered to have converged.
Overlap and volume distributions at the end of the relaxation are shown in Figure 3.7.
The results obtained across the various replicates are similar so only one of the
replicates is shown.

As the cells relax, overlaps converge to the overlap equilibrium defined by the JKR for
most of the cells of the cluster, 2.9 um for case | and 4 um for case Il. However, few cells
in the centre are over compressed, while others are under compressed. These appear in
regions of lower cell connectivity within the monolayer. The overlaps vary around the
equilibrium value by 28% and 38% for case | and Il respectively. Case Il is the case for
which overlaps vary the most, being between -30 and +38% of the equilibrium value,
2.8-5.5 um.

The cell volume changes depend on the cell position within the cluster and the number
of surrounding cells, Eq ( 3.6 ). Cell volume is lower for over compressed cells and
reaches a minimum of 1025 pum? for case Il. Higher volumes are obtained for the under

compressed ones.
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Figure 3.6: JKR model results for two populations of 200 cells with an apparent Young’s
Modulus of 1 and 0.6 kPa and intercellular adhesion energy of 0.1 nN/um: intercellular

force evolution.
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volume distributions obtained.
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3.4.2 JKR and compressibility model

3.4.2.1 Convergence study

Model convergence was evaluated for populations of 50, 100, 200 and 500 cells
following the same protocol. The results obtained for the 200 cell populations are shown
as an example.

Intercellular force, overlap and stress distributions after relaxation are shown in Figure
3.8. The evolution of the sum of intercellular forces for all cells, average overlap and
average stress for the five replicates are also presented. Normalized simulation time is
used since the different replicates took different time to relax.

Relaxation was stopped when the sum of intercellular forces for all the cells modelled
reached 1073 nN, with a force per cell on the order of 10® nN. Intercellular contacts are
created as the cells spread after seeding, originating the force peaks observed in the
force evolution curve. Below a value of 0.1 nN for the sum of the forces, blue line in
Figure 3.8, no peaks are observed for none of the five replicates. In addition, the average
overlap and the average stress are stabilized at this level of force. The change in the
average overlap is in the order of 10 % and the maximum change in average stress is
18%, with an order of magnitude of 10 nN. For this reason, the model is considered to
have converged for a value of 0.1 nN for the sum of intercellular forces. This corresponds
to a force value of 5x10 nN per cell.

The model predicts different overlap and stress depending on the cell position within
the monolayer. Overlap is generally higher on the border, where cells have less
neighbours. In addition, the average overlap depends on the seeding, changing from
replicate to replicate. As it happens for the overlap, there is a stress distribution. For a
monolayer in intercellular equilibrium, resultant intercellular forces are low and cell
interactions balance each other. This means that, at the cell scale, cells can be
experiencing some degree of stress, as long as it is locally balanced by neighbouring cells.
Although the average stress in the monolayer is low, of the order of 10~ kPa, the
maximum stress reaches a value that is two orders of magnitude higher.

Modelling five seeding replicates of a 200 cell population required globally 39 Gb of
maximum virtual memory and 39 hours of CPU time. However, model convergence at a

force value of 0.1 nN required 16 hours, a CPU time lower in 69%. The CPU time per

46



Computational model of normal and cancer cell collective mechanics and migration

Chapter 3 — Modelling passive cell mechanics

replicate changed considerably due to the random nature of the seeding (average of 3.2
+1.2 hours).

In order to understand how the model results vary with the population size, volume and
stress distributions obtained for populations of 50, 100, 200 and 500 cells are shown in
Figure 3.9. These representative distributions are associated with one of the five
replicates modelled.

Focusing on the results obtained for 50 and 100 cell monolayers first, volume and stress
are uniformly distributed in the centre of the monolayer. Cells in the centre are in
compression (positive stress values) and have 3% less volume than the cells on the
border (2010 versus 2070 um3). Stress is one order of magnitude higher close to the
border of the monolayer reaching the order of the units of Pascal, 102 kPa. Volume
varies the most in this region. Cells right on the edge have the highest volume and are in
tension (negative stress values), while cells just behind have the lowest volume and are
in compression.

The same generally holds for the 200 and 500 cell populations, except that volume and
stress are not so uniformly distributed in the centre of the monolayer. Cells seem to be
organized in several clusters and there are regions within the monolayer where cells are
less packed. They resemble the monolayer edge: with higher volume variation and stress
values predicted. The cells modelled are seeded randomly and find each other through
passive spreading. This results in asymmetries in cell connectivity that are more probable
the higher the number of cells considered. The predicted stress is on the same order of
magnitude regardless of the size of the population.

Although cell configuration and asymmetries in packing are seeding dependent, the

results reported hold for all the five replicates.
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Figure 3.8 Convergence study for a 200 cell population with an apparent Young’s
modulus of 1 kPa and intercellular adhesion energy of 0.1 nN/um: intercellular force,
overlap and stress distribution and evolution. For overlap and stress evolution a zoomed

image is included.
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Figure 3.9 Volume and stress predicted for 50, 100, 200 and 500 cell populations with an

apparent Young’s modulus of 1 kPa and intercellular adhesion energy of 0.1 nN/um.
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3.4.2.2 Sensitivity

Model convergence for the populations investigated was verified as in section 3.4.2.1.
Volume and stress distributions obtained for the various parameter cases are presented
in Figure 3.10.

The stress is higher in the same regions of lower cell connectivity in the various
populations, confirming the influence of cell topology. However, the stress magnitude
changes depending on cell mechanics. The maximum stress in the monolayer has values
with order of magnitude between 0.1-100 Pascal and increases with both the apparent
Young’s modulus and intercellular adhesion. Stress is highest for case V. Lower cell
volume is associated with higher stress and it ranges between 1301 and 2094 pum?3 for

case V, being always higher than the minimum allowed of 1257 pm3.
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Figure 3.10 Volume and stress predicted for 200 cell monocultures with different

mechanical properties.
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3.4.2.3 Mechanics of bladder and breast cell monocultures

From the results obtained in the section 3.4.2.2 the maximum stress in a monolayer is
not only dependent on topology but also on cell mechanics. In this section the relation
between stress and cell mechanics is explored for two specific cell types: breast and
bladder.

Compressibility forces depend on the cell volume and number of neighbouring cells, Eq
( 3.6). Therefore, the intercellular force curve for a pair of contacting cells depends on
the local topology. The force curves in Figure 3.5, section 3.3.2.2, correspond to two
contacting cells at the centre of a packed monolayer (surrounded by six neighbours
each). The curves have zero force at different overlaps, depending on the cell Young's
modulus and intercellular adhesion energy.

In the model, cell stress is related with overlap deviations from the equilibrium value.
These overlap deviations are associated with different forces depending on the cell
mechanical properties (Figure 3.5 in section 3.3.2.2). Therefore, it is expected that force
variation around the overlap equilibrium value is related with cell stress.

For all the parameter cases modelled, the corresponding force curves were obtained
and the derivative at the equilibrium point was computed. This quantity is regarded as
a measure of the intercellular contact stiffness. Its relation with the maximum cell stress
found in the monolayer was investigated, see Figure 3.11.

A relation between the maximum compressive stress and intercellular contact stiffness
was found for the 24 cell-type specific cases modelled and the five cases investigating
the parameter region boundary, section 3.4.2.2. The maximum stress in the monolayer
increases with the intercellular contact stiffness following a power law of order 1.4981

with an R? of 0.9821 (Figure 3.11).
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Figure 3.11 Maximum stress relation with intercellular contact stiffness for cell

monocultures.

The error bars are associated with the five seeding replicates. Maximum stress changed
a maximum of 36% between different seeding replicates.

The variation in stress with intercellular contact stiffness can be decomposed in the
variation with apparent Young’s modulus and intercellular adhesion energy. When
changing the apparent Young’s modulus within the complete range considered [0.02 —
16 kPa] for both low (0.05 nN/um) and high adhesion (value dependent on the Young's
modulus value) stress varies 58 and 59%, respectively. For the same apparent Young’s
modulus, if the adhesion is changed from low to high the variation in stress is between
75-99%. This means that the variation in stress is better explained by the variation in the
adhesion than the variation in the Young’s modulus.

In order to understand how the predicted stress changes with cell type specific
mechanical properties, results for breast and bladder normal and cancer cultures are

presented in Figure 3.12.
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The figure shows stress distributions obtained for monocultures of normal and cancer
cells with average apparent Young’s modulus and the same level of adhesion. The
distributions correspond to one of the five seeding replicates modelled. Higher levels of
maximum compressive stress are found for normal cells than cancer, for both breast
(2.4x10?% Pa versus 1.3x10? Pa), and bladder (3.2x10? Pa versus 5.7x10* Pa). For bladder
cells there is one order of magnitude difference in the maximum stress obtained for
normal and cancer cell monocultures. The higher mismatch between the apparent
Young’s modulus of normal and cancer bladder cells results in a higher mismatch in the

stress levels of the respective monocultures, for the same level of cell-cell adhesion.
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Figure 3.12 Stress distributions predicted for breast and bladder monocultures.

As already mentioned, there is a high stress variation associated with the uncertainty in
intercellular adhesion, 75-99%. For this reason, stress variation with the cell type is
analysed separately for minimum and maximum cell-cell adhesion, Tables 3.7 and 3.8.

The maximum compressive stress for each population was obtained by averaging the

maximum stress found for the five seeding replicates. The results for the different values
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of Young’s modulus considered for the same cell type were then averaged obtaining the
values in Tables 3.7 and 3.8. The order of magnitude of stress increases from the order
of Pascal to hundreds of Pascal from minimum to maximum cell-cell adhesion. Maximum
compressive stress is higher for normal cell than for cancer bladder cell cultures. The
difference observed in the maximum compressive stress of normal and cancer breast

cell cultures is not regarded as relevant, considering the associated standard deviation.

Table 3.7 — Maximum compressive stress for breast and bladder monocultures with

minimum cell-cell adhesion.

Minimum cell-cell adhesion

Maximum stress (Pa) | Breast cells Bladder cells
Normal | Cancer Normal | Cancer

Average 4.9 4.6 5.5 2.5

Standard deviation 0.5 0.7 0.4 1.1

Table 3.8 — Maximum compressive stress for breast and bladder monocultures with
maximum cell-cell adhesion.

Maximum cell-cell adhesion

Maximum stress (Pa) | Breast cells Bladder cells
Normal | Cancer Normal Cancer

Average 3.1x10% | 2.9x10%* | 3.7x10% | 2.0x10?

Standard deviation a4 08 28 33

3.4.2.4 Mechanics of bladder and breast cell co-cultures
Contrary to monocultures, in co-cultures both cells in compression and in tension are
found in the centre of the monolayer. Normal and cancer cells have different overlap

equilibrium resulting in them adhering to different extents (Figure 3.13).
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Distributions obtained for one replicate of the three types of co-culture investigated,
see Table 3.6 in section 3.3.2.4, are presented for breast (Figure 3.14) and bladder
(Figure 3.15). Two different distributions are shown for each case. In the first, a), the
cells are coloured according to their type: green if normal and black if cancer. In the
second, b), the cells are coloured according to their level of stress: red if in compression,
blue if in tension and light green if the stress magnitude is lower than 1Pa. Although cell
stress depends on the local cell surroundings, as observed before, it also depends on the
type of cell. Therefore, the distribution of normal and cancer cells in the co-culture, a),
can be compared with the distribution of cell stress, b).

For type 1 and 3 co-cultures the intercellular adhesion energy values assigned to normal
and cancer cells differ in two and three orders of magnitude, respectively. This results
in visible sorting according to the cell type. Since there is low adhesion between normal
and cancer cells (minimum between normal-normal adhesion and cancer-cancer
adhesion), cells adhere to each other much less globally. For this reason, stress is low
for most of the cells of the monolayer, less than 1 Pa. One exception is when a cell is
surrounded by others of different type, as in Figure 3.14 b) and Figure 3.15 b) for type 3
co-cultures. The much higher intercellular adhesion energy value assigned to cancer
cells in type 3 co-cultures results in them wanting to adhere to a higher extent than
normal cells (higher overlap equilibrium, see Figure 3.13). Cancer cells are in tension and
compress normal cells, explaining the higher level of stress locally. Higher levels of stress
are also observed for clusters of cells with high adhesion, as in Figure 3.14 c) and Figure
3.15 c) for normal cells in type 1 co-cultures.

For type 2 co-cultures there is higher normal-cancer cell adhesion and cells adhere more
to each other globally. This results in higher level of stress and less sorting comparing to
type 1 and 3 co-cultures. Cancer cells are in compression and normal cells in tension.
Even if the intercellular adhesion energy is the same for normal and cancer cells for a
type 2 co-culture, the difference in apparent Young’s modulus results in cancer and
normal cells wanting to adhere to different extents (different overlap equilibrium values

in Figure 3.13).
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Figure 3.13 Force curves for two contacting cells in the centre of the various co-cultures.

Normal-normal cell interaction in blue and cancer-cancer cell interaction in black.
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Figure 3.15 Bladder co-cultures: a) normal (green) and cancer (black) and b) stress.
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The maximum compressive stress obtained for the various types of co-cultures was
averaged across the five seeding replicates to understand how stress changes regardless
of the seeding topology. The results are presented in Table 3.9.

When comparing breast and bladder co-cultures there is no clear difference in maximum
compressive stress. However, between co-culture types there is a clear difference. The
results confirm that type 2 co-cultures have higher stress than type 1 and 3 and that cell
stress is highly dependent on cell-cell adhesion.

The high standard deviations reflect the stress variation with the seeding configuration.
The variation is particularly relevant for co-cultures 1 and 3. Cells sort according to their
type due to the adhesion mismatch between normal and cancer cells. However, sorting
depends on the seeding configuration, happening to a greater extent in some replicates
than in others. Consequently, different configurations are obtained and different levels
of maximum stress. The replicates for which sorting is higher were able to relax more
decreasing the level of cell stress. Sorting depends on the seeding and is, for example,
not possible when cancer or normal cells are completely surrounded by cells of other
type. Through passive spreading these cells are not able to sort and stay in a
considerably higher state of stress than the rest of the cells in the monolayer. The results
obtained for another seeding replicate of the bladder co-culture 3 are shown as example
(Figure 3.16). This seeding replicate allowed a higher sorting of normal and cancer cells
and a lower state of stress to be reached (maximum on the order of magnitude of 102

Pa).

Table 3.9— Maximum stress for breast and bladder co-cultures.
Maximum compressive | Breast cell co-culture Bladder cell co-culture

stress (Pa)

1 2 3 1 2 3
Average 63 233 147 92 184 86
Standard deviation 50 52 81 88 80 91
Standard deviation as | 80 22 55 96 43 106

% of the mean
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Figure 3.16 Bladder co-culture 3: a) normal and cancer cell distribution and b) stress.

3.5 Discussion

3.5.1 JKR model

The JKR model as implemented here is an approximation for small adhesion sometimes
referred as the modified Hertz model. The original JKR model [61] needs to be solved
iteratively requiring more computational resources. It accounts for intercellular contact
hysteresis, not considering intercellular contact formation as a reversible process, in
thermodynamics’ terminology. As Schaller et al proposes [63] a possible workaround
could be to make the intercellular adhesion energy time dependent. Furthermore, cells
are considered as homogenous and purely elastic spheres. The polarized nature of the
cytoskeleton, its viscoelastic behaviour and dynamics are not considered [63].

With relaxation not all cells of the cluster reach the equilibrium overlap defined by the
JKR model (Figure 3.3). Over and under compressed cells are found in regions of lower
cell connectivity.

The seeding method consisted of randomly seeding the cells within the seeding region.
After seeding there was an asymmetric cell distribution, some cells on the border had
none or very few neighbours, while others in the centre had too many, more than six.
Through relaxation the cells increase their surface area and cell density becomes more

uniform. However, since the level of compression due to multiple neighbours is not
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accounted for, it is possible that few cells remain over compressed after passive
relaxation.

A possible explanation for this result lies on the fact that the JKR model is a pairwise
model here applied to several bodies in contact [63], [64]. The JKR defines the contact
force based on the overlap between two bodies. When applied to several bodies the
multiple overlap regions may overlap each other. This leads to an incorrect estimation
of the force, assumed to be pairwise additive. The result is the presence of cells that are
too compressed in the middle of the monolayer, not able to exert enough repulsion
force. Near these cells there are under compressed cells for force balance. The JKR
model assigns higher repulsion forces to cells with higher apparent Young’s modulus.
Therefore, according to this explanation, less overlap variation is expected for
monolayers of cells with higher apparent Young’s modulus. In fact, overlap variation
increased from case | to Il, see Figure 3.7. This confirms that overlap convergence is
dependent on the cells’ ability to exert enough repulsion forces and reduce the effect of
the overlapping of overlap regions.

The cell level of compression was limited by including the compressibility model in a

combined passive model, section 3.3.2.

3.5.2 JKR and compressibility model

3.5.2.1 Convergence study

Cell overlap and stress are stabilized for a sum of intercellular forces of 10! nN, see
Figure 3.8. No cell rearrangements are observed from this point on and the monolayer
is considered to be at a state of intercellular equilibrium. Thereby, when including active
cell migration, intercellular contact changes can be interpreted as resulting from active
cell behaviour and not residual passive forces from the relaxation step.

The JKR model defines equal overlap for all the cells of a cluster, as long as they have
similar mechanical properties. When including the effect of cell volume with the
compressibility model, the equilibrium value for the cell overlap is different depending
on the number of contacting cells. Cells with less neighbours have higher overlaps than

cells that are completely surrounded by other cells.
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There is an edge effect for cell volume as well. It is 3% lower for cells in the centre of a
monolayer. In reality cells may change their height to conserve their volume when
within a monolayer. This was not accounted for in this work and volume was considered
to change whenever the projected area of cells changed. In addition, it was considered
that compressibility forces are present for all non-isolated cells, Eq ( 3.12 ). Therefore,
the equilibrium for a cell is characterized by a balance between compressibility and
elastic contact forces, Eq ( 3.14 ). It is relevant to point out that, although the JKR model
represents both intercellular elastic repulsion and adhesion, it is the JKR adhesive nature
that balances the repulsive compressibility forces in the combined model. As mentioned
by Liedekerke et al [122], an alternative way of combining both models would be to let
the compressibility model alone define the repulsive interactions and remove them
from the JKR model. However, this is not straightforward. It is not obvious what the most
sensible way to combine both models is: the choice of the target volume and whether
or not compressibility forces should be present for all cells within the monolayer.

The JKR and compressibility resultants balance each other for each cell. However, the
stress, being a scalar summation of these forces, reflects the level of cell compression.
Therefore, passive cell stress can exist in a monolayer in force equilibrium. The various
cell-cell interactions can balance each other, depending on the topology and direction
of intercellular forces. When a cell is contacting two others only, this is not so probable,
as it implies that the three cells would have to be in line. In this case, for intercellular
equilibrium, the cell has to be in a state of zero stress (overlaps equal to the equilibrium
value, adhesion forces equal in magnitude to compressibility forces), explaining the zero
stress cells found on the monolayer border (Figure 3.8).

Compressed cells, with positive stress, are found at the centre of the monolayer
revealing that compressibility forces are higher than adhesion forces (Figure 3.8).
Compressibility forces have a predominant role in this region since cell volume is lower.
Close to the border the stress is two orders of magnitude higher. Adhesive forces
towards the cluster centre are sensed by cells in tension that assure its cohesiveness.

Before this line of border cells in tension, there are cells experiencing compression from
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the cluster and balancing this region. Cell stress reaches a magnitude in the order of the
units of Pascal independently of the population size.

Some simplifications were considered when computing cell volume, Eq ( 3.6 ), and
stress, Eq ( 3.8 ). The fact that overlap regions can intersect each other was not
accounted for when determining cell volume, therefore this is underestimated. The total
surface area of the cell was considered when determining cell stress, although another
choice could have been the area of the overlap regions. Nevertheless, these simplified
computations are able to provide an insight into how compressed the cells are.

For populations of higher cell number (200 and 500), cells are distributed less uniformly
(Figure 3.9). During relaxation, the cells relax passively, moving according to intercellular
contact interactions. Therefore, the seeding procedure in defining the initial cell
connectivity influences the final cell distribution. Due to its random nature, regions of
less cell connectivity are more probable for populations of higher cell number. In order
to make the results less seeding dependent, the seeding could have been more
controlled. Maximum and minimum limits could have been set to the initial cell overlap
controlling cell connectivity. This would probably force more uniform cell distributions
from the beginning. However, there is a random nature associated to cell deposition
from suspension. Asymmetric cell distributions can be obtained in in-vitro cell seeding.
Cells can fall on top of each other and need to find space with time. In order to achieve
a more uniform cell distribution external force can be applied to shake the culture plate
and spread the cells more evenly.

Seeding affected cell stress as well. More cells were seeded in the centre of the seeding
region than at its periphery. Since cells at the periphery start to have higher intercellular
force resultant they adapt creating tension that balances the compressed cluster.
Following this line of thought, the compression found in the centre of relaxed
monolayers can be seen as reminiscent from the seeding. If the resultant intercellular
force governs passive cell behaviour, localized stress can exist in a monolayer. Another
modelling approach would be to consider that cells move passively according to a scalar
summation of intercellular forces or stress. Even if the final distributions depend on the
cell connectivity defined by the seeding procedure, the model prediction that the cell

stress is higher on the monolayer border and in regions of low cell connectivity holds.
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During in-vitro seeding cells deposit from suspension in random places within the
seeding environment. Drawing a parallel with experiments, the cell density asymmetries
predicted by the model suggest that passive relaxation may not be enough for cells to
find each other after seeding. This explains the changes in the level of cell packing within
the monolayer. In reality, cells can sense the ones they are not in contact with through
mechanisms not here considered such as signalling and lamellipodia formation and close
monolayer wounds [123]. Nonetheless, the model suggests that these regions can be
temporary regions of high passive cell stress. It is actually possible that passive stress is
in the origin of an active cell response that maintains monolayer uniformity and
integrity. As Mertz et al [124] suggests, a feedback may exist between intercellular
adhesion forces and active traction forces.

In summary, the results suggest that some degree of passive cell stress exists to balance
a stationary monolayer. Cells in higher level of stress are present at the border and in

inner regions where the monolayer is less cohesive.

3.5.2.2 Sensitivity

From the results obtained in section 3.4.2.2, cell stress is not only dependent on the cell
position within the monolayer but also on the cell mechanical properties, see Figure
3.10.

Different values for the parameters (apparent Young’s modulus and intercellular
adhesion energy) were investigated. The simulations were performed fixing the cell bulk
modulus at 5.5 kPa and changing the Poisson’s ratio adequately, Eq( 3.18 ). However,
numerical problems associated with the Poisson’s ratio limited the possible values for
the apparent Young’s modulus. An alternative approach could have been to fix the
Poisson’s ratio and change both the apparent Young’s modulus and the bulk modulus.
The cell bulk modulus was determined in this work based on water transport
experiments through permeable gap junctions [116]. This can constitute a limitation as
an instantaneous elastic property was related with the time-dependent flow of water
through cell-cell junctions. In addition, this explains the discrepancy between the value

of bulk modulus used in this work and values reported in the literature, however limited,
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measured using acoustic microscopy [125] and radiation [126], 2-3 GPa. The model
developed predicts different volume for cells within a monolayer. However, its
formulation does not define a minimum value for this volume. Therefore, unrealistic cell
volumes were avoided by restricting the possible values for the parameters. An
alternative would be to include a minimum cell volume within the model formulation,
for instance, by accounting for changes in cell height. Another option would be to
include another repulsive force dependent on the absolute cell volume, rather than on
relative volume pressures existent between cells.

The maximum stress predicted has values with order of magnitude between 0.1-100 Pa
and increases with both the apparent Young’s modulus and intercellular adhesion
(Figure 3.10). When comparing the stress distributions obtained in this work with
experimental results from the literature one must consider the intercellular and passive
nature of the cell stress here predicted. Active cell tractions that drive cell migration
were not included. This fact constitutes a barrier to validation as passive and active cell
contributions are difficult to differentiate experimentally and may even be related [124].
Although this fact is a barrier to validation, it also shows one of the strengths of
computational modelling in comparison with experimental work: the possibility of
isolating the contribution from different factors and increase mechanistic
understanding. Nonetheless, studies like the one of Trepat et al [16] on Madin-Darby
Canine Kidney Epithelial Cells (MDCK) can be analysed as a reference. The stress within
a migrating monolayer was theoretically computed based on experimentally measured
traction forces. Although higher traction stress was measured for cells at the leading
edge (20 Pa), considerable traction was measured for cells many rows behind it (5 Pa for
cells at a distance of 200 um). Assuming that the traction stress generated by migrating
cells is balanced by an intercellular stress carried within the monolayer, it was possible
to determine the intercellular stress using a force balance. This intercellular stress was
found to be maximum for cells far away from the leading edge, reaching an order of
magnitude of hundreds of Pa. The hypothesis suggested by the authors is that part of
the high traction force exerted by cells at the border is transmitted to inner cells. This
explains the build-up of forces towards the centre of the monolayer and the higher

stress found in this region. In contrast with these results, in this work higher intercellular
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stress was predicted for cells on the border of the monolayer. The reason behind this
difference lies in the fact that no migratory traction forces were included and instead of
a directional migration, cell movement followed a radial expansion after cell seeding
based on elastic forces. In agreement with the results obtained in this work, the same
authors found that cells in tension and cells in compression can be in close proximity in

the same monolayer.

3.5.2.3 Mechanics of bladder and breast cell monocultures

A power-law relation between the maximum compressive stress and intercellular
contact stiffness was found for all the cells modelled with a good coefficient of
determination, see Figure 3.11. It is reasonable that stress increases with the stiffness
associated with cell-cell contact. In addition, higher stress was found for monolayers of
bladder normal cells than for monolayers of bladder cancer cells, Table 3.7 and Table
3.8. The high mechanical mismatch between individual bladder normal cells and bladder
cancer cells results in different maximum compressive stress at the population level.
The variation in stress found for cells of the same type reflects the variation in apparent
Young’s modulus and intercellular adhesion. However, the variation in adhesion is much
more relevant. Maximum stress levels increase from the units of Pa for minimum
adhesion to hundreds of Pa for maximum cell-cell adhesion, Table 3.7 and Table 3.8. The
variation in Young’s modulus is based on measurements for the same cell type reported
in the literature. On the other hand, the variation in adhesion relied on measurements
performed for different cell types, being much higher.

Alternative metrics for the cell-cell adhesion could have considered. For instance, in
AFM force spectroscopy the force at which two cells detach is measured using a
cantilever. However, due to the current difficulty in tracking the contact area between
two cells, this technique lacks a method for normalizing the forces measured [127]. In
addition to the problem of limited data for the adhesion between cells of specific type;
model inputs require data from the literature to be comparable and compatible with the
model formulation. In this case, the JKR model requires the work associated with cell-

cell contact and not adhesion forces as reported by some authors [33]. Given that the
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development of simulation models is dependent on the development of accurate
measurement technologies, the development of models should be considered in parallel

with the available measuring tools to inform the models.

3.5.2.4 Mechanics of bladder and breast cell co-cultures

Differences in cell packing and sorting were observed for co-cultures of cells with
different mechanics (Figure 3.15 and Figure 3.16). This evidences the role of intercellular
contact and compressibility forces within the first hours after seeding. Unpublished data
collected by PhD student Marzieh Tehrani (Insigneo, University of Sheffield) confirms
that differences in cell shape and clustering are observed for normal and cancer cells
within this time frame. The following microscope image was taken 10 hours after

seeding, before cell migration and division start:

100 pm

Figure 3.17 Microscope image taken 10 hours dfter the seeding of an in-vitro co-culture

of mesenchymal stem cells, in red, and bone cancer cells, in green.

Asymmetries in cell packing are visible, there is higher cell density on the top left of the
image. In particular, there is a high cancer cell density in this region when comparing to
the rest of the image. This suggests that cells are clustering according to their type. The
results of this work indicate that the seeding procedure and the mechanics of the cells

cultured can play a role in cell packing asymmetries and cell sorting.
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Cells in tension and in compression were found in the centre of heterogeneous
monolayers in this work. This was reported by Trepat et al. [16] for migrating
populations. Since the populations studied by Trepat correspond to monocultures, the
heterogeneous stress fields measured suggest that either differences in cell packing or
cell mechanics exist within a monoculture. The authors proposed that mechanically
different cells may be present, which is reinforced by the results obtained in this work.
In order to take more conclusions with regards to how much of the stress is determined
by cell mechanics or cell local topology, monolayers with more cells could be
investigated in the future with the model developed.

Three different types of co-culture were implemented: higher adhesion for normal cells,
equal adhesion for normal and cancer, higher adhesion for cancer cells. In addition to
the question of whether cell-cell adhesion is higher for normal or cancer cells, there is
the question of whether cell-cell adhesion is different at different stages of cancer
development [128]. It is possible that cancer cell adhesion changes during the process
of detaching from the primary tumour, migrating and attaching to other secondary
tissues for metastasis. The same applies to the Young’s modulus. It is possible that cell
mechanical changes are necessary for cell function and adaptation to the environment.
In the future, the dynamics of cell adaption could be considered in the model developed.
A feedback could be included between the level of stress experienced by the cell and
the consequent change in its mechanical properties.

Active cell tractions that drive cell migration are included in Chapter 4 of this thesis. The
aim is to investigate the relative role of passive and active cell mechanical properties in

the migration of breast and bladder cell co-cultures.

3.6 Conclusion

In conclusion, a computational model representing the process of cell spreading within
the first few hours of in-vitro seeding was developed. Cell spreading is considered to be
governed by intercellular contact and compressibility forces. Thereby, cell volume and

intercellular stress can be predicted for cells within a population.
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The model was applied to normal and cancer cell cultures accounting for the different
individual cell mechanics associated with malignant transformation. Intercellular stress
in @ monolayer was found to depend on both the cell mechanical properties (Young’s
modulus and intercellular adhesion) and those of neighbouring cells. Intercellular stress
varies more within a co-culture of mechanically different normal and cancer cells than
within monocultures. Furthermore, the different mechanical properties of normal and
cancer cells explain their early sorting in co-culture.

The predictions of the model show that the mechanical properties of individual cells
reflect at the population level. This evidences their potential to be used as targets to
treat diseases that affect the mechanics of tissues, such as cancer.

The results of this Chapter demonstrate the robustness of the computational model
developed. This is the first step in developing a collective cell migration model which is
extended to include active traction forces — Chapter 4. By investigating passive forces at
a first step, it will be possible to understand the relative role of passive and active forces

in the mechanics and migration of cell populations.
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Chapter 4 - Modelling active mechanics of cell migration

Summary

Cancer cells in the body sort from the normal tissue and tend to cluster enabling metastasis.
Similar sorting behaviour has also been observed in-vitro. In addition, normal and cancer cells
have been shown to be mechanically different. However, it is not understood how these different

mechanical properties affect collective cell migration and sorting in cancer.

In this Chapter a computational model was developed to investigate the mechanics of migration
of normal and cancer cells in co-cultures. Cell movement is governed by passive forces, the
subject of Chapter 3, in the first hours after seeding and migratory traction forces are exerted by

cells later.

The results of this new model indicate that the sorting between normal and cancer cells in co-
culture is more influenced by differences in the traction of normal and cancer cells and cell-cell

adhesion levels, followed by differential adhesion of normal and cancer cells.

4.1 Introduction

As discussed in Chapter 2 of this thesis, cell sorting is related with cancer spreading in-
vivo, as cancer cells sort from the normal tissue and cluster for metastasis. Spontaneous
sorting of normal and cancer cells in co-culture has also been observed in in-vitro
experiments [20], [129].

The study of cell sorting has been inspired by the same physical principles as the ones
governing the behaviour of immiscible liquids [22], [93]. These principles are the basis
of theories such as the Differential Adhesion Hypothesis (DAH) [21]. However, also
differences in cell motility have been proposed to play a role in cell sorting and collective
behaviour. There is experimental evidence of the sorting of keratocytes with different
motilities [102] and computational work supporting this idea [24], [98].

The measurement of parameters characterizing cell mechanics, such as the apparent
Young’s modulus, intercellular adhesion and traction force was presented in Chapter 3.

At the same time, a recent review on collective cell migration shows the great variety of
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computational models developed to understand this phenomenon [44]. However, the
connection between the emergent collective behaviour and individual cell mechanics is
missing. The traction forces exerted by collectively moving cells are heterogeneous and
dynamic and a clear relation between the movement observed and the forces measured
is yet to be found [18]. In addition, despite the importance of collective cell migration
and sorting in metastasis [41], [42], cell-based models investigating these processes in
cancer lack [42].

The aim of this Chapter was to investigate the mechanics of collective cell behaviour and
cell sorting in cancer. The model presented in Chapter 3 was expanded to include
migratory traction forces. It was applied to co-cultures of mechanically different normal
and cancer cells as a surrogate for tumour-host mechanical interactions. The main

scientific questions that are addressed in this Chapter are:

° What is the relation between cell sorting and intercellular forces?

° What is the relative role of differences in motility and cell-cell adhesion in the
sorting of normal and cancer cells in co-culture?

° Can the Differential Adhesion Hypothesis explain the sorting of normal and
cancer cells in co-culture?

° Can cell mechanics inspire a mechanistic explanation for cell sorting?

4.2 General methods

4.2.1 Model description

This work regards cell movement as governed by passive intercellular forces in the first
few hours after cell seeding. Passive relaxation is characterized by a decrease in
intercellular forces and cells reaching a state of equilibrium, subject of Chapter 3. In this
Chapter, active traction forces exerted by cells to migrate are included in the model, Eq
(3.1). Intercellular forces, cell position, volume and stress are all computed as described
in Chapter 3 —section 3.2.1.

It is assumed that cells start migration as being polarized in a random direction.

Therefore, at the beginning cells are assigned random angles for their active forces.
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Following the minimal model of Vicsek [68], it is considered that, during migration, cells
align the direction of their active machineries with neighbouring cells in order to migrate
collectively. Neighbouring cells align their active machineries with time, while showing

some degree of persistence in their movement:

Aeen(t +1) = 098 acey (£) +0.02 Aneighbours (t) (4.1)

in which acen refers to the active force angle for a particular cell and aneighbours is the
average angle for neighbouring cells. Isolated cells, without neighbours, keep migrating
in the same direction. This alignment rule results in a 200 cell population having a
coordinated movement after 15-30 minutes of real time migration.

The active traction force magnitude is tuned to in-vitro measurements of the velocity of
individual cells. Modelling drag using the Stoke’s model [130] and following from
Eqg.(3.1), the active force can be computed for an isolated cell, for which intercellular
forces are not present, based on its velocity vacive, radius R and the extracellular

environment viscosity W:

F qctive = OMRWY gepive (4.2)

It is assumed that cells preserve the magnitude of the active force when surrounded by
other cells.

This Chapter investigates sorting between normal and cancer cells in co-culture,
guantified using a metric called sorting index (Sl). This is computed as the number of
cells of different type, n#, over the total number of cells surrounding a particular cell, n#

+n=[102].

Sl =—= (4.3)

Ne+Nn=
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4.2.2. Model parameters

Bladder and breast normal and cancer cells were assigned the average apparent Young’s
modulus considered in Chapter 3, Table 4.1. Intercellular adhesion energy was varied
within the valid range found in Chapter 3 — section 3.3.2.2 according to cell volume
restrictions. The bulk modulus for all the cells, the cell radius and the medium viscosity
were kept constant at 5.5 kPa, 10 um and 0.01 kPa.s respectively. As in Chapter 3, the
Poisson’s ratio was determined depending on the apparent Young’s modulus and
assuming that cells behave as homogenous isotropic materials (Eq. 3.16).

In the studies in which intercellular adhesion was different for the homotypic cell
interactions normal-normal and cancer-cancer, the magnitude of adhesion for the
interaction normal-cancer was assumed to be equal to the minimum of the last two. This
is based on the idea that two cells of the same type should adhere to each other to a
higher extent than two cells of different type [98].

Velocity values of single migrating cells have been reported to be in the order of
magnitude of 0.1-5 um/min [131]. In this study, single normal cells were considered to
migrate at a velocity of 5 um/min. This velocity was converted to an active traction force
as described in section 4.2.1, Eq (4.2).

Higher traction forces have been measured for cancer cells than for normal cells,
between 20 to 100% higher [30], [31]. The active velocity, and therefore traction force,
for cancer cells was determined in this work considering this mismatch in traction found
between normal and cancer cells. Assuming that active force in the model is a proxy for
cell traction force, active force mismatches within this range were applied between

normal and cancer cells throughout this work.

Table 4.1 — Model parameters.

Young’s modulus, | Cell-cell adhesion, | Bulk modulus, | Radius,
E (kPa) g (nN/pm) K (kPa) R {pum)
Bladder normal cells | 10 0.05-4.7
Bladder cancer cells | 0.3 0.05-36
5.5 10
Breast normal cells 2.3 0.05-7
Breast cancer cells 1.2 0.05-11
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4.2.3 Cell sorting threshold

At the start of cell migration, after seeding and passive relaxation, normal and cancer
cells in co-culture are randomly mixed. The initial sorting index varies between replicates
due to the randomness of cell seeding. This variability was determined simulating the
seeding of 20 replicates of normal/cancer cell co-cultures. One of this replicates is
presented in Figure 4.1. The sorting index after seeding had a mean of 0.498+0.024, with
values between 0.4 and 0.6.

This reflects the randomness of the initial configuration, as a sorting index of 0.5 is
associated with cells having exactly the same proportion of cells of equal and different

type surrounding them.

Initial cell configuration

-150 -100 50 0 50 100 150

X-axis [(um
Figure 4.1. Example of initial configuration for one seeding replicate of a co-culture of
bladder normal and cancer cells with equal intercellular adhesion energy of 0.05 nN/um.

The initial sorting index is 0.54.

During migration, cells rearrange their positions leading to changes in the sorting index.
Since the sorting index decreases with cell sorting, sorting between normal and cancer
cells is considered to have happened whenever the sorting index decreases to a value

lower than 0.4 after two hours of migration.
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4.3 Simulations

Cell migration was modelled synchronously for two hours of real time in an unconfined
environment. A time step of 0.135 seconds, maximum cell displacement of 2.5 % of the
cell radius per iteration, was considered since it is small enough to ensure both solution
stability and accuracy — Appendix. Five seeding replicates were investigated per cell
population. Normal and cancer cell co-cultures with 200 cells were studied from both
the bladder and breast tissues. Intercellular forces, cell stress and sorting index were all
calculated and saved every tenth iteration to reduce computational and memory costs.

The following sections describe the several sorting studies performed.

4.3.1 Cell sorting based on different active traction

Traction forces measured for cancer cells are 20-100% higher than those measured for
normal cells [30], [31]. This study investigates the effect of this force mismatch on the
migration of bladder cell co-cultures. Cell-cell adhesion was assumed to be minimum
and the same for the cell interactions normal-normal, cancer-cancer and normal-cancer.

The cell properties considered are presented in Tables 4.2 and 4.3.

Table 4.2 — Young’s modulus and intercellular adhesion properties used for the study.

Bladder normal cells  Bladder cancer cells

Young's modulus (kPa) 10 0.3

Intercellular adhesion energy 0.05

(nN/um)
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Table 4.3 — Active traction properties used for the study.

Active traction force

Active traction velocity (um/min)

mismatch(%) Normal cells Cancer cells
20 5]
30 6.5
40 7
50 7.5
5

60 3
70 8.5
80 9
90 9.5
100 10

4.3.2. Cell sorting based on absolute cell-cell adhesion

This study investigates the effect of cell-cell adhesion on the migration of bladder cell

co-cultures. As in section 4.3.1, equal adhesion was assumed for all the cell-cell

interactions. However, adhesion levels were varied between 0.05 and 4.7 nN/um, the

valid range found for bladder normal cells in Chapter 3 - section 3.3.2.2. Active velocity

was assumed to be 5um/min for normal cells and 10um/min for cancer to maximize the

possibility of cell sorting. The cell properties considered are presented in Tables 4.4 and

4.5.

Table 4.4 — Young’s modulus and active velocity properties used for the study.

Bladder normal cells Bladder cancer cells

Young’'s modulus (kPa) 10

0.3

Active velocity (um/min) 5

10
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Table 4.5 — Intercellular adhesion properties used for the study.

Intercellular adhesion energy
(nN/pm)

0.05

0.075

0.1

0.2

0.3

1.2

4.7

4.3.3. Cell sorting based on different cell-cell adhesion

This section investigates how different adhesion associated with cell interactions
normal-normal and cancer-cancer, affects the sorting of normal and cancer cells in co-
culture. Both co-cultures of cells from the bladder and from the breast were studied,
Table 4.6. The adhesion associated to the cell interaction normal-cancer was assumed
to be equal to the minimum between the normal-normal and the cancer-cancer
adhesion values and kept constant at 0.05 nN/um. Cell adhesion levels varied within the
limits defined in Chapter 3 — section 3.3.2.2, Table 4.7. Two scenarios were tested:
higher adhesion between normal cells, shaded in orange in Table 4.7, and higher
adhesion between cancer cells, shaded in purple.

The active traction force mismatch between normal and cancer cells was minimum
(20%) in order to explore how cell sorting in a co-culture is affected by differential

intercellular adhesion solely.
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Table 4.6 — Young’s modulus and active velocity properties used for the study.

Bladder cells Breast cells

Normal Cancer Normal Cancer
Young's modulus (kPa) 10 0.3 2.3 1.2
Active velocity 5 6 5 6

(km/min)

Table 4.7 — Intercellular adhesion properties used for the study. Two adhesion scenarios
were considered: higher adhesion between normal cells, shaded in orange, and higher

adhesion between cancer cells, shaded in purple.

Intercellular adhesion energy (nN/um)

Bladder cells Breast cells

Normal Cancer Absolute difference | Normal Cancer Absolute difference
0.075 0.05 0.025 0.075 0.05 0.025
0.05 0.075 0.025 0.05 0.075 0.025
0.3 0.05 0.25 0.3 0.05 0.25
0.05 0.3 0.25 0.05 0.3 0.25
1.05 0.05 1 1.05 0.05 1
0.05 1.05 1 0.05 1.05 1

2.5 0.05 2.45 2.5 0.05 2.45
0.05 2.5 2.45 0.05 2.5 2.45
a7 0.05 4.65 7 0.05 6.95
0.05 a7 4.65 0.05 7 6.95
0.05 36 35.95 0.05 11 10.95

4.3.4. Cell sorting based on the combined effect of different active traction

and different cell-cell adhesion

This section explores the combined effect of differential intercellular adhesion and

active force mismatch on the sorting of normal and cancer cells in co-culture. Sorting
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was investigated for low adhesion differences between normal and cancer cells, lower

than 1 nN/um, in association with traction mismatches of 40 and 60%, Table 4.8.

Table 4.8 — Cell properties for combined effect of active traction force mismatch and

differential cell-cell adhesion.

Intercellular adhesion energy (nN/um)

Bladder cells Breast cells

Active traction force Adhesion difference | Active traction force Adhesion difference
mismatch (%) mismatch (%)

40 0.025 40 0.025

40 0.25 40 0.25

60 0.025 60 0.025

60 0.25 60 0.25

4.4 Results

4.4.1 Cell sorting based on different active traction
The sorting index evolution for maximum active traction force mismatch is showed as

an example (Figure 4.2). A linear relationship provides the best fitting for this evolution

with an R2 of 0.974.
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Figure 4.2. Sorting evolution for maximum active traction force mismatch, average of
the five replicates in blue and region covered by the standard deviation in grey. Linear

fitting in orange.

Cell sorting is higher for higher active traction force mismatch, see Figure 4.3. The
coefficient of variation of the sorting index was determined by computing the ratio
between the standard deviation and the average of the final sorting index values
obtained for the various traction mismatches. A value of 27.2% was obtained. This is a
quantitative measure of the variation in sorting with the active traction force mismatch
between normal and cancer cells. It was found that a minimum mismatch of 70% is
required for a significant sorting (sorting index less than 0.4) between normal and cancer

cells in co-culture for low and uniform cell-cell adhesion.
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Figure 4.3. Relation between sorting index after two hours of migration and active

traction force mismatch. Average and standard deviation of five seeding replicates.

Intercellular force and cell velocity are here analysed for three different active traction
force mismatches: 20, 40 and 100%, see Figures 4.4, 4.5 and 4.6, respectively. Cell
sorting was significant for the latter only.

Figures 4.4, 4.5 and 4.6 show the results obtained for one seeding replicate with initial
cell distribution in Figure 4.1. Velocity and intercellular force distributions at the end of
migration are presented, as well as the time evolution of the average magnitude of
intercellular force and a visual representation of the direction of intercellular forces at
the end of migration.

For 20 and 40% of active traction mismatch (Figures 4.4 and 4.5), cell velocity reaches a
value equal to the average of the active velocities of normal and cancer cells, 5.5+2.5x10"
2 um/min for the former and 6.0+0.31 um/min for the latter. For the velocity of the
heterogeneous cluster to be in between the active velocity of normal and cancer cells,
normal cells need to migrate faster than when isolated and cancer cells slower.
Intercellular forces emerge to make this possible, accelerating normal cells and dragging
cancer cells behind. Intercellular force peaks at the beginning of cell migration and
decreases as the cells align their migration direction. The active force of normal cells was
fixed at 1.6 nN, associated with a velocity of 5 um/min - section 4.3.1, while the active
force of cancer cells was of 1.9 nN for 20% mismatch and 2.2 nN for 40%. Intercellular

force reaches a magnitude equal to half the difference of the active force of normal and
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cancer cells, 0.16+7.8x10°3 nN for a mismatch of 20% and 0.28+8.3x1073 nN for 40%. In
terms of direction, intercellular force has the same direction as cell migration for normal
cells, therefore accelerating them, and opposite direction to cell migration for cancer
cells, dragging them. For a mismatch of 40% cells rearrange more their positions
according to their type and are less packed. This explains the higher variation in the
magnitude and direction of intercellular forces when comparing to a 20% mismatch.

When there is cell sorting (active mismatch of 100% in Figure 4.6), three different
regions are possible. One region in which cells migrate faster, at a velocity similar to the
cancer cell active velocity, one in which cells migrate slower, at a velocity similar to the
normal cell active velocity, and one last region in which cells migrate at an intermediate
velocity. Intercellular forces decrease as cells sort and become locally high for the cells
that do not sort. For instance, the cancer cells that stay at the rear migrating at a velocity
similar to the one of normal cells have the highest intercellular force, =1.4 nN, that acts
as a drag. Globally, cells travel at an average velocity of 7.5+2.0 um/min with
intercellular forces of magnitude 0.24+0.33 nN. The high standard deviations reflect the
heterogeneity associated to intercellular force and velocity when there is a higher active
traction force mismatch. It is the inability of cells to generate sufficient intercellular

forces to drive a cohesive movement of the heterogeneous cluster that leads to sorting.
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Active traction force mismatch of 20 %

Final velocity and intercellular force distributions
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Figure 4.4. Final intercellula

r force and velocity for an active traction mismatch of 20%.

a) Final velocity and b) intercellular force distributions: each cell is coloured according to

velocity and force magnitudes respectively. c) Evolution of intercellular force, average

for all the cells was computed and the associated standard deviation is shown.

Intercellular force direction:

d) normal cells in green and cancer cells in black, the arrows

represent the resultant intercellular force for each cell and e) scatter plot in which blue

circles correspond to normal cells and black circles to cancer cells.
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Active traction force mismatch of 40 %
Final velocity and intercellular force distributions
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Figure 4.5. Final intercellular force and velocity for an active traction mismatch of 40%.
a) Final velocity and b) intercellular force distributions: each cell is coloured according to
velocity and force magnitudes respectively. c) Evolution of intercellular force, average
for all the cells was computed and the associated standard deviation is shown.
Intercellular force direction: d) normal cells in green and cancer cells in black, the arrows
represent the resultant intercellular force for each cell and e) scatter plot in which blue

circles correspond to normal cells and black circles to cancer cells.
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Active traction force mismatch of 100 %
Final velocity and intercellular force distributions
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Figure 4.6. Final intercellular force and velocity for an active traction mismatch of 100%.

a) Final velocity and b) intercellular force distributions: each cell is coloured according to

velocity and force magnitudes respectively. c) Evolution of intercellular force, average

for all the cells was computed and the associated standard deviation is shown.

Intercellular force direction: d) normal cells in green and cancer cells in black, the arrows

represent the resultant intercellular force for each cell and e) scatter plot in which blue

circles correspond to normal cells and black circles to cancer cells.
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4.4.2 Cell sorting based on absolute cell-cell adhesion

This section’s aim is to explore the effect of the intercellular adhesion levels on cell
sorting. Adhesion is considered to be the same between normal and cancer cells.
However, different values are tested to understand the maximum adhesion leading to
sorting of normal and cancer cells in co-culture. In section 4.4.1 it was found that sorting
was higher for higher mismatch in the active forces of normal and cancer cells.
Therefore, the high mismatch of 100% here considered maximizes the possibility of
sorting.

In order to be able to find an accurate threshold for adhesion lower adhesion values
were investigated. The coefficient of variation of the final sorting index was determined
to quantify the variation in sorting with the absolute magnitude of cell-cell adhesion. A
value of 26.8% was obtained for this coefficient.

Assuming the same adhesion between normal and cancer cells, the maximum adhesion

possible for sorting in co-culture was found to be 0.1 nN/um (Figure 4.7).
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Figure 4.7. Sorting index after two hours of cell migration as a function of cell-cell
adhesion. Normal and cancer cells have the same adhesion. Average and standard

deviation of five seeding replicates.
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